
Tales for Makers

MAKER
INNOVAT IONS
SER I ES

Real-World Projects to Modify,
Hack, and Reinvent
 —
Enrico Miglino

Maker Innovations Series

Jump start your path to discovery with the Apress Maker Innovations

series! From the basics of electricity and components through to the most

advanced options in robotics and Machine Learning, you’ll forge a path to

building ingenious hardware and controlling it with cutting-edge software.

All while gaining new skills and experience with common toolsets you can

take to new projects or even into a whole new career.

The Apress Maker Innovations series offers projects-based learning,

while keeping theory and best processes front and center. So you get

hands-on experience while also learning the terms of the trade and how

entrepreneurs, inventors, and engineers think through creating and

executing hardware projects. You can learn to design circuits, program AI,

create IoT systems for your home or even city, and so much more!

Whether you’re a beginning hobbyist or a seasoned entrepreneur

working out of your basement or garage, you’ll scale up your skillset to

become a hardware design and engineering pro. And often using

low-cost and open-source software such as the Raspberry Pi, Arduino, PIC

microcontroller, and Robot Operating System (ROS). Programmers and

software engineers have great opportunities to learn, too, as many projects

and control environments are based in popular languages and operating

systems, such as Python and Linux.

If you want to build a robot, set up a smart home, tackle assembling a

weather-ready meteorology system, or create a brand-new circuit using

breadboards and circuit design software, this series has all that and more!

Written by creative and seasoned Makers, every book in the series tackles

both tested and leading-edge approaches and technologies for bringing

your visions and projects to life.

More information about this series at https://link.springer.com/

bookseries/17311.

https://link.springer.com/bookseries/17311
https://link.springer.com/bookseries/17311

Tales for Makers

Real-World Projects to Modify,
Hack, and Reinvent

Enrico Miglino

Tales for Makers: Real-World Projects to Modify, Hack, and Reinvent

ISBN-13 (pbk): 979-8-8688-0079-5 ISBN-13 (electronic): 979-8-8688-0080-1

https://doi.org/10.1007/979-8-8688-0080-1

Copyright © 2024 by Enrico Miglino

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Miriam Haidara

Development Editor: James Markham

Project Manager: Jessica Vakili

Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY

Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@

springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and

the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for

reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print

and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is

available to readers on the GitHub repository: https://github.com/Apress/Software-Testing-For-

Managers. For more detailed information, please visit https://www.apress.com/gp/services/

source-code.

If disposing of this product, please recycle the paper

Enrico Miglino

Drongen, Belgium

https://doi.org/10.1007/979-8-8688-0080-1

v

Table of Contents

About the Author ...xiii

Part I: Where Is Tommy? ..1

Chapter 1: Make a Graphical Cryptex with Arduino Nicla7

1.1. Arduino Nicla Sense ME ...8

1.1.1. Nicla GPIO Pinout ...11

1.1.2. It’s Arduino! ...12

1.1.3. Other Components ...13

1.2. Programming the Nicla Sense ME ...14

1.2.1. The Header File ..15

1.2.2. The Program Source ..18

1.2.3. A Slice of Python ..35

1.3. The Cloud-ready Servers ..36

1.3.1. The NodeJS Backend ...36

1.3.2. The React Frontend ...37

1.4. Using Postman to Test the Server APIs ..37

Part II: The Great Amusement Park ...39

Chapter 2: How to Maintain a Secure Rollercoaster47

2.1. A Vibration Simulator Made Easy ...48

2.1.1. The PCB 603C01 Sensor for Industrial Applications52

2.2. Raspberry Pi to Process Realtime Data ...55

2.2.1. Analog Specifications ..56

2.2.2. Digital Specifications ...56

vi

2.3. The Data Processing Software ...58

2.3.1. Using LabVIEW for Data Processing ..59

2.4. Making a Cheap Piezo Sensor..64

Chapter 3: The Scary Mirror ...69

3.1. The Magic Mirror Platform ...70

3.1.1. The MagicMirror2 Platform Architecture ...74

3.2. Push the Mirror Beyond the Limits ..75

3.2.1. PIR Sensor ...75

3.2.2. Pi Camera ..75

3.2.3. Audio Effects ..76

3.2.4. Lighting Effects..76

3.3. Making the Mirror ..77

3.3.1. Preparing the Frame ..77

3.3.2. The Internal Cardboard Block ..79

3.4. Electronics, Wiring, and Powering ..81

3.4.1. Power Supply Issue ...82

3.4.2. Driving Large Arrays of Neopixel LEDs ..84

3.5. The Software ..86

3.5.1. Arduino UNO Sketch ..86

3.5.2. Raspberry Pi Software ...93

3.5.3. MagicMirror2 Configuration and Modules ...101

Part III: Escape from the Mirrors ...111

Chapter 4: Machine Learning with a Drone117

4.1. The Tello Drone ...118

4.1.1. Programming the Drone ..119

4.1.2. Autopilot Software ...120

TABLE OF CONTENTS

vii

4.2. The Arduino Nicla ME ...130

4.2.1. Assembling the Sensor Acquisition Device ..132

4.3. Nicla Bluetooth-Web Communication ..135

4.3.1. Customizing the Nicla Dashboard ...135

4.4. Data Acquisition with NodeJS ..143

4.4.1. NodeJS Architecture ..144

4.4.2. The Final Data Structure ..145

Chapter 5: Introduction to Neuton.ai ..149

5.1. The AI Platform ...150

5.2. Machine Learning Workflow ..151

5.2.1. Dataset Creation ..151

5.2.2. Dataset Normalization ...152

5.2.3. Model Training ...154

5.2.4. Prediction ..154

5.3. The Neuton.ai Framework ..155

5.4. Creating a Solution with Neuton.ai ..156

5.4.1. Step-by-step Solution ..159

5.4.2. A Few Words on this Use Case ..159

5.4.3. Step 1: Upload the Dataset ..161

5.4.4. Step 2: Train the Dataset ...162

5.4.5. Step 3: Download the Ready-to-Use C Library166

Part IV: A Path of Sounds ...175

Chapter 6: Introduction to MIDI ..181

6.1. The Trick Is MIDI ...182

6.2. The MIDI Protocol Essentials ..185

TABLE OF CONTENTS

viii

6.2.1. MIDI Communication ...185

6.2.2. The Protocol Format ..186

6.2.3. General MIDI (GM) ..187

6.3. Arduino and the MIDI Library ...190

6.3.1. The MIDI Library Header ..192

Chapter 7: Crafting the Cardboard Drum ..197

7.1. Cheap and Recycled Stuff ..198

7.1.1. Adopting an Alternative Technology ...199

7.2. Creating the Structure ..201

7.2.1. Strong Parts ...201

7.2.2. Fixing the Load Cells ...205

7.3. The Sensors Software ..208

Chapter 8: A Sound Sampler with Raspberry Pi213

8.1. Project Requirements and General Approach ..214

8.1.1. External Hardware ...214

8.1.2. Features List ..217

8.2. The Sampling Session ..218

8.2.1. Connecting the MIDI Keyboard and Audio Card218

8.2.2. The Sampler Box ...219

8.3. Project GUI Design ...220

8.4. Cython and Other Prerequisites ...222

8.4.1. What Is Cython? ...223

8.4.2. Why You Should Use Cython ..225

8.4.3. The Graphic Library ...230

8.5. The WAV Samples Organization ...231

8.5.1. Banks Definition ..231

8.5.2. The JSON Parameters File ...232

TABLE OF CONTENTS

ix

8.6. The Application ...233

8.6.1. The Application Functions ...234

Part V: The Dome with the Sandcastle243

Chapter 9: The Sand Machine Part 1 ..249

9.1. The Idea ...250

9.1.1. Mathematics ..251

9.2. Mechanics ..254

9.2.1. The Sand ..255

9.3. The Design ...258

9.3.1. From Draft to Components ..259

Chapter 10: The Sand Machine Part 2 ..263

10.1. The Top Box ..264

10.1.1. The Octagonal Dome ...264

10.2. The Neopixel LED Controller ...271

10.2.1. The Arduino Software ..271

Chapter 11: The Sand Machine Part 3 ..279

11.1. The Bottom Box ..280

11.1.1. Top Side ...280

11.1.2. Putting the Box Together ...281

11.1.3. The Magnet Support ..282

11.1.4. Completing the Build ...285

11.2. Controlling the Movement ..286

11.2.1. The Arduino CNC Firmware ..288

11.2.2. What Is G-Code? ..289

11.2.3. The Most Important G-Code Commands ..290

TABLE OF CONTENTS

x

Chapter 12: The Sand Machine Part 4 ..295

12.1. Software Architecture ..296

12.2. G-Code Parametrization ...298

12.3. The SandControl.py Application ...300

12.3.1. Imports ..300

12.3.2. Business Logic ..300

12.3.3. Extra Functions ..305

12.4. Class: SerialControl ..307

12.4.1. Low-level Methods ..310

12.4.2. The Dataclass Data Model ...313

12.4.3. High-level Methods ...314

12.5. Class: Logger ...319

12.6. Class: driverGCode ...322

12.7. Class: MathCircularFunctions ..327

12.7.1. The Mandala Curve Methods ...328

Chapter 13: Upcycling a Rotary Phone ...339

13.1. Investigating the Parts ...340

13.1.1. Upcycling, Not Restoring ...342

13.1.2. Removing the Ring Bell ...343

13.2. The Rotary Dialer ...346

13.3. Embedding Audio and Controls ..348

13.3.1. A Circuit to Control All ..350

13.3.2. The Breadboard Shield ..354

13.3.3. A Minimal Interface ...355

Chapter 14: The Rotary Phone Software ...357

14.1. The Python Application ...358

14.1.1. Constants and Control Parameters ..358

14.1.2. The JSON Configuration Files ..362

TABLE OF CONTENTS

xi

14.1.3. Event-driven Application ...365

14.1.4. Callback Functions ..367

14.1.5. Triggered Events ..370

14.1.6. Low-level Functions ..378

Part VI: The Process ..387

Chapter 15: Chess with Arduino UNO R4 ..397

15.1. The R4 WiFi and MINIMA Boards ..399

15.1.1. UNO R4 WiFi Specifications ...399

15.1.2. UNO R4 MINIMA Specifications ...401

15.2. Computers Playing Chess ..402

15.2.1. A Note on the Chess Algorithms ..405

15.2.2. Interfacing Chess Computers and Humans408

15.2.3. A Move Representation Method ...412

15.2.4. The Arduino Chess Moves..413

15.2.5. The Arduino Chess Engine ...415

15.3. Arduino Chess Software ...418

15.3.1. The Header Files ..418

15.3.2. The Application Functions ...426

Chapter 16: Chess Player Interfaces ..433

16.1. The MINIMA Board and the ESP32-S3.. 435

16.1.1. Communication Software ..437

16.1.2. I2C Tasks Distribution ..439

16.2. Physical Computing: the Distanced Pawn Project....................................441

16.2.1. Making the Chessboard ...441

16.2.2. The Game Controller ..446

16.2.3. The Controller Software ...449

TABLE OF CONTENTS

xii

Part VII: Radio Amusement ..471

Chapter 17: The Radio Magic Upcycling ...481

17.1. Tuner Mechanical Upgrade ..482

17.1.1. Making an Auto Tuning ..483

17.2. Auto Tuner Controller..489

17.2.1. Requirements ..489

17.2.2. The Circuit and PCB ...491

17.3. The Controller Software ...493

17.3.1. Hardcoded Parameters ..493

17.3.2. The Program ..498

Part VIII: Life with a Borg ..505

Chapter 18: Life with a Borg ...515

18.1. The Inspiring Automaton ..516

18.1.1. Moving the Mannequin ..517

18.2. Torso Rotation ..519

18.2.1. Mechanics ...519

18.2.2. Motor Control ...523

18.2.3. Motion Feedback ...525

18.2.4. Motion and Feedback Software ...529

18.3. Preparing the Borg to Host the Brain ...534

18.3.1. Pi Camera Hosting ...536

18.4. The Raspberry Pi Modules ...537

 Index ...539

TABLE OF CONTENTS

xiii

About the Author

Enrico Miglino, a technical writer since the mid-1980s, has written

hundreds of articles for magazines worldwide. He is a chemist, an

engineer, a developer, and one of the most active creators in the global

Maker community. He has won many international challenges with

original and popular projects. His projects, based on Linux embedded

platforms and microcontrollers, have been supported by the sponsorship

of Arduino, Cypress, Nordic, Xilinx, AWS, Altium, Elegoo, Photon, and

other companies. A top member of the Element14.com community, Enrico

Miglino has taught webinars and workshops for three years on a wide

range of Maker topics.

PART I

Where Is Tommy?
Ray Badmington and Tommy, his son, planned to spend two full weeks of

their summer holidays enjoying the sun of the California beach.

Ray had been caring for his ten-year-old son on his own for almost

a decade. He could still remember all the new things he had to learn—

repairing toys, cooking, playing video games, becoming an expert in comic

characters and heroes, and much more.

Regardless of their plans for a future as a family, after a quick illness,

the two were forced to share the loss of their wife and mother. From a

certain perspective, for Ray, Tommy represented the cure, as Ray had

to concentrate on being helpful and supportive of his son. He did not

have much time to think about this loss or leave space for sadness and

depression.

Obliged by fate, Ray also changed his habits. To support the needs of

his growing intelligent and curious son, he discovered how all the theories

he had studied for years could easily apply to everyday life. It was only

necessary to add some creativity and improvisation.

The theoretical engineer Ray Badminton, focused on astrophysics and

other scientific investigations that result in abstruse concepts for ordinary

people, changed his mind. To adapt quickly, he discovered a whole

new world.

As time passed in his new role, he discovered new manual skills.

He learned to create physical things, assemble, apply electronics,

programming, and practice. This became a new way for him to face reality:

Ray was learning the art of making.

2

Ray’s transformation was complete in a few years. Always with Tommy

beside him, he became one of the most creative makers ever.

3D printing, knowing almost any programming language, electronic

design, recycling and upcycling appliances, woodworking, and building

mechanics were only some of his newly discovered talents. Ray became an

expert at making tools to solve challenging problems—hacking, rebirthing,

and recycling.

“One of these days, this knowledge may save our lives,” Ray often

commented to Tommy when he saw his son fascinated by his experiments.

The two made a holiday plan and firmly decided to follow it: relaxing

sunbaths and strolling along the beach. Ray and Tommy did this almost

daily when arriving in Marina del Rey, California.

Ray spent most of his younger years in Green Bay, Wisconsin, his

hometown along the coast of Lake Michigan. He remembered the Green

Bay island, the beach, and the boy he was. Nothing to do with the sea and

California beach.

Father and son walked along Los Angeles’ coast that hot, sunny late

morning. Both remained silent for a long time, walking on the seaside,

enjoying the sun. It was still early, and in a couple of hours, that quiet place

would be invaded by a noisy crowd, but now the only sound was coming

from the sea.

A light breeze was caressing their skin while strolling along the sandy

beach. Around 3pm—the idea was to stop for something to eat and a fresh

drink—they left the beach to a concrete stair to reach Marina del Rey’s

north jetty, where they sat for a while on a concrete bench.

“Twenty-five thousand steps!,” said Tommy as his smartwatch

buzzed, marking a new daily record. “Look, Dad! We walked so far,” he

added. Enjoying the silence, the sea waves, and the landscape, they were

considerably far from the hotel seafront where they were staying.

PART I WHERE IS TOMMY?

3

Tommy, in many ways, was a typical teenager like his school friends.

He had a lot of friends, was a baseball player (despite being from

Wisconsin, he was a Red Socks fan), was good at school, and was involved

in a lot of activities.

Indeed, he was still young, but he always enjoyed spending time with

his father, especially during these two holiday weeks, alone somewhere

else but in their hometown. The situation became something like an

adventure. Suddenly, Tommy was attracted by a strange mechanism on

top of a pole rising from the concrete of the jetty next to the parking lot.

He stood up, moved by curiosity, and stepped closer for a deeper look.

Ray was fully relaxed, observing the ocean waves lazily breaking up on the

sand. He was thinking about decades ago when he was a few years younger

than Tommy. In one of the cases when you remember a forgotten memory,

Ray recalled a text on a leaflet that fascinated him for many seasons, “Visit

BDTH 6159 and enjoy the fun!”

BDTH 6159 was one of the biggest amusement parks in America in

the late 50s. Located in Los Angeles, it spanned between Marina del Rey

and Venice Beach. He realized they were in the place he had dreamt of

for a long time, a mythological place of his youth so far away to be almost

impossible to reach.

Ray remembered the summers spent at his family’s Lake Michigan

cabin, loitering around and dreaming about that California amusement

park. Nowadays, all that remained of that dream was the sand beach and a

few restroom barracks.

“Dad, come on! Look, I found a cryptex.” Tommy’s scream brought Ray

back to reality.

“It is not a cryptex; it is an old parking meter,” Ray answered at first

sight, walking in his direction for a closer look at Tommy’s discovery.

Its appearance, size, and shape resembled a late 50s parking meter, but

looking closely, many of the details did not match.

“Uhm....,” Ray mumbled, exploring the curious device on all sides.

PART I WHERE IS TOMMY?

4

“The coin slot is missing.” Ray continued touching the device’s metal

surface, searching for hidden features. Inspecting the front side, Ray

pointed out four rotary wheels with numbers from zero to nine.

“Maybe you are right. I have never seen one in person before, but this

is very similar to a cryptex illustration I found in an article in Scientific

American some years ago.” Tommy was excited about the discovery and

to be able to recognize it immediately. While Ray found other machine

details that corresponded to his expectations, Tommy started playing with

the rotating wheels.

“Strange—this old tool is still in excellent condition,” Ray commented.

“Most of them were destroyed or lost long ago. I am curious to know who

put this device on the jetty. The installation seems recent.”

While Tommy rotated the four numbered gauges, the arrow on the

glass screen slowly moved clockwise. This occurred only when a certain

number was selected, but neither of the two noted this detail. The last

rotation of the fourth gauge moved the arrow to the rightmost side

notch of the dial. After a loud crack, the arrow slowly moved to the left,

accompanied by the sound of gears rotating inside the mechanism.

“Hey! Where do you go?” Ray said to Tommy. As the sound of the gears

ended, Tommy walked back to the seaside without saying a word. Ray

moved a step in his direction, but Tommy disappeared from his sight as if

he had crossed an invisible border. Ray was speechless!

As when waking from a deep sleep and obliged to react quickly to an

unexpected event, in a few seconds, Ray was forced to dismiss the lazy

mood that had animated him until that moment.

He forced himself to find all his self-control to face what he recognized

immediately was an emergency.

When faced with a sudden emergency, common sense suggests calling

911 for immediate help. For Ray, this was not a solution—that would

mean police questioning, difficulty explaining the inexplicable, and losing

precious time keeping the mind focused on the concern.

PART I WHERE IS TOMMY?

5

Ray, used to taking a pragmatic approach, immediately excluded this

as a useless solution.

Instead of moving a single muscle, Ray started thinking about the

best solution, trying to stay calm and positive. If he tried to explain what

happened to someone else, he couldn’t be trusted to tell the truth.

Furthermore, Ray was conscious that if anyone could pragmatically

face a supernatural event like this, it was him: Ray Badmington.

“Let me see what really happened,” Ray mumbled, thinking. “It must

be something related to the cryptex.”

“A cryptex is a device to keep a secret, which means that any obvious

solution can’t be the right one. I should find the correct code sequence for

the cipher,” Ray said, following the path of his thoughts while the sun was

lazily starting to fall down the horizon.

During the next five hours, Ray tried all the most complex sequences

he could imagine: the first four pi decimals, the numbers of Bernoulli, the

four-color map solution, and the first four stochastic numbers. But every

time he reached the fourth number, the arrow returned to the leftmost

position on the gauge, and nothing happened.

This is when Ray thought facing the problem from a different

perspective was necessary.

“Darn! Cryptex devices are used to hide words, not numbers, and this

model can’t be an exception”. This seemed to Ray a great idea, but what

kind of word could unlock the gears again? Alone in front of the diabolic

engine, while the sunset was already tracking long shadows on the sand,

Ray realized he was trying to solve a challenging problem, maybe the most

complex of his life.

“Ray, relax!” He tried thinking about what happened between the

passage that Tommy opened and the four-number code.

“I need to communicate with this machine to open the passage

Tommy walked through.” He felt excited, as if he were one step closer to

solving the mystery.

PART I WHERE IS TOMMY?

6

“During the late 50s, people communicated through the telephone.

Rotary telephones! The rotary dial showed numbers and characters. This

might be the key.”

Ray tried to remember the correct association: 2 = A, B, C, 3 = D, E, F. 4

= G, H, I, and so on. He thought it would work like the old SMS text input

method on early cell phones. Ray remembered his first Nokia 3310, where

he had to press the corresponding number one, two, or three times to get a

character and write words.

Moved by excitation and curiosity, Ray rotated the four wheels to

compose the number 6736, meaning the word OPEN.

The gauge indicator reached the extreme right again, and the rotating

gears’ well-known sound started again. The cryptex had been unlocked.

When the gears inside the engine stopped ticketing at the same point

where Tommy disappeared, a big, dark-red curtain (that reminded Ray

of a theater stage before a show) became visible. Without hesitation, Ray

rushed immediately in that direction.

He crossed the curtain when the sun disappeared under the horizon

line. The last sound Ray heard was the gauge indicator buzzing, returning

to zero, and the curtain closing behind him.

PART I WHERE IS TOMMY?

7© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_1

CHAPTER 1

Make a Graphical
Cryptex with
Arduino Nicla
Including contributions of Furio Piccinini in developing the NodeJS and

React servers.

Tip The word cryptex is a neologism coined by Dan Brown in his

2003 novel The Da Vinci Code, denoting a portable vault used to hide

secret messages. Justin Kirk Nevins created the first cryptex physical

model in 2004. (Source: Wikipedia)

This project replicates the cryptex described in the tale about Ray

Badmington in this section. To make it, I followed a series of initial

assumptions:

• The board must be used as a motion sensor.

• The cryptex interface must resemble the parking meter

described in the first tale.

https://doi.org/10.1007/979-8-8688-0080-1_1#DOI

8

• The Nicla motion sensor should interface with a PC via

the USB-to-Serial connector.

• The cryptex interface must be accessible from the

network.

To achieve these goals, I used different software technologies, as well

as various programming languages depending on the context:

• C for the Nicla board firmware

• Python for the USB connection

• JavaScript (NodeJS and ReactJS) for the server side

I designed the projects described in this section to apply functional

model-integrating technologies to the real world. These projects

demonstrate how electronics with software and microcontrollers can solve

complex problems. The model’s architecture is also easily reusable in

different contexts.

1.1. Arduino Nicla Sense ME

Developed by Arduino and Bosch, the Arduino Nicla Sense ME is one of

the best sensor boards in the Arduino family. This thumb-sized device

includes:

• 6-axis IMU (Inertial Measurement Unit) based on the

Bosch BHI260AP:

• 16-bit 3-axis accelerometer

• 16-bit 3-axis gyroscope

• A dual 32-bit CPU cure with a floating-point RISC

processor and a 4-channel micro DMA controller

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

9

• An external 2MB flash memory (QSPI connector)

• The processor also features self-learning AI

software and other firmware features for swim

analytics, pedestrian status recognition, and so on

• High-performance pressure sensor based on the

Bosch BMP390

• 3-axis magnetometer based on the Bosch BMM150

• Environmental sensing with AI capabilities based on

the Bosch BME688:

• Air pressure detection

• Humidity level

• Temperature

• E-nose gas sensor (CO2 concentration and air

quality index)

A dedicated ATSAMD11D14A-MUT microcontroller operates the

Serial-to-USB bridge and the debugger interface. See Figure 1-1.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

10

Figure 1-1. The thumb-sized Arduino Nicla Sense ME board on its
small container box

The Nicla board also includes an ANNA-B112 BLE (Bluetooth Low

Energy) module for wireless communication. The wide range of sensors

on a single board makes the Nicla Sense ME an advanced environmental

monitoring system. The complete board documentation is available on the

official Arduino site (https://docs.arduino.cc/hardware/nicla-sense-me).

Regardless of the board form factor—Arduino Nicla is the smaller one of the

Arduino family—the PCB GPIO pins maintain the classical size of 2.45mm.

The board easily fits into a breadboard, perfect for circuit experiments and

prototyping. See Figure 1-2.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

https://docs.arduino.cc/hardware/nicla-sense-me

11

Figure 1-2. The Arduino Nicla Sense ME GPIO pinout. (Credit:
Arduino.cc)

1.1.1. Nicla GPIO Pinout

In addition to its high-profile characteristics, the Nicla board includes an

RGB LED and nine GPIO pins.

Not all the GPIO pins are available externally, depending on the

board’s usage. Most of the exposed pins are shared internally—like the

UART pins shared with the sensors. Regardless of this limit, at least two

digital I/Os are available with two analog A/D converters.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

12

Indeed, the availability of the I2C serial bus allows the board features

to expand by adopting many solutions, like using the board itself as

a shield connected to other Arduino boards or adding an I2C GPIO

expander.

1.1.2. It’s Arduino!

I think that the development of the Nicla board is the result of a

considerable effort to make it usable by makers and experimenters and

easy to integrate with the Arduino ecosystem. There are another couple of

details that make it unique and incredibly versatile.

Soldering the pins on the PCB to a pin rail Nicla Sense ME also works

as a shield mounted on the MKR Arduino boards. Using, for example, the

MKR WiFi 1010, you can expose a Nicla sensor directly to the Internet

through a wireless connection. The connection between the two boards

uses the I2C protocol.

A second option is the ESLOV connector. Designed by the Arduino

team as an efficient IoT solution to connect sensors and small devices, this

connector gives a further dimension to the possibilities of the board. Based

on the I2C physical layer, this connector can communicate the Nicla board

to—for example—an Arduino Portenta board.

More details on the ESLOV protocol specifications and the wiring

schematics are available on the Arduino site (https://blog.arduino.

cc/2016/09/28/eslov-is-the-amazing-new-iot-invention-kit-from-

arduino/). Indeed, the Arduino Nicla Sense ME can be programmed with

the Arduino IDE. Behind the easy C/C++ programming offered to the

developers throughout the IDE, the Nicla runs a relatively complex Mbed-

OS operating system.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

https://blog.arduino.cc/2016/09/28/eslov-is-the-amazing-new-iot-invention-kit-from-arduino/
https://blog.arduino.cc/2016/09/28/eslov-is-the-amazing-new-iot-invention-kit-from-arduino/
https://blog.arduino.cc/2016/09/28/eslov-is-the-amazing-new-iot-invention-kit-from-arduino/

13

1.1.3. Other Components

A few extra components must be added to the Nicla board to complete the

hardware part of this project, resulting in a minimal circuit. In this case,

the board is used as a motion sensor. In addition, I added a temporary

push button connected to a GPIO input pin to instruct the board that the

following detected movements should be interpreted as gestures. See

Figure 1-3.

Figure 1-3. The breadboard wiring the prototype circuit with the
temporary push button and a potentiometer connected to the Nicla
GPIO digital input 03 and the analog input 01

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

14

To make the gesture control more comfortable, a potentiometer

consents to calibrate the reactivity of the board. I used a pull-up resistor

to wire the temporary push button in my first circuit draft. Still, it is

unnecessary, as the GPIO pins already include the pulling resistors

controlled by the software.

Tip all the sources and related files are available as open source,

apache license, on the Github repository.

1.2. Programming the Nicla Sense ME

The first version of the software I developed for the Nicla board was very

challenging; the most complex part was the conversion of the motion

sensors. The x-y-z data feed should be converted to a gesture indicating a

direction.

I introduced the temporary push button in the circuit to limit the

number of samples: gestures are detected from the sensor data only when

the button is pressed.

Following this direction, I met a lot of issues when finding a better

number of samples from the sensors and integrating the three-axis values.

To speed up the development, I also added a potentiometer connected to

one of the two A/D input ports of the Nicla. The analog value from the port,

in the range of 1024 values, is used to fine-tune the sensor’s response.

The Arduino software is built in two parts: the C source (the file

with the .ino extension using the Arduino IDE) and a header file with

the preprocessor parameters and the structures definition used by the

program.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

15

Tip i documented the sources as much as possible for better

readability and understanding. The comments follow the Doxygen

style to automatically create a fully documented local site with the

Doxygen tool. it is an open source multiplatform project available

online at https://doxygen.nl/.

1.2.1. The Header File

Listing 1-1 shows the header file contents. The second part of the file

defines the structures used by the functions to organize the data.

Listing 1-1. The Header File Contents

/**

Polling frequency to read the sensors. This is the base

(minimum) reading frequency to which is added the trimmer fine-

tuning reading value, never bigger than MAX_POLL_FREQ

*/

#define POLL_FREQ 100

/** Maximum polling frequency (in milliseconds) */

#define MAX_POLL_FREQ 250

/** Minimum analog value read from potentiometer (needs

calibration) */

#define POT_MIN 0

/** Maximum analog value read from potentiometer (needs

calibration) */

#define POT_MAX 600

/**

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

https://doxygen.nl/

16

Minimum delta value between two sequential readings to consider

the motion as a gesture. Delta reading is the absolute

difference between two sequential readings.

*/

#define DELTA_ROLL 10.00

/**

Minimum delta value between two sequential readings to consider

the motion as a gesture. See the DELTA_ROLL note

*/

#define DELTA_PITCH 10.00

/**

Minimum delta value between two sequential readings to consider

the motion as a gesture. See the DELTA_ROLL note

*/

#define DELTA_HEADING 10.00 // Not used

/** Number of sequential readings of the control button to

check its stable status */

#define MAX_BUTTON_READS 10000

/** Json keyword */

#define J_RIGHT "\"right\": "

/** Json keyword */

#define J_LEFT "\"left\": "

/** Json keyword */

#define J_UP "\"up\": "

/** Json keyword */

#define J_DOWN "\"down\": "

/** Json keyword */

#define J_OPEN "{"

/** Json keyword */

#define J_CLOSE "}"

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

17

enum ledColors {

 RED,

 GREEN,

 BLUE,

 OCRE,

 LIGHTBLUE

};

/**

 Defines all the parameters to manage the sensors state and

convert them dynamically to the corresponding motion sensor

directions.

*/

Note every gesture value is a two-position array to avoid creating

the JSoN object when there are multiple readings with the same

pattern. The direction state can be a single value, as every gesture

should correspond to a single action.

struct gestures {

 //! Direction current state

 bool right[2];

 //! Direction current state

 bool left[2];

 //! Direction current state

 bool up[2];

 //! Direction current state

 bool down[2];

};

/**

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

18

Last couple of reading values for the sensor parameters

involved in the gesture control (roll, pitch, heading).

*/

struct niclaSensors {

 float roll[2];

 float pitch[2];

 float heading[2];

};

/**

RGB LED color parameters

*/

struct rgbLEDColors {

 int red;

 int green;

 int blue;

};

1.2.2. The Program Source

According to the standard architecture of the Arduino IDE Sketch, the

source architecture is divided into four main parts:

 1. The includes (headers and library headers)

 2. The setup() initialization function

 3. The loop() function, which defines the business

logic of the program

 4. The program functions

For better readability, the loop() function exposes the logic while the

tasks are defined in separate functions.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

19

Note in the following code block, there are three preprocessor

definitions (_DEBUG_, _LOGGING_, and _CALIBRATION_) that

can be optionally defined. _DEBUG_ enables or disables the output

to the serial terminal’s extra information. _LOGGING_ adds logging

information to the serial terminal, but the output data is no longer

usable. _CALIBRATION_ enables or disables the readings from the

a/D input pin to fine-tune the sensitivity of the readings.

Listing 1-2 shows the first part of the program. Note that some of the

global variables are based on the structure types defined in the header file.

Listing 1-2. The First Part of the Program

#include "Arduino.h"

#include "Nicla_System.h"

#include "Arduino_BHY2.h"

#include "ParkingMeter.h"

#include "Streaming.h"

#undef _DEBUG_

#undef _LOGGING_

#undef _CALIBRATION_

/**

Sensors class instance - orientation

*/

Sensor device_orientation(SENSOR_ID_DEVICE_ORI);

/**

Orientation object to retrieve the pitch, roll and heading

punctual values.

*/

SensorOrientation orientation(SENSOR_ID_ORI);

/**

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

20

Calibration pin (analog), connected to the 50K potentiometer

*/

const int pinCalibration = A0;

/**

Button digital pin. The motion detection is working only when

the red button is pressed.

*/

const int pinButton = GPIO3;

/**

Status of the five gestures, according to the last sensor

reading.

The sensor is used to read the dominant gesture direction, if

any, after the last reading. IF a gesture is recognized(pitch,

roll, heading) the corresponding gesture direction is set

to true.

*/

#include "Arduino.h"

#include "Nicla_System.h"

#include "Arduino_BHY2.h"

#include "ParkingMeter.h"

#include "Streaming.h"

#undef _DEBUG_

#undef _LOGGING_

#undef _CALIBRATION_

/**

Sensors class instance - orientation

*/

Sensor device_orientation(SENSOR_ID_DEVICE_ORI);

/**

Orientation object to retrieve the pitch, roll and heading

punctual values.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

21

*/

SensorOrientation orientation(SENSOR_ID_ORI);

/**

Calibration pin (analog), connected to the 50K potentiometer

*/

const int pinCalibration = A0;

/**

Button digital pin. The motion detection is working only when

the red button is pressed.

*/

const int pinButton = GPIO3;

/**

Status of the five gestures, according to the last sensor

reading.

The sensor is used to read the dominant gesture direction,

if any, after the last reading. *IF* a gesture is

recognized(pitch, roll, heading) the corresponding gesture

direction is set to true.

*/

Note The sensor reading can be bigger or smaller with respect

to the previous reading. When the difference is greater than the

minimum delta, the corresponding value is set to true. only one

value can be true after a motion is detected.

gestures motionDirection;

/**

Double value readings of the sensors updated every loop cycle

*/

niclaSensors sensorsReading;

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

22

Listing 1-3 shows the setup() and loop() functions. setup() is run

once when the board is powered or reset, then loop() runs indefinitely to

manage the business logic of the program.

Listing 1-3. The setup() and loop() Functions

/**

Initialization

*/

void setup()

{

 pinMode(pinButton, INPUT);

 /** Serial initialization */

 Serial.begin(19200);

 /** Start the board */

 BHY2.begin();

/**

Initialize the orientation component of the sensor

*/

 orientation.begin();

 // Start RGB Led

 nicla::begin();

 nicla::leds.begin();

 initReadings();

 initMotionDirection();

 flashLed();

}

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

23

Note setup() includes the calls to the Nicla initialization

functions. These are calls to C++ libraries that are part of the Nicla

development system, which is installed when the hardware board is

installed in the arduino iDe.

/**

Application main loop

*/

void loop()

{

#ifdef _CALIBRATION_

 // For potentiometer calibration only. Need a serial

output monitor

 calibratePot();

 // waits 2 milliseconds before the next loop for the analog-

to- digital

 // converter to settle after the last reading:

 delay(500);

#else

 static auto pollFreq = millis();

 /** Adjusted POLL_FREQ value */

 unsigned long pFrequency;

 // Adjusts the polling frequency with the fine tuning value

Note: The line of code below reads the frequency every sampling

cycle, adding the calibration value (from the analog input pin)

 pFrequency = POLL_FREQ; + getCalibration();

 // Update function should be continuously polled

 BHY2.update();

 // Checks for the frequency before updating the sensor data

 if(millis() - pollFreq >= pFrequency) {

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

24

// if(checkButton() == true){

 if(true){

 // Checks if a motion has been detected and creates

the json

 // string

 if(checkDeltaToMotion()){

#ifdef _LOGGING_

 Serial.println("Motion detected");

 Serial.print(" pitch :");

 Serial.print(sensorsReading.pitch[1]);

 Serial.print(" roll :");

 Serial.print(sensorsReading.roll[1]);

 Serial.println("Motion flags: roll");

 Serial.print("left ");

 // The motion direction considered is only the

current last

 // reading and the previous one is ignored, as it

has already

 // been logged in the previous loop view.

 Serial.print(motionDirection.left[1]);

 Serial.print(" right ");

 Serial.print(motionDirection.right[1]);

 Serial.print(" up ");

 Serial.print(motionDirection.up[1]);

 Serial.print(" down ");

 Serial.println(motionDirection.down[1]);

#endif // Debug

 sendJson();

 // Resets the time counter

 pollFreq = millis();

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

25

 } // Delta motion

 } // Check Button

 } // Timer

#endif // Calibration

}

Listing 1-4 shows that all the subtasks of the program are organized in

separate functions. This approach is easier to manage and more readable.

In a more complex situation, it`s also possible to create separate classes—

included in the main program—that cover specific tasks.

Listing 1-4. Subtasks of the Program Organized in Separate

Functions

/**

Initializes the sensor readings.

*/

void initReadings() {

 int j;

 for(j = 0; j < 2; j++) {

 sensorsReading.roll[j] = 0;

 sensorsReading.pitch[j] = 0;

 sensorsReading.heading[j] = 0;

 }

}

/**

Initializes the gestures pattern to false when starting

*/

void initMotionDirection() {

 int j;

 for(j = 0; j < 2; j++) {

 motionDirection.right[j] = false;

 motionDirection.left[j] = false;

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

26

 motionDirection.up[j] = false;

 motionDirection.down[j] = false;

 }

}

/**

Saves the current gestures pattern to the previous gesture and

initializes the new gestures to false before setting the last

pattern read from the sensors.

*/

void swapMotionDirection() {

 motionDirection.right[0] = motionDirection.right[1];

 motionDirection.right[1] = false;

 motionDirection.left[0] = motionDirection.left[1];

 motionDirection.left[1] = false;

 motionDirection.up[0] = motionDirection.up[1];

 motionDirection.up[1] = false;

 motionDirection.down[0] = motionDirection.down[1];

 motionDirection.down[1] = false;

}

/**

Compares the four directions of the motionDirection pattern.

If at least one is different, a new motion is detected, else

it is the same pattern of the previous. If none of the new

motionDirection fields is not zero, the motionDirection should

be excluded as well.

*/

bool isNewMotionDirection() {

 bool isMotion;

 int j;

 isMotion = false;

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

27

 if(motionDirection.right[0] != motionDirection.right[1])

 if(motionDirection.right[1] == true)

 isMotion = true;

 if(motionDirection.left[0] != motionDirection.left[1])

 if(motionDirection.left[1] == true)

 isMotion = true;

 if(motionDirection.up[0] != motionDirection.up[1])

 if(motionDirection.up[1] == true)

 isMotion = true;

 if(motionDirection.down[0] != motionDirection.down[1])

 if(motionDirection.down[1] == true)

 isMotion = true;

 return isMotion;

}

/**

Updates the readings and swaps the last value to the

previous reading

*/

void updateReadings() {

 // Moves last reading to previous

 sensorsReading.roll[0] = sensorsReading.roll[1];

 sensorsReading.pitch[0] = sensorsReading.pitch[1];

 sensorsReading.heading[0] = sensorsReading.heading[1];

 // Acquires the current value

 sensorsReading.roll[1] = orientation.roll();

 sensorsReading.pitch[1] = orientation.pitch();

 sensorsReading.heading[1] = orientation.heading();

 // If we are on the first reading, duplicates the

sensor value

 if(sensorsReading.roll[0] == 0)

 sensorsReading.roll[0] = sensorsReading.roll[1];

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

28

 if(sensorsReading.pitch[0] == 0)

 sensorsReading.pitch[0] = sensorsReading.pitch[1];

 if(sensorsReading.heading[0] == 0)

 sensorsReading.heading[0] = sensorsReading.heading[1];

}

/**

Calculates the three delta values between the last two

readings, then sets the motionDirection structure accordingly.

\note The function does not implement multiple motions

together. The first detected valid direction is set.

@return true if a motion has been detected, otherwise

return false.

*/

bool checkDeltaToMotion() {

 /** Delta for last roll value */

 float dRoll;

 /** Delta for last pith value */

 float dPitch;

 /** Delta for last heading value (not used) */

 float dHeading;

 /**

 Motion detection return flag

 */

 bool motionDetected = false;

 // Swaps the last reading and initializes the new one

 swapMotionDirection();

 // Updates the reading status

 updateReadings();

 // Calculates the delta values

 dRoll = sensorsReading.roll[1] - sensorsReading.roll[0];

 dPitch = sensorsReading.pitch[1] - sensorsReading.pitch[0];

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

29

 dHeading = sensorsReading.heading[1] - sensorsReading.

heading[0];

#ifdef _LOGGING_

 Serial.print("Delta_pitch :");

 Serial.print(dPitch);

 Serial.print("Delta_roll :");

 Serial.println(dRoll);

#endif

 // Checks for delta ranges. Gets the biggest delta between

roll and pitch

 if((abs(dRoll) >= DELTA_ROLL)) { // && (abs(dRoll) >

abs(dPitch))){

 // Decides the roll direction for left/right

 if(dRoll > 0)

 motionDirection.right[1] = true;

 else

 motionDirection.left[1] = true;

 motionDetected = true;

 }

 else {

 if(abs(dPitch) >= DELTA_PITCH) {

 // Decides the pitch direction for up/down

 if(dPitch > 0)

 motionDirection.down[1] = true;

 else

 motionDirection.up[1] = true;

 motionDetected = true;

 }

 }

 return motionDetected;

}

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

30

/**

Creates the Json string and sends it to the serial.

\note The Json string object is created only if the current

gestures pattern is not the same as the last read, otherwise

it’s part of a multiple reading and should be ignored.

The pattern is also ignored if it doesn’t have any direction

set to true

*/

void sendJson(){

 // Checks if it is a new pattern (different from all false)

 if(isNewMotionDirection()) {

 Serial << J_OPEN << J_RIGHT << motionDirection.right[1]

<< ", " <<

 J_LEFT << motionDirection.left[1] << ", " <<

 J_UP << motionDirection.up[1] << ", " <<

 J_DOWN << motionDirection.down[1] <<

 J_CLOSE << ‘\n’ << endl;

 }

}

/**

Reads the analog value from the potentiometer and maps it to

the min/max range of the fine tuning for the sensor readings.

\returns The calibration value in milliseconds to adds to the

current milliseconds frequency

value.

*/

unsigned long getCalibration() {

 /** Potentiometer analog reading */

 int potCalibration;

 /** frequency calibration value */

 int freqCalibration;

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

31

 // reads the calibration pin

 potCalibration = analogRead(pinCalibration);

 // Maps the reading value

 freqCalibration = map(potCalibration, POT_MIN, POT_MAX, 1,

(MAX_POLL_FREQ - POLL_FREQ));

 return freqCalibration;

}

/**

Checks the button status and changes the RGB LED color,

accordingly.

\note To avoid erratically readings the status of the digital

pin is read MAX_BUTTON_READS times and if the value is not

stable the button is considered in off state.

\returns true if the button is pressed, else returns false.

*/

bool checkButton() {

 /** Button status */

 bool isButton;

 /** digital pin readings accumulator */

 int buttonState;

 int j;

 buttonState = 0;

 for(j = 0; j < MAX_BUTTON_READS; j++) {

 if(digitalRead(pinButton) == HIGH) {

 buttonState++;

 }

 }

#ifdef _DEBUG_

 Serial << "Button " << digitalRead(pinButton) << endl;

#endif

 if(buttonState == MAX_BUTTON_READS) {

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

32

 setColor(true, BLUE);

 isButton = true;

 }

 else {

 setColor(true, RED);

 isButton = false;

 }

#ifdef _DEBUG_

 Serial << "isButton " << isButton << " - buttonState " <<

buttonState << endl;

#endif

 if(isButton == false){

 sensorsReading.roll[1] = orientation.roll();

 sensorsReading.pitch[1] = orientation.pitch();

 sensorsReading.heading[1] = orientation.heading();

 }

 return isButton;

}

/**

Sets the predefined colors to the RGB LED. If the isOn

parameter is set to true, the RGB LED is powered on else it is

set to off.

\param isOn Flag to set the LED on or Off.

\param color The led color. Only if isOn is true, the setting

has effect

*/

void setColor(bool isOn, ledColors color){

 /** Color structure with colors patterns */

 rgbLEDColors rgbColors;

 // Checks if the flag is set, else disables the RGB LED

 if(isOn){

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

33

 switch(color) {

 case RED:

 rgbColors.red = 0xff;

 rgbColors.green = 0x01;

 rgbColors.blue = 0x01;

 break;

 case GREEN:

 rgbColors.red = 0x00;

 rgbColors.green = 0xff;

 rgbColors.blue = 0x05;

 break;

 case BLUE:

 rgbColors.red = 0x01;

 rgbColors.green = 0x01;

 rgbColors.blue = 0xff;

 break;

 case OCRE:

 rgbColors.red = 0xa8;

 rgbColors.green = 0x7b;

 rgbColors.blue = 0x14;

 break;

 case LIGHTBLUE:

 rgbColors.red = 0x00;

 rgbColors.green = 0x08;

 rgbColors.blue = 0x14;

 break;

 default:

 rgbColors.red = 0xff;

 rgbColors.green = 0xff;

 rgbColors.blue = 0xff;

 break;

 }

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

34

 // Sets the LED to color

 nicla::leds.setColor(rgbColors.red, rgbColors.green,

rgbColors.blue);

 } else {

 // Disables the LED

 nicla::leds.setColor(off);

 }

}

/**

Flashes the LED to start colors at initialization

*/

void flashLed() {

 setColor(true, RED);

 delay(250);

 setColor(true, GREEN);

 delay(250);

 setColor(true, OCRE);

 delay(250);

}

/**

Calibrates the potentiometer. When this function runs the

application features are disabled.

\note This calibration function should be used to detect max

and min values of the potentiometer analog read to set the two

*/

#ifdef _CALIBRATION_

void calibratePot(){

 int sensorValue = 0;

 // reads the analog value:

 sensorValue = analogRead(pinCalibration);

 // prints the results to the Serial Monitor:

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

35

 Serial.print("potentiometer = ");

 Serial.println(sensorValue);

}

#endif

1.2.3. A Slice of Python

The gestures coming from the Nicla Sense ME board, packed in a JSON

string, should be sent to a computer through the USB-serial cable for

further processing.

The multiplatform high-portability of Python is the best solution:

easy to program, the Python module’s role is to manage the hardware

connection on one side and communicate to the NodeJS backend server

on the other.

As I explain in the following paragraphs, the choice of backend and

frontend servers increases the portability of the application. Of course,

all the components run on the same laptop in my development platform.

Still, I can expand the applications simply by moving the servers to other

computers, whether running on a local network or the cloud.

From this perspective, the only software module that must reside on

the computer connected to the Nicla board is the Python module. It is not

a difficult task and is designed to run as a task from the terminal, starting

as a small service or a background activity consuming a minimal amount

of the resources.

I used a Ubuntu 20.4 LTS virtual machine in this project. Indeed, it

can run on any other device, including small, embedded Linux boards

supporting the USB connection and access to the Internet.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

36

1.3. The Cloud-ready Servers

To implement the cryptex mechanism, I used two separate servers: the

frontend and backend. As a matter of fact, it would be possible to use

only one server to do both tasks, thereby introducing a more challenging

development architecture. This second option requires that the frontend

server also to cover all the backend tasks with a global reduction of

performance.

With this double-server architecture, it is possible to access the

frontend interface by multiple users and interact with the cryptex decoding

process from many remote locations, equipped with a Nicla Sense ME and

running the Python module.

The server APIs are REST calls executed with the POST method.

Regardless of the complexity of the data—in this case, I manage a little

information—it is best practice to use the POST method to avoid exposing

the call’s contents in the URL with the GET method.

The NodeJS and React servers have been developed with the

invaluable help of my friend and rewarded maker, Furio Piccinini (@furio

on element14.com).

1.3.1. The NodeJS Backend

Every time the Python module detects a new motion, it calls the NodeJS

server that exposes an API. According to the user interface, there are four

possible actions:

• Right

• Left

• Up

• Down

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

37

The server validates the action when the Python program calls the

NodeJS server API with the direction information. After validation, it

triggers a new event, calling the React server through another API with the

direction.

The NodeJS server is data-agnostic. This makes it possible for two

different clients—connected from two locations—to interact with the

cryptex interface.

1.3.2. The React Frontend

As mentioned, the frontend server developed with ReactJS can run on a

separate computer than the NodeJS. Therefore, a REST API triggers the

NodeJS server to receive inputs, updating the user interface accordingly.

The interface is designed with multiple transparent PNG images,

which mimic a vintage parking meter with some modifications. The gauge,

showing the remaining parking time in the tool, shows the correctness

of the introduced numbers instead. A left-right gesture with the Nicla

changes the selection of the digit, while an up-down movement increases

or decreases the currently selected digit. As a result, every number can

change from 0 to 9.

The advantage of using ReactJS is the incredible number of open

source modules available in the repositories. I used one of the many

components in the npm libraries to design the gauge indicator and the

other interface components.

1.4. Using Postman to Test the Server APIs

Creating RESTful APIs to communicate with servers is a polite way to

develop server-based software, but the architecture may be challenging.

For example, working with two servers in the workflow described in the

previous paragraphs can be a painful task to debug.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

38

It has been years since I have dramatically improved the final revision

and setup of the servers using Postman (postman.com): it is a commercial

tool including an excellent free plan that requires registration. The few

limitations of the Postman free plan make it worthwhile to any maker

project and small teams.

Postman can be used from a browser or by downloading the free

desktop application. It provides much more than basic API testing—it

is possible to store data for every API, use any kind of call, and create a

collection of APIs for every project to test the whole server usage.

In addition, other features simplify the development of the clients to

connect to the server:

• When an API test works fine, it is possible to download

the scriptlet of its usage in the most common languages,

including Python, Java, JavaScript, and Go.

• Adding an accurate description to the API calls and

using self-explanatory test data, it is easy to create

complete API documentation for web publishing or for

creating a PDF document.

• The collection can be exported locally in a reusable

JSON file.

ChapTer 1 MaKe a GraphiCal CrypTex WiTh arDuiNo NiCla

PART II

The Great

Amusement Park

As Ray stepped through the curtain, a wave of unfamiliarity washed over

him as if he had been transported to a realm beyond his comprehension.

He couldn’t describe the sensation, but he was sure he was in another

place or maybe even another world.

Surprisingly, this quasi-darkness, a dimly lit space that seemed to

be neither fully dark nor fully light, was not scary, but strangely familiar.

Ray tried to remember if there was some connection to his past life,

some forgotten dream, or one of his kid’s nightmares, but the past didn’t

help him.

After a few seconds, his eyes adapted to the light. He was in a large

corridor. A long, straight perspective where it was impossible to distinguish

the contours. The side walls were clean with no signs or indications. There

was only one option: going ahead.

Counting his steps—about 70cm each—Ray calculated the location of

a door approximately every 100 meters.

All the doors were identical, and he encountered no resistance when

opening them. His curiosity grew with every door he passed.

The darkness was interrupted along the corridor by yellowish, low-

light lamps on the center top of the ceiling. Ray stopped counting the doors

after the first several hundred. After crossing some doors, he also tried to

reopen one behind him. Looking in the opposite direction, the scenario

40

was always the same—a dark corridor with a door 100 meters away. When

he tried to leave one of the doors open behind him before reaching the

next, the door closed softly, emitting a silent “click.”

After countless openings, he finally saw EXIT sprayed on the left wall.

This was the first change after a long time that sparked his curiosity.

Ray understood that he had walked through the last door when, after

opening it, a bright light suddenly hurt his eyes. Walking the long corridor

path, the force pushing him door after door, surrounded by a surreal

silence, he had become more and more alarmed was that his beloved son

Tommy might be in danger, something Ray couldn’t quite imagine.

Step after step, this worry grew in his mind, replacing the feeling of

confidence transmitted by the place.

The sudden change of situation, the change of light, and the echo of a

familiar noise—a sound that Ray couldn’t quite place but felt he had heard

before—helped Ray recover a more optimistic feeling.

As he adapted to the new and more comfortable lighting conditions,

Ray was curious about his destination. After this long walk in the dark, he

had no doubt that he had arrived.

The cryptex, a mysterious puzzle box, the curtain, and the countless

doors—at least that is what he supposed—were all part of an uncommon

path, a passage to reach another place. Curious and worried at the same

time, Ray couldn’t wait to see what this new world held.

Ray looked around, and what he saw reminded him of his younger

dreams, mixed with a sense of déjà vu.

At first sight, he saw an abandoned amusement park—the ideal place

for a Rob Zombie movie. There were many carousels, rides, odd buildings,

barracks, and shooting galleries.

Here and there, semi-abandoned mobile homes were parked between

carousels, judging by their state, maybe for decades. Regardless of its

rundown appearance, Ray can’t avoid feeling attracted and fascinated by

the soul of the place.

PART II THE GREAT AMUSEMENT PARK

41

“It is like a sleeping giant,” Ray murmured. At that moment, searching

for Tommy, the biggest priority in his mind, assumed a different meaning.

He was almost sure his son was somewhere around, and nothing

dangerous could happen to him.

Ray felt the sensation of being alone-not-alone. His thoughts were only

accompanied by the whisper of the wind.

“Hello, sir. Can I help you?”

The voice came from his left, from a woman. Her presence added

a surreal touch to the scene, the inexplicable inside the inexplicable.

Meanwhile, she walked closer to him.

“Hello, my name is Ray. I arrived...” Ray could not tell from where and

how he arrived, so he avoided explaining much more about it.

“I am searching for my son Tommy, but...” Ray was not sure how to

explain why he thought Tommy was there; it was just a supposition.

“Sir, if you are searching for Tommy, that guy who entered the park a

few hours ago, you can search for him yourself.” Answered the woman,

“Just walk around; he should still be visiting the park. I suppose he is

enjoying the attractions.”

Enchanted by her sweet voice, only the search of Tommy made him

desist to continue a conversation with her.

At that precise moment, Ray thought he had met his destiny.

“Sorry to be so rude,” the woman said.

“I am Sonya. It’s been such a long time since I’ve talked with someone

that I almost forget how to behave with guests.”

Despite being interested in Sonya, Ray was impatient to leave the

conversation and start his search. Without speaking a word, she seemed to

understand Ray’s emotions perfectly.

“I suggest you start searching for your son down that lane,” Sonya said,

pointing to an entrance about 40 meters away.

“Thank you!,” said Ray, moving immediately in that direction.

“See ya!,” Sonya said as Ray moved away quickly. Ray waved his hand

without turning back.

PART II THE GREAT AMUSEMENT PARK

42

WELCOME TO BDTH 6159, THE BEST AMUSEMENT PARK IN

THE WORLD!

Now that Ray was close to the lane, he could read the faint remains of

the amusement park entrance, a symbol of the park’s former glory and the

start of his journey. He eventually also saw the ticket booth for visitors.

The characters and those words, an unforgettable memory for him,

had the power to change his mind. It seemed Ray had forgotten his

concern.

“This is a dreamy place!,” He thought. His adventure was really starting

now, and he felt optimistic, captured by the fascinating, decadent scenario

the park was offering to his eyes. The once vibrant rides now stood in

eerie silence, their paint peeling and their lights dimmed. This created a

hauntingly beautiful sight.

As Ray continued down the lane, he noticed how time had weathered

the structures around him. The peeling paint and rusted metal gave the

amusement park an almost nostalgic charm, a relic from a forgotten

era. He wandered farther into the park, finding a large, semi-abandoned

carousel.

He paused, captivated by the melancholic beauty of the ride, imagining

the laughter and joy it had once brought to children and families.

Ray’s thoughts drifted to his own childhood. He could almost hear the

distant echoes of music and the excited chatter of visitors. The memories

were only a reminder of simpler times. His reverie was broken by the

sound of footsteps echoing through the empty park. Ray turned, expecting

to see Sonya or perhaps another visitor, but the path behind him was

empty. He felt a chill run down his spine, the feeling of being watched

creeping up on him. Shaking off his unease, he pressed on, determined to

find Tommy.

As he walked, Ray noticed more signs of recent activity. Footprints

in the dust, a half-eaten candy apple on a bench, and a freshly discarded

ticket stub. These clues reassured him that Tommy was nearby and that

he was not alone in this strange place. Ray’s journey through the park took

PART II THE GREAT AMUSEMENT PARK

43

him past a series of game booths, their long-faded prizes covered in grime.

Amidst the decay, there was a sense of resilience, a spirit that refused to be

completely extinguished.

Eventually, Ray found himself at the entrance of another large

structure, its faded sign reading, “The Fun House.”

The whimsical design of the building contrasted sharply with its

state. Ray hesitated momentarily, then decided to venture inside, hoping

to find more clues about Tommy’s whereabouts. The interior of the Fun

House was a maze of mirrors and twisted corridors. Ray’s reflection

seemed to follow him at every turn, creating an unsettling illusion of being

surrounded by countless versions of himself. The air was filled with the

faint smell of old popcorn and sawdust, adding to the surreal atmosphere.

Each step echoed loudly, breaking the silence that enveloped the park.

He knew he was getting closer to finding Tommy, but the journey proved to

be more challenging than he had anticipated.

Ray started following the lane’s path. A series of barracks, their once

vibrant colors now faded, lined the right side, stretching until a curve

obscured the rest.

Some of the barrack windows on the lane side were covered with

dust and dirt. Ray was attracted by the third barrack window, from which

an irregular flashing light was visible. At first sight, it seemed to him the

flickering of a neon near the end of its life, but approaching closely, Ray

saw that the light was also changing color.

“There is a screen inside there,” he thought.

Ray was speechless, seeing better inside after cleaning the dust from

the screen with his hand.

“Tommy!,” he screamed. Then he started compulsively knocking on

the glass. What he saw was beyond his imagination; his son was inside a

futuristic room, playing in front of a game console.

Tommy was totally focused on the animation on the screen, ignoring

what was happening around him.

PART II THE GREAT AMUSEMENT PARK

44

Ray continued knocking and moving his hands in front of the window,

trying to catch Tommy’s attention, until he saw his son standing up and

leaving the room through a door on the opposite side.

Ray was not one to be easily discouraged, but for the second time in a

few minutes, he was speechless.

With more questions than answers, Ray found a door near the corner

of the barracks he had not noted before, as he was too excited for what he

saw through the window.

The door was unlocked, but as he stepped inside, the room offered the

same spectacle he had seen through the other windows.

A silent single-room space with no lights, except for a console screen.

“He was playing here just a few seconds ago!,” thought Ray. He saw

other similar game consoles, all protected by transparent plastic covers.

Dust was everywhere.

Almost confused by what he experienced, Ray went out of the barracks.

Sonya was beside the door. The woman’s smile—Ray imagined she was

a woman, but it was impossible to say her age—and her sweet and calm

movements had the power to change his mood immediately.

“What are you searching for, Ray?,” asked Sonya with a low and

warm voice.

“I am sure I saw Tommy there, but I found only an empty, silent room

when I went inside.”

“If you saw your son through the window, it means he was there. These

windows use delayed glass,” she continued like it was the most natural

and obvious thing. Ray assumed an interrogative expression, and so she

continued.

“It is a special material with the property to capture images on one side

and release them slowly, delayed in time, on the other. What you watched

through the window happened some hours before.”

Ray’s understanding did not contribute to lessening his shock.

PART II THE GREAT AMUSEMENT PARK

45

“Ray, don’t be afraid and go ahead. Follow the path and enter the park;

you will soon meet your son,” concluded Sonya, putting a hand on his

shoulder.

He felt that her gesture transmitted the warm sound of her voice to

his body.

Ray turned to Sonya, but he was alone again.

Trying to observe and memorize every detail around him, he

cautiously started down the lane again until he disappeared behind the

corner of the barracks row.

PART II THE GREAT AMUSEMENT PARK

47© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_2

CHAPTER 2

How to Maintain a

Secure Rollercoaster

Contribution of Jan Cumps, Element14.com community member.

Figure 2-1. Iconic representation of the big rollercoaster of the
BDTH6159 amusement park created with DALL-E

The most iconic representation of the amusement park is the

rollercoaster: a ride that mixes pure enjoyment and terror and is frequently

the most popular attraction in the park (see Figure 2-1). The rollercoaster

has also been the subject of horror and romance novels and movies.

https://doi.org/10.1007/979-8-8688-0080-1_2#DOI

48

Regrettably, some of these thrilling rides have a darker side in the real

world. Tragedies often occur due to a lack of maintenance.

Indeed, this project shows how a specific family of sensors can

contribute to granting security in this kind of structural engineering.

Note When I started writing this book, in collaboration with the

Element14.com engineering community, we launched a challenge

between the community members for a project related to the story

of Ray and Tommy in the BDTH6159 amusement park. This project

is the selected one, designed by my friend and maker, Jan Cumps,

a top member of the Element14 community. At that time, he was

thinking about how to test a vibration sensor to detect low-frequency

vibrations, like those that can prelude risks to structures like dams,

bridges, and rollercoasters. This chapter is the complete project,

which is easy to replicate for personal applications.

I should say that I only participated marginally in this project, giving

some help and advice to Jan, who managed the building, but more

importantly, had the “maker idea.”

2.1. A Vibration Simulator Made Easy

The first step in testing and developing the vibration simulator is

designing a cheap but efficient simulation environment. The experimental

conditions should be reproducible multiple times and always give the

same results.

In addition, it should include the range of vibrations in the frequency

range of a real-world application. For this reason, the choice of a second-

hand audio subwoofer to generate test vibrations resulted in the ideal

device. See Figure 2-2.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

49

Figure 2-2. Details of the audio subwoofer modified for the vibration
platform. The top platform is screwed to the four corners and is
connected to the subwoofer speaker through a plastic cylinder, which
is glued on both sides

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

50

Low vibrations mainly refer to the frequency range of audible sounds

(roughly between 20 and 20.000 Hz). In the case of structures, the terms

“low” and “high” assume a different meaning. Two parameters were

identified:

• Natural frequency: The frequency at which a

particular structure or material is expected (and

designed) to vibrate due to its intrinsic characteristics.

• Amplitude threshold: The vibration motion in

mm that is expected in normal conditions. Higher

thresholds may indicate structural damage, causing

serious concerns.

In the three examples, average acceptable values are as follows:

• Bridges: The natural frequency is around 1-5Hz. Slight

higher frequencies can generate harmonics inside the

structure, and the usual 1mm vibration amplitude can

transform in a dangerous situation.

• Dams: The natural frequency is under 1Hz. Infrequent

vibrations of 1-2mm amplitude, also infrequent,

represent an alarming situation.

• Rollercoasters: The natural frequency ranges

from 5-10Hz because their structure is mainly based

on metal. Vibrations over a few mm of amplitude are

dangerous.

To complete the simulator, we added a rectangular elastic platform

made of cardboard and compact Styrofoam fixated to the four corners of

the subwoofer box. The center of the vibrating surface was connected to

the speaker’s center through an acrylic cylinder glued on both sides. See

Figure 2-3.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

51

Figure 2-3. The frequency generator used to generate a stable
frequency. To send the signal to the subwoofer audio input, a small
adapter from the coaxial cable output to the audio jack plugged into
the amplified subwoofer input was sufficient

We used a frequency generator to generate a precise and stable

frequency. The subwoofer input signal, connected to the frequency

generator’s output signal, can be amplified properly, thanks to the small

amplifier included in the original device.

After setting the desired frequency, the simulation surface vibrates

accordingly, while the subwoofer amplifier allows the vibration intensity to

be changed as needed.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

52

2.1.1. The PCB 603C01 Sensor for
Industrial Applications

After testing the simulation model, the project’s second phase involves

verifying its efficiency by collecting data with a sensor. See Figure 2-4.

Figure 2-4. The piezo electric vibration sensor for industrial
applications used for testing the setup. The sensor (center of image) is
connected to a coaxial cable for signal detection, while the opposite
side is firmly bolted to the vibration platform

Thanks to the Element14 community and the producer’s sponsorship,

Jan could produce the detection tests with the industrial vibration sensor

Piezo Electric Accelerometer PCB 603C01 by the IMI Sensors division of

the PCB Piezotronics company.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

53

This high-precision and sensitive sensor can be connected differently

depending on the application.

Note The range of vibrations that raise alarms in a real-world

application varies by structure. A detailed engineering analysis via

monitoring systems determines this range. Alarms are set based on

natural frequencies, expected load conditions, and the potential for

resonance inside the structure.

Thanks to the Element14 community and the producer’s sponsorship,

Jan could produce the detection tests with the industrial vibration sensor

Piezo Electric Accelerometer PCB 603C01 by the IMI Sensors division of

the PCB Piezotronics company.

This high-precision and sensitive sensor can be connected differently

depending on the application. See Figure 2-5.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

54

Figure 2-5. The sensor has several fixation ways, according to the
different environments and types of applications

In this case, it was sufficient to firmly bolt the PCB 603C01 to the upper

surface in order to connect it to the test vibration platform.

Due to the low currents, the sensor must be connected to a proper

coaxial connector to measure the values.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

55

2.2. Raspberry Pi to Process Realtime Data

With the described setup, the simulation platform generates a measurable

output signal. At this point, we must choose a reliable and quality DAQ

(Data Acquisition) system to collect the simulator information for testing

purposes and real-world data.

Thanks to the sponsors and Element14 community, we set up

the hardware DAQ using a Raspberry Pi 4 with an MCC 172—IEPE

Measurement DAQ HAT (Hardware Attached on Top) mounted on top

(https://digilent.com/shop/mcc-172-iepe-measurement-daq-hat-

for-raspberry-pi/). See Figure 2-6.

Figure 2-6. The MCC 172—IEPE Measurement DAQ HAT for data
acquisition from the piezo electric sensor

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://digilent.com/shop/mcc-172-iepe-measurement-daq-hat-for-raspberry-pi/
https://digilent.com/shop/mcc-172-iepe-measurement-daq-hat-for-raspberry-pi/

56

The HAT is a two-channel ADC (Analog to Digital Converter) with local

control and auxiliary power supplies. It is specialized in sampling piezo

sensors and microphones to gather audio and vibration metrics.

It can acquire a fast data burst to send it to a Raspberry Pi host for

further processing and analysis.

2.2.1. Analog Specifications

• 50.000 samples per second

• IEPE power supply for each channel

• The power supply is switchable, has 23 V compliance,

and has a typical 4mA constant current

• It can deliver 4mA constantly as long as the required

voltage does not exceed 23V

2.2.2. Digital Specifications

• Digital trigger input

• Local microcontroller and FIFO data buffer that can

hold 49,000 samples

• Raspberry Pi as host via SPI

• Stackable: A single Raspberry Pi can handle up to three

HATs at full speed on both channels

See Figure 2-7.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

57

Note Due to the popularity and wide range of possibilities offered

by the Raspberry pi linux Embedded platform and its powerful

performance, this device has gained a privileged position in industrial

applications beyond the makers’ world.

Many companies and individual makers also started developing

Raspberry Pi HATs. Anyone can develop a custom HAT following the

simple specifications provided as open source by the Raspberry pi

Foundation, which are available on GitHub (https://github.com/

raspberrypi/hats).

The following link is just an example of the plethora of pi HATs

available on the market for the different models of the embedded

linux board: https://thepihut.com/collections/

raspberry-pi-hats

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://github.com/raspberrypi/hats
https://github.com/raspberrypi/hats
https://thepihut.com/collections/raspberry-pi-hats
https://thepihut.com/collections/raspberry-pi-hats

58

Figure 2-7. The complete testing setup with the Raspberry Pi and the
HAT connected to the vibration sensor through a coaxial cable

2.3. The Data Processing Software

Data collection from the Raspberry Pi using the MCC 172—IEPE

Measurement DAQ HAT can be achieved using many different

approaches: Python, MATLAB, LabVIEW, C/C++ are only some of the

possible cases.

The core of the software development is the HAT library (available on

GitHub at https://github.com/mccdaq/daqhats). The first functionality

test was done using the FFT (Fast Fourier Transform) example in the HAT

library.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://github.com/mccdaq/daqhats

59

Then, keeping the examples as a reference, Jan developed a first

test Linux program to run it on the Raspberry Pi Raspbian OS. The

development was done with Eclipse, but this IDE is not mandatory.

Note This chapter’s software folder includes all the examples,

including the HAT libraries.

2.3.1. Using LabVIEW for Data Processing

LabVIEW is a graphical programming environment that
provides unique productivity accelerators for test system
development, such as an intuitive approach to programming,
connectivity to any instrument, and fully integrated user inter-
faces (see https://www.ni.com/en/shop/LabVIEW.html).

LabVIEW is a commercial application that also provides a community

edition for developers and for personal use. For this reason, we decided

to use this platform to illustrate the software implementation for data

processing.

Note Initially developed about 40 years ago on Mac platforms,

labVIEW has been integrated into Windows and linux. unfortunately,

the application is no longer supported for Mac platforms (oSX 14

Sonoma), and the preexisting licenses for Mac have been converted

from annual subscription to permanent, without support after version

2003 Q3.

This may be a minor limitation, but the most recent 2024 version is

only supported on Windows and linux 64-bit with Intel processors. In

practice, labVIEW does not work on all the hardware based on ARM

processors, whether they are Windows or linux platforms.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://www.ni.com/en/shop/labview.html

60

The best open source alternative to labVIEW is the Java-based

Myopenlab, which I suggest you use if you don’t own an Intel- based

computer.

The principle of the LabVIEW platform is to visually design virtual

components, connecting them to the data source and processing them to

obtain the desired measures.

For this test, Jan used three components:

• A service wrapper so that the virtual instrument is

available upon boot and runs in the background

(daemon run).

• Example LabVIEW flows used as training material.

• A showcase with the vibration test piezo electric sensor.

The HAT library connects the wrapper to the Raspberry Pi

hardware DAQ.

The SCPI parser was used in the Jan Breuer library (https://github.

com/j123b567/scpi-parser). See Figure 2-8.

Note SCpI (Standard Commands for programmable Instruments)

is defined as an additional layer on top of the IEEE 488.2-1987

specification, “Standard Codes, Formats, protocols, and Common

Commands.”[4] The standard specifies a common syntax, command

structure, and data formats for all instruments. It introduces generic

commands (such as ConFigure and MEASure) that could be used

with any instrument (Source: Wikipedia https://en.wikipedia.

org/wiki/Standard_Commands_for_Programmable_

Instruments).

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://github.com/j123b567/scpi-parser
https://github.com/j123b567/scpi-parser
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments

61

Figure 2-8. Some examples of the user interface designed with the
graphic editor of LabVIEW. The UI exposes interactive components to
the user for setting parameters and virtual instruments showing real-
time data coming from the probes

The software project is divided into two components: the graphics

user interface, where the data is shown, and the driver. The driver is the

design part telling LabVIEW how to retrieve the data from the Raspberry

Pi and organize it, including range controls, error management, and other

features. See Figure 2-9.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

62

Figure 2-9. The preview snippet of the custom LabVIEW driver for
the custom instrument streaming data from the Raspberry Pi

The visual design is then converted and eventually customized into

the source code. Those parts of the design that need to be set or configured

are connected to their corresponding UI design components. The user

accesses the final instrument using the interface widgets, providing radio

buttons, switches, parameter settings, and so on. See Figure 2-10.

Figure 2-10. Clock source configuration and sample rate. This part of
the LabVIEW instrument includes user interaction

Thanks to LabVIEW, the Raspberry Pi HAT (the DAQ) became

programmable through a network connection to the LabVIEW virtual

instrument driver.

Proceeding in this way, Jan designed a LabVIEW control panel,

developed on the laptop, so that the configurable areas become available,

including proper feedback.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

63

The compiled binaries of the LabVIEW design can run directly on the

Raspberry Pi. See Figure 2-11.

Figure 2-11. The LabVIEW interface connected to the Raspberry Pi
HAT DAQ retrieving real data. The workflow asks for a set of samples,
collects the results, and shows them on a LabVIEW waveform chart

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

64

A further customization is modifying the project (available in the

repository) to save the streamed data on disk to retrieve them when not

connected for analysis.

2.4. Making a Cheap Piezo Sensor

After assessing an efficient workflow widely tested with the subwoofer

simulation platform and the PCB 603C01 for industrial applications, Jan

successfully implemented the same solution with a cheap piezo sensor.

See Figure 2-12.

Figure 2-12. The jellybean piezo sensor is an alternative to making a
cheap vibration sensor. These components are available in the market
at a very low price (ten pieces cost an average of $10)

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

65

This small, cheap device has all the credentials needed to play the

role, but depending on the vibration amplitude, it can generate very high

voltages, which can damage the HAT’s ADC (Analog to Digital Converter)

input. For this reason, a filter-and-buffer circuit is needed.

This device is similar to the one that generates the spark to light the

gas of a lighter or cooking plate. The filter circuit was designed by another

Element14.com top community member, Michael Kellet (https://

community.element14.com/members/michaelkellett). See Figure 2-13.

Figure 2-13. With a simple commercial filter, the response of the
jellybean piezo, when ticked with a pen, is still too high to avoid the
risk of damaging the ADC input

Michael Kellet designed a small circuit that protects the analog input

with a couple of diodes and uses a charge amplifier to buffer the signals.

See Figure 2-14.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

https://community.element14.com/members/michaelkellett
https://community.element14.com/members/michaelkellett

66

Figure 2-14. Michael Kellet’s circuit to interface a jellybean piezo
sensor to the HAT analog input

After designing the circuit with KiCAD, Jan made the PCB and built the

circuit. See Figure 2-15.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

67

Figure 2-15. The KiCAD PCB design and the final circuit are
assembled and ready to connect the jellybean piezo sensor to the ADC
input of the Raspberry Pi HAT DAQ

With the filter and buffer circuit described here, the sensor operates

inside the desired range—the signal is within the voltage rails. Note that

the HAT DAQ operates in the 5V range. With a different ADC, for example,

one operating in the 3.3V range, we need a further circuit to step down the

current. See Figure 2-16.

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

68

Figure 2-16. The oscilloscope response of the piezo electric sensor
ticked with a pen, applying the buffered filter

CHApTER 2 HoW To MAInTAIn A SECuRE RollERCoASTER

69© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_3

CHAPTER 3

The Scary Mirror

Figure 3-1. The scenographic effect of the “scary mirror” during the
last phase of software development

The mirror was a particular fascination in ancient mythologies and

modern cultures. Think of the Greek myth of Narcissus, who falls in love

with his image reflected in a pool of water, and Perseus, who uses Athena’s

mirror shield to avoid seeing Medusa and being transformed into stone.

https://doi.org/10.1007/979-8-8688-0080-1_3#DOI

70

In Roman mythology, Venus is represented with a mirror to symbolize

beauty and self-admiration. Fenghuang of Chinese mythology often

carries a mirror to show his pure heart, while Japanese mythology says that

the sun goddess Amaterasu is attracted out of a cave seeing her image in

a mirror.

Contemporary artists, from M.C. Escher to J.L. Borges, frequently used

mirrors as symbols (M.C. Escher—The Magic Mirror, lithography, 1946).

Magic mirrors are also present in popular tradition and fairy tales; we

all know the magic mirrors in Snow White (Grimm brothers), Beauty and

the Beast (Jeanne-Marie Leprince de Beaumont), The Snow Queen (Hans

Christian Andersen), Alice Through the Looking Glass (Lewis Carroll),

and others.

This project explores the creation of a real magic mirror with

something special (see Figure 3-1).

3.1. The Magic Mirror Platform

Released under the MIT License, MagicMirror2 is a modular platform at

the core of many projects. This platform, developed mostly on JavaScript,

is portable to several platforms; it can also run on Windows, but it is

preferably used with the Linux operating system. See Figure 3-2.

CHAPTER 3 THE SCARY MIRROR

71

Figure 3-2. The first magic mirror structure I developed

The modularity of MagicMirror2 and the possibility of developing

custom plugins attracted a vast community of contributors; nowadays,

hundreds of plugins support many features and are easy to install and

customize.

The introduction of the makers’ market of the powerful Linux-based

Raspberry Pi, supporting the MagicMirror2 features, boosted the system’s

popularity. It can work on any HDMI screen as well as on the Raspberry Pi

touch screen. From a technical point of view, the application will run on a

full screen, showing some unique content according to the settings and the

installed plugins. See Figure 3-3.

CHAPTER 3 THE SCARY MIRROR

72

Figure 3-3. The assembled backside of the magic mirror, including
the Raspberry Pi and the HDMI screen controller. For this first
creation, I followed a very basic setup with the Raspberry Pi running
only the MagicMirror2 platform

Making the screen content behind a semi-reflection mirror visible

depends on the characteristics of the displayed data: the size of the fonts,

the source of information, the color of the font, and so on.

When the screen showing the MagicMirror2 application on a black

background lies behind a semi-transparent mirror, only the displayed data

is visible; the screen background and the free surface of the mirror are not

visible. See Figure 3-4.

CHAPTER 3 THE SCARY MIRROR

73

Figure 3-4. The mask components of the back of the mirror create the
scenery effect

I have experimented with making my own magic mirror on a

Raspberry Pi in the past, appreciating the incredible effect generated by

this simple building.

When I made the first magic mirror, the software platform was still

in its early stages; the semi-reflective mirror was the most expensive and

difficult-to-find component. Due to the popularity acquired by this kind of

making, the prices of semi-reflective mirrors went down considerably in

less than a year.

CHAPTER 3 THE SCARY MIRROR

74

3.1.1. The MagicMirror2 Platform Architecture

The platform architecture is server-client based; the client provides the

display information—and eventually the interaction—while the server

manages the MagicMirror2 process. For this reason, using a Linux

machine is preferable; from this perspective, a Raspberry Pi undoubtedly

represents the ideal hardware.

The installation process in the Raspberry Pi, or any other Linux system

like Ubuntu, is easy:

 1. Download and install the latest NodeJS version.

 2. Check if git is installed on your machine by

executing git or otherwise install it.

 3. Clone the repository: https://github.com/

MagicMirrorOrg/MagicMirr or

 4. Enter the repository: cd MagicMirror/

 5. Install the application: npm run install-mm

 6. Copy the config sample file: cp config/config.

js.sample config/config.js

 7. Start the application: npm run start

(Source: MagicMirror2 installation documentation.)

Entirely developed and maintained as a NodeJS application, the

platform—both the client window and the server—uses JavaScript to

configure and customize with a set of JSON files.

All the information, including the list of all available plugins and the

complete documentation, can be accessed from the GitHub repository at

https://github.com/MagicMirrorOrg/MagicMirror.

CHAPTER 3 THE SCARY MIRROR

https://github.com/MagicMirrorOrg/MagicMirr
https://github.com/MagicMirrorOrg/MagicMirr
https://github.com/MagicMirrorOrg/MagicMirror

75

3.2. Push the Mirror Beyond the Limits

The idea behind the Scary Mirror project is to improve the classical magic

mirror features with advanced interactivity. Of course, this was possible

using the powerful Raspberry Pi model B3.

I aimed to create an automated window that displays updated

information like weather, calendar appointments, email notifications, and

so on, and a system that reacts to the user’s presence in front of it.

To achieve this goal, the design became more complex. In addition, to

make it possible to place the Scary Mirror virtually everywhere, including in

an uncommon place, the whole project needs to be powered by batteries.

3.2.1. PIR Sensor

The easy-to-use PIR (Passive InfraRed) sensor detects motion by sensing

infrared radiation emitted by objects. PIR sensors are very common

devices used in many applications.

They can be calibrated at a specific distance (between 30cm and about

5m), so when a person’s movement is detected inside the range, they

trigger a signal that a GPIO logic input can read.

The MagicMirror2 server can run a predefined window by default until

the PIR sensor detects movement. This triggers a different sequence shown

on the screen behind the semi-reflecting mirror.

3.2.2. Pi Camera

The pinhole camera available for the Raspberry Pi includes many visual

effects that can be added to the making. The Pi Camera driver, including

the live effects, can be fully controlled from the terminal through a Bash

script, a Python script, or any other way a process can be launched from

the Linux operating system, including an independent process configured

in the crontab schedule.

CHAPTER 3 THE SCARY MIRROR

76

3.2.3. Audio Effects

Associating images and short videos, especially unexpected sequences that

surprise the observer, with proper audio effects improves the user experience.

Starting from the Raspberry Pi 3B, the audio output has been changed from

PWM to stereo DAC with a 3.5mm output jack. This signal (it can be directly

connected to an earbud) is sent to a portable battery-operated amplifier.

3.2.4. Lighting Effects

Since these are designed to operate in a dark corner, adding surround

lighting effects is essential. To achieve this goal, the initial idea was to use

an Arduino dedicated to controlling a 128-Neopixel light strip controlled

by the Raspberry Pi via the I2C protocol.

However, the I2C protocol became unstable while the Linux system

was running the NodeJS MagicMirror2 server, so I opted to keep the

lighting effect independent of the rest of the system. See Figure 3-5.

Figure 3-5. The 128-Neopixel LED strip used to create the
lighting effects

CHAPTER 3 THE SCARY MIRROR

77

3.3. Making the Mirror

Instead of making a magic mirror from scratch, I searched for a proper

structure to upcycle.

The best choice was a round IKEA bathroom mirror with an internal light.

The original mirror was quite ugly (and it was on sale for less than ten dollars),

but when I saw it, I imagined the final result and it was love at first sight.

It was round, with a large plastic frame perfect for fitting some of

the components, and the diameter was perfect. The internal structure

supporting the electronic boards, batteries, and wiring was obtained by

recycling the mirror’s cardboard box.

3.3.1. Preparing the Frame

Figure 3-6. The disassembled mirror frame

CHAPTER 3 THE SCARY MIRROR

78

The bottom hole—used for the light power button—was carved to

fit the PIR sensor. The two-round-holed grids correspond with the two

internal amplifier speakers. See Figure 3-6.

On the top center of the frame, a small hole hosts the Pi Camera lens.

After sanding, the frame was painted black. See Figure 3-7.

Figure 3-7. The back side of the Scary Mirror frame

The best magic mirror effect is obtained when the display screen fits

close to the back of the semi-reflecting mirror.

In the final making, the frame is the first layer the observer sees, while

the mirror, screen, and components are placed together on a support, like

making a box. This is why the 5cm thick frame is ideal to include all the

components.

CHAPTER 3 THE SCARY MIRROR

79

Observing the back side of the frame, the PIR sensor is already glued

to the bottom hole. The two speakers are glued in correspondence to the

grid holes of the frame, and the small 2W amplifier with its battery holder

is also glued to the frame.

The Neopixel LED strip is in place around the frame border and

inserted into a cardboard rail. These components are connected to the

internal audio and lighting effects block. These parts should be considered

the peripherals of the Scary Mirror device.

3.3.2. The Internal Cardboard Block

As mentioned, the entire assembly of the Scary Mirror is contained in a

5cm thick cardboard block obtained by recycling the IKEA packaging.

The semi-reflecting mirror should stay as close to the screen on its

back as possible. For this project, I used the six-inch Raspberry Pi touch

display. The final assembled block is pressed against the plastic frame,

keeping all the parts together. See Figure 3-8.

CHAPTER 3 THE SCARY MIRROR

80

Figure 3-8. The front side of the cardboard block is exposed to the
observer’s view. The detail shows the Raspberry Pi display with the
black cardboard mask to create the perfect reflecting background

On the back side of the cardboard block, I engraved the space to fit

the Raspberry Pi, the Arduino, and the other components, including the

battery pack.

To fix the cardboard and all the components close to the frame, I used

three big screws passing through the plastic frame, which kept the internal

build in place. See Figure 3-9.

CHAPTER 3 THE SCARY MIRROR

81

Figure 3-9. Detail of one of the three screws that block the internal
build of the Scary Mirror and keep it in place when the mirror is hung
vertically

3.4. Electronics, Wiring, and Powering

To make the Scary Mirror battery-operated, I used various power sources.

The Raspberry Pi has a LiPo battery and a HAT Pi Juice, which I have

used in other projects. This component is not essential, as the Raspberry

Pi can be powered with multiple 5Vcc power sources, including a 4000mA

power bank.

A 2000mA smartphone power bank powers the Arduino and the

Neopixel LED strip, while I recycled the audio amplifier’s original two AA

battery holders. See Figure 3-10.

CHAPTER 3 THE SCARY MIRROR

82

Figure 3-10. Powering test of the components to verify the duration
of the batteries

3.4.1. Power Supply Issue

The power of the smartphone power bank is sufficient for the Arduino and

the Neopixel LED strip.

As mentioned, the Arduino manages the Neopixel lighting sequence;

for this reason, I set the software while powering the system with a USB

power adapter, temporarily excluding the battery supply. When everything

worked fine, I connected the power bank, and the board worked fine for

about ten seconds. Then the power automatically shut down.

I spent hours searching the Internet for this unexpected behavior until

I discovered that modern smartphone USB power banks include a circuit

that turns off the external power battery when the smartphone is fully

charged.

CHAPTER 3 THE SCARY MIRROR

83

To avoid overcharging the smartphone battery, the external source

only works when the charging device periodically generates a pulse

requiring more charging power. After about ten seconds, the power bank

automatically powers off without this pulse.

The solution has been implemented with a timer interrupt in the

Arduino UNO board software. This low-priority interrupt timer triggers

automatically every five seconds, sending a pulse to the power bank from

one of the available pins of the Arduino UNO GPIO.

The logic positive signal generated by the Arduino UNO is sent to a

simple circuit built by a transistor. It triggers the power bank USB power

line, simulating the power request expected from a smartphone that is not

fully charged.

The result worked fine, as the pulse acts as a “keep alive” signal in the

network connections. See Figure 3-11.

Figure 3-11. The periodic pulse generated by the Arduino UNO GPIO
pin is sent to the power bank every five seconds

CHAPTER 3 THE SCARY MIRROR

84

3.4.2. Driving Large Arrays of Neopixel LEDs

A high-frequency signal drives the Neopixel LEDs through the Neopixel

Arduino UNO library.

Working with large arrays of Neopixel LEDs, as in this case, raises

concerns about the stability of the signal along the array. This can make it

difficult to drive the LED’s color and reach the desired LED in the array.

According to the Neopixel documentation, this problem can be easily

solved with a simple add-on circuit to the LED array connector, as close as

possible to the GPIO signal. See Figure 3-12.

Figure 3-12. The completed assembly of the Scary Mirror. To cover
the exposed parts around the mirror and improve the scenographic
effect, I hot-glued some black tulle pieces around the device

CHAPTER 3 THE SCARY MIRROR

85

The power output signal provided by the Arduino UNO board is

limited to 20mA, which is not sufficient to power more than 10-20 LEDs

directly from the board. The array signal and ground should be connected

to the Arduino UNO GPIO, but an external source should provide the

Neopixel array power.

To improve the stability of the array signal, a polarized 1000 uF

capacitor must be placed between the array’s GND and Vcc power lines.

See Figure 3-13.

Figure 3-13. The back side of the Scary Mirror. A large portion of the
frame circumference holds the 128-Neopixel LED strip. The parts that
should be hidden on the front side are covered by a tulle textile

CHAPTER 3 THE SCARY MIRROR

86

3.5. The Software

The project software is split into the C Arduino sketch to control the

lighting effects and the MagicMirror2 package, which is properly

configured to run on the Raspberry Pi and start at boot.

3.5.1. Arduino UNO Sketch

The first part of the source defines the constants and hardcoded values for

the pulse generator and the Neopixel library.

The Neopixel library instance requires three parameters:

 1. Number of pixels (Neopixel LEDs) in the strip

 2. The Arduino pin number used to control the LEDs

 3. The pixel-type flag

The Neopixel library supports several different Neopixel types,

depending on the provider. These differ in the control signal frequency,

according to the library header constants (see Listing 3-1):

• NEO_KHZ800: 800 KHz bitstream (most Neopixel

products with WS2812 LEDs)

• NEO_KHZ400: 400 KHz (classic v1 FLORA pixels, WS2811

IC drivers)

• NEO_GRB: Pixels wired for GRB bitstream (as for most

Neopixel products)

• NEO_RGB: Pixels wired for RGB bitstream (v1

FLORA pixels)

• NEO_RGBW: Pixels are wired for RGBW bitstream

(Neopixel RGBW products)

CHAPTER 3 THE SCARY MIRROR

87

Listing 3-1. The Initial Definitions of Constants and Hardcoded

Settings

#include <Wire.h>

#include <Adafruit_NeoPixel.h>

#include <TimerOne.h>

#ifdef __AVR__

 #include <avr/power.h>

#endif

#define NEOPIXEL_PIN 6

//! Pulse pin to avoid the power pack automatically shut down.

#define PULSE_PIN 5

//! Uses the builtin LED to monitor the pulse generation to

keep the power bank

//! battery always on

#define PULSE_MONITOR LED_BUILTIN

//! Pulse duration. Should be empirically calibrated on the

power bank used

#define PULSE_MS 5

//! Interval between two pulses (long interval, about 1 second)

#define PULSE_INTERVAL 5000000

//! Number of Neopixel LEDs in the strip

#define NEOPIXEL_LEDS 144

//! I2C Slave address

#define I2C_ADDR 0x08

To simplify the program’s business logic and limit the lighting effects to

predetermined colors, I empirically selected and hardcoded a set of RGB

colors with easy-to-understand symbolic names.

In the setup() function, the Neopixel library is initialized, and then the

last instruction arm, the timer, interrupts and starts it.

CHAPTER 3 THE SCARY MIRROR

88

The interrupt must be launched in the setup() as the last instruction

to avoid interferences during the library initialization. See Listing 3-2.

Listing 3-2. The setup() Function

void setup() {

#ifdef _DEBUG

 Serial.begin(9600); // start serial for output

#endif

 strip.begin();

 strip.show(); // Initialize all pixels to 'off'

 Wire.begin(I2C_ADDR);

 Wire.onReceive(receiveEvent);

 pinMode(PULSE_PIN, OUTPUT);

 pinMode(PULSE_MONITOR, OUTPUT);

 digitalWrite(PULSE_PIN, HIGH);

 digitalWrite(PULSE_MONITOR, LOW);

 Timer1.initialize(PULSE_INTERVAL);

 Timer1.attachInterrupt(pulsePower);

 Timer1.start();

}

// Predefined colors

#define PINK strip.Color(255, 64, 64)

#define WHITE strip.Color(255, 255, 255)

#define FIRE1 strip.Color(255, 64, 0)

#define FIRE2 strip.Color(255, 96, 0)

#define FIRE3 strip.Color(255, 128, 0)

#define FIRE4 strip.Color(255, 96, 32)

CHAPTER 3 THE SCARY MIRROR

89

#define FIRE5 strip.Color(255, 32, 64)

#define FIRE6 strip.Color(255, 32, 96)

#define BLUE1 strip.Color(0, 0, 255)

#define BLUE2 strip.Color(0, 32, 255)

#define BLUE3 strip.Color(0, 64, 255)

#define BLUE4 strip.Color(0, 96, 255)

#define PURPLE1 strip.Color(96, 16, 255)

#define PURPLE2 strip.Color(96, 16, 128)

#define PURPLE3 strip.Color(96, 16, 96)

#define PURPLE4 strip.Color(96, 16, 64)

The loop() function executes a sequence of lighting effects on the

Neopixel strip, while the timer interrupt generates the power supply pulse

independently. See Listing 3-3.

Listing 3-3. The loop() Function

void loop() {

 colorWipe(FIRE1, 10); colorWipe(FIRE2, 10);

colorWipe(FIRE3, 10);

 colorWipe(FIRE4, 10); colorWipe(FIRE5, 10);

colorWipe(FIRE6, 10);

 delay(500);

 colorWipe(BLUE1, 10); colorWipe(BLUE2, 10);

 colorWipe(BLUE3, 10); colorWipe(BLUE4, 10);

 delay(500);

 colorFlash(BLUE1, 10);

 delay(500);

 colorFlash(BLUE2, 10);

 delay(500);

CHAPTER 3 THE SCARY MIRROR

90

 colorFlash(BLUE3, 10);

 delay(500);

 colorFlash(BLUE4, 10);

 delay(1000);

 /* */

}

The third part of the source is a collection of mathematical functions

that create a colored light sequence on the LED strip using the hardcoded

RGB colors. See Listing 3-4.

Listing 3-4. Functions That Create a Colored Light Sequence

//! Fill the dots one after the other with a color

void colorWipe(uint32_t c, uint8_t wait) {

 for(uint16_t i=0; i<strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 strip.show();

 delay(wait);

 }

}

//! Fill the dots one after the other with a color

//! Then off in the same sequence

void colorWipeOnOff(uint32_t c, uint8_t wait) {

 // Pixels on

 for(uint16_t i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 strip.show();

 delay(wait);

 }

CHAPTER 3 THE SCARY MIRROR

91

 // Pixels off

 for(uint16_t i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, 0x00);

 strip.show();

 delay(wait);

 }

}

void colorFlash(uint32_t c, uint8_t wait) {

 setColor(c);

 delay(wait);

 setColor(0);

}

void setColor(uint32_t c) {

 uint16_t i;

 for(i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 }

 strip.show();

}

void rainbow(uint8_t wait) {

 uint16_t i, j;

 for(j=0; j<256; j++) {

 for(i=0; i<strip.numPixels(); i++) {

 strip.setPixelColor(i, Wheel((i+j) & 255));

 }

 strip.show();

 delay(wait);

 }

}

CHAPTER 3 THE SCARY MIRROR

92

// Slightly different, this makes the rainbow equally

distributed throughout

void rainbowCycle(uint8_t wait) {

 uint16_t i, j;

 for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel

 for(i=0; i< strip.numPixels(); i++) {

 strip.setPixelColor(i, Wheel(((i * 256 / strip.

numPixels()) + j) & 255));

 }

 strip.show();

 delay(wait);

 }

}

// Input a value 0 to 255 to get a color value.

// The colors are a transition r - g - b - back to r.

uint32_t Wheel(byte WheelPos) {

 WheelPos = 255 - WheelPos;

 if(WheelPos < 85) {

 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);

 }

 if(WheelPos < 170) {

 WheelPos -= 85;

 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);

 }

 WheelPos -= 170;

 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);

}

The timer callback function triggers the pulse generation to keep the

power bank power supply for the Arduino UNO board and the Neopixel

LED strip alive. See Listing 3-5.

CHAPTER 3 THE SCARY MIRROR

93

Listing 3-5. The Timer Callback Function

//! Timer callback function.

//! Stop the timer, output the pin for 20 ms then restart

the timer

void pulsePower(void)

{

 Timer1.stop();

 digitalWrite(PULSE_PIN, LOW);

 digitalWrite(PULSE_MONITOR, LOW);

 delay(PULSE_MS);

 digitalWrite(PULSE_PIN, HIGH);

 digitalWrite(PULSE_MONITOR, HIGH);

 Timer1.start();

}.

3.5.2. Raspberry Pi Software

Implementing the MagicMirror2 platform on the Raspberry Pi Linux

Raspbian is really easy. As the platform is frequently updated due to

the large contributor community, I suggest following the last version

installation instructions on the MagicMirror2 GitHub repository.

After installing the package and testing it with the default (basic)

configuration, you have to prepare to collect material from the Internet

before proceeding to the specific setup for the Scary Mirror project.

Of course, the described project is designed to be modular, also

according to the flexibility of the MagicMirror2 platform, not a how-to

recipe. The basic structure can be modified to create another original

version of a magic mirror build, reusing the same software with minimal

changes.

CHAPTER 3 THE SCARY MIRROR

94

 Collecting Contextual Media

Remaining in line with the scenic context of the magic mirror version of

this project, I sourced from the Internet a set of short movie clips showing

flames on a black background and a series of creepy sounds to make the

viewer experience better.

The software package for this chapter includes a selection of the media

I used in the build.

 Running Multiple Tasks on Startup

The Pi Camera, PIR sensor, and MagicMirror2 platform start on boot. I

preferred to keep an easier-to-manage configuration, avoiding converting

the Bash and Python scripts to services. This approach produces the same

visual effect but is simple to modify and start/stop during development.

The simple startup script of the MagicMirror2 platform launches the

NodeJS server and the client on the same machine, which accesses the

configuration files to start the modules according to the timing. Note that

after the NodeJS is started, the current folder is set again to the home

folder. The other scripts will start to manage the PIR sensor and camera

from there. See Listing 3-6.

Listing 3-6. The Basic Startup Script

#!/bin/bash

Launch Magic Mirror, as we don't want

to start it as a service but scheduled

in cron at boot

cd /home/pi/MagicMirror

npm start

cd /home/pi

That's all!

CHAPTER 3 THE SCARY MIRROR

95

The PIR sensor Python script detects the observer’s presence when

a user enters the detection range. When the detection occurs, a partially

transparent, bluish camera preview is enabled for a hardcoded number of

seconds. A surprising effect, while the magic mirror loops the flame videos

and sounds, is granted! See Listing 3-7.

Listing 3-7. The PIR Sensor Python Script

#!/usr/bin/python3

import paho.mqtt.publish as publish

import RPi.GPIO as GPIO

import time

import subprocess

from picamera import PiCamera

GPIO.setmode(GPIO.BOARD)

PIN_TRIGGER = 7 # Distance sensor trigger pin

PIN_ECHO = 11 # Distance sensor echo pin

Mosquitto server IP Address - Set this value accordingly

mqttServer = "192.168.1.30"

Mosquitto server channel name

mqttChannel = "magic_mirror"

Distance detection pause duration after a valid movement

has been detected and a message has been sent to the mqtt

server (7of9) in minutes

mqttPause = 1

camera = PiCamera()

Shows the camera preview for a number of seconds

def camPreview(sec):

 # print("camPreview()")

 camera.rotation = 180 # Image is bottom-top

CHAPTER 3 THE SCARY MIRROR

96

 # Show the camera preview

 camera.start_preview(alpha=0)

 # And brightness 0

 camera.brightness = 0

 # Progressively increase the brightness

 # to the maximum

 for i in range(0, 50):

 camera.brightness = i

 time.sleep(0.1)

 # Leave the preview visible for the desired

 # number of seconds

 time.sleep(sec)

 # camera.stop_preview()

 print("camPreview() END")

Initialize the GPIO pins for the distance sensor

def sensorInit():

 # Disable warnings if the program is launched twice

 # and the channel is already in use. It is anyway

reset by the

 # new process.

 GPIO.setwarnings(False)

 GPIO.setup(PIN_TRIGGER, GPIO.OUT)

 GPIO.setup(PIN_ECHO, GPIO.IN)

 GPIO.output(PIN_TRIGGER, GPIO.LOW)

 time.sleep(2)

Executes a sensor reading cycle, including the pause

for the sensor settle.

If the distance is between 2 and 400 cm (4 m) the reading

CHAPTER 3 THE SCARY MIRROR

97

is valid, else zero is returned.

#

if isPause is true, after a reading pauses for a fixed period

else return immediately to the caller

def checkDistance(isPause):

 # Set trigger to high then after 0.1 ms

 # set it to low as the sensor needs a

 # pulse of this length to start

 GPIO.output(PIN_TRIGGER, GPIO.HIGH)

 time.sleep(0.00001)

 GPIO.output(PIN_TRIGGER, GPIO.LOW)

 # define start/end time variables before executing

 # a distance reading. This is unnecessary, but if

 # the variables are not initialized randomly an error

 # of variable use before its definition may occur.

 # This is probably due to cases when the start time

 # reading is not yet been finished processing and the

 # echo (end time) reading while is already started.

 pulse_start_time = 0

 pulse_end_time = 0

 # Save start time until a transition does not occur

 # then save the time after the transition from the

 # echo input

 while GPIO.input(PIN_ECHO) == 0:

 pulse_start_time = time.time()

 while GPIO.input(PIN_ECHO) == 1 :

 pulse_end_time = time.time()

 # Calculate the pulse duration then calculate the distance

 # in cm according to the ultrasound speed

 pulse_duration = pulse_end_time - pulse_start_time

 distance = round(pulse_duration * 17150, 2)

CHAPTER 3 THE SCARY MIRROR

98

 # Ignore out of range calculations, distance should be

 # detected between 2 and 400 cm

 if(distance <= 2 or distance > 400):

 distance = 0

 # Wait for the sensor to settle before starting another

 # reading cycle

 GPIO.output(PIN_TRIGGER, GPIO.LOW)

 if(isPause):

 time.sleep(0.5)

 # Return che reading

 return distance

Send the distance value to the mqtt server

#

Param: distance The value to send to the mqtt server

def mqttDistance(distance):

 publish.single(mqttChannel, distance, hostname=mqttServer)

Main process

if __name__ == '__main__':

 camPreview(60)

 # Initialize the distance sensor pins

 sensorInit()

 checkDistance(True)

 # Infinite loop for continuous distance detection

 while True:

 dist = checkDistance(False)

 time.sleep(0.05)

CHAPTER 3 THE SCARY MIRROR

99

 # If the flag is true at the end of the distance

 # check cycle, a message is sent to 7of9

 comingThru = True

 # Minimum/Maximum distance ranges in cm to consider a

 # movement (no matter the direction)

 minDelta = 1

 maxDelta = 100

 # If the distance is in the range, execute other

 # five readings. If the distance remains in range,

 # this means that it is true that something - maybe

 # human? - is moving with respect to the mirror.

 for moving in range(0, 5):

 newDist = checkDistance(False)

 time.sleep(0.05)

 delta = abs(dist - newDist)

 if((delta >= minDelta) and

 (delta <= maxDelta) and

 (newDist <= maxDelta)):

 comingThru = True

 else:

 comingThru = False

 # Update last distance read. This will be the sent

 # value if a movement around has been detected

 dist = newDist

 # If the coming is true, the mqtt message is sent

 if(comingThru):

 # Send the message to the server

 mqttDistance(dist)

 # Show a camera preview

 camPreview(60)

CHAPTER 3 THE SCARY MIRROR

100

 # After sending the message, the cycle pauses

for about

 # one minute to avoid a continuous sequence of

voice messages

 time.sleep(mqttPause)

 # Disable the monitor

Also, the Python PIR process is launched by the Linux cron at startup

as a Bash script, and then the program runs indefinitely. In Listing 3-8,

developed for experimental test only, the PIR script is set to run as a

service.

Listing 3-8. The Python3 Script

Definition of the Python3 script

distance_sensor as a service to run

automatically in background

This service definition file should be copied

in /lib/systemd/system

If for any reason the service is aborted, it is

restarted automatically

[Unit]

Description=Ultrasonic distance sensor

After=multi-user.target

[Service]

Type=simple

ExecStart=/home/pi/distance_sensor.py

Restart=on-abort

[Install]

WantedBy=multi-user.target

CHAPTER 3 THE SCARY MIRROR

101

3.5.3. MagicMirror2 Configuration and Modules

MagicMirror2 modules, listed and documented in the GitHub repository,

are easy to install. Sometimes installed modules are no longer needed. It

is possible to remove them, but I suggest keeping them inactive for future

use. It’s best to clean up the modules and unneeded files only after the

whole configuration works as expected.

The defaultmodules.js, shown in Listing 3-9, is an example of the

standard module listed after installation.

Listing 3-9. The Default Modules List

/* Magic Mirror

 * Default Modules List

 *

 * By Michael Teeuw http://michaelteeuw.nl

 * MIT Licensed.

 */

// Modules listed below can be loaded without the 'default/'

prefix. Omitting the default folder name.

var defaultModules = [

 "alert",

 "calendar",

 "clock",

 "compliments",

 "currentweather",

 "helloworld",

 "newsfeed",

 "weatherforecast",

 "updatenotification",

 "weather"

];

CHAPTER 3 THE SCARY MIRROR

102

/*************** DO NOT EDIT THE LINE BELOW ***************/

if (typeof module !== "undefined") {module.exports =

defaultModules;}

The NodeJS server uses HTML, JavaScript, and CSS to customize

the entire display behavior and user interface. Listing 3-10 shows the

MagicMirror2 main CSS, where it is possible to set up fonts, scripts,

positions, and many other features. The best way to do this is to change the

style and see the effects in real-time.

Listing 3-10. The MagicMirror2 main CSS File

html {

 cursor: none;

 overflow: hidden;

 background: #000;

}

::-webkit-scrollbar {

 display: none;

}

body {

 margin: 60px;

 position: absolute;

 height: calc(100% - 120px);

 width: calc(100% - 120px);

 background: #000;

 color: #aaa;

 font-family: "Roboto Condensed", sans-serif;

 font-weight: 400;

 font-size: 2em;

CHAPTER 3 THE SCARY MIRROR

103

 line-height: 1.5em;

 -webkit-font-smoothing: antialiased;

}

/**

 * Default styles.

 */

.dimmed {

 color: #666;

}

.normal {

 color: #999;

}

.bright {

 color: #fff;

}

.xsmall {

 font-size: 15px;

 line-height: 20px;

}

.small {

 font-size: 20px;

 line-height: 25px;

}

.medium {

 font-size: 30px;

 line-height: 35px;

}

CHAPTER 3 THE SCARY MIRROR

104

.large {

 font-size: 65px;

 line-height: 65px;

}

.xlarge {

 font-size: 75px;

 line-height: 75px;

 letter-spacing: -3px;

}

.thin {

 font-family: Roboto, sans-serif;

 font-weight: 100;

}

.light {

 font-family: "Roboto Condensed", sans-serif;

 font-weight: 300;

}

.regular {

 font-family: "Roboto Condensed", sans-serif;

 font-weight: 400;

}

.bold {

 font-family: "Roboto Condensed", sans-serif;

 font-weight: 700;

}

.align-right {

 text-align: right;

}

CHAPTER 3 THE SCARY MIRROR

105

.align-left {

 text-align: left;

}

header {

 text-transform: uppercase;

 font-size: 15px;

 font-family: "Roboto Condensed", Arial, Helvetica,

sans-serif;

 font-weight: 400;

 border-bottom: 1px solid #666;

 line-height: 15px;

 padding-bottom: 5px;

 margin-bottom: 10px;

 color: #999;

}

sup {

 font-size: 50%;

 line-height: 50%;

}

/**

 * Module styles.

 */

.module {

 margin-bottom: 30px;

}

.region.bottom .module {

 margin-top: 30px;

 margin-bottom: 0;

}

CHAPTER 3 THE SCARY MIRROR

106

.no-wrap {

 white-space: nowrap;

 overflow: hidden;

 text-overflow: ellipsis;

}

.pre-line {

 white-space: pre-line;

}

/**

 * Region Definitions.

 */

.region {

 position: absolute;

}

.region.fullscreen {

 position: absolute;

 top: -60px;

 left: -60px;

 right: -60px;

 bottom: -60px;

 pointer-events: none;

}

.region.fullscreen * {

 pointer-events: auto;

}

.region.right {

 right: 0;

 text-align: right;

}

CHAPTER 3 THE SCARY MIRROR

107

.region.top {

 top: 0;

}

.region.top .container {

 margin-bottom: 25px;

}

.region.bottom .container {

 margin-top: 25px;

}

.region.top .container:empty {

 margin-bottom: 0;

}

.region.top.center,

.region.bottom.center {

 left: 50%;

 -moz-transform: translateX(-50%);

 -o-transform: translateX(-50%);

 -webkit-transform: translateX(-50%);

 -ms-transform: translateX(-50%);

 transform: translateX(-50%);

}

.region.top.right,

.region.top.left,

.region.top.center {

 top: 100%;

}

.region.bottom {

 bottom: 0;

}

CHAPTER 3 THE SCARY MIRROR

108

.region.bottom .container:empty {

 margin-top: 0;

}

.region.bottom.right,

.region.bottom.center,

.region.bottom.left {

 bottom: 100%;

}

.region.bar {

 width: 100%;

 text-align: center;

}

.region.third,

.region.middle.center {

 width: 100%;

 text-align: center;

 -moz-transform: translateY(-50%);

 -o-transform: translateY(-50%);

 -webkit-transform: translateY(-50%);

 -ms-transform: translateY(-50%);

 transform: translateY(-50%);

}

.region.upper.third {

 top: 33%;

}

.region.middle.center {

 top: 50%;

}

CHAPTER 3 THE SCARY MIRROR

109

.region.lower.third {

 top: 66%;

}

.region.left {

 text-align: left;

}

.region table {

 width: 100%;

 border-spacing: 0;

 border-collapse: separate;

}

Complete descriptions of the customizable files are available from the

GitHub MagicMirror2 documentation pages.

CHAPTER 3 THE SCARY MIRROR

PART III

Escape from the
Mirrors
Ray moved along a large lane toward the amusement park buildings.

Walking along what seemed the main entry, Ray couldn’t avoid realizing

that time left visible signs of his passage. What had previously been a

curated and engaging gravel alley became an offroad path, difficult to

follow. With every step, a small dirt cloud followed Ray, and this same dirt

covered all the surfaces around him. It was a world that had surrendered to

the ravages of time.

The large lane ended before a ride he had felt had been abandoned for

years. It divided into two smaller tracks, one to the right and one to the left,

following the ride’s perimeter.

The ride was a 1985 “Breakdance” dancing hall and was covered by

a white and red circus tent. As Ray approached the entrance, he heard a

rhythmic bass inside the tent.

Following Sonya’s suggestion, Ray pushed aside the curtain with one

hand, put his head inside, and cautiously entered. The darkness was

almost complete, interrupted only by some laser and colored flashing

lights following the rhythm. Ray stepped inside but could not see anything;

he needed a few minutes for his vision to adapt to the absence of light.

“Tommy always makes fun of me because I never leave home without

what he calls my gadgets,” Ray thought with a smile. “These are not

gadgets; these are my precious tools,” continued Ray, following the flow of

his thoughts.

112

In the meantime, he removed his leather belt from his trousers. This was

a hacked one, an old leather belt he received as a gift years ago on Christmas

Eve. Ray transformed it into a project, one he was proud of. After pushing some

buttons, not without difficulty in the full dark, the front side of the belt started

scrolling the text “Searching for Jack! URGENT” in bright green characters.

Ray slowly started twisting around, keeping the belt on top of his head

to make it visible from a distance.

Helped by the weak light of the belt, Ray moved to the center of

the hall. He was not sure if he was alone, but he felt there were no

other occupants. Of course, this was just a hypothesis; the dark made

distinguishing most of the shapes impossible.

“Hey! Who’s searching for Jack?,” someone said from behind while a

hand was touching his right shoulder. Ray turned around, distinguishing

the dark silhouette of a man, at least 25 centimeters taller than him and

maybe double his weight. The man took him under the arm, gently

pushing Ray toward the entrance. As the two were out of the tent, the

sound almost disappeared, like magic.

“I am Ray,” he said, looking at the man under the sunshine. Jack was a

big man with black hair. His apparently aggressive look, at first sight, was

mitigated by his broad, sincere smile. The deep green eyes immediately

communicated a comfortable feel to Ray. His deep and calm voice also

contributed to Ray feeling comfortable with him.

“Hey, Ray, nice to meet you,” Jack said. “How can I help you?”

“Well, I am searching for my son, Tommy. Sonya told me he might be

around here.” Jack observed Ray with a thoughtful expression.

“I see... Sorry, man, I haven’t seen him. The breakdance show is one of

the last on the path. If he comes here, or if I see him, I’ll tell him his father

is searching for him.” Ray nodded and realized that the place also had a

logic, an order that could be followed while visiting. He was unsure if he

was moving in the right direction.

PART III ESCAPE FROM THE MIRRORS

113

“Is there a path I should follow to visit all the marvels of this place?”

Ray asked Jack, looking up at him. “I mean,” Ray followed “Is there a map

or something like a map that I can check to understand this place?”

Jack answered with an embarrassed expression. “There are flyers

distributed at the park entrance, illustrating the attractions on one side and

a map with the suggested path on the back.”

“Maybe I can find one of them somewhere?,” Ray asked anxiously.

“Uh, it’s been a long time since I’ve seen one. I think that the leaflets

have not been reprinted for years. The last visitors may have taken the

last few.”

“Understood,” Ray said, discouraged.

“If I remember right, continued Jack, “It’s a good idea to follow the

arrows,” Jack pointed to the other side of the lane, “to reach the mirror’s

labyrinth. You might be able to find more signs of your son.”

Ray was very interested in his words. “Anyway, if you can’t find him

there, it has an excellent shortcut to reach the other pavilions of BDTH,

where it is easier to meet someone.”

Suddenly, after a quick look at his watch, Jack changed his expression.

“Darn! It is late; I should prepare for the next show. If I see Tommy, I will

tell him you are searching for him, don’t worry!,” Jack yelled, crossing the

curtain and disappearing inside the breakdance tent.

Ray, alone again, crossed the lane. He saw a small sign, a white arrow

sign, that reported, “Ready for the next marvel? Follow the arrows ahead.”

It was attached to a pole on the opposite sidewalk. He started walking in

that direction, checking every detail, but finding any sign resembling an

arrow was impossible. Ray walked about 500 meters straight. There were

no arrows at all. He stopped, thinking about what to do.

“If there were any arrows or signs, I would have already found one,”

Ray murmured, coming back to where he left Jack. He decided to explore

the terrain deeper and search for any small indication. To avoid missing

any hidden detail, he strolled slowly, looking at the shaded zones with the

help of his multifunction portable lamp.

PART III ESCAPE FROM THE MIRRORS

114

 Labyrinth

Ray powered on his multifunction portable lamp without checking the

“mode” switch; it seemed the device was not working in the daylight. He

shook it, thinking it had a bad contact, maybe due to the dust or some

debris in his pocket. As he moved the light, a piece of blue-purple text

appeared where the light was projected. Surprised, Ray checked the switch

position: U.V.

“Ultraviolet!,” Ray exclaimed.

Moving the UV light spot, he discovered that the ground was full of

signs painted with a kind of fluorescent ink, fully transparent and hidden

by regular light. Maybe an effect for the late evening and night visitors.

In fact, observing over his head, he saw a long wire of lamps that,

powered off, resembled black glass bulbs.

“These are wood’s lamps,” Ray murmured, following the arrows

reporting the text “to mirrors.” In a few minutes, he was in front of “The

Mirrors Labyrinth.”

“What a strange entry,” Ray thought.

It was at least a 4 meter wide rectangular entry with a large frame

around it. The entry was some meters deep, and the walls progressively

stretched until they reached the size of a small door entry.

“You’re smart, dear!,” said a familiar voice behind him.

“Sonya,” Ray replied, not surprised. “It seems you are following me.” He

hadn’t been thinking of her, but seeing her now, he had to admit he was

pleased she was there.

“I prefer to say I am taking care of you,” she commented.

“I admit, you make me comfortable in this weird situation and I’d

like to have more time to spend with you, but unfortunately, I have other

priorities now.”

She smiled, nodding, “Maybe soon,” Sonya said while he stepped

inside the mirror’s labyrinth. Later, Ray couldn’t say if she had actually said

this or if it was his imagination.

PART III ESCAPE FROM THE MIRRORS

115

Ray had always been attracted to mazes and was a fan of enigmas.

Regardless of the urgency, he was fascinated by the BDTH park and its

marvels and was intrigued by Sonya’s enigmatic character.

Animated by an optimistic feeling, Ray explored the first corridors of

the labyrinth. As expected, of course, all the walls were mirrors, and the

ground was continuous and devoid of references related to his position.

There were no indications, not a single sign, to indicate the direction or the

path he was walking.

In less than 15 minutes, Ray was lost.

He had no idea where he was in relation to the entrance. Of course,

he had no idea of the extension of the labyrinth. It might have been a few

meters from the exit. The corridors were relatively narrow, designed for

walking a single person at a time.

For a half hour, Ray systematically explored a part of the maze,

discovering some interesting things. Despite being sure he followed the

same short path, it frequently changed. Ray found that some mirrors

rotated 90 degrees or slid to reveal a new corridor or hide one. In some

cases, as he walked around the corner, as a wall silently rotated, changing

the labyrinth track along the way.

“This is really weird,” Ray thought. “The maze is unstable, which may

be why I became lost so quickly.”

The mirror walls were about two and a half meters high, making

it impossible to see over them or climb up. There was no ceiling, and

the high sky, with its white clouds, gave Ray the sensation of complete

isolation from his surroundings.

Ray also discovered another interesting fact: a small drone flew over

the labyrinth at regular intervals. He supposed it was patrolling to see the

visitors’ progress. He had no idea how long guests could remain trapped

between the mirror corridors before someone would help them. Ray had

no intention of waiting for help.

Considering it almost useless to waste his time trying to escape from a

continuously changing maze, Ray stopped walking and had an idea.

PART III ESCAPE FROM THE MIRRORS

116

First, he connected a small WiFi module to his inseparable handheld

computer, Palm T3, and started writing a simple Java script. The code

editor was almost difficult to manage on this old appliance, but after a

while, he could see if a WiFi device was present nearby.

“Now, I need to wait a while,” Ray murmured. “If I am right, I need to

wait another five minutes.”

Ray thought about all the times Tommy had kidded him. He was

still using vintage tools and considered them “invaluable.” Ray smiled

to himself, hearing the familiar buzzing of the drone in the air. After a

few seconds, the Palm software captured the drone’s WiFi address and

credentials.

“I have about 25 minutes.” Ray murmured, looking at his wristwatch.

After another intense coding session, Ray captured a frame of the drone

camera stream on the next drone passage. With his device’s reduced

resources, he could only get a single frame. In a few seconds, the 16-level

gray image appeared on the screen. It was not much, but it was sufficient to

determine the labyrinth’s map.

Ray estimated it to be a rectangular surface of about 200 square meters.

He was very satisfied with his result. It was now possible to find the exit

regardless of the moving mirrors.

He started following the path identified in the image.

“I am lucky that the drone flies so high that a single frame is sufficient

to catch the whole maze plant,” Ray said to himself.

He captured a new image upon every drone passage to correct his

direction according to the mirrors, which changed position. After another

couple of hours and four more drone fly-bys, the mirror wall in front of him

slid to one side, showing the labyrinth exit.

Outside, Sonya welcomed Ray with a smile, walking toward him.

PART III ESCAPE FROM THE MIRRORS

117© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_4

CHAPTER 4

Machine Learning
with a Drone
Contribution of Furio Piccinini, Element14.com community member.

Figure 4-1. A drone with a mission…

https://doi.org/10.1007/979-8-8688-0080-1_4#DOI

118

During his journey, in this third tale, Ray escapes from the
mirror labyrinth, hacking a drone inspecting him. In this proj-
ect, I will hack a quasi-toy drone to manage and inspect an
environment recognition. To achieve this goal, a small Tello
drone (a sub-brand of the popular DJI) is programmed to
inspect indoor areas, and an embedded machine-learning
model is used to acquire environmental information and pro-
cess the data on the ground with an application.

4.1. The Tello Drone

The Tello drone (www.ryzerobotics.com/tello) is a small commercial

drone mainly used to teach kids in STEM workshops or simply as a high-

tech toy. I was drawn to this object for several reasons. It is exceptionally

lightweight (80g) and ideal for flying in small areas, especially indoors. See

Figure 4-1.

Despite its small dimensions, it is a jewel of technology. It includes a

camera for HD video and photos, a WiFi connection with a computer, and

programmable features. It can be programmed with an extension of the

visual coding editor Scratch 3.0 (ideal for teaching coding to kids). Still, it

also includes complete SDK (Software Development Kit) documentation

to control the drone features through APIs.

Simple commands sent to the WiFi can achieve actions such as flying

up, down, right, left, shooting a photo, rotating, going ahead or forward,

and more. This capability pushed me to use it for this project, so I bought

one for less than $150, including the extra battery charger kit with two

batteries. With three batteries, it can operate for about 40 minutes.

Chapter 4 MaChine Learning with a Drone

http://www.ryzerobotics.com/tello

119

Figure 4-2. The Tello drone’s bare metal structure. Removing the
plastic cover allows the drone to fly with an extra payload of up to
50g without losing movement stability. To test the payload, I added a
small weight (white piece) to reach 50g of extra weight

As the small device was in my hands, the first test I tried was to verify

the payload practically: the drone can fly without difficulties with 40g of

extra weight and reach 50g without the plastic cover shell, which does not

impact the drone’s functionality in flight. See Figure 4-2.

4.1.1. Programming the Drone

When the drone is connected through its private WiFi, real-time

instructions can be sent through REST APIs. The user sees a RESTful HTTP

server to which the flying features can be accessed.

Chapter 4 MaChine Learning with a Drone

120

Until I was sure it was possible to set a predefined flying path that

could be repeated systematically over time, any other project parts

were not feasible. The inspiring idea mimicked what Ray did in the

fictional story: patrolling an indoor area multiple times to retrieve

environmental data.

To achieve this step, I implemented an application on the laptop side

to accomplish this first goal.

4.1.2. Autopilot Software

The Tello drone SDK documents the APIs available through a WiFi

connection on private ports. From a laptop, sending fly commands,

retrieving video streams, and driving image acquisition is all possible.

There are two series of REST calls to the drone WiFi server; the first,

which I am not interested in, uses the UDP connection to stream the video

and capture images from the drone camera.

The second is what I used for the Drone Control Python application.

The application source code acquires (from a JSON configuration file)

the instructions to execute—once or looping—and send them to the drone.

See Listing 4-1.

Listing 4-1. The Application Source Code

Tello Python3 DroneControl application

For more information, check the Tello drone SDK

#

Important! To make the drone work the computer should be

connected

to the Drone WiFi (drone access point: 192.168.10.1)s

#

Author: Enrico Miglino <balearicdynamics@gmail.com>

Version: 0.2

Date: May 2022

Chapter 4 MaChine Learning with a Drone

121

import threading

import socket

import sys

import time

import logging

import json

Fixed parameters to connect UDP channel to the drone

host = ''

port = 9000

locaddr = (host,port)

Socket IP and port are hardware defined by the drone

tello_address = ('192.168.10.1', 8889)

The dronecontrol.log and dronecontrol.json hardcoded files

define, respectively, the filenames of the log file to keep track of the events

and the fly instructions.

The fly instructions are loaded in memory in a list processed after the

program has set up all the parameters and established the connection to

the drone. See Listing 4-2.

Listing 4-2. Global Variables and Hardcoded Names

Other global variables and hardcoded names

log_file = 'dronecontrol.log' # Log file name

log_level = logging.INFO # Default log level (maybe

INFO, WARNING, ERROR, CRITICAL, DEBUG)

json_file = './dronecontrol.json' # Drone control file

If the manual_control flag is set to true, instead of loading the JSON

file instructions, the program accepts direct commands from the terminal.

This setting is for testing purposes and is useful while creating the JSON

script file. See Listing 4-3.

Chapter 4 MaChine Learning with a Drone

122

Listing 4-3. Accepting Terminal Commands for Testing

manual_control = False # bypass the Json file

processing and accept terminal

commands

Current command in execution from the "fly" list

cmdIndex = int(0)

Define the UDP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Lists with the drone path commands

Commands to manage the fly along the desired path.

droneFly = ['']

Number of times the fly sequence should be repeated

flyLoops = int(0)

The function initSocket() creates the UP socket for communication

with the drone, as shown in Listing 4-4.

Listing 4-4. The initSocket() Function

def initSocket():

 '''

 Create the UDP socked to send and receive commands to the

 drone via WiFi access

 '''

 # Bind the socket to the host. Local address IP is

left empty

 # as the client IP is assigned by the drone via DHCP

 sock.bind(locaddr)

 logging.info('Drone socket bound')

loadDroneControl() is called to load the fly instructions from the

JSON script file, as shown in Listing 4-5.

Chapter 4 MaChine Learning with a Drone

123

Listing 4-5. The loadDroneControl() Function

def loadDroneControl():

 '''

 Load the Json drone control file in a dictionary and

 organize the list

 '''

 global flyLoops

 global droneFly

 with open(json_file) as file:

 dictionary = json.load(file)

 # Load the list of commands

 droneFly = dictionary['fly']

 # Load limits and configuration parameters

 flyLoops = int(dictionary['loops'])

 logging.info('Loaded dronecontrol Json file completed.')

 logging.info('--- Commands to execute %d', len(droneFly))

The recvDroneResponse() function waits for the drone's response.

A timeout generates an error to avoid an infinite loop. All functions

should wait for the return code from the REST call, because the drone's

callback response sometimes takes a long time (one to two seconds). See

Listing 4-6.

Listing 4-6. The recvDroneResponse() Function

def recvDroneResponse():

 '''

 Wait for a response from the drone after a command is sent.

 The method enable a timeout thread to avoid waiting

indefinitely if

Chapter 4 MaChine Learning with a Drone

124

 some error occurs (manual stop, crash, signal lost).

 '''

 time.sleep(2.0)

The low-level sendDroneCommand(cmd) function sends the UDP REST

call. A time sleep of one second before and half a second after is needed to

compensate for the relatively long time required by the drone WiFi server

to process the command. See Listing 4-7.

Listing 4-7. The sendDroneCommand(cmd) Function

def sendDroneCommand(cmd):

 '''

 Send a command to the drone via UDP and wait for the

response

 '''

 time.sleep(1)

 msg = cmd.encode(encoding="utf-8")

 sent = sock.sendto(msg, tello_address)

 time.sleep(5.0)

The high-level processDroneCommand(cmdIndex) function processes

the command and parameters from the command's script dictionary and

executes the low-level call to the drone UPD server. See Listing 4-8.

Listing 4-8. The processDroneCommand(cmdIndex)Function

def processDroneCommand(cmdIndex):

 '''

 Send a command to the drone via UDP from the commands

processing

 list.

 '''

 global droneFly

 sendDroneCommand(droneFly[cmdIndex])

Chapter 4 MaChine Learning with a Drone

125

The main application function in Listing 4-9 initializes the

configuration files and the JSON script, starts the communication via UDP

with the WiFi drone (hardcoded parameters), and starts processing the fly

commands script.

Note that if the manual_control flag is set, the communication will

proceed from the terminal for testing purposes. In any case, to enable

the drone SDK after the communication has been established, the first

command should be the command keyword.

To avoid unexpected crashes, the command processor is forced to

check the battery status every minute. When the value reaches a risk point,

the drone is forced to land.

Listing 4-9. The Main Application Function

def main():

 '''

 Main application.

 Enable the connection and if there are no errors, process

the Json file and execute path with the drone.

 '''

 global manual_control

 # Initialize logging

 logging.basicConfig(filename=log_file, level=log_level,

 format='%(asctime)s %(message)s',

 datefmt='%m/%d/%Y %I:%M:%S %p')

 logging.info('*** DroneControl new session started ***')

 if(manual_control):

 logging.info('Manual control is enabled.')

 print ('\r\n\r\n* Manual Drone Control *\r\n')

Chapter 4 MaChine Learning with a Drone

126

 print ('Available: command takeoff land flip forward

back left right \r\n

up down cw ccw speed speed?\r\n')

 print ('end -- exit the application.\r\n')

 receiveResponseThread = threading.Thread(target=recv

DroneResponse)

 receiveResponseThread.start()

 while True:

 try:

 msg = input("");

 if not msg:

 break

 if 'end' in msg:

 print ('...')

 sock.close()

 logging.info('End of application. Socket

closed')

 break

 # Send data

 msg = msg.encode(encoding="utf-8")

 sent = sock.sendto(msg, tello_address)

 logging.info('Manual control. Sent command:

%s', msg)

 except KeyboardInterrupt:

 sock.close()

 logging.info('End on forced keyb interrupt.

Socket closed')

 break

Chapter 4 MaChine Learning with a Drone

127

 else:

 # Automated fly based on the droncontrol Json file.

 logging.info('Json dronecontrol.json file loading')

 # Load the json control file

 loadDroneControl()

 # Activate the SDK APIs on the Drone

 sendDroneCommand("command")

 recvDroneResponse()

The command processor section of the main application function

processes the dictionary commands in sequences, preparing the REST API

according to the required parameters. See Listing 4-10.

In addition, the processor also supports some commands not directly

related to the Tello drone SDK RESTful APIs, like the option to set the

series of commands in a loop, indicating the number of times a sequence

or a subgroup of instructions should be repeated. This section also takes

care of the stability of the communication and closing the socket session

when the series of commands ends.

Listing 4-10. The Main Application Function

 cmdIndex = len(droneFly)

 loopIndex = int(0)

 logging.info("Start command processor with %d

commands", cmdIndex)

 # Process the required number of times the whole

command set

 while(loopIndex < flyLoops):

 logging.info('--- Executes the command sequence %d

of %d', loopIndex + 1, flyLoops)

Chapter 4 MaChine Learning with a Drone

128

 cmdPosition = int(0) # Initial command

in the list.

 # Process all the commands in the list

 while(cmdPosition < cmdIndex):

 # ------------------ Process the next command

in the queue

 logging.info("API :" + droneFly[cmdPosition])

 processDroneCommand(cmdPosition)

 recvDroneResponse()

 # Update the command position

 cmdPosition = cmdPosition + 1

 # Update the loop counter

 loopIndex = loopIndex + 1

 logging.info('*** Session closed ***')

Application entry point

if __name__ == '__main__':

 main()

 The JSON Script File

{

 "loops": 1,

 "fly": [

 "speed 100",

 "takeoff",

 "up 50",

 "land"

]

}

Chapter 4 MaChine Learning with a Drone

129

This example shows a sequence script file that can be processed by the

drone SDK Restful APIs.

 The Log File

The creation of the log file is important to track the timecoding of the

events that run during a sequence. This information is useful because it

can be integrated into the ML data acquisition to position the acquisition

in the correct timeframe. See Listing 4-11.

Listing 4-11. Example of a Complete Log File Describing Two Fly

Sessions

05/30/2022 06:15:38 PM *** DroneControl new session started ***

05/30/2022 06:15:38 PM Json dronecontrol.json file loading

05/30/2022 06:15:38 PM Loaded dronecontrol Json file completed.

05/30/2022 06:15:38 PM --- Commands to execute 4

05/30/2022 06:15:46 PM Start command processor with 4 commands

05/30/2022 06:15:46 PM --- Executes the command sequence 1 of 1

05/30/2022 06:15:46 PM API :speed 100

05/30/2022 06:15:54 PM API :takeoff

05/30/2022 06:16:02 PM API :up 50

05/30/2022 06:16:10 PM API :land

05/30/2022 06:16:18 PM *** Session closed ***

06/04/2022 02:06:39 PM *** DroneControl new session started ***

06/04/2022 02:06:39 PM Json dronecontrol.json file loading

06/04/2022 02:06:39 PM Loaded dronecontrol Json file completed.

06/04/2022 02:06:39 PM --- Commands to execute 4

06/04/2022 02:06:47 PM Start command processor with 4 commands

06/04/2022 02:06:47 PM --- Executes the command sequence 1 of 1

06/04/2022 02:06:47 PM API :speed 100

06/04/2022 06:13:38 PM *** DroneControl new session started ***

06/04/2022 06:13:38 PM Manual control is enabled.

Chapter 4 MaChine Learning with a Drone

130

4.2. The Arduino Nicla ME

Figure 4-3. The minimal size of the Arduino Nicla SE. This small
board is perfect for collecting data from the Tello drone and sending it
to the ground station (a laptop computer)

Developed in partnership with Bosch (https://store.arduino.cc/

products/nicla-sense-me), this tiny and ultra-lightweight board requires

low power, supports embedded AI features, and can send data remotely

through the BLE. See Figure 4-3.

The board incorporates many environment sensors, from air quality to

temperature, CO2, and others, as well as direction and movement sensors

and a six-axis inclinometer. See Figure 4-4.

Chapter 4 MaChine Learning with a Drone

https://store.arduino.cc/products/nicla-sense-me
https://store.arduino.cc/products/nicla-sense-me

131

Here are the key characteristics of the device:

• Tiny size, packed with features

• Low power consumption

• Adds sensing capabilities to existing projects

• When battery-powered, it becomes a complete

standalone board

• Powerful processor, capable of hosting intelligence on

the Edge

• Measures motion and environmental parameters

• Robust hardware, including industrial-grade sensors

with embedded AI

• BLE connectivity maximizes compatibility with

professional and consumer equipment

• 24/7 always-on sensor data processing at ultra-low

power consumption

Chapter 4 MaChine Learning with a Drone

132

Figure 4-4. The Nicla board only weighs about 2 grams. Including
a 3.3V battery, the extra payload is considerably lower than the
maximum extra weight the Tello drone can lift off

4.2.1. Assembling the Sensor Acquisition Device

Thanks to the complete features of the Nicla board and its extremely low

weight, we can create a small unit to acquire data and that is easy to fit on

the Tello drone.

Chapter 4 MaChine Learning with a Drone

133

Figure 4-5. The pinout of the Arduino Nicla. Note that there are two
power pins, where the J3 (VBAT) pin accepts power from a battery

A small 3.3V LiPo battery is directly connected to the board’s GND

and VBAT pins to power it. According to the Nicla pinout scheme (see

Figure 4-5, keeping the battery connected to the board when a USB

power source is also connected puts the battery in charge. In this case, to

further reduce the weight, I directly soldered the battery to the board. See

Figure 4-6.

Chapter 4 MaChine Learning with a Drone

134

Figure 4-6. The assembly of the board with the battery on top of
the Tello drone. Soldering the battery to the board is the only wiring
needed. It is also possible to add a small switch button to power the
battery on/off

Note in this project, i did not make any drastic changes to the

drone itself. as a matter of fact, these are two independent devices

work in synch. the drone acts as the carrier to correctly position the

data acquisition system inside several points of the environment,

while the nicla board acts as the data collector.

To further minimize the weight of the modified drone, I have not

included a power switch to the battery; the battery and board have been

hot glued together on the top of the drone.

Chapter 4 MaChine Learning with a Drone

135

4.3. Nicla Bluetooth-Web Communication

The Arduino Nicla board does not include WiFi support, but as this project

has been designed, BLE communication is more than sufficient for small-

area coverage and indoor applications.

To efficiently retrieve Bluetooth sensor data, the Arduino source code

will be set on the Nicla board, which is provided by Arduino with the Nicla

MBed OS as the core operating system. This firmware configuration makes

it possible to program the board with the Arduino IDE (minimum version

1.8), loading the Nicla proper libraries.

The Nicla OS includes WebBLE features, so it is possible to access the

sensor’s data via Bluetooth WEB. To experiment with this feature, a simple

online dashboard is available on the Arduino site (https://arduino.

github.io/ArduinoAI/NiclaSenseME-dashboard/). This web page is

distributed as open source, and it is included in the chapter’s sources

package.

4.3.1. Customizing the Nicla Dashboard

Starting from the original repository of the web dashboard (https://

github.com/arduino/ArduinoAI), I realized how it works.

Note the provided dashboard only works with google Chrome,

which supports a special feature to connect a web server (provided

by the nicla) using Bluetooth instead of the usual tCp/ip connection.

The other challenging problem was implementing data retrieval and

saving on a file. For this task, with the help of the maker and friend Furio

Piccinini, we developed a NodeJS engine to accomplish all the backend

features.

Chapter 4 MaChine Learning with a Drone

https://arduino.github.io/ArduinoAI/NiclaSenseME-dashboard/
https://arduino.github.io/ArduinoAI/NiclaSenseME-dashboard/
https://github.com/arduino/ArduinoAI
https://github.com/arduino/ArduinoAI

136

 The Go Webserver

The bridge between the WebBLE features of the Nicla board serving the

sensors data, exposed to a normal HTTP webserver, was implemented in

the Go language.

Note the go sources should be compiled on the platform to receive

the information. Detail about this language is available on github

(https://github.com/golang/go), including binary versions of

the compiler for most of the platforms (https://go.dev/dl/).

The webserver code enables an HTTP port and passes all the HTTP

messages to a listener that processes the requests, as shown in Listing 4-12.

Listing 4-12. The Webserver Code

package webserver

import (

 "arduino/bhy/static"

 "fmt"

 "log"

 "net/http"

 "github.com/pkg/browser"

)

func errCheck(e error) {

 if e != nil {

 log.Fatal(e)

 }

}

Chapter 4 MaChine Learning with a Drone

https://github.com/golang/go
https://go.dev/dl/

137

func startServer() {

 fmt.Printf("Starting server at port 8000\n")

 fileServer := http.FileServer(http.FS(static.Content))

 http.Handle("/", fileServer)

 http.ListenAndServe(":8000", nil)

}

func Execute() {

 go startServer()

 e := browser.OpenURL("http://localhost:8000/sensor.html")

 errCheck(e)

 select {}

}

The two sources, parser.go and sensor.go, retrieve the physical data

from the board sensors and parse the raw information for use by the laptop

applications.

 The JSON Mapping Files

The sensor-type-map.json and parse-scheme.json files define the

sensor data format, IDs, and other details (parameters, measure units, etc.)

based on the technical specifications of the Nicla board provided on the

Arduino site (https://docs.arduino.cc/tutorials/nicla-sense-me/

cheat-sheet/).

The parse-scheme.json file specifically defines the data characteristics

for every sensor available on the board, as shown in Listing 4-13.

Chapter 4 MaChine Learning with a Drone

https://docs.arduino.cc/tutorials/nicla-sense-me/cheat-sheet/
https://docs.arduino.cc/tutorials/nicla-sense-me/cheat-sheet/

138

Listing 4-13. The parse-scheme.json File

{

 "types":

 [

 {

 "id": 0,

 "type": "quaternion",

 "parse-scheme":

 [

 {"name": "x", "type": "int16", "scale-factor":

0.000061035},

 {"name": "y", "type": "int16", "scale-factor":

0.0000610351},

 {"name": "z", "type": "int16", "scale-factor":

0.000061035},

 {"name": "w", "type": "int16", "scale-factor":

0.000061035},

 {"name": "accuracy", "type": "uint16", "scale-factor":

0.000061035}

]

 },

 {

 "id": 1,

 "type": "xyz",

 "parse-scheme":

 [

 {"name": "x", "type": "int16", "scale-factor": 1},

 {"name": "y", "type": "int16", "scale-factor": 1},

 {"name": "z", "type": "int16", "scale-factor": 1}

]

 },

Chapter 4 MaChine Learning with a Drone

139

 {

 "id": 5,

 "type": "BSECOutput",

 "parse-scheme":

 [

 {"name": "Temperature (compensated)", "type": "float",

"scale-factor": 1},

 {"name": "Humidity (compensated)", "type": "float",

"scale-factor": 1}

]

 },

 {

 "id": 6,

 "type": "BSECOutputV2",

 "parse-scheme":

 [

 {"name": "IAQ(Mobile)", "type": "uint16", "scale-

factor": 1},

 {"name": "IAQ(Stationary)", "type": "uint16", "scale-

factor": 1},

 {"name": "bVOC-Equivalents(ppm)", "type": "uint16",

"scale-factor": 0.01},

 {"name": "CO2-Equivalents(ppm)", "type": "uint24",

"scale-factor": 1},

 {"name": "Accuracy", "type": "uint8", "scale-

factor": 1}

]

 },

 {

 "id": 7,

Chapter 4 MaChine Learning with a Drone

140

 "type": "BSECOutputV2Full",

 "parse-scheme":

 [

 {"name": "IAQ(Mobile)", "type": "uint16", "scale-

factor": 1},

 {"name": "IAQ(Stationary)", "type": "uint16", "scale-

factor": 1},

 {"name": "b-VOC-Equivalents(ppm)", "type": "uint16",

"scale-factor": 0.01},

 {"name": "CO2-Equivalents(ppm)", "type": "uint24",

"scale-factor": 1},

 {"name": "Accuracy", "type": "uint8", "scale-

factor": 1},

 {"name": "Compensated-Temperature(°C)", "type":

"int16", "scale-factor": 0.003906},

 {"name": "Compensated-Humidity(%)", "type": "uint16",

"scale-factor": 0.002},

 {"name": "Compensated-Gas Resistance(Ohms)", "type":

"float", "scale-factor": 1}

]

 }

]

}

In the sensor-type-map.json file, I included only the sensors I am

interested in retrieving data about and finalized the project. Note that

every element of the sensor’s JSON array corresponds to the firmware ID

(see Listing 4-14). The name value concerns the sensor description, while

the scheme is the class name whose data specifications are defined in the

parse-scheme.json file.

Chapter 4 MaChine Learning with a Drone

141

Listing 4-14. The sensor-type-map.json File

{

 "4": {

 "name": "ACCELEROMETER",

 "scheme": "xyz",

 "value": 0,

 "dashboard": 1

 },

 "34": {

 "name": "ROTATION",

 "scheme": "quaternion",

 "dashboard": 1

 },

 "128": {

 "name": "TEMPERATURE",

 "scheme": "singleRead",

 "parse-scheme":

 [

 {"name": "val", "type": "int16", "scale-factor": 0.01}

],

 "value": 0,

 "sampleCount": 0,

 "dashboard": 1

 },

 "129": {

 "name": "BAROMETER",

 "scheme": "singleRead",

 "parse-scheme":

Chapter 4 MaChine Learning with a Drone

142

 [

 {"name": "val", "type": "uint24", "scale-factor":

0.0078125}

],

 "value": 0,

 "sampleCount": 0,

 "dashboard": 1

 },

 "130": {

 "name": "HUMIDITY",

 "scheme": "singleRead",

 "parse-scheme":

 [

 {"name": "val", "type": "uint8", "scale-factor": 1}

],

 "value": 0,

 "sampleCount": 0,

 "dashboard": 1

 },

 "131": {

 "name": "GAS",

 "scheme": "singleRead",

 "parse-scheme":

 [

 {"name": "val", "type": "uint32", "scale-factor": 1}

],

 "value": 0,

 "sampleCount": 0,

 "dashboard": 1

 }

}

Chapter 4 MaChine Learning with a Drone

143

 The Custom Dashboard

The custom dashboard uses the same procedure as the Arduino dashboard

and is perfect for testing the data stream coming from the Nicla.

The Connect button also uses the Chrome browser feature to connect

to the Nicla WebBLE.

This method is insufficient to manage data retrieval and make AI

predictions about the environment based on the sensor’s data. For this

reason, I made the sensors through RESTful APIs from the Go server that

should run in the background to manage the acquisition process.

4.4. Data Acquisition with NodeJS

Figure 4-7. The custom dashboard showing the data needed for
the project. The NodeJS server uses the dashboard to manage the
acquisition from the Nicla Sense ME

After starting from a terminal, the Go server application with the Nicla

powered on. In a discoverable proximity, we can start acquiring data from

the sensors. See Figure 4-7.

Chapter 4 MaChine Learning with a Drone

144

At this point, a NodeJS server demands the business logic to manage

the information and transform it into a dataset that can be used to train

the Neuton.ai ML engine to identify the state and indoor area based on the

sensor information.

Every acquisition cycle should be saved in a file with the relative

timestamp in an understandable format for the Neuton.ai prediction.

4.4.1. NodeJS Architecture

The NodeJS architecture is structured through an app that connects to

the Go server, acquiring the sensor’s data. This information is obtained

through a cyclic acquisition via a RESTful API.

The Node server connects to the Go server using different ports. When

the user starts the NodeJS application, the custom dashboard described

previously appears on the browser.

 Interactive Dashboard

The difference between the custom dashboard used in the project and the

Arduino Nicla dashboard is that the latter connects to the Go server and

saves the parameters defined in the form HTTP page.

These features include, but are not limited to:

• The ID of the sensors that should be considered for the

acquisition.

• Node IP to which the localhost should connect.

• Title that is also the sample filename root.

• The number of samples.

Ideally, after the NodeJS server is running and the connection

between the two servers has been established, we will start the Tello drone

autonomous fly and press the Start Sampling button on the page.

Chapter 4 MaChine Learning with a Drone

145

Note the entire source code of the nodeJS server is available

in the sources package of this chapter. of course, this approach

to data collection is one of many possibilities, depending on the

user’s choice.

4.4.2. The Final Data Structure

The collected data should be cataloged with a tag to identify the sensors in

a particular environment. This first step is done by creating a CSV file for

every acquisition according to the dataset_template file.

The template defines the sensor values we intend to use to depict the

environment and a tag identifying the kind of environment:

Temperature;Barometer;Humidity;Gas;TAG

Listings 4-15 through 4-17 show abstracts of different CSV values read

during a series of sampling sequences acquired in two different locations:

Pavia (Italy) and Dénia (Spain).

Listing 4-15. First Environment: Dénia Balcony on a Sunny Day

41.72;129448;29;26129;DeniaSunny

41.72;129445;29;26129;DeniaSunny

41.72;129445;29;26006;DeniaSunny

41.72;129447;29;26006;DeniaSunny

41.72;129447;29;26006;DeniaSunny

41.72;129448;29;26006;DeniaSunny

41.72;129448;29;25644;DeniaSunny

41.72;129448;29;25644;DeniaSunny

41.72;129447;29;25644;DeniaSunny

41.72;129449;29;25644;DeniaSunny

Chapter 4 MaChine Learning with a Drone

146

Listing 4-16. Second Environment: Dénia Coffee Room

39.06;129359;87;5377;DeniaCoffee

39.06;129416;87;5377;DeniaCoffee

39.06;129419;87;5377;DeniaCoffee

39.06;129416;87;5377;DeniaCoffee

39.06;129416;87;5330;DeniaCoffee

39.06;129417;87;5330;DeniaCoffee

39.06;129415;87;5330;DeniaCoffee

39.06;129416;87;5330;DeniaCoffee

39.06;129416;87;5351;DeniaCoffee

39.06;129415;87;5351;DeniaCoffee

Listing 4-17. Third Environment: Pavia on a Sunny Day

34.88;127950;37;7195;Pavia_sunny

34.88;127951;37;7195;Pavia_sunny

34.88;127952;37;7195;Pavia_sunny

34.88;127952;37;7156;Pavia_sunny

34.88;127950;37;7156;Pavia_sunny

34.88;127948;37;7156;Pavia_sunny

34.88;127948;37;7156;Pavia_sunny

34.88;127948;37;7180;Pavia_sunny

34.88;127949;37;7180;Pavia_sunny

34.88;127949;37;7180;Pavia_sunny

 Joining the Sample Files

With a sample Bash shell script, all the collected samples are joined

to train the Neuton.ai model. As shown in Listing 4-18, the shell script

dataset.sh builds the samples from different locations and environments,

thus creating the training model.

Chapter 4 MaChine Learning with a Drone

147

Listing 4-18. The dataset.sh Shell Script

Create the dataset header file from template

cat dataset_template > Neuton_$2.csv

Append data samples

cat $1*.csv >> Neuton_$2.csv

echo "Dataset created"

Note the full set of test samples is included in the sources

package repository of this chapter. the complete how-to for using the

neuton.ai machine-learning engine is described in the next chapter.

Chapter 4 MaChine Learning with a Drone

149© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_5

CHAPTER 5

Introduction

to Neuton.ai

Artificial intelligence (AI) is the ability of a digital computer or
computer-controlled robot to perform tasks commonly associ-
ated with intelligent beings. Nowadays, the term is a generic
definition that covers many different technologies applied in
fields of research, biomedical, electronics, robotics, environ-
ment, etc. (Wikipedia)

Unfortunately, the meaning of Artificial Intelligence (AI) is confusing

to many; it generically represents a wide range of topics. For example,

Machine Learning (ML), Deep Learning (DL), and neural networks are

some of the many applications of AI. Indeed, the semantic algorithms that

recognize text, voice synthesis, artificial vision, and many others can all be

considered part of the AI domain.

An AI-powered device does not tell us so much about the nature of the

application, and it is not uncommon for advertisers to use the term AI for

marketing purposes only.

Among all the disciplines in the domain of AI, Machine Learning

should thank its wide diffusion to the possibilities offered by the last

generations of microcontrollers.

https://doi.org/10.1007/979-8-8688-0080-1_5#DOI

150

Due to the complexity of the recursive algorithms and the massive

amount of data involved in creating AI applications, the more computation

power that is available, the more powerful and sophisticated the tasks that

the computer can do. That is still true, yet small microcontrollers can now

contribute to AI use.

By focusing machine performance on a single aspect, it is now possible

to embed forecast features into small microcontrollers. It is like being in

front of a “microbrain” that understands a single topic very well.

Tip Tiny Machine Learning and Embedded Machine Learning both

fall into this particular AI application.

5.1. The AI Platform

For the design of microcontroller projects using ML—several are presented

in the following chapters—I adopted the Neuton.ai Tiny Machine

Learning platform. Among other AI platforms that can perform the same

task—including TensorFlow, Microsoft Azure, Rainbird, Infosys Nia,

Premonition, and Vital A.I—Neuton.ai specializes in creating machine

learning applications for microcontrollers.

The microcontroller devices enabled for Machine Learning are part of

the AI on the Edge technology. The reason is related to their application

and their characteristics:

• Low power devices

• Easy to interface with any sensors

• Fit perfectly in IoT devices (home automation, lighting

control, weather forecast, etc.)

ChApTEr 5 InTroduCTIon To nEuTon.AI

151

• Easy to integrate into appliances (washing machines,

automotive, door opening, automated parking control,

media devices, etc.)

• Low cost

• Easy to integrate outside on the field

These microcontrollers can be used in two ways. They can operate as

standalone machines providing feedback directly to the appliance they

control. Alternatively, the microcontroller board includes Bluetooth or

WiFi to connect to another device or a central unit and send data directly

to the cloud for further processing.

5.2. Machine Learning Workflow

Before stepping into a real-world example illustrating how to use Neuton.

ai to optimize the process, I clarify the main steps defining the scenario of

Machine Learning for embedded devices.

5.2.1. Dataset Creation

The first step is to identify what kind of data you need. For example, if you

want to detect a gesture, an accelerometer’s data should change in time.

Alternatively, you could recognize a gesture in at least two other ways:

• Point a camera at the subject and extract motion data

from the frames.

• Detect a motion that interacts with the subject with

infrared or other spatial sensors (e.g., ultrasonic sensor,

PIR, etc.)

ChApTEr 5 InTroduCTIon To nEuTon.AI

152

When the method you want to use for every different gesture is

straightforward, you should collect big sensor data to create a spatial

description of this gesture.

Using an accelerometer, for example, you can collect some thousand

repetitions for every gesture and tag the block of data with the gesture

name. Using an accelerometer, you need to collect thousands of readings

for each gesture, and then tag the corresponding data blocks with the

gesture’s name.

The dataset creation is the most tedious part, but data collection

accuracy makes the dataset helpful for gesture recognition.

The data collected in several sessions should be the same kind to be

comparable. This means creating a dataset representing the model for

every gesture you want to recognize.

5.2.2. Dataset Normalization

Neuton.ai—and in general, other AI platforms—can process a normalized

dataset representing the model of the event, object, or condition to predict.

The data should be uploaded to the platform as CSV (Comma Separated

Value) text files. The first line of the file contains the name of every column,

like in this example:

Data should be format-coherent and expressed in the right unit,

according to the kind of sensor used. This gives the algorithm a good

chance to analyze the data, developing a neural network for predicting and

recognizing an unknown set.

Collected data—through sensor reading, data generation, simulation,

etc.—is responsible for providing a coherent and comparable dataset for

the training model and the test reading for prediction and recognition. See

Table 5-1.

ChApTEr 5 InTroduCTIon To nEuTon.AI

153

T
a

b
le

 5
-1

.
S

er
ie

s
o

f N
o

rm
a

li
ze

d
 D

a
ta

 fr
o

m
 t

h
e

D
a

ta
se

t
U

se
d

 i
n

 t
h

e
N

eu
to

n
.a

i
U

se
 C

a
se

 “
G

ea
rb

o
x

F
a

u
lt

 D
ia

gn
o

si
s”

 (
h
t
t
p
s
:
/
/
l
a
b
.
n
e
u
t
o
n
.
a
i
/
#
/
c
a
s
e
s

)

S
e
n

so
r

D
a

ta
 F

ra
g

m
e
n

t
fr

o
m

 a
 T

e
st

 S
e
ri

e
s

a
1

a
2

a
3

a
4

-0
.1

6
9
3
7
7
6

1
2
3
8

-1
.2

8
2
0
5
4
3
5
8
4

3
.3

0
2
7
5
3
9
4
3
5
9
9
9
9
9
5

-1
.5

5
6
9
5
8

8
6

0
1

9
9

9
9

9
7

3
.9

4
5
7
4
1
0
8
3
5
9
9
9
9
9
8

-0
.2

2
0
9
0
2
5

8
1
8
6

-0
.0

0
3
4
8
5
1
0
0
2
9
6
6

-0
.1

7
4
6
4
8
5

0
6

9
6

0
.8

8
8
7
1
0
2
2
5
4
4

0
.6

9
4
2
3
7
1
1

4
9
8
0
0
0
0
1

-0
.0

3
5
4
9
0
5
9
0
1
7
4
0
0
0
0
0
4

-0
.4

7
0
2
5
0

5
9

4
8

-2
.3

3
2
7
7
3
3

4
3
6

-1
.5

7
8
8
3
8
4
2
2
6

1
.3

0
5
9
8
3
8
7
9
8

-1
.2

9
5
5
1
4
0

8
9

1
9

9
9

9
9

9

1
.7

5
5
4
7
4
8
8
9
7
9
9
9
9
9
9

2
.0

8
4
8
4
8
3
0
2
2

0
.3

4
8
7
1
5
0
2
5
5
5
9
9
9
9
9
5

0
.5

0
2
7
4
0

9
4

4
9

8
0

0
0

0
1

2
.4

8
6
9
7
0
2
5
9
6

-0
.6

2
4
6
4
9
5
0
6
7
6

0
.9

4
1
0
9
5
1
7
7
7
1
9
9
9
9
8

0
.2

5
5
7
0
9

8
8

5
7

0
0

0
0

0
0

3

-0
.5

9
3
8
0
6
1

2
3
6
4
0
0
0
0
1

-0
.3

1
9
0
5
9
6
1
8
6
7
9
9
9
9
9
3

1
.8

7
5
3
3
2
4
9
2
6

-1
.1

4
4
4
6
7

1
1

0
2

0
.1

8
3
6
8
0
3
2
6
3
1
9
9
9
9
9
8

0
.9

5
9
2
8
8
8
1
3
8
3
9
9
9
9
9

0
.2

6
3
4
5
8
7
3
0
7
2

-0
.8

7
4
2
3
3
5

1
4

9
8

0
.9

4
9
4
9
8
0
0
9
6
6
0
0
0
0
1

-0
.2

7
1
3
3
7
5

7
3
1
4

-0
.2

1
7
0
3
9
6
5
9
1
2

-1
.6

7
6
8
6
6
4

6
2

ChApTEr 5 InTroduCTIon To nEuTon.AI

https://lab.neuton.ai/#/cases

154

5.2.3. Model Training

The AU framework, which usually resides on a high-performance local

computer or a server on the cloud, has an engine to process the dataset

model creating the neural network. This is the so-called “neural network

training.”

Analyzing the distribution of the data in the model (the dataset),

the AI engine (the neural network) creates its internal logical network

representing any single tag (a group of coherent data, that is, a dataset row)

as a recognizable identity.

When the training ends, the neural network can identify an unknown

dataset of the same kind of model with higher accuracy. Depending

on the complexity of the model, the volume of data, and the available

computational power, the training process can last a few seconds, minutes,

or hours.

5.2.4. Prediction

Prediction is the phase where the AI-trained neural network expresses

its own “intelligence.” Typically, using a specific API call to the AI server,

you can send a single group of data to the engine that, according to the

training, can predict what kind of event or object it is. For example, what

happens in the AI engine? First, it searches for the best fit of the unknown

dataset inside the neural network. The prediction accuracy is directly

related to the volume of data used in training; more extensive training data

typically leads to higher accuracy.

After completing the training, the neural network can be represented

as an abstraction using almost any programming language, and the data

model is no longer needed.

By compacting the neural network—many algorithms can do this—

it is possible to create, for example, a C language library and a small

function interface that can do almost the same job as the more complex

ChApTEr 5 InTroduCTIon To nEuTon.AI

155

neural network created on the server. This compact version of the

prediction engine can be included in a microcontroller, which provides

the data needed for the prediction directly connected to the sensors. The

conversion of the neural network to a programming language makes

it possible to embed the prediction features into the microcontroller

firmware, the embedded Machine Learning device.

In a few words, the microcontroller supporting the embedded ML

feature incorporates a program library containing the neural network

encoded as source code—usually created in C.

Of course, the engine that trains and configures the parameters to

process the neural network resides on the AI framework server. Creating

a new software library requires re-creating a new one to reconfigure the

engine, changing some rules or control parameters, or adding more data

to the training. The microcontroller firmware should be rebuilt on the

platform server.

5.3. The Neuton.ai Framework

After having worked with TensorFlow for small ML projects on

microcontrollers, I started adopting the Neuton framework for two main

reasons:

• The engine creates robust neural networks specialized

in managing predictions with microcontrollers.

• The workflow is easier to manage than other more

comprehensive alternatives.

This platform has limitations that do not impact the prediction

performance; it is a tailored platform specialized in ML applications. The

linear workflow makes it easy for users to go straight to the goal, and the

process can also be customized for a wide range of possibilities.

ChApTEr 5 InTroduCTIon To nEuTon.AI

156

As the platform dataset only accepts data in CSV (Comma Separated

Value) format, it is virtually possible to manage sensor information

provided that the source data is converted into CSV format.

To connect to the platform, you need to sign in with a Google account,

which manages the data stored by the framework on the Google cloud in

the account’s personal space. See Figure 5-1.

Figure 5-1. The lab.neuton.ai home page

5.4. Creating a Solution with Neuton.ai

For a better understanding, I used images to illustrate the process of

creating a solution using the Neuton platform. From the Neuton Google

account shown in Figure 5-2, you create projects and check the data

storage and parameters.

ChApTEr 5 InTroduCTIon To nEuTon.AI

157

Figure 5-2. The Google cloud site, which is also accessible from the
Neuton main menu

The Neuton platform temporarily uses the Google cloud to store the

AI engine’s data. A Google account is needed to access the Neuton site

(lab.neuton.ai). The same Google account used to log in to the Neuton

platform should be subscribed to the Google cloud.

A billing registration is required for the subscription. However, for

many experiments, using just the Neuton platform, Google’s free tier

(which provides approximately 300 USD for every new subscription) is

enough. All of Neuton’s features are free for non-commercial purposes.

Warning The Google account is accessible from the side menu

of lab.neuton.ai. however, a solution can’t be created if the

logged-in account is not subscribed to an active Google account.

After subscribing, you can use the platform for free, paying only for

Google's infrastructure costs.

ChApTEr 5 InTroduCTIon To nEuTon.AI

158

You can create solutions with Neuton for free by registering for a Zero

Gravity account. It is a good idea to explore the use cases available from

the sidebar menu to understand in detail the workflow variations offered

by the platform. By the way, audio and keyword spotting tasks that are

relevant and applicable to many AI solutions can also be successfully

solved using Neuton.

From activity recognition to mechanical diagnostics, sensors

management, and more, these use cases represent examples of real-world

applications. Every use case is explained in detail, while the original

trained and test dataset can be downloaded locally. This makes it possible

to replicate these examples, covering many of the possibilities offered by

the platform.

If you select the My Solutions sidebar button, the page shows the list of

solutions already created by the currently logged user.

When a solution has been saved and closed—the training engine is

not working—it is available but doesn’t consume Google cloud resources.

Every solution implies using a dataset, which is a group of files created

automatically by the platform when importing the source data CSV file.

All the processed datasets are stored in numeric folders on the user’s

Google cloud space. The dataset can be reviewed, downloaded, or deleted

anytime, by accessing the list from the Dataset Storage button on the

sidebar. See Figure 5-3.

ChApTEr 5 InTroduCTIon To nEuTon.AI

159

Figure 5-3. The Neuton.ai use cases page, where you can open and
explore complete solutions

5.4.1. Step-by-step Solution

Look at the Gearbox Fault Diagnosis use case: Detects broken tooth

conditions in the gearbox based on the vibration data.

To experiment with creating a solution, this section replicates this

example. First, download the two solution files: the dataset used to

design and train the model and a series of test data to verify how the

prediction works.

5.4.2. A Few Words on this Use Case

Even though the algorithm operates on a series of vibration sensor values,

the neural network process can deliver robust and consistent predictions

with high reliability. See Table 5-2. Note that, in addition to the sensor

data (the first four columns), the Target column classifies every row of the

dataset.

ChApTEr 5 InTroduCTIon To nEuTon.AI

160

T
a

b
le

 5
-2

.
T

h
e

F
ir

st
 T

en
 L

in
es

 o
f t

h
e

D
a

ta
se

t
U

se
d

 t
o

 T
ra

in
 t

h
e

N
eu

ra
l N

et
w

o
rk

G
e
a

rb
o
x
 1

0
-4

0
-9

0
 T

ra
in

in
g

a
1

a
2

a
3

a
4

ta
rg

e
t

-0
.1

6
9
3
8
1

-1
.2

8
2
0
7
9
9
9
9
9
9
9
9
9
9
9

3
.3

0
2
8
1
9
9
9
9
9
9
9
9
9
9
6

-1
.5

5
6
9
8
9
9
9
9
9
9
9
9
9

9
9

0

3
.9

4
5
8
2

-0
.2

2
0
9
0
7
0
0
0
0
0
0
0
0
0
0
2

-0
.0

0
3
4
8
5
1
7

-0
.1

7
4
6
5
2

0

0
.8

8
8
7
2
8
0
0
0
0
0
0
0
0
0
1

0
.6

9
4
2
5
1
0
0
0
0

0
0
0
0
0
1

-0
.0

3
5
4
9
1
3

-0
.4

7
0
2
6

0

-2
.3

3
2
8
2

-1
.5

7
8
8
7

1
.3

0
6
0
1
0
0
0
0
0
0
0
0
0
0
1

-1
.2

9
5
5
4

0

1
.7

5
5
5
1

2
.0

8
4
8
9

0
.3

4
8
7
2
2

0
.5

0
2
7
5
1
0
0
0
0
0
0
0
0

0
1

0

2
.4

8
7
0
2
0
0
0
0
0
0
0
0
0
0
2

-0
.6

2
4
6
6
1
9
9
9
9
9
9
9
9
9
9

0
.9

4
1
1
1
3
9
9
9
9
9
9
9
9
9
9

0
.2

5
5
7
1
5

0

-0
.5

9
3
8
1
8
0

0
0
0
0
0
0
0
0
1

-0
.3

1
9
0
6
5
9
9
9
9
9
9
9
9
9
9
6

1
.8

7
5
3
7

-1
.1

4
4
4
9

0

0
.1

8
3
6
8
4

0
.9

5
9
3
0
7
9
9
9
9

9
9
9
9
9
9

0
.2

6
3
4
6
4

-0
.8

7
4
2
5
1

0

0
.9

4
9
5
1
7

-0
.2

7
1
3
4
3

-0
.2

1
7
0
4
4
0
0
0
0
0
0
0
0
0
0
1

-1
.6

7
6
9

0

ChApTEr 5 InTroduCTIon To nEuTon.AI

161

The dataset consists of a series of vibration sensor samples depicting

two scenarios: when the gear has a broken tooth and when the gear

is intact.

Open the Solutions page and choose Add New Solution. Assign a name

and optionally an introductory description. In this window, you should

inform the platform about the kind of data, organized into three main

categories:

• Audio: Refers to datasets like frequency samples in

the range of 20-20.000 Hz, which is the audible audio

frequency range.

• Sensor data: Refers to any homogeneous data

collection from sensors. It is the category to select.

• Tabular data: This kind of data can’t be embedded

in a microcontroller due to the massive amount of

information, so it’s not relevant here.

5.4.3. Step 1: Upload the Dataset

As mentioned, to be accepted by the Neuton platform, the dataset should

be prepared as a CSV file. In this example, every record will contain the

measured fields and, lastly, a number. This number is the classification

used by the ML engine as the TAG, where 0 means healthy gear and 1 or

more means one or more broken teeth. See Figure 5-4.

ChApTEr 5 InTroduCTIon To nEuTon.AI

162

Figure 5-4. After the training dataset has been uploaded (or
chosen from an existing file on Google cloud), the imported CSV
file is checked for validation. If the file does not respect the dataset
requirements, the platform send a notification

After uploading, the dataset will be verified automatically to avoid

computing errors or issues in the following steps.

Note If the training must be replaced—for example, because new

data has been added—it can be deleted and replaced. After the

training data is uploaded, it is possible to retrieve it from the Google

cloud storage at any time, for example, to apply the same dataset to

another project or change the inference parameters.

5.4.4. Step 2: Train the Dataset

At this point is possible to customize the dataset—to which you attribute

a meaning and address the engine for proper training according to

your needs.

ChApTEr 5 InTroduCTIon To nEuTon.AI

163

On the right side of the window, you select the target variable, while on

the left side, you select all the fields that will be part of the data variables.

If none of the fields on the left is chosen, all the data will be included when

training the neural network.

In the second window of the training settings, more details are

available. The kind of model settings depends on the meaning you

attribute to the data and how the AI engine should consider it from a

numerical point of view. See Figure 5-5.

Figure 5-5. The second screen of the training dataset configuration,
where it is possible to select the kind of ML task. In this case, you need
a binary classification

Leave the proposed default settings untouched in this experiment and

press the Start Training button.

While the training process is underway, a training status window

shows the progress corresponding to the amount of data processed from

the dataset. You should expect that as the progress indicator rises, the

accuracy increases correspondingly. At the bottom of the page, a dynamic

multi-dimensional graph shows how well the trained neural network is

“able to understand” an unknown set of data according to the provided

dataset. See Figure 5-6.

ChApTEr 5 InTroduCTIon To nEuTon.AI

164

Figure 5-6. The second screen of the training dataset configuration,
where it is possible to select the type of ML task. In this case, you need
a binary classification

For digital signal processing, use the Windowing option. If you have

collected the data and know the window size for each sample, input the

size corresponding to your case. Otherwise, select Auto Determination,

and Neuton will choose the optimal window size.

You can also experiment with feature extraction to make the model

smaller and more accurate. You are free to edit the number and type

of features to be extracted from each variable. Choose a method of

subsequent feature elimination and remove lag features by clicking the

corresponding checkboxes. See Figure 5-7.

ChApTEr 5 InTroduCTIon To nEuTon.AI

165

Figure 5-7. Digital signal processing signal

Select the bit-depth of the model. To achieve the best model size and

inference time, choose the 8-bit precision option. If you have restrictions

on the model size, set the maximum number of coefficients here. See

Figure 5-8.

Figure 5-8. Model settings

ChApTEr 5 InTroduCTIon To nEuTon.AI

166

During training, a training status window shows the progress

corresponding to the amount of data processed from the dataset. You

should expect the accuracy to increase as the progress indicator grows. At

the bottom of the page, a dynamic multi-dimensional graph shows how

well the trained neural network is “able to understand” an unknown set of

data according to the provided dataset.

If the accuracy doesn’t reach the desired level, you’ll need to review

the dataset and produce a new one with better cases describing the model.

The training phase may take a considerable amount of time to

complete. Training the dataset used in this example takes a couple of

hours. However, you can configure an SMS notification on the platform to

alert you once the training is complete.

5.4.5. Step 3: Download the Ready-to-Use
C Library

The first option is the one this example is most interested in: using a

C library to embed the predictive neural network on a microcontroller.

See Figure 5-9.

ChApTEr 5 InTroduCTIon To nEuTon.AI

167

Figure 5-9. The prediction download box of the C language library
for microcontroller ML embedding

The C language embeddable library—downloaded as a compressed

file—includes all the sources and a readme file explaining how to

implement it in the microcontroller code and how to use it.

The archive contains a library for inference with the following files:

• neuton.h: The header file of the library

• neuton.c: The library source code

• model/model.h: The model header file

• StatFunctions.h and StatFunctions.c: The statistical

functions for preprocessing

All files are an integral part of the library and you don’t need to make

any changes to them.

ChApTEr 5 InTroduCTIon To nEuTon.AI

168

The library is written following the C99 standard, so it is quite universal

and does not have any strict requirements for your selected hardware.

The ability to use the library depends mainly on the amount of memory

available for its operation.

The deployment into the firmware project consists of the

following steps:

• Copying all files from the archive to the project and

including the header file of the library.

• Creating a float array with model inputs and passing it

to the neuton_model_set_inputs function.

• Calling neuton_model_run_inference and processing

the results.

It’s time to download the model and run inference on a device.

Neuton’s models are so compact that they can run natively on memory-

constrained MCUs, even with 8- and 16-bit precision.

Another option is prediction, which applies to an unknown small

dataset the neural network created with the model. With a model sufficient

to describe all the possible conditions, the neural network can provide

high-accuracy predictions over the unknown data.

The prediction is made on a small, unknown dataset using the neural

network model. If the model adequately covers all possible conditions,

the neural network can deliver high-accuracy predictions for the

unknown data.

Note The neuton prediction module requires a virtual machine

containing the solution data; this operation consumes Google cloud

resources. For this reason, it is worth enabling the module only when

it is needed.

ChApTEr 5 InTroduCTIon To nEuTon.AI

169

The Neuton prediction window provides the Web Prediction and

a REST set of API methods. The Web Prediction can be used to test the

neural network. It accepts a test data file of the same format and fields

of the dataset model, without the Tag column. After the data upload, the

prediction generates a downloadable file and a preview. See Figure 5-10.

Figure 5-10. The prediction starts the virtual machine on Google
cloud containing the neural network and the prediction engine—
every solution has its own VM

For every record stored in the test file, the prediction table shows the

predicted target according to the neural network applied to that specific

value. See Figure 5-11.

ChApTEr 5 InTroduCTIon To nEuTon.AI

170

Figure 5-11. The web preview prediction table. Consider this
preview for testing purposes while using the more complete RESTful
APIs for integration in your development (when developing a web
application)

Indeed, the raw numbers in the downloaded CSV formatted file are not

so good for a real-world application.

I mentioned that for every solution—when the prediction is

enabled—a dedicated virtual machine runs on the cloud. The predictive

neural network runs on a dedicated server whose features are available

via a RESTful call (there are options for POST and GET). The server exposes

four APIs:

• /v2/predict

• /v2/predict/file

• /v2/predict/status/(UUID)

• /v2/predict/result/(UUID)

The API’s calling mechanism is shown in a scriptlet that’s available in

four different languages: Python, Java, C#, and Scala. It is easy to integrate

into your code. See Listing 5-1.

ChApTEr 5 InTroduCTIon To nEuTon.AI

171

Listing 5-1. The Python Sample by Neuton.ai to Connect to

the Google Cloud Server Running the Prediction from a Web

Application via RESTful API Calls

import sys

import requests

import json

def send_request(URL, file_path):

 upload_file = requests.post(url + '/v2/predict/file',

files={'file': open(file_path, 'r')})

 uuid = json.loads(upload_file.text)['data']

 print('Request has been sent.')

 _is_processed = True

 while _is_processed:

 check_status = requests.get(url + '/v2/predict/status/

{}'.format(uuid))

 _is_processed = is_processed_file(check_status.text)

 print('Request was processed')

 get_result = requests.get(url + '/v2/predict/result/{}'.

format(uuid))

 file_name = "result_{}.csv".format(uuid)

 with open(file_name, 'w') as file:

 data = json.loads(get_result.text)['data']

 file.writelines(data.split('\n '))

 print('Result saved in file: {}'.format(file_name))

def is_processed_file(response) -> bool:

 _status = json.loads(response)['data']

 return "SUCCESS" != _status and "ERROR" != _status

ChApTEr 5 InTroduCTIon To nEuTon.AI

172

if __name__ == "__main__":

 from argparse import ArgumentParser

 parser = ArgumentParser()

 parser.add_argument('--url',

 dest='url',

 required=True,

 help='Ready solution URL')

 parser.add_argument('--file_path',

 dest='file_path',

 required=True,

 help='Path to file for prediction')

 args = parser.parse_args()

 send_request(args.url, args.file_path)

Warning remember to disable the prediction VM when it is no

longer needed!

The third option—available without enabling the prediction virtual

machine—is the one this chapter is most interested in: using a C library to

embed the predictive neural network on a microcontroller. See Figure 5-12.

ChApTEr 5 InTroduCTIon To nEuTon.AI

173

Figure 5-12. The prediction download of the C language library for
microcontroller ML embedding

The C language embeddable library—downloaded as a compressed

file—includes all the sources and a readme file explaining how to

implement it in the microcontroller code and how to use it.

ChApTEr 5 InTroduCTIon To nEuTon.AI

PART IV

A Path of Sounds

Ray was so happy to exit the mirrors’ labyrinth that it was difficult to

control his impulse to hug Sonya.

“Hey, Ray,” she said. “Happy to see you,” Ray answered.

A bit embarrassed by the situation, Ray put his hands in his trouser

pockets and looked at his surroundings. A short gravel lane connected the

mirrors’ exit to the “Music Garden.” He started walking in that direction,

followed by Sonya. It was a quiet green place with short, curated grass. The

sun filtered through the large branches of the oak trees. Little platforms of

different shapes were in the distance, on top of small hills.

Ray walked to the nearest platform, about 500 meters away, and Sonya

followed beside him.

“How did you reach the exit from the maze?,” she asked, breaking the

silence. Ray explained his strategy, hacking the drone. Sonya took him

gently under the arm. He tried to behave like everything was normal, but

it wasn’t.

It was complex to deal with his contrasting emotions between the

sweetness of that moment and the task he was focused on: finding Tommy.

“It is strange to me being here, walking together. You always disappear

so quickly.”

The moment he said this, he thought he ruined that moment.

Surprisingly, Sonya instead moved a bit closer to him. Ray could perceive

the warmth of her arm, experiencing a long forgotten sensation.

“I am allowed to accompany you through the Music Garden,” she

answered.

176

“You should know I will still be with you when I disappear.”

“I should admit that finding the exit from the maze was challenging.

I felt like I was under a weird exam when I passed those thousand doors,”

Ray answered.

“From a certain perspective, you are right,” Sonya replied. “But we are

in an amusement park, Ray, so why not enjoy it for a while?”

Her answer left Ray with more unanswered questions than before, but

he decided to go with the flow and see what would happen.

When they climbed up the hill, Ray could see the group of musicians

better. He was surprised to discover that they were all robots! The

musicians had drums, a guitar, a trumpet, a contrabass, and a singer. They

played a pleasant Dixieland repertoire. Observing closely, Ray saw they

moved by a complex system of levers and gears, mainly hidden by the

platform. Indeed, the brain of this fascinating engine was lying inside the

platform.

“Ray, I should go now,” Sonya said, interrupting Ray from observing

the band. “You can go alone from here.”

“Follow the bands on the hills, and you will easily cross the park.”

Without waiting for a reply, she left a soft caress on his shoulder, freed her

arm, and went away. Ray was speechless at so many scene changes; Sonya

was already far away when he answered.

“See you,” Ray said softly. In the distance, Sonya waved her hand

without turning around.

The next group was a trio playing classical music. Ray followed the

track, enjoying almost every musical genre on a warm, sunny day. He

was in front of a rock band playing famous 60s songs when they suddenly

stopped playing. In a few seconds, the air was saturated with strange

sounds coming from everywhere. It was like a rhythm played by mighty

bells. Music without melody. The bells made an oppressive sound, a

sequence of notes and resonances.

A single powerful sound filling the silence.

PART IV A PATH OF SOUNDS

177

In about five minutes, the bell notes ended, leaving a long echo in the

air. Then, as if following a silent order, everything returned to normal.

Ray was attracted by two tango dancers following the sound of a guitar

and a bandoneon. He was very curious to see what kind of engine could

move the two dancers so fluently. Behind a background curtain, to the

opposite side of the scene, a man sitting on a chair was moving his hands

like a master of puppets.

“It’s you? Are you doing this show?,” Ray asked the man on the chair.

“Yes, Sir. It’s me,” he answered. “You see, I make the movements in

front of the camera,” he said, indicating a lens in front of him. “And the

automatons move and play the music.” Ray was very curious about this

technique.

“I see. So, all the musicians around,” said Ray, indicating the

surroundings with a wide gesture of his arm, “are robots. An incredible

piece of art, a masterpiece!”

“Yes, it is. I am Greg, from maintenance service,” He answered. “Nice to

meet you.”

“I am Ray,” he replied.

“You are welcome, sir. I heard of you. You are that man searching for

his son,” Greg answered.

“I suppose you haven’t see my son,” Ray asked with a discouraged

expression.

Greg started speaking again. “Actually, sir, I think I saw him. He crossed

the Music Garden about one hour ago. Don’t worry, he was strolling,

enjoying the music. You will meet him soon.”

In the meantime, the song finished. Greg moved on the chair, and Ray

observed a series of cables connecting his back to the ground.

“What are these cables on your back?,” Ray asked. “It seems you, too,

are connected to an engine.” Ray said.

“These are my connections, sir. We all are robots.” He answered very

earnestly. This was the last answer Ray expected.

“I have seen nothing similar in the other stages.” Ray commented.

PART IV A PATH OF SOUNDS

178

“True,” Greg said. “Every stage plays by itself. Unfortunately, the

engines are old, and sometimes one of them needs to be operated

manually by me or another colleague. Then, during the night, the engine is

repaired.”

Ray heard Greg’s admiration for the music installation in his words.

“Thank you for the very detailed explanation. And thank you for giving

me some news about my son.”

“You are welcome, sir. It’s my pleasure. It is rare to be able to chat with

a visitor.”

Ray was about to leave the stage but turned again. “Greg, is there a

strategy to follow the stages to reach the exit of the Music Garden?”

“Sure, that is easy,” Greg answered. “When you reach a stage, walk to

the nearest one you can see. In this way, you can easily reach the exit of the

garden. Be careful; stages move to a different position inside the garden

every night, creating a new path daily.” Ray nodded. He was already used

to the curious habits of BDTH 6159.

“Thank you again, Greg. And let me say you all are doing a great job.”

After passing three other small musical stages, Ray found himself on

top of the last hill. He saw the landscape sloping to a meadow surrounded

by a fence. In front of him, the fence was interrupted by a wooden gate

with a big sign on top:

“EXIT. Thank you for the visit.”

Ray stepped out of the gate and met a doorman in a uniform. His

reminded Ray of one of those revolutionary costumes used by the Beatles

in the “Yellow Submarine” movie. As he approached the doorman, he

spoke to Ray.

“Mr. Ray, I suppose,” Ray widened his eyes, surprised and speechless.

“News travels fast, sir,” he continued.

“In a connected world where almost nothing has happened in some

years, a visitor is exceptional news, sir.”

“Please, call me Ray,” he answered. “I suppose you also know the

reason I am visiting the park.”

PART IV A PATH OF SOUNDS

179

“Of course, Ray. This side of BDTH has a fast network; we all know why

you are here.”

The doorman was speaking with a deep voice. His sentences had no

accent, and the sound seemed artificial to Ray.

“Sorry for my voice, Ray,” he answered before he finished the

sentence. “I use my voice so rarely that the assistance service ignores

my maintenance. My speaking capabilities are, therefore, degrading.

It has been over a year, and no one cares about me.” The doorman

explained sadly.

Observing him, Ray noted that only the upper part of his body was

moving: his arms, hands, torso, and, of course, his facial expressions.

“Let me try to help you, Ray,” the doorman said. “As you know, one

hour or so, your son—he is your son, right?” “Yes, Tommy,” Ray answered.

“I apologize for not introducing myself. I am model 736, 5.4 version 2.3,

but you can call me Magnus,” he continued.

“Okay, Magnus,” Ray answered, a bit anxious.

“Please continue. What do you know about Tommy?”

“Ah, yes. As I told you about one hour or so, Tommy exited the Musical

Garden. He followed the map on the back of the leaflets distributed to the

visitors at the entrance.” Ray was impatient, but Magnus spoke slowly with

his monotone voice.

“If he follows the map, he will go to the Sandcastle attraction.”

“Can you be more precise about the direction I should follow,

Magnus?,” Ray replied.

“Of course. Follow the alley for about 500m, then move to the right. At

that point, you should see the indications for the dome.”

“Many thanks, Magnus,” said Ray while quickly taking his leave.

“It was a pleasure to chat with you, Ray,” Magnus replied. “I would be

happy to accompany you, but as you can see...” he said, pointing to the

bottom of his body, anchored to the platform.

Ray smiled gratefully and disappeared from Magnus’ sight in a couple

of minutes.

PART IV A PATH OF SOUNDS

181© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_6

CHAPTER 6

Introduction to MIDI

Figure 6-1. The first prototype of the MIDI cardboard drum while
recording a rhythm track on my Mac

Following the arrows, the path drives Ray

Badmington to a source of dancing music. It’s

incredible—but not magic (Ray is an engineer)—

the original rhythm and noise generated by this

unique source. He wonders about the captivating

https://doi.org/10.1007/979-8-8688-0080-1_6#DOI

182

sound inside the circular dome, filled with dancing

holograms surrounded in the center by that skinny

Rasta man playing alone over a couple of strange-

shaped boxes.

As you already know, the adventurous world of BDTH6159 is an

incredible place. Still, thinking about the real world, without special

components and futuristic technologies, you can do something similar

or—why not—something better. See Figure 6-1.

6.1. The Trick Is MIDI

Figure 6-2. Some electronic instruments and effects “chained”
together through the MIDI bus. Thanks to the flexibility of MIDI,
a small MIDI bus allows you to send the same MIDI message from
a source to multiple sources. Indeed, one of the devices is set as a
“master clock” to keep all the others synchronized

Chapter 6 IntroduCtIon to MIdI

183

MIDI is the acronym for Musical Instrument Digital Interface.

According to the Wikipedia definition, it is a technical standard that

describes a communication protocol, digital interface, and electrical

wiring that connects a wide variety of electronic musical instruments,

computers, and related audio devices for playing, editing, and

recording music.

Nowadays, MIDI is the universal and popular standard available on

almost all electronic instruments and musical effects, taking advantage of

the most recent communication protocols like USB, Bluetooth, and WiFi.

It was October 1982—over 40 years ago!—when Robert Moog,

president of Moog Music, announced the MIDI standard. In 1983, Dave

Smith, president of Sequential Circuits, demonstrated the MIDI interface

by connecting a Prophet-600 and Roland JP-6 synthesizer. In the same year,

Roland commercially released the Prophet-600, the Jupiter-6 synthesizer,

the TR-909 drum machine, and the MSQ-700 sequencer equipped with the

MIDI interface.

After the MIDI 1.0 specifications were published in 1985, the standard

continued evolving until MIDI 2.0 was introduced in 2020. Over the years,

MIDI protocol changed to support the new USB and Firewire connections,

including support for Bluetooth and WiFi. See Figure 6-2.

Note MIdI 2.0—developed by a reduced group of companies

and developers—has not been conceived to replace the MIdI 1.0

specifications. In a few words, all the MIdI 1.0 devices will not

become obsolete in the future. on the contrary, MIdI 1.0 will coexist

perfectly with the 2.0 specifications, which aim to add more features

to the MIdI 1.0 standard.

Chapter 6 IntroduCtIon to MIdI

184

According to Dave Smith’s vision, the incredible potential of the MIDI

protocol can be realized only if all the producers could adopt it. For this

reason, it was released as one of the first open source technologies. See

Figure 6-3.

Figure 6-3. This echo effect is the remake of the legendary Boss
RE-201 Space Echo, originally using a tape loop, launched by
Roland in 1974. This model—able to simulate the same features of its
ancestor—includes MIDI-In and MIDI-Out connectors. All the settings
are manually accessible by the rotary controls and through MIDI
commands

Chapter 6 IntroduCtIon to MIdI

185

6.2. The MIDI Protocol Essentials

Tip a full, comprehensive, and detailed specification of the MIdI

protocol is available on the midi.org site. It is the official nonprofit

trade organization of the MIdI standard, connecting companies who

develop MIdI products and new MIdI specifications with everyone

worldwide creating music and art with MIdI. the MIdI association

also publishes updates about the evolution of the protocol and its

adaptions to the most recent communication technologies.

In this chapter, I provide some essential information for understanding

how the protocol works, for proper use with electronic instruments and

custom-developed devices. Note that regardless of almost half a century of

evolution, the protocol’s GM (General MIDI) specifications are still valid.

6.2.1. MIDI Communication

MIDI communication is based on serial communication: one wire to

send, one to receive, and a ground wire. Some devices, like computers and

synthesizers, support both directions—one MIDI-In plug and one MIDI-

Out plug. These devices can be connected in a chain—for this reason,

MIDI can also be considered a bus. This configuration allows multiple

instruments to be synchronized with the same rhythm (MIDI clock signal).

For example, you can chain a MIDI keyboard connected to a drum

machine and a sampler so all the devices play at the same rhythm. To

achieve this result, you need a device acting as a master and all the others

as slaves. The slave devices adapt their speed to the master clock to work in

sync. See Figure 6-4.

Chapter 6 IntroduCtIon to MIdI

186

Figure 6-4. This Roland AIRA T-8 is a drum machine that includes
the sounds of the iconic TR-606, TR-808, and TR-909 and the bass line
sounds of the TB-303. It can be easily connected to a MIDI keyboard
and used as the master clock in a chain with other MIDI devices

In MIDI communication, you can functionally identify commands

and notes. For example, a generic MIDI keyboard—which does not play

any sound—is a simple interface. Its MIDI-Out cable can be plugged into

the MIDI-In of a synthesizer or a drum machine to play the respective

electronic instruments.

Two types of commands can be sent through the MIDI protocol:

program change and control change commands. Of course, the devices

should not necessarily support all the MIDI features. It depends on the

specific characteristics of these devices.

6.2.2. The Protocol Format

MIDI information is built from one byte (eight bits). This means that MIDI

information has a value between 0 and 255. Consider what that means in

hexadecimal format:

MIDI information: A value between 0x00 - 0xFF

Chapter 6 IntroduCtIon to MIdI

187

If you divide the byte into the MSB (Most Significant Byte) and

LSB (Less Significant Byte), you have the following two hexadecimal

value ranges:

LSB: 0x00 - 0x7F

MSB: 0x80 - 0xFF

The LSB part corresponds to the decimal values 0-127, while the MSB

part corresponds to the decimal values 128-255.

Following this subdivision, every MIDI byte can be data or a

command: this depends on the MSB part of the byte. If the value is less

than 0x80, it is a data byte; if it is greater than 0x7F, it is a command byte.

In addition, the MIDI protocol commands can address 16 (0x0F)

different MIDI channels.

6.2.3. General MIDI (GM)

To understand how the MIDI protocol manages all the aspects of the

musical characteristics (notes, effects, beats, volume, etc.), you need to

understand some practical information to see how it works. The best way

is to look at the General MIDI 1 requisites (GM or GM1). See Figure 6-5.

Chapter 6 IntroduCtIon to MIdI

188

Figure 6-5. The GM1 association of notes (numbers in parentheses)
for the rhythmic instruments (Source: Wikipedia, lic. CC). This project
is building a drum machine, so it’s interested in the association of the
notes to the drum instruments

While MIDI 1.0 specifications define the physical protocol, first

published in 1991, GM1 defines a standard specification for the electronic

musical instruments supporting MIDI communication.

These specifications define the characteristics of any instrument

adopting GM through a series of requirements that fit the different kinds of

electronic musical instruments. See Figure 6-6.

Chapter 6 IntroduCtIon to MIdI

189

Figure 6-6. The GM1 requirements for the electronic musical
instruments (Source: Wikipedia)

Of course, GM also defines the characteristics of the PC (Program

Change) and CC (Control Change) MIDI commands. An exhaustive

definition of the GM1 can be found in the Wikipedia article, “General

MIDI” (December 15, 2023), at https://en.wikipedia.org/wiki/

General_MIDI.

Chapter 6 IntroduCtIon to MIdI

https://en.wikipedia.org/wiki/General_MIDI
https://en.wikipedia.org/wiki/General_MIDI

190

6.3. Arduino and the MIDI Library

Figure 6-7. Arduino UNO R3 is the core of this project; the
microcontroller, with the MIDI library, in this project exposes itself as
an electronic musical instrument, sending the notes corresponding to
the configured drum instruments

The easiest way to understand how the MIDI is used on the Arduino board

is by analyzing the part of the Arduino sketch that manages the protocol. It

is important to realize that this is a MIDI configuration where the Arduino

board acts as an electronic instrument. See Figure 6-7 and Listing 6-1.

Chapter 6 IntroduCtIon to MIdI

191

Listing 6-1. Implementation of the MIDI Library in the

Arduino Sketch

#include <MIDI.h>

[...]

According to the General MIDI specifications, the MIDI channel of the

drum machine will use the MIDI channel 10, the default percussion channel:

// Fixed MIDI Channel (the default percussions channel 10)

#define MIDI_CHANNEL 10

By default, the MIDI velocity value for the percussion notes is set to the

full range (0-127), but custom limits can be hardcoded to a different range

if needed. Be aware that the term velocity represents the note intensity. In

this case, it is proportional to the pressure applied to the drum pads.

#define MIN_MIDI_VELOCITY 0

#define MAX_MIDI_VELOCITY 127

You need to create an instance of the library attached to a serial port;

in the Arduino UNO, the serial port is interfaced to the USB-to-serial

port, so the MIDI USB connection is automatically supported. The MIDI

instance is initialized by the begin() method, as with the serial interface.

MIDI_CREATE_DEFAULT_INSTANCE();

MIDI.begin();

Note that calcMIDIVelocity() is one of the MIDI process functions;

it sets the MIDI velocity (range 0-127), mapping the intensity pressure

detected on a pad:

int calcMIDIVelocity(float sensor) {

 int velocity;

 velocity = map(padRead, -MIN_SENSOR_RANGE, MAX_SENSOR_RANGE,

MIN_MIDI_VELOCITY, MAX_MIDI_VELOCITY);

Chapter 6 IntroduCtIon to MIdI

192

 if((velocity > MAX_MIDI_VELOCITY) || (velocity < MIN_MIDI_

VELOCITY)) {

 return 0;

 } else {

 return velocity;

 }

}

6.3.1. The MIDI Library Header

The MIDI Library header interfaces classes and sources for low-level

hardware MIDI communication (serial and USB). The library’s public

methods reflect the General MIDI specifications through its header.

The MIDI Output methods, as defined in the MIDI.h header file, cover

almost all the GM1 MIDI commands, both PC (Program Change) and CC

(Control Change). See Listing 6-2.

Listing 6-2. The MIDI Library header

public:

 inline void sendNoteOn(DataByte inNoteNumber,

 DataByte inVelocity,

 Channel inChannel);

 inline void sendNoteOff(DataByte inNoteNumber,

 DataByte inVelocity,

 Channel inChannel);

 inline void sendProgramChange(DataByte inProgramNumber,

 Channel inChannel);

Chapter 6 IntroduCtIon to MIdI

193

 inline void sendControlChange(DataByte inControlNumber,

 DataByte inControlValue,

 Channel inChannel);

 inline void sendPitchBend(int inPitchValue, Channel

inChannel);

 inline void sendPitchBend(double inPitchValue, Channel

inChannel);

 inline void sendPolyPressure(DataByte inNoteNumber,

 DataByte inPressure,

 Channel inChannel) __

attribute__ ((deprecated));

 inline void sendAfterTouch(DataByte inPressure,

 Channel inChannel);

 inline void sendAfterTouch(DataByte inNoteNumber,

 DataByte inPressure,

 Channel inChannel);

 inline void sendSysEx(unsigned inLength,

 const byte* inArray,

 bool inArrayContainsBoundaries

= false);

 inline void sendTimeCodeQuarterFrame(DataByte inTypeNibble,

 DataByte

inValuesNibble);

 inline void sendTimeCodeQuarterFrame(DataByte inData);

 inline void sendSongPosition(unsigned inBeats);

 inline void sendSongSelect(DataByte inSongNumber);

 inline void sendTuneRequest();

Chapter 6 IntroduCtIon to MIdI

194

 inline void sendCommon(MidiType inType, unsigned = 0);

 inline void sendClock() { sendRealTime(Clock); };

 inline void sendStart() { sendRealTime(Start); };

 inline void sendStop() { sendRealTime(Stop); };

 inline void sendTick() { sendRealTime(Tick); };

 inline void sendContinue() { sendRealTime(Continue); };

 inline void sendActiveSensing() { sendRealTime

(ActiveSensing); };

 inline void sendSystemReset() { sendRealTime

(SystemReset); };

 inline void sendRealTime(MidiType inType);

 inline void beginRpn(unsigned inNumber,

 Channel inChannel);

 inline void sendRpnValue(unsigned inValue,

 Channel inChannel);

 inline void sendRpnValue(byte inMsb,

 byte inLsb,

 Channel inChannel);

 inline void sendRpnIncrement(byte inAmount,

 Channel inChannel);

 inline void sendRpnDecrement(byte inAmount,

 Channel inChannel);

 inline void endRpn(Channel inChannel);

 inline void beginNrpn(unsigned inNumber,

 Channel inChannel);

 inline void sendNrpnValue(unsigned inValue,

 Channel inChannel);

Chapter 6 IntroduCtIon to MIdI

195

 inline void sendNrpnValue(byte inMsb,

 byte inLsb,

 Channel inChannel);

 inline void sendNrpnIncrement(byte inAmount,

 Channel inChannel);

 inline void sendNrpnDecrement(byte inAmount,

 Channel inChannel);

 inline void endNrpn(Channel inChannel);

 inline void send(const MidiMessage&);

Of course, the library is also capable of reading and parsing MIDI

messages to manage bidirectional communication.

Chapter 6 IntroduCtIon to MIdI

197© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_7

CHAPTER 7

Crafting the
Cardboard Drum

Figure 7-1. The five-pad drum machine is fully assembled. It’s not
just a proof of concept but a programmable and flexible, Arduino-
based, MIDI electronic musical instrument

https://doi.org/10.1007/979-8-8688-0080-1_7#DOI

198

After learning about some basic theoretical notes on the MIDI protocol

and the Arduino MIDI library in the previous chapter, it’s time to see how

it was possible to make a fully working drum machine using an alternative

method to the expensive commercial pad sensors.

7.1. Cheap and Recycled Stuff

A piezo electric sensor is a device that uses the piezo electric
effect to measure changes in pressure, acceleration, tempera-
ture, strain, or force by converting them to an electrical charge.
The prefix piezo is Greek for “press” or “squeeze.” (Source:
Wikipedia)

Building a digital drum pad using a microcontroller and sensors available

in commercial drum pads might not seem too complex. Still, you need a

more powerful processor than an Arduino UNO R3.

The problem lies in the kind of the components. In this case, you have

two choices: buy a prebuilt sensor pad or use a set of piezo electric sensors.

Prebuilt drum pads are expensive and normally include several

piezo electric sensors that capture the pressure and vibration variations

depending on the percussion applied to the pad. This factor increases the

number of sensors that will trigger the signal, and multiple sensors of the

same pad should be integrated to produce the correct MIDI response.

Of course, you could build the pads yourself—as I did in this project—

but the problem of integrating multiple sensors remains. The challenging

problem was finding an alternative technology to produce a similar result,

with only a single sensor for every pad.

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

199

7.1.1. Adopting an Alternative Technology

 Requirements

First of all, I wrote down a list of essential requirements to figure out what

the final result should be and how it should behave:

• Digital drum pad sensors are circularly shaped and

react to various pressures within a predefined range.

• Different kinds of solicitations should be converted into

different MIDI velocity values for different notes.

• The goal is to make a MIDI drum pad, so the sound is

generated by the connected synthesizer. The more the

solicitation of the pads produces the correct response,

the more the produced sound will be shaped correctly.

• The force applied to the surface of the pads should

not exceed 5-6 kg; this is a limit related to building the

hardware.

 Using Load Cells

The solution to achieving a high sensitivity is by using a single sensor,

which is oriented to adopt linear load cells.

Based on a principle different from that of the piezo electric sensors,

the load cells are metal components—usually aluminum and available

in many shapes—that change the resistance when a force is applied. The

ideal shape for this project is a linear load cell fixed to the circular pad. See

Figure 7-2.

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

200

Figure 7-2. Bottom view showing how the load cell is connected
to the circular pad. The cell is screwed to the structure of the device
and glued to the bottom side of the pad. Any vibration of the pad is
transmitted to the load cell

This technology also makes it is easier to manage with the Arduino.

Every load cell is connected to an HX711 integrated circuit that, when

powered, converts the variation of resistance of the load cell to a voltage

variation. The Arduino GPIO analog inputs make this variation easy to

read without needing external electronic comparators.

Note The drum pad prototype I made is designed to be played with

hands. In this case, load cells supporting up to 5kg of solicitations

were sufficient. The same technology will also work with pads

designed to be played with drumsticks using more capable load cells.

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

201

7.2. Creating the Structure

Of course, I ran some preliminary tests to verify the performance and

response of the load cells before starting the structure design. Still, a real

test was possible only when the prototype was finished, as I could not find

similar applications with these sensors. I designed the parts in the most

accurate way possible.

7.2.1. Strong Parts

Two parts of the building are critical and subject to relatively strong

mechanic solicitations: the base of the device and the pads. See Figure 7-3.

Figure 7-3. A piece of recycled MDF is sufficiently robust to work as
the base of the MIDI drum pad

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

202

I obtained these two parts from a single piece of 3mm MDF to create

the upper support where the load cells are screwed; the rigid part of the

drum pads was obtained by making round holes in the MDF base.

Then, I increased the thickness of the structure by adding a couple

of layers of corrugated cardboard; it is sufficiently robust and durable. I

used cardboard recycled from strong shipment boxes. Making this first

prototype, I focused on the quality of the result and the stability of the

structure.

It is also possible to take the structure to the next level by painting it

with a waterproof and protective paint.

 The Pads

Figure 7-4. The construction of the multi-layer circular pads

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

203

The drum pads (see Figure 7-4) were built with a three-layer structure

consisting of 3mm MDF for the base attached to the load cells, glued to

which is a 3mm corrugated cardboard disc to soften the percussion and

a surface finish on the top side (the striking area) made with a 1mm thick

black polyurethane sheet.

The weak point of the pads is the cardboard layer; for this reason,

they can be played by hand, but the surface can’t support the pressure

of the drumstick. Using alternative materials, such as compact foam or

silicon layers, can give the pads a different response to the mechanic’s

solicitations. See Figures 7-5 and 7-6.

Figure 7-5. The five pads glued over their respective linear load cells
during the assembly phase

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

204

Note The pad surface exposed to the touch is the hard MDF

component, glued over the corrugated cardboard layer, then glued

over the load cell. The corrugated cardboard—or any other soft

material—contributes to smoothening the impact over the load cell.

By experimenting with other kinds of materials, it is possible to obtain

different response effects.

Figure 7-6. Detail of the pads with the top layer composed of a 1mm
thick black polyurethane sheet

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

205

7.2.2. Fixing the Load Cells

One of the roles of the MDF base is to keep the five load cells firmly

screwed in place. This is the only part of the drum machine that uses

screws, as the pads are hot-glued on the opposite side of the cells. See

Figure 7-7.

Figure 7-7. Bottom view of the load cells screwed to the base and hot-
glued to the pads

The bottom base is also where I added the five HX711 amplifier circuits

soldered to the cells. The HX711 circuit is a small PCB that converts

the very low resistance variations of the load cells, when exposed to a

mechanical solicitation, to a voltage variation read by the analog pins of

the Arduino GPIO.

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

206

 Wiring the Circuit

To understand how to wire all the signals to the Arduino board, it

is necessary to see how the reading cycle of the HX711 amplifier

circuit works:

• The five HX711 circuits are powered by the GND and 5

Vcc pins of the Arduino.

• The five analog signals (the load cells measure) are sent

to five of the six analog inputs of the Arduino GPIO.

• The five clock signals are connected to a single PWM

output signal of the Arduino GPIO.

The logic workflow consists of sending a clock signal to the HX711 and

reading the corresponding analog value on the amplifier’s corresponding

pin. See Figure 7-8.

Figure 7-8. Detail of the HX711 sensor wires collected on a
breadboard PCB, which is connected to the Arduino GPIO through a
flat cable

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

207

 Making the Case

All the case parts were made of sturdy corrugated cardboard, recycled

from another shipment box.

A border around the structure completes the sides of the drum

machine, encasing the device and leaving space at the bottom to host

the HX711 board, circuitry and wiring, and the Arduino board. The case

sides were hot-glued to the base; the case’s shape and the cardboard’s

orientation give the necessary robustness. See Figure 7-9.

Figure 7-9. The bottom side of the drum machine with the case glued
to the base. The bottom box closure is another cardboard piece to
cover the wiring and the Arduino board

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

208

The top side of the box, made of cardboard as well, includes an inner

circular spacer around every pad hole. This solution contributes to the

robustness of the case on the percussion side. See Figure 7-10.

Figure 7-10. Bottom view of the top cover of the drum machine.
Around every hole of the pads, there is a cardboard spacer hot-glued
to the cover

7.3. The Sensors Software

The load sensors interfaced to the HX711 circuit are very popular in the

makers’ world; many Arduino projects use these sensors, thanks to the

availability of the Arduino HX711 library.

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

209

This library is designed to use a single sensor on the board. However,

the plan is to simultaneously use five load cells associated with every pad.

To achieve this result, I used the HX711 library—not available through the

Arduino IDE Library Manager.

The HX711 customized library used here, also available in the project

software repository, is the open source version from GitHub (https://

github.com/bogde/HX711) by Bogde.

The implementation of the library for reading in blocking and non-

blocking modes made it possible to create polling over an array of five

sensors using a single clock signal.

After including the HX711 library header (see Listing 7-1), the pad

signals were associated with the first five analog inputs of the Arduino

GPIO and a single output clock signal pin.

Listing 7-1. The HX711 Library Header

#include <HX711.h>

[...]

// Connection of pads pins

#define PAD_CLK 2 // Clock PIN

#define PAD1 3 // Pad 1 PIN

#define PAD2 4 // Pad 2 PIN

#define PAD3 5 // Pad 3 PIN

#define PAD4 6 // Pad 4 PIN

#define PAD5 7 // Pad 5 PIN

The program creates five instances of the library, initialized for

every pad connected to the corresponding Arduino analog input. All the

instances share the same clock signal pin.

// Define the weight sensor instance for every pad

HX711 pad0(PAD1, PAD_CLK);

HX711 pad1(PAD2, PAD_CLK);

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

https://github.com/bogde/HX711
https://github.com/bogde/HX711

210

HX711 pad2(PAD3, PAD_CLK);

HX711 pad3(PAD4, PAD_CLK);

HX711 pad4(PAD5, PAD_CLK);

// Create an array of pointers to the pad instances

HX711 *pads[NUM_PADS];

// Predefined notes mapped to the pads

int padsMap[NUM_PADS];

// Last value read from pad weight sensor

float padRead;

The setup() function initializes the library instances and starts the

five HX711 sensors. Note that the padsMap[] array assigns the MIDI note

number to every pad. This is the note—and its relative velocity—sent to the

MIDI channel. It is possible to change these values to associate every pad

with a different instrument, according to the General MIDI standard.

// Initialization

void setup() {

 // Create the pad vector to manage the weight sensors in loops

 pads[0] = &pad0;

 pads[1] = &pad1;

 pads[2] = &pad2;

 pads[3] = &pad3;

 pads[4] = &pad4;

 // Set up the pitch notes associated with every pad

 padsMap[0] = 38;

 padsMap[1] = 39;

 padsMap[2] = 40;

 padsMap[3] = 41;

 padsMap[4] = 42;

}

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

211

The main loop() functions applies relatively complex logic; in fact,

to achieve the needed responsivity, the polling process must be as fast as

possible. As a pad reading is detected, the applied mechanical pressure—

read as an integer at the corresponding analog input of the Arduino

GPIO—is converted to a MIDI velocity value. Then the MIDI note is sent to

the connected MIDI instrument through the Arduino USB.

void loop() {

 int j;

 int mappedPad;

 // Loop on every pad to see if one has been pressed

 for(j = 0; j < NUM_PADS; j++) {

 padRead = pads[j]->get_units(NUM_READINGS) * -1;

 mappedPad = calcMIDIVelocity(padRead);

 if(mappedPad > 4) {

 MIDI.sendNoteOn(padsMap[j], 64, MIDI_CHANNEL); // Send a

Note (pitch, velo, channel)

 MIDI.sendNoteOff(padsMap[j], 0, MIDI_CHANNEL);

 }

 }

}

The calcMIDIVelocity() function maps the sensors valued to the min

and max note velocity range to convert them to MIDI velocity values.

int calcMIDIVelocity(float sensor) {

 int velocity;

 velocity = map(padRead, -MIN_SENSOR_RANGE, MAX_SENSOR_RANGE,

MIN_MIDI_VELOCITY, MAX_MIDI_VELOCITY);

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

212

 if((velocity > MAX_MIDI_VELOCITY) || (velocity < MIN_MIDI_

VELOCITY)) {

 return 0;

 } else {

 return velocity;

 }

}

CHAPTER 7 CRAFTING THE CARDBOARD DRUM

213© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_8

CHAPTER 8

A Sound Sampler
with Raspberry Pi

Figure 8-1. The development bench of the Raspberry Pi sound
sampler and player. Note that the Radio Magic to the left of the image
is used as a noise source, as described in Chapter 17

In music, a sequencer is a device that can control the order and timing of

notes, beats, and other sound elements. It allows the musician to compose

and arrange music by programming the sequence of events.

As with all musical devices, sequencers can also work with MIDI

data, audio samples, or other forms of digital information. There are two

primary types of sequencers:

• Step sequencers: Allow the introduction of musical

patterns or loops step-by-step.

• Linear sequencers: Record and arrange music along a

timeline, similar to a multitrack recording.

https://doi.org/10.1007/979-8-8688-0080-1_8#DOI

214

In music, a sampler is a device or software for recording, processing,

and playing audio samples.

The samples can be any sound, such as musical notes, spoken words,

environmental noises, or recorded audio. With samplers, the musician can

modify sound-altering parameters like pitch, duration, and timbre, and

then trigger them in sequences and loops.

In this project, I tried to make a customized sampler and sequencer

based on a Raspberry Pi, with some limitations and features that are

usually not present in this kind of device. See Figure 8-1.

8.1. Project Requirements and
General Approach

Considering the processing power of the Raspberry Pi, most of the project

has been developed with software. Of course, some peripherals must be

added to the system.

The Raspberry Pi 4B model is considerably fast. I have done some

preliminary tests, but using a previous model of this embedded Linux

platform did not perform as needed.

8.1.1. External Hardware

To make the system compact and usable in a real music production set, I

opted to work with the LCD touchscreen. Starting with the 4B model, the

Raspberry Pi has implemented a good digital audio output plug; the first

versions of the boards used a PWM audio generator, whose quality was not

sufficient for good sound quality.

Despite the good audio reproduction quality, the Raspberry Pi board

does not include an ADC (Analog to Digital) feature. This means that audio

sampling is not natively possible.

Chapter 8 a Sound Sampler with raSpberry pi

215

Figure 8-2. One of the USB audio boards I tested on the Raspberry Pi
when evaluating the project’s feasibility

To make this possible, I tried a series of different USB audio boards and

tested their responses for audio sampling and streaming; the reference

sampling frequency should be at least 48K. See Figure 8-2.

To test the reliability of the audio boards, I used a frequency generator

to send several audible-range signals (20-20.000Hz) to the board and

verified the sampled quality when running on the Raspberry Pi. See

Figure 8-3.

Chapter 8 a Sound Sampler with raSpberry pi

216

Figure 8-3. Using a frequency generator, I tested the response of the
audio board when connected to the Raspberry Pi, as well as with
recorded samples, with a dual-channel oscilloscope

The audio samples should be as clean as possible. I excluded the MP3

(compressed) format to work exclusively with waveform files (WAV) to

achieve the required quality.

Of course, the WAV files are considerably bigger than the widely

diffused MP3 ones, so I included a 180GB SSD disk for storage. The disk

is connected to the Raspberry Pi through one of the two USB 3 ports

available on the board. See Figure 8-4.

Chapter 8 a Sound Sampler with raSpberry pi

217

Figure 8-4. The small M-AUDIO MIDI USB keyboard connected to
the Raspberry Pi to play music

8.1.2. Features List

• Sample sounds at 48K of variable length, without

duration limits.

• Immediately associate the samples with a specific

sound note.

• Extend the sampled note to the entire scale if the other

positions are not yet occupied by a sample.

• Play samples were added manually without sampling.

Chapter 8 a Sound Sampler with raSpberry pi

218

• Record/stop sampling from the interface.

• Accept an external MIDI keyboard to play the samples.

Note as the midi protocol is based on the serial port, it is not

difficult to implement a standard midi-out port to the raspberry pi.

however, i decided not to implement this feature because of the wide

diffusion of the uSb-midi interface.

8.2. The Sampling Session

Acquiring audio WAV samples is not only a question of hardware; the

Raspberry Pi needs to be equipped with proper software.

8.2.1. Connecting the MIDI Keyboard and
Audio Card

As mentioned, I decided to constrain the MIDI features to the USB

MIDI connection. The audio card is connected through the USB in the

same way.

From the Raspberry Pi terminal, the following command lists all the

USB peripherals connected to the computer:

cat /proc/asound/cards

In this list, for example, device 1 is the MIDI USB keyboard and device

2 is the audio board:

0 [ALSA]: bcm2835_alsa - bcm2835 ALSA

 bcm2835 ALSA

Chapter 8 a Sound Sampler with raSpberry pi

219

 1 [K32]: USB-Audio - Keystation Mini 32

 Keystation Mini 32 Keystation Mini 32 at

usb-3f980000.usb-1.5, full speed

 2 [Device]: USB-Audio - USB Advanced Audio Device

 C-Media Electronics Inc. USB Advanced

Audio Device at usb-3f980000.usb-1.3,

full speed

In the current software version, the USB devices are hardcoded in the

program; it is not complex, and a significant improvement is needed to

make these parametric for better flexibility.

8.2.2. The Sampler Box

Sampler Box (https://www.samplerbox.org/) is a project developed by

Joseph Basquin. Released as open source and available on GitHub (this is

a fork on my repository: https://github.com/alicemirror/SamplerBox),

Sampler Box is essentially a MIDI player of preloaded samples based on

the Raspberry Pi, but with some simple modifications to acquire audio

samples, store them, and make them immediately playable.

The system is very fast and makes MIDI signals very responsive. This

depends on the way the sampling and MIDI events are processed. C

software is used to do this; luckily, it was possible to use this component in

the project without changing it.

The integration between the Linux C source and the Python

application was possible using Cython, which can compile a source and

create hooks to use the compiled object as a library imported from the

Python sources.

The modified and integrated Sampler Box is the audio core for

sampling and MIDI playing. After solving these two project bottlenecks, I

proceeded with the full design and GUI implementation.

Chapter 8 a Sound Sampler with raSpberry pi

https://www.samplerbox.org/
https://github.com/alicemirror/SamplerBox

220

8.3. Project GUI Design

Figures 8-5 and 8-6 show the design of the touchbutton grid and the

buttons, respectively.

Figure 8-5. The screen organization consists of a touchbutton grid.
I was inspired by the Novation Launchpad Mini MK3 (https://
novationmusic.com/products/launchpad-mini-mk3), designing the
buttons to fill the entire screen and adopting a color-coding scheme
according to the state and feature of the button

Chapter 8 a Sound Sampler with raSpberry pi

https://novationmusic.com/products/launchpad-mini-mk3
https://novationmusic.com/products/launchpad-mini-mk3

221

Figure 8-6. Screen capture showing how squared buttons can fill
the screen. Every state of the button will change color according to
the associated function at a certain moment (sampling, playing,
empty, etc.)

As a pianist knows the position of the notes on the keyboard to play

chords, it is not difficult to learn the color codes and note positions to

orient on the touchscreen with some practice.

After running some practical design tests, I calibrated the base size

of the buttons to fill the screen on a grid of 16 columns by 8 rows. This

subdivision is perfect, as it covers the entire MIDI set of 128 values (0-127).

Every row’s leftmost 12 buttons cover a full octave, while the four

rightmost buttons are dedicated to four commands applied to the same

row. The project’s current version assumes that the first left button of every

row corresponds to the C key (Do). This is a decision I made because I am

used to playing C-tuned instruments (guitar, harmonica, and key), but it is

possible to shift the first note assignment to a different tonality and change

the entire setup. See Figure 8-7.

Practicing with this system—very similar to many other MIDI

controllers—makes the user interface agile and flexible.

Chapter 8 a Sound Sampler with raSpberry pi

222

Figure 8-7. The 128-key assignment scheme on the screen, covering
the entire MIDI range from 0 to 127

8.4. Cython and Other Prerequisites

Before exploring the application sources, it is necessary to install some

software on the Raspberry Pi. If you are an expert user of the Linux

Raspbian distribution (the Debian version for the Raspberry Pi), you

can install the components and applications on your current Raspbian

Chapter 8 a Sound Sampler with raSpberry pi

223

setting. However, the following steps refer to a fresh, clean installation of

the Raspberry Pi desktop version, without the extra software installed like

Libre Office to save space on the microSD.

Note to work comfortably, i suggest using a 32- or 64-Gb microSd

card to install the operating system.

8.4.1. What Is Cython?

Cython is an optimizing static compiler for Python and for the extended

Cython programming language (based on Pyrex). It makes writing C

extensions for Python as easy as Python itself.

Cython gives you the combined power of Python and C to let you:

• Write Python code that calls back and forth from and to

C or C++ code natively at any point.

• Easily tune readable Python code into plain C

performance by adding static type declarations, also in

Python syntax.

• Use combined source code level debugging to find bugs

in your Python, Cython, and C code.

• Interact efficiently with large data sets, for example,

using multi-dimensional NumPy arrays.

• Quickly build your applications within the large,

mature, and widely used CPython ecosystem.

• Integrate natively with existing code and data from

legacy, low-level or high-performance libraries and

applications.

Chapter 8 a Sound Sampler with raSpberry pi

224

The Cython language is a superset of the Python language that

additionally supports calling C functions and declaring C types on

variables and class attributes. This allows the compiler to generate very

efficient C code from Cython code. The C code is generated once and

then compiles with all major C/C++ compilers in CPython 2.6, 2.7 (2.4+

with Cython 0.20.x) as well as 3.5 and all later versions. We regularly run

integration tests against all supported CPython versions and their latest

in-development branches to make sure that the generated code stays

widely compatible and well adapted to each version. PyPy support is work

in progress (on both sides) and is considered mostly usable since Cython

0.17. The latest PyPy version is always recommended.

All of this makes Cython the ideal language for wrapping external C

libraries, embedding CPython into existing applications, and for fast C

modules that speed up the execution of Python code.

(Source: https://cython.org/.)

 The Cython Programming Language

Part of the Cython Project, “Cython” is a programming language that

makes writing C extensions for Python. Cython gives Python a high-level,

object-oriented, functional, and dynamic programming.

Cython’s main feature is support for optional static type declarations.

The source code is translated into optimized C/C++ code and compiled as

Python extension modules.

This allows for very fast program execution and tight integration with

external C libraries while maintaining the high programmer productivity

for which the Python language is well known.

The full documentation of the Cython language can be found at

https://cython.readthedocs.io/en/latest/index.html.

Chapter 8 a Sound Sampler with raSpberry pi

https://cython.org/
https://cython.readthedocs.io/en/latest/index.html

225

8.4.2. Why You Should Use Cython

The sound sampler developed by Joesph Ernest for the Sampler Box

should work fast, acquiring variable-length WAV samples from the external

USB audio board.

For this reason, the repository contains the samplerbox_audio.pyx file;

this is the Cython language source that, when compiled, generates the

C/C++ code compiled as a Python extension module.

Note the repository does not include the compiled python module.

you should compile it after the installation of the components. the

Cython source will use the specific gcc+ compiler and libraries

present by default on the linux installation.

The Cython source code (see Listing 8-1) generates the Python

module. It is interesting to note that the numpy library is imported and will

be included in the C/C++ Python module. This code is limited to the bare

metal acquisition functions to keep it as fast and small as possible.

Listing 8-1. The Cython Source Code

import cython

import numpy

cimport numpy

def mixaudiobuffers(list playingsounds, list rmlist, int

frame_count, numpy.ndarray FADEOUT, int FADEOUTLENGTH, numpy.

ndarray SPEED):

 cdef int i, ii, k, l, N, length, looppos, fadeoutpos

 cdef float speed, newsz, pos, j

 cdef numpy.ndarray b = numpy.zeros(2 * frame_count, numpy.

float32) # output buffer

Chapter 8 a Sound Sampler with raSpberry pi

226

 cdef float* bb = <float *> (b.data) # and its pointer

 cdef numpy.ndarray z

 cdef short* zz

 cdef float* fadeout = <float *> (FADEOUT.data)

 for snd in playingsounds:

 pos = snd.pos

 fadeoutpos = snd.fadeoutpos

 looppos = snd.sound.loop

 length = snd.sound.nframes

 speed = SPEED[snd.note - snd.sound.midinote]

 newsz = frame_count * speed

 z = snd.sound.data

 zz = <short *> (z.data)

 N = frame_count

 if ((pos + frame_count * speed > length - 4) and

(looppos == -1)):

 rmlist.append(snd)

 N = <int> ((length - 4 - pos) / speed)

 if (snd.isfadeout):

 if (fadeoutpos > FADEOUTLENGTH):

 rmlist.append(snd)

 ii = 0

 for i in range(N):

 j = pos + ii * speed

 ii += 1

 k = <int> j

 if (k > length - 2):

 pos = looppos + 1

 snd.pos = pos

 ii = 0

Chapter 8 a Sound Sampler with raSpberry pi

227

 j = pos + ii * speed

 k = <int> j

 bb[2 * i] += (zz[2 * k] + (j - k) * (zz[2 * k +

2] - zz[2 * k])) * fadeout[fadeoutpos + i]

linear interpolation

 bb[2 * i + 1] += (zz[2 * k + 1] + (j - k) *

(zz[2 * k + 3] - zz[2 * k + 1])) *

fadeout[fadeoutpos + i]

 snd.fadeoutpos += i

 else:

 ii = 0

 for i in range(N):

 j = pos + ii * speed

 ii += 1

 k = <int> j

 if (k > length - 2):

 pos = looppos + 1

 snd.pos = pos

 ii = 0

 j = pos + ii * speed

 k = <int> j

 bb[2 * i] += zz[2 * k] + (j - k) * (zz[2 * k +

2] - zz[2 * k]) # linear interpolation

 bb[2 * i + 1] += zz[2 * k + 1] + (j - k) *

(zz[2 * k + 3] - zz[2 * k + 1])

 snd.pos += ii * speed

 return b

def binary24_to_int16(char *data, int length):

 cdef int i

 res = numpy.zeros(length, numpy.int16)

Chapter 8 a Sound Sampler with raSpberry pi

228

 b = <char *>((<numpy.ndarray>res).data)

 for i in range(length):

 b[2*i] = data[3*i+1]

 b[2*i+1] = data[3*i+2]

 return res

A small setup.py program shown in Listing 8-2 is provided in

the repository to compile the Cython sources. Based on my personal

experience, I added some comment details to avoid issues during this step.

Listing 8-2. The setup.py Program

#

Cytonize the samplerbox audio engine for Python 3

#

E.M., September 2020

#

Important note on compiling .pyx files with Python 3 on the

Raspbian

#

1. Install Cython with

$>pip3 install cython

2. Check that the installed version if 2.29 or higher, with

the command $>cython -V

If Cython was already installed with a previous

version, upgrade Cython for Python 3

to the last available version in the repository with

the command

$>pip3 install --upgrade cython

Check the version again.

3. Add the comment

cython: language_level=3

Chapter 8 a Sound Sampler with raSpberry pi

229

special setting in the comments on top of the

pyx source

This sets the language level of the compiler globally

for all the sources

If you are compiling multiple sources, and only some of

these are Python 3, instead,

you should use the settings for language level only for

those sources.

For more details read the Cython documentation:

https://cython.readthedocs.io/en/latest/src/userguide/

migrating_to_cy30.html?highlight=python%203

4. If you need to import the C libraries of numpy there is a

workaround that should

be applied to make the compilation work in the SPECIFIC

CASE OF RASPBERRY PI if during the compilation

you get an error like

libf77blas.so.3: cannot open shared object file: No

such file or directory

at the end of a series of compilation errors that

involves numpy.

As described in the Numpy troubleshooting documentation

https://numpy.org/devdocs/user/troubleshooting-

importerror.html

This is due to a missing library that should be

installed from the Raspbian repositories with

the command

$>sudo apt-get install libatlas-base-dev

This issue should be avoided also installing numpy with

the Raspbian if the version if recent. Try before

with Buster distro or next ones, with the command

$>pip3 uninstall numpy

$>sudo apt install python3-numpy

Chapter 8 a Sound Sampler with raSpberry pi

230

#

WARNING! Sometimes the numpy error does not appear if

compiling with setup.py. In this case, just try the manual

compilation from the Python console. The mentioned error at

the end of a list of errors will happen when adding

>>>import numpy

#

Happy Cython with Python (3)!

#

cython: language_level=3

from distutils.core import setup

from Cython.Build import cythonize

import numpy

setup(ext_modules = cythonize("samplerbox_audio.pyx"), include_

dirs=[numpy.get_include()])

After the Cython compilation, the output consists of two files, the C

source, and the so module, which will be imported into the Python source.

Note the .so module does not need to be installed like the other

python modules, as the application will use it. it is sufficient that it

resides on a path accessible by other sources.

8.4.3. The Graphic Library

The other indispensable component that should be present in the

Raspberry Pi installation is the TkInter graphic library. It is not natively

installed in the Python 3 setup and should be imported (https://docs.

python.org/3/library/tk.html).

Chapter 8 a Sound Sampler with raSpberry pi

https://docs.python.org/3/library/tk.html
https://docs.python.org/3/library/tk.html

231

This GUI for Python is based on the Tcl language and the original Tk

library for Linux. I decided to use this relatively unknown component

because the design only requires the creation of buttons. The library is

compact and small, and it is efficient for use on machines with limited

resources.

8.5. The WAV Samples Organization

Every 12-button row (an octave) is considered a bank. Every bank can be

defined with its own characteristics for playing in its corresponding JSON

file. These settings are applied to all the bank notes.

8.5.1. Banks Definition

volume can be set as a decimal number between 0.1 and 10. Setting high

volumes on some instruments can cause distortion.

The default position of the bank sound is assumed to be the central

octave 0, but transpose can change to a higher or lower octave.

The velocity 64 is the default playing MIDI level. This parameter can

be set between 1 and 127.

{

 "volume" : 1.0,

 "transpose" : 0,

 "velocity" : 64

}

An original feature of this build is that not all the notes in a bank need

to be present.

Chapter 8 a Sound Sampler with raSpberry pi

232

8.5.2. The JSON Parameters File

This is a main JSON configuration file that defines all the parameters

accessed by the application at boot.

The full contents of the gui.json configuration file are shown here.

The two samples and images values define the path where the samples are

stored and the images of the interface.

{

 "samples": "/media/pi/EXTERNAL/controlpanel/Samples/",

 "images": "/media/pi/EXTERNAL/controlpanel/images/",

The rows, columns, buttonimages, buttonsize, frame_padX,

frame_padY, and frame_border values define the interface element size.

These values are calibrated on the Raspberry Pi LCD touchscreen (800x600

resolution). The values can be changed if a different screen resolution

is used.

 "rows" : 8,

 "columns" : 16,

 "buttonImages" : 8,

 "buttonsize" : 44,

 "frame_padX" : 0,

 "frame_padY" : 0,

 "frame_border" : 0,

 "offButtonImage" : "bNull",

 "imageType" : ".png",

The audioDevice and midiDevice IDs should be defined according to

the USB device from the Linux OD.

 "audioDevice" : 2,

 "midiDevice" : "Keystation Mini 32 20:0",

 "maxPolyphony" : 80,

Chapter 8 a Sound Sampler with raSpberry pi

233

As mentioned, the note_names array defines the notes in the C major

scale (Do maj):

 "note_names" : ["c", "c#", "d", "d#", "e", "f", "f#", "g",

"g#", "a", "a#", "b"],

The recordSampleRate, recorchChunkSize, recordChannels,

recordDuration, and fadeoutLenght functions define the sampling

parameters. Note that recordDuration is limited by default to five seconds

(minimum duration), but the sample continues until the sampling button

is pressed.

 "recordSampleRate" : 44100,

 "recordChunkSize" : 4096,

 "recordChannels" : 1,

 "recordDuration" : 5,

 "fadeoutLength" : 30000

}

8.6. The Application

The application is defined in the panel.py source file. The main function

initializes the parameters and the structure, creates the user interface on

the screen, and then executes an infinite loop interrupt-driven to play,

acquire samples, and manage files. See Listing 8-3.

Listing 8-3. The Main Application

if __name__ == "__main__":

 '''

 Main application

 '''

 # Initialize the GUI according to the json parameters

 load_GUI_parameters()

Chapter 8 a Sound Sampler with raSpberry pi

234

 # Load the first samples bank (max 8) by default

 load_bank_IDs(0)

 # Create the GUI

 make_panel()

 # Show the first default bank settings

 refresh_bank_buttons()

 open_sound_device()

 preset = 0

 LoadSamples()

 debugMsg('midi ports ' + str(midi_in[0].ports))

 midi_in.append(rtmidi.MidiIn(midi_device.encode()))

 midi_in[0].callback = MidiCallback

 # midi_in[0].open_port(b'Keystation Mini 32 20:0')

 midi_in[0].open_port(midi_device.encode())

 previous = midi_in[0].ports

Note that the call to the mainloop() is a feature of the TkInter library:

 # Start the main loop application

 window.mainloop()

8.6.1. The Application Functions

This section describes only the most meaningful functions. The full

software sources and documentation are available in the chapter

repository.

The function in Listing 8-4 is called recursively to acquire the current

status of any bank ID.

Chapter 8 a Sound Sampler with raSpberry pi

235

Listing 8-4. The Load_bank_IDs() Function

def load_bank_IDs(bank):

 '''

 Load the notes status array for one of the eight

octaves of the

 selected bank.

 The note position in the array is set to 1 if the note

has a file

 in the corresponding bank folder. Samples wav file names

have the same

 name of the associated note.

 :param bank: The desired bank number

 '''

[. . .]

As shown in Listing 8-5, the JSON bank filename is built dynamically

based on the ID.

Listing 8-5. The JSON Bank Filename

 # Build the Json selected bank file name

 j_name = "bank" + str(bank) + ".json"

 # Set the current bank ID

 current_bank = bank

 debugMsg("Loading " + j_name)

 with open(j_name) as file:

 dictionary = json.load(file)

 # Load the notes flags for every octave.

 # There are max eight octaves and the notes are

Chapter 8 a Sound Sampler with raSpberry pi

236

 # listed in the traditional order c, c#, d, d#, e, f, f#,

a, a#, b

 # Every note that corresponds to a sample in the

current bank.

 # If the file exists, the note position in the array is set

to 1 else it is 0

The solution of creating an 8x12 matrix (eight arrays) makes it possible

to load empty or incomplete octave notes:

 octave1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave5 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave6 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 octave8 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 # Loop all the notes of every bank to see if the

corresponding file

 # exists. In this case the array position is set to 1

The simple file check of the dynamically created note name is used to

determine the flag to set (1 or 0) to the octave notes arrays:

 for j in range(12):

 # Create the full file name of the note for every bank

 # then if the file exists, set the corresponding flag

 # # in the octave array.

 if(os.path.isfile(get_note_file_name(0, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(0, j) + " file exists")

 octave1[j] = 1

Chapter 8 a Sound Sampler with raSpberry pi

237

 else:

 octave1[j] = 0

 if(os.path.isfile(get_note_file_name(1, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(1, j) + " file exists")

 octave2[j] = 1

 else:

 octave2[j] = 0

 if(os.path.isfile(get_note_file_name(2, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(2, j) + " file exists")

 octave3[j] = 1

 else:

 octave3[j] = 0

 if(os.path.isfile(get_note_file_name(3, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(3, j) + " file exists")

 octave4[j] = 1

 else:

 octave4[j] = 0

 if(os.path.isfile(get_note_file_name(4, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(4, j) + " file exists")

 octave5[j] = 1

 else:

 octave5[j] = 0

 if(os.path.isfile(get_note_file_name(5, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(5, j) + " file exists")

 octave6[j] = 1

Chapter 8 a Sound Sampler with raSpberry pi

238

 else:

 octave6[j] = 0

 if(os.path.isfile(get_note_file_name(6, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(6, j) + " file exists")

 octave7[j] = 1

 else:

 octave7[j] = 0

 if(os.path.isfile(get_note_file_name(7, j))):

 debugMsg("j " + str(j) + " bFname " + get_note_

file_name(7, j) + " file exists")

 octave8[j] = 1

 else:

 octave8[j] = 0

 Audio and MIDI Callback

As mentioned, the application is interrupt-driven. The user interface reacts

to the buttons, but audio sampling and MIDI playing generate an interrupt

intercepted by the respective functions.

The AudioCallback() function, shown in Listing 8-6, is associated

with the audio hardware—for example, when a MIDI message sends the

playnote feature. The parameters set in the gui.json configuration file

concerning the chunk size and sampling rate are set to an acceptable

default value. It is possible to increase these parameters if there is

sufficient memory and the processor speed can support it. Also the audio

board performance of the ADC/DAC should be verified to support it.

Chapter 8 a Sound Sampler with raSpberry pi

239

Listing 8-6. The AudioCallback() Function

def AudioCallback(outdata, frame_count, time_info, status):

 '''

 Callback associated to the audio hardware. It is

executed when

 a MIDI message sends the playnote features.

 The audio callback is based on the samplerbox_audio

library and

 can mix up to max_polyphony different audio buffers played

together.

 :param outdata:

 :param frame_count:

 :param time_info:

 :param status:

 '''

 global globavolume

 rmlist = []

 ps.playingsounds = ps.playingsounds[-max_polyphony:]

 b = samplerbox_audio.mixaudiobuffers(ps.playingsounds,

rmlist, frame_count, FADEOUT, FADEOUTLENGTH, SPEED)

 for e in rmlist:

 try:

 ps.playingsounds.remove(e)

 except:

 pass

 b *= globalvolume

 outdata[:] = b.reshape(outdata.shape)

Chapter 8 a Sound Sampler with raSpberry pi

240

The MidiCallback() function, shown in Listing 8-7, is called every

time a MIDI message is received when an external MIDI device is

connected through the USB MIDI interface.

Thanks to the interrupt on the MIDI interface, it is possible to play

multiple notes on the touchscreen and the USB MIDI keyboard at the

same time.

Listing 8-7. The MidiCallback() Function

def MidiCallback(message, time_stamp):

 '''

 Process the MIDI messages and plays the notes.

 :param message: The MIDI message packet

 :param time_stamp: The timestamp for correctly queue the

messages

 '''

 global playingnotes, sustain, sustainplayingnotes

 global preset, globaltranspose, globalvolume

 global samples

 # Decode the MIDI message in its components

 messagetype = message[0] >> 4

 messagechannel = (message[0] & 15) + 1

 # Check if this MIDI message includes a note

 note = message[1] if len(message) > 1 else None

 midinote = note

 # Check if this MIDI message includes a specification of

the velocity

 velocity = message[2] if len(message) > 2 else None

 # Assumes the message type (9) note on with velocity 0 is

 # a message type (8) note off

 if messagetype == 9 and velocity == 0:

 messagetype = 8

Chapter 8 a Sound Sampler with raSpberry pi

241

 # If is a message type (9) note on apply eventual octave

transposition and play

 # the note

 if messagetype == 9:

 debugMsg("messagetype is 9 (note on) globaltranspose "

+ str(globaltranspose))

 midinote += globaltranspose

 try:

 debugMsg("playing notes" + str(samples[midinote,

velocity]))

 playingnotes.setdefault(midinote, []).append

(samples[midinote, velocity].play(midinote))

 except:

 debugMsg("Exception, pass")

 pass

 # Process the message type (8) note off applyin the sustain

if it is active

 elif messagetype == 8: # Note off

 debugMsg("messagetype is 8 (note off) globaltranspose "

+ str(globaltranspose))

 midinote += globaltranspose

 if midinote in playingnotes:

 for n in playingnotes[midinote]:

 if sustain:

 sustainplayingnotes.append(n)

 else:

 n.fadeout(50)

 # Empty the played notes array

 playingnotes[midinote] = []

Chapter 8 a Sound Sampler with raSpberry pi

242

 # Process the message type (12) program change and load the

 # new group of samples.

 elif messagetype == 12: # Program change

 debugMsg('Program change ' + str(note))

 preset = note

 LoadSamples()

 # Process the message type (11) for pedal off (associated

to the sustain)

 # With note 64 and velocity < 64 (typical 0)

 elif (messagetype == 11) and (note == 64) and (velocity

< 64): # sustain pedal off

 for n in sustainplayingnotes:

 n.fadeout(50)

 sustainplayingnotes = []

 sustain = False

 # Process the message type (11) for pedal on (associated to

the sustain)

 # With note 64 and velocity > 64 (typical 127)

 elif (messagetype == 11) and (note == 64) and (velocity

>= 64): # sustain pedal on

 sustain = True

Chapter 8 a Sound Sampler with raSpberry pi

PART V

The Dome with the

Sandcastle

“How can a sandcastle be so magnificent?” Ray thought as he followed the

sign out of the Music Garden. In the meantime, Sonya approached from

his right.

His questioning expression was so clear that she answered without

him asking.

“You will be fascinated and surprised, Ray,” Sonya said with her

warm smile.

“I am really curious!” Ray replied. “Come! Sonya took his hand, pulling

him in a rush. Ray responded to her grip, and within a few steps, they ran

hand in hand toward the dome. The structure was different from anything

Ray had imagined.

The last time Ray played a sport was years ago, and now his heartbeat

was accelerated; his breath came in short, quick gasps from the effort. After

the first look at the dome, his sight met Sonya’s eyes; he could only smile at

her proud expression.

Ray realized that, until that moment, he had not considered how

things between them had changed in so little time. It was evident that, for

some reason, they instantly clicked. Their mutual passion for technology

contributed to creating a meaningful bond. Ray appreciated Sonya’s calm

244

demeanor and her knowledge of all the details of this strange place. His

connection with Sonya gave him a sense of reassurance as he embarked on

this unexpected adventure with her constant presence beside him.

The dome was a circular structure, towering at least 30 meters high.

Its interior was bathed in a surreal glow from the lights that danced and

shimmered on the white sand below. The sandcastle in the center was

a marvel; its spires and turrets intricately detailed, looking almost too

delicate to exist. Each grain of sand seemed meticulously placed, and the

way the light played off its surfaces gave it an ethereal effect. It was a sight

that made Ray feel as if he had stepped into a dream or something magical.

The complexity of its architecture would take hours to understand all

its secrets.

Sonya, a bit smaller than Ray, sweetly put her head against his right

shoulder, enjoying Ray’s surprise and admiration of what was in front of

his eyes. She leaned her head gently against Ray’s shoulder, a small smile

on her lips. Yet, a shadow of worry crossed her mind. She had seen the

sandcastle many times, but sharing it with Ray made her realize how much

she cared about his opinion. Her voice was soft when she began to speak,

masking a more profound, unspoken fear that this moment of wonder

might be fleeting.

“Ray, I...” Sonya said. Ray smiled at her. His breath was regular now,

but his heart was beating quickly.

“Sonya?” Suddenly, her tone of voice changed, as if she were trying to

mask her feelings.

“Nothing important,” she replied. “Look, Ray, it is magnificent, isn’t it?”

Ray smiled again. “It’s the most incredible architecture I ever saw.” He

noticed a shift in Sonya’s expression but ignored this detail. Regardless

of his intimate appreciation for her cautious approach, which gave him a

sense of well-being, he was overwhelmed at the moment.

“It’s incredible!” Ray remarked, admiring the colossal structure.

PART V THE DOME WITH THE SANDCASTLE

245

“The sandcastle is exceptionally delicate,” Sonya continued. “The sand

is maintained constantly, and the castle sides, the weakest top parts, are

continuously adjusted,” she explained.

“I see,” Ray answered, interested in the explanation and focused on the

sandcastle. Their hands mingled together.

He glanced at Sonya, and his engineering instincts tingled with unease.

The castle looked delicate, and the thought of it collapsing under the

slightest disturbance gnawed at him. Sonya’s explanation about the castle’s

sensitivity to vibrations only heightened his anxiety. He couldn’t shake

the feeling that something could go wrong, even as he tried to focus on the

beauty before him.

“Look, Ray. Do you see those small flying robots around the top of the

castle?” Sonya asked, pointing her head to the upper part of the delicate

building. They move continuously around, spraying a mixture of water

and glue to keep the sandcastle stable. Ray nodded, holding her hand as if

holding something precious.

“It seems it could fall at any moment,” he said.

“The sandcastle’s weak point is vibrations. This is the reason it is built

over a thick bed of sand,” agreed Sonya.

Ray was fascinated and very interested in the technical details

provided by Sonya. Ray’s engineering side was curious about the

technology behind this incredible building. A small red light flashed on

the top of the low wooden railing that bordered the perimeter. Ray noted it

because Sonya unlocked a telephone handset from the bottom to answer

what appeared to be a phone call.

Ray can’t hide his curiosity as Sonya answered, “Yes?” Then her

expression changed to a shine of happiness. After a few seconds, she

ended the call and put the handset on the rail again.

“As I told you,” she commented, “A ring bell here should be avoided; it

is dangerous for the structure,” she said, indicating the red light.

“I see,” Ray answered, curious about the phone call.

PART V THE DOME WITH THE SANDCASTLE

246

“It resembles a telephone, but you see, it is also a robot. It is an efficient

way to communicate news,” she continued. “When a certain number of us

are focused on a topic, I see if something related to it happens.”

“I can imagine it was something related to the sandcastle…” Ray

guessed to avoid asking her an explicit question.

“Oh, Ray, sorry! I don’t know where my brain is these days,” she said.

“Someone has just seen a young boy on the opposite side of the dome. I

imagine it might be your son.”

“Tommy!” Ray whispered.

 Tommy

“Dad!” A voice yelled on the other side of the wide circumference of the

dome. “Tommy!” Replied Ray.

Finding Tommy in this strange and wondrous place felt like a miracle.

Ray’s heart swelled with relief and pride as he heard his son’s voice calling

out to him.

“Let him come to us,” suggested Sonya before he moved a single step.

“It is more secure if he walks around the rail,” she concluded.

“Follow the perimeter. I am here!,” Ray yelled to his son, indicating

the direction with large signs of his arms. Animated by uncontainable

happiness, Ray looked Sonya in her eyes, and then they held each other

tightly in a deep hug, their joy finally overflowing in finding Tommy. Maybe

it was the enthusiasm of the situation, but Ray enjoyed the sweetness of

Sonya, her body near to his heart, his arms around her shoulders.

Tommy moved a few steps around the dome’s perimeter, fenced off by

the wooden rail. Unfortunately, his enthusiasm for meeting his father as

soon as possible and his scientific and pragmatic education made him take

the shorter path.

PART V THE DOME WITH THE SANDCASTLE

247

Ray and Sonya widened their eyes, seeing Tommy jumping over the rail

to shorten his distance and running through the sand in their direction.

Tommy ran effortlessly quickly, so telling him to step back was too late.

“Oh no!” Ray exclaimed. “Oh, my God!” said Sonya.

Tommy was about 20 meters from them when everything around

started rumbling. A spectacular and disastrous domino effect started.

First, the highest pinnacles of the sandcastle became powder clouds in

a matter of seconds. The maintenance robots flew away just before being

hit by the castle, which started an unstoppable self-destruction process.

As more sand fell and the sandcastle shape became more undefined, a

growing dust cloud progressively saturated the entire dome area.

Ray, Sonya, and Tommy remained immobile, unable to move a

single muscle.

The catastrophic spectacle lasted almost five endless minutes. Then,

the rumble suddenly stopped. It took another 15 minutes before the dust

diminished, making it possible to see.

They looked like ghosts, covered in a fine white sand. In the distance,

an alarm bell rang for another couple of minutes. Then, what remained

was only dust and silence.

“Ray...,” said Sonya. Ray was almost sure he saw tears on her cheek,

maybe due to the dust, or he imagined it because of her voice, a tone

he was not used to. The colored lights now lit the dome with white,

bright light.

Tommy was shocked. He was still standing on the sand, his face

inexpressive. He looked like he might start to cry at any moment.

A piece of the dome rail near a cabin, perhaps the control room,

silently went down. A couple of men dressed in uniforms similar to the

doorman of the “Music Garden” started crossing the dome in the direction

of Tommy, walking with a martial step.

Sonya took the telephone headset from under the rail.

“There is another headset near you,” she said, inviting Ray to take it. He

was still too astonished to manifest any reaction. He obeyed.

PART V THE DOME WITH THE SANDCASTLE

248

As the two men reached Tommy, they took him under their arms.

“You are officially accused of the deliberate destruction of the

sandcastle, an invaluable opera designed and built by the creator of BDTH

6159,” they told Tommy in a solemn tone. Ray and Sonya heard this in their

headsets.

“You will be processed and eventually condemned for this crime.”

As they finished, their metallic voices stopped with a “click,” and they

pulled Tommy toward the cabin. Sonya became pale.

“Hey!” Ray screamed. “It’s a mistake! He can’t be guilty!” Ray was

yelling at Tommy and the two, who ignored him completely.

In the meantime, someone put a hand on his shoulder.

“You are officially accused of participating in the deliberate destruction

of the sandcastle, an invaluable opera designed and built by the creator

of BDTH 6159. You will be processed and eventually condemned for

this crime.”

Speechless, Ray looked at Sonya dumbfounded. “Follow them, Ray.

Meanwhile, I will try to discover what will happen. I will reach you as soon

as possible, dear,” said Sonya.

Before Ray could reply, the two men moved, accompanying him in the

same direction where Tommy had gone.

PART V THE DOME WITH THE SANDCASTLE

249© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_9

CHAPTER 9

The Sand Machine

Part 1

Figure 9-1. A suggestive view of an image created with the
Sand Machine

https://doi.org/10.1007/979-8-8688-0080-1_9#DOI

250

A mandala is a geometric configuration of symbols. In various
spiritual traditions, mandalas may focus the attention of
practitioners and serve as a spiritual guidance tool for estab-
lishing a sacred space. They aid in meditation and trance
induction. In the Eastern religions of Hinduism, Buddhism,
Jainism, and Shinto, mandalas are used as maps representing
deities or paradises. (Source: Wikipedia)

9.1. The Idea

Inspired by the previous episode of Ray Badmington and his son, I decided

that creating a mandala machine was the best way to make it real. Sand

Machine was the project’s codename.

Digging deeper into the structure of mandalas (see Figure 9-1),

I discovered that they can be easily re-created as a recursive design

generated by complex mathematical functions. A suitable classification

of the traditional mandalas and their geometry can be found in the article

“Sacred Geometry Mandala Art” by Jonathan Quintin (http://www.

isibrno.cz/~gott/mandalas.htm).

The first limit I set up was creating a monochromatic mandala design

due to the practical realization I had in mind. According to what the

traditional mandala represents, the idea is to draw the design variation

over time—a continuously changing design following mathematical rules

that can be parametrized to create new designs every loop.

The best representation of time passing is the sand in an hourglass;

under a conceptual aspect, the Sand Machine can be considered a

machine tracking time on the sand as a mesmerizing hourglass. See

Figure 9-2.

CHAPTER 9 THE SAND MACHINE PART 1

http://www.isibrno.cz/~gott/mandalas.htm
http://www.isibrno.cz/~gott/mandalas.htm

251

Figure 9-2. A perspective view of an Archimedean spiral drawn by
the Sand Machine

9.1.1. Mathematics

Implementing the mathematic algorithms for this project, I fixed some

limits to constrain the wide range of available possibilities to draw a

mandala figure with parametric equations. Therefore, I decided to base the

drawing algorithms on the cycloid functions family. See Figure 9-3.

CHAPTER 9 THE SAND MACHINE PART 1

252

Figure 9-3. Different kinds of cycloids changing the control
parameters of the rotation. Credits: Licensed under the Creative
Commons Attribution-Share Alike 3.0, https://commons.
wikimedia.org/wiki/File:Cycloids.svg

A cycloid is a curve generated by a point on a circle rotating along a

line. It is possible to generate a quantity of different curves by changing

parameters like the line’s distance from the circle’s center and radius.

For a complete mathematical description of cycloids, see Wikipedia:

https://en.wikipedia.org/wiki/Cycloid.

The simplest cycloid is generated by a circle of radius r rotating over

the x-axis on the positive side so that all the y-values are positive; the

following two trigonometrical functions calculate every x-y coordinate:

x r t sin sin t= −()

y r cos cos t= −()1

CHAPTER 9 THE SAND MACHINE PART 1

https://commons.wikimedia.org/wiki/File:Cycloids.svg
https://commons.wikimedia.org/wiki/File:Cycloids.svg
https://en.wikipedia.org/wiki/Cycloid

253

Cycloids can be classified into the following groups according to the

position of the rotating point, the radius, and so on:

• Trochoid: The rotating point is inside (curtate) or

outside (prolate) the circle.

• Hypocycloid: The circle rotates inside another circle

instead of a straight line.

• Epicycloid: The circle rotates outside another circle

instead of a straight line.

• Hypotrochoid: The drawing point is not on the rotating

circle’s edge but inside of it.

• Epitrochoid: The drawing point is not on the edge of

the rotating circle, but is outside.

In this project, I am interested in drawing hypocycloids according to

the design of the machine.

 Why Cycloids?

The Sand Machine should “draw” a mandala shape on sand without

interruption, like a plotter that can’t pull up the pen after a recursive

drawing has started.

According to this limitation, this kind of curve is perfect for the

project’s scope without limiting the infinite number of possible drawing

variations. A good explanation (with animations) of the cycloids’ equations

and their cartesian conversion can be found on the Wolfram MathWorld

site (https://mathworld.wolfram.com/Cycloid.html).

CHAPTER 9 THE SAND MACHINE PART 1

https://mathworld.wolfram.com/Cycloid.html

254

 Coordinate Representation

There is a last important detail I had to take care of: the coordinate’s

representation of the curves. The cycloid formula is defined in a

trigonometrical format.

At the same time, the final project should be able to draw (on sand) a

curve using cartesian coordinates (a series of x-y pairs for every point of

the curve). The coordinates conversion is the most complex mathematical

concern and I will describe it better in the chapter dedicated to the

software.

9.2. Mechanics

The mechanical solution for this project should answer the following

question:

How can I draw on the sand with a tool that seems to move
autonomously?

I figured out several possibilities then. According to what was available

in my lab, the concept focused on two different aspects:

• Using an iron ball moved by a magnet. This solution

can do the job without any visible control, while the

iron ball also has an excellent aesthetic impact while

driving on the sand surface.

• Moving the ball following the path using an iron ball.

A powerful magnet is the choice! See Figure 9-4.

CHAPTER 9 THE SAND MACHINE PART 1

255

Figure 9-4. The bare structure of an old low-power laser engraver is
the ideal tool to recycle to move a magnet on a cartesian plane

In my case, I adopted this solution because a simple structure was

already available. Recycling, with some modifications, a homemade laser

engraver resulted in the perfect mechanism to move the magnet along

the cartesian axes. Indeed, any plotter-like structure can be used for the

same task.

9.2.1. The Sand

Before starting this making adventure, I also checked the availability of

some calibrated sand types for use as a nonpersistent drawing surface.

I have always been fascinated by the idea that visual art can change

over time; from this perspective, drawing on sand is one of the best

representations of this concept.

CHAPTER 9 THE SAND MACHINE PART 1

256

One of the most exciting aspects of mandala geometry is the use of

colors; unfortunately, coloring is impossible, so I compensated for this

aspect with the machine I had in mind. I also considered adding some

color lighting effects to give the project a magical touch.

The type of sand was a challenging choice. The first try was to buy

decorative white sand 1mm in diameter. However, this sand was not

regular. This kind of sand—easy to find on Amazon.com—is perfect for

decorative and model makers’ purposes and is obtained by breaking silica

into fine parts. The result is an irregular sand that, when moved by a ball

rotating on the surface, produces a lot of fine dust deposing on the internal

transparent cover of the Sand Machine.

The solution came from a very different product: the waterjet cutter

machine, calibrated for spherical sand and a high-power jet of water to

cut materials, including hard metal (see Figure 9-5). According to the

experiments, this sand produced the best performance with minimal dust

production.

CHAPTER 9 THE SAND MACHINE PART 1

257

Figure 9-5. The sand used by the waterjet cutter is produced in a
spherical shape of 1mm diameter. This artificial sand has the best
performance to make the Sand Machine

CHAPTER 9 THE SAND MACHINE PART 1

258

9.3. The Design

Figure 9-6. The first draft design of the Sand Machine

When making a project from scratch, including a structure like this

machine, choosing the suitable building materials is an important aspect

that can affect all the next steps.

This is why, before starting to make the project—the design first—I

always try to focus on all the key points and issues to have a clear idea of

the result. See Figure 9-6. Indeed, as the project is not a copy of another

one already documented, I know the final result will be subject to

modifications, changes, and adaptations as I proceed to make it.

CHAPTER 9 THE SAND MACHINE PART 1

259

9.3.1. From Draft to Components

According to the draft, two different boxes should be created: the base

squared box that will host the moving X-Y coordinates—you can assume it

is a significantly simplified CNC—and the top box exposing the mandala

sand show.

The structure does not have to be particularly strong, as no mechanical

stress is applied to the two boxes. I chose to make the structure using

3mm thick plywood, which is cheap and easy to laser-cut. The parts that

should be instead will be laser-cut from a sheet of transparent acrylic, also

3mm thick.

Using an algorithm based on cycloids, the drawing field will be a round

dome, so the top side was drafted with a cylindrical shape. Keeping this

form factor but considering the difficulty of making a round-shaped box,

I adopted a compromise—a regular polygon, which will definitely be an

octagon. It was perfect for hosting the sand inside. See Figure 9-7.

Figure 9-7. These are the components of the octagonal box where the
Sand Machine will draw the mandalas

CHAPTER 9 THE SAND MACHINE PART 1

260

Thanks to this compromise, I saved a lot of time using the design tools

offered for free by the Makercase portal (https://en.makercase.com/).

From this site, it is possible to design almost any kind of box, indicating

the characteristics of the material and how the design components will

be joined to create a wide range of containers. All the parts, generated

online in seconds, can be exported in SVG format for easy editing with the

Inkscape open source application or sent directly to the laser cutter.

While the top box was easy to draw without any modifications from the

original file generated by the Makercase web application, the design of the

bottom box required further changes. See Figure 9-8.

Figure 9-8. The components of the bottom box of the Sand Machine,
ready for laser cutting after being edited with Inkscape

CHAPTER 9 THE SAND MACHINE PART 1

https://en.makercase.com/

261

As shown in Figure 9-8, the small series of circles are not part of

the box; they have been laser-cut from an acrylic sheet 4mm thick and

screwed together to create the support for the magnet that will move the

iron ball on the top side of the machine. See Figure 9-9.

Note The dimensions of the two boxes depend on two factors. The

first is the physical dimension of the axis movement structure, which

should be considered the area occupied when the position of the tool

is at its maximum extension. The top box size, instead, depends on

the effective area covered by the axis movement. For this reason, the

dimensions vary depending on the kind of tools you decide to use.

Figure 9-9. A detail of some components after laser-cutting, ready for
assembly

CHAPTER 9 THE SAND MACHINE PART 1

263© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_10

CHAPTER 10

The Sand Machine

Part 2

Figure 10-1. The Sand Machine top box was already painted during
the final assembly step. Note to the left the first decorative sand used
for the first test, which was then replaced with the waterjet calibrated
spherical sand

https://doi.org/10.1007/979-8-8688-0080-1_10#DOI

264

10.1. The Top Box

Considering some significant limitations, it was possible to simplify the

material cutting using a modular building (see Figure 10-1). By adopting

a magnet to move the iron sphere to draw on the sand, the bottom side of

the box should be relatively thin. After several experiments, I found the

most reliable compromise: an iron ball with a 10mm diameter can move

easily over a few millimeters of sand, supported by the bottom surface

made with plywood that’s 3mm thick. See Figure 10-2.

Figure 10-2. The iron ball's asset inside the octagonal box (the top
box) and the magnet. When the magnet works, it is separated from
the iron ball only by the 3mm plywood base and the sand

10.1.1. The Octagonal Dome

The graphic structure of mandalas consists of a recursive curve within

a circular design. Therefore, the sand container must respect this

characteristic. Indeed, building a circular dome required a different choice

of materials and a more complex structure; for this reason, I approximated

the sand dome (the top box) to a regular polygon.

Chapter 10 the Sand MaChine part 2

265

Of course, it is possible to increase the number of sides, for example,

to 12 or 16. In this case, the number of components increases, and the

assembly process becomes more complex. The decision on the number of

sides is the maker’s. Regardless of the shape of the box, the action will be

inside a circular area, constrained by the maximum extension of the CNC

structure that moves the magnet.

 Assembling the Sand Dome

Figure 10-3. Top view of the sand dome. The corners corresponding
to the side junctions are glued together, while the top tooth is used to
keep the transparent cover in place.

After preassembling the box with paper adhesive tape to keep the

pieces in place, I glued it along the internal and external borders with

vinylic glue. See Figure 10-3.

Chapter 10 the Sand MaChine part 2

266

Tip the glue along the borders—especially on the internal side of

the box—has a double function: it keeps the components together

and impermeabilizes the container to avoid dispersion of the sand.

Figure 10-4. When the assembly of the sand dome is completed, It is
essential to check that all the components are filled with glue to avoid
sand and dust getting outside while the Sand Machine is working

Note Using the prototype for a considerable time, i noted that the

waterjet sand also generates some dust due to the attrition of the iron

ball on the sand. if the box is sealed, the Sand Machine remains clean

(see Figure 10-4). it is strongly recommended to empty the sand and

replace it after extended usage, about every 15-20 hours.

Chapter 10 the Sand MaChine part 2

267

 Assembling the Lighting

To add lighting to the sand drawing scenario, I opted for a set of Neopixel

LED arrays. A comprehensive guide on Neopixel LED arrays can be

found on the Adafruit site at https://learn.adafruit.com/adafruit-

neopixel-uberguide.

The Neopixel library works fine on the most basic versions of Arduino

UNO R3 (https://docs.arduino.cc/hardware/uno-rev3) and Arduino

Nano (https://docs.arduino.cc/hardware/nano). Basically, the

Neopixel LED arrays are special sets of RGB LEDs—there are many kinds

available with different designs and a variable number of LEDs, up to

128—where every unit is addressed independently, setting the color. This

enables a wide range of lighting effects, which is the reason these devices

are found in hundreds of applications.

The limitation—especially with low processor power

microcontrollers—is that the board cannot be used for other kinds of

intensive processing and get good performance. This limitation makes

it impossible to implement the lighting feature together with the board,

which is also based on Arduino. For this reason, I implemented the lighting

features of the Sand Machine using a dedicated Arduino UNO R3 board.

Note the neopixel arrays are controlled by varying the frequency

of a single pin. as they are individually addressable, single arrays

can be chained together. to make them work as a single array, it is

sufficient to configure the neopixel library on the arduino sketch,

setting the total number of Leds from the resulting chained arrays.

See Figure 10-5.

Chapter 10 the Sand MaChine part 2

https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://docs.arduino.cc/hardware/uno-rev3
https://docs.arduino.cc/hardware/nano

268

Figure 10-5. The preassembled set of eight arrays of eight Neopixel
LEDs I chained. Every group of eight LEDs is positioned on one of the
eight sides of the box to light the whole sand dome

The lighting configuration of the Sand Machine uses 64 Neopixel

LEDs. Due to the high frequency needed to control the integrated circuits

that drive every LED, with a large number of LEDs, it is necessary to

add a 1000uF capacitor as near as possible to the power source of the

Neopixel array.

Caution the power supply pin from the arduino board has a limit

of about 200ma. Suppose the number of Leds in the neopixel array

increases over 64 units. in that case, providing a separate power

source to the array is necessary instead of using the microcontroller's

power pin.

Chapter 10 the Sand MaChine part 2

269

In most the cases, it is an excellent practice to create electronics,

circuits, and testing assemblies on the bench before installing them in the

prototype. Unfortunately, I could not do that in this case. The components

of the Sand Machine need to be assembled inside the structure to test the

result continuously. Without the same prototype structure, the electronics

and mechanics can’t be tested. See Figure 10-6.

Figure 10-6. A preassembled Neopixel array connected to the
Arduino UNO R3 shows a flat color test

After soldering the eight Neopixel arrays at a proper distance, I added

a black heat shrinkable sheath to protect and hide the wiring connecting

the eight chained arrays. The preassembled cable should be glued in place

after painting the sand dome.

Chapter 10 the Sand MaChine part 2

270

 Painting the Sand Dome

Figure 10-7. Detail of the interiors of the sand dome. The chained
Neopixel arrays are distributed on the top of every side of the box,
while the three wires (power and control signal) are connected to the
Arduino UNO R3 through the bottom of the box

For the external painting, I chose colors according to my taste. It does not

matter which colors you choose, but for the internal side of the box—where

the show should happen—I painted matte black to maximize the lighting

effect and the reflections of the sand and the iron ball. See Figure 10-7.

When the sand dome is closed, the lighting effect is very interesting.

After being painted, the Neopixel strips were glued in position. For

better wiring, I used a breadboard Arduino UNO shield, but no special

circuit is needed.

Chapter 10 the Sand MaChine part 2

271

10.2. The Neopixel LED Controller

The software of the dedicated Arduino UNO R3 is based on the Neopixel

library for Arduino, developed by Adafruit. The library has reached version

1.11, and the Arduino official documentation is available on the Arduino

site (https://www.arduino.cc/reference/en/libraries/adafruit-

neopixel/). The library repository, instead, is available as open source on

GitHub (https://github.com/adafruit/Adafruit_NeoPixel).

10.2.1. The Arduino Software

As mentioned, to build a neat project, I left the CNC firmware untouched

and running on an Arduino Nano—demanding the lighting effects to

a dedicated Arduino board. The sketch can work on both versions of

microcontrollers—Arduino UNO and Nano. Development and testing were

completed on boards based on the AVR 328p. See Listing 10-1.

Note in order to reduce the neopixel burnout risk, add 1000uF

capacitor across pixel power leads, add 300-500Ohm resistor on the

first pixel's data input, and minimize the distance between arduino

and the first pixel. avoid connecting to a live circuit. if you must,

connect to Gnd first.

Listing 10-1. The Sketch’s First Part (Mandatory) Includes the

Adafruit Library and the Definition of the Settings

#include <Adafruit_NeoPixel.h>

#ifdef __AVR__

 #include <avr/power.h>

#endif

Chapter 10 the Sand MaChine part 2

https://www.arduino.cc/reference/en/libraries/adafruit-neopixel/
https://www.arduino.cc/reference/en/libraries/adafruit-neopixel/
https://github.com/adafruit/Adafruit_NeoPixel

272

//! GPIO Pin used to generate the Neopixel pulses

#define NEOPIXEL_PIN 6

//! Number of Neopixel LEDs in the strip

#define NEOPIXEL_LEDS 64

Adafruit_NeoPixel strip = Adafruit_NeoPixel(NEOPIXEL_LEDS,

NEOPIXEL_PIN, NEO_GRB + NEO_KHZ800);

The Adafruit_Neopixel library should be instantiated by the class

constructor passing three parameters: the number of LEDs (total), the pin

number connected to the Arduino board, and one of the settings available

from the library. These settings depend on the kind of Neopixel model that

is used in the implementation.

The current supported models are listed here:

• NEO_KHZ800: 800 KHz bitstream (most Neopixel

products w/WS2812 LEDs)

• NEO_KHZ400: 400 KHz (classic v1, not v2, FLORA pixels,

WS2811 drivers)

• NEO_GRB: Pixels are wired for GRB bitstream (most

Neopixel products)

• NEO_RGB: Pixels are wired for RGB bitstream (v1 FLORA

pixels, not v2)

• NEO_RGBW: Pixels are wired for RGBW bitstream

(Neopixel RGBW products)

More information about the Neopixel supported hardware can

be found on the Adafruit website at https://learn.adafruit.com/

adafruit-neopixel-uberguide?view=all.

Listing 10-2 shows the simple setup() function of the sketch. Here,

the Arduino is dedicated to the control of the lighting effects, and the

only required initialization is a call to the library instance, setting all the

LEDs to off.

Chapter 10 the Sand MaChine part 2

https://learn.adafruit.com/adafruit-neopixel-uberguide?view=all
https://learn.adafruit.com/adafruit-neopixel-uberguide?view=all

273

Listing 10-2. Simple setup() Function of the Sketch

//! Startup and initialization

void setup() {

 strip.begin();

 strip.show(); // Initialize all pixels to 'off'

}

To simplify the management of the colors, after a series of experiments,

I defined a series of constants that determine the selected colors to make it

easier to select through their symbolic names. See Listing 10-3.

Listing 10-3. Set of Predefined Colors

// Predefined colors

#define PINK strip.Color(255, 64, 64)

#define WHITE strip.Color(255, 255, 255)

#define FIRE1 strip.Color(255, 64, 0)

#define FIRE2 strip.Color(255, 96, 0)

#define FIRE3 strip.Color(255, 128, 0)

#define FIRE4 strip.Color(255, 96, 32)

#define FIRE5 strip.Color(255, 32, 64)

#define FIRE6 strip.Color(255, 32, 96)

#define BLUE1 strip.Color(0, 0, 255)

#define BLUE2 strip.Color(0, 32, 255)

#define BLUE3 strip.Color(0, 64, 255)

#define BLUE4 strip.Color(0, 96, 255)

#define PURPLE1 strip.Color(96, 16, 255)

#define PURPLE2 strip.Color(96, 16, 128)

#define PURPLE3 strip.Color(96, 16, 96)

#define PURPLE4 strip.Color(96, 16, 64)

Chapter 10 the Sand MaChine part 2

274

The main loop() function is simplified as well. The hard job is put in

charge of the two running functions—rainbow and rainbowCycle. See

Listing 10-4.

Listing 10-4. The rainbow and rainbowCycle Functions

//! Main loop

void loop() {

 rainbow(10);

 rainbowCycle(10);

}

This approach to the sketch code architecture makes the development,

debugging, and parametrization of the light effect functions easy.

After the loop() function, I added a series of APIs to generate many

different light cycling effects. By using different calls in a different order, it

is possible to change the program behavior with no effort. See Listings 10-5

through 10-10.

Listing 10-5. Executes a Specific Command Flashing the White

Light for a Predefined Time

void cmdFlash() {

 colorFlash(BLUE1, 1000);

}

Listing 10-6. Fills the Dots One After the Other with a Color

void colorWipe(uint32_t c, uint8_t wait) {

 for(uint16_t i=0; i<strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 strip.show();

Chapter 10 the Sand MaChine part 2

275

 delay(wait);

 }

}

Listing 10-7. Fills the LEDs One After the Other with a Color, Then

Sets Them Off in the Same Sequence

void colorWipeOnOff(uint32_t c, uint8_t wait) {

 // Pixels on

 for(uint16_t i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 strip.show();

 delay(wait);

 }

 // Pixels off

 for(uint16_t i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, 0x00);

 strip.show();

 delay(wait);

 }

}

Listing 10-8. Flashes a Specific Color for a Number of Milliseconds

void colorFlash(uint32_t c, uint8_t wait) {

 setColor(c);

 delay(wait);

 setColor(0);

}

Chapter 10 the Sand MaChine part 2

276

Listing 10-9. Sets All the Strip LEDs to the Desired Color

void setColor(uint32_t c) {

 uint16_t i;

 for(i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, c);

 }

 strip.show();

}

Listing 10-10. Shows a Rainbow with All the Color Configuration

and a Progressive Fill at the Desired Milliseconds Interval

void rainbow(uint8_t wait) {

 uint16_t i, j;

 for(j=0; j<256; j++) {

 for(i=0; i<strip.numPixels(); i++) {

 strip.setPixelColor(i, Wheel((i+j) & 255));

 }

 strip.show();

 delay(wait);

 }

}

// Slightly different, this makes the rainbow equally

distributed throughout

void rainbowCycle(uint8_t wait) {

 uint16_t i, j;

 for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel

 for(i=0; i< strip.numPixels(); i++) {

 strip.setPixelColor(i, Wheel(((i * 256 / strip.

numPixels()) + j) & 255));

Chapter 10 the Sand MaChine part 2

277

 }

 strip.show();

 delay(wait);

 }

}

The functions in Listing 10-11 is used by all the other functions. It

retrieves an input value between 0 and 255 to calculate the color value.

Colors are a transition r - g - b, back to r.

Listing 10-11. Sets a Color to the Specified LED

uint32_t Wheel(byte WheelPos) {

 WheelPos = 255 - WheelPos;

 if(WheelPos < 85) {

 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);

 }

 if(WheelPos < 170) {

 WheelPos -= 85;

 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);

 }

 WheelPos -= 170;

 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);

}

Chapter 10 the Sand MaChine part 2

279© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_11

CHAPTER 11

The Sand Machine

Part 3

Figure 11-1. Internal view of the moving mechanism upcycled from
a CNC structure inside the bottom box of the Sand Machine

https://doi.org/10.1007/979-8-8688-0080-1_11#DOI

280

11.1. The Bottom Box

The most challenging part of the project was the design of the bottom box

and the extra components needed to make the CNC (computer numerical

control) mechanics work as needed. Until the bottom part of the Sand

Machine was completed, it was impossible to make any test with a very low

tolerance. See Figure 11-1.

11.1.1. Top Side

Figure 11-2. The Sand Dome inserted into the octagonal hole of the
top side of the bottom box

CHAPTER 11 THE SAND MACHINE PART 3

281

To make the top side as close as possible to the moving magnet, the top of

the box was cut to the center: an octagonal shape to fit the Sand Dome (see

Figure 11-2). The front and back sides required a last-minute update. To

keep the CNC aluminum frame centered concerning the top octagon, I had

to cut a rectangular opening in the back for air circulation and easy access

to the CNC control board.

Another problem was that even after the box is assembled, it is

necessary to put your hands inside, especially during the development

phase. To address this need, I made a large front window—a plywood

frame with thin acrylic coverage—that’s removable for maintenance. It

shows the mechanism at work while drawing on the sand.

11.1.2. Putting the Box Together

Figure 11-3. Preassembled view of the box: the parts fit together on
the first try!

CHAPTER 11 THE SAND MACHINE PART 3

282

For the final assembly of the box, I followed the same gluing procedure

I applied successfully to the top side. The front window is placed and

removed using four small magnets, while the top cover was not glued to

make any intervention from the top possible. Gluing and fixing the top of

the box is the very last task at the end of the project. See Figure 11-3.

11.1.3. The Magnet Support

Figure 11-4. Detail of the magnet support on the z-axis head

The CNC frame was initially built for a small laser cutter and engraver.

This means that the zero point is the surface of the cutting sheet, while the

z-axis increments (positive values) pull down the z-axis. See Figure 11-4.

CHAPTER 11 THE SAND MACHINE PART 3

283

Figure 11-5. The original assembly of the z-axis head. The motor
is on top to move the laser to the bottom, while I have to invert the
mechanics

In this use case, instead, I wanted to reach the opposite—the zero

point should be on the bottom, and the magnet should be pushed up

(positive values) until the Neodymium magnet touches the bottom side of

the octagonal base of the sand dome. See Figure 11-5.

Unfortunately, the z-axis motorized head is not designed with this

scope, so I created a magnet support using a set of discs cut from a 4mm

thick acrylic sheet. See Figure 11-6.

CHAPTER 11 THE SAND MACHINE PART 3

284

Figure 11-6. Details of the construction of the magnet support, then
glued to the top of the z-axis head. The acrylic disks are glued with
cyanoacrylate glue and aligned with an M2 screw

CHAPTER 11 THE SAND MACHINE PART 3

285

11.1.4. Completing the Build

Figure 11-7. Details of the final assembly. The CNC frame is kept in
place with the four support rubbers, which fit inside four acrylic discs
glued to the base

Finally, I finished the building process!

The CNC frame has been fixed to the bottom of the box so that the

magnet head (0, 0) axes origin is in the center of the octagonal hole (see

Figure 11-7). Then, moving by hand, I verified that the x-y axes extension

covers the sandbox area.

Lastly, I identified the exact height of the z-axis, moving it manually

and measuring the distance with a caliper. The magnetic head should

touch the bottom of the sandbox surface without pressing. Regardless of

the thickness of the plywood (3mm) and the braking effect of the sand,

small increments of the coordinates make the iron ball move smoothly.

See Figure 11-8.

CHAPTER 11 THE SAND MACHINE PART 3

286

Figure 11-8. Top view of the iron ball (2cm diameter) on the sand
dome while testing the movements

11.2. Controlling the Movement

The moving frame is a 3-axe CNC using four stepper motors: one for the

x-axis, one for the x-axis, and two synchronized steppers for the y-axis.

The motors are controlled by a popular Mana 3 controller board by

EleksMaker (see https://www.amazon.com/EleksMaker-EleksMana-

Stepper-Controller-Engraver/dp/B077992NK1/ref=cm_cr_arp_d_

product_top?ie=UTF8). It is a 3-axes CNC controller based on Arduino

Nano hosting a dedicated firmware supporting the standard G-Code. See

Figure 11-9.

CHAPTER 11 THE SAND MACHINE PART 3

https://www.amazon.com/EleksMaker-EleksMana-Stepper-Controller-Engraver/dp/B077992NK1/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/EleksMaker-EleksMana-Stepper-Controller-Engraver/dp/B077992NK1/ref=cm_cr_arp_d_product_top?ie=UTF8
https://www.amazon.com/EleksMaker-EleksMana-Stepper-Controller-Engraver/dp/B077992NK1/ref=cm_cr_arp_d_product_top?ie=UTF8

287

Note The board also includes a 5V CC-regulated power source and

12V CC power for powering the laser. Having removed the laser cutter

device, I reused the 5V CC power source for the Arduino UNO R3

controlling the Neopixels lighting.

Figure 11-9. The Mana 3-axes CNC controller assembled on the
Sand Machine CNC frame. The three red boards are the x-y-z high-
power motor controllers, while the board connected to the USB cable
is the dedicated Arduino Nano

The controller power should be used accordingly, depending on

the torque of the stepper motors. In this case, I used Nema 17 stepper

motors, a relatively low-power device, as the required mechanical effort is

considerably low.

CHAPTER 11 THE SAND MACHINE PART 3

288

Note Several Mana 3 versions of this board report different

firmware versions; the newer ones support more features and

optimized firmware for better performance. In this case, I used an in-

house device, upcycled for this project.

11.2.1. The Arduino CNC Firmware

While G-Code is one of the most adopted standards for CNC, 3D printers,

and laser cutters, dedicated firmware should be adopted depending on the

characteristics of the board.

It became the standard de facto, created by Simen

Svale Skogsrud (http://bengler.no/grbl) in

2009 and released under the open source license.

The final, community-driven version 1.1 is not

running on an incredible number of moving devices

controlled by Arduino UNO, Arduino Nano, or

Arduino Mega boards. If the maker movement were

an industry, GRBL would be the industry standard.

(From the GRBL Wiki at https://github.com/grbl/grbl/wiki#grbl-

v11-has-been-released-at-our-new-site-the-old-site-will-

eventually-be-phased-out.)

The GRBL firmware interfaces the specific hardware controller and the

standard G-Code command set.

The last update of this firmware can support many command sets;

the same motor controller board can be used to drive a laser cutter/

engraver, a filament or resin 3D printer, and a Mill machine, as well as find

applications in some robotic projects.

CHAPTER 11 THE SAND MACHINE PART 3

http://bengler.no/grbl
https://github.com/grbl/grbl/wiki#grbl-v11-has-been-released-at-our-new-site-the-old-site-will-eventually-be-phased-out
https://github.com/grbl/grbl/wiki#grbl-v11-has-been-released-at-our-new-site-the-old-site-will-eventually-be-phased-out
https://github.com/grbl/grbl/wiki#grbl-v11-has-been-released-at-our-new-site-the-old-site-will-eventually-be-phased-out

289

Thanks to the worldwide diffusion of Arduino boards, any motor

controller board designed around an Arduino is automatically GRBL-

compliant.

11.2.2. What Is G-Code?

G-code (RS-274) is the most widely used CNC and 3D printing
programming language. It is used mainly in computer-aided
manufacturing to control automated machine tools and 3D
printer slicer applications. The G stands for geometry.(Source:
Wikipedia)

G-Code is a textual language that enables you to control the multiple axes

of a generic CNC machine. Regardless of whether the movements are

focused on moving the heating extruder of a 3D printer, the rotating tool of

a mill machine, or a laser cutter, the standard commands of the language

and some possible customizable features make G-Code the most flexible

solution.

 The Language

This section contains a simplified description of the G-Code language,

focused on the needs of this specific project. A full description of all the

language features available from the GRBL firmware can be found on

GitHub at https://github.com/gnea/grbl.

In this context, I am interested in focusing on how the G-Code

commands (instructions) should be encoded to be parsed correctly by the

firmware. A generic G-Code command has the following syntax:

Gnn Xnn Ynn Znn Fnn

Where G is the G-Code command ID, X, Y, and Z are the respective axes

values, and F is the feed rate.

CHAPTER 11 THE SAND MACHINE PART 3

https://github.com/gnea/grbl

290

Note How the G-Code script values are parsed depends on the

firmware configuration, like max motion speed, measure units,

default feed rate, and so on. This solution makes the language easy

to contextualize according to the hardware features and performance.

11.2.3. The Most Important G-Code Commands

G-Code commands are identified by a number: G00, G01, G02, and so on.

This section explains the most common and frequent G-Code commands

used in G-Code scripts.

 G00: Rapid Positioning

Figure 11-10. The patch of the G00 command. The feed rate is not
specified as the head (2D or 3D positioning) and is moved at the
default max positioning speed.

CHAPTER 11 THE SAND MACHINE PART 3

291

Typically, this command is used to move from the machine coordinates

origin to the point where the job starts. The best practice is to set the z-axis

to the desired height and move the tool to the desired x-y position. See

Figure 11-10.

 G01: Linear Interpolation

Figure 11-11. The generic path to move the tool coordinates from
one point to another. This command also requires the feed rate; slower
feed rates give more precision than higher ones

This simple three-axis move requires a considerable number of

calculations to calculate the interpolation of all the points tracking the

path of the movement. See Figure 11-11.

CHAPTER 11 THE SAND MACHINE PART 3

292

 G02: Circular Interpolation Clockwise and G03: Circular
Interpolation Counterclockwise

Figure 11-12. Similar to the G01 command, this interpolation
is done on a circular path from the current point and the new
coordinates. Also needed are the (I, J) coordinates of the center
point of the arc. This command supports the coordinates of the
z-axis as well

Similarly, the G03 command executes the circular interpolation of a

counterclockwise arc. The offsets of the arc endpoint and the center are

relative to the starting point. See Figure 11-12.

 Measure Units

The G20 command selects the units in inches and G21 is in mm according

to the user’s choices. These commands influence the parsing of the axes

coordinates.

CHAPTER 11 THE SAND MACHINE PART 3

293

 Working Plane Selection

Depending on the machine and tool orientation, the G17, G18, and G19

commands select the working plane (the base surface—see Figure 11-13):

• G17: The X-Y plane

• G18: The X-Z plane

• G19: The Y-Z plane

Figure 11-13. The three possible orientations of the working tool in
the 3D space are selectable by the G17, G18, and G19 commands

CHAPTER 11 THE SAND MACHINE PART 3

294

 G28: Home

Like the Rapid Positioning G00 command, G28 moves the tool along a

straight line to the initial home position (the physical origin of the axes).

Normally, during a machining process, this command runs last at the

end of the script; it is possible that returning home through a straight line

from the last point will cause the tool to collide with the machined object.

To avoid this risk, the G28 command accepts an optional intermediate

point (x, y, z) to follow a path that avoids collisions.

 Positioning Mode

The G90 and G91 commands set the mode axes coordinates:

• G90: Absolute mode

• G91: Relative mode

In Absolute mode, the XYZ coordinates are expected to represent an

exact point in the 3D space, while in Relative mode the coordinates values

are considered incremental values with respect to the current position of

the tool.

 M Commands

The M commands instruct the machine to execute specific tasks. Some of

these commands are specific to 3D printers, others to lasers and others

to CNC. The following list shows the M commands used in this project. A

complete list of M commands parsed by the GRBL firmware is found on the

GRBL Wiki (https://github.com/gnea/grbl/wiki).

• M00: Program stop

• M02: End of program

• M30: End of program

CHAPTER 11 THE SAND MACHINE PART 3

https://github.com/gnea/grbl/wiki

295© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_12

CHAPTER 12

The Sand Machine

Part 4

Figure 12-1. The VS Code IDE shows the Python application and all
the files of the Sand Machine controller

The finished Sand Machine is a small CNC laser engraving, with some

custom limitations due to the motion system, mechanics, and a circular

working area.

What I tried to keep untouched is how the axes movements are

controlled through the standard G-Code, including the commands

supported by the GRBL firmware. See Figure 12-1.

https://doi.org/10.1007/979-8-8688-0080-1_12#DOI

296

The connection between the machine and the controller is the USB-

to- Serial interface; this method—adopted in most similar commercial

CNCs—makes connecting it to many different platforms easy. I developed

and used a MacBook Pro, but it will work fine with a Windows or Linux-

embedded computer like the Raspberry Pi.

The software portability is granted using Python, so the control

software is fully portable without requiring changes or modifications.

The rest is mathematics.

12.1. Software Architecture

Designing the software architecture, I tried to follow this statement as

much as possible: the SandControl application should be expandable,

portable, and parametrized.

In addition, I always try to write the main application to evidentiate

the system’s business logic, delegating the hard job to external Python

classes that can be reused in the future if needed. This approach is more

comfortable when new features have to be added and debugged.

A dedicated DriverGCode class manages the software protocol to

interface the application with the machine, while a SerialControl class

manages the low-level USB-to-Serial communication.

Instead of hardcoding the G-Code protocol, I implemented a group of

JSON configuration files to initialize the machine and set the behavior of

the commands sent for drawing. Following this approach, the result is an

easy-to-configure and expand program with a limitless number of designs.

See Figure 12-2.

CHAPTER 12 THE SAND MACHINE PART 4

297

Figure 12-2. Schematics of the SandControl Python software
architecture

CHAPTER 12 THE SAND MACHINE PART 4

298

12.2. G-Code Parametrization

The driverGCode class settings are defined through three JSON files:

• GRBLsettings.json

• GRBLcontrol.json

• GOCDE.json

The first two files reset the G-Code firmware (as mentioned, GRBL)

to the desired operating conditions. In contrast, the third file defines

some G-Code macro functions specific to the characteristics of the Sand

Machine hardware size and shape.

This GRBLsettings.json file sets constraints to instruct the firmware

on interpreting the generic G-Code protocol commands. Note that

the values in Listing 12-1 are specific to this making. Limits should be

redefined with a machine of different size or mechanics.

Listing 12-1. The GRBLsettings.json File

{

 "HomingFeed" : "$24=25.500",

 "HomingSeek" : "$25=500.500",

 "HomingDebounce" : "$26=250.500",

 "SoftLimits" : "$20=1",

 "xMaxRate" : "$110=1000.000",

 "yMaxRate" : "$111=1000.000",

 "zMaxRate" : "$112=50000.000",

 "xAccel" : "$120=100.000",

 "yAccel" : "$121=100.000",

 "zAccel" : "$122=100.000",

 "xMaxTravel" : "$130=400.000",

 "yMaxTravel" : "$131=250.000",

 "zMaxTravel" : "$132=15.000"

}

CHAPTER 12 THE SAND MACHINE PART 4

299

The GRBLcontrol.json file, shown in Listing 12-2, defines the

firmware-specific control codes required to set parameters to the GRBL

firmware. One of the command options of the SandControl program lists

the current settings of all the GRBL firmware parameters.

Listing 12-2. The GRBLcontrol.json File

{

 "Settings" : "$$",

 "Parameters" : "$#",

 "GCodeMode" : "$C",

 "ParserState" : "$G"

}

The GCODE.json parameters file, shown in Listing 12-3, defines the

constraints of the hardware structure. These commands automatically

set the key points of the axes, like the lower and upper z-axis position, the

maximum area extension, and so on.

Listing 12-3. The GCODE.json Parameters File

{

 "init" : "M3",

 "units" : "G21",

 "zdown" : "G00 Z -32.0000",

 "zup" : "G00 Z 32.0000",

 "home" : "G00 X -200.0000 Y -200.0000",

 "sand" : "G00 X 200.0000 Y 200.0000",

 "Response" : "ok",

 "program" : "%"

}

CHAPTER 12 THE SAND MACHINE PART 4

300

12.3. The SandControl.py Application

As I mentioned, the advantage of using dedicated classes for the

application tasks—regardless of their reusability —concerns having the

main application focused on the user interface and the business logic.

12.3.1. Imports

Making intensive use of the classes, most of the Python external libraries

are used by the classes themselves. This means that every class includes

the external libraries needed to work, acting as a “black box” utterly

independent of the logic or the use of the class methods.

The following code shows the contents of the first lines of the main

program. They define the classes that are part of the application. The

import of the sys library manages the line command call parameters

according to the desired program option:

import pyclasses.serialControl as serialControl

import sys

import pyclasses.driverGCode as gcode

import pyclasses.MathCircularFunctions as circfunc

import pyclasses.MandalaDesigner as mandala

import pyclasses.RandomUtilities as randomizer

12.3.2. Business Logic

The __main__ application simply processes the command-line arguments

and executes the corresponding call.

The current version of SandControl.py executes the command option

and exits; it is also possible to convert it to a loop so the program can draw

indefinitely until it is stopped. The program accepts one of the following

commands:

CHAPTER 12 THE SAND MACHINE PART 4

301

• <-l>: Lists the available COM (serial) ports.

• <-p port_ID>: Shows the name (in Human Readable

Format) of the port corresponding to the specified ID.

• <-c command_name>: Executes one of the G-Code

commands defined in the GCODE.json configuration

file (init, units, zdown, zup, home, or sand).

• <-s port_ID mandala_design>: Executes one of the

predefined designs by name (spiral, epicycloid,

cardioid, nephroid, or ranunculoid).

• <-x port_ID>: Sends the G-Code initialization

sequence to the specified serial port ID.

• <-i port_ID>: Lists all the GRBL firmware settings.

• <-m>: Generates a random mandala design on

the screen.

• <-h>: Shows a quick help.

Available to all the commands, the first task creates a local instance of

the serialControl class (see Listing 12-4). The instance can be reused if

the design command runs in a loop.

Listing 12-4. The GCODE.json Parameters File

if __name__ == "__main__":

 '''

 Main application.

 '''

 my_serial = serialControl.SerialControl() # Serial

class

instance

CHAPTER 12 THE SAND MACHINE PART 4

302

 # Check for the command line arguments

 if len(sys.argv) <= 1:

 help()

 else:

 if sys.argv[1] == "-l":

 ''' List the available com ports '''

 list_ports()

 elif sys.argv[1] == "-h":

 ''' Help '''

 help()

 elif sys.argv[1] == "-p":

 '''

 Show the name of the port corresponding to the

selected ID

 The second argument is the port ID.

 '''

 if len(sys.argv) <= 2:

 print("port ID parameter missing")

 else:

 if my_serial.create_name(sys.argv[2]):

 print("Serial port name :" + my_serial.

get_port())

 else:

 print("There is no port associated to

the id")

 elif sys.argv[1] == "-c":

 '''

 Run one of the predefined commands, as defined in

 the GCODE.json file.

 '''

CHAPTER 12 THE SAND MACHINE PART 4

303

 if len(sys.argv) <= 3:

 print("Command name parameter missing")

 else:

 gcode_driver = gcode.DriverGCode(sys.argv[2])

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command(sys.argv[3])

 gcode_driver.quit()

 elif sys.argv[1] == "-s":

 '''

 Run one of the predefined designs, then return to

home position

 '''

 if len(sys.argv) <= 3:

 print("A parameter is missing")

 else:

 sand_plot(sys.argv[3], sys.argv[2])

 elif sys.argv[1] == "-x":

 '''

 Send the G-Code initialization to the specified

serial port.

 '''

 if len(sys.argv) <= 2:

 print("Some required parameter is missing")

 else:

 gcode_driver = gcode.DriverGCode(sys.argv[2])

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

304

 elif sys.argv[1] == "-i":

 '''

 List the G-Code firmware parameters.

 '''

 if len(sys.argv) <= 2:

 print("Some required parameter is missing")

 else:

 gcode_driver = gcode.DriverGCode(sys.argv[2])

 gcode_driver.start_serial()

 gcode_driver.paramsGRBL()

 gcode_driver.quit()

 elif sys.argv[1] == "-m":

 '''

 Run the mandala algorithm.

 '''

 # Note that here the radius is forced to a

single value

 # to generate a single mandala.

 # TODO Set runtime parameters to the function.

 fig2 = randomizer.random_mandala(n_rows=None,

 n_columns=None,

 # radius=[8, 6, 3],

 radius=7,

 rotational_

symmetry_order=9,

 symmetric_

seed=True,

 number_of_

elements=5,

 face_color="0.")

CHAPTER 12 THE SAND MACHINE PART 4

305

 fig2.tight_layout()

 mandala_image = [mandala.figure_to_image(fig2)]

 for im in mandala_image:

 im.show()

 else:

 ''' No command specified '''

 print("Command not specified\n")

 help()

12.3.3. Extra Functions

For better readability, the program also includes three helper functions,

defined separately to keep the source that processes the command-

line options smaller. These three functions are shown in Listings 12-5

through 12-7.

Listing 12-5. The list_ports() Function

def list_ports():

 '''

 List all the available com ports. To use one of the listed

 ports refer to it with the port number (first column index)

 '''

 port_idx = 0

 # Retrieve the list of available COM ports

 serial_ports = my_serial.available_ports()

 print(" --- Available com ports")

 for port in serial_ports:

 print("#", port_idx, port.name)

 port_idx += 1

 print (" ---\n")

CHAPTER 12 THE SAND MACHINE PART 4

306

Listing 12-6. The help() Function

def help():

 '''

 Show the help message to the terminal.

 '''

 print("----------------- Help ------------------")

 print("Available options:\n")

 print("-l List all the available com ports")

 print("-p [port ID] Show the name of the port")

 print("-i [port ID] Show the GRBL firmware parameters")

 print("-x [port ID] Initializes the GRBL firmware

parameters (persistent)")

 print("-c [port ID] [Command] Run one of the predefined

commands to the machine")

 print("-m [port ID] Run the mandala algorithm")

 print("-s [port ID] [Design] Executes one of the predefined

designs:\nspiral, epicycloid, cardioid, nephroid,

ranunculoid")

 print("-h This help")

 print("----------------- Help ------------------")

Listing 12-7. The sand_plot() Function

def sand_plot(name:str, portId:int):

 '''

 Plot on the sand a predefined circular function, connected

 to the portID serial port.

 '''

 sand_plot = circfunc.MathCircularFunctions(portId)

 if name == 'spiral':

 '''

CHAPTER 12 THE SAND MACHINE PART 4

307

 Plot an Archimedes' sprial

 '''

 sand_plot.spiral(12, 12)

 elif name == 'epicycloid':

 '''

 Plot an Epicycloid

 '''

 sand_plot.epicycloid()

 elif name == 'cardioid':

 '''

 Plot a single cuspid cardioid

 '''

 sand_plot.cardioid()

 elif name == 'nephroid':

 '''

 Plot a double cuspid nephroid

 '''

 sand_plot.nephroid()

 elif name == 'ranunculoid':

 '''

 Plot a five cuspids ranunculoid

 '''

 sand_plot.ranunculoid()

12.4. Class: SerialControl

The serialControl class covers two essential roles: low-level

communication between the application and the Sand Machine hardware

and the inspection and configuration of the communication port.

CHAPTER 12 THE SAND MACHINE PART 4

308

In addition, when the program instantiates the class, it creates an

internal instance of the logger class. According to the log level, a log file is

generated when an event occurs.

The serial class is content-independent: with its low-level and high-

level methods, it can be used in any USB-to-Serial connection to send and

receive data in several formats (lines, strings, bytes, etc.).

As shown in these imports, I used the Python dataclasses library to

manage the serial port configuration more efficiently:

from dataclasses import dataclass

import pyclasses.logger as logger

import serial

from serial.tools import list_ports

The __init__ function in Listing 12-8 is called automatically when

the program instantiates the class. This initialization function collects all

the information on the system concerning the USB-to-Serial ports. This

makes it possible to use the instance of the class all around the program—

especially by the other higher-level classes—using the command-line

parameters passed to the main program.

Listing 12-8. The __init__ Function

class SerialControl:

 '''

 RS232 Serial communication methods.

 '''

 def __init__(self, logLevel = logger.LogLevel.CRITICAL):

 '''

 Class constructor. Load the list of all available

com ports.

CHAPTER 12 THE SAND MACHINE PART 4

309

 Note that the class initialization function does not

assign to the data sets the port name.

 It will be added further according to the user

parameters.

 '''

 global ports

 ''' List of the available com ports '''

 global protocol_log

 ''' Logger '''

 global serial_settings

 ''' Serial configuration object '''

 ports = list_ports.comports() # Retrieve the posts list

 serial_settings = SerialParameters(115200, serial.

STOPBITS_ONE, serial.PARITY_NONE)

 '''

 Create the serial configuration object with default

settings.

 Default values can be redefined by the config method.

 '''

 protocol_log = logger.Logger(

 'Serial event log',

 logger.LogLevel.DEBUG,

 'protocol.log',

 True)

 ''' Create the logger object'''

 for level in logger.LogLevel:

 if level.value == logLevel.value:

 protocol_log.initLog(logger.LogLevel.INFO)

 ''' Initialize the logger level '''

CHAPTER 12 THE SAND MACHINE PART 4

310

12.4.1. Low-level Methods

- wait_bytes_UTF8(self, stripCRLF = False)

- wait_bytes(self)

- read_bytes(self, len = 1)

- read_line(self)

- print_multiline(self)

This group of methods controls the low-level communication to the

connected hardware.

 def wait_bytes_UTF8(self, stripCRLF = False):

 '''

 Receive the bytes available on the serial port.

 This method waits for the serial port available data.

 Parameter: stripCRLF if set to True, all the CR, LF and

TAB characters are stripped from the byte array. This

is a convenient flag to create a clean string by the

callers.

 Data read are returned in a byte array.

 '''

 global ser_port

 ''' The serial connection '''

 bytes_block = bytearray('', encoding='utf-8')

 ''' Data bytes from the serial '''

 end_block = False

 ''' Reading block exit flag '''

 while end_block is False:

 while ser_port.in_waiting:

CHAPTER 12 THE SAND MACHINE PART 4

311

 ''' Read a single byte '''

 bytes_block.extend(self.read_bytes())

 if len(bytes_block) is not int(0):

 end_block = True

 if stripCRLF is True:

 bytes_block.strip(b'\t')

 bytes_block.strip(b'\r')

 bytes_block.strip(b'\n')

 return bytes_block

 def wait_bytes(self):

 '''

 Receive the bytes available on the serial port.

 This method waits for the serial port available data.

 Data read are returned in a byte array.

 '''

 global ser_port

 ''' The serial connection '''

 bytes_block = bytearray()

 ''' Data bytes from the serial '''

 end_block = False

 ''' Reading block exit flag '''

 while end_block is False:

 while ser_port.in_waiting:

 ''' Read a single byte '''

 bytes_block.append(self.read_bytes())

 end_block = True

 return bytes_block

CHAPTER 12 THE SAND MACHINE PART 4

312

 def read_bytes(self, len = 1):

 '''

 Read a predefined number of bytes from the serial port.

If none is specified, read a single byte

 '''

 global ser_port

 ''' The serial connection '''

 return ser_port.read(len)

 def read_line(self):

 '''

 Receive a line from the serial port. Expect the string

ending *CR or CR+LF)

 '''

 global ser_port

 ''' The serial connection '''

 return ser_port.readline().decode("utf-8")

 def print_multiline(self):

 '''

 Experimental.

 Print multiple lines coming from the serial

 '''

 global ser_port

 ''' The serial connection '''

 while ser_port.in_waiting == 0:

 ''' Just wait for the buffer not empty '''

 while ser_port.in_waiting:

 print(ser_port.readline().decode("utf-8"))

CHAPTER 12 THE SAND MACHINE PART 4

313

12.4.2. The Dataclass Data Model

Using the Python decorator @dataclass—of course, it is necessary to

import the dataclass library—you can create a regular Python class,

including a data model. As in C++ any struct is a class; also, in Python,

using this mechanism, it is possible to define a class behaving as a data

structure, including custom methods. The data model class is a complex

data structure that stores the serial port configuration. See Listing 12-9.

A complete definition of the dataclass and the implicit data model

methods is available in the Python 3 documentation at https://docs.

python.org/3/library/dataclasses.html.

Listing 12-9. The Data Model Class

@dataclass

class SerialParameters:

 '''

 Define a data class including the serial connection

parameters.

 This class acts as a data structure where every

communication configuration can be set in a new class

instance.

 Parameters:\n

 port - Device name or None.

 baudrate - Baud rate such as 9600 or 115200 etc.

 bytesize - Number of data bits. Possible values:

FIVEBITS, SIXBITS, SEVENBITS, EIGHTBITS\n

 parity - Enable parity checking. Possible values:

PARITY_NONE, PARITY_EVEN, PARITY_ODD PARITY_MARK,

PARITY_SPACE\n

 stopbits - Number of stop bits. Possible values:

STOPBITS_ONE, STOPBITS_ONE_POINT_FIVE, STOPBITS_TWO\n

CHAPTER 12 THE SAND MACHINE PART 4

https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html

314

 tout - Data waiting from serial timeout,

default 500 ms.

 '''

 def __init__(self, baud: int, stop: bytes, parity: bytes,

port: str = None, dBits: int = 8, timeout = 2):

 '''

 Initializes the dataclass with the parameters and some

default settings.

 The port name will be assigned separately after the

initialization class.

 '''

 self.port = port

 self.baudrate = baud

 self.parity = parity

 self.stopbits = stop

 self.databits = dBits

 self.timeout = timeout

 port: str

 baudrate: int

 databits: int

 parity: bytes

 stopbits: bytes

 timeout:float

12.4.3. High-level Methods

Using the SerialParameters data model, high-level methods can manage

the parameters of the serial port configuration as a single object. See

Listing 12-10.

CHAPTER 12 THE SAND MACHINE PART 4

315

Listing 12-10. These Hardware Control Methods Work the USB-to-

Serial Interface in Several Kinds of Data Transfers

 def create_name(self, port_id):

 '''

 Create the serial port name and assign it to

the dataset

 Return true if the serial port exists, else

return false.

 '''

 global ports

 ''' Ports list '''

 global protocol_log

 ''' Logger '''

 global serial_settings

 ''' Serial configuration object '''

 if (len(ports) - 1) >= int(port_id):

 '''

 If the port ID exists, assign the port name to the

 two serial settings data classes

 '''

 s_port = ports[int(port_id)].device

 serial_settings.port = s_port

 return True

 else:

 ''' Wrong port ID '''

 return False

 def close(self):

 '''

 Close the serial port.

 '''

CHAPTER 12 THE SAND MACHINE PART 4

316

 global ser_port

 ''' Serial port instance '''

 ser_port.flush()

 ser_port.close()

 def open(self):

 '''

 Open the serial port with the current configuration

settings and wait for bytes response data, if any.

 The method returns that bytes available in the queue

after the port has been opened.

 '''

 global ser_port

 ''' Serial port instance '''

 ser_port.open()

 return self.wait_bytes()

 def open_terminal(self, stripCRLF = False):

 '''

 Open the serial port for a communication terminal. It

is expected that the data are UTF-8 Ascii strings.

 The method returns the string available in the queue

after the port has been opened.

 The CR/LF/TAB characters are removed, according to the

flag stripCRLF

 '''

 global ser_port

 ''' Serial port instance '''

 ser_port.open()

CHAPTER 12 THE SAND MACHINE PART 4

317

 return self.wait_string(stripCRLF)

 def config(self):

 '''

 Initialize the serial port and open the port.

 '''

 global serial_settings

 ''' Predefined serial settings '''

 global ser_port

 ''' Serial port instance '''

 ser_port = serial.Serial()

 ''' Get the serial object instance. '''

 ''' Configure the serial '''

 ser_port.baudrate = serial_settings.baudrate

 ser_port.bytesize = serial_settings.databits

 ser_port.stopbits = serial_settings.stopbits

 ser_port.parity = serial_settings.parity

 ser_port.port = serial_settings.port

 def send(self, string_data:str):

 '''

 Send a string to the serial port and return the number

of bytes sent.

 The function returns the number of bytes written.

 '''

 global ser_port

 ''' Serial port instance '''

 return ser_port.write(string_data)

 def send_line(self, string_data:str):

 '''

CHAPTER 12 THE SAND MACHINE PART 4

318

 Send a text line to the serial port and return the

number of bytes sent.

 The function returns the number of bytes written.

 '''

 global ser_port

 ''' Serial port instance '''

 sending = str(string_data).encode('utf-8') + "\n".

encode('utf-8')

 return ser_port.write(sending)

 def get_port(self):

 '''

 Return the selected port name, or None.

 '''

 global serial_settings

 ''' Serial configuration object '''

 return serial_settings.port

 def available_ports(self):

 '''

 Return a list of the available COM ports in the system.

 '''

 global ports

 ''' Serial ports list '''

 ports = list_ports.comports()

 return ports

 def config(self, speed=9600, data=8, stop=1, parity=serial.

PARITY_NONE, timeout = 0.25):

 '''

CHAPTER 12 THE SAND MACHINE PART 4

319

 Set up the serial port configuration parameters. The

settings can be used for the

 serial port opening and configuration.

 '''

 global serial_settings

 ''' Serial configuration object '''

 serial_settings = SerialParameters(speed, stop, parity,

data, timeout)

12.5. Class: Logger

The Logger class is an independent piece of code that can be used

anywhere in a Python program.

This class implements the Python logging library, and an enum defines

five log levels. See Listing 12-11.

Listing 12-11. The Logger Class

class LogLevel(Enum):

 '''

 Defines the various log levels. Used by the logger classes

and by the calling application to set the loglevel.

 '''

 DEBUG = 1

 INFO = 2

 WARNING = 3

 ERROR = 4

 CRITICAL = 5

 def __init__(self,

 loggerName = "Generic logger",

CHAPTER 12 THE SAND MACHINE PART 4

320

 logLevel = LogLevel.CRITICAL,

 logFile = "logfile.log",

 outFile = True):

 '''

 Class constructor. Initializes the logger with the

lowest verbosity.

 '''

 global logger

 ''' Logger instance '''

 global logFileName

 ''' Logger file name '''

 global logToFile

 ''' File logger flag '''

 logToFile = outFile

 logger = logging.getLogger(loggerName)

 ''' Console logger handler '''

 logFileName = logFile

 for level in LogLevel:

 if level.value == logLevel.value:

 logger.setLevel(level.value)

By default (if no logLevel parameter is passed), the global log level is

set to critical: All the less-than-critical log messages are automatically

disabled.

The global log level can be set only when instantiating the class; the

caller program, instead, will set the log level to the console handler before

assigning it to the logger. It is strongly suggested that you set the highest

logging level if the highest verbosity log file is desired.

CHAPTER 12 THE SAND MACHINE PART 4

321

When instantiated, this class creates the console and the file logger. If

no log file is specified, the name of the log file is logfile.log. The same

log level is assumed to be applied to the console and to the file handler

(if set).

For more details on how the Python logging library works, see the

documentation at https://docs.python.org/2/howto/logging-

cookbook.html#multiple-handlers-and-formatters.

For every log level, a simple method accepting an input message to be

sent to the log file is available. The logger adds the time stamp when the

message is sent to the terminal or written to the log file:

 def debug(self, message):

 global logger

 logger.debug(message)

 def info(self, message):

 global logger

 logger.info(message)

 def warning(self, message):

 global logger

 logger.warning(message)

 def error(self, message):

 global logger

 logger.error(message)

 def critical(self, message):

 global logger

 logger.critical(message)

CHAPTER 12 THE SAND MACHINE PART 4

https://docs.python.org/2/howto/logging-cookbook.html#multiple-handlers-and-formatters
https://docs.python.org/2/howto/logging-cookbook.html#multiple-handlers-and-formatters

322

12.6. Class: driverGCode

The driverGCode class defines all the methods to control the Sand

Machine behavior through macro commands. Some class methods

are designed specifically for the Sand Machine, but these can easily

be converted to generic macro-commands to control a three-axis

CNC engine.

Like the SerialControl class, the driverGCode also implements

the logger feature for debugging and keeping track of every method’s

functionality.

The class expects a serial communication protocol controlled by the

SerialControl class: it is sufficient to know the serial port ID; the low-

level hardware communication is instantiated externally.

The __init__ class initialization function starts the logging library,

instantiates the serialControl class, and loads the JSON configuration

files in dictionaries used by the class methods (see Listing 12-12).

Listing 12-12. The __init__ class Initialization Function

 def __init__(self, comm_port, logLevel = logger.

LogLevel.CRITICAL):

 '''

 Class constructor. Initializes the dictionaries and

the logger.

 Parameters:

 comm_port : Communication port ID

 Log level (*)default CRITICAL)

 '''

 global serial_comm

 ''' Serial communication class instance '''

 global GCODE_preset

CHAPTER 12 THE SAND MACHINE PART 4

323

 ''' Predefined G-Code command strings dictionary. '''

 global GRBL_settings

 ''' Dictionary for GRBL (firmware configuration)

initialization. '''

 global GRBL_info

 ''' Firmware information commands dictionary '''

 global protocol_log

 ''' Logger instance '''

 global sand_plot_X;

 ''' Keep history of the x-axis coordinates to return to

home '''

 global sand_plot_Y;

 ''' Keep history of the y-axis coordinates to return to

home '''

 with open("GRBLcontrol.json") as file:

 GRBL_info = json.load(file)

 with open("GRBLsettings.json") as file:

 GRBL_settings = json.load(file)

 with open("GCODE.json") as file:

 GCODE_preset = json.load(file)

 ''' Serial communication initialization '''

 serial_comm = comm.SerialControl()

 serial_comm.create_name(comm_port)

 serial_comm.config()

 ''' Configure the serial and open the connection '''

 protocol_log = logger.Logger(

 'G-Code Event log',

 logger.LogLevel.DEBUG,

CHAPTER 12 THE SAND MACHINE PART 4

324

 'g-code.log',

 True)

 ''' Create the logger object'''

 for level in logger.LogLevel:

 if level.value == logLevel.value:

 protocol_log.initLog(logger.LogLevel.INFO)

 ''' Initialize the logger level '''

 sand_plot_X = 0

 sand_plot_Y = 0

The paramsGRBL(), GRBL_set_param(), and GCODE_exec() methods

interface with the hardware, executing the firmware initialization and

sending custom G-Code strings to the device. See Listing 12-13.

Listing 12-13. The paramsGRBL(), GRBL_set_param(), and

GCODE_exec() Methods

def paramsGRBL(self):

 '''

 List all the GRBL firmware parameters

 '''

 global GRBL_info

 ''' GRBL Control commands dictionary '''

 global serial_comm

 ''' The pre-configured serial port '''

 str(serial_comm.send_line(GRBL_info["Settings"]))

 serial_comm.print_multiline()

 def GRBL_set_param(self, param_name:str):

 '''

 Decode the GRBL firmware parameter name from the

dictionary and send the corresponding command to

the serial.

CHAPTER 12 THE SAND MACHINE PART 4

325

 '''

 global serial_comm

 ''' The pre-configured serial port '''

 global GRBL_settings

 ''' Dictionary for GRBL (firmware configuration)

initialization. '''

 print(param_name + " bytes sent: " + str(serial_comm.

send_line(GRBL_settings[param_name])))

 r = serial_comm.wait_string(False)

 print("Response :" + r)

The soft_homing() macro command repositions the magnetic head

to the home position (see Listing 12-14). Due to the particular kind of

drawing and the shape of the Sand Machine’s working surface, the home of

the axes is the center of the circular area.

Listing 12-14. The soft_homing() Macro Command

def soft_homing(self, sand_home_x = 200, sand_home_y = 200,

AxisXCorrectionFactor = 30, AxisYCorrectionFactor = 10):

 '''

 Reposition the x-y axis to the sand home position

(center of the dome)

 '''

 global serial_comm

 ''' The pre-configured serial port '''

 global sand_plot_X

 global sand_plot_Y

 print("sand_home() -sand_plot_X ", -sand_plot_X, "

-sand_plot_Y ", -sand_plot_Y)

CHAPTER 12 THE SAND MACHINE PART 4

326

 commmand_string = "G00 X " + str(-sand_plot_X + sand_

home_x + AxisXCorrectionFactor) + " Y " + str(-sand_

plot_Y + sand_home_y + AxisYCorrectionFactor)

 self.GCODE_exec(commmand_string)

The init_magnet() macro command positions the working head

to the lower z-axis position, goes to the center of the working area, and

positions the head to the upper position, nearest to the iron sphere. See

Listing 12-15. After this initialization procedure is complete, the program

can start the mandala design.

Listing 12-15. The init_magnet() Macro Command

def init_magnet(self):

 '''

 Initializes the axis in the right position

 '''

 global GCODE_preset

 ''' Dictionary with the preset commands '''

 # Initializes the GCODE

 self.GCODE_exec(GCODE_preset["init"])

 self.GCODE_exec(GCODE_preset["units"])

 # Set magnet far from top

 self.GCODE_exec(GCODE_preset["zdown"])

 # Move to the work point

 self.GCODE_exec(GCODE_preset["sand"])

 # Move magnet up to the work point

 self.GCODE_exec(GCODE_preset["zup"])

The run_command() macro command is a helper method that executes

the G-Code sequence from one of the GCODE JSON files in the dictionary.

See Listing 12-16.

CHAPTER 12 THE SAND MACHINE PART 4

327

Listing 12-16. The _command() Macro Command

def run_command(self, cmd:str):

 '''

 Executes one of the predefined commands in the GCODE

 Json dictionary.

 '''

 global GCODE_preset

 ''' Dictionary with the preset commands '''

 self.GCODE_exec(GCODE_preset[cmd])

12.7. Class: MathCircularFunctions

This class defines the mathematical methods to generate circular objects

on the sand surface, according to the theory behind the mathematics of

the mandala.

The class methods only focus on the x-y 2D coordinates system; in

fact, after the magnetic head of the CNC frame has linked the iron sphere

(initially positioned in the center of the Sand Machine), it moves the ball

following a single path.

The constraints and global parameters refer to the physical coordinates

dimensions of the surface, while the z-axis movement is called when the

drawing cycle starts and ends.

The two helper methods—p2c() and distance2D()—are used to

calculate the motion steps and to convert the polar coordinates of every

point to cartesian coordinates to drive the x-y axes. See Listing 12-17.

CHAPTER 12 THE SAND MACHINE PART 4

328

Listing 12-17. Two Helper Methods—p2c() and distance2D()

 def p2c(self, r, phi):

 '''

 Convert polar to cartesian coordinates. To reach the

right absolute position on the virtual cartesian

coordinates system where the axes origin is in the

center of the sand arena, the calculated absolute

coordinates are added to the real origin. Doing so, the

return value is ready for plotting.

 '''

 return int(r * math.cos(phi)) + self.xArenaCenter,

int((r * math.sin(phi)) + self.yArenaCenter)

 def distance2D(self, po, pd):

 '''

 Calculate the distance between the two points

po and pd.

 Both points are a bidimensional array with the point

 coordinates in the format [x, y]

 '''

 return math.dist(po, pd)

12.7.1. The Mandala Curve Methods

For every kind of mandala design available—spiral, epicycloid, cardioid,

nephroid, and ranunculoid—there is a corresponding method that runs a

loop following the design path. See Listing 12-18.

CHAPTER 12 THE SAND MACHINE PART 4

329

Listing 12-18. The Five Methods of Developing the Mathematics of

the Mandala Figures Converted Into G-Code Steps

 def spiral(self, arc, separation):

 '''

 Plot on the sand an Archimedes’ spiral based on the

 equation r = b * phi

 The system should start from the initial setup of the

x-y axes.

 The center (starting) point is hardcoded.

 arc: Arc length between two points

 separation: Distance between consecutive turnings

 '''

 gcode_driver = gcode.DriverGCode(self.serialID)

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command("sand")

 gcode_driver.run_command("zup")

 r = arc

 ''' r is the radius r in the original equation '''

 b = separation / (2 * math.pi)

 '''' b is the "b" constant value in the original

equation'''

 # find the first phi to satisfy distance of `arc` to

the second point

 phi = float(r) / b

 xCoord = self.xArenaCenter

 yCoord = self.yArenaCenter

 # Plot the figure

CHAPTER 12 THE SAND MACHINE PART 4

330

 while (

 (xCoord <= (self.xArenaCenter + self.

xArenaSize)) and

 (xCoord >= (self.xArenaCenter - self.

xArenaSize)) and

 (yCoord <= (self.yArenaCenter + self.

yArenaSize)) and

 (yCoord >= (self.yArenaCenter - self.

yArenaSize))

):

 '''

 Calculate a new couple of coordinates

 '''

 xCoord, yCoord = self.p2c(r, phi)

 # print(str(xCoord), str(yCoord))

 gcode_driver.GCODE_exec("G01 X " + str(xCoord) +

 " Y " + str(yCoord) +

 " F" + str(self.feedRate))

 # Updated the homing coordinates

 gcode_driver.update_axes_

coordinates(xCoord, yCoord)

 #Increment the variables

 phi = phi + float(arc) / r

 r = b * phi

 # Close the connection and exit

 gcode_driver.run_command("zdown")

 gcode_driver.soft_homing(self.xArenaCenter, self.

yArenaCenter)

 # gcode_driver.run_command("home")

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

331

 def epicycloid(self, radius = 50, fixed_circle_

radius = 10):

 '''

 Draw a parametric circular epicycloid.

 ref: https://mse.redwoods.edu/darnold/math50c/CalcProj/

Sp99/LindaL/epicycloid.html

 For better understanding, the control parameters

and the variable names inside the functions are

referred to the above documentation link.

 '''

 # Initialize the connection and GCode driver

 gcode_driver = gcode.DriverGCode(self.serialID)

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command("sand")

 gcode_driver.run_command("zup")

 b = radius

 ''' The point P moves along the radius b. '''

 t = 10

 ''' And is translated every step by the angle t

(deg) '''

 a = fixed_circle_radius

 ''' The circumference the circle rotates along. '''

 x = self.xArenaCenter

 y = self.yArenaCenter

 translation_angle = 1

CHAPTER 12 THE SAND MACHINE PART 4

332

 while (translation_angle < 360):

 x = ((a + b) * math.cos(translation_angle)) + (b

* math.cos(((a + b) / b) * translation_angle))

+ self.xArenaCenter

 '''

 A more readable version of the x formula:

 x = (a + b) cos t + b cos {[(a + b)/b] t}

 '''

 y = ((a + b) * math.sin(translation_angle))

+ (b * math.sin(((a + b) / b) * translation_

angle)) + self.xArenaCenter

 '''

 A more readable version of the y formula:

 y = (a + b) sin t + b sin {[(a + b)/b] t}

 '''

 gcode_driver.GCODE_exec("G01 X " + str(x) +

 " Y " + str(y) +

 " F" + str(self.feedRate))

 # Updated the homing coordinates

 gcode_driver.update_axes_coordinates(x, y)

 translation_angle = translation_angle + t

 print("x ", x, " y ", y, " t ", translation_angle)

 # Close the connection and exit

 gcode_driver.run_command("zdown")

 gcode_driver.soft_homing(self.xArenaCenter, self.

yArenaCenter)

 gcode_driver.run_command("home")

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

333

 def cardioid(self, radius = 30, fixed_circle_radius = 30):

 '''

 Draw a parametric circular cardioid.

 ref: https://mse.redwoods.edu/darnold/math50c/CalcProj/

Sp99/LindaL/epicycloid.html

 For better understanding, the control parameters and

the variable names inside the functions are referred

to in the

 above documentation link.

 '''

 # Initialize the connection and G-Code driver

 gcode_driver = gcode.DriverGCode(self.serialID)

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command("sand")

 gcode_driver.run_command("zup")

 b = radius

 ''' The point P moves along the radius b. '''

 t = 10

 ''' And is translated every step by the angle t

(deg) '''

 a = fixed_circle_radius

 ''' The circumference the circle rotates along. '''

 x = self.xArenaCenter

 y = self.yArenaCenter

 translation_angle = 1

CHAPTER 12 THE SAND MACHINE PART 4

334

 while (translation_angle < 360):

 x = ((a + b) * math.cos(translation_angle)) + (b

* math.cos(((a + b) / b) * translation_angle))

+ self.xArenaCenter

 '''

 A more readable version of the x formula:

 x = (a + b) cos t + b cos {[(a + b)/b] t}

 '''

 y = ((a + b) * math.sin(translation_angle))

+ (b * math.sin(((a + b) / b) * translation_

angle)) + self.xArenaCenter

 '''

 A more readable version of the y formula:

 y = (a + b) sin t + b sin {[(a + b)/b] t}

 '''

 gcode_driver.GCODE_exec("G01 X " + str(x) +

 " Y " + str(y) +

 " F" + str(self.feedRate))

 # Update the homing coordinates

 gcode_driver.update_axes_coordinates(x, y)

 translation_angle = translation_angle + t

 print("x ", x, " y ", y, " t ", translation_angle)

 # Close the connection and exit

 gcode_driver.run_command("zdown")

 gcode_driver.soft_homing(self.xArenaCenter, self.

yArenaCenter)

 gcode_driver.run_command("home")

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

335

 def nephroid(self, radius = 20, fixed_circle_radius = 40):

 '''

 Draw a parametric circular cardioid.

 ref: https://mse.redwoods.edu/darnold/math50c/CalcProj/

Sp99/LindaL/epicycloid.html

 For better understanding, the control parameters and

the variable names inside the functions are referred

to in the

 above documentation link.

 '''

 # Initialize the connection and G-Code driver

 gcode_driver = gcode.DriverGCode(self.serialID)

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command("sand")

 gcode_driver.run_command("zup")

 b = radius

 ''' The point P moves along the radius b. '''

 t = 10

 ''' And is translated every step by the angle t

(deg) '''

 a = fixed_circle_radius

 ''' The circumference the circle rotates along. '''

 x = self.xArenaCenter

 y = self.yArenaCenter

 translation_angle = 1

CHAPTER 12 THE SAND MACHINE PART 4

336

 while (translation_angle < 360):

 x = ((a + b) * math.cos(translation_angle))

+ (b * math.cos(((a + b) / b) * translation_

angle)) + self.xArenaCenter

 '''

 A more readable version of the x formula:

 x = (a + b) cos t + b cos {[(a + b)/b] t}

 '''

 y = ((a + b) * math.sin(translation_angle)) + (b

* math.sin(((a + b) / b) * translation_angle)) +

self.xArenaCenter

 '''

 A more readable version of the y formula:

 y = (a + b) sin t + b sin {[(a + b)/b] t}

 '''

 gcode_driver.GCODE_exec("G01 X " + str(x) +

 " Y " + str(y) +

 " F" + str(self.feedRate))

 # Updated the homing coordinates

 gcode_driver.update_axes_coordinates(x, y)

 translation_angle = translation_angle + t

 print("x ", x, " y ", y, " t ", translation_angle)

 # Close the connection and exit

 gcode_driver.run_command("zdown")

 gcode_driver.soft_homing(self.xArenaCenter, self.

yArenaCenter)

 gcode_driver.run_command("home")

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

337

 def ranunculoid(self, radius = 10, fixed_circle_

radius = 50):

 '''

 Draw a parametric circular cardioid.

 ref: https://mse.redwoods.edu/darnold/math50c/CalcProj/

Sp99/LindaL/epicycloid.html

 For better understanding, the control parameters and

the variable names inside the functions are referred to

in the above documentation link.

 '''

 # Initialize the connection and GCode driver

 gcode_driver = gcode.DriverGCode(self.serialID)

 gcode_driver.start_serial()

 gcode_driver.initGRBL()

 gcode_driver.run_command("sand")

 gcode_driver.run_command("zup")

 b = radius

 ''' The point P moves along the radius b. '''

 t = 10

 ''' And is translated every step by the angle t

(deg) '''

 a = fixed_circle_radius

 ''' The circumference the circle rotates along. '''

 x = self.xArenaCenter

 y = self.yArenaCenter

 translation_angle = 1

CHAPTER 12 THE SAND MACHINE PART 4

338

 while (translation_angle < 360):

 x = ((a + b) * math.cos(translation_angle))

+ (b * math.cos(((a + b) / b) * translation_

angle)) + self.xArenaCenter

 '''

 A more readable version of the x formula:

 x = (a + b) cos t + b cos {[(a + b)/b] t}

 '''

 y = ((a + b) * math.sin(translation_angle))

+ (b * math.sin(((a + b) / b) * translation_

angle)) + self.xArenaCenter

 '''

 A more readable version of the y formula:

 y = (a + b) sin t + b sin {[(a + b)/b] t}

 '''

 gcode_driver.GCODE_exec("G01 X " + str(x) +

 " Y " + str(y) +

 " F" + str(self.feedRate))

 # Updated the homing coordinates

 gcode_driver.update_axes_coordinates(x, y)

 translation_angle = translation_angle + t

 print("x ", x, " y ", y, " t ", translation_angle)

 # Close the connection and exit

 gcode_driver.run_command("zdown")

 gcode_driver.soft_homing(self.xArenaCenter, self.

yArenaCenter)

 gcode_driver.run_command("home")

 gcode_driver.quit()

CHAPTER 12 THE SAND MACHINE PART 4

339© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_13

CHAPTER 13

Upcycling a
Rotary Phone

Figure 13-1. The vintage rotary phone that hosted this chapter's
project, before the transformation

https://doi.org/10.1007/979-8-8688-0080-1_13#DOI

340

I can’t imagine Ray's surprise when the appliance caught his
eye; he hadn't such a device in at least 30 years.

Hello? Is there anybody in there?
Just nod if you can hear me. Is there anyone home?

(Pink Floyd, “Comfortably Numb”)

He was expecting anyone to answer from the rotary phone—he

randomly composed a three-cipher number—and surprisingly, the phone

answered him. It took two or three minutes to realize he was speaking to

anyone else but the phone.

When Ray mentioned this episode during one of our calls some

months after his incredible adventure, the story sounded like a challenge:

I want one, too; I want to make one, I thought! After some research and

analysis, the “Rotary Phone” project became a reality.

Another fact from my past played a crucial role in designing this

project. When I was a kid, the national phone company in Italy, for some

years, provided a fairy tale service. You called a short number to hear a

three-minute tale, which differed every day. I still remember the feel of

these stories and won’t soon forget.

13.1. Investigating the Parts

Starting from the idea of making an interactive new kind of device, before

advancing any hypothesis of how to actually do it, I deeply analyzed the

phone to determine which components were reusable for interfacing with

a computer and which had to be removed.

I also decided that to achieve the features I had in mind in

this upcycling project, using an Arduino board—or any other

microcontroller—was not an option. I decided to move to a Raspberry Pi

B3. After the experience of making this project, I suggest you consider this

CHAPTER 13 UPCYCLING A ROTARY PHONE

341

a minimal requirement if you want to try a similar, challenging adventure.

Of course, the next-generation models are also acceptable. The Pi3 B4 is

a good-performing embedded Linux machine, and I have used it in many

other projects.

After carefully disassembling the rotary phone, you must check the

components, determine their role, and consider if you can reuse or remove

them from the upcycled device:

• Hang-up switch: Detects when the caller picks up the

phone receiver microphone; it can be converted to the

power on/off switch.

• Handset: Used by the caller to hear the voice and speak

in the microphone; perfect for hosting a couple of small

speakers.

• Rotary dialer: This is the most interesting part. It

can be converted into a numeric interface used as a

numeric keyboard. The interfacing process was more

challenging than expected.

• Ringer: Do we need to use it? As the upcycled device

will include audio features, this is a part that can be

removed. Removing the ring bell and the internal

ring solenoid is the only way to make space inside the

phone. See Figure 13-2.

CHAPTER 13 UPCYCLING A ROTARY PHONE

342

Figure 13-2. The two most important parts of the phone are the
rotary dialer and the ring bell. The ring bell became redundant for the
project and was removed with the solenoid circuit that excites the bell
during an ongoing call

13.1.1. Upcycling, Not Restoring

Do not confuse the meaning of upcycling with restoring. Restoring means

regenerating an old device—sometimes one that’s broken—and preserving

its original features and aspects as much as possible.

Not to offend vintage restoration enthusiasts, but upcycling moves to

the next step. This means transforming an appliance, preferably electronic,

electric, or electromechanical, into something different and perhaps

entirely innovative.

CHAPTER 13 UPCYCLING A ROTARY PHONE

343

In this case, when added to an embedded Linux board and a bunch of

discrete components (mostly resistors and capacitors), this analog rotary

telephone becomes an interactive appliance with entirely new features.

See Figure 13-3.

Figure 13-3. I fully disassembled the telephone to understand the
space distribution inside the device and how to use some parts. The
rotary numbers generator is a relatively modern model, compact and
closed inside a plastic box

13.1.2. Removing the Ring Bell

I decided to remove the bell to free up space inside of the device. This

means the ring must be controlled with digital low-voltage signals, which

can be more complex than you imagine.

CHAPTER 13 UPCYCLING A ROTARY PHONE

344

The bell rings by the vibration of a small metal hammer connected

to a solenoid, and this circuit works at a relatively high voltage. On the

telephone board, an analog circuit with a transformer, provides the needed

voltage and power from the phone line cable.

It would be possible to reverse engineer this circuit to adapt it to 5V,

but this solution risks creating a lot of extra circuitry for a task that’s easier

to solve in other ways.

The ringing circuitry components are soldered on a single-side thick

PCB that also hosts the pick-up switch of the telephone. After desoldering

these components and deriving a couple of wires in correspondence to

the switch, I screwed the bare PCB inside the phone case. At this point,

I had sufficient space inside the phone to fit the Raspberry Pi and other

components required by the audio session. See Figure 13-4.

Figure 13-4. After the phone was fully disassembled, the PCB
components used for the ringer were desoldered. After removing the
elements, the board, screwed to the phone base, is the support for the
phone switch that will become the on/off switch of the project

CHAPTER 13 UPCYCLING A ROTARY PHONE

345

I also removed some plastic components to maximize the space inside

the phone; these were finalized to support the ringer bell and the hammer.

While making this change, I also improved the air circulation. If you

have experienced working with the Raspberry Pi, an essential factor to

consider is providing an efficient cooling system, especially when the

device is pushed to its maximum performance. See Figure 13-5.

Figure 13-5. To recover as much space as possible inside the phone,
part of the plastic support of the ringer bell was cut. The curring has
also been enlarged to improve the air circulation for better cooling of
the Raspberry Pi

CHAPTER 13 UPCYCLING A ROTARY PHONE

346

13.2. The Rotary Dialer

Regardless of their external aspects, not all the rotary phones available

on the market were identical. The common characteristic of these

components is that they are essentially pulse generators. How they worked

and provided the pulse counts associated with the numbers depended on

the brand and the telephone line they were connected to. For example, the

number of pulses differs between Europe and the United States.

Also, knowing the common general principle they are based on, I had

to investigate how this specific model worked. Using a tester capable of

producing a signal graph, I verified the functioning of the rotary dial when

a digit is dialed. In my case, each digit on the rotary dial corresponds to an

equal number of pulses—one pulse for 1, two for 2, and so on, except for

zero, which generates ten pulses. In addition, the pulses are generated by

an analog mechanism—nothing digital! See Figure 13-6.

CHAPTER 13 UPCYCLING A ROTARY PHONE

347

Figure 13-6. Data log of a series of pulses from the rotary dial. As the
pulse generator is electromechanical, the duration of the pulses is not
precise but average. I count a pulse based on its minimal duration,
and the systematic error should be a software concern

The rotary dial has four wires. Two wires close a contact when the dial

is rotated clockwise; the contact between these wires remains closed until

the dial is released to return automatically to the original position through

a circular spring by turning counterclockwise. The other two wires open

and close a contact multiple times while the dial is released to dial a digit,

producing a series of pulses corresponding to the dialed number—the digit

0 corresponds to ten pulses, 1 corresponds to one pulse, and so on.

CHAPTER 13 UPCYCLING A ROTARY PHONE

348

To input the pulses and detect when the dial rotates clockwise—this is

the “start” signal—for every couple of contacts, I connected one of the two

wires to the 5Vcc to read the contact closing on the other wires.

13.3. Embedding Audio and Controls

Starting with the Raspberry Pi model 3, the platform improved its audio

capabilities compared to the previous models, which used lower-quality

PWM audio. Model 3 introduced a more powerful digital audio output,

including an audio out 3mm stereo plug.

Hearing the audio directly by connecting a pair of earbuds to the audio

out of the Raspberry Pi was not a very interesting solution. I decided to

add an amplifier and a cheap Chinese portable Bluetooth amplified stereo

speaker was perfect.

I got and fully disassembled one of these devices (you can find one

in any bazaar for $10 or less) to reverse-engineer the control circuit and

isolate the components out of the box. See Figure 13-7.

CHAPTER 13 UPCYCLING A ROTARY PHONE

349

Figure 13-7. The two speakers of the amplifier fit in the handset,
soldered to the small battery-operated amplifier using the original
handset cable

The problem I faced was with the amplifier board. The device operates

in three modes: Bluetooth, microSD, and line-in (which is what I needed)

using a Setting pushbutton. The default operating mode when it is

powered on—through a second pushbutton—is Bluetooth. The battery is

charged by the on-board USB connector.

To make it usable, I needed to power on the board when the handset

telephone switch was activated and power it off when the handset was

in place, closing the communication. In addition, on every power-on

cycle, the board should be set to the line-in mode by pressing the Setting

button twice.

CHAPTER 13 UPCYCLING A ROTARY PHONE

350

The Raspberry Pi’s software logic should perform all these operations

and a circuit is needed. See Figure 13-8.

Figure 13-8. The small amplifier board of the speakers. I soldered
two couples of wires to the Power-on and Mode pushbuttons,
controlled by the Raspberry Pi

13.3.1. A Circuit to Control All

The Raspberry Pi exposes most of the hardware protocol ports (I2C,

UART, PWM, etc.), bare GPIO pins, and the 3.3Vcc, 5Vcc, and GND signals

through a 26-pin connector. The signals can be controlled via software,

including Python, with the Pi I/O library. See Figure 13-9.

CHAPTER 13 UPCYCLING A ROTARY PHONE

351

Figure 13-9. The Raspberry Pi 3B GPIO connector with the signals
assigned to every pin

CHAPTER 13 UPCYCLING A ROTARY PHONE

352

As mentioned, I planned to reuse the telephone components, as well

as the control of the required circuitry, to interface them to the embedded

Linux machine. Regardless of their original use, you can assume that after

the transformation, all the events to detect and generate are just temporary

switches.

Note The GPIO signals assigned to the Raspberry Pi can be subject

to changes between models. For this reason, I always refer to the

GPIO number instead of the connector PINs. To use a different Linux-

embedded platform, you must check the connector's data sheet and

the corresponding pin assignment.

Of course, the two pushbuttons of the amplifier (Power and Mode

setting) are digital. To operate the buttons without pressing them, you can

use a simple NPN transistor to close the circuit the same way as when the

pushbuttons are pressed.

In all the other cases, you need to simulate a pushbutton as the

contacts are passive; these are like special temporary switches without any

electronics. See Figure 13-10.

CHAPTER 13 UPCYCLING A ROTARY PHONE

353

Figure 13-10. Schematic of the simple circuit associated with the
GPIO pins of the Raspberry Pi to control all the functions of the
upcycled phone

CHAPTER 13 UPCYCLING A ROTARY PHONE

354

13.3.2. The Breadboard Shield

According to the drafted circuit, I made a breadboard PCB to which I

soldered a female connector to fit the Raspberry Pi’s male GPIO connector.

As there are only a few components—resistors, capacitors, and two

transistors—it was not worth designing a PCB circuit for a single piece. In

most cases, upcycling projects do not need a dedicated PCB for one piece

only. On the contrary, a separate bench test of the circuit parts is always

good practice, regardless of whether they are straightforward.

Still considering the concerns of the reduced available space, I

excluded adopting connectors and soldered the wires directly on the

PCB. See Figure 13-11.

Figure 13-11. The PCB breadboard connected to the Raspberry
GPIO with the components and the upcycled telephone wires directly
soldered on the circuit

CHAPTER 13 UPCYCLING A ROTARY PHONE

355

13.3.3. A Minimal Interface

This project’s user interface is based on audio feedback. All the logic is

based on dialing a short code number of three ciphers to get help or enable

the associated feature. For this reason, there is no display or other screen-

like visual interface.

Three states of the machine instead need a small visual aid: When

the system is powering up—and the audio is still to be powered and

set—during the composition of a number and a ready state indicator. For

this reason, I included three Raspberry GPIO pins dedicated to driving

three LEDs.

To avoid altering the device’s design, I added two holes in front of the

cover, resembling the multiline telephones used in offices in the same

period. The three LEDs are inset in two circular covers I designed and 3D

printed with transparent resin. See Figure 13-12.

Figure 13-12. The front side of the telephone cover case has two holes
to host the status LEDs. The LEDs are covered by cover elements 3D
printed with transparent resin

CHAPTER 13 UPCYCLING A ROTARY PHONE

356

On the right side, the blue LED indicates the telephone is ready, and

on the left, a red LED indicates the system is powered on. A third orange

LED blinks when a number is dialed.

After the device was completed and assembled, and the functional

tests were positive (see Figure 13-13), I started to develop the logic of the

upcycled rotary dial telephone.

Figure 13-13. The complete assembly of the upcycled rotary
telephone before closing the case to start developing the logic

CHAPTER 13 UPCYCLING A ROTARY PHONE

357© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_14

CHAPTER 14

The Rotary Phone
Software
The Rotary Phone’s core is a Raspberry Pi 4B; the software consists of a

series of modules running several tasks involving hardware and business

logic. The components run on the Raspbian Linux distribution for the

Raspberry Pi (Debian-derived).

The high-level application, developed in Python for its convenience,

seamlessly manages the hardware control modules developed in C++.

The Python main application’s role is to trigger the events generated by

user interaction and schedule the execution of independent processes,

ensuring a user-friendly interaction with the Rotary Phone.

The program’s business logic and the tasks it triggers are governed

by JSON files. These files, easily configurable, provide a high degree of

flexibility in customizing the behavior of the Rotary Phone, adapting it to

various user needs and preferences.

Some extra application components are directly managed as Linux

subprocesses controlled by the Python main program.

https://doi.org/10.1007/979-8-8688-0080-1_14#DOI

358

Note According to the JSON configuration files, the main

application can launch external processes running Linux commands

or applications executing Bash commands. The software’s available

features can be customized and replaced by any other application

that can run from the Bash terminal without impacting the application

workflow.

14.1. The Python Application

The application uses the pigpio library to interface with the Raspberry

Pi GPIO hardware and the subprocess library to manage the external

processes triggered by user interaction. According to the pigpio pin

identification, every pin of the Raspberry Pi GPIO connector used to

control the hardware is defined as an initial constant.

14.1.1. Constants and Control Parameters

The pin numbers should be those mentioned in the Broadcom CPU (the

Raspberry Pi processor). This numbering is not the GPIO connector

number but the effective microprocessor pin.

import time

import pigpio

import subprocess

import json

PI_HIGH = 1

PI_LOW = 0

CHAPTER 14 THE ROTARY PHONE SOFTWARE

359

pin_hangout_led = 4 # Hangout LED indicator (pin 7)

pin_ampli_mode = 15 # Amplifier mode button (pin 10)

pin_dial_counter = 18 # Count the dialed number (pin 12)

pin_dial_detect = 27 # Detect number dialing (pin 13)

pin_ampli_power = 22 # Amplifier power button (pin 15)

pin_phone_hangout = 23 # Phone hangup/hangout input

(pin 16)

pin_dialer_led = 24 # Dialer counter LED (pin 19)

pin_dial_counter_led = 25 # On when the dialer is ready

(pin 22)

The global variables in the following code snippet change their status

depending on the hardware status of the rotary dialer and the state of the

signaling LEDs. Using the rotary dialer, only numeric sequences with the

characters 0-9 are available. The Pi Rotary command codes are limited to

three characters, making it virtually possible to define up to 1,000 different

commands, from 000 to 999.

cb_hangout_handler = 0 # Callback handler for the

hangout switch

cb_dialer_handler = 0 # Callback handler for the

rotary dialer

cb_counter_handler = 0 # Callback handler for the rotary

pulse counter

'"

What is the status of the amplifier, or at least what is it

expected to be? If the amplifier status is not corresponding,

there is a number to dial to reset the status accordingly with

the pick-up switch detector.

'"

ampli_status = False # Become true when the amplifier is in

a powering On/Off state

CHAPTER 14 THE ROTARY PHONE SOFTWARE

360

Initially set to false it is True when the user starts

dialing a number with the

rotary dialer. The status remains True until the rotary

dialer has not completed the

counterclockwise rotation emitting all the impulses

corresponding to the dialed

number.

dialer_status = False # Becomes true when the user starts

dialing a number

Pulse counter of the rotary dialer. When the dialer_status is

high the

counter is incremented while, when the dialer_status goes low

the dialed

number sequence is updated with the last number dialed.

pulses = 0

Compound dialed number in string format. Until a number is

not recognized as a command

the further dialed numbers are queued to the string. If the

number of characters of the

dialed number reach the max length and have no meaning the

number is reset and the counter

restarts to a new number.

dialed_number = ''

Maximum number of characters of the dialed number.

This depends on the numeric command structures decided by the

program. A three-number

command code is sufficient for 999 different commands, maybe

sufficient!

max_numbers = 3

CHAPTER 14 THE ROTARY PHONE SOFTWARE

361

TTS, PLAYER, REBOOT, and WEATHER define the Linux commands

launched as external processes; these can also run concurrently. In fact, a

separate PID is retrieved for every external process without blocking user

interaction through the Python application via the pigpio library.

At this point, it is possible to customize the commands, each

corresponding to a different number, or to add more commands.

Text-to-speech command and parameters

Parameters: -sp = speak, -n = narrator voice (not used)

TTS = ['/home/pi/smartphone/trans', '-sp']

Mp3 play command and parameters. Volume can be a parameter of

the command but in

this case we only use the bare call to the player. The volume

is set globally and is

used by default.

PLAYER = ['mplayer']

Cold reset command

REBOOT = ['sudo', 'reboot', 'now']

Weather command

WEATHER = ['weather']

The sentences_file and music_file files are the two configurable

JSON files defining the parameters of the program and the messages. As

there is not a visual interface, all the messages are converted to voice and

spoken by the TTS process:

Voice comments file

sentences_file = "/home/pi/smartphone/comments.json"

Playlist file

music_file = "/home/pi/smartphone/playlist.json"

CHAPTER 14 THE ROTARY PHONE SOFTWARE

362

14.1.2. The JSON Configuration Files

Two JSON files can be customized to change the application’s behavior

without modifying the code. The first contains all the strings used for the

audio help, and the second defines the MP3 files that can be played with

the corresponding command.

Note In this version of the project, the external commands are

hardcoded. It is not difficult to use the same structure as the JSON

files, including different commands. In this case, a third JSON file

should be created to parametrically define the external commands

and their parameters.

 The comments.json File

The phrases and helpsentences parameters define the dictionary

strings, while the ICAO parameter is related to the weather news. This

is an example of how every command can be parametrized instead of

hardcoding it.

{

 "phrases": 9,

 "list": [

 "Pi-Rotary is ready, dial commands when the red light is

on. Dial 1 1 1 for help",

 "Closing interactive station.",

 "Starting music player",

 "Play the entire playlist.",

 "Now playing",

 "System booted",

 "Playlist content:",

CHAPTER 14 THE ROTARY PHONE SOFTWARE

363

 "titles",

 "Wrong command. Please, redial."

],

 "helpsentences": 10,

 "help": [

 "Usage information",

 "Wait for the red light before dialing a command",

 "Dial 1 2 3: play all the playlist in order",

 "Dial 1 2 4: list all the playlist titles",

 "Dial 3 2 1: play the next track in the playlist",

 "Dial numbers from 4 0 1 to play the corresponding track in

the playlist",

 "Dial 6 6 6: hot reset the Pi Rotary",

 "Dial 9 9 9: cold reset the Pi Rotary",

 "Dial 1 0 0: hear last weather report",

 "Dial 1 1 1: these help notes"

],

 "ICAO": "EBBR",

 "airport": "Weather from airport station of Bruxelles.

Please wait."

}

 The playlist.json File

This file defines four parameters: tracks, folder, files, and songs.

The MP3 song files should be three-character numbers from 001 to the

maximum number of tracks. For every filename in the files dictionary,

the song title is defined in the same position as the songs dictionary.

The folder key parametrizes the relocation of the MP3 files folder in

the system.

CHAPTER 14 THE ROTARY PHONE SOFTWARE

364

{

 "tracks": 20,

 "folder": "/home/pi/Music/",

 "files": [

 "001",

 "002",

 "003",

 "004",

 "005",

 "006",

 "007",

 "008",

 "009",

 "010",

 "011",

 "012",

 "013",

 "014",

 "015",

 "016",

 "017",

 "018",

 "019",

 "020"

],

 "songs": [

 "Precious illusions",

 "Hang on to me tonight",

 "Voyager",

 "Chiquitita",

 "Elephant gun",

 "Suzanne",

CHAPTER 14 THE ROTARY PHONE SOFTWARE

365

 "Tired of sleeping",

 "The Wall",

 "Is there any way out of this dream?",

 "It's all over now, baby blue",

 "The wall",

 "Heroes",

 "Mother",

 "The boxer",

 "Tonight",

 "One of these days",

 "Knockin' on Heaven's door",

 "Missis Robinson",

 "Little bird",

 "Angel in my heart"

]

}

14.1.3. Event-driven Application

The user interaction controls the application business logic through the

switches and the rotary dialer. In this way, all the application functions run

asynchronously through callbacks.

The main function, launched at startup, only initializes the hardware

interface and enables the events callbacks. See Listing 14-1.

Listing 14-1. The Main Function

if __name__ == '__main__':

 # Main application

 initGPIO()

 # looping infinitely

 while True:

 pass

CHAPTER 14 THE ROTARY PHONE SOFTWARE

366

 The initGPIO() Function

Initialize the GPIO library and set the callback for the interested pins using

the corresponding function. To avoid hardware problems, the Broadcom

GPIO pin 28 should not be set to a callback.

The initGPIO() function is composed of three parts: hardware GPIO

pin initialization, starting the callbacks functions, and loading the music

JSON dictionary. See Listing 14-2.

Listing 14-2. The initGPIO() Function

 # Set the output pins

 pi.set_mode(pin_hangout_led, pigpio.OUTPUT)

 pi.set_mode(pin_ampli_mode, pigpio.OUTPUT)

 pi.set_mode(pin_ampli_power, pigpio.OUTPUT)

 pi.set_mode(pin_dialer_led, pigpio.OUTPUT)

 pi.set_mode(pin_dial_counter_led, pigpio.OUTPUT)

 # Set the input pins

 pi.set_mode(pin_dial_counter, pigpio.INPUT)

 pi.set_pull_up_down(pin_dial_counter, pigpio.PUD_DOWN)

 pi.set_mode(pin_dial_detect, pigpio.INPUT)

 pi.set_pull_up_down(pin_dial_detect, pigpio.PUD_DOWN)

 pi.set_mode(pin_phone_hangout, pigpio.INPUT)

 pi.set_pull_up_down(pin_phone_hangout, pigpio.PUD_DOWN)

 # Set the callback for the interested pins and get the

handlers

 set_callbacks()

 # Load the music lists

 with open(music_file) as file:

 dictionary = json.load(file)

CHAPTER 14 THE ROTARY PHONE SOFTWARE

367

 track_list = dictionary['files']

 track_titles = dictionary['songs']

 tracks = int(dictionary['tracks'])

 music_path = dictionary['folder']

 # Load the message tracks

 with open(sentences_file) as file:

 dictionary = json.load(file)

 num_messages = dictionary['phrases']

 help_strings = dictionary['helpsentences']

 text_messages = dictionary['list']

 help_messages = dictionary['help']

 weather_airport = dictionary['airport']

 weather_ICAO = dictionary['ICAO']

 reinit()

14.1.4. Callback Functions

For every independent event triggered by the user interaction, there is

the set_callback function and the corresponding reset to disable the

callback. The callback reset functions are needed because not all the

triggered events can run concurrently. See Listing 14-3.

Listing 14-3. The Callback Functions

def set_callbacks():

 '''

 Enable the callback functions associated to the GPIO pins

 and save the callback handlers

 '''

 global pi

CHAPTER 14 THE ROTARY PHONE SOFTWARE

368

 global cb_counter_handler

 global cb_dialer_handler

 global cb_hangout_handler

 cb_hangout_handler = pi.callback(pin_phone_hangout, pigpio.

EITHER_EDGE, hangout)

 cb_dialer_handler = pi.callback(pin_dial_detect, pigpio.

EITHER_EDGE, dial_detect)

 cb_counter_handler = pi.callback(pin_dial_counter, pigpio.

EITHER_EDGE, pulse_count)

 # LED high when the rotary is accepting numbers

 pi.write(pin_dial_counter_led, PI_HIGH)

def release_callbacks():

 '''

 Disable the callback functions

 '''

 global pi

 global cb_counter_handler

 global cb_dialer_handler

 global cb_hangout_handler

 cb_hangout_handler.cancel()

 cb_dialer_handler.cancel()

 cb_counter_handler.cancel()

 # LED high when the rotary is accepting numbers

 pi.write(pin_dial_counter_led, PI_LOW)

def cb_release_rotary():

 '''

 Cancel the specific callback functions (disable the

interrupt)

CHAPTER 14 THE ROTARY PHONE SOFTWARE

369

 associated to the rotary dialer

 '''

 global pi

 global cb_counter_handler

 global cb_dialer_handler

 cb_counter_handler.cancel()

 cb_dialer_handler.cancel()

 # LED high when the rotary is accepting numbers

 pi.write(pin_dial_counter_led, PI_LOW)

def cb_set_rotary():

 '''

 Enable the specific callback functions (disable the

interrupt) associated to the rotary dialer

 '''

 global pi

 global cb_counter_handler

 global cb_dialer_handler

 cb_dialer_handler = pi.callback(pin_dial_detect, pigpio.

EITHER_EDGE, dial_detect)

 cb_counter_handler = pi.callback(pin_dial_counter, pigpio.

EITHER_EDGE, pulse_count)

 # LED high when the rotary is accepting numbers

 pi.write(pin_dial_counter_led, PI_HIGH)

def cb_set_hangout():

 '''

 Set the hangout callback

 '''

CHAPTER 14 THE ROTARY PHONE SOFTWARE

370

 global pi

 global cb_hangout_handler

 cb_hangout_handler = pi.callback(pin_phone_hangout, pigpio.

EITHER_EDGE, hangout)

14.1.5. Triggered Events

Every event function triggered by a callback has a set/reset sequence

of the callback functions that should not be intercepted, as it can’t run

concurrently. This prevents, for example, launching the same command

twice. See Listing 14-4.

Listing 14-4. The Triggered Events

def play_all_tracks():

 '''

 Play all the tracks on the playlist.json file

 after powering the amplifier and announcing every

track title.

 Then power off the amplifier.

 '''

 global track_position

 global is_playing

 global music_path

 global tracks

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 # Start from the first track of the playlist

 track_position = 0

CHAPTER 14 THE ROTARY PHONE SOFTWARE

371

 # Announce the initial message

 txt = text_messages[3] + ' ' + text_messages[2]

 runCmd([TTS[0], TTS[1], txt])

 # Play tracks until the playlist ends

 while track_position < tracks:

 debug_message('pos ' + str(track_position) + ' tracks '

+ str(tracks))

 # Announce the name of the track

 txt = text_messages[4] + ' ' + track_titles[track_

position]

 runCmd([TTS[0], TTS[1], txt])

 # Create the track file name and play it

 txt = music_path + track_list[track_position] + '.mp3'

 runCmd([PLAYER[0], txt])

 # Update the track number

 track_position += 1

 # Stop the playing loop if the user hangout

 if pi.read(pin_phone_hangout) is PI_LOW:

 break;

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def list_all_tracks():

 '''

 Tell all the tracks on the playlist.json file

CHAPTER 14 THE ROTARY PHONE SOFTWARE

372

 after powering the amplifier and saying every track title.

 Then power off the amplifier.

 '''

 global is_playing

 global tracks

 global track_titles

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 # Announce the initial message

 txt = text_messages[6] + ' ' + str(tracks) + ' ' + text_

messages[7]

 runCmd([TTS[0], TTS[1], txt])

 counter = 0 # Playlist title counter

 # Play tracks until the playlist ends

 while counter < tracks:

 # Announce the name of the track

 txt = ' ' + str(counter + 1) + ': ' + track_

titles[counter] + ", "

 runCmd([TTS[0], TTS[1], txt])

 # Update the title number

 counter += 1

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

CHAPTER 14 THE ROTARY PHONE SOFTWARE

373

def say_help():

 '''

 Tell the help notes.

 '''

 global is_playing

 global help_strings

 global help_messages

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 counter = 0 # Playlist title counter

 # Play messages

 while counter < help_strings:

 txt = help_messages[counter]

 runCmd([TTS[0], TTS[1], txt])

 # Update the title number

 counter += 1

 # Disable the amplifier, if it is not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def play_track():

 '''

 Play a track based on the parameters of the playlist.

json file after powering the amplifier and announcing the

track title.

CHAPTER 14 THE ROTARY PHONE SOFTWARE

374

 Then power off the amplifier.

 '''

 global track_position

 global is_playing

 global music_path

 global tracks

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 # Announce the name of the track

 txt = text_messages[4] + ' ' + track_titles[track_position]

 runCmd([TTS[0], TTS[1], txt])

 # Create the track file name and play it

 txt = music_path + track_list[track_position] + '.mp3'

 runCmd([PLAYER[0], txt])

 # Increment the number of the track and if the value

is bigger

 # than the max number of tracks it is reset.

 track_position += 1

 if track_position == tracks:

 track_position = 0

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

CHAPTER 14 THE ROTARY PHONE SOFTWARE

375

The check_number() function acts as a menu according to the

recognized three-digit commands executed with the rotary dialer. When

a command is recognized, the set/reset callback pattern is configured

accordingly. See Listing 14-5.

Listing 14-5. The check_number() Function

def check_number():

 '''

 Check if the current number corresponds to a valid command.

 '''

 global dialed_number

 global track_position

 global pi

 debug_message(str(dialed_number))

 # Numeric commands and related functions

 if dialed_number is not '':

 if int(dialed_number) == 666:

 # Restart the application to initial conditions

 dialed_number = ''

 reinit()

 # Play the next track

 elif int(dialed_number) == 321:

 # Disable the interrupts until finished

 release_callbacks()

 # Start playing the next track

 play_track()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

CHAPTER 14 THE ROTARY PHONE SOFTWARE

376

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 # Play all tracks in sequence

 elif int(dialed_number) == 123:

 # Disable the interrupts until finished

 release_callbacks()

 # Play the entire playlist

 play_all_tracks()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 # Tell the playlist titles

 elif int(dialed_number) == 124:

 # Disable the interrupts until finished

 release_callbacks()

 # Tell the playlist titles

 list_all_tracks()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 # Play the desired track

 elif (int(dialed_number) <= tracks + 400) and

(int(dialed_number) > 400):

 track_position = int(dialed_number) - 401

CHAPTER 14 THE ROTARY PHONE SOFTWARE

377

 # Disable the interrupts until finished

 release_callbacks()

 # Start playing the next track

 play_track()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 # Tell the help notes

 elif int(dialed_number) == 111:

 # Disable the interrupts until finished

 release_callbacks()

 # Tell the help messages

 say_help()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 elif int(dialed_number) == 999:

 # Reboot the system

 runCmd([REBOOT[0], REBOOT[1], REBOOT[2]])

 # Tell the weather

 elif int(dialed_number) == 100:

 # Disable the interrupts until finished

 release_callbacks()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

378

 # Retrieve and say the weather message

 get_weather()

 # Enable the interrupts

 cb_set_hangout()

 # If the hangout is still active, enable the

dialer too

 if pi.read(pin_hangout_led) is PI_HIGH:

 cb_set_rotary()

 elif int(dialed_number) == 999:

 # Reboot the system

 runCmd([REBOOT[0], REBOOT[1], REBOOT[2]])

14.1.6. Low-level Functions

The low-level functions are a small set of methods that launch the

hardcoded commands as external processes. See Listing 14-6.

Listing 14-6. The Low-Level Functions

 def list_all_tracks():

 '''

 Tell all the tracks on the playlist.json file

 after powering the amplifier and saying every track title.

 Then power off the amplifier.

 '''

 global is_playing

 global tracks

 global track_titles

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

379

 # Announce the initial message

 txt = text_messages[6] + ' ' + str(tracks) + ' ' + text_

messages[7]

 runCmd([TTS[0], TTS[1], txt])

 counter = 0 # Playlist title counter

 # Play tracks until the playlist ends

 while counter < tracks:

 # Announce the name of the track

 txt = ' ' + str(counter + 1) + ': ' + track_

titles[counter] + ", "

 runCmd([TTS[0], TTS[1], txt])

 # Update the title number

 counter += 1

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def say_help():

 '''

 Tell the help notes.

 '''

 global is_playing

 global help_strings

 global help_messages

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

380

 counter = 0 # Playlist title counter

 # Play messages

 while counter < help_strings:

 txt = help_messages[counter]

 runCmd([TTS[0], TTS[1], txt])

 # Update the title number

 counter += 1

 # Disable the amplifier, if it is not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def play_track():

 '''

 Play a track based on the parameters of the playlist.

json file after powering the amplifier and announcing the

track title.

 Then power off the amplifier.

 '''

 global track_position

 global is_playing

 global music_path

 global tracks

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

381

 # Announce the name of the track

 txt = text_messages[4] + ' ' + track_titles[track_position]

 runCmd([TTS[0], TTS[1], txt])

 # Create the track file name and play it

 txt = music_path + track_list[track_position] + '.mp3'

 runCmd([PLAYER[0], txt])

 # Increment the number of the track and if the value

is bigger

 # than the max number of tracks it is reset.

 track_position += 1

 if track_position == tracks:

 track_position = 0

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def tts_message(msg):

 '''

 Prepare the message msg to be played as an audio command

 :param msg: The message code accordingly with the list in

the json file

 :return: 0 or the tts bash command execution error code

 '''

 # Create the full text message

 tText = text_messages[msg]

 return runCmd([TTS[0], TTS[1], tText])

CHAPTER 14 THE ROTARY PHONE SOFTWARE

382

def runCmd(cmd, extra_info = False):

 '''

 Execute a subprocess command managing the return value,

stdout, stderr and the return code (0 or not 0 if error

occurred)

 :param cmd: The bash command with the parameters

 :return: 0 or the error returncode

 '''

 proc = subprocess.Popen(cmd,

 stdout=subprocess.PIPE,

 stderr=subprocess.PIPE,

)

 stdout, stderr = proc.communicate()

 return proc.returncode # , stdout, stderr

def get_weather():

 '''

 Retrieve the weather from the nearest airport. The desired

international airport weather station ICAO four character

code should be set in the comments.json file.

 The command speaks the weather data returned from the call.

 '''

 global is_playing

 global weather_airport

 global weather_ICAO

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

383

 # Announce the weather retrieval

 runCmd([TTS[0], TTS[1], weather_airport])

 # Execute the weather command

 cmd = [WEATHER[0], weather_ICAO]

 proc = subprocess.Popen(cmd,

 stdout=subprocess.PIPE,

 stderr=subprocess.PIPE,

)

 stdout, stderr = proc.communicate()

 # Divide the weather message in a list of single lines

 # removing the newline characters

 forecast = stdout.splitlines()

 w = 4 # First useful line of the weather forecast

 # Say the forecast meaningful strings (starting from 4)

 # Note that forecast is a list of bytes so every text line

 # should be decoded to the corresponding ASCII string

 while w < len(forecast):

 text = forecast[w].decode('ascii')

 runCmd([TTS[0], TTS[1], text])

 w += 1

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

CHAPTER 14 THE ROTARY PHONE SOFTWARE

384

def wrong_command():

 '''

 Says wrong command if the dialed number is invalid

 '''

 global is_playing

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 # Announce the weather retrieval

 runCmd([TTS[0], TTS[1], text_messages[8]])

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def play_tts_sentence(msg):

 '''

 Play a text message. Call this command only outside of the

playing track as it enables and disables the amplifier

by itself.

 :param msg: The message code accordingly with the list in

the json file

 '''

 global is_playing

 # Enable the amplifier and set the playing flag

 is_playing = True

 ampli_on_off()

 tts_message(msg)

CHAPTER 14 THE ROTARY PHONE SOFTWARE

385

 # Disable the amplifier, if it has not yet disabled by

the user

 if is_playing is True:

 ampli_on_off()

 is_playing = False

def hangout(self, event, tick):

 '''

 Callback function.

 Detect the hangon/hangoff switch of the pickup.

 The status of the switch will power the amplifier

accordingly when needed. When the function is called the

LED is set accordingly to the status of the pin

 '''

 global pi

 global is_playing

 if pi.read(pin_phone_hangout) is PI_HIGH:

 # Disable the interrupts until finished

 release_callbacks()

 # Show the ready LED

 pi.write(pin_hangout_led, PI_HIGH)

 # Activation message

 play_tts_sentence(0)

 # Enable the interrupts

 set_callbacks()

 else:

 # Disable the interrupts until finished

 release_callbacks()

 # End message

CHAPTER 14 THE ROTARY PHONE SOFTWARE

386

 play_tts_sentence(1)

 # Disable the ready LED

 pi.write(pin_hangout_led, PI_LOW)

 # Enable only the hangout interrupt

 reinit()

 cb_set_hangout()

CHAPTER 14 THE ROTARY PHONE SOFTWARE

PART VI

The Process

“Another place I will never figure out until I see it,” said Ray, stepping

inside. Tommy felt guilty and responsible for the situation. Until that

moment, he did not speak, walking head down and looking at the floor.

“Tommy, this place is not as bad as we imagined,” continued Ray.

Tommy looked around. Yes was the only answer he could give.

The prison cell was comfortable, similar to a small apartment. The

most curious aspect was the simple, doorless rectangular entrance. The

room had no windows. It included a small kitchen corner equipped with a

microwave and a half-sized fridge, a small toilet on the opposite side, and

two beds, one in front of the other immediately beside the entrance. Ray

noted a digital watch over the entrance wall. The digits showed 11:37.

“Tommy, look, it is a countdown.”

Tommy sat on the right bed, raising his head blankly. Ray was trying to

appear less worried than he was. He started a compulsory exploration of

the room.

“Tommy, there is good food in the fridge! We can heat up something

if you are hungry. There is also a coffee machine...” – Tommy showed no

interest in their surroundings.

“Tommy, please,” said Ray, sitting close to his son.

“Stop with this deadly expression. This will not help.” Ray put his arm

around Tommy’s shoulder.

“Beating yourself up over a mistake is useless.” Tommy looked at his

father, drafting a weak smile. “That is the worst smile I have ever seen on your

face,” Ray said. At this point, Tommy smiled at his father and relaxed slightly.

388

“Come on, stand up and come with me,” Ray suggested.

“Let’s sit at that table and catch each other up on this incredible

adventure. Maybe we can come up with a plan.” Tommy nodded,

unconvinced, and slowly went to the table. After Ray carried some food

from the fridge and put it on the table, they realized that the last time they

had eaten was at least 12 hours ago.

Ray prepared sandwiches with peanut butter. They also had bacon,

chicken salad, some pre-cooked pancakes heated in the microwave, and

orange juice. Ray made black coffee for himself. Tommy wasn’t a coffee

drinker like Ray.

They devoured the first two sandwiches, and then Tommy showed a

brighter expression and started talking about his journey.

“Look,” said Tommy, pulling out of his pocket the amusement park

leaflet with a suggested path marked on the map on the back.

“I saw you here, at the main visitors’ entrance!” Ray exclaimed.

“I suppose yes,” Tommy answered. “I found a weird robot that

welcomed me and handed me this leaflet,” said Tommy, showing the

leaflet.

“Strangely, only its upper body moved. It was dressed in a curious,

striking uniform but was just a machine impersonating the ticket

controller. Then, I passed through a rotating door and started exploring

around,” concluded Tommy.

“Instead, I entered from the opposite side, a long corridor used for

maintenance or something like that,” Ray added. “Now I can understand

Sonya’s first words...”

“Who is Sonya?” Tommy asked.

“I am confused about her,” Ray said. “She is... someone who appears

whenever I am lost while searching for you. It is a complex answer,

Tommy. She acts as my guide, a friend, maybe more than a friend... It’s

complicated.” Tommy was listening with rapt attention.

PART VI THE PROCESS

389

“The first time I met her, she asked why I entered from the thousand

doors side. As far as I know, Sonya is the only other human living in

the park.”

“There are a thousand doors? Really?” Tommy interrupted.

“Yes,” Ray continued. “When you suddenly disappeared, I spent hours

searching for a combination to activate the cryptex again. Then, when

I wrote the number 6736, I was allowed to enter. Maybe every time the

access to the portal changes,” he concluded.

“But I entered another number!” Tommy said.

“I entered 2384. I remember very well.”

“And why did you try that combination?” Ray asked.

“I have no idea. I was just playing with some random numbers.”

“Let me see...,” Ray said, taking his Palm out of his pocket. He showed

Tommy an image reproducing an old rotary dialer.

“Look,” he said to his son, showing the tiny black and white screen.

“Every number also represents a group of characters. After trying every

possible numeric sequence I knew, I figured this was my last chance, and it

worked. I entered “OPEN,” corresponding to the number 6736.”

Tommy looked up at his father, full of admiration.

“Are you sure you entered 2384?,” asked Ray. Tommy nodded.

“Due to an incredible coincidence, you entered the word BDTH, which

is the name of this place. I never imagined something like this.”

“But the name of the amusement park is longer than that!,”

Tommy said.

“That’s true,” Ray answered. “The full name is BDTH6159. But all the

robots I spoke with during my journey always mentioned BDTH only.

They never added the other four numbers.” Ray started playing on the

Palm screen.

“There should be a reason,” Ray murmured. “The four ciphers should

be related to the name. Let me try...”

“This place is full of enigmas!” exclaimed Tommy.

PART VI THE PROCESS

390

“Wait, there should be an explanation, “Ray stated, focusing on the

Palm screen and writing something with the small pen on the capacitive

surface of the device.

Tommy counted 17 minutes on the wall display before Ray finally

looked at him with a satisfied expression.

“I figured it out!” Solving challenging enigmas has always been one of

Ray’s preferred activities.

“Look,” Ray said, showing the solution to his son. “The number 6159 is

related to the name, and if I am right, every word that activates the cryptex

is related to a number that has meaning inside this world. Unfortunately, I

can’t imagine what it is.”

Tommy looked at his father with admiration.

“Look,” Ray followed.

“Reducing BDTH to numbers you already know, the result is 2584. The

trick is finding the generator key. It is so simple that I missed finding it at

first. The generator key is the number four!,” he continued.

“How do obtain the number 6154 from 2384 (BDTH)? To every cipher

of the first sequence of four, respectively, you:

• Add four

• Subtract four

• Sum the first and second cipher

• Sum the third and fourth cipher

“You’re a genius, dad!” Tommy exclaimed with a shining expression on

his face.

“Ray, I am impressed!” Ray immediately recognized Sonya’s voice at

the room’s entrance. “You decoded and found the algorithm of the four

ciphers,” she concluded by crossing the room to sit at the table.

“You must be Tommy,” She said after sitting down.

“Yes...,” Tommy answered.

PART VI THE PROCESS

391

“Tommy, this is Sonya. I told you about her before,” Ray stated, a bit

embarrassed by the unexpected visit.

“You are very smart, Ray. This will be an advantage during the process,”

Sonya continued. Tommy looked proudly at his father.

“But now, you two, follow my advice: go to sleep. Tomorrow will be

a long day.” Ray smiled at her silently. “Have a good night. I will see you

tomorrow.” Then she left the room.

“Tommy, she is correct; we need a rest.” Ray said, approaching the left

bed. Tommy nodded and followed his father. The lights diminished as both

were in their beds, leaving the room in a comfortable darkness.

“Dad, are you already asleep?” “No,” Ray answered.

“These beds remind me of when we crossed a whole state on the night

train. Do you remember?”

“Yes, I remember. Now try to sleep, Tommy,” Ray concluded.

“You and Sonya seem so close,” Tommy said. Then, they both fell into a

deep sleep.

Father and son were fully awake when the light in the room

progressively increased. Ray made black coffee while Tommy prepared a

couple of peanut butter sandwiches. While Ray was drinking his coffee,

standing near the small kitchen, a man in uniform appeared at the room’s

entrance.

“When you are ready, you are invited to go out. Beside the exit, you will

find some important notes regarding this process. Take your time.” He then

went out.

“What a strange accent,” said Tommy.

“He is a robot, Tommy,” Ray answered. “What resembles an accent may

be a defect of his voice processor. Many things in this place need some

serious repairing,” Ray said, eating his sandwich.

The room was connected to the exit door by a long corridor similar

to the one Ray walked through when his journey started, but with better

lighting. A couple of meters before the exit door, on a small desk, a screen

showed a text loop and a big, red button labeled “Press to open the door.”

PART VI THE PROCESS

392

Both read the text loop carefully a couple of times. The first part

concerned the accusation. The text was formal, with redundant

expressions typical of legal language.

The second part was more interesting—it contained instructions on

what to do before the process. Ray found the indications inconsistent

and vague. The only sure thing was they should go to the “Seven Bells

Columns.” One of their duties was choosing their lawyer at the “Judgment

Box.” Maybe it was near the column bells.

The process would start at noon. Concerning the process and

judgment procedure, there were only a few words at the end. It would

develop in three main phases—the audition, where the judge hears the

witnesses; the debate between the prosecutor and the defense; and the

verdict.

The verdict would be dictated the next day when the process ended.

“Not so much,” said Tommy. “I see,” answered Ray with a defeated

expression. As he pressed the button on the desk, the screen went black,

and the exit door slid open, so they stepped out into a hot, sunny day.

“It is not difficult to find the columns,” said Tommy as they were

outside. The magnificent structure of seven columns was visible a few

hundred meters from the exit.

Ray estimated they were at least 50 meters high, and the mechanisms

on the top were difficult to see.

“The diameter of these columns is impressive,” commented Ray. “We

should start from there.” They started walking along the wide gravel lane.

“This place seems different today. All the attractions have stopped,”

Tommy commented.

“True,” confirmed Ray. “Maybe this trial is a major event for the

amusement park population. Remember that no one has visited this place

for decades.” Tommy nodded.

The seven columns were incredible from the inside of the circle. Both

remained silent for a while, intimidated by the building. The diameter of

the column circle was at least 200 meters.

PART VI THE PROCESS

393

In the center, emerging from a big, squared granite block, was a statue

of a scientist bent over a bench soldering a circuit.

“That must be a tribute to the creator,” said Ray. Under the statue, text

engraved on a dark, shiny metal tag stated the three fundamental laws of

robotics.

 1. A robot cannot injure a human being or, through

inaction, allow a human being to come to harm.

 2. A robot must obey the orders given to it by human

beings, except where such orders would conflict

with the First Law.

 3. A robot must protect its own existence as long as

such protection does not conflict with the First or

Second Law.

Reading them, Ray felt a bit more comfortable. “We should search

around; the Judgment Box might be nearby,” said Tommy.

They found the box behind a granite block. It resembled a snack

dispenser from the late 60s. Inside the machine, a neon light was flickering.

Inside, three rows were labeled 1, 3, and 4 with eight horizontal labels,

from A to G.

Due to the lack of regular maintenance, row number 1’s labels were no

longer legible. Row number 3’s eight labels had been replaced by an “Out

of Order” white sticker. The only cell on row number 4 was labeled D.

The glass protecting the cells was dirty and opaque at several points,

while the metallic machine case was rusty.

“It’ll be a miracle if it still works,” commented Ray, examining the

device. On the side, there was a small keyboard with the keys A-G and 1-8

aligned in four rows, and the # and * keys on the fifth row to the bottom.

The two central spaces had a single, double key with the word “ENTE ”

white on red.”

“It was ENTER a long time ago,” commented Tommy.

PART VI THE PROCESS

394

A small metal label on top of the keyboard showed text that was

difficult to read due to the rust.

Only people charged with crimes are allowed to use this machine. Make

your choice of the preferred defense lawyer.

PRESS # TO START

PRESS ENTER TO CONFIRM

PRESS * TO ABORT

“It seems there are not many choices,” said Ray while pressing the

keys “D, 4, ENTER”. Tommy and Ray watched. For a minute or so, nothing

happened, then the machine started with a metallic ticketing for a while,

then silence again.

Finally, after another minute, there was a clang and the sound of

rotating gears. Then, the machine spat out a long paper ticket.

Please give this ticket to the doorman when entering the judgment hall.

The line below, in bold text, mentioned the chosen lawyer:

You chose the defense lawyer D-4. Good luck with your trial.

On the second half of the ticket, a map showed the path to the

judgment hall. “I think we should move, Tommy. We don’t have much

time,” Ray said.

Tommy took the ticket and then moved, following the map. The

judgment hall was a medium-sized wooden construction with a large

entrance. The building was on top of a small hill and opened to a long

stair. The building was not as majestic as the court buildings that Ray and

Tommy were used to seeing on TV. It was a smaller-scale building that

mimicked those more significant courthouses.

When Ray and Tommy reached the middle of the stairs, the powerful

sound of bells announced it was time for the process to start.

“It’s time,” said Tommy. “I see. Don’t be afraid, Tommy,” Ray answered,

seeing his son’s worried expression.

PART VI THE PROCESS

395

Ray handed the ticket to the doorman, who, after a quick look, invited

them to follow him. The doorman opened a large wooden gate to a wide

semicircular room that could hold hundreds of people. The shape and the

distribution of the rows of seats resembled an arena.

In the lower part, the judge was waiting behind a dark mahogany table.

The doorman instructed them to sit in two seats in the first row, the

farthest from the judge. After they sat there, the doorman stood near the

door entrance, maybe waiting for orders.

Ray felt relieved when he saw Sonya come inside and sit beside him.

She didn’t speak but smiled at Ray and Tommy. There was a palpable

sense of anticipation. Ray held Sonya’s hand while the judge hit the

wooden gavel three times on the table, declaring the start of the process.

“Another journey is starting...,” Ray thought, then he focused his

attention on the judge.

PART VI THE PROCESS

397© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_15

CHAPTER 15

Chess with Arduino

UNO R4

Contribution of Luis Garcia.

Figure 15-1. While Ray and Tommy anxiously wait to see how the
destiny wheel will drive their lives, hung to the result of a chess game
between the prosecutor and their lawyer, you’ll see how it is possible
to create a tiny chess engine using a microcontroller and a sketch

https://doi.org/10.1007/979-8-8688-0080-1_15#DOI

398

The “classic” version of Arduino UNO R3, based on the AVR 328p

microprocessor, has survived for years. It is the icon of every maker, and I

bet that the iconic UNO will survive for years to come.

Nowadays, the most recent Arduino boards implement powerful Arm-

based microcontrollers oriented to IoT and embedded Machine Learning

(ML) applications.

The recent Arduino UNO R4, part of this family of innovative Arduino

boards, does not aim to replace the previous model, but completes the

coverage of the wide range of “Arduino” low-cost boards.

This chess project was developed in cooperation with the maker and

friend Luis Garcia—yes he is the technical reviewer of this book—who worked

on the MINIMA model of the Arduino UNO R4. At the same time, I developed

the same project on the Arduino UNO R4 WiFi model. See Figure 15-1.

Figure 15-2. The two Arduino UNO R4 versions (on the market by
2024): the UNO R4 WiFi (left), and the MINIMA (right), the cheaper
of the two models

Chapter 15 Chess with arduino uno r4

399

We developed a project that required some small changes to be

compatible on both board models; the goal was to see if it is possible to

use the Arduino UNO R4 models to play chess against a human in an

appreciably way.

Spoiler: The answer is yes.

15.1. The R4 WiFi and MINIMA Boards

Arduino UNO R4 models host a powerful 32-bit ARM MCU

(Microcontroller Unit) and—only with the WiFi model—an ESP-32s

included on the same board.

The two microcontrollers can work together in different

configurations; the advanced WiFi version of the board also includes an

LED matrix that can be programmed to show short messages and icons.

Both boards have the same form factor as the classic Arduino UNO boards.

15.1.1. UNO R4 WiFi Specifications

The Arduino UNO R4 WiFi board is shown in Figure 15-3. Its specifications

are as follows:

• Microcontroller Renesas RA4M1 (Arm®

Cortex®-M4) 48MHz

• ESP-32 S3 secondary core up to 240MHz

• RA4M1 (main memory): 256KB Flash, 32KB RAM

• ESP-32 S3 memory: 384KB ROM, 512KB SRAM

• USB: USB C power and programming port

• Fourteen digital I/O pins

• Six analog inputs

Chapter 15 Chess with arduino uno r4

400

• One DAC

• Six PWM pins

• UART, I2C, SPI, and CAN bus

• Voltage: 5Vcc, ESP-32 S3 3.3Vcc

• Input voltage (from the power supply): 6-24 V

Figure 15-3. The Arduino UNO R4 WiFi board. The bottom-left
side hosts the ARM microcontroller (MCU) software and hardware
connected to the ESP32-S3 visible to the right of the board. The
architectures support WiFi connection from the sketch through the
ESP secondary microcontroller. On the top left, the programmable
LED matrix.

Chapter 15 Chess with arduino uno r4

401

15.1.2. UNO R4 MINIMA Specifications

The UNO R4 MINIMA is shown in Figure 15-4. Its specifications are as

follows:

• Microcontroller Renesas RA4M1 (Arm®

Cortex®-M4) 48MHz

• RA4M1 (main memory): 256KB Flash, 32KB RAM

• USB: USB C power and programming port

• Fourteen digital I/O pins

• Six analog inputs

• One DAC

• Six PWM pins

• UART, I2C, SPI, and CAN bus

• Voltage: 5Vcc, ESP-32 S3 3.3Vcc

• Input voltage (from the power supply): 6-24 V

Chapter 15 Chess with arduino uno r4

402

Figure 15-4. The MINIMA version of the Arduino UNO R4 board.
The ARM MCU is the same, but the LED matrix and the ESP32-S3 are
absent. Indeed, it is possible to connect an ESP32-S3 secondary board
without difficulty through the GPIO.

15.2. Computers Playing Chess

In 1957, Alex Bernstein developed a program to play a complete chess

game on an IBM 704. The details of this first computer program were

published in Scientific American issue 158. I noticed this historical event

only in 1988—I was born later—when the article was reprinted. I am

not a great chess player, but I am fascinated by the algorithms behind

computer chess.

Chapter 15 Chess with arduino uno r4

403

Between the end of 1970 and the first decades of the 1980s, modern

microprocessors, such as the Rockwell 6502 and the Z80 by Zilog, gave new

life to developing computer chess programs. In 1977, Fidelity Electronics

produced the “Chess Challenger,” the first commercial chess computer.

Although not based on a microcontroller, IBM's Deep Blue represented

a new milestone between 1996 and 1997. This program became famous

for defeating the world chess champion Garry Kasparov in 1997 using the

power of parallel computing.

The mix of scientific and mathematical interest in chess algorithms

and a continuously growing community of open source developers

interested in this topic sparked development.

The algorithms developed over the years remain part of the public

domain heritage. Consider this list of the most popular, starting in the 90s:

• Fritz (1990s - Present):

• Algorithm: Alpha-beta pruning, sophisticated

evaluation functions.

• A commercial chess program that has remained

strong through continuous updates, incorporating

various search optimizations and heuristics.

• Rybka (2005)

• Algorithm: Improved evaluation functions and

efficient search techniques.

• It has dominated computer chess tournaments

with innovative evaluation methods and search

optimizations for several years.

Chapter 15 Chess with arduino uno r4

404

• Stockfish (2008 - Present)

• Algorithm: Alpha-beta pruning, bitboards,

advanced evaluation functions, and

multithreading.

• Open source and consistently one of the strongest

engines, thanks to community contributions and

cutting-edge techniques in search and evaluation.

• Houdini (2010)

• Algorithm: Based on Stockfish and other engines,

with unique evaluation and search improvements.

• Known for its tactical strength and practical

playing style, briefly became the top engine before

Stockfish regained the lead.

• Komodo (2010)

• Algorithm: Focus on evaluation function accuracy

using alpha-beta pruning.

• This strong engine is known for its positional

play and gradual improvements in evaluation

techniques and search strategies.

• AlphaZero (2017)

• Algorithm: Deep neural networks, Monte Carlo

Tree Search (MCTS), and self-play reinforcement

learning.

• Developed by DeepMind, AlphaZero revolutionized

chess engines by learning from scratch through

 self-play, outperforming traditional engines like

Stockfish with innovative, human-like strategies.

Chapter 15 Chess with arduino uno r4

405

Note For those interested, the Github repository https://

github.com/mdoege/PyTuroChamp contains the python

implementation of alan turing’s turoChaMp (1950), John Maynard

smith’s soMa (1961), the Bernstein Chess program (1957), Leonardo

torres y Quevedo's el ajedrecista (1912), and some other related

engines.

15.2.1. A Note on the Chess Algorithms

The general goal of a chess algorithm is to evaluate the possible moves

starting from a certain game position. This evaluation (analysis) aims to

identify the best next move in the game.

Chess algorithms are not strictly related to the whole game evolution;

at any game position, the process can analyze the best move, regardless of

the previous game strategy. Thanks to this approach, chess algorithms can

be used in several ways:

 1. Play an entire game, giving the best response to any

opponent’s move. It doesn't matter if the opponent

is a human player, another algorithm, or the

algorithm itself called alternatively from the white

and black positions.

 2. Based on a certain game position, analyze the

game to find or suggest the best next move. It is

also possible to understand the process made

by humans.

 3. Analyze a game strategy to find all alternative moves

and identify the weak points of the losing side.

Chapter 15 Chess with arduino uno r4

https://github.com/mdoege/PyTuroChamp
https://github.com/mdoege/PyTuroChamp

406

Algorithms approach the Moves Tree analysis considering every

move as a node, to which they assign a rating depending on how well the

node move drives the player to victory or gains a better position on the

chessboard.

 Alpha-Beta Pruning

This algorithm is based on the Min-Max algorithm, which aims to reduce

the number of nodes in the search tree of all possible moves and eliminate

inefficient nodes (pruning the tree).

This algorithm reduces the number of nodes evaluated in the search

tree, allowing for a deeper search and improving the quality of the decision

to make the best move. It is used in many chess algorithms; in fact, the

complete chess algorithm usually applies multiple basic algorithms for the

parts of the game evaluation.

 Bitboard Algorithm

Alpha-beta pruning efficiently searches the tree for all possible next

moves; it is frequently used in conjunction with the Bitboard algorithm.

It is a technique for representing the chessboard and its pieces using

bitwise operations on binary numbers. This method allows for efficient

computation and manipulation of the board state for faster move

generation and evaluation.

 Evaluation Algorithms

While tree search and optimization algorithms speed up the selection of

the next possible moves, the element that differentiates computer chess

players is how the possible moves are rated and how efficiently a certain

computer chess player can apply the game strategy.

Chapter 15 Chess with arduino uno r4

407

On the contrary, the evaluation algorithms control the tree search and

the optimization algorithms according to the specific strategy adopted by

the chess engines.

 Chess Engines

A chess engine is the ensemble of algorithms that enable a chess program

to play the game.

GitHub hosts many open source chess engines. Here is a

comprehensive list of the most popular engines:

• Stockfish: One of the strongest and most popular

open source chess engines. (https://github.com/

official-stockfish/Stockfish)

• Leela Chess Zero (LCZero): An open source engine

that uses neural networks and reinforcement learning.

(https://github.com/LeelaChessZero/lc0)

• Fairy-Stockfish: A variant of Stockfish that supports

many chess variants, making it versatile for non-

standard chess games. (https://github.com/ianfab/

Fairy-Stockfish)

• Ethereal: A strong, open source chess engine known

for its competitive strength and efficient coding.

(https://github.com/AndyGrant/Ethereal)

• Cfish: A fast and lightweight version of Stockfish

written in C, suitable for systems where performance is

critical. (https://github.com/syzygy1/Cfish)

• Texel: An open source chess engine focusing on

evaluation function research and development.

(https://github.com/peterosterlund2/texel)

Chapter 15 Chess with arduino uno r4

https://github.com/official-stockfish/Stockfish
https://github.com/official-stockfish/Stockfish
https://github.com/LeelaChessZero/lc0
https://github.com/ianfab/Fairy-Stockfish
https://github.com/ianfab/Fairy-Stockfish
https://github.com/AndyGrant/Ethereal
https://github.com/syzygy1/Cfish
https://github.com/peterosterlund2/texel

408

• Xiphos: An open source UCI chess engine that is

competitive in strength and written in C. (https://

github.com/michaeldiggs/xiphos)

• GNU Chess: One of the oldest open source chess

engines, serving as a base for many other projects.

(https://github.com/gnu-chess/gnuchess)

• ChessEngine: A simple, open source chess engine

written in Python, suitable for educational purposes

and development. (https://github.com/Zeyu-Li/

ChessEngine)

15.2.2. Interfacing Chess Computers
and Humans

The engines mentioned in the previous section, mostly developed in C++,

can run as a terminal command—better when using Linux platforms—

passing a series of parameters.

To make the chess engines “playable” by humans, an interface is

needed. For example, humans need to control the validity of moves,

represent the game chessboard after every move, or simply log the history

of the game move after move.

For this reason, the engines evolved to be controlled similarly,

accepting moves and control parameters through a standardized protocol

supported by many open source interface applications.

Indeed, this application model offers plenty of possibilities; the same

chess player interface can also work with different engines, which can be

installed separately, like plugins.

Here is a list of the most interesting chess player user interfaces

available on GitHub as open source projects:

Chapter 15 Chess with arduino uno r4

https://github.com/michaeldiggs/xiphos
https://github.com/michaeldiggs/xiphos
https://github.com/gnu-chess/gnuchess
https://github.com/Zeyu-Li/ChessEngine
https://github.com/Zeyu-Li/ChessEngine

409

• Arena Chess GUI: A powerful chess interface that

supports multiple engines and allows analysis and play.

(http://www.playwitharena.de/)

• XBoard/WinBoard: A versatile graphical user

interface for chess that supports many engines

and chess variants. (https://github.com/gnome-

terminator/xboard)

• PyChess: A GTK chess client for Linux with a clean

interface that supports various chess engines.

(https://github.com/pychess/pychess)

• Cute Chess: A cross-platform chess interface and

tool for running engine tournaments and matches.

(https://github.com/cutechess/cutechess)

• ChessX: A cross-platform chess database application

for managing and analyzing chess games. (https://

github.com/chessx/chessx)

• Lucas Chess: A chess training program with various

difficulty levels and features to play against different

engines. (https://github.com/lukasmonk/

lucaschessR)

• Tarrasch Chess GUI: A simple and user-friendly chess

interface that supports UCI engines. (https://github.

com/billforsternz/tarrasch-chess-gui)

• LiChess (Lichess.org): An open source online chess

platform that provides a full suite of chess-related

activities. (https://github.com/ornicar/lila)

• Chess Trainer: An educational chess GUI with training

features that support various chess engines. (https://

github.com/marcusbuffett/chess-trainer)

Chapter 15 Chess with arduino uno r4

http://www.playwitharena.de/
https://github.com/gnome-terminator/xboard
https://github.com/gnome-terminator/xboard
https://github.com/pychess/pychess
https://github.com/cutechess/cutechess
https://github.com/chessx/chessx
https://github.com/chessx/chessx
https://github.com/lukasmonk/lucaschessR
https://github.com/lukasmonk/lucaschessR
https://github.com/billforsternz/tarrasch-chess-gui
https://github.com/billforsternz/tarrasch-chess-gui
https://github.com/ornicar/lila
https://github.com/marcusbuffett/chess-trainer
https://github.com/marcusbuffett/chess-trainer

410

 The Universal Chess Interface (UCI) Notation

The Universal Chess Interface (UCI) is a protocol defined to simplify the

communication between chess engines and graphical user interfaces.

This protocol includes more than the simple moves representation; it

also supports a series of parameters to instruct the chess engine how

to operate, when to start and stop the analysis of the moves nodes tree,

and more.

UCI provides a standardized way for engines and interfaces to interact,

ensuring compatibility across different platforms and software. This

approach makes it possible, as mentioned, to use the chess engines as

plugins by the game-playing chess interfaces.

It employs a simple command-response structure to set up positions,

manage game statuses, and communicate moves.

The UCI protocol provides efficient and flexible interaction between

chess engines and interfaces, facilitating features like move analysis, game

playing, and engine configuration (see Listing 15-1_.

Here is a list of the key commands of the UCI protocol:

• uci: Initializes the engine, prompting it to identify itself

and its capabilities.

• setoption name [option] value [value]: Sets engine

options.

• ucinewgame: Signals the start of a new game.

• position [fen <FEN-string> | startpos] moves [move1

move2 ...]: Sets the board position.

• go [searchoptions]: Starts the search for the best move.

• stop: Stops the search.

• bestmove [move] [ponder move]: Returns the best

move found.

Chapter 15 Chess with arduino uno r4

411

Listing 15-1. A UCI protocol Used to Exchange Information

Between a Chess Engine and a Graphical User Interface

GUI: uci

Engine: id name MyEngine

Engine: id author MyName

Engine: uciok

GUI: setoption name Hash value 128

Engine: info option name Hash type spin default 1 min 1

max 1024

GUI: ucinewgame

GUI: position startpos moves e2e4 e7e5

GUI: go depth 20

Engine: info depth 1 score cp 20 nodes 10 nps 1000 time 10 pv

e2e4 e7e5

Engine: info depth 2 score cp 34 nodes 30 nps 1500 time 20 pv

e2e4 e7e5 g1f3

GUI: stop

Engine: bestmove g1f3

Note a bare metal definition of the uCi protocol can be found in the

Github Gist link at https://gist.github.com/DOBRO/2592c

6dad754ba67e6dcaec8c90165bf, while a complete description

can be found in the Chess programming wiki at https://www.

chessprogramming.org/UCI. the python python-chess library

also includes the uCi definition, which is easy to use for python-

based user interfaces with chess engines (https://python-

chess.readthedocs.io/en/v0.25.0/uci.html).

Chapter 15 Chess with arduino uno r4

https://gist.github.com/DOBRO/2592c6dad754ba67e6dcaec8c90165bf
https://gist.github.com/DOBRO/2592c6dad754ba67e6dcaec8c90165bf
https://www.chessprogramming.org/UCI
https://www.chessprogramming.org/UCI
https://python-chess.readthedocs.io/en/v0.25.0/uci.html
https://python-chess.readthedocs.io/en/v0.25.0/uci.html

412

15.2.3. A Move Representation Method

You need a notation that represents the game moves regardless of how the

physical chess engine communicates.

In chess, every move should be represented in a single line of text

describing the “from" and “to” positions of the moved piece and some

extra information like mate, en-passant, and so on.

The need to note the standardized chess moves and track the moves

of a game dates almost two centuries before the advent of the chess

computer. A structured notation appeared for the first time in 1737 in the

book, Essay on the Game of Chess by Philip Stamma.

The representation of every tile on the board uses a system of

coordinates. Every row is numbered from one to eight, where the first row

corresponds to the first left white rook, and every column has the letters

from a to h from bottom to top—where the bottom is the first row of the

white pieces.

According to this board representation, several move notations have

been developed in the following decades. The evolution of computer chess

engines required a formal model that was easily managed by computer

systems and understandable by human players.

This is a comprehensive list of the most popular chess game notations

still in use:

• Forsyth-Edwards Notation (FEN): Describes a specific

board position at any point in a game on a single line

of text with six fields separated by spaces. The piece

placement defines the location of all pieces from the

8th rank to the 1st rank, using characters (e.g., r for

black rook, P for white pawn, etc.). This notation also

includes in the single line the active color (w for white

and b for black), castling availability, and all the other

chess information that fully describes a position of the

game (en-passant target square, move number).

Chapter 15 Chess with arduino uno r4

413

• Portable Game Notation (PGN): A standard plain-

text format for recording chess games, including move

sequences and game metadata. At the end of the move,

the game result is shown (e.g., 1-0 for a white win, 0-1

for a black win, 1/2-1/2 for a draw).

• Algebraic Notation: This is the standard method for

recording and describing the moves in a chess game.

Letters like K for King, Q for Queen, and P for Pawn

identify the pieces. Uppercase letters are for white

pieces, and lowercase letters are for black pieces.

• Standard Algebraic Notation (SAN): Another standard

for recording chess moves, and it is used mainly for

game annotations. It includes details like check,

checkmate, capture, and piece promotion.

• Long Algebraic Notation: A more detailed version

of algebraic notation, including starting and ending

squares for each move.

15.2.4. The Arduino Chess Moves

Theoretically, the best way to represent the game on the Arduino UNO R4

boards is through the UCI protocol. However, considering the limitations

of the Arduino board, adopting the complete protocol will be redundant.

In fact, this software version does not consider the majority of the features

of the UCI protocol.

Indeed, you should be able to manage the whole game in which the

board chess engine interacts with a human player. The PGN notation is

sufficient to achieve this task for both sides—machine and human players.

Chapter 15 Chess with arduino uno r4

414

In the PGN notation, the moves are represented in the format

{piece name}{ coordinates from} {piece name}{coordinates to}

Example:

1. e4 e5

2. Nf3 Nc6

3. Bb5 Ba6

(Ruy Lopez opening)

This representation is ideal for saving string space: only the current

move is described. The game always starts from the initial chess position,

and you need to keep track of every move to reach any point of the game

until the last move.

If you want the program to load a saved game to see a certain position,

the moves should be replayed from the start to that point. Also, saving a

game in simple text format is more compact. In addition, there are some

game global parameters stored in the form of metadata on the top of the

moves list for a better contextualization of the game.

Metadata:

[Event “Event name”]

[Site “Place of the game”]

[Date “yyyy.mm.dd”]

[Round “Number of moves”]

[White “Player name”]

[Black “Black name”]

[Result “Game result”]

Chapter 15 Chess with arduino uno r4

415

Moves list

1 …

2 ...

3 …

15.2.5. The Arduino Chess Engine

This section starts with a short chronology of the chess engine.

 1975: Rockwell 6502

In 1975, the Rockwell MOS technology 6502 was released; it was a

revolutionary 8-bit microprocessor.

Its low cost and high performance made it the heart of many early

home computers and gaming consoles, like Apple I and II, Commodore 64,

Atari 2600, and the Nintendo Entertainment System (NES).

The 6502's affordability and simplicity made it a pivotal component in

the personal computer revolution.

 1976: Zilog Z80

The Z80 was another influential 8-bit microprocessor compatible with the

Intel 8080.

It offered enhanced features and performance, and it was used in

home computers like the Sinclair ZX Spectrum, the Tandy TRS-80, and

many early arcade systems.

The Z80 also became popular in embedded systems and peripherals,

where its robust instructions-set and ease of use were highly valued.

Chapter 15 Chess with arduino uno r4

416

 The First Personal Computers Age

Among the iconic computers, mostly oriented to the end-user offering

and the ability to program with the popular BASIC language, a couple of

6502-based platforms went to the market dedicated to those we can call

the first makers.

I refer to the Rockwell AIM-65 and the KIM-1: Two bare metal

computer platforms open to learning and developing hardware interfacing

and low-level computer architecture, including the machine code and

assembler.

KIM-1 was the first piece of hardware available at a very low price,

and it was ideal for deep programming. Regardless of the difficulty,

programming in assembler and machine code was a way to get the highest

performance and best usage of the—still limited—processing power and

memory resources. This was when software was saved on audio tape, and

many user interfaces we are used to today were yet to be developed.

What during the 70s represented technological advances, today

we call retro-computing. The popularity gained by the R-6502 survived

the evolution: A simple Arduino UNO has sufficient computational

power to be able to support a full emulation of this microcontroller

(https://forum.arduino.cc/t/arduino-6502-emulator-basic-

interpreter/188328). Another complete 6502 processor emulation

developed for both Arduino UNO and any other computer is available on

GitHub at https://github.com/goncrust/arduino-6502.

Due to its simple interface, limited to a hexadecimal keyboard and a

seven-segment LED display, a full working version of KIM-1 is available as

an open source project. This project (https://obsolescence.wixsite.

com/obsolescence/kim-uno-details) includes the components to design

a PCB emulating the original KIM-1 keyboard and display. It is originally

based on an Arduino Pro Mini but can be easily ported to other Arduino

board (UNO, Mega, and others).

Chapter 15 Chess with arduino uno r4

https://forum.arduino.cc/t/arduino-6502-emulator-basic-interpreter/188328
https://forum.arduino.cc/t/arduino-6502-emulator-basic-interpreter/188328
https://github.com/goncrust/arduino-6502
https://obsolescence.wixsite.com/obsolescence/kim-uno-details
https://obsolescence.wixsite.com/obsolescence/kim-uno-details

417

 The Work of Peter Jennings

Peter Jennings's notable work started when he bought a KIM-1 board,

probably the cheapest microcomputer for personal use at the time.

When a chess lover meets a computer, the prediction is almost

obvious. Most of his knowledge of chess strategy derived from reading My

System by Aron Nimzovich. Jennings started developing Microchess until,

on December 18, 1976, the first copy of the complete chess game on the

KIM-1 was shipped to his first customer.

Microchess was also the first computer game sold for home computers.

It was a full chess program fitted in 924 bytes of 6502 code! You can find

the full story on the author’s site at https://www.benlo.com/microchess/

index.html.

Thinking of playing chess on an Arduino UNO R4 Microchess is an

obliged choice.

 The Microchess Porting

There are several open source projects for Arduino platforms based on the

porting of Microchess; some are complete projects, and others are works

in progress. I started from the Diego Cueva project for Arduino Mega (www.

diego-cueva.com/projects/chessuino/), originally created to work with

a beeper and an alphanumeric LCD display.

The Microchess engine has been separated from the rest of the code,

so I arranged for it to work with the Arduino UNO R4 integrated with a

terminal TTY interface and created the web server for remote connection.

This way, you can play chess with Arduino from any remote Telnet

connection via WiFi. I also arranged for a better, text-only representation

of all the moves. After every move—passed in PGN notation—a small

chessboard is redrawn on the terminal for a more comfortable user

interface.

Chapter 15 Chess with arduino uno r4

https://www.benlo.com/microchess/index.html
https://www.benlo.com/microchess/index.html
http://www.diego-cueva.com/projects/chessuino/
http://www.diego-cueva.com/projects/chessuino/

418

15.3. Arduino Chess Software

This version of Arduino Chess is tailored to work using all the available

resources of the UNO R4 WiFi. The LED matrix—not present on the

MINIMA version—can be enabled or not.

Of course, the availability of a more powerful microcontroller gives

developers space to add a more structured architecture and extend the

capabilities of the original Microchess (without changing the min-max

algorithm and the alpha-beta pruning), thus increasing the number of

moves to explore (Moves Tree exploration).

To make the application as adaptable as possible, including running a

version on the MINIMA board, a series of header files have been defined

to keep the code blocks reusable without impacting the application

architecture.

15.3.1. The Header Files

When running on the WiFi model, an LED matrix is available. Using the

simple HTML editor available on the Arduino site (which can also run

locally), the from-to moves of the board are shown in coordinates format

in Figure 15-5.

Chapter 15 Chess with arduino uno r4

419

Figure 15-5. The HTML screen of the LED matrix editor. The patterns
designed on the rectangle can be exported in "mpj" JSON format,
which is easy to convert to an array of values. Multiple patterns can be
designed and exported together to create simple animations. Exported
projects can be reloaded in the editor for further changes.

 The MatrixChars.h File

The patterns for the chessboard coordinates were converted to arrays in

the MatrixChars.h header file.

/**

\file MatrixChars.h

\brief Preprocessor definitions and byte arrays to manage the

UI on the Led Matrix (Arduino Uno R4 only)

\author Enrico Miglino <enrico.miglino@gmail.com>

\version 1.0

\date July 2023

*/

#include <memory>

Chapter 15 Chess with arduino uno r4

420

//! Number of characters in a move

#define MOVE_CHARACTERS 2

//! Arduino Uno R4 LED matrix array width

#define MATRIX_ARRAY_WIDTH 12

//! Arduino Uno R4 LED matrix array height

#define MATRIX_ARRAY_HEIGHT 8

// Offset from char 'a'

#define ASCII_A_LC 97

// Offset from char '0'

#define ASCII_ZERO_LC 49

// Character size

#define ASCII_CHAR_WIDTH 5

// "to" string width

#define ASCII_TO_WIDTH 8

#define DISPLAY_DELAY 1000

// LED matrix starting column for the four move characters

// The first two positions are for the move characters and the

// third is the "to" string starting position.

int START_MOVE_CHARACTER_FROM[3] = {0, 6, 2};

byte frameLogo[8][12] = {

 {0,0,0,0,1,0,1,0,0,0,0,0},

 {0,0,1,0,0,1,0,0,1,0,0,0},

 {0,1,0,1,0,1,0,1,0,1,0,0},

 {0,1,0,0,1,1,1,0,0,1,0,0},

 {0,0,1,0,0,1,0,0,1,0,0,0},

 {0,0,0,1,1,1,1,1,0,0,0,0},

 {0,0,0,0,1,1,1,0,0,0,0,0},

 {0,0,0,1,1,1,1,1,0,0,0,0}

};

Chapter 15 Chess with arduino uno r4

421

// LED matrix frame definition

byte frame[8][12] = {

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }

};

// definition of the frame to animate the piece move (piece

from - arrow - piece to)

byte frameArrow[8][8] = {

 {0,0,0,0,0,0,0,0},

 {1,0,0,0,0,0,0,0},

 {1,1,1,0,0,0,0,0},

 {1,0,0,0,0,1,1,0},

 {1,0,0,0,1,0,0,1},

 {1,0,0,0,1,0,0,1},

 {0,1,1,0,0,1,1,0},

 {0,0,0,0,0,0,0,0}

};

// Characters definition

byte frameLowercase[8][8][5] = {

 { // a

 {0, 0, 0, 0, 0},

 {0, 0, 0, 0, 0},

 {0, 0, 1, 1, 0},

 {0, 1, 0, 0, 1},

Chapter 15 Chess with arduino uno r4

422

 {0, 1, 1, 1, 1},

 {0, 1, 0, 0, 1},

 {0, 1, 0, 0, 1},

 {0, 0, 0, 0, 0}

 },

Next, definitions of the lowercase characters a-h

byte frameNumbers[8][8][5] = {

 { // 1

 {0, 0, 0, 0, 0},

 {0, 0, 0, 1, 0},

 {0, 0, 1, 1, 0},

 {0, 0, 0, 1, 0},

 {0, 0, 0, 1, 0},

 {0, 0, 0, 1, 0},

 {0, 0, 1, 1, 1},

 {0, 0, 0, 0, 0}

 },

Next, definitions of the numbers 1-8, then the uppercase characters A-H

 The ChessMessages.h File

This header contains all the string definitions shown on the terminal

during the game. Every string character consumes a byte of memory. It

is strongly suggested to keep the string definitions as short as possible,

eventually improving the application verbosity as the last task after testing

and debugging.

/**

\file ChessMessages.h

\brief Preprocessor definitions of the application errors and

message strings.

Chapter 15 Chess with arduino uno r4

423

Defining the messages and error Strings makes it easy to

localize the version of the program, and eventually reduce the

string length if memory space is needed.

\note The SSID and WPA passwords are hardcoded. When you change

the network access to the program should be recompiled.

\author Enrico Miglino <enrico.miglino@gmail.com>

\version 1.0

\date July 2023

*/

// --------------

// Messages

// --------------

#define MSG_TITLE "*** CHESS ! ***"

#define MSG_SSID "Connecting to SSID: "

// --------------

// Errors

// --------------

#define ERR_001 "E001 Communication with WiFi module failed!"

#define ERR_002 "E002 Please upgrade the firmware"

// --------------

// Debug

// --------------

#define DBG_CLIENT_CHARS "(debug) Chars available from the

client: "

#define DBG_GOT_CLIENT_MOVE "(debug) Received the move from

the client"

Chapter 15 Chess with arduino uno r4

424

 The WiFiAccess.h File

The WiFiAccess.h header defines the default access point and WPA

password to connect the board to the WiFi. These defines should be

configured according to your WiFi settings.

Thinking about a version running standalone, to avoid recompiling

when the WiFi parameters change, you can add a serial terminal menu

where the two values can be changed and saved on the Arduino board

Eprom. If this value is present, the custom settings will overwrite the

default defined in this header.

/**

\file WiFiAccess.h

\brief Preprocessor definitions for WiFi connection parameters.

\note The SSID and WPA passwords are hardcoded. When you change

the network access to the program should be recompiled.

\author Enrico Miglino <enrico.miglino@gmail.com>

\version 1.0

\date July 2023

*/

//! Network WPA Access parameters

// #define SECRET_SSID "EnricoA71"

//! WPA connection password

// #define SECRET_PASS "cagliostro"

//! Network WPA Access parameters

#define SECRET_SSID "AccessPoint"

//! WPA connection password

#define SECRET_PASS "WPA Password"

Chapter 15 Chess with arduino uno r4

425

//! Telnet server port

#define SERVER_PORT 23

//! Connection timeout

#define WIFI_CONN_TIMEOUT 10000

 The ChessEngine.h File

The ChessEngine.h header defines all the parameters that control the

game engine to make it more readable. It is possible to customize the

engine game side, the randomization seed, and other control parameters.

/**

\file ChessEngine.h

\brief Preprocessor definitions of the chess engine constants.

\author Enrico Miglino <enrico.miglino@gmail.com>

\version 1.0

\date July 2023

*/

//! The chess symbols used by the text-only board

#define CHESS_PIECES ".?pnkbrq?P?NKBRQ"

//! Number of pieces symbols

#define CHESS_PIECES_NUMBER 17

//! 16bit pseudo-random generator

#define RANDOMIZER_MAX 65535

//! Computer engine moving side (usually black=16)

#define MOVING_SIDE 16

//! bytes (chars) size of the arrays storing the move

//! Moves are in the format from_xy to_xy where xy are

//! the row coordinates on the chessboard.\n

Chapter 15 Chess with arduino uno r4

426

//! a >= x <= h and 1 >= y <= 8

//! The fifth character of the array is the Cr endstring

character.

#define MOVE_SIZE 5

// Engine macros

#define W while

#define M 0x88

#define S 128

#define I 8000

The messages defined in this header are the hardcoded strings to draw

the game status chessboard on the terminal:

//! Telnet welcome message

#define TLN_WELCOME "Welcome to ChessTelnet"

// Strings to build the text chessboard

#define BOARD_HOR_LINE "+-----------------+"

#define BOARD_SPACING " "

#define BOARD_SPACING2 " "

#define BOARD_SEPARATOR "|"

#define BOARD_COLUMNS " a b c d e f g h"

// -------------- Telnet messages

#define CHESS_LOSE "Engine lose"

#define CHESS_PLAYER_LOSE "You lost!"

#define CHESS_MOVE_INVALID "Invalid move!"

15.3.2. The Application Functions

The program requires a WiFi connection to start the game. I split the utility

functions from the chess engine, and the same engine is now a function of

the main source.

Chapter 15 Chess with arduino uno r4

427

Here is an example of the terminal output of the first three moves

of a game:

Welcome to ChessTelnet

 +-----------------+

 8| r n b q k b n r |

 7| p p p p p p p p |

 6| |

 5| |

 4| |

 3| |

 2| P P P P P P P P |

 1| R N B Q K B N R |

 +-----------------+

 a b c d e f g h

d2d4

1. d2d4b8c6

 +-----------------+

 8| r . b q k b n r |

 7| p p p p p p p p |

 6| . . n |

 5| |

 4| . . . P |

 3| |

 2| P P P . P P P P |

 1| R N B Q K B N R |

 +-----------------+

 a b c d e f g h

b1c3

Chapter 15 Chess with arduino uno r4

428

2. b1c3e7e5

 +-----------------+

 8| r . b q k b n r |

 7| p p p p . p p p |

 6| . . n |

 5| p . . . |

 4| . . . P |

 3| . . N |

 2| P P P . P P P P |

 1| R . B Q K B N R |

 +-----------------+

 a b c d e f g h

g1f3

3. g1f3f7f6

 +-----------------+

 8| r . b q k b n r |

 7| p p p p . . p p |

 6| . . n . . p . . |

 5| p . . . |

 4| . . . P |

 3| . . N . . N . . |

 2| P P P . P P P P |

 1| R . B Q K B . R |

 +-----------------+

 a b c d e f g h

 The Setup() File

// Initialization

void setup() {

 matrix.begin();

Chapter 15 Chess with arduino uno r4

429

 Serial.begin(9600);

 serialMessage(MSG_TITLE, true);

 lastH[0] = 0;

 // ----------------------- Network connection

 // check for the WiFi module:

 if (WiFi.status() == WL_NO_MODULE) {

 serialMessage(ERR_001, true);

 // don't continue

 while (true)

 ;

 } // Check for WiFi module

 //! Get the firmware version and validate

 String fv = WiFi.firmwareVersion();

 if (fv < WIFI_FIRMWARE_LATEST_VERSION) {

 serialMessage(ERR_002, true);

 }

 // Attempt to connect to WiFi network:

 while (status != WL_CONNECTED) {

 serialMessage(stringJoinString(MSG_SSID, ssid), true);

 //! Connect to WPA/WPA2 network.

 //! Change this line if using open or WEP network:

 status = WiFi.begin(ssid, pass);

 // Wait for connection:

 delay(WIFI_CONN_TIMEOUT);

 } // Connection to server

 // Start the server:

 server.begin();

 // Client is connected now, so print out the status:

Chapter 15 Chess with arduino uno r4

430

 printWifiStatus();

 matrix.renderBitmap(frameLogo, 8, 12);

 // -------------------- Network connection

}

 The Loop() File

// Main loop

void loop() {

 //! Wait for a new telnet client connected

 client = server.available();

 // When the client is connected the game can start

 if (client) {

 if (!alreadyConnected) {

 // clear out the input buffer:

 client.flush();

 serialMessage(MSG_TITLE, true);

 client.println(TLN_WELCOME);

 // Show the board for game start

 sendWiFiBoard();

 // Set the flat for the game continuing.

 alreadyConnected = true;

 } // Already connected

 int r;

 // Take move from human (four characters + newline)

 while (stringComplete == false) {

 getClientChar();

 } // Retrieve characters from the client

Chapter 15 Chess with arduino uno r4

431

 // Print the move

 client.print(mn);

 client.print(". ");

 client.print(inputString.substring(0, 4));

 // Build the move for process

 c[0] = inputString.charAt(0);

 c[1] = inputString.charAt(1);

 c[2] = inputString.charAt(2);

 c[3] = inputString.charAt(3);

 c[4] = 0;

 // Clear the input string:

 inputString = "";

 // Initialize the move string status

 stringComplete = false;

 // Parse the client move

 K = *c - 16 * c[1] + 799, L = c[2] - 16 * c[3] + 799;

 N = 0;

 T = 0x3F; /* T=Computer Play strength */

 bkp(); /* Save the board just in case */

 r = D(-I, I, Q, O, 1, 3); /* Check & do the human

movement */

 if (!(r > -I + 1)) {

 client.println(CHESS_LOSE);

 gameOver();

 } // Game ends

 if (k == 0x10) { /* The flag turn must change to 0x08 */

 client.println(CHESS_MOVE_INVALID);

 return;

Chapter 15 Chess with arduino uno r4

432

 } // Wrong move

 strcpy(lastH, c); /* Valid human movement */

 mn++; /* Next move */

 K = I;

 N = 0;

 T = 0x3F; /* T=Computer Play strength */

 r = D(-I, I, Q, O, 1, 3); /* Think & do*/

 if (!(r > -I + 1)) {

 client.println(CHESS_PLAYER_LOSE);

 gameOver();

 } // Last move, game ends

 strcpy(lastM, c); /* Valid ARDUINO movement */

 r = D(-I, I, Q, O, 1, 3);

 if (!(r > -I + 1)) {

 client.println(lastM);

 gameOver();

 } // Last move, game ends

 client.println(lastM);

 showMoveOnLED();

 sendWiFiBoard();

 } // If client

} // End loop

The complete source code and other components part of the

application are available in the chapter repository.

Chapter 15 Chess with arduino uno r4

433© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_16

CHAPTER 16

Chess Player
Interfaces
Contribution of Luis Garcia.

Figure 16-1. A checkerboard with rectangular holes?

https://doi.org/10.1007/979-8-8688-0080-1_16#DOI

434

I started thinking of a chess interface before designing a computer

chess player based on the Arduino UNO R4. The original idea was to

create a couple of chess boards connected through WiFi using two WiFi

Arduino MKR 1010 to enable players to manage the game from different

locations. Part of this idea was to implement a chess engine on a Raspberry

Pi that would be able to replace one of the two players (or both with two

Raspberry). See Figure 16-1.

With the introduction of the Arduino UNO R4, the board’s

computational power made it interesting to implement a full working

engine on the new Arduino, as described in the previous chapter.

Even though the board can play against humans through a text-based

Telnet terminal, the idea of an engaging interface remained an interesting

addition.

In this chapter, while I was developing the chess engine and the basic

software for the Arduino UNO R4 WiFi (the most advanced model), Luis

started adding some external hardware to the MINIMA model to achieve

the same result.

You’ll see how he reached this goal and a couple of interface designs

adaptable to the Arduino UNO R4 chess engine, with some parts still in

progress.

CHAPTER 16 CHESS PLAYER INTERFACES

435

16.1. The MINIMA Board and the ESP32-S3

Figure 16-2. Scheme of the connection between the Arduino UNO R4
MINIMA and the ESP32-S3

CHAPTER 16 CHESS PLAYER INTERFACES

436

The MINIMA model of the Arduino UNO R4 does not include the ESP

32 S3 (a powerful ARM microcontroller used in the WiFi model for

connection and other internal features). We addressed this limitation

by adding an external ESP32-S3 device facing a challenging issue on the

power lines. See Figure 16-2.

The first—and easiest—way to exchange data between the MINIMA

and an external ESP32-S3 is by using the UART. Everything went fine, but

it was just for testing. We needed the UART to configure the board for the

WiFi access point, WPA password, and dynamic IP address assigned by the

router through the serial terminal.

The alternative and strategic solution for the inter-processor

communication architecture is the I2C protocol.

I2C (Inter-Integrated Circuit), or IIC, is an extremely simple yet

efficient way to share information between two boards or different

components on the same board. It’s a lightweight, high-speed protocol

that requires minimal wiring.

Technically, it is not. It’s not much different from how the Arduino

UNO R4 WiFi board accomplishes this job. The main challenge was

overcoming the different TTL voltage translations stably and reliably.

The I2C protocol is a bus that allows up to 127 slave devices to be

connected to a master device. Any slave device can perform both input

and output data transfers.

In our setup, the ESP32-S3 exposes a web server to which a terminal or

interface application can connect, acting as the master, and the Arduino

MINIMA is the slave.

We used breadboards and jumper cables instead of a custom

PCB or a prototype soldering board to quickly prototype and test the

system’s viability. In this initial configuration, we faced instability issues,

especially at a higher communication speed. Shorter cables and a lower

transfer speed partially solved the problem. Also, when using a soldered

prototyping board, we still met unstable performances in communication.

CHAPTER 16 CHESS PLAYER INTERFACES

437

Not all voltage-level adapters work the same. We had to try several brands

(using different ICs) until we found a good and cheap device that granted the

requested reliability and performance (Teyleten Robot 4 Channels Logic Level

Converter Bi-Directional Module Shifter I2C 3.3V—5V). See Figure 16-3.

Figure 16-3. The 5V-3.3V level shifter used to grant the boards
compatibility in the I2C protocol

16.1.1. Communication Software

The following code shows how, thanks to the libraries provided by the

Arduino IDE, setting up the communication software is almost easy.

To connect a board as a slave to the I2C bus, you need to define the

address that the I2C master device will use to communicate with this

board. You also need to define two functions: one that will be called when

data is available from the master and another one that will be called if the

master is requesting data.

CHAPTER 16 CHESS PLAYER INTERFACES

438

#include <Wire.h>

#define SLAVE_ADDRESS 0x20

void setup() {

 Wire.begin(SLAVE_ADDRESS); // Initialize as an I2C slave with

the defined address

 Wire.onReceive(receiveEvent); // Register an event handler

for when data is received

 Wire.onRequest(requestEvent); // Register an event handler

for when data is requested

by a master

 Serial.begin(9600);

 // ... //

}

When set as master, the ESP32-S3 board does not connect to the I2C

bus unless the used pins are not explicitly declared, even if they are the I2C

pins hardware assigned, marked on the PCB board. Discovering this detail

has been time-consuming and teaches a valuable lesson: thoughtfully test,

test, and test before assuming something will work.

#include <Wire.h>

#define SDA_PIN 17

#define SCL_PIN 18

void setup() {

 // ... //

 Wire.begin(SDA_PIN, SCL_PIN); // Pins have to be specified on

most boards

 // ... //

}

CHAPTER 16 CHESS PLAYER INTERFACES

439

16.1.2. I2C Tasks Distribution

Arduino UNO R4 MINIMA is dedicated to running the chess engine,

while the ESP32-S3 board—especially suited for IoT tasks—is focused on

network scanning, storing credentials, and running the web server. See

Figure 16-4.

Figure 16-4. The ESP32-S3 board connected to the MINIMA. For
easier development and debugging, we used a development ESP32,
including an on-board hardware debugger

ESP32-S3 searches for stored network credentials at system boot and

tries to connect to that network. If no saved credentials are found or the

login is unsuccessful, it scans for available WiFi networks and presents a

user interface for connection using Serial communication. See Figure 16-5.

CHAPTER 16 CHESS PLAYER INTERFACES

440

Once the connection is successful, you get an URL with the IP address

assigned to the ESP32-S3 through the Serial monitor, and the board starts

up a web server.

Figure 16-5. The first breadboarded prototype of the Arduino UNO
MINIMA linked to the ESP32-S3 via I2C protocol

The board gets user input through the HTTP server, relays it to the

Arduino MINIMA board, and processes the response. In this architecture,

the ESP32-S3 board plays the role of a dumb terminal and offloads a

computationally expensive task to another microcontroller.

At this point, the two boards wired together work the same way as the

Arduino UNO R4 WiFi, excluding the LED matrix.

CHAPTER 16 CHESS PLAYER INTERFACES

441

16.2. Physical Computing: the Distanced
Pawn Project

This project is a general-purpose chess-playing interface. The chapter

repository package includes all the project materials, including the STL

files for 3D printing.

I was inspired by a detail that caught my attention the first time in the

movie, “The Spy Who Come in from the Cold” (1965, from the John Le

Carré novel), in a scene where spies meet in a public park amidst casual

chess players, a typical Cold War espionage context.

By then, I had always desired to do something “techy.” When I

designed “The Distanced Pawn,” I aimed to create a nice, general-purpose

chess-playing interface that was easy for humans and machines to use.

16.2.1. Making the Chessboard

 The Chess Pieces

The chess pieces have been 3D printed from the minimal STL files

developed by FunFunBoy, which were published on Thingiverse (www.

thingiverse.com/thing:2552392) and released under a CC 3.0 NC-ND-

SA license. See Figure 16-6.

CHAPTER 16 CHESS PLAYER INTERFACES

http://www.thingiverse.com/thing:2552392
http://www.thingiverse.com/thing:2552392

442

Figure 16-6. The body design of the chess pieces developed by the
author. To create the 3D models, the profile was converted to a
rotation solid along the vertical axis.

After properly scaling the models according to the size of the squares,

which was about 4cm, I 3D-printed two sets of pieces and spray-painted

them with the opponent’s colors. See Figure 16-7.

CHAPTER 16 CHESS PLAYER INTERFACES

443

Figure 16-7. The pieces of 3D models were refined and painted with
the two opponent colors. To achieve the best quality, I used a high-
resolution resin 3D printer.

 The Checkerboard

Building the checkerboard was more complex because I needed special

squares. An easy option was to buy and customize a commercial

checkerboard, but then I decided to design every square and 3D print it.

See Figure 16-8.

CHAPTER 16 CHESS PLAYER INTERFACES

444

Figure 16-8. The preassembled checkerboard is used to test that all
the squared bricks fit well together, and the two series of 16 spray-
painted squares in the opponents’ color.

The rectangular holes in every square will host a microswitch

configured as a temporary pushbutton. To set a move, it is sufficient to

press the piece on the foam square and push it on the destination square.

I designed every square with two extruded sides and two engraved

sizes to improve stability when every square is glued together to compose

the checkerboard. For this reason, I designed the square model myself. See

Figure 16-9.

CHAPTER 16 CHESS PLAYER INTERFACES

445

Figure 16-9. The checkerboard tiles were glued after the final
assembly. On the top left, the rendering of the tile 3D model shows
the opposite sides with the extruded and engraved parts to keep them
together. Of course, two identical checkerboards (and two full series of
chess pieces) were required for the opponents.

The design allows the tiles to be connected and glued on a larger

surface, avoiding the risk of detaching during use. To avoid painting the

wrong tiles, I assembled the board, separated it in the middle, and sprayed

the right colors. After coloring, the board was assembled to glue the tiles

with cyanoacrylate glue.

Before proceeding with the electronic components and the software, I

glued a microswitch in the rectangular holes of the tiles. See Figure 16-10.

CHAPTER 16 CHESS PLAYER INTERFACES

446

Figure 16-10. The microswitch assembly to the bottom of the
checkerboards. Every microswitch, when pressed, identifies the square
with two signals corresponding to the row and column number.

16.2.2. The Game Controller

Every opponent’s chessboard has an 8x8 grid wiring, where every line-

row cross identifies one of the 64 chessboard tiles. Every tile microswitch

corresponds to the 64 tiles. These can be detected by 16 GPIO input pins,

eight for every row and eight for every column.

 The Circuit

The Arduino MKR 1010 does not have 16 GPIO available pins for this

operation, so I added two I2C PCF8574 GPIO extenders chained together.

See Figure 16-11.

CHAPTER 16 CHESS PLAYER INTERFACES

447

Figure 16-11. Schematic of the game controller. I included an RGB
LED to show the state of the game and a small monochrome OLED
display to show the moves and the game messages (draw, chess,
mate, etc.).

The small GPIO expander board I2C has pins that can be hardwired to

select the I2C bus address, supporting more than one expander chained

together.

The board software can be configured to run as a web server or client

with a hardcoded configuration to enable automatic communication.

Adopting this solution, it is easy to configure the WiFi settings of the

Arduino UNO R4 connected to one of the two board controllers, enabling a

human-machine player.

According to the issues Luis previously experienced connecting the

ESP32-S3 to the Arduino UNO R4 MINIMA via the I2C protocol, we tested

the I2C prototype communication with an oscilloscope. See Figure 16-12.

CHAPTER 16 CHESS PLAYER INTERFACES

448

Figure 16-12. Oscilloscope screenshots of the I2C signal stability tests

In this case, both the MKR1010 and the PCF8574 GPIO expanders work

at the same voltage. The critical issue in the I2C communication stability

may depend on the relatively long wiring of the two expanders and the

Arduino board.

With care in soldering the components, the circuit worked without

problems. See Figure 16-13.

CHAPTER 16 CHESS PLAYER INTERFACES

449

Figure 16-13. The two completed board controllers are mounted
over the Arduino MKR 1010 board GPIO connector

16.2.3. The Controller Software

 MKR 1010 Access Point

The first board that should be powered is the access point, to which the

opponent player board will connected automatically.

Note The MKR 1010 access point is contacted by the client through

three restful API: /N (new came), /M (move), and /S (game status).

This makes it possible to also play with a single board and a remote

web browser.

CHAPTER 16 CHESS PLAYER INTERFACES

450

The server_params.h header file defines the WiFi connection constants.

In this case, the board controllers connect one-to-one. There are no

external parameters to be set and the IP address is hardcoded in the

header definitions.

/**

 * \file server_params.h

 * \brief Global parameters header to implement the web server

and the software AP

 */

//! AP SSID

#define SECRET_SSID "MKR1010"

//! Web password. Should be known by the remote client

#define SECRET_PASS "ChessMaster"

//! https custom server port

#define SERVER_PORT 8080

//! Delay before the AP can connect the WiFi (ms)

#define AP_DELAY 10000

//! Definition of the default AP IP address

inline int IP(int x) { int ip[] = {10, 0, 0, 1}; return

ip[x]; }

// HTTP GET commands

#define HTTPGET_NEWGAME "/N"

#define HTTPGET_MOVE "/M"

#define HTTPGET_STATUS "/S"

The setup() function of the main program initializes the GPIO and

RGB LED pins, then configures the local parameters to connect to the

opposite player access point. This way, the controller client knows the IP

address and port to connect to.

CHAPTER 16 CHESS PLAYER INTERFACES

451

/**

 * Initialization function.

 *

 * In the setup function it is created the AP and assigned the

default IP

 * address, as well as the server creation. Only in debug mode

(serial active)

 * the setting operations are logged to the terminal.

 *

 * \note To manage the status when the AP can't be initialized

or there is a connection

 * issue, the building LED goes not to On

*/

void setup() {

 pinMode(PIN_R, OUTPUT);

 pinMode(PIN_G, OUTPUT);

 pinMode(PIN_B, OUTPUT);

 digitalWrite(PIN_R,HIGH);

 digitalWrite(PIN_G,LOW);

 digitalWrite(PIN_B,LOW);

 delay(2000);

 digitalWrite(PIN_R,LOW);

 digitalWrite(PIN_G,HIGH);

 digitalWrite(PIN_B,LOW);

 delay(2000);

 digitalWrite(PIN_R,LOW);

 digitalWrite(PIN_G,LOW);

 digitalWrite(PIN_B,HIGH);

 delay(2000);

 digitalWrite(PIN_R,LOW);

CHAPTER 16 CHESS PLAYER INTERFACES

452

 digitalWrite(PIN_G,LOW);

 digitalWrite(PIN_B,LOW);

 pinMode(LED_BUILTIN, OUTPUT);

#ifdef _DEBUG

 Serial1.begin(115200);

#endif

 sDebug("Access Point Web Server");

 // Check the firmware version and notify if it should

be updated

 String fv = WiFi.firmwareVersion();

 if (fv < WIFI_FIRMWARE_LATEST_VERSION) {

 sDebug("Please upgrade the firmware");

 }

 WiFi.config(IPAddress(IP(0), IP(1), IP(2), IP(3)));

 // print the network name (SSID);

 sDebug("Creating access point named: ");

 sDebug(ssid);

 // Create open network. Change this line if you want to

create an WEP network:

 status = WiFi.beginAP(ssid, pass);

 if (status != WL_AP_LISTENING) {

 sDebug("Creating access point failed");

 // don't continue

 while (true);

 }

 // wait for connection

 delay(AP_DELAY);

CHAPTER 16 CHESS PLAYER INTERFACES

453

 // start the web server on the assigned port

 server.begin();

 //! System is ready

 digitalWrite(LED_BUILTIN, HIGH);

 // GET /H turns the LED on

 printWiFiStatus();

 chessBoard.setBoard();

 chessBoard.drawBoard(BOARD_SERIAL);

 // Initialize the display

 oled.begin(SSD1306_SWITCHCAPVCC, OLED_I2C);

 sDebug("OLED initialized");

 // Clear the buffer.

 oled.clearDisplay();

 oled.display();

 sDebug("Buffer cleared. Starting Fonts test");

 // Show title scrolling on the display

 initDisplay(&oled);

 textFont(SANS_BOLD, 9, &oled);

 showText("The", 45, 15, COL_WHITE, &oled);

 showText("Distanced", 20, 35, COL_WHITE, &oled);

 showText("Pawn", 35, 55, COL_WHITE, &oled);

}

 OLED Controller

The OLED controller should be configured according to the resolution

and device model used in the hardware. In this case, I used an Adafruit

monochromatic-compatible OLED display.

CHAPTER 16 CHESS PLAYER INTERFACES

454

The OLED functions set includes all the fonts and text styles available

for the device. If memory is needed, the text display can be simplified,

limiting the number of available font variations.

/**

 * Show the text string at the desired coordinates.

 *

 * The text is shown according to the current settings (color,

font, etc.)

 *

 * \param text The string of text to display

 * \param x The x cursor coordinates

 * \param y The y cursor coordinates

 * \param color The color of the text

 * \param disp Pointer to the OLED display class

 */

void showText(char* text, int x, int y, int color, Adafruit_

SSD1306* disp) {

 // Set the desired color

 switch(color) {

 case COL_WHITE:

 oled.setTextColor(SSD1306_WHITE);

 break;

 }

 disp->setCursor(x, y);

 disp->print(text);

 disp->display();

}

/**

 * Initialize the display before showing a new screen.

 *

CHAPTER 16 CHESS PLAYER INTERFACES

455

 * \note This method should be called for first before

setting a new

 * string or when the screen setting changes.

 *

 * \param disp Pointer to the Oled display class

 */

void initDisplay(Adafruit_SSD1306* disp) {

 disp->clearDisplay();

 disp->display();

}

/**

 * Start the text scrolling in the desired direction.

 * The scrolled text is what has already been composed

 * and shown on the screen.

 *

 * Start this method after the text screen has been set

 *

 * \param Dir the scrolling direction

 * \param disp Pointer to the Oled display class

 */

void textScroll(int dir, Adafruit_SSD1306* disp) {

 switch(dir) {

 case OLED_SCROLL_LEFT_RIGHT:

 disp->startscrollright(0x00, 0x0F);

 break;

 case OLED_SCROLL_RIGHT_LEFT:

 disp->startscrollleft(0x00, 0x0F);

 break;

 case OLED_SCROLL_DIAG_RIGHT:

 disp->startscrolldiagright(0x00, 0x0F);

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

456

 case OLED_SCROLL_DIAG_LEFT:

 disp->startscrolldiagleft(0x00, 0x0F);

 break;

 case OLED_SCROLL_STOP:

 disp->stopscroll();

 break;

 }

}

/**

 * Set the desired font and size to the text.

 *

 * The fonts have four predefined sizes: 9, 12, 18, 24 points

 * Any different value is ignored and the function do nothing

 *

 * The selected font should be enabled in the fonts definition

 * else the method set the default font and returns -1

 *

 * \param fontName One of the following font families:\n

 *

 * MONO

 * MONO_BOLD

 * MONO_OBLIQUE

 * MONO_BOLD_OBLIQUE

 * SERIF

 * SERIF_BOLD

 * SERIF_ITALIC

 * SERIF_BOLD_ITALIC

 * SANS

 * SANS_OBLIQUE

 * SANS_BOLD

 * SANS_BOLD_OBLIQUE

CHAPTER 16 CHESS PLAYER INTERFACES

457

 *

 * \param fontSize The size in point of the font chosen between

one of the

 * following values: 9, 12, 18, 24

 * \param disp Pointer to the OLED display class

 *

 * \return 0 if the font is set else return -1

 */

int textFont(int fontName, int fontSize, Adafruit_

SSD1306* disp) {

 int j;

 // Check for the font size

 if((fontSize != 9) && (fontSize != 12) &&

 (fontSize != 18) &&(fontSize != 24)) {

 return -1;

 }

 // Switch the font family

 switch(fontName) {

 case MONO:

 #ifndef FREE_MONO

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeMono9pt7b);

 break;

 case 12:

 disp->setFont(&FreeMono12pt7b);

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

458

 case 18:

 disp->setFont(&FreeMono18pt7b);

 break;

 case 24:

 disp->setFont(&FreeMono24pt7b);

 break;

 }

 #endif

 break;

 case MONO_BOLD:

 #ifndef FREE_MONO_BOLD

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeMonoBold9pt7b);

 break;

 case 12:

 disp->setFont(&FreeMonoBold12pt7b);

 break;

 case 18:

 disp->setFont(&FreeMonoBold18pt7b);

 break;

 case 24:

 disp->setFont(&FreeMonoBold24pt7b);

 break;

 }

 #endif

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

459

 case MONO_OBLIQUE:

 #ifndef FREE_MONO_OBLIQUE

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeMonoOblique9pt7b);

 break;

 case 12:

 disp->setFont(&FreeMonoOblique12pt7b);

 break;

 case 18:

 disp->setFont(&FreeMonoOblique18pt7b);

 break;

 case 24:

 disp->setFont(&FreeMonoOblique24pt7b);

 break;

 }

 #endif

 break;

 case MONO_BOLD_OBLIQUE:

 #ifndef FREE_MONO_BOLD_OBLIQUE

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeMonoBoldOblique9pt7b);

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

460

 case 12:

 disp->setFont(&FreeMonoBoldOblique12pt7b);

 break;

 case 18:

 disp->setFont(&FreeMonoBoldOblique18pt7b);

 break;

 case 24:

 disp->setFont(&FreeMonoBoldOblique24pt7b);

 break;

 }

 #endif

 break;

 case SERIF:

 #ifndef FREE_SERIF

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSerif9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSerif12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSerif18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSerif24pt7b);

 break;

 }

CHAPTER 16 CHESS PLAYER INTERFACES

461

 #endif

 break;

 case SERIF_BOLD:

 #ifndef FREE_SERIF_BOLD

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSerifBold9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSerifBold12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSerifBold18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSerifBold24pt7b);

 break;

 }

 #endif

 break;

 case SERIF_ITALIC:

 #ifndef FREE_SERIF_ITALIC

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

CHAPTER 16 CHESS PLAYER INTERFACES

462

 case 9:

 disp->setFont(&FreeSerifItalic9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSerifItalic12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSerifItalic18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSerifItalic24pt7b);

 break;

 }

 #endif

 break;

 case SERIF_BOLD_ITALIC:

 #ifndef FREE_SERIF_BOLD_ITALIC

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSerifBoldItalic9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSerifBoldItalic12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSerifBoldItalic18pt7b);

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

463

 case 24:

 disp->setFont(&FreeSerifBoldItalic24pt7b);

 break;

 }

 #endif

 break;

 case SANS:

 #ifndef FREE_SANS

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSans9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSans12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSans18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSans24pt7b);

 break;

 }

 #endif

 break;

 case SANS_OBLIQUE:

 #ifndef FREE_SANS_OBLIQUE

 disp->setFont();

CHAPTER 16 CHESS PLAYER INTERFACES

464

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSansOblique9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSansOblique12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSansOblique18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSansOblique24pt7b);

 break;

 }

 #endif

 break;

 case SANS_BOLD:

 #ifndef FREE_SANS_BOLD

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSansBold9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSansBold12pt7b);

 break;

CHAPTER 16 CHESS PLAYER INTERFACES

465

 case 18:

 disp->setFont(&FreeSansBold18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSansBold24pt7b);

 break;

 }

 #endif

 break;

 case SANS_BOLD_OBLIQUE:

 #ifndef FREE_SANS_BOLD_OBLIQUE

 disp->setFont();

 return -1;

 #else

 switch(fontSize) {

 case 9:

 disp->setFont(&FreeSansBoldOblique9pt7b);

 break;

 case 12:

 disp->setFont(&FreeSansBoldOblique12pt7b);

 break;

 case 18:

 disp->setFont(&FreeSansBoldOblique18pt7b);

 break;

 case 24:

 disp->setFont(&FreeSansBoldOblique24pt7b);

 break;

 }

 #endif

 break;

 }

CHAPTER 16 CHESS PLAYER INTERFACES

466

 Client Connection

The MKR 1010 client connection to the opposite player access point is run

during the loop() function as the access point becomes available. The

program detects the availability of the access point in every loop cycle, as

well as the WiFi connection status.

The client part of the program communicates to the access point

through the three web server APIs.

void loop() {

 // compare the previous status to the current status

 if (status != WiFi.status()) {

 // it has changed update the variable

 status = WiFi.status();

 if (status == WL_AP_CONNECTED) {

 // a device has connected to the AP

 sDebug("Device connected to AP");

 } else {

 // a device has disconnected from the AP, and we are back

in listening mode

 sDebug("Device disconnected from AP");

 }

 }

 WiFiClient client = server.available(); // listen for

incoming clients

 if (client) { // if you get

a client,

 Serial1.println("new client"); // print a message

out the

serial port

CHAPTER 16 CHESS PLAYER INTERFACES

467

 String currentLine = ""; // make a String to

hold incoming

data from

the client

 while (client.connected()) { // loop while

the client's

connected

 if (client.available()) { // if there's bytes

to read from

the client,

 char c = client.read(); // read a

byte, then

 Serial1.write(c); // print it out

the serial

monitor

 if (c == '\n') { // if the byte

is a newline

character

 // if the current line is blank, you got two newline

characters in a row.

 // that's the end of the client HTTP request, so send

a response:

 if (currentLine.length() == 0) {

 // HTTP headers always start with a response code

(e.g. HTTP/1.1 200 OK)

 // and a content-type so the client knows what's

coming, then a blank line:

 client.println("HTTP/1.1 200 OK");

 client.println("Content-type:text/html");

 client.println();

CHAPTER 16 CHESS PLAYER INTERFACES

468

 // the content of the HTTP response follows

the header:

 client.print("Click here turn

the LED on
");

 client.print("Click here turn

the LED off
");

 // The HTTP response ends with another blank line:

 client.println();

 // break out of the while loop:

 break;

 }

 else { // if you got a newline, then clear

currentLine:

 currentLine = "";

 }

 }

 else if (c != '\r') { // if you got anything else

but a carriage return

character,

 currentLine += c; // add it to the end of the

currentLine

 }

 // Check to see if the client request was "GET /H" or

"GET /L":

// if (currentLine.endsWith("GET /H")) {

// digitalWrite(led, HIGH);

 // GET /H turns the LED on

// }

// if (currentLine.endsWith("GET /L")) {

CHAPTER 16 CHESS PLAYER INTERFACES

469

// digitalWrite(led, LOW);

 // GET /L turns the LED off

// }

 }

 }

 // close the connection:

 client.stop();

 sDebug("client disconnected");

 }

}

CHAPTER 16 CHESS PLAYER INTERFACES

PART VII

Radio Amusement

For a few seconds, the courtroom was swept with a noisy buzz. Then, the

familiar melody of the bells came from the outside. The hall echoed with

the melody of a metallic accent.

Sonya leaned closer to Ray, her voice barely a whisper.

“The radio broadcast of the process starts. It is a bit creepy, but the

echo effect only happens from inside the court.” Ray nodded, “Maybe a

delay in the streaming,” he said.

“The trial BDTH6159 against Ray and Tommy Badmington can start,”

the judge announced with a solemn voice after the ritual three gavel bangs

on the table.

Tommy’s emotions swirled in a mix of fear for the future and a strange

fascination with the situation. The courtroom’s grandeur, with its towering

columns and gleaming scales of justice, added to the surreal atmosphere.

“Let’s enter the witnesses!,” the judge announced.

“We were alone, I am pretty sure!,” exclaimed Tommy, trying to keep

his voice low, turning to Ray and Sonya. Ray nodded, but Sonya had a

doubtful look.

Meanwhile, the door guard left his post, re-entering from a side door at

the bottom of the court. He wheeled in a large flat screen, positioning it at

the center of the arena. The man, also serving as the trial assistant, moved

efficiently.

“That screen is about the size of a movie theater,” Tommy commented,

trying to mask his anxiety with curiosity. The judge lifted a smaller screen

onto his table.

472

“We can proceed,” said to the court assistant. The man in uniform,

silently standing beside the screen, pressed a button on a remote

controller.

A movie that neither Ray nor Tommy ever imagined to see started

while the light softly diminished.

UNIT ID: C D R-M 0753

LOCATION: SANDCASTLE

ACTIVITY TIME: 05:00

ACTIVITY RECORD: MAINTENANCE

HEIGHT: 19.3 m

The strange stop-frame faded after a few seconds, replaced by the

footage of those critical moments. The screen replayed the endless

minutes from when Tommy crossed the dome fence to when the

sandcastle began its unexpected self-destruction.

“The maintenance robots!,” Tommy cried.

“Unfortunately, my worries were correct,” Sonya replied. “The flying

robots grabbed a loop of the last five minutes for security reasons. These

are their last five minutes of maintenance activity.”

The same endless scene repeated for every maintenance robot;

Tommy and Ray lived again and again, like psychological torture, the same

moments under countless different points of view, from different sides,

and at different heights.

When the last short movie ended, the screen went black.

“The debate will start in 20 minutes,” the judge said, hitting the gavel

on the table. Then he disappeared through a small door near the right side

of the table. The assistant wheeled the giant screen out of the court hall.

Tommy stood up, followed by Ray and Sonya.

“I need a quick walk outside,” he said. Ray and Sonya nodded,

following him.

PART VII RADIO AMUSEMENT

473

When they were at the exit door, a doorman, identical to the judge’s

assistant but not the same, smiled at them.

“Please don’t forget the radio,” he said, giving Ray a portable transistor

radio, a 70s model that Ray immediately recognized. As he got it in his

hands, the radio started playing soft classical music.

“This radio is not working or has been modified,” Ray said, examining

the device. Tommy, intrigued, observed it in the hands of his father.

“The volume can be changed with this knob, but the power-off position

is not working,” Ray explained to his son. “The station wheel rotates, but

nothing happens.” He continued moving the radio to see all the sides.

“Are we obliged to carry this and listen to the music? I am not in the

mood,” Tommy asked.

“It seems yes,” Sonya commented.

“At least, the volume can be set to zero,” Ray said.

“I feel like living a sort of predestination,” Ray continued while they

walked silently, each one lost in their own thoughts.

“What do you exactly mean?,” Tommy asked.

“This process seems the result of a perfect organization,” Ray said.

“This trial for us is a trap full of unknowns, but it is a show that someone

already knows the end.”

“To be honest,” Sonya said, close to Ray, “I never heard of any trial in

the past. I never read any mention of them in the historical log files.”

“But you were here when the park was built,” Ray commented. “It is

weird. As far as I see, the park was built decades ago. You can see why I

would be confused,” he concluded.

Before Sonya could reply, the portable transistor radio buzzed. Ray

took it in his hands; the volume knob moved automatically, raising the

sound level. Then, the channel rotated to change the frequency. Tommy

was speechless and admired it at the same time.

“The first debate of the trial will start in three minutes. All those

involved are invited to return to the court hall as soon as possible.”

PART VII RADIO AMUSEMENT

474

When the message ended, the device stopped after another buzz.

Masked by the distortion of the aged device, the tone and solemnity of the

judge’s voice were impossible to confuse.

Ray, Tommy, and Sonya went back quickly.

“I am curious to learn the name of our lawyer,” Tommy said.

“Until now, we only know their code: D4,” Ray replied. During the

pause, the center of the court had been rearranged. A chessboard of at

least five meters per side was on the ground before the judge’s table. Two

assistants were setting up big chess pieces on the board.

“Is this a joke?,” Ray exclaimed. All three were speechless. Sonya’s

expression was surprised as well; no one could explain what was

happening.

After the three gavel hits, the judge declared the first debate open.

Ray’s radio buzzed again, synchronizing automatically with the station on

the trial broadcast channel.

“BOTH6159 against Tommy and Ray Badmington. In court session

one, enter the prosecutor, Bent Larsen,” the judge announced.

A dark-dressed man in a white shirt and black tie came out from the

door, where the assistants came when setting up the chess pieces.

“Good day, your honor,” said the man standing beside the chess board

before the judge.

“The prosecutor Bent Larsen has entered the court,” the radio buzzed.

After this ceremonial salutation, the judge introduced the

defense lawyer.

“For the defense of Tommy and Ray Badmington, enter D4.”

A woman, dressed like Bent Larsen, reached the middle of the

chessboard from the same door.

“Good day, your honor,” she said. The two lawyers silently shook

hands, and each sat at one of the player’s sides.

“The debate is ready to start,” the radio buzzed.

“We will hear the chronicle of our debate on this radio,” said Tommy.

Ray nodded, getting his Palm out of his pocket.

PART VII RADIO AMUSEMENT

475

“Sonya, do you play chess?,” Ray asked.

“I know the rules, but it’s been a long time since I played,” she

answered while a tinge of sadness appeared on her face. Tommy was

observing his father without speaking a word.

“I hope you know what you are doing,” Sonya said. Ray didn’t answer,

but focused on his Palm handheld.

“If I am right, our destiny is in the hands of one of the oldest games in

the world,” Ray said, moving his attention from the device.

“Do you think we can do something?,” asked Tommy, visibly confused.

“Actually, I think no, son,” Ray answered. “I was trying to set up my

small computer to keep track of what seems to be the most probable

option. Absurd and inconceivable, according to our idea of justice, but not

for this population of robots.”

“What do you think, Ray?,” Sonya asked. “I feel so helpless.”

“This is not the time to sulk. Let’s watch the next moves,” Ray said,

holding Sonya’s hand, who tried to smile.

The lights dimmed while a spot illuminated the chessboard, and

another projected a bright light over the balance of justice on the wall over

the judge’s table.

The balance of justice oscillated in both directions and stabilized

perfectly.

When all were ready, the prosecutor sat on the white side, stood up,

and made his first move.

“From this point of view, it is almost impossible for us to see the moves

in detail,” Tommy commented.

“It is so sad that we have no options to influence the course of the

game,” Sonya added.

Ray was still focused on the Palm screen. Meanwhile, the radio

buzzed, “White moves to D4.” The silence in the hall was full of tension,

interrupted only by the soft noise of the radio, which muted any comment

after the move declaration. Ray wrote the first move on a chessboard on his

tiny screen.

PART VII RADIO AMUSEMENT

476

“Let me explain my hypothesis,” Ray said. “This debate will follow a

logic. Even though it is difficult for us to understand, it will be considered

‘correct’ for a robot.”

“Chess is a game where nothing is up to chance; it all depends on the

strategy and the capabilities of the two opponents,” Ray concluded. His

mind was trying to figure out an understandable behavior.

“But we had no choice but to decide on our defense lawyer,”

Tommy said.

“None of us knew the lawyer before. I am not a law expert, but this

should be allowed,” Sonya added. “We all know very well that when the

creator built the park to grant the most independent and correct justice

administration, he separated the judge, prosecutors, lawyers, and the

whole process from any other aspect of the park engines and logic,” Sonya

explained. “I am not aware of how this system works either.”

“I insist! This is not justice!,” Tommy interrupted in a louder voice.

The doorman guard silently approached them from behind.

“Please exit the courthouse,” the guard said in a formal tone. They

looked at him with a questioning expression. “Loud noises are prohibited

during court debates. You are no longer authorized to follow the debate

in person. You can follow it on the radio,” the guard concluded. Then he

opened the entrance door and invited them to exit.

“I spoke too loud!,” said Tommy. “I always create trouble,” he

commented sadly.

“It’s okay to follow the debate outdoors,” Ray answered, sitting on a

wooden chair around a table in the middle of the lovely garden in front of

the courthouse building.

Tommy followed him, shrugging his shoulders.

“Black moves Nf6,” the radio buzzed. Hearing the moves from the radio

was more than sufficient to follow the debate evolution.

“The mistake is ours! We were viewing the whole process from the

wrong perspective,” Ray said.

“What do you mean, Ray?,” Sonya asked.

PART VII RADIO AMUSEMENT

477

“As strange as it sounds, it’s starting to make sense,” Ray followed. “We

always had all the information. But, we had been conditioned by a non-

logic vision, which the machines totally ignore.” He followed. Tommy and

Sonya tried to understand what he was implying.

“What do you mean by following the pure logic of the machines?,”

Tommy asked. Sonya nodded; this was the same question she had.

“The prosecutor and defense lawyer debate in the virtual world of a

chessboard, okay?,” Ray followed. The two nodded silently. “Chess play

can’t be equivocated; every move exclusively depends on the player’s

ability, knowledge, and strategy. No tricks, no lies, no mistakes. Every move

can decide the final result,” Ray continued, fired up.

In the meantime, the radio buzzed “c4, g6, Nc3, Bg7”

Ray was diligently annotating every move on his Palm.

“Look. The chess pieces represent every character we recognize

in human nature. And every move results from a strategy, exchanging

attack and defense, and vice versa.” Tommy and Sonya were starting to

understand Ray’s point.

“Please continue,” Sonya said. Roy nodded and followed, expounding

on his theory.

“Here we have the first move: the prosecutor puts his center pawn in

position d4. This is the popular Queen opening. But what really counts is

that our lawyer’s name is D4. I think these two things are strongly related.

Both of them speak the same language and debate on the same topic.”

“This seems perfect!,” Tommy exclaimed.

“I am impressed and fascinated,” Sonya admitted.

“e4 d6,” the radio buzzed again.

“These last two moves,” Ray said, showing the last radio

announcement on his palm screen, “Confirm my suspicion. Our lawyer,

D4, is entering the King’s Indian Defense,” He said.

“We know that this amusement park was built between the end of the

50s and the first decade of the 60s,” he continued.

PART VII RADIO AMUSEMENT

478

“Everything pertains to a fascinating vintage world,” Tommy

commented.

“In fact, the King’s Indian Defense was used by Bobby Fischer in 1958.”

While explaining, Ray spoke with a look of satisfaction.

“If I am right, we will not see more recent game openings or strategies.

Those modern games did not exist when this place was built,” Ray concluded.

“Maybe there is a way to train our lawyer after the debate,” Tommy said

hopefully.

“I don’t know if these machines can follow a different pattern, but our

knowledge is limited to the repair and maintenance operations. We can’t

change their original programs,” Sonya said.

The King’s Indian Defense, played aggressively by D4, was highly

efficient. After 41 moves, the radio buzzed “Qf3 Bg3. D4 wins.”

The victory filled all three with cautious optimism.

“If D4 wins, the second debate will be about whether our destiny will

drastically change,” Ray said.

“I hope. You can’t imagine how much I hope, but unfortunately,

Tommy remains guilty, according to our laws,” Sonya said.

“I see,” Ray answered. “But winning the debate may change his

sentence. At least, it is what I hope.”

In the meantime, the radio buzzed, “As D4 is the only available defense

lawyer, no change is possible. The second debate is open.” It was the

unequivocal voice of the judge.

This time, D4 started from the white side.

“D4 moves to d4.” When the radio announced the first move,

Ray nodded.

“My supposition is confirmed,” Ray said. “D4 will always play the

Queen opening. Sonya, what do they mean—the judge’s words when he

started the second debate?” Ray asked.

“I think that it refers to the fact that the accused can choose up to three

different lawyers, asking them to change every debate. I was not aware

what you said was related to chess abilities,” Sonya said.

PART VII RADIO AMUSEMENT

479

After thinking about this detail, she added, “Maybe we can use it in the

future.”

Unfortunately, the game of the second debate was literally a disaster.

D4 lost against an elegant defense strategy of the prosecutor.

“Mate for D4 in ten moves,” the radio buzzed, then silenced.

No one commented. A cold silence enveloped the three, and none of

them spoke, waiting for the start of the third and last debate.

When the radio buzzed again, the judge repeated the same formula,

introducing D4 as the defense lawyer for the third time.

“This is our last chance,” Ray said without enthusiasm. Sonya nodded.

“D4 is better in defense than attack,” said Tommy, trying to convince

himself that there was still hope.

“The judge repeated the same formula,” Sonya commented.

“What worries me,” Ray said, “is that the prosecutor, at this point,

already knows the weak points of our lawyer. I am sure he will use this

knowledge in the game.”

“You are too pessimistic, Ray,” Sonya commented, trying to smile. All

three were aware that Ray was right.

The prosecutor, again, started with the Queen’s opening. D4 played a

nerve-wracking game, demonstrating incredible resistance. Regardless of

the game brilliance and the tactical ability demonstrated by D4, she lasted

95 moves. Then, the radio announced

“Qb2. D4 lose for mate.”

“She lost like Mikhail Botvinnik in 1960,” Ray said, and they were

enveloped in a shadow of sadness and despair.

PART VII RADIO AMUSEMENT

481© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_17

CHAPTER 17

The Radio Magic
Upcycling

Figure 17-1. The past century Radio Magic

The upcycling of this ‘60s Bush Radio (see Figure 17-1) marks the starting

point of a path I used to make music with vintage technologies integrated

into the most recent hardware and software devices available today.

https://doi.org/10.1007/979-8-8688-0080-1_17#DOI

482

How can an old transistor radio be used to make music? Electronic

music can be created with digital or analog synthesizers, which can generate

waveforms in the audible range (from 20 to 20.000Hz). Many functions can

be added to a bare waveform generator, applying effects. These consist of a

“chain” of devices or software modules to change the original sound.

Indeed, this is not the only approach to electronic music; instead of

artificially generated sounds, you can sample sounds.

A sound sample is the recording of a short sequence of sounds: a

musical instrument, a noisy tool, the sound generated by a percussion,

or—why not—a vintage radio.

Note One of the first music synthesizers was the Mellotron, an

electro-mechanical musical instrument developed in Birmingham,

England, in 1963. The instrument is played by pressing its keys, each

of which pushes a length of magnetic tape against a capstan, which

pulls it across a playback head. Then, as the key is released, the

tape is retracted by a spring to its initial position. Different portions

of the tape can be played to access different sounds (https://

en.wikipedia.org/wiki/Mellotron).

17.1. Tuner Mechanical Upgrade

Like most radios from the same period, the Bush Blue Baby Limited

Edition transistor radio I used in this project uses a mechanical tuner to

find the radio stations.

Radio tuning is controlled by a variable capacitor, a widely used

component in radios produced for many decades until the early 70s.

It is not easy to operate the proper selection by rotating the variable

capacitor shaft; for this reason, the tuning mechanism has a pulley

mechanism driven by a thin cotton thread to increase the rotation angle

for a more precise selection of the desired band. See Figure 17-2.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

https://en.wikipedia.org/wiki/Mellotron
https://en.wikipedia.org/wiki/Mellotron

483

Figure 17-2. Detail of the pulley-driven tuner mechanism. On the left
side is the shaft connected to the variable capacitor, while on the right
is the reduction pulley attached to the tuner shaft

Note A variable capacitor is a component whose capacitance may

be changed mechanically or electronically. Variable capacitors are

used in L/C circuits to tune radio stations.

17.1.1. Making an Auto Tuning

Acquiring audio samples from a radio receiver is easy; recording on

any device from the radio’s audio-out plug is sufficient, but this method

has a lot of limitations, and it is not what I want to create an original

sound sample.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

484

The exciting goal is to acquire short samples of audio noise while the

tuner moves from one station to another. The transistor radios of the same

age cover the three AM, FM, and LW bands, and my preferred effect is to

generate recording sequences from the noise while scanning a portion of

the AM band, as well as the other frequency ranges.

This effect can create samples added to a sequencer for later use

or included real-time in a live execution; this second case is the most

interesting because we will never retrieve identical sequences due to the

radio broadcast characteristics.

I want to achieve continuous screening automation between a selected

range of frequencies. To do this, I need to make mechanical changes to the

radio tuning, including removing one of the original pieces to make space

inside: the internal speaker. See Figure 17-3.

Figure 17-3. The internal body of the radio is disassembled,
removing the speaker. This makes sufficient space inside to host a
low-speed stepper motor—and the motor controller—to enable the
rotation of the variable capacitor.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

485

After some quick tests, I excluded using a DC motor because the

tuner capacitor should be operated with high precision and very short

increments. I used an inexpensive geared stepper motor (28BYJ-48, 5V

stepper motor, four phases, and five wires).

 Upgrading the Mechanics

Figure 17-4. Using a small pulley (almost the same diameter as the
manual tuning shaft pulley) and a toothed belt connected to the large
pully of the tuner capacitor, I can reach the same result of reducing
the motion per step. This operation is necessary, as the radio tuner
capacitor has a rotation angle of only 180 degrees.

One of the “musts” I always impose on upcycling projects is to keep the

device intact as much as possible, with minimal aesthetic changes.

In this case, the goal is to add a motor to control the tuner without

changing the original pulley system; this also keeps the manual shaft

moving after the automation. See Figure 17-4.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

486

To occupy minimal space inside the radio body, I 3D printed two

pieces: the motor support and the tooth belt gear of the same diameter as

the tuner’s large pulley. See Figure 17-5.

Figure 17-5. The 3D printed supports and the tooth belt gear to move
the tuner pulley with the stepper motor

The ring gear was centered on top of the tuner pulley and glued.

Because the tuner has a minimal rotation (less than 180 degrees), it was

not difficult to connect it to the small stepper motor gear, reducing it to

about 10:1.

After this operation, the manual tuner—the big white wheel in front of

the radio—is blocked but will move following the motor. See Figure 17-6.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

487

Figure 17-6. The tuner pulley with the stepper motor is connected
through a toothed belt. Thanks to the reduced size of the motor
controller board, the parts fit easily inside the radio's body

 All Wires in One Connector

I faced a problem when I determined the number of wires that should go

from the radio to the controller.

Even when upcycling a 60s device, using an old-style connector

can’t be the solution; it will ruin a considerable part of the plastic case,

requiring a couple of screws and a large rectangular hole. To avoid this, I

used a modern RJ-45 LAN connector instead, which had some attractive

advantages:

• Minor changes to the case’s aesthetic can be glued

on one of the sides of the radio without excessive

alterations.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

488

• There are fewer than 12 wires to connect, so the

connector will be sufficient.

• Special cables are not needed using the same solution

on the controller side, so a straight network cable is

sufficient.

• Signals and power supply for the motor controller and

the radio are supported.

• The controller side takes advantage of the small size of

the RJ-45 female plug.

When the work was finished, this proved to be the best solution. See

Figure 17-7.

Figure 17-7. The RJ-45 plug is glued to the radio case's left side device

CHAPTER 17 THE RADIO MAGIC UPCYCLING

489

17.2. Auto Tuner Controller

I designed this prototype in two separate parts: the mechanics and the

controller. After adding the automation to the tuner pulley and ensuring

that all the signals and power supply were available on one side of a

standard LAN cable, I determined that it would work no matter how the

motor was controlled.

17.2.1. Requirements

The controller features do not need too many extra components, and an

Arduino Nano microcontroller is sufficient to achieve the requirements.

• A rotary encoder moves the stepper motor in both

directions.

• A temporary switch button is used to set the start and

end of the tuner range and start the automation.

• A red LED signal indicates that the circuit is working.

• An RJ-45 female plug connects the signals and power

lines to the radio.

• A small connector powers the controller, the motor, and

the radio.

• A socket hosts the Arduino Nano board on the PCB; the

microcontroller board can also be soldered directly on

the board to reduce the height.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

490

 What We Get

According to the requirements, the controller should work as follows:

 1. After powering on, the power LED shows that the

circuit is working. To operate the radio tuning, the

radio should also be powered using the rotating

wheel on top (the volume wheel). To hear or record

the audio, an audio mono cable should be plugged

into the line-out plug of the radio, as there is no

longer a speaker inside and the internal amplifier

has been excluded.

 2. Depending on the tuner gauge’s current (last)

position in front of the radio, the rotatory encoder is

moved in a direction according to the device’s audio

feedback.

 3. When the desired first position of the tuner reaches

the first point, I press the temporary switch button

to set the “start” tuner position.

 4. I then do the same to position the tuner to the “end”

position and press the button again.

Because the second position has been set with the temporary switch

button, the tuner starts looping between the two positions until the

temporary switch button is not pressed a third time (a reset command).

After resetting the loop, a new start-to-end loop position can be

set again.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

491

17.2.2. The Circuit and PCB

Figure 17-8. The circuit schematics of the controller, as it was created
to make the prototype

Of course, the schematics were developed step by step, while testing

the components on a breadboard. Then, after the prototype worked, I

completed the schematics, from which I designed a decent PCB with

Altium Designer. See Figures 17-8 and 17-9.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

492

Figure 17-9. The controller's two-side PCB routing. Disconnect the
power line to the stepper motor and the radio to program the Arduino

I made some PCB units to service, and after assembling them, they

worked as expected. See Figure 17-10.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

493

Figure 17-10. The Radio Magic controller prototype, connected to the
radio through a standard RJ-45 network cable

17.3. The Controller Software

The software business logic runs the stepper motor according to the

increments and direction of the rotary encoder. The temporary switch

button drives the software events through an interrupt to handle the

stepper loop.

17.3.1. Hardcoded Parameters

The constants.h header file defines all the control parameters of the

application. These values have been tested empirically to get the best

 performance.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

494

Constants concerning the stepper motor (steps and step increment)

should be defined according to the kind of stepper motor and the

demultiplication operated by the motor shaft on the tuner capacitor. Sizes

and diameters can vary depending on the transistor radio model.

Note that the STEPPER_SPEED value corresponds to the stepper pulse

frequency. In this case, the frequency is relatively high using a geared

stepper motor. The reduction gears of the stepper move it more slowly

than normal stepper motors (e.g., Nema 17) to increase its shaft torque,

regardless of the low power of the stepper.

//! Steps per revolution, according to the motor specifications

#define STEPS_PER_REV 200

//! Preset tuner stepper speed

#define STEPPER_SPEED 90

//! Number of steps per increment, corresponding to a

rotary encoder

//! single step.

#define STEPPER_INCREMENT 100

//! Stepper direction clockwise. The number of increments is

multiplied

//! by the direction to get a positive or negative number

#define ROTATION_CW 1

//! Stepper direction counterclockwise. The number of

increments is multiplied

//! by the direction to get a positive or negative number

#define ROTATION_CCW -1

//! Clockwise calculated steps

#define ONE_MOVE_CLOCKWISE STEPPER_INCREMENT * ROTATION_CW

//! Counterclockwise calculated steps

#define ONE_MOVE_COUNTERCLOCKWISE STEPPER_INCREMENT *

ROTATION_CCW

CHAPTER 17 THE RADIO MAGIC UPCYCLING

495

//! L298 stepper motor controller pin 1

#define STEPPER_PIN_1 8

//! L298 stepper motor controller pin 2

#define STEPPER_PIN_2 9

//! L298 stepper motor controller pin 3

#define STEPPER_PIN_3 10

//! L298 stepper motor controller pin 4

#define STEPPER_PIN_4 11

The rotary encoder parameters are almost standard, as I count

every single click. The only definition that can change concerns

the pin assignments if you’re using an Arduino board of a different

microcontroller. The same is true for the looper button (the temporary

switch).

//! Rotary encoder button pin (attached to Nano IRQ1)

#define ROTARY_BUTTON 3

//! Rotary encoder clock pin

#define ROTARY_CLK 6

//! Rotary encoder data pin

#define ROTARY_DATA 7

//! Rotary encoder value when rotating clockwise

#define ROTARY_CW -1

//! Rotary encoder value when rotating counterclockwise

#define ROTARY_CCW 1

//! Number of reading of the rotary encoder to take effect

//! Only the second reading is considered valid

#define ENCODER_READINGS 1

// ==============================

// Looper Button &LED

// ==============================

CHAPTER 17 THE RADIO MAGIC UPCYCLING

496

//! Rotary encoder button pin (attached to Nano IRQ0)

#define LOOPER_BUTTON 2

//! Programming LED signal

#define PROG_LED 4

//! LED frequency while the stepper is looping

#define LED_FREQ 100

//! LED frequency when idling (looper button control has

temporary

//! stopped the loop)

#define LED_IDLE 1000

The RadioStepper structure defines all the dynamic values depicting

the controller’s state at any given moment in a single object.

/**

 * The RadioStepper structure contains the status of

 * all the parameters controlling the behavior of the radio

 */

struct RadioStepper {

 /**

 * The starting position has been selected

 *

 * This happens when the user presses for the first

 * time the rotary encoder button. From that point,

 * the number of effective steps is counted until

 * the button is not pressed for the second time.

 */

 bool isSelected = false;

 /**

 * When the button has been pressed for the second time, the

 * programmed status indicates that the system is ready to

 * loop the tuner.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

497

 */

 bool isProgrammed = false;

 //! Status enabled when the tuner is looping

 bool isLooping = false;

 //! Current relative tuner position inside a loop

 int tunerPosition = 0;

 //! Looping direction. It is inverted when one of the

two limits

 //! is reached

 int loopDirection = 0;

 /**

 * Steps units expressed in number of rotary pulses

 *

 * The units are added algebraically to the counter until

 * the rotary encoder button is not pressed for the second

 * time. At this point the controller is programmed

to execute

 * a loop.

 */

 int loopSteps = 0;

 //! Current rotary encoder position

 int16_t encValue = 0;

 //! Current LED non-stop blinking frequency

 //! It is different when looping is stopped by the stepper is

 //! programmed

 int blinkLEDFrequency;

 //! LED status, inverted during the non-blocking blinking

mechanism

 boolean isLEDOn = false;

CHAPTER 17 THE RADIO MAGIC UPCYCLING

498

 //! Starting millis to calculate the period for LED

blinking in the

 //! non-blocking function

 unsigned long millisCounter;

};

17.3.2. The Program

 Initial Setup

The program setup initializes all the states of the controller at boot and

globally defines a RadioStepper structure.

RadioStepper radioStepper;

//! Initialization function

void setup() {

 #ifdef DEBUG

 Serial.begin(38400);

 #endif

 // --

 // Initialize the tuner stepper speed

 // --

 radioTuner.setSpeed(STEPPER_SPEED);

 // --

 // Initialize the rotary encoder

 // --

 encoder = new ClickEncoder(ROTARY_CLK, ROTARY_DATA, ROTARY_

BUTTON);

 // Initialize the Rotary Encoder

 Timer1.initialize(1000);

 Timer1.attachInterrupt(timerIsr);

CHAPTER 17 THE RADIO MAGIC UPCYCLING

499

For obvious reasons, the temporary switch button interrupt is enabled

as the last operation of the setup:

 pinMode(LOOPER_BUTTON, INPUT_PULLUP);

 pinMode(PROG_LED, OUTPUT);

 // Start showing the LED activity

 blinkLEDPeriod(1500);

 attachInterrupt(digitalPinToInterrupt(LOOPER_BUTTON),

irqLoopButton, LOW);

}

 The Main Loop

The primary action of the main loop is reading continuously—except when

the temporary pushbutton generates an interrupt. The rotary encoder acts

accordingly.

The logic of the loop’s actions is driven by continuously checking

the status of the RadioStepper structure and updating the concerned

variables.

void loop() {

 // Read the encoder value. Maybe -1, 1 or 0

 radioStepper.encValue = encoder->getValue();

 // Check if the rotary position has changed (exclude the

zero status

 if ((radioStepper.encValue != 0) && (encoderCounter ==

ENCODER_READINGS)) {

 if(radioStepper.isProgrammed == true) {

 // If the tuner is programmed and the user moves the

rotary encoder

 // the programmed status is automatically reset

 setProgrammingStatus(false);

 }

CHAPTER 17 THE RADIO MAGIC UPCYCLING

500

 encoderCounter = 0; // Reset the counter readings

 // Check for the direction (clockwise of counterclockwise)

 if (radioStepper.encValue == ROTARY_CW) {

 radioTuner.step(ONE_MOVE_CLOCKWISE);

 // Update the loop counter (only if programming is set)

 updateLoopCount(ONE_MOVE_CLOCKWISE);

 } // Clockwise rotation

 else {

 radioTuner.step(ONE_MOVE_COUNTERCLOCKWISE);

 // Update the loop counter (only if programming is set)

 updateLoopCount(ONE_MOVE_COUNTERCLOCKWISE);

 } // Counterclockwise rotation

 } // Rotary encoder has been moved twice

 else {

 if(radioStepper.encValue != 0){

 encoderCounter++;

 }

 } // First encoder reading

 // Check for the rotary encoder button press. The 0 value

shown on power-on can't be selected

 ClickEncoder::Button encButton = encoder->getButton();

 if(encButton == ClickEncoder::Clicked) {

 #ifdef DEBUG

 Serial << "Encoder button clicked" << endl;

 #endif

 if(radioStepper.isSelected == false){

 radioStepper.isSelected = true;

 setProgrammingStatus(false);

 // LED fixed on

 digitalWrite(PROG_LED, HIGH);

CHAPTER 17 THE RADIO MAGIC UPCYCLING

501

#ifdef DEBUG

 Serial << "isSelected true" << endl;

#endif

 } // Button pressed for the first time: start programming

the range

 else {

 #ifdef DEBUG

 Serial << "Set prog status true" << endl;

 #endif

 setProgrammingStatus(true);

 } // Programming ended, start looping

 } // Encoder button clicked

 // Check for looping

 if(radioStepper.isLooping == true) {

 radioStepper.tunerPosition += (STEPPER_INCREMENT *

radioStepper.loopDirection);

 // Check if the direction should be inverted

 if((radioStepper.tunerPosition == 0) || (radioStepper.

tunerPosition == radioStepper.loopSteps)) {

 radioStepper.loopDirection *= -1; // Invert the loop

direction

 }

 radioTuner.step(STEPPER_INCREMENT * radioStepper.

loopDirection);

 }

 // Non-blocking LED blinking, if needed

 blinkLEDOnce();

}

CHAPTER 17 THE RADIO MAGIC UPCYCLING

502

 The Interrupt Vector Function

When an interrupt occurs on the Arduino Nano IRQ 0, the control passes

to the IRQ function that changes the looping status. Returning to the main

loop, it changes the behavior as the scenario defined in the RadioStepper

structure is changed.

The irqLoopButton() function is the callback that drives the status

LED and changes the looping status in the RadioStepper global structure.

/**

 * IRQ Vector callback for Nano IRQ 0 (the loop control

button pin)

 */

void irqLoopButton() {

 if(radioStepper.isProgrammed == true) {

 detachInterrupt(digitalPinToInterrupt(LOOPER_BUTTON));

 // If the tuner is programmed, change the status of the

loop flag

 if(radioStepper.isLooping == true) {

 radioStepper.isLooping = false;

 radioStepper.blinkLEDFrequency = LED_IDLE;

#ifdef DEBUG

 Serial << "LED idle" << endl;

#endif

 } else {

 radioStepper.isLooping = true;

 radioStepper.blinkLEDFrequency = LED_FREQ;

#ifdef DEBUG

 Serial << "LED frequency" << endl;

#endif

 }

CHAPTER 17 THE RADIO MAGIC UPCYCLING

503

 attachInterrupt(digitalPinToInterrupt(LOOPER_BUTTON),

irqLoopButton, LOW);

 delay(10);

 radioStepper.millisCounter = millis();

 }

}

The entire software, documentation, and components are included in

the chapter package.

CHAPTER 17 THE RADIO MAGIC UPCYCLING

PART VIII

Life with a Borg
“Qb2. D4 lost mate,” Tommy slowly repeated one word at a time. Then, an

oppressive silence fell over them,.

“Ray and Tommy Badmington are immediately summoned to present

themselves before the judge in the courtroom,” The radio buzzed.

Without speaking a word, the three moved to the courthouse entrance.

Ray felt a deep sense of discomfort. He was apprehensive about his son’s

destiny, and his sense of helplessness grew as he entered the courtroom.

Sonya sat in one of the first rows while Ray and Tommy stepped

down the central stair separating the two halves of the semicircular arena

to reach the front of the judge’s table. At that exact moment, one of the

attendants was entering the side door carrying the last two pawns. Without

the chessboard, the judge’s front floor appeared to Ray like an infinite,

desolate place.

“Ray and Tommy Badmington,” the judge began.

“Based on the witnesses’ testimony and the outcome of the three

trial debates, you are hereby found guilty, with varying degrees of

responsibility, for the destruction of the sandcastle, disruption of the peace

of BDTH6159, and of irrevocable damage. You are required to return to this

courtroom in 12 hours to hear your final sentence.”

The judge banged the gavel on the table and stood up while the radio

speakers echoed his last words.

When the judge exited, the lights dimmed. Ray and Tommy walked to

the exit where Sonya was waiting.

506

They stepped outside, their hearts heavy with sadness. For a while, no

one was able to speak a word.

They were like strangers in an unknown world; any complaint or

argument at this point was useless.

Ray and Tommy walked with their hands in their pockets, and Sonya

walked silently beside Ray.

“This is the end of it all,” Ray said, looking at Tommy, who nodded.

Sonya linked her arm with him.

“Do you have any idea what the sentence will be?,” Tommy

asked Sonya.

“No idea, Tommy,” she answered. “I reviewed all the text available on

the laws and rules of the park, but found nothing about the sentences.”

Ray sighed without commenting.

“How long should we wait for the sentence?,” Tommy asked. “Two

hours and forty-five minutes,” Ray answered, checking his Palm.

“About three more hours of torture,” Tommy commented.

“I see our dream breaking like a mirror, transformed into a nightmare,”

Tommy said. “All because of my stupidity,” he continued. “I’ll never see

Lake Michigan, and I’ll never be back in Wisconsin,” he continued. Ray

nodded, shrugging his shoulders.

“All that I still have from Wisconsin are these red socks,” Tommy said,

showing his socks with a sad smile. Ray smiled sadly, too. “They remind

me of the ball signed by Tom Gordon, which we have at home, in the

stand drawer next to your bed,” Ray said. Tommy nodded with a nostalgic

expression on his face.

Sonya continued walking close to Ray without intervening in the chat

between the father and son.

The three continued chatting and remembering, waiting to pass the

slowest hours of their lives.

“Ray and Tommy Badmington are immediately summoned to present

themselves before the judge in the courtroom.”

PART VIII LIFE WITH A BORG

507

When their transistor radio buzzed the message, they breathed a sigh

of relief. Finally, the endless waiting was nearing an end.

“What will happen now?,” Tommy asked Sonya. “I have no idea,

Tommy,” she answered.

“As I told you before, I have not found any trace of sentences in all the

documents I read,” she continued. “The process has been followed literally

because the BDTH6159 justice administration has no previous experience.

This is the first trial they have managed,” Sonya concluded.

They arrived some minutes later; the judge had not yet entered the

courtroom. Ray and Tommy sat in front of the judge’s mahogany table,

where they found two chairs, while Sonya sat on the first row of benches,

nearest to the judge.

“Please rise, the judge is entering the court,” said a guard opening the

judge’s entrance door.

The judge went to his table and sat on the sizeable leather-

upholstered chair.

“Please be seated,” he said after hitting his gavel three times on

the table.

“In the matter of BDTH6159 vs. Ray and Tommy Badmington, it has

been determined that both defendants are guilty.” Hearing these words for

the second time, Ray was thankful to be seated.

After a short pause, the judge continued.

“This court hereby sentences Tommy Badmington to a lifetime

residency within the confines of the park.”

Suddenly, Tommy’s face assumed an unnatural pale color. Ray thought

he was on the verge of fainting. Tommy didn’t change his expression and

didn’t move a single muscle.

“Ray Badmington is ordered to be permanently expelled from the

premises within 48 hours of the issuance of this decree.” The judge took a

long breath and paused. Tommy felt a terrible sense of abandonment.

“All this effort to reach this point,” Ray thought, wholly discouraged.

PART VIII LIFE WITH A BORG

508

Then the judge continued, “Mitigating factors: This court

acknowledges that Tommy Badmington’s actions were the result of

excessive enthusiasm and imprudence. Consequently, he is granted the

freedom to roam and reside within the park as he chooses. However,

should Tommy Badmington engage in any further misconduct, this

court reserves the right to revise his sentence and impose incarceration

without delay.”

Ray, Tommy, and Sonia were speechless.

“The court hereby declares this trial closed and the sentence to be

executed definitively unless new evidence or incontrovertible justification

is presented to this court within the next 24 hours.”

Then, the judge concluded, “The session is adjourned.” He hit the gavel

on the table and left. They were expecting something dramatic, anticipated

by the previous audience to the court. Hearing the sentence, all three were

shocked.

They remained frozen in place for a long time, unable to move a

muscle. Then Sonya moved closer to Ray and Tommy, still sitting in front

of the judge’s table, which was now deserted. With a nod of the head, she

asked them to stand up. Ray and Tommy followed Sonya to the stairs and

courthouse exit without expression. They walked like two automatons.

Outdoors, under the sunlight, Sonya and Tommy’s eyes were red, as

if they were about to burst into tears at any moment. None of them could

imagine a way to change the situation.

“A life-long sentence,” Tommy murmured. “And you are forced to go

back to home.” Looking at Ray and hearing these words, Sonya had to

look away.

“Our last day together,” Ray said, holding Sonya’s hand and putting an

arm on Tommy’s shoulder, who was walking beside him.

“This adventure has become the worst day of my life,” Ray said.

“Another terrible loss has just been announced,” he continued. Sonya held

his hand more firmly. She tried a smile, looking at Ray, betrayed by a tear

on her cheek.

PART VIII LIFE WITH A BORG

509

“How can I survive this nightmare?,” Tommy asked, aware that his

question was rhetorical. It was a question to which everyone already knew

the answer.

“How can I survive here, Dad?,” Tommy asked his father in tears.

“Can you imagine my whole life in a world of machines? Damn cryptex!,”

he screamed. At that moment, Ray’s faith in technology faltered. None

of them could say anything that was not too obvious or stupid. Ray was

struggling to do something to soothe his son’s anguish and panic.

“Son, I would do anything to get you back to Michigan,” Ray said.

Sonya’s eyes flashed for a second.

Sonya moved half a step in front of Ray; she put her arms around his

neck and pulled his face close to her.

“Would you accept the hardest condemnation on behalf of Tommy?,”

she whispered in his ear.

“Yes, if he could come back home,” answered Ray in a loud voice.

“No!,” exclaimed Tommy, who imagined their idea.

“You can’t do this!,” he continued.

“Son,” Ray said, but Sonya interrupted him with a gesture.

“Ray, wait. And Tommy, please, your father and I need to speak alone.”

Tommy was silenced with a puzzled expression.

Sonya sat on one of the benches. Ray followed her, almost confused.

“As I told you before, I read all the documents about the justice

administration, searching for something mentioning previous trials or

sentences.” Ray nodded. He was not sure what Sonya was up to.

“As far as I know, this is the first judgment happening at BDTH6159,”

Ray nodded, curious and still confused.

“Thanks to these readings, I learned a lot about the laws, rules, and

procedures the creator hardcoded in the justice administrators’ memories.

Unfortunately, nowadays, only D4, the prosecutor Bent Larsen, and

the judge are operational after so long without maintenance,” Sonya

continued.

PART VIII LIFE WITH A BORG

510

–“What does this mean? It is an unpredictable situation that probably

caused our misfortune,” Ray commented.

“Indeed, but this can also be our fortune,” she followed. “We can

appeal to the partial incorrectness of the procedure by asking for a kind of

refund.” Ray’s eyes started shining at her words. In the meantime, Sonya

continued explaining her theory.

“We can present opposition to the unfair procedure of the trial. At this

point, there are two options. We can ask for a new process, waiting a long

time until all the justice administration members, lawyers, and prosecutors

are repaired.”

“The second alternative, which, in my opinion, will be more acceptable

by the judge, is to pretend, as a form of indemnity, the substitution of the

defendants,” Ray nodded, curious to know the conclusion.

“Could Tommy then come back to Michigan to our house?,” Ray asked.

“Yes, this could happen,” Sonya answered.

“And you will be condemned to a life-long existence in this world. The

final decision is up to you. But it would be best if you decide soon, because

the 24 hours are almost up,” she concluded.

Tommy couldn’t ignore the tone of their discussion, even though he

hadn’t heard the words.

“Undoubtedly, the second option is the best choice,” Ray said. Sonya

nodded with a shade of sadness in her eyes. Ray, worried, noted Sonya’s

mood. He took both her hands with his hands and leaned toward her.

“After my arrival, something changed in my inner self. Regardless of all

the problems, these days have also been the most meaningful,” Ray said.

“The idea of never seeing again you would break my heart.”

“I feel the same,” she answered.

“It was the first time I discovered that human sentiments are

impossible to confuse,” Sonya said.

“So, I only repeat, the decision is done. Tommy can be free,” Ray said.

PART VIII LIFE WITH A BORG

511

“Ray, you are important to me. You can’t imagine how much.” A

contagious smile appeared on Ray’s face. Tommy, still apart and waiting

patiently, also smiled.

“Ray, let me finish. There is something that you still don’t know

about me. I want you to know this before you make your decision,” Sonya

continued. Ray remained silent, still close to her, her hands in his.

“Ray, there is no easy way to say this. I admit I am scared of your

reaction. I hope you don’t blame me for keeping this secret until now.” Ray

looked into Sonya’s eyes. He was serious and focused on her words.

“Ray, I am not human,” Sonya took a long breath. Ray remained silent.

“When the creator was almost finished, the amusement park was

already older, so she decided to create a guardian or a supervisor. An

android that would be a perfect reproduction of herself at age 35,” Sonya

paused for a couple of minutes to give Ray the time to assimilate the

revelation.

“I am identical to a human in all the minimal details. The only

difference is that I recharge with the sunlight. I do not need to eat.”

Ray was speechless. He needed a few minutes before talking again.

“I am the inheritance of the creator,” Sonya concluded.

“But you are human!,” Ray exclaimed. He spoke so loud that this was

the only sentence that Tommy clearly distinguished. And this seemed so

obvious to him.

“Until a few days ago, the only thing I was conscious of was that I am

an artificial creature. Before dying, the creator told me that she put in my

mind the full backup of the BDTH6159 project. And a gift in my heart.”

“A gift?,” Ray asked.

“Thanks to you, now I know what it is,” she said. “The creator also gave

me humanity. I can feel sentiment, and I can love,” she concluded.

Ray never stopped looking at her eyes. Suddenly, he stood up, pulling

Sonya by one hand.

“Rush!,” he said, starting to run to the courthouse. Sonya followed him,

holding his hand tightly.

PART VIII LIFE WITH A BORG

512

“Hey! Where are you going?,” Tommy yelled.

“To free you!,” Ray answered without stopping.

As Sonya explained their request to the door guard, he kindly

described the appeal procedure, giving them a four-page module he

printed with the terminal on the small desk near the entrance.

Ray and Sonya needed almost one hour to answer all the questions

and explain the reasons for their request.

Tommy, a bit anxious, was waiting outside.

As Ray and Sonya came back, Tommy began questioning Ray

insistently.

“Tommy, tomorrow you can go back to Michigan,” Ray said. “But now

we should get some sleep. Tomorrow will be a great day,” he concluded.

Tommy went to sleep immediately in the small apartment, that strong

jail without doors. His questions could wait until the next day.

At nine in the morning, a guard woke them up, calling them by

name and giving Ray a document. “The court has accepted your revision

request.” He left the paper signed by the judge on the small square table

and left them alone.

When they went outdoors, Sonya was standing near the entry.

“I heard the news on the radio,” she said with a smile.

Meanwhile, a couple of guards reached them.

“Good morning. We have the order to accompany Tommy Badmington

to the nearest exit portal,” they said, then the group moved.

“Dad, are you sure?,” Tommy asked during the walk.

“Yes, I am. It is the right decision for all,” Ray answered. They walked

for 20 minutes while Ray reassured Tommy.

The two guards stopped in the center of a meadow with trimmed grass.

One of the two pressed a button on a small device like a remote controller.

In a few seconds, a metal rotating barrier appeared in front of them. On the

other side, Marina del Rey’s dock was visible. The second guard stepped

close to Tommy.

“It’s time to go,” he said.

PART VIII LIFE WITH A BORG

513

Tommy nodded, turned to his father, and hugged him tightly. It was

difficult for Tommy to retain his tears. Then, he hugged Sonya, “Take care

of him,” Tommy said.

“Count on me,” Sonya answered, smiling. Tommy moved toward the

revolving door.

“Tommy,” Ray yelled to him when he was some steps away. Tommy

turned again, surprised.

“One moment!,” Ray said, searching in his pocket. “Take this, and think

of your father,” giving his Palm handheld to Tommy.

“I’ll never forget!,” Tommy said, smiling. Ray and Sonya followed

Tommy with their eyes, embracing each other.

They waited until Tommy passed the border of BDTH5159, and then

the door disappeared.

It remains uncertain whether, in those final moments, Tommy turned

back for one last farewell, witnessing Ray and Sonya share a kiss, just like

two lovers.

PART VIII LIFE WITH A BORG

515© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1_18

CHAPTER 18

Life with a Borg

Figure 18-1. A Borg

We can’t know if Ray’s choice can be considered a happy ending, but I am

sure his decision changed the rest of his life.

What makes the fantasy work in this scenario is that he had a unique

opportunity, an option that remains in the BDTH6159 world for now.

construction of this model

involved

https://doi.org/10.1007/979-8-8688-0080-1_18#DOI

516

Nevertheless, we makers are used to approaching problems from

uncommon perspectives. For this reason, something that seems

impossible, like giving a 1960 mannequin a kind of artificial life, becomes

possible—or at least we try it. See Figure 18-1.

18.1. The Inspiring Automaton

The word “automaton” comes from the Greek word
“αὐτόματον” (automaton), which is derived from “αὐτόματος”
(automatos). The Greek root “αὐτό” (auto) means “self,” and
“ματος” (matos) comes from the verb “μαω” (mao), which
means “to think” or “to be inclined to do something.” Together,
“automatos” roughly translates to “acting of itself” or
“self-moving.”

In ancient Greek, the word “automaton” referred to something
that operates independently without needing external control,
such as a machine or device that moves by itself. The Greeks
found this concept fascinating, and they used it to describe
both mechanical devices and natural phenomena that
appeared to move or function independently.

Over time, the term came to be associated with self-operating
machines, often focusing on those designed to imitate living
beings, such as early robots or mechanical figures.

So, “automaton” in Greek emphasizes the idea of self-action
or autonomous operation, reflected in its modern usage to
describe machines or systems that operate independently.

(Source: explanation provided by AI.)

Chapter 18 Life with a Borg

517

18.1.1. Moving the Mannequin

I received a 1960 mannequin in very good shape from a friend, the owner

of Depto09, the biggest vintage shop in Gent (Belgium). When I got it, my

first idea was to make an automaton. A fan of the Star Trek saga, I called

this project “Seven of Nine.”

Note according to the Star Trek fiction series, the Borg civilization

is based on a hive or group mind known as the collective. each

Borg drone is linked to the collective by a sophisticated subspace

network that ensures each member is given constant supervision and

guidance. the collective consciousness gives them the ability not only

to “share the same thoughts” but also to adapt quickly to new tactics

(https://en.wikipedia.org/wiki/Borg).

This mannequin transformation was the first complex vintage

upcycling I tried. When I got it to stand on its pedestal in my living room,

I spent a couple of weeks thinking about what to do with this “creature.”

I had never seen how a mannequin is built inside, and I bet that

technology has changed considerably in the last decades (see Figure 18-2).

The construction of this model involved a lot of artistic work; my concern

has been to keep the vintage feeling intact.

For this reason, I decided to remake the mannequin, giving it new

features and more functionality, but preserving its original fashion.

Chapter 18 Life with a Borg

https://en.wikipedia.org/wiki/Borg

518

Figure 18-2. The two main parts of the mannequin while working on
the transformation

The mannequin body is well articulated, making it possible to expose it

in different positions while dressing—in its original use.

The ankles and legs are made in a single piece, while the shoulders,

wrists, and torso are moveable. Due to its mechanical building, I

realized that the only moveable part that could be motorized was the

torso. Regardless of this limitation, I decided to proceed this way; this

rotation, when working autonomously, would be sufficient to create a

pleasant effect.

Chapter 18 Life with a Borg

519

18.2. Torso Rotation

The concern with adding a motorized system to rotate the torso is the

body’s total height. To avoid this problem, I designed a mechanism using

a stepper motor that would not increase the height of the mannequin by

more than five centimeters. See Figure 18-3.

Figure 18-3. The stepper motor used to rotate the torso was screwed
to a 3D-printed support that kept the motor body inside the bottom
side (ankle and legs) of the mannequin

18.2.1. Mechanics

The rotation mechanism uses a Nema-17 stepper motor inserted inside

the body’s bottom. Thus, only the shaft emerges to the top surface. See

Figure 18-3.

Chapter 18 Life with a Borg

520

Figure 18-4. The Nema-17 stepper motor, installed to the side of the
bottom half of the mannequin’s body. After the insertion, only the
shaft with the tooth gear emerges for less than 4 cm

The mannequin’s top half was originally inserted into the bottom half

using a swivel joint so that the torso could rotate to set the mannequin in

different poses.

Chapter 18 Life with a Borg

521

Figure 18-5. The swivel joint is reused to motorize the torso rotation

The swivel joint is fixed to the bottom of the body. Keeping the torso’s

original mechanic structure, I introduced a rotating platform controlled

by the stepper motor between the bottom and the top parts of the

mannequin. See Figure 18-5.

The empty torso weight is about five kilos; I expected a considerable

increase in weight after the internal components and cables were inside at

the end of the installation. To support this weight, the torso needed to lie

on a consistent base and rotate with minimum attrition.

3D-printing a Lazy Susan bearing resulted in a very efficient and

relatively simple solution that granted the required mechanical robustness.

The torso remained anchored to the bearing’s upper side, connected

to the stepper motor with a toothed belt. The 20-teeth shaft of the stepper

motor, connected to the significant edge of the Lazy Susan bearing, applied

a speed reduction factor and increased the torque applied to the rotation

axis. See Figure 18-6.

Chapter 18 Life with a Borg

522

Note a Lazy Susan bearing is a turntable mechanism that allows

an object to rotate smoothly on a horizontal axis, typically used

for rotating tables, displays, or shelving units. it consists of two

concentric rings, with ball bearings sandwiched between them,

allowing the top ring to spin while the bottom ring remains stationary.

these bearings are commonly used in kitchen cabinets, serving

trays, and rotating displays to provide easy access to items by

simply rotating the surface. Lazy Susan bearings are available in

various sizes and can support significant weight depending on their

construction.

Figure 18-6. The Lazy Susan bearing assembled on the top side of the
bottom half of the mannequin

Chapter 18 Life with a Borg

523

The iron spheres of the bearing were easy to find online: I used 3mm

diameter bicycle wheel spheres, bought as spare parts on Amazon.

The torso should not fully rotate, so the tooth-belt was tensioned and

fixed on the moving part of the bearing; with this solution the torso could

rotate about 120 degrees in both directions.

Following the same kind of solution adopted in CAM machines, I also

3D-printed an end-stop switch to find the point zero of the torso every

time the system was powered on.

18.2.2. Motor Control

An Arduino UNO with a stepper motor controller based on an L298 IC

achieved the torso rotation. To host the motor controller and the Arduino

board, I opened a rectangular window on the back of the torso to access

the inside of the body, where I introduced all the components. See

Figure 18-7.

Chapter 18 Life with a Borg

524

Figure 18-7. The torso opening. I fixed all the components (including
the power supplies and wiring) inside this window to control the torso
rotation

I determined the entire design of the Borg’s features and characteristics

when I started the upcycling. Nevertheless, many of the solutions required

considerable improvisation and frequent updates to make everything work

as desired.

When possible, I used all the processor power of the boards—an

Arduino UNO for motion and direct feedback and a Linux-embedded

Raspberry Pi. See Figure 18-8.

Chapter 18 Life with a Borg

525

Figure 18-8. The torso rotation control assembled for testing. The
Arduino and L298 stepper controller are wired to the motor and the
end-point switch inside the body

18.2.3. Motion Feedback

The ability to turn in a specific direction when a sound catches our

attention is a reaction that our brain should not necessarily mediate. Often,

when someone calls us, we spontaneously turn toward the direction the

sound is coming from without thinking and making a decision.

Similarly, the ability to rotate the torso to direct the gaze—the

camera—to the sound must be an automatic reaction that the Arduino

board can easily accomplish.

Chapter 18 Life with a Borg

526

The Borg, capable of pointing out the direction from where a sound or

a voice comes, is what I needed to make Seven of Nine reactive to sound-

driven events. See Figure 18-9.

Figure 18-9. The microphone installed on the head. Two
microphones are added to the opposite sides in correspondence to the
ears of the Borg

The algorithm I developed on Arduino for the identification of sound

in space—direction and distance estimated by the intensity—is based on

sound location.

 Sound Localization Algorithm

The sound localization methods are part of the science that deals with

determining the direction and distance of a sound source with the sole

help of the sound itself.

Chapter 18 Life with a Borg

527

Acquiring the sound intensity from several microphones installed

in different directions allows for accurate detection of sound sources,

which is fundamental in a large number of industrial and multimedia

applications.

There are sophisticated systems that can be found in many robotics

applications, where a large set of microphones arranged circularly are used

to obtain maximum accuracy in identifying the direction and origin of the

sound source.

Even using only two microphones, a few simple mathematical

formulas can be applied to acquire valuable data that is sufficiently precise

for the scope.

 Semi-random Feedback

Figure 18-10. The pointing laser was installed on the right side of
the face. When armed, it points to the same direction of sight as the
right eye

Chapter 18 Life with a Borg

528

Having space in the Arduino GPIO, I added a laser that reacts randomly

with a red ray activated when the torso rotates, so that the Borg reacts to

the sound.

I used a red laser pointer to mimic the Borg rays present in all the

Collective units, including Seven of Nine. See Figure 18-11.

Figure 18-11. The Borg implant in Seven of Nine’s left eye is a
3D-printed model with a ring of high-intensity white LEDs flashing to
the bottom

Chapter 18 Life with a Borg

529

Note Seven of Nine is a character in the Star Trek saga, first

introduced in Star Trek: Voyager. her designation is Seven of Nine,

Tertiary Adjunct of Unimatrix Zero One. She is a former Borg drone

freed from the Borg Collective by the Voyager crew. played by actress

Jeri ryan, Seven of Nine initially struggles to regain her individuality

and humanity after years of being assimilated by the Borg Collective.

her character is known for her intelligence, logical thinking, and

exceptional technical abilities, which often prove vital to the Voyager

crew as they travel through the Delta Quadrant. She gradually evolves

emotionally and learns to form relationships and rediscover her humanity.

18.2.4. Motion and Feedback Software

The Arduino application controls the torso rotation and activates the

feedback behavior, which is parametrized through a series of header files.

These headers allow customization of the peripheral devices’ connections

(microphones, stepper motor driver, laser pointer) and the behavioral

control parameters.

 The Parameters Header

/**

 * @file parameters.h

 * @brief Control parameters and structures for the mannequin

 *

 * @note As it is not used an end-stop switch we assume that

when the

 * system is powered-on the torso position is in the middle.

 */

Chapter 18 Life with a Borg

530

 //! Include the Arduino Stepper Library

#include <Stepper.h>

// ===========================

// Stepper parameters

// ===========================

#define STEP_PIN_A1 8 ///< STEPPER LIBRARY CONTROL PIN A+

#define STEP_PIN_A2 9 ///< STEPPER LIBRARY CONTROL PIN A-

#define STEP_PIN_B1 10 ///< STEPPER LIBRARY CONTROL PIN B+

#define STEP_PIN_B2 11 ///< STEPPER LIBRARY CONTROL PIN B-

#define ENDSWITCH_PIN 2 ///< End switch signal

// ===========================

// Laser parameters

// ===========================

#define LASER_PIN 3

 The Motor Header

/**

 * @file motor.h

 * @brief Stepper motor global parameters and constants

 */

 typedef struct StepProfile {

 int torsoSpeed;

 int rotAngle;

 int lastAnglePos;

 };

//! Number of steps per output rotation.

//! Ref.: Nema 17 1.8 DEG/Step

#define STEPS_PER_REVOLUTION 200

Chapter 18 Life with a Borg

531

The STEPS_PER_REVOLUTION is a fixed parameter, depending on the

hardware characteristics (Nema-17 stepper motor). According to the two-

toothed pulley diameter, the reduction factor is 170:14. This means that

for a full rotation of the Lazy Susan bearing, there are theoretically 12 full

rotations of the 20-teeth stepper shaft.

#define ANGLE_DEMULTIPLIER 12

//! Stepper predefined speed

#define SPEED_LOW 30

//! Stepper predefined speed

#define SPEED_MED 35

//! Stepper predefined speed

#define SPEED_HIGH 45

//! Search zero stepper end point speed

#define SPEED_ZERO 20

//! Increment in angles when searching the end stop point

//! corresponding to the leftmost position

#define SEARCH_ZERO_STEPS -1

//! Max angle in both sides respect to the middle torso

position

#define MAX_ANGLE 40

#define MIN_ANGLE 0

 The Main Application

The initialization function configures the stepper, laser, and Arduino pins

ready to start. The last call of the setup() is to setTorsoZero() function,

which searches for the end-coarse switch to reset the torso position to a

known starting point.

Chapter 18 Life with a Borg

532

//! Initialization

void setup()

{

 Serial.begin(9600);

 pinMode(A0, INPUT);

 pinMode(A1, INPUT);

 pinMode(LASER_PIN, OUTPUT);

 // Initialize the laser

 laser.value = LASER_DEFAULT;

 laser.isOn = LASER_OFF;

 setLaser();

 // Initialize the endswitch input

 pinMode(ENDSWITCH_PIN, INPUT_PULLUP);

 // Initialize the stepper class

 torsoStepper.step(STEPS_PER_REVOLUTION);

 // Move to zero point

 setTorsoZero();

}

The main loop() function implements the hearing algorithm to rotate

the torso according to the detected sound direction.

 peakToPeak[0] = 0;

 peakToPeak[1] = 0;

 signalMax[0] = 0;

 signalMax[1] = 0;

 signalMin[0] = MAX_SIGNAL;

 signalMin[1] = MAX_SIGNAL;

Chapter 18 Life with a Borg

533

 // collect data for 50 mS from both ears

 while ((millis() - startMillis) < sampleWindow) {

 // Check left sample

 sample[EAR_LEFT] = analogRead(A0);

 if (sample[EAR_LEFT] < MAX_SIGNAL) {

 if (sample[EAR_LEFT] > signalMax[EAR_LEFT]) {

 signalMax[EAR_LEFT] = sample[EAR_LEFT];

 } else if (sample[EAR_LEFT] < signalMin[EAR_LEFT]) {

 signalMin[EAR_LEFT] = sample[EAR_LEFT];

 }

 }

 }

 delay(50);

 while ((millis() - startMillis) < sampleWindow) {

 // Check right sample

 sample[EAR_RIGHT] = analogRead(A1);

 if (sample[EAR_RIGHT] < MAX_SIGNAL) {

 if (sample[EAR_RIGHT] > signalMax[EAR_RIGHT]) {

 signalMax[EAR_RIGHT] = sample[EAR_RIGHT];

 } else if (sample[EAR_RIGHT] < signalMin[EAR_RIGHT]) {

 signalMin[EAR_RIGHT] = sample[EAR_RIGHT];

 }

 }

 }

 // max - min = peak-peak amplitude

 peakToPeak[EAR_LEFT] = signalMax[EAR_LEFT] -

signalMin[EAR_LEFT];

 peakToPeak[EAR_RIGHT] = signalMax[EAR_RIGHT] -

signalMin[EAR_RIGHT];

Chapter 18 Life with a Borg

534

 volts[EAR_LEFT] = double(peakToPeak[EAR_LEFT] * 5.0) /

MAX_SIGNAL;

 volts[EAR_RIGHT] = double(peakToPeak[EAR_RIGHT] * 5.0) /

MAX_SIGNAL;

 double diff = abs(volts[EAR_LEFT] - volts[EAR_RIGHT]);

 Serial << "Max left " << signalMax[EAR_LEFT] << " Min left "

<< signalMin[EAR_LEFT] << endl;

 Serial << "Max right " << signalMax[EAR_RIGHT] << " Min

right " << signalMin[EAR_RIGHT] << endl;

 Serial << "peakToPeak left " << peakToPeak[EAR_LEFT] << "

peakToPeak right " << peakToPeak[EAR_RIGHT] << endl;

 Serial << "V left " << volts[EAR_LEFT] << " V right " <<

volts[EAR_RIGHT] << endl;

 Serial << " V diff " << diff << endl ;

18.3. Preparing the Borg to Host the Brain

The “brain” of the Borg is implemented in a Raspberry Pi. It hosts the

programs to simulate intelligent behavior and human reactions. See

Figure 18-12.

Chapter 18 Life with a Borg

535

Figure 18-12. The Raspberry Pi installation in the Borg’s head
was achieved by 3D-printing flexible support to keep the embedded
Linux board in place. The Raspberry Pi controls a small yet powerful
speaker glued to the throat

The Pi Camera and speaker—the eyes and voice of the Borg—are

controlled by the Raspberry Pi installed in the head of the mannequin, on

the opposite side where the Arduino and motion mechanism lie.

Fixing these components in the reduced space offered by the torso

made this part a complex and time-consuming job.

To fix the Raspberry Pi inside the head, facilitating the access of the

cables to the left eye of the mannequin, I designed and 3D-printed a PLA

support and bolted it to the sides of the head. To the opposite side of the

Raspberry Pi, I kept space for a small amplifier connected to a smartphone

speaker fixed to the outside of the neck and hidden by a scarf. See

Figure 18-13.

Chapter 18 Life with a Borg

536

Figure 18-13. The Pi Camera installed inside the Borg implant of
Seven of Nine on her left eye

18.3.1. Pi Camera Hosting

Note after Seven of Nine’s humanization, she still retains some

Borg implants, including the ocular implant over her left eye,

because certain cybernetic enhancements were too integrated into

her physiology to be safely removed. the ocular implant are from

the extensive modifications the Borg made to her body, making its

complete removal either too dangerous or impractical.

Chapter 18 Life with a Borg

537

The Pi Camera is hosted in the center of Seven of Nine’s left eye. Using a

Raspberry Pi shield, the implant’s white LED flashes and rotates the lights

in sequence. In the project, I used a PiFace digital I/O board. This board is

no longer available in the most recent Raspberry Pi versions (from Pi 4B),

but it is not difficult to replace it with a simple relay circuit to power the

LEDs through the Raspberry Pi GPIO. See Figure 18-14.

Figure 18-14. The Raspberry Pi with the PiFace digital I/O installed
on top and the Pi Camera connected through the flat cable

18.4. The Raspberry Pi Modules

Thanks to the intensive use of separate processes—some of them running

independently of human interaction—in the Linux Raspbian operating

system and the processing power of the Raspberry Pi, I could make Seven

of Nine mimic some human behaviors.

Chapter 18 Life with a Borg

538

Indeed, as this project was my first prototype, many details and

features required refactoring and optimization. But it worked!

Note the chapter repository contains all the components, StL files,

documentation, details, and sources.

Figure 18-15. The author and the Borg

Chapter 18 Life with a Borg

539© Enrico Miglino 2024
E. Miglino, Tales for Makers, Maker Innovations Series,
https://doi.org/10.1007/979-8-8688-0080-1

Index

A

Accelerometer, 52, 53, 152

Accelerometer’s data, 151

Acquisition process, 143

Adafruit_Neopixel library, 272

AI, see Artificial Intelligence (AI)

AI engine, 154, 157, 163

AI platforms, 150–151

AI-powered device, 149

Algebraic Notation, 413

Analog to Digital (ADC)

feature, 214

API’s calling mechanism, 170

Application Source Code, 120

Arduino, 8, 10, 81, 82

Arduino board, 12, 190, 206, 207,

268, 272, 340, 398, 413, 424,

495, 523, 525

Arduino chess engines

Microchess, 417

microcomputer, 417

personal computers, 416

Rockwell 6502, 415

Zilog Z80, 415

Arduino Chess software

application functions

terminal output, 427, 428

header files

ChessEngine.h file, 425, 426

ChessMessages.h file,

422, 423

HTML editor, 418

MatrixChars.h file, 419–422

WiFiAccess.h file, 424

Loop() file, 430–432

microcontroller, 418

MINIMA board, 418

Setup() file, 428, 429

Arduino ecosystem, 12

Arduino GPIO, 200, 205, 206,

209, 211

Arduino IDE, 12, 14, 18, 135,

209, 437

Arduino IDE Sketch, 18

Arduino Nano, 267, 271,

286–289, 502

Arduino Nicla, 8, 10, 12, 133, 135

Arduino Nicla SE, 130

Arduino Nicla Sense ME, 8

ATSAMD11D14A-MUT

microcontroller, 9

environmental sensing, 9

https://doi.org/10.1007/979-8-8688-0080-1#DOI

540

GPIO pinout, 11

programming

circuit, 14

version, 14

thumb-sized, 10

Arduino software, 14, 271–277

Arduino UNO board, 83, 85, 92

Arduino UNO GPIO pin, 83

Arduino UNO R3, 190, 198, 267

Arduino UNO R4

microcontrollers, 399

MINIMA, 401, 402

WiFi board, 399, 400

Artificial Intelligence (AI), 149

AudioCallback() function, 238, 239

Audio card, 218

audioDevice IDs, 232

Audio effects, 76

Auto Determination, 164

Automaton, 177, 508, 516, 517

B

Bank, 231

begin() method, 191

Bluetooth, 135, 151, 183

Bluetooth sensor data, 135

Borg, 515

and author, 538

to host brain

Pi Camera and speaker, 535

Pi Camera hosting, 536, 537

Raspberry Pi installation,

534, 535

humanization, 536

mannequin, 517, 518

Raspberry Pi modules, 537

torso rotation (see Torso

rotation, Borg)

Borg drone, 517, 529

Breadboard wiring, 13

C

calcMIDIVelocity() function,

191, 211

Calibration function, 34

Cardboard drum

case parts, 207

digital drum pad, 198

drum pads, 203

HX711 circuit, 205

load cells, MDF base, 205

mechanic’s solicitations, 203

recycled MDF, 201

requirements, 199

sensors software, 208–211

strong mechanic

solicitations, 201

using load cells, 199, 200

wiring circuit, 206

Cartesian coordinates, 254,

327, 328

Chess

Arduino UNO R3, 398

Arduino Nicla Sense ME (cont.)

INDEX

541

Arduino UNO R4, 398

chess moves, 413, 414

versions, 398

development, 398, 399

prediction, 417

Chess algorithms, 403, 404

alpha-beta pruning, 406

bitboard algorithm, 406

evaluation algorithm, 406, 407

goal, 405

process, 405

uses, 405

Chess computers and humans

interface, 408

Chess engines, 397, 407–408

Chess game, 397, 402

Chess game notations, 412, 413

Chess player user interfaces,

408, 409

checkerboard, 433

MINIMA board

breadboards and jumper

cables, 436

communication software,

437, 438

ESP 32 S3, 435, 436

I2C, 436

I2C tasks distribution,

439, 440

5V-3.3V level shifter, 437

The Distanced Pawn project

(see The Distanced Pawn

project)

C language, 167, 173

C library, 166

_command() macro command,

326, 327

Commercial drum pads, 198

Computer numerical control

(CNC), 280

Cryptex mechanism, 36

C software, 219

CSV file, 145, 158, 161, 162

Custom dashboard, 143, 144

data retrieval and make AI

predictions, 143

Cycloids, 252

coordinate’s representation, 254

epichoid, 253

epitrochoid, 253

equations, 253

hypochoid, 253

hypotrochoid, 253

mathematical description, 252

trochoid, 253

Cython, 223

C code, 224

documentation, 224

external C libraries, 224

graphic library, 230, 231

main feature, 224

programming language, 224

Python and C, 223

samplerbox_audio.pyx file, 225

setup.py program, 228

source code, 225

Cython 0.17, 224

INDEX

542

D

@dataclass, 313

dataclass library, 313

Data collection, 58, 152

Dataset, 161–163, 166, 168

audio frequency range, 161

creation, 152

data collection, 161

microcontroller, 161

training, 162, 166

vibration sensor, 161

Dataset.sh Shell Script, 147

Default Modules List, 101

Digital drum pad, 198

Digital drum pad sensors, 199

Digital signal processing, 164

Digital signal processing signal, 165

Digital trigger, 56

distance2D() helper method,

327, 328

The Distanced Pawn project

chessboard

checkerboard, 443–446

chess pieces, 441, 443

client connection, 466–469

game controller

board software, 447

circuit, 446, 447

expanders, 448

I2C signal stability tests,

447, 448

soldering, 448, 449

MKR 1010 access point, 449

server_params.h header

file, 450

setup() function, 450–453

OLED controller, 453,

455–460, 462–465

OLED functions, 454

DriverGCode class, 296, 298,

322, 324

Drone, 117

Drum pads, 202, 203

E

Edge technology, 150

Electronic music, 482

EleksMaker, 286

Element14 community, 52, 53, 55

Environment sensors, 130

ESLOV protocol, 12

F

fadeoutLenght function, 233

Five-pad drum machine, 197

Forsyth-Edwards Notation

(FEN), 412

Frequency generator, 51

Frontend server, 37

G

G-Code, 289

G-Code commands, 289

G00 command, 290, 291

INDEX

543

G01 command, 291, 292

G03 command, 292

G20 command, 292

G28 command, 294

in G-Code scripts, 290

M command, 294

measure units, 292

positioning command, 294

working plane selection, 293

GCODE_exec() method, 324

GCODE.json file, 299, 301

G-Code language, 289

G-Code protocol, 296

Gearbox Fault Diagnosis, 159

General MIDI (GM), 187–189, 191

GET method, 36

GitHub repository, 101, 405

Google account, 157

Google cloud resources, 158

GPIO pins

UART pins, 11

GRBLcontrol.json file, 299

GRBL_set_param() method, 324

GRBLsettings.json file, 298

gui.json configuration file, 232, 238

H

Hardcoded Settings, 87

HAT library, 60

Header File

contents, 15

delta value, 16

sensor parameters, 18

sensor reading, 20

sequential readings, 16

structure types, 19

subtasks, 25

HTTP page, 144

HTTP port, 136

HX711 amplifier circuit, 206, 208

HX711 integrated circuit, 200

HX711 library header, 209

HX711 sensors, 210

HX711 sensor wires, 206

I

__init__function, 308

__init__class initialization

function, 322

init_magnet() macro

command, 326

initSocket() Function, 122

Inkscape open source

application, 260

J

JavaScript, 70, 102

Jellybean piezo sensor, 64, 65

JSON Bank Filename, 235

JSON files, 38, 74

JSON script file, 121, 128

JSON string, 35

Json string object, 30

INDEX

544

K

KiCAD PCB design, 67

L

LabVIEW, 59–62

design, 63

instrument, 62

interface, 63

principle, 60

Laser-cutting, 261

Library, 168

Library initialization, 88

Linear load cells, 199, 203

Linux machine, 74

Linux system, 74, 76

list_ports() function, 305

Load_bank_IDs() function, 235

Load cells, 199–201

loadDroneControl() Function, 123

Log file, 129

logfile.log, 321

Logger class, 319–321

Long Algebraic Notation, 413

loop() function, 18, 89, 211, 274

setup (), 22

M

MacBook Pro, 296

Machine learning (ML), 149,

151, 398

Machine-learning engine, 147

Magic mirror, 73, 77

MagicMirror2

application, 72

assembled backside, 72

features, 71

modularity, 71

platform, 72

platform architecture, 74

structure, 71

__main__ application, 300

MagicMirror2 modules, 70, 76, 94,

101, 102, 109

MagicMirror2 platform, 93

Main Application Function,

125, 127

Makercase web application, 260

Makers, 516

Mana 3-axes CNC controller, 287

Mandalas, 250, 256, 259

MDF base, 205

Mechanical diagnostics, 158

Mechanic solicitations, 201

Michael Kellet’s circuit, 66

Microbrain, 150

Microcontroller devices, 150

Microcontrollers, 151, 155, 173, 271

Microprocessors, 403

MIDI, see Musical Instrument

Digital Interface (MIDI)

MIDI 2.0, 183

MidiCallback() function, 240

MIDI communication, 185, 186

midiDevice ID, 232

INDEX

545

MIDI drum pad, 199, 201

MIDI.h header file, 192

MIDI Library header, 192–195

midi.org site, 185

MIDI protocol, 185, 218

general MIDI (GM),

187–189, 191

MIDI communication, 185, 186

protocol format, 186, 187

MIDI USB connection, 191

MIDI velocity, 191

Mirror frame, 77

MIT License, 70

Model settings, 165

Monte Carlo Tree Search

(MCTS), 404

motionDirection pattern, 26

motionDirection structure, 28

Motion sensor, 13

Move representation method, 412

Multi-layer circular pads, 202

Musical instrument, 482

Musical Instrument Digital

Interface (MIDI)

calcMIDIVelocity(), 191

Arduino board, 190

definition, 183

echo effect, 184

first prototype, 181

MIDI Library header, 192–195

protocol (see MIDI protocol)

small MIDI bus, 182

1.0 specifications, 183

Music synthesizers, 482

N, O

Nema 17 stepper motors, 287

Neopixel arrays, 267–270

Neopixel LED arrays, 267, 268

Neopixel LED controller, 271–277

Neopixel LEDs, 84

documentation, 84

polarized 1000 uF capacitor, 85

Neopixel LED strip, 79, 82, 92

Neopixel library, 86

Neopixel lighting sequence, 82

Neural network, 154, 160, 163,

169, 170

Neural network training, 154

Neuton.ai, 152

model, 146

use cases page, 159

Neuton.ai framework

lab.neuton.ai home page, 156

limitations, 155

platform dataset, 156

reasons, 155

Neuton Google account, 156

Neuton platform, 157, 161

Neuton’s models, 168

Nicla board, 132

Nicla initialization functions, 23

Nintendo Entertainment System

(NES), 415

NodeJS and React servers, 36

NodeJS architecture, 144

NodeJS server, 37, 143, 144

note_names array, 233

INDEX

546

Novation Launchpad Mini

MK3, 220

npm libraries, 37

P, Q

p2c() helper method, 327, 328

panel.py source file, 233

paramsGRBL() method, 324

parse-scheme.json files, 137, 138

Passive InfraRed (PIR) sensor, 75

PCB 603C01 Sensor

coaxial connector, 54

environments and types, 54

high-precision and sensitive

sensor, 53

simulation model, 52

Pi Camera lens, 78

Piezo electric sensors, 68, 198, 199

Piezo electric vibration sensor, 52

Pinhole camera, 75

PIR sensor, 79

PIR Sensor Python Script, 95

Portable Game Notation

(PGN), 413

POST method, 36

Postman, 38

Potentiometer, 34

Powering test, 82

Prebuilt drum pads, 198

Prediction, 154, 168, 169

processDroneCommand

(cmdIndex) function, 124

Prophet-600, 183

Pulley-driven tuner mechanism,

482, 483

PWM audio generator, 214

Python, 35, 36, 38, 95, 100, 120, 170

role, 35

software module, 35

Python3 Script, 100

R

Radio

audio samples, 483, 484

auto tuner controller

circuit, 491

PCB, 491, 492

Radio Magic controller

prototype, 492, 493

requirements, 489

temporary switch

button, 490

work, 490

constants.h header file, 493

continuous screening

automation, 484

control parameters

constants, 494

RadioStepper structure,

496, 497

rotary encoder, 495, 496

STEPPER_SPEED value,

494, 495

DC motor, 485

internal body, 484

mechanics, upgrading

INDEX

547

all wires, one connector,

487, 488

manual tuner, 486, 487

motor support/tooth belt

gear, 486

pulley system, 485

ring gear, 486

program

interrupt vector function,

502, 503

irqLoopButton()

function, 502

main loop, 499–501

setup, 498, 499

pulley-driven tuner

mechanism, 482, 483

radio tuning, 482

60s Bush Radio, 481

transistor radios, 484

variable capacitors, 483

rainbowCycle function, 274

rainbow function, 274

Raspberry Pi, 55–62, 71, 74–76, 80,

81, 93, 214

Raspberry Pi 4B model, 214

Raspberry Pi sound sampler

connect MIDI keyboard and

audio card, 218, 219

external hardware, 214–216

features list, 217, 218

and player, 213

project GUI design, 220, 221

Sampler Box, 219

ReactJS, 37

recorchChunkSize function, 233

recordChannels function, 233

recordDuration function, 233

recordSampleRate function, 233

Recursive algorithms, 150

recvDroneResponse() function, 123

Restoring, 342

Roland AIRA T-8, 186

Roland JP-6 synthesizer, 183

Rollercoaster

BDTH6159 amusement park, 47

iconic representation, 47

sensors, 48

vibration simulator, 48

Rotary phone, 339, 340

amplifier board, 349, 350

amplifier pushbuttons, 352

audio capabilities, 348

circut, GPIO pins, 352, 353

components, 341, 342

control circuit, 348, 349

GPIO signals, 352

hang-up switch, 341

hanset, 341

PCB breadboard, 354

pulse generators, 346

Raspberry Pi 3B GPIO

connector, 350, 351

Raspberry Pi’s software

logic, 350

reuse components, 352

ring bell, 341, 342

removing, 343–345

rotary dialer, 341, 342, 346–348

INDEX

548

upcycling, 340, 342, 343

user interface, 355, 356

Rotary phone’s software, 357

check_number()

function, 375–377

constants and control

parameters

commands, 361

global variables, 359

JSON files, 361

pin numbers, 358, 359

Pi Rotary command,

359, 360

rotary dialer, 359, 360

initGPIO() function, 366, 367

JSON files, 357, 358, 362

comments.json, 362, 363

playlist.json, 363–365

libraries, 358

low-level functions,

378, 380–386

main function, 365

Python application, 357, 358

set_callback function, 367–369

triggered events, 370–374

run_command() macro

command, 326

S

Sampler, 214

Sampler Box, 219

samplerbox_audio.pyx file, 225

SandControl application, 296

SandControl program, 299

SandControl.py application, 300

SandControl Python software

architecture, 297

Sand Dome, 281

Sand Machine, 249, 251

Arduino CNC Firmware,

288, 289

Arduino UNO and

Nano, 271–277

bottom box, 279–281

final assembly, 285, 286

gluing and fixing box,

281, 282

magnet support, 282–284

top side, 281

cycloid functions family, 251

cycloids, 252, 253 (see also

Cycloids)

from draft to

components, 259–261

DriverGCode class, 322,

324, 325

first draft design, 258

G-Code, 288, 289

G-Code commands (see G-Code

commands)

G-Code parametrization,

298, 299

iron ball’s asset, 264

Logger class, 319–321

mandala curve methods,

328, 329

Rotary phone (cont.)

INDEX

549

mandalas, 250, 256, 259, 264

MathCircularFunctions

function, 327–338

mechanical solution, 254, 255

64 Neopixel LEDs, 268

sand, 255, 256

SandControl.py application

help() function, 306

imports, 300

list_ports() function,

305, 307

__main__ application, 300

sand_plot() function, 306

serialControl class, 301

sand dome, 265

assemble lighting, 267–269

assembly process, 265, 266

external painting, 270

serialControl class, 307

Dataclass Data model, 313

dataclasses library, 308

high-level methods, 314–319

imports, 308

__init__ function, 308

low-level methods, 310–313

software architecture, 296

top box, 263, 264

VS Code IDE, 295

Scary mirror, 79, 81, 84, 85

magic mirror, 70

scenographic effect, 69

Scary Mirror project, 75

Self-explanatory test data, 38

sendDroneCommand(cmd)

function, 124

Sensor reading, 21

sensor-type-map.json file, 140, 141

Sequencers, 213

linear sequencers, 213

step sequencers, 213

serialControl class, 296, 301,

307, 322

SerialParameters data model, 314

Server-based software, 37

setup() function, 210, 272, 273

setup.py program, 228

small M-AUDIO MIDI USB

keyboard, 217

so module, 230

soft_homing() macro

command, 325

Software business logic, 493

Software development, 58

Software project, 61

Sound sample, 482

Standard Algebraic

Notation (SAN), 413

Star Trek fiction series, 517

Subwoofer simulation platform, 64

T

Tello drone, 118, 127, 132

batteries, 118

functionality, 119

RESTful HTTP server, 119

INDEX

550

SDK documents, 120

source code, 120

structure, 119

Timer Callback Function, 93

TkInter graphic library, 230

Torso rotation, Borg

mechanism

empty torso weight, 521

Lazy Susan bearing, 521, 522

mannequin, 520

swivel joint, 521

tooth-belt, 523

mechanism;Nema-17 stepper

motor, 519, 520

motion feedback, 525, 526

main application, 531,

533, 534

motor header, 531

parameters header, 529, 530

semi-random feedback, 528

sound localization methods,

526, 527

motor control, 523, 525

Training dataset configuration, 164

Training process, 163

U

Ubuntu, 74

Ubuntu 20.4, 35

Universal Chess Interface (UCI),

410, 411

USB audio boards, 215

USB-to-Serial interface, 296

V

Velocity, 191

Velocity 64, 231

Vibration simulator

amplitude, 50

frequency generator, 51

frequency range, 48

motion, 50

parameters, 50

platform, 49

surface, 50

Virtual machine, 172

3.3V LiPo battery, 133

VS Code IDE, 295

W, X, Y

Waveform (WAV) files, 216

WebBLE features, 135, 136

Web dashboard, 135

Webserver Code, 136

Z

Zero Gravity account, 158

Tello drone (cont.)

INDEX

	Table of Contents
	About the Author
	Part I: Where Is Tommy?
	Chapter 1: Make a Graphical Cryptex with Arduino Nicla
	1.1. Arduino Nicla Sense ME
	1.1.1. Nicla GPIO Pinout
	1.1.2. It’s Arduino!
	1.1.3. Other Components

	1.2. Programming the Nicla Sense ME
	1.2.1. The Header File
	1.2.2. The Program Source
	1.2.3. A Slice of Python

	1.3. The Cloud-ready Servers
	1.3.1. The NodeJS Backend
	1.3.2. The React Frontend

	1.4. Using Postman to Test the Server APIs

	Part II: The Great Amusement Park
	Chapter 2: How to Maintain a Secure Rollercoaster
	2.1. A Vibration Simulator Made Easy
	2.1.1. The PCB 603C01 Sensor for Industrial Applications

	2.2. Raspberry Pi to Process Realtime Data
	2.2.1. Analog Specifications
	2.2.2. Digital Specifications

	2.3. The Data Processing Software
	2.3.1. Using LabVIEW for Data Processing

	2.4. Making a Cheap Piezo Sensor

	Chapter 3: The Scary Mirror
	3.1. The Magic Mirror Platform
	3.1.1. The MagicMirror2 Platform Architecture

	3.2. Push the Mirror Beyond the Limits
	3.2.1. PIR Sensor
	3.2.2. Pi Camera
	3.2.3. Audio Effects
	3.2.4. Lighting Effects

	3.3. Making the Mirror
	3.3.1. Preparing the Frame
	3.3.2. The Internal Cardboard Block

	3.4. Electronics, Wiring, and Powering
	3.4.1. Power Supply Issue
	3.4.2. Driving Large Arrays of Neopixel LEDs

	3.5. The Software
	3.5.1. Arduino UNO Sketch
	3.5.2. Raspberry Pi Software
	Collecting Contextual Media
	Running Multiple Tasks on Startup

	3.5.3. MagicMirror2 Configuration and Modules

	Part III: Escape from the Mirrors
	Labyrinth
	Chapter 4: Machine Learning with a Drone
	4.1. The Tello Drone
	4.1.1. Programming the Drone
	4.1.2. Autopilot Software
	The JSON Script File
	The Log File

	4.2. The Arduino Nicla ME
	4.2.1. Assembling the Sensor Acquisition Device

	4.3. Nicla Bluetooth-Web Communication
	4.3.1. Customizing the Nicla Dashboard
	The Go Webserver
	The JSON Mapping Files
	The Custom Dashboard

	4.4. Data Acquisition with NodeJS
	4.4.1. NodeJS Architecture
	Interactive Dashboard

	4.4.2. The Final Data Structure
	Joining the Sample Files

	Chapter 5: Introduction to Neuton.ai
	5.1. The AI Platform
	5.2. Machine Learning Workflow
	5.2.1. Dataset Creation
	5.2.2. Dataset Normalization
	5.2.3. Model Training
	5.2.4. Prediction

	5.3. The Neuton.ai Framework
	5.4. Creating a Solution with Neuton.ai
	5.4.1. Step-by-step Solution
	5.4.2. A Few Words on this Use Case
	5.4.3. Step 1: Upload the Dataset
	5.4.4. Step 2: Train the Dataset
	5.4.5. Step 3: Download the Ready-to-Use C Library

	Part IV: A Path of Sounds
	Chapter 6: Introduction to MIDI
	6.1. The Trick Is MIDI
	6.2. The MIDI Protocol Essentials
	6.2.1. MIDI Communication
	6.2.2. The Protocol Format
	6.2.3. General MIDI (GM)

	6.3. Arduino and the MIDI Library
	6.3.1. The MIDI Library Header

	Chapter 7: Crafting the Cardboard Drum
	7.1. Cheap and Recycled Stuff
	7.1.1. Adopting an Alternative Technology
	Requirements
	Using Load Cells

	7.2. Creating the Structure
	7.2.1. Strong Parts
	The Pads

	7.2.2. Fixing the Load Cells
	Wiring the Circuit
	Making the Case

	7.3. The Sensors Software

	Chapter 8: A Sound Sampler with Raspberry Pi
	8.1. Project Requirements and General Approach
	8.1.1. External Hardware
	8.1.2. Features List

	8.2. The Sampling Session
	8.2.1. Connecting the MIDI Keyboard and Audio Card
	8.2.2. The Sampler Box

	8.3. Project GUI Design
	8.4. Cython and Other Prerequisites
	8.4.1. What Is Cython?
	The Cython Programming Language

	8.4.2. Why You Should Use Cython
	8.4.3. The Graphic Library

	8.5. The WAV Samples Organization
	8.5.1. Banks Definition
	8.5.2. The JSON Parameters File

	8.6. The Application
	8.6.1. The Application Functions
	Audio and MIDI Callback

	Part V: The Dome with the Sandcastle
	Chapter 9: The Sand Machine Part 1
	9.1. The Idea
	9.1.1. Mathematics
	Why Cycloids?
	Coordinate Representation

	9.2. Mechanics
	9.2.1. The Sand

	9.3. The Design
	9.3.1. From Draft to Components

	Chapter 10: The Sand Machine Part 2
	10.1. The Top Box
	10.1.1. The Octagonal Dome
	Assembling the Sand Dome
	Assembling the Lighting
	Painting the Sand Dome

	10.2. The Neopixel LED Controller
	10.2.1. The Arduino Software

	Chapter 11: The Sand Machine Part 3
	11.1. The Bottom Box
	11.1.1. Top Side
	11.1.2. Putting the Box Together
	11.1.3. The Magnet Support
	11.1.4. Completing the Build

	11.2. Controlling the Movement
	11.2.1. The Arduino CNC Firmware
	11.2.2. What Is G-Code?
	The Language

	11.2.3. The Most Important G-Code Commands
	G00: Rapid Positioning
	G01: Linear Interpolation
	G02: Circular Interpolation Clockwise and G03: Circular Interpolation Counterclockwise
	Measure Units
	Working Plane Selection
	G28: Home
	Positioning Mode
	M Commands

	Chapter 12: The Sand Machine Part 4
	12.1. Software Architecture
	12.2. G-Code Parametrization
	12.3. The SandControl.py Application
	12.3.1. Imports
	12.3.2. Business Logic
	12.3.3. Extra Functions

	12.4. Class: SerialControl
	12.4.1. Low-level Methods
	12.4.2. The Dataclass Data Model
	12.4.3. High-level Methods

	12.5. Class: Logger
	12.6. Class: driverGCode
	12.7. Class: MathCircularFunctions
	12.7.1. The Mandala Curve Methods

	Chapter 13: Upcycling a Rotary Phone
	13.1. Investigating the Parts
	13.1.1. Upcycling, Not Restoring
	13.1.2. Removing the Ring Bell

	13.2. The Rotary Dialer
	13.3. Embedding Audio and Controls
	13.3.1. A Circuit to Control All
	13.3.2. The Breadboard Shield
	13.3.3. A Minimal Interface

	Chapter 14: The Rotary Phone Software
	14.1. The Python Application
	14.1.1. Constants and Control Parameters
	14.1.2. The JSON Configuration Files
	The comments.json File
	The playlist.json File

	14.1.3. Event-driven Application
	The initGPIO() Function

	14.1.4. Callback Functions
	14.1.5. Triggered Events
	14.1.6. Low-level Functions

	Part VI: The Process
	Chapter 15: Chess with Arduino UNO R4
	15.1. The R4 WiFi and MINIMA Boards
	15.1.1. UNO R4 WiFi Specifications
	15.1.2. UNO R4 MINIMA Specifications

	15.2. Computers Playing Chess
	15.2.1. A Note on the Chess Algorithms
	Alpha-Beta Pruning
	Bitboard Algorithm
	Evaluation Algorithms
	Chess Engines

	15.2.2. Interfacing Chess Computers and Humans
	The Universal Chess Interface (UCI) Notation

	15.2.3. A Move Representation Method
	15.2.4. The Arduino Chess Moves
	15.2.5. The Arduino Chess Engine
	1975: Rockwell 6502
	1976: Zilog Z80
	The First Personal Computers Age
	The Work of Peter Jennings
	The Microchess Porting

	15.3. Arduino Chess Software
	15.3.1. The Header Files
	The MatrixChars.h File
	The ChessMessages.h File
	The WiFiAccess.h File
	The ChessEngine.h File

	15.3.2. The Application Functions
	The Setup() File
	The Loop() File

	Chapter 16: Chess Player Interfaces
	16.1. The MINIMA Board and the ESP32-S3
	16.1.1. Communication Software
	16.1.2. I2C Tasks Distribution

	16.2. Physical Computing: the Distanced Pawn Project
	16.2.1. Making the Chessboard
	The Chess Pieces
	The Checkerboard

	16.2.2. The Game Controller
	The Circuit

	16.2.3. The Controller Software
	MKR 1010 Access Point
	OLED Controller
	Client Connection

	Part VII: Radio Amusement
	Chapter 17: The Radio Magic Upcycling
	17.1. Tuner Mechanical Upgrade
	17.1.1. Making an Auto Tuning
	Upgrading the Mechanics
	All Wires in One Connector

	17.2. Auto Tuner Controller
	17.2.1. Requirements
	What We Get

	17.2.2. The Circuit and PCB

	17.3. The Controller Software
	17.3.1. Hardcoded Parameters
	17.3.2. The Program
	Initial Setup
	The Main Loop
	The Interrupt Vector Function

	Part VIII: Life with a Borg
	Chapter 18: Life with a Borg
	18.1. The Inspiring Automaton
	18.1.1. Moving the Mannequin

	18.2. Torso Rotation
	18.2.1. Mechanics
	18.2.2. Motor Control
	18.2.3. Motion Feedback
	Sound Localization Algorithm
	Semi-random Feedback

	18.2.4. Motion and Feedback Software
	The Parameters Header
	The Motor Header
	The Main Application

	18.3. Preparing the Borg to Host the Brain
	18.3.1. Pi Camera Hosting

	18.4. The Raspberry Pi Modules

	Index

