
Beginning
MicroPython
with the
Raspberry Pi Pico

Build Electronics and IoT Projects
—
Charles Bell

MAKER
INNOVAT IONS
SER I ES

Beginning
MicroPython with the

Raspberry Pi Pico
Build Electronics and

IoT Projects

Charles Bell

Beginning MicroPython with the Raspberry Pi Pico: Build Electronics and

IoT Projects

ISBN-13 (pbk): 978-1-4842-8134-5 ISBN-13 (electronic): 978-1-4842-8135-2
https://doi.org/10.1007/978-1-4842-8135-2

Copyright © 2022 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Beginning-
MicroPython-with- the- Raspberry- Pi- Pico. For more detailed information, please visit
http://www.apress.com/source- code.

Printed on acid-free paper

Charles Bell
Warsaw, VA, USA

https://doi.org/10.1007/978-1-4842-8135-2

I dedicate this book to my brother, Ronald,
who is in our hearts and in our prayers daily.

May God bless you and heal you.

v

Table of Contents

Chapter 1: Introducing the Raspberry Pi Pico ��������������������������������������1

What Is a Microcontroller? ��2

A Tour of the Raspberry Pi Pico ���3

Introducing the RP2040 ���5

Pico Hardware Overview ���8

RP2040-Based Alternatives ���10

Getting Started with the Pico ��20

Where to Buy ���20

Preparing Your Computer���28

Installing MicroPython on the Pico ��28

Connecting to the Pico���37

Summary���42

Chapter 2: Introducing MicroPython ��43

Getting Started ��44

Origins ���45

MicroPython Features��47

MicroPython Limitations ��49

About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

Introduction ���xxi

vi

What Does MicroPython Run On? ��50

Experimenting with Python on Your PC ���51

How It Works ���62

File Operations with a Utility��63

Off and Running with MicroPython ���69

Example 1 – Blink the LED ��70

Example 2 – Toggle the LED ��74

Example 3 – Timer ���78

Saving Your Work ���81

Summary���82

Chapter 3: How to Program in MicroPython ���������������������������������������85

Basic Concepts ���86

Code Blocks ���87

Comments ���89

Arithmetic ��90

Output to Screen ��91

Variables and Statements ���93

Types ���95

Basic Data Structures ��97

Statements ��101

Modularization ��105

Including Modules ���105

Functions ���106

Classes and Objects ��108

Learning Python by Example ���119

How Do I Create and Execute Python Files? ��120

Example 1: Using Loops���120

Table of ConTenTs

vii

Example 2: Using Complex Data and Files ��125

Example 3: Using Functions ��133

Example 4: Using Classes ��141

For More Information ��151

Summary���151

Chapter 4: Low-Level Hardware Support ��153

The Pico GPIO Header ���154

MicroPython Libraries ���155

Built-In and Standard Libraries ���156

Built-In Functions and Classes ��170

Exceptions ���176

MicroPython-Specific Libraries ���181

Low-Level Libraries ���188

Working with Low-Level Hardware ���190

Drivers and Libraries to the Rescue! ���191

Using Breakout Boards ���193

Inter-integrated Circuit (I2C) ��195

Serial Peripheral Interface (SPI) ��204

Summary���211

Chapter 5: Electronics for Beginners ��213

The Basics ���214

Tools ��214

Using a Multimeter ��220

Powering Your Electronics ���228

Electronic Components ���230

Button ��230

Capacitor ���231

Table of ConTenTs

viii

Diode ���232

Fuse ���233

Light-Emitting Diode (LED) ��234

Relay ��236

Resistor ���237

Switch��237

Transistor ���239

Voltage Regulator ��240

Breakout Boards ��241

Breadboard and Jumper Wires ��242

Basic Electronics Kit ��244

Using a Breadboard to Build Circuits ��247

What Are Sensors? ��251

How Sensors Measure ���251

Examples of Sensors ���255

Electronics Resources ���268

Summary���269

Chapter 6: Project: Hello, World! MicroPython Style ������������������������271

Getting Started with Pico Projects ��272

One Step at a Time! ���272

Some Assembly Required ��273

Handle with Care! ��273

Overview ���275

Required Components ���277

Set Up the Hardware ���280

Write the Code ��284

Design ���284

Table of ConTenTs

ix

Libraries Needed ���285

Planning the Code ���287

Test the Breakout Boards ��295

Execute ���300

Taking It Further ��303

Summary���305

Chapter 7: Project: Pedestrian Crossing ���307

Overview ���308

Required Components ���309

Set Up the Hardware ���312

Write the Code ��314

Imports ��315

Setup ���315

Functions ���316

Execute ���322

Taking It Further ��323

Summary���324

Chapter 8: Project: Soil Moisture Monitor ��325

Overview ���326

Required Components ���327

Pico Omnibus ���329

Pico Display ���330

Soil Moisture Sensor ���331

Potential Hardware Conflicts ���332

Set Up the Hardware ���335

Load the Pimoroni Image on the Pico ��336

Connecting the Hardware ��337

Table of ConTenTs

x

Write the Code ��339

Calibrating the Sensor ���340

Class Modules ���344

Main Code ��359

Execute ���365

Taking It Further ��366

Summary���367

Chapter 9: Introducing Grove ��369

Overview ���369

The Grove Component System ��370

Components Available ���379

Host Adapters ��380

Modules ���382

Cabling and Connectors���387

Where to Buy Grove Components ��387

Using the Components with Your Pico ��388

Summary���389

Chapter 10: Project: Sound Activated Lights ������������������������������������391

Overview ���392

Required Components ���392

Grove Shield for Pi Pico ���394

Sound Sensor ��395

Grove RGB LED ��395

Grove Kits ��397

Set Up the Hardware ���398

Write the Code ��399

Libraries Needed ���399

Table of ConTenTs

xi

Code Layout ���400

Imports ��401

Functions ���401

Main Function ���403

Setup ���404

Execution Loop ��404

Execute ���408

Taking It Further ��409

Summary���410

Chapter 11: Project: Simon Game ���411

Overview ���411

Required Components ���412

Grove Dual Button ��413

Grove LCD RGB Backlight ��414

Set Up the Hardware ���415

Using a Mounting Plate��416

Write the Code ��422

Install Software Libraries���422

Create the Class Modules ��423

Buzzer Class ��423

Buttons Class ���430

Simon Class ���434

Main Code Module ���445

Execute ���448

Taking It Further ��450

Summary���451

Table of ConTenTs

xii

Chapter 12: Project: Monitoring your Environment ��������������������������453

Project Overview ���453

Required Components ���454

About the Hardware ���457

Set Up the Hardware ���463

Using a Mounting Plate��464

Write the Code ��468

Install Software Libraries���468

Create the Class Modules ��468

Execute ���488

Going Further ��490

Summary���491

Chapter 13: Introducing IoT for the Cloud ��493

Overview ���494

What Is the Cloud?���494

What Is Cloud Computing Then? ��495

How Does the Cloud Help IoT? ��496

IoT Cloud Systems ��497

IoT Cloud Services Available ��498

Connecting Your Pico to the Internet ���502

Pico WiFi Modules ���502

Using the Pico Wireless Pack ��508

IoT Project Examples ���512

Example 1: Pedestrian Crossing��513

Set Up the Hardware ���513

Write the Code ���517

Execute ��525

Table of ConTenTs

xiii

Example 2: Soil Moisture Monitor ���528

Set Up the Hardware ���529

Write the Code ���532

Execute ��557

Improving the Code ���561

Summary���562

Chapter 14: Using ThingSpeak ���563

Getting Started ��564

Create an Account in ThingSpeak ��565

Create a Channel ���567

How to Add ThingSpeak to Your Projects ��570

Using ThingSpeak with the Pico ��572

Example Project: IoT Environment Monitor ���591

Required Components ���592

Set Up the Hardware ���593

Create the ThingSpeak Channel ��597

Prepare the Project Files ���598

Update the Main Code ���599

Execute and Visualize the Data ���603

Public View ��608

Summary���610

Appendix ���611

Index ���617

Table of ConTenTs

xv

About the Author

Dr. Charles A. Bell conducts research in

emerging technologies. He is a principal

software developer of the Oracle MySQL

Development team. He lives in a small town in

rural Virginia with his loving wife. He received

his Doctor of Philosophy in Engineering from

Virginia Commonwealth University in 2005.

Dr. Bell is an expert in the database field and

has extensive knowledge and experience in

software development and systems engineering.

His research interests include microcontrollers, three- dimensional printing,

database systems, software engineering, and sensor networks. He spends his

limited free time as a practicing maker, focusing on microcontroller projects

and refinement of three-dimensional printers.

xvii

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to build things that improve quality of life. You can find

his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com

xix

Acknowledgments

I would like to thank all of the many talented and energetic professionals

at Apress. I appreciate the understanding and patience of my managing

editor, Aaron Black; coordinating editor, Jessica Vakili; and development

editor, Mark Powers. Each was instrumental in the success of this project.

I appreciate their encouragement and guidance as well as patience in

dealing with my many questions. I would also like to thank the small army

of publishing professionals at Apress for making me look so good in print.

Thank you all very much!

I’d like to especially thank the technical reviewer for his patience and

attention to detail. Most importantly, I want to thank my wife, Annette,

for her unending patience and understanding during the many hours I

spent staring into the abyss of a blank page on my laptop or conducting

IoT experiments on the dining room table, in the plants on the porch, or

plugged into strange places in the house.

xxi

Introduction

The Raspberry Pi is the most popular single-board computer platform

available. The boards are inexpensive, run the latest fully featured operating

systems, and are backed by a growing ecosystem of developers, engineers,

enthusiasts, and hobbyists. But raspberrypi.org wasn’t done there. Now, we

have a Raspberry Pi microcontroller called the Raspberry Pi Pico.

The Raspberry Pi Pico, with a very low cost, small form factor, and

system-on-the-chip technology, is enabling many more people to

learn, experience, and complete projects that would previously have

required special (and expensive) hardware or having to learn a complex

programming language – MicroPython. Built on the parent language,

Python, MicroPython provides all of the ease of programming and

hardware access in Python with a special interpreter built-in that allows

the Pico to boot and execute MicroPython code. Nice.

This book presents a beginner’s guide to MicroPython and the

Raspberry Pi Pico. I cover topics including a tour of the Pico and related

hardware, a tutorial on MicroPython programming, what types of sensors

exist, how they communicate their values (observations or events), how

they can be used in your MicroPython projects, and how to build your own

Internet of Things (IoT) projects.

 Who This Book Is For
I have written this book with a wide variety of readers in mind. It is intended

for anyone who wants to get started building their IoT projects without

learning a complicated programming language or those who want to learn

how to use components, devices, and sensors with a Raspberry Pi Pico.

xxii

Whether you have already been working with IoT projects, or maybe

have taken an introductory electronics course, or even have read a good

Apress book on the Raspberry Pi, you will get a lot out of this book. Best

of all, if you ever wanted to build your own IoT solutions, this book is just

what you need!

Most importantly, I wrote this book to meet my own needs. Although

there are some excellent books on the Raspberry Pi, sensors, IoT, and

MicroPython, I could not find a single reference that showed how to put all

of these together.

 About the Chapters
There are fourteen chapters, six of which include projects that demonstrate

and teach key concepts of building IoT projects. There are also chapters

that introduce MicroPython, present an overview of the hardware,

and teach you how to program in MicroPython, and there’s also an

introduction to electronics for beginners.

The project chapters are split into two groups, those projects that

require discrete components to form simple IoT solutions and those that

use the Grove component system to utilize Grove modules to build more

sophisticated IoT projects without soldering.

Depending on your skill level with the chapter topic, you may find

some of the projects easier to complete than others. It is my hope that you

find the projects challenging and enlightening (but, more importantly,

informative) so that you can complete your own projects. The following

presents an overview of each chapter.

InTroduCTIon

xxiii

 Chapter 1 – Introducing the Raspberry Pi Pico
In this chapter, you will learn what makes the Pico different from the

Raspberry Pi boards, what a microcontroller is, and a demonstration of

how easy it is to work with the Raspberry Pi Pico.

 Chapter 2 – Introducing MicroPython
You will learn more about MicroPython including an overview of how to

get started. The examples in this chapter are intended to give you a taste

of what you can do rather than a detailed tutorial. That said, I encourage

you to attempt the examples for practice. We will see a detailed tutorial for

programming MicroPython in Chapter 3 and take a deeper dive into the

software libraries for lower-level hardware support in Chapter 4.

 Chapter 3 – How to Program in MicroPython
In this chapter, you will learn some of the basic concepts of Python

programming. We begin with the building blocks of the language such as

variables, modules, and basic statements and then move into the more

complex concepts of flow control and data structures. While the material

may seem to come at you in a rush, this tutorial on Python covers only the

most fundamental knowledge of the language and how to use it on your

PC and Pico. It is intended to get you started writing Python applications

quickly.

If you know the basics of Python programming, feel free to skim

through this chapter. However, I recommend working through the example

projects at the end of the chapter, especially if you’ve not written many

Python applications.

InTroduCTIon

xxiv

 Chapter 4 – Low-Level Hardware Support
The chapter begins with a more detailed look at the GPIO header and

pins. In this chapter, you will learn the MicroPython libraries available for

you to use in your projects and take a brief look at the low-level hardware

support in MicroPython for the Pico. Finally, you will also revisit working

with breakout boards to demonstrate some of the libraries and hardware

protocols and techniques discussed in previous chapters.

 Chapter 5 – Electronics for Beginners
In this chapter, you will see an overview of electronics commonly found

in electronics projects. I include an overview of some of the basics,

descriptions of common components, and an introduction to sensors. If

you are new to electronics, this chapter will give you the extra boost you

need to understand the components used in the projects in this book.

If you have experience with electronics either at the hobbyist or

enthusiast level or have experience or formal training in electronics, you

may want to skim this chapter or read the sections with topics that you

may want a refresher.

 Chapter 6 – Project: Hello, World!
MicroPython Style
This chapter begins the first set of three project chapters that use discrete

components to build small IoT projects starting with a very simple

example using LEDs and a real-time clock (RTC) module.

The chapter starts with an overview of the project, followed by a list of

the required components and how to assemble the hardware. Once the

hardware is explained, you will then see how to connect everything and

InTroduCTIon

xxv

begin writing the code. Each chapter will close with how to execute the

project along with a sample of it running and suggestions for embellishing

the project.

The chapter also discusses a few best practices and other practical

advice for developing projects. These apply to all projects in this chapter

and likely any future project you may have in mind.

 Chapter 7 – Project: Pedestrian Crossing
The project in this chapter is a simulation. More specifically, you will

implement a traffic light and a pedestrian walk button. The walk button is

a button pedestrians can use to trigger the traffic signal to change and stop

traffic so they can cross the street. This project represents a more complex

example of using multiple LEDs as well as writing more sophisticated

MicroPython code.

 Chapter 8 – Project: Soil Moisture Monitor
The project in this chapter presents more of a challenge because it uses

more complex hardware and code to explore combining data logging

with data visualization. You will use an OLED made specifically for the

Pico using a third-party host board. You will also see how to use an analog

sensor that produces analog data that we will then have to interpret. In

fact, we will rely on the analog-to-digital conversion (ADC) capabilities of

our Pico to change the voltage reading to a value we can use. Finally, we

will be reusing the RTC module from Chapter 6.

InTroduCTIon

xxvi

 Chapter 9 – Introducing Grove
This chapter introduces a better alternative to using breadboards and

jumper wires. There are component systems designed to unify wiring

by providing a modular cabling system to connect modules. One such

component system that has been around for a while and is available for

use with the Pico is called Grove.

The Grove component system has a rich host of modules we can use

to build our projects simply by connecting the hardware together using

polarized connectors (you can’t plug them in incorrectly). Grove expands

your opportunities for building more complex projects, freeing you to

concentrate on the code for your project.

This chapter prepares you to use the Grove component system in the

next set of projects.

 Chapter 10 – Project: Sound Activated Lights
This chapter presents the second set of three projects using the Grove

component system. You will learn how to build a simple project that

demonstrates how to use a sound sensor and a red-green-blue (RGB) LED

to display assorted colors based on the sound detected. The idea is the LED

will light up whenever sound is detected, and the color will differ based on

the loudness of the sound. So, you will be creating a sound detector.

 Chapter 11 – Project: Simon Game
The project for this chapter is designed to demonstrate how to use

analog, digital, and I2C devices on the same Grove host adapter to build

a Simon game. It works very much like the original game but with an LCD

for displaying messages. We will use a Grove Buzzer for sound and two

Grove Dual Button modules. For the lights, we will use one Grove RGB

LED module.

InTroduCTIon

xxvii

 Chapter 12 – Example: Monitoring
Your Environment
The project for this chapter is designed to demonstrate how to use analog,

digital, and multiple I2C devices on the same Grove host adapter to build

an indoor environment monitor. It uses several sensors to sample the

air for gases and dust as well as sample the temperature and barometric

pressure. As you will see, this is the most challenging of the projects in this

book not only for the number of modules used but also for the complexity

of the code.

 Chapter 13 – Introducing IoT for the Cloud
In previous chapters, you’ve seen a number of projects, ranging from very

basic to advanced in difficulty. However, the projects did not require to be

connected to the Internet nor has there been any mention of using cloud

services. While a complete tutorial of IoT cloud services would take several

chapters, you will see an overview of what the cloud is and how it is used

for IoT solutions. The chapter also presents a concise overview of the

popular cloud systems for IoT as well as a short example using two of our

earlier projects to give you a sense of what is possible and how projects can

be modified to use the Internet.

 Chapter 14 – Using ThingSpeak
This chapter presents a popular, easy-to-use, cloud-based IoT data hosting

service from MathWorks called ThingSpeak (www.thingspeak.com). You

will learn how ThingSpeak can allow you to gain more insights about the

data. The chapter begins with a brief tour of ThingSpeak and how to get

started using it in IoT projects and concludes with examples of how to

expand some of the projects in the book to use ThingSpeak.

InTroduCTIon

http://www.thingspeak.com

xxviii

 Tips for Buying Hardware
The hardware list for this book contains a number of common components

such as temperature sensors, breadboards, jumper wires, and resistors.

Most of these items can be found in electronics stores that stock supplies

for electronics enthusiasts.

The appendix has a list of the components used from the project

chapters. The appendix includes the name of each component and at least

one link to an online vendor that stocks the component. In addition, I

include the quantity needed for the chapter and an estimated cost. If you

add up all the components needed and sum the estimated cost, the total

may be a significant investment for some readers.

 Downloading the Code
The code for the examples shown in this book is available on the Apress

website, www.apress.com. A link can be found on the book’s information

page under the Source Code/Downloads tab. This tab is located

underneath the Related Titles section of the page.

 Reporting Errata
Should you find a mistake in this book, please report it through the Errata

tab on the book’s page at www.apress.com. You will find any previously

confirmed errata in the same place.

InTroduCTIon

http://www.apress.com
http://www.apress.com

1

CHAPTER 1

Introducing the
Raspberry Pi Pico
The Raspberry Pi foundation (raspberrypi.org) has changed the world by

providing powerful, low-cost computer boards. The Raspberry Pi is by far

the biggest selling and most popular of the many small computer boards

available. Perhaps even more important is the Raspberry Pi is designed for

education. Educators can use the Raspberry Pi to teach computer science,

electronics, hardware automation, and Internet of Things (IoT) projects

using Python, Java, or C++ programming languages.

Better still, the ability to run a powerful desktop operating system

means you can use a Raspberry Pi just like your laptop or desktop to build

your project and connect it to other hardware via the general-purpose

input/output (GPIO) pins. With those accolades, it was only a matter of

time before the Raspberry Pi foundation extended their global dominance.

The Raspberry Pi Pico is a departure from the dominance of the

Raspberry Pi small computer boards because it isn’t another small

computer board. So, it doesn’t have the ability to run an operating

system, and there are no video ports, no USB host ports, or even a power

connector. Rather, the Raspberry Pi Pico is the first microcontroller to use a

small Raspberry Pi–based chip (RP2040). Better still, the cost of the Pico is

a mere $4.00, and the RP2040 itself is only $1.00.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_1

https://doi.org/10.1007/978-1-4842-8135-2_1

2

Why is this important? It means the Raspberry Pi is one of the

newest contenders in the microcontroller field, and, as we will see, the

Raspberry Pi foundation has risen to the challenge with a very powerful,

very affordable microcontroller that runs one of the world’s most popular

programming environments – MicroPython (Python for microcontrollers) –

making the Raspberry Pi Pico easy to program and easier to use.

In this chapter, we will learn what makes the Pico different from the

Raspberry Pi boards, what a microcontroller is, and a demonstration of

how easy it is to work with the Raspberry Pi Pico. Let’s begin by defining

what a microcontroller is and how they are used.

 What Is a Microcontroller?
One of the greatest advances in physical computing has been the

proliferation of microcontrollers. A microcontroller consists of a processor

with a small instruction set, memory, and programmable input/output

circuitry contained on a single chip. Microcontrollers are usually

packaged with supporting circuitry and connections on a small, printed

circuit board.

Microcontrollers are used in embedded systems where small software

programs can be tailored to control and monitor hardware devices, making

them ideal for use in small projects such as appliances or smart controller

boards. Microcontrollers are sometimes called an “embedded controller,”

“embedded processor,” or “microcontroller unit (MCU).”

A typical microcontroller has one or more integrated circuits or a single

chip that contains all of the components for the microcontroller. Typically,

the processing unit, memory, and I/O circuitry are considered part of the

microcontroller. However, microcontrollers often employ other circuits

and components such as analog-to-digital converters (ADC), digital-to-

analog converters (DAC), and at least one form of serial communication

port for programming such as a USB port.

Chapter 1 IntroduCIng the raspberry pI pICo

3

These hardware features make microcontrollers ideal solutions for

interfacing with other hardware to perform minimal computational

operations while controlling the hardware. In other words, they make

excellent programmable controllers.

MICROCONTROLLER VS. MICROPROCESSOR: WHAT IS THE DIFFERENCE?

you may be thinking a microcontroller is just a smaller version of a

microprocessor. While some microcontrollers are quite powerful, they are

not microprocessors. a microprocessor is designed to maximize computing

power on the chip while connecting to a bus (think parallel highway for

digital communication) for making use of raM and input/output (I/o) ports

like usb and video graphics, whereas a microcontroller is designed with a

much smaller set of dedicated functionality to perform operations with a set

of general-purpose input/output (gpIo) pins typically to control hardware

components. thus, a microcontroller has limited computing power, making

them useful for hardware automation like a robot, household appliance, etc.,

whereas a microprocessor is useful for computationally intensive solutions like

computers, aircraft, etc.

Now that we have a general idea of what a microcontroller is, let’s take

a short tour of the Raspberry Pi Pico.

 A Tour of the Raspberry Pi Pico
The Raspberry Pi Pico, hence Pico, is a small, green printed circuit board

the size of a stick of gum. Along either long side are the GPIO pins with a

micro-USB connector on one of the shorter ends. On the other end is a set

of debugging pins that you can use for advanced diagnostics. Figure 1-1

shows the Pico from above oriented with the USB port to the right.

Chapter 1 IntroduCIng the raspberry pI pICo

4

Figure 1-1. The Raspberry Pi Pico – top view (courtesy of
raspberrypi.org)

Notice the GPIO headers on the top and bottom edges. The three pins

on the left are the debugging pins. The only other component on the board

we need to know about is the BOOTSEL (boot selection) switch located in

the upper right of the figure. This switch is used to place the Pico in boot

mode where it runs the MicroPython platform, or, if held down while the

USB cable is connected to your computer, it will connect as a removable

drive allowing you to load new files or change the base platform files. We

will see how to do this later in this section.

Figure 1-2 shows the underside of the Pico. Notice here we see the

GPIO pins are labeled, making it easy to locate a specific pin. The places

labeled with “TP” are test points that you can use to test voltage should

you need to perform any advanced diagnostics of the board. Once again,

the pins on the left are for the Serial Wire Debug (SWD) interface. We

will not be using that interface in this book, but you can read more about

it in Chapter 6 of the Pico data sheet (book): https://datasheets.

raspberrypi.org/pico/getting-started-with-pico.pdf.

Chapter 1 IntroduCIng the raspberry pI pICo

10.1007/978-1-4842-8135-2_6
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf

5

Figure 1-2. The Raspberry Pi Pico – bottom view (courtesy of
raspberrypi.org)

The heart of the Pico is the large (relative to the board) black chip

located in the center of the board on the top side. This is the RP2040

microprocessor, and it provides all of the features that make up the Pico.

 Introducing the RP2040
Let’s begin with the name. The name may seem strange at first. Normally,

we think the number is some sort of revision or version,1 but this is not the

case for the RP2040. Figure 1-3 depicts the nomenclature of the name. As

you can see, it is an encoded phrase to represent four characteristics of the

microprocessor. It is likely we will see variants of this microprocessor in the

future, and we should expect its name (number) to vary according to this

nomenclature.

1 No, this isn’t an Edison-like discovery where there were 2039 unsuccessful
versions prior to the moment of enlightenment.

Chapter 1 IntroduCIng the raspberry pI pICo

6

Figure 1-3. RP2040 nomenclature (courtesy of raspberrypi.org)

The RP2040 is a single chip combining memory, a dual-core

processor, interfaces, and supporting electronics. In many ways, it is

a self-contained powerhouse of a microcontroller. The chip is built to

deliver high performance with low power consumption. In fact, it can

also support extended execution using battery power. And, best of all,

it boasts the ability to run MicroPython, making programming very

easy to learn breaking the steep programming learning curve common

to microcontrollers. In other words, you don’t have to have a degree in

programming or electronics to be able to use it.

The many features of the RP2040 are listed as follows:

• Dual ARM Cortex-M0+ @ 133MHz

• 264kB on-chip SRAM in six independent banks

• Support for up to 16MB of off-chip flash memory via

dedicated QSPI bus

• DMA controller

• Fully connected AHB crossbar

• Interpolator and integer divider peripherals

• On-chip programmable LDO to generate core voltage

Chapter 1 IntroduCIng the raspberry pI pICo

7

• 2 on-chip PLLs to generate USB and core clocks

• 30 GPIO pins, 4 of which can be used as

analogue inputs

• Peripherals include

• 2 UARTs

• 2 SPI controllers

• 2 I2C controllers

• 16 PWM channels

• USB 1.1 controller and PHY, with host and

device support

• 8 PIO state machines

So, what is all of that mumbo jumbo? For most, these features may not

mean a whole lot, but in essence, we’re talking about a seriously capable

chip. Those features you may be most interested in include the SPI and I2C

controllers (2 of each), the 16 pulse-width modulation channels, and the

30 GPIO pins. Suffice to say, it can handle just about anything you would

need for your electronics project. Cool!

Tip For a complete description of the features of the rp2040, see
the data sheet at https://datasheets.raspberrypi.org/
rp2040/rp2040-datasheet.pdf.

The RP2040 microcontroller can be purchased separately, and there

are a growing number of vendors building boards around the RP2040. We

will see a few of them in a later section. But first, let’s look at the hardware

of the Pico in more detail.

Chapter 1 IntroduCIng the raspberry pI pICo

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

8

 Pico Hardware Overview
So, what is the Pico? Simply, the Pico is a printed circuit board built

around the RP2040 along with supporting circuitry to create a small

microcontroller board about the size of a stick of gum. It breaks out (think

wiring) all of the interfaces supported by the RP2040 along with power and

ground pins to help round out the GPIO pins.

The Pico is a low-cost board that offers more features than any other

board in the price range. In fact, you can find the Pico for as little as $4.00!

That’s amazing considering what you get. For that price, you will get a Pico

without headers attached, and you can buy the headers (male or female

pins) cut to length. If you do not know how to solder, you can get the Pico

with headers soldered on for a couple of dollars more. Even so, it’s still well

below what you’d expect to pay for a full-featured microcontroller board.

Let’s talk about those header pins for a moment. If you look closely, you

will see the pins have what appear to be two rows: one hole closer to the

center of the board and another half hole on the edge giving the long edges of

the board a serrated look. This design, called castellations, allows you to solder

the board in a surface mount configuration or use male header pins for use

with a breadboard or female header pins to allow the use of jumper wires to

connect components to the Pico. Figure 1-4 shows the header in more detail.

Figure 1-4. Close-up of the Pico header (courtesy of raspberrypi.org)

Chapter 1 IntroduCIng the raspberry pI pICo

9

Tip For a complete guide on how to solder headers onto the
raspberry pi pico, visit https://magpi.raspberrypi.org/
articles/how-to-solder-gpio-pin-headers-to-
raspberry-pi-pico.

Along with the features of the RP2040, the Pico has been designed with

the following features:

• RP2040 microcontroller with 2MB Flash

• Micro-USB-B port for power and data (and for

reprogramming the Flash)

• 21x51 1mm thick PCB with 0.1" through-hole pins also

with edge castellations

• 40-pin GPIO header

• Exposes 26 multifunction 3.3V general-purpose

I/O (GPIO)

• 23 GPIO are digital-only and 3 are ADC capable

• Can be surface mounted as a module

• 3-pin ARM Serial Wire Debug (SWD) port

• Can be powered via the micro-USB, external supplies,

or batteries

• High quality, low cost, high availability

• Comprehensive SDK, software examples, and

documentation

Chapter 1 IntroduCIng the raspberry pI pICo

https://magpi.raspberrypi.org/articles/how-to-solder-gpio-pin-headers-to-raspberry-pi-pico
https://magpi.raspberrypi.org/articles/how-to-solder-gpio-pin-headers-to-raspberry-pi-pico
https://magpi.raspberrypi.org/articles/how-to-solder-gpio-pin-headers-to-raspberry-pi-pico

10

Tip For a complete description of the features of the pico, see the
data sheet at https://datasheets.raspberrypi.org/pico/
pico-datasheet.pdf.

Now that we know more about the features of the Pico, let’s look at a

few alternatives that use the same RP2040 chip.

WAIT, WHAT ABOUT WIFI? WHERE’S THE WIFI?

savvy readers may have noticed the pico does not have a WiFi chip. this is

intentional and designed to keep costs low. does that mean you cannot use

WiFi with the pico? no, it does not. Micropython fully supports networking

protocols, and you can indeed use the pico with WiFi, but it requires external

components to do so. We will see more about how to use the pico with WiFi in

Chapters 13 and 14.

 RP2040-Based Alternatives
There are a number of RP2040-based microcontroller boards that have

been built around the RP2040. Some offer unique features not found on

the Pico, and others are familiar adaptation to existing product lines. All of

them get their powerful base from the RP2040 and works the same as the

Pico. Some variants are priced several times that of the Pico, but you get a

lot more for your money such as Grove connectors, additional components

like programmable LEDs, buttons, etc.2

2 At the time of this writing, there are several shortages and disruptions of some
supply chains. Thus, you may find some boards and components on back order or
low stock from vendors.

Chapter 1 IntroduCIng the raspberry pI pICo

https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
10.1007/978-1-4842-8135-2_13
10.1007/978-1-4842-8135-2_14

11

If you want to try out any of these alternatives, you’re welcome to do

so. The book will be based on the cheaper Pico, but any of these boards

can be used for the projects in this book with some minor adaptations

to the wiring. You will find most cost a bit more than the base Pico but,

depending on your needs (or familiarity/affinity for a vendor’s products),

may be worth the extra cost.

Let’s look at a few offerings from the most popular vendors including

Adafruit (adafruit.com) and SparkFun (sparkfun.com). There are others

and more are arriving, but these are the current crop of boards.

 Adafruit Feather 2040

Adafruit has a very successful line of small boards under the Feather

banner. It’s all about powerful features in a lightweight package. It was

no surprise that Adafruit adapted the Feather platform for the Raspberry

Pi RP2040. This board has the same features as the Pico, but in a slightly

different physical layout without castellated headers. It has an 8MB SPI

flash chip for storing files, 21 GPIO pins (one more additional ADC), built-

in 200mA+ lipoly charger, an RGB NeoPixel for general use, a STEMMA/

QT connector for use with their pantheon of STEMMA/QT components

(modules), and a USB-C port instead of the micro-USB on the Pico.

Figure 1-5 shows the Adafruit Feather RP2040 board. The board costs

about $12.00.

Figure 1-5. Adafruit Feather RP2040 (courtesy of adafruit.com)

Chapter 1 IntroduCIng the raspberry pI pICo

12

For a complete description of this board, see www.adafruit.com/

product/4884.

 Adafruit ItsyBitsy RP2040

If you’re looking for similar features, but in a slightly smaller package, the

Adafruit ItsyBitsy RP2040 may do the trick. Built on their ItsyBitsy platform,

this board offers a range of features familiar to that line of boards and all

of the features as the Pico, with many of the same features as the Feather

RP2040 including two extra GPIO ports, but uses the same micro-USB

connector as the Pico. Figure 1-6 shows the Adafruit ItsyBitsy RP2040

board. The board costs about $10.00.

Figure 1-6. Adafruit ItsyBitsy RP2040 (courtesy of adafruit.com)

For a complete description of this board, see www.adafruit.com/

product/4888.

 Adafruit QT Py

Yeah, the name is intentional. It is a cutie-pie! This is an extreme version of

the RP2040 built to support the Adafruit STEMMA QT line of components.

It features a lot of the same features as the other two Adafruit boards

but with a tiny footprint and is one of the smallest RP2040 boards on the

market. This board has the same features as the Pico as well as the Feather

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.adafruit.com/product/4884
http://www.adafruit.com/product/4884
http://www.adafruit.com/product/4888
http://www.adafruit.com/product/4888

13

RP2040 but in an ultra-compact size. It has the same USB-C connector as

the Feather RP2040, but only 13 GPIO pins. Despite its small size, it does

have a STEMMA/QT connector. It has been fitted with a castellated header,

and, since it takes up less space, it offers more versatility with installation.

Figure 1-7 shows the Adafruit QT Py board. The board costs about $10.00.

Figure 1-7. Adafruit QT Py (courtesy of adafruit.com)

For a complete description of this board, see www.adafruit.com/

product/4900.

 SparkFun Pro Micro – RP2040

The SparkFun Pro Micro RP2040 is one of several RP2040-based boards

from SparkFun. Like the Adafruit offerings, it boasts all of the features

of the RP2040 along with a WS2812B addressable LED, a boot and reset

button, a castellated header, and a Qwiic connector for use with their

Qwiic pantheon of I2C devices. It has a USB-C connector instead of the

micro-USB on the Pico. Interestingly, it also has a resettable PTC fuse

that you can reset should your circuit trip the fuse. In addition, it has 18

GPIO pins, a four-channel ADC with an internal temperature sensor and

12-bit conversion. The board also includes an additional 16MB external

QSPI flash chip to store program code, double that of the Feather RP2040.

Figure 1-8 shows the SparkFun Pro Micro RP2040. The board costs

about $10.00.

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.adafruit.com/product/4900
http://www.adafruit.com/product/4900

14

Figure 1-8. SparkFun Pro Micro RP2040 (courtesy of sparkfun.com)

For a complete description of this board, see www.sparkfun.com/

products/17717.

 SparkFun Thing Plus – RP2040

The SparkFun Thing Plus is a more compact option that is similar to the

Adafruit Feather–sized boards with many of the same features as the

SparkFun Pro Micro RP2040 but in a larger format without the castellated

header. It has 18 GPIO pins, 16MB flash memory, a JST single-cell battery

connector, an addressable WS2812 RGB LED, as well as a Qwiic connector.

The board is unique in that it has an SD card slot and mounting holes

making it easy to add to projects with enclosures. Figure 1-9 shows the

SparkFun Pro Micro RP2040. The board costs about $18.00.

Figure 1-9. SparkFun Thing Plus – RP2040 (courtesy of
sparkfun.com)

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.sparkfun.com/products/17717
http://www.sparkfun.com/products/17717

15

For a complete description of this board, see www.sparkfun.com/

products/17745.

SparkFun MicroMod Pi RP2040 Processor

The SparkFun MicroMod Pi RP2040 Processor Board is an interesting

deviation from the standard microcontroller board. Instead of building a

new board with all of the features, connections, electronics, and headers,

SparkFun has come up with a novel idea. They use a modular board for the

processor and a separate host board (also called a carrier board) for the

rest of the components. That is, you can purchase one of several processors

and use with one of several carrier boards.

The SparkFun MicroMod Pi RP2040 Processor Board therefore is a

RP2040 mounted on a small card that you can plug into one of the carrier

boards. You simply connect it to the carrier board that gives you the inputs

and outputs you need for your project. Do you want to use the RP2040 with

a different carrier board? No problem! Just switch it to the other one. Cool.

Tip For more information about the complete line of sparkFun
MicroMod products, see www.sparkfun.com/categories/622.

There are several boards you can use, each with a unique set of

features. The following lists a few that may be applicable to most projects

built with the RP2040 and MicroPython (there are many others):

• Asset Tracker: Provides you with tools to monitor and

track the location of your assets (www.sparkfun.com/

products/17272).

• Input and Display: Provides a 2.4" TFT display for data

visualization or a visual interface (www.sparkfun.com/

products/16985).

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.sparkfun.com/products/17745
http://www.sparkfun.com/products/17745
http://www.sparkfun.com/categories/622
http://www.sparkfun.com/products/17272
http://www.sparkfun.com/products/17272
http://www.sparkfun.com/products/16985
http://www.sparkfun.com/products/16985

16

• Weather: Create your own weather station. It features

several sensors: the BME280 temperature, pressure,

and humidity sensor, the VEML6075 UV sensor, and

the AS3935 Lightning detector (www.sparkfun.com/

products/16794).

• Data Logging: Provides an SD drive and Qwiic

connectors for all of your data logging needs (www.

sparkfun.com/products/16829).

• Qwiic Versions: There are two carrier boards designed

to support mounting one or two Qwiic modules as well

as the RP2040 MicroMod processor. These are great

for small projects that use Qwiic components (www.

sparkfun.com/products/17723, www.sparkfun.com/

products/17724).

Let’s take a look at the double MicroMod Qwiic Carrier Board.

Figure 1-10 shows the SparkFun MicroMod Qwiic Carrier Board – double

with two Qwiic modules mounted. Notice above the USB-C connector is

the MicroMod RP2040 mounted in its slot. The board costs about $12.00.

Figure 1-10. SparkFun MicroMod Qwiic Carrier Board – double
(courtesy of sparkfun.com)

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.sparkfun.com/products/16794
http://www.sparkfun.com/products/16794
http://www.sparkfun.com/products/16829
http://www.sparkfun.com/products/16829
http://www.sparkfun.com/products/17723
http://www.sparkfun.com/products/17723
http://www.sparkfun.com/products/17724
http://www.sparkfun.com/products/17724

17

For a complete description of this board, see www.sparkfun.com/

products/17724.

The SparkFun MicroMod Pi RP2040 Processor Board is the RP2040

packaged on a small board with an M.2 connector. Connecting your

MicroMod Pi RP2040 Processor Board is very easy and the same as

mounting a component with an M.2 connector. Just match up the key

on the edge connector to the key to the M.2 connector, insert it, and use

a screw to fix the module to the carrier. As you surmised, it has all of the

same features as the RP2040. The functionality supported depends on the

carrier board on which it is employed. Figure 1-11 shows the SparkFun

MicroMod RP2040 Processor. The processor costs about $12.00.

Figure 1-11. SparkFun MicroMod RP2040 Processor (courtesy of
sparkfun.com)

For a complete description of this board, see www.sparkfun.com/

products/17720.

 Arduino Nano RP2040 Connect

The Arduino Nano RP2040 Connect board is one of the most anticipated

new RP2040 boards available. It is expected to be widely available by

the time this book is in print, and many cannot wait to get hold of one.3

Why? Because the Arduino has been the king under the mountain of

3 I got mine while writing this chapter!

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.sparkfun.com/products/17724
http://www.sparkfun.com/products/17724
http://www.sparkfun.com/products/17720
http://www.sparkfun.com/products/17720

18

microcontrollers. If you have used any other microcontroller board,

chances are it was an Arduino or Arduino variant.

It comes as no surprise that Arduino.cc would employ the RP2040 on

their own format of microcontrollers. Arduino has placed the RP2040 on

their Nano format board complete with all of the features of an Arduino

Nano plus a NINA WiFi and Bluetooth module! Yes, this board is the first

to have onboard WiFi and Bluetooth. There are so many features that it is

no wonder the expectations are high for this board. Figure 1-12 shows the

Arduino Nano RP2040 Connect. It is slightly smaller than the Pico with

fewer GPIO pins but has the castellated header of the Pico and the same

micro-USB connector. The board costs about $25.00.

Figure 1-12. Arduino Nano RP2040 Connect (courtesy of arduino.cc)

For a complete description of this board, see https://store.arduino.

cc/nano-rp2040-connect-with-headers. If you plan to use this board, see

the online documentation at https://docs.arduino.cc/hardware/nano-

rp2040-connect.

Note you must use a special Micropython image for the arduino
nano rp2040 despite product descriptions stating support for
Micropython. there is also a port of Circuitpython that works that
is very similar to Micropython (more on that in Chapter 2). see
https://learn.adafruit.com/circuitpython-on-the-
arduino-nano-rp2040-connect for more details.

Chapter 1 IntroduCIng the raspberry pI pICo

https://store.arduino.cc/nano-rp2040-connect-with-headers
https://store.arduino.cc/nano-rp2040-connect-with-headers
https://docs.arduino.cc/hardware/nano-rp2040-connect
https://docs.arduino.cc/hardware/nano-rp2040-connect
10.1007/978-1-4842-8135-2_2
https://learn.adafruit.com/circuitpython-on-the-arduino-nano-rp2040-connect
https://learn.adafruit.com/circuitpython-on-the-arduino-nano-rp2040-connect

19

 Pimoroni Pico LiPo

Pimoroni has long been a vendor of excellent and sometimes quirky (in

a very cool way) components for microcontrollers and the Raspberry Pi.

You may have seen and used one of their many distinctive cases for the

Raspberry Pi.

Pimoroni has a product line named Pirate that they use to market

products related to the Raspberry Pi including a really cool radio kit4 that

uses a Raspberry Pi Zero WiFi board. They have made a RP2040 Pirate

version with extra memory, a USB-C connector, STEMMA/QT and Qwiic

connectors, as well as onboard LiPo charging. On top of that, they retained

the Pico format along with the castellated header. Figure 1-13 shows

the Pimoroni Pico LiPo. The board costs $12.00 and up depending on

memory size.

Figure 1-13. Pimoroni Pico LiPo (courtesy of pimoroni.com)

For a complete description of this board, see https://shop.pimoroni.

com/products/pimoroni-pico-lipo.

Now that we have learned about the technical details concerning

the Raspberry Pi Pico, the RP2040, and some of the alternative boards

available, let’s take a look at how to get started using the Pico.

4 https://shop.pimoroni.com/products/pirate-radio-pi-zero-w-project-kit

Chapter 1 IntroduCIng the raspberry pI pICo

https://shop.pimoroni.com/products/pimoroni-pico-lipo
https://shop.pimoroni.com/products/pimoroni-pico-lipo
https://shop.pimoroni.com/products/pirate-radio-pi-zero-w-project-kit

20

 Getting Started with the Pico
While the Pico can be programmed with C++, we will use MicroPython in

this book to learn how to build electronics and IoT projects. We choose

MicroPython because it is easy to install and the language is easy to learn.

But where can you buy one of these little boards?

 Where to Buy
The Raspberry Pi has become world known and is available from many

online vendors, and some local electronics stores carry them as well. Given

our new connected, post-pandemic world where you can order any you

want and have it delivered, we can find our Raspberry Pi Pico and all of

our accessories online. The following lists a few of the more popular online

vendors:

• The Pi Hut: Mann Enterprises LTD located in the UK is

the premier Raspberry Pi shop. They have just about

anything you could need for the Raspberry Pi including

the Pico, micro:bit, Arduino, robotics, and more. Check

them out at https://thepihut.com/.

• PiShop.US: The American Raspberry Pi shop located

in the United States. They have all things Raspberry Pi,

Arduino, and more. Find them at www.pishop.us/.

• Adafruit: Limor Fried, Adafruit founder and lead

engineer, together with a team of talented engineers

develop community-driven products and code. They

carry many Adafruit designed products for many of

the most popular electronics platforms including the

Arduino as well as their own brand of Arduino boards,

Raspberry Pi, and more. They also host one of the most

Chapter 1 IntroduCIng the raspberry pI pICo

https://thepihut.com/
http://www.pishop.us/

21

comprehensive learning systems available. If you need

to learn how to do something, check out https://

learn.adafruit.com/. Chances are you’ll find all of

your answers there. Also, check out their wares at

www.adafruit.com/.

• SparkFun: Another most excellent online electronics

vendor and a favorite of mine, SparkFun is located

in the United States and carry a vast line of

microcontrollers, discrete components, Arduino,

Raspberry Pi, and so much more. You simply will get

lost in the depth of their catalog. They are the makers of

the Qwiic component system and have many modules

to choose from including their own brand of most

products. They also host a vast learning website and

document every component they sell. If you need

help with their products or want to learn how to build

something, check out https://learn.sparkfun.com/.

With excellent customer service and fast shipping,

SparkFun should be on your go-to list of vendors.

Check out their products at www.sparkfun.com.

• Seeed Studio: Seeed Studio is located in China. They

carry all manner of electronics for all of the major

brands as well as they are the makers of the Grove

component system, which we will be using later in this

book. They also have a vast Wiki devoted to all of their

products with ample instructions and documentation.

See their Wiki at https://wiki.seeedstudio.com/.

While transit time for some may be a concern, chances

are the nice people at Seeed Studio will have what you

need. Look for them at www.seeedstudio.com/.

Chapter 1 IntroduCIng the raspberry pI pICo

https://learn.adafruit.com/
https://learn.adafruit.com/
http://www.adafruit.com/
https://learn.sparkfun.com/
http://www.sparkfun.com
https://wiki.seeedstudio.com/
http://www.seeedstudio.com/

22

• Mouser: One of the largest online electronics stores

(their catalog is thousands of pages long) and based

in the United States is Mouser. They have almost

everything on the planet for the electronics enthusiast.

Their website is more industry driven, but if you search

for products by name or description, you will find what

you need. See www.mouser.com for more details.

• Pimoroni: A growing online vendor that sells all of their

own products directly as well as many accessories for

the Arduino and Raspberry Pi. If you want a Pimoroni

product but can’t find it at a local vendor, get it from the

source at https://shop.pimoroni.com/.

The Pico is typically sold packaged in a static-free packet without

headers. Some vendors offer the Pico with headers attached (Seeed

Studio) as well as bundles with the USB cable and more.

Tip If you want to order new raspberry pi products when they are
released, the pi hut (https://thepihut.com/) typically has them
in stock the day they are released.

Now that we know where to buy our Pico kit, let’s look at what

accessories you need to get started.

 Required Accessories

The list of required accessories is quite short. In fact, the only thing you

need to get started with the Pico is a USB-B female to micro-USB-B male

cable. That’s it!

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.mouser.com
https://shop.pimoroni.com/
https://thepihut.com/

23

Tip For the most excellent description of usb cables and
connectors on the Internet, see https://learn.sparkfun.com/
tutorials/connector-basics/usb-connectors.

However, that won’t get you all you need to do the projects in this

book. You will need more components and some electronics to build

the projects. Rather than list all those here, you will find a list of required

components in each project chapter. For example, you may need a

breadboard, jumper wires, and one or more electronic components.

There are some optional and recommended accessories you should

consider.

 Optional and Recommended Accessories

There are a growing number of accessories available for the Pico. So many,

in fact, it is difficult to keep up with the list! Rather than attempt that, this

section presents some of the products that have been shown to enhance

your experience with the Pico. While some of these may be required or at

least optional for the projects in the book, you can get by without them if

you’re on a tight budget. However, if you have some funds to building a kit

for the Pico, these are some of the best options you can find.

There are host boards (not unlike the MicroMod carrier boards from

SparkFun), add-on boards, and basic components that you may want

to consider. Let’s start with the host boards. There are several excellent

boards, but we will look at three of the first boards available for the Pico.

One of the host boards that has proven to be a good place to start

with basic projects is the Maker Pi Pico Base (without Pico) from Cytron

(https://thepihut.com/products/maker-pi-pico-base-without-pico).

You can get this board with the Pico already soldered in place or with a

header ready for you to plug in your Pico with male headers soldered on.

The board costs about $9.50 and is available from The Pi Hut.

Chapter 1 IntroduCIng the raspberry pI pICo

https://learn.sparkfun.com/tutorials/connector-basics/usb-connectors
https://learn.sparkfun.com/tutorials/connector-basics/usb-connectors
https://thepihut.com/products/maker-pi-pico-base-without-pico

24

The Maker Pi Pico Base includes a reset button and access to all

GPIO pins on two 20-way pin headers with clear labels. Better still, each

pin has an LED indicator to let you know if the pin is in use. Now, that’s

a nice touch! But it doesn’t end there. There are three programmable

pushbuttons, an RGB LED, buzzer, audio jack, a micro-SD card slot, and six

Grove ports. Most intriguing is the addition of a socket for an ESP-01 WiFi

module. Yes, you can provide WiFi for your Pico! Figure 1-14 shows the

Maker Pi Pico Base (without Pico).

Figure 1-14. Maker Pi Pico Base (without Pico) (courtesy of
thepihut.com)

You can find the data sheet with complete details of all of its features

at https://cdn.shopify.com/s/files/1/0176/3274/files/Maker_

Pi_Pico_Datasheet.pdf?v=1617963762. See https://github.com/

CytronTechnologies/MAKER-PI-PICO for example code for the Pico.

Another similar board is from Pimoroni. The Pico Omnibus (Dual

Expander) (https://shop.pimoroni.com/products/pico-omnibus) is

a simple board that contains two mirrored docking ports that mirror the

GPIO header of the Pico but with male pins. This allows you to use up

to two Pico add-on boards at the same time without having to fuss with

soldering stacking headers. The pins are all clearly labeled in white on a

Chapter 1 IntroduCIng the raspberry pI pICo

https://cdn.shopify.com/s/files/1/0176/3274/files/Maker_Pi_Pico_Datasheet.pdf?v=1617963762
https://cdn.shopify.com/s/files/1/0176/3274/files/Maker_Pi_Pico_Datasheet.pdf?v=1617963762
https://github.com/CytronTechnologies/MAKER-PI-PICO
https://github.com/CytronTechnologies/MAKER-PI-PICO
https://shop.pimoroni.com/products/pico-omnibus

25

black PCB and come with rubber feet you can apply yourself. The board

costs about $9.00, and you can find it at thepihut.com or pimoroni.com.

Figure 1-15 shows the Pico Omnibus (Dual Expander).

Figure 1-15. Pico Omnibus (Dual Expander) (courtesy of
pimoroni.com)

You may be wondering what modules you can use with this board.

Well, it turns out Pimoroni offers several. Two of those we can use for the

projects in this book are the Pico Display Pack (https://shop.pimoroni.

com/products/pico-display-pack) and the Pico Wireless Pack (https://

shop.pimoroni.com/products/pico-wireless-pack).

The Pico Display Pack has a 1.14" LCD screen with four buttons and an

RGB LED mounted with female headers so you can attach it directly to the

bottom of your Pico. Figure 1-16 shows the Pico Display Pack.

Chapter 1 IntroduCIng the raspberry pI pICo

https://shop.pimoroni.com/products/pico-display-pack
https://shop.pimoroni.com/products/pico-display-pack
https://shop.pimoroni.com/products/pico-wireless-pack
https://shop.pimoroni.com/products/pico-wireless-pack

26

Figure 1-16. Pico Display Pack (courtesy of pimoroni.com)

The Pico Wireless Pack uses an ESP32 chip to provide 2.4GHz wireless

connections for your Pico. It also includes a micro-SD drive for file storage

as well as an RGB LED and a programmable button. It is also mounted

with female headers so you can attach it directly to the bottom of your

Pico. Figure 1-17 shows the Pico Wireless Pack.

Figure 1-17. Pico Wireless Pack (courtesy of pimoroni.com)

Tip If you plan to complete the projects in Chapters 13 and 14
or want to explore the challenge exercises, you should plan on
purchasing the pimoroni omnibus (dual extender), display pack, and
Wireless pack.

Chapter 1 IntroduCIng the raspberry pI pICo

10.1007/978-1-4842-8135-2_13
10.1007/978-1-4842-8135-2_14

27

The last board is the Grove Shield for Pi Pico (www.seeedstudio.com/

Grove-Shield-for-Pi-Pico-v1-0-p-4846.html). This board is the

premier board for using the Grove component system from Seeed Studio.

The board features ten Grove connectors, a dual row of GPIO headers to

allow access to all pins while the Pico is installed, and a 3.3V/5V power

switch, which is needed to support some Grove modules. The board costs

about $4.50 and is available from Seeed Studio and other online vendors.

It does not come with any bumpers, so you may want to invest in some

to attach to the bottom to keep from scratching your workspace/desktop

area. Figure 1-18 shows the Grove Shield for the Raspberry Pico.

Figure 1-18. Grove Shield for the Raspberry Pi Pico (courtesy of
seeedstudio.com)

Seeed Studio also sells a Grove starting kit for the Pico for about

$48 (www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-

Pico-p-4851.html), which includes the shield and 12 Grove modules and

assorted electronics. If you want to use the Grove system exclusively, this

starter kit is a must.

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html
http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html

28

Tip If you plan to complete the projects in Chapters 9 through 12
or want to explore the challenge exercises, you should plan on
purchasing the grove shield for the raspberry pi pico.

Now that we’ve discovered some nice accessories to use with the Pico,

let’s jump into our first tour of how to use it starting with preparing our PC.

 Preparing Your Computer
Fortunately, there isn’t much you need to do to configure your computer

to work with the Pico. At the barest, you will need to download the

MicroPython boot image, which we will see how to do in the next section.

It is highly recommended that you install Python on your computer

to help learn how to work with the language. Why? Because MicroPython

is a subset of Python and many of the early examples you will see will

run on both your PC and the Pico. Thus, it is wise to install Python to

help you learn how to write MicroPython. If you don’t know how to get

started installing Python on your PC, don’t worry. We will visit this topic in

Chapter 2.

 Installing MicroPython on the Pico
Now we’re at the meat of our example. Here, we will install MicroPython

on our Pico and get it ready for programming. There are two ways to

accomplish this: a manual method and an automated process using

Thonny. Let’s look at both methods. You can choose the one that works

best for you.

Chapter 1 IntroduCIng the raspberry pI pICo

10.1007/978-1-4842-8135-2_9
10.1007/978-1-4842-8135-2_12
10.1007/978-1-4842-8135-2_2

29

 Manual Install

The process is very simple. First, you download the bootloader file, then

place your Pico into USB drive mode, insert it into your PC, then copy the

file onto the drive, remove the Pico, and reinsert it. Simple! Let’s see it in

more detail.

Caution do not connect your pico to your computer yet. you will
need to plug it in and unplug it at specific steps in the process. If
you’ve already plugged in the cable, it won’t hurt anything, but you
will need to disconnect it before your begin.

Begin by visiting https://micropython.org/download/rp2-pico/

rp2-pico-latest.uf2 and download the latest UF2 bootloader file. Make

sure you let the download complete before you continue.

Next, locate the BOOTSEL switch on your Pico. You will need to press

this button and hold it while you connect it to your PC. Figure 1-19 shows

the location of the BOOTSEL switch.

Figure 1-19. Locating the BOOTSEL switch

Next, connect your USB cable to your Pico and press the BOOTSEL and

hold it when you insert the other end of the USB cable to your PC. Wait

about three to five seconds and then release the button. It will mount as

Chapter 1 IntroduCIng the raspberry pI pICo

https://micropython.org/download/rp2-pico/rp2-pico-latest.uf2
https://micropython.org/download/rp2-pico/rp2-pico-latest.uf2

30

a drive with the name RPI-RP2. On Windows, you will hear the tone to

indicate a new USB device was detected. On Linux and macOS, you will

see a new icon appear for the drive.

Be very careful when connecting and disconnecting the USB cable on

your Pico boards, especially those with the micro-USB connector. These

are very fragile and can be broken easily if the cable is pulled at an angle

or twisted. The same is true when using the Pico on a breadboard or host

adapter like those shown earlier. Be sure to remove the Pico by grasping it

on the sides away from the USB connector.

Caution the usb connector on the pico is fragile. be sure to insert
and remove the usb cable directly and never pull the cable at an
angle to remove it.

Next, locate the UF2 file you downloaded and simply drag and drop

it onto your Pico (shown as a drive on your PC). When the file copy is

finished, the Pico will reboot. You can tell by watching the LED on the Pico,

and the drive on your PC should disappear. If this does not happen, you

can unplug the Pico and plug it back in to get it to boot into MicroPython.

 Using Thonny

There is also an automated method to install MicroPython on your PC. If

you have worked with the Raspberry Pi and Python, chances are you’ve

run across a nice, small Python integrated development environment

(IDE) named Thonny. Thonny is available for most platforms including

Linux, Windows, and macOS at https://thonny.org/. Simply download

the installer for your platform and install it.

After you have installed Thonny and start it for the first time, on some

platforms, you will be asked to choose a language and initial settings. The

choices for settings include Standard and Raspberry Pi. The Raspberry Pi

Chapter 1 IntroduCIng the raspberry pI pICo

https://thonny.org/

31

settings are simplistic, and you won’t see the menu (but you can turn it

on by switching the mode). So, you should select the Standard option as

shown in Figure 1-20.

Figure 1-20. Choose initial settings (Thonny)

Caution to perform this process, your pico should not be
connected to your pC. If it is, disconnect it before you continue.

Using Thonny, you can develop Python and MicroPython code and

even run the code to test it. The editor is tailored for writing Python code

and has many useful tools to help you with your coding. Better still, it does

all of this using a simple, uncluttered user interface that is elegant in its

simplicity.

But it’s not just a fancy editor! You can also connect to your Raspberry

Pi Pico to write code and run it. In fact, you can use Thonny to load

MicroPython on your Pico. Let’s see how to do that. First, launch Thonny

without the Pico connected to your computer. Figure 1-21 shows the

Thonny IDE on Windows.

Chapter 1 IntroduCIng the raspberry pI pICo

32

Figure 1-21. Thonny IDE (Windows 10)

Notice at the top of the window is a tabbed editor area where you can

work on one or more Python files. Below that is the Shell area that you

can use to execute your Python code. Here, we see a very simple print

statement and its execution. On the right is an area for the documentation

and help links. You can close both if you want some more room for

the editor.

Notice also in the lower right-hand corner the text Python 3.7.9. This

is actually an actionable area (think button) that lets you change the base

Python interpreter. We will use that in a moment.

Next, locate the BOOTSEL switch on your Pico. You will need to press

this button and hold it while you connect it to your PC. Figure 1-19 shows

the location of the BOOTSEL switch. Next, connect your USB cable to your

Pico and press the BOOTSEL and hold it when you insert the other end of

the USB cable to your PC.

Go back to Thonny and click the Python version. Figure 1-22 shows

what the menu should look like.

Chapter 1 IntroduCIng the raspberry pI pICo

33

Figure 1-22. Choose a Python interpreter (Thonny)

Next, click MicroPython (Raspberry Pi Pico). A dialog box will prompt

you to install the latest version of the MicroPython firmware on your

Pico. When ready, click Install in the dialog that appears as shown in

Figure 1-23.

Figure 1-23. Install MicroPython (Thonny)

Note If the dialog doesn’t appear, ensure you have plugged in your
pico with the BOOTSEL pressed. It is oK to try it again.

Chapter 1 IntroduCIng the raspberry pI pICo

34

When the installation is complete, you can click Close as shown in

Figure 1-24. Now we’re ready to begin programming our Pico.

Figure 1-24. MicroPython install complete (Thonny)

Your Pico will reboot, and when it is booted, you will see the

MicroPython header in the Shell window as shown in Figure 1-25. Just for

fun, type help() in the >>> prompt and press enter. This is the basic help

for the MicroPython interpreter. We’ll see more about how to use this in

the next section.

Chapter 1 IntroduCIng the raspberry pI pICo

35

Figure 1-25. Connected to the Pico (Thonny)

It is possible on some platforms for the Pico to change COM ports

when it is rebooted. If you cannot connect to the Pico with Thonny at this

step, try disconnecting and reconnecting the Pico. You can also click the

red Stop button on the toolbar to stop and restart the Pico connection.

Then, in the Tools ➤ Options… menu on the Interpreter tab, select the

COM port for the Pico as shown in Figure 1-26 and then click OK.

Chapter 1 IntroduCIng the raspberry pI pICo

36

Figure 1-26. Selecting the COM port for the Pico (Thonny –
Windows 10)

It is also possible the interpreter for the MicroPython Pico will not

show up if there is an error communicating with the Pico. In that case,

open the options dialog again and choose the MicroPython (Raspberry

Pi Pico) in the Interpreter drop-down box as shown in Figure 1-27.

Chapter 1 IntroduCIng the raspberry pI pICo

37

Figure 1-27. Selecting the Python interpreter (Thonny)

Now that our Pico is loaded with the MicroPython boot image, let’s see

how to connect to it and run some code!

 Connecting to the Pico
Now that you have your Pico running MicroPython, now what do you

do? Now you need to open a communication link to the MicroPython

interpreter. The MicroPython interpreter is called a read-evaluate-print

loop (REPL) and is often referred to with that acronym. You can connect to

your Pico to execute the REPL feature using either a serial communication

utility or a development environment with the same feature. Let’s see how

to use the communication utility first.

Chapter 1 IntroduCIng the raspberry pI pICo

38

 Using the REPL Console with a Serial
Communication Utility

If you are using Windows 10, you can use any serial communication

utility you’d like. One of the most common is PuTTY (www.putty.org/).

It is rather aged but works well. If you want to use PuTTY, go ahead and

download and install it now.

Once installed, you will be referencing the Pico connection via the

COM port. To find the COM port that your Windows computer is using

for the Pico, open the Device Manager and expand the Ports (COM &

LPT) section. You should see a USB device similar to what is shown in

Figure 1-28.

Figure 1-28. Locating the COM port (Windows 10)

If you have multiple devices connected, you may need to disconnect

the Pico, refresh the device manager, then reconnect the Pico. The COM

port that disappears when you disconnect and reappears when you

reconnect the Pico is the one you need to use.

Notice the COM port (COM3). We will need that to tell PuTTY which

port to use. Now, open PuTTY and select the Serial for the Connection

type and change the Serial line to COM3 (the port shown in your device

manager) as shown in Figure 1-29. Click Open to start the terminal.

Chapter 1 IntroduCIng the raspberry pI pICo

http://www.putty.org/

39

Figure 1-29. Connecting to the Pico with PuTTY (Windows 10)

When the terminal opens, you may not see anything at first. If so,

you can press ENTER a few times and you should see the >>> prompt.

You can then enter MicroPython statements and have them execute as

demonstrated in Figure 1-30.

Chapter 1 IntroduCIng the raspberry pI pICo

40

Figure 1-30. PuTTY terminal (Windows 10)

 Starting the REPL Console (macOS and Linux)

To connect using macOS or Linux, you need to locate the correct device. I

demonstrate this with the following command that lists the devices on my

macOS system. Do this after you’ve connected the USB cable to the Pico.

% ls /dev/tty.*

/dev/tty.Bluetooth-Incoming-Port /dev/tty.usbmodem14401

Once you see the correct USB device, you can enter the following

command to open a screen (terminal) to execute the REPL:

% screen /dev/tty.usbmodem14401

Once again, you may need to press ENTER a few times to get the >>>

prompt. Once you do, enter the following statement, and see the results:

>>> print("Hello from macOS!")

Hello from macOS!

>>>

Chapter 1 IntroduCIng the raspberry pI pICo

41

Tip there is one oddity with the repL console. the quit() doesn’t
work. to exit the console for some pico boards, you will need to reset
the board or kill the connection.

 Connecting to the Pico with Thonny

If you followed the instructions in the Thonny section earlier, you have

what you need to connect to your Pico via Thonny. Recall, we need only

connect our Pico to our PC and then open Thonny and change the Python

interpreter. If you have not done that, you should go back and follow the

preceding steps to choose the MicroPython (Raspberry Pi Pico).

Once connected, the REPL will appear in the Shell tab as shown in

Figure 1-31. You can enter the statement print("Hello from Thonny!")

at the >>> prompt and press ENTER. You should see the results shown in

the figure.

Figure 1-31. Connecting to the Pico with Thonny

Chapter 1 IntroduCIng the raspberry pI pICo

42

If everything worked and you saw the message printed,

congratulations! You’ve just written your first MicroPython code, and

you’re ready to dive into more MicroPython coding. Yippee!

 Summary
There is little doubt that the Raspberry Pi Pico will open a new avenue

for Raspberry Pi enthusiasts. The fact that we now have a Raspberry Pi–

based microcontroller available at a very low cost and programmable with

MicroPython means anyone can start to build electronics projects without

the need for lengthy study or a steep learning curve. The subsequent

chapters in this book will guide you to becoming proficient in building

electronics projects with the Pico.

In this opening chapter, we have discovered what the Pico is, the

hardware features available on the board, and we took a look at some

of the other RP2040-based microcontroller boards available from other

vendors. We also saw some recommended accessories to help make your

experience with the Pico better by adding convenience features such as

Grove and Qwiic connectors and a fully labeled GPIO header. However,

your journey has only begun.

In the next chapter, we will learn more about MicroPython including

how to get started programming your Pico.

Chapter 1 IntroduCIng the raspberry pI pICo

43

CHAPTER 2

Introducing
MicroPython
Now that we have learned more about the Raspberry Pi Pico and saw a

demonstration of how to connect to it from our PC, it is time to learn more

about MicroPython – how we can get started, how it works, and examples

of what you can do with your own Pico.

Learning MicroPython is very easy even for those who have not had

any programming experience. Indeed, all you need to learn MicroPython

is a bit of patience and a little time to get used to the syntax and the

mechanisms unique to working with MicroPython, the Pico, and the

electronics. As we will see, there is a lot you can do with just a little

knowledge.

In this chapter, we will learn more about MicroPython including an

overview of how to get started. The examples in this chapter are intended

to give you a taste of what you can do rather than a detailed tutorial.

That said, I encourage you to attempt the examples for practice. We will

see a detailed tutorial for programming MicroPython in Chapter 3 and a

deeper dive into the software libraries for lower-level hardware support in

Chapter 4.

Let’s start with a look at what MicroPython is including why it was

created and how to get started.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_2

10.1007/978-1-4842-8135-2_3
10.1007/978-1-4842-8135-2_4
https://doi.org/10.1007/978-1-4842-8135-2_2

44

Note Since MicroPython runs on many boards, I use the term
“boards” to mean any board that runs MicroPython, which includes
the Pico.

 Getting Started
The use of the Python language for controlling hardware has been around

for some time. Users of the Raspberry Pi, pcDuino, and other low-cost

computers and similar boards have had the advantage of using Python for

controlling hardware. In this case, they used full versions of the Python

programming language on the native Linux-based operating system.

While these boards made it possible for those who wanted to

develop electronics projects, it required users to buy the board as well as

peripherals like a keyboard, mouse, and monitor. Not only that, but users

also had to learn the operating system. For those not used to Linux, this

can be a challenge in and of itself.

The vision for MicroPython was to combine the simplicity of learning

Python with the low cost and ease of use of microcontroller boards, which

would permit a lot more people to work with electronics for art and science

projects. Beginners would not have to learn a new operating system or

learn one of the more complex programming languages. MicroPython was

the answer. Figure 2-1 shows the MicroPython logo in the form of a sticker

from Adafruit.

ChaPter 2 IntroduCIng MICroPython

45

Figure 2-1. MicroPython logo skill badge (courtesy of adafruit.com)

That’s pretty cool, isn’t it? It’s a snake (a python) on an integrated

circuit (chip). You can order this nifty MicroPython sticker (www.adafruit.

com/products/3270). I recommend getting one of these and displaying it

proudly when you finish the book.

 Origins
MicroPython1 was created and is maintained by Damien P. George, Paul

Sokolovsky, and other contributors. It was designed to be a lean, efficient

version of the Python 3 language and installed on a small microcontroller.

Since Python is an interpreted language and thus slower (in general)

than compiled languages, MicroPython was designed to be as efficient as

possible so that it can run on microcontrollers that normally are slower

and have much less memory than a typical personal computer.

1 Copyright 2014–2017, Damien P. George, Paul Sokolovsky, and contributors. Last
updated on March 5, 2017.

ChaPter 2 IntroduCIng MICroPython

http://www.adafruit.com/products/3270
http://www.adafruit.com/products/3270

46

COMPILED VS. INTERPRETED

Compiled languages use a program, called a compiler, to convert the source

code from a human-readable form to a binary executable form. there are a

few steps involved in this conversion, but, in general, we take source code

and compile it into a binary form. Since it is in binary form, the processor can

execute the statements generated directly without any additional steps (again,

in general).

Interpreted languages, on the other hand, are not compiled but instead are

converted to a binary form (or an intermediate binary form) on the fly with

a program called an interpreter. Python 3 provides a Python executable that

is both an interpreter and a console that allows you to run your code as you

type it in. Python programs run one line of code at a time starting at the top of

the file.

thus, compiled languages are faster than interpreted languages because the

code is prepared for execution and does not require an intermediate, real-time

step to process the code before execution.

Another aspect is microcontroller boards like the Arduino and

similar boards require a compilation step that you must perform on your

computer and load the binary executable onto the board first. In contrast,

since MicroPython has its interpreter running directly on the hardware,

we do not need the intermediate step to prepare the code; we can run the

interpreted language directly on the hardware!

This permits hardware manufacturers to build small, inexpensive

boards that include MicroPython on the same chip as the microprocessor

(typically). This gives you the ability to connect to the board, write the

code, and execute it without any extra work.

ChaPter 2 IntroduCIng MICroPython

47

You may be thinking that to reduce Python 3 to a size that fits on

a small chip with limited memory, the language is stripped down and

lacking features. That can’t be further than the truth. In fact, MicroPython

is a complete implementation of the core features of Python 3 including a

compact runtime and interactive interpreter. There is support for reading

and writing files, loading modules, interacting with hardware such as

GPIO pins, error handling, and much more. Best of all, the optimization of

Python 3 code allows it to be compiled into a binary requiring about 256K

of memory to store the binary and run with as little as 16K of RAM.

However, there are a few things that MicroPython doesn’t implement

from the Python 3 language. The following sections give you an idea

of what you can do with MicroPython and what you cannot do with

MicroPython.

 MicroPython Features
The biggest feature of MicroPython is, of course, it runs Python. This

permits you to create simple, efficiently specified, and easy-to-understand

programs. That alone, I think, is its best advantage over other boards like

the Arduino. The following lists a few of the features that MicroPython

supports. We will see these features in greater detail throughout this book:

• Interactive interpreter: MicroPython boards have built

in a special interactive console that you can access

by connecting to the board with a USB cable. Recall

from Chapter 1, the console is called a read-evaluate-

print loop (REPL) that allows you to type in your

code and execute it one line at a time. It is a great way

to prototype your code or just run a project as you

develop it.

ChaPter 2 IntroduCIng MICroPython

10.1007/978-1-4842-8135-2_1

48

• Python standard libraries: MicroPython also supports

many of the standard Python libraries. In general,

you can expect to find MicroPython supports more

than 80% of the most commonly used libraries. These

include parsing JavaScript Object Notation (JSON),2

socket programming, string manipulation, file input/

output, and even regular expression support.

• Hardware-level libraries: MicroPython has libraries

built-in that allow you to access hardware directly

either to turn on or off analog pins, read analog data,

read digital data, and even control hardware with

pulse-width modulation (PWM) – a way to limit power

to a device by rapidly modulating the power to the

device, for example, making a fan spin slower than if it

had full power.

• Extensible: MicroPython is also extensible. This

is a great feature for advanced users who need to

implement some complex library at a low level (in C or

C++) and include the new library in MicroPython. Yes,

this means you can build in your own unique code and

make it part of the MicroPython feature set.

To answer your question, “What can I do with MicroPython?”, the answer

is quite a lot! You can control hardware connected to the MicroPython

board, write code modules to expand the features of your program storing

them for later retrieval (just like you can in Python on a PC), and much

more. The hardware you can connect to include turning LEDs on and off,

drive servos, read sensors, and even display text on LCDs. Some boards also

2 www.json.org/json-en.html

ChaPter 2 IntroduCIng MICroPython

http://www.json.org/json-en.html

49

have networking support in the form of WiFi radios. Just about anything

you can do with the other microcontroller boards, you can do with a

MicroPython board.

However, there are a few limitations to running MicroPython on

the chip.

 MicroPython Limitations
The biggest limitation of MicroPython is its ease of use. The ease of using

Python means the code is interpreted on the fly. And while MicroPython

is highly optimized, there is still a penalty for the interpreter. This

means that projects that require a high degree of precision such as

sampling data at a high rate or communicating over a connection (USB,

hardware interface, etc.) may not run fast enough. For these areas, we

can overcome the problem by extending the MicroPython language with

optimized libraries for handling the low-level communication.

MicroPython also uses a bit more memory than other microcontroller

platforms such as the Arduino. Normally, this isn’t a problem but

something you should consider if your program starts to get large. Larger

programs that use a lot of libraries could consume more memory than

you may expect. Once again, this is related to the ease of use of Python –

another price to pay.

Finally, as mentioned previously, MicroPython doesn’t implement all

the features of all the Python 3 libraries. However, you should find it has

everything you need to build IoT projects (and more).

ChaPter 2 IntroduCIng MICroPython

50

ARE MY PYTHON SKILLS APPLICABLE TO MICROPYTHON?

If you’ve already learned how to program with Python, you may be expecting

to see something that stands out as different or even odd about MicroPython.

the good news is your Python skills are all you need to work with MicroPython.

Indeed, MicroPython and Python use the same syntax; there isn’t anything new

to learn. as you will see in the next few chapters, MicroPython implements a

subset of Python libraries but still is very much Python.

 What Does MicroPython Run On?
Due to the increasing popularity of MicroPython, there are more options

for boards to run MicroPython being added regularly. Part of this is from

developers building processor- and platform-specific compiled versions of

MicroPython that you can download and install on the board. This is how

the Raspberry Pi Pico works.

ONE MICROPYTHON, MANY BOARDS

there are other microcontroller and microprocessor boards that run

MicroPython natively (installed at the factory) or can be loaded with

MicroPython binaries, for example, the pyboard (https://micropython.

org/), which was the first MicroPython board created by the implementors

of MicroPython. there is also the WiPy (https://pycom.io/), which is an

excellent Iot board. there are also versions of the espressif (eSP) boards and

arduino that run MicroPython.

however, some of the other boards use a slightly different mix of MicroPython

libraries because some MicroPython boards have different hardware. take

care when studying online examples to ensure you are referencing a generic

MicroPython example or one tailored to the Pico. We will focus exclusively on

the Pico in this book.

ChaPter 2 IntroduCIng MICroPython

https://micropython.org/
https://micropython.org/
https://pycom.io/

51

Next, let’s talk about using Python on our PC for experimenting with

learning the language.

 Experimenting with Python on Your PC
Since MicroPython is Python (just a bit scaled down for optimization

purposes), you can run Python on your PC and experiment with the

language. I recommend loading Python on your PC even if you already

have a MicroPython board. You may find it more convenient to try

out things with your PC since you can control the environment better.

However, your PC won’t be able to communicate with electronic

components or hardware like the MicroPython boards, so while you can

do a lot more on the PC, you can’t test your code that communicates with

hardware. But you can test the basic constructs such as function calls,

printing messages, and more.

So, why bother? Simply, using your PC to debug your Python code

will allow you to get much of your project complete and working before

trying it on the MicroPython board. More specifically, by developing the

mundane things on your PC, you eliminate a lot of potential problems

debugging your code on the MicroPython board. This is the number one

mistake novice programmers make – writing an entire solution without

testing smaller parts. It is always better to start small and test a small part

of the code at a time adding only those parts that have been tested and

shown to work correctly.

All you need to get started is to download and install Python 3 (e.g.,

Python 3.9.6 is the latest, but new versions become available periodically).

The following sections briefly describe how to install Python on various

platforms. For specific information about platforms not listed here, see

the Python wiki at https://wiki.python.org/moin/BeginnersGuide/

Download.

ChaPter 2 IntroduCIng MICroPython

https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download

52

Caution there are two versions of Python available – Python 2 and
Python 3. Since MicroPython is based on Python 3, you will need to
install Python version 3, not Python version 2.

Fortunately, most computers today come with Python installed. If you

are not sure, open a terminal window (command window) and type the

following command:

$ python –version

Python 3.9.6

If you get a result similar to what is shown earlier, you’ve got what you

need. If not, you should install Python on your PC. Some computers may

have both Python 2 and 3 installed. In this case, you may see a different

version than what is shown earlier.

If you saw a version like Python 2.7.X, there is still a chance you have

Python 3 on your machine. Some systems have both Python 2 and Python

3 installed. To run Python 3, use the following command:

$ python3

If Python 3 is not installed or it is an older version, use the following

sections to install Python on your system. You should always install

the latest version. You can download Python 3 from www.python.org/

downloads/.

 Installing Python 3 on Windows 10

Most Windows machines do not include Python, and you must install

it. You can download Python 3 for Windows from www.python.org/

downloads/windows/. You will find the usual Windows installer options

ChaPter 2 IntroduCIng MICroPython

http://www.python.org/downloads/
http://www.python.org/downloads/
http://www.python.org/downloads/windows/
http://www.python.org/downloads/windows/

53

for 32-bit and 64-bit versions as well as a web-based installer and a .zip

format. Most people will use the Windows installer option, but if you have

advanced needs to install Python manually, you can use the other options.

Once you download Python, you can launch the installer. For example,

on my Windows 10 machine, I downloaded the file under the link named

Latest Python 3 Release – Python 3.9.6. If you scroll down, you can find the

installer you want. For example, I clicked the installer for Windows 64-bit

machines. This downloaded a file named python-3.9.6-amd64.exe, which

I located in my Downloads folder and executed by double-clicking the file.

Like most Windows installer installs, you can step through the various

screens agreeing to the license, specifying where you want to install it, and

finally initiating the install. Figure 2-2 shows an example of the installer

running.

Figure 2-2. Installing Python 3.9.6 on Windows 10

Tip If you get stuck or need more detailed instructions, see the
excellent article at how-to geek: www.howtogeek.com/197947/
how- to- install- python- on- windows/.

ChaPter 2 IntroduCIng MICroPython

http://www.howtogeek.com/197947/how-to-install-python-on-windows/
http://www.howtogeek.com/197947/how-to-install-python-on-windows/

54

Once the installation is complete, you can try the test in the previous

section to verify the installation. If you do not modify your PATH variable,

you may need to use the Python console shortcut on the start menu to

launch the console.

In fact, if you run the installation and you cannot get Python to launch,

you can fix this problem by running the installer again. When you launch

the installer a subsequent time, you will be prompted on how to proceed.

Click the Modify option as shown in Figure 2-3.

Figure 2-3. Modify Python 3.9.6 installation on Windows 10

On the next screen, ensure the pip option is chosen and click Next as

shown in Figure 2-4. Pip is a special Python package installer that you will

need to use to install additional Python libraries.

ChaPter 2 IntroduCIng MICroPython

55

Figure 2-4. Select Optional Features for Python 3.9.6 install on
Windows 10

On the next screen, ensure there are checkmarks for creating shortcuts

and adding the Python command to the environment variables as shown

in Figure 2-5.

Figure 2-5. Select Advanced Options for Python 3.9.6 install on
Windows 10

ChaPter 2 IntroduCIng MICroPython

56

 Installing Python 3 on macOS

If you are using macOS, you probably have Python installed since most

releases of macOS install Python by default. However, if you were not able

to run the Python version command earlier or it wasn’t the correct version,

you can still download the latest Python 3 from the Python website (www.

python.org/downloads/mac- osx/). You will find several versions, but you

should download the latest version available that matches your hardware.

You will find an Intel-based installer and a universal installer. If in doubt,

try the universal installer.

Once you download Python, you can launch the installer. For example,

on my iMac, I downloaded the latest Python 3 file under the link named

Latest Python 3 Release – Python 3.9.6. If you scroll down, you can find the

installer you want. For example, I clicked the installer for Intel machines.

This downloaded a file named python-3.9.6-macosx10.9.pkg, which I

located in my Downloads folder and executed.

Like most installers, you can step through the various screens agreeing

to the license, specifying where you want to install it, and finally initiating

the install. Figure 2-6 shows an example of the installer running.

ChaPter 2 IntroduCIng MICroPython

http://www.python.org/downloads/mac-osx/
http://www.python.org/downloads/mac-osx/

57

Figure 2-6. Installing Python 3.9.6 on macOS

Note depending on which version of macoS you are running, and
how your security settings are set, you may need to change them to
run the installer since it is not signed by an identified developer. See
the Security & Privacy panel in your System Preferences.

Once the installation is complete, you can try the test in the previous

section to verify the installation.

 Installing Python 3 on Linux

If you are using Linux, the way you install Python will vary based on the

platform. For instance, Ubuntu uses apt-get commands, while other

distributions have different package managers. Use the default package

manager for your platform to install Python 3.6 (or later).

ChaPter 2 IntroduCIng MICroPython

58

For example, on Debian or Ubuntu, we install the Python 3.9 package

using the following commands. The first command updates the packages

to ensure we have the latest package references. The second command

initiates a download of the necessary files and installs Python:

$ sudo apt-get update

$ sudo apt-get install python3.9

Once the installation is complete, you can try the test in the previous

section to verify the installation.

 Running the Python Console

Now let’s run some tests on our PC. Recall we can open a Python console

by opening a terminal window (command prompt) and entering the

command python (or python3 depending on your installation).

Once you see the prompt, enter the following code at the prompt (>>>).

This code will print a message to the screen. The \n at the end is a special,

nonprinting character that issues a carriage return (like pressing ENTER)

to move to a new line.

print ("Hello, World!")

When you enter this code, you will see the result right away. Recall the

interpreter works by executing one line of code at a time – each time you

press Enter. However, unlike running a program stored in a file, the code

you enter in the console is not saved. The following shows an example of

running the Python console on Windows 10. Notice I typed in a simple

program – the quintessential “Hello, World!” example:

C:\> python –version

Python 3.9.6

C:\> python

ChaPter 2 IntroduCIng MICroPython

59

Python 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC

v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

>>> print("Hello, World!")

Hello, World!

>>> quit()

C:\>

To quit the console, enter the code quit() as shown earlier. You can

also enter the command help() to start the Python help utility. Here, you

can enter different commands to get help on Python. For example, at the

help prompt, you can type the topics command to get a quick overview of

the commands available to use in the interpreter as shown in Listing 2-1.

You can press CTRL+C to exit the help utility.

Listing 2-1. Getting Help in the Python Interpreter

>>> help()

Welcome to Python 3.9's help utility!

If this is your first time using Python, you should definitely

check out the tutorial on the Internet at https://docs.python.

org/3.9/tutorial/.

Enter the name of any module, keyword, or topic to get help on

writing Python programs and using Python modules. To quit this

help utility and return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols,

or topics, type "modules", "keywords", "symbols", or

"topics". Each module also comes with a one-line summary of

what it does; to list the modules whose name or summary contain

a given string such as "spam", type "modules spam".

ChaPter 2 IntroduCIng MICroPython

60

help> topics

Here is a list of available topics. Enter any topic name to

get more help.

ASSERTION DELETION LOOPING SHIFTING

ASSIGNMENT DICTIONARIES MAPPINGMETHODS SLICINGS

ATTRIBUTEMETHODS DICTIONARYLITERALS MAPPINGS SPECIALATTRIBUTES

ATTRIBUTES DYNAMICFEATURES METHODS SPECIALIDENTIFIERS

AUGMENTEDASSIGNMENT ELLIPSIS MODULES SPECIALMETHODS

BASICMETHODS EXCEPTIONS NAMESPACES STRINGMETHODS

BINARY EXECUTION NONE STRINGS

BITWISE EXPRESSIONS NUMBERMETHODS SUBSCRIPTS

BOOLEAN FLOAT NUMBERS TRACEBACKS

CALLABLEMETHODS FORMATTING OBJECTS TRUTHVALUE

CALLS FRAMEOBJECTS OPERATORS TUPLELITERALS

CLASSES FRAMES PACKAGES TUPLES

CODEOBJECTS FUNCTIONS POWER TYPEOBJECTS

COMPARISON IDENTIFIERS PRECEDENCE TYPES

COMPLEX IMPORTING PRIVATENAMES UNARY

CONDITIONAL INTEGER RETURNING UNICODE

CONTEXTMANAGERS LISTLITERALS SCOPING

CONVERSIONS LISTS SEQUENCEMETHODS

DEBUGGING LITERALS SEQUENCES

help>

You are now leaving help and returning to the Python

interpreter. If you want to ask for help on a particular

object directly from the interpreter, you can type

"help(object)". Executing "help('string')" has the same effect

as typing a particular string at the help> prompt.

>>>

ChaPter 2 IntroduCIng MICroPython

61

While that demonstrates running Python from your PC, it is not that

interesting. Let’s see something a bit more complicated.

 Running Python Programs with the Interpreter

Suppose your project required you to save data to a file or possibly read

data from a file. Rather than try and figure out how to do this on your

MicroPython board, we can experiment with files on our PC!

In the next example, I write data to a file and then read the data and

print it out. Don’t worry too much about understanding the code – just

read through it – it’s very intuitive. The with statement allows us to open

a file and operate on it inside the code block and then automatically close

it for us when it exits the code block. Listing 2-2 shows the code for this

example. I used a text editor and saved the file as file_io.py.

Listing 2-2. File I/O Example

Step 1: Create a file and write some data

with open("log.txt", "w") as new_file: # use "write" mode

 new_file.write("1,apples,2.5\n") # write some data

 new_file.write("2,oranges,1\n") # write some data

 new_file.write("3,peaches,3\n") # write some data

 new_file.write("4,grapes,21\n") # write some data

Step 2: Open a file and read data

with open("log.txt", "r") as old_file: # use "read" mode

 # Use a loop to read all rows in the file

 for row in old_file.readlines():

 columns = row.strip("\n").split(",") # split row by commas

 print(" : ".join(columns)) # print the row with colon

separator

ChaPter 2 IntroduCIng MICroPython

62

I saved the code to a file to show you how you can execute your Python

scripts using the Python interpreter using the following command:

python ./file_io.py

Listing 2-3 shows the results of running the script.

Listing 2-3. Output for the File I/O Example

$ python ./file_io.py

1 : apples : 2.5

2 : oranges : 1

3 : peaches : 3

4 : grapes : 21

Notice the code changes the separator in the data by exchanging the

comma as originally written to a space, colon, and another space. The

code does this by splitting the line (string) read into parts by comma. The

columns data contains three parts. We use the join() method to rejoin the

string and print it. Take a moment to read through the code, and you will

see these aspects. As you can see, Python is easy to read.

Now that we’ve experimented briefly with Python on our PC (we will

see more of this in the next chapter), let’s see how to use MicroPython on

our Raspberry Pi Pico. We saw some of this as a demo, but this time you get

to try it yourself.

 How It Works
Recall that MicroPython is designed to work on small microcontroller

platforms. Some of these microcontroller platforms use a special chip that

contains the MicroPython binaries (libraries, basic disk I/O, bootstrapping,

etc.) as well as the microcontroller, memory, and supporting components.

ChaPter 2 IntroduCIng MICroPython

63

When you use a MicroPython board – like most microcontrollers – you

must first write your code before executing it. If you use the REPL, you’re

actually executing the code as you write it, and the code is not saved on the

board. If you want to store your code and execute it on boot (for example),

you must load it onto the board. You can do this in one of two ways. You

can use a command-line utility designed to use raw REPL, which allows

Python code to be entered and executed on the board from a script to

effect file operations, or you can use Thonny to write and copy your

program (script file) to the board. Let’s see how to use each of these.

Note Some other MicroPython boards have a uSB flash drive that
mounts when you connect it to your computer using a uSB cable. the
Pico does not have this feature, so you must use a utility or thonny to
edit or copy files on the Pico.

 File Operations with a Utility
There are several utilities available for working with files on the Pico. All

use some form of the raw REPL to execute filesystem operations via Python

code to list and copy files. We will see how to use one of the following

utilities, but the other options work in a similar fashion:

• Remote MicroPython shell: https://github.com/

dhylands/rshell

• mpfshell: https://github.com/wendlers/mpfshell

• Adafruit MicroPython tool (ampy): https://github.

com/scientifichackers/ampy

ChaPter 2 IntroduCIng MICroPython

https://github.com/dhylands/rshell
https://github.com/dhylands/rshell
https://github.com/wendlers/mpfshell
https://github.com/scientifichackers/ampy
https://github.com/scientifichackers/ampy

64

Let’s see how to use the Adafruit MicroPython tool (ampy). You can

install ampy using the following command:

$ pip3 install adafruit-ampy

Once installed, you can use ampy as a command-line tool to execute

file operations. Listing 2-4 shows the help feature for ampy.

Listing 2-4. Adafruit MicroPython Tool (ampy) Help

ampy --help

Usage: ampy [OPTIONS] COMMAND [ARGS]...

 ampy - Adafruit MicroPython Tool

 Ampy is a tool to control MicroPython boards over a serial

connection. Using ampy you can manipulate files on the

board's internal filesystem and even run scripts.

Options:

 -p, --port PORT Name of serial port for connected

board. Can optionally

 specify with AMPY_PORT environment

variable. [required]

 - b, --baud BAUD Baud rate for the serial connection

(default 115200).

 Can optionally specify with AMPY_BAUD

environment variable.

 -d, --delay DELAY Delay in seconds before entering RAW MODE

(default 0).

 Can optionally specify with AMPY_DELAY

environment variable.

 --version Show the version and exit.

 --help Show this message and exit.

ChaPter 2 IntroduCIng MICroPython

65

Commands:

 get Retrieve a file from the board.

 ls List contents of a directory on the board.

 mkdir Create a directory on the board.

 put Put a file or folder and its contents on the board.

 reset Perform soft reset/reboot of the board.

 rm Remove a file from the board.

 rmdir Forcefully remove a folder and all its children from

the board.

 run Run a script and print its output.

Here, we see how to use options to connect to our Pico as well as the

commands available. We only need to specify the port and optionally the

baud rate and then one of the eight commands. For example, if you want

to connect to the board on Windows 10 (COM3) with a baud rate of 115200

and list the contents of the filesystem, we use the following command:

$ ampy -p COM3 -b 115200 ls

If you are using Linux or macOS, you would use the device file such as

/dev/tty… in place of COM3.

Note adafruit has discontinued the development of ampy to
concentrate on their CircuitPython variant, but the utility is the best of
the available utilities and easiest to use.

Let’s see ampy in action. Begin by creating a file on your PC with the

following contents. Save it as hello_pico.py.

print("Hello from Pico!")

ChaPter 2 IntroduCIng MICroPython

66

Now, open a terminal on your PC and navigate to the folder where you

saved the file. Then, enter the following command to connect to the Pico:

$ ampy -p COM3 -b 115200 put hello_pico.py

You won’t see any output to know if the file copy worked, but you can

list the files in the filesystem with the following command:

$ ampy -p COM3 -b 115200 ls

/hello_pico.py

Here, we see the file was copied. We can run (execute) the file with the

following command:

$ ampy -p COM3 -b 115200 run hello_pico.py

Hello from Pico!

Finally, you can remove the file to save some space on the filesystem

for other files. Note that the Pico has only 1.4MB of space to save files.

$ ampy -p COM3 -b 115200 rm hello_pico.py

As you can see, it is easy to use ampy, but it is not as nice as a

GUI. That’s where Thonny makes these operations nicer.

 File Operations with Thonny

You can perform filesystem operations on your Pico from inside Thonny.

You should first connect your Pico board to your PC. Then, simply click

the View ➤ Files menu. You will then see a tool window open that allows

you to see the files on both your PC from the current working directory and

those on your Pico.

You can right-click any files listed to download them from your Pico to

your PC, or you can use the submenu to see all of the available commands

as shown in Figure 2-7.

ChaPter 2 IntroduCIng MICroPython

67

Figure 2-7. File viewer (Thonny)

To copy files to the Pico using Thonny, first navigate to the file from

your PC in the top part of the file tool window and then select the file as

shown in Figure 2-8. Recall, we created the hello_pico.py file in the last

section.

Figure 2-8. Copy a file to the Pico – select a file (Thonny)

ChaPter 2 IntroduCIng MICroPython

68

Next, right-click the file and select Upload to / as shown in Figure 2-9.

Figure 2-9. Copy a file to the Pico – copy (Thonny)

Now you will see the file on the Pico. You can then open the file by

double-clicking it in the Pico section. A new tab will open with square

brackets around the name to indicate the file is a remote file. Now you can

run it with the run command as shown in Figure 2-10.

Figure 2-10. Open and execute a file on the Pico (Thonny)

ChaPter 2 IntroduCIng MICroPython

69

As you can see, it is very easy to use Thonny to work with the files on

the Pico.

Now it’s time to take a tour of what we can do with MicroPython. The

following section uses several example projects to show you what you can

do with a MicroPython board. Once more, I introduce the examples with

a minimal amount of explanation and details about the hardware. We will

learn much more about the hardware in Chapter 4.

 Off and Running with MicroPython
If you’re like me when encountering new technologies, you most likely

want to get started as soon as you can. If you already have a Pico, you

can follow along with the examples in this section and see a few more

examples of what you can do with MicroPython. The examples will use

the onboard LED, which can be found to the left of the micro-USB port as

shown in Figure 2-11.

Figure 2-11. Locating the onboard LED (Pico)

The LED is a single-color (green) LED that you can turn on and off.

That might not seem very interesting, but using this simple component will

help you get used to creating new code files in Thonny, uploading them to

your Pico, and executing them.

ChaPter 2 IntroduCIng MICroPython

10.1007/978-1-4842-8135-2_4

70

Tip If you’re wondering what protocols are supported on the pins,
you can visit https://datasheets.raspberrypi.com/pico/
Pico- R3- A4- Pinout.pdf to see a complete list of the pins and
their uses.

You will also learn more about how to interface with the hardware, but

don’t worry too much about what each line of code does. We’ll learn more

as we progress to more complex examples.

 Example 1 – Blink the LED
In this example, we will write code to turn on the LED on the board. Rather

than simply turning it on, let’s use a construct called a loop to turn it on

and off every 250 milliseconds. Thus, it will flash rather quickly. Before I

explain the code, let’s look at the completed code. Listing 2-5 shows how

the code would look. Don’t worry, I’ll explain each of the lines of code after

the listing.

Listing 2-5. Blink the LED

#

Beginning MicroPython – Chapter 2

#

Example 1 - Blink the LED

#

Dr. Charles Bell

#

import time from machine import Pin # Import the Pin class from

the machine library

led = Pin(25, Pin.OUT) # Get the LED instance (from GPIO pin 25)

ChaPter 2 IntroduCIng MICroPython

https://datasheets.raspberrypi.com/pico/Pico-R3-A4-Pinout.pdf
https://datasheets.raspberrypi.com/pico/Pico-R3-A4-Pinout.pdf

71

led.off() # Make sure it's off first

for i in range(0, 20): # Run the indented code 20 times

 led.on() # Turn LED on

 time.sleep(0.250) # Wait for 250 milliseconds

 led.off() # Turn LED off

 time.sleep(0.250) # Wait for 250 milliseconds

led.off() # Turn the LED off at the end

print("Done!") # Goodbye!

The first lines of code are comment lines. These are ignored by

MicroPython and are a way to communicate to others what your program

is doing. If you are using the REPL console instead of following along

with this tutorial, feel free to skip the comment lines when entering

the code.

Next is a line of code that is used to import the base hardware library

(machine). This library is specific to the Pico and makes available all the

components on the board. We also import the time library as we will need

to use the sleep() method later to pause execution. This will allow the

LED to remain on (or off) for a specific amount of time.

The next two lines of code initialize a variable (led) by using the

Pin class from the machine library (Pin) to instantiate a variable of the

Pin class representing the onboard LED found on GPIO number 25 (the

physical number of the pin). This creates an instance of that object that

we can use. In this case, we immediately turn the LED off by calling

led.off().

Next is the main portion of the code – a loop! In this case, it is a

for loop designed to run the block of code below it as indicated by the

indentation 20 times. The for loop uses a counter, i, and the values 1

through 20 as returned by the range(1, 20) function. Within the body of

ChaPter 2 IntroduCIng MICroPython

72

the loop (the indented portion), we first turn the LED on with led.on(),

wait 250 milliseconds using the time.sleep () method, then turn the LED

off again and wait another 250 milliseconds. We use 0.250 because the

sleep() method uses seconds rather than milliseconds. Finally, we turn

the LED off and print a message that we’re done.

You can enter this code line by line into the REPL console if you’d like,

but since we have such a nice IDE with Thonny, let’s use that. Start by

opening a new file using the File ➤ New menu and type the lines of code

as shown in the listing. Next, let’s save the file with the File ➤ Save menu.

This will open a new dialog as shown in Figure 2-12 where you can choose

where to save the file. You should choose the Raspberry Pi Pico option.

Figure 2-12. Where to save to? dialog (Thonny)

Next, you will be shown the save dialog where you can name the file as

shown in Figure 2-13. If you have created directories on your Pico, you can

navigate to where you’d like to save the file. Name the file example1.py and

click OK.

ChaPter 2 IntroduCIng MICroPython

73

Figure 2-13. Save dialog (Thonny)

Next, we can run the example. To do so, you can either click the Run

button (small green button with an arrowhead on the toolbar) or click the

Run ➤ Run current script menu. You will see the MicroPython console

show in the shell tab as the program executes. You should also see the

green LED on the Pico blink rapidly. Figure 2-14 shows an example of

the code running in Thonny. If you want it to blink slower, just adjust the

time.sleep() calls and increase the value to 0.500 or even 1.0.

ChaPter 2 IntroduCIng MICroPython

74

Figure 2-14. Running example 1 (Thonny)

If you have been following along with this chapter, you should now see

two files on your Pico as shown earlier.

 Example 2 – Toggle the LED
Now, let’s modify our last example to use a helper function. In this case,

we will use the toggle() method to turn the LEDs on and off. Basically,

whatever state it is in, the toggle() sets it to the opposite. Let’s shake

things up a bit and use a different loop (a while loop) with a counter inside

the loop, and we’ll place out delay and toggle into a method we will create.

So, it is like the previous example but, as you will see, demonstrates a bit

more complexity. Since it is more complex, I will walk through the code in

sections before presenting the completed code.

Recall from the last example, we must import two things: the Pin class

from the machine library and the time library as shown in the following:

ChaPter 2 IntroduCIng MICroPython

75

import time

from machine import Pin

Next, we are going to use a new concept called constants. There are

simply placeholders for values we will use that never change. They are

especially helpful when used in more than one place in the code. We will

create one for the time to sleep and another for the maximum number of

blinks, which we will use to end the while loop. The following shows the

correct syntax for the constants:

SLEEP_TIME = 0.250 # Time to sleep in milliseconds

MAX_BLINKS = 20 # Max number of blinks

Next, we create the new method named blink_led() as shown in the

following. Here, we define the method with the def clause and indent all of

the code we want to include. Here, we call the toggle() method and time.

sleep(). This is a common way to organize your code and make it possible

to reuse some lines of code from different places in your code to eliminate

duplication:

def blink_led():

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

Following that, we instantiate a class variable for the pin like we did

before, and then we initialize a counting variable for use in the loop. The

while loop is written differently than the for loop. In this case, we place

a condition at the top of the loop, and the loop is executed so long as the

condition is true. To make it false and stop the loop, we simply increment

the counter as part of the body of the loop as follows:

count = 0 # Initialize the counter

while count < MAX_BLINKS: # Run while counter < max

num blinks

ChaPter 2 IntroduCIng MICroPython

76

 blink_led() # Toggle the LED

 count = count + 1 # Increment the counter

The rest of the code is the same as the last example. Listing 2-6 shows

the completed code. Read through it a few times until you’re convinced it

will work.

Listing 2-6. Example 2. Toggle the LED

#

Beginning MicroPython – Chapter 2

#

Example 2 - Toggle the LED

#

Dr. Charles Bell

#

import time

from machine import Pin

Constants

SLEEP_TIME = 0.250 # Time to sleep in milliseconds

MAX_BLINKS = 20 # Max number of blinks

Create a method to toggle the LED and wait 250 milliseconds

def blink_led():

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

led = Pin(25, Pin.OUT) # Get the LED instance (from

GPIO pin 25)

ChaPter 2 IntroduCIng MICroPython

77

led.off() # Make sure it's off first

count = 0 # Initialize the counter

while count < MAX_BLINKS: # Run while counter < max

num blinks

 blink_led() # Toggle the LED

 count = count + 1 # Increment the counter

led.off() # Turn the LED off at the end

print("Done!") # Goodbye!

If you’re following along, go ahead and save this file on your Pico as

example2.py. See the previous example for instructions on how to save

the file.

When you run the code by clicking the Run button (small green button

with an arrowhead on the toolbar) or clicking the Run ➤ Run current script

menu, you will see the LED turn on and off.

However, there is a bug (defect or logic error) in this code. Can you

spot it? I’ll give you a hint. Run the code and count how many times the

LED turns on.

How many did it turn on? Now, go back and run the first example

again. How many times did the LED turn on there? If you discovered the

LED turns on 10 times for this example, but 20 for the last example, you’ve

found the artifact (data) that shows the logic error. Now, where is the

logic error?

If you’re thinking it has something to do with either the blink_led()

method or the constant, you’re on the right track.

Now, look at our first example. What did we do inside the for loop?

We turned it on, waited, then turned it off, and waited some more. That

effected a “blink” of the LED, and we did it 20 times.

But in this example, we use toggle(), which only turns the LED

on if off and off if on. We did this 20 times too. Do you see where we

went wrong?

ChaPter 2 IntroduCIng MICroPython

78

You may be tempted to fix the issue by changing the constant MAX_

BLINKS to 40 and that would work, but the logic error is actually in the

blink_led() method. We should have called the toggle() method twice

as shown in the following:

def blink_led():

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

Go ahead and make that change. You should now see the LED

illuminate 20 times.

It is this sort of error that we can introduce unknowingly especially if

we build our own logic to control hardware.3 That’s why it is always best to

let the hardware do the work for us, which we are going to do in the next

example.

 Example 3 – Timer
This example demonstrates how to use a timer with a callback function,

which is simply a method we create to execute when the timer “triggers.”

That is, we create a function in our code and then tell MicroPython to

execute that function when the timer alarm or frequency cycles (also

called trigger). This example is based on the previous example, but with a

timer instead of a loop.

3 It also illustrates why I prefer specific functions like on() and off() over a helper
like toggle(). The code reads more clearly, and it is less likely to introduce
logic errors.

ChaPter 2 IntroduCIng MICroPython

79

We will use the same imports as the last example except with one

additional library – the Timer library as shown in the following:

import time

from machine import Pin, Timer

We still need the SLEEP_TIME constant, but not the MAX_BLINKS

constant. The blink_led() is altered slightly, however. We add the timer

variable in the parameter list as shown in the following. This is so that we

can use the method as a callback for the Timer class:

def blink_led(timer):

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

Next, we set up the pin as before and initiate a Timer class instance

variable as follows:

led = Pin(25, Pin.OUT) # Get the LED instance (from

GPIO pin 25)

timer = Timer() # Get the timer instance

led.off() # Make sure it's off first

Now we can set up the timer using a frequency of 2.0, which means

fire (call) the blink_led() method twice per second (or every 500

milliseconds) with a mode of periodic, and we pass in the address of the

blink_led() method by not specifying the () as follows:

timer.init(freq=2.0, mode=Timer.PERIODIC, callback=blink_led)

time.sleep(10) # Wait for 10 seconds

timer.deinit() # Turn off the timer

ChaPter 2 IntroduCIng MICroPython

80

Notice we add a sleep() method to sleep for 10 seconds and then call

deinit() for the timer. This will effectively let the code run for 10 seconds

blinking the LED twice per second for 20 iterations. We call the deinit() to

turn off the timer. Otherwise, the timer will continue to run even when our

code has completed. So, yes, you can spawn code to execute by itself. Cool, eh?

Listing 2-7 shows the completed code. Read through it a few times

until you’re convinced it will work.

Listing 2-7. Example 3. Blink the LED with a Timer

#

Beginning MicroPython – Chapter 2

#

Example 3 - Blink the LED with a Timer

#

Dr. Charles Bell

#

import time

from machine import Pin, Timer

Constants

SLEEP_TIME = 0.250 # Time to sleep in milliseconds

Create a timer callback method to toggle the LED

def blink_led(timer):

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

 led.toggle() # Toggle the LED

 time.sleep(SLEEP_TIME)

led = Pin(25, Pin.OUT) # Get the LED instance (from

GPIO pin 25)

timer = Timer() # Get the timer instance

led.off() # Make sure it's off first

ChaPter 2 IntroduCIng MICroPython

81

Use a timer to control the blink twice per second or

every 500 milliseconds

timer.init(freq=2.0, mode=Timer.PERIODIC, callback=blink_led)

time.sleep(10) # Wait for 10 seconds

timer.deinit() # Turn off the timer

led.off()

print("Done!") # Goodbye!

If you’re following along, go ahead and save this file on your Pico as

example3.py. See the previous example for instructions on how to save

the file.

When you run the code by clicking the Run button (small green button

with an arrowhead on the toolbar) or clicking the Run ➤ Run current

script menu, you will see the LED turn on and off. Try to count the number

of times the LED is turned on to convince yourself this code works as

described.

Here, we see a more complex example of blinking the LED without

using a counting loop. While the timer may seem strange, it is much easier

and less error-prone than the loop option of the previous examples.

 Saving Your Work
If you have followed along thus far, you should have five MicroPython files

on your Pico (hello_pico.py, file_io.py, example1.py, example2.py,

and example3.py). Unless you created these on your PC first, you only have

copies on your Pico. You can download these to your PC from your Pico

using Thonny by right-clicking the file in the Pico section and then choosing

Download to <current_directory> as shown in Figure 2-15. Repeat until all

files have been downloaded to your PC.

ChaPter 2 IntroduCIng MICroPython

82

Figure 2-15. Downloading files from the Pico to your PC (Thonny)

 Summary
MicroPython is a very exciting addition to the microcontroller world.

For the first time, beginners do not need to learn a new operating

system or a complex programming language like C or C++ to program

the microcontroller. MicroPython permits people with some or even

no programming experience to experiment with electronics and build

interesting projects. Thus, MicroPython provides opportunities for more

hobbyists and enthusiasts who just want to get their projects working

without a steep learning curve.

ChaPter 2 IntroduCIng MICroPython

83

In this chapter, we discovered the major features of MicroPython. We

also discovered that MicroPython is based on the Python that we find on

our PCs. Best of all, we saw firsthand how MicroPython works on the Pico.

In the next chapter, we will dive into a programming tutorial on using

Python and MicroPython. The chapter is very much a lightning tour

and intended to help guide you to the point where you can write (and

understand) the examples in this book.

ChaPter 2 IntroduCIng MICroPython

85

CHAPTER 3

How to Program
in MicroPython
Now that we have a basic understanding of the Pico and have had a

short introduction to MicroPython, we are ready to learn more about

programming in MicroPython. Mastering MicroPython is very easy, and

some may suggest it doesn’t require any formal training to use. This is

largely true and thus you should be able to write MicroPython scripts with

only a little bit of knowledge about the language.

Given that MicroPython is a subset of Python, we can learn the basics

of the Python language first through examples on our PC. Thus, this

chapter presents a crash course on the basics of Python programming

including an explanation about some of the most commonly used

language features. As such, this chapter will provide you with the skills

you need to understand the Python examples in this book and available

on the Internet. The chapter also demonstrates how to program in Python

through examples that you can run on your PC or your Pico. So, let’s get

started!

Note I use the term Python to describe programming concepts in
this chapter that apply to both MicroPython and Python. Concepts
unique to MicroPython use the term MicroPython.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_3

https://doi.org/10.1007/978-1-4842-8135-2_3

86

Now let’s learn some of the basic concepts of Python programming.

We will begin with the building blocks of the language such as variables,

modules, and basic statements and then move into the more complex

concepts of flow control and data structures. While the material may seem

to come at you in a rush, this tutorial on Python covers only the most

fundamental knowledge of the language and how to use it on your PC and

Pico. It is intended to get you started writing Python applications quickly.

If you know the basics of Python programming, feel free to skim

through this chapter. However, I recommend working through the example

projects at the end of the chapter, especially if you’ve not written many

Python applications.

The following sections present many of the basic features of Python

programming that you will need to know to understand the example

projects in this book.

 Basic Concepts
Python is a high-level, interpreted, object-oriented scripting language.

One of the biggest goals of Python is to have a clear, easy-to-understand

syntax that reads as close to English as possible. That is, you should be able

to read a Python script and understand it even if you haven’t learned the

language. Python also has less punctuation (special symbols) and fewer

syntactical machinations than other languages. The following lists a few of

the key features of Python:

• An interpreter processes python at runtime. No

external (separate) compiler is used.

• Python supports object-oriented programming

constructs by way of a class.

ChaPter 3 how to PrograM In MICroPython

87

• Python is a great language for the beginner-level

programmers and supports the development of a wide

range of applications.

• Python is a scripting language but can be used for a

wide range of applications.

• Python is very popular and used throughout the world

giving it a huge support base.

• Python has few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick

up the language quickly.

• Python code is more clearly defined and visible to

the eyes.

Recall that Python is available for download (python.org/downloads)

for just about every platform that you may encounter or use – even

Windows! Python is a very easy language to learn with very few constructs

that are even mildly difficult to learn. Rather than toss out a sample

application, let’s approach learning the basics of Python in a Python-like

way: one step at a time.

 Code Blocks
The first thing you should learn is that Python does not use a code block

demarcated with symbols like other languages. More specifically, code

that is local to a construct such as a function or conditional or loop is

designated using indentation. Thus, the lines below that are indented (by

spaces or, gasp, tabs) so that the starting characters align for the code body

of the construct.

ChaPter 3 how to PrograM In MICroPython

88

Tip examples like the following are designed to show concepts in
action. as such, some of the syntax is a mock-up (also called pseudo)
Python code and may not execute if used verbatim.

if (expr1):

 print("inside expr1")

 print("still inside expr1")

else:

 print("inside else")

 print("still inside else")

print("in outer level")

Here, we see a conditional or if statement. Notice the function call

print() is indented. This signals the interpreter that the lines belong to

the construct above it. For example, the two print statements that mention

expr1 form the code block for the if condition (and executes when the

expression evaluates to true). Similarly, the next two print statements form

the code block for the else condition. Finally, the non-indented lines are

not part of the conditional and thus are executed after either the if or else

depending on the expression evaluation.

As you can see, indentation is a key concept to learn when writing

Python. Even though it is very simple, making mistakes in indentation can

result in code executing that you did not expect or worse errors from the

interpreter.

There is one special symbol that you will encounter frequently. Notice

the use of the colon (:) in the preceding code. This symbol is used to

terminate a construct and signals the interpreter that the declaration

is complete, and the body of the code block follows. We use this for

conditionals, loops, classes, and functions.

ChaPter 3 how to PrograM In MICroPython

89

Note I use “program” and “application” interchangeably with
“script” when discussing Python. while, technically, Python code is a
script, we often use it in contexts where “program” and “application”
are more appropriate.

 Comments
One of the most fundamental concepts in any programming language is

the ability to annotate your source code with nonexecutable text that not

only allows you to make notes among the lines of code but also forms a

way to document your source code.

To add comments to your source code, use the pound sign (#). Place at

least one at the start of the line to create a comment for that line, repeating

the # symbols for each subsequent line. This creates what is known as a

block comment as shown. Notice I used a comment without any text to

create whitespace. This helps with readability and is a common practice

for block comments:

#

Beginning MicroPython – Chapter 3

#

Example Python application.

#

Created by Dr. Charles Bell

#

You can also place comments on the same line as the source code.

The compiler will ignore anything from the pound sign to the end of the

line. For example, the following shows a common style of documenting

variables:

zip = 35012 # Zip or postal code

address1= "123 Main St." # Store the street address

ChaPter 3 how to PrograM In MICroPython

90

 Arithmetic
You can perform many mathematical operations in Python including the

usual primitives, but also logical operations and operations used to compare

values. Rather than discuss these in detail, I provide a quick reference in

Table 3-1 that shows the operation and example of how to use the operation.

Table 3-1. Arithmetic, Logical, and Comparison Operators in Python

Type Operator Description Example

arithmetic + addition int_var + 1

- Subtraction int_var - 1

* Multiplication int_var * 2

/ Division int_var / 3

% Modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var

Logical & Bitwise and var1&var2

| Bitwise or var1|var2

^ Bitwise exclusive

or

var1^var2

~ Bitwise complement ~var1

and Logical and var1and var2

or Logical or var1or var2

(continued)

ChaPter 3 how to PrograM In MICroPython

91

Type Operator Description Example

Comparison == equal expr1==expr2

!= Not equal expr1!=expr2

< Less than expr1<expr2

> Greater than expr1>expr2

<= Less than or equal expr1<=expr2

>= Greater than or

equal

expr1>=expr2

Table 3-1. (continued)

Bitwise operations produce a result on the values performed on each

bit. Logical operators (and, or) produce a value that is either true or false

and are often used with expressions or conditions.

 Output to Screen
We’ve already seen a few examples of how to print messages to the screen

but without any explanation about the statements shown. While it is

unlikely that you would print output from your MicroPython board for

projects that you deploy, learning Python is much easier when you display

messages to the screen.

Some of the things you may want to print are variable values, which is

to communicate what is going on inside your program. This can include

simple messages (strings), but can also include the values of variables,

expressions, and more.

As we have seen, the built-in print() function is the most common

way to display output text contained within single or double quotes. We

have also seen some interesting examples using another function named

format(). The format() function generates a string for each argument

ChaPter 3 how to PrograM In MICroPython

92

passed. These arguments can be other strings, expressions, variables,

etc. The function is used with a special string that contains replacement

keys delimited by curly braces { } (called string interpolation1). Each

replacement key contains either an index (starting at 0) or a named

keyword. The special string is called a format string. Let’s see a few

examples to illustrate the concept. You can run these yourself either on

your PC or your MicroPython board. I include the output so you can see

what each statement does:

>>> a = 42

>>> b = 1.5

>>> c = "seventy"

>>> print("{0} {1} {2} {3}".format(a,b,c,(2+3)))

42 1.5 six 5

>>> print("{a_var} {b_var} {c_var}{0}".format((3*3),c_var=c,b_

var=b,a_var=a))

42 1.5 six 9

Notice I created three variables (we will talk about variables in the next

section) assigning them different values with the equal symbol (=). I then

printed a message using a format string with four replacement keys labeled

using an index. Notice the output of that print statement. Notice I included

an expression at the end to show how the format() function evaluates

expressions.

The last line is more interesting. Here, I use three named parameters

(a_var, b_var, c_var) and used a special argument option in the format()

function where I assign the parameter a value. Notice I listed them in a

different order. This is the greatest advantage of using named parameters;

they can appear in any order but are placed in the format string in the

position indicated.

1 https://en.wikipedia.org/wiki/String_interpolation

ChaPter 3 how to PrograM In MICroPython

https://en.wikipedia.org/wiki/String_interpolation

93

As you can see, it’s just a case of replacing the { } keys with those from

the format() function, which converts the arguments to strings. We use

this technique anywhere we need a string that contains data gathered from

more than one area. We can see this in the preceding examples.

Tip See https://docs.python.org/3/library/string.
html#formatstrings for more information about format strings.

Now let’s look at how we can use variables in our programs (scripts).

Tip For those who have learned to program in another language
like C or C++, Python allows you to terminate a statement with the
semicolon (;); however, it is not needed and considered bad form to
include it.

 Variables and Statements
Python is a dynamically typed language, which means the type of the

variable (the type of data it can store) is determined by context as it is

encountered or used. This contrasts with other languages such as C and

C++ where you must declare the type before you use the variable.

Variables in Python are simply named memory locations that you can

use to store values during execution. We store values by using the equal

sign to assign the value. Python variable names can be anything you want,

but there are rules and conventions most Python developers follow. The

rules are listed in the Python coding standard.2

2 www.python.org/dev/peps/pep-0008/

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/library/string.html#formatstrings
http://www.python.org/dev/peps/pep-0008/

94

Tip See www.python.org/dev/peps/pep-0008 for the PeP8
coding guidelines and complete list of the rules and standards.

However, the general, overriding rule requires variable names that

are descriptive, have meaning in context, and can be easily read. That is,

you should avoid names with random characters, forced abbreviations,

acronyms, and similar obscure names. By convention, your variable

names should be longer than a single character (with some acceptable

exceptions for loop counting variables) and short enough to avoid overly

long code lines.

WHAT IS A LONG CODE LINE?

Most will say a code line should not exceed 80 or even 100 characters, but

this harkens from the darker days of programming when we used punched

cards that permitted a maximum of 80 characters per card and later display

devices with the same limitation. with modern, widescreen displays, this is

not as big a deal, but I still recommend keeping lines short to ensure better

readability. no one likes to scroll down to read!

thus, there is a lot of flexibility in what you can name your variables. there

are additional rules and guidelines in the PeP8 standard, and should you wish

to bring your project source code up to date with the standards, you should

review the PeP8 naming standards for functions, classes, and more.

The following shows some examples of simple variables and their

dynamically determined types:

floating point number

length = 10.0

integer

ChaPter 3 how to PrograM In MICroPython

http://www.python.org/dev/peps/pep-0008

95

width = 4

string

box_label = "Tools"

list

car_makers = ['Ford', 'Chevrolet', 'Dodge']

tuple

porsche_cars = ('911', 'Cayman', 'Boxster')

dictionary

address = {"name": "Joe Smith", "Street": "123 Main", "City":

"Anytown", "State": "New Happyville"}

So, how did we know the variable width is an integer? Simply because

the number 4 is an integer. Likewise, Python will interpret “Tools” as a

string. We’ll see more about the last three types and other types supported

by Python in the next section.

 Types
As mentioned, Python does not have a formal type of specification

mechanism like other languages. However, you can still define variables

to store anything you want. In fact, Python permits you to create and use

variables based on context, and you can use initialization to “set” the data

type for the variable. The following shows several examples:

Numbers

float_value = 9.75

integer_value = 5

Strings

my_string = "He says, he's already got one."

print("Floating number: {0}".format(float_value))

print("Integer number: {0}".format(integer_value))

print(my_string)

ChaPter 3 how to PrograM In MICroPython

96

For situations where you need to convert types or want to be sure

values are typed a certain way, there are many functions for converting

data. Table 3-2 shows a few of the more commonly used type conversion

functions. I discuss some of the data structures in a later section.

Table 3-2. Type Conversion in Python

Function Description

int(x [,base]) Converts x to an integer. Base is optional (e.g., 16

for hex)

long(x [,base]) Converts x to a long integer

float(x) Converts x to a floating-point

str(x) Converts object x to a string

tuple(t) Converts t to a tuple

list(l) Converts l to a list

set(s) Converts s to a set

dict(d) Creates a dictionary

chr(x) Converts an integer to a character

hex(x) Converts an integer to a hexadecimal string

oct(x) Converts an integer to an octal string

However, you should use these conversion functions with care to avoid

data loss or rounding. For example, converting a float to an integer can

result in truncation. Likewise, printing floating-point numbers can result

in rounding.

Now let’s look at some commonly used data structures including this

strange thing called a dictionary.

ChaPter 3 how to PrograM In MICroPython

97

 Basic Data Structures
What you have learned so far about Python is enough to write the most

basic programs and indeed more than enough to tackle the example

project later in this chapter. However, when you start needing to operate

on data – either from the user or from sensors and similar sources – you

will need a way to organize and store data as well as perform operations

on the data in memory. The following introduces three data structures in

order of complexity: lists, tuples, and dictionaries.

 Lists

Lists are a way to organize data in Python. It is a free-form way to build

a collection. That is, the items (or elements) need not be the same data

type. Lists also allow you to do some interesting operations such as

adding things at the end, beginning, or at a special index. The following

demonstrates how to create a list:

List

my_list = ["abacab", 575, "rex, the wonder dog", 24, 5, 6]

my_list.append("end")

my_list.insert(0,"begin")

for item in my_list:

 print("{0}".format(item))

Here, we see I created the list using square brackets ([]). The items in

the list definition are separated by commas. Note that you can create an

empty list simply by setting a variable equal to []. Since lists, like other

data structures, are objects, there are several operations available for lists

such as the following:

• append(x): Add x to the end of the list

• extend(l): Add all items to the end of the list

ChaPter 3 how to PrograM In MICroPython

98

• insert(pos,item): Insert an item at a position pos

• remove(value): Remove the first item that matches

(==) the value

• pop([i]): Remove and return the item at position i or

end of list

• index(value): Return the index of the first item

that matches

• count(value): Count occurrences of the value

• sort(): Sort the list (ascending)

• reverse(): Reverse sort the list

Lists are like arrays in other languages and very useful for building

dynamic collections of data.

 Tuples

Tuples, on the other hand, are a more restrictive type of collection. That

is, they are built from a specific set of data and do not allow manipulation

like a list. In fact, you cannot change the elements in the tuple. Thus, we

can use tuples for data that should not change. The following shows an

example of a tuple and how to use it:

Tuple

my_tuple = (0,1,2,3,4,5,6,7,8,"nine")

for item in my_tuple:

 print("{0}".format(item))

if 7 in my_tuple:

 print("7 is in the list")

ChaPter 3 how to PrograM In MICroPython

99

Here, we see I created the tuple using parentheses (). The items in the

tuple definition are separated by commas. Note that you can create an

empty tuple simply by setting a variable equal to (). Since tuples, like other

data structures, are objects, there are several operations available such

as the following, including operations for sequences such as inclusion,

location, etc.:

• x in t: Determine if t contains x

• x not in t: Determine if t does not contain x

• s + t: Concatenate tuples

• s[i]: Get element i

• len(t): Length of t (number of elements)

• min(t): Minimal (smallest value)

• max(t): Maximal (largest value)

If you want even more structure with storing data in memory, you can

use a special construct (object) called a dictionary.

 Dictionaries

A dictionary is a data structure that allows you to store key, value pairs

where the data is assessed via the keys. Dictionaries are a very structured

way of working with data and the most logical form we will want to use

when collecting complex data. The following shows an example of a

dictionary:

Dictionary

my_dictionary = {

 'first_name': "Chuck",

 'last_name': "Bell",

 'age': 36,

 'my_ip': (192,168,1,225),

ChaPter 3 how to PrograM In MICroPython

100

 42: "What is the meaning of life?",

}

Access the keys:

print(my_dictionary.keys())

Access the items (key, value) pairs

print(my_dictionary.items())

Access the values

print(my_dictionary.values())

Create a list of dictionaries

my_addresses = [my_dictionary]

There is a lot going on here! We see a basic dictionary declaration that

uses curly braces to create a dictionary. Inside that, we can create as many

key, value pairs we want separated by commas. Keys are defined using

strings (I use single quotes by convention, but double quotes will work) or

integers, and values can be any data type we want. For the my_ip attribute,

we are also storing a tuple.

Following the dictionary, we see several operations performed on the

dictionary from printing the keys, printing all the values, and printing only

the values. The following shows the output of executing this code snippet

from the Python interpreter:

[42, 'first_name', 'last_name', 'age', 'my_ip']

[(42, 'what is the meaning of life?'), ('first_name', 'Chuck'),

('last_name', 'Bell'), ('age', 36), ('my_ip', (192, 168,

1, 225))]

['what is the meaning of life?', 'Chuck', 'Bell', 36, (192,

168, 1, 225)]

'42': what is the meaning of life?

'first_name': Chuck

'last_name': Bell

'age': 36

'my_ip': (192, 168, 1, 225)

ChaPter 3 how to PrograM In MICroPython

101

As we have seen in this example, there are several operations

(functions or methods) available for dictionaries including the following.

Together, this list of operations makes dictionaries a very powerful

programming tool:

• len(d): Number of items in d

• d[k]: Item of d with key k

• d[k] = x: Assign key k with value x

• del d[k]: Delete an item with key k

• k in d: Determine if d has an item with key k

• d.items(): Return a list (view) of the (key, value)

pairs in d

• d.keys(): Return a list (view) of the keys in d

• d.values(): Return a list (view) of the values in d

Best of all, objects can be placed inside other objects. For example, you

can create a list of dictionaries like I did earlier, a dictionary that contains

lists and tuples, and any combination you need. Thus, lists, tuples, and

dictionaries are a powerful way to manage data for your program.

In the next section, we will learn how we can control the flow of our

programs.

 Statements
Now that we know more about the basics of Python, we can discover some

of the more complex code concepts you will need to complete your project

such as conditional statements and loops.

ChaPter 3 how to PrograM In MICroPython

102

 Conditional Statements

We have also seen some simple conditional statements – statements

designed to alter the flow of execution depending on the evaluation of one

or more expressions. Conditional statements allow us to direct execution

of our programs to sections (blocks) of code based on the evaluation of

one or more expressions. The conditional statement in Python is the if

statement.

We have seen the if statement in action in our example code. Notice

in the example, we can have one or more (optional) else phrases that

we execute once the expression for the if conditions evaluate to false. We

can chain if/else statements to encompass multiple conditions where

the code executed depends on the evaluation of several conditions.

The following shows the general structure of the if statement. Notice

in the comments how I explain how execution reaches the body of each

condition:

if (expr1):

 # execute only if expr1 is true

elif ((expr2) or (expr3)):

 # execute only if expr1 is false *and* either expr2 or

expr3 is true

else:

 # execute if both sets of if conditions evaluate to false

While you can chain the statement as much as you want, use some care

here because the more elif sections you have, the harder it will become to

understand, maintain, and avoid logic errors in your expressions.

There is another form of conditional statement called a ternary

operator. Ternary operators are more commonly known as conditional

expressions in Python. These operators evaluate something based on a

ChaPter 3 how to PrograM In MICroPython

103

condition being true or not. They became a part of Python in version 2.4.

Conditional expressions are a shorthand notation for an if-then-else

construct used (typically) in an assignment statement as shown in the

following:

variable = value_if_true if condition else value_if_false

Here, we see if the condition is evaluated to true, the value preceding

the if is used, but if the condition evaluates to false, the value following the

else is used. The following shows a short example:

>>> numbers = [1,2,3,4]

>>> for n in numbers:

... x = 'odd' if n % 2 else 'even'

... print("{0} is {1}.".format(n, x))

...

1 is odd.

2 is even.

3 is odd.

4 is even.

>>>

Conditional expressions allow you to quickly test a condition instead of

using a multiline conditional statement, which can help make your code a

bit easier to read (and shorter).

 Loops

Loops are used to control the repetitive execution of a block of code. There

are three forms of loops that have slightly different behaviors. All loops use

conditional statements to determine whether to repeat execution or not.

That is, they repeat as long as the condition is true. The two types of loops

are while and for. I explain each with an example.

ChaPter 3 how to PrograM In MICroPython

104

The while loop has its condition at the “top” or start of the block of

code. Thus, while loops only execute the body if and only if the condition

evaluates to true on the first pass. The following illustrates the syntax for a

while loop. This form of loop is best used when you need to execute code

only if some expression(s) evaluate to true. For example, iterating through

a collection of things whose number of elements is unknown (loop until

we run out of things in the collection):

while (expression):

 # do something here

For loops are sometimes called counting loops because of their unique

form. For loops allow you to define a counting variable and a range or list

to iterate over. The following illustrates the structure of the for loop. This

form of loop is best used for performing an operation in a collection. In

this case, Python will automatically place each item in the collection in the

variable for each pass of the loop until no more items are available:

for variable_name in list:

 # do something here

You can also do range loops or counting loops. This uses a special

function called range() that takes up to three parameters, range([start],

stop[, step]), where start is the starting number (an integer), stop is

the last number in the series, and step is the increment. So, you can count

by 1, 2, 3, etc. through a range of numbers. The following shows a simple

example:

for i in range(2,9):

 # do something here

There are other uses for range() that you may encounter. See the

documentation on this function and other built-in functions at https://

docs.python.org/3/library/functions.html for more information.

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

105

Python also provides a mechanism for controlling the flow of the loop

(e.g., duration or termination) using a few special keywords as follows:

• break: Exit the loop body immediately

• continue: Skip to the next iteration of the loop

• else: Execute code when the loop ends (not executed if

the loop was stopped with a break statement)

There are some uses for these keywords, particularly break, but it is

not the preferred method of terminating and controlling loops. That is,

professionals believe the conditional expression or error handling code

should behave well enough to not need these options.

 Modularization
The last group of topics are the most advanced and include modularization

(code organization). As we will see, we can use functions to group code, to

eliminate duplication, and to encapsulate functionality into objects.

 Including Modules
Python applications can be built from reusable libraries that are provided

by the Python environment. They can also be built from custom modules

or libraries that you create yourself or download from a third party. These

are often distributed as a set of Python code files (e.g., files that have a file

extension of .py). When we want to use a library (function, class, etc.) that

is included in a module, we use the import keyword and list the name of

the module. The following shows some examples:

import os

import sys

ChaPter 3 how to PrograM In MICroPython

106

The first two lines demonstrate how to import a base or common

module provided by Python. In this case, we are using or importing

modules for the os and sys modules (operating system and Python system

functions).

Tip It is customary to list your imports in alphabetical order with
built-in modules first, then third-party modules listed next, and finally
your own modules.

 Functions
Python allows you to use modularization in your code. While it supports

object-oriented programming by way of classes (a more advanced feature

that you are unlikely to encounter for most Python GPIO examples), on

a more fundamental level you can break your code into smaller chunks

using functions.

Functions use a special keyword construct (rare in Python) to define

a function. We simply use def followed by a name for the function and a

comma-separated list of parameters in parentheses. The colon is used to

terminate the declaration. The following shows an example:

def print_dictionary(the_dictionary):

 for key, value in the_dictionary.items():

 print("'{0}': {1}".format(key, value))

define some data

my_dictionary = {

 'name': "Chuck",

 'age': 37,

}

ChaPter 3 how to PrograM In MICroPython

107

You may be wondering what this strange code does. Notice the loop

is assigning two values from the result of the items() function. This is a

special function available from the dictionary object. The items() function

returns the key, value pairs, hence the names of the variables.

The next line prints out the values. The use of formatting strings where

the curly braces define the parameter number starting at 0 is common

for Python 3 applications. See the Python documentation for more

information about formatting strings (https://docs.python.org/3/

library/string.html#format-string-syntax).

The body of the function is indented. All statements indented under

this function declaration belong to the function and are executed when the

function is called. We can call functions by name providing any parameters

as follows. Notice how I referenced the values in the dictionary by using

the key names:

print_dictionary(my_dictionary)

print(my_dictionary['age'])

print(my_dictionary['name'])

This example together with the preceding code, when executed,

generates the following:

$ python

Python 3.9.6 (tags/v3.9.6:db3ff76, Jun 28 2021, 15:26:21) [MSC

v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

>>> def print_dictionary(the_dictionary):

... for key, value in the_dictionary.items():

... print("'{0}': {1}".format(key, value))

...

>>> # define some data

>>> my_dictionary = {

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-string-syntax

108

... 'name': "Chuck",

... 'age': 37,

... }

>>> print_dictionary(my_dictionary)

'name': Chuck

'age': 37

>>> print(my_dictionary['age'])

37

>>> print(my_dictionary['name'])

Chuck

>>>

Now let’s look at the most complex concept in Python – object-

oriented programming.

 Classes and Objects
You may have heard that Python is an object-oriented programming

language. But what does that mean? Simply, Python is a programming

language that provides facilities for describing objects (things) and what

you can do with the object (operations).

Objects are an advanced form of data abstraction where the data

is hidden from the caller and only manipulated by the operations

(methods) the object provides. But before we start learning object-oriented

programming in Python, let’s look at some of the terminology common to

the technique.

 Object-Oriented Programming (OOP) Terminology

Like any technology or concept, there comes a certain number of terms

that you must learn to be able to understand and communicate with others

about the technology. We’ve seen some of these thus far in the book. The

ChaPter 3 how to PrograM In MICroPython

109

following briefly describes some of the terms you will need to know to

learn more about object-oriented programming:

• Attribute: A data element in a class.

• Class: A code construct used to define an object in the

form of attributes (data) and methods (functions) that

operate on the data. Methods and attributes in Python

can be accessed using dot notation.

• Class instance variable: A variable that is used to store

an instance of an object. They are used like any other

variable and, combined with dot notation, allow us to

manipulate objects.

• Constructor: A special method that is executed once

each time the class is instantiated. Thus, you would

place any startup or initialization code you need to run

once in the constructor.

• Instance: An executable form of a class created by

assigning a class to a variable initializing the code as

an object.

• Inheritance: The inclusion of attributes and methods

from one class in another.

• Instantiation: The creation of an instance of a class.

• Method overloading: The creation of two or more

methods with the same name but with a different set of

parameters. This allows us to create methods that have

the same name but may operate differently depending

on the parameters passed.

• Polymorphism: Inheriting attributes and methods from

a base class adding additional methods or overriding

(changing) methods.

ChaPter 3 how to PrograM In MICroPython

110

There are many more OOP terms, but these are the ones you will

encounter most often.

 Python Object Syntax

The syntax we use in Python is the class statement, which you can use

to help make your projects modular. By modular, we mean the source

code is arranged to make it easier to develop and maintain. Typically, we

place classes in separate modules (code files), which helps organize the

code better. While it is not required, I recommend using this technique

of placing a class in its own source file. This makes modifying the class or

fixing problems (bugs) easier.

So, what are Python classes? Let’s begin by considering the construct

as an organization technique. We can use the class to group data and

methods together. The name of the class immediately follows the keyword

class followed by a colon. You declare other class methods like any other

method except the first argument must be self, which ties the method to

the class instance when executed.

FUNCTION VS. METHOD – WHAT IS THE DIFFERENCE?

I prefer to use terms that have been adopted by the language designers

or community of developers. For example, some use “function,” but others

may use “method.” Still others may use subroutine, routine, procedure, etc.

It doesn’t matter which term you use, but you should strive to use terms

consistently. one example, which can be confusing to some, is I use the

term method when discussing object-oriented examples. that is, a class has

methods, not functions. however, you can use function in place of method, and

you’d still be correct (mostly).

ChaPter 3 how to PrograM In MICroPython

111

Accessing the data is done using one or more methods by using

the class (creating an instance) and using dot notation to reference the

data member or function. Let’s look at an example. Listing 3-1 shows a

complete class that describes (models) the most basic characteristics of

a vehicle used for transportation. I created a file named vehicle.py to

contain this code.

Listing 3-1. Vehicle Class

#

Beginning MicroPython – Chapter 3

#

Class Example: A generic vehicle

#

Dr. Charles Bell

#

class Vehicle:

 """Base class for defining vehicles"""

 axles = 0

 doors = 0

 occupants = 0

 def __init__(self, num_axles, num_doors):

 self.axles = num_axles

 self.doors = num_doors

 def get_axles(self):

 return self.axles

 def get_doors(self):

 return self.doors

ChaPter 3 how to PrograM In MICroPython

112

 def add_occupant(self):

 self.occupants += 1

 def num_occupants(self):

 return self.occupants

Notice a couple of things here. First, there is a method with the name

__init__(). This is the constructor and is called when the class instance is

created. You place all your initialization code like setting variables in this

method. We also have methods for returning the number of axles, doors,

and occupants. We have one method in this class to add occupants.

Also notice we address each of the class attributes (data) using

self.<name>. This is how we can ensure we always access the data that is

associated with the instance created.

Let’s see how this class can be used to define a family sedan.

Listing 3-2 shows code that uses this class. We can place this code in a

file named sedan.py.

Listing 3-2. Using the Vehicle Class

#

Beginning MicroPython – Chapter 3

#

Class Example: Using the generic Vehicle class

#

Dr. Charles Bell

#

from vehicle import Vehicle

sedan = Vehicle(2, 4)

sedan.add_occupant()

sedan.add_occupant()

ChaPter 3 how to PrograM In MICroPython

113

sedan.add_occupant()

print("The car has {0} occupants.".format(sedan.num_

occupants()))

Notice the first line imports the Vehicle class from the vehicle module.

Notice I capitalized the class name but not the file name. This is a very

common naming scheme. Next in the code, we create an instance of the

class. Notice I passed in 2, 4 to the class name. This will cause the __init__

() method to be called when the class is instantiated.

The variable, sedan, becomes the class instance variable (object)

that we can manipulate, and I do so by adding three occupants and

then printing out the number of occupants using the method in the

Vehicle class.

We can run the code on our PC using the following command. As we

can see, it tells us there are three occupants in the vehicle when the code is

run. Nice.

$ python ./sedan.py

The car has 3 occupants.

Now, let’s see how we can use the vehicle class to demonstrate

inheritance. In this case, we will create a new class named PickupTruck

that uses the vehicle class but adds specialization to the resulting class.

Listing 3-3 shows the new class. I placed this code in a file named pickup_

truck.py. As you will see, a pickup truck is a type of vehicle.

Listing 3-3. Pickup Truck Class

#

Beginning MicroPython – Chapter 3

#

Class Example: Inheriting the Vehicle class to form a

model of a pickup truck with maximum occupants and maximum

ChaPter 3 how to PrograM In MICroPython

114

payload.

#

Dr. Charles Bell

#

from vehicle import Vehicle

class PickupTruck(Vehicle):

 """This is a pickup truck that has:

 axles = 2,

 doors = 2,

 __max occupants = 3

 The maximum payload is set on instantiation.

 """

 occupants = 0

 payload = 0

 max_payload = 0

 def __init__(self, max_weight):

 super().__init__(2,2)

 self.max_payload = max_weight

 self.__max_occupants = 3

 def add_occupant(self):

 if self.occupants < self.__max_occupants:

 super().add_occupant()

 else:

 print("Sorry, only 3 occupants are permitted in the

truck.")

 def add_payload(self, num_pounds):

 if (self.payload + num_pounds) < self.max_payload:

 self.payload += num_pounds

 else:

 print("Overloaded!")

ChaPter 3 how to PrograM In MICroPython

115

 def remove_payload(self, num_pounds):

 if (self.payload - num_pounds) >= 0:

 self.payload -= num_pounds

 else:

 print("Nothing in the truck.")

 def get_payload(self):

 return self.payload

Notice a few things here. First, notice the class statement: class

PickupTruck(Vehicle):. When we want to inherit from another class, we

add the parentheses with the name of the base class. This ensures Python

will use the base class, allowing the derived class to use all its accessible

data and memory. If you want to inherit from more than one class, you

can (called multiple inheritance), just list the base (parent) classes with a

comma-separated list.

Next, notice the __max_occupants variable. Using two underscores in a

class for an attribute or a method name, makes it private to the class. That

is, it should only be accessed from within the class. No caller of the class

(via a class variable/instance) can access the private items nor can any

class that was derived from the class. It is always a good practice to hide

the attributes (data).

You may be wondering what happened to the occupant methods.

Why aren’t they in the new class? They aren’t there because our new class

inherited all that behavior from the base class. Not only that, but the code

has been modified to limit occupants to exactly three occupants.

I also want to point out the documentation I added to the class. We

use documentation strings (strings that use a set of three double quotes

before and after) to document the class. You can put documentation here

to explain the class and its methods. We’ll see a good use of this a bit later.

ChaPter 3 how to PrograM In MICroPython

116

Finally, notice the code in the constructor. This demonstrates how

to call the base class method, which I do to set the number of axles and

doors. We could do the same in other methods if we wanted to call the

base class method’s version.

Now, let’s write some code to use this class. Listing 3-4 shows the code

we used to test this class. Here, we create a file named pickup.py that

creates an instance of the pickup truck, adds occupants, and payload, then

prints out the contents of the truck.

Listing 3-4. Using the PickupTruck Class

#

Beginning MicroPython – Chapter 3

#

Class Example: Exercising the PickupTruck class.

#

Dr. Charles Bell

#

from pickup_truck import PickupTruck

pickup = PickupTruck(500)

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_payload(100)

pickup.add_payload(300)

print("Number of occupants in truck = {0}.".format(pickup.num_

occupants()))

print("Weight in truck = {0}.".format(pickup.get_payload()))

pickup.add_payload(200)

pickup.remove_payload(400)

pickup.remove_payload(10)

ChaPter 3 how to PrograM In MICroPython

117

Notice I add a couple of calls to the add_occupant() method, which

the new class inherits and overrides. I also add calls so that we can test the

code in the methods that check for excessive occupants and maximum

payload capacity. When we run this code, we will see the results as shown

in the following:

$ python ./pickup.py

Sorry, only 3 occupants are permitted in the truck.

Number of occupants in truck = 3.

Weight in truck = 400.

Overloaded!

Nothing in the truck.

Once again, I ran this code on my PC, but I can run all this code on the

MicroPython board and will see the same results.

There is one more thing we should learn about classes: built-in

attributes. Recall the __init__() method. Python automatically provides

several built-in attributes each starting with __ that you can use to learn

more about objects. The following lists a few of the operators available for

classes:

• __dict__: Dictionary containing the class namespace

• __doc__: Class documentation string

• __name__: Class name

• __module__: Module name where the class is defined

• __bases__: The base class(es) in order of inheritance

The following shows what each of these attributes returns for the

preceding PickupTruck class. I added this code to the pickup.py file:

print("PickupTruck.__doc__:", PickupTruck.__doc__)

print("PickupTruck.__name__:", PickupTruck.__name__)

print("PickupTruck.__module__:", PickupTruck.__module__)

ChaPter 3 how to PrograM In MICroPython

118

print("PickupTruck.__bases__:", PickupTruck.__bases__)

print("PickupTruck.__dict__:", PickupTruck.__dict__)

When this code is run, we see the following output:

Sorry, only 3 occupants are permitted in the truck.

Number of occupants in truck = 3.

Weight in truck = 400.

Overloaded!

Nothing in the truck.

PickupTruck.__doc__: This is a pickup truck that has:

 axles = 2,

 doors = 2,

 __max occupants = 3

 The maximum payload is set on instantiation.

PickupTruck.__name__: PickupTruck

PickupTruck.__module__: pickup_truck

PickupTruck.__bases__: (<class 'vehicle.Vehicle'>,)

PickupTruck.__dict__: {'__module__': 'pickup_truck', '__doc__':

'This is a pickup truck that has:\n axles = 2,\n doors

= 2,\n __max occupants = 3\n The maximum payload is

set on instantiation.\n ', 'occupants': 0, 'payload':

0, 'max_payload': 0, '__init__': <function PickupTruck.__

init__ at 0x0000023ADF7B7C10>, 'add_occupant': <function

PickupTruck.add_occupant at 0x0000023AE1150820>, 'add_payload':

<function PickupTruck.add_payload at 0x0000023AE11508B0>,

'remove_payload': <function PickupTruck.remove_payload at

0x0000023AE1150940>, 'get_payload': <function PickupTruck.get_

payload at 0x0000023AE11509D0>}

ChaPter 3 how to PrograM In MICroPython

119

You can use the built-in attributes whenever you need more

information about a class. Notice the _PickupTruck__max_occupants entry

in the dictionary. Recall that we made a pseudo-private variable, __max_

occupants. Here, we see how Python refers to the variable by prepending

the class name to the variable. Remember, variables that start with two

underscores (not one) should be considered private to the class and only

usable from within the class.

Tip See https://docs.python.org/3/tutorial/classes.
html for more information about classes in Python.

Now, let’s see a few examples of Python programs that we can use to

practice. Like the previous examples, you can write and execute these

either on your PC or on your MicroPython board.

 Learning Python by Example
The best way to learn how to program in any language is practicing with

examples. In this section, I present several examples that you can use

to practice coding in Python. You can use either your Pico or your PC to

run these examples. I present the first two examples using my PC and the

second two using the Pico.

Tip For the adventurous, I also include some challenges
(modifications to the code) for you to work out on your own. I
encourage you to try these so that you can get more hands-on
experience coding in Python.

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

120

 How Do I Create and Execute Python Files?
I also use Thonny to create the file, save it, and execute it. However, if you’d

rather use a different editor, you may do so and execute the scripts using

the python command as shown in the examples.

To open a new file in Thonny, click the File ➤ New menu, press

CTRL+N, or click the New button on the far left of the toolbar. Recall, we

can save the file using the File ➤ Save menu, press CTRL+S, or click the

Save button on the toolbar (third from the left and looks like a diskette3).

Finally, to run the script in the current open tab in the editor window, click

the Run ➤ Run current script menu, press F5, or click the Run button on

the toolbar (fourth from the left and looks like a green dot with an arrow in

the center).

I explain the code in detail for each example and show example

output when you execute the code as well as a challenge for you to try

a modification or two of each example on your own. I encourage you

to implement these examples and figure out the challenge yourself as

practice for the projects later in this book.

 Example 1: Using Loops
This example demonstrates how to write loops in Python using the for

loop. The problem we are trying to solve is converting integers from

decimal to binary, hexadecimal, and octal. Often with hardware projects,

we need to see values in one or more of these formats, and in some cases,

the sensors we use (and the associated documentation) use hexadecimal

rather than decimal. Thus, this example can be helpful in the future not

only for how to use the for loop but also how to convert integers into

different formats.

3 Ah, a diskette. Also called a floppy drive. The old standby of computers from a
bygone era. See https://en.wikipedia.org/wiki/Floppy_disk

ChaPter 3 how to PrograM In MICroPython

https://en.wikipedia.org/wiki/Floppy_disk

121

 Write the Code

The example begins with a tuple of integers to convert. Tuples and lists

can be iterated through (values read in order) using a for loop. Recall a

tuple is read only, so in this case since it is input, it is fine, but in other

cases where you may need to change values, you will want to use a list.

Recall, the syntactical difference between a tuple and a list is the tuple uses

parentheses and a list uses square brackets.

The for loop demonstrated here is called a “for each” loop. Notice I

used the syntax “for value in values,” which tells Python to iterate over the

tuple named values fetching (storing) each item into the value variable

each iteration through the tuple.

Finally, I use the print() and format() functions to replace two

placeholders {0} and {1} to print out a different format of the integer using

the methods bin() for binary, oct() for octal, and hex() for hexadecimal

that do the conversion for us.

Listing 3-5. Converting Integers

#

Beginning MicroPython – Chapter 3

#

Example: Convert integer to binary, hex, and octal

#

Dr. Charles Bell

#

Create a tuple of integer values

values = (12, 450, 1, 89, 2017, 90125)

Loop through the values and convert each to binary, hex,

and octal

for value in values:

ChaPter 3 how to PrograM In MICroPython

122

 print("{0} in binary is {1}".format(value, bin(value)))

 print("{0} in octal is {1}".format(value, oct(value)))

 print("{0} in hexadecimal is {1}".format(value, hex(value)))

 Execute the Code

You can save this code in a file named conversions.py on your PC and then

open a terminal (console window) and run the code with the command

python ./conversions.py (or python3 if you have multiple versions of

Python installed). Figure 3-1 shows the code executing in Thonny.

Figure 3-1. Executing Python in Thonny

Listing 3-6 shows the command and output if you choose to run the

code from the command line.

Listing 3-6. Conversions Example Output

$ python ./conversions.py

12 in binary is 0b1100

12 in octal is 0o14

ChaPter 3 how to PrograM In MICroPython

123

12 in hexadecimal is 0xc

450 in binary is 0b111000010

450 in octal is 0o702

450 in hexadecimal is 0x1c2

1 in binary is 0b1

1 in octal is 0o1

1 in hexadecimal is 0x1

89 in binary is 0b1011001

89 in octal is 0o131

89 in hexadecimal is 0x59

2017 in binary is 0b11111100001

2017 in octal is 0o3741

2017 in hexadecimal is 0x7e1

90125 in binary is 0b10110000000001101

90125 in octal is 0o260015

90125 in hexadecimal is 0x1600d

Notice all the values in the tuple were converted.

Note the rest of the examples in this chapter will use a listing of
the output for brevity and readability.

 Your Challenge

To make this example better, instead of using a static tuple to contain hard-

coded integers, rewrite the example to read the integer from arguments on

the command line along with the format. For example, the code would be

executed like the following:

$ python ./conversions.py 123 hex

123 in hexadecimal is 0x7b

ChaPter 3 how to PrograM In MICroPython

124

To read arguments from the command line, use argparse (https://

docs.python.org/3/howto/argparse.html). If you want to read the

integer from the command line, you can use the argparse module to add

an argument by name as follows:

import argparse

Setup the argument parser

parser = argparse.ArgumentParser()

We need two arguments: integer, and conversion

parser.add_argument("original_val")

parser.add_argument("conversion")

Get the arguments

args = parser.parse_args()

When you use the argument parser (argparse) module, the values of

the arguments are all strings, so you will need to convert the value to an

integer before you use the bin(), hex(), or oct() method.

You will also need to determine which conversion is requested.

I suggest use only hex, bin, and oct for the conversion and use a set

of conditions to check the conversion requested. Something like the

following would work:

if args.conversion == 'bin':

 # do conversion to binary

elif args.conversion == 'oct':

 # do conversion to octal

elif args.conversion == 'hex':

 # do conversion to hexadecimal

else:

 print("Sorry, I don't understand, {0}.".format(args.

conversion))

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/howto/argparse.html
https://docs.python.org/3/howto/argparse.html

125

Notice the last else communicates that the argument was not

recognized. This helps to manage user error.

There is one more thing about the argument parser you should know.

You can pass in a help string when adding arguments. The argument

parser also gets you the help argument (-h) for free. Observe the following.

Notice I added a couple of strings using the help= parameter:

We need two arguments: integer, and conversion

parser.add_argument("original_val", help="Value to convert.")

parser.add_argument("conversion", help="Conversion options:

hex, bin, or oct.")

Now when we complete the code and run it with the -h option, we get

the following output. Cool, eh?

$ python3 ./conversions.py -h

usage: conversions.py [-h] original_val conversion

positional arguments:

 original_val Value to convert.

 conversion options: hex, bin, or oct.

optional arguments:

 -h, --help show this help message and exit

 Example 2: Using Complex Data and Files
This example demonstrates how to work with the JavaScript Object

Notation4 (JSON) in Python. In short, JSON is a markup language used

to exchange data. Not only is it human readable, but it can also be used

directly in your applications to store and retrieve data to and from other

applications, servers, and even MySQL. In fact, JSON looks familiar to

4 www.json.org/json-en.html

ChaPter 3 how to PrograM In MICroPython

http://www.json.org/json-en.html

126

programmers because it resembles other markup schemes. JSON is also

very simple in that it supports only two types of structures: (1) a collection

containing (name, value) pairs and (2) an ordered list (or array). Of course,

you can also mix and match the structures in an object. When we create a

JSON object, we call it a JSON document.

The problem we are trying to solve is writing and reading data to/from

files. In this case, we will use a special JSON encoder and decoder module

named json that allows us to easily convert data in files (or other streams)

to and from JSON. As you will see, accessing JSON data is easy by simply

using the key (sometimes called fields) names to access the data. Thus, this

example can be helpful in the future not only for how to use read and write

files but also how to work with JSON documents.

 Write the Code

This example stores and retrieves data in files. The data is basic

information about pets including the name, age, breed, and type. The type

is used to determine broad categories like fish, dog, or cat.

We begin by importing the JSON module (named json), which is

built-in to the MicroPython platform. Next, we prepare some initial data

by building JSON documents and storing them in a Python list. We use

the json.loads() method to pass in a JSON formatted string. The result

is a JSON document that we can add to our list. The examples use a very

simple form of JSON documents – a collection of (name, value) pairs. The

following shows an example of one of the JSON formatted strings used:

{"name":"Violet", "age": 11, "breed":"dachshund", "type":"dog"}

Notice we enclose the string inside curly braces and use a series of key

names, a colon, and a value separated by commas. If this looks familiar, it’s

because it is the same format as a Python dictionary. This demonstrates

my comment that JSON syntax looks familiar to programmers.

ChaPter 3 how to PrograM In MICroPython

127

The JSON method, json.loads(), takes the JSON formatted string and

then parses the string checking for validity and returns a JSON document.

We then store that document in a variable and add it to the list as shown in

the following:

parsed_json = json.loads('{"name":"Violet", "age": 11,

"breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

Once the data is added to the list, we then write the data to a file

named my_data.json. To work with files, we first open the file with the

open() function, which takes a file name (including a path if you want to

put the file in a directory) and an access mode. We use “r” for read and “w”

for write. You can also use “a” for append if you want to open a file and add

to the end. Note that the “w” access will overwrite the file when you write

to it. If the open() function succeeds, you get a file object that permits you

to call additional functions to read or write data. The open() will fail if the

file is not present (and you have requested read access) or you do not have

permissions to write to the file.

In case you’re curious what the other access modes are, Table 3-3

shows the list of modes available for the open() function.

Table 3-3. Python File Access Modes

Mode Description

R opens a file for reading only. the file pointer is placed at the beginning of the

file. this is the default mode

Rb opens a file for reading only in binary format. the file pointer is placed at the

beginning of the file. this is the default mode

r+ opens a file for both reading and writing. the file pointer is placed at the

beginning of the file

(continued)

ChaPter 3 how to PrograM In MICroPython

128

Table 3-3. (continued)

Mode Description

rb+ opens a file for both reading and writing in binary format. the file pointer is

placed at the beginning of the file

W opens a file for writing only. overwrites the file if the file exists. If the file

does not exist, creates a new file for writing

wb opens a file for writing only in binary format. overwrites the file if the file

exists. If the file does not exist, creates a new file for writing

w+ opens a file for both writing and reading. overwrites the existing file if the

file exists. If the file does not exist, creates a new file for reading and writing

wb+ opens a file for both writing and reading in binary format. overwrites the

existing file if the file exists. If the file does not exist, creates a new file for

reading and writing

A opens a file for appending. the file pointer is at the end of the file if the file

exists. that is, the file is in the append mode. If the file does not exist, it

creates a new file for writing

ab opens a file for appending in binary format. the file pointer is at the end of

the file if the file exists. that is, the file is in the append mode. If the file does

not exist, it creates a new file for writing

a+ opens a file for both appending and reading. the file pointer is at the end of

the file if the file exists. the file opens in the append mode. If the file does

not exist, it creates a new file for reading and writing

ab+ opens a file for both appending and reading in binary format. the file pointer

is at the end of the file if the file exists. the file opens in the append mode. If

the file does not exist, it creates a new file for reading and writing

ChaPter 3 how to PrograM In MICroPython

129

Once the file is open, we can write the JSON documents to the file

by iterating over the list. Iteration means to start at the first element and

access the elements in the list one at a time in order (the order they appear

in the list). Recall, iteration in Python is very easy. We simply say, “for each

item in the list” with the for loop as follows:

for pet in pets:

 // do something with the pet data

To write the JSON document to the file, we use the json.dumps()

method, which will produce a JSON formatted string writing that to the

file using the file variable and the write() method. Thus, we now see how

to build JSON documents from strings and then decode (dump) them to

a string.

Once we’ve written data to the file, we then close the file. However, we

can use the with clause that will manage the close file operation for us.

Without the with clause, you would need to manually close the file with

the close() function. You can then reopen it and read data from the file.

In this case, we use another special implementation of the for loop. We

use the file variable to read all of the lines in the file with the readlines()

method and then iterate over them with the following code:

with open("my_data.json", "r") as json_file:

 for pet in json_file.readlines():

 // do something with the pet string

We use the json.loads() method again to read the JSON formatted

string as read from the file to convert it to a JSON document, which we

add to another list. Now the data has been read back into our program,

and we can use it. Finally, we iterate over the new list and print out data

from the JSON documents using the key names to retrieve the data we

want. Listing 3-7 shows the completed code for this example.

ChaPter 3 how to PrograM In MICroPython

130

Listing 3-7. Writing and Reading JSON Objects to/from Files

#

Beginning MicroPython - Chapter 3

#

Example: Storing and retrieving JSON objects in files

#

Dr. Charles Bell

#

import json

Prepare a list of JSON documents for pets by converting JSON

to a dictionary

pets = []

parsed_json = json.loads('{"name":"Violet", "age": 11,

"breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Mister", "age": 16,

"breed":"siberian khatru", "type":"cat"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Spot", "age": 13,

"breed":"koi", "type":"fish"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Charlie", "age": 11,

"breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

Now, write these entries to a file. Note: overwrites the file

with open("my_data.json", "w") as json_file:

 for pet in pets:

 json_file.write(json.dumps(pet))

 json_file.write("\n")

ChaPter 3 how to PrograM In MICroPython

131

Now, let's read the JSON documents then print the name and

age for all of the dogs in the list

my_pets = []

with open("my_data.json", "r") as json_file:

 for pet in json_file.readlines():

 parsed_json = json.loads(pet)

 my_pets.append(parsed_json)

print("Name, Age")

for pet in my_pets:

 if pet['type'] == 'dog':

 print("{0}, {1}".format(pet['name'], pet['age']))

Notice the loop for writing data. We added a second write() method

passing in a strange string (it is actually an escape character). The \n is

a special character called the newline character. This forces the JSON

formatted strings to be on separate lines in the file and helps with

readability.

Tip For a more in-depth look at how to work with files in Python,
see https://docs.python.org/3/tutorial/inputoutput.
html#reading-and-writing-files.

So, what does the file look like? The following is a dump of the file

using the more utility, which shows the contents of the file. Notice the file

contains the JSON formatted strings just like we had in our code:

$ more my_data.json

{"age": 11, "breed": "dachshund", "type": "dog", "name": "Violet"}

{"age": 16, "breed": "siberian khatru", "type": "cat", "name":

"Mister"}

{"age": 12, "breed": "koi", "type": "fish", "name": "Spot"}

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

132

{"age": 11, "breed": "dachshund", "type": "dog", "name":

"Charlie"}

Now, let’s see what happens when we run this script.

 Execute the Code

You can save this code in a file named rw_json.py on your PC and then

open a terminal (console window) and run the code with the command

python ./rw_json.py (or python3 if you have multiple versions of Python

installed). The following shows the output:

$ python ./rw_json.py

Name, Age

Violet, 11

Charlie, 11

While the output may not be very impressive, by completing the

example, you’ve learned a great deal about working with files and

structured data using JSON documents.

 Your Challenge

To make this example more of a challenge, you could modify it to include

more information about your pets. I suggest you start with a simple text

file and type in the JSON formatted strings for your pets. To increase the

complexity, try adding information that is pertinent to the type of pet.

For example, you could add some keys for one or more pets, other keys

for other pets, and so on. Doing so will show one of the powers of JSON

documents; collections of JSON documents do not have to have the

same format.

ChaPter 3 how to PrograM In MICroPython

133

Once you have this file, modify the code to read from the file and print

out all the information for each pet by printing the key name and value.

Hint: You will need to use special code to print out the key name and the

value called “pretty printing.” For example, the following code will print

out the JSON document in an easily readable format. Notice we use the

sort_keys option to print the keys (fields), and we can control the number

of spaces to indent:

for pet in my_pets:

 print(json.dumps(pet, sort_keys=True, indent=4))

When run, the output will look like the following:

{

 "age": 11,

 "breed": "dachshund",

 "name": "Violet",

 "type": "dog"

}

...

 Example 3: Using Functions
This example demonstrates how to create and use functions. Recall

functions are used to help make our code more modular. Functions can

also be a key tool in avoiding duplication of code. That is, we can reuse

portions of code repeatedly by placing them in a function. Functions are

also used to help isolate code for special operations such as mathematical

formulae.

The problem we’re exploring in this example is how to create functions

to perform calculations. We will also explore a common computer science

technique called recursion where a function calls itself repeatedly. I will

also show you the same function implemented in an iterative manner

ChaPter 3 how to PrograM In MICroPython

134

(typically using a loop). While some would advise avoiding recursion,

recursive functions are a bit shorter to write but can be more difficult to

debug if something goes wrong. The best advice I can offer is that almost

every recursive function can be written as iterative functions, and novice

programmers should stick to iterative solutions until they gain confidence

using functions.

 Write the Code

This example is designed to calculate a Fibonacci series.5 A Fibonacci

series is calculated as the sum of the two preceding values in the series.

The series begins with 1 followed by 1 (nothing plus 1), then 1 + 1 = 2,

and so on. For this example, we will ask the user for an integer and then

calculate the number of values in the Fibonacci series. If the input is 5, the

series is 1, 1, 2, 3, 5.

We will create two functions: one to calculate the Fibonacci series

using code that iteratively calculates the series and one to calculate the

nth Fibonacci number using a recursive function. Let’s look at the iterative

function first.

To define a function, we use the syntax def func_

name(<parameters>): where we supply a function name and a list of zero

or more parameters followed by a colon. These parameters are then usable

inside the function. We pass in data to the function using the parameters.

The following shows the iterative version of the Fibonacci series code. We

name this function fibonacci_iterative:

def fibonacci_iterative(count):

 i = 1

 if count == 0:

 fib = []

 elif count == 1:

5 https://en.wikipedia.org/wiki/Fibonacci_number

ChaPter 3 how to PrograM In MICroPython

https://en.wikipedia.org/wiki/Fibonacci_number

135

 fib = [1]

 elif count == 2:

 fib = [1,1]

 elif count > 2:

 fib = [1,1]

 while i < (count - 1):

 fib.append(fib[i] + fib[i-1])

 i += 1

 return fib

This code simply calculates the first N values in the series and returns

them in a list. The parameter count is the number of values in the series.

The function begins by checking to see if the trivial values are requested:

0, 1, or 2 whose values are known. If the count value is greater than 2, we

begin with the known series [1, 1] and then use a loop to calculate the next

value by adding the two previous values together. Take a moment to notice

how I use the list index to get the two previous values in the list (i and i-1).

We will use this function and the list returned directly in our code to find a

specific value in the series and print it.

Now let’s look at the recursive version of the function. The following

shows the code. We name this function fibonacci_recursive:

def fibonacci_recursive(number):

 """Calculate the Nth Fibonacci as a recursive function."""

 if number == 0:

 return 0

 if number == 1:

 return 1

 # Call our self counting down.

 value = fibonacci_recursive(number-1) + fibonacci_

recursive(number-2)

 return value

ChaPter 3 how to PrograM In MICroPython

136

In this case, we don’t return the entire series; rather, we return the

specific value in the series – the nth value. Like the iterative example,

we do the same thing regarding the trivial values returning the number

requested. Otherwise, we call the same function again for each number. It

may take some time to get your mind around how this works, but it does

calculate the nth value.

Now, you may be wondering where you place functions in the code.

We need to place them at the top of the code. Python will parse the

functions and continue to execute statements following the definitions.

Thus, we place our “main” code after our functions.

The main code for this example begins with requesting the nth

value for the Fibonacci series and then uses the recursive function first

to calculate the value. We then ask the user if they want to see the entire

series, and if so, we use the iterative version of the function to get the list

and print it out. We print out the nth value and give the option again to see

the entire series to show the result is the same using both functions.

Finally, we will place all of the main executable code into a function

named main(), which we will call with a special technique that tests to see

if the file has been executed. More specifically, if the __name__ parameter

is equal to “main”, we call the main() function. This technique allows you

to attempt an import statement without executing the main body of code.

This enables us to reuse any functions defined in the file. The code for this

technique is shown as follows:

def main():

 # Main code goes here

if __name__ == '__main__':

 main()

Listing 3-8 shows the completed code for the example. We will name

this code fibonacci.py.

ChaPter 3 how to PrograM In MICroPython

137

Listing 3-8. Calculating Fibonacci Series

#

Beginning MicroPython – Chapter 3

#

Example: Fibonacci series using recursion

#

Calculate the Fibonacci series based on user input

#

Dr. Charles Bell

#

Create a function to calculate Fibonacci series (iterative)

Returns a list.

def fibonacci_iterative(count):

 """Calculate Fibonacci as an iterative function."""

 i = 1

 if count == 0:

 fib = []

 elif count == 1:

 fib = [1]

 elif count == 2:

 fib = [1,1]

 elif count > 2:

 fib = [1,1]

 while i < (count - 1):

 fib.append(fib[i] + fib[i-1])

 i += 1

 return fib

Create a function to calculate the nth Fibonacci number

(recursive)

ChaPter 3 how to PrograM In MICroPython

138

Returns an integer.

def fibonacci_recursive(number):

 """Calculate the Nth Fibonacci as a recursive function."""

 if number == 0:

 return 0

 elif number == 1:

 return 1

 else:

 # Call our self counting down.

 value = fibonacci_recursive(number-1) + fibonacci_

recursive(number-2)

 return value

Main code

def main():

 print("Welcome to my Fibonacci calculator!")

 index = int(input("Please enter the number of integers in

the series: "))

 # Recursive example

 print("We calculate the value using a recursive

algorithm.")

 nth_fibonacci = fibonacci_recursive(index)

 print("The {0}{1} Fibonacci number is {2}."

 "".format(index, "th" if index > 1 else "st", nth_

fibonacci))

 see_series = str(input("Do you want to see all of the

values in" " the series? "))

 if see_series in ["Y","y"]:

 series = []

 for j in range(1,index+1):

ChaPter 3 how to PrograM In MICroPython

139

 series.append(fibonacci_recursive(j))

 print("Series: {0}: ".format(series))

 # Iterative example

 print("We calculate the value using an iterative

algorithm.")

 series = fibonacci_iterative(index)

 print("The {0}{1} Fibonacci number is {2}."

 "".format(index, "th" if index > 1 else "st",

series[index-1]))

 see_series = str(input("Do you want to see all of the values "

 "in the series? "))

 if see_series in ["Y","y"]:

 print("Series: {0}: ".format(series))

 print("bye!")

if __name__ == '__main__':

 main()

Take a few moments to read through the code. While the problem

being solved is a bit simpler than the previous example, there is a lot more

code to read through. When you’re ready, connect your MicroPython

board and create the file. You create the file on your PC for this example

and name it fibonacci.py. We’ll copy it to our MicroPython board in the

next section.

Tip For a more in-depth look at how to create and use your own
functions, see https://docs.python.org/3/tutorial/
controlflow.html#defining-functions.

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
https://docs.python.org/3/tutorial/controlflow.html#defining-functions

140

Now, let’s see what happens when we run this script. Recall, we will be

running this code on our MicroPython board, so if you’re following along,

be sure to set up your board and connect it to your PC.

 Execute the Code

Recall from Chapter 3, when we want to move code to our Pico, we need to

create the file and then upload it to the Pico and then execute it.

We can do this in Thonny by creating a new file and then saving it.

Thonny will ask us where to save the file. Choose the Raspberry Pi Pico

option when prompted. If you have already created the file on your PC,

you can upload the file to your Pico by right-clicking the file and choosing

Upload to /. Once the file is on your Pico, you can execute it.

You will be prompted for the data as shown in the following. Notice we

enter an integer for calculating the Nth Fibonacci number, and then we are

asked if we want to see all of the values. The first attempt uses the recursive

version and the second the iterative:

Welcome to my Fibonacci calculator!

Please enter the number of integers in the series: 13

We calculate the value using a recursive algorithm.

The 13th Fibonacci number is 233.

Do you want to see all of the values in the series? Y

Series: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233]:

We calculate the value using an iterative algorithm.

The 13th Fibonacci number is 233.

Do you want to see all of the values in the series? Y

Series: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233]:

bye!

ChaPter 3 how to PrograM In MICroPython

141

There is another way we can execute the file. Recall, we used the

main() function technique to execute the main code if the file is executed.

We can also import the file and use any functions in the file. To do this,

open the REPL console (or connect to your Pico via Thonny) and enter the

following code:

>>> import fibonacci

>>> fibonacci_recursive(7)

13

>>> fibonacci_iterative(7)

[1, 1, 2, 3, 5, 8, 13]

Go ahead and try it yourself.

When you’re done experimenting the example, remember to close the

terminal and eject the drive for the flash before you unplug it.

 Your Challenge

To make this example a bit more challenging, modify the code to search

a Fibonacci series for a specific integer. Ask the user to provide an integer

and then determine if the value is a valid Fibonacci value. For example, if

the user enters 144, the code should tell the user that value is valid and is

the twelfth value in the series. While this challenge will require you rewrite

most of the code for the “main” functionality, you must figure out how to

use the functions in a new way.

 Example 4: Using Classes
This example ramps up the complexity considerably by introducing an

object-oriented programming concept: classes. Recall from earlier that

classes are another way to modularize our code. Classes are used to model

data and behavior on that data. Further, classes are typically placed in their

own code module (file) that further modularizes the code. If you need to

modify a class, you may need only change the code in the class module.

ChaPter 3 how to PrograM In MICroPython

142

The problem we’re exploring in this example is how to develop

solutions using classes and code modules. We will be creating two files:

one for the class and another for the main code. Since this code is more

complex, we will execute it first on our PC by creating the files there and

then upload them to the Pico and execute them there.

 Write the Code

This example is designed to convert Roman numerals to integers. That is,

we will enter a value like VIII, which is eight, and expect to see the integer

8. To make things more interesting, we will also take the integer we derive

and convert it back to Roman numerals. Roman numerals are formed

as a string using the characters I for 1, V for 5, X for 10, L for 50, C for 100,

D for 500, and M for 1000. Combinations of other numbers are done by

adding the character numerical value together (e.g., 3 = III) or a single,

lower character before a character to indicate the representative minus

that character (e.g., 4 = IV). The following shows some examples of how

this works:

3 = III

15 = XV

12 = XII

24 = XXIV

96 = LXLVI

107 = CVII

This may sound like a lot of extra work but consider this: if we can

convert from one format to another, we should be able to convert back

without errors. More specifically, we can use the code for one conversion

to validate the other. If we get a different value when converting it back, we

know we have a problem that needs to be fixed.

ChaPter 3 how to PrograM In MICroPython

143

To solve the problem, we will place the code for converting Roman

numerals into a separate file (code module) and build a class called Roman_

Numerals to contain the methods. In this case, the data is a mapping of

integers to Roman numerals:

Private dictionary of roman numerals

__roman_dict = {

 'I': 1,

 'IV': 4,

 'V': 5,

 'IX': 9,

 'X': 10,

 'XL': 40,

 'L': 50,

 'XC': 90,

 'C': 100,

 'CD': 400,

 'D': 500,

 'CM': 900,

 'M': 1000,

}

Notice the two underscores before the name of the dictionary. This is a

special notation that marks the dictionary as a private variable in the class.

This is a Python aspect for information hiding, which is a recommended

technique to use when designing objects; always strive to hide data that is

used inside the class.

Notice also that instead of using the basic characters and their values,

I used several other values too. I did this to help make the conversion

easier (and cheat a bit). In this case, I added the entries that represent the

one value previous conversions such as 4 (IV), 9 (IX), etc. This makes the

conversion a bit easier (and more accurate).

ChaPter 3 how to PrograM In MICroPython

144

We will also add two methods: convert_to_int(), which takes a

Roman numeral string and converts it to an integer, and convert_to_

roman(), which takes an integer and converts it to a Roman numeral.

Rather than explain every line of code in the methods, I leave it to you to

read the code to see how it works.

Simply, the convert to integer method takes each character and gets its

value from the dictionary summing the values. There is a trick there that

requires special handling for the lower value characters appearing before

higher values (e.g., IX). The convert to Roman method is a bit easier since

we simply divide the value by the highest value in the dictionary until we

reach zero. Listing 3-9 shows the code for the class module, which is saved

in a file named roman_numerals.py.

Listing 3-9. Roman Numeral Class

"""roman_numerals.py"""

#

Beginning MicroPython – Chapter 3

#

Example: Roman numerals class

#

Convert integers to roman numerals

Convert roman numerals to integers

#

Dr. Charles Bell

#

class Roman_Numerals:

 """Roman Numerals class"""

 # Private dictionary of roman numerals

 __roman_dict = {

 'I': 1,

ChaPter 3 how to PrograM In MICroPython

145

 'IV': 4,

 'V': 5,

 'IX': 9,

 'X': 10,

 'XL': 40,

 'L': 50,

 'XC': 90,

 'C': 100,

 'CD': 400,

 'D': 500,

 'CM': 900,

 'M': 1000,

 }

 def convert_to_int(self, roman_num):

 """Convert Roman numeral to integer"""

 value = 0

 for i in range(len(roman_num)):

 if i > 0 and self.__roman_dict[roman_num[i]] >

 self.__roman_dict[roman_num[i - 1]]:

 value += self.__roman_dict[roman_num[i]] - 2 *

 self.__roman_dict[roman_num[i - 1]]

 else:

 value += self.__roman_dict[roman_num[i]]

 return value

 def __find_numeral(self, find_value):

 """Search the dictionary for the Roman numeral"""

 return [item[0] for item in

self.__roman_dict.items() if item[1] == find_value][0]

 def convert_to_roman(self, int_value):

 """Convert integer to Roman numeral"""

ChaPter 3 how to PrograM In MICroPython

146

 # First, sort the dictionary by value

 roman_values = sorted(list(self.__roman_dict.values()))

 # Prepare the string

 roman_str = ""

 remainder = int_value

 # Loop through the values in reverse

 for i in range(len(roman_values)-1, -1, -1):

 count = int(remainder / roman_values[i])

 if count > 0:

 for j in range(0,count):

 roman_str += self.__find_numeral(roman_

values[i])

 remainder -= count * roman_values[i]

 return roman_str

Notice the function named __find_numeral(). This is a special list

operation to search the __roman_dict dictionary to find the Roman

number by value. Why is this needed? It is needed because the Pico

MicroPython core does not return dictionary values in order. Thus, we

either must sort the dictionary (an unnecessary step) or search for the

value and return the key or, in this case, the Roman numeral. The following

shows a simplified version of this code that works the same way without

the special list function:

def __find_numeral_search(self, find_value):

 """Search the dictionary for the Roman numeral using a

search"""

 for key in self.__roman_dict.keys():

 if self.__roman_dict[key] == find_value:

 return key

 return None

ChaPter 3 how to PrograM In MICroPython

147

If you’re following along with the chapter, go ahead and create a file on

your PC for this code and name it roman_numerals.py. We’ll copy it to our

Pico in the next section.

Now let’s look at the main code. For this, we simply need to import the

new class from the code module as follows. This is a slightly different form

of the import directive. In this case, we’re telling Python to include the

roman_numerals class from the file named Roman_Numerals:

from roman_numerals import Roman_Numerals

Note If the code module were in a subfolder, say roman, we would
have written the import statement as from roman import
Roman_Numerals where we list the folders using dot notation
instead of slashes.

The rest of the code is straightforward. We first ask the user for a valid

Roman numeral string and then convert it to an integer and use that value

to convert back to Roman numerals printing the result. So, you see having

the class in a separate module has simplified our code, making it shorter

and easier to maintain. Listing 3-10 shows the complete main code saved

in a file named simply roman.py.

Listing 3-10. Converting Roman Numerals

#

Beginning MicroPython – Chapter 3

#

Example: Convert roman numerals using a class

#

Convert integers to roman numerals

Convert roman numerals to integers

ChaPter 3 how to PrograM In MICroPython

148

#

Dr. Charles Bell

#

from roman_numerals import Roman_Numerals

roman_str = input("Enter a valid roman numeral: ")

roman_num = Roman_Numerals()

Convert to roman numerals

value = roman_num.convert_to_int(roman_str)

print("Convert to integer: {0} = {1}".format(roman_

str, value))

Convert to integer

new_str = roman_num.convert_to_roman(value)

print("Convert to Roman Numerals: {0} = {1}".format(value,

new_str))

print("bye!")

If you’re following along with the chapter, go ahead and create a file on

your PC for this code and name it roman.py. We’ll copy it to our Pico in the

next section.

Tip For a more in-depth look at how to work with classes in Python,
see https://docs.python.org/3/tutorial/classes.html.

Now, let’s see what happens when we run this script. Recall, we will be

running this code on our MicroPython board, so if you’re following along,

be sure to set up your board and connect it to your PC.

ChaPter 3 how to PrograM In MICroPython

https://docs.python.org/3/tutorial/classes.html

149

 Execute the Code

If you haven’t created the files, do that now and save them on your

PC. Then, open a terminal and use the python ./roman.py command to

execute it, or you can execute it with the Run command in Thonny. When

you execute the code, you will be prompted to enter the Roman numeral.

Try executing it several times and entering some valid and invalid Roman

numerals. You should get results similar to the following:

$ python ./roman.py

Enter a valid roman numeral: VI

Convert to integer: VI = 6

Convert to Roman Numerals: 6 = VI

bye!

$ python ./roman.py

Enter a valid roman numeral: IIV

Convert to integer: IIV = 5

Convert to Roman Numerals: 5 = V

bye!

$ python ./roman.py

Enter a valid roman numeral: MMXXI

Convert to integer: MMXXI = 2021

Convert to Roman Numerals: 2021 = MMXXI

bye!

Notice the second execution. Here, we entered an invalid Roman

numeral but got an answer anyway (rather than an error). Clearly, this is

an area where we can improve the code.

Now let’s upload the files to the Pico and execute them. Use Thonny

to do this. When you run the roman.py file, you should see output similar

to the following. Run it a few times until you are convinced it is working

correctly:

ChaPter 3 how to PrograM In MICroPython

150

Enter a valid roman numeral: XIV

Convert to integer: XIV = 14

Convert to Roman Numerals: 14 = XIV

bye!

 Your Challenge

There isn’t much to add for this example to improve it other than perhaps

some user friendliness (nicer to use). If you want to improve the code

or the class itself, I suggest adding a new method named validate() used

to validate a Roman numeral string. This method can take a string and

determine if it contains a valid series of characters. Hint: To start, check the

string has only the characters in the dictionary.

However, you can use this template to build other classes for

converting formats. For example, as an exercise, you could create a new

class to convert integers to hexadecimal or even octal. Yes, there are

functions that will do this for us, but it can be enlightening and satisfying

to build it yourself. Go ahead, give it a go – create a new class to convert

integers to other formats. I would suggest doing a hexadecimal to integer

function first, and when that is working correctly, create the reciprocal to

convert integers to hexadecimal.

A more advanced challenge would be to rewrite the class to accept a

string in the constructor (when the class variable is created) and use that

string to do the conversions instead of passing the string or integer using

the convert_to* methods. For example, the class could have a constructor

and private member as follows:

__roman_str = ""

...

def __init__(self, name):

 self.name = name

ChaPter 3 how to PrograM In MICroPython

151

When you create the instance, you will need to pass the string or else

you will get an error that a required parameter is missing.

roman_str = input("Enter a valid roman numeral: ")

roman_num = Roman_Numerals(roman_str)

 For More Information
Should you require more in-depth knowledge of Python, there are several

excellent books on the topic. I list a few of my favorites in the following. A

great resource is the documentation on the Python site: python.org/doc/.

• Pro Python, Second Edition (Apress 2014) J. Burton

Browning , Marty Alchin

• Learning Python, 5th Edition (O'Reilly Media 2013)

Mark Lutz

• Automate the Boring Stuff with Python: Practical

Programming for Total Beginners (No Starch Press

2015), Al Sweigart

 Summary
Wow! That was a wild ride, wasn’t it? I hope that this short crash course in

Python has explained enough about the sample programs shown so far

that you now know how they work. This crash course also forms the basis

for understanding the other Python examples in this book.

ChaPter 3 how to PrograM In MICroPython

152

If you are learning how to work with IoT projects and don’t know how

to program with Python, learning Python can be fun given its easy-to-

understand syntax. While there are many examples on the Internet you

can use, very few are documented in such a way as to provide enough

information for someone new to Python to understand or much less get

started and deploy the sample! But at least the code is easy to read.

This chapter has provided a crash course in Python that covers the

basics of the things you will encounter when examining most of the

smaller example projects. We discovered the basic syntax and constructs

of a Python application including a walk-through of building a real Python

application that blinks an LED. Through that example, we learned how

to work with headless applications including how to manage a startup

background application.

In the next chapter, we’ll dive deeper into the Pico hardware. We will

see more about the special libraries available for use in your projects

written for running on the Pico.

ChaPter 3 how to PrograM In MICroPython

153

CHAPTER 4

Low-Level Hardware
Support
The previous chapters have given us a foundation of what is possible when

programming the Pico in MicroPython. However, there is far more about

the Pico than what has been presented in the previous chapters. In fact,

there are many layers to the Pico hardware support including libraries that

contain helpful constructs and classes you will need in order to work with

the hardware connected to your Pico.

While we’ve had a quick look at how to work with the Pico including

a presentation on several forms of Python projects and a tutorial in

programming in Python, we are only just beginning to learn what is

possible with the Pico. It is now time to learn more about the available

hardware-related software libraries.

In this chapter, we will look at the MicroPython libraries available for

you to use in your projects and have a brief look at the low-level hardware

support in MicroPython for the Pico. Finally, we will also revisit working

with breakout boards to demonstrate some of the libraries and hardware

protocols and techniques discussed in previous chapters.

Before we jump into looking at the Pico hardware and supporting

software, let’s take a more detailed look at the GPIO header and pins.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_4

https://doi.org/10.1007/978-1-4842-8135-2_4

154

 The Pico GPIO Header
We learned a bit about the general-purpose input/output (GPIO) header

and the pins included in the last chapter. The GPIO pins are arranged in a

very specific layout that isn’t completely linear. More specifically, the GPIO

pin number does not map directly to the physical pin number.

Where people can go wrong is not knowing (or not verifying) the GPIO

header layout, which can lead to the wrong pins being used for electronics

and can result in unexpected behavior, things not working at all, or even

damaged components. Thus, like all successful endeavors, you need to

consult a map before you begin. Figure 4-1 shows a drawing that illustrates

the GPIO pins available on the Pico.

Figure 4-1. Pico GPIO pins (courtesy of raspberrypi.org)

Here, we see there are pins labeled (starting from closest to the board)

by a physical number, logical GPIO name/number, then any low-level

interfaces or mechanisms supported. Some pins can be programmed to

operate in different modes or for different hardware features. For example,

Chapter 4 Low-LeveL hardware Support

155

look at physical pins 31 and 32. Here, we see the pins can act as analog pins

(indicated with ADC) as well as an I2C interface (more on that later). Also

notice there are a number of pins marked as ground (GND), and those

related to power located on physical pins 36, 37, 39, and 40.

Now, let’s take a look at the core MicroPython software libraries

available that provide advanced capabilities we can exploit in our projects.

Note this chapter contains only a subset of the much larger
documentation found at https://datasheets.raspberrypi.
org/pico/pico-datasheet.pdf.

 MicroPython Libraries
The libraries available in MicroPython mirror those in Python. In fact, the

libraries in the firmware (sometimes called the application programming

interface or API or firmware API) comprise a great deal of the same

libraries in Python.

There are some notable exceptions for standard libraries where there is

an equivalent library in MicroPython, but it has been renamed to distinguish

it from the Python library. In this case, the library has either been reduced

in scope by removing the less frequently used features or modified in some

ways to fit the MicroPython platform – all to save space (memory).

There are also libraries that are specific to MicroPython and the

hardware that provide functionality that may or may not be in some

general Python releases. These libraries are designed to make working

with the microcontroller and hardware easier.

Thus, there are three types of libraries in the firmware: those that are

standard and mostly the same as those in Python, those that are specific to

MicroPython, and those specific to the hardware. There is another type of

library sometimes called user-supplied or simply custom libraries. These

Chapter 4 Low-LeveL hardware Support

https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf

156

are libraries (APIs) we create ourselves that we can deploy to our board

and thereby make functionality available to all our projects. We will see an

overview of all types of libraries in this section.

Rather than simply paraphrase or (gasp) copy the existing

documentation, we will see overviews of the libraries in the form of quick

reference tables you can use to become familiar with what is available. We

will also see some code snippets designed to help you learn how to work

with some of the more common libraries.

Let’s begin with a look at those libraries in MicroPython that are

“standard” Python libraries.

 Built-In and Standard Libraries
MicroPython is a specialized and trimmed-down version of Python we can

use on our PC. It contains much of the same libraries as Python, but with

some differences. We call these libraries “built-in,” but it is more correct to

name them “standard” libraries since these libraries are the same as those

in Python.

They have the same classes with the same functions as those in

Python. So, you can write a script on your PC and execute it there and then

execute the same script unaltered on your MicroPython board. Nice! As

you can surmise, this helps greatly when developing a complex project.

In this section, we will explore the standard Python libraries beginning

with a short overview of what is available followed by details on how to use

some of the more common libraries.

Tip See https://datasheets.raspberrypi.org/
pico/raspberry-pi-pico-python-sdk.pdf for complete
documentation of the built-in libraries for Micropython on the
pico. You can also check out the overview at https://docs.
micropython.org/en/latest/rp2/quickref.html.

Chapter 4 Low-LeveL hardware Support

https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://docs.micropython.org/en/latest/rp2/quickref.html
https://docs.micropython.org/en/latest/rp2/quickref.html

157

 Overview

The standard libraries in MicroPython contain objects that you can use

to perform mathematical functions, operate on programming structures,

work with transportable documents (a document store) through JSON,

interact with the operating system and other system functions, and even

perform calculations on time.

Table 4-1 contains a list of the current standard MicroPython libraries.

The first column is the name we use in our import statement, the

second is a short description, and the third contains a link to the online

documentation with abbreviated links for brevity.

Note all links start with https://docs.micropython.org/en/
latest/.

Table 4-1. Standard Python Libraries in MicroPython

Library Description Documentation

cmath Mathematical functions for

complex numbers

library/cmath.html

gc Control the garbage collector library/gc.html

math Mathematical functions library/math.html

uarray arrays of numeric data library/uarray.html

uasyncio asynchronous I/o scheduler library/uasyncio.html

ubinascii Binary/aSCII conversions library/ubinascii.html

ucollections Collection and container types library/ucollections.

html

uerrno System error codes library/uerrno.html

(continued)

Chapter 4 Low-LeveL hardware Support

https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/

158

Table 4-1. (continued)

Library Description Documentation

uhashlib hashing algorithms library/uhashlib.html

uio Input/output streams library/uio.html

ujson JSoN encoding and decoding library/ujson.html

uos Basic “operating system”

services

library/uos.html

ure Simple regular expressions library/ure.html

uselect wait for events on a set of

streams

library/uselect.html

ustruct pack and unpack primitive data

types

library/ustruct.html

usys System-specific functions library/usys.html

utime time-related functions library/utime.html

uzlib zlib decompression library/uzlib.html

_thread Multithreading support library/_thread.html

Note the Micropython standard library includes additional libraries
not currently part of the pico firmware. For example, the uheapq,
ussl, and usocket libraries are not currently included, but may be
added in later releases.

As you can see, there are many libraries that begin with u to signify they

are special versions of the Python equivalent libraries. That is, if you need

access to the original Python version – if it exists – you can still access it by

using the original name (without the u prefix). In this case, MicroPython

Chapter 4 Low-LeveL hardware Support

159

will attempt to find the module by the original name and, if not there,

default to the MicroPython version. For example, if we wanted to use the

original io library, we could use import io. However, if there is no module

named io on the platform, MicroPython will use the MicroPython version

named uio.

Next, we will look at some of the more commonly used standard

libraries and see some code examples for each. But first, there are two

categories of standard functions we should discuss.

INTERACTIVE HELP FOR LIBRARIES

a little-known function named help() can be, well, very helpful when

learning about the libraries in Micropython. You can use this function in a repL

session to get information about a library. the following shows an excerpt of

the output for the uos library:

>>> help(uos)

object <module 'uos'> is of type module

 __name__ -- uos

 uname -- <function>

 urandom -- <function>

 chdir -- <function>

 getcwd -- <function>

 listdir -- <function>

 mkdir -- <function>

 remove -- <function>

 rename -- <function>

 rmdir -- <function>

 stat -- <function>

 statvfs -- <function>

 ilistdir -- <function>

 mount -- <function>

 umount -- <function>

Chapter 4 Low-LeveL hardware Support

160

 VfsFat -- <class 'VfsFat'>

 VfsLfs2 -- <class 'VfsLfs2'>

>>>

Notice we see the names of all the functions and, if present, constants. this

can be a real help when learning the libraries and what they contain. try it!

Now let’s look at examples of some of the more commonly used

standard libraries. What follows is just a sampling of what you can do with

each of the libraries. See the online documentation for a full description of

all the capabilities.

 sys

The sys library provides access to the execution system such as constants,

variables, command-line options, streams (stdout, stdin, stderr), and

more. Most of the features of the library are constants or lists. The streams

can be accessed directly, but typically we use the print() function, which

sends data to the stdout stream by default. The following shows the

most commonly used functions in this library, and Listing 4-1 contains a

demonstration of the sys library:

• sys.argv: List of arguments passed to the script from

the command line

• sys.exit(r): Exit the program returning the value r to

the caller

• sys.modules: List of modules loaded (imported)

• sys.path: List of paths to search for modules – can be

modified

• sys.platform: Display the platform information such

as Linux, MicroPython, etc.

Chapter 4 Low-LeveL hardware Support

161

• sys.stderr: Standard error stream

• sys.stdin: Standard input stream

• sys.stdout: Standard output stream

• sys.version: The version of Python currently

executing

Listing 4-1. Demonstration of the sys Library Features

Beginning MicroPython - Chapter 4: Listing 4-1

Example use of the sys library

import sys

print("Modules loaded: " , sys.modules)

sys.path.append("/my_libs")

print("Path: ", sys.path)

sys.stdout.write("Platform: ")

sys.stdout.write(sys.platform)

sys.stdout.write("\n")

sys.stdout.write("Version: ")

sys.stdout.write(sys.version)

sys.stdout.write("\n")

sys.exit(1)

Notice we start with the import statement, and after that, we can print

the constants and variables in the sys library using the print() function.

We also see how to append a path to our search path with the sys.path.

append() function. This is very helpful if we create our own directories

on the flash memory drive to place our code. Without this addition, the

import statement will fail unless the code module is in the lib directory.

At the end of the example, we see how to use the stdout stream to

write things to the screen. Note that you must provide the carriage return

(newline) command to advance the output to a new line (\n). The print()

Chapter 4 Low-LeveL hardware Support

162

function takes care of that for us. The following shows the output of

running this script on the Pico:

Modules loaded: {'rp2': <module 'rp2' from 'rp2.py'>}

Path: ['', '/lib', '/my_libs']

Platform: rp2

Version: 3.4.0

Notice the addition of the my_libs folder. We add this so that we

could import modules from that directory. If you place your modules in

a subfolder, and don’t include the subfolder in the import statement, you

must add the folder to the system path.

 uio

The uio library contains additional functions to work with streams and

stream-like objects. There is a single function named uio.open() that you

can use to open files (but most people use the built-in function named

open()) as well as classes for byte and string streams. In fact, the classes

have similar file functions such as read(), write(), seek(), flush(),

close(), as well as a getvalue() function, which returns the contents of

the stream buffer that contains the data. Listing 4-2 shows a demonstration

of the uio library.

Listing 4-2. Demonstration of the uio Library Features

Beginning MicroPython - Chapter 4: Listing 4-2

Example use of the uio library

Note: change uio to io to run this on your PC!

import uio

try:

 fio_out = uio.open('data.bin', 'wb')

 fio_out.write(b"\x5F\x9E\xAE\x09\x3E\x96\x68\x65\x6C\x6C\x6F")

Chapter 4 Low-LeveL hardware Support

163

 fio_out.write(b"\x00")

 fio_out.close()

except Exception as err:

 print("ERROR (writing):", err)

Read the binary file and print out the results in hex and char.

try:

 fio_in = uio.open('data.bin', 'rb')

 print("Raw,Dec,Hex from file:")

 byte_val = fio_in.read(1) # read a byte

 while byte_val:

 print(byte_val, ",", ord(byte_val), hex(ord(byte_val)))

 byte_val = fio_in.read(1) # read a byte

 fio_in.close()

except Exception as err:

 print("ERROR (reading):", err)

In this example, we first open a new file for writing and write an array

of bytes to the file. The technique used is passing the hex values for each

byte to the write() function. When you read data from sensors, they are

typically in binary form (a byte or string of bytes). You signify a byte with

the escape \x as shown.

After writing the data to the file, we then read the file one byte at a time

by passing 1 to the read() function. We then print the values read in their

raw form (the value returned from the read(1) call) as a decimal value

and a hex value. The bytes written contain a secret word (one obscured by

using hex values) – can you see it?

Chapter 4 Low-LeveL hardware Support

164

This is like how you would use the normal built-in functions, which

we saw in the last chapter. The following shows the output when run on

the Pico:

Raw,Dec,Hex from file:

b'_' , 95 0x5f

b'\x9e' , 158 0x9e

b'\xae' , 174 0xae

b'\t' , 9 0x9

b'>' , 62 0x3e

b'\x96' , 150 0x96

b'h' , 104 0x68

b'e' , 101 0x65

b'l' , 108 0x6c

b'l' , 108 0x6c

b'o' , 111 0x6f

b'\x00' , 0 0x0

If you’re curious what the file looks like, you can use a utility like

hexdump to print the contents as shown in the following. Can you see the

hidden message?

$ hexdump -C data.bin

00000000 5f 9e ae 09 3e 96 68 65 6c 6c 6f 00

|_...>.hello.|

0000000c

 ujson

The ujson library is one of those libraries you are likely to use frequently

when working with data in an IoT project. It provides encoding and

decoding of JavaScript Object Notation (JSON) documents. This is because

many of the IoT services available either require or can process JSON

documents. Thus, you should consider getting into the habit of formatting

Chapter 4 Low-LeveL hardware Support

165

your data in JSON to make it easier to integrate with other systems. The

library implements the following functions that you can use to work with

JSON documents:

• ujson.dumps(obj): Return a string decoded from a

JSON object

• ujson.loads(str): Parse the JSON string and return

a JSON object. Will raise an error if not formatted

correctly

• ujson.load(fp): Parse the contents of a file pointer (a

file string containing a JSON document). Will raise an

error if not formatted correctly

Recall we saw a brief example of JSON documents in the last chapter.

That example was written exclusively for the PC, but a small change makes

it possible to run it on the Pico. Let’s look at a similar example. Listing 4-3

shows an example of using the ujson library.

Listing 4-3. Demonstration of the ujson Library Features

Beginning MicroPython - Chapter 4: Listing 4-3

Example use of the ujson library

Note: change ujson to json to run it on your PC!

import ujson

Prepare a list of JSON documents for pets by converting JSON

to a dictionary

vehicles = []

vehicles.append(ujson.loads('{"make":"Chevrolet",

"year":2015, "model":"Silverado", "color":"Pull me over red",

"type":"pickup"}'))

vehicles.append(ujson.loads('{"make":"Yamaha", "year":2009,

"model":"R1", "color":"Blue/Silver", "type":"motorcycle"}'))

Chapter 4 Low-LeveL hardware Support

166

vehicles.append(ujson.loads('{"make":"SeaDoo", "year":1997,

"model":"Speedster", "color":"White", "type":"boat"}'))

vehicles.append(ujson.loads('{"make":"TaoJen", "year":2013,

"model":"Sicily", "color":"Black", "type":"Scooter"}'))

Now, write these entries to a file. Note: overwrites the file

json_file = open("my_vehicles.json", "w")

for vehicle in vehicles:

 json_file.write(ujson.dumps(vehicle))

 json_file.write("\n")

json_file.close()

Now, let's read the list of vehicles and print out their data

my_vehicles = []

json_file = open("my_vehicles.json", "r")

for vehicle in json_file.readlines():

 parsed_json = ujson.loads(vehicle)

 my_vehicles.append(parsed_json)

json_file.close()

Finally, print a summary of the vehicles

print("Year Make Model Color")

for vehicle in my_vehicles:

 print(vehicle['year'],vehicle['make'],vehicle['model'],

vehicle['color'])

The following shows the output of the script running on the Pico:

Year Make Model Color

2015 Chevrolet Silverado Pull me over red

2009 Yamaha R1 Blue/Silver

1997 SeaDoo Speedster White

2013 TaoJen Sicily Black

Chapter 4 Low-LeveL hardware Support

167

 uos

The uos library implements a set of functions for working with the base

operating system. Some of the functions may be familiar if you have

written programs for your PC. Most functions allow you to work with file

and directory operations. The following lists several of the more commonly

used functions:

• uos.chdir(path): Change the current directory

• uos.getcwd(): Return the current working directory

• uos.listdir([dir]): List the current directory if dir is

missing or list the directory specified

• uos.mkdir(path): Create a new directory

• uos.remove(path): Delete a file

• uos.rmdir(path): Delete a directory

• uos.rename(old_path, new_path): Rename a file

• uos.stat(path): Get the status of a file or directory

In this example, we see how to change the working directory so that

we can simplify our import statements. We also see how to create a new

directory, rename it, create a file in the new directory, list the directory,

and finally clean up (delete) the changes. Listing 4-4 shows the example for

working with the uos library functions.

Listing 4-4. Demonstration of the uos Library Features

Beginning MicroPython - Chapter 4

Example use of the uos library

Note: change uos to os to run it on your PC!

import sys

import uos

Chapter 4 Low-LeveL hardware Support

168

Create a function to display files in directory

def show_files():

 files = uos.listdir()

 sys.stdout.write("\nShow Files Output:\n")

 sys.stdout.write("\tname\tsize\n")

 for file in files:

 stats = uos.stat(file)

 # Print a directory with a "d" prefix and the size

 is_dir = True

 if stats[0] > 16384:

 is_dir = False

 if is_dir:

 sys.stdout.write("d\t")

 else:

 sys.stdout.write("\t")

 sys.stdout.write(file)

 if not is_dir:

 sys.stdout.write("\t")

 sys.stdout.write(str(stats[6]))

 sys.stdout.write("\n")

List the current directory

show_files()

Create a directory

uos.mkdir("test")

show_files()

While this example is a little long, it shows some interesting tricks.

Notice we created a function to print out the directory list rather than

printing out the list of files returned. We also checked the status of the file

to determine if the file was a directory or not, and if it is, we printed a d to

signal the name refers to a directory. We also used the stdout stream to

control formatting with tabs (\t) and newline (\n) characters.

Chapter 4 Low-LeveL hardware Support

169

Now let’s see the output. The following shows the output when run

on the Pico. Note: If you run this a second time, be sure to delete the new

directory created.

Show Files Output:

 name size

 data.bin 12

 example1.py 632

 example2.py 946

 example3.py 939

 fibonacci.py 2259

 hello_pico.py 25

 listing_04_01.py 380

 listing_04_02.py 794

 listing_04_03.py 1411

 listing_04_04.py 907

 my_data.json 268

 my_vehicles.json 377

 roman.py 621

 roman_numerals.py 1839

Show Files Output:

 name size

 data.bin 12

 example1.py 632

 example2.py 946

 example3.py 939

 fibonacci.py 2259

 hello_pico.py 25

 listing_04_01.py 380

 listing_04_02.py 794

 listing_04_03.py 1411

 listing_04_04.py 907

Chapter 4 Low-LeveL hardware Support

170

 my_data.json 268

 my_vehicles.json 377

 roman.py 621

 roman_numerals.py 1839

There are also built-in functions that are not part of any specific

library, and there are exceptions that allow us to capture error conditions.

Let’s look at those before we dive into some of the more commonly used

standard libraries.

 Built-In Functions and Classes
Python comes with many built-in functions – functions you can call

directly from your script without importing them. There are many classes

that you can use to define variables, work with data, and more. They’re

objects so you can use them to contain data and perform operations

(functions) on the data. We’ve seen a few of these in the examples so far.

Let us see some of the major built-in functions and classes. Table 4-2

includes a short description of each. You should look through this list and

explore the links for those you find interesting and refer to the list when

developing your projects so that you can use the most appropriate function

or class. You may be surprised how much is “built-in.”

Chapter 4 Low-LeveL hardware Support

171

Table 4-2. MicroPython Built-In Functions and Classes

Name Description

abs(x) return the absolute value of a number

all(iterable) return true if all elements of the iterable are

true (or if the iterable is empty)

any(iterable) return true if any element of the iterable is true

bin(x) Convert an integer number to a binary string

class bool([x]) return a Boolean value, i.e., one of true or

False

class bytearray([source

[, encoding[, errors]]])

return a new array of bytes

class bytes([source[,

encoding[, errors]]])

return a new “bytes” object, which is an

immutable sequence of integers in the range

0 <= x < 256

callable(object) return true if the object argument appears

callable, False if not

chr(i) return the string representing a character

whose unicode code point is the integer i

classmethod(function) return a class method for a function

class complex([real[,

imag]])

return a complex number with the value real

+ imag*1j or convert a string or number to a

complex number

delattr(obj, name) this is a relative of setattr(). the arguments

are an object and a string. the string must be

the name of one of the object’s attributes

class dict() Create a new dictionary

(continued)

Chapter 4 Low-LeveL hardware Support

172

Table 4-2. (continued)

Name Description

dir([object]) without arguments, return the list of names

in the current local scope. with an argument,

attempt to return a list of valid attributes for

that object

divmod(a,b) take two (noncomplex) numbers as

arguments and return a pair of numbers

consisting of their quotient and remainder

when using integer division

enumerate(iterable,

start=0)

return an enumerate object. the iterable must

be a sequence, an iterator, or some other

object which supports iteration

eval(expression,

globals=None, locals=None)

evaluate an expression using globals and

locals as dictionaries in a local namespace

exec(object[, globals[,

locals]])

execute a set of python statements or object

using globals and locals as dictionaries in a

local namespace

filter(function, iterable) Construct an iterator from those elements of

the iterable for which the function returns true

class float([x]) return a floating-point number constructed

from a number or string

class frozenset

([iterable])

return a new frozenset object, optionally with

elements taken from the iterable

getattr(object,

name[, default])

return the value of the named attribute of the

object. the name must be a string

(continued)

Chapter 4 Low-LeveL hardware Support

173

Table 4-2. (continued)

Name Description

globals() return a dictionary representing the current

global symbol table

hasattr(object, name) the arguments are an object and a string. the

result is true if the string is the name of one

of the object’s attributes, False if not

hash(object) return the hash value of the object (if it has

one). hash values are integers

hex(x) Convert an integer number to a lowercase

hexadecimal string prefixed with “0x”

id(object) return the “identity” of an object

input([prompt]) If the prompt argument is present, it is written

to standard output without a trailing newline.

the function then reads a line from input,

converts it to a string (stripping a trailing

newline), and returns that

class int(x) return an integer object constructed from

a number or string x, or return 0 if no

arguments are given

isinstance(object,

classinfo)

return true if the object argument is an

instance of the classinfo argument or of a

(direct, indirect, or virtual) subclass thereof

issubclass(class,

classinfo)

return true if the class is a subclass (direct,

indirect, or virtual) of classinfo

iter(object[, sentinel]) return an iterator object

(continued)

Chapter 4 Low-LeveL hardware Support

174

Table 4-2. (continued)

Name Description

len(s) return the length (the number of items) of an

object

class list([iterable]) List sequence

locals() update and return a dictionary representing

the current local symbol table

map(function, iterable,

...)

return an iterator that applies a function to

every item of the iterable, yielding the results

max([iterable|arg*]) return the largest item in an iterable or the

largest of two or more arguments

class memoryview(obj) return a “memory view” object created from

the given argument

min([iterable|arg*]) return the smallest item in an iterable or the

smallest of two or more arguments

next(iterator[, default]) retrieve the next item from the iterator by

calling its __next__() method

class objectO return a new featureless object. the object is

a base for all classes

oct(x) Convert an integer number to an octal string

open(file, mode='r',

buffering=-1,

encoding=None, errors=None,

newline=None, closefd=True,

opener=None)

open a file and return a corresponding file

object. use close() to close the file

(continued)

Chapter 4 Low-LeveL hardware Support

175

Table 4-2. (continued)

Name Description

ord(c) Given a string representing one unicode

character, return an integer representing the

unicode code point of that character

pow(x, y[, z]) return x to the power y; if z is present, return

x to the power y, modulo z (computed more

efficiently than pow(x, y) % z)

print(*objects, sep=' ',

end='\n', file=sys.stdout,

flush=False)

print objects to the text stream file, separated

by sep and followed by end. sep, end, file, and

flush, if present, must be given as keyword

arguments

class property(fget=None,

fset=None, fdel=None,

doc=None)

return a property attribute

range([stop|[start, stop[,

step]]])

range sequence

repr(object) return a string containing a printable

representation of an object

reversed(seq) return a reverse iterator

round(number[, ndigits]) return a number rounded to ndigits precision

after the decimal point

class set([iterable]) return a new set object, optionally with

elements taken from the iterable

setattr(object, name,

value)

this is the counterpart of getattr(). the

arguments are an object, a string, and an

arbitrary value

(continued)

Chapter 4 Low-LeveL hardware Support

176

Table 4-2. (continued)

Name Description

class slice(start,

stop[, step])

return a slice object representing the set of

indices specified by range(start, stop, step)

sorted(iterable[, key]

[, reverse])

return a new sorted list from the items in the

iterable

staticmethod(function) return a static method for a function

class str(object) return a str version of an object

sum(iterable[, start]) Sum the start and the items of an iterable

from left to right and return the total

super([type[, object-or-

type]])

return a proxy object that delegates function

calls to a parent or sibling class of a type

class tuple([iterable]) tuple sequence

type(object) return the type of an object

zip(*iterables) Make an iterator that aggregates elements

from each of the iterables

Now let’s talk about a topic we haven’t talked a lot about – exceptions.

Exceptions are part of the built-in module for Python and can be a very

important programming technique you will want to use. Perhaps not right

away, but eventually you will appreciate the power and convenience of

using exceptions in your code.

 Exceptions
There is also a powerful mechanism we can use in Python (and

MicroPython) to help manage or capture events when errors occur and

execute code for a specific error. This construct is called exceptions, and

the exceptions (errors) we can capture are called exception classes.

Chapter 4 Low-LeveL hardware Support

177

It uses a special syntax called the try statement (also called a clause since

it requires at least one other clause to form a valid statement) to help us

capture errors as they are generated.

Exceptions can be generated anywhere in code with the raise()

function. That is, if something goes wrong, a programmer can “raise” a

specific, named exception, and the try statement can be used to capture

it via an except or else clause. Table 4-3 shows the list of exception classes

available in MicroPython along with a short description of when (how) the

exception could be raised.

(continued)

Table 4-3. MicroPython Exception Classes

Exception Class Description of Use

AssertionError an assert() statement fails

AttributeError an attribute reference fails

Exception Base exception class

ImportError one or more modules failed to import

IndexError Subscript is out of range

KeyboardInterrupt Keyboard CTRL+C was issued or simulated

KeyError Key mapping in the dictionary is not present in the

list of keys

MemoryError out of memory condition

NameError a local or global name (variable, function, etc.) is not

found

NotImplementedError an abstract function has been encountered (it is

incomplete)

OSError any system-related error from the operating system

RuntimeError possibly fatal error encountered on execution

Chapter 4 Low-LeveL hardware Support

178

Exception Class Description of Use

StopIteration an iterator's next function signaled no more values in

an iterable object

SyntaxError Code syntax error encountered

SystemExit the sys.exit() function was called or simulated

TypeError a function or operation is applied to an inappropriate

type (like type mismatch)

ValueError the right type but wrong value found (like out of

bounds)

ZeroDivisionError Mathematical function results in division by zero

Table 4-3. (continued)

The syntax for the try statement is shown as follows. Each part of the

construct is called a clause:

try_stmt ::= try1_stmt | try2_stmt

try1_stmt ::= "try" ":" code block

 ("except" [expression ["as" identifier]] ":"

code block)+

 ["else" ":" code block]

 ["finally" ":" code block]

try2_stmt ::= "try" ":" code block

 "finally" ":" code block

Notice there are four clauses: try, except, else, and finally. The

try clause is where we put our code (code block) – one or more lines of

code that will be included in the exception capture. There can be only one

try, else, and finally, but you can have any number of except clauses

naming an exception class.

Chapter 4 Low-LeveL hardware Support

179

In fact, the except and else go together such that if an exception is

detected running any of the lines of code in the try clause, it will search

the except clauses, and if and only if no except clause is met, it will

execute the else clause. The finally clause is used to execute after all

exceptions are processed and executed.

Notice also that there are two versions of the statement: one that

contains one or more except and optionally an else and finally, and

another that has only the try and finally clauses.

Let’s look at one of the ways we can use the statement to capture errors

in our code. Suppose you are reading data from a batch of sensors and the

libraries (modules) for those sensors raise ValueError if the value read is

out of range or invalid. It may also be the case that you don’t want the data

from any other sensors if one or more fail. So, we can use code like the

following to “try” to read each of the sensors and, if there is a ValueError,

issue a warning and keep going or, if some other error is encountered, flag

it as an error during the read. Note that typically we would not stop the

program at that point; rather, we would normally log it and keep going.

Study the following until you’re convinced exceptions are cool:

values = []

print("Start sensor read.")

try:

 values.append(read_sensor(pin11))

 values.append(read_sensor(pin12))

 values.append(read_sensor(pin13))

 values.append(read_sensor(pin17))

 values.append(read_sensor(pin18))

except ValueError as err:

 print("WARNING: One or more sensors valued to read a

correct value.", err)

Chapter 4 Low-LeveL hardware Support

180

except:

 print("ERROR: fatal error reading sensors.")

finally:

 print("Sensor read complete.")

Another way we can use exceptions is when we want to import a

module (library) but we’re not sure if it is present. For example, suppose

there was a module named piano.py that has a function named keys()

that you want to import, but the module may or may not be on the system.

In this case, we may have other code we can use instead creating our own

version of keys(). To test if the module can be imported, we can place our

import inside a try block as shown in the following. We can then detect if

the import fails and take appropriate steps:

Try to import the keys() function from piano. If not present,

use a simulated version of the keys() function.

try:

 from piano import keys

except ImportError as err:

 print("WARNING:", err)

 def keys():

 return(['A','B','C','D','E','F','G'])

print("Keys:", keys())

If we added code like this and the module were not present, not only

can we respond with a warning message, but we can also define our own

function to use if the module isn’t present.

Finally, you can raise any exception you want including creating your

own exceptions. Creating custom exceptions is an advanced topic, but let’s

see how we can raise exceptions since we may want to do that if we write

our own custom libraries. Suppose you have a block of code that is reading

values, but it is possible that a value may be out of range. That is, too large

Chapter 4 Low-LeveL hardware Support

181

for an integer, too small for the valid range of values expected, etc. You can

simply raise the ValueError passing in your custom error message as

follows with the raise statement and a valid exception class declaration:

raise ValueError("ERROR: the value read from the sensor ({0})

is not in range.".format(val_read))

You can then use the try statement to capture this condition since you

know it is possible and work your code around it. For example, if you were

reading data, you could elect to skip the read and move on – continue the

loop. However, if this exception were to be encountered when running

your code and there were no try statements, you could get an error like the

following, which, even though is fatal, is still informative:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: ERROR: the value read from the sensor (-12) is not

in range.

You can use similar techniques as shown here to make your

MicroPython code more robust and tolerant of errors. Better still, you

can write your code to anticipate errors and react to them in a graceful,

controlled manner.

 MicroPython-Specific Libraries
There are also libraries that are built expressly for the MicroPython system.

These are libraries designed to help facilitate using MicroPython on the

hardware and are specific to the MicroPython implementation of Python.

Let’s look at a few of the more common MicroPython libraries and see

some code examples for each. What follows is just a sampling of what you

can do with each of the libraries. See the online documentation for a full

description of all the capabilities.

Chapter 4 Low-LeveL hardware Support

182

 machine

The machine library contains functions related to the hardware providing

an abstraction layer that you can write code to interact with the hardware.

Thus, this library is the main library you will use to access features like

timers, communication protocols, CPUs, and more. Since this functionality

is communicating directly with the hardware, you should take care when

experimenting to avoid changing or even potentially damaging the

performance or configuration of your board. For example, using the library

incorrectly could lead to lockups, reboots, or crashes.

Caution take care when working with the low-level machine library
to avoid changing or even potentially damaging the performance or
configuration of your pico.

Since the machine library is a low-level hardware abstraction, we

will not cover it in depth in this chapter. Rather, we will see more of the

hardware features in the next chapter. In the meantime, let’s explore

another interesting gem of MicroPython knowledge by showing you how

to discover what a library contains through the help function. For example,

Listing 4-5 shows an excerpt of what is reported through the REPL console

when we issue the statement help(machine) on the Pico. While it doesn’t

replace a detailed explanation or even a complete example, it can be useful

when encountering a library for the first time.

Listing 4-5. The machine Library Help

>>> help(machine)

>>> object <module 'umachine'> is of type module

 __name__ -- umachine

 unique_id -- <function>

 soft_reset -- <function>

Chapter 4 Low-LeveL hardware Support

183

 reset -- <function>

 reset_cause -- <function>

 bootloader -- <function>

 freq -- <function>

 idle -- <function>

 lightsleep -- <function>

 deepsleep -- <function>

 disable_irq -- <function>

 enable_irq -- <function>

 time_pulse_us -- <function>

 mem8 -- <8-bit memory>

 mem16 -- <16-bit memory>

 mem32 -- <32-bit memory>

 ADC -- <class 'ADC'>

 I2C -- <class 'I2C'>

 SoftI2C -- <class 'SoftI2C'>

 Pin -- <class 'Pin'>

 PWM -- <class 'PWM'>

 RTC -- <class 'RTC'>

 Signal -- <class 'Signal'>

 SPI -- <class 'SPI'>

 SoftSPI -- <class 'SoftSPI'>

 Timer -- <class 'Timer'>

 UART -- <class 'UART'>

 WDT -- <class 'WDT'>

 PWRON_RESET -- 1

 WDT_RESET -- 3

Notice there is a lot of information there! What this gives us most is the

list of classes we can use to interact with the hardware. Here, we see there

are classes for UART, SPI, I2C, PWM, and more.

Chapter 4 Low-LeveL hardware Support

184

 Custom Libraries

Building your own custom libraries may seem like a daunting task, but it

isn’t. What is possibly a bit of a challenge is figuring out what you want the

library to do and making the library abstract (enough) to be used by any

script. The rules and best practices for programming come into play here

such as data abstraction, API immutability, etc.

In this section, we will look at how to organize our code modules into

a library (package) that we can deploy (copy) to our Pico and use in all our

programs. This example, while trivial, is a complete example that you can

use as a template should you decide to make your own custom libraries.

For this example, we will create a library with two modules: one that

contains code to perform value conversions for a sensor and another that

contains helper functions for our projects – general functions that we want

to reuse. We will name the library my_helper. It will contain two code

modules: sensor_convert.py and helper_functions.py. Recall we will

also need an __init__.py file to help MicroPython import the functions

correctly, but we will get back to that in a moment. Let’s look at the first

code module.

We will place the files in a directory named my_helper (same as the

library name). This is typical convention, but you can put whatever name

you want, but you must remember it since we will use that name when

importing the library in our code.

There are two ways to go about creating the files. You can create them

on your PC and then upload them to the Pico, or you can create them on

the Pico directly using Thonny. We will use the Thonny method.

First, connect your Pico to your PC and then open Thonny. Make sure

it connects to the Pico. Then, we will create a new folder named my_helper

on the Pico. You can do this by right-clicking the Pico section of the file

viewer in Thonny and choose New directory…. Once you have the folder

created, double-click it and then create a new file named __init__.py and

Chapter 4 Low-LeveL hardware Support

185

save it on the Pico. Create the other files the same way: sensor_convert.py

and helper_functions.py. Once created, you should see the directory and

three files as shown in Figure 4-2.

Figure 4-2. New directory and files (Thonny)

Now let’s look at the code. The first module is named helper_

functions.py and contains a helper function for formatting a time data

structure to print the time in a more pleasing format. Listing 4-6 shows the

complete code for the module.

Listing 4-6. The helper_functions.py Module

#

Beginning MicroPython - Chapter 4

#

Example module for the my_helper library

This module contains helper functions for general use.

#

Format the time (epoch) for a better view

def format_time(tm_data):

 # Use a special shortcut to unpack tuple: *tm_data

 return "{0}-{1:0>2}-{2:0>2} {3:0>2}:{4:0>2}:{5:0>2}".

format(*tm_data)

Chapter 4 Low-LeveL hardware Support

186

The second code module is named sensor_convert.py and contains

functions that are helpful in converting sensor raw values into a string

for qualitative comparisons. For example, the function get_moisture_

level() returns a string based on the threshold of the raw value.

The data sheet for the sensor will define such values, and you should

use those in your code until and unless you can calibrate the sensor. In this

case, if the value is less than the lower bound, the soil is dry, and if greater

than the upper bound, the soil is wet. Listing 4-7 shows the complete code

for the module.

Listing 4-7. The sensor_convert.py Module

#

Beginning MicroPython - Chapter 4

#

Example module for the my_helper library

This function converts values read from the sensor to a

string for use in qualifying the moisture level read.

Constants - adjust to "tune" your sensor

_UPPER_BOUND = 400

_LOWER_BOUND = 250

def get_moisture_level(raw_value):

 if raw_value <= _LOWER_BOUND:

 return("dry")

 elif raw_value >= _UPPER_BOUND:

 return("wet")

 return("ok")

Now let’s go over the __init__.py file. This is a very mysterious file

that developers often get very confused about. If you do not include one in

your library directory, you should import what you want to use manually.

Chapter 4 Low-LeveL hardware Support

187

That is, with something like import my_helper.helper_functions. But

with the file, you can do your imports at one time allowing a simple import

my_helper statement, which will import all the files. Let’s look at the __

init__.py file. The following shows the contents of the file:

Metadata

__name__ = "Chuck's Python Helper Library"

__all__ = ['format_time', 'get_moisture_level']

Library-level imports

from my_helper.helper_functions import format_time

from my_helper.sensor_convert import get_moisture_level

Notice on the first line we use a special constant to set the name of

the library. The next constant limits what will be imported by the * (all)

option for the import statement. Since it lists all the methods, it’s just an

exercise but a good habit to use especially if your library and modules

contain many internal functions that you do not want to make usable to

others. The last two lines show the import statements used to import the

functions from the modules making them available to anyone who imports

the library. The following shows a short example of how to do that along

with how to use an alias. Here, we use myh as the alias for my_helper:

>>> import my_helper as myh

>>> myh.get_moisture_level(375)

'ok'

>>> myh.get_moisture_level(35)

'dry'

>>> myh.get_moisture_level(535)

'wet'

Chapter 4 Low-LeveL hardware Support

188

In case you’re wondering, the help function works on this custom

library too!

>>> help(myh)

object <module 'Chuck's Python Helper Library' from 'my_

helper/__init__.py'> is of type module

 __path__ -- my_helper

 get_moisture_level -- <function get_moisture_level at

0x2001e610>

 __name__ -- Chuck's Python Helper Library

 __file__ -- my_helper/__init__.py

 format_time -- <function format_time at 0x2001e580>

 helper_functions -- <module 'my_helper.helper_functions' from

'my_helper/helper_functions.py'>

 __all__ -- ['format_time', 'get_moisture_level']

 sensor_convert -- <module 'my_helper.sensor_convert' from

'my_helper/sensor_convert.py'>

Once you have started experimenting with MicroPython and have

completed several projects, you may start to build up a set of functions that

you reuse from time to time. These are perfect candidates to place into a

library. It is perfectly fine if the functions are not part of a larger class or

object. So long as you organize them into modules of like functionality, you

may not need to worry about making them classes. On the other hand, if data

is involved or the set of functions works on a set of data, you should consider

making that set of functions a class for easier use and better quality code.

 Low-Level Libraries
While the MicroPython firmware at the most basic of functionality is the

same from board to board for all the general Python languages supported

and many of the built-in functions, some of the libraries in the MicroPython

firmware have a few minor differences from one board to another.

Chapter 4 Low-LeveL hardware Support

189

In some cases, there are more libraries or classes available than others or

perhaps the classes are organized differently, but most implement the same

core libraries in one form or another. The same cannot be said to be true

at the lower-level hardware abstraction layers. This is simply because one

board vendor may implement different hardware than others. In some cases,

the board has features that are not present on other boards. For example,

some boards support networking, but the Pico (currently) does not. To keep

things brief, we will explore the board-specific libraries for the Pico.

Tip You can see the differences in the low-level library support for
other boards at https://docs.micropython.org/en/latest/
library/index.html, clicking the links for the other boards listed
such as the pyboard, eSp8266, and wipy. the pico libraries are listed
under the rp2040 section at https://docs.micropython.org/
en/latest/library/rp2.html.

The low-level libraries for the Pico (also described as RP2040-specific

libraries) are encapsulated in a single library named rp2. This library

contains a number of classes and functions for performing programmable

input/output tasks (PIO), accessing the filesystem (flash drive) directly, or

working with a state machine. The classes are defined as follows:

• Flash: Built-in flash storage

• PIO: Advanced PIO

• StateMachine: Support for the RP2040’s programmable

I/O interface

The PIO and StateMachine classes provide the ability to add additional

interfaces or protocols such as additional serial communication support.

This is not likely something most Pico projects will require, but it is there

should you find you need one more interface than what is provided by the

Pico hardware.

Chapter 4 Low-LeveL hardware Support

https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/library/index.html
https://docs.micropython.org/en/latest/library/rp2.html
https://docs.micropython.org/en/latest/library/rp2.html

190

With these classes, you can create your own custom low-level

hardware access mechanisms. For example, if you have a sensor that

needs a specific timing to read data faster than the existing hardware

and software library support or a device requires a specific sequence

of commands or responses, you can use these classes to essentially use

software to form the hardware interface. These special code segments are

loaded and run in a special processing core allowing up to eight processes

to run. You can find a complete guide to using PIO in Chapter 3 of the

RP2040 data sheet book (https://datasheets.raspberrypi.org/rp2040/

rp2040-datasheet.pdf).

Similarly, the Flash class provides the ability to work directly with the

flash filesystem. This may be handy if you want to do some low-level data

storage, but in general you are encouraged to use the existing higher-level

MicroPython libraries for reading and writing files.

Should you wish to explore these classes in greater detail, or you

want to learn more about PIO support, you can find example code at

https://github.com/raspberrypi/pico-micropython-examples/tree/

master/pio.

 Working with Low-Level Hardware
Working with the low-level hardware (some would just say, “hardware”

or “device”) is where all the action and indeed the focus (and relative

difficulty) of using MicroPython takes place. MicroPython and the

breakout board vendors have done an excellent job of making things easier

for us, but there is room for improvement in the explanations.

That is, the documentation online is a bit terse when it comes to

offering examples of using the low-level hardware. Part of this is because

the examples often require additional, specific hardware and software.

For example, to work with the I2C interface, you will need an I2C capable

Chapter 4 Low-LeveL hardware Support

10.1007/978-1-4842-8135-2_3
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio

191

breakout board as well as a software library (or drive) to “talk” to the

board. Thus, the online examples provide only the most basic of examples

and explanations.

Except for the onboard sensors, most low-level communication will be

through I2C, one-wire, analog, or digital pins, or using even SPI interfaces.

The I2C and SPI interfaces are those where you will likely encounter

the most difficulty working with hardware. This is because each device

(breakout board) you use will require a very specific protocol. That is, the

device may require a special sequence to trigger the sensor or features

of the device that differs from other breakout boards. Thus, working with

I2C or SPI (and some other) type devices can be a challenge to figure out

exactly how to “talk” to them.

 Drivers and Libraries to the Rescue!
Fortunately, there are a small but growing number of people making

classes and sets of functions to help us work with those devices. These

are called libraries or more commonly drivers and come in the form of

one or more code modules that you can download, copy to your board,

and import the functionality into your program. The developers of the

drivers have done all the heavy lifting for you, making it very easy to use

the device.

Thus, for most just starting out with MicroPython wanting to work with

certain sensors, devices, breakout boards, etc., you should limit what you

plan to use to those that you can find a driver that works with it. So, how do

you find a driver for your device? There are several places to look.

First and foremost, you should look to the forums and documentation

on MicroPython. In this case, don’t limit yourself to only those forums that

cater to your board of choice. Rather, look at all of them! Chances are you

can find a library that you can adapt with only minor modifications. Most

Chapter 4 Low-LeveL hardware Support

192

of them can be used with very little or even no effort beyond downloading

it and copying it to the board. The following lists the top set of forums and

documentation you should frequent when looking for drivers:

• MicroPython Forums: https://forum.

micropython.org/

• MicroPython Documentation: https://docs.

micropython.org/en/latest/

• Adafruit Learning: https://learn.adafruit.com/

• Pico Documentation: www.raspberrypi.org/

documentation/rp2040/getting-started/

There are also a number of documents you can download and read

offline. The following are some of the more important Pico documents:

• Pico Datasheet: https://datasheets.raspberrypi.

org/pico/pico-datasheet.pdf

• RP2040 Datasheet: https://datasheets.raspberrypi.

org/rp2040/rp2040-datasheet.pdf

• Hardware Design Guide: https://datasheets.

raspberrypi.org/rp2040/hardware-design-with-

rp2040.pdf

• Pico MicroPython Manual: https://datasheets.

raspberrypi.org/pico/raspberry-pi-pico-

python-sdk.pdf

Second, use your favorite Internet search engine and search for

examples of the hardware. Use the name of the hardware device and

“MicroPython” in your search. If the device is new, you may not find any

hits on the search terms. Be sure to explore other search terms too.

Chapter 4 Low-LeveL hardware Support

https://forum.micropython.org/
https://forum.micropython.org/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://learn.adafruit.com/
http://www.raspberrypi.org/documentation/rp2040/getting-started/
http://www.raspberrypi.org/documentation/rp2040/getting-started/
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf

193

Once you find a driver, the fun begins! You should download the driver

and copy it to your board for testing. Be sure to follow the example that

comes with the driver to avoid using the driver in an unexpected way.

This calls to mind one important thing you should consider when

deciding if you want to use the driver. If the driver is documented well

and has examples – especially if the example is written for the Pico – you

should feel safe using it. However, if the driver isn’t documented at all or

there is no or little sample code or it is written for a specific board, you

may not want to use it. There is a good chance it is half-baked, old, a work

in progress, or just poorly coded. Not all those that share can share and

communicate well.

We will see several examples of libraries as we work through the

example projects in this book. As you will see, not all are as simple as

downloading and using.

One skill we will need going forward is understanding breakout boards

and how to use them. Let’s look at how to communicate with breakout

boards using the I2C and SPI protocols.

 Using Breakout Boards
Breakout boards are one of the key elements hobbyists and enthusiasts will

use in creating a MicroPython (or any microcontroller based) IoT solution.

This is because breakout boards are small circuit boards that contain all

the components needed to support a function such as a sensor, network

interface, or even a display. Breakout boards also support one of several

communication protocols that require only a few pins to be wired making

them very easy to use. In general, they save the developer a lot of time

trying to figure out how to design circuits to support a sensor or chip.

There are two methods for working with breakout boards: finding a

driver you can use or building your own driver. Building your own driver is

not recommended for those new to MicroPython and I2C or SPI. It is much

Chapter 4 Low-LeveL hardware Support

194

easier to take the time to search for a driver that you can use (or adapt)

than to try to write one yourself. This is because you must be able to obtain,

read, and understand how the breakout board communicates (understand

its protocol). Each board will communicate differently based on the sensor

or devices supported. That is, a driver for a BMP180 sensor will not look or

necessarily work the same as one for a BME280 sensor. You must be very

specific when locating and using a driver.

Searching for a driver can be a tedious endeavor, which requires some

patience and perhaps several searches on the forums using different

search terms such as “micropython BME280”. Once you find a driver, you

can tell quickly whether it is a viable option by looking at the example

included. As mentioned before, if there is no example or the example

doesn’t resemble anything you’ve seen in this book or in the online

documentation, don’t use it.

Let’s look at two examples of breakout boards: one that uses the I2C

protocol and another that uses the SPI protocol. We will follow a pattern

of explaining the examples that is used throughout the book to introduce

the project, present the required components, show you how to set up

the hardware (connect everything together), write the code, and finally

execute it.

THE VALUE OF ONLINE EXAMPLES

If you want to use a breakout board in your Iot project, be sure to spend some

time not only in the forums but also looking at various blogs and tutorials such

as those on hackaday.com, learn.sparkfun.com, or learn.adafruit.com. the best

blogs and tutorials are those that explain not only how to write the code but

also what the breakout board does and how to use it. these online references

are few, but the ones from these three sites are among the very best. also,

look at some of the videos on the topic too. Some of those are worth the time

to watch – especially if they’re from the nice folks at adafruit or SparkFun.

Chapter 4 Low-LeveL hardware Support

195

 Inter-integrated Circuit (I2C)
The I2C protocol is perhaps the most common protocol that you will find

on breakout boards. We’ve encountered this term a few times in previous

chapters, and thus we only know it is a communication protocol. So,

what is it?

 What Is I2C?

I2C is a fast digital protocol using two wires (plus power and ground) to

read data from circuits (or devices). The protocol is designed to allow the

use of multiple devices (slaves) with a single master (the MicroPython

board). Thus, each I2C breakout board will have its own address or

identity that you will use in the driver to connect to and communicate with

the device.

Tip See https://learn.sparkfun.com/tutorials/i2c for
an in-depth discussion of I2C.

 Overview

Let’s look at an example of how to use an I2C breakout board. In this

example, we want to use an RGB sensor from Adafruit (www.adafruit.

com/product/1334) to read the color of objects. Yes, you can make your

Pico see in color!

What the code will present is four values read from the sensor. We will

see the values for the red, green, and blue spectrum as well as the clear

light value. The combination of the red, green, and blue values defines the

color. You can use a color picker control from one of several websites like

www.rapidtables.com/web/color/RGB_Color.html to show you the color.

This RGB sensor isn’t going to give you a 100% color match, but you may

be surprised how well it can distinguish colors. Let’s get started.

Chapter 4 Low-LeveL hardware Support

https://learn.sparkfun.com/tutorials/i2c
http://www.adafruit.com/product/1334
http://www.adafruit.com/product/1334
http://www.rapidtables.com/web/color/RGB_Color.html

196

 Required Components

Don’t worry if you do not have or do not want to purchase the Adafruit

RGB sensor breakout board (although it is not expensive). This example

is provided as a tutorial for working with I2C breakout boards. We will

use another I2C breakout board in one of the example projects later in

the book. Figure 4-3 shows the Adafruit RGB sensor. Note that this sensor

comes without the header soldered, so you will need to solder a header on

the breakout board before you can use it with your Pico.

Figure 4-3. Adafruit RGB sensor (courtesy of adafruit.com)

 Set Up the Hardware

Wiring the breakout board is also very easy since we need only power,

ground, SCL, and SDA connections. SCL is the clock signal, and SDA is the

data signal. These pins are labeled on your Pico (or in the documentation)

as well as the breakout board. When you connect your breakout board,

make sure the power requirements match. That is, some breakout boards

can take 5V, but many are limited to 3 or 3.3V. Check the vendor’s website if

you have any doubts.

We need only to connect the 3V, ground, SDA, SCL, and LED pins. The

LED pin is used to turn on the bright LED on the breakout board to signal

it is ready to read. We will leave it on for ten seconds so that there is time

to read the color value and then display it. We will then wait another five

seconds to take the next reading.

Chapter 4 Low-LeveL hardware Support

197

But to get this to work, we will need to connect the breakout board

to the Pico. If you ordered a Pico with headers or you soldered your own

headers to the Pico, we can use what is called a breadboard to host the

Pico and use wires called jumper wires to connect the Pico GPIO pins to

the pins on the breakout board.

Note we will discuss breadboards and their use in more detail in
the next chapter.

Once you place your Pico on a breadboard, you can use (5) male-to-

female jumper wires to connect to the breakout board. Figure 4-4 shows

the connections you need to make.

Figure 4-4. Wiring the RGB sensor

The connections we will use are shown in Table 4-4, which shows

the pin for the Pico in the first three columns depicting the description,

physical pin, and GPIO number with the pin on the breakout board in

Chapter 4 Low-LeveL hardware Support

198

the last column. Recall, physical pins are numbered 1–20 on the left of

the USB connector starting at the top and 21–40 on the right starting from

the bottom.

Table 4-4. Connections for the RGB Sensor

Pico Physical Pin GPIO Number RGB Sensor
Function Pin Label

out 20 Gp15 Led

I2C Sda 11 Gp8 Sda

I2C SdC 12 Gp9 SCL

3v3 37 N/a 3v3

GNd 38 N/a GNd

 Write the Code

Once you have the hardware connected, set it aside. We need to download

the driver and copy it to the board before we can experiment further. You

can find the driver for download on GitHub at https://github.com/

adafruit/micropython-adafruit-tcs34725. This is a fully working, tested

driver that demonstrates how easy it is to use an I2C breakout board.

Note this library has been abandoned by adafruit in an effort to
focus on their version of Micropython named Circuitpython. But don’t
worry. the library still works very well. we just are not likely to see
any updates to the code.

So, how do we find the address of our I2C breakout board? Recall the

I2C bus requires each device to have a unique address. The I2C firmware

uses this address to know which device it is communicating with, and the

device itself will only recognize messages for that specific address.

Chapter 4 Low-LeveL hardware Support

https://github.com/adafruit/micropython-adafruit-tcs34725
https://github.com/adafruit/micropython-adafruit-tcs34725

199

We check the documentation, or we can check the code for the library.

If you open the library you downloaded, you can read through it and look

in the initialization code (or constructor) to see what address the library

is using. In this case, we find the address in the library is 0x29 as shown

in the following, but since the address is a parameter, you can override it

if you have another breakout board for the same RGB sensor that is at a

different address. This means you can use more than one RGB sensor with

the same driver!

class TCS34725:

 def __init__(self, i2c, address=0x29):

To download the driver, you first navigate to https://github.

com/adafruit/micropython-adafruit-tcs34725 and then click the

Download button and then the Download Zip button. Once the file has

been downloaded, unzip it. In the resulting folder, you should find the file

named tcs34725.py. This is the driver code module. When ready, copy

the module to your Pico and place it in the root folder (same folder as the

example code).

Now that the driver is copied to our board, we can write the code. In

this example, we will set up the I2C connection to the breakout board and

run a loop to read values from the sensor. Sounds simple, but there is a bit

of a trick to it. We will forego a lengthy discussion of the code and instead

offer some key aspects allowing you to read the code yourself to see how

it works.

The key components are setting up the I2C, sensor, a pin for

controlling the LED, and reading from the sensor. The LED on the board

can be turned on and off by setting a pin high (on) or low (off). First, the

I2C code is as follows. Here, we initiate an object, then call the init()

function setting the bus to master mode. The scan() function returns a list

of addresses found on the bus. We can then print out the device addresses.

Notice we define the pins for the SDA and SCL I2C operations too.

Chapter 4 Low-LeveL hardware Support

https://github.com/adafruit/micropython-adafruit-tcs34725
https://github.com/adafruit/micropython-adafruit-tcs34725

200

Tip If you see an empty set displayed, your I2C wiring is not
correct. Check it and try the code again.

Setup the I2C - easy, yes?

sda = Pin(8)

scl = Pin(9)

i2c = SoftI2C(sda=sda,scl=scl,freq=400000)

print("I2C Devices found:", end="")

for addr in i2c.scan():

 print("{0} ".format(hex(addr)))

print("")

Notice here we are using something named SoftI2C. This is a special

version of the I2C library that supports a different way of communicating

with a breakout board. As it turns out, not all I2C devices will work

correctly with the firmware implementation of I2C on the Pico. To use the

firmware I2C, use the I2C library from the machine module as shown in

the following. The only difference beside the name is the first parameter,

which tells the I2C we want a master connection:

#i2c = I2C(0,sda=sda,scl=scl,freq=400000)

It is recommended to try the I2C library first, and if that doesn’t work,

try the SoftI2C library. This is because the I2C firmware is much faster

than the software implementation. We will see specific examples that use

I2C and SoftI2C in later chapters.

The next part is the sensor itself. The driver makes this easy. All we

need to do is pass in the I2C constructor function as shown:

Setup the sensor

sensor = tcs34725.TCS34725(i2c)

Chapter 4 Low-LeveL hardware Support

201

Setting up the LED pin is also easy. All we need to do is call the Pin()

class constructor passing in the pin name (P15) and setting it for output

mode as follows:

Setup the LED pin

led_pin = Pin(15, Pin.OUT)

led_pin.value(0)

Finally, we read from the sensor with the sensor.read() function

passing in True, which tells the driver to return the RGBC values. We will

then print these out in order. Listing 4-8 shows the completed code. Take a

few moments to read through it so that you understand how it works.

Listing 4-8. Using the Adafruit RGB Sensor

"""listing_04_06.py"""

#

Beginning MicroPython - Chapter 4

#

Example of using the I2C interface via a driver

for the Adafruit RGB Sensor tcs34725

#

Requires library:

https://github.com/adafruit/micropython-adafruit-tcs34725

#

from machine import I2C, SoftI2C, Pin

import sys

import tcs34725

import utime

Method to read sensor and display results

def read_sensor(rgb_sense, led):

 sys.stdout.write("Place object in front of sensor now...")

 led.value(1) # Turn on the LED

Chapter 4 Low-LeveL hardware Support

202

 utime.sleep(5) # Wait 5 seconds

 sys.stdout.write("reading.\n")

 data = rgb_sense.read(True) # Get the RGBC values

 print("Color Detected: {")

 print(" Red: {0:03}".format(data[0]))

 print(" Green: {0:03}".format(data[1]))

 print(" Blue: {0:03}".format(data[2]))

 print(" Clear: {0:03}".format(data[3]))

 print("}\n")

 led.value(0)

Setup the I2C - easy, yes?

sda = Pin(8)

scl = Pin(9)

i2c = SoftI2C(sda=sda,scl=scl,freq=400000)

print("I2C Devices found:", end="")

for addr in i2c.scan():

 print("{0} ".format(hex(addr)))

print("")

Setup the sensor

sensor = tcs34725.TCS34725(i2c)

Setup the LED pin

led_pin = Pin(15, Pin.OUT)

led_pin.value(0)

print("Reading object color every 10 seconds.")

print("When LED is on, place object in front of sensor.")

print("Press CTRL-C to quit.")

while True:

 utime.sleep(10) # Sleep for 10 seconds

 read_sensor(sensor, led_pin) # Read sensor and

display values

Chapter 4 Low-LeveL hardware Support

203

Once you have the code, you can copy it to your board in the similar

manner we did for the driver. All that is left is running the example and

testing it.

 Execute

After copying the code to the Pico, go ahead and run it from Thonny.

Listing 4-9 shows an example of the code running. Note that you will get

differing results for each object you test in a mixture of the RGB values

as shown.

Listing 4-9. Output from Using the Adafruit RGB Sensor

I2C Devices found:0x29

Reading Colors every 10 seconds.

When LED is on, place object in front of sensor.

Press CTRL-C to quit.

Place object in front of sensor now...reading.

Color Detected: {

 Red: 057

 Green: 034

 Blue: 032

 Clear: 123

}

Place object in front of sensor now...reading.

Color Detected: {

 Red: 054

 Green: 069

 Blue: 064

 Clear: 195

}

Place object in front of sensor now...reading.

Color Detected: {

Chapter 4 Low-LeveL hardware Support

204

 Red: 012

 Green: 013

 Blue: 011

 Clear: 036

}

...

If you wanted another exercise, you could take these values from the

sensor and map them to an RGB LED. Yes, you can do that! Go ahead, try

it. See the example GitHub project at https://github.com/JanBednarik/

micropython-ws2812 for inspiration. Tackle it after you’ve read the next

section on SPI.

 Serial Peripheral Interface (SPI)
The Serial Peripheral Interface (SPI) is designed to allow sending and

receiving data between two devices using a dedicated line for each

direction. That is, it uses two data lines along with a clock and a slave select

pin. Thus, it requires six connections for bidirectional communication

or only five for reading or writing only. Some SPI devices may require a

seventh pin called a reset line.

Tip See https://learn.sparkfun.com/tutorials/serial-
peripheral-interface-spi for an in-depth discussion of SpI.

 Overview

Let’s look at an example of how to use an SPI breakout board. In this

example, we want to use the Adafruit Thermocouple Amplifier MAX31855

breakout board (www.adafruit.com/product/269) and a Thermocouple

Type-K sensor (www.adafruit.com/product/270) to read high

Chapter 4 Low-LeveL hardware Support

https://github.com/JanBednarik/micropython-ws2812
https://github.com/JanBednarik/micropython-ws2812
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://www.adafruit.com/product/269
http://www.adafruit.com/product/270

205

temperatures. It can also read low or room temperature, so don’t worry.

You won’t need to put this in a heater or oven to use it!

In fact, we’re going to use this example to show how easy it is to read

one of the most common measurements (samples) taken – temperature.

Once the code is running, you can simply touch the thermocouple and

watch the values respond (change) as it heats up and again when you let

go. A touchable project, cool!

 Required Components

Don’t worry if you do not have or do not want to purchase the Adafruit

Thermocouple Amplifier MAX31855 breakout board (although it is

not expensive). This example is provided as a tutorial for working with

SPI breakout boards. We will use another I2C breakout board in one of

the example projects later in the book. Figure 4-5 shows the Adafruit

Thermocouple Amplifier and Type-K sensor from Adafruit.

Figure 4-5. Adafruit Thermocouple breakout board and Type-K
sensor (courtesy of adafruit.com)

Chapter 4 Low-LeveL hardware Support

206

The sensor can be used to measure high temperatures either through

proximity or touch. The sensor can read temperature in the range –200°C

to +1350°C output in 0.25 degree increments. One possible use of this

sensor is to read the temperature of nozzles on 3D printers or any similar

high heat output. It should be noted that the breakout board comes

unassembled, so you will need to solder the header and terminal posts.

 Set Up the Hardware

Now, let’s see how to wire the breakout board to our Pico. We will use

only five wires since we are only reading data from the sensor on the

breakout board. This requires a connection to power, ground (GND), the

master input (MOSI), clock (CLK), and chip select (CS). We only receive

information from the sensor, so the MISO (transmit) pin isn’t needed.

Figure 4-6 shows the connections.

Figure 4-6. Wiring the Adafruit Thermocouple module

Chapter 4 Low-LeveL hardware Support

207

The connections we will use are shown in Table 4-5, which shows

the pin for the Pico in the first three columns depicting the description,

physical pin, and GPIO number with the pin on the breakout board in

the last column. Recall, physical pins are numbered 1–20 on the left of

the USB connector starting at the top and 21–40 on the right starting from

the bottom.

Table 4-5. Connections for the MAX31855

Pico Physical Pin GPIO Number RGB Sensor
Function Pin Label

GNd 38 N/a GNd

3v3 37 N/a 3v3

SpI rX/MoSI 6 Gp4 Sd0

SpI CS 2 Gp1 CS

SpI CLK 9 Gp6 CLK

Now, let’s look at the code!

 Write the Code

In this example, we are not going to use a driver; rather, we’re going to see

how to read directly from the breakout board using SPI. To do so, we first

set up an object instance of the SPI interface and then choose a pin to use

for chip select (also called code or even slave select). From there, all we

need to do is read the data and interpret it. We will read the sensor in a

loop and write a function to convert the data.

This is the tricky part. This example shows you what driver authors

must do to make using the device easier. In this case, we must read the

data from the breakout board and interpret it. We could just read the raw

data, but that would not make any sense since it is in binary form. Thus,

we can borrow some code from Adafruit that reads the raw data and makes

sense of it.

Chapter 4 Low-LeveL hardware Support

208

The function is named normalize_data() as shown in the following,

and it does some bit shifting and arithmetic to transform the raw data

to a value in Celsius. This information comes from the data sheet for the

breakout board, but the nice folks at Adafruit made it easy for us:

Create a method to normalize the data into degrees Celsius

def normalize_data(data):

 temp = data[0] << 8 | data[1]

 if temp & 0x0001:

 return float('NaN')

 temp >>= 2

 if temp & 0x2000:

 temp -= 16384

 return (temp * 0.25)

Setting up the SPI class is easy. We initiate an SPI object using the

class constructor passing in the SPI option. We will use 0 for the first SPI

implementation. The other parameters tell the SPI class to set up the SCK,

MISO, and MOSI pins (even though we are not using the MOSI pin) and set

the baud rate, polarity, and phase (which can be found on the data sheet).

We also set the CS pin and turn it on (set to high) after initializing the SPI

library. The following shows the code we need to activate the SPI interface:

...

spi_cs = Pin(1)

spi = SPI(0, baudrate=1000000, sck=Pin(6), miso=Pin(4),

mosi=Pin(3))

spi_cs.high()

...

Now, let’s look at the completed code. Listing 4-10 shows the complete

code to use the Thermocouple Amplifier breakout board from Adafruit.

Chapter 4 Low-LeveL hardware Support

209

Listing 4-10. The Adafruit Thermocouple Module Example

"""listing_04_07.py"""

#

Beginning MicroPython - Chapter 4

#

Example of using the SPI interface via direct access

for the Adafruit Thermocouple Module MAX31855

#

from machine import Pin, SPI

import utime

Create a method to normalize the data into degrees Celsius

def normalize_data(data):

 temp = data[0] << 8 | data[1]

 if temp & 0x0001:

 return float('NaN')

 temp >>= 2

 if temp & 0x2000:

 temp -= 16384

 return (temp * 0.25)

spi_cs = Pin(1)

spi = SPI(0, baudrate=1000000, sck=Pin(6), miso=Pin(4),

mosi=Pin(3))

spi_cs.high()

read from the chip

print("Reading temperature every second.")

print("Press CTRL-C to stop.")

while True:

 spi_cs.low()

 utime.sleep(1)

Chapter 4 Low-LeveL hardware Support

210

 print("Temperature is {:05.2F} C".format(normalize_

data(spi.read(4))))

 spi_cs.high()

 Execute

At this point, you can make the hardware connections and plug in your

Pico. Then, you can copy the file to your Pico and run it. Let it run for a few

readings and then try to gently grasp the silver portion (the far end) of the

thermocouple with two fingers. Be sure not to turn the Pico or the breakout

board. You should see a change in temperature. You can let go and also see

the temperature return to near room temperature.

Reading temperature every second.

Press CTRL-C to stop.

Temperature is 24.50 C

Temperature is 24.50 C

Temperature is 24.25 C

Temperature is 24.25 C

Temperature is 25.75 C

Temperature is 25.50 C

Temperature is 25.75 C

Temperature is 26.25 C

Temperature is 26.00 C

Temperature is 26.50 C

Temperature is 26.50 C

Temperature is 27.00 C

Temperature is 27.25 C

Temperature is 27.00 C

Temperature is 27.50 C

Temperature is 27.50 C

Temperature is 27.00 C

...

Chapter 4 Low-LeveL hardware Support

211

Once you run the example, you should see it produce values in degrees

Celsius. If you see 00.00, or NaN, you likely do not have the SPI interface

connected properly. Check your wiring against the preceding figure. If you

see values but they go down when you expose the thermocouple tip to

heat, you need to reverse the wires. Be sure to power off the board first to

avoid damaging the sensor, breakout board, or your Pico!

 Summary
Accessing the low-level hardware through the firmware is where the true

elegance and in some cases complexity of using MicroPython begins. We

also need to know what breakout boards and devices we want to connect

to and if there are drivers or other libraries we can use to access them.

In this case, most breakout boards with I2C or SPI interfaces will require

some form of a driver.

In this chapter, we explored some of the low-level support in the

firmware and specialized support for the Pico in MicroPython and

explored some of the more commonly used built-in and MicroPython

libraries that we will use in our projects. We also saw a lot of code in this

chapter – more than any previous chapter. The examples in this chapter

are meant to be examples for you to see how things are done rather

than projects to implement on your own (although you’re welcome and

encouraged to do so). We will see more hands-on projects with a greater

level of detail in later chapters.

In the next chapter, we take a short detour in the form of a short

tutorial on electronics. If you’ve never worked with electronics before,

the next chapter will give you the information you need to complete the

projects in this book and prepare you for an exciting new hobby – building

MicroPython IoT projects!

Chapter 4 Low-LeveL hardware Support

213

CHAPTER 5

Electronics for
Beginners
If you are new to working with hardware and have little or no experience

with electronics, you may be curious as to how you can complete the

projects in this book. Fortunately, the projects in this book walk you

through how to connect the various electronic parts together with your

Pico. That is, you can complete the projects without additional skill or

experience.

However, if you want to know what the components do, you will need

a bit more information than “plug this end in here.” This is especially so

if something goes wrong. Furthermore, if you want to create projects on

your own, you need to know enough about how the components work

to successfully complete your project – whether that is completing the

examples in this book or examples found elsewhere on the Internet.

Fortunately, you don’t need formal training or even a college degree

in theory to learn how to work with electronics. You can learn quite a lot

about working with electronics at the hobbyist level without devoting

months or years of research. To ensure success even at a basic level, you

will need to know more than simply how to plug the components together.

Rather than attempt to present a comprehensive tutorial on

electronics, which would take several volumes, this chapter presents

an overview of electronics for those who want to work with the types of

electronic components commonly found in electronics projects. I include

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_5

https://doi.org/10.1007/978-1-4842-8135-2_5

214

an overview of some of the basics, descriptions of common components,

and a look at sensors. If you are new to electronics, this chapter will give

you the extra boost you need to understand the components used in the

projects in this book.

If you have experience with electronics either at the hobbyist or

enthusiast level or have experience or formal training in electronics, you

may want to skim this chapter or read the sections with topics that you

may want a refresher.

Let’s begin with a look at the basics of electronics. Once again, this

is in no way a tutorial that covers all there is to know, but it will get you

to the point where the projects make sense in how they connect and use

components.

 The Basics
This section presents a short overview of some of the most common tools

and techniques you will need to use when working with electronics. As you

will see, you only need the most basic of tools, and the skills or techniques

are not difficult to learn. We will also see an example of a basic electronics

kit to help you get started. However, before we get into those, let’s look at

some of the tools you will need to work on your electronics projects.

 Tools
The clear majority of tools you will need to construct your electronics

projects are common hand tools (screwdrivers, small wrenches, pliers,

etc.). For larger projects or for creating enclosures, you may need

additional tools such as power tools, but I will concentrate only on those

tools for building the projects. The following is a list of tools I recommend:

• Breadboard

• Breadboard wires (also called jumpers)

Chapter 5 eleCtroniCs for Beginners

215

• Electrostatic discharge (ESD) safe tweezers

• Helping hands or printed circuit board (PCB) holder

• Multimeter

• Needle-nose pliers

• Screwdrivers – assorted sizes (micro, small)

• Solder

• Soldering iron

• Solder remover

• Tool case, roll, or box for storage

• Wire strippers

However, you cannot go wrong if you prefer to buy a complete

electronics toolset such as those from SparkFun (www.sparkfun.com/

categories/47) or Adafruit (www.adafruit.com/categories/83). You

can often find electronics kits at major brand electronics stores and home

improvement centers. Most electronics kits will have all the hand tools you

will need. Some even come with a multimeter, but more often you must

buy them separately.

Most of the tools in the list do not need any explanation except to say

you should purchase the best tools that your budget permits. The following

paragraphs describe some of the tools that are used for special tasks such

as stripping wires, soldering, and measuring voltage and current.

 Multimeter

A multimeter is one of those tools that you will need when building

electronics projects. You will also need it to do almost any electrical repair

on your circuits. There are many different multimeters available with

prices ranging from inexpensive, basic units to complex, feature-rich,

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/categories/47
http://www.sparkfun.com/categories/47
http://www.adafruit.com/categories/83

216

incredibly expensive units. For most electronics projects, a basic unit is

all you will need. Most meters come with an instruction booklet that will

show you how to use the functions of the meter.

However, if you plan to build more than one project or want to

assemble your own electronics, you may want to invest a bit more in a

more sophisticated multimeter. Figure 5-1 shows a basic digital multimeter

(costing about $10) on the left and a professional multimeter from BK

Precision on the right.

Figure 5-1. Digital multimeters

Notice the better meter has more granular settings and more features.

Again, you probably won’t need more than the basic unit. You will need

to measure voltage, current, and resistance at a minimum. Whichever

meter you buy, make sure it has modes for measuring AC and DC voltage,

continuity testing (with an audible alert), and checking resistance. I will

explain how to use a multimeter in a later section.

Tip Choose a solder with a low lead content in the
37%–40% range.

Chapter 5 eleCtroniCs for Beginners

217

 Soldering Iron

A soldering iron is not required for using the components in the projects

in this book, but some breakout boards may require soldering of the

headers. If you plan to build a simple project where you will need to solder

wires together, or maybe a few connectors, a basic soldering iron from an

electronics store such as Radio Shack is all you will need. Figure 5-2 shows

a well-used entry-level Radio Shack soldering iron.

Figure 5-2. Entry-level soldering iron

On the other hand, if you plan to assemble your own electronics, you

may want to consider getting a good, professional soldering iron such

as a Hakko. The professional models include features that allow you to

set the temperature of the wand, have a wider array of tips available, and

tend to last a lot longer. Figure 5-3 shows a professional model Hakko

soldering iron.

Chapter 5 eleCtroniCs for Beginners

218

Figure 5-3. Professional soldering iron

DO I NEED TO LEARN TO SOLDER?

if you do not know how to solder or it has been a while since you’ve used a

soldering iron, you may want to check out the book Learn to Solder by Brian

Jepson, tyler Moskowite, and gregory hayes (o'reilly Media, 2012) or google

how-to videos to find everything you need to learn how to solder.

 Wire Strippers

There are several types of wire strippers. In fact, there are probably a dozen or

more designs out there. But there are two kinds: ones that only grip and cut

the insulation as you pull it off the wire and those that grip, cut, and remove

the insulation. The first type is more common and, with some practice, does

just fine for most small jobs (like repairing a broken wire); but the second

type makes a larger job – such as wiring electronics from bare wire (no prefab

connectors) – much faster. As you can imagine, the first type is considerably

cheaper. Figure 5-4 shows both types of wire strippers. Either is a good choice.

Chapter 5 eleCtroniCs for Beginners

219

Figure 5-4. Wire strippers

ESD IS THE ENEMY

You should take care to make sure your body, your workspace, and your

project is grounded to avoid electrostatic discharge (esD). esD can damage

your electronics – permanently. the best way to avoid this is to use a

grounding strap that loops around your wrist and attaches to an antistatic mat

like these: uline.com/BL_7403/Anti-Static-Table-Mats.

 Helping Hands

There is one other tool that you may want to get, especially if you need to

do any soldering called helping hands or third hand tool. Most have a pair

of alligator clips to hold wires, printed circuit boards, or components while

you solder. Figure 5-5 shows an example of a simple helping hands tool.

Chapter 5 eleCtroniCs for Beginners

220

Figure 5-5. Helping hands tool

Now let’s look at some of the skills you are likely to need for electronics

projects starting with the one tool you will use most – the multimeter.

 Using a Multimeter
The electrical skills needed for electronics projects can vary from plugging

in wires on a breadboard – as we saw with the projects so far – to needing to

solder components together or to printed circuit boards (PCBs). Regardless

of whether you need to solder the electronics, you will need to be able to use

a basic multimeter to measure resistance and check voltage and current.

A multimeter is a very useful and essential tool for any electronics

hobbyist and downright required for any enthusiast of worth. A typical

multimeter has a digital display (typically an LCD or similar numeric

display), a dial, and two or more posts or ports for plugging in test leads

with probe ends. Most multimeters have ports for lower current (that you

will use most) and ports for larger current. Test leads use red for positive

Chapter 5 eleCtroniCs for Beginners

221

and black for negative (ground). The ground port is where you plug in

the black test lead and is often marked with a dash or COM for common.

Which of the other ports you use will depend on what you are testing.

One thing to note on the dial is that there are many settings (with some

values repeated) or those that look similar. For example, you will see a set

of values (sometimes called a scale) for ohms, one or two sets of values

for amperage, and one or two sets of values for volts. The set of values for

voltages that has a V with a solid and dashed line is for DC, whereas the

range that has a V with a wavy line is for AC. Amperage ranges are marked

in the same manner. Figure 5-6 shows a close-up of a multimeter dial

labeled with the sets of values I’ve mentioned.

Figure 5-6. Multimeter dial (typical)

Tip When not in use, be sure to turn your multimeter dial to off or
one of the voltage ranges if it has a separate off button.

Chapter 5 eleCtroniCs for Beginners

222

There is a lot you can do with a multimeter. You can check voltage,

measure resistance, and even check continuity. Most basic multimeters

will do these functions. However, some multimeters have a great many

more features such as testing capacitors and the ability to test AC as

well as DC.

Let’s see how we can use a multimeter to perform the most common

tasks we will need for electronics projects: testing continuity, measuring

voltage in a DC circuit, measuring resistance, and measuring current.

 Testing Continuity

We test for continuity to determine if there is a path for the charged

particles to flow. That is, our wires and components are connected

properly. For example, you may want to check to ensure a wire has been

spliced correctly.

To test for continuity, turn your multimeter dial to the position marked

with an audible symbol, bell, or triangle with an arrow through it. Plug the

black test lead into the COM port and the red test lead in the port marked

with Hz VΩ or similar. Now you can touch the probe end of the test leads

together to hear an audible tone or beep. Some multimeters don’t have an

audible tone but instead may display “1” or the like to indicate continuity.

Check your manual for how your multimeter indicates continuity.

Figure 5-7 shows how to set a multimeter to check for continuity including

which ports to plug in the test leads. Notice in the photo I simply touched

the probes together to demonstrate how to check for continuity. I like to do

this just to ensure my multimeter is turned on and in the correct setting.

Chapter 5 eleCtroniCs for Beginners

223

Figure 5-7. Settings for checking continuity

Another excellent use for the continuity test is when diagnosing or

discovering how cables are wired. For example, you can use the continuity

test to discover which connector is connected on each end of the cable

(sometimes called wire sorting or ringing out from the old telephone days).

 Measuring Voltage

Our electronics projects use DC. To measure voltage in the circuit, we

will use the DC range on the multimeter. Notice the DC range has several

stops. This is a scale selection. Choose the scale that closely matches the

voltage range you want to test. For example, for our electronics projects

we will often measure 3.3–12V, so we choose 20 on the dial. Next, plug

the black test lead into the COM port and the red test lead into the port

labeled Hz VΩ.

Now we need something to measure! Take any battery you have in the

house and touch the black probe to the negative side and the red probe

to the positive side. You should see a value appear on the display that is

close to the range for the battery. For example, if we used a 1.5V battery,

Chapter 5 eleCtroniCs for Beginners

224

we should see close to 1.5V. It may not be exactly 1.5–1.6V if the battery is

depleted. So now you know how to test batteries for freshness! Figure 5-8

shows how to measure voltage of a battery.

Figure 5-8. Measuring voltage of a battery

Notice the readout displays 1.50, which is the correct voltage for this AA

battery. If I had reversed the probes – the red one on negative and the black on

positive – the display would have read –1.50. This is OK because it shows the

current is flowing in the opposite direction of how the probes are oriented.

Note if you use the wrong probe when measuring voltage in a
DC circuit, most multimeters will display the voltage as a negative
number. try that with your battery. it won't hurt the multimeter (or the
battery)!

We can use this technique to measure voltage in our projects. Just

be careful to place the probes on the appropriate positions and try not

to cross or short by touching more than one component at a time with a

single probe tip.

Chapter 5 eleCtroniCs for Beginners

225

 Measuring Current

Current is measured as amperage (milliamps – mA). Thus, we will use

the range marked with an A with a straight and dashed line (not the wavy

one – that’s AC). We measure current in series. That is, we must place

the multimeter in the circuit. This can be a little tricky because we must

interrupt the flow of current and put the meter inline.

If you are familiar with how to use a breadboard, you can follow along

with this experiment. However, if you haven’t used a breadboard, you may

want to read through this experiment and then return to it once you finish

reading this chapter. For this experiment, we will use a breadboard power

supply, an LED, and a resistor. We will wire the circuit such that we will use

the multimeter to complete the circuit. Figure 5-9 shows how to set up the

circuit with the multimeter inline.

Figure 5-9. Measuring current

Chapter 5 eleCtroniCs for Beginners

226

Before powering on your breadboard power supply, plug the black

test lead into the COM port and the other test leads into the port labeled

mA. Some multimeters use the same port for measuring voltage as well

as current. Turn the dial on the multimeter to the 200mA setting. Then

power on the breadboard power supply and touch the leads to the places

indicated. Be careful to touch only the VCC pin on the breadboard power

supply. Once the circuit is powered on, you should see a value on the

multimeter. Figure 5-10 shows how to use a multimeter to measure current

in a circuit.

Figure 5-10. Measuring current

There is one other tricky thing about measuring current. If you attempt

to measure current that is greater than the maximum for the port, you

may see an error or cause damage to your meter. This is not desirable, but

at least there is a fuse that we can replace should we make a mistake and

choose the wrong port.

 Measuring Resistance

Resistance is measured in ohms (Ω). The most common component we

will use to introduce resistance in a circuit is a resistor. We can test the

resistance of the charge through the resistor with our multimeter. To test

Chapter 5 eleCtroniCs for Beginners

227

resistance, choose the ohm scale that is closest to the rating of the resistor.

For example, I am going to test a resistor that I believe is about 200 Ohms,

but since I am not sure, I will choose the 2k setting.

Next, plug the black test lead into the COM port and the red test lead

into the port labeled HzVΩ. Now, touch one probe to one side of a resistor

and the other probe to the other side. It doesn’t matter which side you

choose – a resistor works in both directions. Notice the readout. The meter

will read one of three things, 0.00, 1, or the actual resistor value.

In this case, the meter reads 0.219, meaning this resistor has a value of

220Ω. Recall, I used the 2k scale, which means a resistor of 1k would read

1.0. Since the value is a decimal, I can move the decimal point to the left to

get a whole number.

If the multimeter displays another value such as 0 or 1, it indicates

the scale is wrong and you should try a higher scale. This isn’t a problem.

It just means you need to choose a larger scale. On the other hand, if the

display shows 0 or a small number, you need to choose a lower scale. I like

to go one tick of the knob either way when I am testing resistance in an

unknown component or circuit.

Figure 5-11 shows an example of measuring resistance for a resistor.

Notice the display reads 219. I am testing a resistor rated at 220 Ohms. The

reason it is 219 instead of 220 is because the resistor I am using is rated at

220 +/– 5%. Thus, the acceptable range for this resistor is 209–231 Ohms.

Chapter 5 eleCtroniCs for Beginners

228

Figure 5-11. Measuring resistance of a resistor

Now we know how to test a resistor to discover its rating. As we will see,

those rings around the body of the resistor are the primary way we know its

rating, but we can always test it if we’re unsure, someone has painted over

it (hey, it happens), or we’re too lazy to look it up.

Now, let’s discuss the most fundamental concept you must understand

when working with electronics – powering your project!

 Powering Your Electronics
Electricity is briefly defined as the flow of electric charge and when used

provides power for our electronics – from a common light bulb or ceiling

fan to our high-definition television or our new tablet. Whether you

are powering your electronics with batteries or a power supply, you are

initiating a circuit where electrons flow in specific patterns. There are two

forms (or kinds) of power you will be using. Your home is powered by

alternating current, and your electronics are powered by direct current.

The term alternating current (AC) is used to describe the flow of

charged particles that changes direction periodically at a specific rate

(or cycle) reversing the voltage along with the current. Thus, AC systems

are designed to work with a specific range of cycles as well as voltage.

Typically, AC systems use higher voltages than direct current systems.

Chapter 5 eleCtroniCs for Beginners

229

The term direct current (DC) is used to describe the flow of charged

particles that do not change direction and thus always flow in a specific

“direction.” Most electronics systems are powered with DC voltages and are

typically at lower voltages than AC systems. For example, electronics projects

typically run on lower direct current (DC) voltages in the range 3.3–24V.

Tip for more information about aC and DC current and the
differences, see https://learn.sparkfun.com/tutorials/
alternating- current- ac- vs- direct- current- dc.

Since DC flows in a single direction, components that operate on DC

have a positive and a negative “side” where current flows from positive

to negative. The orientation of these sides – one to positive and one to

negative – is called polarity. Some components such as resistors can

operate in “direction,” but you should always be sure to connect your

components per its polarity. Most components are clearly marked, but

those that are not have a well-known arrangement. For example, the

positive pole (side) of an LED is the longer of the two legs is called the

anode, whereas the negative or shorter leg is called the cathode.

Despite the lower voltages, we mustn’t think that they are completely

harmless or safe. Incorrectly wiring electronics (reversing polarity) or

shorting (connecting positive and negative together) can damage your

electronics and in some cases cause overheating, which, in extreme cases,

causes electronics to catch fire.

Caution Don’t be tempted to think working with 3.3 or 5.5 volts
is “safe.” even a small amount of voltage improperly connected can
lead to potentially devastating results. Don’t assume low DC voltage
is harmless.

Chapter 5 eleCtroniCs for Beginners

https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc
https://learn.sparkfun.com/tutorials/alternating-current-ac-vs-direct-current-dc

230

Those warnings aside, I have deliberately kept the discussion on power

simple. There is far more to electrical current than what I’ve described

here, but enough to get started working with electronic components. Now,

let’s explore some of the more popular components.

 Electronic Components
Aside from learning how to use a multimeter and possibly learning to

solder, you also need to know something about the electronic components

available to build your projects. In this section, I provide a short list and

description of some of the common components in alphabetical order by

name that you will encounter when building electronics projects. I also

cover breakout boards and logic circuits, which are small circuits built

with a set of components that provide a feature or solve a problem. For

example, you can get breakout boards for USB host connections, Ethernet

modules, logic shifters, real-time clocks, and more.

 Button
A button (sometimes called a momentary button) is a mechanism that

makes a connection when pressed. More specifically, a button connects

two or more poles together while it is pressed. A common (and perhaps

overused) example of a button is a home doorbell. When pressed, it

completes a circuit that triggers a chime, bell, tone, or music to play. Some

older doorbells continue to sound while the button is pressed.

In electronics projects, we will use buttons to trigger events, start and

stop actions, and similar operations. A button is a simple form of a switch,

but unlike a switch, you must continue to press the button to make the

electrical connections. Most buttons have at least two legs (or pins) that

are connected when the button is pressed. Some have more than two legs

connected in pairs, and some of those can permit multiple connections.

Figure 5-12 shows several buttons.

Chapter 5 eleCtroniCs for Beginners

231

Figure 5-12. Momentary buttons

There is a special variant of a momentary button called a latching

momentary button. This version uses a notch or detent to keep the poles

connected until it is pushed again. If you’ve seen a button on a stereo or in

your car that remains depressed until pressed again, it is likely a latching

momentary button.

There are all kinds of buttons from those that can be used with

breadboards (the spacing of the pins allow it to be plugged into a

breadboard), can be mounted to a panel, or those made for soldering to

printed circuit boards.

 Capacitor
A capacitor is designed to store charges. As current flows through the

capacitor, it accumulates charge and can discharge after the current

is disconnected. In this way, it is like a battery, but unlike a battery, a

capacitor charges and discharges very fast. We use capacitors for all

manner of current storage from blocking current, reducing noise in power

supplies, in audio circuits, and more. Figure 5-13 shows several capacitors.

Chapter 5 eleCtroniCs for Beginners

232

Figure 5-13. Capacitors

There are several types of capacitors, but we will most often encounter

capacitors when building power supplies for electronics projects. Most

capacitors have two legs (pins) that are polarized. That is, one is positive

and the other negative. Be sure to connect the capacitor with the correct

polarity in your circuit.

 Diode
A diode is designed to allow current to flow in only one direction. Most are

marked with an arrow pointing to a line, which indicates the direction of

flow. A diode is often used as rectifiers in AC-to-DC converters (devices that

convert AC to DC voltage), used in conjunction with other components

to suppress voltage spikes, or protect components from reversed voltage.

Often, it is used to protect against current flowing into a device.

Most diodes are shaped like a small cylinder, are usually black with

silver writing, and have two legs. They look a little like resistors. We use

a special variant called a Zener diode in power supplies to help regulate

voltages. Figure 5-14 shows several Zener diodes.

Figure 5-14. Diodes

Chapter 5 eleCtroniCs for Beginners

233

 Fuse
A fuse is designed to protect a device (the entire circuit) from current

greater than what the components can safely operate. Fuses are placed

inline on the positive pole. When too much current flows through the fuse,

the internal parts trigger a break in the flow of current.

Some fuses use a special wire inside that melts or breaks (thereby

rendering it useless but protecting your equipment), while other fuses use

a mechanism that operates like a switch (many of these are resettable).

When this happens, we say the fuse has “blown” or “tripped.” Fuses are

rated at a certain current in amperage indicating the maximum amps that

the fuse will permit to flow without tripping.

Fuses come in many shapes and varieties and can work with AC or DC

voltage. Those we will use are of the disposable variety. Figure 5-15 shows

an example of two fuses: an automotive-style blade fuse on the left and a

glass cartridge fuse on the right.

Figure 5-15. Fuses

If you are familiar with the electrical panels in your home that house

the circuit breakers, they are resettable fuses. So, the next time one of them

goes “click” and the lights go out, you can say, “Hey, a fuse has tripped!”

Better still, now you know why – you have exceeded the maximum rating of

the circuit breaker.

This is probably fine in situations where you accidentally left that

infrared heater on when you dropped the toast and started the microwave

(it happens), but if you are tripping breakers frequently without any load,

you should call an electrician to have the circuit checked.

Chapter 5 eleCtroniCs for Beginners

234

 Light-Emitting Diode (LED)
As we learned in Chapter 3, an LED has two legs where the longer leg

is positive and the shorter negative. LEDs also have a flat edge that

also indicates the negative leg. They come in a variety of sizes ranging

from as small as 3mm to 10mm. Figure 5-16 shows an example of some

smaller LEDs.

Figure 5-16. Light-emitting diodes

Recall we also needed to use a resistor with an LED. We need this to

help reduce the flow of the circuit to lower the current flowing through the

LED. LEDs can be used with lower current (they will burn a bit dimmer

than normal) but should not be used with higher current.

To determine what size resistor we need, we need to know several

things about the LED. This data is available from the manufacturer who

provides the data in the form of a data sheet or, in the case of commercially

packaged products, lists the data on the package. The data we need

includes the maximum voltage, the supply voltage (how many volts are

coming to the LED), and the current rating of the LED.

Chapter 5 eleCtroniCs for Beginners

235

For example, if I have an LED like the one we used in the last chapter,

in this case a 5mm red LED, we find on Adafruit’s website (adafruit.com/

products/297) that the LED operates at 1.8–2.2V and 20mA of current.

Let’s say we want to use this with a 5V supply voltage. We can then take

these values and plug them into this formula:

R = (Vcc-Vf)/I

Using more descriptive names for the variable, we get the following:

Resistor = (Volts_supply - Volts_forward) / Desired_current

Plugging our data in, we get this result. Note that we have mA so we

must use the correct decimal value (divide by 1000). In this case, it is 0.020,

and we will pick a voltage in the middle:

Resistor = (5 - 2.0) / 0.020

 = 3.0 / 0.020

 = 150

Thus, we need a resistor of 150 Ohms. Cool. Sometimes, the formula

will produce a value that does not match any existing resistors. In that

case, choose one closest to the value but a bit larger. Remember, we want

to limit and thus err on the side of more restrictive than less restrictive.

For example, if you found you need a resistor of 95 Ohms, you can use one

rated at 100 Ohms, which is safer than using one rated at 90 Ohms.

Tip always err on the side of the more restrictive resistor when the
formula produces a value for which there is no resistor available.

Chapter 5 eleCtroniCs for Beginners

236

Also, if you use LEDs in serial or parallel, the formula is a little

different. See https://learn.adafruit.com/all- about- leds for more

information about using LEDs in your projects and calculating the size of

resistors to use with LEDs.

 Relay
A relay is an interesting component that helps us control higher voltages

with lower voltage circuits. For example, suppose you wanted to control

a device that is powered by 12V from your Pico, which only produces a

maximum of 3.3V. A relay can be used with a 3V circuit to turn on (or relay)

power from that higher source. In this example, we would use the Pico

output to trigger the relay to switch on the 12V power. Thus, relays are

a form of switch. Figure 5-17 shows a typical relay and how the pins are

arranged.

Figure 5-17. Relay

Relays can take a lot of different forms and typically have slightly

different wiring options such as where the supply voltage is attached and

where the trigger voltage attaches as well as whether the initial state is

open (no flow) or close (flow) and thus the behavior of how it controls

voltage. Some relays come mounted on a PCB with clearly marked

terminals for changing its switching feature and where everything plugs

in. If you want to use relays in your projects, always check the data sheet to

make sure you are wiring it correctly based on its configuration.

Chapter 5 eleCtroniCs for Beginners

https://learn.adafruit.com/all-about-leds

237

You can also use relays to allow your DC circuit to turn AC appliances

on and off like those from Adafruit (www.adafruit.com/product/2935).

 Resistor
A resistor is one of the standard building blocks of electronics. Its job is to

impede current and impose a reduction in voltage (which is converted to heat).

Its effect, known as resistance, is measured in ohms. A resistor can be used to

reduce voltage to other components, limiting frequency response, or protect

sensitive components from overvoltage. Figure 5-18 shows several resistors.

Figure 5-18. Resistors

When a resistor is used to pull up voltage (by attaching one end to

positive voltage) or pull down voltage (by attaching one end to ground)

(resistors are bidirectional), it eliminates the possibility of the voltage

floating in an indeterminate state. Thus, a pull-up resistor ensures that the

stable state is positive voltage, and a pull-down resistor ensures that the

stable state is zero voltage (ground).

 Switch
A switch is designed to control the flow of current between two or more

pins. Switches come in all manner of shapes, sizes, and packaging. Some

are designed as a simple on/off, while others can be used to change

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/product/2935

238

current from one set of pins to another. Like buttons, switches come in a

variety of mounting options from PCB (also called through hole) to panel

mount for mounting in enclosures. Figure 5-19 shows a variety of switches.

Figure 5-19. Various switches

Switches that have only one pole (leg or side) are called single-

pole switches. Switches that can divert current from one set of poles to

another set are called two-pole switches. Switches where there is only one

secondary connection per pole are called single-throw switches. Switches

that disconnect from one set of poles and connect to another while

maintaining a common input are called double-throw switches. These are

often combined and form the switch type (or kind) as follows:

• SPST: Single pole, single throw

• DPST: Double pole, single throw

• SPDT: Single pole, double throw

• DPDT: Double pole, double throw

• 3PDT: Three pole, double throw

Chapter 5 eleCtroniCs for Beginners

239

There may be other variants that you could encounter. I like to keep

it straight like this; if I have just an on/off situation, I want a single-throw

switch. How many poles depends on how many wires or circuits I want

to turn on or off at the same time. For double-throw switches, I use these

when I have an “A” condition and “B” condition where I want A on when B

is off and vice versa. I sometimes use multiple-throw switches when I want

“A,” “B,” and off situations where I use the center position (throw) as off.

You can be very creative with switches!

 Transistor
A transistor (a bipolar transistor) is designed to switch current on/off in

a cycle or amplify fluctuations in current. Interestingly, transistors used

to amplify current replaced vacuum tubes. If you are an audiophile, you

likely know a great deal about vacuum tubes. When a resistor operates in

switching mode, it behaves like a relay, but its “off” position still allows a

small amount of current to flow. Transistors are used in audio equipment,

signal processing, and switching power supplies. Figure 5-20 shows two

varieties of transistors.

Figure 5-20. Transistors

Transistors come in all manner of varieties, packaging, and ratings that

make them suitable for one solution or another.

Chapter 5 eleCtroniCs for Beginners

240

 Voltage Regulator
A voltage regulator (linear voltage regulator) is designed to keep the flow of

current constant. Voltage regulators often appear in electronics when we

need to condition or lower current from a source. For example, we want to

supply 5V to a circuit but only have a 9V power supply. Voltage regulators

accomplish this (roughly) by taking current in and dissipating the excess

current through a heat sink. Thus, voltage regulators have three legs:

positive current in, negative, and positive current out. They are typically

shaped like those shown in Figure 5-21, but other varieties exist.

Figure 5-21. Voltage regulators

The small hole in the plate that extends out of the voltage regulator is

where the heat sink is mounted. Voltage regulators are often numbered

to match their rating. For example, an LM7805 produces 5V, whereas an

LM7833 produces 3.3V.

An example of using a voltage regulator to supply power to a 3.3V

circuit on a breadboard is shown in Figure 5-22. This circuit was designed

with capacitors to help smooth or condition the power. Notice the

capacitors are rated with uF, which means microfarad.

Chapter 5 eleCtroniCs for Beginners

241

Figure 5-22. Power supply circuit on a breadboard with voltage
regulator

 Breakout Boards
We briefly discussed breakout boards in the last chapter. Recall, breakout

boards are our modular building blocks for electronics projects. They

typically combine several components together to form a function such

as measuring temperature, enabling reading GPS data, communicating

via cellular services, and more. Whenever you design a circuit or project,

you should consider using breakout boards as much as possible because

they simplify the use of the components. Figure 5-23 shows examples of

breakout boards.

Chapter 5 eleCtroniCs for Beginners

242

Figure 5-23. Breakout boards

For example, notice the breakout board on the left. This is a 128-bit

analog-to-digital converter (www.adafruit.com/product/1083). Adafruit

has designed this board so that all we need to do to use it is to attach

power and connect it to our Pico on its I2C bus. An I2C bus is a fast digital

protocol that uses two wires (plus power and ground) to read data from

circuits (or devices).

 Breadboard and Jumper Wires
A breadboard is a special tool designed to allow you to plug in your

electrical components and provide interconnectivity in columns so that

you can plug the leads of two components into the same column and

therefore make a connection. The board is split into two rows, making it

easy to use IC in the center of the board. Wires (called jumper wires or

simply jumpers) can be used to connect the circuit on the breadboard to

the Pico. You will see an example of this later in this chapter.

Figure 5-24 shows a half-sized breadboard from Adafruit. This

breadboard is called half since it is one half the normal length of a

standard breadboard.

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/product/1083

243

Figure 5-24. Half-sized breadboard (courtesy of adafruit.com)

If you already have some components or decide to buy a different

basic electronics kit that doesn’t come with a breadboard, you can buy a

breadboard separately from Adafruit (www.adafruit.com/products/64).

If you use a device with male header pins instead of female header

pins, you will need to get a different set of jumper wires. Once again,

Adafruit has what you need. If you need male/female jumper wires,

order the Premium Female/Male Extension Jumper Wires – 20 x 6 (www.

adafruit.com/products/1954). Figure 5-25 shows a set of male/female

jumper wires.

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/products/64
http://www.adafruit.com/products/1954
http://www.adafruit.com/products/1954

244

Figure 5-25. Male/female jumper wires (courtesy of adafruit.com)

 Basic Electronics Kit
The example projects in this book use several common electronic

components such as LEDs, switches, buttons, resistors, etc. One of the

biggest challenges when learning to work with electronics at the hobbyist

level is what to buy. I’ve talked to some who have made numerous trips to

the local electronics store to get what they need seeming to never have the

right components no matter what they buy.

Fortunately, electronics retailers have caught on to this problem and

now offer a basic electronics kit that contains many of the more common

components. Both Adafruit (www.adafruit.com/products/2975) and

SparkFun (www.sparkfun.com/products/13973) offer such kits. While you

cannot go wrong with either kit, I like the Adafruit kit best since it has more

components (e.g., more LEDs).

The Adafruit Parts Pal comes packaged in a small plastic case with a

host of electronic components. Figure 5-26 shows the Parts Pal kit.

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/products/2975
http://www.sparkfun.com/products/13973

245

Figure 5-26. Adafruit Parts Pal (courtesy of adafruit.com)

The kit includes the following components: prototyping tools, LEDs,

capacitors, resistors, some basic sensors, and more. In fact, there are more

components in this kit than what you will need for many experiments.

Better still, the kit costs only $19.95 making it a good deal (and the case is a

great bonus):

• 1x: Storage box with latch

• 1x: Half-sized breadboard

• 20x: Male/male jumper wires – 3" (75mm)

• 10x: Male/male jumper wires – 6" (150mm)

• 5x: 5mm diffused green LEDs

• 5x: 5mm diffused red LEDs

• 1x: 10mm diffused common anode RGB LED

Chapter 5 eleCtroniCs for Beginners

246

• 10x: 1.0uF ceramic capacitors

• 10x: 0.1uF ceramic capacitors

• 10x: 0.01uF ceramic capacitors

• 5x: 10uF 50V electrolytic capacitors

• 5x: 100uF 16V electrolytic capacitors

• 10x: 560 Ohm 5% axial resistors

• 10x: 1K Ohm 5% axial resistors

• 10x: 10K Ohm 5% axial resistors

• 10x: 47K Ohm 5% axial resistors

• 5x: 1N4001 diodes

• 5x: 1N4148 signal diodes

• 5x: NPN transistor PN2222 TO-92

• 5x: PNP transistor PN2907 TO-92

• 2x: 5V 1.5A linear voltage regulator – 7805 TO-220

• 1x: 3.3V 800mA linear voltage regulator –

LD1117-3.3 TO-220

• 1x: TLC555 wide-voltage range, low-power 555 timer

• 1x: Photocell

• 1x: Thermistor (breadboard version)

• 1x: Vibration sensor switch

• 1x: 10K breadboard trim potentiometer

• 1x: 1K breadboard trim potentiometer

• 1x: Piezo buzzer

Chapter 5 eleCtroniCs for Beginners

247

• 5x: 6mm tactile switches

• 3x: SPDT slide switches

• 1x: 40-pin break-away male header strip

• 1x: 40-pin female header strip

As you can see, there are a lot of components in this kit, making it ideal

for beginners. Now, let’s learn how to use a breadboard to build circuits.

 Using a Breadboard to Build Circuits
If you have been following along with the projects thus far in the book,

you have already encountered a breadboard to make a very simple

circuit. Recall from Chapter 3 that a breadboard is a tool we use to plug

components into to form circuits. Technically, we’re using a solderless

breadboard. A solder breadboard has the same layout only it has only

through-hole solder points on a PCB.

WHY ARE THEY CALLED BREADBOARDS?

in the grand old days of microelectronics and discrete components became

widely available for experimentation, when we wanted to prototype a circuit,

some would use a piece of wood with nails driven into it (sometimes in a

grid pattern) where connections were made (called “runs”) by wrapping wire

around the nails. some used a breadboard from the kitchen to build their wire

wrap prototypes. the name has stuck ever since.

A breadboard allows us to create prototypes for our circuits or simply

temporary circuits without having to spend the time (and cost) to make the

printed circuit board. Prototyping is the process of experimenting with a

circuit by building and testing your ideas. In fact, once we’ve got our circuit

Chapter 5 eleCtroniCs for Beginners

248

to work correctly, we can use the breadboard layout to help us design a

PCB. Figure 5-27 shows several breadboards.

Figure 5-27. Assorted breadboards

Recall that most breadboards (there are several varieties) have a center

groove (called a ravine) or a printed line down the center of the board.

This signifies the terminal strips that run perpendicular to the channel

are not connected. That is, the terminal strip on one side is not connected

to the other side. This allows us to plug integrated circuits (IC) or chips

that are packaged as two rows of pins. Thus, we can plug the IC into the

breadboard with one set of pins on each side of the breadboard. We see

this in the following example.

Most breadboards also have one or more sets of power rails that are

connected together parallel to the ravine. If there are two sets, the sets are

not connected together. The power rails may have a colored reference line,

Chapter 5 eleCtroniCs for Beginners

249

but this is only for reference; you can make either one positive with the

other negative. Finally, some breadboards number the terminal strip rows.

These are for reference only and have no other meaning. However, they

can be handy for making notes in your engineering notebook.

Should our circuits require more room than what is available on a

single breadboard, you can use multiple breadboards by simply jumping

the power rails and continuing the circuit. To facilitate this, some

breadboards can be connected using small nubs and slots on the side.

Finally, most breadboards also come with an adhesive backing that you

can use to mount on a plate or inside an enclosure or similar workspace. If

you decide to use the adhesive backing, be forewarned that they cannot be

unstuck easily – they stay put quite nicely.

Figure 5-28 shows the nomenclature of a breadboard and how the

terminal strips and power rails are connected together.

Figure 5-28. Breadboard layout

Note the sets of power rails are not connected together. if you
want to have power on both sides of the breadboard, you must use
jumpers to connect them.

Chapter 5 eleCtroniCs for Beginners

250

FRITZING: A BREADBOARDING SOFTWARE APPLICATION

the drawings of breadboards in this book were made with a program named

fritzing (http://fritzing.org/home/). this open source application

allows you to create a digital representation of a circuit on a breadboard. it is

quite handy to use. if you find yourself wanting to design a prototype circuit,

using fritzing can help save you a lot of trial and error. as a bonus, fritzing

allows you to see the same circuit in an electronic schematic or pCB layout

view. i recommend downloading and trying this application out.

It is sometimes desirable to test a circuit out separately from code. For

example, if we want to make sure all our devices are connected together

properly, we can use a breadboard power supply to power the circuit.

This way, if something goes horribly wrong, we don’t risk damaging

our Pico. Most breadboard power supplies are built on a small PCB

with a barrel jack for a wall wart power supply, two sets of pins to plug

into the power rails on the breadboard, and an off switch (very handy),

and some can generate different voltages. Figure 5-29 shows one of my

favorite breadboard power supplies from SparkFun (www.sparkfun.com/

products/13157).

Figure 5-29. Breadboard power supply

Chapter 5 eleCtroniCs for Beginners

http://fritzing.org/home/
http://www.sparkfun.com/products/13157
http://www.sparkfun.com/products/13157

251

Now that we know more about how breadboards work, let’s discuss the

component our electronics projects will employ to collect data: sensors.

 What Are Sensors?
A sensor is a device that measures phenomena of the physical world.

These phenomena can be things you see, like light, gases, water vapor,

and so on. They can also be things you feel, like temperature, electricity,

water, wind, and so on. Humans have senses that act like sensors, allowing

us to experience the world around us. However, there are some things

your sensors can’t see or feel, such as radiation, radio waves, voltage, and

amperage. Upon measuring these phenomena, it’s the sensors’ job to

convey a measurement in the form of either a voltage representation or

a number.

There are many forms of sensors. They’re typically low-cost devices

designed for a single purpose and with a limited capability for processing.

Most simple sensors are discrete components; even those that have more

sophisticated parts can be treated as separate components. Sensors

are either analog or digital and are typically designed to measure only

one thing. But an increasing number of sensor modules are designed to

measure a set of related phenomena, such as the USB Weather Board from

SparkFun Electronics (www.sparkfun.com/products/10586).

The following sections examine how sensors measure data, how to

store that data, and examples of some common sensors.

 How Sensors Measure
Sensors are electronic devices that generate a voltage based on the

unique properties of their chemical and mechanical construction. One

of the common misconceptions some have about sensors is they do not

manipulate the phenomena (change the event or data) they’re designed to

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/products/10586

252

measure. Rather, sensors sample some physical variable and turn it into a

proportional electric signal (voltage, current, digital, and so on).

For example, a humidity sensor measures the concentration of water

(moisture) in the air. Humidity sensors react to these phenomena and

generate a voltage that the microcontroller or similar device can then read

and use to calculate a value on a scale. A basic, low-cost humidity sensor

is the DHT-22 available from most electronics stores (www.adafruit.com/

product/385). Figure 5-30 shows a typical DHT-22 sensor.

Figure 5-30. DHT-22 humidity sensor

The DHT-22 is designed to measure temperature as well as humidity. It

generates a digital signal on the output (data pin). Although simple to use,

it’s a bit slow and should be used to track data at a reasonably slow rate (no

more frequently than about once every three or four seconds).

When this sensor generates data, that data is transmitted as a series

of high (interpreted as a 1) and low (interpreted as a 0) voltages that

the microcontroller can read and use to form a value. In this case, the

microcontroller reads a value 40 bits in length (40 pulses of high or low

voltage) – that is, 5 bytes – from the sensor and places it in a program

variable. The first two bytes are the value for humidity, the second two

are for temperature, and the fifth byte is the checksum value to ensure an

accurate read. Fortunately, all this hard work is done for you in the form of

a special library designed for the DHT-22 and similar sensors.

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/product/385
http://www.adafruit.com/product/385

253

The DHT-22 produces a digital value. Not all sensors do this; some

generate a voltage range instead. These are called analog sensors. Let’s

take a moment to understand the differences. This will become essential

information as you plan and build your sensor nodes.

 Analog Sensors

Analog sensors are devices that generate a voltage range, typically between

0 and 5 volts. An analog-to-digital circuit is needed to convert the voltage

to a number. But it isn’t that simple (is it ever?). Analog sensors work like

resistors and, when connected to GPIO pins, often require another resistor

to “pull up” or “pull down” the voltage to avoid spurious changes in voltage

known as floating. This is because voltage flowing through resistors is

continuous in both time and amplitude.

Thus, even when the sensor isn’t generating a value or measurement,

there is still a flow of voltage through the sensor that can cause spurious

readings. Your projects require a clear distinction between OFF (zero

voltage) and ON (positive voltage). Pull-up and pull-down resistors ensure

that you have one of these two states. It’s the responsibility of the A/D

converter to take the voltage reading from the sensor and convert it to a

value that can be interpreted as data.

When sampled (when a value is read from a sensor), the voltage

reading must be interpreted as a value in the range specified for the given

sensor. Remember that a value of, say, 2 volts from one analog sensor

may not mean the same thing as 2 volts from another analog sensor. Each

sensor’s data sheet shows you how to interpret these values.

As you can see, working with analog sensors is a lot more complicated

than using the DHT-22 digital sensor. With a little practice, you will find

that most analog sensors aren’t difficult to use once you understand how

to attach them to a microcontroller and how to interpret their voltage on

the scale in which the sensor is calibrated to work.

Chapter 5 eleCtroniCs for Beginners

254

 Digital Sensors

Digital sensors like the DHT-22 are designed to produce a string of bits

using serial transmission (one bit at a time). However, some digital sensors

produce data via parallel transmission (one or more bytes at a time). As

described previously, the bits are represented as voltage, where high

voltage (say, 5 volts) or ON is 1 and low voltage (0 or even –5 volts) or OFF

is 0. These sequences of ON and OFF values are called discrete values

because the sensor is producing one or the other in pulses – it’s either

ON or OFF.

Digital sensors can be sampled more frequently than analog signals

because they generate the data more quickly and because no additional

circuitry is needed to read the values (such as A/D converters and logic

or software to convert the values to a scale). Thus, digital sensors are

generally more accurate and reliable than analog sensors. But the accuracy

of a digital sensor is directly proportional to the number of bits it uses for

sampling data.

The most common form of digital sensor is the pushbutton or

switch. What, a button is a sensor? Why, yes, it’s a sensor. Consider for a

moment the sensor attached to a window in a home security system. It’s

a simple switch that is closed when the window is closed and open when

the window is open. When the switch is wired into a circuit, the flow of

current is constant and unbroken (measuring positive volts using a pull-

up resistor) when the window is closed and the switch is closed, but the

current is broken (measuring zero volts) when the window and switch are

open. This is the most basic of ON and OFF sensors.

Most digital sensors are small circuits of several components designed

to generate digital data. Unlike analog sensors, reading their data is easy

because the values can be used directly without conversion (except to

other scales or units of measure). Some may suggest this is more difficult

than using analog sensors, but that depends on your point of view.

Chapter 5 eleCtroniCs for Beginners

255

An electronics enthusiast would see working with analog sensors as easier,

whereas a programmer would think digital sensors are simpler to use.

Now let’s look at some of the sensors available and the types of

phenomena they measure.

 Examples of Sensors
An electronics project that observes something may use at least one sensor

and requires a means to read and interpret the data need from the sensor.

You may be thinking of all manner of useful things you can measure in

your home or office, or even in your yard or surroundings. You may want to

measure the temperature changes in your new sunroom, detect when the

mail carrier has tossed the latest circular in your mailbox, or perhaps keep

a log of how many times your dog uses his doggy door. I hope that by now

you can see these are just the tip of the iceberg when it comes to imagining

what you can measure.

What types of sensors are available? The following sections describe

some of the more popular sensors and what they measure. I also provide

a few hints on how you might want to use the sensor in an electronics

project. However, this is just a sampling of the growing array of sensors

available. Perusing the catalogs of online electronics vendors like Mouser

Electronics (www.mouser.com), SparkFun Electronics (www.sparkfun.com),

and Adafruit Industries (www.adafruit.com) will reveal many more examples.

I also include photos of popular examples for some of the sensor types.

 Accelerometers

These sensors measure the motion or movement of the sensor or whatever

it’s attached to. They’re designed to sense motion (velocity, inclination,

vibration, and so on) on several axes. Some include gyroscopic features.

Most are digital sensors. A Wii Nunchuck (or WiiChuck) contains a

sophisticated accelerometer for tracking movement. Aha! Now you know

Chapter 5 eleCtroniCs for Beginners

http://www.mouser.com
http://www.sparkfun.com
http://www.adafruit.com

256

the secret of those funny little thingamabobs that came with your Wii!

You may want to add accelerometers if your project involves something in

motion and the observation of that motion provides useful information.

 Audio Sensors

Perhaps this is obvious, but microphones are used to measure sound. Most

are analog, but some of the better security and surveillance sensors have

digital variants for higher compression of transmitted data. Electronics

projects such as home security, child monitoring, ghost hunting, or

auditory health can all benefit from integrating audio sensors.

 Barcode Readers

These sensors are designed to read barcodes. Most often, barcode readers

generate digital data representing the numeric equivalent of a barcode.

Such sensors are often used in inventory tracking systems to track

equipment through a plant or during transport. They’re plentiful, and

many are economically priced, enabling you to incorporate them into your

own projects. If your project requires capturing data from an object, you

may want to consider barcodes.

For example, if you want to sense when parking lot subscribers enter or

exit an unattended parking lot, you could position a barcode reader at the

gates that read barcodes that you design and distribute to your subscribers.

When the car pulls up to the gate, the barcode reader can read the barcode,

log the entry, and raise the gate. If you’ve ever lived in a large city, worked

in a controlled office complex, or were a commuter student, you may have

encountered parking solutions like this.

 Biometric Sensors

A sensor that reads fingerprints, irises, or palm prints contains a special

sensor designed to recognize patterns. Given the uniqueness inherent

Chapter 5 eleCtroniCs for Beginners

257

in patterns such as fingerprints and palm prints, they make excellent

components for a secure access system. Most biometric sensors produce

a block of digital data that represents the fingerprint or palm print.

Electronics projects that require a greater level of security may want to

include a biometric sensor to help identify the user of the system.

 Capacitive Sensors

A special application of capacitive sensors, pulse sensors are designed

to measure your pulse rate and typically use a fingertip for the sensing

site. Special devices known as pulse oximeters (called pulse-ox by some

medical professionals) measure the pulse rate with a capacitive sensor and

determine the oxygen content of blood with a light sensor.

If you own modern electronic devices, you may have encountered

touch-sensitive buttons that use special capacitive sensors to detect touch

and pressure. If your project needs to measure any sort of movement, or

respond to touch, capacitive sensors can help provide a futuristic non-

tactile interface. The Touch Bar on the latest MacBook Pro is an example of

such a solution.

Figure 5-31 shows two examples of touch-sensitive modules that

you can buy from Adafruit. In this case, we see breakout boards for a

momentary switch (www.adafruit.com/products/1374) and a toggle

switch (www.adafruit.com/products/1375).

Figure 5-31. Touch capacitive sensor breakout boards

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/products/1374
http://www.adafruit.com/products/1375

258

 Coin Sensors

This is one of the most unusual types of sensors. These devices are like

the coin slots on a typical vending machine. Like their commercial

equivalent, they can be calibrated to sense when a certain size of coin

is inserted. Although not as sophisticated as commercial units that can

distinguish fake coins from real ones, coin sensors can be used to add

a new dimension to your projects. A great, practical project for parents

would be a coin-operated WiFi station where the children have to buy their

own Internet time. Not only will this keep them from using the Internet

too much, but it may also help teach them how to budget their allowance.

Now, that should keep the kids from spending too much time on the

Internet!

 Current Sensors

These are designed to measure voltage and amperage. Some are designed

to measure change, whereas others measure load. Electronics projects

that integrate circuits or need to monitor the flow of electricity will need a

current sensor. These may be some of the more esoteric projects, but you

can use these sensors to monitor the behavior of existing solutions without

modifying them.

For example, if you wanted to adapt sensors to observe a

manufacturing machine, you could add sensors that monitor the current

to the various components. That is, you may be able to record when

voltage is applied to motors, actuators, or even warning lights to determine

when (or how much) the devices are activated. However, as a hobbyist, you

are more likely interested in building your own multimeter or similar tool.

 Flex/Force Sensors

Resistance sensors measure flexes in a piece of material or the force or

impact of pressure on the sensor. Flex sensors may be useful for measuring

Chapter 5 eleCtroniCs for Beginners

259

torsional effects or measuring finger movements (like in a Nintendo

Power Glove). Flex sensor resistance increases when the sensor is flexed.

For example, if you want to create an electronics project that reports your

fishing experience in real time, you might want to use a flex sensor on your

fishing rod to report every time you cast or got a hit on your lure.

 Gas Sensors

There are a great many types of gas sensors. Some measure potentially

harmful gases such as LPG and methane and other gases such as

hydrogen, oxygen, and so on. Other gas sensors are combined with light

sensors to sense smoke or pollutants in the air. The next time you hear that

telltale and often annoying low-battery warning beep from your smoke

detector, think about what that device contains. Why, it’s a sensor node!

If your project needs to observe or detect any form of gas, especially if it

involves reacting to certain gases or levels thereof, you will need to use the

appropriate gas sensors.

 Light Sensors

Sensors that measure the intensity or lack of light are special types

of resistors: light-dependent resistors (LDRs), sometimes called

photoresistors or photocells. Thus, they’re analog by nature.

If you own a Mac laptop, chances are you’ve seen a photoresistor

in action when your illuminated keyboard turns itself on in low light.

Special forms of light sensors can detect other light spectrums such as

infrared (as in older TV remotes). For example, if you want your project

to automatically adjust the brightness of its display, a light sensor is the

component you need.

The following shows two examples of light sensors. Figure 5-32

shows a typical mini photocell (www.sparkfun.com/products/9088) and

Figure 5-33 shows a color sensor (www.adafruit.com/products/1334).

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/products/9088
http://www.adafruit.com/products/1334

260

Figure 5-32. Mini photocell

Figure 5-33. Color sensor breakout board

 Liquid Flow Sensors

These sensors resemble valves and are placed inline in plumbing systems.

They measure the flow of liquid as it passes through. Basic flow sensors

use a spinning wheel and a magnet to generate a Hall effect (rapid ON/

OFF sequences whose frequency equates to how much water has passed).

If your electronics project involves any form of liquid such as a garden

pond or irrigation system, knowing the flow of the water may be helpful in

learning or observing something.

Chapter 5 eleCtroniCs for Beginners

261

 Liquid-Level Sensors

A special resistive solid-state device can be used to measure the relative

height of a body of water. One example generates low resistance when the

water level is high and higher resistance when the level is low. Like liquid

flow sensors, liquid-level sensors are typically used in the same solution.

Figure 5-34 shows a typical liquid-level sensor that operates as a switch

where the float closes the switch when the water level rises.

Figure 5-34. Water-level sensor

 Location Sensors

Modern smartphones have GPS sensors for sensing location, and of course

GPS devices use the GPS technology to help you navigate. Fortunately,

GPS sensors are available in low-cost forms, enabling you to add location

sensing to your project. GPS sensors generate digital data in the form of

longitude and latitude, and most can also sense altitude. If your project

needs to report its location, a GPS sensor can give you very accurate

readings. However, like most sensors, GPS sensors can have a degree of

inaccuracy. Depending on how close you need to locate something, you

may need to spend a bit more on a more accurate GPS sensor.

Chapter 5 eleCtroniCs for Beginners

262

 Magnetic Stripe Readers

These sensors read data from magnetic stripes (like that on a credit card)

and return the digital form of the alphanumeric data (the actual strings).

Electronics projects that include a security component may want to use

a magnetic stripe reader to help identify a user. When combined with a

password and a biometric sensor, security can be increased considerably.

That is, someone would have to know something (a password or pin),

possess something (security card with a magnetic stripe encoded with

a key phrase, number, user ID, etc.), and be validated as someone

(fingerprint) before gaining access.

 Magnetometers

These sensors measure orientation via the strength of magnetic fields.

A compass is a sensor for finding magnetic north. Some magnetometers

offer multiple axes to allow even finer detection of magnetic fields. This

is another sensor that you may not encounter very often, but if your

project needs to measure magnetic fields from motors or atmospheric

phenomena, you may want to look at magnetometers.

 Moisture Sensors

Moisture sensors measure the amount of moisture in a substance (such as

soil) or in the air. They typically send data in the form of a voltage reading

where low values indicate less moisture. You often find moisture sensors

in atmospheric projects or even plant monitoring solutions. Figure 5-35

shows a typical soil moisture sensor. Notice the prongs are the portion of

the sensor inserted into the soil.

Chapter 5 eleCtroniCs for Beginners

263

Figure 5-35. Soil moisture sensor

 Proximity Sensors

Often thought of as distance sensors, proximity sensors use infrared or

sound waves to detect distance, movement, or the range to/from an object.

Made popular by low-cost robotics kits, the Parallax Ultrasonic Sensor uses

sound waves to measure distance by sensing the amount of time between

the pulse sent and the pulse received (the echo). For approximate distance

measuring, it’s a simple math problem to convert the time to distance. If

you’re building an electronics project that detects movement or proximity

such as a motion sensing camera, you may want to use proximity sensors.

The following figures show two types of proximity sensors. Figure 5-36

shows a popular passive infrared sensor (PIR) motion sensor

(www.sparkfun.com/products/13285).

Figure 5-36. PIR motion sensor

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/products/13285

264

Figure 5-37 shows an ultrasonic sensor (www.sparkfun.com/

products/13959) used in many projects from robots to drones.

Figure 5-37. Ultrasonic proximity sensor

 Radiation Sensors

Among the more serious sensors are those that detect radiation. This can

also be electromagnetic radiation (there are sensors for that too), but a

Geiger counter uses radiation sensors to detect harmful ionizing. In fact,

it’s possible to build your very own Geiger counter using a sensor and

an Arduino (and a few electronic components). This is one sensor that

you may not encounter as a hobbyist. However, there are several kits for

building your own Geiger counter such as those from Adafruit

(www.adafruit.com/products/483).

 RFID Sensors

Radio frequency identification uses a passive device (sometimes called

an RFID tag) to communicate data using radio frequencies through

electromagnetic induction. For example, an RFID tag can be a credit card–

sized plastic card, a label, or something similar that contains a special

antenna, typically in the form of a coil, thin wire, or foil layer that is tuned

to a specific frequency.

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/products/13959
http://www.sparkfun.com/products/13959
http://www.adafruit.com/products/483

265

When the tag is placed near the reader, the reader emits a radio

signal; the tag can use the electromagnet energy to transmit a nonvolatile

message embedded in the antenna, in the form of radio signals, which

is then converted to an alphanumeric string. RFID sensors are another

good choice for security systems. If you have pets, you may want to visit

your veterinarian to inquire about RFID sensors that act as hidden owner

identification tags. If you know the frequency, you can even use it to help

detect when your pet goes through a pet door. Figure 5-38 shows an RFID

reader (sensor) that you can use to read RFID tags via USB (www.sparkfun.

com/products/9963).

Figure 5-38. RFID reader

 Speed Sensors

Like flow sensors, simple speed sensors like those found on many bicycles

use a magnet and a reed switch to generate a Hall effect. The frequency

combined with the circumference of the wheel can be used to calculate

speed and, over time, distance traveled. If your project needs to read

movement, you can use a magnetic switch and a magnet to detect rotation.

For example, bicycle speedometers often use a magnet and magnetic

switch to detect the number of rotations, circumference of the wheel, and

frequency of the actions to calculate speed.

Chapter 5 eleCtroniCs for Beginners

http://www.sparkfun.com/products/9963
http://www.sparkfun.com/products/9963

266

 Switches and Pushbuttons

These are the most basic of digital sensors used to detect if something is

set (ON) or reset (OFF). Even so, you can use switches and buttons to build

a user interface, for controlling other devices, or even turning the thing on!

 Tilt Switches

These sensors can detect when a device is tilted one way or another.

Although very simple, they can be useful for low-cost motion detection

sensors. They are digital and are essentially switches. If your project needs

to detect when the device is leaning, you can use tilt sensors to trigger at a

certain lean angle. For example, some modern motorcycles use tilt sensors

to turn on cornering lights – headlamps angled to improve vision around a

turn at night.

 Touch Sensors

The touch-sensitive membranes formed into keypads, keyboards, pointing

devices, and the like are an interesting form of sensor. You can use touch-

sensitive devices like these for collecting data from humans. Touch sensors

can help you build a user interface for your project that can be presented

in a low-profile form or to save space in a console, project box, etc.

 Video Sensors

As mentioned previously, it’s possible to obtain very small video sensors

that use cameras and circuitry to capture images and transmit them as

digital data. If you want to incorporate a video element to your project such

as a security solution, you can add a camera or video sensor to capture a

visual component that can help provide information beyond the incident

measurements. That is, you can review a photo and learn more than

Chapter 5 eleCtroniCs for Beginners

267

simply something moved or approached the device. For example, you can

build a project that detects movement and takes a photo if something gets

close enough or, perhaps, moves faster than a certain threshold.

 Weather Sensors

Sensors for temperature, barometric pressure, rain fall, humidity, wind

speed, and so on are all classified as weather sensors. Most generate

digital data and can be combined to create comprehensive environmental

solutions. Figure 5-39 shows a common breakout board for the BMP280

pressure and temperature sensor (www.adafruit.com/products/2651).

Figure 5-39. BMP280 pressure and temperature sensor

With this and other easy-to-use sensors, it’s possible to build your own

weather station from about a dozen inexpensive sensors!

Tip if you want to see more sensors, you can purchase any number
of sensors from adafruit (www.adafruit.com/category/35) or
sparkfun (www.sparkfun.com/categories/23).

Chapter 5 eleCtroniCs for Beginners

http://www.adafruit.com/products/2651
http://www.adafruit.com/category/35
http://www.sparkfun.com/categories/23

268

 Electronics Resources
If you find you need or want to learn more about electronics that I’ve

presented in this chapter or you want to learn more about the electronics

you will need for a more advanced project, you may want to consider

taking a course at a community college or try a self-paced course on

electronics.

One of the best self-paced courses I’ve found includes the set of

electronics books by Charles Platt. I’ve found these books to be very well

written opening the door for many to learn electronics without having

to spend years learning the tedious (but no less important) theory and

mathematics of electronics. Best of all, they are not written in the dreary

textbook fact-fact-fact-question pace. They are written by a world-

renowned expert with a gift of presenting the material in an easy to read

and comprehend style. I recommend the following books for anyone

wanting to learn more about electronics:

• Make: Electronics, Third Edition (O’Reilly, 2021),

Charles Platt

• Make: More Electronics (O’Reilly, 2014), Charles Platt

• Encyclopedia of Electronic Components Volume 1

(O’Reilly, 2012), Charles Platt

• Encyclopedia of Electronic Components Volume 2

(O’Reilly, 2014), Charles Platt

• Encyclopedia of Electronic Components Volume 3

(O’Reilly, 2016), Charles Platt

The third volume in his encyclopedia series includes an in-depth study

of sensors, a must for advanced electronics projects.

Chapter 5 eleCtroniCs for Beginners

269

 Summary
Learning how to work with electronics as a hobby or to create an

electronics project does not require a lifetime of study or a change of

vocation. Indeed, learning how to work with electronics is all part of the

fun of experimenting with the Pico! I have met many people who have

learned electronics on their own, and while most will admit formal study

is essential for mastering the topic, you can learn quite a lot on your

own – enough to become proficient working with the basic electronic

components typically found in electronics projects.

This chapter presented the basics of electronic components including

the use of breadboards, common components, and example circuits.

This and a bit of key knowledge of how to use a multimeter will get you a

long way toward becoming proficient with electronics. We also learned

about one of the key components of an electronics project – sensors. We

discovered two ways they communicate (digital and analog) and a bit of

what types of sensors are available.

In the next chapter, we will dive into our first electronics project –

the equivalent of a “hello, world!” project for your Pico. We’ll see how to

connect our Pico to a few components and write a MicroPython program

to control them. Cool!

Chapter 5 eleCtroniCs for Beginners

271

CHAPTER 6

Project: Hello, World!
MicroPython Style
Here, we are at the most fun part of this book – working on MicroPython

projects! It is at this point that we have learned how to write in

MicroPython and now know a lot more about the hardware and even how

to use discrete electronics and breakout boards.

This chapter represents an introduction to building MicroPython

projects. As such, there are a few more things we need to learn including

techniques and procedures for installing and running our projects on our

MicroPython boards. This chapter will introduce those things you need

to make your MicroPython projects successful. Thus, the chapter is a bit

longer and should be considered required reading even if you do not plan

to implement the project.

As you will see, the format for all the project chapters is the same;

an overview of the project is presented followed by a list of the required

components and how to assemble the hardware. Once we have a grasp of

how to connect the hardware, we then see how to connect everything and

begin writing the code. Each chapter will close with how to execute the

project along with a sample of it running and suggestions for embellishing

the project.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_6

https://doi.org/10.1007/978-1-4842-8135-2_6

272

Before we jump into our first electronics project for the Pico, let’s

discuss a few best practices and other practical advice for developing

projects. These apply to all projects in this chapter and likely any future

project you may have in mind.

 Getting Started with Pico Projects
If you have never worked with microcontrollers before, you have no knowledge

of building electronics projects, or you are not familiar with the hardware on the

Pico, you may be wondering how to get started building such projects.

In this section, we will see some helpful tips and best practices for how

to get started working with the Pico hardware. Most of this advice applies

to any electronics or microcontroller project. They are included here for

the beginner and those that need a refresher.

 One Step at a Time!
Another very common mistake beginners make is sitting down and wiring

all of their electronics together and then writing all their code in one pass

without testing anything ahead of time. This creates a situation where if

something doesn’t work, it can be masked by a host of problems.

For example, if there is some logic error or data produced is incorrect,

it may cause other parts of the project to fail or produce incorrect results.

This is made worse when the project doesn’t work at all – there are too

many parts to try and diagnose what went wrong. This often places

beginners in a desperate situation of confusion and frustrations. You

students out there know exactly what I am talking about.

This can be avoided easily by building your project one step at a

time. That is, build your project one aspect at a time. For example, if

you’re working with LEDs to signal something, get that part working first.

Similarly, if you’re reading data from a sensor, ensure you can do that

correctly in isolation before wiring it all together and hoping it all works.

Chapter 6 projeCt: hello, World! MiCropython Style

273

Even the very experienced can make this mistake, but they are more

equipped to fix it if something goes wrong (and they know better, but it’s a

“do as I say not as I do” situation). We will build the examples in this book

one step at a time. Some are small enough that there may be only one step,

but the practice is one you should heed for any project you undertake.

 Some Assembly Required
Some vendors offer Pico and breakout boards with and without headers

soldered. Not soldering the headers saves on production and in some

cases shipping costs and makes the boards a bit cheaper. If you know how

to solder (or know someone who does), you may be able to save a little

going with the boards without headers.

Another reason you may want a board without headers is if you want to

install your board in a project enclosure or some other form of embedded

installation. In this case, having the headers soldered may take up more

space that you have or make the completed project a bit bulkier.

You may also encounter some add-on boards, breakout boards, or other

discrete components that are not soldered with headers (or connectors).

If you want to use these, you may have to solder the header or connector

yourself. For example, most of the breakout boards from Adafruit (adafruit.

com) and SparkFun (sparkfun.com) do not come with the headers soldered.

 Handle with Care!
You should consider your Pico as a very sensitive device susceptible to

electrostatic discharge (ESD). Unless you place your board in a case or

on a nonmetal surface, you should handle your board carefully, always

placing it on a nonconductive surface before powering it on. ESD can be

caused by many things (think back to when you were a child with sneakers

on carpet). This discharge can harm the board. Always ensure you handle

your board so that ESD is controlled and minimized.

Chapter 6 projeCt: hello, World! MiCropython Style

274

You should also never move the board when it is powered on. Why?

The board has components soldered on with many pins exposed on

both sides. Should any two or more of those pins touch something that

conducts electricity, you can risk damaging the board.

Also, always store your board in an ESD safe container – one that is

expressly made to store electronics. Your average, everyday inexpensive

plastic box should be avoided (many generate static electricity when

handled). However, if you do not have a container made for electronics,

you can use static-free bags to place the board in while it is being stored.

Many of the boards and components you buy come in such packaging. So,

don’t throw it away!

You should take care to make sure your body, your workspace, and

your project are grounded to avoid electrostatic discharge (ESD). ESD can

damage your electronics – permanently. The best way to avoid this is to use

a grounding strap that loops around your wrist and attaches to an antistatic

mat like these: uline.com/BL_7403/Anti-Static-Table-Mats.

Finally, be extra careful when connecting your USB cable to your

board. The micro-USB connector is prone to breakage (more so than other

connectors). In most cases, it is not the cable that breaks but the connector

on the board itself. When this happens, it can be very difficult to repair

(or may not be repairable). It is also possible that the cable itself will stop

working or only work when you hold the cable in place. If this happens, try

a new cable, and if that fixes the problem, throw the old one away. If it does

not fix the problem, it may be the connector on the board. Fortunately,

extra care when plugging and unplugging the cable can avoid these issues.

For example, always plug the micro-USB side first and use the full-sized

USB end to plug and unplug from your PC. The fewer times you use the

micro-USB connector, the less chance you have of damaging it.

Now, let’s get started on our very first MicroPython project!

Chapter 6 projeCt: hello, World! MiCropython Style

275

 Overview
In this chapter, we will design and build a MicroPython clock. We will use

both an SPI and I2C breakout board. We will use a small organic light-

emitting diode (OLED) display that uses an SPI interface and a hardware-

based real-time clock (RTC) that uses the DS1307 chip and a battery for

keeping time while the project is turned off. Rather than simply connecting

to a network time protocol (NTP) server on the Internet, we will use

the hardware-based RTC and display the current date and time on the

small OLED display. This not only keeps the project a bit smaller but also

demonstrates how to use an RTC for projects that may not be connected to

the Internet.

While the Pico has a hardware RTC, it must be initialized each time

you connect the board to your PC (via Thonny or rshell), making it less

than ideal for a project that you power on periodically. To make it possible

for the Pico to know what time it is even after being powered off and on

again without connecting to your PC, we will use an external RTC.

As you will see, there is a fair amount of wiring needed, and an

understanding of the hardware capabilities is required to write the

code. Which is why we spent time in previous chapters talking about the

firmware and various low-level hardware control. You will need those skills

and knowledge to complete this project.

While a clock may sound rather simple, this project will walk you

through all the steps needed to assemble the hardware and write the

code. Further, the project is small and simplistic, so we can focus on the

process, which we can then apply to more advanced projects. In fact, we

will see that even a relatively simple project can have an unexpected level

of difficulty. But don’t worry, as this chapter documents all the things you

need to do to complete the project.

The sources for this project are many. The following links include

background data used for this project including documentation and links

Chapter 6 projeCt: hello, World! MiCropython Style

276

to the MicroPython library (also called a driver) we will need to download

for this project:

• OLED display information: https://learn.adafruit.

com/monochrome-oled-breakouts/wiring-128x32-

spi-oled-display

• OLED display library: https://github.com/adafruit/

micropython-adafruit-ssd1306

• RTC breakout board documentation: https://learn.

adafruit.com/ds1307-real-time-clock-breakout-

board-kit

• RTC library: https://github.com/adafruit/

Adafruit-uRTC

Note the adafruit Micropython libraries are marked as deprecated,
which only means no one is actively maintaining them; however, they
will work with your pico board without modification.

Notice the sites used. A good practice is to start with the Adafruit

and MicroPython learning, blobs, and forums. Then check out the

libraries. That is, do the research first and find all the references you

can. If you find nice tutorials like those from Adafruit or SparkFun, you

may want to download them to your PC or tablet or print them out for

later reading. More importantly, take the time to read the references so

that you understand as much as you can before you start working with

the hardware or writing your code. You can save yourself a lot of time by

understanding simple things like how to wire your board to the device and

how the library is expected to be used.

Chapter 6 projeCt: hello, World! MiCropython Style

https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display
https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/micropython-adafruit-ssd1306
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit
https://github.com/adafruit/Adafruit-uRTC
https://github.com/adafruit/Adafruit-uRTC

277

WHICH LIBRARY DO I USE?

you may encounter a situation where you find more than one library for the

hardware you want to use. in fact, i found several libraries for the oled

display. the differences among them are subtle, and it appears at least one

does not support text, another is written for a specific platform, and another is

written in C++ for the pico.

the one listed earlier is the best one to use. even so, it needs some minor

changes for use. i will show you those changes, and, as you will see, they are

not too difficult to spot and fix (e.g., when Micropython throws exceptions, it

will show you the source of the issue).

if you encounter a similar situation – having more than one library to choose

from – you may want to try each until you find one that works best for your

hardware and project. Sometimes, and in this case it is true, one library may

not be viable, or another may be lacking features you need. the trick is to find

the library that works best with the least amount of modification.

Now let’s see what components are needed for this project, and then

we will see how to wire everything together.

 Required Components
Table 6-1 lists the components you will need in addition to your Pico board.

You can purchase the components separately from Adafruit (adafruit.com),

SparkFun (sparkfun.com), or any electronics store that carries electronic

components. Links to vendors are provided should you want to purchase the

components. When listing multiple rows of the same object, you can choose

one or the other – you do not need both. Also, you may find other vendors

that sell the components. You should shop around to find the best deal.

Costs shown are estimates and do not include any shipping costs.

Chapter 6 projeCt: hello, World! MiCropython Style

278

Table 6-1. Required Components

Component Qty Description Cost Links

oled display 1 ssd1306-based Spi

display

$17.5 www.adafruit.com/

product/661

rtC breakout

board

1 rtC module with

battery backup

$15.95 www.sparkfun.com/

products/12708

$7.50 www.adafruit.com/

product/3296

Breadboard 1 prototyping board, full-

sized

$5.95 www.sparkfun.com/

products/12615

$5.95 www.adafruit.com/

product/239

jumper wires 11 M/M jumper wires, 7”

(set of 30)

$2.25 www.sparkfun.com/

products/12615

M/M jumper wires,

6” (set of 20)

$1.95 www.adafruit.com/

product/1950

Coin cell battery 1 Cr1225 (SparkFun

rtC)

$1.95 www.sparkfun.com/

products/337

Cr1220 (adafruit rtC) $0.95 www.adafruit.com/

product/380

The OLED breakout board used in this project is a small module

from Adafruit. It has a tiny but bright display that you can mount on the

breadboard. The resolution is 128 pixels wide by 32 pixels high. The OLED

breakout board comes without headers installed, but they are easy to

add if you know how to solder (now might be a good time to practice), or

you can get a friend to help you. Figure 6-1 shows the Adafruit OLED SPI

breakout board.

Chapter 6 projeCt: hello, World! MiCropython Style

http://www.adafruit.com/product/661
http://www.adafruit.com/product/661
http://www.sparkfun.com/products/12708
http://www.sparkfun.com/products/12708
http://www.adafruit.com/product/3296
http://www.adafruit.com/product/3296
http://www.sparkfun.com/products/12615
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/239
http://www.adafruit.com/product/239
http://www.sparkfun.com/products/12615
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/1950
http://www.adafruit.com/product/1950
http://www.sparkfun.com/products/337
http://www.sparkfun.com/products/337
http://www.adafruit.com/product/380
http://www.adafruit.com/product/380

279

Figure 6-1. Monochrome 128x32 SPI OLED graphic display (courtesy
of adafruit.com)

There are several OLED breakout boards available, and so long as they

have the SPI interface and use the ssd1306 controller chip (the description

will tell you this), you can use an alternate OLED display. The reason we

need to use one with that controller chip is because the library is written

for that controller. Other controller chips will require a different library.

The RTC breakout board used in this project is a DS1307 breakout

board from Adafruit. The board also comes without headers installed (but

includes them), nor does it come with a battery, so you must purchase

a CR1220 coin cell battery. Adafruit has those as well if you want to save

yourself a trip to the store. Figure 6-2 shows the RTC breakout board.

Figure 6-2. DS1307 real-time clock assembled breakout board
(courtesy of adafrui.com)

Chapter 6 projeCt: hello, World! MiCropython Style

280

There are several DS1307 RTC clocks available. In fact, SparkFun has

one, or you can build your own! See the sidebar “Building Your Own RTC

Module” for more details. Fortunately, the library we will use supports

breakout boards with DS1307, DS3231, or PCF8523 RTC chips.

Tip Small, discrete components like leds, resistors, etc. and
even jumper wires and breadboards can be found in the kits
mentioned in Chapter 2 – the adafruit parts pal (www.adafruit.
com/product/2975) or the SparkFun Beginner parts Kit (www.
sparkfun.com/products/13973). i recommend one of these kits.

Now, let’s see how to wire the components together.

 Set Up the Hardware
This project has a lot of connections. There are seven needed for the OLED

and four needed for the RTC. To help keep things easier, we will plan for

how things should connect. We will use a full-sized breadboard to mount

the breakout boards making the connections easier. We will use male/male

jumper wires to make these connections via a breadboard.

But first, we will learn what connections are needed for each

component and where they need to be connected to our board, writing

them down to keep things straight. Doing this small amount of homework

will save you time later (and a small bit frustration).

As you will see, mapping out the connections like this makes it easy to

check the connections. This table along with a wiring drawing is the tool

you will see in this book and other example projects on the Internet or

elsewhere. Thus, learning how to read maps and wiring drawings is a skill

you should have to make your project successful.

Chapter 6 projeCt: hello, World! MiCropython Style

10.1007/978-1-4842-8135-2_2
http://www.adafruit.com/product/2975
http://www.adafruit.com/product/2975
http://www.sparkfun.com/products/13973
http://www.sparkfun.com/products/13973

281

Table 6-2 shows the connections needed for this project. Traditionally,

we use black for ground (negative) and red for power (positive) at a

minimum, but you can use whatever color wires you want. We will start

with physical pin 40 and work our way down to the lowest number pin

used. As you will see in the drawing, this is working clockwise.

Table 6-2. Connections for the MicroPython Clock

Physical Pin GPIO Num/Function Breakout Board Pin Label

40 VBUS rtC VCC

37 Gnd rtC Gnd

37 Gnd oled Gnd

26 Gp20 oled rSt

25 Gp19 oled data

24 Gp18 oled ClK

22 Gp17 oled d/C

21 Gp16 oled CS

10 Gp9 rtC SCl

9 Gp8 rtC Sda

Wow, that’s a lot of connections! As we saw in Chapter 5, a breadboard

allows us to plug our components in and use jumper wires to make the

connections. This simplifies wiring the project and allows you to move

things around if you need to make more room.

When plugging in components, always make sure the pins are

mounted parallel to the center channel. Recall breadboards have the pins

wired together in rows perpendicular to the center channel. This allows

you to make more than one connection to the component (or pin on

the board).

Chapter 6 projeCt: hello, World! MiCropython Style

10.1007/978-1-4842-8135-2_5

282

Caution never plug or unplug jumper wires when the project is
powered on.

Finally, always make sure you wire your project, carefully double-

checking all the connections – especially power, ground, and any pins used

for signaling (will be set to “high” or “on”) such as those pins used for SPI

interfaces. Most importantly, never plug or unplug jumper wires when the

project (or your board) is powered on. This will very likely damage your

board or components.

For this project, I mounted the Pico on the left side of the breadboard

with the OLED in the center above the center channel and the RTC

module on the right below the channel. Notice the RTC board uses a

different power connection. The OLED board uses 3.3V and the RTC board

5V. Always check the power requirements of your components before

powering on the project. Double-check and triple-check your connections.

Figure 6-3 shows the wiring drawing for the MicroPython clock project.

Figure 6-3. Wiring the clock project (full-sized breadboard)

If you do not have a full-sized breadboard, you can use two of the more

popular half-sized breadboards and clip them together. If you look closely,

you will see nubs on two sides and corresponding notches on the other.

Chapter 6 projeCt: hello, World! MiCropython Style

283

Note While you can use a half-sized breadboard for most of the
projects in this book, a full-sized breadboard is a bit easier to use.
the choice is mainly about being able to connect the wires without
the breakout boards too closely placed.

If you’d rather use a single half-sized breadboard, you can, but the

wiring will get a bit complex as shown in Figure 6-4.

Figure 6-4. Wiring the clock project (half-sized breadboard)

Chapter 6 projeCt: hello, World! MiCropython Style

284

Caution always double- and triple-check your connections,
especially all power and ground connections. Be sure to examine the
power connections to ensure the correct power (3V or 5V) is being
connected to the components correctly. Connecting the wrong voltage
can damage the component.

If you chose a different RTC board than the one shown in the drawing,

be sure to adjust the connections as needed. For example, the SparkFun

DS1307 breakout board has the pins in a different order, so don’t go by this

drawing alone – especially if you use alternative components!

Once again, always make sure to double-check your connections

before powering the board on. Now, let’s talk about the code we need

to write. Don’t power on your board just yet – there is a fair amount of

discussion needed before we’re ready to test the project.

 Write the Code
Now it’s time to write the code for our project. Since we are working with

several new components, I will introduce the code for each in turn. The

code isn’t overly complicated but may not be as clear as some of the code

from previous projects. Let’s begin with a look at the design of the project.

 Design
Once you have the hardware sorted out and how to connect the components

to your board, it is time to start designing the code. Fortunately, this project

is small enough to make the design simple. In short, we want to display the

time on our OLED once every second. Thus, the “work” of the code is to

read the date and time from the RTC and then display it on the OLED. The

following lists the steps that summarize how to design and implement the

code for this project or any project for that matter:

Chapter 6 projeCt: hello, World! MiCropython Style

285

• Libraries: We will need to select and import libraries for

the RTC and OLED.

• Setup: We will need to set up the interfaces for I2C

and SPI.

• Initialize: We will need to initialize object instances for

the classes in the libraries.

• New functions: We will write some helper functions to

better organize the code.

• Core code: We will write the core code for the project.

• Test the breakout boards: We will take an extra step to

test each breakout board separately before trying to

execute the entire code.

• Copy to the Pico: Name the file main.py and copy the

file to the Pico.

These elements are what we will use for most of the projects in this book,

and, indeed, it is a good pattern to follow for all your MicroPython projects.

The new function step allows us to wrap the operational portion of the code

in a separate function to make it easy to call from the main function. We’ll

see more about this later when we execute and test the project.

Now that we know how the project code will be implemented, let’s

review the libraries needed.

 Libraries Needed
Recall from earlier we need two libraries: one for the OLED display

and another for the RTC. The library for the OLED display is found at

https://github.com/adafruit/micropython-adafruit-ssd1306, and

the library for the RTC can be found at https://github.com/adafruit/

Adafruit-uRTC.

Chapter 6 projeCt: hello, World! MiCropython Style

https://github.com/adafruit/micropython-adafruit-ssd1306
https://github.com/adafruit/Adafruit-uRTC
https://github.com/adafruit/Adafruit-uRTC

286

Go ahead and download both libraries now. You should be able to go

to the sites and click the Clone or Download link and then the Download

Zip button to download the files to your PC. Then, open the location of the

downloaded files and unzip them. You should find the following files:

• ssd1306.py: The OLED display library

• urtc.py: The RTC library

Ordinarily, we would create a new folder for each project we want to

place on our Pico, but since we will be making this project run on the Pico

when it is booted (powered on), the main code file will have to be named

main.py and placed in the root folder. The Pico will automatically execute

this file on boot unless you connect it to your PC.

However, we will be creating a new folder to place the library files

(drivers) for the breakout boards. Once you have your Pico connected,

create a new folder named project1 in the root folder by right-clicking the

Pico in Thonny and selecting New directory.... Then, double-click the

project1 folder on the Pico and upload the library files to that folder. You

should see a folder structure and file list similar to Figure 6-5.

Figure 6-5. New project folder and files (Thonny)

Chapter 6 projeCt: hello, World! MiCropython Style

287

Now that we have the libraries copied, let’s look at the code we will

need to write.

 Planning the Code
Now that we have our design and have downloaded and modified the

libraries, we can begin writing the code. Rather than show you a long

listing and say, “comprehend or perish,” let’s walk through all the parts

of the code first so that we understand each part. As we walk through the

code, feel free to test the parts yourself, but if you prefer to wait until the

end to test the code, you can. Some of this will be familiar and perhaps

rudimentary to those who’ve worked the examples so far in this book, but a

little refresher never hurts. Let’s begin with a look at the import section.

 Imports

The import section for the project comes before all other statements but

after the comment block at the top of the file. You should also include

some level of documentation at the top of the file to explain what the code

does. You don’t have to write a lengthy tutorial – just a short statement or

so that describes the program including your name and other information.

This is important if you want to share your code with others and if you ever

go back to the code later to reuse it.

If you want to type in the code as we go along, you can open a new file

named main.py on your PC with Thonny or your favorite code (or text)

editor. We will copy the file to the Pico in a later step.

The following shows the imports for this project.

Import libraries

from project1.urtc import DS1307

from project1.ssd1306 import SSD1306_SPI

from utime import sleep

from machine import SPI, Pin, SoftI2C

Chapter 6 projeCt: hello, World! MiCropython Style

288

Notice we specified project1 in the first two imports because we

placed these libraries (drivers) in the project1 folder. The main.py file

will be copied to the root of the Pico filesystem. Also, we use the SoftI2C

library instead of I2C because the RTC library doesn’t work well with the

I2C library. Recall, we discussed these differences in Chapter 5.

 Setup

Next, we need to set up the interfaces for I2C and SPI for use in the RTC

and ssd1306 libraries. That is, the classes in those libraries need object

instances of the interfaces passed to the constructor. The code we will

use is like the code we saw in previous examples. The following shows the

interface setup code:

 sda = Pin(8)

 scl = Pin(9)

 # Software I2C (bit-banging) for the RTC

 i2c = SoftI2C(sda=sda, scl=scl, freq=100000)

...

 # SPI for the OLED

 spi = SPI(0, 100000, mosi=Pin(19), sck=Pin(18))

Notice we use different parameters for the SPI, and we specify pins for

the I2C. You can use other pins if you’d like, but just remember to use the

correct pins when you wire the components together.

 Initialize

Next, we initialize object instances for the classes in the libraries. This

is the point where you need to read the documentation for each library

to understand what is needed to initialize the objects. For the ssd1306

library, the class constructor requires the number of pixels (the resolution

is the number of pixels in rows and columns) for the display, the interface

Chapter 6 projeCt: hello, World! MiCropython Style

10.1007/978-1-4842-8135-2_5

289

instance (SPI from the last section), and the pins we will use for the D/C,

RST, and CS pins. For the RTC library, we need only pass in an interface

instance (SoftI2C from the last section). The following shows how to do

both steps:

 # Initialize class instance variables for RTC, OLED

 rtc = DS1307(i2c)

 #start_datetime = (2021, 08, 12, 5, 14, 54, 22)

 #rtc.datetime(start_datetime)

 oled = SSD1306_SPI(128, 32, spi, dc=Pin(17), res=Pin(20),

cs=Pin(16))

Notice there are some commented out lines in there. When we first use

the RTC or when we replace the battery, we must initialize the date and

time. We can use the library features to do this. In this case, we simply call

the datetime() function for the RTC instance passing in a tuple containing

the new start date and time – the order of the tuple elements is shown in

the following. Once set, we do not need to run it again. In fact, running

it again will reset the RTC, and we don’t need to do that. Thus, we leave

this code commented out for normal operation and uncomment it when

we need to reset the RTC. When you run your project for the first time,

uncomment this code supplying the correct current date and time but later

comment it out.

 New Helper Functions

Now that all the setup and initialization code are figured out, we can create

a few helper functions to allow us to organize the code.

Recall we want the project to read the date and time from the RTC and

display it on the OLED once every second. Thus, we expect to see some

sort of loop that performs these two steps. However, we must again refer

to the library documentation where we find that the RTC returns data as a

tuple (year, month, day, weekday, hour, minute, second, millisecond). This

Chapter 6 projeCt: hello, World! MiCropython Style

290

means we must format the date and time to make it easier for humans to

read and to fit on the small OLED screen. This is a perfect candidate for a

helper function.

Let’s create a function named write_time() that takes an instance of

the OLED display and the RTC and then read the date and time with the

datetime() function (with no parameters) and print it to the OLED screen

using the text() function, which takes a starting column (called the X

position in the documentation) and row (Y position) for the location on the

screen to print the message when the show() function is called. This is the

essence of the project. Placing it in a separate function allows you to isolate

the behavior and make it easier to maintain or modify the code – because

the “core” is in one place:

Display the date and time

def write_time(oled, rtc):

 # Get datetime

 dt = rtc.datetime()

 # Print the date

 oled.text("Date: {0:02}/{1:02}/{2:04}".format(dt[1], dt[2],

dt[0]), 0, 0)

 # Print the time

 oled.text("Time: {0:02}:{1:02}:{2:02}".format(dt[4], dt[5],

dt[6]), 0, 10)

 # Print the day of the week

 oled.text("Day: {0}".format(get_weekday(dt[3])), 0, 20)

 # Update the OLED

 oled.show()

Notice we use the text() function and the format() function to take

the data from the RTC and format it in an expected format that most clocks

use: HH:MM::SS and MM/DD/YYYY. Notice there is an additional function

here named get_weekday(). This function takes the number of the day of

Chapter 6 projeCt: hello, World! MiCropython Style

291

the week as returned from the RTC and returns a string for the name of the

day. The following shows the code for this function:

Return a string to print the day of the week

def get_weekday(day):

 if day == 1: return "Sunday"

 elif day == 2: return "Monday"

 elif day == 3: return "Tuesday"

 elif day == 4: return "Wednesday"

 elif day == 5: return "Thursday"

 elif day == 6: return "Friday"

 else: return "Saturday"

There is one more function added – a function to clear the screen. This

function simply blanks the screen to allow us to overwrite the screen with

new data. Normally, this is not needed, but it is a good practice to clear the

screen in case the library doesn’t do it for you. In this case, it does now.

This function is named clear_screen() and is shown in the following.

It simply uses the fill() and show() functions from the ssd1306 library.

Passing in 0 for the fill() function tells the library to fill the screen with

no data (blank or off):

Clear the screen

def clear_screen(oled):

 oled.fill(0)

 oled.show()

 Core Code

Now we are ready to code the new main() function for the project. We have

our helper functions developed, so we need only call them and wait for a

second on each pass. We will use a main() function so that when the script

Chapter 6 projeCt: hello, World! MiCropython Style

292

is executed (the name check will fail if the code is imported from another

script), the main() function is called. We do this with the following code:

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!")

 sys.exit(0)

We use a try...except block so that we can capture the keyboard

interrupt (CTRL+C) so that we can stop it. This construct is typical of how

we would write scripts that are intended to be executed.

Recall, when a Python script is loaded (read), each line of code is

executed. If we place all of our code in functions (or a class), we need

some way to start execution in a controlled manner. The preceding code

accomplishes this task, and we will use it in all of our projects. It does not

matter what you call the function for the core code, but main is a common

practice.

Next, we can create the main() function. The following shows the

function with the setup and initialization code discussed earlier:

def main():

 sda = Pin(8)

 scl = Pin(9)

 # Software I2C (bit-banging) for the RTC

 i2c = SoftI2C(sda=sda,scl=scl,freq=100000)

 # SPI for the OLED

 spi = SPI(0, 100000, mosi=Pin(19), sck=Pin(18))

 # Initialize class instance variables for RTC, OLED

 rtc = DS1307(i2c)

 #start_datetime = (2021,08,12,5,14,54,22)

 #rtc.datetime(start_datetime)

Chapter 6 projeCt: hello, World! MiCropython Style

293

 oled = SSD1306_SPI(128, 32, spi, dc=Pin(17), res=Pin(20),

 cs=Pin(16))

 for i in range(10):

 clear_screen(oled)

 write_time(oled, rtc)

 sleep(1)

Notice how “clean” this function is – we can see only three statements:

clear the screen, show the time, and wait for one second.

Let’s put this code together with the import section and the helper

functions. Listing 6-1 shows the complete code for the main.py file.

Listing 6-1. Completed Code for the MicroPython Clock (main.py)

#

Beginning MicroPython

#

Chapter 06 - Digital Timepiece

#

This example uses an I2C real time clock (RTC) to store

the current

date and time. It displays the time, date, and day of

the week on

an SPI OLED.

#

Dr. Charles Bell

#

Import libraries

from project1.urtc import DS1307

from project1.ssd1306 import SSD1306_SPI

from utime import sleep

from machine import SPI, Pin, SoftI2C

Chapter 6 projeCt: hello, World! MiCropython Style

294

Return a string to print the day of the week

def get_weekday(day):

 if day == 1: return "Sunday"

 elif day == 2: return "Monday"

 elif day == 3: return "Tuesday"

 elif day == 4: return "Wednesday"

 elif day == 5: return "Thursday"

 elif day == 6: return "Friday"

 else: return "Saturday"

Display the date and time

def write_time(oled, rtc):

 # Get datetime

 dt = rtc.datetime()

 # Print the date

 oled.text("Date: {0:02}/{1:02}/{2:04}".format(dt[1], dt[2],

dt[0]), 0, 0)

 # Print the time

 oled.text("Time: {0:02}:{1:02}:{2:02}".format(dt[4], dt[5],

dt[6]), 0, 10)

 # Print the day of the week

 oled.text("Day: {0}".format(get_weekday(dt[3])), 0, 20)

 # Update the OLED

 oled.show()

Clear the screen

def clear_screen(oled):

 oled.fill(0)

 oled.show()

def main():

 sda = Pin(8)

 scl = Pin(9)

 # Software I2C (bit-banging) for the RTC

Chapter 6 projeCt: hello, World! MiCropython Style

295

 i2c = SoftI2C(sda=sda,scl=scl,freq=100000)

 # SPI for the OLED

 spi = SPI(0, 100000, mosi=Pin(19), sck=Pin(18))

 # Initialize class instance variables for RTC, OLED

 rtc = DS1307(i2c)

 #start_datetime = (2021,08,12,5,14,54,22)

 #rtc.datetime(start_datetime)

 oled = SSD1306_SPI(128, 32, spi, dc=Pin(17), res=Pin(20),

 cs=Pin(16))

 for i in range(10):

 clear_screen(oled)

 write_time(oled, rtc)

 sleep(1)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!")

 sys.exit(0)

Take some time to read through the code so you can see how it is

organized. We will use this as a template in future projects. You can save it

to your PC, but don’t execute it on the Pico yet because we need to test the

code for the breakout boards.

 Test the Breakout Boards
Now that we have planned the code and know how to code each of the

parts, we have one more thing to do – test the breakout boards separately.

We do this by wiring one breakout board and testing it, then powering off

and unwiring that breakout board, and then wiring the other breakout

board and testing it.

Chapter 6 projeCt: hello, World! MiCropython Style

296

This is a good practice to get into the habit of doing for one primary

reason. You will save yourself a lot of grief by testing the individual parts of

the project – especially the hardware – one at a time. This not only makes

it easier to narrow down any issues, but it also ensures you can identify

the source of the problem. That is, if you plugged all the hardware in and

wired everything and wrote the code, deployed it, then powered it on, and

nothing works, how do you know which part is to blame? This is one of my

mantras: build and test one piece at a time.

Tip testing code one part at a time is a familiar pattern to me, and
it is highly recommended you adopt the process yourself, that is,
coding a part of the project at a time and testing each individually.

For this project, there are two parts – the RTC and the OLED. Let’s see

how to test them individually. The code presented is intended to be run via

a REPL console via Thonny.

 Test the RTC Breakout Board

To test the RTC, use the following code. Listing 6-2 is a condensed form of

the code we saw in Listing 6-1 with only the bare minimum code added.

You can name this file test_rtc.py if you’d like to save it, but we will

execute the code via the REPL console.

Listing 6-2. Test Code for the RTC Breakout Board (test_rtc.py)

from project1.urtc import DS1307

from utime import sleep

from machine import Pin, SoftI2C

sda = Pin(8)

scl = Pin(9)

Chapter 6 projeCt: hello, World! MiCropython Style

297

i2c = SoftI2C(sda=sda,scl=scl,freq=100000)

rtc = DS1307(i2c)

start_datetime = (2021,08,16,8,11,0,0)

rtc.datetime(start_datetime)

for i in range(0,10):

 # Get datetime

 dt = rtc.datetime()

 print("\nTest:", i+1)

 # Print the date

 print("Date: {0:02}/{1:02}/{2:04}".format(dt[1],

dt[2], dt[0]))

 # Print the time

 print("Time: {0:02}:{1:02}:{2:02}".format(dt[4],

dt[5], dt[6]))

 sleep(3)

Notice we set the date and time in this test. When you run this for

yourself, you should change the date and time tuple to include the current

date and time when you run the test. What you should see in the REPL

console is a tuple representing the date and time. It should be the same

as what you set since the code will execute much less than a second from

the time you set it to the time you query the RTC. Go ahead and reenter

that last statement several times to ensure the time changes as you’d

expect. That is, wait a few seconds and try it again – several seconds should

have elapsed. Listing 6-3 shows what the output should look like for a

successful test.

Listing 6-3. Test RTC Output

Test: 1

Date: 08/16/2021

Time: 11:00:00

Chapter 6 projeCt: hello, World! MiCropython Style

298

Test: 2

Date: 08/16/2021

Time: 11:00:03

Test: 3

Date: 08/16/2021

Time: 11:00:06

Test: 4

Date: 08/16/2021

Time: 11:00:09

Test: 5

Date: 08/16/2021

Time: 11:00:12

Test: 6

Date: 08/16/2021

Time: 11:00:15

Test: 7

Date: 08/16/2021

Time: 11:00:18

Test: 8

Date: 08/16/2021

Time: 11:00:21

Test: 9

Date: 08/16/2021

Time: 11:00:24

Test: 10

Date: 08/16/2021

Time: 11:00:27

Chapter 6 projeCt: hello, World! MiCropython Style

299

If any of the statements fail, be sure to check your wiring and look for

any typos. Also, ensure you are using the correct, modified version of the

libraries (and that you have copied them to the board).

 Test the OLED Breakout Board

To test the OLED, use the following code. Listing 6-4 is a condensed form

of the code we saw in Listing 6-1 with only the bare minimum code added.

You can name this file test_oled.py if you’d like to save it, but we will

execute the code via the REPL console.

Listing 6-4. Test Code for the OLED Breakout Board (test_oled.py)

from project1.ssd1306 import SSD1306_SPI

from machine import Pin, SPI

from utime import sleep_ms

spi = SPI(0, 100000, mosi=Pin(19), sck=Pin(18))

oled = SSD1306_SPI(128, 32, spi, dc=Pin(17), res=Pin(20),

cs=Pin(16))

for i in range(40):

 for j in range(32):

 oled.fill(0)

 oled.show()

 oled.text("HELLO WORLD", i, j)

 oled.show()

 sleep_ms(100)

When you run this code, you should see the screen blank (it should

be blank from the start), then display the hello message in different places

in the range of the OLED screen, and may “scroll” off the screen (can you

spot why?).

Chapter 6 projeCt: hello, World! MiCropython Style

300

If you do not see any output, power off your board, check all the

connections, and verify the correct pins are used and that you have the

correct modified version of the library copied to your board.

Tip the oled breakout boards from adafruit (and presumably
others) come with a protective cover over the lens. you can and
should leave that in place to ensure the lens does not get damaged.
plus, the oled is bright enough to see through the protective cover.

OK, now we’re ready to execute and test the completed project.

 Execute
We are finally at the point where we can copy all the files to our board and

execute the project code. There are several recommended steps in this

process as shown in the following. You should follow this process each

time you want to deploy and test a project:

 1. Double-check all hardware connections (wiring).

 2. Connect your Pico to your PC.

 3. Copy the libraries and code file to the board.

 4. Test the code, fix any issues found, and recopy the

file(s) if needed.

 5. Disconnect and reconnect the board.

The first step cannot be overstated. Always check your wiring

connections every time before you power on the board. This is in case

curious hands have wandered by and “examined” your project or you’ve

moved it, or some other event has occurred to unplug wires. It never hurts

to be extra careful.

Chapter 6 projeCt: hello, World! MiCropython Style

301

Next, we connect the Pico to our PC to power on the board and check

for any issues. Yes, this is the smoke test! Simply make sure all LEDs that

are supposed to illuminate do (like those on the board) and that things that

should not be on are off. For example, if you see a solid bar on the OLED

when you power it on, that’s not a good sign. If ever in doubt, disconnect

the Pico and check your connections. If things still aren’t right, disconnect

everything and test your board. Sometimes, a damaged component can

cause strange behavior.

Next, we copy all the libraries and code we want to use to the board.

Recall, we copy the libraries for the RTC and OLED to a folder on the Pico

named project1 and copy the main.py file to the root folder on the Pico.

Caution Be sure to uncomment out the lines to initialize the rtC
on your first execution. you can comment them out immediately after
your test (be sure to do so!).

At this point, the code isn’t running, but we can execute it via Thonny.

Simply click the Run button and watch your code run! If everything is

connected correctly, and the code is correct, you will see the date and time

appear on the OLED. You should see something like Figure 6-6, which

shows the project running in all its glory.

Chapter 6 projeCt: hello, World! MiCropython Style

302

Figure 6-6. A MicroPython clock!

Notice in the figure I am using two half-sized breadboards connected

together, which is the same size as a full-sized breadboard. Notice all of the

wiring. If we used a single half-sized breadboard, the wiring would be a

snaggle that could obscure the OLED. Ever the neat freak, I’ve zip-tied the

wiring so that it is out of the way.

If something doesn’t work, go back and check your code. If you

left the two lines of code to initialize the RTC uncommented, you may

see the same date and time appear each time you run the code. Be

sure to comment those out on subsequent executions. Or, if you forgot

to uncomment out those lines, you may see some strange date and

time values.

It is at this point that you should be basking in the wonder of your first

successful MicroPython hardware project. Take some time to bask in your

delight of a job well done.

However, we’re not done. There’s one more step. Disconnect your Pico

and exit Thonny and then reconnect it to your PC to power it on again. If

the date and time show up after a few seconds, you’ve done it! You have

successfully created a project you can package and run anywhere you

want, and so long as the coin cell battery has a charge, it won’t lose time.

Chapter 6 projeCt: hello, World! MiCropython Style

303

 Taking It Further
This project has a lot of potential for embellishment. If you liked the

project, you should consider taking time to explore some embellishments.

Here are a few you may want to consider. Some are easy and some may be

a challenge:

• Use a different RTC.

• Calculate AM/PM and display it.

• Use a larger display and display the Julian date.

• Use a light sensor to dim the display in direct sunlight.

• Add a speaker and implement an alarm feature (hint:

some RTCs have this feature).

• Format the date and time using different world

standards such as YYYY/MM/DD.

Of course, if you want to press on to the next project, you’re welcome

to do so, but take some time to explore these potential embellishments – it

will be a good practice.

• dS1307 chip

• Coin cell battery breakout board

• 3V coin cell battery

• 32.768khz crystal

• (2) 1K resistor

If you’re thinking this project is rudimentary now that we have solved

the problems with the libraries, consider this: most sensor-based projects

and indeed most projects that generate data that must be associated with

a date and time when the events are sampled. Thus, using an RTC to read

the date and time will be a consideration for many IoT projects.

Chapter 6 projeCt: hello, World! MiCropython Style

304

BUILDING YOUR OWN RTC MODULE

if you’re like me and like to tinker, you can build your own rtC module using

an rtC dS1307 chip, two resistors, a crystal, and a coin cell battery breakout

board. you can find these components at most online electronics stores such

as adafruit (www.adafruit.com), SparkFun (www.sparkfun.com), and

Mouser (www.mouser.com). the component list is as follows:

that’s it! the following shows how to connect the components on a

breadboard.

See www.learningaboutelectronics.com/Articles/DS1307-

real-time-clock-RTC-circuit.php for an example walk-through for

assembling this side project.

if you plan to build a lot of projects that use an rtC, buying these components

in bulk and wiring up your own rtC 1307 module may be more cost-effective.

plus, it ups the cool factor of your kit.

Chapter 6 projeCt: hello, World! MiCropython Style

http://www.adafruit.com
http://www.sparkfun.com
http://www.mouser.com
http://www.learningaboutelectronics.com/Articles/DS1307-real-time-clock-RTC-circuit.php
http://www.learningaboutelectronics.com/Articles/DS1307-real-time-clock-RTC-circuit.php

305

 Summary
Working with hardware such as breakout boards and the libraries we

need to talk to them over specialized interfaces such as I2C and SPI can

be a challenge. Sometimes, like we saw in this chapter, you need the

Soft version of the SPI or I2C libraries. The reason for this is the growing

array of boards that vendors are creating specialized versions of the

MicroPython firmware that may not work 100% with the Pico.

The trick then is understanding why the changes are necessary and

taking the time to make the changes yourself. It is so easy to just give

up when something doesn’t work – don’t do that! Take your time and

understand the problem and then solve it systematically.

In this chapter, we saw a detailed walk-through of a MicroPython clock.

We used an OLED display to display time we read from an RTC. Along the

way, we learned how to plan our projects, make hardware connections,

and write code for use in deploying on our Pico.

In the next chapter, we will explore a project that uses more low-level

hardware in the form of discrete components such as LEDs, resistors, and

buttons. These are the building blocks you will need to form more complex

solutions.

Chapter 6 projeCt: hello, World! MiCropython Style

307

CHAPTER 7

Project: Pedestrian
Crossing
Now that we’ve had a tutorial of how to design, wire, and implement a

MicroPython project, let’s now look at a more advanced project. In this

case, we will use some very basic components to learn further how to

work with hardware. The hardware of choice for this project will be LEDs,

resistors, and a button. A button is the most basic of sensors. That is, when

the button is pressed, we can make our MicroPython code respond to

that action.

Working with LEDs is perhaps more of a “Hello, World!” style project

for hardware because turning LEDs on and off is easy, and except for

figuring out what size of current limiting resistor is needed, wiring LEDs is

also easy.

However, to make it more interesting and a bit of a challenge, we will

be implementing a simulation. More specifically, we will implement a

traffic light and a pedestrian walk button. The walk button is a button

pedestrians can use to trigger the traffic signal to change and stop traffic so

they can cross the street.

Simulation projects can be a lot of fun because we already have an idea

of how it should work. For example, unless you’ve lived in a very rural area,

you most likely have encountered a traffic signal at an intersection that

included walk/don’t walk signs with a button. If you live in the city, you

will have encountered these in various configurations. When a pedestrian

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_7

https://doi.org/10.1007/978-1-4842-8135-2_7

308

(or bicyclist) presses the walk button, the traffic lights all cycle to red and

the walk sign is illuminated. After some time (30 seconds or so), the walk

sign flashes, and then about 15 seconds later, the walk signal cycles to

don’t walk and the traffic signals resume their normal cycle.

Note The word “cycle” refers to a set of states that are linear in
action. Thus, cycle refers to the changing of one state to another.

 Overview
In this chapter, we will implement a traffic signal with a pedestrian walk

button. This project works with LEDs, which allows us to see the state of

our code as it executes. For the traffic light (also called a stoplight), we will

use a red, yellow, and green LED to match the same colored lights on the

traffic light. We will also use a red and yellow LED to correspond to the

don’t walk (red) and walk (yellow) lights.

We will use a pushbutton (also called a momentary button) because it

triggers (is on) only when pushed. When released, it is no longer triggered

(is off). Trigger is the word used to describe the state of the button where

triggered means the connections from one side of the button to another

are connected (on). A button that remains triggered (latched) is called a

latching button, which typically must be pressed again to turn off.

We will simulate the traffic light and walk signal by first turning on only

the green traffic light LED and the red walk LED signal. This is the normal

state we will use. When the button is pressed, the traffic light will cycle to

yellow for a few seconds and then cycle to red. After a few seconds, the

walk signal will cycle to yellow and after a few seconds will begin flashing.

After a few more seconds, the walk signal will cycle back to red and the

traffic light to green.

ChapTer 7 projeCT: pedesTrian Crossing

309

Now let’s see what components are needed for this project, and then

we will see how to wire everything together.

 Required Components
Table 7-1 lists the components you will need in addition to your Pico and

USB cable. Links to vendors are provided should you want to purchase the

components. I include both value packages and single unit prices where

available.

Table 7-1. Required Components

Component Qty Description Cost Links

red Led 2 pack of 25 $4.00 www.adafruit.com/

product/299

Single $0.35 www.sparkfun.com/

products/9590

Yellow Led 2 pack of 25 $4.95 www.adafruit.com/

product/2700

Single $0.35 www.sparkfun.com/

products/9594

green Led 1 pack of 25 $4.00 www.adafruit.com/

product/298

Single $0.35 www.sparkfun.com/

products/9592

220 or

330 ohm

resistors

5 Variety Kit $7.95 www.sparkfun.com/

products/10969

Pack of 25 $0.75 www.adafruit.com/

product/2780

(continued)

ChapTer 7 projeCT: pedesTrian Crossing

http://www.adafruit.com/product/299
http://www.adafruit.com/product/299
http://www.sparkfun.com/products/9590
http://www.sparkfun.com/products/9590
http://www.adafruit.com/product/2700
http://www.adafruit.com/product/2700
http://www.sparkfun.com/products/9594
http://www.sparkfun.com/products/9594
http://www.adafruit.com/product/298
http://www.adafruit.com/product/298
http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/10969
http://www.sparkfun.com/products/10969
http://www.adafruit.com/product/2780
http://www.adafruit.com/product/2780

310

Table 7-1. (continued)

Component Qty Description Cost Links

Button 1 Momentary button,

breadboard friendly

(pack)

$2.50 www.adafruit.com/

product/1119

Single $0.50 www.sparkfun.com/

products/9190

Breadboard 1 prototyping board,

full-sized

$5.95 www.sparkfun.com/

products/12615

$5.95 www.adafruit.com/

product/239

jumper

wires

11 M/M jumper wires, 7"

(set of 30)

$2.25 https://www.sparkfun.

com/products/11026

M/M jumper wires,

6" (set of 20)

$1.95 https://www.adafruit.

com/product/11709

You can purchase the components separately from Adafruit

(adafruit.com), SparkFun (sparkfun.com), or any electronics store that

carries electronic components. Costs shown are estimates and do not

include any shipping costs.

Some components such as the LEDs and button can be found in a

beginning electronics kit like those from the Parts Pal kit from Adafruit

that we saw in Chapter 5. Other vendors may have similar kits. Buying

basic components like LEDs, buttons, and resistors is much cheaper when

bought in a kit.

Similarly, you can pick up a set of resistors of various sizes much

cheaper than if you bought a few at a time. In fact, you most likely will find

buying a small set of five or ten of each size resistor you will eventually

need will be far more expensive than if you purchased a set. The set from

SparkFun will provide you all the resistors you need for most projects.

ChapTer 7 projeCT: pedesTrian Crossing

http://www.adafruit.com/product/1119
http://www.adafruit.com/product/1119
http://www.sparkfun.com/products/9190
http://www.sparkfun.com/products/9190
http://www.sparkfun.com/products/12615
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/239
http://www.adafruit.com/product/239
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/11026
https://www.adafruit.com/product/11709
https://www.adafruit.com/product/11709

311

Recall from Chapter 5 that LEDs require a current limiting resistor

that reduces the current to safe levels for the LED. To determine what size

resistor we need, we need to know several things about the LED. This data

is available from the manufacturer who provides the data in the form of

a data sheet or, in the case of commercially packaged products, lists the

data on the package. The data we need includes the maximum voltage, the

supply voltage (how many volts are coming to the LED), and the current

rating of the LED.

For example, if I have an LED like the ones in the Adafruit Parts Pal, in

this case a 5mm red LED, we find on Adafruit's website (www.adafruit.

com/products/297) that the LED operates at 1.8–2.2V and 20mA of current.

Let's say we want to use this with a 5V supply voltage. We can then take

these values and plug them into this formula:

R = (Vcc-Vf)/I

Using more descriptive names for the variable, we get the following:

Resistor = (Volts_supply - Volts_forward) / Desired_current

Plugging our data in, we get this result. Note that we have mA so we

must use the correct decimal value (divide by 1000).

Resistor = (5 – 1.8) / 0.020

 = 3.2 / 0.020

 = 160

Thus, we need a resistor of 160 Ohms. However, there is no resistor

with that rating. When this happens, we use the next size up. For example,

if you have only 220 or even 330 Ohm resistors, you can use those. The

result will be the LEDs will not be as bright, but having a higher resistor is

much safer than using one that is too small. Too much current and an LED

will burn out.

Now, let’s see how to wire the components together.

ChapTer 7 projeCT: pedesTrian Crossing

http://www.adafruit.com/products/297
http://www.adafruit.com/products/297

312

 Set Up the Hardware
Before we look at the wiring, let’s review some tips for wiring components.

The best way to wire components to your board is to use a breadboard. As

we saw in Chapter 5, a breadboard allows us to plug our components in

and use jumper wires to make the connections. In this project, we will use

one jumper wire for ground from the Pico board to the breadboard power

and ground rails (those that run along the top and bottom marked with a

red line for power and blue or black for ground) and then jumpers on the

breadboard to connect to the button. In fact, we will use the ground rail on

one side of the breadboard to plug in one side of the LEDs.

The button works in either position so long as the pins are oriented

with two legs on each side of the center trough. If you orient the button

with the legs that can reach either side of the trough, it will be oriented

correctly. If you get it off by 90 degrees, the button either will not work or

will always be triggered. If you have any doubts, use a multimeter to test

the continuity of the button connections. You should find the connections

open when not pressed and closed when pressed.

The only component that is polarized is the LED (it has a positive and

a negative leg). When you look at the LED, you will see one leg (pin) of the

LED is longer than the other. This longer side is the positive side. We will

plug the LEDs in so that the negative leg is plugged into the ground rail and

the positive side is plugged into the main area of the breadboard. We then

plug the resistor in to jump over the center trough connecting the resistor

to the GPIO pin on the Pico. It doesn’t matter which direction you plug the

resistor in – they will work both directions.

Table 7-2 shows the connections needed for this project. Traditionally,

we use black for ground (negative) and red for power (positive) at a

minimum, but you can use whatever color wires you want. We will start

with physical pin 40 and work our way down to the lowest number pin

used. As you will see in the drawing, this is working clockwise.

ChapTer 7 projeCT: pedesTrian Crossing

313

Table 7-2. Connections for the MicroPython Clock

Physical Pin GPIO Num/Function Connection

40 VBUs Breadboard power (top)

37 gnd Breadboard ground (bottom)

17 gp13 resistor for red Led (stoplight)

16 gp12 resistor for yellow Led (stoplight)

15 gp11 resistor for green Led (stoplight)

12 gp9 Button side a (bottom)

11 gp8 resistor for red Led (walk light)

10 gp7 resistor for green Led (walk light)

n/a Breadboard power (top) Button side B (top)

n/a Breadboard ground all Led negative side

n/a resistor all Led positive side

Wow, that’s a lot of connections! As we saw in Chapter 5, a breadboard

allows us to plug our components in and use jumper wires to make the

connections. This simplifies wiring the project and allows you to move

things around if you need to make more room.

Caution never plug or unplug jumper wires when the project is
powered on. You risk damaging your board or the components.

Figure 7-1 shows the wiring drawing for the pedestrian crossing

project.

ChapTer 7 projeCT: pedesTrian Crossing

314

Figure 7-1. Wiring the pedestrian crossing project (full-sized
breadboard)

Once again, always make sure to double-check your connections

before powering the board on. Now, let’s talk about the code we need

to write. Don’t power on your board just yet – there is a fair amount of

discussion needed before we’re ready to test the project.

 Write the Code
Now it’s time to write the code for our project. The code isn’t overly

complicated, but it is a bit longer than the examples thus far. We will see

how to write code to simulate the pedestrian crosswalk button and traffic

light. We will need to monitor the button and, when pressed, cycle the

lights as described earlier. We also need code to initialize the LEDs, setting

them to off initially. We can write functions for monitoring the button and

cycling the LEDs. We will use an interrupt to tie the function for the button

to the hardware so that we can avoid using a polling loop.

ChapTer 7 projeCT: pedesTrian Crossing

315

 Imports
The imports for the project will require the Pin class from the machine

library and the utime library. The following shows the imports for the

project:

from machine import Pin

import utime

 Setup
The setup code for this project will need to initialize the button and LED

instances and then turn off all the LEDs (as a precaution) and turn on the

green stoplight LED and the red walk signal LED. Listing 7-1 shows the

code for setup and initialization.

Listing 7-1. Setup and Initialization of the Button and LEDs

Setup the button and LEDs

stoplight_red = Pin(13, Pin.OUT)

stoplight_yellow = Pin(12, Pin.OUT)

stoplight_green = Pin(11, Pin.OUT)

button = Pin(9, Pin.IN, Pin.PULL_DOWN)

pedestrian_red = Pin(8, Pin.OUT)

pedestrian_green = Pin(7, Pin.OUT)

Setup lists for the LEDs

stoplight = [stoplight_red, stoplight_yellow, stoplight_green]

pedestrian_signal = [pedestrian_red, pedestrian_green]

Turn off the LEDs

for led in stoplight:

 led.off()

ChapTer 7 projeCT: pedesTrian Crossing

316

for led in pedestrian_signal:

 led.off()

Start with green stoplight and red pedestrian_signal

stoplight[2].on()

pedestrian_signal[0].on()

One thing to notice is how the button is initialized. This is a Pin object

instance that is set up as an input (read), and the pull-up resistors are

turned on. This allows the board to detect when the button is pressed

because the value of the pin will be a positive value when the connection is

made (the button is pressed).

Notice also I create a list that contains the LEDs for the stoplight and

walk signal (named pedestrian_signal in the code). This is mostly for

demonstration so you can see how to manage lists of class objects. As you

can see, it makes it easier to call the same function for all the objects in the

list using a loop. Take note of this technique as you will need it from time to

time in other projects.

 Functions
There are two functions needed for this part of the project. First, we need a

function to cycle through the lights. Second, we need a function to monitor

the button press. Let’s look at the cycle light function.

We will name the cycle light function cycle_lights(). Recall we need

to control how the lights change state. We do this with a specific cycle as

described earlier. To recap, we call this function when we want to simulate

changing the stoplight when the walk request button is pressed. Thus, this

function will be called from the code for the button. Listing 7-2 shows the

code for the cycle_lights() button. As you will see, the code is rather

straightforward. The only tricky part may be the loop used to flash the

yellow walk LED. Be sure to read through it so that you understand how

it works.

ChapTer 7 projeCT: pedesTrian Crossing

317

Listing 7-2. The cycle_lights() Function

We need a method to cycle the stoplight and pedestrian_signal

#

We toggle from green to yellow for 2 seconds

then red for 20 seconds.

def cycle_lights():

 # Go yellow.

 stoplight[2].off()

 stoplight[1].on()

 # Wait 2 seconds

 utime.sleep(2)

 # Go red and turn on walk light

 stoplight[1].off()

 stoplight[0].on()

 utime.sleep_ms(500) # Give the pedestrian a chance

to see it

 pedestrian_signal[0].off()

 pedestrian_signal[1].on()

 # After 10 seconds, start blinking the walk light

 utime.sleep(1)

 for i in range(0,10):

 pedestrian_signal[1].off()

 utime.sleep_ms(500)

 pedestrian_signal[1].on()

 utime.sleep_ms(500)

 # Stop=green, walk=red

 pedestrian_signal[1].off()

 pedestrian_signal[0].on()

 utime.sleep_ms(500) # Give the pedestrian a chance

to see it

ChapTer 7 projeCT: pedesTrian Crossing

318

 stoplight[0].off()

 stoplight[2].on()

We will name the button function button_pressed(). This function

is used as a callback for the button press interrupt. Technically, we tell

MicroPython to associate this method with the pin interrupt, but we will

see that in a moment. However, there is another element to this function

that requires explanation.

When we use a component like a button and the user (you) presses

the button, the contacts in the button do not go from an off state to an on

state instantaneously. There is a very small period where the value read

is erratic. Thus, we cannot simply say “when the pin goes high” because

the value read on the pin may “bounce” from low to high (or high to low)

rapidly. This is called bouncing. We can overcome this artificially with

code (as well as other techniques) – called debouncing.

In this case, we can check the value of the pin (button) over time

and only “trigger” the button press if and only if the value remains stable

during that time. The code for debouncing the pin is shown in Listing 7-3.

Notice in the loop we wait for a value of 50. This is 50 milliseconds. If the

trigger is long enough, we call the cycle_lights() function.

Listing 7-3. The button_pressed() Function

Create callback for the button

def button_pressed(line):

 cur_value = button.value()

 active = 0

 while (active < 50):

 if button.value() != cur_value:

 active += 1

 else:

 active = 0

 utime.sleep_ms(1)

ChapTer 7 projeCT: pedesTrian Crossing

319

 print("")

 if active:

 cycle_lights()

 else:

 print("False press")

Tip For more information about debouncing and the techniques
available to avoid it, see www.eng.utah.edu/~cs5780/
debouncing.pdf.

Finally, we need to set up the button to call the button_pressed()

function when the board detects the interrupt. The following sets the

callback function using the interrupt setting for the button pin:

Create an interrupt for the button

button.irq(trigger=Pin.IRQ_RISING, handler=button_pressed)

Now we’re all set to test the code. Go ahead and open a new file named

pedestrian_crossing.py and enter the preceding code. Listing 7-4 shows

the complete code for the project.

Listing 7-4. Pedestrian Crossing Simulation Code

#

Beginning MicroPython

#

Chapter 07 – Pedestrian Crossing

#

This example implements a Pedestrian Crossing Simulator

controlling LEDs and button as input

#

Dr. Charles Bell

#

ChapTer 7 projeCT: pedesTrian Crossing

http://www.eng.utah.edu/~cs5780/debouncing.pdf
http://www.eng.utah.edu/~cs5780/debouncing.pdf

320

Import libraries

from machine import Pin

import utime

Setup the button and LEDs

stoplight_red = Pin(13, Pin.OUT)

stoplight_yellow = Pin(12, Pin.OUT)

stoplight_green = Pin(11, Pin.OUT)

button = Pin(9, Pin.IN, Pin.PULL_DOWN)

pedestrian_red = Pin(8, Pin.OUT)

pedestrian_green = Pin(7, Pin.OUT)

Setup lists for the LEDs

stoplight = [stoplight_red, stoplight_yellow, stoplight_green]

pedestrian_signal = [pedestrian_red, pedestrian_green]

Turn off the LEDs

for led in stoplight:

 led.off()

for led in pedestrian_signal:

 led.off()

Start with green stoplight and red pedestrian_signal

stoplight[2].on()

pedestrian_signal[0].on()

We need a method to cycle the stoplight and pedestrian_signal

#

We toggle from green to yellow for 2 seconds

then red for 20 seconds.

def cycle_lights():

 # Go yellow.

 stoplight[2].off()

 stoplight[1].on()

ChapTer 7 projeCT: pedesTrian Crossing

321

 # Wait 2 seconds

 utime.sleep(2)

 # Go red and turn on walk light

 stoplight[1].off()

 stoplight[0].on()

 utime.sleep_ms(500) # Give the pedestrian a chance

to see it

 pedestrian_signal[0].off()

 pedestrian_signal[1].on()

 # After 10 seconds, start blinking the walk light

 utime.sleep(1)

 for i in range(0,10):

 pedestrian_signal[1].off()

 utime.sleep_ms(500)

 pedestrian_signal[1].on()

 utime.sleep_ms(500)

 # Stop=green, walk=red

 pedestrian_signal[1].off()

 pedestrian_signal[0].on()

 utime.sleep_ms(500) # Give the pedestrian a chance

to see it

 stoplight[0].off()

 stoplight[2].on()

Create callback for the button

def button_pressed(line):

 cur_value = button.value()

 active = 0

 while (active < 50):

 if button.value() != cur_value:

 active += 1

ChapTer 7 projeCT: pedesTrian Crossing

322

 else:

 active = 0

 utime.sleep_ms(1)

 print("")

 if active:

 cycle_lights()

 else:

 print("False press")

Create an interrupt for the button

button.irq(trigger=Pin.IRQ_RISING, handler=button_pressed)

OK, now we’re ready to execute the project.

 Execute
We are finally at the point where we can copy all the files to our board

and execute the project code. Once again, be sure to check all hardware

connections before connecting the Pico to your PC. Then, copy the code

files to your Pico and execute the script. You can create a directory on your

Pico to place the code if you’d like to keep things tidy. For example, you

can create a directory named project2 and place the files there as shown in

Figure 7-2.

Figure 7-2. Pedestrian crossing files on the Pico

ChapTer 7 projeCT: pedesTrian Crossing

323

Once you’ve downloaded the file (pedestrian_crossing.py) to your

Pico, simply click the Run button and watch your code run! If everything

is connected correctly, and the code is correct, you will see the green LED

for the stoplight illuminated and the red LED for the pedestrian cross walk

illuminated.

You can then press the button and watch the stoplight change from

green to yellow and then red. The cross walk will then change from red to

green and start flashing. When the timer expires, the cross walk will change

from green to red and the stoplight from red to green. If something doesn’t

work, go back and check your code.

 Taking It Further
This project shows excellent prospects for reusing the techniques in other

projects. This is especially true since we have now learned how to use

analog devices (LEDs). You should now consider taking time to explore

some embellishments. Here are a few you may want to consider. Some

are easy and some may be a challenge or require more research and more

complex coding:

• Use NeoPixels (www.adafruit.com/category/168)

instead of LEDs. These are RGB LEDs, so you need only

two – one for the stoplight and one for the walk light.

See https://github.com/JanBednarik/micropython-

ws2812 for more information and examples.

• Use OLED from the last project in place of the LEDs for

the walk sign to show “WALK” or “DON’T WALK.”

• Add another stoplight to complete the simulation for a

pedestrian crossing.

ChapTer 7 projeCT: pedesTrian Crossing

http://www.adafruit.com/category/168
https://github.com/JanBednarik/micropython-ws2812
https://github.com/JanBednarik/micropython-ws2812

324

• Add three more stoplights and extend the simulation to

include controlling stoplights in two directions. By this

point, you will have a lot of wires in your breadboard,

so you may need to use a second breadboard to keep all

of the wiring tidy.

• Once you have four stoplights working, add a second

pedestrian crossing for the other intersection.

Of course, if you want to press on to the next project, you’re welcome

to do so, but take some time to explore these potential embellishments – it

will be a good practice.

 Summary
Working with discrete electronic components can be a lot of fun. Just

making the circuit work is a real thrill when you’re just starting out with

electronics. Now that we know a lot more about controlling our Pico and

hardware connected to the GPIO, we can see how powerful having an

easy-to-program language like MicroPython at our disposal is to make

things easy.

In this chapter, we implemented a simulation of a pedestrian crossing

button and stoplight. We used a series of LEDs to represent the stoplight

and walk signal. We also added a hardware button to simulate pressing the

real walk. If you liked this project, you would enjoy the next two projects

even more.

In the next chapter, we will explore our first sensor project1 to read

values and then archive the data and display it on an OLED.

1 Actually, a button is a primitive sensor, so this chapter is our first sensor project.

ChapTer 7 projeCT: pedesTrian Crossing

325

CHAPTER 8

Project: Soil Moisture
Monitor
One of the most common forms of electronics projects is those that

monitor events using sensors providing the data either to another

machine, cloud service, or local server (like a web server). One way to do

that is to wire your Pico up to a set of sensors and then log the data. You

can find several examples of general data loggers on the Internet, but

few combine the logging of data with a visualization component. Indeed,

making sense of the data is the key to making a successful project.

In this chapter, we won’t jump directly into making our project run on

the Internet. Rather, we will start with the basics and explore combining

data logging with data visualization. We will use a different OLED made

specifically for the Pico using a third-party host board. We will also see

how to use an analog sensor that produces analog data that we will then

have to interpret. In fact, we will rely on the analog-to-digital conversion

(ADC) capabilities of our Pico to change the voltage reading to a value we

can use. Finally, we will be reusing the RTC module from Chapter 6.

However, this chapter includes a few hardware challenges that are

great examples of incompatibilities among components that you may

encounter in your own projects. We will explore these issues in detail along

with solutions and ways to mitigate the issues. With that comes added

complexity that makes this project the most complex so far in the book.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_8

10.1007/978-1-4842-8135-2_6
https://doi.org/10.1007/978-1-4842-8135-2_8

326

As you will see, the code used in this chapter is more modular and

uses more functions than previous projects, but not much more than the

previous examples. However, the use of a third-party host board makes the

project quite different. As you will see, the code isn’t difficult to learn and

uses concepts we have seen in previous chapters. It is the hardware that is

the most challenging.

 Overview
In this chapter, we will implement a plant soil moisture monitoring

solution (plant monitor for brevity). This will involve using one or more

soil moisture sensors connected to our Pico. We will set up a timer alarm

(an interrupt) to run periodically to read the data from the sensors and

store it in a comma-separated value (CSV) file as well as display the last

value read and average over time.

The project also supports a rudimentary user interface that includes

four buttons whose functions include turning the display off, turning it

back on, and clearing the data log (the extra button is used to confirm the

delete). We will also use an LED to indicate when a sensor is being read.

We will be separating the code for reading the sensor from the display.

This means we can reuse or modify either without confusing ourselves as

we dig into the code. For example, so long as the visualization component

reads the sensor data from the file, it doesn’t matter to the sensor reading

code how it is used. The only interface or connection between these two

parts is the format of the file, and since we’re using a CSV file, it is very easy

to read and use in our code.

To make things more interesting and to make it easier to code, we

will place all the sensor code in a separate code module. Recall, this is a

technique used to help reduce the amount of code in any one module,

thereby making it easier to write and maintain.

Chapter 8 projeCt: Soil MoiSture Monitor

327

Now let’s see what components are needed for this project, and then

we will see how to wire everything together.

Note Since we are well into our third project and have seen many
of the techniques employed in this project, some topics such as
wiring and setup of the hardware shall be brief in favor of discussing
the hardware details.

 Required Components
The components for this project include a new host board that you can

plug your Pico into that supports two additions (copies) of the GPIO

headers, allowing you to use up to two modules made for the Pico.

One of those modules is called the Pico Display, which has a nice

RGB OLED screen that is about 75% of the size of the Pico. Onboard that

module are four buttons and an RGB LED, making this module very handy

in creating simple user interfaces like the one for this project.

However, as mentioned previously, we will encounter some problems

using the Pico Display without our RTC and soil moisture sensors. Before

we look at those details, Table 8-1 lists the components you will need in

addition to your Pico and USB cable. Links to vendors are provided should

you want to purchase the components.

Chapter 8 projeCt: Soil MoiSture Monitor

328

Ta
bl

e
8-

1.
 R

eq
u

ir
ed

 C
om

po
n

en
ts

Co
m

po
ne

nt
Qt

y
De

sc
rip

tio
n

Co
st

Li
nk

s

So
il

m
oi

st
ur

e
1+

Se
ns

or
$6

.9
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/

13
63
7

rt
C

br
ea

ko
ut

bo
ar

d

1
rt

C
m

od
ul

e
w

ith
 b

at
te

ry
 b

ac
ku

p
$1

5.
95

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/

12
70
8

$7
.5

0
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/3

29
6

Co
in

 c
el

l b
at

te
ry

1
Cr

12
25

 (S
pa

rk
Fu

n
rt

C)
$1

.9
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/

33
7

Cr
12

20
 (a

da
fru

it
rt

C)
$0

.9
5

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/3

80

ho
st

 b
oa

rd
1

om
ni

bu
s

$7
.7

5
ht
tp
s:
//
th
ep
ih
ut
.c
om
/c
ol
le

ct
io
ns
/p
ic
o/

pr
od
uc
ts
/p
ic
o-
om
ni
bu
s-
du
al

-e
xp
an
de
r

ol
eD

1
pi

co
 D

is
pl

ay
$1

4.
00

ht
tp
s:
//
th
ep
ih
ut
.c
om
/c
ol
le

ct
io
ns
/p
ic
o/

pr
od
uc
ts
/p
ic
o-
di
sp
la
y-
pa
ck

ju
m

pe
r w

ire
s

3
M

/M
 ju

m
pe

r w
ire

s,
 7

”
(s

et
 o

f 3
0)

$2
.2

5
ht
tp
s:
//
ww
w.
sp
ar
kf
un
.c
om
/

pr
od
uc
ts
/1
10
26

M
/M

 ju
m

pe
r w

ire
s,

 6
”

(s
et

 o
f 2

0)
$1

.9
5

ht
tp
s:
//
ww
w.
ad
af
ru
it
.c
om
/p

ro
du
ct
/1
95
6

ju
m

pe
r w

ire
s

4
F/

F
ju

m
pe

r w
ire

s,
 6

”
(s

et
 o

f 2
0)

$1
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/

11
70
9

F/
F

ju
m

pe
r w

ire
s,

 6
”

(s
et

 o
f 4

0)
$3

.9
5

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2

66

Chapter 8 projeCt: Soil MoiSture Monitor

http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/12708
http://www.adafruit.com/product/3296
http://www.sparkfun.com/products/337
http://www.adafruit.com/product/380
https://thepihut.com/collections/pico/products/pico-omnibus-dual-expander
https://thepihut.com/collections/pico/products/pico-omnibus-dual-expander
https://thepihut.com/collections/pico/products/pico-display-pack
https://thepihut.com/collections/pico/products/pico-display-pack
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/11026
https://www.adafruit.com/product/1956
http://www.sparkfun.com/products/11709
http://www.adafruit.com/product/266

329

You can purchase the components separately from Adafruit

(adafruit.com), SparkFun (sparkfun.com), or any electronics store that

carries electronic components. Costs shown are estimates and do not

include any shipping costs.

Notice we are using two different forms of jumper cables. The usual

we’ve seen before with a male connector on each end as well as a female/

female cable, which we will use to connect to the RTC from the host board.

However, the number of M/M jumper wires needed will vary depending

on how many sensors you plan to use.

Now, let’s discuss the new components we will be using.

 Pico Omnibus
The host board (sometimes called a host adapter) is the Pico Omnibus

from Pimoroni (https://shop.pimoroni.com/products/pico-omnibus).

The board has two sets of male headers that replicate the Pico GPIO.

Together with modules that have female headers, you can place your

Pico in the center and one module on either side. Or, as we will do in this

project, one module and use the other headers for connecting to other

hardware. Figure 8-1 shows the Pico Omnibus with a Pico in the center and

two popular modules installed.

Chapter 8 projeCt: Soil MoiSture Monitor

https://shop.pimoroni.com/products/pico-omnibus

330

Figure 8-1. Pico Omnibus (courtesy of thepihut.com)

Pimoroni sells a variety of modules you can connect to the Pico

Omnibus. See https://shop.pimoroni.com/collections/pico for more

details and the latest offerings. You can purchase Pimoroni components

at adafruit.com, sparkfun.com, and thepihut.com or directly from

pimoroni.com.

 Pico Display
The Pico Display shown on the left is the OLED we will use for this

project. Figure 8-2 shows the Pico Display. Notice it has four buttons as

well as a single red, green, and blue (RGB) LED that you can use as an

indicator. Nice.

Chapter 8 projeCt: Soil MoiSture Monitor

https://shop.pimoroni.com/collections/pico

331

Figure 8-2. Pico Display (courtesy of thepihut.com)

 Soil Moisture Sensor
Soil moisture sensors come in a variety of formats, but most have two

prongs that are inserted into the soil and, using a small electrical charge,

measure the resistance between the prongs. The higher the value read, the

more moisture is in the soil. However, there is a bit of configuration needed

to obtain reliable or realistic thresholds. While the manufacturer will have

threshold recommendations, some experimentation may be needed to

find the right values.

These sensors can also be affected by environmental factors including

the type of pot the plant is in, the soil composition, and other factors.

Thus, experimenting with a known overwatered soil, dry soil, and

properly tended soil will help you narrow down the thresholds for your

environment.

Figure 8-3 shows a soil moisture sensor from SparkFun that has a

terminal mount instead of pins. You can find several varieties of these

sensors. Just pick the one you want to use, keeping in mind you may need

different jumpers to connect it to your board.

Chapter 8 projeCt: Soil MoiSture Monitor

332

Figure 8-3. Soil moisture sensor (courtesy of sparkfun.com)

Of special note is how these soil moisture sensors work. If you were to

leave the sensors powered on, they can degrade over time. The metal on

the prongs can become degraded due to electrolysis, thereby dramatically

reducing its lifespan. You can use a technique of a GPIO pin to power the

sensor by turning the pin on when you want to read a value. Keep in mind

there will be a small delay while the sensor settles, but we can use a simple

delay to wait and then read the value and turn the sensor off. In this way,

we can extend the life of the sensor greatly.

The soil moisture sensors come using a variety of connectors from a

terminal block to one of several connectors with pins. Be sure to check

your soil moisture sensors to ensure you use the correct jumper wires. For

example, you can use a male-to-female jumper wire for the terminal block

version or a female-to-female connector for those using standard pins.

 Potential Hardware Conflicts
Now, let’s talk about a subject that occurs more often than you think –

conflicts between hardware components. Most times, conflicts can be

resolved by changing the software libraries we use like using SoftI2C or

SoftSPI or even a different driver, but other times it’s simply because of

how the hardware is wired internally.

Chapter 8 projeCt: Soil MoiSture Monitor

333

In this case, we have a potential conflict between the Pico Display and

the pins needed for the soil moisture sensors as well as the RTC module.

Yes, all three have a potential to make your project miserable! Since this

can happen in other projects, we need to examine the issue in more detail

to prepare you to diagnose and overcome the situation.

Let’s begin by looking at the interface pins that the Pico Display uses.

The nice folks at Pimoroni have provided us with an excellent color-coded

chart that has on the left a view from the top of the module (looking at the

OLED), and on the right is a view from the underside.

Looking at the left side, notice the blocks that have a text box next to them.

These are the pins the Pico Display uses. To be safe, we should avoid using

these pins for other hardware. That is normally an easy thing to do, but in this

case, we will need three pins for each soil moisture sensor (although you can

combine the ground pins) and four for the I2C interface for the RTC. Since

we must avoid using the same pins as the Pico Display, we must make our

choices for the power and signal pins for the soil moisture carefully.

Figure 8-4 shows the pinout chart of the Pico Display.

Figure 8-4. Pico Display GPIO (courtesy of pimoroni.com)

Chapter 8 projeCt: Soil MoiSture Monitor

334

For example, if you were to use pins numbered 9 and 10 for the power

pins on the soil moisture sensors, these are wired to the RGB LED on the

Pico Display. So, each time you power the soil moisture on, you will see the

RGB LED turn on. That might be fine if you want to turn the LED on when

reading, but it is a good example of hardware conflicts.

Another thing to consider is the signal pins for the soil moisture

sensors require analog-to-digital (ADC) pins for the soil moisture sensors.

However, the Pico has only three pins that can do ADC conversions,

GPIO26, GPIO27, and GPIO28, which limits us to at most three soil

moisture sensors.

However, you can employ an external ADC module like those from

Adafruit and SparkFun. These modules provide additional pins with

ADC capabilities, allowing you to make more ADC pins available for your

project. For example, the ADS1015 12-Bit ADC – 4 Channel from Adafruit

(www.adafruit.com/product/1083) uses an I2C interface, and a driver is

available for use with MicroPython. Figure 8-5 shows the ADS1015 12-Bit

ADC – 4 Channel.

Figure 8-5. ADS1015 12-Bit ADC – 4 Channel (courtesy of
adafruit.com)

Now, let’s see how to wire the components together.

Chapter 8 projeCt: Soil MoiSture Monitor

http://www.adafruit.com/product/1083

335

 Set Up the Hardware
Since we are using the Pico Omnibus, we need to take a slight detour and

load a custom image provided by Pimoroni. It is much easier to load the

custom image than to try and install all of the libraries needed to use the

Omnibus and Pico Display. We will need the same library we used in

Chapter 6 for the RTC, but the custom image has all of the other libraries

we will need.

Another thing that complicates our hardware setup is the layout

of the Pico Omnibus. Recall, this host board has two GPIO headers for

modules with male pins that you can use to mount modules with female

headers soldered on the bottom of the board. However, the pinout for the

GPIO headers on the Omnibus is reversed. That means you cannot start

counting the physical pin number starting in the upper-left corner; rather,

it is numbered from one starting in the upper-right corner. Figure 8-6

shows the correct layout of the GPIO module headers on the Omnibus

enlarged for clarity.

Figure 8-6. Pico Omnibus GPIO pinout

Chapter 8 projeCt: Soil MoiSture Monitor

10.1007/978-1-4842-8135-2_6

336

Fortunately, the pins are labeled on the Omnibus, so you can find

them without having a map like before. Figure 8-7 shows the Omnibus

GPIO. Notice I’ve mounted the Pico Display on the left. You can mount it

on either side.

Figure 8-7. Pico Omnibus module GPIO

Now that we’re aware of the limitation of the pins we need to use and

the layout change for the Omnibus, let’s first discuss how to install the

custom image before we discuss how to connect the hardware.

 Load the Pimoroni Image on the Pico
Pimoroni has prepared a special, custom image that includes all of the

libraries we will need to use the host board and the display. Recall from

Chapter 1, to install an image, we first download the .uf2 file and then

copy the file to our Pico in boot select mode.

For the Pimoroni image, begin by visiting https://github.com/

pimoroni/pimoroni-pico/releases/ and click the link to download the

MicroPython .uf2 image for the latest version. For example, the latest

version at the time of this writing was version 0.2.5, and the link to the

Chapter 8 projeCt: Soil MoiSture Monitor

10.1007/978-1-4842-8135-2_1
https://github.com/pimoroni/pimoroni-pico/releases/
https://github.com/pimoroni/pimoroni-pico/releases/

337

.uf2 file is https://github.com/pimoroni/pimoroni-pico/releases/

download/v0.2.5/pimoroni-pico-v0.2.5-micropython-v1.16.uf2.

Next, unplug your Pico from your PC and hold down the BOOTSEL

button and reconnect to your PC. Release the BOOTSEL button and then

drag and drop the .uf2 file to the RPI-RP2 drive. Once the copy is finished,

you can then disconnect and reconnect the Pico.

Finally, open Thonny and verify the new image has loaded. You may

not see any banner that identifies the MicroPython image as the Pimoroni

custom image. However, you can check that you are using the correct

image by using the REPL console to import the Pimoroni library. This

command will succeed if you have the Pimoroni custom image and fail for

others. The following shows a successful test with the Pimoroni custom

image. Notice there wasn’t an error when the import statement was

executed:

MicroPython v1.16 on 2021-08-19; Raspberry Pi Pico with RP2040

Type "help()" for more information.

>>> import pimoroni

>>>

Now that we have our custom image installed, let’s see how to connect

the hardware.

 Connecting the Hardware
Table 8-2 shows the connections needed for this project. This shows the

use of two soil moisture sensors, but you can use a single sensor or three if

you’d like. However, it is recommended you start with one sensor until you

get the project working and then add additional sensors.

Chapter 8 projeCt: Soil MoiSture Monitor

https://github.com/pimoroni/pimoroni-pico/releases/download/v0.2.5/pimoroni-pico-v0.2.5-micropython-v1.16.uf2
https://github.com/pimoroni/pimoroni-pico/releases/download/v0.2.5/pimoroni-pico-v0.2.5-micropython-v1.16.uf2

338

Table 8-2. Connections for the Plant Monitor

Omnibus Pin Number Component Pin

VBuS 40 rtC 5V

GnD 38 rtC GnD

Gp11 15 rtC SCl

Gp10 14 rtC SDa

GnD 8 Soil #1 GnD

Gp21 27 Soil #1 VCC

Gp27 32 Soil #1 SiG

GnD 3 Soil #2 GnD

Gp22 29 Soil #2 VCC

Gp28 34 Soil #2 SiG

Of course, you must insert the soil moisture sensors into the soil

of your plants. If your plants are located further away from your power

source, you may need to use longer wires to connect the sensors. You

should start with a single, small plant and one sensor (or for testing,

two sensors in one plant) that you can place close to your PC (or power

source).

Caution You will need soil moisture sensors that can operate at
3.3–5V. Some Micropython boards may limit output on the pins to
3.3V. the sensors from SparkFun are compatible.

To connect the wiring, start by installing the Pico in the center of the

Omnibus with the Pico Display installed to the left (or right if you prefer).

Once you’ve done that, lay out the RTC and soil moisture sensors as well as

Chapter 8 projeCt: Soil MoiSture Monitor

339

your kit of jumper wires. Figure 8-8 shows a pictorial representation of how

the modules are wired with the correct Omnibus GPIO header enlarged for

clarity.

Figure 8-8. Wiring the plant monitor

Once again, always make sure to double-check your connections

before powering the board on. Now, let’s talk about the code we need

to write. Don’t power on your board just yet – there is a fair amount of

discussion needed before we’re ready to test the project.

 Write the Code
Now it’s time to write the code for our project. The code is longer than

what we’ve seen thus far, and due to all the bits and bobs we’re working

with, it is best to divide the project into parts. So, we are going to write the

code in stages. We won’t have a working project until the end, so most of

the discussion will be about the individual parts. We will put it all together

before testing the project.

Chapter 8 projeCt: Soil MoiSture Monitor

340

For this project, we will rely more on classes than we did in previous

examples. We will create a main code file (main.py) that we can use to

download to the Pico for automatic execution, which will set up the

sensors for reading by a dedicated class module and display the data using

a different class module. We will use a third class to control how often we

read the sensor(s). Thus, we will create three class modules as follows. We

will see the details of each of these in a later section:

• ReadTimer: A class to control how often the code reads

the sensors. Recall, the soil moisture sensors need

some time to power on, stabilize, and read.

• SoilMoisture: A class to read one or more soil

moisture sensors and return the data. The class will

also save the data collected to a comma-separated

value file (CSV).

• PlantDisplay: A class to display the data to the Pico

Display.

However, before we examine the class modules, we need to work on

calibrating our sensors.

 Calibrating the Sensor
Calibration of sensors is very important. This is especially true for soil

moisture sensors because there are so many different versions available.

These sensors are also very sensitive to the soil composition, temperature,

and even the type of pot in which the plant lives. Thus, we should

experiment with known soil moisture, so we know what ranges to use in

our code.

More specifically, we want to classify the observation from the sensor

so that we can determine if the plant needs watering. We will use the

values “dry,” “Ok,” and “wet” to classify the value read from the sensor.

Chapter 8 projeCt: Soil MoiSture Monitor

341

Seeing these labels is much easier for us to determine – at a glance –

whether the plant needs watering. In this case, the raw data such as a value

of 1756 may not mean much, but if we see “dry,” we know it needs water.

Since the sensors are analog sensors, we will use the analog-to-digital

conversion on the board. When we read the data from the pin, we will get

a value in a range starting at zero. This value is related to the resistance

the sensor reads in the soil. Low values indicate dry soil, and high values

indicate wet soil.

However, the sensors from different vendors can vary widely in the

values read. For example, sensors from SparkFun tend to read values in the

range 0–32768, but sensors from other vendors can read as high as 65535.

Fortunately, they all seem to be consistent in that the lower the value, the

drier the soil.

So, we must determine thresholds for the three classifications. Again,

there are several factors that can influence the values read from the sensor.

Thus, you should select several pots of soil including one that you feel is

dry, another that is correctly watered, and a third that is overwatered. The

best thing to do is select one that is dry, take measurements, then water

it until the soil moisture is correct, measure that, then water it again until

there is too much water.

To determine the threshold, we must first write a short bit of code to set

up our board for reading values from the sensor. This includes choosing a

GPIO pin that supports ADC. We also need to choose a pin to use to power

the board. This is also an analog output pin. We will use GP27 for the

sensor signal pin to read data and GP21 for the power pin. The ground for

the sensor can be connected to any of the ground pins on the Pico.

Finally, we will write a loop to read several values every five seconds

and then average them. Five seconds is an arbitrary value, and it was

derived from reading the data sheet for the sensor. Check your sensors

to see how much time is needed for the read to settle (maybe under the

heading of frequency of reads).

Chapter 8 projeCt: Soil MoiSture Monitor

342

Listing 8-1 shows the code needed to set up the analog-to-digital

channel, a pin to use for powering the sensor, and a loop for reading ten

values and averaging them.

Listing 8-1. Calibrating the Soil Moisture Threshold

Import libraries

from machine import ADC, Pin

from utime import sleep

print("Beginning MicroPython - Soil Moisture threshold test.")

Setup the GPIO pin for powering the sensor. We use Pin 19

power = Pin(21, Pin.OUT)

Setup the ADC for the signal pin

adc = ADC(Pin(27))

Turn sensor off

power.low()

Loop 10 times and average the values read

print("Reading 10 values.")

total = 0

for i in range (0,10):

 # Turn power on

 power.high()

 # Wait for sensor to power on and settle

 sleep(5)

 # Read the value

 value = adc.read_u16()

 print("Value read ({0:02}): {1}".format(i+1, value))

 total += value

 # Turn sensor off

 power.low()

Chapter 8 projeCt: Soil MoiSture Monitor

343

Now average the values

print("The average value read is: {0}".format(total/10))

If you enter this code in a file named threshold.py, you can download

it to your Pico and execute it. Listing 8-2 shows the output of running this

calibration code in a plant that is correctly watered.

Listing 8-2. Running the Calibration Code

Beginning MicroPython - Soil Moisture threshold test.

Reading 10 values.

Value read (01): 752

Value read (02): 720

Value read (02): 752

Value read (04): 784

Value read (05): 832

Value read (06): 736

Value read (07): 800

Value read (08): 784

Value read (09): 784

Value read (10): 752

The average value read is: 769.6

Here, we see an average value of 770 (always round the number – you

need integers). Further tests running the code on dry soil resulted in a

value of 425 and for a wet plant, 3100. Thus, the thresholds for this example

are 500 for dry and 2500 for wet. However, your results may vary greatly, so

make sure to run this code with your sensors, board, and plant of choice.

Tip to make things easier for calibrating the thresholds, use
sensors from the same vendor. otherwise, you may have to use a
different set of thresholds for each sensor supported.

Chapter 8 projeCt: Soil MoiSture Monitor

344

Notice the values read. As you can see, the values can vary from one

moment to another. This is normal for these sensors. They are known for

producing some jumpy values. Thus, you should consider sampling the

sensor more than once to get an average over a short period rather than a

single value. Even taking an average can be skewed slightly if one or more

of the samples is off by a large margin. However, sampling even ten values

and averaging will help reduce the possibility of getting an anomalous

reading. We will do this in our project code.

Now that we have our threshold values for our sensors, we can begin

with the code modules for the classes.

 Class Modules
The first part of the project will be to create the code modules to contain

the new classes that contain all the functionality to read data from the

sensors, save the data to a file, and display the information on a display.

In this section, we will see how to write the code for the class modules

starting with the timer.

 ReadTimer

We will use a new class named ReadTimer to create a hardware timer that

we can use to read the values from the sensor. Since we will use a loop to

read the sensor waiting 5 seconds for each read, we will need a minimum

of 50–55 seconds to read ten values. Thus, we cannot set the update

frequency to anything less than about one minute. While you may want to

set this to a low value for testing, you certainly do not want to check the soil

moisture of your plants every minute. That is, how often do you check your

plants normally? Once every few days or once a day? Why check it sooner

than normal?

Chapter 8 projeCt: Soil MoiSture Monitor

345

SAMPLING FREQUENCY

how often you sample data from a sensor (also called sampling rate) is often

overlooked when designing sensor networks. the tendency is to store as many

values as you can, thinking more data is better. But that is not applicable in the

general case. Consider the plant monitoring project. if you normally check your

plants once per day, how can sampling the sensors once every five minutes

benefit you? it won’t!

Sampling rate must be calculated carefully to deliver the data you need to

draw conclusions without creating too much data. While more data is always

better than too little data, saving data too often at unrealistic frequencies

can generate so much data that it could exceed the storage capacity of

your device.

You should carefully consider the sampling rate when designing projects

that sample sensors. Choose a sampling rate that is based on realistic

expectations. Generally, if you are sampling data that can change very slowly,

the sampling rate should be long. Sampling data that can change more quickly

should have a higher (shorter time between samples) sampling rate.

For this project, we will set the frequency at two minutes (120,000

microseconds).

The design of this class is a bit new and may seem a bit unorthodox

at first. Rather than use a timer as a callback function and assign it to a

hardware timer, we will use the hardware timer to set a variable named

data_read_event to True when the timer fires. We can then create a

function to get the value of that variable as well as reset it (set it to False).

This way, we can use the hardware timer to periodically set the data_read_

event to True, and once we’ve read the data, set it to False. This allows the

code for our soil moisture class to run independently from the timer.

Chapter 8 projeCt: Soil MoiSture Monitor

346

In all, we will need three functions aside from the constructor as

follows:

• read_data_event(): The callback function as

described earlier to set the read data event variable.

• time_to_read(): A function callers can use to get the

read data event variable.

• reset(): A function callers can use to reset the read

data event variable.

We will use this class in the soil moisture class where we only read

the data when the data read event has fired (the variable is True). We will

name the code module read_timer.py and place it on our Pico in the

project3 folder (or similar). Listing 8-3 shows the completed code for

the ReadTimer class. Take a moment to read through the code to see how

it works.

Listing 8-3. The ReadTimer Class

Import libraries

from machine import Timer

Constants

DATA_READ_INTERVAL = 120000 # Increase this interval

as needed

Class to control reading data with a timer

class ReadEvent:

 def __init__(self):

 # Create and start the timer interrupt to read data

 self.data_read_event = True

 self.read_timer = Timer()

Chapter 8 projeCt: Soil MoiSture Monitor

347

 self.read_timer.init(period=DATA_READ_INTERVAL,

 mode=Timer.PERIODIC, callback=self.read_data_event)

 # Callback for reading the data on the interval.

 def read_data_event(self, timer_obj):

 self.data_read_event = True

 # Check to see if it is time to read

 def time_to_read(self):

 return self.data_read_event

 # Reset the read event boolean (timer doesn't reset)

 def reset(self):

 self.data_read_event = False

 SoilMoisture

This class is where we will read the soil moisture sensors and record the

data in a CSV file. We will write the class so that most of the work in writing

data to the CSV file will be functions used only within the class, but we will

expose one function to clear the CSV file. Recall, the user interface has a

button that clears the log file. The code is designed to create the file even if

it doesn’t exist.

Constructor

The class is designed to read any number of sensors via a list of

dictionaries passed when the class is instantiated. Thus, we will write

the constructor to accept the list and set up the sensors. To do so, we will

use a new list of dictionaries that contain the Pin class instantiations for

controlling the power (turning on or off) and the ADC class instantiations

for reading data (signal pin).

Chapter 8 projeCt: Soil MoiSture Monitor

348

The dictionary required for the list passed to the constructor is defined

as follows. Notice we specify the pin for reading the data, the power pin, as

well as a nickname (for the display) and a location or description (for the

log file):

sensor = {

 'pin': sensor_pin,

 'power': power_pin,

 'location': location or description

 'nick': nickname for the sensor

}

The code we will use in the main code to pass the data to the

SoilMoisture class is as follows. Here, we define two sensors:

sensor_list = [

 {

 'pin': 27,

 'power': 21,

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

 {

 'pin': 28,

 'power': 22,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

The code for the constructor is easy to follow, but one portion that

needs examination is the code for creating a new list from the dictionaries

passed to the constructor. We will use one GPIO pin to turn on the power

Chapter 8 projeCt: Soil MoiSture Monitor

349

for the sensor and another pin to read it from the ADC class. Thus, we

create the instances of the Pin and ADC classes as we build the new list

of dictionaries as follows. This piece of code is a good example of how

dictionaries can help keep multiple instantiations of classes organized:

self.sensors = []

for sensor in sensor_list:

 # Setup the dictionary for each soil moisture sensor

 soil_moisture = {

 'sensor': ADC(Pin(sensor['pin'])),

 'power': Pin(sensor['power'], Pin.OUT),

 'location': sensor['location'],

 'nick': sensor['nick']

 }

 self.sensors.append(soil_moisture)

We also need to pass in the RTC class and the file name of the log file.

Thus, calling the constructor requires passing three values as follows:

plants = SoilMoisture(rtc, DATA_FILENAME, sensor_list)

Public Functions

Other than the constructor, we need the following functions that will

be called from our main code. Recall, we call these functions “public”

functions since they can be used outside the class (by the caller):

• clear_log(): Clears the log file (erases all data in

the file)

• get_values(): Returns the values read

• read_sensors(): Reads the data from the sensor if the

read timer has fired (data_read_event is True)

Chapter 8 projeCt: Soil MoiSture Monitor

350

The code for these functions are simple enough, but some explanation

is needed for the read_sensors() function. In this function, we use a

private function to read the value from the sensor by passing the power

and signal pin variables to the private function named _get_value() as

defined in the following:

Read the sensor 10 times and average the values read

def _get_value(self, adc, power):

 total = 0

 # Turn power on

 power.high()

 for i in range (0,10):

 # Wait for sensor to power on and settle

 sleep(5)

 # Read the value

 value = adc.read_u16()

 total += value

 # Turn sensor off

 power.low()

 return int(total/10)

Notice we use the same code from the threshold.py example to turn

on the power pin, wait five seconds, then read the value using the ADC

class. We do this ten times and then average the values.

Private Functions

There are a number of other functions used only within the class. Recall,

we name these with an underscore as the first character in the name

signifying them as private. The following lists the functions and their uses.

We leave the examination of the code for these functions as an exercise:

Chapter 8 projeCt: Soil MoiSture Monitor

351

• _format_time(): Format the time (epoch) for a

better view

• _get_value(): Read the sensor ten times and average

the values read

• _convert_value(): Convert the raw sensor value to an

enumeration

If you are wondering about the data file, you need not worry. The

following shows a mock-up of data you can use in your tests:

9/6/2021 6:22 Ivy 760 ok Green ceramic pot on

top shelf

9/6/2021 6:22 Fern 772 ok Fern on bottom shelf

9/6/2021 6:23 Ivy 742 ok Green ceramic pot on

top shelf

9/6/2021 6:23 Fern 756 ok Fern on bottom shelf

9/6/2021 6:25 Ivy 761 ok Green ceramic pot on

top shelf

9/6/2021 6:25 Fern 763 ok Fern on bottom shelf

9/6/2021 6:26 Ivy 768 ok Green ceramic pot on

top shelf

9/6/2021 6:26 Fern 760 ok Fern on bottom shelf

9/6/2021 6:27 Ivy 763 ok Green ceramic pot on

top shelf

9/6/2021 6:27 Fern 756 ok Fern on bottom shelf

9/6/2021 6:28 Ivy 760 ok Green ceramic pot on

top shelf

9/6/2021 6:28 Fern 753 ok Fern on bottom shelf

9/6/2021 6:29 Ivy 753 ok Green ceramic pot on

top shelf

Chapter 8 projeCt: Soil MoiSture Monitor

352

If you want to start with some sample data, you can do so, but just

make sure it is comma separated with no spaces and one line of data

per row.

We will name the code module soil_moisture.py and place it on our

Pico in the project3 folder (or similar). Listing 8-4 shows the completed

code for the SoilMoisture class. Take a moment to read through the code

to see how it works. Notice the constants that define the thresholds for wet

and dry soil measurements. Recall, we got these through experimenting

with the preceding threshold example code:

Listing 8-4. The SoilMoisture Class

Import libraries

from machine import ADC, Pin

from utime import sleep

import os

Thresholds for the sensors

LOWER_THRESHOLD = 500

UPPER_THRESHOLD = 2500

UPDATE_FREQ = 120 # seconds

class SoilMoisture:

 # Initialization for the class (the constructor)

 def __init__(self, rtc, csv_filename, sensor_list):

 self.rtc = rtc

 # Try to access the file system and make the new path

 self.sensor_file = csv_filename

 # Loop through the sensors specified and setup a new

dictionary

 # for each sensor that includes the power and ADC pins

defined.

Chapter 8 projeCt: Soil MoiSture Monitor

353

 self.sensors = []

 for sensor in sensor_list:

 # Setup the dictionary for each soil

moisture sensor

 soil_moisture = {

 'sensor': ADC(Pin(sensor['pin'])),

 'power': Pin(sensor['power'], Pin.OUT),

 'location': sensor['location'],

 'nick': sensor['nick']

 }

 self.sensors.append(soil_moisture)

 self.values_read = None

 print("Soil moisture sensors are ready...")

 # Clear the log

 def clear_log(self):

 log_file = open(self.sensor_file, 'w')

 log_file.close()

 # Get the values read

 def get_values(self):

 return self.values_read

 # Format the time (epoch) for a better view

 def _format_time(self):

 # Get datetime

 dt = self.rtc.datetime()

 return "{0:02}/{1:02}/{2:04} " \

 "{3:02}:{4:02}:{5:02}".format(dt[1], dt[2],

dt[0], dt[4], dt[5], dt[6])

Chapter 8 projeCt: Soil MoiSture Monitor

354

 # Read the sensor 10 times and average the values read

 def _get_value(self, adc, power):

 total = 0

 # Turn power on

 power.high()

 for i in range (0,10):

 # Wait for sensor to power on and settle

 sleep(5)

 # Read the value

 value = adc.read_u16()

 total += value

 # Turn sensor off

 power.low()

 return int(total/10)

 # Monitor the sensors, read the values and save them

 def read_sensors(self):

 log_file = open(self.sensor_file, 'a')

 self.values_read = []

 for sensor in self.sensors:

 # Read the data from the sensor and convert

the value

 value = self._get_value(sensor['sensor'],

sensor['power'])

 print("Value read: {0}".format(value))

 # datetime,num,value,enum,location

 message = ("{0},{1},{2},{3},{4}"

 "".format(self._format_time(),

 sensor['nick'], value,

 self._convert_value(value),

 sensor['location']))

Chapter 8 projeCt: Soil MoiSture Monitor

355

 log_file.write("{0}\n".format(message))

 value_read = {

 'timestamp': self._format_time(),

 'raw_value': value,

 'value': self._convert_value(value),

 'location': sensor['location'],

 'nick': sensor['nick']

 }

 self.values_read.append(value_read)

 log_file.close()

 # Convert the raw sensor value to an enumeration

 def _convert_value(self, value):

 # If value is less than lower threshold, soil is dry

else if it

 # is greater than upper threshold, it is wet, else all

is well.

 if (value <= LOWER_THRESHOLD):

 return "dry"

 elif (value >= UPPER_THRESHOLD):

 return "wet"

 return "ok"

 PlantDisplay

The last class we will create is a class to display data to the Pico Display. We

place this code in a separate class to keep the display portion of the code

separate from the data. There are no surprises in this code other than how

to initialize and communicate with the Pico Display.

Recall, the user interface allows the user to turn the screen off and

back on, so this class will need to take care of those operations. Also, there

are cases where we want to display a message to the user, so the class will

provide that feature as well.

Chapter 8 projeCt: Soil MoiSture Monitor

356

The class has the following functions. The code for these functions is

easy to understand, and the discovery of how the code works is left as an

exercise:

• clear_screen(): Clear the screen

• _write_text(): Write data to the screen

• screen_on(): Turn the screen on

• screen_off(): Turn the screen off

• show_data(): Show the data on the OLED

• show_message(): Clear the screen and write a message

• is_screen_on(): Return True if the display is turned on

• button_pressed(): Return the button pressed or None

if no buttons are pressed

We will name the code module plant_display.py and place it on our

Pico in the project3 folder (or similar). Listing 8-5 shows the completed

code for the PlantDisplay class. Take a moment to read through the code

to see how it works.

Listing 8-5. The PlantDisplay Class

Import libraries

from utime import sleep

import picodisplay as display

Constants

DEFAULT_FONT_SCALE = 2

WRAP_SIZE = 240

BUTTON_A = 10

BUTTON_B = 20

BUTTON_X = 30

BUTTON_Y = 40

Chapter 8 projeCt: Soil MoiSture Monitor

357

class PlantDisplay:

 """

 This class displays data from one or more soil moisture

sensors.

 """

 # Initialization for the class (the constructor)

 def __init__(self):

 # Setup the Pico Display with a bytearray

display buffer

 buf = bytearray(display.get_width() * display.get_

height() * 2)

 display.init(buf)

 display.set_backlight(0.5)

 self.clear_screen()

 self.display_on = True

 self.led_on = False

 # Function to clear the screen

 def clear_screen(self):

 display.set_pen(0, 0, 0)

 display.clear()

 display.update()

 display.set_pen(255, 255, 255)

 # Function to write data to the screen

 def _write_text(self, message, x, y, scale=DEFAULT_

FONT_SCALE):

 self.clear_screen()

 display.text(message, x, y, WRAP_SIZE, scale)

 display.update()

Chapter 8 projeCt: Soil MoiSture Monitor

358

 # Turn screen on

 def screen_on(self):

 # Turns on the display and reads the data

 display.set_backlight(0.5)

 self._write_text("Display ON", 10, 10, 3)

 sleep(2)

 self.display_on = True

 # Turn screen off

 def screen_off(self):

 # Turns off the display

 self._write_text("Display OFF", 10, 10, 3)

 sleep(2)

 self.clear_screen()

 display.set_backlight(0)

 self.display_on = False

 # Show the data on the LED

 def show_data(self, soil_data):

 y = 40

 self.clear_screen()

 display.text("Plant Monitor", 10, 10, WRAP_SIZE, 3)

 for data in soil_data:

 display.text(data['nick'], 10, y, WRAP_SIZE, 3)

 display.text(str(data["value"]), 105, y, WRAP_

SIZE, 3)

 display.text(str(data["raw_value"]), 160, y, WRAP_

SIZE, 3)

 y = y + 20

 display.update()

Chapter 8 projeCt: Soil MoiSture Monitor

359

 # Clear the screen and write a message.

 def show_message(self, message):

 self._write_text(message, 10, 10, 3)

 # Return True if the display is turned on

 def is_screen_on(self):

 return self.display_on

 # Return the button pressed or None if no buttons

are pressed

 def button_pressed(self):

 if display.is_pressed(display.BUTTON_A):

 return BUTTON_A

 if display.is_pressed(display.BUTTON_B):

 return BUTTON_B

 if display.is_pressed(display.BUTTON_X):

 return BUTTON_X

 if display.is_pressed(display.BUTTON_Y):

 return BUTTON_Y

 return None

Now, let’s see the main code for this project.

 Main Code
The main code for this project is stored in a file named main.py. It is a

continuation of the pattern we saw previously where we create a function

named main() and call it from the conditional at the bottom of the file. So,

there’s nothing new there, but it is best to take a slower walk through this

code as it defines how the project works.

What is new for this project is the use of the three classes we created

along with the RTC class we saw in Chapter 6. Thus, the import section is

a bit longer. In fact, we will need to import a number of things from our

Chapter 8 projeCt: Soil MoiSture Monitor

10.1007/978-1-4842-8135-2_6

360

classes as well as the I2C and Pin classes from the machine library. The

following shows the imports for the main code:

from machine import Pin, SoftI2C

from utime import sleep

from project3.plant_display import PlantDisplay, BUTTON_A,

BUTTON_B, BUTTON_X, BUTTON_Y

from project3.urtc import DS1307

from project3.soil_moisture import SoilMoisture

from project3.read_timer import ReadEvent

import sys

We also create a constant to store the log file name that we pass to the

SoilMoisture class when we instantiate it:

DATA_FILENAME = 'plant_data.csv'

The instantiation of the class variables is a bit longer but not difficult.

The following shows how we create each of the class variables:

Setup the display

display = PlantDisplay()

display.clear_screen()

Setup I2C for RTC

sda = Pin(10)

scl = Pin(11)

Software I2C (bit-banging) for the RTC

i2c = SoftI2C(sda=sda, scl=scl, freq=100000)

Initialize class instance variables for the RTC

rtc = DS1307(i2c)

Next, we create the list of dictionaries that define the sensors we want

to use where we specify the pin numbers for the power and signal lines as

well as a description (location) and nickname. We then pass that to the soil

moisture class to complete the instantiation:

Chapter 8 projeCt: Soil MoiSture Monitor

361

Setup the sensors

sensor_list = [

 {

 'pin': 27,

 'power': 21,

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

 {

 'pin': 28,

 'power': 22,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

Setup the soil moisture object instance from the

SoilMoisture class

plants = SoilMoisture(rtc, DATA_FILENAME, sensor_list)

After that, we enter a loop that simply calls the data_read_event.time_

to_read() function, and if it returns True, we read the sensors and display

the data. We also call the display.button_pressed() function, and if it

returns a value other than null, we act for the specific button press detected.

Listing 8-6 shows the complete code for the main.py code file. Take a

moment and scan the code to see how the button features are implemented.

Listing 8-6. Plant Monitor Complete Code (main.py)

Import libraries

from machine import Pin, SoftI2C

from utime import sleep

from project3.plant_display import PlantDisplay, BUTTON_A,

BUTTON_B, BUTTON_X, BUTTON_Y

Chapter 8 projeCt: Soil MoiSture Monitor

362

from project3.urtc import DS1307

from project3.soil_moisture import SoilMoisture

from project3.read_timer import ReadEvent

import sys

Constants

DATA_FILENAME = 'plant_data.csv'

def main():

 # Global variables

 data_read_event = False

 print("Hello! Welcome to the plant monitor program.")

 # Setup the Pico Display

 display = PlantDisplay()

 display.clear_screen()

 # Setup I2C for RTC

 # Note: RGB LED is on 6, 7, and 8. If you use these, the

LED will blink when you read the sensor

 sda = Pin(10)

 scl = Pin(11)

 # Software I2C (bit-banging) for the RTC

 i2c = SoftI2C(sda=sda, scl=scl, freq=100000)

 # Initialize class instance variables for the RTC

 rtc = DS1307(i2c)

 #start_datetime = (2021, 08, 12, 5, 14, 54, 22)

 #rtc.datetime(start_datetime)

 # Setup the sensors

 sensor_list = [

 {

 'pin': 27,

 'power': 21,

Chapter 8 projeCt: Soil MoiSture Monitor

363

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

 {

 'pin': 28,

 'power': 22,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

 # Setup the soil moisture object instance from the

SoilMoisture class

 plants = SoilMoisture(rtc, DATA_FILENAME, sensor_list)

 display.show_message("Reading data...")

 data_read_event = ReadEvent()

 while True:

 # Check to see if it is time to read the data

 if data_read_event.time_to_read():

 data_read_event.reset()

 if display.is_screen_on():

 print("Reading data...")

 plants.read_sensors()

 values = plants.get_values()

 display.show_data(values)

 sleep(1)

 # Check to see if a button was pressed

 button_pressed = display.button_pressed()

 if not button_pressed:

 continue

 print("Button pressed", button_pressed)

 # Turning the log off only works when the screen is on.

Chapter 8 projeCt: Soil MoiSture Monitor

364

 if button_pressed == BUTTON_A and display.is_

screen_on():

 # Clear the log.

 display.show_message("Press B to clear the log.")

 # wait for 5 seconds then ignore the call

 for i in range(10):

 if display.button_pressed() == BUTTON_B:

 display.show_message("Log cleared.")

 print('Requesting clear log.')

 plants.clear_log()

 sleep(2)

 display.show_message("Reading data...")

 data_read_event.reset()

 break

 else:

 sleep(0.5)

 # Allow user to turn on the screen if it is off

 elif button_pressed == BUTTON_X and not display.is_

screen_on():

 display.screen_on()

 display.show_message("Reading data...")

 data_read_event.reset()

 # Allow user to turn off the screen if it is on

 elif button_pressed == BUTTON_Y and display.is_

screen_on():

 display.screen_off()

 sleep(1)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

Chapter 8 projeCt: Soil MoiSture Monitor

365

 print("\nbye!")

 sys.exit(0)

Now, let’s run this project!

 Execute
Now is the fun part! We’ve got the code all set up to read soil moisture from

our plants and display the data. But first, we have to copy all of our files to

the Pico. Go ahead and create a folder named project3 on the Pico and

then copy the soil_moisture.py, plant_display.py, read_event.py, and

urtc.py (from Chapter 6) to the project3 folder on the Pico. Finally, copy

the main.py file to the root folder of the Pico.

Next, we need to insert our soil moisture sensors into our plants. If you

need to relocate the plants to your work area, go ahead and do so while you

test the project. You may find you will need longer jumper wires if you plan

to mount your Pico near the normal location for your plants. Both Adafruit

and SparkFun sell longer jumper wires (or you can make your own).

Once those files are copied and the soil moisture sensors are inserted

into your plants, you can test the main.py code by running it from Thonny.

You should see data appear on the screen after about two minutes similar

to Figure 8-9.

Figure 8-9. Plant monitor project

Chapter 8 projeCt: Soil MoiSture Monitor

10.1007/978-1-4842-8135-2_6

366

The code has some debug statements inserted which you can view

in the REPL console if you run the main.py from Thonny. The following

shows an example of the output you will see:

Hello! Welcome to the plant monitor program.

Soil moisture sensors are ready...

Reading data...

Value read: 760

Value read: 764

Reading data...

Value read: 752

Value read: 764

...

If you do not see the output or the Pico Display does not show any

data, be sure to double-check all of your wiring and make sure you’ve

copied all of the files to the proper locations on the Pico.

Once everything is working, you can disconnect your Pico and connect

it to a 5V power supply to run the project on boot. Cool!

 Taking It Further
This project, like the last one, shows excellent prospects for reusing the

techniques in other projects. If you liked seeing your sensor data on the

display or want to examine the soil moisture data collected, you should

consider taking time to explore some embellishments. Here are a few you

may want to consider. Some are easy and some may be a challenge or

require more research:

• Add more sensors to expand your project to

more plants.

• Add LEDs to your board to illuminate when the plants

need watering.

Chapter 8 projeCt: Soil MoiSture Monitor

367

• Change the color of the text where OK is green, dry is

red, and wet is blue.

• Make RGB light each time a sensor is read. Use a

different color for each sensor.

• Change the frequency of the sensor read.

• Make the B button force a new sensor read.

• Save the sensor configuration to a file and read it from

the main application instead of hard-coding the data.

• Move the log write/read to a new class and control it

from the main.py module.

Of course, if you want to press on to the next project, you’re welcome

to do so, but take some time to explore these potential embellishments – it

will be a good practice.

 Summary
One of the more common forms of electronics or IoT projects is those that

generate data (sometimes called data collectors). The implementation of

data collectors can vary greatly, but they generally store the data in some

location and provide a way to view the data. The simplest forms are those

that log the data locally (sometimes called data loggers), as opposed to

these that transmitted to a remote server, where the data is stored in a

database or a cloud service.

In this chapter, we saw a MicroPython project that logs data read from

a series of soil moisture sensors. We created a plant monitoring solution

that saved the data to the local SD card. The project also displayed the data

on a Pico Display so that we can see the data at any time. This project can

Chapter 8 projeCt: Soil MoiSture Monitor

368

be used as a template for a host of data collection projects. You can simply

follow the pattern established in this chapter and build your own data

logging project.

In the next chapter, we will take a look at a technology that

makes creating electronics projects easier using a component system

called Grove.

Chapter 8 projeCt: Soil MoiSture Monitor

369

CHAPTER 9

Introducing Grove
Thus far in the book, we have learned how to use two discrete components

to build electronics projects on a breadboard without a lot of soldering. We

saw several examples and three projects that demonstrated how to build

electronic solutions with discrete components and modules.

While we can continue to build our electronics projects with breadboards

and jumper wires, there are better alternatives available to us. There are

component systems designed to unify wiring by providing a modular cabling

system to connect modules. One such component system that has been

around for a while and is available for use with the Pico is called Grove.

The Grove component system has a rich host of modules we can use

to build our projects simply by connecting the hardware together using

polarized connectors (you can’t plug them in incorrectly). Grove expands

your opportunities for building more complex projects, freeing you to

concentrate on the code for your project.

In this chapter and the next three chapters, we will explore the third

component system named Grove from Seeed Studio (https://wiki.

seeedstudio.com/Grove/).

 Overview
In this section, we will discover the Grove component system. We will learn

about the capabilities and limitations of the systems as well as examples

of the components available. The chapter also includes details on how to

start using the components in projects.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_9

https://wiki.seeedstudio.com/Grove/
https://wiki.seeedstudio.com/Grove/
https://doi.org/10.1007/978-1-4842-8135-2_9

370

Grove is designed to make building projects faster using pluggable

modules containing sensors, input, output, and other functions. Unlike

other component systems, the Grove component system supports a variety

of protocols1 that operate over the same set of wires!

Grove supports the analog, digital, I2C, SPI, and universal

asynchronous receiver-transmitter (UART2) protocols. Furthermore, Grove

supports all of these protocols using the same wiring and connectors, so

there’s no need to remember what cables go with what protocols. Cool!

Now that we know what protocols Grove supports and how the cables

are wired, let’s see how easy the Grove component system makes using the

modules.

 The Grove Component System
Grove was created and released in 2010 by Seeed Studio (seeedstudio.

com). They wanted to create an open source, modular component system

to simplify rapid prototyping. But they didn’t stop there. They continued

to refine and develop more modules to include an impressive array of

modules that contain small circuits that include sensors, input devices,

output devices, and more. They also produce host adapters for many

platforms.

Note Seeed Studio also uses the term breakout board for host
adapters.

1 You can call them “interfaces” or “connections” if it helps keep them sorted.
2 A form of serial communication. https://en.wikipedia.org/wiki/
Universal_asynchronous_receiver-transmitter

Chapter 9 IntroduCIng grove

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

371

Each host adapter supports many Grove connectors that match the

capabilities of the host board. If the host board supports all of the protocols

that Grove supports, the host adapter will have several connectors for each

of the protocols.

These host adapters simply connect to your host board enabling the

use of Grove modules without the need for additional electronics such as

breadboards and discrete components without soldering.

The Grove cabling system is not designed for daisy chaining. Rather,

Grove modules are connected to the host adapter directly. So, connections

form a “star” layout where the modules plug into one of the connectors

on the host adapter. That’s why most host adapters have so many Grove

connectors. We will see some examples of host adapters in a later section.

Each Grove module is self-contained; all of the supporting electrical

components are on the module mounted on a small PCB (most come in

a pretty blue color in fact) of various sizes. All you need to do is connect

the modules to your host adapter using a Grove cable, and your hardware

is done.

 Capabilities

The capabilities of the Grove system include the following:

• Modularized cabling supporting four protocols (I2C,

digital, analog, and UART)

• Easy, polarized connectors (no incorrect or reversed

connections3)

• No soldering required!

3 Perhaps the greatest bane of anyone working with I2C is inadvertently reversing
the data and clock connections. Qwiic eliminates that guesswork entirely.

Chapter 9 IntroduCIng grove

372

 How Does It Work?

Grove wiring is polarized – you can only connect the cable to the device

one way, so you always know the connections are correct. Grove uses a

four-wire cable of various lengths with a larger keyed connector. So, you

can’t misconnect a Grove cable. Nice. Figure 9-1 shows a typical Grove

cable and connectors.

Figure 9-1. Grove connectors (courtesy of seeedstudio.com)

Figure 9-2 shows a close-up of the Grove connector.

Figure 9-2. Comparing Qwiic and Grove connectors (courtesy of
sparkfun.com)

We will discuss how the cables are used for each of the protocols; let’s

discuss each of these in more detail.

Chapter 9 IntroduCIng grove

373

I2C

Recall from Chapter 4, I2C is a fast digital protocol that uses two wires

(plus power and ground) to read data from circuits (or devices). I2C over

the Grove cabling system uses all four wires as shown in Table 9-1.

Table 9-1. Grove Cable (I2C)

Pin Color Description

1 Yellow SCL

2 White Sda

3 red vCC (power)

4 Black gnd (ground)

Digital

The digital protocol is used for modules that produce a digital value,

typically a positive integer in the range 0–1024 or larger. Digital wiring uses

three wires: ground (GND), power (VCC of 3.3V or 5V), and signal. The

digital protocol for Grove allows for up to two signal lines (named D0 and

D1) using two of the four wires as shown in Table 9-2. Some modules may

be labeled in such a way to indicate three signal lines (D0/D1 and D1/D2),

but the interface supports only two signal lines. Signal lines can be used for

input or output.

Chapter 9 IntroduCIng grove

374

Table 9-2. Grove Cable (Digital)

Pin Color Description

1 Yellow d0 – primary signal line

2 White d1 – secondary signal line

3 red vCC (power)

4 Black gnd (ground)

Analog

The analog protocol supports communicating with modules using voltage.

Like the digital protocol, the analog protocol supports up to two analog

lines as well as the ground (GND) and power (VCC). The first analog line

is named A0 and the second A1. Similar to the digital protocol, some

modules may label the analog lines A0/A1 and A1/A2. Table 9-3 shows the

layout of the analog protocol over the Grove cabling.

Table 9-3. Grove Cable (Analog)

Pin Color Description

1 Yellow a0 – primary analog line

2 White a1 – secondary analog line

3 red vCC (power)

4 Black gnd (ground)

Chapter 9 IntroduCIng grove

375

UART

The UART protocol is a special serial protocol that uses two lines for

transmit (TX) and receive (RX). Pins 1 and 2 are used for these lines,

and the other two are the common ground and power lines as shown in

Table 9-4.

Table 9-4. Grove Cable (UART)

Pin Color Description

1 Yellow rX – serial receive

2 White tX – serial transmit

3 red vCC (power)

4 Black gnd (ground)

Having all of the cables wired the same means you don’t need to have

any special cables for each of the four protocols, but there are some cases

where we may need a slightly different cable. We will discuss the available

Grove cables in a later section.

Grove modules come in a variety of sizes, and most have only a single

Grove connector but may host a number of other connectors depending

on the features supported. Grove modules are designed to support a single

function using a dedicated circuit.

While Grove modules are not uniform in size, they do conform to one

of several formats as shown in Table 9-5. Most of the formats support a

Grove connector in either a vertical (cable plugs in at a right angle to the

board) or horizontal orientation.

Chapter 9 IntroduCIng grove

376

The host adapter has multiple Grove connectors that you can use

to connect modules (depending on the protocol as their dedicated

connectors for each protocol). There are a variety of host adapters

available for a growing list of host boards. This includes several for the

Arduino, NodeMCU, Raspberry Pi Pico, and many more. You can discover

the latest offerings by visiting https://wiki.seeedstudio.com/

Grove_System/#how-to-connect-grove-to-your-board.

Now that we know what the Grove system is and how it works, let’s

examine some of the limitations.

Table 9-5. Grove Module Sizes (Courtesy of

seeedstudio.com)

Format Size Example

1x1 20x20mm

1x2 20x40mm

1x3 20x60mm

2x2 40x40mm

2x3 40x60mm

Chapter 9 IntroduCIng grove

https://wiki.seeedstudio.com/Grove_System/#how-to-connect-grove-to-your-board
https://wiki.seeedstudio.com/Grove_System/#how-to-connect-grove-to-your-board

377

 Limitations

Like most systems, there are some limitations. Fortunately, there are few

and only the largest or most complex projects may need to heed. The

limitation you may encounter for larger projects is that the maximum

number of modules that can be supported is limited to the number of

connections available on the host adapter, which is often limited by the

host device or by the size of the host adapter.

For example, if you want to use the Grove Pico host adapter, it has

only two Grove I2C connectors and thus can use only two I2C modules.

Similarly, most Grove host adapters have limited numbers of digital and

analog connectors. However, there are some things you can do to mitigate

some of these limitations. Seeed Studio offers a number of modules that

can help out (called interfaces).

Tip You can discover the latest interface boards available for a
variety of uses at https://www.seeedstudio.com/category/
Grove-c-1003.html.

For example, if you want to use more I2C connections than what are

available on the host adapter, you can use the Grove 8-Channel I2C Hub

(www.seeedstudio.com/Grove-8-Channel-I2C-Hub-TCA9548A-p-4398.

html) to extend the number of I2C connections. With this module, you can

use one I2C connector on your host adapter and connect up to eight I2C

modules to the hub. Figure 9-3 shows the Grove 8-Channel I2C Hub.

Chapter 9 IntroduCIng grove

https://www.seeedstudio.com/category/Grove-c-1003.html
https://www.seeedstudio.com/category/Grove-c-1003.html
http://www.seeedstudio.com/Grove-8-Channel-I2C-Hub-TCA9548A-p-4398.html
http://www.seeedstudio.com/Grove-8-Channel-I2C-Hub-TCA9548A-p-4398.html

378

Figure 9-3. Grove 8-Channel I2C Hub (courtesy of seeedstudio.com)

To increase the number of connections for analog sensors, you can

take a different route and use an analog-to-digital (ADC) module. The

Grove ADS1115 16-bit ADC module (www.seeedstudio.com/Grove-

ADS1115-16-bit-ADC-p-4599.html) allows you to connect up to four

analog sensors connected via the onboard screw terminals. Figure 9-4

shows the Grove ADS1115 16-bit ADC module.

Figure 9-4. Grove ADS1115 16-bit ADC module (courtesy of
seeedstudio.com)

Another limitation is the length of the Grove cables. Currently, the

longest Grove cable from Seeed Studio is 50cm. If you need to use a longer

cable, you can use two Grove Screw Terminal modules and a set of twisted

pair wires (such as an Ethernet cable) to create your own longer cable.

Figure 9-5 shows the Grove Screw Terminal module.

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/Grove-ADS1115-16-bit-ADC-p-4599.html
http://www.seeedstudio.com/Grove-ADS1115-16-bit-ADC-p-4599.html

379

Figure 9-5. Screw Terminal module (courtesy of seeedstudio.com)

Tip See https://www.seeedstudio.com/category/
Grove-c-1003/accessories-c-945/cables-c-949.html for
the list of grove cables from Seeed Studio.

Now that we know more about Grove, let’s see what components (host

adapters and modules) are available.

 Components Available
There are a lot of components available for the Grove system. This section

highlights some of the categories of modules available. We won’t see

everything that is available because the catalog is quite large. Since the

product has been around for some time, there are several versions of some

of the modules. Rather than attempt to view all of the latest modules, we

will see the more popular host adapters and modules as well as those we

will use in upcoming chapters. Figure 9-6 shows a snapshot of the top-level

index from the Seeed Studio Grove online store. As you can see, there are a

lot of categories!

Chapter 9 IntroduCIng grove

https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html
https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html

380

Figure 9-6. Seeed Studio Grove online store index

Note While you may encounter older versions of some grove
components, the older versions are still usable and can sometimes be
found used for a discount.

 Host Adapters
Aside from the impressive list of modules, the list of host adapters available

from Seeed Studio is very impressive. Since we are working with Arduino

and Raspberry Pi in this book, let’s look at versions of each for these

platforms.

The host adapter most will want to use for the Raspberry Pi Pico is

named Grove Shield for Pico (www.seeedstudio.com/Grove-Shield-for-

Pi-Pico-v1-0-p-4846.html). We saw this host adapter in Chapter 1.

It provides ten Grove connectors as well as GPIO headers that can be

accessed with the Pico installed. Figure 9-7 shows the Grove Shield for the

Raspberry Pico.

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html

381

Figure 9-7. Grove Shield for Raspberry Pi Pico (courtesy of
seeedstudio.com)

Notice the most commonly used GPIO pins are exposed on the upper-

left corner. This allows you to use the header for additional connections.

Another cool feature!

There are other Grove host adapters for the Pico. One of the most

popular is the Maker Pi Pico Base, which we saw in Chapter 1. The Maker

Pi Pico Base (without Pico) is available from Cytron (https://thepihut.

com/products/maker-pi-pico-base-without-pico). You can get this

board with the Pico already soldered in place or with a header ready for

you to plug in your Pico with male headers soldered on. Figure 9-8 shows

the Maker Pi Pico Base.

Chapter 9 IntroduCIng grove

https://thepihut.com/products/maker-pi-pico-base-without-pico
https://thepihut.com/products/maker-pi-pico-base-without-pico

382

Figure 9-8. Maker Pi Pico Base (without Pico) (courtesy of
thepihut.com)

 Modules
Seeed Studio offers a wide variety of modules that contain sensors, input,

output, and display capabilities similar to those available for Qwiic.

However, the categories and number of modules available are several

times that of the other systems. So many that it is not possible to list them

all here. Table 9-6 lists the categories of modules available with a link to

each category for further reading. You will find most have subcategories

that you can explore to find more about the modules in the category. All

URLs (links) begin with www.seeedstudio.com/category/.

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/category/

383

Table 9-6. Categories of Grove Modules

Category Description Category Link

Sensors Modules that allow you to

sample the world around us

Sensor-for-Grove-c-24.html

Leds Modules that contain various

forms of Leds

leds-c-891.html

Input Modules that contain devices

that permit input of data or input

actions like buttons

Input-c-21.html

Wireless Modules that support wireless

technologies

wireless-c-899.html

displays Modules with output devices displays-c-929.html

actuators Modules with devices that

produce movement, drive

motors, or produce sound

actuators-c-940.html

accessories grove accessories such as

cables, headers, and more

accessories-c-945.html

So, what are the modules available in these categories? We will use the

same list of subcategories we used for the other component systems. You

will find the Seeed Studio website organized a bit different, but all of these

subcategories are present:

• Sensors: Typically contain a single sensor that produces

output (readings or values) on the I2C bus. Examples

include temperature, humidity, pressure, distance,

magnometer, light, and environmental (gases) sensors.

• Displays: Modules that contain an output device for

displaying data. Examples include OLED and LED

displays.

Chapter 9 IntroduCIng grove

384

• Relays: Modules that contain relays that permit you to

switch higher power devices on or off.

• Motors: Modules that permit you to control small

electric motors.

• Input: Modules that contain one or more buttons,

potentiometers, keypads, or switches.

• ADC/DAC: Modules that provide analog-to-digital

conversion (ADC) or digital-to-analog conversion

(DAC) that permit incorporation of other circuits into

your project.

• Accessory: Various modules that provide handy

operations such as data loggers, cryptographic

operations, and more.

Now, let’s look at a sample of the Grove modules we will be using in the

upcoming chapters as we explore how to write the code for IoT projects

using the Grove system beginning with an output device.

We will make use of several Grove LED modules. These modules

contain one LED of a particular color. Figure 9-9 shows a Grove LED

module. You can discover all of the Grove LED modules at https://www.

seeedstudio.com/category/Grove-c-1003/leds-c-891/single-color-

leds-c-914.html.

Figure 9-9. Grove Red LED module (courtesy of seeedstudio.com)

Chapter 9 IntroduCIng grove

https://www.seeedstudio.com/category/Grove-c-1003/leds-c-891/single-color-leds-c-914.html
https://www.seeedstudio.com/category/Grove-c-1003/leds-c-891/single-color-leds-c-914.html
https://www.seeedstudio.com/category/Grove-c-1003/leds-c-891/single-color-leds-c-914.html

385

We will also use an LCD screen in some of the projects. The Grove –

OLED Display 0.96" (www.seeedstudio.com/Grove-OLED-Display-0-96-

SSD1315-p-4294.html) is a nifty, small OLED similar to the one we used in

the Qwiic projects. Figure 9-10 shows the OLED display.

Figure 9-10. Grove – OLED Display 0.96" (SSD1315) (courtesy of
seeedstudio.com)

The Grove Sound Sensor module (https://www.seeedstudio.com/

Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.

html?queryID=4e7fe5323cfe7b455a38a1b11c3889c0&objectID=1820&

indexName=bazaar_retailer_products) provides the ability to detect

sound or noise as an analog value similar to a microphone. Figure 9-11

shows the module with the sensor-facing side.

Figure 9-11. Grove Sound Sensor (courtesy of seeedstudio.com)

We will also use input devices such as the Grove Dual Button module

that has two buttons mounted (www.seeedstudio.com/Grove-Dual-

Button-p-4529.html). The module comes with a variety of colored caps

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/Grove-OLED-Display-0-96-SSD1315-p-4294.html
http://www.seeedstudio.com/Grove-OLED-Display-0-96-SSD1315-p-4294.html
https://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html?queryID=4e7fe5323cfe7b455a38a1b11c3889c0&objectID=1820&indexName=bazaar_retailer_products
https://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html?queryID=4e7fe5323cfe7b455a38a1b11c3889c0&objectID=1820&indexName=bazaar_retailer_products
https://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html?queryID=4e7fe5323cfe7b455a38a1b11c3889c0&objectID=1820&indexName=bazaar_retailer_products
https://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html?queryID=4e7fe5323cfe7b455a38a1b11c3889c0&objectID=1820&indexName=bazaar_retailer_products
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html

386

permitting you to match the color of the cap to your project features.

Figure 9-12 shows the module with caps on the buttons. You can also use

them without the caps. Note that the Grove connector is located on the

bottom of the board.

Figure 9-12. Grove Dual Button module (courtesy of
seeedstudio.com)

The Grove – AHT20 I2C Temperature and Humidity Sensor module can

measure both temperature and humidity (www.seeedstudio.com/Grove-

AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.

html). Figure 9-13 shows the module with the sensor-facing side.

Figure 9-13. Grove – AHT20 I2C Temperature and Humidity Sensor
(courtesy of seeedstudio.com)

Notice this module has additional pins for advanced users. In this case,

we see the I2C pins broken out on the right side of the module. Modules

with these features typically come without headers mounted.

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html
http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html
http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html

387

Once again, there are many modules available. These are just a

sampling of the modules available from Seeed Studio. A compact list of

all Grove devices and modules is available at www.seeedstudio.com/

category/Grove-c-1003.html.

 Cabling and Connectors
The Grove system includes cables of various lengths including 5, 20, 30,

40, and 50cm. Most modules produced by Seeed Studio include a 20cm

cable or longer. The 5cm cables are great for projects that include modules

mounted in close proximity or inside an enclosure.

There are also special cables available for a variety of uses such as a

branch or “Y” cable that lets you connect two modules to a single source,

a Grove to servo cable for using servos connected directly to a host,

and even cables for connecting directly to your host board with a Grove

connector on one side and the other side broken out with individual male

or female pins.

See www.seeedstudio.com/cables-c-949.html for a list of cables and

connectors to support the Grove system.

 Where to Buy Grove Components
You can purchase Qwiic components directly from Seeed Studio

(seeedstudio.com), which is based in China. They often ship products

quickly, but shipping may take longer than expected. Fortunately, you can

often find Grove modules on popular online retail sites such as amazon.

com and online auction sites. In fact, I have seen select starter kits in brick-

and-mortar stores that sell electronic components. If you live in the United

States, check out the online retail stores first or buy in bulk to save on

shipping from Seeed Studio.

Now, let’s discuss how to use these systems in your projects.

Chapter 9 IntroduCIng grove

http://www.seeedstudio.com/category/Grove-c-1003.html
http://www.seeedstudio.com/category/Grove-c-1003.html
http://www.seeedstudio.com/cables-c-949.html

388

 Using the Components with Your Pico
Plugging your choice of Grove host adapter onto your host board and

plugging the modules together with the cables is pretty easy. Recall, the

connectors only go one way, so you can’t cross-connect anything.

However, Grove modules are not designed to be hot pluggable. You

should not connect and disconnect modules while your board is powered

on. This could lead to damaging the module(s) or your host board.

Caution do not plug or unplug grove modules while your board is
powered on.

Once the hardware is plugged together, the next step is to start working

on the code to enable your modules and complete your project. To do so,

you are likely required to load one or more software libraries.

Like the vast array of modules, the software libraries required for

the Grove modules vary and depend on the module itself. Fortunately,

Seeed Studio is very good about providing samples for use of each of their

hundreds of modules.

The following summarizes the steps necessary for the Pico. The

following does not include all of the steps needed for all of the projects

in the book; rather, the section is an overview of what you can expect to

configure your PC to implement the projects. Specific details for each

example are included in each chapter.

Fortunately, most Grove modules have examples on how to use them

that include, at a minimum, sample code for the Arduino. For example,

there is a Wiki page for the OLED Display 0.96 module that shows you

how to get started using it (https://wiki.seeedstudio.com/Grove-OLED_

Display_0.96inch/).

Software libraries for the Pico are available for download to your PC,

but some Python libraries are designed for use with the Raspberry Pi, not

Chapter 9 IntroduCIng grove

https://wiki.seeedstudio.com/Grove-OLED_Display_0.96inch/
https://wiki.seeedstudio.com/Grove-OLED_Display_0.96inch/

389

the Pico. So, you may need to copy/download one or more additional code

modules to the Pico to get them to work. Be aware that some libraries may

require changes in order to work with the Pico.

Most often, this is changing the use of I2C to SoftI2C, but sometimes

you may need to change additional things in the code modules (library)

to accommodate the Pico hardware. This makes using the Grove system

a bit more of a challenge, but not burdensome once you experience how

to make a few work as we will see in the next three chapters. Most can be

used with little or no changes.

If you encounter a Grove module where there isn’t a Python library, do

not despair. Again, most Grove modules have a Wiki page that will show

you how to get started. But if there isn’t a specific Python library, you most

likely can find a similar one from the Internet that you can use. All it takes

is a bit of exploring, and you can find Python libraries for what you need.

 Summary
Grove provides a simple, no-error connector that you can use to connect

a variety of components together using several protocols – all from the

same board.

Now that the hardware challenges have been nearly eliminated, we can

turn our attention back to learning how to write the code for our projects.

As you saw in this chapter, this may require installing software libraries

to support the modules you are using or adapting existing libraries to suit

your needs.

The next chapter begins a series of projects that use Grove components

to teach you how to work with the systems for the Pico. As you will see,

except for the hardware itself, the pattern of building the projects is the

same as the previous project chapters.

Chapter 9 IntroduCIng grove

391

CHAPTER 10

Project: Sound
Activated Lights
As we saw in Chapter 9, the Grove component system can help make your

hardware connections much simpler with less risk of incorrectly wiring

your components. Indeed, except for making sure you are plugging in

the Grove cables to the correct ports, you can’t make a wrong or reversed

connection.

The Grove modules are all self-contained boards that have everything

the main component needs, so there is no need to wire up additional

hardware like resistors. The challenge lies in writing your code to talk to

the components. Most Grove modules have examples you can use, and

some have libraries you can download. However, some do not have any

Python examples, or the Python examples are written for the Raspberry Pi

rather than the Pico. In those cases, you may need to either write the code

yourself using the examples as a guide or modify existing Python libraries

for use on the Pico.

Since this is our first Grove project, in this chapter we will keep those

issues to a minimum and instead spend some time looking at the Grove

hardware and how to connect things to our Pico.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_10

https://doi.org/10.1007/978-1-4842-8135-2_10

392

 Overview
In this chapter, we begin our tour of example Grove projects with a simple

project that demonstrates how to use a sound sensor and an RGB LED to

display assorted colors based on the sound detected. The idea is the LED

will light up whenever sound is detected, and the color will differ based on

the loudness of the sound. So, we will be creating a sound detector.

The code for this project will need to read from an analog sensor (the

sound sensor) and convert that value to a range of red, green, and blue

values to convert the integer that the analog-to-digital converter returns

from the sensor. As you will see, there is a bit of trickery needed to ensure

the higher the value of the sensor, the brighter (higher values) the RGB

values. We use those values to turn on an RGB LED.

Now let’s see what components are needed for this project, and then

we will see how to wire everything together.

 Required Components
The components for this project include a Grove host board that you can

plug your Pico into that supports multiple Grove connectors. Recall, Grove

connectors on the host board support one of several protocols including

analog, digital, and I2C. We will need two Grove modules: a sound sensor

and an RGB LED.

Table 10-1 lists the components you will need in addition to your Pico

and USB cable. Links to vendors are provided should you want to purchase

the components.

Chapter 10 projeCt: Sound aCtivated LightS

393

Table 10-1. Required Components

Component Qty Description Cost Links

Sound Sensor 1 Sensor $5.40 www.seeedstudio.com/Grove-

Sound-Sensor- Based- on-

LM358- amplifier- Arduino-

Compatible.html

Chainable rgB 1 rgB Led $6.60 www.seeedstudio.com/Grove-

Chainable-RGB- Led- V2- 0.html

grove Shield for

pi pico v1.0

1 host board $4.30 www.seeedstudio.com/Grove-

Shield-for- Pi- Pico- v1- 0-

p- 4846.html

grove Cable 2 See note varies https://www.seeedstudio.

com/category/Grove-c-1003/

accessories-c-945/

cables-c-949.html

Note each grove module comes with a short cable. if you need
longer cables, see the link in the table for options.

You can purchase the components directly from Seeed Studio via the

links in the table, or you can often find them at online retailers such as

Adafruit (adafruit.com), SparkFun (sparkfun.com), or any electronics

store that carries electronic components. Costs shown are estimates and

do not include any shipping costs.

Now, let’s discuss the new components we will be using.

Chapter 10 projeCt: Sound aCtivated LightS

http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html
https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html
https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html
https://www.seeedstudio.com/category/Grove-c-1003/accessories-c-945/cables-c-949.html

394

 Grove Shield for Pi Pico
We saw the Grove Shield for Pico in Chapter 9, but let’s explore its features

in more detail. There are ten Grove connectors that include three analog

ports, three digital ports, two UART ports, and two I2C ports. There is also

an SPI header and a switch that allows you to choose between 5V and

3.3V to power the Grove connectors. Figure 10-1 shows the Grove Shield

for Pico.

Figure 10-1. Grove Shield for Pi Pico v1.0 (courtesy of
seeedstudio.com)

Notice the 5V/3.3V switch is located in the upper left, and the SPI

breakout is located in the lower right. Notice also that the board is marked

USB to orient the Pico with the USB connector to the left. Finally, notice

the two rows of double female headers. You connect your Pico to the

centermost set leaving headers open for use with jumper wires. Cool!

Like all Grove components, Seeed Studio provides a Wiki page devoted

to documenting the component and providing example code. The Wiki

page for this host adapter is found at https://wiki.seeedstudio.com/

Grove_Shield_for_Pi_Pico_V1.0/.

Chapter 10 projeCt: Sound aCtivated LightS

https://wiki.seeedstudio.com/Grove_Shield_for_Pi_Pico_V1.0/
https://wiki.seeedstudio.com/Grove_Shield_for_Pi_Pico_V1.0/

395

 Sound Sensor
The Grove Sound Sensor is an analog module that incorporates a

microphone and a small amplifier. It can be used to detect sound in the

area and even the intensity of the sound. We will use both features in this

project. Figure 10-2 shows the Grove Sound Sensor.

Figure 10-2. Grove Sound Sensor (courtesy of seeedstudio.com)

 Grove RGB LED
The lamp used in this project is a bright red, green, and blue (RGB) LED

that can be used to produce a vast array of colors by specifying a value of

0–255 for each color. The higher the value, the brighter (intensity) that

color is shown. By mixing the intensity, we can see a wide range of colors.

For example, values of (255, 0, 0) for red or (127, 0, 127) for purple.

To see what this might look like, an RGB chooser (www.w3schools.com/

colors/colors_rgb.asp) can help you visualize the color. Navigate there

now and try it out yourself.

The Grove Chainable RGB LED module allows you to produce any

color you want. Figure 10-3 shows the Grove Chainable RGB LED.

Chapter 10 projeCt: Sound aCtivated LightS

http://www.w3schools.com/colors/colors_rgb.asp
http://www.w3schools.com/colors/colors_rgb.asp

396

Figure 10-3. Grove Chainable RGB LED (courtesy of
seeedstudio.com)

So, what does the chainable in the name mean? It means if you want

to use more than one RGB LED, you can “chain” the modules together. In

fact, on the bottom of the module you will see two Grove connectors, one

marked “IN” and another “OUT.” Figure 10-4 shows what the connectors

look like. Notice the labels for each.

Figure 10-4. Grove Chainable RGB LED connectors on the bottom
(courtesy of seeedstudio.com)

To chain multiple modules together, simply connect the first Grove

cable from your host adapter to the “IN” connector, then another Grove

cable to the “OUT,” and then the “IN” to the next module, and so on. You

can connect up to 1024 RGBs together.

Chapter 10 projeCt: Sound aCtivated LightS

397

 Grove Kits
Seeed Studio also sells kits for some platforms that include a host adapter

and several modules. An excellent alternative kit for this project that has

many of the sensors you will need is the Grove Starter Kit for Raspberry

Pi Pico (www.seeedstudio.com/Grove- Starter- Kit- for- Raspberry- Pi-

Pico- p- 4851.html). Figure 10-5 shows the kit.

Figure 10-5. Grove Starter Kit for Raspberry Pi Pico (courtesy of
seeedstudio.com)

Notice we see the Pico host adapter and the source sensor along with

an LCD, environment sensors, LEDs, and much more. If you decide to

purchase the kit, you can visit the Wiki at www.seeedstudio.com/Grove-

Starter-Kit- for- Raspberry- Pi- Pico- p- 4851.html to learn more about

the components and see sample projects.

Now, let’s see how to connect the components together.

Chapter 10 projeCt: Sound aCtivated LightS

http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html
http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html
http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html
http://www.seeedstudio.com/Grove-Starter-Kit-for-Raspberry-Pi-Pico-p-4851.html

398

 Set Up the Hardware
Connecting the hardware for a Grove project is really easy. Since the cables

are keyed, you don’t have to worry about incorrect connections. Rather, we

have to consider which Grove connectors we need to use. For this project,

we need only two connectors, one for the I2C interface on the Chainable

RGB module and an analog connector for the sound sensor. We will use

the I2C0 connector for the RGB module and the A0 connector for the

sound sensor as shown in Figure 10-6.

Figure 10-6. Connections for the sound detector project

Caution Be sure to plug the grove cable into the rgB module on
the side that is indicated as “in.” plugging it into the “out” port may
prevent the Led from illuminating. recall, we use the “out” port
to chain the rgB modules together by connecting the “out” of one
module to the “in” of the next in the chain.

Chapter 10 projeCt: Sound aCtivated LightS

399

Once again, always make sure to double-check your connections

before powering the board on. Now, let’s talk about the code we need

to write. Don’t power on your board just yet – there is a fair amount of

discussion needed before we’re ready to test the project.

 Write the Code
Now it’s time to write the code for our project. The code is a bit less

complicated than the previous project but has its own interesting twists.

Specifically, we will need a function to convert the value read from the

sound sensor into a tuple of three values in the range 0–255 for the RGB

values. Before we look at the code, let’s look at the library we will need to

communicate with the Chainable RGB module that uses an I2C interface.

 Libraries Needed
We need only one library for the Chainable RGB module since the sound

sensor is an analog device that we can read with functions from the

MicroPython machine library. If you visit the Wiki for the Chainable RGB

module (https://wiki.seeedstudio.com/Grove- Chainable_RGB_LED/),

you will discover a section that demonstrates how to use the module with

Python on the Raspberry Pi. However, this example is for Python, not

MicroPython. In fact, most of the Wiki pages for the Grove modules have

only Python examples. So, what do we do? We turn to Google for help!

Tip When researching grove modules to use with the pico, be
sure to google for a Micropython driver. Most python drivers for
grove modules require additional libraries or libraries that only work
in python.

Chapter 10 projeCt: Sound aCtivated LightS

https://wiki.seeedstudio.com/Grove-Chainable_RGB_LED/

400

A quick Google search for “chainable rgb grove micropython”

will return a number of entries. Among them are example libraries

for the p9813 chip, which is the controller chip used on the Chainable

RGB module. The library found to work best for the Pico is the

micropython-p9813 library from Mike Causer (https://github.com/

mcauser/micropython- p9813).

We need only download the library to our PC and then upload it to our

Pico. The best way to do that is to use the command git clone https://

github.com/mcauser/micropython- p9813 to make a copy (clone) of the

repository as follows. This copies all of the files including examples and

documentation to your PC:

$ git clone https://github.com/mcauser/micropython-p9813

Cloning into 'micropython-p9813'...

remote: Enumerating objects: 36, done.

remote: Total 36 (delta 0), reused 0 (delta 0), pack-reused 36

Unpacking objects: 100% (36/36), done.

Once you clone the repository, you can locate the p9813.py file in the

<root of clone>/micropython-p9813 folder. You can then download that

to your Pico.

Now, let’s take a look at the code for the project.

Note Since writing the code for a grove project does not require
any special programming, we will skip the line-by-line explanation
and instead talk about the high-level parts of the code.

 Code Layout
We will follow a similar code layout as we did in the previous project. We

will create a main() function that will run when the Pico boots and helper

functions for the more complicated parts. Thus, we will place all of our

Chapter 10 projeCt: Sound aCtivated LightS

https://github.com/mcauser/micropython-p9813
https://github.com/mcauser/micropython-p9813
https://github.com/mcauser/micropython-p9813
https://github.com/mcauser/micropython-p9813

401

setup and the main execution loop in the main() function. Finally, we will

add a conditional at the bottom of the script to call the main() function if

the script is executed (loaded by MicroPython for execution).

Since we are familiar with how we write the code for our projects, let’s

look at the code in overview starting from the top of the script file. We will

name the file main.py.

 Imports
Recall, we place the imports at the top of the file. The imports for the

project will require the ADC and Pin classes from the machine library

and the sleep library. We also need to import the p9813 library from the

project4 folder. The following shows the imports for the project:

from machine import ADC, Pin

from time import sleep

from project4.p9813 import P9813

 Functions
There are three helper functions needed for this project. We need a

function to read a value from the sensor. We also need a function to

translate the value read from the sound sensor to a tuple in the range of

0–255, 0–255, and 0–255 for the RGB values. We will break this operation

into two parts to help with code comprehension.1

1 Separating complex parts of a function is a tool you can use to help isolate and
solve complex problems. It also helps with code readability.

Chapter 10 projeCt: Sound aCtivated LightS

402

Listing 10-1 shows the code for the get_value() function. Here, we

pass in an instance of the ADC class and use that to read ten values waiting

for 100ms before each read. Like we have with the last analog sensor, we

will read a series of values from the sensor and return an average to help

reduce sporadic values from reading the sensor.

Listing 10-1. The get_value() Function

Read the sensor 10 times and average the values read

def get_value(adc):

 total = 0

 for i in range (0,10):

 # Wait for sensor to settle

 sleep(0.1)

 # Read the value

 value = adc.read_u16()

 total += value

 return int(total/10)

Translating the value read from the sensor to a tuple is a bit more

complicated than you may expect. There are two steps. First, we need

to map the values to an integer. One mechanism2 to do this is to think

of the tuple as three hexadecimal values in the range 0–255, which in

hexadecimal is 0x00–0xFF. Now, if you arrange them consecutively such

as 0xFFFFFF, you get a value of 16,777,215 or a range of 0–16,777,215. The

second step is to convert to the RGB tuple; we shift the value 8 bits at a

time to get each range.

We name the first step translate() and call that from within the

second function named num_to_rbg(), which will call from the main()

function.

2 I am certain there are others.

Chapter 10 projeCt: Sound aCtivated LightS

403

Listing 10-2. The translate() Function

Translate from range 1-65353 to 1-16,777,215

def translate(x, in_min, in_max, out_min, out_max):

 return int((x - in_min) * (out_max - out_min) /

(in_max - in_min) + out_min)

Listing 10-3 shows the num_to_rgb() function. Take a moment to read

the lines of code that do the bitwise shifts to ensure you understand how

it works. In short, we first shift 16 bits to capture the leftmost value for red,

then 8 bits and mask the extra bits (with the logical and operation) for

green, and finally mask all except the rightmost value to capture the value

for blue.

Listing 10-3. The num_to_rgb() Function

Map range 0-0xFFFFFF to (R,G,B) tuple

def num_to_rgb(sensor_value):

 mapped_value = translate(sensor_value, LOW_THRESHOLD, 0xFFFF,

 1, 0xFFFFFF)

 r = mapped_value >> 16

 g = (mapped_value >> 8) & 0x00FF

 b = (mapped_value & 0x0000FF)

 return (r,g,b)

Now let’s look at the main function.

 Main Function
Next is the main() function. Here, we will initialize the variables we

will need as well as implement the loop to keep the script running until

cancelled or until the Pico shut down. Let’s begin with the setup code and

then look at the main loop execution.

Chapter 10 projeCt: Sound aCtivated LightS

404

 Setup
The setup code for this project will need to initialize the ADC class instance

and create variables of the Pin class for use with the I2C interface for the

Chainable RGB module. We also turn off the RGB LED by assigning the

values of zero for each color in the tuple. There are two steps to setting the

color for the RGB. First, we set the values for red, green, and blue and then

call the write() function to tell the library to turn the LED on with those

values. Listing 10-4 shows the code for setup and initialization.

Listing 10-4. Setup and Initialization

Setup the sound sensor

sound = ADC(Pin(26))

Setup the RGB module

scl = Pin(7, Pin.OUT)

sda = Pin(6, Pin.OUT)

rgb_chain = P9813(scl, sda, 1)

rgb_chain[0] = (0, 0, 0) # turn RGB off

rgb_chain.write()

sleep(1)

One thing to notice is that the P9813 class returns an array, not a single

class instance. Thus, when we want to assign values to the RGB for the

color, we must use the array index [0].

 Execution Loop
Next, we examine the loop code. Here, we will greet the user and then get

the value from the sound sensor. If the value is greater than the lowest

threshold we established, we then convert the “sound” read to color and

Chapter 10 projeCt: Sound aCtivated LightS

405

set the RGB to the new tuple (red, green, and blue). If the value from

the sound sensor is lower or equal to the threshold, we turn the LED off.

Listing 10-5 shows the code for the execution loop.

Listing 10-5. Execution Loop

print("Welcome to the sound to light detector!")

while True:

 value = get_value(sound)

 if value > LOW_THRESHOLD:

 rgb = num_to_rgb(value)

 print("Value read: {0:05} Color: {1}".

format(value, rgb))

 rgb_chain[0] = rgb

 rgb_chain.write()

 sleep(1)

 continue

 rgb_chain[0] = (0, 0, 0)

 sleep(0.25)

 rgb_chain.write()

Now we’re all set to evaluate the code. We will write the code to

execute automatically when we power on the Pico. Recall, we do this by

naming the code main.py and placing the libraries we want to use in a

folder named project4. Listing 10-6 shows the complete code for the

project.

Listing 10-6. Sound Detector Code

#

Beginning MicroPython

#

Chapter 10 – Sound to Light Detector

#

Chapter 10 projeCt: Sound aCtivated LightS

406

This example implements a sound detector that turns on a RGB

LED based on the value from the sound sensor. We use a Grove

Sound Sensor and a Grove Chainable RGB LED.

#

Dr. Charles Bell

#

Import libraries

from machine import ADC, Pin

from time import sleep

from project4.p9813 import P9813

Constants

LOW_THRESHOLD = 10000 # Threshold of the smallest sound

value - tune to your environs

Read the sensor 10 times and average the values read

def get_value(adc):

 total = 0

 for i in range (0,10):

 # Wait for sensor to settle

 sleep(0.1)

 # Read the value

 value = adc.read_u16()

 total += value

 return int(total/10)

Translate from range 1-65353 to 1-16,777,215

def translate(x, in_min, in_max, out_min, out_max):

 return int((x - in_min) * (out_max - out_min) / (

 in_max - in_min) + out_min)

Chapter 10 projeCt: Sound aCtivated LightS

407

Map range 0-0xFFFFFF to (R,G,B) tuple

def num_to_rgb(sensor_value):

 mapped_value = translate(sensor_value,

LOW_THRESHOLD, 0xFFFF, 1, 0xFFFFFF)

 r = mapped_value >> 16

 g = (mapped_value >> 8) & 0x00FF

 b = (mapped_value & 0x0000FF)

 return (r,g,b)

def main():

 # Setup the sound sensor

 sound = ADC(Pin(26))

 # Setup the RGB module

 scl = Pin(7, Pin.OUT)

 sda = Pin(6, Pin.OUT)

 rgb_chain = P9813(scl, sda, 1)

 rgb_chain[0] = (0, 0, 0) # turn RGB off

 rgb_chain.write()

 sleep(1)

 print("Welcome to the sound to light detector!")

 while True:

 value = get_value(sound)

 if value > LOW_THRESHOLD:

 rgb = num_to_rgb(value)

 print("Value read: {0:05} Color: {1}".format

(value, rgb))

 rgb_chain[0] = rgb

 rgb_chain.write()

 sleep(1)

 continue

 rgb_chain[0] = (0, 0, 0)

Chapter 10 projeCt: Sound aCtivated LightS

408

 sleep(0.25)

 rgb_chain.write()

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!")

 sys.exit(0)

OK, now we’re ready to execute the project.

 Execute
Now we can copy all of our code to our Pico. If you haven’t already done so,

you should create a folder named project4 on your Pico and then upload

the P9813.py file to the project4 folder. Next, upload the main.py file to

the root folder of your Pico.

Recall, there are two ways to test or execute the code. We could use

Thonny to connect to the Pico and simply run the main.py script. Or we

can reboot the Pico by unplugging it and plugging it back in to the USB

port on your PC.

The difference is if you run the main.py file manually, you will see the

debug statements show in the output at the bottom of Thonny. Running

the script automatically may not show those statements if you do not use

Thonny or a similar application to connect to the Pico.

Once the program starts, you can then make some noise! Simply clap

your hands or snap your fingers, or if you are careful, tap the sensor with a

pen or pencil. Depending on the ambient noise in the room, you may need

to adjust the minimal sound threshold so that the RGB illuminates only

for louder noises. When values greater than the threshold are detected,

Chapter 10 projeCt: Sound aCtivated LightS

409

the program writes debug statements to the REPL console. The following

shows an example of the output you will see:

Welcome to the sound to light detector!

Value read: 15371 Color: (24, 194, 60)

Value read: 14249 Color: (19, 150, 46)

Value read: 13089 Color: (14, 61, 72)

Value read: 10904 Color: (4, 42, 204)

Value read: 13457 Color: (15, 239, 142)

Value read: 14291 Color: (19, 199, 191)

Value read: 12906 Color: (13, 101, 84)

Value read: 11816 Color: (8, 95, 9)

...

If you do not see the RGB illuminate and change colors when noises

are varied in loudness, or the REPL console does not show any data, be

sure to notice the sound values read and adjust the threshold up or down

as needed.

Once everything is working, you can disconnect your Pico and connect

it to a 5V power supply to run the project on boot and watch the colors

change with sound. Cool!

 Taking It Further
This project, like the last one, shows excellent prospects for reusing the

techniques in other projects. Sound sensors can be applied to many

problems, and if you want to consider taking time to explore some

embellishments, here are a few you may want to consider:

• Experiment with different sounds in the room like

opening and closing doors or windows and adjust

the code to detect those sounds. Perhaps even assign

special colors to those sound levels.

Chapter 10 projeCt: Sound aCtivated LightS

410

• Add more RGB LEDs to your chain and program the

code to send the color codes to all of the RGBs in

the chain.

• Adapt the code to use a set of colors for differing

loudness (sounds). This could be helpful or interesting

if you want to display color changes to sound levels

such as applause from an audience.

Of course, if you want to press on to the next project, you’re welcome

to do so, but take some time to explore these potential embellishments – it

will be a good practice.

 Summary
As you can see, using Grove modules is much easier than trying to

connect a set of jumper wires to breakout boards or building a circuit on a

breadboard. In this regard, the Grove system is a grand success. Best of all,

it allows you to quickly assemble the hardware of your project so you can

concentrate on the code.

In this chapter, we took a look at a sample Grove project that uses an

I2C device and an analog sensor. We saw how to connect the modules to

our host board as well as how to adapt code to work with the Pico. This

small project has also shown us how easy it is to use Grove modules, and

now that we’ve had some practice with a simple example, we are ready to

jump into a more complex project.

In the next chapter, we will see another project that demonstrates

how to use more Grove modules to create a classic electronic game called

Simon Says. It’s time to have some fun!

Chapter 10 projeCt: Sound aCtivated LightS

411

CHAPTER 11

Project: Simon Game
If you like vintage electronic games, you have played a game named

Simon.1 It is a round tabletop game that has four large colored buttons on

top. One or more players can play with the objective to repeat a sequence

from memory. The game presents the player with a sequence of colored

lights in a random pattern. The player’s goal is to press the buttons for

each color in the sequence before time runs out. If the player repeats the

sequence correctly, the game continues and adds another light to the

sequence. The game starts with a single light, so early levels are pretty

easy, but as the sequence gets longer, it becomes harder to play. Throw in

several players and you’ve got a cool, Internet-free game party!

In this chapter, we will see how to create a version of the Simon game

using Grove modules using analog, digital, and I2C protocols. Let’s get started.

 Overview
The project for this chapter is designed to demonstrate how to use

analog, digital, and I2C devices on the same Grove host adapter to build

a Simon game. It works very much like the original game but with an LCD

for displaying messages. We will use a Grove Buzzer for sound and two

Grove Dual Button modules. For the lights, we will use one Grove RGB

LED module.

1 https://en.wikipedia.org/wiki/Simon_(game)

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_11

https://en.wikipedia.org/wiki/Simon_(game)
https://doi.org/10.1007/978-1-4842-8135-2_11

412

While this seems like a simple project build, the number of modules in

use and integrating all of the code for those modules makes this project the

most ambitious of the book. If you haven’t read and worked on the other

projects, you may want to work on the earlier chapters first and save this

one until you’ve mastered a few of the others.

For those with access to a 3D printer, we will also see a simple

mounting plate you can print and install the modules onto to protect them

and make it easier to use in playing the game.

Let’s see what hardware we will need.

 Required Components
The hardware needed for this project is listed in Table 11-1. We will use a

Grove Dual Button, Grove Buzzer, Grove LCD RGB Backlight, Grove Dual

Button modules, and a Grove Chainable RGB LED V2.0.

Chapter 11 projeCt: Simon Game

413

Table 11-1. Hardware Needed for the Mood Detector Project

Component Qty Description Cost Links

Grove Dual Button 3 Buttons $2.20 www.seeedstudio.com/Grove-

Dual-Button-p-4529.html

Grove Buzzer 1 Buzzer $1.90 www.seeedstudio.com/Grove-

Buzzer.html

Grove LCD rGB

Backlight

1 LCD $11.90 www.seeedstudio.com/Grove-

LCD-RGB-Backlight.html

Grove Chainable

rGB LeD V2.0

1 LeD $6.60 www.seeedstudio.com/Grove-

Chainable-RGB-Led-V2-0.html

Grove Cable 5 Cable $0.95 www.sparkfun.com/

products/14426

Grove Shield for pi

pico V1.0

1 host board $4.30 www.seeedstudio.com/Grove-

Shield-for-Pi-Pico-v1-

0-p-4846.html

Let’s discuss these components briefly. We will discover how to work

with the hardware in more detail later in the chapter. We saw the Grove

Shield for Pico, Grove Buzzer, and the Grove Chainable RGB LED in the

last chapter, so let’s look at the new Grove components for this chapter.

 Grove Dual Button
The Grove Dual Button is a digital module that has two momentary

buttons. While there are two buttons on the module, we need only a single

Grove cable to connect to the host adapter. This is because digital modules

use only three wires: ground, 3.3/5V, and one for signal. Since we have four

cables available, we can use the extra wire for the second button.

Chapter 11 projeCt: Simon Game

http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.sparkfun.com/products/14426
http://www.sparkfun.com/products/14426
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html

414

The button comes with a set of colored button caps that you can use to

help color code your button choices, which is a nice option.

You may have noticed we need three of these modules. Two modules

are used for the four color buttons, and another is used for a mode and

start option. We will see these functions later when we start the code for

the project.

Figure 11-1 shows the Grove Dual Button.

Figure 11-1. Grove Dual Button (courtesy of seeedstudio.com)

 Grove LCD RGB Backlight
If you’ve used monochrome LCD displays in the past, you may appreciate

the interesting option on the Grove LCD RGB Backlight. While the text

color remains dark gray, you can change the background using an RGB

color similar to the Chainable RGB LED. Figure 11-2 shows the Grove LCD

RGB Backlight.

Figure 11-2. Grove LCD RGB Backlight (courtesy of seeedstudio.com)

Chapter 11 projeCt: Simon Game

415

While this module does not offer the option, some Grove I2C modules

support address changes by opening or closing jumpers on the bottom of

the board. Now, let’s see how to connect the components together.

 Set Up the Hardware
Once again, connecting the hardware for a Grove project is really easy.

Since the cables are keyed, you don’t have to worry about incorrect

connections. Rather, we have to consider which Grove connectors we need

to use. For this project, we need six connections for the six modules we will

be using. The connections and their types are shown in Table 11-2.

Table 11-2. Simon Game Connections

Module Description Pico Shield Connector

Dual Button 1 Start/mode D16/D17

Dual Button 2 red/green buttons D18/D19

Dual Button 3 White/blue buttons D20/D21

Buzzer Sound a0

rGB LCD Display i2C0

Chainable rGB LeD Color cue i2C1

Thus, we will need six Grove cables, and each will plug into one spot

on the Pico Shield. Figure 11-3 shows how the connections will look once

all of the modules are connected to the Pico Shield.

Chapter 11 projeCt: Simon Game

416

Figure 11-3. Connections for Simon Game

Wow! That’s a lot of connections, right? Not really, though, considering

we’re only using six cables. If we had wired everything together using

breadboards, we would have used over 30 jumper wires!

Note Be sure to switch the pico Shield to the 5V setting. this is
because the Grove rGB LeD works best with 5V power.

You can play the game with the modules connected loosely, but for

best results, you may want to consider using a small board about 4” wide

and 8” long to attach the modules using small wood screws. This will make

gameplay much better.

Or, better, you could build yourself a mounting plate!

 Using a Mounting Plate
Since we have so many components and a bunch of cables connecting

them all together, using the project can take a little bit of space, and with all

of those modules dangling by their cables tethered only to the Grove host

adapter, you run the risk of accidentally unplugging a module, or, worse,

the electronics on the module may come into contact with conductive

material. Even so, using them to play a game like Simon can become a

lesson in patience.

Chapter 11 projeCt: Simon Game

417

You can mitigate this by using a double-sided tape to tape them to your

desk, but a better solution is to create a mounting plate. We could create a

full enclosure, but as you will see, leaving the modules exposed gives the

project a genuine cool factor.

If you have your own 3D printer or have access to a 3D printer, you can

print a mounting plate. The source code for this chapter includes the 3D

printing files you need to create a simple enclosure to mount the modules

arranged in a manner that enables gameplay. Figure 11-4 shows the

mounting plate.

Figure 11-4 shows an example mounting plate for the game. There are

places to bolt all of the modules as well as the Pico Shield.

While this looks like nothing more than a coaster, there are feet on the

bottom of the plate and places for M2 nuts. In fact, you will need to print

this plate upside down.

There is also a set of spacers you will need to print as shown in

Figure 11-5.

Figure 11-4. 3D mounting plate design for the Simon Says project

Chapter 11 projeCt: Simon Game

418

Figure 11-5. 3D spacers design for the Simon Says project

Notice there are (2) short M2 spacers for the buzzer module, (12)

medium spacers for the Dual Button modules and the Chainable RGB LED

(each take 3), and (4) long spacers for the LCD RGB Backlight.

To mount the modules, you will need the following hardware. You may

use longer bolts if you cannot find the exact sizes, but be sure to adjust the

constant FOOT_HEIGHT in the simon.scad file to allow for the extra length:

• (22) M2 nuts

• (6) M2x10mm bolts

• (12) M2x12mm bolts

• (4) M2x19mm bolts

To assemble the enclosure, begin by mounting the Dual Button and

Chainable RGB LED modules. Arrange the mounting plate with the Pico

section (the square section) facing away from you (call it the top). Find the

four mounting positions that match the holes in the modules.

Mount one Dual Button module on the far left of the plate (oriented

vertically) and the two along the bottom edge (oriented horizontally). The

last position where the button module fits is in the center. This spot is for

the Chainable RGB LED. Mount the Chainable RGB LED in the remaining

spot in the center.

Chapter 11 projeCt: Simon Game

419

You will need three bolts and three medium spacers for each. Place the

M2 nuts in the nut traps on the bottom of the mounting plate and tighten.2

Next, mount the Buzzer to the spot on the right side of the mounting

plate using two small spacers and two bolts and nuts.

Next, mount the LCD using the four long spacers and long bolts. Be

sure to orient the LCD so the Grove connector is on the same side as the

RGB LED.

Finally, mount the Pico Shield. You will need two bolts and nuts (no

spacers). You will need to mount the Pico Shield before you mount the

Pico to the shield. When you have the Pico Shield mounted, insert the Pico.

Now you are ready to run the Grove cables. It is recommended you

make the connections in the following order, routing the cables under the

LCD to keep them away from the buttons:

 1. Connect the leftmost Dual Button to D16/D17 on

the Pico Shield. The topmost button will be the

mode and the bottom the start button.

 2. Connect the next Dual Button module to D18/D19

on the Pico Shield. This is the left module on the

bottom of the plate.

 3. Connect the last Dual Button module to D20/D21

on the Pico Shield.

 4. Connect the Chainable RGB LED to I2C0 on the

Pico Shield.

 5. Connect the RGB LCD to I2C1 on the Pico Shield.

 6. Connect the Buzzer to A0 on the Pico Shield.

2 Do not overtighten! You only need to tighten them enough to keep the modules
on the mounting plate.

Chapter 11 projeCt: Simon Game

420

Tip if you plan to partially disassemble the game to use parts for
other projects temporarily, be sure to use a small piece of painter’s
or masking tape to note where each cable is used. that way, you can
replace the module and reconnect it without guessing the connection.

The Dual Button modules come with colored caps for the buttons. I

used a white cap for the mode button and a blue cap for the start button

(but any color will do for these). The game button caps should be, from left

to right, red, green, white, and blue.

You should also make all of the cable connections as well since we will

route all wiring under the LCD RGB Backlight. You can use a small zip tie

to bundle the cables, but be sure to avoid kinking or putting strain on the

Grove connectors. Figure 11-6 shows the completed Simon game.

Chapter 11 projeCt: Simon Game

421

Figure 11-6. Mounting the modules to the 3D printed plate

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – one that also includes a

battery so you can make the project a handheld game.

Now that we know more about the hardware for this chapter, let’s write

the code!

Chapter 11 projeCt: Simon Game

422

 Write the Code
The code for this project uses analog and digital modules as well as two

I2C devices. The Dual Buttons are digital, the Buzzer is an analog module,

and the RGB LCD and Chainable RGB LED are I2C devices. As you will see,

the code isn’t overly complicated, but there is a lot of code to work through

as well as some new modules for working with the hardware.

Like the previous projects, we will use classes to wrap our functionality.

We’ll focus on making the Simon game its own class and general control

of the game system in the main code. We will also be making a number of

class modules, which will be presented before we look at the main code.

Briefly, we will need three class modules. We will write class modules for

the buzzer, buttons, and the gameplay.

Let’s first look at the software libraries we will need to download.

 Install Software Libraries
We will need to download two libraries, one for the RGB LCD and another

for the Chainable RGB LED.

The library we will need for the RGB LCD is found on a web page

to a Chinese GitLab that shows the contents of the code module

(http://47.106.166.129/Embeded/pico-micropython-grove/blob/

master/I2C/lcd1602.py). Rather than download the file, you can open a

new file in Thonny, copy the code from the web page, and paste it in the

new file and save it as lcd1602.py. We will use the code library unchanged

once we upload it to the Pico.

We will be using the same library for the Chainable RGB LCD that we

used in Chapter 10 (https://github.com/mcauser/micropython-p9813).

Recall, to download the library, we use the command git clone https://

github.com/mcauser/micropython-p9813 to make a copy (clone) of the

repository as follows. This copies all of the files including examples and

documentation to your PC:

Chapter 11 projeCt: Simon Game

https://github.com/mcauser/micropython-p9813
https://github.com/mcauser/micropython-p9813
https://github.com/mcauser/micropython-p9813

423

$ git clone https://github.com/mcauser/micropython-p9813

Cloning into 'micropython-p9813'...

remote: Enumerating objects: 36, done.

remote: Total 36 (delta 0), reused 0 (delta 0), pack-reused 36

Unpacking objects: 100% (36/36), done.

Once you clone the repository, you can locate the p9813.py file in the

<root of clone>/micropython-p9813 folder. You can then download that

to your Pico.

Now, let’s take a look at the class modules for the project.

 Create the Class Modules
While we will not dive into every line of code, we will see some of the more

complex code and those areas discussed that differ significantly from what

you may have experienced thus far in your MicroPython journey. You can

read the code and learn more about how it works at your leisure.

Since there are several code modules (files) for this project, it is

recommended that you create a project folder (e.g., named project5) and

save all of the files there. It will make copying them to your Pico easier later.

Let’s start with writing the classes starting with the Buzzer class.

 Buzzer Class
The Buzzer class provides a mechanism to play tones. Specifically, we will

create functions for each of the sounds that the Simon game uses. In this

case, we need the following tones (or tone sequences):

• play_theme_song(): An introductory song played when

the game starts

• play_ready_set_go(): A tone to indicate the player can

begin entering the sequence of buttons

Chapter 11 projeCt: Simon Game

424

• play_success(): A tone to indicate the sequence entered

matches the challenge sequence

• play_ failure(): A set of tones to indicate the sequence

is not correct and the player’s turn ends

• play_color(): Play a unique tone for each of the four

LED buttons

Aside from those functions, we will also create a constructor so we can

set up the class and additional helper functions: one for playing a set of

tones (song), another to get the frequency for the tone, and another to play

a single tone (note).

We will also use a scale of notes and their frequencies stored in private

variables. In this way, we can record the notes in variables for each of the

tones/sounds earlier and then use the frequency function to retrieve the

frequency of the note. The frequency defines how long the buzzer will

sound. By varying the frequency, we can get different notes.

We can also define how long to hold (play) each tone, which will help

us determine a cadence or primitive rhythm. We will call these “beats”

where each beat is a quarter note (so we’ll be using 4/4 time). Thus, a

1 is one quarter, 2 is half, etc. We also use a tempo that we can use to

determine the speed, which we will set globally, but you could easily

modify the code to allow different tones played at different speeds. This

way, we can make the song faster or slower depending on our aesthetic

requirements.

Rather than use a tuple, we will use one of the more powerful Python

data storage called a dictionary. A dictionary allows us to create a structure

where we can store one or more key-value pairs where we can store all of

the parts of the song, the number of notes, notes, and beats. We will also

see how to store the tempo for each song.

Chapter 11 projeCt: Simon Game

425

The following shows the layout of the dictionary we will use for each

song. Here, we use the keys tempo, num_notes, notes, and beats which will

be used in the code to reference the value for each:

Success tones dictionary

self.success = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 3,

 'notes': "CCC",

 'beats': [1, 1, 1]

}

Let’s get started writing the code. Open the Thonny Python IDE and

create a new file named buzzer.py in the project folder. As usual, we begin

with the imports and constants followed by the class definition. For this

class, we will define in the constructor the songs we will be using for the

Simon game. Along with the default tempo, we also define the Pico GPIO

pin in the code module. Recall, we are using the analog (A0) connector

on the Pico Shield, but we will be using the pin as a digital output. This

is perfectly fine since that pin can be used as either an analog or a digital

pin. We refer to the pin by its pin number (26). In fact, we will be using a

technique called pulse-width modulation3 (PWM) to rapidly turn the pin

on and off over a period of time to change the sound produced.

Listing 11-1 shows the first part of the code with documentation

removed for brevity.

Listing 11-1. Buzzer Class (Part 1)

from machine import Pin

from utime import sleep

CONSTANTS

3 https://learn.sparkfun.com/tutorials/pulse-width-modulation/all

Chapter 11 projeCt: Simon Game

https://learn.sparkfun.com/tutorials/pulse-width-modulation/all

426

DEFAULT_TEMPO = 0.095

BUZZER_PIN = 26

NOTES_IN_SCALE = 8

HIGH = 1

LOW = 0

def tone(buzzer_pin, frequency, duration):

 """Generate a tone on the buzzer."""

 half_wave = 1 / (frequency * 2)

 waves = int(duration * frequency)

 # pylint: disable=unused-variable

 for i in range(waves):

 buzzer_pin.on()

 sleep(half_wave)

 buzzer_pin.off()

 sleep(half_wave)

class Buzzer:

 """Buzzer Class"""

 note_names = ['c', 'd', 'e', 'f', 'g', 'a', 'b', 'C']

 frequencies = [131, 147, 165, 175, 196, 220, 247, 262]

 failure = {}

 success = {}

 theme_song = {}

 ready_set_go = {}

 colors = [{}, {}, {}, {}]

 def __init__(self):

 """Constructor"""

 # Failure tones dictionary

 self.failure = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 5,

Chapter 11 projeCt: Simon Game

427

 'notes': "g c",

 'beats': [4, 1, 4, 1, 10]

 }

 # Success tones dictionary

 self.success = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 3,

 'notes': "CCC",

 'beats': [1, 1, 1]

 }

 # Theme song dictionary

 self.theme_song = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 18,

 'notes': "cdfda ag cdfdg gf ",

 'beats': [1, 1, 1, 1, 1, 1, 4, 4, 2,

 1, 1, 1, 1, 1, 1, 4, 4, 2]

 }

 # Start signal dictionary

 self.ready_set_go = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 1,

 'notes': "e",

 'beats': [2]

 }

 # Tones for the colors

 for i in range(0, 4):

 self.colors[i]['tempo'] = DEFAULT_TEMPO

 self.colors[i]['num_notes'] = 1

 self.colors[i]['beats'] = [1]

Chapter 11 projeCt: Simon Game

428

 self.colors[0]['notes'] = "a"

 self.colors[1]['notes'] = "g"

 self.colors[2]['notes'] = "C"

 self.colors[3]['notes'] = "f"

 # Setup the buzzer

 self.buzzer_pin = Pin(BUZZER_PIN, Pin.OUT)

...

Notice the tone() function. This function is used by the play_song()

function to play the note on the buzzer. Notice here we do some math first

where we get the half wave of the frequency. We are getting one half of the

sine wave so that we can turn the buzzer for half the wave and off for half

the wave, which is the frequency times the duration and, hence, a pulse.

Again, there are other ways to generate a PWM, but this works well for

the buzzer.

Next are the various functions defined to play the specific songs. We

won’t go into too much detail as the code is not complicated.

Listing 11-2 shows the rest of the code for the class with

documentation removed for brevity.

Listing 11-2. Buzzer Class (Part 2)

...

 def play_theme_song(self):

 """Play theme_song tones."""

 self.play_song(self.theme_song)

 def play_success(self):

 """Play success tones."""

 self.play_song(self.success)

 def play_failure(self):

 """Play failure tones."""

 self.play_song(self.failure)

Chapter 11 projeCt: Simon Game

429

 def play_color(self, color):

 """Play button_color tones."""

 self.play_song(self.colors[color])

 def play_ready_set_go(self):

 """Play ready_set_go tones."""

 self.play_song(self.ready_set_go)

 def frequency(self, note):

 """Get frequency for a note."""

 # Search through the letters in the array, and

 # return the frequency for that note.

 for i in range(0, NOTES_IN_SCALE):

 if self.note_names[i] == note:

 return self.frequencies[i]

 return 0

 def play_song(self, song):

 """Play a song."""

 for i in range(0, song['num_notes']):

 duration = song['beats'][i] * song['tempo']

 if song['notes'][i] == ' ':

 sleep(duration)

 else:

 freq = self.frequency(song['notes'][i])

 tone(self.buzzer_pin, freq, duration)

 sleep(duration)

 sleep(song['tempo']/10)

Now, let’s look at the Buttons class file.

Chapter 11 projeCt: Simon Game

430

 Buttons Class
The Buttons class is designed to manage the six buttons in the game. Since

the code for reading each button is the same, we can combine the code to

make it easier to use. We also use a digital pin on the GPIO for each button.

We use an array to define the buttons and the index of the button in the

array to refer to a specific button.

There are two functions for the class. We will use the get_button_

pressed() function to return the number of the button that is being

pressed (or –1 if no button is pressed) and the get_button_value()

function to return the current state for a specific button.

We will also need two helper functions to make using the buttons

easier. First, we will create a function named button_name(), which

simply returns a string to match the button number. This is for diagnostic

purposes since the game doesn’t need it for gameplay. But it does make it

easier to debug!

Second, we create a function named debounce(), which has a very

unique and key role. When mechanical switches (buttons) are pressed,

the mechanics can produce a lot of noise initially and thus can vary in

value rapidly. We call this “bouncing,” which can make reading buttons

problematic.4 One way to reduce the noise is to use a loop to sample the

value of the button over a brief period of time to stabilize the fluctuations.

This function is one way we can achieve that goal.

Let’s look at the completed code for this class. It is not complicated

and does not need a lot of explanation. However, you should examine the

debounce() code to see how it works so that you can use it in other projects

where buttons are employed. Listing 11-3 shows the code for the class with

documentation removed for brevity.

4 https://docs.micropython.org/en/v1.8.4/pyboard/pyboard/tutorial/
debounce.html

Chapter 11 projeCt: Simon Game

https://docs.micropython.org/en/v1.8.4/pyboard/pyboard/tutorial/debounce.html
https://docs.micropython.org/en/v1.8.4/pyboard/pyboard/tutorial/debounce.html

431

Listing 11-3. Buttons Class

from machine import Pin

from utime import sleep

def button_name(button_num):

 """Return the name of the button for diagnostics."""

 name = ""

 if button_num == 0:

 name = "START_BUTTON"

 elif button_num == 1:

 name = "MODE_BUTTON"

 elif button_num == 2:

 name = "RED_BUTTON"

 elif button_num == 3:

 name = "GREEN_BUTTON"

 elif button_num == 4:

 name = "WHITE_BUTTON"

 else:

 name = "BLUE_BUTTON"

 return name

def debounce(pin):

 """Debounce button presses."""

 # wait for pin to change value

 # it needs to be stable for a continuous 20ms

 cur_value = pin.value()

 active = 0

 while active < 20:

 if pin.value() != cur_value:

 active += 1

 else:

 active = 0

Chapter 11 projeCt: Simon Game

432

 sleep(0.01)

class Buttons:

 """Class to manage buttons for Simon game."""

 START_BUTTON = 0

 MODE_BUTTON = 1

 RED_BUTTON = 2

 GREEN_BUTTON = 3

 WHITE_BUTTON = 4

 BLUE_BUTTON = 5

 def __init__(self):

 self.button_list = []

 self.button_list.append(Pin(17, Pin.IN, Pin.PULL_

UP)) # START

 self.button_list.append(Pin(16, Pin.IN, Pin.PULL_UP))

MODE

 self.button_list.append(Pin(19, Pin.IN, Pin.PULL_UP))

RED

 self.button_list.append(Pin(18, Pin.IN, Pin.PULL_UP))

GREEN

 self.button_list.append(Pin(20, Pin.IN, Pin.PULL_UP))

WHITE

 self.button_list.append(Pin(21, Pin.IN, Pin.PULL_UP))

BLUE

 def get_button_pressed(self):

 """Return the button (index) pressed."""

 for button_num in range(0,6):

 if self.button_list[button_num].value() == 0:

 debounce(self.button_list[button_num])

 return button_num

Chapter 11 projeCt: Simon Game

433

 return -1

 def get_button_value(self, button_num):

 """Check a button for status."""

 return self.button_list[button_num].value()

At this point, you might be wondering how one could write classes like

this and expect them to work when put with the main code. Indeed, it is

often unlikely this will happen smoothly unless you do some testing and

debugging.

If you recall from earlier projects, we used a main() function and a

condition at the end of the module to call it if the module were executed.

Well, we can do that with class modules! The following shows how to write

a short test for this class module. Simply place it at the end of the file and

then execute the code. This code simply runs a loop that reports the button

pressed. You can simply wire up the three Dual Button modules and test

them. It is also a terrific way to figure out which buttons correspond to the

button functions.

...

if __name__ == '__main__':

 try:

 buttons = Buttons()

 while True:

 index = buttons.get_button_pressed()

 if index >= 0:

 print("{} = {} pressed".format(index, button_

name(index)))

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

To create the class file, open a new file in Thonny and save it as

buttons.py in the project folder.

Chapter 11 projeCt: Simon Game

434

When you execute this code in Thonny, you will see something similar

to the following (buttons were pressed randomly for this example). Now

we see where that button_name() function comes in handy!

>>> 0 = START_BUTTON pressed

>>> 4 = WHITE_BUTTON pressed

>>> 2 = RED_BUTTON pressed

>>> 1 = MODE_BUTTON pressed

>>> 3 = GREEN_BUTTON pressed

>>> 5 = BLUE_BUTTON pressed

...

Now, let’s look at the Simon class file.

 Simon Class
This class is responsible for running the Simon gameplay. That is, it

generates the random sequences for the player to press and then checks

the results to see if there is a match. If the sequence matches, gameplay

continues.

The mode and start buttons discussed previously are not part of this

class. Rather, this class only contains code to detect the four color buttons,

the Chainable RGB LED, and the RGB LCD. The main code will manage

the mode and start buttons.

We will use functions for the setup routine where we can change the

number of players (setup_mode()), start the game (start_game()), show

the number of players (show_players()), and play the game (play()).

Aside from that, we will also need a number of helper functions that

are a bit more complicated. We need functions to control the LCD, play a

challenge sequence, read a sequence of buttons from the player, generate

the challenge sequence using the randint() function to generate a

random integer from zero to three to correspond to the button array index,

Chapter 11 projeCt: Simon Game

435

and even determine a winner for the multiplayer mode. The following lists

the private functions and their uses:

• num_alive(): Determine the number of players still

active (alive)

• reset_screen(): Reset the LCD and display a

new message

• show_winner(): Show the winner on the LCD

• generate_sequence(): Generate a challenge sequence

• play_sequence(): Play a challenge sequence by

turning on the corresponding LED and playing the tone

for the button

• read_sequence(): Read a sequence from the player

Finally, we will need a number of variables to store information

including an instance of the LCD class and the buttons (stored as an array).

The constructor will also need to be added to set up the hardware.

Since there are a lot of functions in the class, we will first discuss each

function in overview and then highlight some of the more complex ones in

more detail, but none are overly difficult. You can discover how the other

functions work as an exercise. We will begin with the public functions.

The constructor is where we set up the hardware for the class, which

includes the new Buttons class, Buzzer class, RGB LCD, and the Chainable

RGB LED.

We also initialize the random number generator using a read from an

analog pin as the seed. This will simulate using a different seed each time

because reading an uninitialized pin will generate an unpredictable value.

We then place the game in setup mode with the setup_mode() function,

which simply resets the RGB LCD to indicate we are in the setup mode.

Chapter 11 projeCt: Simon Game

436

The start_game() function takes an integer for the number of players

and simply zeros out the player scores, plays the theme song, and sets the

RGB LCD for the start of gameplay.

The play() function is a bit more complicated. Here is where the

gameplay is coded. At the highest level, the function loops generating

a challenge sequence, playing it to the user, then reading the player’s

response. If the challenge is met, the loop continues with an extra button

added and a new random sequence generated.5

When there are more than one player, the loop cycles through each

player in turn. If a player misses the sequence, that player is removed from

the cycle (considered no longer playing or “alive”). Play continues until

there are no more players alive and a winner is determined and the game

ends. When the game ends, the code pauses and then resets the game class

for the next game.

Next, let’s look at the private functions. Recall, private functions are

used internally to the class and not visible to the caller.

The num_alive() function loops through the player scores to

determine how many players are still playing. It is used in the play()

function to determine when the game ends.

The reset_screen() takes as a parameter a message to be displayed

on the LCD. The function clears the display and then adds the message. It

is used to control the LCD during gameplay.

The show_winner() function loops through the player scores to

determine which player has the highest score. Since the play() function is

designed to keep going until all players have failed to complete a sequence,

it is possible for two or more players to have the same score. This is an

intentional omission that you are encouraged to solve as an exercise. Hint:

You can simply declare a tie.

5 I’ve seen many examples of the Simon game for Arduino and other platforms
that use the same sequence adding a new button each time. To me, that’s nowhere
near as challenging as having a new sequence each turn.

Chapter 11 projeCt: Simon Game

437

The generate_sequence() function takes as a parameter the

number of buttons and returns an integer array allocated from memory

that includes a set of random integers in the range 0–3 to represent the

buttons in the sequence. To create a random integer in that range, we call

randint(0, 3), which returns the correct range.

The play_sequence() function uses two parameters, one for the

button (challenge) sequence and another for the number of notes. It

simply loops through the array turning on the Chainable RGB LED with

the appropriate color and playing the tone for each button using a delay

between each. This is used by the play() function to present the challenge

sequence to the player.

The read_sequence() function also uses two parameters, one for

the button (challenge) sequence and another for the number of notes. It

simply loops through the array reading the button presses from the player.

If the correct button is pressed, the next button is read and so forth. If all

buttons were pressed in the correct order (the sequence pressed equals

the challenge sequence), the function returns true, or false is returned on

the first incorrect button press in the sequence. This is used by the play()

function to read the player’s response.

OK, that’s a lot of functions! Let’s now look at the complete code for the

class. Take a few moments to read it (there’s a lot of code) to ensure you

understand how it all works.

Listing 11-4 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read the code so that

you understand all of the parts of the code. As you will see, it is not

complicated, but there is a lot of code to sift through.

Listing 11-4. Simon Class

import time

import urandom

from machine import ADC, I2C, Pin

Chapter 11 projeCt: Simon Game

438

from project5.buttons import Buttons

from project5.buzzer import Buzzer

from project5.lcd1602 import LCD1602_RGB, LCD1602

from project5.p9813 import P9813

Constants

MIN_BEATS = 2 # Starting number of beats

MAX_PLAYERS = 4 # Max number of players

MAX_TIMEOUT = 5.0 # Seconds to wait to abort read

KEY_INTERVAL = 0.500 # Interval between button playback

RGB Values

RED_LED = (255, 0, 0)

GREEN_LED = (0, 255, 0)

WHITE_LED = (200, 200, 200)

BLUE_LED = (0, 0, 255)

RGB_COLORS = (RED_LED, GREEN_LED, WHITE_LED, BLUE_LED)

def generate_sequence(num_notes):

 """Generate a new button sequence."""

 if num_notes == 0:

 return []

 # Create a new sequence adding a new beat

 challenge_sequence = []

 i = 0

 while i < num_notes:

 challenge_sequence.append(urandom.randint(0, 3))

 i = i + 1

 return challenge_sequence

class Simon:

 """Simon Class"""

 i2c = I2C(0,scl=Pin(9), sda=Pin(8), freq=400000)

Chapter 11 projeCt: Simon Game

439

 lcd = LCD1602(i2c, 2, 16) # LCD

 lcd_rgb = LCD1602_RGB(i2c, 2, 16) # LCD RGB control

 buzzer = Buzzer() # Buzzer

 buttons = Buttons() # Buttons

 num_players = 1

 player_scores = []

 # Setup the RGB module

 scl = Pin(7, Pin.OUT)

 sda = Pin(6, Pin.OUT)

 rgb_chain = P9813(scl, sda, 1)

 rgb_chain[0] = (0, 0, 0) # turn RGB off

 rgb_chain.write()

 def __init__(self):

 """Constructor"""

 # Setup the LCD

 self.lcd.clear()

 # Set background color?

 self.lcd_rgb.set_rgb(127, 127, 127)

 # if analog input pin 0 is unconnected, random analog

 # noise will cause the call to randomSeed() to generate

 # different seed numbers each time the sketch runs.

 # random.seed() will then shuffle the random function.

 urandom.seed(ADC(0).read_u16())

 print("Playing theme...")

 self.buzzer.play_theme_song()

 print("done.")

 # Put game in setup mode

 self.setup_mode()

 def start_game(self, players):

Chapter 11 projeCt: Simon Game

440

 """Start a new game."""

 self.num_players = players

 for player in range(0, players):

 player_score = {

 'number': player,

 'is_alive': True,

 'high_score': 0

 }

 self.player_scores.append(player_score)

 self.reset_screen("Get ready!")

 def play(self):

 """Play game."""

 game_over = False

 num_notes = 1

 # Main game loop

 while not game_over:

 # For each player, generate a new sequence and

test skills

 for player in range(0, self.num_players):

 if self.player_scores[player]['is_alive']:

 num_notes = self.player_scores[player]

['high_score'] + 1

 self.reset_screen("Player {0}".

format(player + 1))

 challenge_sequence = generate_

sequence(num_notes)

 self.play_sequence(challenge_sequence,

num_notes)

 self.buzzer.play_ready_set_go()

 self.reset_screen("Go!")

 print("Go!")

Chapter 11 projeCt: Simon Game

441

 if self.read_sequence(challenge_sequence,

num_notes):

 self.buzzer.play_success()

 self.reset_screen("Success!")

 print("Success!")

 time.sleep(0.500)

 self.player_scores[player]['high_

score'] = num_notes

 else:

 self.reset_screen("FAILED")

 print("Fail")

 self.player_scores[player]['is_

alive'] = False

 # Check to see if any players remain alive

 # and show winner if multiple players

 players_remaining = self.num_alive()

 if players_remaining == 0:

 self.reset_screen("GAME OVER")

 if self.num_players > 1:

 self.show_winner()

 game_over = True

 print("Game over...")

 time.sleep(2)

 self.player_scores = []

 def setup_mode(self):

 """Enter setup mode."""

 self.lcd.clear()

 self.lcd.setCursor(0, 0)

 self.lcd.print("Simon Says!")

 self.lcd.setCursor(0, 1) # column 1, row 2

 self.lcd.print("Setup Mode")

Chapter 11 projeCt: Simon Game

442

 def show_players(self, num_players):

 """Show players."""

 self.lcd.clear()

 self.lcd.setCursor(0, 0)

 self.lcd.print("Simon Says!")

 self.lcd.setCursor(0, 1) # column 1, row 2

 if num_players == 1:

 self.lcd.print("single player")

 else:

 self.lcd.print(chr(num_players + 0x30))

 self.lcd.print(" players")

 def show_winner(self):

 """Show the winner."""

 winner = -1

 score = 0

 for player in range(0, self.num_players):

 if self.player_scores[player]['high_score']

> score:

 winner = player

 score = self.player_scores[player]

['high_score']

 self.lcd.setCursor(0, 0)

 self.lcd.print("Player ")

 self.lcd.print(winner + 1)

 self.lcd.print("WON!")

 self.lcd.setCursor(0, 1) # column 1, row 2

 self.lcd.print("Score = ")

 self.lcd.print(score)

 def num_alive(self):

 """Number of players still playing."""

 count = 0

Chapter 11 projeCt: Simon Game

443

 for player in range(0, self.num_players):

 if self.player_scores[player]['is_alive']:

 count = count + 1

 return count

 def reset_screen(self, message):

 """Reset the LCD."""

 self.lcd.clear()

 self.lcd.setCursor(0, 0)

 self.lcd.print("Simon Says! (")

 self.lcd.print("{0}".format(self.num_players))

 self.lcd.print(")")

 self.lcd.setCursor(0, 1) # column 1, row 2

 self.lcd.print(message)

 def read_sequence(self, challenge_sequence, num_notes):

 """Read button sequence from the player."""

 def show_challenge_sequence():

 colors = ""

 for color in challenge_sequence:

 if color == 0:

 colors += "R "

 elif color == 1:

 colors += "G "

 elif color == 2:

 colors += "W "

 elif color == 3:

 colors += "B "

 return colors

 button_read = -1

 index = 0

 start_time = time.time()

Chapter 11 projeCt: Simon Game

444

 # Loop reading buttons and compare to stored sequence

 while index < num_notes:

 button_read = self.buttons.get_button_pressed() - 2

 # if a color button is pressed, check the sequence

 if button_read >= 0:

 # print(">", button_read, show_challenge_

sequence())

 if challenge_sequence[index] != button_read:

 self.buzzer.play_failure()

 self.reset_screen("FAIL SEQUENCE")

 time.sleep(5)

 return False

 print("MATCH!")

 start_time = time.time()

 index = index + 1

 button_read = -1

 if (time.time() - start_time) > MAX_TIMEOUT:

 print("ERROR: Timeout!")

 self.buzzer.play_failure()

 self.reset_screen("FAIL TIMEOUT")

 time.sleep(5)

 return False

 time.sleep(0.050)

 return True

 def play_sequence(self, challenge_sequence, num_notes):

 """Play the tones and illuminate the buttons in the

sequence."""

 for beat in range(0, num_notes):

 button_index = challenge_sequence[beat]

 self.rgb_chain[0] = RGB_COLORS[button_index]

 self.rgb_chain.write()

Chapter 11 projeCt: Simon Game

445

 self.buzzer.play_color(button_index)

 time.sleep(KEY_INTERVAL)

 self.rgb_chain[0] = (0, 0, 0) # turn RGB off

 self.rgb_chain.write()

 time.sleep(KEY_INTERVAL)

To create the class file, open a new file in Thonny and save it as simon_

says.py in the project folder.

Notice one interesting feature of this code. Look at the read_

sequence() function. Notice there is another function declared inside that

one named show_challenge_sequence(). This is a common technique for

removing duplicate code. The inner function simply encapsulates a few

lines of code that are called repeatedly from the outer function. What is

this function used for, you may wonder? It is placed there so you can cheat

while debugging your code. It simply prints to the console the sequence of

buttons, making it easy for you to evaluate the game. I’ll leave it up to you

as to where you can place a call to this function. Hint: Look for a line of

code commented out. Cool, eh?

Now we can write our main code.

 Main Code Module
Now we can write the main code. Open a new file and name it main.py.

Since we are placing most of the hardware work in the Simon game class,

all we need to do here is write code to interact with the Simon game class.

We use a simple loop for controlling the mode button to set the

number of players and the start button to start the game. We will make the

code allow the use of the mode button so long as a game is not in process.

Chapter 11 projeCt: Simon Game

446

Note the mode button is closest to the Grove connector. if you
orient the module with the Grove connector on top, the mode button
is the top button and start is the bottom button.

Recording the number of players is done using a variable that we allow

up to four players. So, pressing the mode button continually will cycle

through the options (e.g., 1, 2, 3, 4, 1, 2, 3, 4…). We will use this value when

the player presses the start button.

When the start button is pressed, we use the Simon class to start a new

game with the start_game() method passing in the number of players

selected. Then we call the play() function turning control over to the

Simon class. Once the game ends, we place the Simon instance back to the

setup mode with the setup_mode() function. A few short delays are added

to make the game flow better.6

By placing all of the game control in its own class, we’ve simplified the

main code. Listing 11-5 shows the complete code for the main script for

this project. You can read it to see how all of the code works.

Listing 11-5. Main Code Module

from time import sleep

from project5.simon_says import Simon, MAX_PLAYERS

from project5.buttons import Buttons

def main():

 """Main"""

 print("Welcome to the Simon Says game!")

 simon = Simon()

6 Purists may say the use of delays or sleep is a poor replacement for excellent
code, but they are handy for controlling flow and execution speed. Plus, there are
(good) side effect benefits in some languages such as Python related to threading.

Chapter 11 projeCt: Simon Game

447

 game_started = False

 start_button = False

 mode_button = False

 num_players = 1

 buttons = Buttons()

 while True:

 if not game_started:

 # Show number of players

 start_button = buttons.get_button_value(Buttons.

START_BUTTON) == 0

 mode_button = buttons.get_button_value(Buttons.

MODE_BUTTON) == 0

 if start_button:

 print("Start button pressed.")

 simon.start_game(num_players)

 sleep(1)

 simon.play()

 sleep(1)

 simon.setup_mode()

 elif mode_button:

 num_players = num_players + 1

 if num_players > MAX_PLAYERS:

 num_players = 1

 print("Mode button pressed - {0} players."

 "".format(num_players))

 sleep(0.050)

 simon.show_players(num_players)

 sleep(2)

 simon.setup_mode()

Chapter 11 projeCt: Simon Game

448

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

OK, that’s it! We’ve written the code. We’re now ready to execute the

project!

 Execute
Now that we’ve spent many pages exploring the Grove modules and

writing the code to interact with them, it is time to test the project by

executing (running) it. Recall, we can copy all of our code to our Pico. If

you haven’t already done so, you should create a folder named project5

on your Pico and then upload the buttons.py, buzzer.py, lcd1602.py,

p9813.py, and simon_sys.py files to the project5 folder. Next, upload the

main.py file to the root folder of your Pico.

Recall, there are two ways to test or execute the code. We could use

Thonny to connect to the Pico and simply run the main.py script. Or we

can reboot the Pico by unplugging it and plugging it back in to the USB

port on your PC.

The difference is if you run the main.py file manually, you will see the

debug statements show in the output at the bottom of Thonny. Running

the script automatically may not show those statements if you do not use

Thonny or a similar application to connect to the Pico.

Once the program starts, you will see some diagnostic messages

written to the terminal. You will also see a welcome message appear on

the LCD. You can then press the mode button to set the number of players,

and when you’re ready, press the start button to start the game. Figure 11-7

shows examples of the LCD when in setup mode.

Chapter 11 projeCt: Simon Game

449

Figure 11-7. Executing the Simon Says project

When you run the code from Thonny, you will see output similar to the

following:

Welcome to the Simon Says game!

Mode button pressed - 2 players.

Mode button pressed - 3 players.

Mode button pressed - 4 players.

Mode button pressed - 1 players.

Start button pressed.

Playing theme...

...

If everything worked as executed, congratulations! You’ve just built

your second Grove project. If something isn’t working, check your

connections to ensure you’ve connected everything correctly.

Since we named the main code file main.py, you can restart the Pico

and run the game on boot. If you connect a power supply to the Pico, or a

5V battery pack, you can play the game as a handheld game. Cool!

Chapter 11 projeCt: Simon Game

450

 Taking It Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• Complete the enclosure: Use the sample base plate and

create a cover for the game.

• Handheld version: Find someone with a 3D printer

and print out the mounting plate. Once assembled,

purchase a portable 5V battery and attach it to the

bottom of the mounting plate. This will allow you to

run the game without the need of a PC or USB power

from a wall wart.

• Increase the difficulty: One of the ways you can enhance

gameplay is to make the timeout time for a player to

enter a sequence shorter as gameplay continues. For

example, for the first n sequences, use the default

timeout; for the next n sequences, reduce the timeout

by a portion; and so on until the timeout gets to a

minimum timeout. If you do the same thing for the

delay used in playing the challenge sequence, it will

ensure the game will become much more difficult and

more fun to play.

Chapter 11 projeCt: Simon Game

451

 Summary
In this chapter, we completed a more complex project to explore Grove

modules. Along the way, we learned more about how to work with Grove

modules including how to write our own classes for managing multiple

modules and sensors (buttons are sensors after all).

Rather than build something that has an “OK, that’s cool” factor, we

built a working Simon game that we can play with our friends. Since we

wrote all of the code for the game, we can also expand it however we want,

including making it more difficult to play as the game progresses.

Using the examples in this chapter, you will discover other uses for

the code to build other games and replicate another vintage handheld

electronic game.

In the next chapter, we will look at one more project using Grove

modules, returning to building projects that use sensors. We will build an

environmental project that allows you to monitor your environment.

Chapter 11 projeCt: Simon Game

453

CHAPTER 12

Project: Monitoring
your Environment
One of the most common examples of electronics projects is a project to

monitor the environment. Given the current ongoing health crisis, this

project may be something useful to help us understand the conditions

of our indoor environment. There are several products you can buy to

monitor indoor air quality, and for those with severe allergies and similar

health conditions (some can be life-threatening), an indoor air monitor

may be a requirement to treat their condition.

In this chapter, we will see how to create a simple indoor environment

monitor that detects air quality (the presence of harmful gases), dust

concentration, barometric pressure, and temperature, displaying the data

on a small OLED. We’ll see more analog and digital modules as well as the

use of multiple I2C Grove modules.

Let’s get started.

 Project Overview
The project for this chapter is designed to demonstrate how to use analog,

digital, and multiple I2C devices on the same Grove host adapter to build

an indoor environment monitor. It uses several sensors to sample the air

for gases and dust as well as sampling the temperature and barometric

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_12

https://doi.org/10.1007/978-1-4842-8135-2_12

454

pressure. As you will see, this is the most challenging of the projects in this

book not only for the number of modules used but also for the complexity

of the code.

Caution The project for this chapter should not be used for treating
life-threatening health disorders. It is meant to be a demonstration
of what is possible and should not be relied upon for critical health
choices.

We will use a simple loop to sample the sensors every minute. For most

uses, that is actually too frequent as indoor air quality may not change

quickly. If you choose to install this project for long-term use, you may

want to experiment with longer sampling times especially if you plan to log

the data.

If you haven’t read and worked on the other projects, you may want to

work on the earlier chapters first and save this one until you’ve mastered a

few of the others.

For those with access to a 3D printer, we will also see a simple

mounting plate you can print and install the modules onto to protect them

and make it easier to use in running the project.

Let’s see what hardware we will need.

 Required Components
The hardware needed for this project is listed in Table 12-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors. We will use a Grove OLED 0.96 and Buzzer along

with Grove High Accuracy Temperature, Barometer, Air Quality, and Dust

sensors. While this project doesn’t include any Qwiic components, three of

these sensors use I2C.

ChapTer 12 projeCT: MonITorIng your envIronMenT

455

Ta
bl

e
12

-1
.

H
ar

dw
ar

e
N

ee
de

d
fo

r
th

e
En

vi
ro

n
m

en
t M

on
it

or
 P

ro
je

ct

Co
m

po
ne

nt
Qt

y
De

sc
rip

tio
n

Co
st

Li
nk

s

gr
ov

e
oL

eD
 0

.9
6

v1
.3

1
Di

sp
la

y
$1

6.
40

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
OL
ED
-D
is
pl
ay
-0
-9
6.

ht
ml

gr
ov

e
Bu

zz
er

1
Bu

zz
er

$2
.1

0
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Bu
zz
er
.h
tm
l

gr
ov

e
I2

C
hi

gh
 a

cc
ur

ac
y

Te
m

pe
ra

tu
re

 S
en

so
r

1
M

Cp
98

08
$5

.2
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
I2
C-
Hi
gh
-A
cc
ur
ac
y-

Te
mp
er
at
ur
e-
Se
ns
or
-M
CP
98
08
.h
tm
l

gr
ov

e
Te

m
pe

ra
tu

re
 a

nd

Ba
ro

m
et

er
 S

en
so

r

1
BM

p2
80

$9
.8

0
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ba
ro
me
te
r-
Se
ns
or
-

BM
P2
80
.h
tm
l

gr
ov

e
ai

r Q
ua

lit
y

Se
ns

or
1

ai
r q

ua
lit

y
$1

0.
90

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ai
r-
Qu
al
it
y-

Se
ns
or
-v
1-
3-
Ar
du
in
o-
Co
mp
at
ib
le
.h
tm
l

gr
ov

e
Du

st
 S

en
so

r
1

Du
st

$1
2.

70
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Du
st
-S
en
so
r-

PP
D4
2N
S.
ht
ml

(c
on

ti
n

u
ed

)

ChapTer 12 projeCT: MonITorIng your envIronMenT

http://www.seeedstudio.com/Grove-OLED-Display-0-96.html
http://www.seeedstudio.com/Grove-OLED-Display-0-96.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-I2C-High-Accuracy-Temperature-Sensor-MCP9808.html
http://www.seeedstudio.com/Grove-I2C-High-Accuracy-Temperature-Sensor-MCP9808.html
http://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html
http://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html

456

Ta
bl

e
12

-1
.

(c
on

ti
n

u
ed

)

Co
m

po
ne

nt
Qt

y
De

sc
rip

tio
n

Co
st

Li
nk

s

gr
ov

e
–

I2
C

hu
b

(6
 p

or
t)

1*
I2

C
hu

b
$1

.7
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
I2
C-
Hu
b-
6-

Po
rt
-p
-4
34
9.
ht
ml

$6
.9

5
sh
op
.s
wi
tc
hd
oc
.c
om
/c
ol
le
ct
io
ns
/g
ro
ve
/

pr
od
uc
ts
/g
ro
ve
-6
-p
or
t-
12
c-
hu
b

gr
ov

e
Ca

bl
e

7
Ca

bl
es

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
14
42
6

gr
ov

e
Sh

ie
ld

 fo
r p

i p
ic

o
v1

.0
1

ho
st

 b
oa

rd
$4

.3
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Sh
ie
ld
-f
or
-P
i-

Pi
co
-v
1-
0-
p-
48
46
.h
tm
l

* y
ou

 n
ee

d
on

ly
 o

ne
 o

f t
he

se
.

ChapTer 12 projeCT: MonITorIng your envIronMenT

http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
http://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub
http://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub
http://www.sparkfun.com/products/14426
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html

457

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. We saw the buzzer in

Chapter 11, but the remaining five modules are new.

 Grove OLED 0.96

Since we have more data than can fit on two short lines, we must change

our display of choice to use a small OLED module. The Grove OLED 0.96

is a monochrome 128×64 dot matrix display with high brightness and

contrast ratio and low power consumption. You can address all of the

pixels (dots) on the screen too. Note that there are several versions of this

module. We will be using the version that uses the SSD1308 chip. If you

use a different version, you may need to use a different software library.

Figure 12-1 shows the Grove OLED Display.

Figure 12-1. Grove OLED Display (courtesy of seeedstudio.com)

ChapTer 12 projeCT: MonITorIng your envIronMenT

458

 Grove I2C High Accuracy Temperature
Sensor (MCP9808)

The Grove – I2C High Accuracy Temperature Sensor (or simply MCP9808)

is a high accuracy digital module based on the MCP9808 microchip. It

features high accuracy measuring temperatures ranging from –40 to 125

degrees Celsius. While there are other temperature sensors available for

use, this module is not only reliable and accurate, but it also uses I2C for

easy integration into our environment monitor. Figure 12-2 shows the

Grove I2C High Accuracy Temperature Sensor (MCP9808).

Figure 12-2. Grove I2C High Accuracy Temperature Sensor (courtesy
of seeedstudio.com)

If you recall from our Qwiic modules, most permit you to alter the I2C

address and other features using jumpers. This module is similar, and you

can change the I2C address by soldering the jumpers on the back of the

module. Figure 12-3 shows what the jumpers look like. Notice the labels

for each.

ChapTer 12 projeCT: MonITorIng your envIronMenT

459

Figure 12-3. Grove I2C Jumpers – Temperature Sensor (courtesy of
seeedstudio.com)

You can change the I2C address by soldering across the jumpers as

shown in Table 12-2.

Table 12-2. I2C Address Map for the Grove

High Accuracy Temperature Sensor

A0 A1 A2 Address

0 0 0 0x18

0 0 1 0x19

0 1 0 0x1a

0 1 1 0x1B

1 0 0 0x1C

1 0 1 0x1D

1 1 0 0x1e

1 1 1 0x1F

You may need to change the address if you add another I2C module

with the same address or if you want to use multiple Grove I2C High

Accuracy Temperature Sensors.

ChapTer 12 projeCT: MonITorIng your envIronMenT

460

 Grove Temperature and Barometer Sensor (BMP280)

Since we are capturing temperature, we may also want to measure the

barometric pressure. The Grove Temperature and Barometer Sensor (or

simply BMP280) is an excellent choice for that data. While it can also

measure temperature and can be used to determine altitude, we will use

it solely for the barometric pressure. If you’d like to see how to do that,

visit www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html

for more information. Figure 12-4 shows the Grove Temperature and

Barometer Sensor.

Figure 12-4. Grove Temperature and Barometer Sensor (courtesy of
seeedstudio.com)

Like the High Accuracy Temperature Sensor, you can also change the

I2C address for this module using the jumpers on the back as shown in

Figure 12-5.

Figure 12-5. Grove I2C Jumpers – Barometric Pressure Sensor
(courtesy of seeedstudio.com)

ChapTer 12 projeCT: MonITorIng your envIronMenT

http://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html

461

Here, our choices are a bit narrower. We can use the jumpers to change

the address from 0x76 (default) to 0x77.

 Grove Air Quality Sensor

The Grove Air Quality Sensor is an analog sensor designed for indoor air

quality testing and measures certain gases including carbon monoxide,

alcohol, acetone, thinner, formaldehyde, and similar slightly toxic gases.

While it does not differentiate among the gases, it provides a general value

that you can use to determine thresholds for “safe” air quality. In fact, we

will write the code to determine ranges for good, fair, and poor air quality.

Figure 12-6 shows the Grove Air Quality Sensor.

Figure 12-6. Grove Air Quality Sensor (courtesy of seeedstudio.com)

 Grove Dust Sensor

We will also be measuring the dust or particles in the air. The Grove Dust

Sensor is a digital module and an excellent choice because it provides a

percentage of particles found in the air. We can therefore write our code

to test for a threshold of particulates in the air to determine dusty or even

smoky conditions. Figure 12-7 shows the Grove Dust Sensor.

ChapTer 12 projeCT: MonITorIng your envIronMenT

462

Figure 12-7. Grove Dust Sensor (courtesy of seeedstudio.com)

There is one more unexpected component that we will need. We

have three modules that use I2C connections. Most Pico adapter boards

(shields) offer only two I2C connections: I2C0 and I2C1. However, recall

that I2C connections are not limited to only one per bus. Rather, we can

connect multiple modules to the same I2C bus where each module is

referenced by its address.

To achieve this, we will need a little help from another component.

We need a Grove I2C Hub. Seeed Studio sells one that is the same 40mm

format as the sensors we will be using (www.seeedstudio.com/Grove-

I2C-Hub-6-Port-p-4349.html). SwitchDoc Labs also offers a Grove I2C

Hub (https://shop.switchdoc.com/collections/grove/products/

grove-6-port-12c-hub) which is a bit larger but has the same number of

connectors for Grove I2C modules. Figure 12-8 shows the Grove I2C Hub.

Figure 12-8. Grove I2C Hub (courtesy of seeedstudio.com)

ChapTer 12 projeCT: MonITorIng your envIronMenT

http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
https://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub
https://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub

463

Figure 12-9 shows the SwitchDoc Labs I2C Hub.

Figure 12-9. SwitchDoc Labs I2C Hub (courtesy of switchdoc.com)

As you may surmise, we will be connecting all of our I2C modules to

the hub and then the hub to I2C0 on the Pico Grove Shield.

 Set Up the Hardware
For this project, we need six connections for the six modules we will using.

The connections and their types are shown in Table 12-3.

Table 12-3. Environment Monitor Connections

Module Description Pico Shield Connector

I2C hub hub I2C0

oLeD Display I2C hub

MCp9808 Temperature I2C hub

BMp280 Barometer I2C hub

Buzzer Sound a0

Dust Sensor Dust D20/21

air Quality air quality a1

Thus, we will need seven Grove cables. Figure 12-10 shows how the

connections will look once all of the modules are connected to the Pico

Shield and I2C Hub.

ChapTer 12 projeCT: MonITorIng your envIronMenT

464

Figure 12-10. Environment monitor project Grove connections

 Using a Mounting Plate
Since we have so many components and a bunch of cables connecting

them all together, using the project can take a little bit of space, and with all

of those modules dangling by their cables tethered only to the Grove Pico

Shield, you run the risk of accidentally unplugging a module, or, worse,

the electronics on the module may come into contact with conductive

material. You can mitigate this somewhat by using a double-sided tape to

tape them to your desk, but a better solution is to create a mounting plate.

We could create a full enclosure, but as you will see, leaving the modules

exposed gives the project a genuine cool factor.

If you have your own 3D printer or have access to a 3D printer, you

can print a mounting plate. The source code for this chapter includes the

ChapTer 12 projeCT: MonITorIng your envIronMenT

465

3D printing files you need to create a simple mounting plate to mount the

modules arranged in a space-efficient manner. Figure 12-11 shows the

mounting plate.

Figure 12-11. 3D mounting plate design for the environment
monitor project

Notice there are mounting points for all of the sensor modules along

with the OLED, Pico Shield (on the left side), and an I2C Hub for both

the Seeed Studio and SwitchDoc Labs versions (above the Pico Shield on

the left).

If you’re thinking this resembles a simple plank of wood (which would

work equally as well), there are feet on the bottom of the plate and places

for the nuts on the bottom as well. In fact, you will need to print this plate

upside down.

There is also a set of spacers you will need to print as shown in

Figure 12-12.

Figure 12-12. 3D spacers design for the Simon Says project

ChapTer 12 projeCT: MonITorIng your envIronMenT

466

Notice from left to right, there are (11) short M2 spacers for the

MCP9808, BMP280, air quality, and buzzer modules. There are (3) long

M2 spacers for the OLED module. Finally, there is (1) M4 spacer for the

dust sensor.

To mount the modules, you will need the following hardware:

• (19) M2 nuts

• (1) M4 nut

• (16) M2x8mm bolts

• (3) M2x19mm bolts

• (1) M4x5mm bolt

To assemble the mounting plate, begin by mounting the dust sensor

in the center, the buzzer below it, the OLED in the upper left, and the air

quality, BMP280, and MCP9808 on the bottom and right (any order is fine).

Finally, mount the I2C Hub in the upper left and the Pico Shield on the

left. Figure 12-13 shows the completed project with the cables routed to

the top.

Figure 12-13. Mounting the modules to the 3D printed plate

ChapTer 12 projeCT: MonITorIng your envIronMenT

467

Before you celebrate by plugging all of your modules into your host

adapter, take a few moments to carefully label each of the cables using a

piece of masking or painter’s tape. Write the connector label on the tape so

you don’t have to worry about connecting them to the wrong connectors.

The I2C cables can be plugged into any of the I2C connectors. Figure 12-14

shows a close-up of how the I2C Hub is mounted.

Figure 12-14. I2C Hub mounting on the 3D printed plate

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – perhaps one that also

includes a battery and a small form factor host board. If you decide to

build a complete enclosure, make sure to place holes or a grid opening

over the sensors for airflow. The dust and air quality sensors are the

modules that need openings most.

Now that we know more about the hardware for this chapter, let’s write

the code!

ChapTer 12 projeCT: MonITorIng your envIronMenT

468

 Write the Code
The code for this project involves following the usual pattern. For this

project, that means using analog and digital modules as well as multiple

I2C devices. The air quality sensor is an analog sensor, the buzzer and dust

sensors are digital modules, and the MCP9808, BMP280, and OLED are I2C

devices.

Like the previous projects, we will use a class to wrap our functionality.

Let’s first look at the software libraries we will need to download.

 Install Software Libraries
We will need to download three libraries. Specifically, we need a library

for the BMP280, OLED, and MCP9808. However, there is no MicroPython

library for the Dust Sensor, so we will be writing our own library for

that sensor.

We can get the BMP280 library from https://github.com/dafvid/

micropython-bmp280, the OLED library from https://github.com/

micropython/micropython/tree/master/drivers/display, and the

MCP9808 library from https://github.com/adafruit/Adafruit_

CircuitPython_MCP9808. You can install them with the following

commands:

$ pip3 install bmp280

$ pip3 install adafruit-circuitpython-mcp9808

Once you have those libraries installed, we’re ready to write the code.

 Create the Class Modules
While we will not dive into every line of code, we will see some of the more

complex code and those areas discussed that differ significantly from what

you may have experienced thus far in your MicroPython journey. You can

read the code and learn more about how it works at your leisure.

ChapTer 12 projeCT: MonITorIng your envIronMenT

https://github.com/dafvid/micropython-bmp280
https://github.com/dafvid/micropython-bmp280
https://github.com/micropython/micropython/tree/master/drivers/display
https://github.com/micropython/micropython/tree/master/drivers/display
https://github.com/adafruit/Adafruit_CircuitPython_MCP9808
https://github.com/adafruit/Adafruit_CircuitPython_MCP9808

469

Since there are several code modules (files) for this project, it is

recommended that you create a project folder (e.g., named project6) and

save all of the files there. It will make copying them to your Pico easier later.

Let’s start with the most difficult: a solution to read the dust sensor. As

mentioned, there is no library currently available to read this sensor on the

Pico (but there are some available for other platforms), so we must write

the code ourselves. As you will see, it is a bit tricky.

 DustSensor Class

While this module is a class, it contains a single function. This may seem

strange, and you may tend to implement the single function in either the

main code file or as a separate code module. That will work just fine, but it

is not the recommended mechanism.

A class module is a very useful tool for developers because it allows us to

place code in a single container that works on a common set of data. Thus, it

models an object or concept in our projects. It also allows us to keep state (a

set of assignments or initializations) for the object during its lifetime.

For example, if you have a single function that initializes some data

variables based on data passed as parameters and then initializes another

class instance variable (or several), each time the function is called, it

repeats all of the setup, which is wasteful. Using a class allows us to do that

setup code once.

Thus, the code for the dust sensor is placed in a class module named

dust_sensor.py, and the class is named DustSensor. You can create the

file now in Thonny.

As mentioned, there is a single function named read() that reads

the data from the dust sensor. Unlike other read functions you may be

accustomed to, this function cannot simply query another class or abstract

function to get the data. In this case, we are reading directly from the

hardware via a digital pin on the Pico. We will allow the caller to specify

the pin to use in the constructor, but we also have a default value of the pin

number (DUST_SENSOR_PIN = 20) for the dust sensor data.

ChapTer 12 projeCT: MonITorIng your envIronMenT

470

But there is a catch. We cannot simply read the value once. It doesn’t

work like that. The sensor is designed to emit a pulse over a period of

time during which it will turn “on” and “off” in a variable frequency. Note

this is essentially the pulse-width modulation (PWM) that we’ve seen in

controlling LEDs and other devices to limit power to the device.

To determine what this “pulse” means for this sensor, we learn from

the data sheet that we can determine the amount of dust read by counting

the number of times the value is set to “on” (high) over a period of 30

seconds. Figure 12-15 shows an excerpt of the data sheet that documents

this process.

Figure 12-15. Excerpt of the Grove Dust Sensor data sheet (LPO)

The data sheet for the dust sensor can be found at

https://raw.githubusercontent.com/SeeedDocument/Grove_Dust_

Sensor/master/resource/Grove_-_Dust_sensor.pdf

What we are seeing there is the dust sensor sends a pulse of low (off)

over a period of 30 seconds. These pulses can occur at various times and

can last for a short period of time. The total of the time spent in the “off”

state over the interval (30 seconds) is called the low pulse occupancy time

(LPO) and is represented as a percentage. Easy, right? Well, sort of.

There are two implications for our code we must adhere. First, we

must read the sensor over a 30-second period. Thus, there will not be

ChapTer 12 projeCT: MonITorIng your envIronMenT

https://raw.githubusercontent.com/SeeedDocument/Grove_Dust_Sensor/master/resource/Grove_-_Dust_sensor.pdf
https://raw.githubusercontent.com/SeeedDocument/Grove_Dust_Sensor/master/resource/Grove_-_Dust_sensor.pdf

471

anything else going on during that time (unless you want to do some form

of threading or interrupts). This means, at a minimum, our read function

will run for 30 seconds. Second, we must write our code to quickly capture

when the pin goes to 0 (off), and total the time spent in that state. This is

the most difficult aspect of the code.

Fortunately, we can view the other libraries for the dust sensor to learn

how it was done for other platforms. In fact, the code from a similar Python

implementation will work just fine. Cool. The following is an excerpt for

the code to capture the time spent in the off state:

while time.time() - starttime <= SAMPLETIME_S: # in

sampling window

 if self.dust_sensor_pin.value() == 0:

 start = time.ticks_us()

 elif start > 0:

 value = time.ticks_diff(time.ticks_us(), start)

 # Low Pulse Occupancy Time (LPO Time) in microseconds

 low_pulse_occupancy += value

 start = 0

As you can see, we simply sum the time for a variable named low_

pulse_occupancy. Now, we need to convert that value into a percentage

concentration, and that is where it gets tricky.

We have to take the LPO calculated and form a ratio and then take the

ratio and use a formula to convert it. We find this formula on the data sheet

in the form of a graph that describes the performance of the dust sensor

under controlled conditions. Figure 12-16 shows an excerpt from the data

sheet with this data.

ChapTer 12 projeCT: MonITorIng your envIronMenT

472

Figure 12-16. Excerpt of the Grove Dust Sensor data sheet (graph)

Formulating a formula to model this graph is a bit complex, but once

again we can copy what others have done and implement the same in

our code. The following shows the formula used in a Python library for

the Raspberry Pi. It is not necessary to understand every nuance of the

formula; rather, for our uses, it is sufficient to understand the source of the

information – the graph on the data sheet.

ratio: percentage of low pulses over the sampling window

ratio = low_pulse_occupancy / (SAMPLETIME_S * 1e+6)

concentration = 1.1 * (ratio ** 3) - 3.8 * (ratio ** 2) + 520 *

ratio + 0.62

OK, that’s the hard part of this code. The rest are techniques you’ve

seen before, so we won’t go through every line. However, you should

examine the class member variables to see the use of the self.last_data

variable. We use this to store the last known reading. When we calculate

ChapTer 12 projeCT: MonITorIng your envIronMenT

473

the concentration, we either return the concentration calculated or return

the last known reading in case the dust sensor doesn’t produce enough

samples (pulses) to calculate the reading.

Listing 12-1 shows the complete code for the DustSensor class with

comments removed for brevity.

Listing 12-1. DustSensor Class Module

import machine

import time

SAMPLETIME_S = 30

DUST_SENSOR_PIN = 20

class DustSensor:

 """DustSensor Class"""

 def __init__(self, sensor_pin=DUST_SENSOR_PIN):

 """Constructor"""

 # Setup dust sensor

 self.dust_sensor_pin = machine.Pin(sensor_pin,

machine.Pin.IN)

 self.last_reading = 0.62 # Minimal value possible from

data sheet

 def read(self):

 """Read dust sensor"""

 # start time of sampling window in seconds

 starttime = time.time()

 # ratio of LPO time over the entire sampling window

 ratio = 0

 # Low Pulse Occupancy Time (LPO Time) in microseconds

 low_pulse_occupancy = 0

ChapTer 12 projeCT: MonITorIng your envIronMenT

474

 # concentration based on LPO time and characteristics

graph (datasheet)

 concentration = 0

 start = 0

 while time.time() - starttime <= SAMPLETIME_S: # in

sampling window

 if self.dust_sensor_pin.value() == 0:

 start = time.ticks_us()

 elif start > 0:

 value = time.ticks_diff(time.ticks_us(), start)

 # Low Pulse Occupancy Time (LPO Time) in

microseconds

 low_pulse_occupancy += value

 start = 0

 # ratio: percentage of low pulses over the

sampling window

 ratio = low_pulse_occupancy / (SAMPLETIME_S * 1e+6)

 concentration = 1.1 * (ratio ** 3) - 3.8 * (ratio ** 2)

+ 520 * ratio + 0.62

 if concentration != 0.62:

 print("PM concentration: {} pcs/0.01cf".

format(concentration))

 self.last_reading = concentration

 else:

 concentration = self.last_reading

 print("PM last reading: {} pcs/0.01cf".

format(concentration))

 return concentration

if __name__ == '__main__':

 try:

ChapTer 12 projeCT: MonITorIng your envIronMenT

475

 # Setup dust sensor

 dust_sensor = DustSensor()

 while True:

 print("Reading dust sensor...")

 print("Dust = {}".format(dust_sensor.read()))

 time.sleep(5)

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

Notice what we have at the bottom of the class. This is another example

of how to write some rudimentary testing code. With this, we can execute

the code module by itself and test our read function. It is recommended

you do that once you have your hardware wired and before you attempt to

run the entire project. You should see output similar to the following:

Reading dust sensor...

PM concentration: 0.634378 pcs/0.01cf

Dust = 0.634378

Reading dust sensor...

Reading dust sensor...

PM concentration: 0.621001 pcs/0.01cf

Dust = 0.621001

Reading dust sensor...

PM last reading: 0.621001 pcs/0.01cf

Dust = 0.621001

Reading dust sensor...

PM concentration: 0.649432 pcs/0.01cf

Dust = 0.649432

Reading dust sensor...

PM concentration: 0.7309418 pcs/0.01cf

Dust = 0.7309418

...

ChapTer 12 projeCT: MonITorIng your envIronMenT

476

Notice we see one case where the sensor did not generate enough

samples to compute the dust concentration. This illustrates the technique

of saving the last reading in case the next reading is out of bounds or there

is an error.

Now, let’s look at the next class module, a class to manage reading

from all of the sensors.

 AirMonitor Class

One of the things you may encounter in building projects with many

sensors is that it can sometimes be a challenge to ensure all of the sensors

are read in a timely manner, especially if the sampling rate of the sensors

varies. More specifically, some sensors may need time to “warm up” or

simply need time to reset before reading the next value. Making your main

code accommodate all of these nuances may be a challenge.

CHOOSING A SAMPLE RATE

one of the things that you must consider when writing IoT solutions is how

often you need to read data called the sample rate (or sampling rate). There

are several factors you must consider, all of which should help you determine

how often you should read data.

First, you must consider how often you can get data from the sensors. Some

sensors may require as much as several minutes to refresh values. Most of

those either let you read stale data (the last value read) or emit an error if you

read the data too frequently.

aside from the sensors, you also need to consider how often the data changes

or how often you need to check/retrieve the data. The application will play a

big factor in determining an optimum rate. For example, if you are sampling a

sensor for data that doesn’t change often, there is no point in reading it more

frequently.

ChapTer 12 projeCT: MonITorIng your envIronMenT

477

another factor to consider concerns storing the data. If you are planning to

store the data, reading the data every second could generate more data than

your storage mechanism can handle.

Finally, the criticality of the data may also be a factor. More specifically, if the

data is used to make critical decisions for industrial, mechanical, or health

decisions, the sample rate may need to be high (fast). For example, it would be

far too late to detect oncoming vehicles every 30 seconds.

When choosing a sample rate, you must consider all of these elements: refresh

rates of your sensors, how often the data will change, how much data you

want to store, and the criticality of the data.

Fortunately, we can move coordination like this to a helper class.

That is, we can create a class to read all of the sensors and provide data to

the main code for display. For this project, we will create a class module

named air_monitor.py that contains a class named AirMonitor. You can

create the file now in Thonny.

In this class, we will set up all of the sensors initializing any libraries

needed and create two functions for use by our main module, a function

to read the data named read_data() and a function to retrieve the data

named get_data(). All of the work to read the sensors appears in the

read_data() function. The data returned by the get_data() function is a

dictionary that contains the four sensor values, making it easy to display

the data.

We will also need a number of helper functions to read from the

sensors as described in the following:

• read_pressure(): Read the pressure from the BMP280

• read_temperature(): Read the temperature from

the BMP280

ChapTer 12 projeCT: MonITorIng your envIronMenT

478

• translate(): Translate a range of values from one

range to another. Used to transform the values from the

air quality sensor from 1–65535 to 1–1024 to classify the

air quality.

Let’s return to the sample time for the class. Recall, our dust sensor

needs 30 seconds to read, but other sensors need additional time.

Specifically, the air quality sensor requires a 20-second startup and 2+

seconds of read time. Thus, the minimal sample rate we can accommodate

is 52–60 seconds. Now you can see why it is important to group all of your

sensor read mechanisms into a single class/function.

Now, let’s go through some of the details of the class implementation.

Once again, we won’t see every detail, so you should read through the

code on your own to discover how it works.

We use a dictionary in the class to store the sensor data and return it with

the get_data() function. The following shows the new dictionary. Once

returned to the main sketch, we simply use the key to retrieve the sensor

data. For example, data["temperature"] fetches the temperature value:

data = {

 "temperature": 0.0,

 "pressure": 0.0,

 "dust_concentration": 0.0,

 "air_quality": AIR_GOOD,

}

Notice we will use a series of constants for the air quality. The following

shows the constants used that map to relative quality values. We can use

these values in the main code to print text to match the constant value:

AIR_POOR = 0

AIR_FAIR = 1

AIR_GOOD = 2

AIR_ERR = 3

ChapTer 12 projeCT: MonITorIng your envIronMenT

479

Listing 12-2 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it is not overly

complicated; rather, just a lot of code due to the number of sensors we are

reading.

Listing 12-2. AirMonitor Class Module

from machine import ADC, I2C, Pin

import time

from project6.bmx280x import BMX280

from project6.mcp9808 import MCP9808

from project6.dust_sensor import DustSensor

Constants

DUST_SAMPLE_RATE = 60 # 60 seconds

AIR_SENSOR_PIN = 1

AIR_POOR = 0

AIR_FAIR = 1

AIR_GOOD = 2

AIR_ERR = 3

class AirMonitor:

 """AirMonitor Class"""

 data = {

 "temperature": 0.0,

 "pressure": 0.0,

 "dust_concentration": 0.0,

 "air_quality": AIR_GOOD,

 }

 def __init__(self, i2c):

 """Constructor"""

ChapTer 12 projeCT: MonITorIng your envIronMenT

480

 # Initialize the BMP280

 self.i2c = i2c

 # Setup BMP280

 self.bmp280 = BMX280(i2c, 0x77)

 # Setup MCP9808

 self.mcp9808 = MCP9808(i2c)

 # Setup dust sensor

 self.dust_sensor = DustSensor()

 # Setup air quality sensor

 self.air_quality = ADC(28)

 self.to_volts = 5.0 / 1024

 def read_pressure(self):

 """Read the pressure from the BMP280."""

 return self.bmp280.pressure/100

 def read_temperature(self):

 """Read the temperature from the BMP280."""

 return self.bmp280.temperature

 def translate(self, x, in_min=1, in_max=65535, out_min=1,

out_max=1024):

 """Translate from range 1-65353 to 1-1024."""

 return int((x - in_min) * (out_max - out_min) /

 (in_max - in_min) + out_min)

 def read_data(self):

 """read_data"""

 print("\n>> Reading Data <<")

 # Read temperature

 try:

 print("> Reading temperature = ", end="")

 self.data["temperature"] = self.mcp9808.read_temp()

ChapTer 12 projeCT: MonITorIng your envIronMenT

481

 print(self.data["temperature"])

 except Exception as err:

 print("ERROR: Cannot read temperature: {}".

format(err))

 return False

 # Read pressure

 try:

 print("> Reading pressure = ", end="")

 self.data["pressure"] = self.read_pressure()

 print(self.data["pressure"])

 except Exception as err:

 print("ERROR: Cannot read pressure: {}".

format(err))

 return False

 # Read dust

 self.data["dust_concentration"] = 0.10

 try:

 print("> Reading dust concentration")

 self.data["dust_concentration"] = self.dust_

sensor.read()

 print("> Dust concentration = {}".format(self.

data["dust_concentration"]))

 except Exception as err:

 print("ERROR: Cannot read dust concentration: {}".

format(err))

 return False

 # Read air quality

 try:

 print("> Reading air quality = ", end="")

 raw_value = self.air_quality.read_u16()

ChapTer 12 projeCT: MonITorIng your envIronMenT

482

 sensor_value = self.translate(raw_value)

 if sensor_value > 700:

 self.data["air_quality"] = AIR_POOR

 elif sensor_value > 300:

 self.data["air_quality"] = AIR_FAIR

 else:

 self.data["air_quality"] = AIR_GOOD

 print(self.data["air_quality"])

 except Exception as err:

 print("ERROR: cannot read air quality: {0}".

format(err))

 self.data["air_quality"] = AIR_ERR

 return False

 return True

 def get_data(self):

 """get_data"""

 return self.data

Notice there are a number of debugging print statements in the code.

You may want to take those out once you get everything working.

Tip If you have any trouble getting the code to work, you may want
to comment out the lines of code for reading the dust sensor so that
you do not have to wait 30 seconds for each read. Similarly, you can
comment out the read to other sensors to give you a chance to solve
any problems using the class in your project.

Now we can write our main code.

ChapTer 12 projeCT: MonITorIng your envIronMenT

483

 Main Code Module

Now we can write the main code. Open a new file and name it main.py.

Since we are placing all of the sensor work in the AirMonitor class, all we

need to do here is set up the I2C bus, instantiate the new class instance

(stored in a variable named air_quality), initialize the OLED and buzzer,

and then print the greeting.

The main() function simply calls the read_data() method, and if it

returns true, we get the data and display it on the OLED. The only extra

work we need to do is determine what the air monitor sensor is returning

and print the correct value and examine the data to ensure it is below

established levels (to determine air quality). If the air quality is low, we

display a message and play an alarm sequence on the buzzer.

We will also use a helper function to sound a tone on the buzzer. This

isn’t absolutely necessary, but it does help reduce the amount of code, and

this concept will help you understand the way we use the buzzer in the

next chapter.

However, the software library we will be using for the OLED doesn’t

contain methods that allow macro functions like writing a string to the

display or setting up (initializing) the display. We will create those helper

functions named oled_write() and setup_oled().

The following shows the code for the oled_write() function:

def oled_write(oled, column, row, message):

 """oled_write"""

 oled.text(message, column*8, row*8, 255)

 oled.show()

The following shows the code for the setup_oled() function:

def setup_oled(i2c):

 """setup_oled"""

 # Setup OLED

ChapTer 12 projeCT: MonITorIng your envIronMenT

484

 display = SSD1306_I2C(128, 64, i2c) # Grove OLED Display

 display.text('Hello World', 0, 0, 255)

 display.show()

 oled_write(display, 0, 1, "Environment")

 oled_write(display, 0, 2, "Monitor")

 oled_write(display, 0, 4, "Starting...")

 return display

Since we will only use the buzzer to sound if there is a poor air quality

condition, rather than use the Buzzer class we created in Chapter 11, we

will create a more simplistic beep() helper function that simply plays a

tone using the same PWM we created in the Buzzer class. The following

shows the simplified beep() function. We will use pin 26 (an analog pin)

for the buzzer.

def beep(buzzer_pin, duration=0.150):

 """beep"""

 buzzer_pin.on()

 time.sleep(duration)

 buzzer_pin.off()

Finally, let’s discuss the sampling rate again. Recall from the

AirMonitor class, we have a minimal sampling rate of 60 seconds hard-

coded. In the main() function, we also have a sampling rate constant. This

should be used to control how often we call the read_data() function

rather than how long it takes to read the data. A minor distinction, but the

result is we must consider both how long it takes to read the data and how

often we want to start the read.

Listing 12-3 shows the complete code for the main script for this

project. You can read through it to see how all of the code works.

ChapTer 12 projeCT: MonITorIng your envIronMenT

485

Listing 12-3. Main Code Module

Import libraries

from machine import Pin, I2C

import time

from project6.air_monitor import AirMonitor, AIR_POOR,

AIR_FAIR, AIR_GOOD, AIR_ERR

from project6.ssd1306 import SSD1306_I2C

Constants

SAMPLING_RATE = 5 # 5 second wait to start next read

BUZZER_PIN = 26

WARNING_BEEPS = 5

HIGH = 1

LOW = 0

Constants for environmental quality

MAX_TEMP = 30.0

MAX_DUST = 40.0

def beep(buzzer_pin, duration=0.150):

 """beep"""

 buzzer_pin.on()

 time.sleep(duration)

 buzzer_pin.off()

def oled_write(oled, column, row, message):

 """oled_write"""

 oled.text(message, column*8, row*8, 255)

 oled.show()

def setup_oled(i2c):

 """setup_oled"""

 # Setup OLED

ChapTer 12 projeCT: MonITorIng your envIronMenT

486

 display = SSD1306_I2C(128, 64, i2c) # Grove OLED Display

 display.text('Hello World', 0, 0, 255)

 display.show()

 oled_write(display, 0, 1, "Environment")

 oled_write(display, 0, 2, "Monitor")

 oled_write(display, 0, 4, "Starting...")

 return display

def main():

 """Main"""

 print("Welcome to the Environment Monitor!")

 # Setup buzzer

 buzzer = Pin(BUZZER_PIN, Pin.OUT)

 i2c = I2C(0,scl=Pin(9), sda=Pin(8), freq=100000)

 print("Hello. I2C devices found: {}".format(i2c.scan()))

 oled = setup_oled(i2c)

 # Start the AirMonitor

 air_quality = AirMonitor(i2c)

 time.sleep(3)

 oled_write(oled, 11, 4, "done")

 beep(buzzer)

 oled.fill(0)

 oled.show()

 while True:

 if air_quality.read_data():

 # Retrieve the data

 env_data = air_quality.get_data()

 oled_write(oled, 0, 0, "ENVIRONMENT DATA")

 oled_write(oled, 0, 2, "Temp: ")

 oled_write(oled, 6, 2, "{:3.2f}C".format(env_

data["temperature"]))

ChapTer 12 projeCT: MonITorIng your envIronMenT

487

 oled_write(oled, 0, 3, "Pres: ")

 oled_write(oled, 6, 3, "{:05.2f}hPa".format(env_

data["pressure"]))

 oled_write(oled, 0, 4, "Dust: ")

 if env_data["dust_concentration"] == 0.0:

 oled_write(oled, 6, 4, "-- ")

 else:

 oled_write(oled, 6, 4, "{:06.2f}%".format(env_

data["dust_concentration"]))

 oled_write(oled, 0, 5, "airQ: ")

 if env_data["air_quality"] in {AIR_ERR, AIR_POOR}:

 oled_write(oled, 6, 5, "POOR")

 elif env_data["air_quality"] == AIR_FAIR:

 oled_write(oled, 6, 5, "FAIR")

 elif env_data["air_quality"] == AIR_GOOD:

 oled_write(oled, 6, 5, "GOOD")

 else:

 oled_write(oled, 6, 5, "-- ")

 # Check for environmental quality

 if ((env_data["dust_concentration"] > MAX_DUST) or

 (env_data["temperature"] > MAX_TEMP) or

 (env_data["air_quality"] == AIR_POOR) or

 (env_data["air_quality"] == AIR_ERR)):

 #pylint: disable=unused-variable

 for i in range(0, WARNING_BEEPS):

 oled_write(oled, 3, 7, "ENV NOT OK")

 beep(0.250)

 time.sleep(0.250)

 oled_write(oled, 3, 7, " ")

 time.sleep(0.250)

ChapTer 12 projeCT: MonITorIng your envIronMenT

488

 else:

 oled.fill(0)

 oled.show()

 oled_write(oled, 0, 2, "ERROR! CANNOT")

 oled_write(oled, 0, 3, "READ DATA")

 time.sleep(SAMPLING_RATE)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code and we’re now ready to execute

the project!

 Execute
Now it is time to test the project by executing (running) it. Recall, we can

copy all of our code to our Pico. If you haven’t already done so, you should

create a folder named project6 on your Pico and then upload the air_

monitor.py, dust_sensor.py, bmx280x.py, mcp98008.py, and ssd1306.py

files to the project6 folder. Next, upload the main.py file to the root folder

of your Pico.

Recall, there are two ways to test or execute the code. We could use

Thonny to connect to the Pico and simply run the main.py script. Or we

can reboot the Pico by unplugging it and plugging it back in to the USB

port on your PC.

ChapTer 12 projeCT: MonITorIng your envIronMenT

489

The difference is if you run the main.py file manually, you will see the

debug statements show in the output at the bottom of Thonny. Running

the script automatically may not show those statements if you do not use

Thonny or a similar application to connect to the Pico.

Once the program starts, you will see some diagnostic messages

written to the terminal. You will also see a welcome message appear on the

LCD. When you run the code from Thonny, you will see output similar to

the following:

Welcome to the Environment Monitor!

Hello. I2C devices found: [24, 60, 119]

>> Reading Data <<

> Reading temperature = 20.8125

> Reading pressure = 1022.359

> Reading dust concentration

> Dust concentration = 0.649432

> Reading air quality = 2

>> Reading Data <<

> Reading temperature = 20.8125

> Reading pressure = 1022.394

> Reading dust concentration

> Dust concentration = 0.649432

> Reading air quality = 2

...

Figure 12-17 shows examples of the OLED output.

ChapTer 12 projeCT: MonITorIng your envIronMenT

490

Figure 12-17. Executing the environment monitor project

If everything worked as executed, congratulations! If something isn’t

working, check your connections to ensure you’ve connected everything

correctly.

Since we named the main code file main.py, you can restart the Pico

and run the project on boot. If you connect a power supply to the Pico, or a

5V battery pack, you can run it continuously without your PC.

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• Environment portal: You can display the values of the

last sensor(s) read in a web page to allow you to see the

condition of your environment from anywhere in the

world. If you also add the date and time, you can see how

your environment changes over time. See Chapter 13

for ideas on how to implement this suggestion.

• Additional sensors: Implement additional sensors to

read more data such as specific gases such as CO2, O2,

and a light sensor to detect day and night cycles. You

ChapTer 12 projeCT: MonITorIng your envIronMenT

491

could also include a vibration sensor if you live in areas

prone to seismic tremors. Interestingly, you can use

vibration sensors to detect when someone walks into

the room.

• Sampling rate: Adjust the sampling rate to match your

environmental needs. For example, if you live in a very

clean apartment or house with good climate control,

your sampling rate may be lower than if you live in a

dusty area prone to temperature changes such as an RV

or typical rustic cabin.

 Summary
In this chapter, we got more hands-on experience making projects with

Grove analog and digital modules as well as multiple I2C devices. We

used these modules to create an environment monitor that displays

the temperature, barometric pressure, air quality, and dust (particle)

concentration in the air – in other words, an indoor air monitoring

solution.

Along the way, we learned more about how to work with Grove

modules including how to write our own classes for managing multiple

sensors. We also saw how to use alternative software libraries in both the

Arduino and Python versions of our project. Finally, we saw some potential

to make this project better as well as some ideas for how to adapt the

project for practical uses.

In the next chapter, we will see how to extend our projects into an

exciting new realm – the Internet. We will see how to connect our Pico to

the Internet and learn how to make our projects into an Internet of Things

(IoT) project.

ChapTer 12 projeCT: MonITorIng your envIronMenT

493

CHAPTER 13

Introducing IoT
for the Cloud
Thus far in the book, we have learned that the Raspberry Pi Pico is a great

small microcontroller that has a lot of power in such a small package. It’s

inexpensive and easy to program. However, there is one thing missing –

there is no way to connect it to the Internet. At least, not directly because

it doesn’t have WiFi support. We will see how to add WiFi support in this

chapter.

In previous chapters, you’ve seen a number of projects, ranging from

very basic to advanced in difficulty; it is time to discuss how to make your

IoT data viewable by others via the cloud. More specifically, you will get a

small glimpse at what is possible with the more popular cloud computing

services and solutions.

I say a glimpse because it is not possible to cover all viable solutions

available in cloud services solutions for IoT in a single chapter. Once again,

this is a case where learning a little bit about something and seeing it in

practice will help you get started.

In this chapter, we will get an overview of what the cloud is and how it

is used for IoT solutions. The chapter also presents a concise overview of

the popular cloud systems for IoT as well as a short example using two of

our earlier projects to give you a sense of what is possible and how projects

can be modified to use the Internet.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_13

https://doi.org/10.1007/978-1-4842-8135-2_13

494

THE CLOUD: ISN’T THAT JUST MARKETING HYPE?

Don’t believe all the hype or sales talk about any product that includes “cloud”

in its name. Cloud computing services and resources should be accessible

via the Internet from anywhere, available to you via subscription (fee or for

free), and permit you to consume or produce and share the data involved. Also,

consider the fact that you must have access to the cloud to get to your data.

Thus, you have no alternative if the service is unreachable (or down).

Since the technologies presented are quite unique in implementation

(but straightforward in concept), I keep the project hardware and

programming to a minimal effort.

 Overview
Unless you live in a very isolated location, you have been bombarded with

talk about the cloud and IoT. You’ve seen advertisements in magazines

and on television, or read about it in other books, or attended a seminar or

conference. Unless you’ve spent time learning what cloud means, you are

wondering what all the fuss is about.

 What Is the Cloud?
Simply stated,1 the cloud is a name tagged to services available via the

Internet. These can be servers you can access (running as a virtual

machine on a larger server), systems that provide access to a specific

software or environment, or resources such as disks or IP addresses that

1 Experienced cloud researchers will tell you there is a lot more to learn about
the cloud.

ChApTer 13 InTroDuCIng IoT for The ClouD

495

you can attach to other resources. The technologies behind the cloud

include grid computing (distributed processing), virtualization, and

networking. The correct scientific term is cloud computing. Although

a deep dive into cloud computing is beyond the scope of this book, it is

enough to understand that you can use cloud computing services to store

your sensor data.

 What Is Cloud Computing Then?
The term cloud computing is sadly overused and has become a marketing

term for some. True cloud computing solutions are services that are

provided to subscribers (customers) via a combination of virtualization,

grid computing (distributed processing and storage), and facilities to

support virtualized hardware and software, such as IP addresses that are

tied to the subscription rather than a physical device. Thus, you can use

and discard resources on the fly to meet your needs.

These resources, services, and features are priced by usage patterns

(called subscription plans or tiers), in which you can pay for as little or as

much as you need. For example, if you need more processing power, you

can move up to a subscription level that offers more CPU cores, more

memory, and so forth. Thus, you only pay for what you need, which means

that organizations can potentially save a great deal on infrastructure.

A classic example of this benefit is a case where an organization

experiences a brief and intense level of work that requires additional

resources to keep their products and services viable. Using the cloud,

organizations can temporarily increase their infrastructure capability and,

once the peak has passed, scale things back to normal. This is a lot better

than having to rent or purchase a ton of hardware for that one event.

Sadly, there are some vendors that offer cloud solutions (typically

worded as cloud enabled or simply cloud) that fall far short of being a

complete solution. In most cases, they are nothing more than yesterday’s

ChApTer 13 InTroDuCIng IoT for The ClouD

496

Internet-based storage and visualization. Fortunately, Microsoft Azure

is authentic: a full cloud computing solution with an impressive array of

features to support almost any cloud solution you can dream up.

Tip If you would like to know more about cloud computing and its
many facets, see https://en.wikipedia.org/wiki/Cloud_
computing.

 How Does the Cloud Help IoT?
OK, so now that we know what cloud systems are, how do they help me

with my IoT projects? There are a variety of ways, but most common are

mechanisms for storing and presenting your data rather than storing it

locally or even remotely on another system such as a dedicated database

server. That is, you can send the data you collect from your sensors to the

cloud for storage and even use additional cloud services to view the data

using charts, graphs, or just plain text. The sky is the limit with respect to

how you can present your data.

But storing data isn’t the only feature you can leverage in the cloud.

There are other services that you can use to link to yet other services

to form a solution. For example, most paid IoT cloud systems provide

features that can “talk” to each other allowing you to link them together to

quickly build a solution. The features are often called components rather

than services, but both terms apply.

For example, in Microsoft Azure, you can store your data with one of

several components and then link it to others that allow you to modify the

data via queries, others to route the data to other places (even to another

cloud service vendor), and to one of several components for displaying the

data. Yes, it really is a set of building blocks like that.

Now that we’ve had a general overview of cloud systems, let’s look at

those that support IoT projects directly.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing

497

 IoT Cloud Systems
There are a number of IoT cloud vendors that offer all manner of products,

capacities, and features to match about anything you can conjure for an

IoT project. With so many vendors offering IoT solutions, it can be difficult

to choose one. The following is a concise list of the more popular IoT

offerings from the top vendors in the cloud industry:

• Oracle IoT: www.oracle.com/internet-of-things/

• Microsoft Azure IoT Hub: https://azure.microsoft.

com/en-us/product-categories/iot/

• Google IoT Core: https://cloud.google.com/

iot-core

• IBM IoT: www.ibm.com/internet-of-things

• Arduino IoT Cloud: www.arduino.cc/en/IoT/HomePage

• Adafruit IO: https://io.adafruit.com/

• If This Then That (IFTTT): https://ifttt.com/

• MathWorks ThingSpeak: https://thingspeak.com/

Most of the vendors offer commercial products, but a few like Google,

Azure, Arduino, IFTTT, and ThingSpeak offer limited free accounts. A few

are free like Adafruit IO and Arduino IoT Cloud but may limit you to a

particular platform or a smaller set of features. As you may surmise, some

of the offerings are complex solutions with steep learning curve, but the

IFTTT and ThingSpeak offerings are simple and easy to use. Since we want

a solution that is easy to use (and free!), we will then use ThingSpeak in the

next chapter to round out our introduction to IoT cloud systems.

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.oracle.com/internet-of-things/
https://azure.microsoft.com/en-us/product-categories/iot/
https://azure.microsoft.com/en-us/product-categories/iot/
https://cloud.google.com/iot-core
https://cloud.google.com/iot-core
http://www.ibm.com/internet-of-things
http://www.arduino.cc/en/IoT/HomePage
https://io.adafruit.com/
https://ifttt.com/
https://thingspeak.com/

498

Tip If you want or need to use one of the other vendors, be sure to
read all of the tutorials thoroughly before jumping into your code.

Let’s look at some of the types of services available in cloud systems

that support IoT projects.

 IoT Cloud Services Available
IoT projects offer an amazing opportunity to expand our knowledge of the

world around us and to observe events from all over the world no matter

where we are located. To address these capabilities, IoT cloud services

provide an array of services that you can leverage in your applications.

There are services for collecting data, managing your devices,

performing analytics, and even application and processing extensions

for you to exploit. For example, some vendors include complete user

management where you can provide user accounts for people to log in and

use your cloud solution and see your data.

The following lists a number of the types of services available. Some

vendors may not offer all of the services, and a service common among the

vendors may work very differently from one vendor to another. However,

this should give you an idea of what services are available and a general

idea of the feature set:

• Device management: Allows you to set up, manage, and

track what devices are in your IoT network.

• Data storage: Permits storage of your IoT data either

on a temporary (typically free for a number of days) or

permanent (paid) storage.

• Data analytics: Allows you to perform analysis on

your data to find trends, outliers, or any form of

analytical query.

ChApTer 13 InTroDuCIng IoT for The ClouD

499

• Data query and filters: You can perform queries or filter

your IoT data after it has been sent to the cloud service

for detailed presentations or transformations.

• Big data: Permits you to store vast amounts of data

and perform operations on the data (think data

warehousing).

• Visualization tools: Various dashboards and graphics

you can use to help present your data in meaningful

ways (spreadsheet, pie charts, etc.).

• High availability: Provides features that allow you to

operate even if portions of your cloud servers (or the

vendor’s) fail or go offline due to network issues.

• Third-party integration: Allows you to connect your IoT

services to other IoT servers from other vendors. For

example, connecting your Adafruit IO data to IFTTT for

triggering an SMS message.

• Security (data, user): Provides support for managing

user accounts, security access, and more for your

applications.

• Encryption: Allows you to encrypt your data either

in the cloud or when transmitting the data from one

service to another.

• Deployment: Similar to device management, but

on a grander scale where you build IoT devices

using common profiles, operating systems,

configurations, etc.

• Scalability: The ability to scale from a small number of

devices and services to many devices. This is often only

available in the larger, paid vendor services.

ChApTer 13 InTroDuCIng IoT for The ClouD

500

• APIs (Rest, programming): Allow you to write code

to communicate directly with the services instead of

issuing web requests. Often part of the larger, paid

vendor services.

For our beginning IoT projects, we will be focusing on a subset of these

services, which can be grouped into several categories. Let’s look at a few

of the most common services you may want to start using right away.

 Data Storage

These services allow you to store your data in the cloud rather than on

your local device. Some data such as alerts or notices do not need to be

stored, and you should think about if you would need the data in the future

and will be project dependent. For example, if you wanted to create a

weather alert project, you may not care what the temperature was a week

or even a month ago. However, if you want to do some amateur weather

forecasting, you will want to store data for some time (perhaps years). You

may consider storing the data locally, which may be possible for some

platforms such as the Raspberry Pi, but the Arduino and similar boards

have very limited storage capabilities.

Thus, if you need to store your data for some period and storing it

locally is not an option, you should consider this when selecting a cloud

vendor. Look for how data will be stored, the mechanisms needed to send

the data to the service, and how to get the data out of the service.

 Data Transformation (Queries)

These services allow you to perform queries on the data as it flows to or

through the cloud services. You may want to show only a subset of the data

to your users, or you may want to filter the data so that data from certain

devices, dates, etc. are shown for one of several views.

ChApTer 13 InTroDuCIng IoT for The ClouD

501

The case where you’d want to consider these are for IoT projects that

collect data from multiple sensors and multiple devices, and the data is

stored for a period of time. For example, if you have devices geographically

distributed over a wide area, you may only want to see data from a subset

of those devices. Similarly, if you have data from several time periods,

hours, days, and weeks, you may only want to see data from a specific time.

 Visualization Tools

These services along with routing and messaging are the most commonly

used for beginning IoT projects. These are simply services that allow you to

see your data on the Internet. It may be nothing more than a simple list of

the data, or it may be an elaborate data dashboard complete with controls

that users can use to manipulate the display. Fortunately, most cloud

vendors provide a robust set of tools (some more than one) that you can

use to present your data to yourself or your users.

 Routing and Messaging

These services are the heart or the bones of the IoT cloud. They encompass

the glue to bind different services together. More specifically, they provide

mechanisms for you to connect your devices to services and those services

to other services such as queries, filters, and visualization tools, permitting

you to build an IoT solution using several cloud services. We’ll see an

example of such a service in the next section.

Now that we’ve had an overview of the IoT cloud services and the most

common services we will encounter, let’s jump into a simple example

using a web page to control hardware.

But first, let’s talk about basic networking capabilities for the Pico.

ChApTer 13 InTroDuCIng IoT for The ClouD

502

 Connecting Your Pico to the Internet
At the time when the Pico was launched, there were no options available

for you to connect your Pico to the Internet except through connecting

your Pico to another microcontroller (or Raspberry Pi) to provide the

connectivity. Those options are still available (and valid), but they are

not simple to set up and program. What we want is a module that we can

connect to our Raspberry Pi to connect it to the Internet and provide basic

TCP/IP operability. Fortunately, such a module exists! Before we look at

that module, let’s review what modules are available for us today.

 Pico WiFi Modules
There are currently few modules available for connecting our Pico to the

Internet. These include the following. While this is a concise list, there are

sure to be more options available in the future:

• ESP8266 WiFi Module for Raspberry Pi Pico: https://

thepihut.com/collections/pico/products/esp8266-

wifi-module-for-raspberry-pi-pico ($9.94)

• DiP-Pi WiFi Master for Raspberry Pi Pico: https://

thepihut.com/collections/pico/products/dip-pi-

wifi-master-for-raspberry-pi-pico ($16.89)

• Maker Pi Pico Base: https://thepihut.com/

collections/pico/products/maker-pi-pico-base-

without-pico ($8.81)

• Pico Wireless Pack: https://shop.pimoroni.com/

products/pico-wireless-pack ($13.20)

ChApTer 13 InTroDuCIng IoT for The ClouD

https://thepihut.com/collections/pico/products/esp8266-wifi-module-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/esp8266-wifi-module-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/esp8266-wifi-module-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/dip-pi-wifi-master-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/dip-pi-wifi-master-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/dip-pi-wifi-master-for-raspberry-pi-pico
https://thepihut.com/collections/pico/products/maker-pi-pico-base-without-pico
https://thepihut.com/collections/pico/products/maker-pi-pico-base-without-pico
https://thepihut.com/collections/pico/products/maker-pi-pico-base-without-pico
https://shop.pimoroni.com/products/pico-wireless-pack
https://shop.pimoroni.com/products/pico-wireless-pack

503

Most are made to work as an external module that you have to program

separately and then use either a serial or similar code library to transfer

data back and forth. This is the same concept as connecting your Pico to

another microcontroller, which isn’t sufficient for getting started quickly or

making it easy.

Let’s discover a bit more about each of these options.

 ESP8266 WiFi Module for Raspberry Pi Pico

This module is a WiFi add-on that allows you to connect your Pico to

the Internet via an intermediate module. Specifically, the ESP8266

WiFi Module has an ESP-12 chip onboard that is designed to process

commands via a serial connection. Figure 13-1 shows the module. Notice

the ESP-12 module on the right. There are also two buttons used for

programming the ESP-12 module (reset and boot). On the bottom of the

board is a set of female headers that permit you to attach the module

directly to your Pico or use it with the Pico Omnibus host board that we’ve

seen in previous chapters (https://shop.pimoroni.com/products/pico-

omnibus).

Figure 13-1. ESP8266 WiFi Module (courtesy of thepihut.com)

The module is controlled via UART AT commands supporting the TCP/

UDP communication protocol. The following shows an excerpt from one

of the sample code files found on the product website:

sendCMD("AT","OK")

sendCMD("AT+CWMODE=3","OK")

ChApTer 13 InTroDuCIng IoT for The ClouD

https://shop.pimoroni.com/products/pico-omnibus
https://shop.pimoroni.com/products/pico-omnibus

504

sendCMD("AT+CWJAP=\""+SSID+"\",\""+password+"\"","OK",20000)

sendCMD("AT+CIFSR","OK")

sendCMD("AT+CIPSTART=\"TCP\",\""+ServerIP+"\","+Port,"OK",10000)

sendCMD("AT+CIPMODE=1","OK")

sendCMD("AT+CIPSEND",">"

As you can see, we are not using any special libraries; rather, we’re

sending AT commands over a UART (think serial) connection to the

module. While this helps eliminate GPIO issues (pins used by modules

that you need for other modules), it is a bit tedious to program TCP/IP

connections this way. Fortunately, there are several working examples on

the product website.2

See www.waveshare.com/wiki/Pico-ESP8266 for documentation and

more information about using this module.

 DiP-Pi WiFi Master for Raspberry Pi Pico

This module is similar to the last module in that it also has a female header

on the bottom to allow you to connect it to your Pico, and it supports a

similar WT8266 WiFi chip that you access via AT commands. Figure 13-2

shows the DiP-Pi WiFi Master.

2 Portions of the site are shown with Chinese text and may be difficult to read
for some.

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.waveshare.com/wiki/Pico-ESP8266

505

Figure 13-2. DiP-Pi WiFi Master for Raspberry Pi Pico (courtesy of
thepihut.com)

Sadly, while there are WiFi code examples listed on their list of

examples (https://dip-pi.com/ready-to-use-examples), the WiFi links

are not active, suggesting there may be examples in the future. However,

the operating manual for the product has details on the features of the WiFi

module as well as links to the AT commands supported.

See https://dip-pi.com/installation-and-operating-manuals to

download the documentation for this module.

 Maker Pi Pico Base

We first saw the Maker Pi Pico Base in Chapter 1. Recall, it supports Grove

modules as well as a host of other nice features. While it does not have a

WiFi module, the Pico Base has a special connector on the right side that

allows you to connect an ESP-01 module to the board to provide Internet

capabilities. Figure 13-3 shows the base with the ESP-01 connector

highlighted.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://dip-pi.com/ready-to-use-examples
https://dip-pi.com/installation-and-operating-manuals

506

Figure 13-3. Maker Pi Pico Base (courtesy of thepihut.com)

Like the other modules, this requires programming the ESP-01 via AT

commands similar to the ESP8266 WiFi Module. Fortunately, you can load

MicroPython on the ESP-01 and write your Python code to connect to the

Internet. Sadly, there are no examples on the product website at this time

to show you how to do that, but you could follow similar examples from

the other modules as a guide.

If you already own a Maker Pi Pico Base and an ESP-01 (or similar

module), this may be the least expensive option. So long as you can sort

the AT commands, you can make this option work for you.

See https://github.com/CytronTechnologies/MAKER-PI-PICO for

documentation and more information about using this module.

 Pico Wireless Pack

The Pico Wireless Pack is another excellent product of pimoroni.com.

The module has the familiar female header on the bottom so that you

can use it to connect directly to your Pico. It also has an SD card! Wow.

While it too is based on an ESP32 chip, you do not have to use AT

commands to access it. In fact, Pimoroni provides a custom MicroPython

uf2 image that contains all of the Pimoroni Pico–specific libraries including

the network library. Figure 13-4 shows the Pico Wireless Pack.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://github.com/CytronTechnologies/MAKER-PI-PICO

507

Figure 13-4. Pico Wireless Pack (courtesy of thepithut.com)

The Pico Wireless Pack is a departure from the last modules that

require you to use AT codes to control the onboard ESP processor. Instead,

we can use a library designed to simplify the use of the WiFi module. To

illustrate the difference in how it is programmed, the following shows the

same code as the preceding AT command example. Which one do you

think is more intuitive?

import project8.ppwhttp as ppwhttp

WIFI_SSID = "your SSID here!"

WIFI_PASS = "Your PSK here!"

ppwhttp.start_wifi(WIFI_SSID, WIFI_PASS)

This is much easier to understand than using the AT commands,

unless, of course, you are proficient in their use.

There is also a user-configurable button, an RGB LED, and an SD card

reader on the module, which is a nice touch. See https://shop.pimoroni.

com/products/pico-wireless-pack for documentation and more

information about using this module.

Caution The documentation for the pico Wireless pack states that
the library for the SD card is experimental, but so long as you use it
for base file reading and writing, you should not have a problem.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://shop.pimoroni.com/products/pico-wireless-pack
https://shop.pimoroni.com/products/pico-wireless-pack

508

 So, Which One Do You Choose?

Only one of these modules supports a programming interface other than

the UART-based AT commands. That means there is only one choice for

those of us who want to connect our Pico to the Internet and use code

that resembles how other platforms use networking code. Thus, we will

use the one module that allows us to use our Pico to work with TCP/IP

connections – the Pico Wireless Pack from pimoroni.com.

 Using the Pico Wireless Pack
To use the Pico Wireless Pack, you must download all of the Pimoroni-

specific libraries and set up your Pico to use them, which is a potentially

time-consuming process. Fortunately, you can avoid all that and simply

download their custom Pico boot image and copy it to your Pico.

Start by visiting https://github.com/pimoroni/pimoroni-pico/

releases/ and download the file located in the v0.3.2 folder named

similar to the following (the version number of the folder and file may

differ):

v0.3.2/pimoroni-pico-v0.3.2-micropython-v1.17.uf2

You can refer to Chapter 1 for how to set up your Pico to use the new

boot image, but, briefly, you simply remove the Pico from your PC, press

and hold the BOOTSEL button, then connect the Pico to your PC. Once

the Pico opens as a drive, you can copy the .uf2 file to the drive and then

remove the Pico and reconnect it.

Note You must use the custom .uf2 from pimoroni to use the pico
Wireless pack examples and the projects in this chapter and the next.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://github.com/pimoroni/pimoroni-pico/releases/
https://github.com/pimoroni/pimoroni-pico/releases/

509

Unlike some of the other WiFi offerings for the Pico, the Pico Wireless

Pack has several simple examples available on the Pimoroni GitHub site.

You can find example WiFi code for the Wireless Pack at https://github.

com/pimoroni/pimoroni-pico/tree/main/micropython/examples/pico_

wireless.

Let’s look at a couple of simple examples so we can ensure the module

is working on our WiFi. One is a simple utility, but the other is a nifty

example of how you can build a simple web server and run it on your Pico.

Specifically, it is a simple HTTP (hypertext transfer protocol3) listener

that accepts commands on a specific port and responds by sending

preformatted HTML back to the client.

We won’t go through the code at this time; rather, we will concentrate

on the mechanics of getting the examples to work. We will see more about

the details of how the HTTP server works in a later section.

Download the entire repo by visiting https://github.com/pimoroni/

pimoroni-pico and clicking the Code button and choosing Download Zip.

Once downloaded, you can unzip the file and navigate to the folder to see

the code for the examples.

We will look at two examples. The first is a simple WiFi scanner that

finds the WiFi access points within the area. To use this example, open

Thonny and navigate to the <download dir> pimoroni-pico/tree/main/

micropython/examples/pico_wireless where <download dir> refers

to the location on your PC where you downloaded and unzipped the

GitHub code.

Next, connect your Pico and copy the pphttp.py and scan_networks.

py files to your Pico. You can then open and run the scan_networks.py

file. You should see output that lists the WiFi access points in your area

like the following. You should see your own WiFi on this list. If you do not,

try moving your Pico closer to the router. Once you find your WiFi, you are

ready to try to connect to it.

3 https://developer.mozilla.org/en-US/docs/Web/HTTP

ChApTer 13 InTroDuCIng IoT for The ClouD

https://github.com/pimoroni/pimoroni-pico/tree/main/micropython/examples/pico_wireless
https://github.com/pimoroni/pimoroni-pico/tree/main/micropython/examples/pico_wireless
https://github.com/pimoroni/pimoroni-pico/tree/main/micropython/examples/pico_wireless
https://github.com/pimoroni/pimoroni-pico
https://github.com/pimoroni/pimoroni-pico
https://developer.mozilla.org/en-US/docs/Web/HTTP

510

Found 5 network(s)...

0: FrogPond

1: DIRECT-FB-HP OfficeJet Pro 8730

2: Snapping1

3: Snapping2

4: ATT-WIFI-0123

Once you determine your Pico can find your wireless network, you can

then test it further by running the rgb_http.py example. This example lets

you control the RGB LED on the Pico Wireless Pack using your browser. It

demonstrates how you can control hardware over the Internet, which is a

large part of what the IoT is all about!

To run this example, you will need to copy the pphttp.py, rgb_http.

py, and secrets.py files to your Pico. Then, you will need to open the

secrets.py file and enter the SSID and password for your WiFi. For

example, if your SSID is named Snapper1 and password is secret_code,

open the secrets.py file and edit it as shown. Be sure to save the file on

your Pico.

WIFI_SSID = "Snapper1"

WIFI_PASS = "secret_code"

Once you’ve saved the file, you can open the rgb_http.py file and run

it. When the code starts, you will see the Pico will connect to your WiFi

and then print out several messages. The one we must find is the one that

shows the IP address that the Pico is using to host the HTTP server. This is

known as “listening” since the code is waiting for a connection on that IP

and port. The following shows an example of the messages you should see

with the IP and port for the listening message shown in bold:

Connecting to Snapper1...

Connected!

Starting server...

Server listening on 192.168.1.20:80

ChApTer 13 InTroDuCIng IoT for The ClouD

511

Once you run the server, connect to it with the IP address and port shown

in the output using your web browser on your PC. Using the information in

the preceding example, you would use http://192.168.1.20:80 in the

URL box. Your browser would then connect to the HTTP server on the Pico

and display the web page.

Go ahead and try it out. Open your browser and specify the IP address

shown in the console output. Figure 13-5 shows what you should see in

your browser window.

Figure 13-5. RGB HTTP example website

If you do not see the web page, be sure to double-check that your PC is

connected to the same network as your Pico. This can happen if you have

multiple WiFi networks, or your PC is hardwired to a networking device on

another network.

You can now use the drop-down boxes to change the value for each of

the red, green, and blue variables. You can use the drop-down or type in a

specific value for each. Let’s try several examples. Just type in the value for

each of the boxes and then click Set LED. For example, you could try the

base colors such as red (255,0,0), green (0,255,0), and blue (0,0,255). You

should see the RGB LED on the Pico Wireless Pack change to match the

values you entered.

Back in the Thonny console, you can see the diagnostic messages

printed each time you connect to the Pico and change the values for the

RGB LED. Notice we see there are two commands being processed: GET

ChApTer 13 InTroDuCIng IoT for The ClouD

512

for retrieving data from the server and PUT for sending data to the server.

The GET returns the result of changing the web page data, and the PUT is

where the RGB values are sent to the server:

Client connected!

Serving GET on /...

Success! Sending 200 OK

Client connected!

Serving POST on /...

Set LED to 255 0 0

Success! Sending 200 OK

Client connected!

Serving POST on /...

Set LED to 255 255 0

Success! Sending 200 OK

Client connected!

Serving POST on /...

Set LED to 255 255 255

Success! Sending 200 OK

Client connected!

Serving POST on /...

Set LED to 0 0 0

Success! Sending 200 OK

Once that works, you are ready to start adding networking to your

projects. Let’s look at some of the projects in this book and see how we can

turn them into simple IoT projects.

 IoT Project Examples
Let’s see how to apply what we learned to two of our example projects

to complete the IoT portion for each. We are going to use the pedestrian

crossing example from Chapter 7 and the soil moisture monitor project

ChApTer 13 InTroDuCIng IoT for The ClouD

513

from Chapter 8. We will be creating a rudimentary web server for each

project running on the Pico. This will allow you to access the project from

anywhere on your network (or beyond).

Rather than develop the web server code from scratch, we will be

mimicking the code from the Pimoroni example code for the Pico Wireless

Pack. If you have not yet downloaded the code, please visit https://

github.com/pimoroni/pimoroni-pico and download the code. Once

downloaded, we will want to copy the example code files from <download

dir> pimoroni-pico/tree/main/micropython/examples/pico_wireless

and into your own project folder.

For example, you can create project7 and project8 folders for the

next two projects. Then, copy the secrets.py files in the example source

code to each of the project folders and modify it for your WiFi. Now you are

ready to start working on the following examples.

 Example 1: Pedestrian Crossing
In this example, we will use the pedestrian crossing example from

Chapter 7. Recall, this project simulates a pedestrian crossing signal

where the pedestrian presses a button to request the traffic lights cycle to

allow them to cross the street. Instead of a button, we will use a web page

to trigger the walk request. Yes, we will see how to remotely control the

hardware and our code over the network. Let’s get started!

 Set Up the Hardware
For this project, you will need to refer to Chapter 7 and set up the hardware

using a breadboard and the LEDs and resistors just like you did before.

However, this time we will be using the Pico Omnibus host board from

Pimoroni. Table 13-1 shows an updated hardware list for the project.

ChApTer 13 InTroDuCIng IoT for The ClouD

https://github.com/pimoroni/pimoroni-pico
https://github.com/pimoroni/pimoroni-pico

514

Ta
bl

e
13

-1
.

R
eq

u
ir

ed
 C

om
po

n
en

ts
 fo

r
th

e
P

ed
es

tr
ia

n
 C

ro
ss

in
g

W
eb

 E
xa

m
pl

e

Co
m

po
ne

nt
Qt

y
De

sc
rip

tio
n

Co
st

Li
nk

s

re
d

le
D

2
pa

ck
 o

f 2
5

$4
.0

0
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
99

Si
ng

le
$0

.3
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
90

Ye
llo

w
 l

eD
1

pa
ck

 o
f 2

5
$4

.9
5

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
70
0

Si
ng

le
$0

.3
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
94

gr
ee

n
le

D
2

pa
ck

 o
f 2

5
$4

.0
0

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
98

Si
ng

le
$0

.3
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
92

22
0

or
 3

30
 o

hm

re
si

st
or

s

5
Va

rie
ty

 K
it

$7
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
10
96
9

pa
ck

 o
f 2

5
$0

.7
5

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
78
0

pi
co

 o
m

ni
bu

s
1

pi
co

 h
os

t b
oa

rd
$8

.2
5

ht
tp
s:
//
sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/

pi
co
-o
mn
ib
us

pi
co

 W
ire

le
ss

 p
ac

k
1

W
if

i
$1

3.
20

ht
tp
s:
//
sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/

pi
co
-w
ir
el
es
s-
pa
ck

Br
ea

db
oa

rd
1

pr
ot

ot
yp

in
g

bo
ar

d,
 fu

ll-
si

ze
d

$5
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
61
5

$5
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
39

Ju
m

pe
r w

ire
s

6
M

/f
 ju

m
pe

r w
ire

s,
 7

"
(s

et
 o

f 3
0)

$2
.2

5
ht
tp
s:
//
ww
w.
sp
ar
kf
un
.c
om
/

pr
od
uc
ts
/1
10
26

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.adafruit.com/product/299
http://www.sparkfun.com/products/9590
http://www.adafruit.com/product/2700
http://www.sparkfun.com/products/9594
http://www.adafruit.com/product/298
http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/10969
http://www.adafruit.com/product/2780
https://shop.pimoroni.com/products/pico-omnibus
https://shop.pimoroni.com/products/pico-omnibus
https://shop.pimoroni.com/products/pico-wireless-pack
https://shop.pimoroni.com/products/pico-wireless-pack
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/239
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/11026

515

Notice the jumper wires need to be the M/F type since the GPIO on the

Pico Omnibus has male pins. Go ahead and plug your Pico into the Pico

Omnibus and the Pico Wireless Pack onto the right side of the board. We

will use the left-side GPIO headers for the LEDs. But use care, because the

GPIO header rows are reversed to make it easy to add modules designed to

mount to the bottom of the Pico. Thus, you must read the label on the Pico

Omnibus carefully to ensure you use the correct pins.

Figure 13-6 shows the Pico Omnibus with the Pico Wireless Pack

installed. Notice the left side (Deck 1) is where you will connect the jumper

wires for the LEDs.

Figure 13-6. Pico Omnibus with the Pico Wireless Pack

There is one other change. The Pico Wireless Pack uses some of the

GPIO pins that we had in the Chapter 7 implementation. Thus, we must

use different pins. Table 13-2 shows the pins we will use for the LEDs. The

changes are shown in bold.

ChApTer 13 InTroDuCIng IoT for The ClouD

516

Table 13-2. Connections for the Pedestrian Crossing Web Example

Physical Pin GPIO Num/Function Connection

3 gnD Breadboard ground (bottom)

6 GP5 Resistor for red LED (stoplight)

5 GP4 Resistor for yellow LED (stoplight)

4 GP3 Resistor for green LED (stoplight)

1 GP1 Resistor for red LED (walk light)

0 GP0 Resistor for green LED (walk light)

n/A Breadboard ground All leD negative side

n/A resistor All leD positive side

Figure 13-7 shows a schematic of how the wiring should be oriented for

the Pico Omnibus to the breadboard hosting the LEDs.

Figure 13-7. Stoplight simulation wiring (web version)

Once you have the code wired, you are ready to start writing the code.

ChApTer 13 InTroDuCIng IoT for The ClouD

517

 Write the Code
The code for this example will use the core code from the project in

Chapter 7, but we will not be using the main() function. Rather, we will see

how to use the Pimoroni library to create a simple HTTP server (also called

a listener). The code will send a short HTML-based response (a simple

web page) to the client that includes a form containing a single button for

the walk request. The listener will listen on port 80.

We will also see an advanced technique using the threading library

available on the Pico. As you will see, this library permits us to execute a

function in a second core processor on the Pico. It is an excellent way to

keep two things going at the same time and get a bit more processing at the

same time.

The concept of the HTML server is quite simple. The code listens for

a connection on the socket port and then receives the request (in this

case, in the form of an HTML GET method) and sends an HTML response

(the web page). If the button is pressed, the walk cycle will commence by

calling the cycle_lights() function from the Chapter 7 project.

If you’ve never used HTML code before, don’t worry as the example

code will provide everything you need. You don’t have to learn HTML

for this chapter, but a basic knowledge would be helpful if you want to

elaborate on the project or use the HTML server concept for your own

projects. A reliable source of information about HTML can be found at

www.w3schools.com/html/.

Since this is all new code, we will step through all of the parts so you

can see how it works, but we will skip the code for controlling the LEDs.

Please refer to Chapter 7 if you have not completed that project.

We will create a new file named pedestrian_crossing_web.py. Go

ahead and open a new file in Thonny if you want to follow along.

Let’s begin with the code needed for the import section.

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.w3schools.com/html/

518

 Imports

We need a few libraries in the import section. We need the Pin, _thread,

utime, and sys libraries, which are standard libraries for the Pico. The

Pimoroni-specific library is named ppwhttp. Notice we place the import

statement in a try…else block and print a message if the library cannot be

found (the ImportError is raised). This is a common way to test to see if a

library is present on the Pico:

Import libraries

from machine import Pin

import _thread

import utime

import sys

Check for the Pimoroni http class library.

try:

 import ppwhttp

except ImportError:

 raise RuntimeError("Cannot find ppwhttp. Have you copied

ppwhttp.py to your Pico?")

Let’s look at the global variables we need.

 Global Variables

We will need to define the web page we will send to the client and

variables for the LEDs. The HTML for the page is represented as a string.

If the HTML code were complex or longer, it is best to store the code in a

separate file, but since the code is short, we will leave it in the code. Again,

don’t worry about learning all the details for the HTML code. As you can

see, it is simple to understand, but the tags (those in the square brackets)

may not be familiar:

ChApTer 13 InTroDuCIng IoT for The ClouD

519

HTML web page for the project

MAIN_PAGE = """<!DOCTYPE html>

<html>

 <head>

 <title>Beginning MicroPython</title>

 </head>

 <center><h2>Pedestrian Crosswalk Simulation</h2></center>

 <center>A simple project to demonstrate how to control

hardware over the Internet.</center>

 <form>

 <center>

 <button name="WALK" value = "PLEASE" type="submit"

style="height: 50px; width: 100px">REQUEST WALK</button>

 </center>

 </form>

</html>

"""

Setup the button and LEDs

stoplight_red = Pin(5, Pin.OUT)

stoplight_yellow = Pin(4, Pin.OUT)

stoplight_green = Pin(3, Pin.OUT)

pedestrian_red = Pin(1, Pin.OUT)

pedestrian_green = Pin(0, Pin.OUT)

Setup lists for the LEDs

stoplight = [stoplight_red, stoplight_yellow, stoplight_green]

pedestrian_signal = [pedestrian_red, pedestrian_green]

We will also need to create a number of functions to manage the HTML

server and control the LEDs.

ChApTer 13 InTroDuCIng IoT for The ClouD

520

 Functions Needed

We will create five functions as follows:

• cycle_lights(): The same function from Chapter 7.

You can copy it from the Chapter 7 project unchanged.

• get_home(): A callback function for the HTML server.

This function is called when a client connects to the

server. It simply returns the web page.

• get_walk(): A callback function for the HTML server.

This function is called when the client clicks the button

on the web page.

• server_loop_forever(): A special function that

contains the main loop for the HTML server. It is used

as a parameter for the threading module enabling the

HTML server to run on the other microcontroller core

on the Pico.

• main(): The main function we will call when the script

is loaded and executed.

Let’s look at the code for these functions.

As mentioned, the cycle_lights() function is unchanged from the

Chapter 7 project, so we will skip the details.

The two functions for the HTML server are very simple. The following

shows the code for both functions:

@ppwhttp.route("/", methods=["GET", "POST"])

def get_home(method, url, data=None):

 return MAIN_PAGE

ChApTer 13 InTroDuCIng IoT for The ClouD

521

@ppwhttp.route("/?WALK=PLEASE", methods=["GET"])

def get_walk(method, url, data=None):

 if method == "GET":

 cycle_lights()

 return MAIN_PAGE

The key to how these functions work is the decorator before each

function. Notice the @ppwhttp.route() decorator. This is used by the

pwhttp library to identify functions used to “route” control when a client

connects and sends a GET or POST method. The first parameter to the

decorator defines the path portion of the URL sent. This is how the route

is determined. For example, if the client enters http://192.168.1.20:80,

the get_home() function is called. Similarly, if the client enters http://192

.168.1.20:80/?WALK=PLEASE, the get_walk() function is called. Finally,

notice inside the get_walk() function, we test the method, and if it is a

GET operation, we call cycle_lights(). This completes the simple HTML

web server!

Note The port (:80) of the url is optional since port 80 is the
default for hTMl.

Next is the function we use for the threading library, server_loop_

forever(), as shown in the following. When this function is called from

the threading library (it is only called once), it starts the HTML server and

then drops into a loop calling the handle_http_request() function of the

pwhttp library:

def server_loop_forever():

 server_sock = ppwhttp.start_server()

 while True:

 ppwhttp.handle_http_request(server_sock)

 utime.sleep(0.01)

ChApTer 13 InTroDuCIng IoT for The ClouD

522

Finally, we have the main() function, which is where everything comes

together. We place the LED setup code, call the start_wifi() function

of the pwhttp library to connect to our WiFi, then call the start_new_

thread() function of the threading library to launch a new thread. The

following shows the main() function:

def main():

 # Turn off the LEDs

 for led in stoplight:

 led.off()

 for led in pedestrian_signal:

 led.off()

 # Start with green stoplight and red pedestrian_signal

 stoplight[2].on()

 pedestrian_signal[0].on()

 ppwhttp.start_wifi()

 # Handle the server polling loop on the other core!

 _thread.start_new_thread(server_loop_forever, ())

Recall, we place the SSID and password of our WiFi router in the

secrets.py file, which must be uploaded to the Pico. The pwhttp library

will open the file and read the values when the start_wifi() function

is called.

The main() function is called using the normal mechanism we’ve used

in previous projects located at the bottom of the file.

That’s all there is to it. Listing 13-1 shows the completed code for this

project with comments and code for the LEDs removed for brevity.

ChApTer 13 InTroDuCIng IoT for The ClouD

523

Listing 13-1. Completed Code for the Pedestrian Crossing

Web Example

Import libraries

from machine import Pin

import _thread

import utime

import sys

Check for the Pimoroni http class library.

try:

 import project7.ppwhttp

except ImportError:

 raise RuntimeError("Cannot find ppwhttp. "

 "Have you copied ppwhttp.py to

your Pico?")

HTML web page for the project

MAIN_PAGE = """<!DOCTYPE html>

<html>

 <head>

 <title>Beginning MicroPython</title>

 </head>

 <center><h2>Pedestrian Crosswalk Simulation</h2></center>

 <center>A simple project to demonstrate how to control

hardware over the Internet.</center>

 <form>

 <center>

 <button name="WALK" value = "PLEASE" type="submit"

style="height: 50px; width: 100px">REQUEST WALK</button>

 </center>

 </form>

</html>

"""

ChApTer 13 InTroDuCIng IoT for The ClouD

524

Setup the button and LEDs

stoplight_red = Pin(5, Pin.OUT)

stoplight_yellow = Pin(4, Pin.OUT)

stoplight_green = Pin(3, Pin.OUT)

pedestrian_red = Pin(1, Pin.OUT)

pedestrian_green = Pin(0, Pin.OUT)

Setup lists for the LEDs

stoplight = [stoplight_red, stoplight_yellow, stoplight_green]

pedestrian_signal = [pedestrian_red, pedestrian_green]

def cycle_lights():

 print("START WALK")

...

 print("END WALK")

@ppwhttp.route("/", methods=["GET", "POST"])

def get_home(method, url, data=None):

 return MAIN_PAGE

@ppwhttp.route("/?WALK=PLEASE", methods=["GET"])

def get_walk(method, url, data=None):

 if method == "GET":

 cycle_lights()

 return MAIN_PAGE

def server_loop_forever():

 server_sock = ppwhttp.start_server()

 while True:

 ppwhttp.handle_http_request(server_sock)

 utime.sleep(0.01)

ChApTer 13 InTroDuCIng IoT for The ClouD

525

def main():

 # Turn off the LEDs

 for led in stoplight:

 led.off()

 for led in pedestrian_signal:

 led.off()

 # Start with green stoplight and red pedestrian_signal

 stoplight[2].on()

 pedestrian_signal[0].on()

 ppwhttp.start_wifi()

 # Handle the server polling loop on the other core!

 _thread.start_new_thread(server_loop_forever, ())

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, now we’re ready to execute the project.

 Execute
Before executing the project, be sure to upload the pedestrian_crossing_

web.py to the root of the Pico onboard drive. You also need to create a

project7 folder on the Pico and upload the Pico Wireless Pack library

(ppwhttp.py) file into that folder. Finally, you also need to upload the

secrets.py file from the Pico Wireless Pack library and modify it to

include your WiFi SSID and password. Upload this file to the root of the

Pico onboard drive.

ChApTer 13 InTroDuCIng IoT for The ClouD

526

OK, now we’ve got the code setup to control our LEDs, and we have the

code for a simple HTML server setup to listen on 80. All we need now is the

IP address of that board to point our web browser. We can get that from our

debug statements by running the code. Listing 13-2 shows the initial run

for the project.

Listing 13-2. Running the Pedestrian Crossing Web Project

Connecting to Snapper1...

Connected!

>Starting server...

Server listening on 192.168.1.20:80

Client connected!

Serving GET on /...

Success! Sending 200 OK

Client connected!

Serving GET on /?WALK=PLEASE...

START WALK

END WALK

Success! Sending 200 OK

Notice in this case the IP address is 192.168.1.20. All we need to do is

put that in our browser as shown in Figure 13-8.

ChApTer 13 InTroDuCIng IoT for The ClouD

527

Figure 13-8. Executing the pedestrian crossing web project

Once you enter the URL, you should see a web page like the image

shown. If you don’t, be sure to check the HTML in your code to ensure it is

exactly like what is shown; otherwise, the page may not display properly.

You should also ensure the network your PC is connected to can reach the

network to which your board is connected. If your home office is set up

like mine, there may be several WiFi networks you can use. It is best if your

board and your PC are on the same network (and same subnet).

Tip If your pico doesn’t connect to your Wifi within a reasonable
time, you may need to click Stop in Thonny and rerun the project to
reset the Wireless pack.

Once you get that sorted out, verify the green LED for the stoplight

is on and the red LED for the pedestrian crossing is on. All other LEDs

are off. If you do not see something similar, go back and check your

connections again.

ChApTer 13 InTroDuCIng IoT for The ClouD

528

Now go ahead and click the button. Remember, the walk button will

engage, and you will see the lights cycle, but you won’t be able to do

anything until the walk cycle is complete. This is because we don’t return

the response HTML until after the cycle is complete (see the code to

convince yourself).

Notice in the output window in Thonny there are debug messages

printed for each time the client connects (the code accepts the connection

and GET request) as well as a statement about what it is doing. You should

see something similar.

Now, let’s look at a second example.

 Example 2: Soil Moisture Monitor
In this example, we will use the plant monitoring project from Chapter 8.

This project used one or more soil moisture sensors to read the relative

moisture in the soil for one or more plants. While the features of the project

are the same as we saw in Chapter 8, the code for this example is more

complex.

Note The example is meant to show what is possible rather than
a complete project. Suggestions on how to improve the code are
presented in a later section.

We will be using more advanced HTML code, but once again will not

explain all of the details. If you’d like to know how each of the tags is used,

you may want to consult a WWW resource or simply Google “HTML tags.”

Also, while this project is based on the project in Chapter 8, we will

not be using an OLED screen because we will be writing code to a file

and reading it when a client connects to the web server returning as a

table. As you will see, writing data to a file is much easier and uses less

complex code.

ChApTer 13 InTroDuCIng IoT for The ClouD

529

We will also be using a different real-time clock (RTC) module. We

will use the Pico RTC from waveshare.com because it has a set of pass-

through (also called stacking) headers so you can mount the Pico on

top and the RTC module to the Pico Omnibus saving us from wiring it

to the GPIO headers. Figure 13-9 shows the Pico RTC DS3231 module.

See www.waveshare.com/wiki/Pico-RTC-DS3231 for more details about

this module.

Figure 13-9. Pico RTC DS3231 (courtesy of thepihut.com)

Let’s look at the hardware for this example.

 Set Up the Hardware
For this project, you will need to refer to Chapter 8 and set up the hardware

using a breadboard and the soil moisture modules just like you did before.

However, this time we will be using the Pico Omnibus host board from

Pimoroni and a micro-SD card to store the data. Table 13-3 shows an

updated hardware list for the project.

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.waveshare.com/wiki/Pico-RTC-DS3231

530

Ta
bl

e
13

-3
.

R
eq

u
ir

ed
 C

om
po

n
en

ts
 fo

r
th

e
P

la
n

t M
on

it
or

in
g

E
xa

m
pl

e

Co
m

po
ne

nt
Qt

y
De

sc
rip

tio
n

Co
st

Li
nk

s

So
il

m
oi

st
ur

e
1+

Se
ns

or
$6

.9
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
13
63
7

rT
C

m
od

ul
e

1
pi

co
 r

TC
 D

S3
23

1
$1

4.
88

ht
tp
s:
//
th
ep
ih
ut
.c
om
/p
ro
du
ct
s/
pr
ec
is
io
n-
rt
c-

mo
du
le
-f
or
-r
as
pb
er
ry
-p
i-
pi
co
-d
s3
23
1

Cr
12

20
 c

oi
n

ce
ll

1
Ba

tte
ry

$0
.8

8
ht
tp
s:
//
th
ep
ih
ut
.c
om
/p
ro
du
ct
s/
cr
12
20
-1
2m
m-

di
am
et
er
-3
v-
li
th
iu
m-
co
in
-c
el
l-
ba
tt
er
y

pi
co

 o
m

ni
bu

s
1

pi
co

 h
os

t b
oa

rd
$8

.2
5

ht
tp
s:
//
sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/p
ic
o-
om
ni
bu
s

pi
co

 W
ire

le
ss

pa
ck

1
W

if
i

$1
3.

20
ht
tp
s:
//
sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/p
ic
o-

wi
re
le
ss
-p
ac
k

Br
ea

db
oa

rd
1

pr
ot

ot
yp

in
g

bo
ar

d,

fu
ll-

si
ze

d

$5
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
61
5

$5
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
39

Ju
m

pe
r w

ire
s

6
f/

f
ju

m
pe

r w
ire

s,

6"
 (s

et
 o

f 1
0)

$5
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
11
71
0

M
ic

ro
-S

D
ca

rd
1

M
ic

ro
-S

D
ca

rd
 (a

ny
 s

iz
e)

Va
rie

s
Co

m
m

on
ly

 s
ou

rc
ed

ChApTer 13 InTroDuCIng IoT for The ClouD

http://www.sparkfun.com/products/13637
https://thepihut.com/products/precision-rtc-module-for-raspberry-pi-pico-ds3231
https://thepihut.com/products/precision-rtc-module-for-raspberry-pi-pico-ds3231
https://thepihut.com/products/cr1220-12mm-diameter-3v-lithium-coin-cell-battery
https://thepihut.com/products/cr1220-12mm-diameter-3v-lithium-coin-cell-battery
https://shop.pimoroni.com/products/pico-omnibus
https://shop.pimoroni.com/products/pico-wireless-pack
https://shop.pimoroni.com/products/pico-wireless-pack
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/239
http://www.sparkfun.com/products/11710

531

Notice the jumper wires need to be the F/F type since the GPIO on

the Pico Omnibus has male pins and the soil moisture sensors also have

male pins. Go ahead and plug your Pico into the Pico Omnibus and the

Pico Wireless Pack onto the right side of the board like we did in the last

example.

Note remember, the gpIo header is reversed on the pico omnibus.
Be sure to read the label on the host board to ensure you have the
right pin selected.

There is one other change. The RTC module uses some of the GPIO

pins that we had in the Chapter 8 implementation. Thus, we must use

different pins. Table 13-4 shows the pins we will use for the LEDs. The

changes are shown in bold.

Table 13-4. Connections for the Plant Monitoring Web Example

Physical Pin GPIO Num/Function Connection

3 gnD ground for Sensor 1

8 gnD ground for Sensor 2

21 GP18 Power for Sensor 2

22 GP17 Power for Sensor 1

33 gp27 Signal for Sensor 1

34 gp28 Signal for Sensor 2

Figure 13-10 shows a schematic of how the wiring should be oriented

for the Pico Omnibus to the breadboard hosting the soil moisture sensors.

ChApTer 13 InTroDuCIng IoT for The ClouD

532

Figure 13-10. Plant monitoring wiring (web version)

Once you have the code wired, you are ready to start writing the code.

 Write the Code
The code for this example will use some of the code from the project in

Chapter 8. We will use the read_timer.py file without changes. We must

modify the SoilMoisture class (soil_moisture.py) to work with a file

instead of storing the values read in memory. Finally, we will not need the

display library.

Note We will examine the new and changed code in this section.
other code modules used are unchanged from Chapter 8. refer to
Chapter 8 for details on those modules.

ChApTer 13 InTroDuCIng IoT for The ClouD

533

However, there are two additional libraries we will need for this

project. We will need a library for the SD card and another for the

RTC module.

Once again, the SD card support on the Pico Wireless Pack is

considered experimental, but the basic operations for file reading and

writing work just fine. While Pimoroni does not currently supply a

MicroPython library, we can find one elsewhere. The library that works

best is found at https://forums.pimoroni.com/t/pico-wireless-how-

to-access-sd-card/17751/3. Simply open Thonny and create a new file,

then copy the code from the website into the file and name it sdcard.py.

You will upload this file to the project8 folder on the Pico later.

The library for the RTC module can be found on the vendor’s website

in the form of a zip file (www.waveshare.com/w/upload/2/26/Pico-rtc-

ds3231_code.zip). Download the file and unzip it and then locate the

file named ds3231.py in the python folder. You will upload this file to the

project8 folder on the Pico later.

However, the library function named read_time() prints a string for

the time. That won’t work for us since we need to get the time either as a

tuple like we did in Chapter 8 or, since the read_time() function already

formats the datetime for printing, return the string instead. Thus, you will

need to modify this class slightly for use with this project.

To do so, first copy the file named ds3231.py to your project folder and

then open it and apply the following changes shows a unified difference

file where the lines marked with a – are removed and those with a + are

added.4 You will copy this file to the project8 folder on your Pico later:

diff.exe" -u ..\..\raw\Pico-rtc-ds3231_code\Pico-rtc-ds3231_

code\python\ds3231.py ds3231.py

--- ..\..\raw\Pico-rtc-ds3231_code\Pico-rtc-ds3231_code\python\

ds3231.py 2021-12-18 17:51:19.863781600 -0500

4 www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

ChApTer 13 InTroDuCIng IoT for The ClouD

https://forums.pimoroni.com/t/pico-wireless-how-to-access-sd-card/17751/3
https://forums.pimoroni.com/t/pico-wireless-how-to-access-sd-card/17751/3
http://www.waveshare.com/w/upload/2/26/Pico-rtc-ds3231_code.zip
http://www.waveshare.com/w/upload/2/26/Pico-rtc-ds3231_code.zip
http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

534

+++ ds3231.py 2021-12-21 15:31:55.456127500 -0500

@@ -55,7 +55,7 @@

 d = t[3]&0x07 #week

 e = t[4]&0x3F #day

 f = t[5]&0x1F #month

- print("20%x/%02x/%02x %02x:%02x:%02x %s" %(t[6],t[5],

t[4],t[2],t[1],t[0],self.w[t[3]-1]))

+ return "20%x/%02x/%02x %02x:%02x:%02x" %(t[6],t[5],

t[4],t[2],t[1],t[0])

 def set_alarm_time(self,alarm_time):

 # init the alarm pin

Notice we are only changing the print() statement to return the string

without the day of the week.

Now that we have the libraries we need and the RTC library modified,

let’s start by looking at the main code.

 Main Code

The main code is like the code for the last project. However, this time we

will use a file to store the HTML code (since it doesn’t change) and a list of

HTML-formatted strings for populating an HTML table with the data from

the file.

Unlike the last project, the HTML code does not include a button,

but we can format a command manually on the URL. We can use this

technique to allow access to commands without using buttons or other

user interface features. It also helps to make these commands harder to

use to prevent overuse. For example, we can provide a clear log command.

We would use a URL like http://192.168.42.140/CLEAR, which submits a

GET request to the HTML server. We can capture that command and clear

the log when it is issued.

ChApTer 13 InTroDuCIng IoT for The ClouD

535

The following sections explain the initialization code and the functions

needed. We will see the complete code in a later section. Let’s start with

the HTML code.

HTML Code (Files)

We will store the HTML code needed in files to save memory. Recall by

reading a row at a time, we do not have to take up space with the strings in

our code. As your projects grow in complexity, this could become an issue.

Thus, this project demonstrates a way to save some memory.

The HTML for this project creates a web page with a simple table that

includes all the data in the file at the time of the request. To make things

easier, we will use three files. The first file (named part1.html) will contain

the HTML code up to the table rows, and the second file (named plant_

data.csv), which is populated by the SoilMoisture class, and the third

(named part2.html) will contain the remaining HTML code.

The first file, part1.html, is shown in Listing 13-3. This file establishes

the table HTML code. It also establishes characteristics for the table

including text alignment, border size, and padding – all through cascading

style (<style> tag). Don’t worry if this looks strange or alien. You can

google for W3C standards to see how we use the tag to control the style of

the web page.

Listing 13-3. HTML Code (part1.html)

<!DOCTYPE html>

<html>

 <head>

 <title>Beginning MicroPython - Project 8</title>

 <meta http-equiv="refresh" content="30">

ChApTer 13 InTroDuCIng IoT for The ClouD

536

 <style>

 table, th, td {

 border: 1px solid black;

 border-collapse: collapse;

 }

 th, td {

 padding: 5px;

 }

 th {

 text-align: left;

 }

 </style>

 </head>

 <center><h2>Beginning MicroPython - Project 8</h2>

</center>

 <center>A simple project to demonstrate how to retrieve

sensor data over the Internet.</center>

 <center>
Plant Monitoring Data

 <table style="width:75%">

 <col width="180">

 <col width="120">

 <col width="125">

 <col width="125">

 <tr><th>Datetime</th><th>Sensor Number</th><th>Raw

Value</th><th>Moisture</th><th>Location</th></tr>

Notice the meta tag. Here is an example of how we can add HTML code

to automatically refresh the page periodically. In this case, it will refresh

every 30 seconds.

Notice the table code. Again, don’t worry if this seems strange. It works

and it is very basic. Those familiar with HTML may want to embellish and

improve the code. The last line establishes the header for the table.

ChApTer 13 InTroDuCIng IoT for The ClouD

537

The second file, plant_data.csv, contains the data. We will use a

constant to populate a properly formatted HTML table row. The following

shows an example of what a row of data would look like in the file and how

that data is transformed to HTML. We will see the HTML for the table row

in the next section.

Raw data

2021-08-08 17:26:17,1,78,dry,Small fern on bottom shelf

HTML table row

<tr><td>2021-08-08 17:26:17</td><td>1</td><td>78</td><td>dry

</td><td>Small fern on bottom shelf </td></tr>

The last file, part2.html, contains the closing tags so it isn’t very large.

But since we’re reading from files, we include this file. The following shows

the code in the second file:

 </table>

 </center>

</html>

So, how do we use these files? When we send a response back to the

client (the web page), we read the first file sending one row at a time, then

read the data file sending one row at a time, then read the last file sending

one row at a time. We will use a helper function to read the data file in the

SoilMoisture class.

Imports

The imports we need for the main code include those for the threading

(_thread), operating system (uos), time (utime), system (sys), RTC (ds3231),

the read timer (read_timer), the soil moisture sensors (soil_moisture),

and finally the Pimoroni Wireless Pack library (pwhttp). The complete list of

imports is shown in Listing 13-4. If you want to follow along, open a new file

and name it main.py in Thonny.

ChApTer 13 InTroDuCIng IoT for The ClouD

538

Listing 13-4. Imports for main.py

Import libraries

import _thread

import uos

import utime

import sys

from project8.ds3231 import ds3231 # RTC library

from project8.read_timer import ReadEvent # Read event

timer class

from project8.soil_moisture import SoilMoisture # SoilMoisture

class

Check for the Pimoroni http class library.

try:

 import project8.ppwhttp as ppwhttp

except ImportError:

 raise RuntimeError("Cannot find ppwhttp. Have you copied

ppwhttp.py to your Pico?")

Now let’s look at the constants.

Constants

We need a string we can use to create the rows for the table as it is

read from the file. The following shows the string used. Notice we use

replacement syntax so that we can use the format() function to fill in the

details:

HTML web page for the project

HTML_TABLE_ROW = "<tr><td>{0}</td><td>{1}</td><td>{2}</td>

<td>{3}</td><td>{4}</td></tr>"

ChApTer 13 InTroDuCIng IoT for The ClouD

539

Recall we will be using a special command in the form of /CLEAR to

clear the log, for example, http://192.168.1.20/CLEAR. Once you enter

that URL, unless redirected, the web browser will remain at that locator.

To force the browser to return to the home page, we use a meta tag that we

will populate with the IP address for our web server later. The following

shows the format string we will use:

HTML_REDIRECT = '<meta http-equiv="Refresh" content="0;

url=''{0}''" />'

Now let’s look at the setup code.

Setup Code

Unlike other forms of the main.py code we’ve seen in other examples, we

will keep this one simple and place the setup code at the global level. We

will need to open the HTML files and read them into memory, set up the

RTC module, and set up the SoilMoisture class. Listing 13-5 shows the

setup code. Since the latter is similar to the project from Chapter 8, we will

skip the details. Refer to Chapter 8 for how to format the dictionary data for

specifying the soil moisture sensors.

Listing 13-5. Setup Code

Setup code

print("Welcome to the Plant Monitor Web Version!\n")

Read base HTML pages

with open("/part1.html") as html_file:

 WEB_PART1 = "".join(html_file.readlines())

with open("/part2.html") as html_file:

 WEB_PART2 = "".join(html_file.readlines())

ChApTer 13 InTroDuCIng IoT for The ClouD

540

RTC Setup

I2C_SDA = 20

I2C_SCL = 21

rtc = ds3231(0, I2C_SCL, I2C_SDA)

Setup Sensors class

sensor_list = [

 {

 'pin': 27,

 'power': 17,

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

 {

 'pin': 28,

 'power': 18,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

Setup the soil moisture object instance from the

SoilMoisture class

plants = SoilMoisture(rtc, sensor_list)

Next, we will need three helper functions for the web server operations.

Helper Functions

For the routing operations, we will create a function named get_home()

to route the home GET request that calls the get_html_sensor_data()

function from the SoilMoisture class (explained in a later section) and

another function named clear_log() to route the /CLEAR to route the GET

request that calls the clear_log() function of the SoilMoisture class.

Listing 13-6 shows the code for these functions.

ChApTer 13 InTroDuCIng IoT for The ClouD

541

Listing 13-6. Web Server Functions

@ppwhttp.route("/", methods=["GET", "POST"])

def get_home(method, url, data=None):

 # Read data and return web page.

 DATA_PART = ""

 try:

 DATA_PART = plants.get_html_sensor_data(HTML_TABLE_ROW)

 except Exception as err:

 print("Error reading data.", err)

 return "".join([WEB_PART1, DATA_PART, WEB_PART2])

@ppwhttp.route("/CLEAR", methods=["GET"])

def clear_log(method, url, data=None):

 if method == "GET":

 plants.clear_log()

 addr = ".".join(map(str, ppwhttp.get_ip_address()))

 redirect = HTML_REDIRECT.format("http://{0}:80".

format(addr))

 return "".join([WEB_PART1, redirect, WEB_PART2])

We will also need a function to read the values from the sensor. To

make the web server responsive to client requests, we will use a thread to

run the soil moisture sensor reads. Recall, the soil moisture sensors need a

length startup time to read data. The following shows the helper function

we will use:

def read_sensors(plants):

 print("Reading sensors...")

 plants.read_sensors()

 print("Sensor read complete. Sleeping.")

Finally, we will use a function for the main portion of the code.

ChApTer 13 InTroDuCIng IoT for The ClouD

542

Main Function

The main() function will be called when the code module is loaded on

startup. It is responsible for starting the WiFi, web server, and a loop to

read the sensor data when the read event fires. Listing 13-7 shows the

main() function. Since most of the code is familiar, we will leave the details

as an exercise.

Listing 13-7. Main Function

def main():

 ppwhttp.start_wifi()

 server_sock = ppwhttp.start_server()

 utime.sleep(2)

 # Main loop for reading client requests

 data_read_event = ReadEvent()

 while True:

 ppwhttp.handle_http_request(server_sock)

 utime.sleep(0.01)

 # Check to see if it is time to read the data

 if data_read_event.time_to_read():

 data_read_event.reset()

 # Handle the sensor reading loop on the other core!

 try:

 _thread.start_new_thread(read_sensors,

[plants])

 except Exception as ex:

 print("ERROR: Cannot read sensors:", ex)

 sys.exit(1)

Let’s look at the completed code.

ChApTer 13 InTroDuCIng IoT for The ClouD

543

Complete Code

Now that we have seen all the parts of the code module, let’s look at the

completed code. Listing 13-8 shows the complete code for the main code

module with comments removed for brevity. Once again, we can save this

file as main.py.

Listing 13-8. Main Code Module

Import libraries

import _thread

import uos

import utime

import sys

from project8.ds3231 import ds3231 # RTC library

from project8.read_timer import ReadEvent # Read event

timer class

from project8.soil_moisture import SoilMoisture # SoilMoisture

class

Check for the Pimoroni http class library.

try:

 import project8.ppwhttp as ppwhttp

except ImportError:

 raise RuntimeError("Cannot find ppwhttp. Have you copied

ppwhttp.py to your Pico?")

Constants

HTML web page for the project

HTML_TABLE_ROW = "<tr><td>{0}</td><td>{1}</td><td>{2}</

td><td>{3}</td><td>{4}</td></tr>"

HTML_REDIRECT = '<meta http-equiv="Refresh" content="0;

url=''{0}''" />'

ChApTer 13 InTroDuCIng IoT for The ClouD

544

Global Variables

WEB_PART1 = ""

WEB_PART2 = ""

Setup code

print("Welcome to the Plant Monitor Web Version!\n")

Read base HTML pages

with open("/part1.html") as html_file:

 WEB_PART1 = "".join(html_file.readlines())

with open("/part2.html") as html_file:

 WEB_PART2 = "".join(html_file.readlines())

RTC Setup

I2C_SDA = 20

I2C_SCL = 21

rtc = ds3231(0, I2C_SCL, I2C_SDA)

Setup Sensors class

sensor_list = [

 {

 'pin': 27,

 'power': 17,

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

 {

 'pin': 28,

 'power': 18,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

ChApTer 13 InTroDuCIng IoT for The ClouD

545

Setup the soil moisture object instance from the

SoilMoisture class

plants = SoilMoisture(rtc, sensor_list)

@ppwhttp.route("/", methods=["GET", "POST"])

def get_home(method, url, data=None):

 # Read data and return web page.

 DATA_PART = ""

 try:

 DATA_PART = plants.get_html_sensor_data(HTML_TABLE_ROW)

 except Exception as err:

 print("Error reading data.", err)

 return "".join([WEB_PART1, DATA_PART, WEB_PART2])

@ppwhttp.route("/CLEAR", methods=["GET"])

def clear_log(method, url, data=None):

 if method == "GET":

 plants.clear_log()

 addr = ".".join(map(str, ppwhttp.get_ip_address()))

 redirect = HTML_REDIRECT.format("http://{0}:80".

format(addr))

 return "".join([WEB_PART1, redirect, WEB_PART2])

def read_sensors(plants):

 print("Reading sensors...")

 plants.read_sensors()

 print("Sensor read complete. Sleeping.")

def main():

 ppwhttp.start_wifi()

 server_sock = ppwhttp.start_server()

 utime.sleep(2)

ChApTer 13 InTroDuCIng IoT for The ClouD

546

 # Main loop for reading client requests

 data_read_event = ReadEvent()

 while True:

 ppwhttp.handle_http_request(server_sock)

 utime.sleep(0.01)

 # Check to see if it is time to read the data

 if data_read_event.time_to_read():

 data_read_event.reset()

 # Handle the sensor reading loop on the other core!

 try:

 _thread.start_new_thread(read_sensors,

[plants])

 except Exception as ex:

 print("ERROR: Cannot read sensors:", ex)

 sys.exit(1)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

Now that we have the main code module, let’s look at the soil

moisture class.

 Soil Moisture Class

The SoilMoisture class is based on the class with the same name from

Chapter 8, but with some significant changes. Most significantly, the

comma-separated file on the SD card to store the data (plant_data.csv)

is saved on the SD card on the Wireless Pack, which permits easy removal

of the data to transfer it to your PC (you don’t need the Pico powered on

ChApTer 13 InTroDuCIng IoT for The ClouD

547

and connected to your PC). And, instead of returning only the last value

read for each sensor, it returns all rows from the file as well as any recently

read values. This way, we can populate a list (table) to show the user all

values read.

However, to do so reliably when run with multiple threads, we will

need to use a special threading concept called a lock to protect critical

portions of the code that change class variables to ensure only one thread

can change the value(s) at a time. We will see how this works as we work

through the code.

Note Be sure to refer to Chapter 8 for tips on calibrating the
sensors. The code to calibrate the sensors is in Chapter 8.

Other than those changes, the features of the class remain the same, so

we will only look at those functions that are removed or changed.

Briefly, this class will read the soil moisture sensors and record the

data in a CSV file. The class is designed to read any number of sensors

via a list of dictionaries passed when the class is instantiated. Recall

from Chapter 8, we will use a new list of dictionaries that contain the Pin

class instantiations for controlling the power (turning on or off) and the

ADC class instantiations for reading data (signal pin). The following is an

example of how to define two sensors in the dictionary. Please refer to

Chapter 8 for more details.

sensor_list = [

 {

 'pin': 27,

 'power': 17,

 'location': 'Green ceramic pot on top shelf',

 'nick': 'Ivy',

 },

ChApTer 13 InTroDuCIng IoT for The ClouD

548

 {

 'pin': 28,

 'power': 18,

 'location': 'Fern on bottom shelf',

 'nick': 'Fern',

 }

]

Public Functions

The Chapter 8 implementation used three public methods to clear

the log (clear_log()), get the last values read (get_values()), and a

long-running function to read the sensors (read_sensors()). The read_

sensors() function has been simplified, and the changes are easy to see.

We will also use the same private functions except for _format_time(),

which is no longer needed because we modified the read_time() function

from the RTC class to return a formatted time string.

The version of the class for this project uses all of these functions and

the existing private functions as mentioned but renames the get_values()

function to get_html_sensor_data() to describe the new behavior more

accurately. The get_html_sensor_data() accepts as a parameter a format

string and returns all rows in memory formatted with the format string.

This function therefore is used when the user visits the home (or root) of

the web service and the get_home() function is called in main.py.

The code for these functions are simple enough, and most of it is

unchanged from Chapter 8, but some explanation is needed for the get_

html_sensor_data() function. In this function, we loop over the rows from

the file and most recently read values and use the format string to format

the rows and return them. We also see how we resolve the cache of values

read since the code was launched. Notice we keep track of how many

values (rows) were added, and when we reach the limit for the constant

ChApTer 13 InTroDuCIng IoT for The ClouD

549

CACHE_LIMIT, we write the new rows to the end of the file. This way, if the

server is stopped, we reduce the risk of losing all data stored in memory;

rather, we may lose up to CACHE_LIMIT values if the code is stopped or

crashes. Listing 13-9 shows the code for the function. Take some time to

read through it to ensure you understand how it works. We will discuss the

lock in the next section.

Listing 13-9. get_html_sensor_data() Function

def get_html_sensor_data(self, HTML_FORMAT_STR):

 html_sensor_data = ""

 self.rw_lock.acquire()

 print("Read lock acquired.")

 for row in self.cached_values:

 cols = row.strip("\n").split(",") # split row by commas

 html = HTML_FORMAT_STR.format(cols[0], cols[1],

cols[2], cols[3], cols[4])

 html_sensor_data += html

 # If there is too much data in the cache, write it to disk.

 if self.values_read >= CACHE_LIMIT:

 start_index = len(self.cached_values) - self.

values_read

 self.values_read = 0

 print("Writing cache to disk...", end="")

 try:

 log_file = open(LOG_FILE, 'a')

 for index in range(start_index, len(self.cached_

values)):

 row = self.cached_values[index]

 log_file.write("{0}\n".format(row))

 log_file.close()

ChApTer 13 InTroDuCIng IoT for The ClouD

550

 except Exception as ex:

 print("ERROR: Cannot write cache to disk.", ex)

 print("done.")

 try:

 self.rw_lock.release()

 print("Read lock released.")

 except Exception as ex:

 print("ERROR: Cannot release read lock.", ex)

 return html_sensor_data

Notice the use of the lock. Let’s talk about that for a moment before we

see the completed code for the class.

Using Locks

Since we are working with two threads, the main execution and a thread

we launch periodically to read data from the sensors when the read timer

fires, we have the potential for two threads to access the same variables

at the same time. More specifically, the self.cached_values variable

is read by the get_html_sensor_data() function and written to in the

read_sensors() function. If they are accessed at the same time, we could

have one of several potentially critical errors or the code may fail, or not. It

is completely unpredictable. Fortunately, there is a mechanism we can use

to “lock” parts of the code so only one thread can access the critical section

(the protected memory or variables) at a time.

The threading class provides a lock we can use to manage the read and

write operations. To create the lock, we place the following in the constructor:

Lock for read/write

self.rw_lock = _thread.allocate_lock()

For each section of code that accesses the critical areas, we first

attempt to acquire the lock with self.rw_lock.acquire(), which by

default waits until the lock is available. If it is not, it will wait indefinitely

ChApTer 13 InTroDuCIng IoT for The ClouD

551

until it is. A lock is made available (or unlocked) with the self.rw_lock.

release() function. The following illustrates how the lock is used to ensure

only one thread is reading or writing the self.cached_values and self.

values_read variables at one time:

self.rw_lock.acquire()

print("Write lock acquired.")

self.cached_values.append(value_read)

self.values_read += 1

self.rw_lock.release()

We also add the lock to the clear_log() function to ensure data isn’t

being read or written when the log is cleared. See the completed code for

more details.

Caution The threading library for Micropython is a much simplified
version from the python base. As such, it may not be as robust and
could fail under certain conditions such as high contention. Take care
when intentionally designing reentrant code in Micropython.

Using the SD Card

There is one more change that is important to discuss. Recall, we are using

the SD card reader on the Wireless Pack. Recall, we will use the sdcard.py

library we downloaded earlier. This requires an SPI instance to work. The

following illustrates how we set up the SPI interface and mount the drive.

We will place this code in the constructor:

Setup SD card via SPI

sck_pin = Pin(18, Pin.OUT)

mosi_pin = Pin(19, Pin.OUT)

miso_pin = Pin(16, Pin.OUT)

ChApTer 13 InTroDuCIng IoT for The ClouD

552

sd_pin = Pin(22)

sd_spi = SPI(0, sck=sck_pin, mosi=mosi_pin, miso=miso_pin)

sd = SDCard(sd_spi, sd_pin)

Mount SD card

uos.mount(sd, "/sd")

Now, let’s look at the completed code for the class.

Completed Code

We will name the code module soil_moisture.py and place it on our Pico

in the project8 folder (or similar). Listing 13-10 shows the completed code

for the SoilMoisture class. Take a moment to read through the code to see

how it works. Notice the constants that define the thresholds for wet and

dry soil measurements. Recall, we got these through experimenting with

the threshold example code in Chapter 8.

Listing 13-10. SoilMoisture Class

Import libraries

from machine import ADC, Pin, SPI

import _thread

import uos

from utime import sleep

from project8.sdcard import SDCard

Constants

LOG_FILE = "/sd/plant_data.csv"

Thresholds for the sensors

LOWER_THRESHOLD = 500

UPPER_THRESHOLD = 2500

UPDATE_FREQ = 120 # seconds

Max number of rows to store in memory before writing to disk

CACHE_LIMIT = 2

ChApTer 13 InTroDuCIng IoT for The ClouD

553

class SoilMoisture:

 def __init__(self, rtc, sensor_list):

 # Lock for read/write

 self.rw_lock = _thread.allocate_lock()

 # Setup SD card via SPI

 sck_pin = Pin(18, Pin.OUT)

 mosi_pin = Pin(19, Pin.OUT)

 miso_pin = Pin(16, Pin.OUT)

 sd_pin = Pin(22)

 sd_spi = SPI(0, sck=sck_pin, mosi=mosi_pin,

miso=miso_pin)

 sd = SDCard(sd_spi, sd_pin)

 # Mount SD card

 uos.mount(sd, "/sd")

 # If LOG_FILE is not present, create it

 try:

 uos.stat(LOG_FILE)

 except OSError:

 print("Creating log file.\n")

 log_file = open(LOG_FILE, "w")

 log_file.close()

 # Load data into memory

 self.cached_values = []

 log_file = open(LOG_FILE, "r")

 print("Reading data from disk...", end="")

 for row in log_file:

 self.cached_values.append(row)

 log_file.close()

 self.values_read = 0

 print("done.")

 self.rtc = rtc

ChApTer 13 InTroDuCIng IoT for The ClouD

554

 # Loop through the sensors specified and setup a new

dictionary

 # for each sensor that includes the power and ADC pins

defined.

 self.sensors = []

 sensor_num = 1

 for sensor in sensor_list:

 # Setup the dictionary for each soil

moisture sensor

 soil_moisture = {

 'sensor': ADC(Pin(sensor['pin'])),

 'power': Pin(sensor['power'], Pin.OUT),

 'location': sensor['location'],

 'sensor_num': sensor_num

 }

 sensor_num += 1

 self.sensors.append(soil_moisture)

 def clear_log(self):

 print("Clearing log file")

 log_file = open(LOG_FILE, 'w')

 log_file.close()

 # Lock is on the self.cached_values variable

 self.rw_lock.acquire()

 print("Write (clear) lock acquired.")

 self.cached_values = []

 self.values_read = 0

 try:

 self.rw_lock.release()

 print("Write (clear) lock released.")

ChApTer 13 InTroDuCIng IoT for The ClouD

555

 except Exception as ex:

 print("ERROR: Cannot release write (clear)

lock.", ex)

 def get_html_sensor_data(self, HTML_FORMAT_STR):

 html_sensor_data = ""

 self.rw_lock.acquire()

 print("Read lock acquired.")

 for row in self.cached_values:

 cols = row.strip("\n").split(",") # split row

by commas

 html = HTML_FORMAT_STR.format(cols[0], cols[1],

cols[2], cols[3], cols[4])

 html_sensor_data += html

 # If there is too much data in the cache, write it

to disk.

 if self.values_read >= CACHE_LIMIT:

 start_index = len(self.cached_values) - self.

values_read

 self.values_read = 0

 print("Writing cache to disk...", end="")

 try:

 log_file = open(LOG_FILE, 'a')

 for index in range(start_index, len(self.

cached_values)):

 row = self.cached_values[index]

 log_file.write("{0}\n".format(row))

 log_file.close()

 except Exception as ex:

 print("ERROR: Cannot write cache to disk.", ex)

 print("done.")

ChApTer 13 InTroDuCIng IoT for The ClouD

556

 try:

 self.rw_lock.release()

 print("Read lock released.")

 except Exception as ex:

 print("ERROR: Cannot release read lock.", ex)

 return html_sensor_data

 def _get_value(self, adc, power):

 total = 0

 # Turn power on

 power.high()

 for i in range (0,10):

 # Wait for sensor to power on and settle

 sleep(1)

 # Read the value

 value = adc.read_u16()

 total += value

 # Turn sensor off

 power.low()

 return int(total/10)

 def read_sensors(self):

 for sensor in self.sensors:

 # Read the data from the sensor and convert

the value

 value = self._get_value(sensor['sensor'],

sensor['power'])

 print("Reading sensor {0} - value: {1}"

 "".format(sensor['sensor_num'], value))

 value_read = ("{0},{1},{2},{3},{4}"

 "".format(self.rtc.read_time(),

 sensor['sensor_num'],

ChApTer 13 InTroDuCIng IoT for The ClouD

557

 value, self._convert_

value(value),

 sensor['location']))

 self.rw_lock.acquire()

 print("Write lock acquired.")

 self.cached_values.append(value_read)

 self.values_read += 1

 try:

 self.rw_lock.release()

 print("Write lock released.")

 except Exception as ex:

 print("ERROR: Cannot release read lock.", ex)

 def _convert_value(self, value):

 # If value is less than lower threshold, soil is dry

else if it

 # is greater than upper threshold, it is wet, else all

is well.

 if (value <= LOWER_THRESHOLD):

 return "dry"

 elif (value >= UPPER_THRESHOLD):

 return "wet"

 return "ok"

OK, now it is time to give the code a go and run it.

 Execute
Before executing the project, be sure to upload the main.py and secrets.

py files to the root of the Pico onboard drive. Remember to modify the

secrets.py file to include your WiFi SSID and password. You also need

to create a project8 folder on the Pico and upload the Pico Wireless Pack

ChApTer 13 InTroDuCIng IoT for The ClouD

558

library (ppwhttp.py), the modified library for the RTC (ds3231.py), the soil

moisture class (soil_moisture.py), the SD card library (sdcard.py), and

the read timer class (read_timer.py) files into that folder. Finally, you also

need to upload the secrets.py file from the Pico Wireless Pack library.

Upload this file to the root of the Pico onboard drive.

Note You should insert the soil moisture sensors in the plant soil
before powering on your pico.

OK, now we’ve got the code setup to read the soil moisture in one or

more plants, and we have the code for a simple HTML server setup to

listen on port 80. All we need now is the IP address of that board to point

our web browser. We can get that from our debug statements by running

the code. Listing 13-11 shows a sample run for the project.

Listing 13-11. Running the Plant Monitor Web Project

Welcome to the Plant Monitor Web Version!

Reading data from disk...done.

Connecting to Snapper2...

Starting server...

Server listening on 192.168.1.20:80

Reading sensors...

Reading sensor 1 - value: 606

Write lock acquired.

Write lock released.

Client connected!

Serving GET on /...

Read lock acquired.

Read lock released.

Success! Sending 200 OK

ChApTer 13 InTroDuCIng IoT for The ClouD

559

Reading sensor 2 - value: 499

Write lock acquired.

Write lock released.

Sensor read complete. Sleeping.

Client connected!

Serving GET on /...

Read lock acquired.

Writing cache to disk...done.

Read lock released.

Success! Sending 200 OK

Client connected!

Serving GET on /...

Read lock acquired.

Read lock released.

Success! Sending 200 OK

Client connected!

Serving GET on /...

Read lock acquired.

Read lock released.

Success! Sending 200 OK

Client connected!

Serving GET on /...

Read lock acquired.

Read lock released.

Success! Sending 200 OK

Notice in this case the IP address is 192.168.1.20. All we need to do is

put that in our browser as shown in Figure 13-11.

ChApTer 13 InTroDuCIng IoT for The ClouD

560

Figure 13-11. Executing the plant monitor web project

Once you enter the URL, you should see a web page like the image

shown. If you don’t, be sure to check the HTML in your code to ensure it is

exactly like what is shown; otherwise, the page may not display properly.

Tip If your pico doesn’t connect to your Wifi within a reasonable
time, you may need to click Stop in Thonny and rerun the project to
reset the Wireless pack.

If everything is working, you can click refresh in your browser to read

all of the values read from the file including those in the cache. Or you can

wait until the meta tag refresh fires, which will automatically refresh the

page. Neat!

ChApTer 13 InTroDuCIng IoT for The ClouD

561

 Improving the Code
This example will suffice to show you what is possible for creating a small

web server to present your data collected from sensors. As such, it is not

intended to be run for extended periods because of how the data is stored

in memory to make retrieval fasters. Additional work is needed to make it

a longer-running project. The following are suggestions on how to improve

the code for a more robust, longer-running project. The first two are ways

to improve the current design where the historical data is presented in the

web page, and the last is an alternative to show only the last values read for

each sensor:

• Change the code to always read data from the SD card

(the plant_data.csv file) rather than memory. Hint:

You will need to use the read/write lock to protect

writing to the file when new values are read from the

sensors.

• Make the code read all of the rows from the SD card on

start, but store all new values read into memory writing

them to the file on the SD card only after 20 or more

values are read.

• Change the code to only display the latest values for the

sensors writing all old values to the file on the SD card.

This is the easiest and most robust option to consider

making the code a long-running project.

Once you have both examples working, congratulations. You have just

created your first complete IoT projects. How cool is that?

ChApTer 13 InTroDuCIng IoT for The ClouD

562

 Summary
When you take a typical electronics project such as a weather station,

electronic game, home automation, etc. and connect it to the Internet,

you’ve just upped the capabilities of that small project.

We saw two simple examples of this by connecting two of our example

projects to the Internet. Each used a simple web server to allow us to

control hardware and get information from sensors. The technique

demonstrated can help you add Internet capabilities to more of the

projects in this book. You are only limited by your imagination!

In this chapter, we learned more about cloud systems and how they

can be used in IoT projects. Now that you’ve seen how easy it is to get

started and how little code is needed in your projects, you can begin to

modify your own projects. But we’ve just scratched the surface here. There

is so much more that can be done with another simple, free cloud solution.

In the next chapter, we will expand our tour of cloud systems for IoT by

looking at one of the most popular free options: ThingSpeak – a popular,

easy-to-use, cloud-based IoT data hosting service from MathWorks. You

will learn how to send your data to the cloud and display it using nice,

easy-to-use graphics using the previous example projects.

ChApTer 13 InTroDuCIng IoT for The ClouD

563

CHAPTER 14

Using ThingSpeak
Now that we’ve built a good foundation of experience working with basic

electronics and Grove modules including how to write code to use the

sensors, respond to inputs (e.g., buttons), and display data as well as how

to create a simple web server solution, it’s time to take our IoT skills to a

new level.

Thus far, we haven’t discussed how to use the data generated from our

projects other than saving the data in a file on the Pico or an SD card on

the Pimoroni Wireless Pack. Due to the limited size of these options, you

will encounter issues you need to resolve such as how much data you want

to store and for how long.

While those are things that can be solved, the bigger question is what

are you going to do with the data? Would you want to see how the data

changes over time, how one sensor data compares to another, how often a

value changes, or more basic statistics like min, max, and average values?

All of these things require processing power that the Pico doesn’t have

to spare.

Furthermore, you may want to see the data presented in one or more

graphs that you can use for a pictorial representation. The best way to do

this is to take advantage of IoT cloud services. Not only can you store the

data easily, but you can also perform analysis on the data and present it in

one of several graphics.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2_14

https://doi.org/10.1007/978-1-4842-8135-2_14

564

In fact, you can store your data in the cloud using a popular, easy-to-use,

cloud-based IoT data hosting service from MathWorks called ThingSpeak

(www.thingspeak.com). We will see how to take several of the example

projects from this book and connect them to ThingSpeak to see how we can

gain more insights about the data.

But first, let’s take a brief tour of ThingSpeak and how to get started

using it in our projects.

 Getting Started
ThingSpeak offers a free account for noncommercial projects that generate

fewer than 3 million messages (or data elements) per year or around

8200 messages per day. Free accounts are also limited to four channels

(a channel is equivalent to a project and can save up to eight data items).

If you need to store or process more data than that, you can purchase a

commercial license in one of four categories, each with specific products,

features, and limitations: Standard, Academic, Student, and Home. See

https://thingspeak.com/prices and click each of the license options to

learn more about the features and pricing.

ThingSpeak works by receiving messages from devices that contain

the data you want to save or plot. There are libraries available that you can

use for certain platforms or programming languages such as Python or the

Arduino platform.

However, you can also use a machine-to-machine (M2M) connectivity

protocol (called MQTT1) or representational state transfer (REST2) API

designed as a request-response model that communicates over HTTP to

send data to or read data from ThingSpeak. Yes, you can even read your

data from other devices.

1 http://mqtt.org/
2 https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 14 Using thingspeak

http://www.thingspeak.com
https://thingspeak.com/prices
http://mqtt.org/
https://en.wikipedia.org/wiki/Representational_state_transfer

565

Tip see www.mathworks.com/help/thingspeak/channels-
and-charts-api.html for more details about the thingspeak
MQtt and rest api.

When you want to read or write from/to a ThingSpeak channel,

you can either publish MQTT messages, send requests via HTTP to the

REST API, or use one of the platform-specific libraries that encapsulate

these mechanisms for you. A channel can have up to eight data fields

represented as a string or numeric data. You can also process the numeric

data using several sophisticated procedures such as summing, average,

rounding, and more.

We won’t get too far into the details of these protocols; rather, we will

see how to use ThingSpeak as a quick start guide. MathWorks provides

a complete set of tutorials, documentation, and examples. So, if you

need more information about how ThingSpeak works, check out the

documentation at www.mathworks.com/help/thingspeak/.

The first thing we need to do is create an account.

 Create an Account in ThingSpeak
To use ThingSpeak, you must first sign up for an account. Fortunately,

they provide the option for a free account. In fact, you get a free account to

start with and add (purchase) a license later. To create a free account, visit

https://thingspeak.com/, click Get Started For Free, then click Create

one! as shown in Figure 14-1.

Chapter 14 Using thingspeak

http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://www.mathworks.com/help/thingspeak/
https://thingspeak.com/

566

Figure 14-1. Create a new ThingSpeak/MathLabs account

On the next page, enter your email address, location (general

geographic), and first and last names, then click Continue. You may

be asked to set the email address as your MatLab account. To do so,

tick the Use this email for my MathWorks Account checkbox and click

Continue. You will then be sent a validation email. Open that and

follow the instructions to verify your email and complete your free

account by choosing a password and ticking the accept the Online

Services Agreement Online Services Agreement checkbox. You may

be asked to complete a short questionnaire. Be sure to log in before

continuing.

Next, let’s create our first channel.

Chapter 14 Using thingspeak

567

 Create a Channel
Once you log in to ThingSpeak, you can create a channel to hold your data.

Recall, each channel can have up to eight data items (fields). From your

login home page, click New Channel as shown in Figure 14-2.

Figure 14-2. Creating a channel in ThingSpeak

You will be presented with a really long form that has a lot of fields that

you can fill out. Figure 14-3 shows an example of the form.

Chapter 14 Using thingspeak

568

Figure 14-3. New Channel form

At a minimum, you need only name the channel, enter a description

(not strictly required but recommended), and then select (tick) one or

more fields naming each.

Chapter 14 Using thingspeak

569

So, what are all those channel settings? The following gives a brief

overview of each. As you work with ThingSpeak, you may want to start

using some of these fields:

• Percentage complete: A calculated field based on the

completion of the name, description, location, URL,

video, and tags in your channel.

• Channel name: Unique name for the channel.

• Description: Description of the channel.

• Field#: Tick each box to enable the field.

• Metadata: Additional data for the channel in JSON,

XML, or CSV format.

• Tags: A comma-separated list of keywords for

searching.

• Link to external site: If you have a website about your

project, you can provide the URL here to publish on the

channel.

• Show channel location: Tick this box to include the

following fields:

• Latitude: Latitude of the sensor(s) for the project or

source of the data

• Longitude: Longitude of the sensor(s) for the

project or source of the data

• Elevation: Elevation in meters for use with projects

affected by elevation

Chapter 14 Using thingspeak

570

• Video URL: If you have a video associated with your

project, you can provide the URL here to be published

on the channel.

• Link to GitHub: If your project is hosted in GitHub, you

can provide the URL to be published on the channel.

Wow, that’s a lot of stuff for free! As you will see, this isn’t a simple toy

or severely limited product. You can accomplish quite a lot with these

settings. Notice there are places to put links to video, website, and GitHub.

This is because channels can be either private (only your login or API key

as we will see can access) or public. Making a channel public allows you

to share the data with anyone, and thus those URL fields may be handy to

document your project. Cool.

Now, let’s create a practice channel that we will use in the next section

to see how to write data (sometimes called upload) to ThingSpeak. Use the

following parameters for the fields on the New Channel form:

• Name: practice_channel

• Description: Testing ThingSpeak connection from Pico

• Field 1: RandInt

Enter the values as shown and then click Save Channel to complete the

process. Now we are ready to test writing some data.

 How to Add ThingSpeak to Your Projects
Once you create your channel, it is time to write some data. There are

two pieces of information you will need for most projects, the API key

for the channel and for some libraries the channel number (the integer

value shown on the channel page). There are libraries available for many

platforms, and on some platforms there may be several ways (libraries or

techniques) to write data to a ThingSpeak channel.

Chapter 14 Using thingspeak

571

You can find the API key on the channel page by clicking the API Keys

tab. When you create a new channel, you will have one write and one read

API key. You can add more keys if you need them so that you can use one

key per device, location, customer, etc. Figure 14-4 shows the API Keys tab

for the channel created previously.

Figure 14-4. API keys for a practice channel

Notice I masked out the keys. If you make your channel public, do not

share the write key with anyone you don’t want to allow to write to your

channel. You can create new keys by clicking the Generate New Write API

Key or Add New Read API Key buttons. You can delete read keys by clicking

the Delete API Key button.

We use the key in our code to allow the device to connect to and write

data to the channel. So, we typically copy this string from the channel

page and paste it into our code as a string. Recall, we may use a library

Chapter 14 Using thingspeak

572

that encapsulates the HTTP or MQTT mechanism, or, in the case of the

Raspberry Pi Pico, we will use the library for the Pimoroni Pico Wireless

Pack and the HTTP protocol.

Now that you understand the basics of creating a channel in

ThingSpeak, let’s take a look at how to do it in more detail for the Pico.

 Using ThingSpeak with the Pico
This project is a very simple sketch to learn how to connect and write data

to a ThingSpeak channel. For the data, we will be generating a random

integer and send that to the channel. While this won’t necessarily give you

anything meaningful, we keep things simple so we can see the mechanics

of how to interact with ThingSpeak.

The hardware we will use is our Pico Omnibus host board and Wireless

Pack from Chapter 13. Refer to the projects in Chapter 13 on how to set up

these components for use in this example.

 Configuring the Raspberry Pi Pico

To write data to the ThingSpeak channel, we need to ensure we have the

Pimoroni Pico Wireless Pack library (ppwhttp.py) uploaded. That’s it!

Now, let’s write the code. As you will see, it uses a function in the ppwhttp.

py module for uploading data to ThingSpeak.

 Write the Code

While there is no library for the Raspberry Pi Pico, we can write one

and use it in later examples. The class module we will create is named

thingspeak.py and will contain a class named ThingSpeak. For the public

methods, we need only a constructor and a function to write (upload)

data to ThingSpeak. We will use three private methods for connect,

disconnect, and parsing the response operations. To make it a bit more

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_13
10.1007/978-1-4842-8135-2_13

573

tolerant of networking issues, we will also build a retry loop into the upload

procedure. While we will see the complete code for these functions, we will

only discuss the highlights of each, leaving explanation of the code details

as an exercise.

Note if you want to read data from thingspeak, you can add that
function to this class extending its use to other projects.

Let’s begin with the imports and constants. In order to send data to

a server, we must work with some lower-level methods defined in a class

named picowireless (used by ppwhttp). We will also need the JSON and

time libraries. We use the JSON library to convert a Python dictionary

into a JSON string. It is very easy to use, and it is just one line of code. The

following shows an example of how to convert a Python dictionary into a

JSON string for use in uploading data:

param_str = json.dumps(param_dict)

We will use several constants, most of which are for communicating

over HTTP with ThingSpeak including the hostname, port, mode, and

delay values. We will also form a header packet as a constant that we will

complete with values at runtime (so, it is a format string). Finally, we will

also set a constant for the number of retries to attempt to connect and send

data. This is necessary since communicating over HTTP can fail due to a

number of reasons (primarily because packets are not guaranteed to be

delivered).

Listing 14-1 shows the import and constant sections for the

ThingSpeak class.

Chapter 14 Using thingspeak

574

Listing 14-1. ThingSpeak Class Import and Constant Sections

Import libraries

import json

import sys

import time

import picowireless

import ppwhttp

Constants

MAX_RETRIES = 10

TCP_MODE = const(0)

REQUEST_DELAY = const(30)

THINGSPEAK_PORT = 80

THINGSPEAK_HOST = "api.ThingSpeak.com"

HTTP_HEADERS = """POST /update HTTP/1.1

Host: api.ThingSpeak.com

Accept: */*

Content-Length: {0}

Content-Type: application/json

{1}

"""

...

Notice the HTTP_HEADERS constant. This is defined using a document

string (a string with three "’s on either side), which is used as shown

complete with newlines. This is important because this forms an HTTP

packet which we will send to the server. If you notice the placeholders, you

will find we have two: one for the length of the data and another for the

data. Since we set the header variable Content-Type to application/json,

we will need to format the data as a JSON string.

Chapter 14 Using thingspeak

575

For the constructor, we will accept the API key and user-customized

maximum retries with a default of MAX_RETRIES. Since this code is run

once, we will create a socket connection to the server as well. Listing 14-2

shows the constructor.

Listing 14-2. Constructor for the ThingSpeak Class

def __init__(self, key, num_retries=MAX_RETRIES, with_

debug=False):

 self.api_key = key

 self.max_retries = num_retries

 self.with_debug = with_debug

 self.port = THINGSPEAK_PORT

 # Connect to WiFi

 ppwhttp.start_wifi()

 # Resolve the IP address for ThingSpeak

 self.host_address = picowireless.get_host_by_name

(THINGSPEAK_HOST)

 if self.with_debug:

 print("DNS resolved '{}' to {}.{}.{}.{}"

 "".format(THINGSPEAK_HOST, *self.host_address))

 # Get a client socket

 self.client_sock = picowireless.get_socket()

For the upload_data() function, we will require a Python dictionary

that includes each of the keys and their values. We have to add the API

key, but we can do that easily. In the function, we will create a loop that

contains a try...except block for calling the network functions we will

use. Specifically, we open a connection to the ThingSpeak server, issue the

POST request, then wait for a status code. We then test the code to ensure

the upload worked.

Chapter 14 Using thingspeak

576

If we encounter a problem with any of the network functions, we sleep

for five seconds and then try the commands again. We will do this up to

MAX_RETRIES or until the operation succeeds.

Listing 14-3 shows the code for the upload_data() function.

Listing 14-3. The upload_data() Function

 def upload_data(self, param_dict, timeout=5000):

 if self.with_debug:

 print("parameters: {0}".format(param_dict))

 # Add API key to the dictionary

 param_dict.update({'api_key': self.api_key})

 param_str = json.dumps(param_dict)

 # Attempt to connect to ThingSpeak

 retry = 0

 while retry <= self.max_retries:

 try:

 print("Connecting to ThingSpeak...", end="")

 if not self._connect():

 print("Connection failed!")

 return False

 print("connected.")

 break

 except Exception as err:

 print("\nWARNING: ThingSpeak connection

failed: {0}"

 "".format(err))

 if retry <= self.max_retries:

 print("Retrying in 5 seconds. [{}]".

format(retry+1))

 time.sleep(5)

 retry = retry + 1

Chapter 14 Using thingspeak

577

 else:

 retry = self.max_retries + 1

 print("WARNING: Cannot connect to

ThingSpeak. "

 "Exceeded retries. Abort.")

 self._disconnect()

 return False

 # Format the POST to send data to ThingSpeak

 post_header = HTTP_HEADERS.format(len(param_str),

 param_str).replace("\n", "\r\n")

 if self.with_debug:

 print("POST HEADER:\n", post_header)

 # Attempt to retry if the timeout fails

 retry = 0

 while retry <= self.max_retries:

 try:

 print("Sending data...", end="")

 picowireless.send_data(self.client_sock,

post_header)

 print("done.")

 break

 except Exception as err:

 print("\nWARNING: ThingSpeak update failed:

{0}".format(err))

 if retry <= self.max_retries:

 print("Retrying in 5 seconds. [{}]".

format(retry+1))

 time.sleep(5)

 retry = retry + 1

Chapter 14 Using thingspeak

578

 else:

 retry = self.max_retries + 1

 print("WARNING: Cannot upload to

ThingSpeak. "

 "Exceeded retries. Abort.")

 self._disconnect()

 return False

 response = self._get_response(timeout)

 # Check header for correct status.

 if response["status"] == "200 OK":

 print("Data upload complete.")

 elif response['status'] == "ERROR":

 print("ERROR: {0}".format(response['body']))

 else:

 print("WARNING: data not acknowledged.")

 if self.with_debug:

 print("Header, body: {0}\n{1}"

 "".format(response['header'], response

['body']))

 self._disconnect()

 return True

Notice we retry both the connect and send data operations. Here

is where we are using the lower-level functions from the picowireless

module. Specifically, once the connect is made with the server, we call the

picowireless.send_data() function to send the HTTP POST packet we

created to the server. We then wait for a response from the server and parse

it. This is where the three helper (private) functions come into play.

There are also three private functions: _connect(), _disconnect(),

and _get_response(). We use the _connect() function to connect to the

server using the client_start() function from the picowireless library

and wait for a response. If we don’t get a response before the timeout, we

Chapter 14 Using thingspeak

579

fail. In the _disconnect() function, we stop the client connection. And

in the _get_response() function, we retrieve the data from the server

using the avail_data() function from the picowireless library, then

parse the response packet looking for a status code of 200, which indicates

a successful operation. If we see any other code, we flag it as a warning

and print the header. How this all works will become clear once you read

the code.

Listing 14-4 shows the complete code for this class with comments

removed for brevity. Take some time to read it so that you familiarize

yourself with how it works.

Listing 14-4. The ThingSpeak Class (Python)

Import libraries

import json

import sys

import time

import picowireless

import ppwhttp

Constants

MAX_RETRIES = 10

TCP_MODE = const(0)

REQUEST_DELAY = const(30)

THINGSPEAK_PORT = 80

THINGSPEAK_HOST = "api.ThingSpeak.com"

HTTP_HEADERS = """POST /update HTTP/1.1

Host: api.ThingSpeak.com

Accept: */*

Content-Length: {0}

Content-Type: application/json

{1}

"""

Chapter 14 Using thingspeak

580

class ThingSpeak:

 def __init__(self, key, num_retries=MAX_RETRIES, with_

debug=False):

 self.api_key = key

 self.max_retries = num_retries

 self.with_debug = with_debug

 self.port = THINGSPEAK_PORT

 # Connect to WiFi

 ppwhttp.start_wifi()

 # Resolve the IP address for ThingSpeak

 self.host_address = picowireless.get_host_by_

name(THINGSPEAK_HOST)

 if self.with_debug:

 print("DNS resolved '{}' to {}.{}.{}.{}"

 "".format(THINGSPEAK_HOST, *self.host_address))

 # Get a client socket

 self.client_sock = picowireless.get_socket()

 # Attempt to connect to ThingSpeak to create a client

connection.

 def _connect(self, timeout=1000):

 picowireless.client_start(self.host_address, self.port,

 self.client_sock, TCP_MODE)

 t_start = time.time()

 timeout /= 1000.0

 while time.time() - t_start < timeout:

 state = picowireless.get_client_state(self.

client_sock)

 if state == 4:

 return True

 time.sleep(1.0)

 return False

Chapter 14 Using thingspeak

581

 # Stop the client connection.

 def _disconnect(self):

 # Stop the client

 picowireless.client_stop(self.client_sock)

 # Upload the data in the form of a dictionary to

ThingSpeak.

 def upload_data(self, param_dict, timeout=5000):

 if self.with_debug:

 print("parameters: {0}".format(param_dict))

 # Add API key to the dictionary

 param_dict.update({'api_key': self.api_key})

 param_str = json.dumps(param_dict)

 # Attempt to connect to ThingSpeak

 retry = 0

 while retry <= self.max_retries:

 try:

 print("Connecting to ThingSpeak...", end="")

 if not self._connect():

 print("Connection failed!")

 return False

 print("connected.")

 break

 except Exception as err:

 print("\nWARNING: ThingSpeak connection

failed:"

 " {0}".format(err))

 if retry <= self.max_retries:

 print("Retrying in 5 seconds. [{}]".

format(retry+1))

 time.sleep(5)

 retry = retry + 1

Chapter 14 Using thingspeak

582

 else:

 retry = self.max_retries + 1

 print("WARNING: Cannot connect to

ThingSpeak. "

 "Exceeded retries. Abort.")

 self._disconnect()

 return False

 # Format the POST to send data to ThingSpeak

 post_header = HTTP_HEADERS.format(len(param_str),

 param_str).replace("\n", "\r\n")

 if self.with_debug:

 print("POST HEADER:\n", post_header)

 # Attempt to retry if the timeout fails

 retry = 0

 while retry <= self.max_retries:

 try:

 print("Sending data...", end="")

 picowireless.send_data(self.client_sock,

post_header)

 print("done.")

 break

 except Exception as err:

 print("\nWARNING: ThingSpeak update failed:

{0}".format(err))

 if retry <= self.max_retries:

 print("Retrying in 5 seconds. [{}]".

format(retry+1))

 time.sleep(5)

 retry = retry + 1

Chapter 14 Using thingspeak

583

 else:

 retry = self.max_retries + 1

 print("WARNING: Cannot upload to

ThingSpeak. "

 "Exceeded retries. Abort.")

 self._disconnect()

 return False

 response = self._get_response(timeout)

 # Check header for correct status.

 if response["status"] == "200 OK":

 print("Data upload complete.")

 elif response['status'] == "ERROR":

 print("ERROR: {0}".format(response['body']))

 else:

 print("WARNING: data not acknowledged.")

 if self.with_debug:

 print("Header, body: {0}\n{1}"

 "".format(response['header'],

response['body']))

 self._disconnect()

 return True

 # Get the response from the server.

 def _get_response(self, timeout):

 # Wait for a response

 t_start = time.time()

 while True:

 if time.time() - t_start > timeout:

 picowireless.client_stop(self.client_sock)

 err_msg = ("Timeout waiting for response

{0}:{1}"

Chapter 14 Using thingspeak

584

 "".format(self.host_address,

self.port))

 return {'status':'ERROR', 'header': {}, 'body':

err_msg}

 avail_length = picowireless.avail_data(self.

client_sock)

 if avail_length > 0:

 break

 if self.with_debug:

 print("Got {} bytes in response.".format

(avail_length))

 # Read the response from the server (in bytes)

 response = b""

 while len(response) < avail_length:

 data = picowireless.get_data_buf(self.client_sock)

 response += data

 response = response.decode("utf-8")

 # Break into the header and body

 head, body = response.split("\r\n\r\n", 1)

 if self.with_debug:

 print("Header:\n", head)

 status = "UNKNOWN"

 # Find the status

 for line in head.split("\r\n")[1:]:

 key, value = line.split(": ", 1)

 if key == 'Status':

 status = value

 break

 return {'status': status, 'header': head, 'body': body}

Chapter 14 Using thingspeak

585

if __name__ == '__main__':

 try:

 sample_params = {'field1': 42}

 api_key = "YOUR_API_KEY_GOES_HERE"

 ThingSpeak = ThingSpeak(api_key, with_debug=True)

 ThingSpeak.upload_data(sample_params)

 except (KeyboardInterrupt, SystemExit) as ex:

 print("\nbye!\n")

 sys.exit(0)

Notice once again we’ve employed a simple mechanism to allow us

to test the class. You can simply provide a value for your API write key

(not the read key) and run the class module to send a single value to your

channel. If you’re eager to get started, try it out now.

Next is the code for the main script. We will use the new class to upload

the random number we generate. We will name the main script test_

thingspeak.py. If you are following along, open a new file now with that

name. Be sure to place it in the same folder as the thingspeak.py module.

Listing 14-5 shows the complete code for the script for this project.

It follows a now familiar pattern where we create a main() function and

call it from a try...except block to catch a CTRL+C key sequence. The

code is very simple. All you need to do is put your API key in the constant

and run it.

Listing 14-5. Complete Code for the test_thingspeak.py Script

Import libraries

import random

import sys

import time

from thingspeak import ThingSpeak

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

Chapter 14 Using thingspeak

586

def main():

 """main"""

 print("Welcome to the ThingSpeak Raspberry Pi Pico

demonstration!")

 print("Press CTRL+C to stop.")

 thingspeak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 # Generate a random integer

 rand_int = random.randint(1, 20)

 print("Random number generated: {}".format(rand_int))

 thingspeak.upload_data({'field1': rand_int})
 # Sleep for 30 seconds

 time.sleep(30)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

Notice the dictionary we used to pass the data to the upload_data()

function. Here, we used field1 as the key for the channel field. As it turns

out, we must use field1, field2, etc. for the field key names regardless of

how we may name them in the channel. While this may be a little strange,

you should get in the habit of listing the fields in the dictionary in the order

they appear in the channel setup.

Note Be sure to substitute your api key in the location marked.
Failure to do so will result in runtime errors.

Now that you have all the code entered, let’s test the script and see if

it works.

Chapter 14 Using thingspeak

587

 Testing the Script

To run the script, enter the following command. Let the script run for

several iterations before using Ctrl+C to break the main loop. Listing 14-6

shows an example of the output you should see without debug enabled in

the ThingSpeak class.

Note You may see retry attempts if your network drops or you lose
connectivity.

Listing 14-6. Example Console Output (No Debug)

Welcome to the ThingSpeak Raspberry Pi Pico demonstration!

Press CTRL+C to stop.

Connecting to Snapper1...

Connected!

Random number generated: 3

Connecting to ThingSpeak...connected.

Sending data...done.

Data upload complete.

Random number generated: 7

Connecting to ThingSpeak...connected.

Sending data...done.

Data upload complete.

Random number generated: 14

Connecting to ThingSpeak...connected.

Sending data...done.

Data upload complete.

Random number generated: 9

Connecting to ThingSpeak...connected.

Sending data...done.

Chapter 14 Using thingspeak

588

...

Random number generated: 13

Connecting to ThingSpeak...connected.

Sending data...done.

bye!

If the connection is very slow, you could encounter a situation in which

you get an error code other than 200 every other or every N attempts. If this

is the case, you can increase the timeout in the loop() function to delay

processing further. This may help for some very slow connections, but it is

not a cure for a bad or intermittent connection.

Let the sketch run for about three minutes before you visit ThingSpeak.

Once the sketch has run for some time, navigate to ThingSpeak, log in,

and click your channel page and then click the Private View tab. We use

the private view because channels are private by default. You should see

results similar to those shown in Figure 14-5.

Figure 14-5. Example channel data (Python)

Chapter 14 Using thingspeak

589

If you do not see similar data, go back and check the return codes as

discussed in the last project. You should see return codes of 200 (success).

Check and correct any errors in network connectivity or syntax or logic

errors in your script until it runs successfully for several iterations (all

samples stored return code 200).

If you see similar data, congratulations! You now know how to generate

data and save it to the cloud using two different platforms.

If you run with the debug turned on, you will see a lot more data

similar to what is shown in Listing 14-7. You may want to turn on debug if

you encounter problems uploading your data. Notice it prints out your API

key, so use this with caution in public areas.

Listing 14-7. Example Console Output (with Debug)

Welcome to the ThingSpeak Raspberry Pi Pico demonstration!

Press CTRL+C to stop.

Connecting to Snapper1...

Connected!

DNS resolved 'api.ThingSpeak.com' to 3.224.210.136

Random number generated: 4

parameters: {'field1': 4}

Connecting to ThingSpeak...connected.

POST HEADER:

 POST /update HTTP/1.1

Host: api.ThingSpeak.com

Accept: */*

Content-Length: 44

Content-Type: application/json

{"field1": 4, "api_key": "XXXXXXXXXXXXXXXXXXXX"}

Sending data...done.

Got 646 bytes in response.

Chapter 14 Using thingspeak

590

Header:

 HTTP/1.1 200 OK

Date: Mon, 27 Dec 2021 21:24:17 GMT

Content-Type: text/plain; charset=utf-8

Content-Length: 2

Connection: keep-alive

Status: 200 OK

X-Frame-Options: SAMEORIGIN

Access-Control-Allow-Origin: *

Access-Control-Allow-Methods: GET, POST, PUT, OPTIONS,

DELETE, PATCH

Access-Control-Allow-Headers: origin, content-type,

X-Requested-With

Access-Control-Max-Age: 1800

ETag: W/"b17ef6d19c7a5b1ee83b907c595526dc"

Cache-Control: max-age=0, private, must-revalidate

X-Request-Id: 3a8821ed-352e-450c-a541-be36d57d25a6

X-Runtime: 0.033155

X-Powered-By: Phusion Passenger 4.0.57

Server: nginx/1.9.3 + Phusion Passenger 4.0.57

Data upload complete.

bye!

Tip Most issues you will encounter uploading data to your channels
can be solved by ensuring you have the correct write key for the
channel you want to update. Be sure to double-check the key first if
you have problems.

Chapter 14 Using thingspeak

591

If you encounter problems or want to run the test_thingspeak.

py script again, you can remove all data in your channel by clicking the

Channel Settings tab and then scrolling to the bottom and clicking the

Clear Channel button as shown in Figure 14-6. Once you acknowledge the

clear, all data from your channel will be deleted.

Figure 14-6. Delete all data in the channel

Now, let’s turn our attention to how we can modify our example

projects retooling them to upload their data to ThingSpeak.

Note thingspeak free accounts are limited to four channels. if you
plan to implement many projects, you may need to delete one or
more channels or upgrade your account to a paid subscription.

 Example Project: IoT Environment Monitor
This section includes one of the projects from previous chapters that

we will update to send data to ThingSpeak for visualization. We will

use the environment monitor project from Chapter 12. If you have not

implemented this project, you may want to do so before attempting the

following examples.

The following sections present the details at a high level, and much of

the detail for the original project is omitted for brevity. Rather, we will see

details on the channel to create, how to prepare and modify the source

files, and then a demonstration of executing the project. Let’s begin with

the hardware.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12

592

 Required Components
The hardware for this project is the same as Chapter 12 with the exception

we won’t be using the Grove Shield for the Pi Pico. Rather, we will be using

the Pico Omnibus so that we can add the RTC and Pico Wireless Pack.

Unfortunately, this means we will not have any Grove connectors to

connect our array of Grove modules. However, there are two ways we can

overcome this limitation, using Grove cables and connecting the Pico

Omnibus to the Pico Grove Shield using jumper wires.

For the Grove cable option, we will use two different sets of Grove

cables and a breadboard. To connect Grove modules directly to the Pico,

we use the Grove – 4 pin Female Jumper to Grove 4 pin Conversion Cable

(www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-

Conversion-Cable-5-PCs-per-PAck.html) as shown in Figure 14-7.

Figure 14-7. Grove breakout cable with female header (courtesy of
seeedstudio.com)

We may also need to use the male version named Grove – 4 pin Male

Jumper to Grove 4 pin Conversion Cable (www.seeedstudio.com/Grove-4-

pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.

html) to use a breadboard to gang the ground and power cables together

since there are so few of those pins on the Pico GPIO header. Figure 14-8

shows the male version of the breakout cable.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html
http://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html
http://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html

593

Figure 14-8. Grove breakout cable with male header (courtesy of
seeedstudio.com)

For the jumper wire option, we will use M/F jumper wires to connect

the GPIO header on the Pico Omnibus to the Grove Shield. The concept is

we will “jump” all pins used by the Grove Shield from the Omnibus to the

Grove Shield. This will mimic using a Pico connected to the Grove Shield

(we will keep the Pico installed on the Pico Omnibus).

Since using the Grove breakout cables can be cumbersome and require

the use of a breadboard to connect the ground and power cables together,

we will instead jumper the GPIO header of the Pico Omnibus to the Grove

Shield. While this will require a number of jumper wires, it is the easiest

option to implement. However, you are welcome to use the Grove breakout

cable option if that works best for you.

 Set Up the Hardware
You should acquire and set up all of the modules as listed in Chapter 12.

If you decide to use the 3D printed mounting plate or if you already have

that done, you can leave all of the modules mounted and connected to

the mounting plate and plugged into the Grove Shield. You simply remove

the Pico from the Grove Shield before you start connecting it to the Pico

Omnibus. Figure 14-9 shows the starting point for the hardware assuming

you implemented the project in Chapter 12.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12
10.1007/978-1-4842-8135-2_12

594

Figure 14-9. Hardware from Chapter 12 with Pico removed

The easiest way to connect the Grove Shield to the Pico Omnibus is to

use 40 M/F jumper wires. Connecting them is very easy. Just connect the

male pin of each jumper to the Pico Omnibus noting the pin number and

plug it into the corresponding pin on the Grove Shield using the female

pin. If you want to avoid the inevitable “bird’s nest” of wires once you’re

done, you can purchase M/F jumper wires that are connected together.

Several vendors such as SparkFun and Adafruit carry these, and if you get a

set that has 20 connected together, it makes connecting the Pico Omnibus

and Grove Shield easier and less messy.

For example, SparkFun has the Jumper Wires – Connected 6”

(M/F, 20 pack). Since there are 20 connected together, we will need 2 of

these to complete the project. Each set costs $1.95. Figure 14-10 shows

the connected jumper wires from SparkFun.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12

595

Figure 14-10. M/F Jumper Wires Connected (courtesy of
sparkfun.com)

The best way to use these jumpers is to break them into sets of ten.

Connect each set of ten first to the Pico Omnibus and then the Grove

Shield. When you connect across the GPIO header side, interleave the sets

so that you remove most of the strain. Be sure to push the pins all the way

in as it is easy to have one or more pins partially inserted.

Using a set of ten has another benefit. There are ten colors in each

set, so you can visually inspect the colors to ensure you have the pins

connected in order. This helps remove the need to check each pin on each

GPIO header – a time-consuming and challenging task! Using groups of

ten connected together will make the connections easier.

Caution Be sure to double- and triple-check all of your connections
to ensure you have all of the wires connected to the correct pins. Do
not power on your pico until you have verified all of your connections.

When you are done, you should see an arrangement similar to

Figure 14-11.

Chapter 14 Using thingspeak

596

Figure 14-11. Grove Shield for Pico connected to the Pico Omnibus

The best way to make sure you have all cables connected is to return to

Chapter 12 and upload the project files to your Pico and run the main.py script

for Chapter 12. Figure 14-12 shows the files you should have at a minimum in

the project6 folder indicated thus far in the chapter. We will create a project9

folder in a later step. You can run main.py from Thonny on your PC.

Figure 14-12. Environment monitor files on the Pico

Now that we have our hardware setup, let’s create the ThingSpeak channel.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12
10.1007/978-1-4842-8135-2_12

597

 Create the ThingSpeak Channel
The data for this project contains numerical data as well as categorized

data (in the form of a string). We will capture the raw data rather than the

label (category). The data generated includes the temperature, barometric

pressure, dust concentration, and air quality. So, we will need one channel

with one field for each sensor or four fields in all.

Log in to your ThingSpeak account and click New Channel. We will

name the channel IoT Environment Monitor. Use the information shown

in Figure 14-13 to complete the form and then click Save Channel at the

bottom of the form. Or, you can press Enter, which will save the channel for

you. Note that you will need to tick the checkbox for Fields 2 and 3 to get

them to accept input.

Figure 14-13. IoT Environment Monitor channel settings

Chapter 14 Using thingspeak

598

Recall, we need to remember the order of the fields. Here, we have

defined Temperature, Pressure, Dust Concentration, and Air Quality where

they will be referenced as field 1, field 2, field 3, and field 4 in our code.

Now that we have the channel created, go to the API Keys tab, and

record the API key. You will need this information in the next step.

Figure 14-14 shows which key you will need.

Figure 14-14. Weather IoT channel API keys

 Prepare the Project Files
For this project, create a new folder named project9 on your Pico and

upload the project files from Chapter 12 (air_monitor.py, bmx280x.py,

dust_sensor.py, mcp9808.py, and ssd1306.py). See Chapter 12 for the

details on the source for some of the files.

Most of these files do not need to be modified. However, we will need

to change all occurrences of project6 to project9 in the air_monitor.py

file as shown in the following:

Imports

from machine import ADC, I2C, Pin

import time

from project9.bmx280x import BMX280

from project9.mcp9808 import MCP9808

from project9.dust_sensor import DustSensor

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12
10.1007/978-1-4842-8135-2_12

599

We also need to copy our new class module, thingspeak.py, to the

project9 folder as well as the ppwhttp.py file from Chapter 13. However,

we need to make one slight change to the thingspeak.py module. We

need to change the import for the ppwhttp library as follows:

from project9 import ppwhttp

Finally, copy the modified secrets.py file to the root of the Pico

filesystem.

Figure 14-15 shows the complete list of files needed on the Pico. Note

that we will modify the main.py in the next section.

Figure 14-15. Files needed on the Pico for the IoT
Environment Monitor

With that administrative work done, we can add the preliminary code.

 Update the Main Code
In this section, we will modify the main.py to add the ThingSpeak code.

Recall, we need only add the import statement and API key. Listing 14-8

shows an excerpt of the code with the new lines added. The rest of the code

from Chapter 12 remains the same. We will update the main() function

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_13
10.1007/978-1-4842-8135-2_12

600

to add the ThingSpeak code in the next section. Notice we also need to

change project6 to project9 in the imports for the air_monitor and

ssd1306 libraries.

Listing 14-8. Updates to the IoT Environment Monitor Main

Script (Python)

from machine import Pin, I2C

import time

from project9.air_monitor import (AirMonitor,

 AIR_POOR, AIR_FAIR, AIR_GOOD, AIR_ERR)

from project9.ssd1306 import SSD1306_I2C

from project9.thingspeak import ThingSpeak

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

Constants

SAMPLING_RATE = 5 # 5 second wait to start next read

BUZZER_PIN = 26

WARNING_BEEPS = 5

HIGH = 1

LOW = 0

...

Next, we need to declare an instance of our ThingSpeak class from the

thingspeak.py library module and then, after reading the data, use the

existing Python dictionary we created in the class (env_data) and pass that

to our thingspeak.upload_data() function call. Listing 14-9 shows the

function with changes in bold. The rest of the code for this version remains

the same as we had in Chapter 12.

Chapter 14 Using thingspeak

10.1007/978-1-4842-8135-2_12

601

Listing 14-9. Updates to the IoT Environment Monitor Main

Function (Python)

...

def main():

 """Main"""

 print("Welcome to the Environment Monitor!")

 # Setup buzzer

 buzzer = Pin(BUZZER_PIN, Pin.OUT)

 i2c = I2C(0,scl=Pin(9), sda=Pin(8), freq=100000)

 print("Hello. I2C devices found: {}".format(i2c.scan()))

 oled = setup_oled(i2c)

 # Start the AirMonitor

 air_quality = AirMonitor(i2c)

 time.sleep(3)

 oled_write(oled, 11, 4, "done")

 beep(buzzer)

 oled.fill(0)

 oled.show()

 thingspeak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 if air_quality.read_data():

 # Retrieve the data

 env_data = air_quality.get_data()

 oled_write(oled, 0, 0, "ENVIRONMENT DATA")

 oled_write(oled, 0, 2, "Temp: ")

 oled_write(oled, 5, 2,

 "{:3.2f}C".format(env_data

["temperature"]))

 oled_write(oled, 0, 3, "Pres: ")

 oled_write(oled, 5, 3,

Chapter 14 Using thingspeak

602

 "{:05.2f}hPa".format(env_data

["pressure"]))

 oled_write(oled, 0, 4, "Dust: ")

 if env_data["dust_concentration"] == 0.0:

 oled_write(oled, 5, 4, "-- ")

 else:

 oled_write(oled, 5, 4,

 "{:06.2f}%".format(env_data

["dust_concentration"]))

 oled_write(oled, 0, 5, "airQ: ")

 if env_data["air_quality"] in {AIR_ERR, AIR_POOR}:

 oled_write(oled, 5, 5, "POOR")

 elif env_data["air_quality"] == AIR_FAIR:

 oled_write(oled, 5, 5, "FAIR")

 elif env_data["air_quality"] == AIR_GOOD:

 oled_write(oled, 5, 5, "GOOD")

 else:

 oled_write(oled, 5, 5, "-- ")

 # Check for environmental quality

 if ((env_data["dust_concentration"] > MAX_DUST) or

 (env_data["temperature"] > MAX_TEMP) or

 (env_data["air_quality"] == AIR_POOR) or

 (env_data["air_quality"] == AIR_ERR)):

 #pylint: disable=unused-variable

 for i in range(0, WARNING_BEEPS):

 oled_write(oled, 3, 7, "ENV NOT OK")

 beep(0.250)

 time.sleep(0.250)

 oled_write(oled, 3, 7, " ")

 time.sleep(0.250)

Chapter 14 Using thingspeak

603

 # Send data to ThingSpeak channel

 data = {

 'field1': env_data['temperature'],

 'field2': env_data['pressure'],

 'field3': env_data['dust_concentration'],

 'field4': env_data['air_quality']

 }

 thingspeak.upload_data(data)

 else:

 oled.fill(0)

 oled.show()

 oled_write(oled, 0, 2, "ERROR! CANNOT")

 oled_write(oled, 0, 3, "READ DATA")

 time.sleep(SAMPLING_RATE)

...

That’s it, we’re ready to execute the project. We will need to let it run

for a few minutes so we can get some data. If you’re running the project

in a controlled environment where the values do not change, you may not

notice much variation. As an exercise, consider altering the environment

to stimulate changes in the data. Don’t use flame or touch the electronics

in any way while they are running.

 Execute and Visualize the Data
At this point, you can set up the hardware and run the project. Let it run

for about 20 minutes and then visit your ThingSpeak channel page. You

should see your data in the channel private view similar to Figure 14-16.

Chapter 14 Using thingspeak

604

Figure 14-16. Example results (IoT Environment Monitor example)

Once again, you may not see a lot of variances in the data if you

run it in a controlled environment. For better results in a controlled

environment, you should consider changing the sample rate from 30

seconds to every 4–6 hours. This should help show how the data changes

over the course of a day. Listing 14-10 shows an example execution. You

should see something similar.

Listing 14-10. IoT Environment Monitor Execution

Welcome to the Environment Monitor!

Hello. I2C devices found: [24, 60, 119]

Connecting to Snapper1...

Connected!

Chapter 14 Using thingspeak

605

>> Reading Data <<

> Reading temperature = 18.5625

> Reading pressure = 1006.613

> Reading dust concentration

> PM concentration: 0.6303307 pcs/0.01cf

> Dust concentration = 0.6303307

> Reading air quality = 2

Connecting to ThingSpeak...connected.

Sending data...done.

Data upload complete.

...

>> Reading Data <<

> Reading temperature = 20.125

> Reading pressure = 1006.402

> Reading dust concentration

> PM concentration: 0.6453933 pcs/0.01cf

> Dust concentration = 0.6453933

> Reading air quality = 2

Connecting to ThingSpeak...connected.

Sending data...done.

Data upload complete.

>> Reading Data <<

> Reading temperature = 19.9375

> Reading pressure = 1006.338

> Reading dust concentration

> PM concentration: 0.62572 pcs/0.01cf

> Dust concentration = 0.62572

> Reading air quality = 2

Connecting to ThingSpeak...connected.

Sending data...done.

...

Chapter 14 Using thingspeak

606

However, notice the air quality line graph. That’s not telling us

anything, is it? What if we created an indicator widget for that data that

changes color when the air quality gets poor?

In fact, you can create a gauge, numeric display, or an indicator (like an

LED or light) for your data that triggers on some value or threshold. See the

ThingSpeak documentation for more details about these options. For this

project, an indicator is an excellent choice for the air quality to provide an

at-a-glance readout.

Let’s do that. Go ahead and click Add Widgets, then select the indicator

and fill in the settings as shown in Figure 14-17, and then click Create.

Notice I set the indicator to turn on only if the air quality (field 4) reaches

three or more.

Figure 14-17. Creating an indicator (IoT Environment Monitor
example)

When air quality (field 4) is less than or equal to three, the indicator is

dim as shown in Figure 14-18.

Chapter 14 Using thingspeak

607

Figure 14-18. Indicator off (IoT Environment Monitor example)

Should the data reach a value of three to indicate poor air quality, the

indicator will turn on as shown in Figure 14-19. This shows us how we can

use the data to show thresholds reached. It can be used for high thresholds

or low thresholds in which case you may want to choose a less alarming

color such as green and so on.

Figure 14-19. Indicator on (IoT Environment Monitor example)

Now, we can take this a step further and create an array of indicators

for the air quality. For example, we can create one for good air quality

(green indicator, field 4 = 2), another for fair (yellow indicator, field 4 = 1),

and another for bad (red indicator, field 4 = 0). Figure 14-20 shows an

example of the indicators. Note that you can drag and drop the widgets on

the view to rearrange them. Nice! Note: The indicator colors are green for

good, yellow for poor, and red for bad quality.

Chapter 14 Using thingspeak

608

Figure 14-20. Air quality indicators (IoT Environment Monitor
example)

Now I can see at a glance what the air quality is at the moment of last

data read. Very nice!

There is just one more step you may want to consider – making the

data public.

 Public View
By default, your data in your channel is private. Only you can see it when

you log in. However, you can share the data views to more people. You can

choose one of the following options:

• Keep channel view private: Only you can see the data.

• Share channel view with everyone: Anyone can view the

data via its URL on the Public View tab. Thus, it only

shows the public widgets and such that you create.

Chapter 14 Using thingspeak

609

• Share channel view only with the following users: Only

those users that you specify can see the data on your

Private View tab. To add a new user, enter their email

address and click the Add User button. Each user is

then emailed an invitation with the URL for the private

data view. If they do not have a ThingSpeak account,

they must create one to access the data. Once logged in,

users can click the Channels ➤ Channels Shared with

Me menu to see the shared channels.

To choose one of the public options, click the Sharing tab of your

channel and make your selection. If you choose to share the data, you

won’t be given a specific URL to use. However, you can click the Public

View tab and then copy the URL in your browser and share that. For

example, it will resemble the following:3

https://thingspeak.com/channels/16A94A7

Similarly, you can do the same for those users you identified in the

last option.

3 This is a mock-up and not a valid URL for an existing channel. If you find a
channel at this address, it is completely accidental and not associated with this
work in any way.

Chapter 14 Using thingspeak

610

 Summary
If you have implemented all of the projects in this book, congratulations!

You are now ready to tackle your own IoT projects. If you’re still working on

the examples, keep at it until you’ve learned everything you need to know

to build your own IoT projects.

Our journey in learning how to build projects for the Raspberry Pi Pico

using MicroPython has concluded with a dive into how to use ThingSpeak

to satisfy the needs of your IoT project for storing and displaying your

data. In this chapter, we learned how to get started with ThingSpeak from

creating our account to creating channels to storing our data and even

some insights into how to modify the visualizations. Together with the

knowledge you gained in this chapter and the previous chapters, you now

have the skills to complete your own IoT projects.

In fact, you can now put down this book in triumph and start

thinking of some really cool ways you can implement what you have

learned. You want to monitor events and data in your house, workshop,

or garage. Or you want to design a more complex project that monitors

sound, movement, and ambient temperature changes (like a home

security system). Or you want to revisit the example project chapters and

implement the suggestions at the end of each chapter. All that and more

is possible with what you have learned in this book. Good luck, and happy

MicroPython programming!

Chapter 14 Using thingspeak

611

 Appendix

This appendix presents a list of the hardware required to complete the

projects presented in the book. While component lists are included in each

chapter and discussed in greater detail, listing the components here helps

when planning to purchase the components you do not already own.

Table A-1 lists the hardware common for most of the projects in

this book.

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2

https://doi.org/10.1007/978-1-4842-8135-2

612

Ta
bl

e
A

-1
.

G
en

er
al

 H
ar

dw
ar

e
N

ee
de

d

Co
m
po
ne
nt

Qt
y

Ch
ap
te
r

Co
st

Li
nk
s

Ra
sp

be
rr

y
Pi

co
1+

Al
l

$3
.7

7
th
ep
ih
ut
.c
om
/c
ol
le
ct
io
ns
/p
ic
o/
pr
od

uc
ts
/

ra
sp
be
rr
y-
pi
-p
ic
o

Br
ea

db
oa

rd
1

04
-0

8
$5

.9
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
61
5

$5
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
39

Ju
m

pe
r w

ire
s

M
/M

1
04

-0
8

$2
.2

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
11
02
6

$1
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/1
95
6

Ju
m

pe
r w

ire
s

F/
F

4
08

$1
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
79
6

$3
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
66

OL
ED

 d
is

pl
ay

1
06

$1
7.

50
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/6
61

RT
C

br
ea

ko
ut

 b
oa

rd
1

06
, 0

8
$1

5.
95

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
70
8

$7
.5

0
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/3
29
6

Co
in

 c
el

l b
at

te
ry

CR
12

25
 (S

pa
rk

fu
n

RT
C)

CR
12

20
 (A

da
fru

it
RT

C)

1
06

, 0
8

$1
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
33
7

$0
.9

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/3
80

Re
d

LE
D

2
07

, 1
3

$4
.0

0
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
99

$0
.3

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
90

 APPEnDix

http://thepihut.com/collections/pico/products/raspberry-pi-pico
http://thepihut.com/collections/pico/products/raspberry-pi-pico
http://www.sparkfun.com/products/12615
http://www.adafruit.com/product/239
http://www.sparkfun.com/products/11026
http://www.adafruit.com/product/1956
http://www.sparkfun.com/products/12796
http://www.adafruit.com/product/266
http://www.adafruit.com/product/661
http://www.sparkfun.com/products/12708
http://www.adafruit.com/product/3296
http://www.sparkfun.com/products/337
http://www.adafruit.com/product/380
http://www.adafruit.com/product/299
http://www.sparkfun.com/products/9590

613

Ye
llo

w
 L

ED
2

07
, 1

3
$4

.9
5

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
70
0

$0
.3

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
94

Gr
ee

n
LE

D
1

07
, 1

3
$4

.0
0

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
98

$0
.3

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
92

22
0

or
 3

30
 O

hm
 re

si
st

or
s

5
07

, 1
3

$7
.9

5
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
10
96
9

$0
.7

5
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
78
0

Bu
tto

n
1

07
, 1

3
$2

.5
0

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/1
11
9

$0
.5

0
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
91
90

So
il

M
oi

st
ur

e
1+

08
$6

.9
5

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
13
63
7

RT
C

br
ea

ko
ut

 b
oa

rd
1

08
$1

5.
95

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
12
70
8

$7
.5

0
ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/3
29
6

Ho
st

 B
oa

rd
 -

 O
m

ni
bu

s
1

08
$7

.7
5

th
ep
ih
ut
.c
om
/c
ol
le
ct
io
ns
/p
ic
o/
pr
od

uc
ts
/p
ic
o-

om
ni
bu
s-
du
al
-e
xp
an
de
r

OL
ED

 -
 P

ic
o

Di
sp

la
y

1
08

$1
4.

00
th
ep
ih
ut
.c
om
/c
ol
le
ct
io
ns
/p
ic
o/
pr
od

uc
ts
/p
ic
o-

di
sp
la
y-
pa
ck

(c
on

ti
n

u
ed

)

 APPEnDix

http://www.adafruit.com/product/2700
http://www.sparkfun.com/products/9594
http://www.adafruit.com/product/298
http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/10969
http://www.adafruit.com/product/2780
http://www.adafruit.com/product/1119
http://www.sparkfun.com/products/9190
http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/12708
http://www.adafruit.com/product/3296
http://thepihut.com/collections/pico/products/pico-omnibus-dual-expander
http://thepihut.com/collections/pico/products/pico-omnibus-dual-expander
http://thepihut.com/collections/pico/products/pico-display-pack
http://thepihut.com/collections/pico/products/pico-display-pack

614

So
un

d
Se

ns
or

1
10

$5
.4

0
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
So
un
d-
Se

ns
or
-B
as
ed
-

on
-L
M3
58
-a
mp
li
fi
er
-A
rd
ui
no
-C
om
pa
ti

bl
e.
ht
ml

Ch
ai

na
bl

e
RG

B
1

10
$6

.6
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ch
ai
na
bl

e-
RG
B-

Le
d-
V2
-0
.h
tm
l

Gr
ov

e
Sh

ie
ld

 fo
r P

i P
ic

o
V1

.0
1

10
$4

.3
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Sh
ie
ld
-f

or
-P
i-
Pi
co
-

v1
-0
-p
-4
84
6.
ht
ml

Gr
ov

e
Ca

bl
e

8
10

Va
rie

s
ww
w.
se
ee
ds
tu
di
o.
co
m/
ca
bl
es
-c
-9
49
.h

tm
l?
ca
t=
94
9

Gr
ov

e
Du

al
 B

ut
to

n
3

11
$2

.2
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Du
al
-B
ut

to
n-
p-
45
29
.

ht
ml

Gr
ov

e
Bu

zz
er

1
11

, 1
2

$1
.9

0
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Bu
zz
er
.h

tm
l

Gr
ov

e
LC

D
RG

B
Ba

ck
lig

ht
1

11
$1

1.
90

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
LC
D-
RG
B-

Ba
ck
li
gh
t.

ht
ml

Gr
ov

e
Ch

ai
na

bl
e

RG
B

Le
d

V2
.0

1
11

$6
.6

0
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ch
ai
na
bl

e-
RG
B-

Le
d-
V2
-0
.h
tm
l

Gr
ov

e
OL

ED
 0

.9
6

v1
.3

1
12

$1
6.

40
ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
OL
ED
-D
is

pl
ay
-0
-9
6.

ht
ml

Gr
ov

e
Bu

zz
er

1
12

$2
.1
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Bu
zz
er
.h

tm
l

Ta
bl

e
A

-1
.

(c
on

ti
n

u
ed

)

Co
m
po
ne
nt

Qt
y

Ch
ap
te
r

Co
st

Li
nk
s

 APPEnDix

http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM358-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/Grove-Shield-for-Pi-Pico-v1-0-p-4846.html
http://www.seeedstudio.com/cables-c-949.html?cat=949
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-OLED-Display-0-96.html
http://www.seeedstudio.com/Grove-OLED-Display-0-96.html
http://www.seeedstudio.com/Grove-Buzzer.html

615

Gr
ov

e
i2

C
Hi

gh
 A

cc
ur

ac
y

Te
m

pe
ra

tu
re

 S
en

so
r

1
12

$5
.2
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
I2
C-
Hi
gh

-A
cc
ur
ac
y-

Te
mp
er
at
ur
e-
Se
ns
or
-M
CP
98
08
.h
tm
l

Gr
ov

e
Te

m
pe

ra
tu

re
 a

nd

Ba
ro

m
et

er
 S

en
so

r

1
12

$9
.8
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ba
ro
me
te

r-
Se
ns
or
-

BM
P2
80
.h
tm
l

Gr
ov

e
Ai

r Q
ua

lit
y

Se
ns

or
1

12
$1
0.
90

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Ai
r-
Qu
al

it
y-
Se
ns
or
-

v1
-3
-A
rd
ui
no
-C
om
pa
ti
bl
e.
ht
ml

Gr
ov

e
Du

st
 S

en
so

r
1

12
$1
2.
70

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
Du
st
-S
en

so
r-
PP
D4
2N
S.

ht
ml

Gr
ov

e
-

i2
C

Hu
b

(6
 P

or
t)

1*
12

$1
.7
0

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
I2
C-
Hu
b-

6-

Po
rt
-p
-4
34
9.
ht
ml

$6
.9
5

sh
op
.s
wi
tc
hd
oc
.c
om
/c
ol
le
ct
io
ns
/g
ro

ve
/p
ro
du
ct
s/

gr
ov
e-
6-
po
rt
-1
2c
-h
ub

Pi
co

 W
ire

le
ss

 P
ac

k
1

13
, 1

4
$1

3.
20

sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/p
ic
o-
wi

re
le
ss
-p
ac
k

Pi
co

 O
m

ni
bu

s
1

13
, 1

4
$8

.2
5

sh
op
.p
im
or
on
i.
co
m/
pr
od
uc
ts
/p
ic
o-
om

ni
bu
s

M
ic

ro
 S

D
Ca

rd
 (a

ny
 s

iz
e)

1
14

Va
rie

s
Co
mm
on
ly
 s
ou
rc
ed

 APPEnDix

http://www.seeedstudio.com/Grove-I2C-High-Accuracy-Temperature-Sensor-MCP9808.html
http://www.seeedstudio.com/Grove-I2C-High-Accuracy-Temperature-Sensor-MCP9808.html
http://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html
http://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
http://www.seeedstudio.com/Grove-I2C-Hub-6-Port-p-4349.html
http://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub
http://shop.switchdoc.com/collections/grove/products/grove-6-port-12c-hub
http://shop.pimoroni.com/products/pico-wireless-pack
http://shop.pimoroni.com/products/pico-omnibus

616

Table A-2 lists the optional hardware needed to complete the optional

projects such as those in Chapter 4 and the suggestions in the project

chapters.

Table A-2. Optional Components

Component Qty Chapter Cost Links

Adafruit RGB Sensor 1 04 $7.95 www.adafruit.com/

product/1334

Adafruit Thermocouple

Amplifier MAx31855 breakout

board

1 04 $14.95 www.adafruit.com/

product/269

Adafruit Thermocouple

Type-K Glass Braid insulated

Stainless Steel Tip

1 04 $9.95 www.adafruit.com/

product/3245

Jumper Wires - Connected 6"

(M/F, 20 pack)

2 14 $2.10 www.sparkfun.com/

products/12796

APPEnDix

10.1007/978-1-4842-8135-2_4
http://www.adafruit.com/product/1334
http://www.adafruit.com/product/1334
http://www.adafruit.com/product/269
http://www.adafruit.com/product/269
http://www.adafruit.com/product/3245
http://www.adafruit.com/product/3245
http://www.sparkfun.com/products/12796
http://www.sparkfun.com/products/12796

617

Index

A, B
Adafruit Feather RP2040, 11, 12
Adafruit ItsyBitsy RP2040 board, 12
Adafruit QT Pi board, 13, 14
Analog-to-digital conversion (ADC)

ADS1015 12-Bit, 334
capabilities, 325
sound activated lights, 392

Application programming interface
(API), 155

Arduino Nano RP2040 Connect
board, 17, 18

C
Cloud computing services

capabilities, 498
feature set, 498
help option, 496
IoT (see Internet of Thing (IoT))
patterns, 495
software/environment/

resources, 494
subscription, 495
vendors, 497, 498

Comma-separated value (CSV)
file, 326

D
Digital multimeters, 216

E, F
Electronics

Adafruit Parts Pal, 245, 280
AC, 228
assorted breadboards, 248–252
breakout boards, 241, 242
capacitors, 231, 232
cathode, 229
circuits/breadboard, 247
components, 213, 230, 244
comprehensive tutorial, 213
DC, 229
definition, 228
diodes, 232
fuses, 233
IC/chips, 248
jumper wires/

breadboard, 242–244
kit components, 245–248
light-emitting diode, 234–236
linear voltage regulator, 240, 241
momentary button, 230, 231
multimeter (see Multimeter)

© Charles Bell 2022
C. Bell, Beginning MicroPython with the Raspberry Pi Pico,
https://doi.org/10.1007/978-1-4842-8135-2

https://doi.org/10.1007/978-1-4842-8135-2

618

polarity, 229
relay, 236, 237
resistors, 237
sensors, 251–267
switches, 237–239
tools/techniques, 214

helping hands tool, 219, 220
list of, 214
multimeter, 215, 216
soldering iron, 217, 218
wire strippers, 218, 219

transistor (bipolar
transistor), 239

Electrostatic discharge (ESD),
215, 219, 273, 274

Environment monitor project, 453
class modules, 468

AirMonitor class, 476–482
data sheet (graph), 472
DustSensor class, 469–476
helper functions, 477
main code module, 483–488
setup_oled() function, 483

components, 454
hardware, 457

air quality sensor, 461
connections, 463, 464
dust/particles, 461
I2C high accuracy

temperature sensor, 458, 459
OLED 0.96, 457
temperature/barometer

sensor, 460, 461

learning process, 490
mounting plate design

components, 464–467
hardware, 466
I2C hub mounting, 467
modules, 466
spacers design, 465
3D printing files, 464

project description, 453, 454
sample rate, 477
software libraries, 468
test execution, 488–490

Espressif (ESP) boards, 50

G
General-purpose input/output

(GPIO), 1, 3, 154, 155, 336
Grove component system, 369

ADS1115 16-bit ADC
module, 378

cabling/connectors, 387
capabilities, 371
components

AHT20 I2C temperature and
humidity sensor, 386

categories, 383
dual button module, 386
host adapters, 380–382
modules, 382–387
OLED Display, 385
Red LED module, 384
seeed studio, 380
sound sensor, 385

Electronics (cont.)

INDEX

619

subcategories, 383
top-level index, 379

8-Channel I2C Hub, 378
host adapter, 371
limitations, 377–379
modular component

system, 370
overview, 369
plugging/host board, 388, 389
Qwiic components, 387
reversed connection, 391
screw terminal module, 379
sound detected (see Sound

activated lights)
working process

analog protocol, 374
cable/connectors, 372
connectors, 372
digital protocol, 373
I2C cable, 373
UART protocol, 375
vertical/horizontal

orientation, 375

H
Hello, World! project

clock project, 282, 283
code execution

component list, 304
deployment/testing, 300
embellishments, 303–305
main.py file, 301
MicroPython clock, 302

components, 271
connections, 281, 282
design/implementation, 284, 285
documentation and links, 275
electrostatic discharge, 274, 275
hardware RTC, 275
hardware setup, 280–284
headers, 273
libraries, 276, 285–287
logic error, 272
Monochrome, 279
OLED display, 275
planning code, 287

core code, 291–295
helper functions, 289–291
import section, 287, 288
initialization, 288, 289
setup, 288

real-time clock, 279
required components, 277–280
testing process

breakout boards, 295
OLED breakout board,

299, 300
RTC breakout

board, 296–299

I
Indoor environment monitor (see

Environment monitor
project)

Integrated development
environment (IDE), 30

INDEX

620

Inter-integrated Circuit (I2C)
breakout board, 195
code execution, 203, 204
components, 196, 199
fast digital protocol, 195
grove system, 373
hardware setup, 196–198
RGB sensor, 198
writing code, 198–203

Internet of Thing (IoT)
data storage, 500
description, 493, 494
feature set, 498, 499
pedestrian crossing

functions, 520–525
global variables, 518, 519
hardware

components, 513–516
import section, 518
stoplight simulation, 516
test execution, 525–528
web project, 527
wireless pack, 515
writing code, 517

Pico Wireless Pack, 508–512
project description, 512
routing and messaging, 501
soil moisture sensors

code module, 552–554,
556, 557

complete code
module, 543–546

constants, 538, 539
features, 528

get_html_sensor_data()
function, 549

hardware
components, 529–532

helper functions, 540, 541
HTML code (files), 535–537
imports, 537, 538
main code, 534, 542
plant monitoring

wiring, 532
plant monitor web

project, 560
public methods, 548–550
RTC DS3231 module, 529
SD card reader, 551
setup code, 539, 540
SoilMoisture

class, 546–548
test execution, 557–560
threads, 550, 551
web server, 561
web server functions, 541
writing code, 532–534

ThingSpeak, 591–609
transformation

(queries), 500
visualization tools, 501
WiFi (see WiFi modules, Pico)

J, K
JavaScript Object Notation (JSON),

48, 125, 164
Jumper wires, 197, 242–244

INDEX

621

L
Light-dependent resistors

(LDRs), 259
Light-emitting diode (LED)

blink board, 70–74
electronics, 234–236
micro-USB port, 69–73
sleep() method, 72
timer library, 78–81
toggle() method, 74–78

Low-level hardware
breakout boards

elements, 193
I2C protocol, 194
methods, 193
searches, 194

drivers, 191–193
exceptions, 177–182
functions/classes, 170–176
GPIO header, 154, 155
I2C protocol, 195–204
libraries, 181

built-in/standard
libraries, 156

custom libraries, 184–188
directory/files, 185
firmware, 155
helper_functions.py, 185
machine, 182, 183
paraphrase, 156
sensor_convert.py, 186
standard Python

libraries, 157–160

sys library, 160–162
uio library, 162–164
ujson library, 164–166
uos library, 159, 167–170

low-level libraries, 189–191
onboard sensors, 191
overview, 153
serial peripheral

interface, 204–211
working process, 190

Low pulse occupancy time
(LPO), 470

M
Microcontroller unit (MCU)

circuits and
components, 2

embedded controller/
processor, 2, 3

hardware features, 3
MicroPython, 43

bootloader file, 29
BOOTSEL switch, 29
compiled languages, 46
executing code, 63
feature, 47–49
file operations

Adafruit tool, 64
Thonny, 66–69
utilities, 63–66

hardware libraries, 48
installation, 28
interactive console, 47

INDEX

622

interpreted languages, 46
LED board

blink, 70–74
file downloading, 82
sleep() method, 72
Thonny save dialog, 73
timer, 78–81
toggle() method, 74–78
working process, 81, 82

limitation, 49
logo skill badge, 45
micro-USB port, 69
origins, 45–47
overview, 43
Python (see Python language)
Python language, 44
run on options, 50
Thonny, 30–37
USB connector, 30
working process, 62

Multimeter
current, 225, 226
dial, 221
measure voltage, 223, 224
printed circuit boards, 220
resistance, 226–228
scale, 221
testing continuity, 222, 223

N
Network time protocol

(NTP), 275

O
Object-oriented programming

(OOB), 86, 106, 108–111
Organic light-emitting diode

(OLED), 275

P, Q
Passive infrared sensor (PIR), 263
Pedestrian crossing

analog devices (LEDs), 323
bicyclist, 308
button_pressed() function, 318
code execution, 322, 323
components, 309–311
connections, 313
cycle_lights() function, 317
functions, 316–322
hardware setup, 312–314
imports, 315
IoT, 513–528
pushbutton/momentary

button, 308
setup code, 315, 316
simulation code, 319
simulation projects, 307
wiring drawing, 313
working process, 308
writing code, 314

Pico
accessories

Display Pack, 25, 26
electronic components, 23
features, 24

MicroPython (cont.)

INDEX

623

Grove Shield, 27
host boards, 23
Maker Pi, 24
Omnibus, 25
Pimoroni, 24
Seeed Studio, 27
Wireless Pack, 26

Adafruit, 20
computer configuration, 28
display, 330
grove shield, 394
IoT, 502
MicroPython, 28–37
Omnibus, 330, 331
online vendors, 20–22
Pimoroni, 22
REPL feature, 37–42
Seeed Studio/Mouser, 21
SparkFun, 21
ThingSpeak, 572–591
Wireless Pack, 508–512

Pimoroni Pico LiPo, 19
Plant monitor, see Soil

moisture monitor
Printed circuit boards (PCBs), 2,

215, 219, 220, 231, 247
Pulse-width modulation (PWM),

7, 48, 425, 470
Python languages

arithmetic, logical, and
comparison
operators, 90, 91

block comments, 89
classes/code modules, 141

code execution, 149, 150
conversions, 150
converting roman

numerals, 147
functions, 146
integer method, 144
roman numerals, 142–148
validate() method, 150

code block, 87, 88
concepts, 86
conversion functions, 96
data/files

code execution, 132
file access modes, 127
JSON language, 125
modification, 132
stores and retrieves

data, 126–132
strings, 126

data structures, 97
dictionaries, 99–101
lists, 97, 98
tuples, 98, 99

debugging code, 51
documentation, 151
features, 86, 87
functions

code execution, 140, 141
fibonacci series, 134–140
mathematical formulae, 133
modification, 141
recursion, 133, 134

installation, 52
interpreter, 59, 61, 62

INDEX

624

Linux, 57
loops

converting integers, 121, 122
executing code, 122, 123
for loop, 120
static tuple, 123–125

modularization, 105
functions, 106–108
modules/libraries, 105, 106
object-oriented

programming, 109–111
objects/classes, 108
syntax, 110–119

object syntax
built-in attributes, 117, 119
class statement, 110
function vs. method, 110
pickup.py file, 117
pickup truck class, 113–117
sedan.py file, 112
vehicle.py file, 111

macOS, 56, 57
optimization purposes, 51
screen output, 91–93
statements

conditional statements,
102, 103

keywords, 105
loops, 103–105

terminal window, 58–61
Thonny, 120
types, 95, 96
variables, 93–95

wiki, 51
Windows 10, 52–55

R
Radio frequency identification

(RFID), 264
Raspberry Pi Pico

boot selection, 4
GPIO pins, 4, 5
hardware, 8–10
microcontrollers, 2, 3
overview, 1
Pico (see Pico)
RP2040 (see RP2040)
USB port, 3, 4
WiFi chip, 10

Read-evaluate-print loop
(REPL), 37

COM port, 38
macOS/Linux, 40
PuTTY terminal, 39, 40
serial communication

utility, 38–40
Thonny section, 41, 42

Real-time clock (RTC)
DS1307 breakout board, 279
hardware, 275
overview, 275
testing process, 296

Red, green, and blue (RGB) LED,
330, 395, 396

Representational state transfer
(REST), 564

Python languages (cont.)

INDEX

625

RP2040
Adafruit Feather, 11, 12
Adafruit QT Pi board, 13, 14
Arduino Nano connect

board, 17, 18
characteristics, 5
features, 6, 7
ItsyBitsy, 12
microcontroller boards, 10
MicroPython, 15
nomenclature, 6–8
Pimoroni, 19
SparkFun MicroMod Pi

Processor, 15–17
SparkFun Pro Micro, 13, 14
SparkFun Thing Plus, 14, 15

S
Sensors

accelerometers, 256
analog sensors, 253
audio, 256
barcodes, 256
biometric sensors, 257
capacitive, 257
coin slots, 258
current, 258
digital sensors, 254, 255
electromagnetic

radiation, 264
electronic devices, 251–253
flexes/forces, 258
gas, 259

humidity, 252
intensity/lack, 259
light sensors, 259, 260
liquid flow, 260
liquid-level, 261
location, 261
low-cost devices, 251
magnetic stripes, 262
magnetometers, 262
measures phenomena, 251
moisture, 262
proximity, 263, 264
resources, 268
RFID tag, 264
soil moisture, 263
speed, 265
switches and

pushbuttons, 266
tilt switches, 266
touch-sensitive, 266
types of, 255
ultrasonic proximity, 264
video, 266
weather, 267

Serial Peripheral
Interface (SPI)

Adafruit Thermocouple
Amplifier/Type-K sensor,
205, 206

breakout board, 204
code execution, 207–210
execution, 210
hardware set up, 206, 207
sending and receiving data, 204

INDEX

626

Serial Wire Debug (SWD)
interface, 4, 9

Simon game, 411
class modules

creation, 423
main code module, 445–448
num_alive()/reset_screen()

function, 436
play() function, 436
play_sequence()/generate_

sequence() function, 437
private functions, 435
read_sequence()

function, 437
show_winner() function, 436
simon class, 434–445
start_game() function, 436
tone sequences, 423

buttons class, 430–434
buzzer class, 423–429
components, 412, 413
description, 411
Grove dual Button, 413
hardware setup

connections, 415, 416
dual button modules, 420
mounting plate

design, 416–421
3D printed plate, 421
3D spacers design, 418

LCD RGB backlight, 414
project execution, 450
software libraries, 422
test execution, 448, 449

writing code, 422
Soil moisture monitor

calibration, 340–344
class modules, 340, 344

constructor, 346–349
main code, 359–365
PlantDisplay, 355–359
private functions, 350–355
public functions, 349, 350
ReadTimer class, 344–347
sampling rate, 345
SoilMoisture, 347

code execution, 365, 366
components, 327–329
display, 331
hardware setup

connections, 338–340
GPIO headers, 335, 336
Pimoroni image, 336, 337

host board/adapter, 329, 330
IoT, 528–561
Omnibus, 330
pinout chart, 333
potential hardware

conflict, 333–335
research modules, 366
sensors, 331, 332
visualization, 325, 326
writing code, 339

Sound activated lights
code layout, 400
components, 392, 393
embellishments, 409
grove shield, 394

INDEX

627

hardware setup, 398, 399
helper functions, 401

get_value() function, 402
num_to_rgb() function, 403
translate() function, 403

imports, 401
kits, 397
libraries, 399, 400
main() function, 403

execution loop, 405–409
setup code, 404

red, green, and blue (RGB) LED,
395, 396

sound sensor, 392, 395
testing/execution, 408, 409
writing code, 399

SparkFun MicroMod Pi RP2040
processor board, 15–17

SparkFun Pro Micro
RP2040, 13, 14

SparkFun Thing Plus, 14, 15

T
ThingSpeak

channel creation, 567–570
data elements, 564
description, 564
fields, 569
IoT environment monitor

air quality indicators, 608
channel settings, 597, 598
data visualization/

execution, 603–608

environment monitor
files, 596

Grove breakout
cable, 592

hardware components,
592, 593

hardware setup, 593–596
indicator creation, 606
jumper wires, 595
main() function, 599–603
Omnibus, 596
private view, 608, 609
project files, 598, 599
visualization, 591

MathLabs account creation,
566, 567

MQTT messages, 565
Pico

channel data, 588
configuration, 572
console output, 587–591
constructor, 575
delete option, 591
import and constant

sections, 574
JSON string, 573
source code, 579–581,

583, 584
test_thingspeak.py,

585, 586
upload_data()

function, 576–578
writing code, 572

project description

INDEX

628

libraries, 570
Pico, 572–591
practice channel, 571

protocols, 565
Thonny

BOOTSEL switch, 32
COM port selection, 36
file viewer, 66–69
IDE (Windows 10), 31
installation, 30, 33, 34
Python interpreter, 33, 37
Python languages, 120
REPL, 41, 42
standard option, 31

U, V
Universal asynchronous receiver-

transmitter (UART)
protocols, 370

W, X, Y, Z
WiFi modules, Pico

DiP-Pi WiFi Master, 504, 505
ESP8266 WiFi module, 503, 504
external module, 503
Maker Pi Pico Base, 505, 506
modules, 502
Pico Wireless Pack, 506, 507
UART-based AT commands, 508

Python languages (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing the Raspberry Pi Pico
	What Is a Microcontroller?
	A Tour of the Raspberry Pi Pico
	Introducing the RP2040
	Pico Hardware Overview
	RP2040-Based Alternatives
	Adafruit Feather 2040
	Adafruit ItsyBitsy RP2040
	Adafruit QT Py
	SparkFun Pro Micro – RP2040
	SparkFun Thing Plus – RP2040
	SparkFun MicroMod Pi RP2040 Processor
	Arduino Nano RP2040 Connect
	Pimoroni Pico LiPo

	Getting Started with the Pico
	Where to Buy
	Required Accessories
	Optional and Recommended Accessories

	Preparing Your Computer
	Installing MicroPython on the Pico
	Manual Install
	Using Thonny

	Connecting to the Pico
	Using the REPL Console with a Serial Communication Utility
	Starting the REPL Console (macOS and Linux)
	Connecting to the Pico with Thonny

	Summary

	Chapter 2: Introducing MicroPython
	Getting Started
	Origins
	MicroPython Features
	MicroPython Limitations
	What Does MicroPython Run On?
	Experimenting with Python on Your PC
	Installing Python 3 on Windows 10
	Installing Python 3 on macOS
	Installing Python 3 on Linux
	Running the Python Console
	Running Python Programs with the Interpreter

	How It Works
	File Operations with a Utility
	File Operations with Thonny

	Off and Running with MicroPython
	Example 1 – Blink the LED
	Example 2 – Toggle the LED
	Example 3 – Timer
	Saving Your Work

	Summary

	Chapter 3: How to Program in MicroPython
	Basic Concepts
	Code Blocks
	Comments
	Arithmetic
	Output to Screen

	Variables and Statements
	Types
	Basic Data Structures
	Lists
	Tuples
	Dictionaries

	Statements
	Conditional Statements
	Loops

	Modularization
	Including Modules
	Functions
	Classes and Objects
	Object-Oriented Programming (OOP) Terminology
	Python Object Syntax

	Learning Python by Example
	How Do I Create and Execute Python Files?
	Example 1: Using Loops
	Write the Code
	Execute the Code
	Your Challenge

	Example 2: Using Complex Data and Files
	Write the Code
	Execute the Code
	Your Challenge

	Example 3: Using Functions
	Write the Code
	Execute the Code
	Your Challenge

	Example 4: Using Classes
	Write the Code
	Execute the Code
	Your Challenge

	For More Information
	Summary

	Chapter 4: Low-Level Hardware Support
	The Pico GPIO Header
	MicroPython Libraries
	Built-In and Standard Libraries
	Overview
	sys
	uio
	ujson
	uos

	Built-In Functions and Classes
	Exceptions
	MicroPython-Specific Libraries
	machine
	Custom Libraries

	Low-Level Libraries

	Working with Low-Level Hardware
	Drivers and Libraries to the Rescue!

	Using Breakout Boards
	Inter-integrated Circuit (I2C)
	What Is I2C?
	Overview
	Required Components
	Set Up the Hardware
	Write the Code
	Execute

	Serial Peripheral Interface (SPI)
	Overview
	Required Components
	Set Up the Hardware
	Write the Code
	Execute

	Summary

	Chapter 5: Electronics for Beginners
	The Basics
	Tools
	Multimeter
	Soldering Iron
	Wire Strippers
	Helping Hands

	Using a Multimeter
	Testing Continuity
	Measuring Voltage
	Measuring Current
	Measuring Resistance

	Powering Your Electronics

	Electronic Components
	Button
	Capacitor
	Diode
	Fuse
	Light-Emitting Diode (LED)
	Relay
	Resistor
	Switch
	Transistor
	Voltage Regulator
	Breakout Boards
	Breadboard and Jumper Wires
	Basic Electronics Kit

	Using a Breadboard to Build Circuits
	What Are Sensors?
	How Sensors Measure
	Analog Sensors
	Digital Sensors

	Examples of Sensors
	Accelerometers
	Audio Sensors
	Barcode Readers
	Biometric Sensors
	Capacitive Sensors
	Coin Sensors
	Current Sensors
	Flex/Force Sensors
	Gas Sensors
	Light Sensors
	Liquid Flow Sensors
	Liquid-Level Sensors
	Location Sensors
	Magnetic Stripe Readers
	Magnetometers
	Moisture Sensors
	Proximity Sensors
	Radiation Sensors
	RFID Sensors
	Speed Sensors
	Switches and Pushbuttons
	Tilt Switches
	Touch Sensors
	Video Sensors
	Weather Sensors

	Electronics Resources
	Summary

	Chapter 6: Project: Hello, World! MicroPython Style
	Getting Started with Pico Projects
	One Step at a Time!
	Some Assembly Required
	Handle with Care!

	Overview
	Required Components
	Set Up the Hardware
	Write the Code
	Design
	Libraries Needed
	Planning the Code
	Imports
	Setup
	Initialize
	New Helper Functions
	Core Code

	Test the Breakout Boards
	Test the RTC Breakout Board
	Test the OLED Breakout Board

	Execute
	Taking It Further

	Summary

	Chapter 7: Project: Pedestrian Crossing
	Overview
	Required Components
	Set Up the Hardware
	Write the Code
	Imports
	Setup
	Functions

	Execute
	Taking It Further

	Summary

	Chapter 8: Project: Soil Moisture Monitor
	Overview
	Required Components
	Pico Omnibus
	Pico Display
	Soil Moisture Sensor
	Potential Hardware Conflicts

	Set Up the Hardware
	Load the Pimoroni Image on the Pico
	Connecting the Hardware

	Write the Code
	Calibrating the Sensor
	Class Modules
	ReadTimer
	SoilMoisture
	Constructor
	Public Functions
	Private Functions

	PlantDisplay

	Main Code

	Execute
	Taking It Further

	Summary

	Chapter 9: Introducing Grove
	Overview
	The Grove Component System
	Capabilities
	How Does It Work?
	I2C
	Digital
	Analog
	UART

	Limitations

	Components Available
	Host Adapters
	Modules
	Cabling and Connectors
	Where to Buy Grove Components

	Using the Components with Your Pico
	Summary

	Chapter 10: Project: Sound Activated Lights
	Overview
	Required Components
	Grove Shield for Pi Pico
	Sound Sensor
	Grove RGB LED
	Grove Kits

	Set Up the Hardware
	Write the Code
	Libraries Needed
	Code Layout
	Imports
	Functions

	Main Function
	Setup
	Execution Loop

	Execute
	Taking It Further

	Summary

	Chapter 11: Project: Simon Game
	Overview
	Required Components
	Grove Dual Button
	Grove LCD RGB Backlight

	Set Up the Hardware
	Using a Mounting Plate

	Write the Code
	Install Software Libraries
	Create the Class Modules
	Buzzer Class
	Buttons Class
	Simon Class
	Main Code Module

	Execute
	Taking It Further
	Summary

	Chapter 12: Project: Monitoring your Environment
	Project Overview
	Required Components
	About the Hardware
	Grove OLED 0.96
	Grove I2C High Accuracy Temperature Sensor (MCP9808)
	Grove Temperature and Barometer Sensor (BMP280)
	Grove Air Quality Sensor
	Grove Dust Sensor

	Set Up the Hardware
	Using a Mounting Plate

	Write the Code
	Install Software Libraries
	Create the Class Modules
	DustSensor Class
	AirMonitor Class
	Main Code Module

	Execute
	Going Further
	Summary

	Chapter 13: Introducing IoT for the Cloud
	Overview
	What Is the Cloud?
	What Is Cloud Computing Then?
	How Does the Cloud Help IoT?

	IoT Cloud Systems
	IoT Cloud Services Available
	Data Storage
	Data Transformation (Queries)
	Visualization Tools
	Routing and Messaging

	Connecting Your Pico to the Internet
	Pico WiFi Modules
	ESP8266 WiFi Module for Raspberry Pi Pico
	DiP-Pi WiFi Master for Raspberry Pi Pico
	Maker Pi Pico Base
	Pico Wireless Pack
	So, Which One Do You Choose?

	Using the Pico Wireless Pack

	IoT Project Examples
	Example 1: Pedestrian Crossing
	Set Up the Hardware
	Write the Code
	Imports
	Global Variables
	Functions Needed

	Execute

	Example 2: Soil Moisture Monitor
	Set Up the Hardware
	Write the Code
	Main Code
	HTML Code (Files)
	Imports
	Constants
	Setup Code
	Helper Functions
	Main Function
	Complete Code

	Soil Moisture Class
	Public Functions
	Using Locks
	Using the SD Card
	Completed Code

	Execute
	Improving the Code

	Summary

	Chapter 14: Using ThingSpeak
	Getting Started
	Create an Account in ThingSpeak
	Create a Channel

	How to Add ThingSpeak to Your Projects
	Using ThingSpeak with the Pico
	Configuring the Raspberry Pi Pico
	Write the Code
	Testing the Script

	Example Project: IoT Environment Monitor
	Required Components
	Set Up the Hardware
	Create the ThingSpeak Channel
	Prepare the Project Files
	Update the Main Code
	Execute and Visualize the Data
	Public View

	Summary

	Appendix
	Index

