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Preface

Electromagnetic field analysis is often necessary when discussing the optical
response of nanostructured materials. Although the principles are described in
optics textbooks, computer-based calculations are usually required to under-
stand the optical response better. Electromagnetic field analysis using com-
mercially available software offers good programing prospects and provides
excellent insight with little effort, but it is not easily accessible to everyone.

Python is a computer language with good program code descriptiveness;
anyone can write prospective programs. In addition, it is easy to use due to
its extensive libraries of various functions for scientific and technical calcula-
tions. As they are widely used in machine learning and statistics, a wealth of
information is available on the Internet. In many cases, they provide sufficient
computational speed. This program language is suitable for non-programing
experts such as the authors who need access to computing facilities to inter-
pret the experimental results or design optical structures. Best of all, it is open
source and widely available on various platforms, such as Linux, Windows, and
Mac OS, free of charge.

This book is a practical guide to calculating and visualizing the optical re-
sponse of nanostructures and systems, with examples of Python programs. We
aim to bridge the gap between understanding language and actual program-
ing. While the programs may be not as optimal, we have strived to explain
the background electromagnetic field analysis straightforwardly, translate it
into programs, and present valuable content in real research. This practical
approach will give you the confidence in programming.

Kajikawa, the author of chapters 1–4 and 7, delves into analytical calcu-
lations, while Okamoto, the author of chapters 5 and 6, focuses on numerical
calculations. Both methods have merits and limitations, and using them ap-
propriately is crucial, depending on the problems. We hope this book will
inspire new findings and breakthroughs in optics and nanostructured materi-
als. All programs in this book are based on Python version 3.
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1

Calculation of Reflectivity and
Transmittance of Layered Structures

Calculating reflectance and transmittance when light is incident to layered
structures is necessary in optics and various fields such as physics, chemistry,
biology, materials science, and electronics. For example, it is used to measure
the thickness of thin films. This chapter uses Python to describe the program
for calculating light transmission and reflection at an interface and multilayers.

1.1 Introduction

A brief introduction to light as an electromagnetic wave is given as prepa-
ration.1 Light has both particle and wave natures. Reflection, transmission,
scattering, etc., are considered to have a wave nature, where light is an elec-
tromagnetic wave like radio waves. Wavelength λ0 and the frequency ν in a
vacuum have the following relationship:

λ0 =
c

ν
(1.1)

where c is the velocity of light in a vacuum. The refractive index n, which
determines the phase velocity of the electromagnetic wave in a medium, is
the most fundamental optical constant. If light travels in a medium with a
refractive index n, the wavelength λ changes from λ0.

λ =
λ0

n
=

c

nν
. (1.2)

The refractive index n is related to the dielectric constant of the medium ε by
n =
√
ε.2

1Textbooks in this field are listed in References [1, 2, 3].
2In this book, when simply referring to “dielectric constant”, we will refer to the relative

permittivity. The same applies to magnetic permeability.
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2 Calculation of Reflectivity and Transmittance of Layered Structures

Instead of the frequency ν, the angular frequency ω, ν multiplied by 2π,
is often used. The angular frequency ω corresponds to the wavenumber k,
representing the number of waves per 2π. The wavenumber vector k is a
vector whose length is the wavenumber k in the direction of the wavefront. It
is a quantity related to the momentum vector p of light and has the relation
p = ~k, using the parameter ~ that is Plank’s constant h divided by 2π. On
the other hand, the angular frequency ω is a quantity related to the energy
of light U and has the relation U = ~ω. The relation between ω and k is
called the dispersion relation. In a medium with refractive index n without
boundary (free space), the relation is k = nk0. Here, k0 is the wavenumber
in a vacuum, and k0 = ω/c. However, the dispersion relation is sometimes
complicated when light propagates through photonic crystals, waveguides, or
other bounded structures.

Consider the case where light with a wavenumber vector k propagates
in a uniform medium with refractive index n. The electric field E of the
electromagnetic wave propagating in free space at position r is expressed as

E = E0 exp(i(k · r − ωt)). (1.3)

Here, E0 is an amplitude vector of the light electric field. The direction of the
electric field E is called polarization. A magnetic field H exists perpendicular
to the electric field E in free space. The magnetic field is also a vector, and is
expressed similarly to Eq. (1.3). It is related to the electric field E as

H =
k ×E
µ0µω

(1.4)

E = −k ×H
ε0εω

, (1.5)

where × is the outer product, µ is the relative magnetic permeability, and
ε0 and µ0 are the vacuum dielectric constant and magnetic permeability, re-
spectively. We have the relationship between the electric and magnetic fields,
c = 1/

√
ε0µ0. Using the vacuum impedance Z0,

H =
nE

Z0
, (1.6)

where

Z0 =

√
µ0

ε0
. (1.7)

Light is generally observed as intensity by a photodetector or other means. The
optical energy flow (Pointing vector), S, observed in unit time is expressed as
follows:

S = E ×H (1.8)
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In an isotropic medium, the direction of the Pointing vector is the direction of
energy flow, which is in the same direction as the wavenumber vector k. The
time average of the Pointing vector is defined as the intensity (irradiance),
which is expressed as I as follows3:

I =

∫ 2π

0

S dt =

∫ 2π

0

E ×H dt =
1

2
|E0||H0| =

n

2Z0
|E0|2 (1.9)

We often ignore the proportionality constant. Then, I = |E|2. In this book,
unless otherwise noted, we consider the square of the electric field to be the
intensity. Since E is a complex vector, I = EE∗ in general, where E∗ is the
complex conjugate of E.

1.2 Reflection and transmission at interface

As the most basic example, consider the case where light is incident on an
interface between two media, as shown in Figure 1.1. Let the incident side be
Medium 1, and the transmitted side be Medium 2. In this case, the light has
two polarization directions: one is p-polarization, in which the light electric
field oscillates in the plane of incidence,4 and the other is s-polarization, in
which the electric field oscillates in the direction perpendicular to the plane
of incidence. The former is also called TM (transverse magnetic) polarization,
and the latter is TE (transverse electric) polarization. There are two possible
definitions of the direction of p-polarization, but in this book, it is defined
as Figure 1.1(a). Reflection and refraction occur when light passes through
an interface with different refractive indices. The incident angle θ1 and the
refracted angle θ2 are related by

n1 sin θ1 = n2 sin θ2. (1.10)

This is called Snell’s law, which means that the tangential component of the
wavenumber vector is conserved across the interface and is derived from the
principle of least action. Thus, Snell’s law can also be written as k1x = k2x,
where kix(i = 1 or 2) is the tangential (x-direction) component of the
wavenumber vector of light traveling through medium i.

The electric field is a vector, but when considering transmission and re-
flection problems, we usually distinguish p- and s-polarization and treat it as
a scalar quantity E for each polarization.

3Light intensity I is proportional to the number of photons falling on a unit area in a
unit time. On the other hand, the power of light is its total quantity, which is the light
intensity I integrated over the area.

4The plane containing the wavenumber vector of the incident light and the normal vector
of the surface is called the plane of incidence.
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FIGURE 1.1
Optical geometry: (a) p-polarization and (b) s-polarization.

Let the magnitude of the electric field of incident light be E+
1 , the mag-

nitude of the electric field of reflected light is E−1 , and the magnitude of the
electric field of transmitted light is E+

2 . The subscript is the number of the
medium, and the superscripts + and − represent downward and upward prop-
agating light, respectively. The ratio of the magnitude of the electric field of
reflected light to that of incident light is called the reflection coefficient, and
the reflection coefficient for incident light from Medium 1 into Medium 2 is
written r12 with subscripts. Similarly, the ratio of the electric field of the
transmitted light to incident light is called the transmission coefficient, and
the transmission coefficient from Medium 1 to Medium 2 is written as t12.
The reflection and transmission coefficients are complex.

The reflection coefficient r12 and transmission coefficient t12 depend on
polarization. For s-polarized light, they are denoted as rs

12 and ts12. For p-
polarized light, they are denoted as rp

12, tp12. With the angle of incidence θ1,
the refraction angle θ2, refractive index of the Medium 1, n1, and that of
Medium 2, n2, they are expressed as

rs
12 =

n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
=
k1z − k2z

k1z + k2z
(1.11)

ts12 =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
=

2k1z

k1z + k2z
(1.12)

rp
12 =

n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
=
n2

2k1z − n2
1k2z

n2
2k1z + n2

1k2z
(1.13)

tp12 =
2n1 cos θ1

n2 cos θ1 + n1 cos θ2
=

2n1n2k1z

n2
2k1z + n2

1k2z
, (1.14)
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where kiz is the z-direction component of the wave vector in Medium i, and
kiz = nik0 cos θi. The ratio of the reflected light intensity to the incident light
intensity is the reflectance R, and the ratio of the transmitted light intensity
is the transmittance T , where they are real numbers ranging from 0 to 1. The
intensity of light is given by Eq. (1.9),

R = rr∗ (1.15)

T =
n2 cos θ2

n1 cos θ1
tt∗. (1.16)

The ratio of cos θ is taken in the transmittance calculation because the re-
flection angle differs from the incident angle. If there is no absorption in the
media, the energy conservation law

R+ T = 1 (1.17)

is hold.
Based on the discussion above, we calculate the reflection coefficient r and

transmission coefficient t for each polarization when light is incident from
Medium 1 with a refractive index of 1.0 to Medium 2 with a refractive index
of 1.5. An example is shown in Program 1.1, which loads the numerical library
scipy in the first line. The matplotlib library is loaded in the second line to
graph the calculation result. First, the refractive index of Medium 1 is assigned
to variable n1 in Line 7, and the refractive index of Medium 2 is assigned to
variable n2 in line 8. Next, the linspace command on Line 10 is used to specify
the array of incident angles. The argument of the linspace command is (first
value, last value, number of divisions). The array t1 is the radian of the first
value, the last value, and the number of divisions. In a simple calculation using
arrays, we do not need to write a code assigning the components individually,
as in Fortran or C. In Line 12, we use Snell’s law, as shown in Eq. (1.10), to
create t2 as an array of refraction angles. The calculation is made for the array
of transmission coefficients tp and reflection coefficients rp in p-polarization,
transmission coefficients ts, and reflection coefficients rs in s-polarization, us-
ing Eqs. (1.11)–(1.14) in Lines 13–16. We calculate the array of transmission
coefficients tp and reflection coefficients rp for p-polarization, as well as trans-
mission coefficients ts and reflection coefficients rs for s-polarization. The next
part is the plotting of the results. The arguments of the plot command of the
matplotlib library are (an array of variables for the x-axis, an array of vari-
ables for the y-axis, and a definition of the graph name). After Line 18, the
label names and font sizes for the x- and y-axes are specified. Superscripts,
Greek letters, etc. can be written as the r “$...$”, with TeX commands. After
specifying the graph’s title, font size, grid, plotting range, etc., with the title
command, the graph is displayed with the show() command.
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Program 1.1

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,sin ,cos ,tan ,arcsin ,linspace

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layoutht_layout

6
7 n1 = 1 # refractive index of medium 1

8 n2 = 1.5 # refractive index of medium 2

9
10 t1Deg = linspace(0, 90, 91) # Generate array of incident angle

t1

11 t1 = t1Deg /180*pi # Convert angle of incidence into

radians.

12 t2 = arcsin ((n1/n2)*sin(t1)) # Find the refraction angle t2

13 tp = 2*n1*cos(t1)/(n2*cos(t1)+n1*cos(t2)) # tp

14 rp = (n2*cos(t1)-n1*cos(t2))/(n2*cos(t1)+n1*cos(t2)) # rp

15 ts = 2*n1*cos(t1)/(n1*cos(t1)+n2*cos(t2)) # ts

16 rs = (n1*cos(t1)-n2*cos(t2))/(n1*cos(t1)+n2*cos(t2)) # rs

17
18 plt.figure(figsize =(8 ,6)) # Set figure size

19 plot(t1Deg ,rp, label=r"$r_ {12}^{\ rm{p}}$",linewidth = 3.0, color

=‘black ’, linestyle=‘dashed ’) # Plot rp

20 plot(t1Deg ,tp, label=r"$t_ {12}^{\ rm{p}}$",linewidth = 3.0, color

=‘black ’) # Plot tp

21 plot(t1Deg ,rs, label=r"$r_ {12}^{\ rm{s}}$",linewidth = 3.0, color

=‘gray ’, linestyle=‘dashed ’) # Plot rs

22 plot(t1Deg ,ts, label=r"$t_ {12}^{\ rm{s}}$",linewidth = 3.0, color

=‘gray ’) # Plot ts

23 xlabel(r"$\theta_1$ (deg.)",fontsize =20) # Label x-axis

24 ylabel(r"$r, t$",fontsize =20) # Label y-axis

25 title(" Reflection and Transmission Coefficient",fontsize =18)

26 # Title of graph

27 grid(True) # Show grid

28 axis ([0.0,90,-1,1]) # Plot region

29 legend(fontsize =20,loc=‘lower right ’) # Legend and font size

30 plt.tick_params(labelsize =20) # Axis scales and font size

31 tight_layout () # Commands to make the graph fit into a frame.

32 show() # Display graph

The results obtained using this program are shown in Figure 1.2. The trans-
mission coefficients at an incident angle of 0◦ is equal for both polarizations:
tp12 = ts12 = 0.8. This is because there is no distinction between the polariza-
tions. As the angle increases, the transmission coefficient decreases monotoni-
cally and is zero at 90◦. The reflection coefficient rp

12 is 0.2 and rs
12 = −0.2 at

0◦. The values with opposite signs between p- and s-polarization are due to
the definitions of the positive direction of the electric field for the incident and
reflected light in p-polarization. rp

12 crosses zero. Before and after the crossing,
the sign of the electric field of the reflected light is reversed.
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FIGURE 1.2
Transmission and reflection coefficients (n1 = 1, n2 = 1.5).

Next, using Program 1.2, we consider the reflectance R and transmittance
T calculated for each polarization when the light is incident from Medium 1.
The results are shown in Figure 1.3. The direction of polarization is shown as
superscripts, T p

12, T s
12, Rp

12, and Rs
12. At the angle of incidence of 0◦, both Rp

12

and Rs
12 are 0.04. The reflectivity for p-polarized light Rp

12 decreases until the

FIGURE 1.3
Reflectivity R and transmittance T (n1 = 1.0, n2 = 1.5). The Brewster angle
θB is 56.3◦.
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Brewster angle, θB, where it becomes zero. After that, as the angle of incidence
increases, T s

12 elevates sharply and reaches unity at an angle of incidence of 90◦.
On the other hand, the reflectivity for s-polarized light Rs

12 increases mono-
tonically to unity at an angle of incidence of 90◦. Note that Rp

12 ≤ Rs
12 at any

angle of incidence. s-polarized light is more reflective than p-polarized light.
Brewster angle θB is obtained by finding the angle at which rp in Eq. (1.13)

is zero. Therefore,

tan θB =
n2

n1
. (1.18)

At the Brewster angle, the reflectance for p-polarized light is zero, i.e., the
transmittance is one. The output window of a high-power laser is designed to
be at this angle to prevent damage to the laser crystal. As for the transmit-
tance, both T p

12 and T s
12 are 0.96 at normal incidence. As the angle of incidence

increases, T s
12 decreases monotonically for s-polarized light and becomes zero

at the angle of incidence of 90◦. On the other hand, T p
12 increases up to the

Brewster angle θB, where it is unity. Then, as the angle of incidence increases,
T s

12 rapidly decreases to zero at an angle of incidence of 90◦.

Program 1.2

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from numpy import pi,sin ,cos ,tan ,arcsin ,linspace ,arrange

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis ,tight_layout

6
7 n1 = 1 # Refractive index of medium 1

8 n2 = 1.5 # Refractive index of medium 2

9
10 t1Deg = linspace(0, 90, 90) # Generation of an array of incident

angles t1. (deg.)

11 t1 = t1Deg /180* pi # Convert the angle of incidence

into radians.

12 t2 = arcsin ((n1/n2)*sin(t1)) # Find the refraction angle t2.

13
14 tp = 2*n1*cos(t1)/(n2*cos(t1)+n1*cos(t2))

15 # tp: transmission coefficient for p-pol

16 rp = (n2*cos(t1)-n1*cos(t2))/(n2*cos(t1)+n1*cos(t2))

17 # rp: reflection coefficient for p-pol

18 ts = 2*n1*cos(t1)/(n1*cos(t1)+n2*cos(t2))

19 # ts: transmission coefficient for s-pol

20 rs = (n1*cos(t1)-n2*cos(t2))/(n1*cos(t1)+n2*cos(t2))

21 # rs: tp: reflection coefficient for s-pol

22
23 Rp = rp**2 # Tp: Transmittance for p-pol

24 Tp = tp **2*(n2*cos(t2))/(n1*cos(t1)) # Rp: Reflectance for p-pol

25 Rs = rs**2 # Ts: Transmittance for s-pol

26 Ts = ts **2*(n2*cos(t2))/(n1*cos(t1)) # Rs: Reflectance for s-pol

27
28 plt.figure(figsize =(8 ,6)) # figure size

29 plot(t1Deg ,Rp, label=r"$R_ {12}^{\ rm{p}}$",linewidth = 3.0, color

=‘black ’, linestyle=‘dashed ’) # Plot Rp
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30 plot(t1Deg ,Tp, label=r"$T_ {12}^{\ rm{p}}$",linewidth = 3.0, color

=‘black ’) # Plot Tp

31 plot(t1Deg ,Rs, label=r"$R_ {12}^{\ rm{s}}$",linewidth = 3.0, color

=‘gray ’, linestyle=‘dashed ’) # Plot Rs

32 plot(t1Deg ,Ts, label=r"$T_ {12}^{\ rm{s}}$",linewidth = 3.0, color

=‘gray ’) # Plot Ts

33 xlabel(r"$\theta_1$ (deg.)",fontsize =20) # Label x-axis

34 ylabel(r"$R, T$",fontsize =20) # Label y-axis

35 title(" Reflectivity and Transmittance",fontsize =18) # Graph

title

36 grid(True) # Show grid.

37 axis ([0.0 ,90 ,0 ,1.1]) # Plot range

38 legend(fontsize =20,loc=‘lower left ’) # Show legend and set

font size

39 plt.tick_params(labelsize =20) # Axis scales

40 tight_layout () # Commands to make the graph fit into a frame.

41 show() # Show graph.

Next, consider the case where the refractive index of the incident medium
is larger than that of the transmission medium. Snell’s law (Eq. (1.2)) gives
sin θ2 as

sin θ2 =
n1

n2
sin θ1. (1.19)

Total reflection occurs when the angle of incidence is greater than the critical
angle, θc, which is given by sin θc = n2/n1, sin θ2 > 1. This problem is mathe-
matically solved by making θ2 a complex number. However, this requires some
ingenuity when programming in Python. cos θ2 is a purely imaginary number.
This is because it is

cos θ2 = ±
√

1− sin θ2 = ±i
√(n1

n2

)2

sin θ1 − 1. (1.20)

Here, i =
√
−1. Therefore, in Program 1.3, sin θ1, sin θ2, cos θ1, and cos θ2 are

written as complex variables s1, s2, c1, and c2, respectively. The reflection
coefficients, rs and rp, are also complex numbers, so when converting them
into reflectivity and transmittance, the square of their absolute value must
be taken, as described in Lines 24 and 25. In Program 1.3, the reflectance is
obtained using the abs function.

Program 1.3

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,sin ,cos ,tan ,arcsin ,linspace ,arrange ,sqrt ,

zeros

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis
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6
7 n1 = 1.5 # refractive index of medium 1

8 n2 = 1.0 # refractive index of medium 2

9 ep1 = n1**2 # dielectric constant of medium 1

10 ep2 = n2**2 # dielectric constant of medium 2

11
12 t1Deg = linspace(0, 90, 90) # Generation of an array of incident

angles t1. (deg.)

13 t1 = t1Deg /180*pi # Convert the angle of incidence into

radians.

14 s1 = sin(t1) # sin(t1)

15 c1 = cos(t1) # cos(t1)

16 s2 = n1/n2*s1 # sin(t1)

17 c2 = sqrt(1-s2**2) # cos(t2)

18 n1z = n1*c1 # n1z=k1z/k0

19 n2z = n2*c2 # n2z=k1z/k0

20
21 rs = (n1z -n2z)/(n1z+n2z) # Reflection coefficient for s-pol

22 rp = (ep2*n1z -ep1*n2z)/(ep2*n1z+ep1*n2z) # Reflection

coefficient for p-pol

23
24 RsAbs = abs(rs)**2 # Reflectiveigy for s-pol

25 RpAbs = abs(rp)**2 # Reflectiveigy for p-pol

26
27 plot(t1Deg ,RpAbs , label=r"$R_ {12}^{\ rm{p}}$") # Plot Rp

28 plot(t1Deg ,RsAbs , label=r"$R_ {12}^{\ rm{s}}$") # Plot Rs

29 xlabel(r"$\theta_1$ (deg.)",fontsize =20) # Label x-axis

30 ylabel(r"$R, T$",fontsize =20) # Label y-axis

31 title(" Reflectivity",fontsize =20) # Graph title

32 grid(True) # Show grid

33 axis ([0.0 ,90 ,0 ,1.1]) # Plot range

34 legend(fontsize =20,loc=‘lower right ’) # Show legend and set

font size

35 plt.tick_params(labelsize =20) # Axis scales

36 tight_layout () # Commands to make the graph fit into a frame.

37 show() # Show graph.

Figure 1.4 shows the results obtained using this program. The Brewster
angle for p-polarized light exists even when the light is incident from a higher
refractive index side. The reflectance is always higher for s-polarized light than
for p-polarized light. As the incidence angle increases, the reflectance reaches
unity after the critical angle, indicating that all light energy is reflected. This
state is called total reflection. All light energy is reflected in Medium 1, but
there is an extinction wave (called “evanescent wave”) in Medium 2. It is
an electromagnetic wave decaying with the distance from the interface. The
following equation can express evanescent waves.

E+
2 = t12E

+
1 exp

(
i
(
n1

n2
k2 sin θ1x

))
× exp

(
−k2

√(
n1

n2

)2

− sin2 θ1 · z
)

exp(−iωt) (1.21)
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FIGURE 1.4
Reflectance as a function of incident angle when the refractive index of
Medium 1 is greater than that of Medium 2 (n1 = 1.5, n2 = 1).

In the x-direction, there is an oscillating wave with a wavenumber of (n1

n2
)k2,

and its amplitude decays in the z-direction with distance from the interface.
The distance at which the amplitude intensity is 1/e is called the penetration
depth zd. From Eq. (1.21), zd is given by

zd =
λ0

2π
√
n2

1 sin2 θ1 − n2
2

. (1.22)

The penetration length is generally in the order of the wavelength of light. It
increases rapidly as the angle of incidence approaches the critical angle θc and
diverges to infinity at the critical angle.

1.3 Reflection and transmission of thin films

The previous section describes the calculation of reflection and transmission
at the interface of two isotropic media. While this can be applied to reflection
on water surfaces or thick glass plates, the object is often a membrane or
slab. It becomes necessary to determine the reflectance and transmittance of
a multilayer. In this section, we first consider a simple three-layer problem
and then describe the transfer matrix method, which allows the calculation of
the reflectance and transmittance of any multilayers.

Consider the light incident on a thin film, as shown in Figure 1.5. For
example, this is the case for a soap bubble where Mediums 1 and 3 are air
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FIGURE 1.5
Multiple reflection in a thin film.

and Medium 2 is a soap film. Let the refractive indices in each layer be n1,
n2, and n3, and the reflection coefficient r13 and transmission coefficient t13,
the total reflectivity R13, and the total transmittance T13 of this multilayer
film. As shown in the figure, the reflection and transmission coefficients can
be calculated as an infinite series sum of the reflected and transmitted optical
electric fields. The results are

r13 =
r12 + r23 exp(2k2zd2i)

1 + r23r12 exp(2k2zd2i)
(1.23)

t13 =
t12t23 exp(k2zd2i)

1 + r23r12 exp(2k2zd2i)
. (1.24)

The rij and tij are the reflection and transmission coefficients when light is
incident from medium i to medium j. Also, k2z is the z-directional component
of the wavenumber vector and is described using the refraction angle θ2 and
vacuum wavelength λ0 in layer 2 as follows:

k2z =
2π

λ0
n2 cos θ2 (1.25)

Program 1.4 shows an example program to calculate the transmission co-
efficient or transmittance at different angles of incidence. In Line 17, the angle
of incidence, t1Deg, is defined as an array; in Lines 18–24, the trigonometric
functions are defined as variables, such as s1= sin θ1 and c1= cos θ1. Corre-
sponding to the arrays defined in t1Deg, t1, s1–s3, and c1–c3 are also arrays.
The 1j used in the argument of exp in Lines 35 and 36 is the way to give
imaginary units in Python.



Reflection and transmission of thin films 13

Program 1.4

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,sin ,cos ,tan ,exp ,arcsin ,linspace ,arrange ,sqrt

,zeros

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

6
7 n1=1.0 # refractive index of medium 1

8 n2=1.5 # refractive index of medium 2

9 n3=1.0 # refractive index of medium 3

10 ep1=n1**2 # dielectric constant of medium 1

11 ep2=n2**2 # dielectric constant of medium 2

12 ep3=n3**2 # dielectric constant of medium 3

13 d2=100 # Thickness of medium 2 d2 (nm)

14 WL=500 # Vacuum wavelength WL (nm)

15 k0=2*pi/WL # Vacuum wavenumber

16
17 t1Deg = linspace(0, 90, 90) # Generation of an array of incident

angles t1. (deg.)

18 t1 = t1Deg /180*pi # Convert the angle of incidence into

radians.

19 s1 = sin(t1) # sin(t1)

20 c1 = cos(t1) # cos(t1)

21 s2 = n1/n2*s1 # sin(t1)

22 c2 = sqrt(1-s2**2) # cos(t2)

23 s3 = n1/n3*s1 # sin(t1)

24 c3 = sqrt(1-s3**2) # cos(t3)

25
26 n1z=n1*c1 # n1z=k1z/k0

27 n2z=n2*c2 # n2z=k1z/k0

28 n3z=n3*c3 # n2z=k1z/k0

29
30 rs12=(n1z -n2z)/(n1z+n2z) # Reflection coefficient for s-pol rs12

31 rp12=(ep2*n1z -ep1*n2z)/(ep2*n1z+ep1*n2z) # Reflection

coefficient for p-pol rp12

32 rs23=(n2z -n3z)/(n2z+n3z) # Reflection coefficient for s-

pol rs23

33 rp23=(ep3*n2z -ep2*n3z)/(ep3*n2z+ep2*n3z) # # Reflection

coefficient for p-pol rp23

34
35 rs=(rs12+rs23*exp (2*1j*n2z*k0*d2))/(1+ rs23*rs12*exp (2*1j*n2z*k0*

d2))

36 rp=(rp12+rp23*exp (2*1j*n2z*k0*d2))/(1+ rp23*rp12*exp (2*1j*n2z*k0*

d2))

37
38 RsAbs=abs(rs)**2 # Reflectivity for s-pol

39 RpAbs=abs(rp)**2 # Reflectivity for s-pol

40
41 plt.figure(figsize =(8 ,6)) # figure size

42 plot(t1Deg ,RpAbs , label="Rp",linewidth = 3.0, color=‘black ’) #

Plot Rp

43 plot(t1Deg ,RsAbs , label="Rs",linewidth = 3.0, color=‘gray ’) #

Plot Rs

44 xlabel(r"$\theta_1$ (deg.)",fontsize =20) # Label x-axis
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45 ylabel(r"Reflectivity",fontsize =20) # Label y-axis

46 title(" Reflectivity",fontsize =20) # Graph title

47 grid(True) # Show grid

48 axis ([0.0,90,-1,1]) # Plot Range

49 legend(fontsize =20,loc=‘lower right ’) # Show legend and set

font size

50 plt.tick_params(labelsize =20) # Axis scales

51 tight_layout () # Commands to make the graph fit into a frame.

52 show() # Show graph.

The angle of incidence depends on the reflectance and transmittance ob-
tained is shown in Figure 1.6(a). As the refractive indices are all real numbers,
there exists an angle at which the reflectance of p-polarized light is zero (Brew-
ster angle). On the other hand, for s-polarized light, the reflectance increases
monotonically as the incidence angle increases.

FIGURE 1.6
(a) Reflectivity R from a free-standing film 100 nm-thick for s- and p-polarized
light as a function of angle of incidence θ1. The refractive index of the film is
1.5. (b) Reflectivity R from the free-standing film as a function of the thickness
at a wavelength of 500 nm.

Next, using Program 1.5, we calculate the thickness dependence of the
reflectance when λ = 500 nm light is incident perpendicular to this thin film.
The incident angle t1Deg defined in Line 18 is set to a constant zero, and
s1–s3 and c1–c3 defined in Lines 20–25 are constants. The results are shown
in Figure 1.6(b). The reflectance increases as the film thickness increases and
reaches a maximum value. After that, the reflectance decreases as the film
thickness increases and reaches zero. Thus, it can be seen that the reflectance
oscillates with the film thickness.
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Program 1.5

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,sin ,cos ,tan ,arcsin ,linspace ,sqrt ,exp

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

6
7 n1=1.0 # refractive index of medium 1

8 n2=1.5 # refractive index of medium 2

9 n3=1.0 # refractive index of medium 3

10 ep1=n1**2 # dielectric constant of medium 1

11 ep2=n2**2 # dielectric constant of medium 2

12 ep3=n3**2 # dielectric constant of medium 3

13 WL=500 # Vacuum wavelength WL (nm

14 k0=2*pi/WL # Vacuum wavenumber

15
16 d2=linspace(0, 500, 501) # Thickness of medium 2

17
18 t1Deg = 0 # Angle of incidence

19 t1 = t1Deg /180*pi # Convert the angle of incidence into

radians.

20 s1 = sin(t1) # sin(t1)

21 c1 = cos(t1) # cos(t1)

22 s2 = n1/n2*s1 # sin(t1)

23 c2 = sqrt(1-s2**2) # cos(t2)

24 s3 = n1/n3*s1 # sin(t1)

25 c3 = sqrt(1-s3**2) # cos(t3)

26
27 n1z=n1*c1 # n1z=k1z/k0

28 n2z=n2*c2 # n2z=k1z/k0

29 n3z=n3*c3 # n2z=k1z/k0

30
31 rs12=(n1z -n2z)/(n1z+n2z) # Reflection coefficient for s-pol rs12

32 rp12=(ep2*n1z -ep1*n2z)/(ep2*n1z+ep1*n2z) # Reflection

coefficient for p-pol rp12

33 rs23=(n2z -n3z)/(n2z+n3z) # Reflection coefficient for s-pol rs23

34 rp23=(ep3*n2z -ep2*n3z)/(ep3*n2z+ep2*n3z) # Reflection

coefficient for s-pol rp23

35
36 rs=(rs12+rs23*exp (2*1j*n2z*k0*d2))/(1+ rs23*rs12*exp (2*1j*n2z*k0*

d2))

37 rp=(rp12+rp23*exp (2*1j*n2z*k0*d2))/(1+ rp23*rp12*exp (2*1j*n2z*k0*

d2))

38
39 RsAbs=abs(rs)**2 # Reflectivity for s-pol

40 RpAbs=abs(rp)**2 # Reflectivity for s-pol

41
42 plot(d2 ,RpAbs , label=" $R_p$",linewidth = 3.0, color=‘black ’)#

Plot Rp

43 xlabel(r"$d_2$ (nm)",fontsize =20) # Label x-axis

44 ylabel (" Reflectivity",fontsize =20) # Label y-axis

45 title(" Reflectivity",fontsize =20) # Graph title

46 grid(True) # Show grid

47 axis ([0.0 ,500 ,0 ,0.2]) # Plot Range

48 plt.tick_params(labelsize =20) # Axis scales

49 tight_layout () # Commands to make the graph fit into a frame.

50 show() # Show graph.
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1.4 Transfer matrix

The transfer matrix method [4] is a simple method for calculating the optical
response of multilayers. Here, we consider the thin film structure of an isotropic
medium with f layers as shown in Figure 1.7. Let n1, n2, · · · nf be the
refractive indices in each layer medium, and find the reflection coefficient r1f

and transmission coefficient t1f and the reflectance R1f and transmission T1f

of this multilayer. Polarization is expressed as Rp
1f as a superscript, and if

the expression is the same for both polarizations, the polarization notation is
suppressed. Thicknesses of the first and f -th layers are not considered, but
the thicknesses of the second through (f − 1) layers are considered, as d2, d3,
· · · df−1.

The transmission and reflection coefficients of this multilayer structure can
be obtained using the transfer matrix G, which is calculated as follows:

G = Mf(f−1)Φf−1 · · ·M32Φ2M21. (1.26)

Here,Mij is a matrix representing the boundary condition between i-layer and
j-layer, and Φi is a matrix representing the phase change when light propa-
gates through layer i. While Mij varies with polarization, Φi is independent

FIGURE 1.7
Geometry for the transfer matrix method.
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of polarization.

Mij =
1

2ninjkiz

(
n2
i kjz + n2

jkiz n2
i kjz − n2

jkiz
n2
i kjz − n2

jkiz n2
i kjz + n2

jkiz

)
(p-polarization)

(1.27)

Mij =
1

2kiz

(
kiz + kjz kiz − kjz
kiz − kjz kiz + kjz

)
(s-polarization)

(1.28)

Φi =

(
exp(ikizdi) 0

0 exp(−ikizdi)

)
(both polarizations) (1.29)

Here, kiz is the wavenumber vector component in the z-direction. With the
angle of incidence in layer 1, θ1, and the refraction angle in the other layer i,
θi, they are described for the light of vacuum wavelength λ0 as follows:

kiz =
2π

λ0
ni cos θi (1.30)

Using the component Gij of the 2×2 matrix G, the reflection coefficient r1f

and transmission coefficient t1f of the entire layer are written as

r1f = −G21

G22
(1.31)

t1f = G11 + r1fG12 = G11 −G12
G21

G22
. (1.32)

The reflectance R1f and transmittance T1f are given as follows:

R1f = r1fr
∗
1f (1.33)

T1f =
kfz
k1z

t1f t
∗
1f , (1.34)

where r∗1r and r∗1r are the complex conjugates of r1r and t1r, respectively.
Program 1.6 calculates the reflectance of a thin film using the transfer

matrix method. Lines 7, 10, and 15 define functions to createMij and Φi using
the matrix command. Lines 46 through 52 prepare an array containing each
angle’s reflection and transmission coefficients. Lines 59 through 64 calculate
the reflection coefficient of a thin film. In Lines 66 and 67, we multiply Mij

and Φi to create the transfer matrix G. From this, the total reflection and
transmission coefficients are obtained in Lines 69–75, and the total reflectance
and transmittance in Lines 78 and 79. The results obtained are the same as
those obtained in Program 1.5.
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Program 1.6

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,arrange ,sqrt

,zeros ,array ,matrix ,asmatrix

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis

6
7 def mMATs(n1z ,n2z):

8 return (1/(2* n1z))*matrix ([[n1z+n2z ,n1z -n2z],[n1z -n2z ,n1z+n2z

]])

9 # Definition of Mij Matrix for s-pol

10 def mMATp(n1z ,n2z ,n1,n2):

11 return (1/(2* n1*n2*n1z))*\ backslash

12 matrix ([[n1**2* n2z+n2**2*n1z ,n1**2*n2z -n2**2* n1z],\

backslash

13 [n1**2*n2z -n2**2*n1z ,n1**2* n2z+n2**2* n1z]])

14 # Definition of Mij Matrix for s-pol

15 def matFAI(n1z ,d1,k0):

16 return matrix ([[exp(1j*n1z*k0*d1), 0],[0,exp(-1j*n1z*k0*d1)

]])

17 # Definition of Phi Matrix for s-pol

18
19 n1=1.0 # refractive index of medium 1

20 n2=1.5 # refractive index of medium 2

21 n3=1.0 # refractive index of medium 3

22 ep1=n1**2 # dielectric constant of medium 1

23 ep2=n2**2 # dielectric constant of medium 2

24 ep3=n3**2 # dielectric constant of medium 3

25 d2=100 # Thickness of medium 2 d2 (nm)

26 WL=500 # Vacuum wavelength WL (nm)

27 k0=2*pi/WL # Vacuum wavenumber

28
29 t1start =0 # Start angle

30 t1end =89 # End angle

31 t1points =90 # Number of Plots

32
33 t1Deg = linspace(t1start ,t1end ,t1points) # Generation of an

array of incident angles t1. (deg.)

34 t1 = t1Deg /180*pi # Convert the angle of incidence into

radians.

35 s1 = sin(t1) # sin(t1)

36 c1 = cos(t1) # cos(t1)

37 s2 = n1/n2*s1 # sin(t1)

38 c2 = sqrt(1-s2**2) # cos(t2)

39 s3 = n1/n3*s1 # sin(t1)

40 c3 = sqrt(1-s3**2) # cos(t3)

41
42 n1z=n1*c1 # n1z=k1z/k0

43 n2z=n2*c2 # n2z=k1z/k0

44 n3z=n3*c3 # n2z=k1z/k0

45
46 mMats21=zeros ((t1points ,2,2),dtype=complex) # M21 matrix

initialization for s-pol
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47 mMats32=zeros ((t1points ,2,2),dtype=complex) # M32 matrix

initialization for s-pol

48 mMatp21=zeros ((t1points ,2,2),dtype=complex) # M21 matrix

initialization for p-pol

49 mMatp32=zeros ((t1points ,2,2),dtype=complex) # M32 matrix

initialization for p-pol

50 matFAI2=zeros ((t1points ,2,2),dtype=complex) # Phi2 matrix

initialization

51 matTs=zeros ((t1points ,2,2),dtype=complex) # Transfer

matrix initialization for s-pol

52 matTp=zeros ((t1points ,2,2),dtype=complex) # Transfer

matrix initialization for p-pol

53 rs=zeros (( t1points),dtype=complex) # rs

initialization

54 ts=zeros (( t1points),dtype=complex) # ts

initialization

55 rp=zeros (( t1points),dtype=complex) # rp

initialization

56 tp=zeros (( t1points),dtype=complex) # tp

initialization

57
58 for i in range(t1points):

59 mMats21[i]=mMATs(n2z[i],n1z[i]) # M21 generation

60 mMats32[i]=mMATs(n3z[i],n2z[i]) # M32 generation

61 mMatp21[i]=mMATp(n2z[i],n1z[i],n2,n1) # M21 generation

62 mMatp32[i]=mMATp(n3z[i],n2z[i],n3,n2) # M32 generation

63
64 matFAI2[i]= matFAI(n2z[i],d2,k0) # Phi2 generation

65
66 matTs[i]= mMats32[i]@matFAI2[i]@mMats21[i] # Generation of

transfere matrix for s-pol

67 matTp[i]= mMatp32[i]@matFAI2[i]@mMatp21[i] # Generation of

transfere matrix for p-pol

68
69 rs[i]=-matTs[i,1 ,0]/ matTs[i,1,1]

70 # reflection coefficient for s-pol

71 ts[i]=matTs[i,0,0]- matTs[i,0,1]* matTs[i,1,0]/ matTs[i,1,1]

72 # transmission coefficient for s-pol

73 rp[i]=-matTp[i,1 ,0]/ matTp[i,1,1]

74 # reflection coefficient for p-pol

75 tp[i]=matTp[i,0,0]- matTp[i,0,1]* matTp[i,1,0]/ matTp[i,1,1]

76 # transmission coefficient for p-pol

77
78 RsAbs=abs(rs)**2 # Reflectivity for s-pol

79 RpAbs=abs(rp)**2 # Reflectivity for p-pol

80
81 plot(t1Deg ,RpAbs , label="Rp") # Plot Rp

82 plot(t1Deg ,RsAbs , label="Rs") # Plot Rs

83 xlabel(r"$\theta_1$ (deg.)",fontsize =20) # Label x-axis

84 ylabel(r"$r, t$",fontsize =20) # Label y-axis

85 title(" Reflectivity",fontsize =20) # Plot range

86 grid(True) # Show grid

87 legend(fontsize =16) # Show legend and set font size

88 plt.tick_params(labelsize =20) # Axis scales

89 tight_layout () # Commands to make the graph fit into a frame.

90 show() # Show graph.
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In Python 2, we cannot use “@” for the multiplication of Mij and Φi in
part to create the propagation matrix G in Lines 66 and 67. This part must
be written with nested dot commands, as in Program 1.7.

Program 1.7

1 tmatrixs = mMATs(n3z ,n2z).dot(matFAI(n2z ,d2,k0).dot(mMATs(n2z ,n1z

)))

2 tmatrixp = mMATp(n3z ,n2z ,n3,n2).dot(matFAI(n2z ,d2 ,k0).dot(mMATp(

n2z ,n1z ,n2 ,n1)))

Finally, as an application example, we calculate the surface plasmon res-
onance spectrum using the total reflection attenuation method. Surface plas-
mon resonance is free-electron waves in a thin metal film interacting with light
at the surface under a certain condition. The resonance appears as an optical
absorption or an enhancement of the electric field intensity near the surface.
For example, when the reflectance of the p-polarized light incident through a
prism is measured, as in Figure 1.8(a), the reflectance drops to a minimum at
the angle of incidence on resonance. This angle is called the resonance angle.
The resonance angle changes when a dielectric layer is adsorbed on a metal
surface or when the ambient medium’s refractive index changes, so it is used as
an optical sensor for refractive index or biological substances such as proteins
and DNA.

FIGURE 1.8
Surface Plasmon Resonance (a) optical geometry and (b) calculated results.

The results of the calculations using Program 8.1 in the Appendix are
shown in Figure 1.8(b). Since water (refractive index 1.33) is assumed as the
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ambient medium, we used a high refractive index glass (refractive index 1.86)
for the prism. Gold was used as the metallic film, with a thickness of 47 nm.
The angle of incidence t1DegOut to the right angle prism is defined as an array.
The internal angle θ1 (s1 in the program) caused by refraction at the slope
when light is incident on the prism is different. There is a relationship θ1 =
45◦+sin(θext−45◦)/n1 between the angle of incidence θext (external angle) into
the right angle prism with refractive index n1 in air and the angle of incidence
θ1 inside the prism. The results show that a resonance angle shift of 2.1◦, which
stems from a 10-nm-thick film with a refractive index of 1.5 on the surface of
the gold film. Since the accuracy of the angle measurement is 1/1000∼1/100◦,
the adsorption and desorption of minute substances corresponding to a film
thickness of 0.1 Å or less can be measured.

1.5 Transfer matrix method for anisotropic media

1.5.1 Eigen propagation modes and boundary conditions

An optically anisotropic medium is a medium whose refractive index differs
depending on the polarization direction. Most optical crystals, liquid crystals,
and stretched polymer films are anisotropic. Biaxial media have three differ-
ent refractive indices, and uniaxial media have two different refractive indices.
Here, we consider a uniaxial medium in which the optical axis coincides with
the direction normal to the surface of the layer, as shown in Figure 1.9. In
this case, there is an extraordinary principal refractive index ne, which is the
refractive index for polarized light in the direction of the optical axis, and an
ordinary refractive index no, which is the refractive index for polarized light5.
Light propagating in a uniaxial medium is divided into ordinary and extraordi-
nary light, with polarization directions differing by 90◦. The refractive indices
of ordinary and extraordinary light are no and ne(θ2e), respectively, where
the angle between the direction of light and the optical axis is θ. The extraor-
dinary light refractive index has a value between the extraordinary principal
refractive index and the ordinary light refractive index. The exception is when
light propagates along the optical axis, in which case only ordinary light exists,
and the ordinary refractive index applies in all polarization directions.

We introduce methods for calculating reflection and transmission in mul-
tilayers of anisotropic media. The optical configuration is shown in Figure
1.9. The z-axis is defined as normal to the surface, and the direction of light
propagation is positive. Light is incident from isotropic Medium 1 at an an-
gle of incidence θ1, passes through a thin film of anisotropic Medium 2 (film

5Note that the extraordinary principal refractive index, ne, differs from the extraordinary
refractive index, ne(θ2e). The former is an optical constant, while the latter is a function of
the direction of light propagation (θ2e).
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thickness d2), and is transmitted to isotropic Medium 3 at a refraction an-
gle θ3. Let the refractive indices of Medium 1 and Medium 3 be n1 and n3,
respectively, and ηi = kiz/k0 (i = 1 or 3), where kiz is the z-component of
the wavevector in Medium i. We also have the extraordinary light principal
refractive index ne and the ordinary light refractive index no of Medium 2.
Let θ2e and θ2o be the corresponding refraction angles.

FIGURE 1.9
Reflection and transmission of an anisotropic film.

Find the relationship between the wavenumber vector k2 of light propa-
gating through Medium 2 and the intrinsic polarization. The eigenequation of
the light is written with E2 for the light electric field of Medium 2 and k0 as
the wavenumber in a vacuum as(

k2
2 − k2k2 − k2

0 ε̂
)
E2 = 0. (1.35)

ε̂ is the dielectric constant tensor of Medium 2. With a refractive index ne for
extraordinary light and that for ordinary light no, it is

ε̂ =

n2
o 0 0

0 n2
o 0

0 0 n2
e

 . (1.36)

E2 = (E2x, E2y, E2z) are calculated as follows:η2
2 − n2

o 0 −κη2

0 κ2 + η2
2 − n2

o 0
−κη2

2 0 κ2 − n2
e

E2x

E2y

E2z

 = 0 (1.37)

Here, κ corresponds to the x-directional component kx of the wavenumber
vector, defined as κ = kx/k0, and is equal in each layer. Also, η2 is the quantity
corresponding to the z component k2z of the wavenumber vector in Medium
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2, defined by η2 = k2z/k0. For this expression to make sense, the determinant
must equal zero, leading to the following relationship:

(κ2 + η2
2 − n2

o)(n2
en

2
o − η2

2n
2
o − κ2n2

e) = 0 (1.38)

Since κ, no, no, and ne is known, η2 is unknown. The absolute value of
η2 corresponding to normal light is written as η2o, and that corresponding
to extraordinary light as η2e. Each has multiple solutions, with positive and
negative corresponding to the direction of light propagation – positive to light
propagating forward (in the positive direction of the z-axis), and negative to
light propagating backward. They are as follows:

η2 = ±η2o, where η2o =
√
n2

o − κ2 (1.39)

η2 = ±η2e, where η2e =
(no

ne

)√
n2

e − κ2 (1.40)

To distinguish the four eigen propagation modes, we number them as

η
(1)
2 = η2e, η

(2)
2 = −η2e, η

(3)
2 = η2o, and η

(4)
2 = −η2o. η

(1)
2 corresponds to

extraordinary light propagating forward in Medium 2, η
(2)
2 to extraordinary

light propagating backward, η
(3)
2 to ordinary light propagating forward, and

η
(4)
2 to ordinary light propagating backward.

In the case of a uniaxial medium with an optical axis normal to the surface,
p- and s-polarized light do not affect each other and can be treated indepen-
dently. First, the boundary conditions between Medium 1 and Medium 2 in
p-polarized light are described because the tangential components of the elec-
tric and magnetic fields must be continuous,

η1

n1
E+

1 −
η1

n1
E−1 = cos θ′2E

+
2 − cos θ′2E

−
2 (1.41)

n1E
+
1 + n1E

−
1 =

n2
2o

n2e
cos θ′2E

+
2 +

n2
2o

n2e
cos θ′2E

−
2 . (1.42)

Here, θ′2 is the angle between the surface normal and the Pointing vector.
In an anisotropic medium, the wavenumber vector and the Pointing vector do
not have the same direction, which differs from the refraction angle θ2o and
θ2e. The cosine and sine of θ′2 are represented by ne and no as follows:

cos θ′2 =
ne

√
n2

e − κ2)√
n4

e + κ2(n2
o − n2

e)
=

n2
eη2e

no

√
n4

e + κ2(n2
o − n2

e)
(1.43)

sin θ′2 =
noκ√

n4
e + κ2(n2

o − n2
e)

(1.44)

The boundary conditions between Medium 2 and Medium 3 are

cos θ′2φ
+
2eE

+
2 − cos θ′2φ

−
2eE

−
2 =

η3

n3
E+

3 (1.45)

n2
2o

n2e
cos θ′2φ

+
2eE

+
2 +

n2
2o

n2e
cos θ′2φ

−
2eE

−
2 = n3E

+
3 . (1.46)
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Here, φ2 is the phase difference during propagation and φ±2e =
exp(±iη2ed2). Although there are five unknowns, these equations can be solved
because the ratio of E−1 to E+

1 is the reflection coefficient r = E−1 /E
+
1 and

the ratio of E+
3 to E+

1 is the transmission coefficient t = E+
3 /E

+
1 .

Next, we describe the boundary conditions for Mediums 1 and 2 for s-
polarized light.

E+
1 + E−1 = E+

2 + E−2 (1.47)

η1E
+
1 − η1E

−
1 = η2oE

+
2 − η2oE

−
2 (1.48)

The boundary conditions between Medium 2 and Medium 3 are as follows:

φ+
2oE

+
2 + φ−2oE

−
2 = E+

3 (1.49)

η2oφ
+
2oE

+
2 − η2oφ

−
2oE

−
2 = η3E

+
3 . (1.50)

Here, φ±2o = exp(±iη2od2). The transmission coefficient and transmittance for
s-polarized light can be obtained from these equations.

1.5.2 Transfer matrix method for anisotropic medium

Solving a series of equations with the boundary conditions is easy to under-
stand in its physical meaning, but it is not practical for calculations dealing
with multilayers. It is complicated when the optical axis is not normal to the
surface or in the plane of incidence. Here, we introduce a calculation method
using the transfer matrix that solves these problems, proposed by Bethune
[5].

First, the polarization unit vector u corresponding to each eigenvector
is obtained. In the case of uniaxial media where the optical axis is along
the surface normal, u can be easily obtained, as shown below, but in other
cases, some calculation is required. For extraordinary light, from the three
conditions, the electric field vector is in the xz plane, is orthogonal to the
wavenumber vector, and is a unit vector. We have

u(1) =

− cos θ′

0
sin θ′

 u(2) =

cos θ′

0
sin θ′

 . (1.51)

Here, θ′ is the angle between the Pointing vector and the z-axis. The direction
of polarization for ordinary light is

u(3) = u(4) =

0
1
0

 . (1.52)

The boundary condition is that the tangential components of the electric and
magnetic fields are continuous. As shown in Section 1.4, for p- and s-polarized
light in medium i, the electric fields of the forward and backward propagating
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light are summarized, and a vector Ei is defined. The polarization and the
direction of light propagation are expressed as superscripts, respectively.

Ei =


Ep+
i

Ep−
i

Es+
i

Es−
i

 (1.53)

On the other hand, to incorporate the continuity condition at the boundary,
it is sufficient to consider the following four components of the electric and
magnetic field components, called the Berreman vector ψ.

ψi =


Ex
By
Ey
−Bx

 (1.54)

The relationship between ψi and Ei is written as

ψi = ΠiEi. (1.55)

Here, Πi can be written using η and u of Medium 2 from Eq. (1.5) as follows:

Πi =


u

(1)
x u

(2)
x u

(3)
x u

(4)
x

η(1)u
(1)
x − κu(1)

z η(2)u
(2)
x − κu(2)

z η(3)u
(3)
x − κu(3)

z η(4)u
(4)
x − κu(4)

z

u
(1)
y u

(2)
y u

(3)
y u

(4)
y

η(1)u
(1)
y η(2)u

(2)
y η(3)u

(3)
y η(4)u

(4)
y


(1.56)

If Medium 2 is uniaxial and the optical axis is along the surface normal,

Π2 =


cos θ′2 − cos θ′2 0 0

n2
2o

n2e
cos θ′2

n2
2o

n2e
cos θ′2 0 0

0 0 1 1
0 0 η2o −η2o

 . (1.57)

It consists of two independent 2×2 matrices, indicating that p- and s-polarized
light can be treated independently, although a diagonal component generally
arises, and p- and s-polarized light interact. In other words, when p-polarized
light is incident, the reflected or transmitted light involves an s-polarized com-
ponent.

Medium 1 and Medium 3 are isotropic media, then Πi (i = 1 or 3) is
written as follows:

Πi =


ηi
ni
− ηi
ni

0 0

ni ni 0 0
0 0 1 1
0 0 ηi −ηi

 (1.58)
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Now, let ψi be the Berreman vector in medium i,

Π2ψ2 = Π1ψ1 (1.59)

Π3ψ3 = Π2Φ2ψ2. (1.60)

The Φ2 gives the phase difference of the light propagating through Medium 2
and is expressed as follows:

Φ2 =


φ+

2e 0 0 0
0 φ−2e 0 0
0 0 φ+

2o 0
0 0 0 φ−2o

 (1.61)

Here, φ±2e = exp(±iη2ed2) and φ±2o = exp(±iη2od2).
From Eqs. (1.59) and (1.60), we have

Π3ψ3 = (Π−1
3 Π2)Φ2(Π−1

2 Π1)ψ1 = M32Φ2M21, (1.62)

where Mji = Π−1
j Πi. Although the inverse matrix of Π does not exist in

isotropic media or in uniaxial media when the surface normal and the optical
axis coincide, the optical model considered here allows the use of the effective
inverse matrix shown below.

Π−1
2 =

1

2


1

cos θ′2

η2e
n2
2o cos θ′2

0 0

− 1
cos θ′2

η2e
n2
2o cos θ′2

0 0

0 0 1 1
η2o

0 0 1 − 1
η2o

 (1.63)

Π−1
i =

1

2


ni
ηi

1
ni

0 0

−niηi
1
ni

0 0

0 0 1 1
ηi

0 0 1 − 1
ηi

 (i = 1 or 3) (1.64)

1.5.3 Hyperbolic metamaterials

Here, we consider reflectance and transmittance in hyperbolic metamateri-
als (HMMs) as an example of calculating an effective anisotropic medium.
The multilayers composed of thin films thinner than the wavelength of light,
as shown in Figure 1.10(a), is an effective anisotropic media with different
eigenwavenumber vectors in the surface normal and in-plane directions. In
particular, when alternating layers of metal and dielectric are used, the iso-
wavenumber surface becomes an HMM, which is a hyperbolic surface, and
the wavenumber in the surface normal direction can be increased, and other
peculiar optical properties are exhibited [6]. This can be understood by the
effective medium approximation (EMA), in which the multilayer is regarded
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as an effective medium, as shown in Figure 1.10(b). Consider the case where
the HMM comprises two types of mediums, A and B. Let the dielectric con-
stants of each be εA and εB. The thicknesses of the thin films are equal and
are dA and dB, respectively. The effective dielectric constant depends on the
direction of polarization and can be written as follows, where the dielectric
constants in the z and in-plane directions are εz and ε‖, respectively.

FIGURE 1.10
Mutilayer(a) and effective medium(b).

εz =
εAεB

qεB + (1− q)εA
(1.65)

ε‖ = qεA + (1− q)εB (1.66)

Here, q is the volume fraction of medium A and q = dA/(dA + dB). There-
fore, the z-directional component perpendicular to the surface differs from
the in-plane surface component, and the HMM can be regarded as a uniaxial
anisotropic medium with the optical axis perpendicular to the surface.

Generally, anisotropic media with optical axes in the x-, y-, and z-
directions have a diagonalized permittivity tensor. If the components in the
x-, y-, and z-directions are εxx, εyy, and εzz respectively, we can consider the
dielectric constant ellipsoid shown by the following equation:

x2

εxx
+
y2

εyy
+
z2

εzz
= 1 (1.67)

The dispersion relation of light propagating through this medium can be
obtained from Eq. (1.38). As εxx = εyy = ε‖ and εz = εzz, and by multiplying
both sides by the wavenumber in the vacuum, for the ordinary light, the
dispersion relation is

k2
x

ε‖
+
k2
y

ε‖
+
k2
z

ε‖
=
(ω
c

)2

, (1.68)

and for the extraordinary light,

k2
x

εz
+
k2
y

εz
+
k2
z

ε‖
=
(ω
c

)2

. (1.69)
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Since it is clear that the dispersion relation for ordinary light is a sphere

of radius
√
ε‖

(
ω
c

)
, we now deal with the dispersion relation for extraordinary

light. Considering three cases according to the signs of ε‖ and εz is necessary.
Program 1.8 calculates the dispersion relation between the values taken by
the wavenumber vector components when the signs of ε‖ and εz are positive.
Eq. (1.68) can be easily understood if it is expressed in terms of the polar
angle θ and azimuthal angle φ regarding the mediating variables. With this,
we can write

x =
√
εz sin θ cosφ (1.70)

y =
√
εz sin θ sinφ (1.71)

z =
√
ε‖ cos θ. (1.72)

Program 1.8

1 import scipy as sp

2 from scipy import pi,sin ,cos ,tan , meshgrid ,arrange

3 import pylab as pylab

4 import mpl_toolkits.mplot3d.axes3d as pylab3

5
6 u=arrange (0,2*pi ,0.1) # Creation of mesh Phi

7 v=arrange (0,1*pi ,0.1) # Creation of mesh Theta

8
9 epz = 4 # Dielectric constant in z-direction

10 epx = 9 # Dielectric constant in x-direction

11
12 uu,vv=meshgrid(u,v) # Creation of mesh

13
14 x=epz*cos(uu)*sin(vv) # Dielectric constant in x-direction

15 y=epz*sin(uu)*sin(vv) # Dielectric constant in y-direction

16 z=epx*cos(vv) # Dielectric constant in z-direction

17
18 fig=pylab.figure ()

19 ax = pylab3.Axes3D(fig ,aspect =1) # Declaration of the creation

of 3D diagrams.

20 ax.plot_wireframe(x,y,z) # Wireframe plotting.

21 ax.set_xlabel(‘X’) # x-direction label

22 ax.set_ylabel(‘Y’) # y-direction label

23 ax.set_zlabel(‘Z’) # z-direction label

24
25 ax.set_xlim3d (-10, 10) # x-directional plotting range

26 ax.set_ylim3d (-10, 10) # y-directional plotting range

27 ax.set_zlim3d (-10, 10) # z-directional plotting range

28
29 pylab.show( ) # Display graph

The mesh is created with the grid mesh command in Line 12 before plotting
and storing in the lists uu and vv. Plotting is made with the plot wireframe
command. The calculation result is a rotating ellipsoid as shown in Figure
1.11(a).
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FIGURE 1.11
Dispersion relation of the multilayer film. (a) Both ε‖ and εz are positive, (b)
positive ε‖ and negative εz, and (c) negative ε‖ and positive εz.

On the other hand, if ε‖ is positive and εz is negative, the dispersion
relation becomes hyperbolic as shown in Figure 1.11(b). Eq. (1.68) in terms
of the parameters is expressed as

x =
√
εz sec θ cosφ (1.73)

y =
√
εz sec θ sinφ (1.74)

z =
√
ε‖ tan θ. (1.75)

When ε‖ is negative and εz is positive, it is

x =
√
εz tan θ cosφ (1.76)

y =
√
εz tan θ sinφ (1.77)

z =
√
ε‖ sec θ. (1.78)

Program 1.9 illustrates this relation, in which epx and epz are both absolute
dielectric permittivity values, the positive and negative of which are chosen by
describing the parameters. The fact that the dispersion relation is hyperbolic
indicates the possibility of obtaining large wavenumber vector components.

Program 1.9

1 import scipy as sp

2 import matplotlib.pyplot as plt

3 from matplotlib.pyplot import plot ,show ,grid ,axis ,figure

4 from scipy import pi,sin ,cos ,tan ,arcsin ,meshgrid ,linspace ,sqrt

5 import mpl_toolkits.mplot3d.axes3d as p3d

6
7 def sec(x):

8 return 1/cos(x) # Define function sec
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9
10 u=linspace(0, 2*pi, 20) # Creation of mesh Theta

11 v=linspace(0, 2*pi, 20) # Creation of mesh Phi

12
13 epz = 3 # Dielectric constant in z-direction (negative value)

14 epx = 5 # Dielectric constant in x-direction (positive value)

15
16 uu,vv=meshgrid(u,v) # Create mesh

17
18 x=sqrt(epz)*sec(uu)*cos(vv) # Dielectric constant in x-

direction

19 y=sqrt(epz)*sec(uu)*sin(vv) # Dielectric constant in y-

direction

20 z=sqrt(epx)*tan(uu) # Dielectric constant in z-direction

21
22 fig=figure ()

23 ax = p3d.Axes3D(fig ,aspect =1) # Declaration of the creation of

3D diagrams.

24 ax.plot_wireframe(x,y,z) # Wireframe plotting.

25 ax.set_xlabel(‘X’) # x-direction label

26 ax.set_ylabel(‘Y’) # y-direction label

27 ax.set_zlabel(‘Z’) # z-direction label

28
29 ax.set_xlim3d (-20, 20) # x-directional plotting range

30 ax.set_ylim3d (-20, 20) # y-directional plotting range

31 ax.set_zlim3d (-30, 30) # z-directional plotting range

32
33 show() # Display graph

Finally, the results of the calculation for negative ε‖ and positive εz are
shown in Figure 1.11(c). Program 1.10 shows epx and epz, which are absolute
dielectric permittivity values. For the convenience of mesh grid fabrication,
the positive and negative portions of the z-axis are plotted separately and
finally shown as a single surface. This case is characterized by the existence
of a gap in kz.

Program 1.10

1 import scipy as sp

2 import matplotlib.pyplot as plt

3 from matplotlib.pyplot import plot ,show ,grid , axis ,subplot ,figure

4 from scipy import pi,sin ,cos ,tan ,arcsin ,meshgrid ,linspace ,sqrt

5 import mpl_toolkits.mplot3d.axes3d as p3d

6
7 def sec(x):

8 return 1/cos(x) # Define function sec

9
10 u=linspace(0, 0.4*pi , 20) # Creation of mesh Theta

11 v=linspace(0, 2*pi, 20) # Creation of mesh Phi

12
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13 epz = 3 # Dielectric constant in z-direction (positive value)

14 epx = 5 # Dielectric constant in x-direction (negative value)

15
16 uu,vv=meshgrid(u,v) # Create mesh

17
18 x1=sqrt(epz)*tan(uu)*cos(vv) # Dielectric constant in x-

direction

19 y1=sqrt(epz)*tan(uu)*sin(vv) # Dielectric constant in y-

direction

20 z1=sqrt(epx)*sec(uu) # Dielectric constant in z-direction

21
22 x2=sqrt(epz)*tan(uu)*cos(vv) # Dielectric constant in x-

direction

23 y2=sqrt(epz)*tan(uu)*sin(vv) # Dielectric constant in y-

direction

24 z2=-sqrt(epx)*sec(uu) # Dielectric constant in z-directio

25
26 fig=figure ()

27 ax = p3d.Axes3D(fig ,aspect =1) # Wireframe Plotting

28 ax.plot_wireframe(x1 ,y1,z1) # Wireframe Plotting

29 ax.plot_wireframe(x2 ,y2,z2) # Wireframe Plotting

30
31 ax.set_xlabel(‘X’) # x-direction label

32 ax.set_ylabel(‘Y’) # y-direction label

33 ax.set_zlabel(‘Z’) # z-direction label

34
35 ax.set_xlim3d(-6, 6) # x-direction plotting range

36 ax.set_ylim3d(-6, 6) # y-direction plotting range

37 ax.set_zlim3d(-7, 7) # z-direction plotting range

38
39 show() # Show graph

FIGURE 1.12
Silver and titanium dioxide multilayer films (a) and (b). Their effective
medium (c).

For a multilayer structure consisting of eight layers of dielectric (TiO2)
and metal (Ag) with a thickness of 10 nm, as shown in Figures 1.12(a)
and 1.12(b), we calculate the wavelength dependence of reflectivity and
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transmittance. They are compared with the wavelength dependence of re-
flectivity and transmittance of an 80-nm thick film of an effective medium
shown in Figure 1.12(c). The difference in the structures between (a) and (b)
is whether the top layer is metal (Ag) or dielectric (TiO2). Calculations for
multilayer structures can be performed using the method introduced in Sec-
tion 1.4. On the other hand, since the effective medium is a single layer but an
anisotropic medium, the calculation introduced in Section 1.5 was adopted.
In addition, the dielectric constants εTiO2 of the dielectric (TiO2) and εAg of
the metal (Ag) are assumed to follow the following functions [7].

εTiO2 = 5.193 +
0.244

(λ/1000)2 − 0.0803
(1.79)

εAg = 3.691− 9.1522

(1242/λ)2 + i0.021 ∗ (1242/λ)
(1.80)

FIGURE 1.13
Calculated reflectance and transmittance of the multilayer at normal inci-
dence; ML1 and ML2 refer to the structures in Figures 1.12(a) and (b), re-
spectively; EMA is the effective medium shown in Figure 1.12(c).

Using Program 8.2 shown in the Appendix, the reflectivity and transmit-
tance are shown for Figure 1.13 at an incidence angle of 0◦ and for Figure 1.14
at an incidence angle of 45◦. The reflectivity differs slightly between ML1 and
ML2, but the transmittance agrees. The difference in reflectance is due to a
slight difference in absorption by Ag, and the agreement in transmittance can
be explained by the optical reciprocity theorem in transmission. The values
differ on the short wavelength side, but the characteristics are similar. When
the incident angle is 45◦, the EMA and ML models almost coincide on the
wavelength side longer than 450 nm at 0◦ incident angle.
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FIGURE 1.14
Calculated reflectance and transmittance of the multilayer at an angle of inci-
dence of 45◦. (a) Reflection spectrum of s-polarized light, (b) reflection spec-
trum of p-polarized light, (c) transmission spectrum of s-polarized light, and
(d) reflection spectrum of p-polarized light. ML1 and ML2 refer to the struc-
tures in Figures 1.12(a) and (b), respectively. EMA is the effective medium
shown in Figure 1.12(c).

A plot of the effective dielectric constant ε‖ and εz of the effective medium
using Program 1.11 is shown in Figure 1.15. The imaginary part of ε‖ is
extremely small, but the real part is positive on the short wavelength side
and negative on the long wavelength side after 450 nm. In other words, the
effective medium behaves as a dielectric at short wavelengths and as a metal
at long wavelengths. Also, ε‖ = 0 is realized at 450 nm, indicating that the
real part of the refractive index is close to zero. On the other hand, the sign
of the real part of εz is opposite to ε‖.
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Program 1.11

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from scipy import pi,arrange ,sqrt ,zeros ,array

5 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis

6
7 def func_nAg(WLs):

8 ep =3.691 -9.1522**2/((1240/ WLs)**2+1j*0.021*(1240/ WLs))

9 index=sqrt(ep)

10 return index # Dielectric function of silver

11
12 def func_nTiO2(WLs):

13 ep =5.193 + 0.244/(( WLs /1000) **2 -0.0803)

14 index=sqrt(ep)

15 return index # Dielectric function of TiO2

16
17 WLmin = 300 # Wavelength (shortest) (nm)

18 WLmax = 1000 # Wavelength (longest) (nm)

19 WLperiod = 1 # Wavelength period (nm)

20 WLx = arrange(WLmin , WLmax+1, WLperiod) # Array of wavelengths

21 NumWLx = int((WLmax -WLmin)/WLperiod)+1 # Number of wavelengths

22 k0=2*pi/WLx # Wavenumber

23
24 nTiO2=zeros (( NumWLx),dtype=complex)

25 # Ti02 refractive index initialization

26 nAg=zeros(( NumWLx),dtype=complex)

27 # Ag refractive index initialization

28
29 for i in range(NumWLx):

30 nTiO2[i]= func_nTiO2(WLx[i])

31 # Generation of refractive index of Ti02

32 nAg[i]= func_nAg(WLx[i])

33 # Generation of refractive index of Ag

34
35 epx =0.5*( nTiO2 **2 + nAg **2)

36 # Dielectric constant by EMA x-direction

37 epz =2*( nTiO2 **2)*(nAg **2) /(( nTiO2 **2)+(nAg **2))

38 # Delectric constant by EMA z-direction

39
40 plot(WLx ,epx.real , label=r"Re$(\ epsilon_ {\rm \parallel })$")

41 # Plot x (real)

42 plot(WLx ,epx.imag , label=r"Im$(\ epsilon_ {\rm \parallel })$")

43 # Plot x (imaginary)

44 xlabel(r"Wavelength(nm)",fontsize =20) # x-axis labelong

45 ylabel(r"$ \epsilon_ {\rm \parallel}$",fontsize =20)

46 # y-axis labeling

47 title("", fontsize =20) # Graph title

48 grid(True) # Show grid

49 axis ([300 ,1000 , -30 ,30]) # Plot range

50 legend(fontsize =16) # Show legend

51 plt.tick_params(labelsize =20) # Axis scales

52 show() # Show graph

53
54 plot(WLx ,epz.real , label=r"Re$(\ epsilon_ {\rm z})$")
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55 # Plot z (real)

56 plot(WLx ,epz.imag , label=r"Im$(\ epsilon_ {\rm z})$")

57 # Plot z (imaginary)

58 xlabel(r"Wavelength(nm)",fontsize =20) # Label x-axis

59 ylabel(r"$ \epsilon_ {\rm z}$",fontsize =20) # Label y-axis

60 title("", fontsize =20) # Graph title

61 grid(True) # Show grid

62 axis ([300 ,1000 , -100 ,100]) # Plot range

63 legend(fontsize =16) # Show legend

64 plt.tick_params(labelsize =18) # Axis scales

65 show() # Show graph

FIGURE 1.15
Dielectric constant of the effective medium (a) ε‖ and (b) εz. Both the real
and imaginary parts are plotted.
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Electromagnetic Analysis of Spheres

When light is irradiated to a small substance, scattering and absorption oc-
cur. Analytical solutions are available for small spheres and cylinders. This
chapter uses Python to describe calculation programs for scattering and ab-
sorption by small spheres. If the sphere is much smaller than the wavelength
of light, the long wavelength approximation can be adopted, and calculation
is simple. Otherwise, calculation based on the Mie theory is necessary, which
is complicated. This chapter deals with both cases.

2.1 Theory

2.1.1 Long wavelength approximation

The long wavelength approximation (quasi-static approximation) can be ap-
plied when the diameter of the sphere is sufficiently small compared to the
wavelength of the light (approximately 1/7th of the wavelength or less). When
the light electric field can be considered static, it is much easier to handle than
calculations incorporating the retardation. Consider the absorption and scat-
tering spectra of a nanosphere, as shown in Figure 2.1(a), where the refractive
index of the surrounding medium and that of the sphere are n1 and n2, re-
spectively. The following equation gives the polarizability α of the sphere with
a radius R [8, 9, 10]:

α = 4πn2
1R

3 n
2
1 − n2

2

2n2
1 + n2

2

(2.1)

In the case of metallic spheres, n2 is complex and wavelength-dependent.
At a wavelength where 2n2

1 +n2
2 is minimum, the polarizability α is maximum.

This phenomenon is called localized surface plasmon resonance. If only the
real part is considered, it is at a wavelength where n2

2 = −2n2
1. On the other

hand, note that the resonance wavelength is determined solely by the sphere’s
refractive index n2 and is independent of the sphere’s radius. The scattering
cross-section Csca, extinction cross-section Cext and absorption cross-section
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Cabs are given by

Csca =
k4

6π
|α|2

Cabs = k Im(α)

Cext = Csca + Cabs. (2.2)

Here, k is the wavenumber of light in the surrounding medium. The scattering
efficiency Qsca, extinction efficiency Qext and absorption efficiency Qabs are
obtained by normalizing the cross-section by the cross-sectional area.

FIGURE 2.1
(a) Sphere and (b) core-shell structure.

2.1.2 Calculation of optical response of sphere with
retardation

If the sphere is large, calculations incorporating retardation is necessary. We
define the relative refractive index m, as m = n2/n1. Let λ and k0 be the
wavelength and wavenumber of light in vacuum, respectively, and ω be the
angular frequency. The incident light electric field vector Ei is expanded into
a spherical wave using the vector spherical harmonic functions

Ei =
∞∑
n=1

En(M
(1)
o1n − iN

(1)
e1n). (2.3)

Here, En = in
2n+ 1

n(n+ 1)
E0. Also, the magnetic field Hi is

Hi = − k0

ωµ0

∞∑
n=1

En(M
(1)
e1n + iN

(1)
o1n). (2.4)
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The electric field E2 and magnetic field H2 inside the sphere are obtained
by using the coefficients cn and dn as

E2 =

∞∑
n=1

En(cnM
(1)
o1n − idnN

(1)
e1n)

H2 = −mk0

ωµ0

∞∑
n=1

En(dnM
(1)
e1n + icnN

(1)
o1n). (2.5)

Furthermore, the scattering fields Es and Hs are expressed with coefficients
an and bn as follows:

Es =

∞∑
n=1

En(ianN
(3)
e1n − ibnM

(3)
o1n)

Hs =
k0

ωµ0

∞∑
n=1

En(ibnN
(3)
o1n + ianM

(3)
e1n) (2.6)

The coefficients an, bn, cn, and dn are from the boundary conditions at the
sphere surface. They are written as follows:

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)

cn =
mψn(x)ξ′n(x)−mξn(x)ψ′n(x)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)

dn =
mψn(x)ξ′n(x)−mξn(x)ψ′n(x)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
(2.7)

The ′ denotes the derivative due to the variables in parentheses. x is called the
size parameter and x = k0R. ψn(ρ) and ξn(ρ) are the Ruccati-Bessel functions.
The spherical Bessel function jn(ρ) and the spherical Hankel function hn(ρ)
are used to obtain them.

ψn(ρ) = ρjn(ρ)

ξn(ρ) = ρhn(ρ) (2.8)

Since we set the time dependence to e−iωt, the spherical Hankel function of
the first kind is used. The scattering cross-section Csca and extinction cross
section Cext are expressed as

Csca =
2π

k2
0

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2)

Cext =
2π

k2
0

∞∑
n=1

(2n+ 1)Re(an + bn). (2.9)
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2.1.3 Core-shell structure (long-wavelength approximation)

Consider a core-shell structure with a core of refractive index n3 and a shell
of refractive index n2 covering it in an ambient medium of refractive index
n1, as in Figure 2.1(b). First, we consider the case where the core-shell is
sufficiently small compared to the wavelength to apply the long-wavelength
approximation.

The spherical coordinate system (ρ,θ,φ) is used in the calculation. To sim-
plify the calculation, ρ is normalized by the core radius R3. Then r = 1
corresponds to the core’s surface, and the shell’s surface is r = R2/R3 = s.
The potential at the medium i that arises when a unit electric field is applied
in the z-direction is ψi, using the Legendre function Pj(t).

ψ1 = rt+
∞∑
j=1

B1jr
−(j+1)Pj(t)

ψ2 =
∞∑
j=1

(
A2jr

jPj(t) +B2jr
−(j+1)Pj(t)

)
ψ3 =

∞∑
j=1

A3jr
jPj(t) (2.10)

where t = cos θ. Also, Aij and Bij are the coefficients of order j in medium
i. The boundary conditions at the interface r = 1 between the core and shell
and at the interface r = s between the shell and the surrounding medium lead
to the following four equations1:

A31 −A21 −B21 = 0

ε3A31 − ε2A21 + 2ε2B21 = 0

s3A21 +B21 −B11 − s3 = 0

ε2s
3A21 − 2ε2B21 + 2ε1B11 = ε1s

3, (2.11)

where the dielectric constant εi in medium i is εi = n2
i . The following results

from solving this system of equations [11].

A21 =
s3

∆
(3ε1(2ε2 + ε3))

B21 =
s3

∆
(3ε1(ε2 − ε3))

A31 =
s3

∆
(9ε1ε2)

B11 =
s3

∆
(ε2(ε1(1 + 2s3)− ε3(2 + s3)) + (2ε22 − ε1ε3)(1− s3)). (2.12)

1The potential is continuous at the boundary and the derivative of the potential multi-
plied by the dielectric permittivity is continuous.
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Here,

∆ = ε2(2ε1(1 + 2s3) + ε3(2 + s3))− 2(ε22 + ε1ε3)(1− s3) (2.13)

The polarizability α is obtained by the following equation:

α = −4πε1R
3
2B11 (2.14)

The scattering cross-section Csca, absorption cross-section Cabs, and extinction
cross-section Cext can be obtained using Eq. (2.2).

2.1.4 Core-shell structure (considering retardation)

Next, in the case of large core-shell spheres, retardation must be considered [8].
The treatment is similar to the Mie scattering case described in Section 2.1.2.
Consider a core-shell structure with a core of radius R3 and refractive index
n3 and a shell of radius R2 and refractive index n2 covering it in an ambient
medium of refractive index n1, as in Figure 2.1(b). The relative refractive
indices are m3 = n3/n1 and m2 = n2/n1 for the core and shell, respectively,
and two size parameters are defined as x = k0R3 and y = k0R2.

Let E3 and H3 denote the electric and magnetic fields inside the sphere,
E2 andH2 the electric and magnetic fields in the shell, Ei andHi the incident
field electric and magnetic fields, and Es and Hs the scattering field electric
and magnetic fields. The incident and scattered fields are

Ei =
∞∑
n=1

En(M
(1)
o1n − iN

(1)
e1n)

Hi = − k0

ωµ0

∞∑
n=1

En(M
(1)
e1n + iN

(1)
o1n)

Es =
∞∑
n=1

En(ianN
(3)
e1n − ibnM

(3)
o1n)

Hs =
k0

ωµ0

∞∑
n=1

En(ibnN
(3)
o1n + ianM

(3)
e1n). (2.15)

The electric and magnetic fields in the core (Medium 3) are described as
follows:

E3 =
∞∑
n=1

En(cnM
(1)
o1n − idnN

(1)
e1n)

H3 = −m3k0

ωµ0

∞∑
n=1

En(dnM
(1)
e1n + icnN

(1)
o1n) (2.16)
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On the other hand, in the shell, since it is the sum of the waves travelling
to the inside of the sphere and the waves travelling to the outside, it is written
as

E2 =
∞∑
n=1

En(fnM
(1)
o1n − ignN

(1)
e1n + vnM

(3)
o1n − iwnN

(3)
e1n)

H2 = −m2k0

ωµ0

∞∑
n=1

En(gnM
(1)
e1n + ifnN

(1)
o1n + wnM

(3)
e1n + ivnN

(3)
o1n). (2.17)

Solving these with the boundary conditions at ρ = R2 and ρ = R3 yields

an =
ψn(y)(ψ′n(m2y)−Anχ′n(m2y))−m2ψ

′
n(y)(ψn(m2y)−Anχn(m2y))

ξn(y)(ψ′n(m2y)−Anχ′n(m2y))−m2ξ′n(y)(ψn(m2y)−Anχn(m2y))

bn =
m2ψn(y)(ψ′n(m2y)−Bnχ′n(m2y)− ψ′n(y)(ψn(m2y)−Bnχn(m2y))

m2ξn(y)(ψ′n(m2y)−Bnχ′n(m2y)− ξ′n(y)(ψn(m2y)−Bnχn(m2y))
(2.18)

where An and Bn are

An =
m2ψn(m2x)ψ′n(m3x)−m1ψ

′
n(m2x)ψ(m3x)

m2χn(m2x)ψ′(m3x)−m1χ′n(m2x)ψ(m3x)

Bn =
m2ψn(m2x)ψ′n(m2x)−m1ψn(m2x)ψ′(m3x)

m2χ′n(m2x)ψ(m3x)−m1ψ′n(m3x)χ(m2x)
. (2.19)

Here, the Riccati Bessel function χ(ρ) is χ(ρ) = −ρyn(ρ) using the spherical
Bessel function of the second kind yn(ρ).

2.2 Programing

2.2.1 Long-wavelength approximation

Here, we calculate the scattering spectra of scattering, absorption, and extinc-
tion spectra. The cross-sections of scattering (Csca), absorption (Cabs), and
extinction (Cext) of a metal sphere that are small compared to the wavelength
are calculated. Data on the refractive indices of the metals (gold and silver) at
various wavelengths are needed. Refractive indices of metals are wavelength-
dependent, which is discretely given in papers as [12]. Therefore, interpolation
is used to obtain continuous spectra. The simplest linear interpolation, inter-
polate.interp1d, is used, although various other types of interpolation, such
as spline interpolation, are available. These are made into a module, RI.py,
and placed in the same directory (folder). By importing this module (Program
2.1), one can use the refractive index and dielectric constant in the program.
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Program 2.1

1 from scipy import array ,interpolate , arrange ,zeros

2
3 RIAu=array([

4 [292.4 , 1.49, 1.878] , [300.9 , 1.53, 1.889] , [310.7 , 1.53,

1.893] ,

5 [320.4 , 1.54, 1.898] , [331.5 , 1.48, 1.883] , [342.5 , 1.48,

1.871] ,

6 [354.2 , 1.50, 1.866] , [367.9 , 1.48, 1.895] , [381.5 , 1.46,

1.933] ,

7 [397.4 , 1.47, 1.952] , [413.3 , 1.46, 1.958] , [430.5 , 1.45,

1.948] ,

8 [450.9 , 1.38, 1.914] , [471.4 , 1.31, 1.849] , [495.9 , 1.04,

1.833] ,

9 [520.9 , 0.62, 2.081] , [548.6 , 0.43, 2.455] , [582.1 , 0.29,

2.863] ,

10 [616.8 , 0.21, 3.272] , [659.5 , 0.14, 3.697] , [704.5 , 0.13,

4.103] ,

11 [756.0 , 0.14, 4.542] , [821.1 , 0.16, 5.083] , [892.0 , 0.17,

5.663] ,

12 [984.0 , 0.22, 6.350] , [1088.0 , 0.27, 7.150]])

13
14 RIAg=array([

15 [292.4 , 1.39, 1.161] ,[300.9 , 1.34, 0.964] ,[310.7 , 1.13,

0.616] ,

16 [320.4 , 0.81, 0.392] ,[331.5 , 0.17, 0.829] ,[342.5 , 0.14,

1.142] ,

17 [354.2 , 0.10, 1.419] ,[367.9 , 0.07, 1.657] ,[381.5 , 0.05,

1.864] ,

18 [397.4 , 0.05, 2.070] ,[413.3 , 0.05, 2.275] ,[430.5 , 0.04,

2.462] ,

19 [450.9 , 0.04, 2.657] ,[471.4 , 0.05, 2.869] ,[495.9 , 0.05,

3.093] ,

20 [520.9 , 0.05, 3.324] ,[548.6 , 0.06, 3.586] ,[582.1 , 0.05,

3.858] ,

21 [616.8 , 0.06, 4.152] ,[659.5 , 0.05, 4.483] ,[704.5 , 0.04,

4.838] ,

22 [756.0 , 0.03, 5.242] ,[821.1 , 0.04, 5.727] ,[892.0 , 0.04,

6.312] ,

23 [984.0 , 0.04, 6.992] ,[1088.0 , 0.04, 7.795]])

24
25 NumWL = 26

26 WL=zeros(NumWL , dtype=int)

27 RIAuRe=zeros(NumWL , dtype=float)

28 RIAuIm=zeros(NumWL , dtype=float)

29 RIAgRe=zeros(NumWL , dtype=float)

30 RIAgIm=zeros(NumWL , dtype=float)

31
32 WLmin = 300

33 WLmax = 1000

34 WLperiod = 1

35 WLx = arrange(WLmin , WLmax+1, WLperiod)

36 # Interpolated wavelengths 300 -1000nm 1nm intervals

37 NumWLx = int((WLmax+1-WLmin)/WLperiod) # number of wavelengths

interpolated

38
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39 for i in range(NumWL):

40 WL[i]=RIAu[i,0] # zeroth of 2D array is wavelength

41 RIAuRe[i]=RIAu[i,1] # 1st of 2D array is real part (Au)

42 RIAuIm[i]=RIAu[i,2] # 2nd of 2D array is imaginary part (Au)

43 RIAgRe[i]=RIAg[i,1] # 1st of 2D array is real part (Ag)

44 RIAgIm[i]=RIAg[i,2] # 2nd of 2D array is imaginary part (Ag)

45
46 fRIAuReInt2 = interpolate.splrep(WL,RIAuRe ,s=0)

47 # Interpolation (Au real part)

48 RIAuReInt2 = interpolate.splev(WLx ,fRIAuReInt2 ,der=0)

49 # Interpolation (Au , real part)

50
51 fRIAuImInt2 = interpolate.splrep(WL,RIAuIm ,s=0)

52 # Interpolation (Au , imaginary part)

53 RIAuImInt2 = interpolate.splev(WLx ,fRIAuImInt2 ,der=0)

54 # Interpolation (Au , imaginary part)

55
56 fRIAgReInt2 = interpolate.splrep(WL,RIAgRe ,s=0)

57 # Interpolation (Ag, real part)

58 RIAgReInt2 = interpolate.splev(WLx ,fRIAgReInt2 ,der=0)

59 # Interpolation (Ag , real part)

60
61 fRIAgImInt2 = interpolate.splrep(WL,RIAgIm ,s=0)

62 # Interpolation (Ag , imaginary part)

63 RIAgImInt2 = interpolate.splev(WLx ,fRIAgImInt2 ,der=0)

64 # Interpolation (Ag , imaginary part)

65
66 RIAu=zeros(NumWLx , dtype=complex)

67 epAu=zeros(NumWLx , dtype=complex)

68 RIAg=zeros(NumWLx , dtype=complex)

69 epAg=zeros(NumWLx , dtype=complex)

70
71 RIAu=RIAuReInt2 +1j*RIAuImInt2 # RIAu: Refractive index of Au

72 RIAg=RIAgReInt2 +1j*RIAgImInt2 # RIAg: Refractive index of Ag

73 epAu=RIAu **2 # epAu: Dielectric constant of Au

74 epAg=RIAg **2 # epAu: Dielectric constant of Ag

First, the calculations are performed for silver nanospheres. In Program
2.2, after loading the refractive index and dielectric constant of silver from
RI.py in Line 6, the program finds the polarizability of the nanosphere. Fig-
ure 2.2(a) is the refractive index spectrum of silver, and Figure 2.2(b) is the
dielectric-constant spectrum of silver. Silver has a small imaginary part of
the dielectric constant, indicating a small loss in the visible light region. Fig-
ure 2.2(c) shows the spectra of the scattering (Csca) and absorption (Cabs)
cross-sections of silver nanospheres (R = 25 nm). Figure 2.2(d) shows the
spectra of the scattering efficiency (Qsca) and absorption efficiency (Qabs) of
the nanosphere. The imaginary part of the polarizability peaks at a wave-
length of 360 nm, where the real part of the silver dielectric constant becomes
−2. This peak stems from the localized surface plasmon resonance of sil-
ver nanospheres. Using a similar program, the wavelength dependence of the
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optical constant versus the change in polarizability for gold nanospheres is
plotted in Figure 2.3. Localized surface plasmon resonance occurs at approxi-
mately 510 nm. Compared to silver, the imaginary part of the dielectric con-
stant is larger, so the width of the polarizability peak is broader, and its
absolute value is smaller.

Program 2.2

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,rcParams ,tight_layout

5 from scipy import real ,imag ,pi

6 from RI import WLx , epAg , epAu , RIAu , RIAg

7
8 n1 = 1 # refractive index of ambient

9 n2 = RIAg # refractive index of sphere

10 r=25 # radius of sphere

11 k = 2 * pi / WLx # array of wavenumber

12 alpha = 4 * pi * (r**3) * (n1**2) * (n2**2 - n1**2) / (n2**2 + 2

* n1**2)

13 # Calculation of polarizability

14 Csca = k**4 / (6 * pi) * abs(alpha)**2

15 # scattering cross -section

16 Cabs = k * imag(alpha) # absorption cross -section

17 Qsca = Csca / ((r**2) * pi) # scattering efficiency

18 Qabs = Cabs / ((r**2) * pi) # absorption efficiency

19
20 plt.figure(figsize =(8 ,6))

21 plot(WLx ,real(RIAg), label ="real",linewidth = 3.0, color=‘black ’)

22 plot(WLx ,imag(RIAg), label =" imaginary",linewidth = 3.0, color=‘

gray ’)

23 xlabel (" wavelength (nm)",fontsize =22)

24 ylabel (" refractive index",fontsize =22)

25 title(" Refractive index of Ag",fontsize =22)

26 grid(True)

27 axis ([300 ,700 ,0 ,5])

28 plt.tick_params(labelsize =20)

29 legend(fontsize =20,loc=‘lower right ’)

30 tight_layout ()

31 show()

2.2.2 Calculation of sphere with retardation

In Line 5 of Program 2.3, we read the data of the refractive indices of metals
from RI.py. In Line 8, we use Bessel and Hankel functions, so we read them
in and prepare their derivatives. In Lines 10 and 12, we define Riccati’s Bessel
functions (ψ and ξ) and their derivatives. We need to take the sum when
finding Csca and Cabs. We take the sum for n starting at Line 39. Note that
n starts at zero.
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FIGURE 2.2
(a) Refractive index of silver, (b) dielectric constant of silver, (c) scattering
cross section (Csca) and absorption cross section (Cabs) of silver spheres (R =
25 nm), and its (d) scattering efficiency (Qsca) and absorption efficiency (Qabs)
spectra.

Program 2.3

1 import scipy as sp

2 import scipy.special

3 import matplotlib as mpl

4 import matplotlib.pyplot as plt

5 from RI import WLx , NumWLx , epAu , RIAu

6 from scipy import pi,arrange ,zeros ,array ,real ,imag

7 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis

8 from scipy.special import spherical_jn ,spherical_yn

9
10 def psi(n,z): # Riccati -Bessel Function of 1st kind

11 return z*spherical_jn(n,z)

12 def psiDz(n,z): # Deliberative of Riccati -Bessel of 1st kind

13 return spherical_jn(n,z)+z*spherical_jn(n,z,1)

14 def xi(n,z): # Riccati -Bessel function of 3rd kind
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15 return z*( spherical_jn(n,z)+1j*spherical_yn(n,z))

16 def xiDz(n,z): # Deliberative of Riccati -Bessel function of 3

rd kind

17 return (spherical_jn(n,z)+1j*spherical_yn(n,z)) # spherical

Bessel function

18 +z*( spherical_jn(n,z,1)+1j*spherical_yn(n,z,1))

19 def a(n,m,x):

20 return (m*psi(n,m*x)*psiDz(n,x)-psi(n,x)*psiDz(n,m*x))/ #an

21 (m*psi(n,m*x)*xiDz(n,x)-xi(n,x)*psiDz(n,m*x))

22 def b(n,m,x):

23 return (psi(n,m*x)*psiDz(n,x)-m*psi(n,x)*psiDz(n,m*x))/ #bn

24 (psi(n,m*x)*xiDz(n,x)-m*xi(n,x)*psiDz(n,m*x))

25
26 n1 = 1.0 # refractive index of ambient

27 n2 = RIAu # refractive index of sphere

28 r = 100 # radius of sphere

29 qq = 50 # order of Bessel function

30
31 Csca = zeros(NumWLx , dtype=complex)

32 Cext = zeros(NumWLx , dtype=complex)

33 Cabs = zeros(NumWLx , dtype=complex)

34
35 k0 = 2*pi/WLx # vacuum wavenumber

36 x = k0*n1*r # size parameter

37 m = n2/n1 # relative refractive index

38
39 for n in range(qq): # Sum of 0-qq order

40 Csca = Csca + (2*pi/k0**2) *(2*(n+1)+1)*(abs(a(n+1,m,x)**2)+

abs(b(n+1,m,x)**2))

41 Cext = Cext + (2*pi/k0**2) *(2*(n+1)+1)*(real(a(n+1,m,x)+b(n

+1,m,x)))

42 Cabs = Cext - Csca

43
44 Qsca = Csca / ((r**2) * pi) # scattering efficiency

45 Qabs = Cabs / ((r**2) * pi) # absorption efficiency

46
47 plot(WLx ,Qsca , label=r"$Q_{\rm sca}$",linewidth = 3.0, color=‘

black ’)

48 plot(WLx ,Qabs , label=r"$Q_{\rm abs}$",linewidth = 3.0, color=‘

gray ’)

49
50 xlabel (" wavelength (nm)",fontsize =22)

51 ylabel (" efficiency",fontsize =22)

52 title(r"$Q_{{\rm sca}}, Q_{{\rm abs}} of Au sphere",fontsize =22)

53 grid(True)

54 axis ([400 ,800 ,0 ,5])

55 legend(fontsize =20,loc=‘lower right ’)

56 plt.tick_params(labelsize =18)

57 show()

The calculated scattering (Csca), absorption (Cabs), and extinction (Cext)
cross-sections for gold nanospheres with radii of 10, 25, 50, and 100 nm are
shown in Figure 2.4. For small sphere radii, the scattering is negligible, and
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FIGURE 2.3
(a) Refractive index spectrum of gold, (b) dielectric-constant spectrum of
gold, (c) scattering cross section (Csca) and absorption cross section (Cabs) of
gold nanospheres (R = 25 nm), and its (d) scattering efficiency (Qsca) and
absorption efficiency (Qabs) spectra.

the absorption and extinction cross-sections are almost equal. The peak wave-
length originating from the localized surface plasmon is also close to the result
under the long wavelength approximation. As the radius increases, the peak
wavelength shifts to the long wavelength side and the peak width becomes
broader. This is because the multipole effect becomes non-negligible. The scat-
tering cross-section then becomes larger, especially on the long wavelength
side. On the other hand, the spectral shape of the absorption cross-section
remains unchanged with changing size.

2.2.3 Core-shell structure

Program 2.4 shows the calculation program of scattering efficiency (Qsca) and
absorption efficiency spectrum (Qabs) of the core-shell structure under the
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FIGURE 2.4
Calculated scattering (Qsca) and absorption (Qabs) efficiencies for gold
nanospheres of various sizes (a)R = 10 nm, (b)R = 25 nm, (c)R = 50 nm,
and (d)R = 100 nm.

assumption that retardation is absent. A sphere with a refractive index of 1.5
(radius 25 nm) is considered as a core, and a thin gold film is used as the
shell. First, the data of the refractive index of the metal is loaded, and the
calculation is performed using Eqs. (2.12)–(2.14).

The results of the calculations performed using Program 2.4 are shown
in Figure 2.5. The shell thickness is described by s = R2/R3 with the struc-
ture shown in Figure 2.1(b). While the spectral peak of the gold nanosphere,
which is sufficiently small compared to the wavelength, is around 510 nm, it
can be seen that for the same size nanosphere, a large extinction (mainly ab-
sorption) efficiency can be obtained over a wide range up to the near-infrared
region by choosing the thickness of the gold shell. In addition, as can be seen
when compared with the gold sphere of the same size shown in Figure 2.4(b),
the extinction, absorption, and scattering efficiencies are all about ten times
greater.
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Program 2.4

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,rcParams ,tight_layout

5 from scipy import real ,imag ,pi

6 from RI import WLx , epAg , epAu , RIAu , RIAg

7
8 r3 = 25 # radius of core

9 s = 1.1 # adius of shell / radius of core

10 r2 = r3*s # radius of shell

11 n1 = 1 # refractive index of ambient

12 n2 = 1.5 # refractive index of core

13 n3 = RIAu # refractive index of shell

14 k = 2 * pi / WLx # array of wavenumber

15
16 delta = (n2**2) * (2 * (n1**2) * (1 + 2 * (s**3)) + (n3**2) * (2

+ s**3)) - 2 * ((n2**2) **2 + (n1**2) * (n3**2)) * (1 - s**3)

17 b11 = (s**3 / delta) * ((n2**2) * ((n1**2) * (1 + 2*s**3) - (n3

**2) * (2 + s**3)) + (2 * (n2**2) **2 - (n1**2) * (n3**2)) * (1

- s**3))

18
19 alpha = -4 * pi * r2**3 * (n1**2) * b11 # polarizability

20 Csca = k**4 / (6 * pi) * abs(alpha)**2 # scattering cross -

section

21 Cabs = k * imag(alpha) # absorption cross -section

22 Qsca = Csca / ((r2**2) * pi) # scattering efficiency

23 Qabs = Cabs / ((r2**2) * pi) # absorption efficiency

24
25 plt.figure(figsize =(8 ,6))

26 plot(WLx ,Qsca , label=r"$Q_ {{\rm sca}}$",linewidth = 3.0, color=‘

black ’)

27 plot(WLx ,Qabs , label=r"$Q_ {{\rm abs}}$",linewidth = 3.0, color=‘

gray ’)

28 xlabel (" wavelength (nm)",fontsize =22)

29 ylabel (" efficiency",fontsize =22)

30 title(r"$Q_{{\rm sca}}, Q_{{\rm abs}}$ of Au ($R=25$ nm)",

fontsize =22)

31 grid(True)

32 axis ([300 ,1000 ,0 ,15])

33 plt.tick_params(labelsize =20)

34 legend(fontsize =20,loc=‘lower left ’)

35 tight_layout ()

36 show()

Next, Program 2.5 shows the calculation considering the retardation of the
core-shell structure. It can be applied to spheres of large size. At the beginning,
we define Riccati’s Bessel functions (ψn(ρ), ξn(ρ), χn(ρ)). Since there are two
interfaces, we define two size parameters x and y. The scattering coefficients
are then obtained using Eqs. (2.18) and (2.19). The calculation results are
shown in Figure 2.6. The results under the long-wavelength approximation



50 Electromagnetic Analysis of Spheres

FIGURE 2.5
Scattering efficiency (Qsca), absorption efficiency (Qabs), and extinction effi-
ciency (Qext) of the core-shell structure under the long wavelength approx-
imation. A dielectric core (radius 25 nm) with n=1.5 is coated with a gold
shell. The thickness of the gold film is described by the ratio s to the radius
of the dielectric core. (a) s = 1.1, (b) s = 1.2, (c) s = 1.3, and (d) s = 1.5.

shown in Figure 2.5(a), where the radius of the inner shell is 25 nm and
s = 1.1, can be compared with those of Figure 2.6(b), where the retardation is
considered. The positions of the peaks are almost the same, but the intensities
are different. This is due to the retardation effect at a radius of 25 nm. As the
sphere is smaller, the two become closer. Compared the spectrum of Figure
2.5(a) to the calculation results for gold nanospheres with the retardation
effect shown in Figure 2.4, each cross-section of the core-shell structure is
more than one order of magnitude larger, and the peak is shifted to the long-
wavelength side. The widths of the peaks are also narrower.
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FIGURE 2.6
Scattering efficiency (Qsca), absorption efficiency (Qabs) and extinction effi-
ciency (Qext) of the core-shell structure considering retardation at various
radii of the core, R3. The refractive index of the core is 1.5, and the core is
coated with an Au film. The thickness ratio is s = 1.1. (a) R3 = 10 nm, (b)
R3 = 25 nm, (c) R3 = 50 nm, and (d) R3 = 100 nm.

Program 2.5

1 import scipy as sp

2 import scipy.special

3 import matplotlib as mpl

4 import matplotlib.pyplot as plt

5 from RI import WLx , NumWLx , epAu , RIAu

6 from scipy import pi,arrange ,zeros ,array ,real ,imag

7 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis

8 from scipy.special import spherical_jn ,spherical_yn

9
10 def psi(n,z): # Riccati -Bessel function of

first kind
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11 return z*spherical_jn(n,z)

12 def psiDz(n,z): # Derivative of Riccati -Bessel

function of first kind

13 return spherical_jn(n,z)+z*spherical_jn(n,z,1)

14 def xi(n,z): # Riccati -Bessel function of

third kind

15 return z*( spherical_jn(n,z)+1j*spherical_yn(n,z))

16 def xiDz(n,z): # Derivative of Riccati -Bessel

function of third kind

17 return (spherical_jn(n,z)+1j*spherical_yn(n,z)) \

18 +z*( spherical_jn(n,z,1)+1j*spherical_yn(n,z,1))

19 def chi(n,z):

20 return -z*spherical_yn(n,z)

21 def chiDz(n,z):

22 return -spherical_yn(n,z)-z*spherical_yn(n,z,1)

23
24 def aa(n,m1,m2 ,x):

25 return (m2*psi(n,m2*x)*psiDz(n,m1*x)-m1*psiDz(n,m2*x)*psi(n,

m1*x)) \

26 /(m2*chi(n,m2*x)*psiDz(n,m1*x)-m1*chiDz(n,m2*x)*psi(n,

m1*x))

27 def bb(n,m1,m2 ,x):

28 return (m2*psi(n,m1*x)*psiDz(n,m2*x)-m1*psi(n,m2*x)*psiDz(n,

m1*x)) \

29 /(m2*chiDz(n,m2*x)*psi(n,m1*x)-m1*psiDz(n,m1*x)*chi(n,

m2*x))

30
31 def a(n,m1,m2 ,x,y):

32 return (psi(n,y)*( psiDz(n,m2*y)-aa(n,m1 ,m2,x)*chiDz(n,m2*y))

\

33 -m2*psiDz(n,y)*(psi(n,m2*y)-aa(n,m1,m2,x)*chi(n,m2*y)

)) \

34 /(xi(n,y)*(psiDz(n,m2*y)-aa(n,m1,m2 ,x)*chiDz(n,m2*y))

\

35 -m2*xiDz(n,y)*(psi(n,m2*y)-aa(n,m1 ,m2,x)*chi(n,m2*y))

)

36 def b(n,m1,m2 ,x,y):

37 return (m2*psi(n,y)*(psiDz(n,m2*y)-bb(n,m1,m2,x)*chiDz(n,m2*y

)) \

38 -psiDz(n,y)*(psi(n,m2*y)-bb(n,m1,m2 ,x)*chi(n,m2*y)))

\

39 /(m2*xi(n,y)*( psiDz(n,m2*y)-bb(n,m1 ,m2,x)*chiDz(n,m2*

y)) \

40 -xiDz(n,y)*(psi(n,m2*y)-bb(n,m1,m2 ,x)*chi(n,m2*y)))

41
42 r3 = 100 # core radius

43 s = 1.1 # shell radius/core radius

44 r2 = r3*s # shell radius

45 qq = 20 # order of Bessel function

46
47 k0 = 2*pi/WLx # vacuum wavenumber

48 n1 = 1 # ambient refractive index

49 n2 = RIAu # core refractive index

50 n3 = 1.5 # shell refractive index

51
52 x = k0 * n1 * r3 # size parameter(core)

53 y = k0 * n1 * r2 # size parameter(shell)



Programing 53

54
55 m2 = n2 / n1 # relative refractive index(shell)

56 m3 = n3 / n1 # relative refractive index(core)

57
58 Csca = zeros(NumWLx , dtype=complex)

59 Cext = zeros(NumWLx , dtype=complex)

60 Cabs = zeros(NumWLx , dtype=complex)

61
62 for n in range(qq):

63 Csca = Csca + (2*pi / k0**2) * \

64 (2 * (n+1) +1) * (abs(a(n+1,m3 ,m2,x,y))**2 + abs(b(n+1,

m3,m2,x,y)**2))

65 Cext = Cext + (2*pi / k0**2) * \

66 (2 * (n+1) +1) * (real(a(n+1,m3,m2 ,x,y) + b(n+1,m3 ,m2,x

,y)))

67 Cabs = Cext - Csca

68
69 Qsca = Csca / ((r2**2) * pi) # scattering efficiency

70 Qabs = Cabs / ((r2**2) * pi) # absorption efficiency

71
72 plot(WLx ,abs(Qsca), label=r"$Q_{\rm sca}$",linewidth = 3.0, color

=‘black ’)

73 plot(WLx ,abs(Qabs), label=r"$Q_{\rm abs}$",linewidth = 3.0, color

=‘gray ’)

74
75 xlabel (" wavelength (nm)",fontsize =22)

76 ylabel (" efficiency",fontsize =22)

77 title(r"$Q_{{\rm sca}}, Q_{{\rm abs}}, Q_{{\rm ext}}$ of Au

sphere",fontsize =22)

78 grid(True)

79 axis ([400 ,1000 ,0 ,10])

80 legend(fontsize =20,loc=‘lower left ’)

81 plt.tick_params(labelsize =18)

82 show()
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Electromagnetic Analysis of Cylinders

Similarly to spheres, analytical solutions can be obtained for cylinder struc-
tures with infinitely long lengths. In this case, the long wavelength approx-
imation can be applied if the diameter of the cylinder is sufficiently small
compared to the wavelength. Then, rigorous calculations of the scattering,
absorption, and extinction by cylinders are also given in this chapter.

3.1 Introduction

As shown in Eq. (2.1), the polarizability α could be described in the case of
a sphere, but it cannot be expressed in this form for a cylinder. Instead, we
describe the magnitude E of the electric field of scattered light at a position r
away from the central axis of the cylinder. The optical geometry is shown in
Figure 3.1. The magnitude E of the electric field of scattered light is described
by using the incident light electric field E0 with polarization perpendicular to
the axis (TE polarization), the refractive index n1 of the cylinder (radius R)
and n2 of the surrounding medium as follows:

E = 4πn2
2

(R
r

)2n2
1 − n2

2

n2
1 + n2

2

E0. (3.1)

In the case of a metallic cylinder, the refractive index n1 has wavelength
dependence (wavelength dispersion), and the scattered electric field E is max-
imized at the wavelength where n2

1 + n2
2 of the molecule is minimum, in-

dicating that resonance may occur1. In the case of a sphere, the resonance
condition is achieved at the wavelength where n2

1 + 2n2
2 is at a minimum,

but the condition is slightly different in the case of a cylinder. To the ex-
tent that the electrostatic approximation holds, it is similarly independent
of the size of the cylinder. Since the calculations are similar to those for
spheres, we present the solution incorporating the retardation effect here.

1Note that in this chapter, the order of the media numbers is reversed from the sphere
case in Chapter 2.
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FIGURE 3.1
Geometry of a cylinder structure.

3.2 Theory

3.2.1 Cylinder

Consider the scattering and absorption by a cylinder structure of radius R
(refractive index n1), as shown in Figure 3.1. The refractive index of the
ambient medium is n2. The potentials generated by the application of an
optical electric field E propagating in the positive direction of the x-axis can
be expressed using the cylinder coordinate system as follows for φ1 outside
the cylinder and φ2 inside the cylinder, respectively [8, 9],

φ1 =
∞∑

n=−∞
Fn(bnJn(kr)) (3.2)

φ2 =
∞∑

n=−∞
Fn(Jn(kr)− anHn(kr)), (3.3)

where Fn = Eeinθ+iωt(−1)n and E = |E|. Also, k is the wavenumber in each
medium, k = mk0, using the wavenumber k0 in vacuum and the refractive
index m of the medium.

The continuity conditions at the surface of the cylinder r = R depend on
the polarization. For polarization parallel to the cylinder axis (TM polariza-
tion),

m1φ1 = m2φ2 (3.4)

m1
∂φ1

∂r
= m2

∂φ2

∂r
, (3.5)
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and the continuity conditions for polarization perpendicular to the cylinder
axis (TE polarization) are

m2
1φ1 = m2

2φ2 (3.6)

∂φ1

∂r
=

∂φ2

∂r
. (3.7)

In the case of TM polarization, we have two equations

m1Jn(m1x)bn = m2Jn(m2x)−m2Hn(m2x)an (3.8)

m2
1J
′
n(m1x)bn = m2

2J
′
n(m2x)−m2

2H
′
n(m2x)an. (3.9)

Here, x is called the size parameter and x = k0R. Then, the coefficient an on
scattered light is as follows:

an =
m1J

′
n(m1x)Jn(m2x)−m2Jn(m1x)J ′n(m2x)

m1J ′n(m1x)Hn(m2x)−m2H ′n(m2x)Jn(m1x)
(3.10)

In the case of TE polarization, we have two equations

m2
1Jn(m1x)bn = m2

2Jn(m2x)−m2
2Hn(m2x)an (3.11)

m1J
′
n(m1x)bn = m2J

′
n(m2x)−m2H

′
n(m2x)an. (3.12)

Then, the coefficient an on scattered light is as follows:

an =
m2Jn(m2x)J ′n(m1x)−m1Jn(m1x)J ′n(m2x)

m2J ′n(m1x)Hn(m2x)−m1H ′n(m2x)Jn(m1x)
(3.13)

The scattering cross-section Qsca, extinction cross-section Qext, and absorp-
tion cross-section Qabs are calculated using bn as follows:

Qsca =
2

x

∞∑
n=−∞

|an|2 (3.14)

Qext =
2

x

∞∑
n=−∞

Re(an) (3.15)

Qabs = Qext −Qsca (3.16)

3.2.2 Core-shell cylinder

Next, we discuss calculating the optical response of a core-shell cylinder struc-
ture incorporating retardation. The structure is shown in Figure 3.2. The ra-
dius of the core is R1, and that of the shell is R2. The thickness of the shell
is R2 −R1. The medium is numbered from the inside. The potential φ1 − φ3

in each medium generated by the application of a photoelectric field E prop-
agating in the positive direction of the x-axis is written using the coefficient
an − dn as follows [13].



Theory 57

FIGURE 3.2
Geometry of a core-shell cylinder structure.

From the boundary conditions, the following four equations can be ob-
tained for TM polarization,

m1Jn(m1x1)an = m2Jn(m2x1)bn −m2Hn(m2x1)cn (3.17)

m2
1J
′
n(m1x1)an = m2

2J
′
n(m2x1)bn −m2

2H
′
n(m2x1)cn (3.18)

m2Jn(m2x2)bn −m2Hn(m2x2)cn = m3Jn(m3x2)−m3Hn(m3x2)dn (3.19)

m2
2J
′
n(m2x2)bn −m2

2H
′
n(m2x2)cn = m2

3J
′
n(m3x2)−m2

3H
′
n(m3x2)dn, (3.20)

where x1 = k0R1 and x2 = k0R2.
In the case of TE polarization, the following is also given:

m2
1Jn(m1x1)an = m2

2Jn(m2x1)bn −m2
2Hn(m2x1)cn (3.21)

m1J
′
n(m1x1)an = m2J

′
n(m2x1)bn −m2H

′
n(m2x1)cn (3.22)

m2
2Jn(m2x2)bn −m2

2Hn(m2x2)cn = m2
3Jn(m3x2)−m2

3Hn(m3x2)dn (3.23)

m2J
′
n(m2x2)bn −m2H

′
n(m2x2)cn = m3J

′
n(m3x2)−m3H

′
n(m3x2)dn. (3.24)

Use matrices to solve these equations; Python has commands for solving
simultaneous equations so that you can use these commands. The scattering
cross-section Qsca, extinction cross-section Qext, and absorption cross-section
Qabs are calculated using dn as follows:

Qsca =
2

x2

∞∑
n=−∞

|dn|2 (3.25)

Qext =
2

x2

∞∑
n=−∞

Re(dn) (3.26)

Qabs = Qext −Qsca (3.27)
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3.3 Programing

3.3.1 Cylinder

Here, silver cylinders are considered to confirm that the rigorous calculation,
including retardation, give the resonance wavelength of around 330 nm, as
predicted under the long-wavelength approximation.

In Lines 11 and 14, we describe the functions that give the scattering
coefficients an and bn for TE and TM polarization, respectively. Fn in Line
17 is not used in this calculation but is necessary for calculating the angular
dependence of the scattered light intensity.

FIGURE 3.3
Calculated scattering efficiency of cylinder Qsca (a) R = 10 nm and (b) R = 50
nm.

The calculation results of this program are shown in Figure 3.3. Here, the
radius of the silver cylinder is set to 10 nm. As shown in Figure 2.2(b), the
real part of the dielectric constant of silver has a value of −1 around 335 nm.
The value of the real part of the silver dielectric constant decreases monoton-
ically with wavelength thereafter. On the other hand, the imaginary part has
an almost constant value of 0− 0.1, indicating little loss. The scattering effi-
ciencies for TE and TM polarization are plotted in Figures 3.3(a) and 3.3(b),
respectively, showing that the TE polarization has a peak at 335 nm due to
the localized plasmon resonance as expected, while the TM polarization only
monotonically increases and shows no resonance. When the radius of the sil-
ver cylinder is 50 nm, the peak shifts to around 350 nm and the peak width
becomes broader. This is due to the retardation effect, which is non-negligible
as the radius of the cylinder increases.
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Program 3.1

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

5 from scipy import pi,sqrt ,zeros ,array ,real ,imag

6 from scipy.special import jv,jvp ,hankel1 ,h1vp

7 from RI import WLx , NumWLx , epAg , epAu , RIAu , RIAg

8
9 def h1v(n,x):

10 return hankel1(n,x) # Hankel

function

11 def a(n,x,mA,mB):

12 return (mB*jv(n,mB*x)*jvp(n,mA*x)-mA*jv(n,mA*x)*jvp(n,mB*x))/

# an

13 (mB*jv(n,mB*x)*h1vp(n,mA*x)-mA*h1v(n,mA*x)*jvp(n,mB*x))

14 def b(n,x,mA,mB):

15 return (mA*jv(n,mB*x)*jvp(n,mA*x)-mB*jv(n,mA*x)*jvp(n,mB*x))/

# bn

16 (mA*jv(n,mB*x)*h1vp(n,mA*x)-mB*h1v(n,mA*x)*jvp(n,mB*x))

17 def fn(n,phi):

18 return (1/k0)*(cos(n*phi)+1j*sin(n*phi))*(pow(-1j,n)) # fn

19
20 rr = 25 # radius of cylinder

21 qq = 20 # order of Bessel function

22
23 k0 = 2 * pi / WLx # vacuum wavenumber

24 m1 = RIAg # refractive index of cylinder

25 m2 = 1.0 # refractive index of ambient

26 x = k0 * m2 * rr # size parameter

27
28 Qsca_tm = zeros(NumWLx , dtype=float)

29 Qext_tm = zeros(NumWLx , dtype=float)

30 Qsca_te = zeros(NumWLx , dtype=float)

31 Qext_te = zeros(NumWLx , dtype=float)

32
33 for n in range(-qq,qq):

34 Qsca_tm = Qsca_tm + (2/x) * abs(b(n,x,m2 ,m1))**2 # TM

scattering efficiency

35 Qext_tm = Qext_tm + (2/x) * real(b(n,x,m2 ,m1)) # TM

extinction efficiency

36 Qsca_te = Qsca_te + (2/x) * abs(a(n,x,m2 ,m1))**2 # TE

scattering efficiency

37 Qext_te = Qext_te + (2/x) * real(a(n,x,m2 ,m1)) # TE

extinction efficiency

38
39 Qabs_tm = Qext_tm - Qsca_tm

40 Qabs_te = Qext_te - Qsca_te

41
42 plt.figure(figsize =(8 ,6))

43 plot(WLx ,Qsca_tm , label=r"$Q_{\rm sca}(\rm TM)$",linewidth = 3.0,

color=‘black ’)

44 plot(WLx ,Qsca_te , label=r"$Q_{\rm sca}(\rm TE)$",linewidth = 3.0,

color=‘gray ’)

45 xlabel (" wavelength (nm)",fontsize =22)
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46 ylabel (" efficiency",fontsize =22) l

47 title("Qsca",fontsize =22)

48 grid(True)

49 axis ([300 ,800 ,0 ,5])

50 legend(fontsize =20,loc=‘lower right ’)

51 plt.tick_params(labelsize =20)

52 tight_layout ()

53 show()

3.3.2 Core-shell cylinder

Next, the calculation program for the core-shell cylinder structure is described:
the scattering coefficient an was given in the program for the cylinder in
Section 3.3.1. In the case of the core-shell cylinder structure, the scattering
coefficient dn is as follows. First, in the case of TM polarization, the scattering
coefficient dn = pn/qn is

pn = m1m
3
2m

2
3J
′
n(m2x1)J ′n(m3x2)Hn(m2x2)Jn(m1x1)

−m2
1m

2
2m

2
3J
′
n(m1x1)J ′n(m3x2)Hn(m2x2)Jn(m2x1)

+m2
1m

2
2m

2
3J
′
n(m1x1)J ′n(m3x2)Hn(m2x1)Jn(m2x2)

−m1m
3
2m

2
3J
′
n(m2x1)J ′n(m3x2)Jn(m1x1)Jn(m2x2)

−m2
1m

3
2m3J

′
n(m1x1)J ′n(m2x2)Hn(m2x1)Jn(m3x2)

−m1m
4
2m3J

′
n(m2x2)J ′n(m2x1)Jn(m1x1)Jn(m3x2)

+m1m
4
2m3J

′
n(m2x1)J ′n,m2x2)Jn(m1x1)Jn(m3x2)

+m2
1m

3
2m3J

′
n,m2x2)J ′n(m1x1)Jn(m2x1)Jn(m3x2)

qn = −m2
1m

3
2m3J

′
n(m1x1)J ′n(m2x2)Hn(m2x1)Hn(m3x2)

+m1m
3
2m

2
3J
′
n(m3x2)J ′n(m2x1)Hn(m2x2)Jn(m1x1)

−m1m
4
2m3J

′
n(m2x2)J ′n(m2x1)Hn(m3x2Jn(m1x1)

+m1m
4
2m3J

′
n(m2x1)J ′n(m2x2)Hn(m3x2)Jn(m1x1)

−m2
1m

2
2m

2
3J
′
n(m3x2)J ′n(m1x1)Hn(m2x2)Jn(m2x1)

+m2
1m

3
2m3J

′
n(m2x2)J ′n(m1x1)Hn(m3x2)Jn(m2x1)

+m2
1m

2
2m

2
3J
′
n(m3x2)J ′n(m1x1)Hn(m2x1)Jn(m2x2)

−m1m
3
2m

2
3J
′
n(m2x1)J ′n(m3x2)Jn(m1x1)Jn(m2x2). (3.28)

In the case of TM polarization, the scattering coefficient dn = pn/qn is

pn = m2
1m

3
2m3J

′
n(n,m2x1)J ′n(n,m3x2)Hn(m2x2)Jn(m1x1)

−m1m
4
2m3J

′
n(n,m1x1)J ′n(n,m3x2)Hn(m2x2)Jn(m2x1)

+m1m
4
2m3J

′
n(n,m1x1)J ′n(n,m3x2)Hn(m2x1)Jn(m2x2)

−m2
1m

3
2m3H

′
n(n,m2x1)J ′n(n,m3x2)Jn(m1x1)Jn(m2x2)
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−m1m
3
2m

2
3J
′
n(n,m1x1)J ′n(n,m2x2)Hn(m2x1)Jn(m3x2)

−m2
1m

2
2m

2
3H
′
n(n,m2x2)J ′n(n,m2x1)Jn(m1x1)Jn(m3x2)

+m2
1m

2
2m

2
3H
′
n(n,m2x1)J ′n(n,m2x2)Jn(m1x1)Jn(m3x2)

+m1m
3
2m

2
3H
′
n(n,m2x2)J ′n(n,m1x1)Jn(m2x1)Jn(m3x2)

qn = −m1m
3
2m

2
3J
′
n(n,m1x1)J ′n(n,m2x2)Hn(m2x1)Hn(m3x2)

+m2
1m

3
2m3H

′
n(n,m3x2)J ′n(n,m2x1)Hn(m2x2)Jn(m1x1)

−m2
1m

2
2m

2
3H
′
n(n,m2x2)J ′n(n,m2x1)Hn(m3x2)Jn(m1x1)

+m2
1m

2
2m

2
3H
′
n(n,m2x1)J ′n(n,m2x2)Hn(m3x2)Jn(m1x1)

−m1m
4
2m3H

′
n(n,m3x2)J ′n(n,m1x1)Hn(m2x2)Jn(m2x1)

+m1m
3
2m

2
3H
′
n(n,m2x2)J ′n(n,m1x1)Hn(m3x2)Jn(m2x1)

+m1m
4
2m3H

′
n(n,m3x2)J ′n(n,m1x1)Hn(m2x1)Jn(m2x2)

−m2
1m

3
2m3H

′
n(n,m2x1)H ′n(n,m3x2)Jn(m1x1)Jn(m2x2). (3.29)

If these are written as functions and used in calculations, calculations can
be performed quickly. However, writing these functions in a program can be
troublesome.

Python provides commands for solving simultaneous equations; if calcu-
lation speed is not a priority, it is easier to use these commands. In other
words, the coefficients of Eqs. (3.17)−(3.20) and (3.21)−(3.24) are written as
an array. The program is shown below. sp.array is used in Lines 21 and 36
to write the left-hand side of the matA of coefficients. Similarly, Lines 27 and
42 define the right-hand side as the longitudinal vector matF, and Lines 33
or 48 use the sp.linalg.solve command to find the solution of the system of
equations as the longitudinal vector matX. This program finds the solution of
the simultaneous equations for each wavelength and order n, while it is not
fast, it is readable.

Program 3.2

1 import scipy as sp

2 import scipy.special

3 import matplotlib as mpl

4 import matplotlib.pyplot as plt

5 from scipy import pi,arrange ,sqrt ,zeros ,array ,matrix ,asmatrix ,

real ,imag

6 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis ,tight_layout

7 from scipy.special import jv,jvp ,hankel1 ,h1vp

8 from RI import WLx , NumWLx , epAg , epAu , RIAu , RIAg

9
10 def h1v(n,x):

11 return hankel1(n,x)

12 def a(n,x,mA,mB):
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13 return (mB*jv(n,mB*x)*jvp(n,mA*x)-mA*jv(n,mA*x)*jvp(n,mB*x))/

\

14 (mB*jv(n,mB*x)*h1vp(n,mA*x)-mA*h1v(n,mA*x)*jvp(n,mB*x

))

15 def b(n,x,mA,mB):

16 return (mA*jv(n,mB*x)*jvp(n,mA*x)-mB*jv(n,mA*x)*jvp(n,mB*x))/

\

17 (mA*jv(n,mB*x)*h1vp(n,mA*x)-mB*h1v(n,mA*x)*jvp(n,mB*x

))

18 def fn(n,phi):

19 return (1/k0)*(cos(n*phi)+1j*sin(n*phi))*(pow(-1j,n))

20
21 def matA_tm(n,m1,m2 ,m3,x1,x2):

22 return array ([[ m1*jv(n,m1*x1), -m2*jv(n,m2*x1),

m2*h1v(n,m2*x1), 0],

23 [m1**2* jvp(n,m1*x1), -m2**2* jvp(n,m2*x1), m2

**2* h1vp(n,m2*x1), 0],

24 [ 0, m2*jv(n,m2*x2), -

m2*h1v(n,m2*x2), m3*h1v(n,m3*x2)],

25 [ 0, m2**2* jvp(n,m2*x2),-m2

**2* h1vp(n,m2*x2), m3**2* h1vp(n,m3*x2)]])

26
27 def matF_tm(n,m3,x2):

28 return array ([[ 0],

29 [ 0],

30 [ m3*jv(n,m3*x2)],

31 [m3**2* jvp(n,m3*x2)]])

32
33 def matX_tm(n,m1,m2 ,m3,x1,x2):

34 return sp.linalg.solve(matA_tm(n,m1,m2 ,m3,x1 ,x2), matF_tm(n,

m3,x2))

35
36 def matA_te(n,m1,m2 ,m3,x1,x2):

37 return array ([[ m1**2*jv(n,m1*x1), -m2**2*jv(n,m2*x1), m2

**2* h1v(n,m2*x1), 0],

38 [ m1*jvp(n,m1*x1), -m2*jvp(n,m2*x1),

m2*h1vp(n,m2*x1), 0],

39 [ 0, m2**2*jv(n,m2*x2), -m2

**2* h1v(n,m2*x2), m3**2* h1v(n,m3*x2)],

40 [ 0, m2*jvp(n,m2*x2), -

m2*h1vp(n,m2*x2), m3*h1vp(n,m3*x2)]])

41
42 def matF_te(n,m3,x2):

43 return array ([[ 0],

44 [ 0],

45 [m3**2*jv(n,m3*x2)],

46 [ m3*jvp(n,m3*x2)]])

47
48 def matX_te(n,m1,m2 ,m3,x1,x2):

49 return sp.linalg.solve(matA_te(n,m1,m2 ,m3,x1 ,x2), matF_te(n,

m3,x2))

50
51 r1=50 # radius of core

52 r2=55 # radius of shell

53 qq=5 # order of Bessel function

54
55 Qsca_tm=zeros(NumWLx , dtype=float)
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56 Qext_tm=zeros(NumWLx , dtype=float)

57 Qabs_tm=zeros(NumWLx , dtype=float)

58 Qsca_te=zeros(NumWLx , dtype=float)

59 Qext_te=zeros(NumWLx , dtype=float)

60 Qabs_te=zeros(NumWLx , dtype=float)

61
62 k0 = 2 * pi / WLx # vacuum wavenumber

63 m1 = 1.5 # refractive index of shell

64 m2 = RIAg # refractive index of core

65 m3 = 1.0 # refractive index of ambient

66 x1 = k0*r1 # size parameter(core)

67 x2 = k0*r2 # size parameter(shell)

68
69 for i in range(NumWLx):

70 for n in range(-qq,qq):

71 Qsca_tm[i] = Qsca_tm[i] + (2/x2[i])*abs(matX_tm(n,m1,m2[i

],m3,x1[i],x2[i])[3,0]) **2

72 Qext_tm[i] = Qext_tm[i] + (2/x2[i])*real(matX_tm(n,m1 ,m2[

i],m3,x1[i],x2[i])[3,0])

73 Qsca_te[i] = Qsca_te[i] + (2/x2[i])*abs(matX_te(n,m1,m2[i

],m3,x1[i],x2[i])[3,0]) **2

74 Qext_te[i] = Qext_te[i] + (2/x2[i])*real(matX_te(n,m1 ,m2[

i],m3,x1[i],x2[i])[3,0])

75
76 Qabs_tm = Qext_tm - Qsca_tm

77 Qabs_te = Qext_te - Qsca_te

78
79 plt.figure(figsize =(8 ,6))

80 plot(WLx ,Qsca_tm , label=r"$Q_{\rm sca}$",linewidth = 3.0, color=‘

black ’)

81 plot(WLx ,Qabs_tm , label=r"$Q_{\rm abs}$",linewidth = 3.0, color=‘

gray ’)

82 xlabel (" wavelength (nm)",fontsize =22) # x-axis label

83 ylabel (" efficiency",fontsize =22) # y-axis label

84 title(r"$Q_{\rm sca}$(TE) and $Q_{\rm abs}$(TE)",fontsize =22)

85 grid(True)

86 axis ([300 ,800 ,0 ,1])

87 legend(fontsize =20,loc=‘lower right ’)

88 plt.tick_params(labelsize =20)

89 tight_layout ()

90 show()

91
92 plt.figure(figsize =(8 ,6))

93 plot(WLx ,Qsca_te , label=r"$Q_{\rm sca}$",linewidth = 3.0,color=‘

black ’)

94 plot(WLx ,Qabs_te , label=r"$Q_{\rm abs}$",linewidth = 3.0,color=‘

gray ’)

95 xlabel (" wavelength (nm)",fontsize =22)

96 ylabel (" efficiency",fontsize =22)

97 title(r"$Q_{\rm sca}$(TE) and $Q_{\rm abs}$(TE)",fontsize =22)

98 grid(True)

99 axis ([300 ,1000 ,0 ,10])

100 legend(fontsize =20,loc=‘lower left ’)

101 plt.tick_params(labelsize =20)

102 tight_layout ()

103 show()
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The results obtained with this program are shown in Figure 3.4(a). For
TM polarization, the scattering efficiency is zero at around 450 nm. Although
not completely transparent due to slight absorption, this method can make an
object invisible. On the other hand, in the TE polarization shown in Figure
3.4(b), absorption and scattering efficiency peaks can be observed around 880
nm. It is possible to make an optical medium with very large scattering or
to propose an optical switching device using this result in combination with
nonlinear optical materials.

FIGURE 3.4
Calculation results of scattering efficiency Qsca for cylindrical core-shell struc-
ture (a) TM polarization and (b) TE polarization.



4

Analytical Calculations for Particles with
Other Shapes

This chapter describes calculations of optical response using the long-
wavelength approximation for structures other than circles or cylinders, such
as nanorods, spheres on substrates, aggregated spheres, and nano-island thin
films. They are sometimes used for studies in nanophotonics. The structures
discussed in this chapter have analytical solutions to the Maxwell equations.
Thus, the optical response can be calculated rigorously.

4.1 Ellipsoid

Ellipsoids are often used as an approximate model when calculating the optical
responses of nanostructures such as nanorods and nanodisks, as shown in
Figure 4.1. There are two types of rotating ellipsoids: cigar-shaped (a = b < c),
in which the length in the rotation axis (c-axis) is longer than the radius of
the rotating body, and pancake-shaped (a = b > c), in which the length in the
rotation axis is shorter than the radius of the rotating body. They are treated
differently. In both cases, the quasi-static approximation can be applied if the
structure is small compared to the optical wavelength. Suppose the refractive
index of the rotating ellipsoid is n1 and the refractive index of the ambient
medium is n2. In this case, the polarizability αi can be obtained, and the
optical response is calculated by finding the depolarization field coefficient Li
about the axis i using the following formula [8]:

αi = 4πabc
n2

1 − n2
2

3(n2
2 + Li(n2

1 − n2
2))

(4.1)

Here, the axis of rotation is defined as ‖ and the axis perpendicular to the
rotation axis as ⊥.

4.1.1 Cigar-shaped

In cigar-shaped ellipsoids, the following equation gives the polarizability in
the long axis-direction, α‖, where L‖ is the depolarization field coefficient in
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FIGURE 4.1
Optical geometry of an ellipsoid.

the direction of the axis of rotation.

L‖ =
1− e2

2e2

( 1

2e
ln

1 + e

1− e
− 1
)

(4.2)

Here, e is called eccentricity and measures how far the shape is from a sphere.
It is

e2 = 1− a2

c2
(4.3)

for cigar-shaped ellipsoids. The polarizability in the short-axis direction is
obtained from the relation L‖ + 2L⊥ = 1 to obtain the depolarization field
coefficient L⊥. With polarizability α, the scattering and absorption cross-
sections can be evaluated as in the sphere case.

Program 4.1 calculates the polarizability of a cigar-shaped rotating el-
lipsoid. The long-axis length c is 50 nm, and the short-axis length (a or b)
is 10 nm. The obtained depolarization field coefficients are L‖ = 0.058 and
L⊥ = 0.472. After evaluating polarizability, the scattering cross-section Csca

and absorption cross-section Cabs are obtained using Eq. (2.2). The scatter-
ing efficiency Qsca and absorption efficiency Qabs are obtained by normalizing
with the cross-sectional area.

Program 4.1

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,rcParams ,tight_layout

5 from scipy import real ,imag ,pi,sqrt ,log

6 from RI import WLx , epAg , epAu , RIAu , RIAg

7
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8 n1 = RIAu # refractive index of ellipsoid

9 n2 = 1 # refractive index of ambient

10 a = b = 10 # length of non -rotation axis(nm)

11 c = 50 # length of rotation axis(nm)

12 ee = sqrt(1-(a/c)**2) # eccentricity

13 lz = (1-ee**2)/ee**2 * (1/(2* ee) * log ((1+ee)/(1-ee)) -1)

# depolarization factor in z

14 lx = (1-lz)/2 # depolarization factor in x

15 k = 2 * pi / WLx # vacuum wavenumber

16
17 alphax = 4*pi*a*b*c*(n2**2) *((n1**2) -(n2**2))/(3*(( n2**2)+lx*((n1

**2) -(n2**2)))) # polarizability in x

18 alphaz = 4*pi*a*b*c*(n2**2) *((n1**2) -(n2**2))/(3*(( n2**2)+lz*((n1

**2) -(n2**2)))) # polarizability in z

19
20 Csca_x = k**4 / (6 * pi) * abs(alphax)**2 # scattering

cross -section in x

21 Cabs_x = k * imag(alphax) # absorption cross -section in x

22 Qsca_x = Csca_x / (a*a*pi) # scattering efficiency in x

23 Qabs_x = Cabs_x / (a*a*pi) # absorption efficiency in x

24
25 Csca_z = k**4 / (6 * pi) * abs(alphaz)**2 # scattering

cross -section in z

26 Cabs_z = k * imag(alphaz) # absorption cross -section in z

27 Qsca_z = Csca_z / (a*c*pi) # scattering efficiency in z

28 Qabs_z = Cabs_z / (a*c*pi) # absorption efficiency in z

29
30 plt.figure(figsize =(8 ,6))

31 plot(WLx ,Qsca_x , label=r"$Q_{{\rm sca},a}$",linewidth = 3.0,

color=‘black ’)

32 plot(WLx ,Qabs_x , label=r"$Q_{{\rm abs},a}$",linewidth = 3.0,

color=‘gray ’)

33 xlabel (" wavelength (nm)",fontsize =22) # x-axis label

34 ylabel (" efficiency",fontsize =22) # y-axis label

35 title(" Efficiency $a$ -axis",fontsize =22) # Title of the graph

36 grid(True) # Show Grid

37 axis ([300 ,1000 ,0 ,1]) # Plot Range

38 plt.tick_params(labelsize =20)

39 legend(fontsize =20,loc=‘lower right ’)

40 tight_layout ()

41 show()

42
43 plt.figure(figsize =(8 ,6))

44 plot(WLx ,Qsca_z , label=r"$Q_{{\rm sca},c}$",linewidth = 3.0,

color=‘black ’)

45 plot(WLx ,Qabs_z , label=r"$Q_{{\rm abs},c}$",linewidth = 3.0,

color=‘gray ’)

46 xlabel (" wavelength (nm)",fontsize =22) # x-axis label

47 ylabel (" efficiency",fontsize =22) # y-axis label

48 title(" Efficiency $c$ -axis",fontsize =22) # Title of the graph

49 grid(True) # Show Grid

50 axis ([300 ,1000 ,0 ,50]) # Plot Range

51 plt.tick_params(labelsize =20)

52 legend(fontsize =20,loc=‘lower left ’)

53 tight_layout ()

54 show()
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The scattering efficiency Qsca and absorption efficiency Qabs are shown in
Figure 4.2(a) when light is polarized in the short-axis direction. Figure 4.2(b)
shows Qsca and Qabs when light is polarized in the long-axis directions. In
the case of light polarized in the short-axis direction, the peak scattering and
absorption efficiencies are small, less than 1.0, even at the peak wavelength,
which is around 500 nm. It is similar to the surface plasmon resonance of
spherical gold particles. On the other hand, when the light is polarized in the
long-axis direction, a sharp peak due to surface plasmon is observed at around
700 nm, and the absorption efficiency and scattering efficiency are high, about
35 and 8, respectively. As the rotating ellipsoid’s aspect ratio (c/a) increases,
the peak shifts to the long wavelength side, and the scattering and absorption
efficiencies elevate. These properties are useful for applications of metallic rod
structures with a shape similar to the rotating ellipsoid have been studied.

FIGURE 4.2
Calculated scattering efficiency Qsca and absorption efficiency Qabs for a ro-
tating ellipsoid structure of gold at a = 10 nm and c = 50 nm: (a) when the
polarization direction is in the short-axis direction and (b) when the polariza-
tion direction is in the long-axis direction.

4.1.2 Pancake-shaped

For a pancake-shaped rotating ellipsoid with a shorter rotation axis, the de-
polarization field coefficient L⊥ in the direction perpendicular to the rotation
axis is expressed by the following equation:

L⊥ =
g

2e2

(π
2
− tan−1 g

)
− g2

2

g2 =
1− e2

e2

e2 = 1− c2

a2
(4.4)
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As in the cigar-shaped case, the depolarization field coefficient L‖ in the short-
axis direction is obtained from the relation L‖ + 2L⊥ = 1. The polarizability
in each direction can be obtained using Eq. (4.1) with the depolarization field
coefficients.

4.1.3 Core-shell ellipsoids

This section deals with the optical response of the core-shell structure of a
rotating ellipsoid [8]. Let n1 be the refractive index of the core, n2 be the
refractive index of the shell, and n3 be the refractive index of the surrounding
medium. Let c1 be the radius of the core in the rotation axis direction, and
a1 = b1 be the radius of the other axis, and let c2 and a2 = b2 be the radius of
the axis of rotation and minor axis of the shell, respectively. The depolariza-
tion field coefficients can be obtained for both the cigar and pancake shapes
from Eq. (4.2) and Eq. (4.4). Let Li be the depolarization field coefficient for
polarization in the i direction determined by the shape. If the thickness of the
shell is constant, the depolarization field coefficient of the shell is also equal,
and the following equation obtains the polarizability αi:

αi =
4πabc

3

Li(n
2
2 − n2

3)(n2
2 + (n2

1 − n2
2)(1−Q))) +Qn2

2(n2
1 − n2

2)

(n2
2 + Li(n2

1 − n2
2)(1−Q)))(n2

3 + Li(n2
2 − n2

3)) +QLin2
2(n2

1 − n2
2)

(4.5)

Here, Q is the core-to-shell volume ratio, given by Q = a1b1c1/(a2b2c2). In the
case of a sphere, Li = 1

3 , which is reduced to Eq. (2.14) discussed in Chapter 2.

4.2 Sphere above a substrate

Experiments often involve particles on a substrate. Therefore, discussing the
optical response of the sphere immobilized on a substrate is sometimes neces-
sary. When the substrate is a dielectric with a relatively low refractive index,
such as quartz, the influence of the substrate is small, and the response of the
isolated spheres can be discussed. However, when a metal, dielectric with a
high refractive index, or semiconductor is used as the substrate, the optical
response of the particles is greatly influenced by the substrate. Then, the opti-
cal response of spheres on the substrate differs from that of isolated particles.
This problem is analytically solved by Wind [14] and is applied to gold spheres
on a metallic surface by Okamoto [15].

Consider a sphere of radius R with dielectric constant ε3 immobilized at
a distance of gap g on a substrate with dielectric constant ε2 in an ambient
medium with dielectric constant ε1 as shown in Figure 4.3. Using the dielectric
constant instead of the refractive index makes the description simple. Consider
a spherical coordinate system (ρ, θ, φ) with the sphere’s centre as the origin,
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FIGURE 4.3
Optical configuration used to calculate the optical response of a sphere on a
substrate. Polar coordinates (ρ, θ, φ) with the sphere’s centre as the origin
are used.

where ρ = r/R. Then, the surface of the sphere is r = 1. The potential Vi
in the medium i that arises when an electric field E0 is applied. ψi is the
potential normalized by −E0R. Define r0 as r0 = 1 + g/R.

4.2.1 Normal component

The normalized potential ψ in Mediums 1−3 that arises when an electric field
E0 is applied perpendicular to the substrate surface (in the z-direction) is
expressed as follows, taking multipoles into account.

ψ1 = rt+
∞∑
j=1

r−(j+1)P 0
j (t)A1j + V 0

j (r, t)A′1j

ψ2 = ψ′2 + αrt+
∞∑
j=1

r−(j+1)P 0
j (t)A2j

ψ3 =
∞∑
j=1

rjP 0
j (t)A3j (4.6)

The P 0
j (t) is the Legendre polynomials, and we set t = cos θ.

A′1j =
ε1 − ε2
ε1 + ε2

(−1)jA1j (4.7)

A2j =
2ε1

ε1 + ε2
A1j (4.8)

The V 0
j (r, t) in Eq. (4.6) can be written as follows:

V mj (r, t) =

Pmj

( rt− 2r0

(r2 − 4rr0t+ 4r2
0)1/2

)
(r2 − 4rr0t+ 4r2

0)(j+1)/2
(4.9)
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This represents the contribution of the mirror image in the substrate. The
Aij are multipole coefficients of order j in medium i. Although α and ψ′2 are
unknown, the solution solved with appropriate boundary conditions yields

∞∑
j=1

(
δij +

k(ε2 − ε1)(ε1 − ε3)

(ε2 + ε1)((k + 1)ε1 + kε3)

(k + j)!

k!j!(2r0)k+j+1

)
A1j =

ε1 − ε3
2ε1 + ε3

δk1.

(4.10)
Here, δpq is Kronecker’s delta. This equation is a simultaneous equation with
an infinite number of undetermined coefficients, but in practice, it is sufficient
to consider 10−15 undetermined coefficients. From the obtained coefficients
A11, the vertical component of the polarizability αz is obtained using the
following equation:

αz = −4πε1R
3A11 (4.11)

From above, the scattering cross section Csca,z and absorption cross-section
Cabs,z for the photoelectric field component perpendicular to the surface are

Csca,z =
k4

6π
|αz|2

Cabs,z = k Im(αz). (4.12)

Here, k is the wavenumber of light. Normalizing it by the area of the great
circle of the sphere, the scattering efficiency Qsca,z and absorption efficiency
Qabs,z.

4.2.2 In-plane component

The potential created when an electric field E0 is applied horizontally (in the
x- or y-direction) to the substrate surface is expressed as follows:

ψ1 = r
√

1− t2 cosφ+

∞∑
j=1

r−(j+1)P 1
j (t)B1j cosφ+ V 1

j (r, t)B′1j cosφ

ψ2 = ψ′2 + βr
√

1− t2 cosφ+

∞∑
j=1

r−(j+1)P 1
j (t)B2j cosφ

ψ3 =

∞∑
j=1

rjP 1
j (t) cosφB3j (4.13)

Here, Pmj (t) is the associated Legendre polynomial, and Bij is the multipole
coefficient of order j in medium i.

B′1j =
ε1 − ε2
ε1 + ε2

(−1)j+1B1j (4.14)

B2j =
2ε1

ε1 + ε2
B1j (4.15)
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Including β and ψ′2 and solving for them, as well as the vertical component,
yield

∞∑
j=1

(
δij +

k(ε2 − ε1)(ε1 − ε3)

(ε2 + ε1)((k + 1)ε1 + kε3)

(k + j)!

(k + 1)!(j − 1)!(2r0)k+j+1

)
B1j

=
ε1 − ε3
2ε1 + ε3

δk1. (4.16)

With the obtained coefficient B11, the in-plane component of the polariz-
ability α‖ can be obtained, and the scattering efficiency Qsca,‖ and absorption
efficiency Qabs,‖ can be obtained.

4.2.2.1 Programing

Based on the above results, an example of a program to calculate the optical
response of a sphere immobilized on a substrate is shown below. The facto-
rial function math.factorial is loaded in advance. However, since this function
name is long, it is again defined as kjo in Line 14. Define the coefficients to be
calculated in Eqs. (4.10) and (4.16) as perpen and parallel functions, respec-
tively. The number of undetermined coefficients in the simultaneous equation
is qq. Here, qq =15, meaning we are solving a 15-element linear system of
equations. The matrix of undetermined coefficients is described in Lines 52–
70 and solved using linalg.solve in Lines 72 and 73.

Program 4.2

1 import numpy as np

2 import scipy as sp

3 import scipy.special

4 import math

5 import cmath

6 import matplotlib as mpl

7 import matplotlib.pyplot as plt

8 from RI import WLx , NumWLx , epAg , epAu , RIAu , RIAg

9
10 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,arrange ,sqrt

,zeros ,array ,matrix ,asmatrix ,real ,imag

11 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

12 from scipy.special import factorial

13
14 def kjo(k):

15 return math.factorial(k)

16
17 def perpen(k,j,r0,ep1 ,ep2 ,ep3):

18 return ((ep2 -ep1)*(ep1 -ep3)*k*kjo(k+j))/((ep2+ep1)*((k+1)*ep1

+k*ep3)*kjo(k)*kjo(j)*(2*r0)**(k+j+1))

19
20 def parallel(k,j,r0 ,ep1 ,ep2 ,ep3):

21 return ((ep2 -ep1)*(ep1 -ep3)*k*kjo(k+j))/((ep2+ep1)*((k+1)*ep1

+k*ep3)*kjo(k+1)*kjo(j-1) *(2*r0)**(k+j+1))
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22
23 def uhen(ep1 ,ep2 ,ep3):

24 return (ep1 -ep3)/(2* ep1+ep3)

25
26 k0 = 2 * pi / WLx # vacuum wavenumber

27
28 qq=15 # order of multipoles

29 r=50 # radius of sphere

30 gap=1 # gap

31 d=gap+r # d parameter

32 r0=d/r # r0 parameter

33
34 alpha_A=zeros(NumWLx , dtype=complex) # initialization of A

35 alpha_B=zeros(NumWLx , dtype=complex) # initialization of B

36
37 ep1=zeros(NumWLx , dtype=complex)

38 ep2=zeros(NumWLx , dtype=complex)

39 ep3=zeros(NumWLx , dtype=complex)

40 al=zeros ([NumWLx ,qq,qq], dtype=complex)

41 bl=zeros ([NumWLx ,qq,qq], dtype=complex)

42 fl=zeros ([NumWLx ,qq], dtype=complex)

43 Xal=zeros([NumWLx ,qq], dtype=complex)

44 Xbl=zeros([NumWLx ,qq], dtype=complex)

45 a11l=zeros([NumWLx ,qq], dtype=complex)

46 b11l=zeros([NumWLx ,qq], dtype=complex)

47
48 for i in range(NumWLx):

49 ep1[i] = 1 # dielectric constant of ambient

50 ep2[i] = epAu[i] # dielectric constant of sphere

51 ep3[i] = epAu[i] # dielectric constant of substrate

52 for k in range(qq): # A coefficient

53 for j in range(qq):

54 if k==j:

55 al[i,k,j]=1+ perpen(k+1,j+1,r0,ep1[i],ep2[i],ep3[

i])

56 else:

57 al[i,k,j]= perpen(k+1,j+1,r0,ep1[i],ep2[i],ep3[i

])

58
59 for k in range(qq):

60 for j in range(qq):

61 if k==j:

62 bl[i,k,j]=1+ parallel(k+1,j+1,r0,ep1[i],ep2[i],ep3

[i])

63 else:

64 bl[i,k,j]= parallel(k+1,j+1,r0,ep1[i],ep2[i],ep3[i

])

65
66 for k in range(qq):

67 if k==0:

68 fl[i,k]=uhen(ep1[i],ep2[i],ep3[i])

69 else:

70 fl[i,k]=0

71
72 Xal[i]=np.linalg.solve(al[i],fl[i])

73 Xbl[i]=np.linalg.solve(bl[i],fl[i])

74
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75 alpha_A[i]=-4*pi*r**3* ep1[i]*Xal[i,0] # polarizability (

normal)

76 alpha_B[i]=-4*pi*r**3* ep1[i]*Xbl[i,0] # polarizability (in-

plane)

77
78 Csca_A = k0 **4/(6* pi)*abs(alpha_A)**2 # scattering cross -section

(normal)

79 Csca_B = k0 **4/(6* pi)*abs(alpha_B)**2 # scattering cross -

section (in-plane)

80 Cabs_A = k0*imag(alpha_A) # absorption cross -section (normal)

81 Cabs_B = k0*imag(alpha_B) # absorption cross -section (in-plane)

82
83 plt.figure(figsize =(8 ,6))

84 plot(WLx ,Cabs_A , label=r"$C_{\rm abs}$")

85 axis ([400 ,700 ,0 ,100000])

86 xlabel(r"wavelength (nm)",fontsize =12)

87 ylabel(r"$C_{\rm ext}$",fontsize =12)

88 legend(fontsize =20,loc=‘lower right ’)

89 tight_layout ()

90 show()

91
92 the same applies hereinafter

The results of the calculations for the optical configuration of gold spheres
on a gold substrate are shown in Figure 4.4. The sphere’s radius is 50 nm,
and the gap is 1 nm. The scattering efficiency Qsca,z and absorption efficiency

FIGURE 4.4
Calculated optical response of a sphere on a substrate. (a) Photoelectric field
component perpendicular to the surface, and (b) scattering efficiency Qsca,z

and absorption efficiency Qabs,z for photoelectric field component in the sur-
face plane.
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Qabs,z for the electric field component perpendicular to the surface are shown
in Figure 4.4(a), as well as the scattering efficiency Qsca,‖ and absorption
efficiency Qabs,‖. It can be seen that the component perpendicular to the
surface produces a peak that is shifted to the long wavelength side, which is
larger than the absorption peak of the isolated gold particle. This is a result of
the interaction between the sphere and the substrate. Such a significant shift
does not occur when the substrate is a dielectric such as glass. As shown in
Figure 4.4(b), the in-plane component slightly shifts, but the displacement is
not large. This indicates that the interaction with the substrate is not very
large.

4.3 Bisphere

A method of calculating the optical response of a bisphere shown in Figure
4.5 has been proposed [16], and it can also be obtained using Eqs. (4.10) and
(4.16) [14]. This is because if the substrate is an ideal metal, we can regard
another sphere as a mirror image of the substrate. Note that the gap between
the spheres is 2g in this case. In actual calculations, in Eqs. (4.10) and (4.16),

ε2 − ε1
ε2 + ε1

= 1. (4.17)

For the in-plane component, set

ε2 − ε1
ε2 + ε1

= −1 (4.18)

FIGURE 4.5
Optical geometry of a bisphere.



76 Analytical Calculations for Particles with Other Shapes

and make calculations. Namely, solve the following simultaneous equations for
the appropriate number of undetermined coefficients to obtain the polarization
ratio and calculate the scattering and absorption cross-sections.

∞∑
j=1

(
δij +

k(ε1 − ε3)

((k + 1)ε1 + kε3)

(k + j)!

k!j!(2r0)k+j+1

)
A1j =

ε1 − ε3
2ε1 + ε3

δk1 (4.19)

∞∑
j=1

(
δij −

k(ε1 − ε3)

((k + 1)ε1 + kε3)

(k + j)!

(k + 1)!(j − 1)!(2r0)k+j+1

)
B1j =

ε1 − ε3
2ε1 + ε3

δk1

(4.20)

The program in Appendix Program A.3 (Bisphere.py) shows the calcula-
tion results in Figure 4.6. The gold spheres have a 50 nm radius and a 1 nm
gap. In this program, half of the gap is set as 0.5 nm. This condition can be
compared with the calculated optical response of the sphere on the substrate
shown in Figure 4.4. In the case of the sphere on the substrate described
above, the absorption peak of the vertical component is around 635 nm, and
the absorption efficiency is also significant. On the other hand, in the case
of the bisphere, the absorption peak of the vertical component is around 590
nm, and the absorption efficiency is slightly lower than that of the sphere on
the substrate. It seems that the dielectric constant of the substrate has an
imaginary component, which causes a stronger interaction than that of the
ideal metal. For example, when silver is used as the substrate, the absorption
peak appears around 605 nm between the ideal metal and gold. For the hori-
zontal component, the results are not much different from those calculated for
isolated particles. This is likely due to the weak interaction between particles.

FIGURE 4.6
Absorption and scattering cross-sections calculated for a gold bisphere. The
gap spacing was set to 1 nm.
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4.4 Truncated sphere on a substrate

The optical response of a truncated sphere, as shown in Figure 4.7, can also be
obtained by analytical calculations derived by Wind et al. [14]. Let Medium
1 be the surrounding medium, Medium 2 be the substrate, Medium 3 be
the truncated sphere, and Medium 4 be the substrate. Let εi(i = 1 ∼ 4) be
their dielectric constants. The spherical coordinate system (ρ, θ, φ) is used.
Medium 2 and Medium 4 are the same, i.e., ε2 = ε4. The cutting angle of the
truncated sphere is then defined as θsh, as shown in Figure 4.7. In the case of
a sphere, θsh = 180◦, and in a hemisphere, θsh = 90◦. The program defines
θa = 180◦ − θsh for ease of calculation. The distance D and ρ of the centre
of the sphere from the substrate surface are normalized by the sphere radius
R, and r0 = cos θa = D/R and r = ρ/R, respectively. Also, let Vi be the
potential at medium i that arises when an electric field E is applied.

FIGURE 4.7
Optical geometry of a truncated sphere.

Suppose that the normalized potential ψi(i = x, y, z) is ψi = −Vi/(ER),
then it is possible to use the multipole coefficients Aqj and Āqj and the potential
is written as

ψx = r sin θ cosφ+

∞∑
j=1

A
‖
jP

1
j (cos θ) cosφ

rj+1
+ Ā

‖
jV

1
j (r, cos θ) cosφ (4.21)

ψy = r sin θ sinφ+

∞∑
j=1

A
‖
jP

1
j (cos θ) sinφ

rj+1
+ Ā

‖
jV

1
j (r, cos θ) sinφ (4.22)

ψz = r cos θ +

∞∑
j=1

Az
jP

0
j (cos θ)

rj+1
+ Āz

jV
0
j (r, cos θ). (4.23)

Here, Pmj (cos θ) is a Legendre function, and V mj (r, cos θ). Wm
j (r, cos θ) on

the mirror image are

V mj (r, cos θ) =
Pmj

(
r cos θ−2r0√

r2−4rr0 cos θ+4r20

)
(√

r2 − 4rr0 cos θ + 4r2
0

)j+1
(4.24)
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and

Wm
j (r, cos θ) =

(√
r2 − 4rr0 cos θ + 4r2

0

)j
Pmj

( r cos θ − 2r0√
r2 − 4rr0 cos θ + 4r2

0

)
(4.25)

Āqj has the following relationship with Aqj :

Āzj =
ε1 − ε2
ε1 + ε2

(−1)jAzj (4.26)

Ā
‖
j =

ε1 − ε2
ε1 + ε2

(−1)j+1A
‖
j . (4.27)

q =‖ is used to find the components of the multipole coefficients.
The multipole coefficients Aqj and Bqj are to be obtained by solving the

following simultaneous equations:

∞∑
j=1

(CqkjA
q
j +Dq

kjB
q
j ) = Eqk (k = 1, 2, 3...) (4.28)

∞∑
j=1

(F qkjA
q
j +GqkjB

q
j ) = Hq

k (k = 1, 2, 3...). (4.29)

The following equations give each coefficient in the simultaneous equations
for perpendicular polarization:

Czkj =
4ε1δkj

(ε1 + ε2)(2k + 1)
− ε1 − ε2
ε1 + ε2

∫ r0

−1

dtP 0
k (t)(P 0

j (t)− (−1)jV 0
j (1, t))

Dz
kj = − 4ε3δkj

(ε2 + ε3)(2k + 1)
− ε2 − ε3
ε2 + ε3

∫ r0

−1

dtP 0
k (t)(P 0

j (t)− (−1)jW 0
j (1, t))

Ezk = −2ε1δk1

3ε2
− (1− ε1

ε2
)

∫ r0

−1

dtP 0
k (t)(t− r0)

F zkj = − 4ε1ε2(k + 1)δkj
(ε1 + ε2)(2k + 1)

−ε1(ε1 − ε2)

ε1 + ε2

∫ r0

−1

dtP 0
k (t)

(
(j + 1)P 0

j (t)− (−1)j
∂V 0

j (r, t)

∂r

∣∣∣
r=1

)
Gzkj = − 4ε2ε3kδkj

(ε2 + ε3)(2k + 1)

+
ε3(ε2 − ε3)

ε2 + ε3

∫ r0

−1

dtP 0
k (t)

(
jP 0

j (t) + (−1)j
∂W 0

j (r, t)

∂r

∣∣∣
r=1

)
Hz
k = −2ε1δk1

3
. (4.30)
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For the in-plane component,

C
‖
kj =

4ε1k(k + 1)δkj
(ε1 + ε2)(2k + 1)

− ε1 − ε2
ε1 + ε2

∫ r0

−1

dtP 1
k (t)(P 1

j (t) + (−1)jV 1
j (1, t))

D
‖
kj = − 4ε3k(k + 1)δkj

(ε2 + ε3)(2k + 1)

−ε2 − ε3
ε2 + ε3

∫ r0

−1

dtP 1
k (t)(P 1

j (t) + (−1)jW 1
j (1, t))

E
‖
k = −4δk1

3

F
‖
kj = −4ε1ε2k(k + 1)2δkj

(ε1 + ε2)(2k + 1)

−ε1(ε1 − ε2)

ε1 + ε2

∫ r0

−1

dtP 1
k (t)

(
(j + 1)P 1

j (t) + (−1)j
∂V 1

j (r, t)

∂r

∣∣∣
r=1

)
G
‖
kj = −4ε2ε3k

2(k + 1)δkj
(ε2 + ε3)(2k + 1)

+
ε3(ε2 − ε3)

ε2 + ε3

∫ r0

−1

dtP 1
k (t)

(
jP 1

j (t)− (−1)j
∂W 1

j (r, t)

∂r

∣∣∣
r=1

)
H‖ = −4ε2δk1

3
− (ε1 − ε2)

∫ r0

−1

dtP 1
k (t)P 1

1 (t). (4.31)

Program 8.4 in the Appendix is meant to calculate them. The results of
the absorption efficiency spectra of the truncated spheres of various shapes
are shown in Figure 4.8 [17]. In the case of θa = 0◦ shown in Figure 4.8(a), the
absorption efficiency for the light electric field normal to the surface Qabs,z

and the absorption efficiency for the electric field in the in-plane direction
of the surface Qabs,‖ are almost the same as those of the sphere. The slight
difference is due to the influence of the substrate. Since the in-plane component
is sensitive to shape, the approximate shape of the truncated sphere can be
determined by measuring the absorption spectrum at perpendicular incidence.
Compared with cross-sectional transmission electron microscopy images, good
agreement has been reported [18].

Next, the absorption efficiency spectrum of the truncated sphere on a sub-
strate with different refractive indices is shown in Figure 4.9. Here, a hemi-
sphere (θsh = 90◦) was considered. As the substrate’s refractive index in-
creases, Qabs,‖ shifts significantly to the long wavelength side, thus increasing
efficiency. On the other hand, the peak position of the absorption efficiency
Qabs,z for the light electric field in the plane normal direction does not change
much, and the absorption efficiency conversely decreases as the refractive in-
dex increases. This can be considered due to the substrate’s mirror image
effect. The island-like evaporated thin films of hemispherical structures may
be used as a sensor for highly sensitive refractive index and bio-molecules.
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FIGURE 4.8
Comparison of calculated absorption efficiency spectra of cut spheres with
various geometries. (a) θa = 0◦ (sphere), (b) θa = 30◦, (c) θa = 60◦, and (d)
θa = 180◦ (hemisphere).



Truncated sphere on a substrate 81

FIGURE 4.9
Calculated absorption efficiency spectra of cut spheres, compared by substrate
refractive index n2. (a) n2 = 1.0, (b) n2 = 1.5, (c) n2 = 2.0, and (d) n2 = 2.5.



5

Rigorous Coupled-Wave Analysis: RCWA

The rigorous coupled-wave analysis (RCWA) method was proposed to analyse
the optical properties of diffraction gratings. In the early stage, there were
problems of instability in calculation and slow convergence for TM polarization
in metallic gratings, but both problems have been solved and the RCWA is
now the most widely used analysis method for diffraction gratings.

5.1 Introduction

The rigorous coupled-wave analysis (RCWA) method was proposed by Mo-
haram and Gaylord [19, 20, 21, 22]. The basic idea of the RCWA method is
the same as the transfer matrix method for multilayers. First, the grating is
divided into multiple layers as shown in Figure 5.1 and is approximated by a
staircase shape. In this example, the layers are divided so that the thickness of
each layer is equal, but the thicknesses of the layers do not have to be the same
thickness. Within each layer, the dielectric constant is assumed to be uniform
in the z-direction and modulated only in the x-direction. The distribution of
the dielectric constant of layer l is presented as ε(l)(x). If the period of the
grating is Λ, ε(l)(x+Λ) = ε(l)(x). Layer 0 corresponds to the transmission side
and layer L to the incident side. The dielectric constant of the layer L must
be homogeneous. The RCWA method describes the light wave in each of these
layers as a superposition of the eigenmodes and determines the amplitude of
the light wave so that the boundary conditions are satisfied between the ad-
jacent layers. Vectors u(l) and d(l) in Figure 5.1 are coefficient ones that give
the amplitude of each eigenmode propagating in the +z- and −z-directions in
layer l, respectively. The thickness of layer l is h(l). The difference from the
multilayer case is that, due to the presence of diffracted light, the tangential
component of the wave number is not a scalar value, but a vector whose ele-
ments are integers multiple of the lattice vector added to that of the incident
light. In other words, if the in-plane wave number of the incident light is kx0,
that of the diffracted light is given by

kxm = kx0 +mK, (5.1)
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FIGURE 5.1
Modelling of geometry in the RCWA method. A periodic structure of arbitrary
shape is divided into layers. When dividing the structure into layers, each layer
should be homogeneous in the z-direction. In the figure, the thickness of each
layer is equal, but it is not necessary to make them equal.

K =
2π

Λ
, (5.2)

where K is the grating constant and m is the diffraction order.

5.1.1 TE polarization

First, let’s consider the case of TE polarization. In this case, only the y com-
ponent of the electric field, Ey should be considered. The other components
of the electric field are zero, that is Ex = Ez = 0. Consider the electric field
in a grating region, where the dielectric constant changes periodically. The
electric field in layer l is also periodic and can be written as follows

E(l)
y =

∑
m

S(l)
ym(z) exp(ikxmx), (5.3)

where the origin of the z-coordinate is the lower interface of each layer. Only
for layer 0, z = 0 is taken at the upper interface. Here, we obtain the wave
equation for TE polarization with angular frequency ω. From Faraday’s equa-
tion,

H =

(
i

ωµ0

)
∇×E, (5.4)

∂E
(l)
y

∂z
= iωµ0H

(l)
x , (5.5)
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and
∂E

(l)
y

∂x
= −iωµ0H

(l)
z (5.6)

are obtained. Also, from Ampere’s equation,

E =

[
−i

ωε0ε(x)

]
∇×H, (5.7)

∂H
(l)
x

∂z
− ∂H

(l)
z

∂x
= iωε0ε

(l)(x)E(l)
y (5.8)

is obtained. Differentiating Eqs. (5.5) and (5.6) with respect to z and x, re-
spectively, and substituting into Eq. (5.8),

1

iωµ0

∂2E
(l)
y

∂z2
+

1

iωµ0

∂2E
(l)
y

∂x2
= iωε0ε

(l)(x)E(l)
y (5.9)

is obtained. Here, using the wave number k0 =
√
ε0µ0ω of light propagating

in vacuum, the wave equation for TE polarization is rewritten as

∂2E
(l)
y

∂z2
+
∂2E

(l)
y

∂x2
= −k2

0ε
(l)(x)E(l)

y . (5.10)

Next, we represent the dielectric constant ε(l)(x) by its Fourier series,

ε(l)(x) =
∑
p

ε(l)
p exp(ipKx). (5.11)

Substituting Eqs. (5.3) and (5.11) into Eq. (5.10), we obtain

∑
m

∂2S
(l)
ym(z)

∂z2
exp(ikxm) = (5.12)∑

m

k2
xmS

(l)
ym(z) exp(ikxm)− k2

0

∑
p

∑
m

ε
(l)
m−pS

(l)
yp (z) exp(ikxm).

Therefore,

∂2S
(l)
ym(z)

∂z2
= k2

xmS
(l)
ym(z)− k2

0

∑
p

ε
(l)
m−pS

(l)
yp (z). (5.13)

If written in matrix form, we obtain

∂2S
(l)
y

∂z2
= k2

0

(
K2
x −E(l)

)
S(l)
y , (5.14)

where Kx is a diagonal matrix whose elements are kxm/k0. Matrix E(l) is the
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Toeplitz one whose elements are ε
(l)
(m−p), i.e.

E(l) =


ε

(l)
0 ε

(l)
−1 ε

(l)
−2 . . .

ε
(l)
1 ε

(l)
0 ε

(l)
−1 . . .

ε
(l)
2 ε

(l)
1 ε

(l)
0 . . .

...
...

...
. . .

 . (5.15)

The solution of Eq. 5.14 is expressed as

S(l)
ym(z) =

∞∑
j=1

w
(l)
mj

[
u

(l)
j exp(ik

(l)
zj z) + d

(l)
j exp(−ik(l)

zj z)
]
, (5.16)

where −
[
k

(l)
zj

]2
and w

(l)
mj are the eigenvalue and the element of the eigenvector

of matrix k2
0(K2

x − E(l)). It is important to note that j does not correspond
to the diffraction order, but simply to the order of the eigenvalues. The quan-

tity k
(l)
zj corresponds to the z component of the wave number and obtained

by reversing the sign of the eigenvalue of matrix k2
0(K2

x − E(l)) and taking

its square root. If k
(l)
zj is complex, we have to take the square root for which

Im
[
k

(l)
zj

]
≥ 0. This means that we employ evanescent waves that decay ex-

ponentially. However, care must be taken in the actual calculation even when
there is no imaginary part in the dielectric constant of the medium. In this
case, all eigenvalues are real numbers. Therefore, their square roots are real or
pure imaginary. However, even when the eigenvalues are real numbers (corre-
sponding to propagating light), a slight imaginary part that is not zero may be
included due to less calculation accuracy. As a result, the square root also con-
tains non-zero imaginary parts. When determining the sign of the square root
by using the sign of the imaginary part, which should be zero, a problem arises.
The solution to this problem is to use the real part of the square root as well.

In other words, the sign should be taken to be Re
[
k

(l)
zj

]
+ Im

[
k

(l)
zj

]
≥ 0. How-

ever, if the dielectric constant has an imaginary part, the above Im
[
k

(l)
zj

]
≥ 0

condition must be used.
The coefficients u

(l)
j and d

(l)
j are determined by the boundary conditions.

The tangential component Hx of the magnetic field is also necessary for the
boundary conditions. Suppose that the magnetic field Hx can be written as
follows,

H(l)
x =

(
ε0

µ0

)1/2∑
m

U (l)
xm(z) exp(ikxmx). (5.17)

Substituting Eqs. (5.16) and (5.17) into Eq. (5.5),

U (l)
xm(z) =

∞∑
j=1

v
(l)
mj

[
u

(l)
j exp(ik

(l)
zj z)− d

(l)
j exp(−ik(l)

zj z)
]

(5.18)
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is obtained, where

v
(l)
mj = − 1

k0
k

(l)
zj w

(l)
mj . (5.19)

In matrix form,

V(l) = − 1

k0
W(l)Q(l), (5.20)

where V(l) and W(l) are matrices whose elements are v
(l)
mj and w

(l)
mj , respec-

tively, and Q(l) is a diagonal matrix whose elements are k
(l)
zj .

In matrix form, Eqs. (5.16) and (5.18) are

S(l)
y (z) = W(l)

[
φ

(l)
+ (z) φ

(l)
− (z)

] [
u(l)

d(l)

]
, (5.21)

and

U (l)
x (z) = V(l)

[
φ

(l)
+ (z) −φ(l)

− (z)
] [ u(l)

d(l)

]
, (5.22)

respectively, where φ
(l)
± (z) is a diagonal matrix whose elements are

exp(±ik(l)
zj z). Equations (5.21) and (5.22) can be combined into one:[
S

(l)
y (z)

U
(l)
x (z)

]
=

[
W(l) W(l)

V(l) −V(l)

] [
φ

(l)
+ (z) O

O φ
(l)
− (z)

] [
u(l)

d(l)

]
, (5.23)

where O is zero matrix with all zero elements. Since the boundary condition
between the layers l and l + 1 is given by[

S
(l+1)
y (0)

U
(l+1)
x (0)

]
=

[
S

(l)
y (h(l))

U
(l)
x (h(l))

]
, (5.24)

therefore,[
W(l+1) W(l+1)

V(l+1) −V(l+1)

] [
u(l+1)

d(l+1)

]
=

[
W(l) W(l)

V(l) −V(l)

] [
Φ

(l)
+ O

O Φ
(l)
−

] [
u(l)

d(l)

]
,

(5.25)

where Φ
(l)
± = φ

(l)
± (h(l)). This is the final form of the boundary condition.

5.1.2 TM polarization

Let us consider the case of TM polarization. In this case, we only need to
consider Hy, the y component of the magnetic field. The magnetic field in the
grating region can be written as follows:

H(l)
y =

∑
m

U (l)
ym(z) exp(ikxmx). (5.26)
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Next, we consider the wave equation for TM polarization. From Eq. (5.7),

∂H
(l)
y

∂z
= −iωε0ε(x)E(l)

x , (5.27)

∂H
(l)
y

∂x
= iωε0ε(x)E(l)

z (5.28)

are obtained. Also, from Eq. (5.4),

iωµ0H
(l)
y =

∂E
(l)
x

∂z
− ∂E

(l)
z

∂x
(5.29)

is obtained. Substituting the derivative with respect of z in Eq. (5.27) and the
derivative for x in Eq. (5.28) into Eq. (5.29),

∂2H
(l)
y

∂z2
= −ε(l)(x)

{
k2

0H
(l)
y +

∂

∂x

[
1

ε(l)(x)

∂H
(l)
y

∂x

]}
, (5.30)

then,

1

ε(l)(x)

∂2H
(l)
y

∂z2
= −k2

0H
(l)
y −

∂

∂x

[
1

ε(l)(x)

∂H
(l)
y

∂x

]
(5.31)

is obtained. This is the wave equation for TM polarization.
Next, we express the inverse of the dielectric constant with the Fourier

series,
1

ε(l)(x)
=
∑
p

ε̃(l)
p exp(ipKx). (5.32)

Substituting Eqs. (5.26) and (5.32) into Eq. (5.31),

∑
p

∑
m

ε̃
(l)
m−p

∂2U
(l)
yp (z)

∂z2
exp(ikxmx)

= −k2
0

∑
m

U (l)
ym(z) exp(ikxmx)− ∂

∂x

[∑
p

∑
m

ε̃
(l)
m−pikxpU

(l)
yp (z) exp(ikxmx)

]
(5.33)

is obtained. Performing the differentiation of the second term of the right-hand
side of Eq. (5.33) with respect to x yields

∑
p

∑
m

ε̃
(l)
m−p

∂2U
(l)
yp (z)

∂z2
exp(ikxmx)

= −k2
0

∑
m

U (l)
ym(z) exp(ikxmx) +

∑
p

∑
m

ε̃
(l)
m−pkxpkxmU

(l)
yp (z) exp(ikxmx).

(5.34)
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Therefore,

∑
p

ε̃
(l)
m−p

∂2U
(l)
yp (z)

∂z2
=
∑
p

ε̃
(l)
m−pkxpkxmU

(l)
yp (z)− k2

0U
(l)
ym(z) (5.35)

is obtained. In matrix form, this yields

∂2U
(l)
y

∂z2
= k2

0A(l)−1
(
KxA

(l)Kx − I
)
U (l)
y , (5.36)

where A(l) is the Toeplitz matrix of ε̃
(l)
p and I is the identity matrix. On the

other hand, if we start the Fourier series representation from Eq. (5.30), we
obtain

∂2U
(l)
y

∂z2
= k2

0E(l)
(
KxA

(l)Kx − I
)
U (l)
y , (5.37)

which is different form from Eq. (5.36).
Moharam stated that A(l) in parentheses on the right-hand side of

Eq. (5.36) is better replaced by E(l)−1
in a private communication with Li [23].

Indeed, Moharam et al. [24] employed the following equation:

∂2U
(l)
y

∂z2
= k2

0E(l)
(
KxE

(l)−1
Kx − I

)
U (l)
y . (5.38)

However, the reason is not stated. Even if this formula was used, the problem
remained. The convergence was slower in the case of TM polarization in a
metallic grating than in the case of TE polarization [22, 23].

Later, Granet and Guizal [25] and Lalanne [26] found that a better result

could be obtained by replacing A(l) in the parentheses in Eq. (5.36) by E(l)−1
.

In other words,

∂2U
(l)
y

∂z2
= k2

0A(l)−1
(
KxE

(l)−1
Kx − I

)
U (l)
y . (5.39)

By using this equation, the convergence of the solution can be obtained for TM
polarization in the same order as for TE polarization. However, this equation
was obtained empirically, and no mathematical evidence for it was given.
Subsequently, Li [27] showed the basis of Eq. (5.39). The details are discussed
in the next section. On the other hand, if the layer thickness is very thin
compared to the wavelength, the convergence of Eq. (5.37) is faster [28]. The
reason for this is discussed in detail by Popov et al. [29].

The solution to Eq. (5.39) is expressed as

U (l)
ym(z) =

∞∑
j=1

w
(l)
mj

[
u

(l)
j exp(ik

(l)
zj z) + d

(l)
j exp(−ik(l)

zj z)
]
, (5.40)
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where −
[
k

(l)
zj

]2
and w

(l)
mj are the eigenvalue and the element of the eigenvector

of matrix k2
0A(l)−1

(
KxE

(l)−1
Kx − I

)
. Here, Im

[
k

(l)
zj

]
≥ 0 must be satisfied.

Next, let us consider the boundary conditions between the layers. Suppose
that the tangent component Ex of the electric field in the grating region can
be written as the following form.

E(l)
x =

(
µ0

ε0

)1/2∑
m

S
(l)
xj (z) exp(ikxmx). (5.41)

Substituting Eqs. (5.26), (5.32), and (5.41) into Eq. (5.27) and rearranging,
we obtain∑

m

S(l)
xm(z) exp(ikxmx) =

1

ik0

∑
p

∑
m

ε̃
(l)
m−p

∂U
(l)
yp (z)

∂z
exp(ikxmx), (5.42)

and then

S(l)
xm(z) =

1

ik0

∑
p

ε̃
(l)
m−p

∂U
(l)
yp (z)

∂z
. (5.43)

Substituting Eq. (5.40) into this equation yields

S(l)
xm(z) =

1

k0

∑
p

ε̃
(l)
m−p

∞∑
j=1

k
(l)
zj w

(l)
pj

[
u

(l)
j exp(ik

(l)
zj z)− d

(l)
j exp(−ik(l)

zj z)
]

(5.44)

S(l)
xm(z) =

∞∑
j=1

v
(l)
mj

[
u

(l)
j exp(ik

(l)
zj z)− d

(l)
j exp(−ik(l)

zj z)
]
, (5.45)

where

v
(l)
mj =

1

k0

∑
p

ε̃
(l)
m−pk

(l)
zj w

(l)
pj . (5.46)

In a matrix form,

V(l) =
1

k0
A(l)Q(l)W(l). (5.47)

Combining Eqs. (5.40) and (5.45) into a matrix form, we obtain[
U

(l)
y

S
(l)
x

]
=

[
W(l) W(l)

V(l) −V(l)

] [
φ

(l)
+ (z) O

O φ
(l)
− (z)

] [
u(l)

d(l)

]
. (5.48)

Using this equation, the boundary condition at the interface between layer l
and layer l + 1 is given by[

W(l+1) W(l+1)

V(l+1) −V(l+1)

] [
u(l+1)

d(l+1)

]
=

[
W(l) W(l)

V(l) −V(l)

] [
Φ

(l)
+ O

O Φ
(l)
−

] [
u(l)

d(l)

]
.

(5.49)
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The form of this equation is the same as in Eq. (5.25). Note, however, that
the order of U and S is switched compared to the case of TE polarization.

In addition, the component of the electric field in the z-direction is also
obtained. This component can be written in the same way as follows

E(l)
z =

(
µ0

ε0

)1/2∑
m

S(l)
zm(z) exp(ikxmx). (5.50)

Substituting Eq. (5.50) into Eq. (5.28), we obtain∑
m

S(l)
zm(z) exp(ikxmx) = − 1

k0

∑
p

∑
m

ε̃
(l)
m−pkxpU

(l)
yp (z) exp(ikxmx), (5.51)

and then
S(l)
zm(z) =

∑
p

ε̃
(l)
m−pkxpU

(l)
yp (z). (5.52)

5.1.3 Correct Fourier series

The basis for Eq. (5.39) is given by Li [27]. The problem is to find the correct
Fourier series of a periodic function h(x) given by the product of two periodic
functions f(s) and g(x),

h(x) = f(x)g(x). (5.53)

Let fm and gm be the Fourier coefficients of f(x) and g(x). The Fourier
coefficient hm of h(x) is generally expressed as follows using Laurent’s rule,
the Fourier series version of the convolution theorem. The Fourier coefficient,
hm is given by

hn =
∞∑

m=−∞
fm−ngm =

∞∑
m=−∞

gm−nfm. (5.54)

This formula always gives the correct result when the series continues infinitely
long. However, in actual calculations, m must be truncated at a finite value.
If f(x) and g(x) are both piecewise continuous periodic functions and the
positions of the discontinuity points do not coincide,

hn =

M∑
m=−M

fm−ngm (5.55)

is correct.
The problem arises when f(x) and g(x) are discontinuous at the same

location. In this case, there is generally no correct way to express the coef-
ficients [27]. However, there is a special case in the RCWA method where
f(x) and g(x) are discontinuous at the same location, but the product
h(x) = f(x)g(x) is continuous. In this case, Eq. (5.55) is not the correct
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x0-d/2

0.5

1

2

d/2

h(x)

g(x)

f(x)

FIGURE 5.2
Pairs of functions that are discontinuous at the same location but whose prod-
ucts are continuous.

answer. An easy-to-understand example is given by Nevière and Popov [30].
As shown in Figure 5.2, we consider two functions

f(x) =

{
0.5 (−d/2 ≤ x < 0)

2 (0 ≤ x < d/2)
(5.56)

and

g(x) =

{
2 (−d/2 ≤ x < 0)

0.5 (0 ≤ x < d/2)
. (5.57)

In this case, the product of the two functions, h(x) = f(x)g(x) = 1 are con-
tinuous in the whole region. The zeroth order terms of the Fourier coefficients
are both

f0 = g0 = 1.25. (5.58)

Therefore, the product of the two functions is

f0g0 = 1.5625. (5.59)

On the other hand,
h0 = [fg]0 = 1. (5.60)

So, the series truncated at the zeroth order would result in a large error.
On the other hand, taking the inverse of f(x), which is equal to g(x), and
computing the Fourier series, we obtain[

1

f

]
0

= 1.25. (5.61)

Furthermore, using the inverse of this, we obtain[
1

f

]−1

0

g0 = 1, (5.62)

which agrees with h0.



92 Rigorous Coupled-Wave Analysis: RCWA

As can be seen by analogy from the above, if f(x) and g(x) are discontin-
uous at the same location but their product is continuous, the correct Fourier
series representation is given by [27]

hn =
M∑

m=−M

[
1

f

]−1

n−m
gm. (5.63)

Now, let us look at where the product of two such complementary functions
appears in the eigenequations in the case of TM polarization. One is εEx in
Eq. (5.27). This corresponds to Dx and is continuous in the x-direction. The
other is (1/ε)(∂Hy/∂x) in Eq. (5.30). This corresponds to Ez, which is also
continuous in the x-direction, as shown in Eq. (5.28). The result of the Fourier
series representation, taking these considerations into account, is Eq. (5.39).

5.2 S (scattering) matrix method

Using the boundary conditions in Eqs. (5.25) and (5.49), the T (transmis-
sion) matrix method, as in the case of multilayers, provides the relationship
between incident light, reflected diffracted light, and transmitted diffracted
light. However, although this is mathematically correct, when actual calcu-
lations are performed, problems of instability may occur when the grating
grooves (the thickness of layers) are deep. This is due to the presence of an
exponentially increasing evanescent field in the calculation. The S (scatter-
ing) matrix method [27, 31] handles only exponentially decaying evanescent
waves, and thus does not cause such instability. Another stable method using
Enhanced Transmittance Matrix was proposed by Moharam et al. [32]. Here,
the S matrix method is described.

5.2.1 T matrix, S matrix, and R matrix

a1

b1

a2

b2

FIGURE 5.3
Response of the system (four-terminal circuits).

The typical matrices representing the response of the system (4-terminal
circuit) shown in Figure 5.3 are the T matrix and the S matrix. The T matrix,
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T is defined by [
a2

b2

]
= T

[
a1

b1

]
. (5.64)

This equation is easy to understand if we consider the left side of Figure 5.3
as input and the right side as output. However, it is difficult to understand if
we consider the direction of the arrows. On the other hand, the S matrix, S
is defined as [

a2

b1

]
= S

[
a1

b2

]
. (5.65)

The arrow pointing toward the system is the input and the arrow pointing
away from it is the output. This is a physical image that is easy to understand.
In fact, the elements of the S matrix are written as[

a2

b1

]
=

[
t21 r22

r11 t12

] [
a1

b2

]
, (5.66)

where t corresponds to the transmission coefficient and r corresponds to the
reflection coefficient. In actual systems, inputs and outputs are often vectors
rather than scalars. In such cases, t is the transmission matrix and r is the
reflection matrix.

Incidentally, in Li’s early paper on the RCWA method [33], he mistakenly
wrote “R matrix” when he should have written “S matrix”. The R matrix
is the reactance matrix, which gives the relation between E and H as in the
following equation [27] [

E1

E2

]
= R

[
H1

H2

]
. (5.67)

5.2.2 S matrix method

As shown in the early section, the T matrix of the entire system can be easily
obtained by multiplying the T matrices of adjacent layers. In the S matrix
method, however, the S matrix of the entire system is not so easily obtained.
The S matrix of the entire system must be obtained using the following re-
currence relation.

The S matrix from layer 0 to layer l, which is denoted by S0
l, is defined
as [

u(l)

d(0)

]
= S0
l

[
u(0)

d(l)

]
=

[
T0
l
uu R0
l

ud

R0
l
du T0
l

dd

] [
u(0)

d(l)

]
. (5.68)

Similarly, the S matrix from layer 0 to layer l + 1, S0
l+1, is defined as[
u(l+1)

d(0)

]
= S0
l+1

[
u(0)

d(l+1)

]
=

[
T0
l+1
uu R0
l+1

ud

R0
l+1
du T0
l+1

dd

] [
u(0)

d(l+1)

]
.

(5.69)
The problem is to find the recursive equation that leads from S0
l to S0
l+1,
in other words, T0
l+1

uu , R0
l+1
ud , R0
l+1

du , and T0
l+1
dd by T0
l

uu , R0
l
ud , R0
l

du ,
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z

~ ~

~ ~
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(l +1)
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(l +1)
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u 
(l -1 )

d 
(l -1 )

FIGURE 5.4
Definition of each coefficient vector used in the interface S matrix and the
interface T matrix.

and T0
l
dd . To solve this problem, we introduce two new S matrices for two

adjacent layers. One is the interface S matrix, s(l), defined by (see Figure 5.4).[
u(l+1)

d̃
(l)

]
= s(l)

[
ũ(l)

d(l+1)

]
, (5.70)

where ũ(l) and d̃
(l)

are coefficient vectors defined at the location of the upper
interface of layer l. The relationship between ũ and d̃ is as follows, using the
matrix representing propagation in the layer[

ũ(l)

d̃
(l)

]
=

[
Φ

(l)
+ O

O Φ
(l)
−

] [
u(l)

d(l)

]
. (5.71)

The other is the layer S matrix, s̃(l), defined by[
u(l+1)

d(l)

]
= s̃(l)

[
u(l)

d(l+1)

]
=

[
t̃
(l)
uu r̃

(l)
ud

r̃
(l)
du t̃

(l)
dd

] [
u(l)

d(l+1)

]
. (5.72)

Substituting Eq. (5.71) into Eq. (5.70), we obtain[
u(l+1)

Φ
(l)
− d

(l)

]
= s(l)

[
Φ

(l)
+ u

(l)

d(l+1)

]
, (5.73)

[
I O

O Φ
(l)
−

] [
u(l+1)

d(l)

]
= s(l)

[
Φ

(l)
+ O

O I

] [
u(l)

d(l+1)

]
, (5.74)[

u(l+1)

d(l)

]
=

[
I O

O Φ
(l)
−
−1

]
s(l)

[
Φ

(l)
+ O

O I

] [
u(l)

d(l+1)

]
. (5.75)

Then, the following relation

s̃(l) =

[
I O

O Φ
(l)
−
−1

]
s(l)

[
Φ

(l)
+ O

O I

]
(5.76)

is obtained.
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Next, we express the interface S matrix using the interface T matrix, which
is defined as (see Figure 5.4),[

u(l+1)

d(l+1)

]
=

[
t
(l)
uu t

(l)
ud

t
(l)
du t

(l)
dd

][
ũ(l)

d̃
(l)

]
. (5.77)

From this equation,

u(l+1) = t(l)
uuũ

(l) + t
(l)
udd̃

(l)
(5.78)

and

d(l+1) = t
(l)
duũ

(l) + t
(l)
dd d̃

(l)
(5.79)

are obtained. Then, we obtain

u(l+1) − t(l)
uuũ

(l) = t
(l)
udd̃

(l)
, (5.80)

−t
(l)
dd d̃

(l)
= t

(l)
duũ

(l) − d(l+1), (5.81)[
I −t

(l)
ud

O −t
(l)
dd

][
u(l+1)

d̃
(l)

]
=

[
t
(l)
uu O

t
(l)
du −I

] [
ũ(l)

d(l+1)

]
, (5.82)

[
u(l+1)

d̃
(l)

]
=

[
t
(l)
uu − t

(l)
udt

(l)−1

dd t
(l)
du t

(l)
udtt

(l)−1

dd

−t(l)−1

dd t
(l)
du t(l)−1

dd

] [
ũ(l)

d(l+1)

]
. (5.83)

As a result,

s(l) =

[
t
(l)
uu − t

(l)
udt

(l)
dd

−1
t
(l)
du t

(l)
udt

(l)
dd

−1

−t(l)−1

dd t
(l)
du t(l)−1

dd

]
(5.84)

is obtained.
We now return to the first problem. Transforming Eq. (5.72), we obtain[

I −r̃
(l)
ud

O −t̃
(l)
dd

] [
u(l+1)

d(l+1)

]
=

[
t̃
(l)
uu O

r̃
(l)
du −I

] [
u(l)

d(l)

]
. (5.85)

Similarly, from Eq. (5.68)[
I −R0
l

ud

O −T0
l
dd

] [
u(l)

d(l)

]
=

[
T0
l
uu O

R0
l
du −I

] [
u(0)

d(0)

]
(5.86)

is obtained. From these two equations, we obtain[
t̃
(l)
uu O

r̃
(l)
du −I

]−1 [
I −r̃

(l)
ud

O −t̃
(l)
dd

] [
u(l+1)

d(l+1)

]

=

[
I −R0
l

ud

O −T0
l
dd

]−1 [
T0
l
uu O

R0
l
du −I

] [
u(0)

d(0)

]
. (5.87)
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Using the following relationship,[
A O
B −I

]−1

=

[
A−1 O

BA−1 −I

]
, (5.88)

the left-hand side of Eq. (5.87) is[
t̃
(l)
uu O

r̃
(l)
du −I

]−1 [
I −r̃

(l)
ud

O −t̃
(l)
dd

] [
u(l+1)

d(l+1)

]

=

[
[t̃

(l)
uu]−1 0

r̃
(l)
du[t̃

(l)
uu]−1 −1

]−1 [
I −r̃

(l)
ud

O −t̃
(l)
dd

] [
u(l+1)

d(l+1)

]

=

[
[t̃

(l)
uu]−1 −[t̃

(l)
uu]−1r̃

(l)
ud

r̃
(l)
du[t̃

(l)
uu]−1 −r̃

(l)
du[t̃

(l)
uu]−1r̃

(l)
ud + t̃

(l)
dd

] [
u(l+1)

d(l+1)

]
. (5.89)

Similarly using the following relation,[
I −A
O −B

]−1

=

[
I O

AB−1 −B−1

]
, (5.90)

the right-hand side of Eq. (5.87) becomes[
I −R0
l

ud

O −T0
l
dd

]−1 [
T0
l
uu O

R0
l
du −I

] [
u(0)

d(0)

]
=

[
I −R0
l

ud (T0
l
dd )−1

O −(T0
l
dd )−1

]−1 [
T0
l
uu O

R0
l
du −I

] [
u(0)

d(0)

]
=

[
T0
l
uu −R0
l

ud (T0
l
dd )−1R0
l

du R0
l
ud (T0
l

dd )−1

−(T0
l
dd )−1R0
l

du (T0
l
dd )−1

] [
u(0)

d(0)

]
. (5.91)

Therefore, the following equation,[
[t̃

(l)
uu]−1 −[t̃

(l)
uu]−1r̃

(l)
ud

r̃
(l)
du[t̃

(l)
uu]−1 −r̃

(l)
du[t̃

(l)
uu]−1r̃

(l)
ud + t̃

(l)
dd

] [
u(l+1)

d(l+1)

]
=

[
T0
l
uu −R0
l

ud (T0
l
dd )−1R0
l

du R0
l
ud (T0
l

dd )−1

−(T0
l
dd )−1R0
l

du (T0
l
dd )−1

] [
u(0)

d(0)

]
(5.92)

is obtained. Rearranging the elements yields[
[t̃

(l)
uu]−1 −R0
l

ud (T0
l
dd )−1

r̃
(l)
dut̃

(l)−1
uu −(T0
l

dd )−1

] [
u(l+1)

d(0)

]

=

[
T0
l
uu −R0
l

ud (T0
l
dd )−1R0
l

du [t̃
(l)
uu]−1r̃

(l)
ud

−(T0
l
dd )−1R0
l

du r̃
(l)
du[t̃

(l)
uu]−1r̃

(l)
ud − t̃

(l)
dd

] [
u(0)

d(l+1)

]
(5.93)
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and finally[
u(l+1)

d(0)

]
=

[
[t̃

(l)
uu]−1 −R0
l

ud (T0
l
dd )−1

r̃
(l)
du[t̃

(l)
uu]−1 −(T0
l

dd )−1

]−1

×

[
T0
l
uu −R0
l

ud (T0
l
dd )−1R0
l

du [t̃
(l)
uu]−1r̃

(l)
ud

−(T0
l
dd )−1R0
l

du r̃
(l)
du[t̃

(l)
uu]−1r̃

(l)
ud − t̃

(l)
dd

] [
u(0)

d(l+1)

]
(5.94)

is obtained. The inverse of the block matrix is given by[
A B
C D

]−1

=

[
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
, (5.95)

where S = D − CA−1B, and the whole matrix and submatrices A and D
must be square matrices. Using this relationship we obtain[

t̃
(l)−1
uu −R0
l

ud (T0
l
dd )−1

r̃
(l)
dut̃

(l)−1
uu −(T0
l

dd )−1

]−1

=

[
t̃
(l)
uu + t̃

(l)
uuR0
l

ud [I− r̃
(l)
duR

0
l
ud ]−1r̃

(l)
du −t̃

(l)
uuR0
l

ud [I− r̃
(l)
duR

0
l
ud ]−1

T0
l
dd [I− r̃

(l)
duR

0
l
ud ]−1r̃

(l)
du −T0
l

dd [I− r̃
(l)
duR

0
l
ud ]−1

]
.

(5.96)

The element of the first row and first column of the product of the matrices
on the right-hand side of Eq. (5.94) should be equal to T0
l+1

uu and

T0
l+1
uu

={t̃(l)
uu + t̃(l)

uuR
0
l
ud [I− r̃

(l)
duR

0
l
ud ]−1r̃

(l)
du}{T

(l−1)
uu −R0
l

ud (T0
l
dd )−1R0
l

du }

+ t̃(l)
uuR

0
l
ud [I− r̃

(l)
duR

0
l
ud ]−1(T0
l

dd )−1R
(l−1)
du

=t̃(l)
uu{I + R0
l

ud [I− r̃
(l)
duR

0
l
ud ]−1r̃

(l)
du}T

0
l
uu

=t̃(l)
uu[I−R0
l

ud r̃
(l)
du]−1T0
l

uu . (5.97)

Here, we used the following relation

I + A(I−BA)−1B = (I−AB)−1 (5.98)

to transform the last line of the above equation. By performing similar calcu-
lations, we finally obtain the following four sets of recursive formulas:

T0
l+1
uu = t̃(l)

uu[I−R0
l
ud r̃

(l)
du]−1T0
l

uu , (5.99)

R0
l+1
ud = r̃

(l)
ud + t̃(l)

uuR
0
l
ud [I− r̃

(l)
duR

0
l
ud ]−1t̃

(l)
dd , (5.100)

R0
l+1
du = R0
l

du + T0
l
dd r̃

(l)
du[I−R0
l

ud r̃
(l)
du]−1T0
l

uu , (5.101)

T0
l+1
dd = T0
l

dd [I− r̃
(l)
duR

0
l
ud ]−1t̃

(l)
dd . (5.102)
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5.2.3 Method without T matrix

Li [31] has given a recursive formula for the S-matrix that does not use the
interface T-matrix. The equation under consideration is[

W
(l+1)
11 W

(l+1)
12

W
(l+1)
21 W

(l+1)
22

] [
u(l+1)

d(l+1)

]
=

[
W

(l)
11 W

(l)
12

W
(l)
21 W

(l)
22

][
Φ

(l)
+ O

O Φ
(l)
−

] [
u(l)

d(l)

]
.

(5.103)
The recursive formulas of the S-matrix for this equation are

R0
l+1
ud = (Z−1X2)1, (5.104)

T0
l+1
dd = T̃0
l

dd (Z−1X2)2, (5.105)

T0
l+1
uu = (Z−1X1)1, (5.106)

R0
l+1
du = R0
l

du + T̃0
l
dd (Z−1X1)2, (5.107)

where

Z =

[
W

(l+1)
11 −W

(l)
11 R̃0
l

ud −W
(l)
12

W
(l+1)
21 −W

(l)
21 R̃0
l

ud −W
(l)
22

]
, (5.108)

X =

[
W

(l)
11 T̃0
l

uu −W
(l+1)
12

W
(l)
21 T̃0
l

uu −W
(l+1)
22

]
= [X1,X2], (5.109)

R̃0
l
ud = Φ

(l)
+ R0
l

ud [Φ
(l)
− ]−1, (5.110)

T̃0
l
dd = T0
l

dd [Φ
(l)
− ]−1, (5.111)

T̃0
l
uu = Φ

(l)
+ T0
l

uu . (5.112)

The subscripts 1 and 2 in Eqs. (5.104)–(5.107) refer to the upper and lower
blocks of the matrix. The subscripts 1 and 2 in Eq. (5.109) refer to the left

and right blocks of the matrix X. In actual calculations, Φ
(l)
+ should be used

instead of [Φ
(l)
− ]−1 using the relation [Φ

(l)
− ]−1 = Φ

(l)
+ , since the value of Φ

(l)
−

itself may become very large and cause overflows.
In the case of the RCWA method, the matrices appearing in Eq. (5.103)

have the following symmetry, that is,

W
(l)
11 = W

(l)
12 = W

(l)
1 , (5.113)

W
(l)
21 = −W

(l)
22 = W

(l)
2 . (5.114)

In this case, the recursive formulas become simpler [31]. Equation (5.108) is
expressed as

Z =

[
W

(l+1)
1 O

O W
(l+1)
2

] [
I −F(l)

I G(l)

]
, (5.115)
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where
F(l) = Q

(l)
1 (I + R̃0
l

ud ), (5.116)

G(l) = Q
(l)
2 (I− R̃0
l

ud ), (5.117)

Q(l)
p = W(l+1)−1

p W(l)
p , (p = 1, 2). (5.118)

The inverse of the second matrix on the right-hand side of Eq. (5.115) is easily
obtained using the following relation:[

I A
I B

]−1

=

[
−B A
I −I

]
(A−B)−1. (5.119)

Then, we obtain
R0
l+1
ud = I− 2G(l)τ (l), (5.120)

T0
l+1
dd = 2T̃0
l

dd τ (l), (5.121)

T0
l+1
uu = (F(l)τ (l)Q

(l)
2 + G(l)τ (l)Q

(l)
1 )T̃0
l

uu , (5.122)

R0
l+1
du = R0
l

du + T̃0
l
dd τ (l)(Q

(l)
2 −Q

(l)
1 )T̃0
l

uu , (5.123)

where
τ (l) = (F(l) + G(l))−1. (5.124)

Incidentally, using Q
(l)
q (q = 1, 2), the interface T matrix t(l) is given by

t(l) =
1

2

[
Q

(l)
1 + Q

(l)
2 Q

(l)
1 −Q

(l)
2

Q
(l)
1 −Q

(l)
2 Q

(l)
1 + Q

(l)
2

]
. (5.125)

5.2.4 Relationship between incident, reflected, and
transmitted fields

First we consider the case of TE polarization. Consider the relationship be-
tween the incident electric field and u(L) and d(L) in layer L. The incident
field is given by,

Eiy = exp[i(kx0x− kLz0z)]. (5.126)

The amplitude is taken as unity for convenience, since the coefficient vectors
of the reflection and transmission diffraction fields obtained below directly
indicate the diffraction coefficients. Comparing Eq. (5.126) with Eqs. (5.3)
and (5.16), relationship

ie = W
(L)
1 d(L) (5.127)

is obtained. Vector ie is the coefficient vector of the incident electric field,
where only the element corresponding to the wavenumber kx0 is unity and the
remaining elements are all zero. Similarly, the relation between the coefficient
vector re of the reflected electric field and u(L) and d(L) is

re = W
(L)
1 u(L). (5.128)
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Next, consider the relationship between the coefficient vectors of the trans-
mitted electric field te, u(0), and d(0) in layer 0. This relationship is

te = W
(0)
1 d(0). (5.129)

Substituting these relations into Eq. (5.68),[
[W(L)]

−1
re

[W(0)]
−1
te

]
=

[
T0
L
uu R0
L

ud

R0
L
du T0
L

dd

] [
o

[W(L)]
−1
ie

]
. (5.130)

is obtained, since u(0) = o (where o is a zero vector with all zero elements).
From this equation we obtain

re = W(L)R0
L
ud [W(L)]−1ie, (5.131)

te = W(0)T0
L
dd [W(L)]−1ie. (5.132)

Using these coefficient vectors, the (power) reflection and (power) transmission
diffraction efficiencies for the m-th order are respectively,

RTE
m = |rem|2, (5.133)

TTE
m = |tem|2

Re(k
(0)
zm)

Re(k
(L)
z0 )

. (5.134)

Similarly, each coefficient vectors for the magnetic field in the case of TM
polarization are

rh = W(L)R0
L
ud [W(L)]−1ih, (5.135)

th = W(0)T0
L
dd [W(L)]−1ih. (5.136)

Thus, the m-th-order reflection and transmission diffraction efficiencies are
respectively,

RTM
m = |rhm|2, (5.137)

TTM
m = |thm|2

Re(k
(0)
zm/ε(0))

Re(k
(L)
z0 /ε

(L))
. (5.138)

5.2.5 Fields in the grating region

In the T matrix method, the amplitude of each diffracted wave in the grating
region can be calculated directly. However, the S matrix method requires some
ingenuity to obtain these amplitudes. Consider the field in layer l. The partial
S matrices [

u(l)

d(0)

]
= S0
l

[
o
d(l)

]
, (5.139)[

u(L)

d(l)

]
= Sl
L

[
u(l)

d(L)

]
, (5.140)
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are used. From Eq. (5.139), we obtain

d(0) = T0
l
ud d

(l), (5.141)

d(l) = [T0
l
ud ]−1d(0). (5.142)

Similarly, from Eq. (5.140), we obtain

u(L) = Tl
L
uu u(l) + Rl
L

ud d(L), (5.143)

u(l) = (Tl
L
uu )−1(u(L) −Rl
L

ud d(L)). (5.144)

After obtaining the transmission coefficient vector d(0) and reflection coeffi-
cient vector u(L) using the S matrix of the entire system, d(l) and u(l) can
be obtained by using the partial S matrix and the above equations. However,
this method is unstable. This is because Tdd and Tuu may contain elements
with very small absolute values, in which case their inverse matrices diverge.
The following method can be used to avoid this instability [34].

From Eqs. (5.139) and (5.140), we obtain

u(l) = R0
l
ud d

(l), (5.145)

d(l) = Rl
L
du u(l) + Tl
L

dd d(L). (5.146)

Substituting Eq. (5.146) into Eq. (5.145) yields

u(l) = R0
l
ud (Rl
L

du u(l) + Tl
L
dd d(L)), (5.147)

u(l) = R0
l
ud Rl
L

du u(l) + R0
l
ud Tl
L

dd d(L), (5.148)

u(l)(I−R0
l
ud Rl
L

du ) = R0
l
ud Tl
L

dd d(L), (5.149)

u(l) = (I−R0
l
ud Rl
L

du )−1R0
l
ud Tl
L

dd d(L). (5.150)

Note that (I − R0
l
ud Rl
L

du )−1 does not diverge even when R0
l
ud and Rl
L

du

contain elements with very small absolute values. Substituting Eq. (5.150)
into Eq. (5.146) yields d(l).

However, there is still a problem: calculating the field using d(l) leads to
instability, since we are calculating an exponentially increasing evanescent

field. To avoid this instability, we can use the coefficient vector d̃
(l)

at the
upper interface of layer l shown in Figure 5.4. When the matrix is symmetric,

The relationship of ũ(l) and d̃
(l)

to u(l+1) and d(l+1) is given by[
W(l+1) W(l+1)

V(l+1) −V(l+1)

] [
u(l+1)

d(l+1)

]
=

[
W(l) W(l)

V(l) −V(l)

][
ũ(l)

d̃
(l)

]
. (5.151)

Using the following relation,[
W(l) W(l)

V(l) −V(l)

]−1

=
1

2

[
W(l)−1

V(l)−1

W(l)−1 −V(l)−1

]
, (5.152)
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we obtain[
ũ(l)

d̃
(l)

]
=

1

2

[
W(l)−1

V(l)−1

W(l)−1 −V(l)−1

] [
W(l+1) W(l+1)

V(l+1) −V(l+1)

] [
u(l+1)

d(l+1)

]

=
1

2

[
W(l)−1

W(l+1) + V(l)−1
V(l+1) W(l)−1

W(l+1) −V(l)−1
V(l+1)

W(l)−1
W(l+1) −V(l)−1

V(l+1) W(l)−1
W(l+1) + V(l)−1

V(l+1)

]

×
[
u(l+1)

d(l+1)

]
. (5.153)

Using u(l) and d̃
(l)

obtained in this way, the amplitude in the layer l can be
calculated stably. For example, in the case of TM polarization,

U (l)
ym(z) =

∑
j

w
(l)
mj{u

(l)
j exp(ik

(l)
zj z) + d̃

(l)
j exp[ik

(l)
zj (h(l) − z)]}. (5.154)

5.2.6 Recursive calculation from the incident side of the
S matrix

In order to calculate the field in the grating region with the above method,
the S matrix, Sl
L must be obtained. This can be obtained recursively from
the incident side.

The S matrix from layer l + 1 to layer L is expressed as[
u(L)

d(l+1)

]
=

[
Tl+1
L
uu Rl+1
L

ud

Rl+1
L
du Tl+1
L

dd

] [
u(l+1)

d(L)

]
. (5.155)

The S matrix from layer l to layer L is expressed as[
u(L)

d(l)

]
=

[
Tl
L
uu Rl
L

ud

Rl
L
du Tl
L

dd

] [
u(l)

d(L)

]
. (5.156)

From Eq. (5.155),[
I −Rl+1
L

ud

O −Tl+1
L
dd

] [
u(L)

d(L)

]
=

[
Tl+1
L
uu O

Rl+1
L
du −I

] [
u(l+1)

d(l+1)

]
(5.157)

is obtained. From Eqs. (5.85) and (5.157),[
Tl+1
L
uu O

Rl+1
L
du −I

]−1 [
I −Rl+1
L

ud

O −Tl+1
L
dd

] [
u(L)

d(L)

]

=

[
I −r̃

(l)
ud

O −t̃
(l)
dd

]−1 [
t̃
(l)
uu O

r̃
(l)
du −I

] [
u(l)

d(l)

]
(5.158)

is obtained. Comparing Eq. (5.158) with Eq. (5.87), we see that it is just the
following replacements

r̃
(l)
ud → Rl+1
L

ud , (5.159)
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t̃
(l)
dd → Tl+1
L

dd , (5.160)

r̃
(l)
du → Rl+1
L

du , (5.161)

t̃(l)
uu → Tl+1
L

uu , (5.162)

R0
l−1
ud → r̃

(l)
ud, (5.163)

T0
l−1
dd → t̃

(l)
dd , (5.164)

R0
l−1
du → r̃

(l)
du, (5.165)

T0
l−1
uu → t̃(l)

uu. (5.166)

Applying these replacements to Eq. (5.87) and using Eq. (5.156), we obtain

Tl
L
uu = Tl+1
L

uu [I− r̃
(l)
udR

l+1
L
du ]−1t̃(l)

uu, (5.167)

Rl
L
ud = Rl+1
L

ud + Tl+1
L
uu r̃

(l)
ud[I−Rl+1
L

du r̃
(l)
ud]
−1Tl+1
L

dd , (5.168)

Rl
L
du = r̃

(l)
du + t̃

(l)
ddR

l+1
L
du [I− r̃

(l)
udR

l+1
L
du ]−1t̃(l)

uu, (5.169)

Tl
L
dd = t̃

(l)
dd [I−Rl+1
L

du r̃
(l)
ud]
−1Tl+1
L

dd . (5.170)

5.3 Two-dimensional grating

The RCWA method for a two-dimensional (2D) grating can be calculated ba-
sically in the same way as for a one-dimensional (1D) grating. Since the plane
of incidence on a one-dimensional grating is the plane containing the grating
vector, the polarization components in the x- and y-directions are not cou-
pled, and only the electric field in the y-direction for TE polarization and the
magnetic field in the y-direction for TM polarization should be considered.
Of course, when the plane of incidence is other than the plane containing
the grating vector (conical diffraction), coupling occurs between these two.
For more information on conical diffraction, see Refs. [24, 26]. However, in
a two-dimensional grating, the two are always coupled, so both polarizations
cannot be treated separately. Another difference is that diffracted light in two
directions, x and y, must be considered; in a 1D grating, the various coef-
ficients representing diffracted light can be expressed as 1D vectors, but in
a 2D grating, these coefficients become a second-order tensor, which would
be computationally difficult. Therefore, in a 2D grating, the elements of this
second-order tensor are rearranged into a single column and treated as a vec-
tor. These two points are the difference from the case of a 1D grating. As a
result, the amount of computation is much larger than for a 1D grating.
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5.3.1 Two-dimensional grating in Cartesian coordinate
system

Consider a 2D periodic structure with period Λx in the x-direction and period
Λy in the y-direction. The electric and magnetic fields in the grating domain
can be written as follows

E(l) =
∑
m,n

[S(l)
xmn(z)x̂+ S(l)

ymn(z)ŷ + S(l)
zmn(z)ẑ] exp[i(kxmx+ kyny)], (5.171)

H(l) = i

(
ε0

µ0

)1/2∑
m,n

[U (l)
xmn(z)x̂+U (l)

ymn(z)ŷ+U (l)
zmn(z)ẑ] exp[i(kxmx+kyny)].

(5.172)
Note that the imaginary unit i at the beginning of the right-hand side of
Eq. (5.172) is only to prevent the imaginary unit from appearing in the deriva-
tion of the equation, and has no intrinsic meaning. Here, x̂, ŷ and ẑ are unit
vectors. m and n are diffraction orders in the x- and y-directions, respectively.
kxm and kyn are the x and y components of the wave vector of the diffracted
wave. In the following, (l) at the right shoulder of the variable meaning layer
l is omitted to avoid complication in the equation.

If the in-plane wave vector of the incident wave are [kx0, ky0], the in-plane
wave vector of the diffracted waves are given by

kxm = kx0 +mKx, (5.173)

kyn = ky0 + nKy, (5.174)

where [Kx,Ky] is the lattice vector:

Kx =
2π

Λx
, (5.175)

Ky =
2π

Λy
. (5.176)

From Maxwell’s equation (Faraday’s equation, Eq. (5.4))

∂Ez
∂y
− ∂Ey

∂z
= iωµ0Hx, (5.177)

∂Ex
∂z
− ∂Ez

∂x
= iωµ0Hy, (5.178)

∂Ey
∂x
− ∂Ex

∂y
= iωµ0Hz (5.179)

are obtained. Substituting Eqs. (5.171) and (5.172) into Eqs. (5.177), (5.178),
and (5.179),

iKySz − S′y = −Ux (5.180)

S′x − iKxSz = −Uy (5.181)
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iKxSy − iKySx = −Uz (5.182)

are obtained in matrix form, where prime ′ expresses the derivative with re-
spect to k0z, and Kx and Ky are diagonal matrices of kxm/k0 and kyn/k0,
respectively. Specifically, Kx is a block diagonal matrix consisting of (2N + 1)
matrices Kx, that is,

Kx =


Kx O

Kx

. . .

O Kx

 (5.183)

and

Kx =
1

k0



kx,−N O
. . .

kx,−1

kx,0
kx,1

. . .

O kx,N


, (5.184)

where N is the maximum number of diffraction orders to be used in the
calculation. The matrix, Ky is

Ky =



Ky,−N O
. . .

Ky,−1

Ky,0

Ky,1

. . .

O Ky,N


, (5.185)

and

Ky,n =
kyn
k0

I, (5.186)

where the number of diagonal elements of Ky,n is (2N + 1). In addition,
Sa(a = x, y) is expressed as

Sa =



Sa,−N
...

Sa,−1

Sa,0
Sa,1

...
Sa,N


, (5.187)
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where

Sa,n =



Sa,n,−N
...

Sa,n,−1

Sa,n,0
Sa,n,1

...
Sa,n,N


. (5.188)

From Maxwell’s equations (Ampere’s equation, Eq. (5.7)),

∂Hz

∂y
− ∂Hy

∂z
= −iωε0ε(x, y)Ex, (5.189)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0ε(x, y)Ey, (5.190)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0ε(x, y)Ez (5.191)

are obtained. Here the dielectric constant ε(x, y) is expressed by a two-
dimensional Fourier series,

ε(x, y) =
∑
p,q

εp,q exp[i(pKxx+ qKyy)]). (5.192)

Substituting Eqs. (5.171), (5.172), and (5.192) into Eqs. (5.189), (5.190) and
(5.191),

iKyUz −U ′y = −ESx, (5.193)

U ′x − iKxUz = −ESy, (5.194)

iKxUy − iKyUx = −ESz (5.195)

are obtained in matrix form. Matrix E is a two-dimensional Toeplitz matrix

of Fourier coefficients ε
(l)
p,q. Specifically this is given by

E =


E0 E−1 E−2 . . . E−2N

E1 E0 E−1 . . . E−2N+1

E2 E1 E0 . . . E−2N+2

...
...

...
. . .

...
E2N E2N−1 E2N−2 . . . E0

 (5.196)

which is the Toeplitz matrix of the submatrix En. Matrix En is also a Toeplitz
matrix and is given by

En =


ε0,n ε−1,n . . . ε−2N,n

ε1,n ε0,n . . . ε−2N+1,n

...
...

. . .
...

ε2N,n ε2N−1,n . . . ε0,n

 . (5.197)
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Eliminating Sz andUz from Eqs. (5.180), (5.181), (5.182), (5.193), (5.194),
and (5.195), we obtain
S′y
S′x
U ′y
U ′x

 =


O O KyE

−1Kx I−KyE
−1Ky

O O KxE
−1Kx − I −KxE

−1Ky

KxKy E−K2
y O O

K2
x −E −KxKy O O



Sy
Sx
Uy

Ux

 .
(5.198)

This equation can be separated into two equations[
S′y
S′x

]
= F

[
Uy

Ux

]
, (5.199)

and [
U ′y
U ′x

]
= G

[
Sy
Sx

]
, (5.200)

where

F =

[
KyE

−1Kx I−KyE
−1Ky

KxE
−1Kx − I −KxE

−1Ky

]
, (5.201)

G =

[
KxKy E−K2

y

K2
x −E −KxKy

]
. (5.202)

Substituting Eq. (5.200) into the derivative of both sides of Eq. (5.199)
with respect to k0z, we obtain[

S′′y
S′′x

]
= FG

[
Sy
Sx

]
, (5.203)

FG =

[
K2
x + (KyE

−1Ky − I)E Ky(E−1KxE−Kx)
Kx(E−1KyE−Ky) K2

y + (KxE
−1Kx − I)E

]
. (5.204)

Similarly, substituting Eq. (5.199) into the derivative of both sides of
Eq. (5.200) with respect to k0z yields[

U ′′y
U ′′x

]
= GF

[
Uy

Ux

]
, (5.205)

GF =

[
K2
y + E(KxE

−1Kx − I) (Kx −EKxE
−1)Ky

(Ky −EKyE
−1)Kx K2

x + E(KyE
−1Ky − I)

]
. (5.206)

For a homogeneous layer without grating and with dielectric constant ε

F =

[
1
εKyKx I− 1

εK
2
y

1
εK

2
x − I − 1

εKxKy

]
, (5.207)

G =

[
KxKy εI−K2

y

K2
x − εI −KxKy

]
, (5.208)
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then,

FG =

[
K2
x + K2

y − εI O
O K2

x + K2
y − εI

]
. (5.209)

Since this matrix is a diagonal matrix, we can omit the eigenvalue calculations
required below.

Let q2
j be the eigenvalue of the matrix FG in Eq. (5.203) and wjk be the

element of the eigenvector (where j, k = 1, 2, . . . , 2(2N + 1)2), Sx and Sy are
given by

Sy,k(z) =

2(2N+1)2∑
j=1

wjk[uj exp(k0qjz)+dj exp(−k0qjz)], for k = 1, . . . , (2N+1)2,

(5.210)

Sx,k(z) =

2(2N+1)2∑
j=1

wjk[uj exp(k0qjz) + dj exp(−k0qjz)],

for k = 1, . . . , (2N + 1)2, (5.211)

where Sx,k and Sy,k are the k-th element of vectors Sx and Sy, respectively.
Note that qj is used here as a convention, but this quantity corresponds to
ikzj/k0 in the case of a 1D grating.

Equations (5.210) and (5.211) can be written in matrix form as[
Sy
Sx

]
=
[

W W
] [ Φ+ O

O Φ−

] [
u
d

]
. (5.212)

Substituting Eq. (5.212) into Eq. (5.199) yields[
Uy

Ux

]
= F−1

[
QW −QW

] [ Φ+ O
O Φ−

] [
u
d

]
, (5.213)

and finally the following equation is obtained:
Sy
Sx
Uy

Ux

 =

[
W W

F−1QW −F−1QW

] [
Φ+ O
O Φ−

] [
u
d

]
. (5.214)

In Eq. (5.214), with

S =

[
Sy
Sx

]
, (5.215)

U =

[
Uy

Ux

]
, (5.216)

we obtain the following equation:[
S
U

]
=

[
W W
V −V

] [
Φ+ O
O Φ−

] [
u
d

]
, (5.217)
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where V = F−1QW. This equation has the same form as that for a 1D grating.
Therefore, the same manner can be used to obtain the boundary conditions
as for the S matrix in the symmetric case.

5.3.2 Improvement of convergence

When considering convergence, Lalanne [28] suggested that

G† =

[
KxKy A−1 −K2

y

K2
x −E −KxKy

]
(5.218)

should be used instead of G, as in the case of TM polarization in a 1D grating.
However, this has not been very successful. On the other hand, Li [35] proposed
the correct way to obtain the Toeplitz matrix of the Fourier series of the
distribution of the dielectric constant. Here we introduce new symbols d·e and
b·c as follows:

dεemn =
1

Λx

∫ Λx

0

ε(x, y) exp[−i(m− n)Kxx]dx, (5.219)

bεcmn =
1

Λy

∫ Λy

0

ε(x, y) exp[−i(m− n)Kyy]dy. (5.220)

The obtained d·e and b·c are functions of y and x, respectively. We further
define bd·ec and db·ce as follows,

bdεecmn,pq = b{d1/εe−1}mpcnq =
1

Λy

∫ Λy

0

{d1/εe−1}mp(y) exp[−i(n− q)Kyy]dy,

(5.221)

dbεcemn,pq = d{b1/εc−1}nqemp =
1

Λx

∫ Λx

0

{b1/εc−1}nq(x) exp[−i(m− p)Kxx]dx.

(5.222)

Using these, we introduce an alternative G defined by

G‡ =

[
KxKy bdεec −K2

y

K2
x − dbεce −KxKy

]
. (5.223)

Next, we show the specific form of the matrix. We will discuss the case
of bdεec. First, 1/ε(x, y) is sampled equally spaced in two dimensions on the
unit cell. The number of samplings is M ×M . However, M > 4N + 1 must
be satisfied in order to construct the Toeplitz matrix. Then, at each sampling
point y = yp in the y-direction, calculate the Fourier coefficients from the
−2Nth order to the 2Nth order with respect to x, create the Toeplitz matrix,
and obtain its inverse matrix α(yp). Then, the elements αmn(yp) of this inverse
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matrix are arranged in a single row. For all yp, we obtain the following matrix:

d1/εe−1 =

α11(y1) α12(y1) . . . α1,2N+1(y1) α21(y1) . . . α2N+1,2N+1(y1)
α11(y2) α12(y2) . . . α1,2N+1(y2) α21(y2) . . . α2N+1,2N+1(y2)

...
...

...
...

...
...

...
...

...
...

α11(yM ) α12(yM ) . . . α1,2N+1(yM ) α21(yM ) . . . α2N+1,2N+1(yM )

 .
(5.224)

Next, the Fourier coefficients are computed with respect to y (in the vertical
direction of the above matrix) and left to the ±2Nth order, we obtain

Fy
(
d1/εe−1

)
=



β
(−2N)
11 β

(−2N)
12 . . . β

(−2N)
1,2N+1 β

(−2N)
21 . . . β

(−2N)
2N+1,2N+1

...
...

. . .
...

...
. . .

...

β
(−1)
11 β

(−1)
12 . . . β

(−1)
1,2N+1 β

(−1)
21 . . . β

(−1)
2N+1,2N+1

β
(0)
11 β

(0)
12 . . . β

(0)
1,2N+1 β

(0)
21 . . . β

(0)
2N+1,2N+1

β
(1)
11 β

(1)
12 . . . β

(1)
1,2N+1 β

(1)
21 . . . β

(1)
2N+1,2N+1

...
...

. . .
...

...
. . .

...

β
(2N)
11 β

(2N)
12 . . . β

(2N)
1,2N+1 β

(2N)
21 . . . β

(2N)
2N+1,2N+1


,

(5.225)
where Fy denotes the discrete Fourier transform in the y-direction. Matrix
bdεec is obtained by rearranging these elements as follows:

bdεec =


β(0) β(−1) . . . β(−2N)

β(1) β(0) . . . β(−2N+1)

...
...

. . .
...

β(2N) β(2N−1) . . . β(0)

 , (5.226)

where

β(n) =


β

(n)
11 β

(n)
12 . . . β

(n)
1,2N+1

β
(n)
21 β

(n)
22 . . . β

(n)
2,2N+1

...
...

. . .
...

β
(n)
2N+1,1 β

(n)
2N+1,2 . . . β

(n)
2N+1,2N+1

 . (5.227)

Matrix dbεce is obtained by rearranging the order of the operations on x and
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on y in a similar calculation. That is

Fx
(
b1/εc−1

)
=

γ
(−2N)
11 . . . γ

(−1)
11 γ

(0)
11 γ

(1)
11 . . . γ

(2N)
11

γ
(−2N)
12 . . . γ

(−1)
12 γ

(0)
12 γ

(1)
12 . . . γ

(2N)
12

...
. . .

...
...

...
. . .

...

γ
(−2N)
1,2N+1 . . . γ

(−1)
1,2N+1 γ

(0)
1,2N+1 γ

(1)
1,2N+1 . . . γ

(2N)
1,2N+1

γ
(−2N)
21 . . . γ

(−1)
21 γ

(0)
21 γ

(1)
21 . . . γ

(2N)
21

...
. . .

...
...

...
. . .

...

γ
(−2N)
2N+1,2N+1 . . . γ

(−1)
2N+1,2N+1 γ

(0)
2N+1,2N+1 γ

(1)
2N+1,2N+1 . . . γ

(2N)
2N+1,2N+1


.

(5.228)

Finally,

dbεce =


γ11 γ12 . . . γ1,2N+1

γ21 γ22 . . . γ2,2N+1

...
...

. . .
...

γ2N+1,1 γ2N+1,2 . . . γ2N+1,2N+1

 , (5.229)

γmn =


γ

(0)
mn γ

(−1)
mn . . . γ

(−2N)
mn

γ
(1)
mn γ

(0)
mn . . . γ

(−2N+1)
mn

...
...

. . .
...

γ
(2N)
mn γ

(2N−1)
mn . . . γ

(0)
mn

 . (5.230)

5.3.3 Two-dimensional gratings in an oblique coordinate
system

In the case of a triangular lattice, an oblique coordinate system as shown
in Figure 5.5 is more convenient than a Cartesian coordinate system. When
the same diffraction order is used in the calculation of triangular lattice, the
results using the oblique coordinate system are

√
3 times higher accuracy than

those using the Cartesian coordinate system.
The RCWA method in an oblique coordinate system has been proposed

by Li [35]. Consider the coordinate system shown in Figure 5.5, where x3 is
perpendicular to the paper surface. In the case of a triangular lattice, d1 =
d2 and ζ = 30◦, but this method can handle other than ζ = 30◦. In the
Cartesian coordinate system, the basis vectors of the real space and those of
the reciprocal lattice space are in the same direction. However, in an oblique
coordinate system, they are not in the same direction. Here, the concepts of
covariant vectors and contravariant vectors are used. Covariant basis vectors
are represented by b1, b2, and b3. On the other hand, the contravariant basis
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FIGURE 5.5
Oblique coordinate system.

vectors are represented by b1, b2, and b3 (see Figure 5.5). The relation between
the two is as follows:

bi · bj = δji , (5.231)

where δji is Kronecker’s delta. Using these basis vectors, any vector A can be
expressed as follows:

A = x1b
1 + x2b

2 + x3b
3 = x1b1 + x2b2 + x3b3. (5.232)

As a rule, superscript vectors have subscript coefficients and subscript vectors
have superscript coefficients.

The coordinate vectors are represented by covariant basis vectors, and
electric field, magnetic field, and wave vectors are represented by contravariant
basis vectors. That is, the wave vector k is represented by

k = αb1 + βb2 + γb3. (5.233)

The relationship between the wave vector [k1, k2, k3] in the oblique coordinate
system and the wave vector [kx, ky, kz] in the Cartesian coordinate system is
given by

kx = α, (5.234)

ky = (β − α sin ζ)/ cos ζ = β sec ζ − α tan ζ, (5.235)

kz = γ. (5.236)

From these relations,

|k|2 =
α2 + β2 − 2αβ sin ζ

cos2 ζ
+ γ2 (5.237)

is obtained.
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The electric and magnetic fields are written in layer l as follows:

E(l) =
∑
m,n

[S
(l)
1mn(z)x̂1 + S

(l)
2mn(x3)x̂2 + S

(l)
3mn(x3)x̂3] exp[i(k1mx1 + k2nx2)],

(5.238)

H(l) = i

(
ε0

µ0

)1/2

×
∑
m,n

[U
(l)
1mn(x3)x̂1 + U

(l)
2mn(x3)x̂2 + U

(l)
3mn(x3)x̂3] exp[i(k1mx1 + k2nx2)],

(5.239)

where k1m = k10 + mK1, k2n = k20 + nK2, K1 = 2π/Λ1, and K2 = 2π/Λ2.
k10 and k20 are the components of the in-plane wave vector of the incident
light. As before, the superscript (l) on the right shoulder is omitted hereafter.
From Maxwell’s equations (Faraday’s equation, Eq. (5.4)),

∂E3

∂x2
− ∂E2

∂x3
= iωµ0 sec ζ(H1 − sin ζH2), (5.240)

∂E1

∂x3
− ∂E3

∂x1
= iωµ0 sec ζ(H2 − sin ζH1), (5.241)

∂E2

∂x1
− ∂E1

∂x2
= iωµ0 cos ζH3 (5.242)

are obtained. Substituting Eqs. (5.238) and (5.239) into Eqs. (5.240), (5.41),
and (5.242), we obtain the following matrix equations:

iK2S3 − S′2 = − sec ζ(U1 − sin ζU2), (5.243)

S′1 − iK1S3 = − sec ζ(U2 − sin ζU1), (5.244)

iK1S2 − iK2S1 = − cos ζU3, (5.245)

where prime ′ denotes the derivative with respect to k0x3. Matrices K1 and
K2 are diagonal ones of k1m/k0 and k2n/k0, respectively.

From Maxwell’s equations (Ampere’s equation, Eq. (5.7)),

∂H3

∂x2
− ∂H2

∂x3
= −iωε0ε(x1, x2) sec ζ(E1 − sin ζE2), (5.246)

∂H1

∂x3
− ∂H3

∂x1
= −iωε0ε(x1, x2) sec ζ(E2 − sin ζE1), (5.247)

∂H2

∂x1
− ∂H1

∂x2
,= −iωε0ε(x1, x2) cos ζE3 (5.248)

are obtained. Next, we express the dielectric constant ε(x1, x2) as its Fourier
series as

ε(x1, x2) =
∑
p,q

εp,q exp[i(pK1x1 + qK2x2)]. (5.249)
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Substituting Eqs. (5.238), (5.239), and (5.249) into Eqs. (5.246), (5.247), and
(5.248), we obtain

iK2U3 −U ′2 = −E sec ζ(S1 − sin ζS2) (5.250)

U ′1 − iK1U3 = −E sec ζ(S2 − sin ζS1) (5.251)

iK1U2 − iK2U1 = −E cos ζS3 (5.252)

in matrix form, where the matrix E is obtained by replacing εp,q in Eqs. (5.196)
and (5.197) by εp,q in Eq. (5.249).

From Eqs. (5.243), (5.244), and (5.252), eliminating S3 yields

cos ζ

[
S′2
S′1

]
= F

[
U2

U1

]
=

[
K2E

−1K1 − sin ζI I−K2E
−1K2

K1E
−1K1 − I sin ζI−K1E

−1K2

] [
U2

U1

]
.

(5.253)

Similarly, from Eqs. (5.245), (5.250), and (5.251), eliminating U3 yields

cos ζ

[
U ′2
U ′1

]
= G

[
S2

S1

]
=

[
K1K2 − sin ζE E−K2

2

K2
1 −E sin ζE−K1K2

] [
S2

S1

]
.

(5.254)

Substituting Eq. (5.254) into the derivative of both sides of Eq. (5.253) with
respect to k0x3, we obtain

cos2 ζ

[
S′′2
S′′1

]
= FG

[
S2

S1

]
. (5.255)

For a homogeneous dielectric constant layer with no modulation,

F =

[
1
εK1K2 − sin ζI I− 1

εK
2
2

1
εK

2
1 − I sin ζI− 1

εK1K2

]
, (5.256)

G =

[
K1K2 − ε sin ζI εI−K2

2

K2
1 − εI ε sin ζI−K1K2

]
, (5.257)

FG =

[
K2

1 + K2
2 − 2 sin ζK1K2 − ε cos2 ζI O

O K2
1 + K2

2 − 2 sin ζK1K2 − ε cos2 ζI

]
.

(5.258)

To improve convergence, instead of G

G‡ =

[
K1K2 − sin ζA−1 (cos2 ζbdεec+ sin2 ζA−1)−K2

2

K2
1 − (cos2 ζdbεce+ sin2 ζA−1) sin ζA−1 −K1K2

]
(5.259)

can be used, where the matrix A is obtained by replacing εp,q in Eqs. (5.196)
and (5.197) by the Fourier coefficients ε̃p,q of the reciprocal of the dielectric
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constant given by

1

ε(x1, x2)
=
∑
p,q

ε̃p,q exp[i(pK1x1 + qK2x2)]. (5.260)

Let q2
j cos2 ζ be the eigenvalues of the matrix FG in Eq. (5.255) and wjk

the eigenvectors (j, k = 1, 2, . . . , 2(2N + 1)2), S1 and S2 are given by

S2,k(x3) =

2(2N+1)2∑
j=1

wjk[uj exp(k0qjx3) + dj exp(−k0qjx3)],

for k = 1, . . . , (2N + 1)2, (5.261)

S1,k(x3) =

2(2N+1)2∑
j=1

wjk[uj exp(k0qjx3) + dj exp(−k0qjx3)],

for k = 1, . . . , (2N + 1)2, (5.262)

respectively. The above two can be written in matrix form as[
S2

S1

]
=
[

W W
] [ Φ+ O

O Φ−

] [
u
d

]
. (5.263)

Substituting Eq. (5.263) into Eq. (5.253) yields[
U2

U1

]
= cos ζF−1

[
QW −QW

] [ Φ+ O
O Φ−

] [
u
d

]
(5.264)

and finally the following equation is obtained:
S2

S1

U2

U1

 =

[
W W

cos ζF−1QW − cos ζF−1QW

] [
Φ+ O
O Φ−

] [
u
d

]
. (5.265)

In Eq. (5.265), letting

S =

[
S2

S1

]
(5.266)

U =

[
U2

U1

]
, (5.267)

we obtain the following equation[
S
U

]
=

[
W W

cos ζF−1QW − cos ζF−1QW

] [
Φ+ O
O Φ−

] [
u
d

]
. (5.268)

The following procedure is the same as before.
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5.4 Limitations of RCWA

In the RCWA method, calculations are performed by approximating arbitrary
grating shapes with staircase shapes. For example, can a sinusoidal or saw-
tooth grating be calculated with a sufficiently small error if the thickness of
one layer is sufficiently small and the number of layers is sufficiently large?
This problem was discussed by Popov et al. [29]. This problem becomes more
pronounced in the case of TM polarization in metallic gratings.

They approximated an aluminium diffraction grating with a sinusoidal sur-
face shape by a staircase with different number of layers and examined the
convergence of the solutions. They found that the order of the Fourier series
(diffraction order) required for convergence increases as the number of layers
increases, i.e. as the thickness of one layer decreases. The reason for this is that
in TM polarization, the discontinuity of the electric field causes the charge to
concentrate at the grating edges, generating a peak in the electric field (local-
ized surface plasmon). As the layer becomes thinner, the width of this peak
becomes smaller. Therefore, the order of the Fourier series required to repre-
sent it also increases. This problem arises because in staircase approximation,
the interface always includes right-angle corners.

5.5 Example of program code

An example program (rcwa.py) for a 1D RCWA is shown in Program A.5 in
the Appendix. The function Rcwa1d(pol, lambda0, kx0, period, layer,

norder) is the body of the RCWA. Each argument is

pol: Polarization of the incident light, ‘s’ or ‘p’.
lambda0: Wavelength of the incident light in vacuum, in µm.
kx0: In-plane wave number of incident light, in 1/µm.
period: The period of the grating, in µm.
layer: The structure of the grating (see below).
norder: total diffraction order taken into account in the calculation (2N+1

for ±N orders).

The layer that gives the structure of the grating (1-D periodic structure) is
given by a double list structure as follows:

layer = ((d0, n00, w00), (d1, n10, w10, n11, w11, . . .),

(d2, n20, w20, n21, w21, . . .), . . .)

where dl is the thickness of the l-th layer, nli is the (complex) refractive index
of the i-th medium composing one period of the l-th layer, wli is the amount of
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FIGURE 5.6
Model and parameters of a one-dimensional periodic structure (diffraction
grating).

the width of the i-th medium composing one period of the l-th layer normalized
by the period. The starting point of one period can be anywhere, but must
be the same for all layers. In the example grating shown in Figure 5.6,

layer = ((0, ns, 1), (d1, ns, w10, nc, w11, ns, w12),

(d2, ns, w20, nc, w21), (0, nc, 1)).

The thickness and the second and the following media in the first and the last
layers are ignored.

FIGURE 5.7
Calculated wavelength dependence of transmission and reflection diffraction
efficiencies.

The calculated results for an example structure is shown in Figure 5.7. The
assumed structure is a one-dimensional grating with d1 = d2 = 0.25 µm, ns =
1.5, nc = 1.0, w10 = 1/2, w11 = 1/3, w12 = 1/6, w20 = 1/3, w21 = 2/3, and
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Λ = 1 µm. The diffraction order taken into calculation is set to 2N + 1 = 21.
The incident light is TM(p) polarized at an incident angle 30◦. Note that the
calculation cannot be performed by RCWA when the in-plane wave numbers
of the incident and diffracted light coincide with the grating vector, because
the matrix becomes singular. Thus, the wavelength of the incident light was
slightly shifted from 0.5 µm to avoid this.



6

FDTD (Finite Difference Time Domain)
Method

The FDTD (Finite Difference Time Domain) method is a numerical method
for calculating electromagnetic fields invented by Yee. This method has the
following advantages:

(1) Modelling is independent of object geometry.
(2) Time response can be obtained.
(3) It is easy to program and suitable for parallel computation.

In exchange for these advantages, the FDTD method also has the following
weaknesses

(4) Large memory capacity and long computation time are required.
(5) Accuracy is not so high.

6.1 Introduction

In the FDTD method, the electric and magnetic fields, as well as the permit-
tivity and permeability, are discretized and represented by values at points
on a special lattice called the Yee grid, where the points defining the electric
and magnetic fields are mutually exclusive [36]. Also, in time discretization,
the time defining the electric field and the time defining the magnetic field are
different from each other. The FDTD method calculates the time evolution
for the initial electromagnetic field given on these grid points.

An example of the Yee grid in the one-dimensional (1D) case is shown in
Figure 6.1. It is the case with only Ex electric field component in x-direction
and Hy magnetic field component in y-direction on z-axis as

Ex|nk = Ex(k∆z, n∆t), (6.1)

Hy|
n+ 1

2

k+ 1
2

= Hy

[(
k +

1

2

)
∆z,

(
n+

1

2

)
∆t)

]
, (6.2)

where ∆z and ∆t are the sampling intervals in z-direction and time. In FDTD,
the electric field Ex|nk is calculated from the electric field Ex|n−1

k and the mag-

netic fields Hy|n−1/2
k−1/2 and Hy|n−1/2

k+1/2 . The magnetic field Hy|n+1/2
k+1/2 is calculated
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t = nΔt

t = (n-1/2)Δt
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z
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z
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H
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FIGURE 6.1
One-dimensional FDTD.

from the magnetic field Hy|n−1/2
k+1/2 and the electric fields Ex|nk and Ex|nk+1. The

same calculation is repeated to obtain the time evolution of the fields.

6.2 Discretization and time evolution

The Yee grid for the general three-dimensional (3D) space is as shown in
Figure 6.2. Ampere’s law and Faraday’s law of Maxwell’s equations

∇×H = ε0ε
∂E

∂t
+ σE (6.3)

∇×E = −µ0µ
∂H

∂t
(6.4)

are used for time evolution, where E and H are the electric and magnetic
field vectors, respectively, and ε0, µ0, ε, µ, and σ are the vacuum permittivity,
vacuum permeability, relative permittivity, relative permeability, and conduc-
tivity, respectively. In FDTD, the differential operations in these equations
with respect to time and space are replaced by central differences. If we take
out the x component from Eq. (6.3), we obtain

ε0ε
∂Ex
∂t

+ σEx =
∂Hz

∂y
− ∂Hy

∂z
. (6.5)
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Ex |i+1/2,j,k

Hz |i+1/2,j+1/2,k
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FIGURE 6.2
Yee grid for 3D space.

Replacing the derivative of Eq. (6.5) by the central difference, we obtain

ε0ε
Ex|ni+ 1

2 ,j,k
− Ex|n−1

i+ 1
2 ,j,k

∆t
+ σ

Ex|ni+ 1
2 ,j,k

+ Ex|n−1
i+ 1

2 ,j,k

2

=
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

∆y
−
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

∆z
, (6.6)

Ex|ni+ 1
2 ,j,k

=

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
Ex|n−1

i+ 1
2 ,j,k

+

[
2∆t

(2ε0ε+ σ∆t)∆y

](
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
−
[

2∆t

(2ε0ε+ σ∆t)∆z

](
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
. (6.7)

Similarly for y and z,

Ey|ni,j+ 1
2 ,k

=

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
Ey|n−1

i,j+ 1
2 ,k

+

[
2∆t

(2ε0ε+ σ∆t)∆z

](
Hx|

n− 1
2

i,j+ 1
2 ,k+ 1

2

−Hx|
n− 1

2

i,j+ 1
2 ,k−

1
2

)
−
[

2∆t

(2ε0ε+ σ∆t)∆x
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i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i− 1
2 ,j+

1
2 ,k

)
, (6.8)
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Ez|ni,j,k+ 1
2

=

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
Ez|n−1

i,j,k+ 1
2

+

[
2∆t

(2ε0ε+ σ∆t)∆x

](
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n− 1
2

i+ 1
2 ,j,k+ 1

2
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2

i− 1
2 ,j,k+ 1

2

)
−
[

2∆t

(2ε0ε+ σ∆t)∆y

](
Hx|

n− 1
2

i,j+ 1
2 ,k+ 1

2

−Hx|
n− 1

2

i,j− 1
2 ,k+ 1

2

)
. (6.9)

The same rule is used to discretize Eq. (6.4). If we take out the x compo-
nent, we obtain

µ0µ
∂Hx

∂t
= −

(
∂Ez
∂y
− ∂Ey

∂z

)
, (6.10)

µ0µ
Hx|

n+ 1
2

i+ 1
2 ,j+

1
2 ,k
−Hx|

n− 1
2

i+ 1
2 ,j+

1
2 ,k

∆t

= −

(
Ez|ni+1,j+ 1

2 ,k
− Ez|ni,j+ 1

2 ,k

∆y
−
Ey|ni+ 1

2 ,j+1,k
− Ey|ni+ 1

2 ,j,k

∆z

)
, (6.11)

Hx|
n+ 1

2

i,j+ 1
2 ,k+ 1

2

=Hx|
n− 1

2

i,j+ 1
2 ,k+ 1

2

−
(

∆t

µ0µ∆y

)
(Ez|ni,j+1,k+ 1

2
− Ez|ni,j,k+ 1

2
)

+

(
∆t

µ0µ∆z

)
(Ey|ni,j+ 1

2 ,k+1 − Ey|
n
i,j+ 1

2 ,k
). (6.12)

Similarly for the y and z components,

Hy|
n+ 1

2

i+ 1
2 ,j,k+ 1

2

=Hy|
n− 1

2

i+ 1
2 ,j,k+ 1

2

−
(

∆t

µ0µ∆z

)
(Ex|ni+ 1

2 ,j,k+1 − Ex|
n
i+ 1

2 ,j,k
)

+

(
∆t

µ0µ∆x

)
(Ez|ni+1,j,k+ 1

2
− Ez|ni,j,k+ 1

2
), (6.13)

Hz|
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

=Hz|
n− 1

2

i+ 1
2 ,j+

1
2 ,k

−
(

∆t

µ0µ∆x

)
(Ey|ni+1,j+ 1

2 ,k
− Ey|ni,j+ 1

2 ,k
)

+

(
∆t

µ0µ∆y

)
(Ex|ni+ 1

2 ,j+1,k − Ex|
n
i+ 1

2 ,j,k
). (6.14)

In FDTD, the time evolution of the electric field is calculated using the
Eqs. (6.7)–(6.9), and the time evolution of the magnetic field is calculated
using the Eqs. (6.12)–(6.14). These calculations are repeated to obtain the
time evolution of the electromagnetic field distribution in 3D space.
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6.2.1 On the computer

Ex |i,j,k

Hz |i,j,k

Ex |i,j,k+1

Ey |i,j,k

Ex |i,j+1,k

Ex |i,j+1,k+1

Ey |i+1,j,k

Ey |i,j,k+1
Ey |i+1,j,k+1

Ez |i,j,k Ez |i+1,j,k

Ez |i+1,j+1,k

Ez |i,j+1,k

Hx |i,j,k Hx |i+1,j,k

Hy |i,j,k

Hy|i,j+1,k

Hz |i,j,k+1

x

y

z

FIGURE 6.3
Yee lattice on computer array.

In actual calculations, the electromagnetic field, permittivity, and perme-
ability are stored in arrays in the program code. However, arrays do not have
half-integer subscripts, so they must be stored in arrays with integer sub-
scripts. Usually, it is common to store them in arrays with subscripts except
for 1/2. The Yee lattice in this case is shown in Figure 6.3. With this subscript,
Eqs. (6.7)–(6.9) are:

Ex|ni,j,k =

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
Ex|n−1

i,j,k

+

[
2∆t

(2ε0ε+ σ∆t)∆y

](
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n− 1
2

i,j,k −Hz|
n− 1

2

i,j−1,k

)
−
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2∆t

(2ε0ε+ σ∆t)∆

](
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n− 1
2

i,j,k −Hy|
n− 1

2

i,j,k−1

)
, (6.15)

Ey|ni,j,k =

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
Ey|n−1

i,j,k

+

[
2∆t

(2ε0ε+ σ∆t)∆z

](
Hx|

n− 1
2

i,j,k −Hx|
n− 1

2

i,j,k−1

)
−
[

2∆t

(2ε0ε+ σ∆t)∆x

](
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n− 1
2
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2

i−1,j,k

)
, (6.16)
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Ez|ni,j,k =

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
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i,j,k

+

[
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(2ε0ε+ σ∆t)∆y
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2

i,j,k −Hx|
n− 1

2
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)
, (6.17)

and Eqs. (6.12)–(6.14) are

Hx|
n+ 1

2

i,j,k = Hx|
n− 1

2

i,j,k

−
(

∆t

µ0µ∆y

)(
Ez|ni,j+1,k − Ez|ni,j,k

)
+

(
∆t

µ0µ∆z

)(
Ey|ni,j,k+1 − Ey|ni,j,k

)
, (6.18)

Hy|
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i,j,k = Hy|
n− 1

2
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−
(

∆t

µ0µ∆z

)(
Ex|ni,j,k+1 − Ex|ni,j,k

)
+

(
∆t

µ0µ∆x

)(
Ez|ni+1,j,k − Ez|ni,j,k

)
, (6.19)

Hz|
n+ 1

2

i,j,k = Hz|
n− 1

2

i,j,k

−
(

∆t

µ0µ∆x

)(
Ey|ni+1,j,k − Ey|ni,j,k

)
+

(
∆t

µ0µ∆y

)(
Ex|ni,j+1,k − Ex|ni,j,k

)
. (6.20)

As time series data, only the last two temporal fields, E|n−1, E|n, H|n− 1
2 ,

and H|n+ 1
2 are required to be stored.

6.2.2 Cell size and time step

In actual calculations, an important question is how large the cell size and
time step should be used. Naturally, the Nyquist sampling theorem must be
satisfied, so the cell size must be finer than one-half the shortest wavelength
in the computational domain. The smaller the cell size, the smaller the error
that is called the grid dispersion, and the better the accuracy. In actual calcu-
lations, it is sufficient to make the cell size less than one-tenth of the shortest
wavelength. However, when dealing with nano-region structures such as for
plasmonics, this size is not sufficient to represent fine shapes, and cell sizes of
10 nm, 5 nm, or even smaller are often used.

Now, once the cell size is determined, a corresponding time step is re-
quired. In order for the solution to be stable with respect to time evolution,
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the relationship between time step and cell size must satisfy a condition for
stability called the Courant condition [37]:

∆t ≤ 1

v
√

1
∆x2 + 1

∆y2 + 1
∆z2

, (6.21)

where v is the maximum phase velocity of light in the medium. The ∆t must
satisfy this equation. When dealing with metals such as in plasmonics, special
considerations must be made. The phase velocity in a medium is given by
v = c/Re(n), where n is the refractive index of the medium and c is the
speed of light in vacuum. In a metal-free system, Re(n) ≥ 1 is usual and the
fastest phase velocity is the speed of light in vacuum. Therefore, ∆t should
be considered with respect to the speed of light in vacuum. However, when
a metal is included, for example, silver in the visible region, Re(n) ∼ 0.05.
In other words, the phase velocity of light in silver is 20 times faster than
that in vacuum (but the attenuation is extremely fast). Therefore, ∆t that
satisfies the Courant condition must also be set to 1/20 or less compared to
the case without metal. However, this condition can be relaxed to the Courant
condition for vacuum by using the treatment for dispersive media described
later.

6.2.3 Placement of an object on Yee grid

First, let us discuss the E- and H-cells. As shown in Figure 6.4, an E-cell is
a unit cell where the electric field is defined at the midpoint of the edge, and
an H-cell is a unit cell where the magnetic field is defined at the midpoint of
the edge.

Now, to place an object, the permittivity and the permeability of the
object must be set on the Yee grid according to the shape and location of the

FIGURE 6.4
E-cell and H-cell; arrows indicate electric field and their defined positions.
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Ez |i,j,k+1/2

Hx |i,j+1/2,k+1/2
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FIGURE 6.5
Distribution of permittivity: (a) the case where objects with four different
permittivities come into contact at the defined position of Ez, (b) more general
case.

object. Usually, the permittivity of the object at the location where the electric
field is defined and the permeability of the object at the location where the
magnetic field is defined are used. However, the following problem arises here.
As an example, consider the permittivity at the location of Ez as shown in
Figure 6.5. Figure 6.5(a) is the case where objects with four different relative
permittivities come into contact at the defined position of Ez|i,j,k+1/2. In this
case, the permittivity,

εi,j,k+1/2 =
1

4
(ε1 + ε2 + ε3 + ε4) (6.22)

can be used. In a general case such as Figure 6.5(b), it is sufficient to use
the average of the permittivity with the area occupied by the object with
each permittivity as the weight. However, it is cumbersome to program to
calculate the permittivity with such a method when the permittivity of the
actual object is set to the Yee grid. Therefore, it is often taken to approximate
the object shape as a collection of E-cells and to set the permittivity at all
defined positions of the electric field belonging to the E-cells to the same value.
In this case, the ideal permittivity at the boundary of objects with different
permittivity should be the average value as described above, but in practice
complicated problems remain, for example, how to program the permittivity at
the boundary between a non-dispersive object and an object following Drude
dispersion. Therefore, a simpler approach is to use the permittivity of the last
object placed instead of the average permittivity at the boundary.

Since the FDTD method is not a very accurate calculation method, there
is no noticeable decrease in accuracy by using such a rough approximation.
To improve the accuracy, it is effective to reduce the cell size.
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6.2.4 Perfect electric conductor and perfect magnetic
conductor

FIGURE 6.6
Perfect electric conductor with (a) E-cell boundary and (b) H-cell boundary.
The perfect electric conductor occupies in x ≥ PEC.

Inside a perfect conductor, both the electric and magnetic fields are zero.
Furthermore, at the surface of a perfect electrical conductor (PEC), the direc-
tion of the electric field is always perpendicular to the surface and its tangential
component is zero. Similarly, on the surface of a perfect magnetic conductor,
the direction of the magnetic field is always perpendicular to the surface and
its tangential component is zero. We will show how the electromagnetic field
at the surface of these perfect conductors is treated in the time evolution,
using examples of a PEC.

If the surface of a perfect electrical conductor is at x = PEC and coincides
with the E-cell boundary, as shown in Figure 6.6(a), simply,

Ey|PEC = 0, Ez|PEC = 0. (6.23)

On the other hand, if the H-cell boundary coincides with the surface of the
PEC, as shown in Figure 6.6(b), a little ingenuity is required. This is because a
part of Ez and Ey, which are necessary for the time evolution of the tangential
components of the magnetic field, Hy and Hz, on the surface of the PEC, are
contained in the PEC and cannot be calculated. To solve this problem, the
mirror image effect due to the surface of the PEC, that is:

Ey|PEC+ 1
2

= −Ey|PEC− 1
2
, (6.24)

Ez|PEC+ 1
2

= −Ez|PEC− 1
2
, (6.25)

are used. Substituting these relationships into Eqs. (6.13) and (6.14), on a



128 FDTD (Finite Difference Time Domain) Method

PEC surface perpendicular to the x-axis, we obtain

Hy|
n+ 1

2

i+ 1
2 ,j,k+ 1

2

= Hy|
n− 1
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i+ 1
2 ,j,k+ 1

2

−
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)
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n
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2 ,j,k
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− 2

(
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µ0µ∆x
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2
, (6.26)
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1
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i+ 1
2 ,j+

1
2 ,k

+ 2

(
∆t

µ0µ∆x

)
Ey|ni,j+ 1

2 ,k

+

(
∆t

µ0µ∆y

)
(Ex|ni+ 1

2 ,j+1,k − Ex|
n
i+ 1

2 ,j,k
).

(6.27)

The same approach can be used for the case of perfect magnetic conductors.

6.2.5 Reduction of computational complexity using the
symmetry of the system

FIGURE 6.7
Symmetry of the system.

If there is symmetry throughout the system, the computational complexity
can be reduced to 1/2, 1/4, or even 1/8. Assume that the permittivity and
the permeability distributions of the object and medium are mirror symmetric
about the plane containing the centre of the system. Both the electric and
magnetic fields cannot have mirror symmetry at the same time. This is because
they constitute a right-handed system, so if the electric field is symmetric, the
magnetic field will be antisymmetric. And conversely, if the magnetic field is
symmetric, then the electric field is antisymmetric. As an example, consider
the case where the object and the incident electric field are mirror symmetric
with respect to the x = 0 plane as shown in Figure 6.7(a). In this case,
the magnetic field is antisymmetric about the x = 0 plane, and the relation
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between the electric and magnetic fields are as follows:

Ex(−x, y, z) = −Ex(x, y, z),

Ey(−x, y, z) = Ey(x, y, z),

Ez(−x, y, z) = Ez(x, y, z), (6.28)

Hx(−x, y, z) = Hx(x, y, z),

Hy(−x, y, z) = −Hy(x, y, z),

Hz(−x, y, z) = −Hz(x, y, z). (6.29)

Thus, in the x = 0 plane, the antisymmetric field is zero. Specifically,

Ex(0, y, z) = 0,

Hy(0, y, z) = 0,

Hz(0, y, z) = 0. (6.30)

This condition is automatically satisfied by placing a perfect magnetic conduc-
tor (PMC) on one side of the x = 0 plane. On the other hand, if the electric
field is antisymmetric as shown in Figure 6.7(b), the opposite is true,

Hx(0, y, z) = 0,

Ey(0, y, z) = 0,

Ez(0, y, z) = 0. (6.31)

This condition is automatically satisfied by placing a PEC on one side of the
x = 0 plane. In both cases, we can see that we only need to calculate the half
x ≥ 0 or x ≤ 0 region of the system. Furthermore, if the x = 0 and y = 0
planes are both centres of mirror symmetry, as shown in Figure 6.7(c), we can
reduce the amount of calculation to a quarter by placing perfect magnetic and
perfect electric conductors in the respective symmetry plane.

To set the perfect magnetic and perfect electric conductors on one side of
the x = 0 plane, the H-cell boundary must coincide with x = 0 in the former
case and the E-cell boundary in the latter. E-cells and H-cells are defined as
Figure 6.4 for the defined location of the electric field. However, if we want
to calculate symmetric and antisymmetric cases for the same system, we will
need to shift the position of the Yee grid to the object for each symmetry.
If this is not desired, then the same ingenuity as described in the previous
section is required.

Consider the case where the E-cell boundary is aligned with the x = 0
plane. If the electric field is antisymmetric, we only need to place a perfect
electric conductor in the x = 0 plane. Next, consider the case where the electric
field is symmetric. As mentioned above, the conditions that must be satisfied
in the x = 0 plane are

Ex = Hy = Hz = 0. (6.32)
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However, in the Yee grid these values are not defined in the x = 0 plane.
Therefore, we can only use the values at x = ±∆x/2. From symmetry, we
obtain

Hy

(
−∆x

2
, y, z

)
= −Hy

(
∆x

2
, y, z

)
, (6.33)

Hz

(
−∆x

2
, y, z

)
= −Hz

(
∆x

2
, y, z

)
. (6.34)

Consider the case where the object is defined in the region of x ≥ 0 (i ≥ 0).
Using the relationship between Eqs. (6.33) and (6.34), and between Eqs. (6.8)
and (6.9), we obtain
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, (6.35)
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2
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2 ,k+ 1

2

−Hx|
n− 1

2

0,j− 1
2 ,k+ 1

2

)
. (6.36)

We can calculate Ey and Ez at x = 0 according to these equations.

6.3 Dispersive medium

When dealing with dielectric materials, it is often not so problematic if
the permittivity is constant in the frequency region of interest. However,
in the case of metals, the permittivity (ideally) follows a Drude dispersion,
so the dispersion (frequency dependence of the permittivity) cannot be ig-
nored in most cases. Also, in single-frequency calculations, one might think
that a medium with negative relative permittivity, such as a metal, can be
treated in the form σ/ω, using the electrical conductivity σ and the angular
frequency ω without considering dispersion, but the field diverges quickly in
the actual calculation of time evolution.
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The most commonly used methods for dealing with dispersive media are
the Recursive Convolution (RC) method, the Piecewise Linear Recursive Con-
volution (PLRC) method, which is an extension of the RC method, and the
Auxiliary Differential Equation (ADE) method. The ADE method, which has
a wide range of applications, is described here. The Drude and Lorentz dis-
persions are discussed.

6.3.1 Drude dispersion

The relative permittivity ε is given by

ε(ω) = ε∞ + χ(ω) (6.37)

where ε∞ is the relative permittivity in the limit of frequency infinity, and
χ(ω) is the electric susceptibility. In the Drude dispersion medium the electric
susceptibility χ(ω) is given by,

χ(ω) = −
ω2
p

ω2 + iΓω
(6.38)

where ωp is the plasma frequency, and Γ is the dumping constant. The relation
between the polarization P and the electric susceptibility χ is

P = ε0χE, (6.39)

and the relationship between the polarization current J and the polarization
P is

J =
∂P

∂t
. (6.40)

From these relationships,

J = ε0χ
∂E

∂t
(6.41)

is obtained.
Here we describe the method developed by Okoniewski et al. [38]. Substi-

tuting Eq. (6.38) into Eq. (6.41), we obtain

ω2J(ω) + iωΓJ(ω) = −ε0ω
2
p

∂E

∂t
. (6.42)

Using the fact that the time-dependent term of the polarization current J is
exp(−iωt), Eq. (6.42) in the time domain is

∂2J

∂t2
+ Γ

∂J

∂t
= ε0ω

2
p

∂E

∂t
. (6.43)

Integrating both sides once with respect to t, we obtain

∂J

∂t
+ ΓJ = ε0ω

2
pE. (6.44)



132 FDTD (Finite Difference Time Domain) Method

This is the desired Auxiliary Differential Equation (ADE). Discretizing
Eq. (6.44)

Jn − Jn−1

∆t
+ Γ

Jn + Jn−1

2
= ε0ω

2
p

En +En−1

2
, (6.45)

i.e.

Jn =
1− Γ∆t/2

1 + Γ∆t/2
Jn−1 +

ε0ω
2
p∆t/2

1 + Γ∆t/2
(En +En−1) (6.46)

is obtained. Updating Jn requires Jn−1, En−1, and En, but Jn is also re-
quired for updating En, so we have to be creative.

Ampere’s equation including the displacement current (σE) is

∇×H = ε0ε∞
∂E

∂t
+ σE + J . (6.47)

Here, the coefficient of the first term on the right-hand side is not ε0, but
ε0ε∞. Hereafter, we use this equation. Discretizing, Eq. (6.47), we obtain

∇×Hn− 1
2 = ε0ε∞

En −En−1

∆t
+ σ

En +En−1

2
+ Jn−

1
2 , (6.48)

where

Jn−
1
2 =

1

2
(Jn + Jn−1) (6.49)

for matching the time. Substituting Eq. (6.49) into Eq. (6.46), we obtain

Jn−
1
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1

2

(
1 +

1− Γ∆t/2
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)
(En +En−1). (6.50)

Substituting the Eq. (6.50) into Eq. (6.48),

∇×Hn− 1
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ε0ε∞
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is obtained. Therefore,
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]
. (6.52)
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The calculation procedure is to update En using Eq. (6.52) and then update
Jn using Eq. (6.46). Writing out the x component of Eq. (6.52),

Ex|ni+ 1
2 ,j,k

=

[
ε0ε∞

∆t −
σ
2 −

1
2

(
ε0ω

2
p∆t/2

1+Γ∆t/2

)]
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]Ex|n−1
i+ 1

2 ,j,k

+
1/∆y[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
− 1/∆z[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
− 1

2

1[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(

1 +
1− Γ∆t/2

1 + Γ∆t/2

)
Jx|n−1

i+ 1
2 ,j,k

. (6.53)

Also, if there is a current source j,

Ex|ni+ 1
2 ,j,k

=

[
ε0ε∞

∆t −
σ
2 −

1
2

(
ε0ω

2
p∆t/2

1+Γ∆t/2

)]
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]Ex|n−1
i+ 1

2 ,j,k

+
1/∆y[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
− 1/∆z[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
− 1

2

1[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
(

1 +
1− Γ∆t/2

1 + Γ∆t/2

)
Jx|n−1

i+ 1
2 ,j,k

− 1[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]jx|n− 1
2

i+ 1
2 ,j,k

. (6.54)

For actual calculations, the parameters, ε∞, ωp, and Γ obtained by fitting
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the Drude dispersion equation to the experimentally obtained permittivity
are used. For example, in the case of gold in the infrared region, there are
experimental values obtained by Padalka and Shklyarevskii [39]. These ex-
perimental values are the complex permittivity from 1 µm to 11 µm. The
parameters obtained by fitting to these experimental values are ε∞ = −16.74,
ωp = 1.034× 1016 Hz, and Γ = 5.384× 1013 Hz. However, the calculation re-
sults diverge quickly when using these values. This is because ε∞ is a negative
value. To avoid this, we can fix ε∞ = 1 and fit remaining parameters. In this
case, ωp = 1.038× 1016 Hz and Γ = 5.354× 1013 Hz are obtained.

If we are dealing with an arbitrary medium at a single frequency where the
real part of the permittivity is negative, we can treat it as a Drude dispersion
medium that will be satisfied at that frequency alone. Suppose that the relative
permittivity ε = ε′ + iε′′ at that frequency ω0 is given by

ε = ε′ + iε′′ = 1−
ω2
p

ω2
0 + iΓω

. (6.55)

From this equation,

ε′ =1−
ω2
p

ω2
0Γ2

, (6.56)

ε′′ =
ω2
pΓ

ω0(ω2
0 + Γ2)

, (6.57)

are obtained. Using these, we obtain

ωp =

√
1− ε′ + ε′′2

1− ε′
ω0, (6.58)

Γ =
ε′′

1− ε′
ω0, (6.59)

where ε∞ = 1.
The Drude dispersion can also be used when dealing with ENZ (Epsilon

Near Zero) medium, etc.

6.3.2 Lorentz dispersion

Here consider the case of Lorentz dispersion. In this case, the susceptibility in
the frequency domain is

χ(ω) =
∆εω2

p

ω2
p − 2iωΓ− ω2

. (6.60)

Substituting Eq. (6.60) into Eq. (6.41), we obtain

J(ω) = ε0

∆εω2
p

ω2
p − 2iωΓ− ω2

∂E

∂t
(6.61)
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ω2
pJ(ω)− 2iωΓJ(ω)− ω2J(ω) = ε0∆εω2

p

∂E

∂t
. (6.62)

Expressing the polarization current J in the time domain, we obtain

ω2
pJ + 2Γ

∂J

∂t
+
∂2J

∂t2
= ε0∆εω2

p

∂E

∂t
. (6.63)

This is the desired ADE.
Discretizing Eq. (6.63),

ω2
pJ

n−1 + 2Γ
Jn + Jn−2

2∆t
+
Jn − 2Jn−1 + Jn−2

(∆t)2

= ε0∆εω2
p

En −En−2

2∆t
(6.64)

is obtained. Furthermore, solving with respect to Jn,

Jn =
2− ω2

p(∆t)2

1 + Γ∆t
Jn−1 +

Γ∆t− 1

1 + Γ∆t
Jn−2

+
ε0∆εω2

p∆t

2 + 2Γ∆t
(En −En−2) (6.65)

is obtained.
As in the case of Drude dispersion, we use the following approximation as

Jn−
1
2 =

1

2
(Jn + Jn−1). (6.66)

Substituting Eq. (6.66) into Eq. (6.65), we obtain

Jn−
1
2 =

1

2

[
1 +

2− ω2
p(∆t)2

1 + Γ∆t

]
Jn−1 +

1

2

(
Γ∆t− 1

1 + Γ∆t

)
Jn−2

+
1

2

(
ε0∆εω2

p∆t

2 + 2Γ∆t

)
(En −En−2). (6.67)

Furthermore, substituting Eq. (6.67) into Eq. (6.48), we obtain

∇×Hn− 1
2 =

ε0ε∞
∆t

(En −En−1) +
σ

2
(En +En−1)

+
1

2

[
1 +

2− ω2
p(∆t)2

1 + Γ∆t

]
Jn−1 +

1

2

(
Γ∆t− 1

1 + Γ∆t

)
Jn−2

+
1

2

(
ε0∆εω2

p∆t

2 + 2Γ∆t

)
(En −En−2). (6.68)
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Therefore,

En =

[
ε0ε∞

∆t −
σ
2

][
ε0ε̃∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]En−1

−
1
2

(
ε0∆εω2

p∆t

2+2Γ∆t

)
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]En−2

+
1[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]
×

{
∇×Hn− 1

2 − 1

2

[
1 +

2− ω2
p(∆t)2

1 + Γ∆t

]
Jn−1 − 1

2

(
Γ∆t− 1

1 + Γ∆t

)
Jn−2

}
.

(6.69)

The calculation procedure is to update En using Eq. (6.69) and then update
Jn using Eq. (6.65). Writing out the x component of Eq. (6.69),

Ex|ni+ 1
2 ,j,k

=

[
ε0ε∞

∆t −
σ
2

][
ε0ε∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]Ex|n−1
i+ 1

2 ,j,k

−
1
2

(
ε0∆εω2

p∆t

2+2Γ∆t

)
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]Ex|n−2
i+ 1

2 ,j,k

+
1/∆y[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]
×
(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
− 1/∆z[

ε0ε∞
∆t + σ

2 + 1
2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]
×
(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
− 1

2

[
1 +

2−ω2
p(∆t)2

1+Γ∆t

]
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]Jx|n−1
i+ 1

2 ,j,k

− 1

2

(
Γ∆t−1
1+Γ∆t

)
[
ε0ε∞

∆t + σ
2 + 1

2

(
ε0∆εω2

p∆t

2+2Γ∆t

)]Jx|n−2
i+ 1

2 ,j,k
. (6.70)

As can be seen from this equation and from the Eq. (6.65), the Lorentz dis-
persion has a second-order pole, so the time evolution requires the values of
J and E not only before ∆t, but also before 2∆t.
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6.4 Perfectly matched layer (PML) absorbing boundary

Since the memory of a computer is finite, the computational domain is finite
as well. Therefore, if the periodic boundary condition is not used, the com-
putational domain will have an end face. At this end, one of the points for
the calculation of the difference does not exist, so the central difference can-
not be performed. Therefore, a perfect conductor must be used for the end
face. However, the perfect conductor produces a reflection of 100%, which is a
source of large error. Therefore, the electromagnetic field must be sufficiently
attenuated before reaching the perfect conductor. Here, we describe the Per-
fectly Matched Layer (PML) absorption boundary proposed by Berenger [40],
which is the most commonly used solution to this problem.

6.4.1 Split field PML

FIGURE 6.8
Incidence of electromagnetic waves from Medium 1 to Medium 2.

Consider the incidence from lossless Medium 1 to lossy Medium 2 (the
case where Medium 1 also has losses will be discussed later), as shown in Fig-
ure 6.8. The electromagnetic wave in Medium 2 attenuates as it propagates.
However, as mentioned above, in order to use this medium as an absorbing
boundary, it is important that no reflection occurs at the boundary between
Medium 1 and Medium 2. Consider an electromagnetic wave with TEy polar-
ization that is uniform in the y-direction and whose direction of propagation
is in the xz plane (in FDTD, the notation TEy and TMx are often used to de-
scribe polarization. The former means that the electric field is perpendicular to
the y-axis and the latter means that the magnetic field is perpendicular to the
x-axis). Suppose the interface is given by z = z0. Maxwell’s equations to be
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satisfied by this electromagnetic wave in Medium 1 are given by

ε0ε1
∂Ex
∂t

= −∂Hy

∂z
, (6.71)

ε0ε1
∂Ez
∂t

=
∂Hy

∂x
, (6.72)

µ0µ1
∂Hy

∂t
= −∂Ex

∂z
+
∂Ez
∂x

. (6.73)

On the other hand, Maxwell’s equations that this electromagnetic wave must
satisfy in Medium 2 are given by the following equations:

ε0ε2
∂Ex
∂t

+ σzEx = −∂Hy

∂z
, (6.74)

ε0ε2
∂Ez
∂t

+ σxEz =
∂Hy

∂x
, (6.75)

µ0µ2
∂Hy

∂t
+ σ∗Hy = −∂Ex

∂z
+
∂Ez
∂x

, (6.76)

where σ∗ is the magnetic conductivity. Here, let the magnetic field Hy be the
sum of the two components Hyx and Hyz,

Hy = Hyx +Hyz. (6.77)

Additionally, Hyx and Hyz are taken to satisfy the following two equations,

µ0µ2
∂Hyx

∂t
+ σ∗xHyx =

∂Ez
∂x

, (6.78)

µ0µ2
∂Hyz

∂t
+ σ∗zHyz = −∂Ex

∂z
. (6.79)

Substituting Eq. (6.77) into Eqs. (6.74) and (6.75), and considering the time
dependency of exp(−iωt), we obtain

−iωε0ε2Ex + σzEx = − ∂

∂z
(Hyx +Hyz), (6.80)

−iωε0ε2Ez + σxEz =
∂

∂x
(Hyx +Hyz). (6.81)

Similarly, from Eqs. (6.78) and (6.79), we obtain

−iωµ0µ2Hyx + σ∗xHyx =
∂Ez
∂x

, (6.82)

−iωµ0µ2Hyz + σ∗zHyz = −∂Ex
∂z

. (6.83)

Here, let

sν = 1− σν
iωε0ε2

, (6.84)
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s∗ν = 1− σ∗ν
iωµ0µ2

, (6.85)

where ν = x or z. Using Eqs. (6.84) and (6.85), Eqs. (6.80)–(6.83) become

−iωε0ε2szEx = − ∂

∂z
(Hyx +Hyz), (6.86)

−iωε0ε2sxEz =
∂

∂x
(Hyx +Hyz), (6.87)

−iωµ0µ2s
∗
xHyx =

∂Ez
∂x

, (6.88)

−iωµ0µ2s
∗
zHyz = −∂Ex

∂z
. (6.89)

Next, we derive the wave equation from these equations. Partial differentiation
of Eq. (6.86) with respect to z and substitution into Eq. (6.89) gives

−ω2ε0ε2µ0µ2szs
∗
zHyz =

∂2

∂z2
(Hyx +Hyz). (6.90)

Similarly, by partial differentiation of Eq. (6.87) with respect to z and substi-
tuting into Eq. (6.88), we obtain

−ω2ε0ε2µ0µ2sxs
∗
xHyx =

∂2

∂x2
(Hyx +Hyz). (6.91)

Summing side by side of Eqs. (6.90) and (6.91), we obtain

− ω2ε0ε2µ0µ2(Hyx +Hyz)

=

(
1

szs∗z

∂2

∂z2
+

1

sxs∗x

∂2

∂x2

)
(Hyx +Hyz). (6.92)

Now, once again using Eq. (6.77), we obtain(
1

sxs∗x

∂2

∂x2
+

1

szs∗z

∂2

∂z2
+ ω2ε0ε2µ0µ2

)
Hy = 0. (6.93)

This is the wave equation of the electromagnetic wave in Medium 2.
The magnetic field component Ht

y of the plane wave solution satisfying
this equation is expressed as

Ht
y = tHi

y exp(ik2xx+ ik2zz), (6.94)

where Hi
y is the amplitude of the incident magnetic field and t is the trans-

mission coefficient. Wave numbers k2x and k2z satisfy the dispersion relation
for plane waves given by

k2
2x

sxs∗x
+

k2
2z

szs∗z
= ω2ε0ε2µ0µ2. (6.95)



140 FDTD (Finite Difference Time Domain) Method

Using Eqs. (6.77), (6.86), (6.94), and (6.95), the x component of the trans-
mitted electric field is given as

Etx =
β2z

ωε0ε2

√
s∗z
sz
Ht
y. (6.96)

On the other hand, the reflected magnetic field Hr
y in Medium 1 is given as

Hr
y = rHi

y exp(ik1xx− ik1zz), (6.97)

where r is the reflection coefficient. Using the Eq. (6.97), the x component of
the reflected electric field is

Erx = − k1z

ωε0ε1
Hr
y . (6.98)

From the continuity of Hy at the interface and Eqs. (6.94) and (6.97), we
obtain

1 + r = t. (6.99)

Similarly, from the continuity of Ex and Eqs. (6.96) and (6.98), we obtain

k1z

ωε1
− k1z

ωε1
r =

k2z

ωε2sz
t. (6.100)

That is,

1− r =
ε1k2z

ε2szk1z
t (6.101)

is obtained. From Eqs. (6.99) and (6.101), the transmission coefficient t and
reflection coefficient r are given as

t =
2
k1z

ε1

k1z

ε1
+

k2z

ε2sz

, (6.102)

r =

k1z

ε1
−

k2z

ε2sz
k1z

ε1
+

k2z

ε2sz

. (6.103)

Next, we derive the condition that the reflection coefficient r is zero. First,
let ε2 = ε1 and µ2 = µ1. From Eq. (6.95),

k2z =

(
ω2ε0ε2µ0µ2 −

szsz∗
sxs∗x

k2
2x

)1/2

=

(
ω2ε0ε1µ0µ1 −

szsz∗
sxs∗x

k2
2x

)1/2

(6.104)
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is obtained. Also, from the phase matching condition at the interface,

k2x = k1x (6.105)

must be satisfied. Furthermore, if σx = σ∗x = 0, then sx = s∗x = 1. In this
condition, from Eq. (6.104)

k2z =
√
szs∗z(ω

2ε0ε1µ0µ1 − k2
1x)1/2 =

√
szs∗zk1z (6.106)

is obtained. Using these relationships and Eq. (6.103), the reflection coefficient
is

r =

1−

√
s∗z
sz

1 +

√
s∗z
sz

. (6.107)

Therefore, for the reflection coefficient to be zero,

sz = s∗z (6.108)

must be satisfied. From the Eqs. (6.84) and (6.85), this condition is realized
when the following equation is satisfied:

σz
ε0ε2

=
σ∗z
µ0µ2

. (6.109)

In summary, the condition for no reflection at the interface is

ε2 = ε1, (6.110)

µ2 = µ1, (6.111)

σx = σ∗x = 0, (6.112)

σz
ε0ε2

=
σ∗z
µ0µ2

. (6.113)

In this condition, from Eq. (6.106), we obtain

kz2 =

(
1− σz

iωε0ε1

)
k1z. (6.114)

As a result, the transmitted magnetic field in Medium 2 (PML) is given by

Ht
y = Hi

y exp

(
− σz
ωµ0µ1

k1zz

)
exp(ik1xx+ ik1zz). (6.115)

This equation shows that the transmitted wave propagates at the same phase
velocity as the incident wave and decays along the z-direction. Thus, Medium
2 is used as the PML.



142 FDTD (Finite Difference Time Domain) Method

When the incident wave is propagating light, there is no problem with
attenuation, but let us consider what happens when the incident wave is an
evanescent one. In this case, kz1 is a pure imaginary number. If k1z = i|k1z|,
Eq. (6.114) is expressed as

k2z = − σz
ωε0
|k1z|+ i|k1z|, (6.116)

and that the attenuation of the transmitted wave in Medium 2 is no greater
than that of the incident evanescent wave in Medium 1. A solution to solve
this problem has been proposed by Gedney [41]. He used

sz = κ− σz
iωε0ε1

, (6.117)

instead of Equation (6.84). With this sz, Eq. (6.116) becomes

k2z = − σz
ωε0ε1

|k1z|+ iκ|k1z|. (6.118)

That is, the decay of the evanescent wave is accelerated by a factor of κ.
However, if κ is too large, it causes side effects for the propagating light.

We will discuss the general case of PML where the system is 3D. All electric
and magnetic fields are divided into two components. For the electric field,

Ex = Exy + Exz, (6.119)

Ey = Eyz + Eyx, (6.120)

Ez = Ezx + Ezy, (6.121)

and with respect to the magnetic field,

Hx = Hxy +Hxz, (6.122)

Hy = Hyz +Hyx, (6.123)

Hz = Hzx +Hzy. (6.124)

The 12 basic equations of PML are

ε0ε2
∂Exy
∂t

+ σyExy =
∂Hz

∂y
, (6.125)

ε0ε2
∂Exz
∂t

+ σzExz = −∂Hy

∂z
, (6.126)

ε0ε2
∂Eyz
∂t

+ σzEyz =
∂Hx

∂z
, (6.127)

ε0ε2
∂Eyx
∂t

+ σxEyx = −∂Hz

∂x
, (6.128)

ε0ε2
∂Ezx
∂t

+ σxEzx =
∂Hy

∂x
, (6.129)
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ε0ε2
∂Ezy
∂t

+ σyEzy = −∂Hx

∂y
, (6.130)

µ0µ2
∂Hxy

∂t
+ σ∗yHxy = −∂Ez

∂y
, (6.131)

µ0µ2
∂Hxz

∂t
+ σ∗zHxz =

∂Ey
∂z

, (6.132)

µ0µ2
∂Hyz

∂t
+ σ∗zHyz = −∂Ez

∂x
, (6.133)

µ0µ2
∂Hyx

∂t
+ σ∗xHyx =

∂Ex
∂z

, (6.134)

µ0µ2
∂Hzx

∂t
+ σ∗xHzx = −∂Ey

∂x
, (6.135)

µ0µ2
∂Hzy

∂t
+ σ∗yHzy =

∂Ex
∂y

. (6.136)

The conditions for no reflection are ε2 = ε1 and µ2 = µ1, and in the PML
perpendicular to the x-axis,

σx
ε0ε2

=
σ∗x
µ0µ2

, σy = σz = σ∗y = σ∗z = 0. (6.137)

In the PML perpendicular to the y-axis,

σy
ε0ε2

=
σ∗y
µ0µ2

, σz = σx = σ∗z = σ∗x = 0. (6.138)

In the PML perpendicular to the z-axis,

σz
ε0ε2

=
σ∗z
µ0µ2

, σx = σy = σ∗x = σ∗y = 0. (6.139)

In the actual calculation, Eqs. (6.125)–(6.136) must be discretized. As an
example, if we discretize Eq. (6.125),

Exy|ni+ 1
2 ,j,k

=

(
2ε0ε2 − σy∆t

2ε0ε2 + σy∆t

)
Exy|n−1

i+ 1
2 ,j,k

+

[
2∆t

(2ε0ε2 + σy∆t)∆y

](
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
. (6.140)

6.4.2 Unsplit PML

Berenger’s PML is also known as split-field PML. Although this absorption
boundary is very effective, the electromagnetic waves in the PML do not obey
Maxwell’s equations and are difficult to explain physically. In contrast, Chew
and Weedon [42] proposed a PML that does not split the field.
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From Eq. (6.85) and the PML conditional Eq. (6.108), Eqs. (6.78) and
(6.79) become

µ0µ2
∂Hyx

∂t
=

1

sx

∂Ez
∂x

(6.141)

µ0µ2
∂Hyz

∂t
= − 1

sz

∂Ex
∂z

. (6.142)

Adding together Eqs. (6.141) and (6.142) on both sides, we obtain

µ0µ2
∂Hy

∂t
= − 1

sz

∂Ex
∂z

+
1

sx

∂Ez
∂x

. (6.143)

The same is true for E,

ε0ε2
∂Ey
∂t

=
1

sz

∂Hx

∂z
− 1

sx

∂Hz

∂x
. (6.144)

These are Faraday and Ampere’s laws within PML. Since 1/sz and 1/sx on
the right-hand side are equivalent to stretching the coordinate system, these
expressions are called Stretched-Coordinate Formulation.

These equations can be easily extended to three dimensions. Using
Eqs. (6.125)–(6.136), we obtain

ε0ε2
∂Ex
∂t

=
1

sy

∂Hz

∂y
− 1

sz

∂Hy

∂z
(6.145)

ε0ε2
∂Ey
∂t

=
1

sz

∂Hx

∂z
− 1

sx

∂Hz

∂x
(6.146)

ε0ε2
∂Ez
∂t

=
1

sx

∂Hy

∂x
− 1

sy

∂Hx

∂y
(6.147)

µ0µ2
∂Hx

∂t
= − 1

sy

∂Ez
∂y

+
1

sz

∂Ey
∂z

(6.148)

µ0µ2
∂Hy

∂t
= − 1

sz

∂Ex
∂z

+
1

sx

∂Ez
∂x

(6.149)

µ0µ2
∂Hz

∂t
= − 1

sx

∂Ey
∂x

+
1

sy

∂Ex
∂y

. (6.150)

For example, the condition,

sx = sy = 1, sz 6= 1 (6.151)

is required for a PML layer to be perpendicular to the z-axis.
On the other hand, Gedney [43] showed that by defining the medium in the

PML as a medium with uniaxial anisotropy, the effect is similar to Berenger’s
PML. This PML is called Uniaxial PML (UPML). The UPML is exactly
the same as Berenger’s PML in the component of the electromagnetic field
parallel to the interface, but there is a slight difference between these two
in the perpendicular component. Gedney [41] also shows that UPML can be
adapted to lossy and/or dispersive media.
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6.4.3 Convolutional PML (CPML)

An efficient way to apply Unsplit PML to FDTD for dispersive media is pro-
posed by Roden and Gedney [44]. This method is called Convolutional PML
(CPML). To apply Unsplit PML to FDTD, we express Equations (6.145) and
(6.148) in the time domain using the convolution theorem:

ε0ε2
∂Ex
∂t

= s̄y ∗
∂Hz

∂y
− s̄z ∗

∂Hy

∂z
(6.152)

µ0µ2
∂Hx

∂t
= −s̄y ∗

∂Ez
∂y

+ s̄z
∂Ey
∂z

, (6.153)

where * denotes the convolution integral, and

s̄ν = F−1

(
1

sν

)
(6.154)

where F−1 denotes the inverse Fourier transform. Here we use sν as the fol-
lowing generalized form [45] as

sν = κν +
σν

aν − iωε0
. (6.155)

The PML using this form is called the Complex Frequency Shifted PML (CFS-
PML). Parameter aν is introduced to prevent the imaginary part of sν from
diverging in the low frequency region (ω ∼ 0). However, the larger aν is, the
smaller the attenuation in the low-frequency region. Before performing the
inverse Fourier transform of 1/sν , we transform Eq. (6.155) to

1

sν
=

1

κν + σν
aν−iωε0

=
aν + iωε0

aνκν + σν − iωκνε0
. (6.156)

Here, we consider the following general form:

a− iωb
c− iωd

=
ad− iωbd
d(c− iωd)

=
b(c− iωd) + ad− bc

d(c− iωd)

=
b

d
+
a/c− b/d
1− iωd/c

(6.157)

and

F−1

(
1

1− iωτ

)
=

1

τ
exp

(
− t
τ

)
u(t), (6.158)

where u(t) is a step function,

u(t) =

{
0 (t < 0)

1 (t ≥ 0)
. (6.159)
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Substituting Eq. (6.157) into Eq. (6.158),

F−1

(
b

d
+
a/c− b/d
1− iωd/c

)
=
b

d
δ(t) +

ad− bc
d2

exp

(
−ct
d

)
u(t), (6.160)

where δ(t) is the Dirac’s delta function. Furthermore, substituting a = aν ,
b = ε0, c = aνκν + σν , and d = κε0, eventually we obtain

s̄ν =
1

κν
δ(t)− ζν(t), (6.161)

where

ζν(t) = − σν
κ2
νε0

exp

[
−
(
aν
ε0

+
σν
κνε0

)
t

]
u(t). (6.162)

Substituting Eq. (6.161) into Eq. (6.152),

ε0ε2
∂Ex
∂t

=
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ζy(t) ∗ ∂Hz

∂y
− ζz(t) ∗

∂Hy

∂z
(6.163)

is obtained. Using the following notation,

ΨExy(t) = ζy(t) ∗ ∂Hz

∂y
, (6.164)

ΨExz(t) = ζz(t) ∗
∂Hy

∂z
, (6.165)

Eq. (6.163) is written as

ε0ε2
∂Ex
∂t

=
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ΨExy −ΨExz. (6.166)

6.4.4 Recursive computation for convolution integrals

Since ζ(t) is an exponential function, the convolution integral of the above
equations can be computed recursively in FDTD. Consider the convolution
integral shown in the following equation:

G(t) = F (t) ∗ χ(t) = χ(t) ∗ F (t) =

∫ ∞
−∞

F (t− τ)χ(τ)dτ. (6.167)

Then, letting χ(t) be a function of the form

χ(t) = a exp(−Γt)u(t), (6.168)
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the integral range of Eq. (6.167) is from zero. Furthermore, discretizing Eq.
(6.167) with respect to time t, we obtain

Gn =

∫ n∆t

0

F (n∆t− τ)χ(τ)dτ. (6.169)

Discretizing also for τ , we obtain

Gn =

n−1∑
m=0

Fn−mχm

=Fnχ0 +

n−1∑
m=1

Fn−mχm

=Fnχ0 +

n−2∑
m=0

Fn−1−mχm+1, (6.170)

where

χm =

∫ (m+1)∆t

m∆t

χ(τ)dτ. (6.171)

Substituting Eq. (6.168) into Eq. (6.171), we obtain

χm =

∫ (m+1)∆t

m∆t

a exp(−Γτ)dτ

=
a

Γ
[1− exp(−Γ∆t)] exp(−Γm∆t) (6.172)

Therefore,
χm+1 = exp(−Γ∆t)χm. (6.173)

Using Eq. (6.173), Eq. (6.170) finally becomes

Gn =Fnχ0 +

n−2∑
m=0

Fn−1−mχm+1

=Fnχ0 + exp(−Γ∆t)

n−2∑
m=0

Fn−1−mχm

=Fnχ0 + exp(−Γ∆t)Gn−1, (6.174)

where

χ0 =
b

Γ
[1− exp(−Γ∆t)]. (6.175)

Using this result, ΨExy in Eq. (6.164) can be calculated recursively as
follows:

Ψn
Exy = byΨn−1

Exy + cy
∂Hz

∂y

∣∣∣∣n . (6.176)
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Comparing Eq. (6.162) with Eqs. (6.174), we obtain

by = exp

[
−
(
ay
ε0

+
σy
κyε0

)
∆t

]
(6.177)

and from the Eq. (6.175),

cy =
− σy
κ2
yε0

ay
ε0

+
σy
κνε0

{
1− exp

[
−
(
ay
ε0

+
σy
κyε0

)
∆t

]}
=− σy

σyκy + ayκ2
y

(1− by) (6.178)

and so on.
Using this result to discretize Eq. (6.166), we obtain

ε0ε2

∆t

(
Ex|ni+ 1

2 ,j,k
− Ex|n−1

i+ 1
2 ,j,k

)
=

1

κy∆y

(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
− 1

κz∆z

(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
+
(

ΨExy|ni+ 1
2 ,j,k
−ΨExz|ni+ 1

2 ,j,k

)
, (6.179)

Ex|ni+ 1
2 ,j,k

=Ex|n−1
i+ 1

2 ,j,k

+
∆t

ε0ε2κy∆y

(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
− ∆t

ε0ε2κz∆z

(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hy|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
+

∆t

ε0ε2

(
ΨExy|ni+ 1

2 ,j,k
−ΨExz|ni+ 1

2 ,j,k

)
, (6.180)

where

ΨExy|ni+ 1
2 ,j,k

=byΨExy|n−1
i+ 1

2 ,j,k

+
cy
∆y

(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i+ 1
2 ,j−

1
2 ,k

)
, (6.181)

ΨExz|ni+ 1
2 ,j,k

=bzΨExz|n−1
i+ 1

2 ,j,k

+
cz
∆z

(
Hy|

n− 1
2

i+ 1
2 ,j,k+ 1

2

−Hz|
n− 1

2

i+ 1
2 ,j,k−

1
2

)
. (6.182)
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6.4.5 Lossy media

The CPML can be applied in the same way for lossy media. In this case,
Eq. (6.163) is modified as

ε0ε
∂Ex
∂t

+ σEx =
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ζy(t) ∗ ∂Hz

∂y
− ζz(t) ∗

∂Hy

∂z
(6.183)

Discretizing Eq. (6.183) with respect to time, we obtain

ε0ε
Enx − En−1

x

∆t
+ σ

Enx + En−1
x

2

=
1

κy

∂H
n− 1

2
z

∂y
− 1

κz

∂H
n− 1

2
y

∂z
+ ζy(t) ∗ ∂H

n− 1
2

z

∂y
− ζz(t) ∗

∂H
n− 1

2
y

∂z
, (6.184)

and then

Enx =

(
2ε0ε− σ∆t

2ε0ε+ σ∆t

)
En−1
x +

(
2∆t

2ε0ε+ σ∆t

)
×

[
1

κy

∂H
n− 1

2
z

∂y
− 1

κz

∂H
n− 1

2
y

∂z
+ ζy(t) ∗ ∂H

n− 1
2

z

∂y
− ζz(t) ∗

∂H
n− 1

2
y

∂z

]
.

(6.185)

6.4.5.1 Dispersive media

The CPML is nothing more than replacing the ∇ × H calculation with a
calculation involving convolution integrals. Take the x component as an ex-
ample,

(∇×H)x →
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z
+ ζy(t) ∗ ∂Hz

∂y
− ζz(t) ∗

∂Hy

∂z
. (6.186)

For a Drude dispersive medium using the ADE method, just replace ∇×H
in Eq. (6.52) (reproduced below) as Eq. (6.186), and we obtain

En =

[
ε0ε̃∞

∆t −
σ
2 −

1
2

(
ε0ω

2
p∆t/2

1+Γ∆t/2

)]
[
ε0ε̃∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]En−1

+
1[

ε0ε̃∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×
[
∇×Hn− 1

2 − 1

2

(
1 +

1− Γ∆t/2

1 + Γ∆t/2

)
Jn−1

]
. (6.187)
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If we write out the x component,

Enx =

[
ε0ε̃∞

∆t −
σ
2 −

1
2

(
ε0ω

2
p∆t/2

1+Γ∆t/2

)]
[
ε0ε̃∞

∆t + σ
2 + 1

2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]En−1
x

+
1[

ε0ε̃∞
∆t + σ

2 + 1
2

(
ε0ω2

p∆t/2

1+Γ∆t/2

)]
×

[
1

κy

∂H
n− 1

2
z

∂y
− 1

κz

∂H
n− 1

2
y

∂z
+ ζy(t) ∗ ∂H

n− 1
2

z

∂y
− ζz(t) ∗

∂H
n− 1

2
y

∂z

−1

2

(
1 +

1− Γ∆t/2

1 + Γ∆t/2

)
Jn−1
x

]
. (6.188)

The same is true for the Lorentz dispersion media.

6.4.6 Parameters in PML

The thickness of the PML must be finite, and the outer wall must be ter-
minated with a PEC. To eliminate reflection at the PEC, it is important to
gradually increase the loss in the PML. The sν used in CFS-PML to achieve
this is

sν = κν +
σν

aν − iωε0
. (6.189)

The following shows how to give σν , κν , and aν contained in sν .
The conductivity σz gives the attenuation of the propagating light. As-

suming z = z0 for the coordinates of the PML interface on the +z side and
d for the thickness of the PML layer, the commonly used way to give the
conductivity σz is

σz = σmax

(
z − z0

d

)m
, (6.190)

where σmax is the conductivity just before PEC. The reflection coefficient
of the PML with the conductivity distribution given by this equation is a
function of the angle of incidence θ and is given by

|r(θ)| ' exp

[
− 2σmaxd

(m+ 1)ε0c
cos θ

]
. (6.191)

The coefficient 2 was caused by the PML round trip. If the maximum value
of the reflection coefficient allowed is |rmax|, the maximum value of the con-
ductivity σmax is calculated from Eq. (6.191) as

σmax = − (m+ 1)ε0c

2d
ln |rmax|, (6.192)

and this value should be used.
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The κν gives the multiplier of evanescent wave attenuation, usually similar
to σmax,

κz = 1 + (κmax − 1)

(
z − z0

d

)m
(6.193)

is used [46].
On the other hand, aν gives the attenuation at low frequencies. The larger

aν is, the smaller the attenuation is. Therefore, aν is set to be maximum at the
PML interface and zero at the PEC, contrary to the above two parameters,
i.e.

az = amax

(
z0 + d− z

d

)m
(6.194)

is usually used. Figure 6.9 summarizes the above PMA parameters.
As for the multiplier 3 ≤ m ≤ 4 is often used for σν and κν . On the other

hand, for aν , Gedney’s book [46] uses m = 1 as an example. In this book,
κmax = 15 and amax = 0.2 are used.

FIGURE 6.9
Parameters in PML.

6.5 Sources

We will discuss the cases where the source is an oscillating electric dipole and
a plane wave. For the plane wave, the Total Field/Scattered Field (TF/SF)
method is described.
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6.5.1 Dipole sources

Consider the case where the source is a micro-oscillating dipole. The dipole
moment µ(t) is given by

µ(t) = µ0 sinωt. (6.195)

The current I(t) is given by the time derivative of the dipole moment as

I(t) =
dµ(t)

dt
= ωµ0 cosωt. (6.196)

Using the cell size of Yee lattice, the current density j(t) is given as

j(t) =

[
Ix(t)

∆y∆z
,
Iy(t)

∆x∆z
,
Iz(t)

∆x∆y

]
. (6.197)

When a current source is present, Ampere’s law is given as

∇×H = ε0ε
∂E

∂t
+ j. (6.198)

Discretizing this equation as before, we obtain
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(6.199)
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2 ,k
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ε0ε∆x

)(
Hz|

n− 1
2

i+ 1
2 ,j+

1
2 ,k
−Hz|

n− 1
2

i− 1
2 ,j+

1
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ε0ε
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(6.200)

Ez|ni,j,k+ 1
2

=Ez|n−1
i,j,k+ 1

2

+
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ε0ε∆x
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Hy|
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2
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−Hy|
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2
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∆t
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2 ,k+ 1
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)
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(
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ε0ε

)
j
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(6.201)

As can be seen from these equations the location at which the current source
is defined is the same as that of the electric field, and the time is the same
as that of the magnetic field. At the grid point where the current source is
located, the time evolution can be calculated using Eqs. (6.199), (6.200), and
(6.201) instead of the Eqs. (6.7), (6.8), and (6.9). In the presence of Drude
dispersion, we can follow Eq. (6.54).
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6.5.2 TF/SF method

When a plane wave is incident along the z-axis into a system periodic in
the x- and y-directions, the extent of the incident plane wave is virtually
infinite and the wave is really a plane wave. The plane wave can be easily
introduced by adding the electric field in the z = z0 plane and the magnetic
field in the z = z0 + ∆z/2 plane to the field. However, an isolated system
surrounded by PML requires some ingenuity. A commonly used method is
the total field/scattered field (TF/SF) method. In this method, the entire
electromagnetic field is calculated in the region where the object is located,
and only the scattered field is calculated outside the region. As a result, a
correction must be made at the boundary between the two to make them
consistent.

FIGURE 6.10
TF/SF method for the case of TEy polarized incidence. Corrections are re-
quired for the fields marked with ∗.

Consider a plane wave incidence with TEy polarization (the electric field
is perpendicular to the y-axis) as shown in Figure 6.10. In this case, non-zero
components of incident plane wave are Ex, Ez, and Hy. We treat the total
electromagnetic field in the region I1∆x ≤ x ≤ I2∆x, J1∆y ≤ y ≤ J2∆y, and
K1∆z ≤ z ≤ K2∆z, and only the scattered field outside this region. When
calculating the time evolution of fields adjacent to the boundary between
the total electromagnetic field region and the scattered field region (TF/SF
boundary), some of the electromagnetic fields required for the calculation
of fields in each region are included in different regions. The Hy on x =
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(I1 − 1/2)∆x, which is required for the calculation of the time evolution of
Ez on x = I1∆x included in the total electromagnetic field region, is in the
scatterred field region. Therefore, it is necessary to add the incident field to
make the total electromagnetic field. Namely,

Ht
y|
n− 1

2

I1− 1
2 ,j,k+ 1

2

= Hs
y |
n− 1

2

I1− 1
2 ,j,k+ 1

2

+Hi
y|
n− 1

2

I1− 1
2 ,j,k+ 1

2

, (6.202)

where the superscripts t, s, and i refer to the total electromagnetic field, the
scattered field, and the incident field, respectively. Using this relationship, the
time evolution is given as
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)
. (6.203)

Similarly, since

Esz |nI1,j,k+ 1
2

= Etz|nI1,j,k+ 1
2
− Eiz|nI1,j,k+ 1

2
, (6.204)

the magnetic field in the scattered field region tangential to the TF/SF bound-
ary is
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Other than the above two components, no correction is necessary because the
time evolution calculation does not include a non-zero incident field compo-
nent. Also, in the x = I2∆x boundary,
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On the other hand, on the z = K1∆z boundary,

Etx|ni+ 1
2 ,j,K1

= Etx|n−1
i+ 1

2 ,j,K1

+

(
∆t

ε0ε∆y

)(
Ht
z|
n− 1

2

i+ 1
2 ,j+

1
2 ,K1

−Ht
z|
n− 1

2

i+ 1
2 ,j−

1
2 ,K1

)
−
(

∆t

ε0ε∆z

)(
Ht
y|
n− 1

2

i+ 1
2 ,j,K1+ 1

2

−Hs
y |
n− 1

2

i+ 1
2 ,j,K1− 1

2

−Hi
y|
n− 1

2

i+ 1
2 ,j,K1− 1

2

)
(6.208)

Hs
y |
n+ 1

2

i+ 1
2 ,j,K1− 1

2

= Hs
y |
n− 1

2

i+ 1
2 ,j,K1− 1

2

−
(

∆t

µ0µ∆z

)(
Etx|ni+ 1

2 ,j,K1
− Eix|ni+ 1

2 ,j,K1
− Esx|ni+ 1

2 ,j,K1−1

)
+

(
∆t

µ0µ∆x

)(
Esz |ni+1,j,K1− 1

2
− Esz |ni,j,K1− 1

2

)
. (6.209)

Also, on the z = K2∆z boundary,
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Furthermore, on the y = J1∆y boundary,
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Also, on the y = J2∆y boundary,
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The only fields that should be stored in the calculation are the total electro-
magnetic field in the total field region and the scattered field in the scattered
field region. After performing the usual time evolution calculations using these
fields, we can make corrections for the incident fields.

The same is true for TMy polarization (the magnetic field is perpendicular
to the y-axis). In this case, the incident plane wave has only Ey, Hx, and Hz

components. On the x = I1∆x boundary,
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Similarly,
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On the x = I2∆x boundary,
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On the other hand, on the y = J1∆y boundary,
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Also, on the y = J2∆y boundary,
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Furthermore, on the z = K1∆z boundary,
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Also, on the z = K2∆z boundary,
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6.5.3 Dispersive medium crossing TF/SF boundary

An example of the electric field Ez at x = I1∆x when the medium follows a
Drude dispersion and the incident field is TEy polarized,
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Therefore, after performing the calculations with the usual ADE, only the
correction corresponding to the incident field as
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is required. In other words, we only need to change the coefficients of the
incident field.

6.5.4 Numerical dispersion

If all of the TF/SF boundaries are set in free space with no dispersion, it would
seem that no problems arise because the incident electromagnetic field at the
boundaries can be calculated analytically. In practice, however, a problem
arises. This problem is caused by the numerical dispersion inherent to FDTD.
Numerical dispersion is also called grid dispersion.

The wave number k̃ obtained by the FDTD method deviates from the
theoretical wave number and is given by[
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where vp is the phase velocity. This relation is the numerical dispersion in
FDTD. In the limit of ∆x,∆y,∆z,∆t → 0, this equation converges to the
following dispersion relation for ordinary plane waves,(

ω

vp

)2

= k2
x + k2

y + k2
z . (6.231)

When the analytically determined incident field is applied to the TF/SF
boundary, there is a phase difference with the incident field propagating in
the TF region as it evolves with time, as shown in Figure 6.11. This is the
source of the scattered field that does not actually exist and becomes a source
of error.

The TF/SF boundary might be set in a uniform medium, such as plane
wave incidence on an isolated object in free space as shown in Figure 6.12(a).
However, in real systems, as shown in Figure 6.12(b), the object is often placed
on some substrate. In this case, obtaining the incident field analytically is
quite complicated, even if numerical dispersion is ignored. In the case of the
pulsed light source, the frequency distribution is broad, so the time waveform
must be Fourier transformed and expressed in the frequency domain, and the
reflection and transmission coefficients for each frequency component must be
calculated and transformed back into the time domain.
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FIGURE 6.11
Scattered light generation due to numerical dispersion. The dashed line is the
wavefront obtained analytically and the solid line is the wavefront obtained
by the FDTD method.

FIGURE 6.12
System with object (a) in free space and (b) on substrate.

A common method to solve these problems is to perform an auxiliary 1D
FDTD calculation for the incident field in the propagation direction of the
incident field (direction of the wave vector) and use the result as the incident
field in the TF/SF method. The advantage of this method is that it can be
easily applied even when the computational domain includes substrates or
multilayers.
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This method is simple if the direction of propagation of the incident field is
along the coordinate axes, but if it is inclined to the axes, the position where
the electromagnetic field is defined in the 1D FDTD is different from that in
the 3D FDTD. Therefore, if one tries to use the results of 1D FDTD as input
for 3D FDTD, interpolation and other innovations are required. It also cannot
be applied to systems with substrates.

6.5.5 Obliquely incident plane wave

We introduce the method given by Zhang and Seideman [47] for handling
an obliquely incident plane wave when the medium contains a substrate or
multilayer whose interface is perpendicular to one of the coordinate axes. As
an example, consider a system uniform in the y-direction and an incident
plane wave with TEy polarization, where the wave vector k is in the xz plane
and the magnetic field points in the y-direction. Assume that the permittivity
varies only in the z-direction.

Maxwell’s equations in the frequency domain are

∂Ex
∂z
− ∂Ez

∂x
= iωµ0Hy, (6.232)

∂Hy

∂x
= −iωε0ε(ω)Ez, (6.233)

∂Hy

∂z
= iωε0ε(ω)Ex, (6.234)

where ε(ω) is the complex relative permittivity including loss and dispersion,
and the relative permeability is assumed to be µ = 1 for all media. First,
we have to express these equations as one-dimensional propagation along the
z-direction. Differentiating Eq. (6.233) with respect to x and substituting into
Eq. (6.232), we obtain

∂Ex
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= iωµ0Hy +
1

−iωε0ε(ω)

∂2Hy

∂x2
. (6.235)

Due to the phase matching condition, the wave number kx in the x-direction
takes the same value in all layers, and then,

∂2Hy

∂x2
= −k2

xHy (6.236)

is obtained. If the first layer on the incident side has no loss, when its relative
permittivity is ε1r and the angle of incidence is θ, kx is given as

kx = ω
√
ε0ε1rµ0 sin θ. (6.237)

Substituting Eq. (6.237) into Eq. (6.236), and further substituting Eq. (6.236)
into Eq. (6.235), we obtain

∂Ex
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= iωµ0

[
ε(ω)− ε1r sin2 θ

ε(ω)

]
Hy. (6.238)
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If the medium is neither lossy nor dispersive, these equations can be easily
converted to the time domain and adapted to FDTD. However, for lossy or
dispersive media, another effort is needed. This contrivance is made by Jiang
et al. [48].

We introduce a new variable H ′z to decompose Eq. (6.238) into two parts
as follows:

∂Ex
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′
y, (6.239)

H ′y =
ε(ω)− ε1r sin2 θ

ε(ω)
Hy. (6.240)

In the case of a dispersive medium, Eqs. (6.234) and (6.239) can be discretized
in the time domain using the usual ADE. Next multiplying both sides of
Eq. (6.240) with εz(ω), we obtain

ε(ω)H ′y = [ε(ω)− ε1r sin2 θ]Hy. (6.241)

First, consider the case of a lossy medium, that is,
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Substituting Eq. (6.242) into Eq. (6.241), we obtain(
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(−iωε0ε∞ + σ)H ′y = (−iωε0ε
′ + σ)Hy, (6.244)

where
ε′ = ε∞ − ε1r sin2 θ. (6.245)

Expressing Eq. (6.244) in the time domain, we obtain
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+ σHy. (6.246)

The time domain Eqs. (6.234), (6.239), and (6.246) are required for the time
evolution of the 1D FDTD. These equations can be summarized as

ε0ε∞
∂Ex
∂t

+ σEx = −∂Hy

∂z
, (6.247)

µ0

∂H ′y
∂t

= −∂Ex
∂z

, (6.248)

ε0ε∞
∂H ′y
∂t

+ σH ′y = ε0ε
′ ∂Hy

∂t
+ σHy. (6.249)
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Next, we consider the discretization of Eq. (6.249), that is,

ε0ε∞
H ′y|n+ 1

2 −H ′y|n−
1
2

∆t
+ σ

H ′y|n+ 1
2 +H ′y|n−

1
2

2

=ε0ε
′Hy|n+ 1

2 −Hy|n−
1
2

∆t
+ σ

Hy|n+ 1
2 +Hy|n−

1
2

2
. (6.250)

Therefore, we obtain

Hy|n+ 1
2 =

2ε0ε
′ − σ∆t

2ε0ε′ + σ∆t
Hy|n−

1
2 +

2ε0ε∞ + σ∆t

2ε0ε′ + σ∆t
H ′y|n+ 1

2

− 2ε0ε∞ − σ∆t

2ε0ε′ + σ∆t
H ′y|n+ 1

2 . (6.251)

As an example, let consider the case where the permittivity of the medium
obeys the Drude dispersion illustrated as

ε(ω) = ε∞ −
ω2
p

ω2 + iΓω
. (6.252)

Substituting Eq. (6.252) into Eq. (6.241), we obtain(
ε∞ −

ω2
p

ω2 + iΓω

)
H ′y =

(
ε∞ −

ω2
p

ω2 + iΓω
− ε1r sin2 θ

)
Hy, (6.253)

(ε∞ω
2 + iΓε∞ω − ω2

p)H ′y

= [(ε∞ − ε1r sin2 θ)ω2 + iΓ(ε∞ − ε1r sin2 θ)ω − ω2
p]Hy. (6.254)

In the time domain, it is expressed as

ε∞
∂2H ′y
∂t2

+ Γε∞
∂H ′y
∂t

+ ω2
pH
′
y

= (ε∞ − ε1r sin2 θ)
∂2Hy

∂t2
+ Γ(ε∞ − ε1r sin2 θ)

∂Hy

∂t
+ ω2

pHy. (6.255)

Equations (6.234), (6.239), and (6.255) are required for the time evolution
of the 1D FDTD. These equations are expressed in the time domain and
summarized as

ε0ε∞
∂Ex
∂t

+ Jx = −∂Hy

∂z
, (6.256)

µ0

∂H ′y
∂t

= −∂Ex
∂z

, (6.257)

ε∞
∂2H ′y
∂t2

+ Γε∞
∂H ′y
∂t

+ ω2
pH
′
y

= (ε∞ − ε1r sin2 θ)
∂2Hy

∂t2
+ Γ(ε∞ − ε1r sin2 θ)

∂Hy

∂t
+ ω2

pHy. (6.258)
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Next, we consider the discretization of Eq. (6.258). Here we need to deal
with the second-order derivative with respect to time. Discretizing this second-
order derivative in the same way as before, we obtain

∂2H

∂t2
=
H|n+ 1

2 − 2H|n− 1
2 +H|n− 3

2

∆t2
. (6.259)

The first-order and zeroth-order derivatives usually used are

∂H

∂t
=
H|n+ 1

2 −H|n− 1
2

∆t
, (6.260)

H =
H|n+ 1

2 +H|n− 1
2

2
. (6.261)

Equation (6.259) is the field at time t = (n − 1/2)∆t, but Eqs. (6.260) and
(6.261) are at time t = n∆t, so the times are not identical. Therefore, to
match the time to t = (n− 1/2)∆t,

∂H

∂t
=
H|n+ 1

2 −H|n− 3
2

2∆t
(6.262)

H = H|n− 1
2 (6.263)

must be used. As an alternative, Zhang et al. [47] use the following equation
instead of the above equation:

H =
H|n+ 1

2 +H|n− 3
2

2
. (6.264)

Substituting Eqs. (6.259), (6.262), and (6.263) into Eq. (6.258), we obtain

ε∞
H ′y|n+ 1

2 − 2H ′y|n−
1
2 +H ′y|n−

3
2

∆t2
+ Γε∞

H ′y|n+ 1
2 −H ′y|n−

3
2

2∆t
+ ω2

pH
′
y|n−

1
2

=ε′
Hy|n+ 1

2 − 2Hy|n−
1
2 +Hy|n−

3
2

∆t2
+ Γε′

Hy|n+ 1
2 −Hy|n−

3
2

2∆t
+ ω2

pHy|n−
1
2 .

(6.265)

Therefore,

Hy|n+ 1
2 =

4ε′ − 2ω2
p∆t2

ε′(2 + Γ∆t)
Hy|n−

1
2 − ε′(2− Γ∆t)

ε′(2 + Γ∆t)
Hy|n−

3
2 (6.266)

+
ε∞(2 + Γ∆t)

ε′(2 + Γ∆t)
H ′y|n+ 1

2 −
4ε∞ − 2ω2

p∆t2

ε′(2 + Γ∆t)
H ′y|n−

1
2

+
ε∞(2− Γ∆t)

ε′(2 + Γ∆t)
H ′y|n−

3
2 . (6.267)

For 1D FDTDs, the usual CPML can be applied without modification [48].
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In the CPML domain, Eqs. (6.256) and (6.257) can be rewritten as follows,
respectively,

ε0ε∞
∂Ex
∂t

+ σEx + Jx = − 1

κz

∂Hy

∂z
− ζz ∗

∂Hy

∂z
, (6.268)

µ0

∂H ′y
∂t

= − 1

κz

∂Ex
∂z
− ζz ∗

∂Ex
∂z

. (6.269)

The Courant condition must be taken care of when actually performing
1D FDTD in the z-direction. The phase velocity vz in the z-direction is

vz =
c

√
ε1r cos θ

. (6.270)

Hence, the time step must satisfy the following condition:

∆t1D <
∆z

vz
=

√
ε1r cos θ

c
∆z. (6.271)

As the incident angle θ increases, vz becomes faster than the speed of light in
vacuum. Therefore, ∆t1D must be reduced accordingly. On the other hand, if
the time step ∆t3D in the 3D FDTD is set to the same value as ∆t1D in the 1D
FDTD, the computation time becomes longer. In the 3D FDTD, however, we
can employ the usual Courant condition for the time step, ∆t3D. A method
to solve this problem has been proposed by Çapoğlu and Smith [49]. The
time step of 1D FDTD satisfying ∆t1D = ∆t3D/k, (k = 3, 5, 7, ...). Then, the
method uses the 1D FDTD results as the incident field for the 3D FDTD by
thinning out the 1D FDTD results.

In the 1D FDTD calculation, corrections at the TF/SF boundary must
be made for Ex and H ′y, as can be seen from Eqs. (6.256) and (6.257). If the
incident field is TEy polarization, the fields that require compensation at the
TF/SF boundary perpendicular to the x-axis are Hy on line A and Ez on line
B in Figure 6.13. On the TF/SF boundary perpendicular to the z-axis, Hy

on line D and Ex on line E are required for the compensation. On the TF/SF
boundary perpendicular to the y-axis, compensation are required for Ex and
Ez. The calculation procedure is as follows. First, perform 1D FDTD on line
A to obtain Hy. Next, Ez on line B is obtained, which cannot be obtained
directly. Therefore, first, Hy on line C is obtained by applying a time delay
to Hy on line A. Next, from Hy on lines A and C, Ez on line B is obtained.
The Hy on line F and Ex on line G are obtained by applying a time delay to
Hy and Ex on line A, respectively.

The time delay τ in the field at positions with the same z-position and dis-
tance in the x-direction I∆x can be calculated as follows. The phase velocity
in the x-direction is given by

vx =
c

kx
=

c
√
ε1r sin θ

. (6.272)
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TF/SF boundary
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FIGURE 6.13
TF/SF boundary.

Thus, the time delay is

τ =
I∆x

vx
=

√
ε1r sin θ

c
I∆x. (6.273)

When the delay time is represented by τ = (l+w)∆t (l is an integer, 0 ≤ w <
1), for example, take Ex can be obtained by interpolation as

Eix|ni+I+ 1
2 ,j,k

= (1− w)Eix|n−li+ 1
2 ,j,k

+ wEix|n−l+1
i+ 1

2 ,j,k
. (6.274)

6.5.6 Source waveform

When determining the temporal waveform of a wave source, several things
need to be taken into account. One is the presence or absence of a DC com-
ponent, which does not propagate, so it stays in place forever. Another is the
inclusion of high-frequency components when the source is excited by continu-
ous waves (CW) with a single frequency. If a sinusoidal wave whose amplitude
varies stepwise at time t = 0 is used, a high-frequency component with a large
amplitude is generated. To avoid this, it is necessary to use a sine wave whose
amplitude varies slowly. One example of this is the waveform given by the
following equation:

j(t) =


0 (t < 0)
1
2 (1− cos aωt) sinωt (0 ≤ t < π/aω)

sinωt (π/aω ≤ t)
. (6.275)
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Figure 6.14(a) is the waveform when a = 1/4. The dashed line is the electric

-1 0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

-1 0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

(a) (b)

FIGURE 6.14
Wave source waveform given by (a) Eq. (6.275) and (b) Eq. (6.277). Solid
curves represent j(t) and dashed curves represent Q(t).

charge Q(t) calculated with

Q(t) =

∫ t

0

j(t′)dt′. (6.276)

As can be seen from this figure, the average value of the steady-state charge is
not zero, but shifts to the negative side, indicating that a steady-state charge
(DC component) is generated. The solution to this is to use a cosine wave
instead of a sine wave as the carrier wave. Namely,

j(t) =


0 (t < 0)
1
2 (1− cos aωt) cosωt (0 ≤ t < π/aω)

cosωt (π/aω ≤ t)
. (6.277)

Figure 6.14(b) shows its waveform. It can be seen that the average (DC com-
ponent) of the integral is zero. This is always true when a = 1/m (m is an
integer).

6.5.7 Frequency analysis

One approach is to use a continuous wave with a single frequency as the in-
cident light and calculate the steady state of the system, which is performed
sequentially at different frequencies. This method is not appropriate because
it takes time to obtain a steady-state solution with the FDTD method, un-
like frequency-domain methods such as RCWA, where a steady-state solution
is directly obtained from the beginning. However, since the FDTD method
provides a time-domain solution, the frequency response can be obtained by
using short-pulse light as input. The frequency component of the short pulse



168 FDTD (Finite Difference Time Domain) Method

is in a Fourier transform relationship with the time waveform of the short
pulse. Therefore, the frequency response of the system can be obtained by
Fourier transforming the time waveform of the output and dividing it by that
of the input. This method has the advantage that frequency analysis can be
performed with a single calculation of the time evolution. When performing
the Fourier transform, it is necessary to store the values of the time series of
the electric and magnetic fields at the desired observation location. However,
it is sufficient to store the values after appropriate thinning. By thinning out
the values, the memory required for storage can be significantly reduced.

Sinusoidally modulated Gaussian waveforms are often used as pulses to
determine the frequency response. The sinusoidally modulated Gaussian pulse
is given by

E(t) = exp

[
−
(
t

τ

)2
]

sinω0t. (6.278)

The frequency spectrum Ê(ω) of this waveform is obtained by Fourier trans-
form as

Ê(ω) =

∫ ∞
−∞

E(t) exp(−iωt)dt

=

√
πτ

2i

{
exp

[
−
(τ

2

)2

(ω + ω0)2

]
− exp

[
−
(τ

2

)2

(ω − ω0)2

]}
.

(6.279)
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FIGURE 6.15
TM polarized plane wave.

As an example of an incident field propagating in vacuum, consider a
TEy wave incident at an angle of incidence θ as shown in Figure 6.15. For
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the sinusoidally modulated Gaussian pulse described above, the electric and
magnetic fields are given by

Ex = exp

[
−
(
t− t0 − x

c sin θ − z
c cos θ

τ

)2
]

× sin
[
ω0

(
t− t0 −

x

c
sin θ − z

c
cos θ

)]
cos θ, (6.280)

Ez =− exp

[
−
(
t− t0 − x

c sin θ − z
c cos θ

τ

)2
]

× sin
[
ω0

(
t− t0 −

x

c
sin θ − z

c
cos θ

)]
sin θ, (6.281)

Hy =
1

z0
exp

[
−
(
t− t0 − x

c sin θ − z
c cos θ

τ

)2
]

× sin
[
ω0

(
t− t0 −

x

c
sin θ − z

c
cos θ

)]
. (6.282)

The problem here is how much t0 should be taken. If t0 is small, a residual
charge will be generated. In our experience, it is sufficient to set t0 ≥ 5τ , but
of course, it depends on the required accuracy.

6.5.8 Oblique incidence under periodic boundaries

When calculating the optical response of spatially periodic objects, there is
no problem at all when the incidence is perpendicular to the direction of the
period. However, for oblique incidence, difficulties arise in setting the periodic
boundary conditions.

Various methods have been proposed to introduce obliquly incident light
for periodic boundaries. Their features are shown in Figure 6.16. The Sin-
Cosine method [51] allows only one point in kx − ω space to be computed
simultaneously where kx is the in-plane wave vector. The most sophisticated
is the split-field method developed by Roden et al. [52]. This method provides
a broadband frequency response for a single angle of incidence. In contrast,
a simpler method, named Spectral FDTD, was proposed by Aminian and
Rahmat-Samii [53]. This method allows a one-time computation of the fre-
quency response on the line of kx = const. in kx−ω space. The problem with
this method arises from the fact that the incident pulse plane wave contains
evanescent waves. Since evanescent waves propagate parallel to the period and
PML has no effect on them, the evanescent waves diverge where some reso-
nances exist. A solution to this problem has been proposed by Yang et al. [50].
Schurig [54] used the fact that the periodic boundary condition is directly ap-
plicable when an integer multiple of the unit cell is equal to an integer multiple



170 FDTD (Finite Difference Time Domain) Method

FIGURE 6.16
Combination of wavenumbers and frequencies that can be obtained at once
by various methods in k − ω space [50].

of the wavelength in that direction. However, this method is only applicable
to the points on discrete curves in space spanned by the angle of incidence and
frequency. Therefore, Schurig also describes an interpolation method between
them.

6.6 Transformation from near field to far field

It is not practical to calculate the far field directly by FDTD, when calculating
the scattered field by scatterers. Therefore, a method to calculate the far field
from the near field is required. A method that calculates virtual electric current
and magnetic current sources on a closed surface surrounding the scatterer
and then calculates the far field has been proposed (surface integral method)
[55]. On the other hand, a volume integral method has also been proposed.
This method calculates the energy dissipation from the electric field in the
scatterers. Only the electric field in the scatterers is used. This method can
also be applied when there is absorption in the medium.

Zhai et al. [56] compare the superiority of the surface and volume integra-
tion methods in terms of the computer resources required. They show that the
surface integration method is advantageous when the refractive index of the
scatterers is high or when the size parameter (= πnd/λ; n and d are the refrac-
tive index and the size of the scatterer, respectively, and λ is the wavelength
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in vacuum) is large. The reason for this is that the higher the refractive index,
the shorter the wavelength inside the particle, and the larger the size param-
eter, the steeper the change in the field inside the particle, which requires
a finer grid. Here, we introduce the surface integration method proposed by
Luebbers et al. [57].

If electric and magnetic current sources are confined in closed space V , the
far field can be calculated from their distributions J(r) and M(r). This is
illustrated as

E(r) = iωµ0µA(r)− 1

iωε0ε
∇∇ ·A(r)−∇× F (r), (6.283)

H(r) = iωε0εF (r)− 1

iωµ0µ
∇∇ · F (r) + ∇×A(r), (6.284)

where r is the position vector, A is the magnetic vector potential, and F is
the electric vector potential, each given by

A(r) =

∫
V

J(r′)
eikR

4πR
d3r′, (6.285)

F (r) =

∫
V

M(r′)
eikR

4πR
d3r′, (6.286)

where R = |r− r′|. Using these equations, the far field can be calculated, but
it is necessary to perform calculations for all electric and magnetic current
sources in the closed space, which requires much computation time. Therefore,
we consider replacing the volume integral with a surface integral.

Consider an arbitrary closed surface S surrounding electric and magnetic
current sources. Then, consider a virtual electric current source Js and a vir-
tual magnetic current source M s on this surface. These electric and magnetic
current sources can be calculated from the electric field E(rs) and magnetic
field H(rs) on the closed surface and are expressed as follows:

Js(rs) = n̂×H(rs), (6.287)

M s(rs) = E(rs)× n̂, (6.288)

where n̂ is the unit normal vector toward the outside of the closed surface.
Using Green’s theorem, the radiation to the outside of the closed surface can
be expressed in terms of radiation by surface electric and magnetic currents
on the closed surface. As a result, the Eqs. (6.285) and (6.286) are given as

A(r) =

∫
S

Js(r
′)
eikR

4πR
d2r′, (6.289)

F (r) =

∫
S

M s(r
′)
eikR

4πR
d2r′. (6.290)
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Next, we describe the specific calculation method. First, we approximate
e−jkR/4πR at the far end:

R = [r2 + r′2 − 2rr′(r̂ · r̂′)]1/2, (6.291)

where r = |r|, r′ = |r′|, r̂ = r/r, and r̂′ = r′/r′. Since r � r′, it can
be approximated as R ' r, but this approximation is not sufficient when
considering the phase. Therefore,

R ' r − r′(r̂ · r̂′) (6.292)

should be used. In the far distance if these approximations are used, we obtain

eikR

4πR
' eikre−ikr

′(r̂·r̂′)

4πr
. (6.293)

Using Eqs. (6.283), (6.284), (6.289), (6.290), and (6.293), the far field is
approximated as

Er ' 0, (6.294)

Eθ ' ik
eikr

4πr
(Lφ + ZNθ), (6.295)

Eφ ' −ik
eikr

4πr
(Lθ − ZNφ), (6.296)

Hr ' 0, (6.297)

Hθ ' −ik
eikr

4πr

(
Nφ −

1

Z
Lθ

)
= − 1

Z
Eφ, (6.298)

Hφ ' ik
eikr

4πr

(
Nθ +

1

Z
Lφ

)
=

1

Z
Eθ, (6.299)

where Z is the wave impedance and Nθ, Nφ, Lθ, and Lφ are the components
of the following vectors:

N(θ, φ) =

∫
S

Jse
−ik·r′

d2r′, (6.300)

L(θ, φ) =

∫
S

M se
−ik·r′

d2r′, (6.301)

where (θ, φ) is the direction of r, i.e., the observation angle (θ is the polar
angle and φ is the azimuthal angle), and the vector k is the wave vector toward
this direction,

k = kr̂ = k(sin θ cosφêx + sin θ sinφêy + cos θêz), (6.302)

where r̂, êx, êy, and êz are unit vectors. Using Eqs. (6.294) and (6.299), the
Poynting vector has only components in the r direction remaining,

Sr = EθH
∗
φ − EφH∗θ =

k2

16π2r2Z

(
|Lφ + ZNθ|2 + |Lθ − ZNφ|2

)
. (6.303)
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Next, we will discuss how to obtain the surface electric and magnetic cur-
rents. It is most usual to take a closed surface S to be a rectangular solid con-
sisting of a set of E-cells. Let (is1∆x, js1∆y, ks1∆z) and (is2∆x, js2∆y, ks2∆z)
denote the diagonal coordinates of the rectangular solid, respectively. The re-
lation between the magnetic current M and the electric field E is given by

M = E × n. (6.304)

As an example, consider the magnetic current on x = is1∆x surface of a
rectangular S,

êzMz|nis1,j+ 1
2 ,k

= −êyEy|nis1,j+ 1
2 ,k
× êx = êzEy|nis1,j+ 1

2 ,k
. (6.305)

Similarly,
êyMy|nis1,j,k+ 1

2
= −êyEz|nis1,j,k+ 1

2
. (6.306)

Thus,
Mz|nis1,j+ 1

2 ,k
= Ey|nis1,j+ 1

2 ,k
, (6.307)

My|nis1,j,k+ 1
2

= −Ez|nis1,j,k+ 1
2
. (6.308)

Similarly, on x = is2∆x surface,

Mz|nis2,j+ 1
2 ,k

= −Ey|nis2,j+ 1
2 ,k
, (6.309)

My|nis2,j,k+ 1
2

= Ez|nis2,j,k+ 1
2
. (6.310)

On y = js1∆y surface,

Mx|ni,js1,k+ 1
2

= Ez|ni,js1,k+ 1
2
, (6.311)

Mz|ni+ 1
2 ,js1,k

= −Ex|ni+ 1
2 ,js1,k

. (6.312)

On y = js2∆y surface,

Mx|ni,js2,k+ 1
2

= −Ez|ni,js2,k+ 1
2
, (6.313)

Mz|ni+ 1
2 ,js2,k

= Ex|ni+ 1
2 ,js2,k

. (6.314)

Similarly, on z = ks1∆z surface,

My|ni+ 1
2 ,j,ks1

= Ex|ni+ 1
2 ,j,ks1

, (6.315)

Mx|ni,j+ 1
2 ,ks1

= −Ey|ni,j+ 1
2 ,ks1

. (6.316)

On the z = ks2∆z surface,

My|ni+ 1
2 ,j,ks2

= −Ex|ni+ 1
2 ,j,ks2

, (6.317)

Mx|ni,j+ 1
2 j,ks2

= Ey|ni,j+ 1
2 ,ks2

. (6.318)
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For example, Lx(θ, φ) at z = ks2∆z surface can be expressed by using
Eq. (6.318) as follows:

Lx(θ, φ)|nks2 '
js2−1∑
j=js1

is2∑
i=is1

νiis1,is2Mx|ni,j+ 1
2 ,ks2

exp(−ik · r′i,j+ 1
2 ,ks2

)∆x∆y

=

js2−1∑
j=js1

is2∑
i=is1

νiis1,is2Ey|
n
i,j+ 1

2 ,ks2
exp(−ik · r′i,j+ 1

2 ,ks2
)∆x∆y,

(6.319)

where

νiis1,is2 =

{
1
2 if i = is1 or i = is2

1 else
. (6.320)

Considering the contributions from all surfaces of rectangular S, we obtain

Lx(θ, φ)|n '−
js2−1∑
j=js1

is2∑
i=is1

νiis1,is2Ey|
n
i,j+ 1

2 ,ks1
exp(−ik · r′i,j+ 1

2 ,ks1
)∆x∆y

+

js2−1∑
j=js1

is2∑
i=is1

νiis1,is2Ey|
n
i,j+ 1

2 ,ks2
exp(−ik · r′i,j+ 1

2 ,ks2
)∆x∆y

+

ks2−1∑
k=ks1

is2∑
i=is1

νiis1,is2Ez|
n
i,js1,k+ 1
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(6.321)

There is no contribution from the surface perpendicular to x-axis. Similarly,
we obtain

Ly(θ, φ)|n '−
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k=ks1

js2∑
j=js1

νjjs1,js2Ez|
n
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2
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(6.322)
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Lz(θ, φ)|n '−
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)∆y∆z

−
js2−1∑
j=js1

ks2∑
k=ks1

νkks1,ks2Ey|
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1
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2 ,k

)∆y∆z.

(6.323)

The tangential components of the magnetic field are necessary to obtain
the surface electric currents, but since these are defined 1/2 cell away from
the closed surface composed with E-cells, a little ingenuity is required. Simply
take the average of two values that are only ±1/2 cells apart across the closed
surface. Since the defined time of the magnetic field also deviates from that
of the electric field by ∆t/2, it is necessary to take the average of the time as
well. That is, on the surface z = ks2∆z,

Jy|ni,j+ 1
2 ,ks2

=
1

4

(
Hx|

n+ 1
2

i,j+ 1
2 ,ks2−

1
2
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2

i,j+ 1
2 ,ks2+ 1

2

+Hx|
n− 1

2

i,j+ 1
2 ,ks2−

1
2

+Hx|
n− 1

2

i,j+ 1
2 ,ks2+ 1

2

)
, (6.324)

Jx|ni+ 1
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2
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2

)
. (6.325)

Similarly on x = is2∆x surface,
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=
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4
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, (6.326)
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. (6.327)

On y = js2∆y surface,

Jx|ni+ 1
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, (6.328)
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Jz|ni,js2,k+ 1
2
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. (6.329)

It is known that employing the geometric mean instead of the arithmetic mean
improves the accuracy [58].

The contribution of Nx(θ, φ) from the z = ks2∆z surface can be expressed
by using Eq. (6.325) as

Nx(θ, φ)|nks2

'
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Considering the contributions from all surfaces, we obtain

Nx(θ, φ)|n '

+
1

4

is2−1∑
i=is1

js2∑
j=js1

νjjs1,js2

(
Hy|

n+ 1
2

i+ 1
2 ,j,ks1−

1
2

+Hy|
n+ 1

2

i+ 1
2 ,j,k1+ 1

2

+Hy|
n− 1

2

i+ 1
2 ,j,ks1−

1
2

+Hy|
n− 1

2

i+ 1
2 ,j,k1+ 1

2

)
exp(−ik · r′i+ 1

2 ,j,ks1
)∆x∆y

− 1

4

is2−1∑
i=is1

js2∑
j=js1

νjjs1,js2

(
Hy|

n+ 1
2

i+ 1
2 ,j,ks2−

1
2

+Hy|
n+ 1

2

i+ 1
2 ,j,ks2+ 1

2

+Hy|
n− 1

2

i+ 1
2 ,j,ks2−

1
2

+Hy|
n− 1

2

i+ 1
2 ,j,ks2+ 1

2

)
exp(−ik · r′i+ 1

2 ,j,ks2
)∆x∆y

− 1

4

is2−1∑
i=is1

ks2∑
k=ks1

νkks1,ks2

(
Hz|

n+ 1
2

i+ 1
2 ,js1−

1
2 ,k

+Hz|
n+ 1

2

i+ 1
2 ,js1+ 1

2 ,k

+Hz|
n− 1

2

i+ 1
2 ,js1−

1
2 ,k

+Hz|
n− 1

2

i+ 1
2 ,js1+ 1

2 ,k

)
exp(−ik · r′i+ 1

2 ,js1,k
)∆z∆x

+
1

4

is2−1∑
i=is1

ks2∑
k=ks1

νkks1,ks2

(
Hz|

n+ 1
2

i+ 1
2 ,js2−

1
2 ,k

+Hz|
n+ 1

2

i+ 1
2 ,js2+ 1

2 ,k

+Hz|
n− 1

2

i+ 1
2 ,js2−

1
2 ,k

+Hz|
n− 1

2

i+ 1
2 ,js2+ 1

2 ,k

)
exp(−ik · r′i+ 1

2 ,js2,k
)∆z∆x, (6.331)
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If L(θ, φ) andN(θ, φ) obtained above are expressed in the polar coordinate
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system, we obtain

Lθ(θ, φ) = Lx cos θ cosφ+ Ly cos θ sinφ− Lz sin θ (6.334)

Lφ(θ, φ) = −Lx sinφ+ Ly cosφ, (6.335)

Nθ(θ, φ) = Nx cos θ cosφ+Ny cos θ sinφ−Nz sin θ (6.336)

Nφ(θ, φ) = −Nx sinφ+Ny cosφ. (6.337)

Substituting Eqs. (6.334)–(6.337) into Eqs. (6.294)–(6.299), the electromag-
netic field in the far field is obtained.

6.7 Postprocess

6.7.1 Scattering, absorption, extinction cross-section

The scattering cross-section of a scatterer can be calculated from the sum of
the power of the scattered waves leaving the closed surface that completely
surrounds the scatterer. Letting Esca and Hsca be the scattered electric and
magnetic fields, respectively, the Poynting vector of the scatterer Ssca is given
by

Ssca =
1

2
Re
(
Ẽsca × H̃

∗
sca

)
, (6.338)

where ∗ denotes complex conjugation. The electric and magnetic fields used
in this equation are those in the frequency domain. In the FDTD method, the
electric and magnetic fields are usually expressed in real numbers. The values
in the frequency domain are obtained by Fourier transforming the response
to a short pulse wave source as described previously. Therefore, the electro-
magnetic field in the frequency domain is generally a complex number with a
phase term.

The total scattered power Wsca is given as

Wsca =

∫
S

Ssca · n̂dS. (6.339)

In the FDTD method, it is common to take this closed surface as a rectangular
solid. Furthermore, by using the TF/SF method and setting all the faces of
this rectangular solid to be in the scattering field region, the power of only
the scattered waves can be easily calculated.

Assuming that the rectangular solid is made up of a collection of E-cells,
the energy flow through one face of the E-cell is calculated. The Poynting
vector at this face is represented by the value at the centre of the E-cell face.
As an example, consider a face of an E-cell perpendicular to the z-axis. To
calculate the Poynting vector at the centre of this face, we need the values
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of Ex and Hy and Ey and Hx in the frequency domain. However, since only
Hz is defined at this location, a little ingenuity is required for other fields.
Furthermore, the definition times of E and H differ by ∆t/2, which must also
be taken into account. When obtaining the spectrum, it is necessary to store
the time series data of the electric and magnetic fields, and it is convenient
to correct these positions and times at every time evolution sequence. Here,
the time is to be aligned with the time at which E is defined. That is, at the
centre of the face perpendicular to the z-axis of the E-cell:
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. (6.341)

The Ey and Hx can be calculated in the same way. The power Wz flowing out
of this face in the +z-direction is given as

Wz|ni+ 1
2 ,j+

1
2 ,k

=∆x∆y
(
Ẽx|i+ 1

2 ,j+
1
2 ,k
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2 ,j+
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−Ẽy|i+ 1
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1
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H̃∗x |i+ 1

2 ,j+
1
2 ,k

)
. (6.342)

Similar calculations are performed for the six faces of the rectangular solid
and by summing them, the total power of the scattered light is obtained. The
scattering cross-section is obtained by dividing this total scattered power by
the incident light intensity (incident power per unit area).

Next, we will discuss how to obtain the absorption cross section and ex-
tinction cross section. The Poynting vector S in the medium surrounding the
scatterer is given by the sum of the three terms as [8],

S =
1

2
Re(Ẽtot × H̃

∗
tot) = Sinc + Ssca + Sext, (6.343)

where Sinc is the Poynting vector of the incident field, and Ssca and Sext are
the Poynting vectors outgoing and incoming to the scatterer, respectively. The
Ssca and Sext are expressed as follows, respectively

Sinc =
1

2
Re(Ẽinc × H̃

∗
inc), (6.344)

Ssca =
1

2
Re(Ẽsca × H̃

∗
sca). (6.345)
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Since Ẽtot = Ẽinc + Ẽsca in the medium, from Eq. (6.343), we obtain

S =
1

2
Re[(Ẽinc + Ẽsca)× (H̃

∗
inc + H̃

∗
sca)]

=
1

2
Re(Ẽinc × H̃

∗
inc + Ẽsca × H̃

∗
sca + Ẽinc × H̃

∗
sca + Ẽsca × H̃

∗
inc).

(6.346)

Substituting Eqs. (6.344) and (6.345) into Eq. (6.346), we obtain

S = Sinc + Ssca +
1

2
Re(Ẽinc × H̃

∗
sca + Ẽsca × H̃

∗
inc). (6.347)

Comparing this equation with Eq. (6.343),

Sext =
1

2
Re(Ẽinc × H̃

∗
sca + Ẽsca × H̃

∗
inc) (6.348)

is obtained. The extinction power Wext due to the scatterer is given by

Wext = −
∫
S

Sext · n̂dS. (6.349)

As above, taking a closed surface to the surface of a rectangular solid and
using the incident and scattered fields at this surface. On the −x-side surface
of the rectangular solid, we obtain

(Sext · n̂)−x =
1

2

(
Ẽ′iyH̃

′
sz + Ẽ′′iyH̃

′′
sz − Ẽ′izH̃ ′sy − Ẽ′′izH̃ ′′sy
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′
iz + Ẽ′′syH̃

′′
iz − Ẽ′szH̃ ′iy − Ẽ′′szH̃ ′′iy

)
, (6.350)

where ′ denotes the real part and ′′ the imaginary part. On the −y-side surface,

(Sext · n̂)−y =
1

2

(
−Ẽ′ixH̃ ′sz − Ẽ′′ixH̃ ′′sz + Ẽ′izH̃

′
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sx

−Ẽ′sxH̃ ′iz − Ẽ′′sxH̃ ′′iz + Ẽ′szH̃
′
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′′
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)
. (6.351)

On the −z-side surface,

(Sext · n̂)−z =
1

2

(
Ẽ′ixH̃

′
sy + Ẽ′′ixH̃

′′
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+Ẽ′sxH̃
′
iy + Ẽ′′sxH̃

′′
iy − Ẽ′syH̃ ′ix − Ẽ′′syH̃ ′′ix

)
. (6.352)

At the + side surface, the signs of each term are all reversed. These calculations
are performed on all surfaces of the rectangular solid, and the extinction cross-
section is obtained by dividing the sum by the incident light intensity.

For example, if the incident field is z propagating x polarization, Ẽiy =

Ẽiz = H̃ix = H̃iz = 0 at −x-side surface, Eq. (6.350) becomes

(Sext · n̂)−x = −1

2
(Ẽ′szH̃

′
iy + Ẽ′′szH̃

′′
iy). (6.353)
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On the −y-side surface, Eq. (6.351) becomes

(Sext · n̂)−y = −1

2
(Ẽ′ixH̃

′
sz + Ẽ′′ixH̃

′′
sz). (6.354)

On the −z-side surface, Eq. (6.352) becomes

(Sext · n̂)−z =
1

2
(Ẽ′ixH̃

′
sy + Ẽ′′ixH̃

′′
sy + Ẽ′sxH̃

′
iy + Ẽ′′sxH̃

′′
iy). (6.355)

Also, if the incident field is z propagating y polarization, Ẽix = Ẽiz = H̃iy =

H̃iz = 0 on the −x-side surface, Eqs. (6.350)–(6.352) become

(Sext · n̂)−x =
1

2
(Ẽ′iyH̃

′
sz + Ẽ′′iyH̃

′′
sz), (6.356)

(Sext · n̂)−y =
1

2
(Ẽ′szH̃

′
ix + Ẽ′′szH̃

′′
ix), (6.357)

(Sext · n̂)−z = −1

2
(Ẽ′iyH̃

′
sx − Ẽ′′iyH̃ ′′sx + E′syH̃

′
ix − Ẽ′′syH̃ ′′ix). (6.358)

The absorption cross section, Cabs can be calculated from the following
definition:

Cabs = Cext − Csca. (6.359)

6.7.2 Absorption distribution

The absorbed power per unit cell, ∆P can be calculated from Poynting’s
theorem,

∆P =
1

2
σ|E|2∆x∆y∆z. (6.360)

In the optics field, complex permittivity is often used instead of conductivity
σ. The relationship between the complex relative permittivity ε∗ and σ is
given by

ε∗ = ε+
iσ

ε0ω
. (6.361)

Therefore, in the case of Drude dispersion, the conductivity is given by

σ =
ε0ω

2
pΓ

ω2 + Γ2
. (6.362)

Also, in the case of Lorenz dispersion,

σ =
2ε0∆εpω

2
pω

2Γ

(ω2
p − ω2)2 + 4ω2Γ2

. (6.363)



182 FDTD (Finite Difference Time Domain) Method

6.7.3 Charge density distribution

The charge density ρ(r) is obtained from Gauss’s law,

∇ ·D(r) = ρ(r). (6.364)

It is easy to obtain the value at the vertex of E-cell (the centre of H-cell),
thus:

ρ|i,j,k =
εx|i+ 1

2 ,j,k
Ex|i+ 1

2 ,j,k
− εx|i− 1

2 ,j,k
Ex|i− 1

2 ,j,k

∆x

+
εy|i,j+ 1

2 ,k
Ey|i,j+ 1

2 ,k
− εy|i,j− 1

2 ,k
Ey|i,j− 1

2 ,k

∆y

+
εz|i,j,k+ 1

2
Ez|i,j,k+ 1

2
− εz|i,j,k− 1

2
Ez|i,j,k− 1

2

∆z
. (6.365)

6.7.4 Amplitude and phase of damping harmonic oscillation

When using a continuous wave light source, there are many cases where we
want to obtain not only the electric field at a certain time, but also the am-
plitude of the electric field including the phase. In addition, it is necessary
to obtain the amplitude of the damping harmonic oscillation when one wants
to obtain the mode pattern of a localized surface plasmon due to dipole ex-
citation, for example. In this case, the unknowns are the damping constant
(inverse of the time constant) Γ, the amplitude a, the phase φ, and the bias
component b that cannot be completely removed. Furthermore, if the sam-
pling interval ∆T , which is constant, is another unknown, then there are five
unknowns in total. Therefore, to obtain these five unknowns, we need the
values of the electromagnetic field sampled at least five times at a constant
interval ∆T . The electric fields obtained by sampling five times are

E1 =E[t0 − (3/2)∆T ]

=b+ a exp[(3/2)Γ∆T ] cos{ω[t0 − (3/2)∆T ] + φ′}, (6.366)

E2 =E[t0 − (1/2)∆T ]

=b+ a exp[(1/2)Γ∆T ] cos{ω[t0 − (1/2)∆T ] + φ′}, (6.367)

E3 =E[t0 + (1/2)∆T ]

=b+ a exp[−(1/2)Γ∆T ] cos{ω[t0 + (1/2)∆T ] + φ′}, (6.368)

E4 =E[t0 + (3/2)∆T ]

=b+ a exp[−(3/2)Γ∆T ] cos{ω[t0 + (3/2)∆T ] + φ′}, (6.369)
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E5 =E[t0 + (5/2)∆T ]

=b+ a exp[−(5/2)Γ∆T ] cos{ω[t0 + (5/2)∆T ] + φ′}. (6.370)

The bias component b is obtained from the above five equations as

b =(E2
3 − 2E2E3E4 + E1E

2
4 + E2

2E5 − E1E3E5)

/(E2
2 − E1E3 − 2E2E3 + 3E2

3 + 2E1E4 − 2E2E4

− 2E3E4 + E2
4 − E1E5 + 2E2E5 − E3E5). (6.371)

By subtracting this bias component from Eqs. (6.366)–(6.366), we obtain

E′1 = a exp[(3/2)γ] cos(φ− 3Φ), (6.372)

E′2 = a exp[(1/2)γ] cos(φ− Φ), (6.373)

E′3 = a exp[−(1/2)γ] cos(φ+ Φ), (6.374)

E′4 = a exp[−(3/2)γ] cos(φ+ 3Φ), (6.375)

where γ = Γ∆T , φ = ωt0 + φ′, and Φ = (1/2)ω∆T . By taking the product or
square of these equations,

E′1E
′
3 =

1

2
a2 exp(γ) [cos(2φ− 2Φ) + cos 2Φ] , (6.376)

E′2
2

=
1

2
a2 exp(γ) [cos(2φ− 2Φ) + 1] , (6.377)

E′2E
′
4 =

1

2
a2 exp(−γ) [cos(2φ+ 2Φ) + cos 2Φ] , (6.378)

E′3
2

=
1

2
a2 exp(−γ) [cos(2φ+ 2Φ) + 1] , (6.379)

are obtained. Using Eqs. (6.376) and (6.377),

E′2
2 − E′1E′3 =

1

2
a2 exp(γ) [1− cos 2Φ] , (6.380)

E′3
2 − E′2E′4 =

1

2
a2 exp(−γ) [1− cos 2Φ] , (6.381)

are obtained. Dividing Eq. (6.380) by the Eq. (6.377) on each side and taking
the square root, we obtain

exp(−γ) =

√
E′3

2 − E′2E′4
E′2

2 − E′1E′3
. (6.382)

Next, we use the electric field divided by the above damping term, we obtain

E′′1 = a cos(φ− 3Φ), (6.383)
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E′′2 = a cos(φ− Φ), (6.384)

E′′3 = a cos(φ+ Φ), (6.385)

E′′4 = a cos(φ+ 3Φ). (6.386)

Adding and subtracting Eqs. (6.383) and (6.386) as well as Eqs. (6.384) and
(6.385) on each side, we obtain

E′′1 + E′′4 = 2a cosφ cos 3Φ, (6.387)

E′′1 − E′′4 = 2a sinφ sin 3Φ, (6.388)

E′′2 + E′′3 = a cosφ cos Φ, (6.389)

E′′2 − E′′3 = a sinφ sin Φ. (6.390)

From Eqs. (6.387) to (6.390), we obtain

E′′1 + E′′4
E′′2 + E′′3

=
cos 3Φ

cos Φ
= 4 cos2 Φ− 3, (6.391)

E′′1 − E′′4
E′′2 − E′′3

=
sin 3Φ

sin Φ
= −4 sin2 Φ + 3. (6.392)

From these equations, we obtain

cos2 Φ =
1

4

(
3 +

E′′1 + E′′4
E′′2 + E′′3

)
, (6.393)

sin2 Φ =
1

4

(
3− E′′1 − E′′4

E′′2 − E′′3

)
. (6.394)

On the other hand, if we square the sides of the Eqs. (6.389) to (6.390),

(E′′2 + E′′3 )2 = a2 cos2 φ cos2 Φ, (6.395)

(E′′2 − E′′3 )2 = a2 sin2 φ sin2 Φ, (6.396)

are obtained. From Eqs. (6.393) and (6.395) as well as Eqs. (6.394) and (6.396),

(E′′2 + E′′3 )2(
3 +

E′′
1 +E′′

4

E′′
2 +E′′

3

) = a2 cos2 φ, (6.397)

(E′′2 − E′′3 )2(
3− E′′

1 −E′′
4

E′′
2 −E′′

3

) = a2 sin2 φ, (6.398)

are obtained. Adding up each sides of Eqs. (6.397) and (6.398), we obtain the
amplitude

a2 =
(E′′2 + E′′3 )3

(E′′1 + E′′4 ) + 3(E′′2 + E′′3 )
− (E′′2 − E′′3 )3

(E′′1 − E′′4 )− 3(E′′2 − E′′3 )
. (6.399)



Example of localized surface plasmon resonance calculation 185

Next, we calculate the phase. From Eqs. (6.389) and (6.390),

tanφ =
cos Φ

sin Φ

E′′2 − E′′3
E′′2 + E′′3

(6.400)

is obtained. Using this equation and Eqs. (6.393) and (6.394), we obtain phase,
φ. Considering the signs in the denominator and numerator of Eq. (6.400), φ
is uniquely determined in the range (−π, π]. Also, if we take Φ ∼ π/4, i.e.
∆T ∼ π/2ω, the signs of cos Φ and sin Φ are both positive.

In actual calculations, the right side of Eqs. (6.393) and (6.394) may be-
come negative due to rounding errors when the amplitude is small. In this
case, cos Φ and sin Φ become imaginary numbers. To avoid this, in an actual
calculation, for example, when cos Φ is calculated, it is better to use

cos Φ =
1

2

√
3 +

∣∣∣∣E′′1 + E′′4
E′′2 + E′′3

∣∣∣∣. (6.401)

Once the amplitude and phase of the electric and magnetic fields have been
obtained, the distribution of the electric and magnetic fields at any time in
the steady state can be obtained. The question arises as to which time (phase)
the fields should be displayed. If we want to display enhanced fields such as
localized surface plasmon resonance, it would be better to use the phase of
the field at the position where the amplitude takes the maximum value as a
reference. If this phase is φ0, for example, the amplitude the electric field Ex
to be displayed is

Ex(x, y, z) = |Ex(x, y, z)| sin [φEx(x, y, z)− φ0 + π/2] . (6.402)

It is important to note that at resonant frequencies, the phase of the reso-
nant mode oscillation is delayed by π/2 from the phase of the incident field.
Therefore, when the field is calculated according to the above equation, the
amplitude of the incident field is almost zero. On the other hand, if π/2 in
the hook brackets in the above equation is set to zero, only the incident field
is obtained and the enhanced field due to resonance is almost zero.

6.8 Example of localized surface plasmon resonance
calculation

As an example of FDTD calculation, we describe the analysis of localized
surface plasmon resonance in metallic nanoparticles. Localized surface plas-
mon resonance is a phenomenon in which a collection of free electrons in
metal nanoparticles resonantly oscillates in response to an incident field [59].
Here, we investigate the localized surface plasmon resonance in a gold disk
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FIGURE 6.17
Gold disk and coordinate system; A and B are dipole positions; positions 1–5
are the observation points. The right figure shows the relative permittivity
of gold; experimental values (circled) [12] and values fitted with the Drude
model (solid line).

with a 150 nm diameter and 50 nm thickness placed in vacuum as shown
in Figure 6.17. The disk is placed in the centre of the coordinate system
so that its central axis coincides with the z-axis; the size of the Yee cell is
2.5× 2.5× 2.5 nm3 and the object space is 500× 500× 500 nm3. The entire
object space was terminated with eight layers of PML. The relative permit-
tivity of gold was obtained by fitting with the Drude dispersion formula using
literature values [12] of in a wavelength region of 0.5–2.0 µm. The param-
eters obtained from the fitting are ε∞ = 10.38, ωp = 1.375 × 1016 Hz, and
Γ = 1.181 × 1014 Hz. The resultant relative permittivity of gold using these
values is also shown in Figure 6.17. The deviation of the experimental values
from the Drude model in the short wavelength range is due to the interband
transitions of gold. In order to express the permittivity of gold more faithfully,
it is necessary to express the permittivity as the sum of the Drude dispersion
and the Lorentz dispersion.

First, an x-polarized plane wave propagating in the +z-direction is inci-
dent using the TS/FS method to obtain absorption, scattering, and extinc-
tion spectra of the disk. For this purpose, a scattering field region is set up
for three cells thick outside the object region. The pulse waveform is a sinu-
soidally modulated Gaussian pulse with a centre frequency of 600 nm in terms
of wavelength in vacuum. The standard deviation of the Gaussian waveform
was set to half of the period of the modulated wave. The obtained scattering,
absorption and extinction spectra are shown in Figure 6.18(a). A large peak
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FIGURE 6.18
(a) Absorption, scattering, and extinction cross-section spectra of the gold
disk. (b) Power spectra of the electric field at each detector position when a
single dipole is placed on the side of the metallic disk (point A) and excited
with a Gaussian pulse. (c) Power spectrum of the electric field at each detector
position when two dipoles oriented in the x-direction are placed on both sides
of the metal disk (points A and B) and excited with a Gaussian pulse. (d)
Same as (c) but with the dipoles oscillating symmetrically (excited in opposite
phase).

at a wavelength of 598 nm and two smaller peaks at wavelengths of 458 nm
and 491 nm are observed.

Next, we visualize the electromagnetic field distribution of the resonance
mode in order to investigate what kind of resonance mode of localized surface
plasmon these peaks correspond to. First, we investigate the resonance mode
at a wavelength of 598 nm. For this purpose, a continuous monochromatic
plane wave of a wavelength of 598 nm is incident, and the electromagnetic
field distribution in the steady state is calculated. The results are shown in
Figures 6.19(a) and (b), which are plots of the electric field Ex at z = 0 and
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FIGURE 6.19
Electric field (Ex) distribution at steady state for an incident continuous wave
of wavelength 598 nm. (a) and (b) are for at the time when the maximum
electric field is obtained, and (c) and (d) are the electric field distributions at
the time shifted by a quarter cycle from (a) and (b). Distributions (a) and (b)
are at the cross-section z = 0 and (b) and (d) are at the cross-section y = 0.

y = 0 cross-sections, respectively. The electric field amplitude and phase at
each location were calculated, and these were used to show the electric field at
the time giving its maximum. As can be seen from Figure 6.19(b), the electric
field distribution is not only that of the resonant mode, since the electric field
enhanced by localized surface plasmon resonance and the incident electric
field are superimposed. On the other hand, Figures 6.19(c) and (d) show the
electric field distribution at the time shifted by a quarter cycle from Figures
6.19(a) and (b), where the enhanced field is barely visible and almost only the
incident field is shown.

To remove the incident field, excitation by the incident field should be
terminated in the middle of the excitation. Since resonance modes have a long
lifetime, they continue to oscillate for a while after the excitation is terminated.
Thus, the amplitude of the remaining oscillation gives only that of resonance
mode. Here, we must be careful about the spectral waveform of the incident
field to be used. The incident field is expressed as the product of a sine wave
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and a function representing an envelope with a finite time width (envelope
function). The spectrum of this waveform is represented by the convolution
of the delta function and the Fourier transform of the envelope function. The
Fourier transform of the envelope function generally results in a peak with
a certain width. In addition, non-negligible side lobes appear on both sides
of the peak, and these side lobes decay away from the peak, but continue
indefinitely. Therefore, if there is another resonance mode with a high Q value
in the vicinity of the desired resonance mode, this side lobe excites this high
Q-value mode at the same time. Since the peak frequency of the incident light
is matched to the resonance frequency of the desired low Q-value mode, this
mode is excited with a large amplitude. At the same time, however, a nearby
mode with a high Q value is also excited, albeit with a smaller amplitude.
Since the mode with the higher Q value has a longer lifetime, this mode is
excited more strongly if the excitation is continued. In addition, the oscillation
continues for a long time after the excitation is terminated. As a result, if
the amplitude distribution is detected after all the incident light has left the
calculation area, the amplitude distribution of a nearby mode with a high Q
value may be detected instead of the desired mode with a low Q value.

To avoid this, the shape of the envelope function of the incident field should
be devised. This is consistent with the window function problem that has been
studied in frequency analysis. The envelope function is the window function
itself. The shapes of the peaks and side lobes in the spectrum of the incident
field depend on the shape of the window function. In this case, the width of
the peak and the magnitude of the sidelobe are in a contradictory relationship.
When the peak width is reduced, the side lobe becomes larger, but when the
side lobe is reduced, the peak width becomes larger. One function that satisfies
above desired condition is the Nuttall window [60] given by

w(t) =
1

L

K∑
k=0

ak cos(2πkt/L) for |t| ≤ L/2, (6.403)

and several combination of ak have been proposed so far. One of them is called
“4-Term with Continuous First Derivative” as

a0 = 0.355768,

a1 = 0.487396,

a2 = 0.144232,

a3 = 0.012604. (6.404)

This set has the excellent characteristics of a maximum lobe intensity of
−93.32 dB and a lobe attenuation of 18 dB/octave.

The distribution of resonance modes at a wavelength of 598 nm obtained in
this way is shown in Figure 6.20. A highly symmetric electric field distribution
with the incident field removed is obtained. This figure shows that this mode
is a dipole mode.
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FIGURE 6.20
Distribution of the electric field Ex after the excitation with a monochromatic
plane wave of a wavelength of 598 nm and terminated it.

FIGURE 6.21
Distribution of electric field Ex at steady state for an incident monochromatic
plane wave of a wavelength of 492 nm. (a) It is in the z = 26.25 nm plane and
(b) is in the y = 0 plane. Both are field distributions at the time when the
maximum electric field is obtained.

Next, we examine the resonance peak at a wavelength of 492 nm. As in
the case of the dipole mode at a wavelength of 598 nm, the electric field dis-
tribution after a while of continuous excitation with a monochromatic plane
wave at a wavelength of 492 nm and after the excitation has been terminated
is shown in Figure 6.21. This distribution is less symmetric than that for the
598 nm wavelength mode. One possible reason for this is that this electric field
distribution does not represent that of only one mode, but a superposition of
multiple modes. As can be seen from the spectrum shown in Figure 6.18(a),
the hem of the resonance peak at 598 nm extends to this wavelength, suggest-
ing that this mode is superimposed. In such a case, no matter how narrow the
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width of the excitation spectrum, the influence of other modes with overlap-
ping resonance peak hem cannot be eliminated.

Thus, modes that cannot be completely separated by the spectrum ob-
tained by plane wave excitation must be separated by using sources that
excite only the mode to be observed, instead of excitation by plane waves.
One of the methods is excitation by a set of dipoles. Figure 6.18(b) shows
the power spectrum of the electric field at four positions when a single dipole
oscillating in the x-direction is placed at 6.25 nm away from the side of the
disk on the x-axis and excited with a pulse. The position of the detector and
the orientation of the detected electric field are shown in Figure 6.17. New
resonance peaks appeared at 514 nm and 468 nm, but the two peaks on the
short wavelength side of Figure 6.18(a) disappeared. Therefore, the resonant
mode at 492 nm cannot be observed with this dipole configuration.

In order to reproduce the electric field distribution more similar to plane
wave incidence, two dipoles oriented in the x-direction (antisymmetric direc-
tion with respect to the plane of x = 0) were placed at symmetric positions on
both sides of the disk for excitation. The power spectrum of the detected elec-
tric field is shown in Figure 6.18(c). It can be seen that the resonance peak
on the short wavelength side observed in Figure 6.18(a) is strongly excited
compared to the dipole mode peak. Furthermore, the peak on the shortest
wavelength side, which appeared to be one peak in Fig. 6.18(a), shows that
two resonance peaks were overlapped. The result of plotting the electric field
distribution after the dipoles are excited and terminated at the frequency cor-
responding to a wavelength of 494 nm with this dipole arrangement is shown
in Figure 6.22. Since it is difficult to understand the mode only with the
Ex display, the amplitude distribution of Ez on the plane perpendicular to
the z-axis 1.25 nm down from the lower surface of the disk is shown in Fig-
ure 6.22(c). From this figure, it is clear that this mode is a sextupole mode.
The two modes at the shortest wavelengths cannot be well separated by the
set of positions of these dipoles. To separate the two modes, we need to further
improve the arrangement of the dipoles.

Next, we obtain the electric field distribution of the 514 nm wavelength
mode shown in Figure 6.18(b). Since this mode overlaps with the large hem
of the dipole mode at a wavelength of 598 nm, it is difficult to excite only this
mode by the excitation with one dipole. Therefore, the following arrangement
of dipoles is used. The excitation is the same as in the case of Figure 6.18(c)
up to the point where two dipoles are placed on both sides of the disk, but
the phases of the oscillation of the dipoles are shifted by π with each other so
that their oscillations are symmetric. The result is shown in Figure 6.18(d).
With this excitation method, the dipole mode is completely obscured, and at
the same time, the intensity of the peak on the short wavelength side becomes
larger and clearer. Figure 6.23 shows the distribution of Ez obtained after
being excited and terminated by the oscillation of two dipoles at frequencies
corresponding to wavelengths of 513 nm and 487 nm. It can be seen that they
are quadrupole and octupole modes, respectively. Further work on the dipole
configuration is needed to identify resonance peaks at shorter wavelengths.
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FIGURE 6.22
Distribution of the electric field after excitation and termination of the oscil-
lation of the dipoles at a frequency corresponding to a wavelength of 494 nm,
(a) and (b) are the electric field Ex in the x-direction in the plane containing
the origin, and (c) is the electric field Ez in the z-direction in the plane at
z = 26.25 nm.

6.9 Sample program

Sample programs for the FDTD method are shown in the Appendix (A.6.1
(runfdtd.py), A.6.2 (fdtd.py), and A.6.3 (preprocess.py). The outside of the
object space is terminated by PML. The sources correspond to the plane wave
of x-polarized z propagation or dipoles. The plane waves are introduced using
the TF/SF method. All units are in the SI unit system.

regionx, regiony and regionz are the spatial sizes of object space and dx,
dy and dz are the cell sizes. The source specifies whether the source is a plane
wave (‘plane’) or dipoles (‘dipole’). pulse specifies whether the source is
a continuous wave (‘cw’) or a Gaussian pulse modulated with a sinusoidal
wave (‘pulse’). lambda0 is the centre wavelength of the source. mt is the
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FIGURE 6.23
Distribution of the electric field Ez in the z-direction in the z = 26.25 nm
plane after pulse excitation by the dipoles at frequencies corresponding to
wavelengths of (a) 513 nm and (b) 487 nm.

number of time evolutions, mfft is the sampling number of the calculated
waveforms and extrapol is the multiple of zero filling to extend the duration
of the waveforms for the spectrum calculation. This multiple is equal to the
density of interpolation of the sampling points in the resulting spectrum. The
msf gives the width of the scattering region in units of cell size and the mpml

gives the number of PML layers. Also, kappamax, amax and mpow are κmax,
amax, and multiplier m of PML parameters.

objs specifies the object to be placed in the object space. The only object
shapes incorporated in this program are spheres and flat substrate. The in-
stalled media are vacuum (‘vacuum’), silica (‘SiO2’), gold (‘Au’) and silver
(‘Ag’). dipoles specifies the polarization, phase (only 0 or π) and position
of the dipoles as sources. fieldmons specifies the parameters for preserving
the electric or magnetic field distribution in the cross-section perpendicular to
the coordinate axes at constant time intervals. epsmons specifies the location
of the distribution of the media filling the object space in the cross-section
perpendicular to the coordinate axes to be preserved. detectors specifies the
electric or magnetic fields and their locations for preserving time evolving
waveforms and spectra.

The values of the indices of the arrays storing the electric and magnetic
fields correspond to the coordinates in units of cell size as shown in Figure 6.24.
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FIGURE 6.24
The relationship between the indices of the array of electric and magnetic
fields in the computer and the spatial coordinates in units of cell size. The
same applies to the z-direction.



7

Discrete Dipole Approximation

There are various methods for electromagnetic field analysis, one of which
is the discrete dipole approximation (DDA). The optical response is derived
by approximating the structure of interest as an assembly of dipoles induced
by the incident optical electric field and the dipole–dipole interaction. It is
suitable for estimating the optical response of an isolated structure, especially
scattering and absorption. This method initially predicted interstellar mat-
ter’s scattering, absorption, and extinction spectra. The software developed
by Draine and Flatau (DDSCAT) is available. The user guide describes how
to use this software in detail. This chapter introduces some programs for pro-
cessing data output using DDSCAT.

7.1 DDA principle

In the DDA, the optical response is derived by approximating the structure of
interest as an assembly of dipoles induced by the incident optical electric field
and the dipole-dipole interaction, as shown in Figure 7.1 [61,62]. The dipole
pj arising at position rj can be written using the local electric field Ej,loc and
the polarization tensor α̃ as follows:

pj = α̃Ej,loc (7.1)

The local electric field Ej,loc is the sum of the externally incident electric
field of light Ej,ext at position rj and the electric field Ej,dip created by other
dipoles at position rj .

Ej,loc = Ej,ext +Ej,dip (7.2)

The Ej,dip can be written using the dipole pk at position rk, including retar-
dation effects due to propagation, as follows:

Ej,dip =
exp(ikrjk)

rjk

(
k2(rjk × (rjk × pk)

+
1− ikrjk

r2
jk

(r2
jkpk − 3rjk(rjk · pk))

)
(7.3)

Here, k is the wavenumber in vacuum, rjk = rk − rj , and rjk = |rjk|. The
dipole number N is the number of dipoles considered. Summarizing Equations
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(7.2) and (7.3), we have

Ej,loc = Ej,ext +
N∑
j 6=k

Ãjkpk. (7.4)

FIGURE 7.1
Discrete dipole approximation.

The Ãjk can be obtained by component calculations, and pk is a dipole
induced by the local electric field Ek,loc at position rk. Solving this, Ej,ext is
given as follows:

Ej,ext = α̃−1pj +

N∑
j 6=k

Ãjkpk. (7.5)

To consider all dipoles, the electric field and dipoles at each position are lined
up vertically. Writing the corresponding tensor Ãjk in the form of a matrix,
we obtain 

E1,ext

...
Ej,ext

...
EN,ext

 =



Ã11 . . . Ã1j . . . Ã1N

...
. . .

...

Ãj1 . . . Ãjj . . . ÃjN
...

. . .
...

ÃN1 . . . ÃNj . . . ÃNN





p1

...
pj
...
pN

 . (7.6)

The vector Eext, which is a vertical vector of external electric fields, and
Ãjk are known. The vector P of dipoles arranged vertically is unknown. It
seems that we can solve a simultaneous equation with the components of P as
unknowns, but it is difficult to find the inverse matrix considering that Ã has
3N × 3N components and N = 103 − 107. Therefore, algorithms using non-
stationary iterative methods, such as conjugate gradient methods, converge
the solution; DDSCAT 7.3 implements five different algorithms, which can be
switched as required.

The polarizability α is obtained from the refractive index of a substance.
The well-known relationship between a substance’s refractive index n and its
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polarizability α is the Clausius-Mosotti relation. It is

α =
3V

4π

n2 − 1

n2 + 2
, (7.7)

in the cgs unit. V is the volume occupied by one dipole, and V = d3 for a cubic
lattice, where d is the dipole spacing. The Clausius-Mosotti relation approxi-
mates zero frequency and is not necessarily a good approximation for optical
frequencies. Several more advanced approximations considering frequency de-
pendence have been proposed [63] and implemented.

7.2 Actual use of DDSCAT

DDSCAT is distributed in Fortran source code, which can be used by com-
piling; executable files are available for Windows. The source specified in the
user guide must be mentioned if the calculated results are published. The
execution conditions are described in the file named ddscat.par. If they are
described in a file with a name other than this, specify that file name as an
argument. The range of wavelengths and sizes to be calculated, as well as the
direction of polarization and rotation of the structure, are also described in
this file. Typical structures such as spheres, ellipsoids, right-angle prisms, and
aggregates can be calculated by specifying keywords. The keywords are listed
in ddscat.par. Files containing some materials’ refractive indices and dielectric
constants (Au, graphite, etc.) are stored in a diel directory. If one wishes to
work with other substances, one may prepare them. The format can be found
in the file.

To calculate shapes other than the prepared ones, specify “FROM FILE”
as a keyword and place a file named shape.dat in the same directory that
lists the coordinates of the dipole and the material. Details on how to list
dipole coordinates, etc., are described in the User’s Guide. The coordinates
are normalized by the dipole spacing d in the sample coordinate system.

While other calculation methods, such as FDTD, directly specify the cell
size, the DDSCAT calculation does not directly specify d. Instead, the number
of dipoles of the structure to be calculated is specified as N and the radius of
the sphere with a volume equal to the volume of the structure as the radius
of execution aeff . The relationship between them is

d = aeff

(3N

4π

)−1/3

. (7.8)

If you specify a provided shape, N is automatically calculated. The d is
listed in the file of calculation results, but if you want to know d before the
calculation, calculate N from the shape parameters and obtain d from Eq.
(7.8). The calculation of N depends on the geometry, so refer to the user
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guide. “FROM FILE” is specified, and the value of N is entered directly into
shape.dat.

The calculation results are stored in several files: mtable lists the wave-
lengths, refractive indices, and dielectric constants used in the calculations;
qtable lists the extinction efficiency Qext, absorption efficiency Qabs, scatter-
ing efficiency Qsca, differential scattering efficiency Qbk for each wavelength
and each effective radius aeff , differential scattering efficiency Qbk, and so on.
The following equation calculates the extinction efficiency Qext.

Qext =
Cext

πa2
eff

=
1

πa2
eff

4πk

|Eext|2
N∑
j=1

Im(E∗ext · pj). (7.9)

Here, Cext is the extinction cross-section, pj is the dipole moment, and k is
the wavenumber. The absorption efficiency Qabs is calculated by the following
equation:

Qabs =
Cabs

πa2
eff

=
1

πa2
eff

4πk

|Eext|2
N∑
j=1

(
Im(pj · (α̃−1

j )∗ · p∗j )−
2

3
k3|pj |2|

)
, (7.10)

where Cabs is the absorption cross-section. The scattering efficiency Qsca is
obtained from Qsca = Qext −Qabs.

The phase lag efficiency Qpha, polarization efficiency index Qpol, and cir-
cular polarization efficiency index Qcpol are listed in qtable2. The polarization
efficiency index Qpol is the difference of extinction efficiency Qext in two or-
thogonal polarizations. The circular polarization efficiency index Qcpol is de-
fined as Qcpol = QpolQpha. The phase lag efficiency Qpha is a parameter that
indicates the degree of phase delay that occurs when light passes through the
structure and is useful for calculating the phase delay of light passing through
dust, etc. The phase shift efficiency is given by

Qpha =
Cpha

πa2
eff

=
1

πa2
eff

2πk

|Eext|2
N∑
j=1

Re(E∗ext · pj). (7.11)

Here, Cpha is the phase lag cross-section.
The file wXXXrYYYY.avg contains the calculation results at the XXXXth

wavelength and YYYYth effective radius. The file target.out, generated when
the structure is created using the keyword, contains the coordinates of the
dipole, corresponding to the shape.dat file used when FROM FILE is used.

7.3 Programs for DDSCAT

In DDSCAT, representative shapes can be calculated by specifying keywords.
For example, in the ddscat.par file, specify “ELLIPSOID” in the “Target
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Geometry and Composition” field on Line 11 and “shape parameters” on
Line 12 as, for example, “30 30 30”, and in the case of gold particles, specify.
“/diel/Au evap” in the case of gold particles. The size of the sphere is specified
in effective radii on Line 31. Each wavelength’s extinction, absorption, and
scattering efficiencies are stored in qtable. Program 7.1, which directly reads
the data stored in the qtable and plots them, is shown below.

In Line 6, f = open(“qtable”, “r”) opens the file and reads its contents into
the variable dat, which is separated using the split function. Then, assign it
to Qext and plot it. Use the float command to convert from string to value.

Program 7.1

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy import zeros

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

5
6 f = open(" qtable","r") # open "qtable" file

7 dat = f.read() # Read all strings

8 f.close() # close "qtable" file

9
10 dat = dat.split ("\n") # split character variable dat

11 datLEN=len(dat) -15 # Find the number of lines excluding the

header section

12
13 WLx=zeros(datLEN)

14 Qext=zeros(datLEN)

15 Qabs=zeros(datLEN)

16 Qsca=zeros(datLEN)

17
18 DDSversion=dat[0] # Line 0 of "qtable" DDSCAT version

19 Target=dat [1] # Line 1 "qtable" Keyword (target type)

20 Shape=dat[4] # Line 4 of "qtable" Shape of target

21 NumDipole=dat[5] # Line 5 of "qtable" number of dipoles

22 aEff=dat [15][1:11] # Line 15 of "qtable" effective radius

23
24 i=14

25 j=0

26 while j <= datLEN -1:

27 WLx[j]=float(dat[i][12:22]) *1000 # read wavelength in nm

28 Qext[j]=float(dat[i][23:33]) # read extinction cross -

section in nm

29 Qabs[j]=float(dat[i][34:44]) # read absorption cross -

section in nm

30 Qsca[j]=float(dat[i][45:55]) # read scattering cross -

section in nm

31 i=i+1

32 j=j+1

33
34 plot(WLx ,Qsca , label=r"$Q_{\rm sca}$",linewidth = 3.0, color=‘

black ’)
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35 plot(WLx ,Qext , label=r"$Q_{\rm ext}$",linewidth = 3.0, color=‘

gray ’)

36 plot(WLx ,Qabs , label=r"$Q_{\rm abs}$",linewidth = 3.0, color=‘

black ’,linestyle=‘dashed ’)

37
38 xlabel (" wavelength (nm)",fontsize =22)

39 ylabel (" Efficiency",fontsize =22)

40 title(" Efficiency",fontsize =22)

41 grid(True)

42 axis ([400 ,800 ,0 ,15])

43 plt.tick_params(labelsize =20)

44 legend(fontsize =20,loc=‘upper right ’)

45 tight_layout ()

46 show()

Next, we introduce Program 7.2, which uses the FROM FILE keyword
to output the shape.dat file needed to calculate the next arbitrary structure.
shape.dat contains the number of dipoles, the coordinates of each dipole, and
information about the material. First, specify the range of coordinates in
xmin and xmax. The actual size is specified by effective radii in Line 31 of the
ddscat.par file. The dipole spacing d is determined by the effective radii aeff

and the number of dipoles from Equation (7.8). The shape of the structure
is determined in Lines 25–36. That is, a loop is turned from xmin to xmax
in the x-, y-, and z-directions, and 1 is assigned to p[x,y,z] if the expression
described in Line 28 applies (true), and 0 if it does not (false). Finally, the
coordinates of p[x,y,z]=1 are output to a file. Rewriting Line 28, one can
output a shape.dat file for any shape. Program A.7 (ShapePlot) shown in the
Appendix can be used to check if the conditions described in Lines 25–36 are
the desired structure.

Program 7.2

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy import zeros , array

4 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis ,subplot

5
6 xmin = -100 # Calculation range setting

7 xmax = 100

8 ymin = -100

9 ymax = 100

10 zmin = -100

11 zmax = 100

12
13 numx = xmax -xmin+1 # Number of points to calculate in x-

direction
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14 numy = ymax -ymin+1 # Number of points to calculate in y-

direction

15 numz = zmax -zmin+1 # Number of points to calculate in z-

direction

16 num = numx*numy*numz # Number of points to calculate in all

directions

17
18 p = np.zeros([numx ,numy ,numz],dtype=int) # initialization of

flag p(x,y,z)

19
20 iii=0

21 xorigin =0 # initialization of gravity center in x-direction

22 yorigin =0 # initialization of gravity center in y-direction

23 zorigin =0 # initialization of gravity center in z-direction

24
25 for z in range(zmin , zmax):

26 for y in range(ymin , ymax):

27 for x in range(xmin , xmax):

28 if x**2 + y**2 + z**2 <= 10**2: # determine

whether the coordinates constitute a shape

29 p[x-xmin ,y-ymin ,z-zmin] = 1 # p=1 for the

coordinates that make up the shape

30 # Since the array of p is an integer

greater than or equal to 0, it is

shifted by xmin

31 xorigin=xorigin +(x-xmin) # Sum the x-

coordinates to find the gravity center

32 yorigin=yorigin +(y-ymin) # Sum the y-

coordinates to find the gravity center

33 zorigin=zorigin +(z-zmin) # Sum the z-

coordinates to find the gravity center

34 iii +=1

35 else:

36 p[x-xmin ,y-ymin ,z-zmin] = 0 # p=0 if

the coordinates do not constitute a shape

37
38 Xorigin=xorigin/iii # the gravity center x component

39 Yorigin=yorigin/iii # the gravity center y component

40 Zorigin=zorigin/iii # the gravity center z component

41
42 l1="--- ddscat calc for FROM_FILE ---"

43
44 l3 ="1.000 0.000 0.000" # a1 vector

45 l4 ="1.000 1.000 0.000" # a2 vector

46 l5="1. 1. 1. " # d_x/d d_y/d d_z/d (normally 1 1

1)

47 l7="J JX JY JZ ICOMPX ICOMPY ICOMPZ"

48
49 f = open("shape.dat","w") # open "shape.dat" in write mode

50 f.write(l1+"\n") # write 1st line

51 f.write(str(iii)+"\n") # write 2nd line (number of dipoles)

52 f.write(l3+"\n") # write 3rd line (a1 vector)

53 f.write(l4+"\n") # write 4th line (a2 vector)

54 f.write(l5+"\n") # write 5th line

55 f.write(str(Xorigin)+" "+str(Yorigin)+" "+str(Zorigin)+"\n")

# write 6th line

56 f.write(l7+"\n") # write 7th line
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57
58 ii=1

59 for z in range(zmin , zmax):

60 for y in range(ymin , ymax):

61 for x in range(xmin , xmax):

62 if p[x-xmin ,y-ymin ,z-zmin] == 1:

63 f.write(str(ii)+" "+str(x-xmin)+" "+str(y-

ymin)+" "+str(z-zmin)+" 1 1

1"+"\n")

64 ii+=1

65 f.close()
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Appendix

8.1 Program of surface plasmon resonance

Program A.1(plannerSPR.py)

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4
5 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,arrange ,sqrt

,zeros ,array ,matrix ,asmatrix

6 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

7
8 def mMATs(n1z ,n2z):

9 return (1/(2* n1z))*matrix ([[n1z+n2z ,n1z -n2z],[n1z -n2z ,n1z+n2z

]])

10 # s-pol Mij matrix

11 def mMATp(n1z ,n2z ,n1,n2):

12 return (1/(2* n1*n2*n1z))*\

13 matrix ([[n1**2* n2z+n2**2*n1z ,n1**2*n2z -n2**2* n1z],\

14 [n1**2*n2z -n2**2*n1z ,n1**2* n2z+n2**2* n1z]])

15 # p-pol Mij matrix

16 def matFAI(n1z ,d1,k0):

17 return matrix ([[exp(1j*n1z*k0*d1), 0],[0,exp(-1j*n1z*k0*d1)

]])

18 # Phi matrix

19
20 n1=1.86 # medium 1 (prism) refractive index

21 n2=sqrt ( -10.8 + 1j*1.47) # medium 2 (gold) refractive index

22 n3=1.5 # medium 3 (dielectrics) refractive index

23 n4=1.33 # medium 4 (water) refractive index

24 ep1=n1**2 # medium 1 dielectric constant

25 ep2=n2**2 # medium 2 dielectric constant

26 ep3=n3**2 # medium 3 dielectric constant

27 ep4=n4**2 # medium 4 dielectric constant

28 d2=47 # thickness of medium 2 (nm)

29 d3=10 # thickness of medium 3 (nm)

30 WL=633 # vacuum wavelength (nm)

31 k0=2*pi/WL # vacuum wavenumber

32
33 t1start =40 # start angle

34 t1end =70 # end angle

35 t1points =300 # number of points
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36
37 t1DegOut = linspace(t1start ,t1end ,t1points) # array of

incident angle

38 t1 = 0.25* pi+(1/n1)*arcsin ((t1DegOut -45) /180* pi) # angle

change in radian

39 s1 = sin(t1) # sin(t1)

40 c1 = cos(t1) # cos(t1)

41 s2 = n1/n2*s1 # sin(t2)

42 c2 = sqrt(1-s2**2) # cos(t2)

43 s3 = n1/n3*s1 # sin(t3)

44 c3 = sqrt(1-s3**2) # cos(t3)

45 s4 = n1/n4*s1 # sin(t4)

46 c4 = sqrt(1-s4**2) # cos(t4)

47
48 n1z=n1*c1 # n1z=k1z/k0

49 n2z=n2*c2 # n2z=k1z/k0

50 n3z=n3*c3 # n2z=k1z/k0

51 n4z=n4*c4 # n2z=k1z/k0

52
53 matT0=zeros ((t1points ,2,2),dtype=complex) #

initialization of T0 matrix

54 matT1=zeros ((t1points ,2,2),dtype=complex) #

initialization of T1 matrix

55 r0=zeros (( t1points),dtype=complex) # initialization of reflection

coefficient w/o dielectric layer

56 r1=zeros (( t1points),dtype=complex) # initialization of reflection

coefficient with dielectric layer

57
58 for i in range(t1points):

59
60 matT0[i]=mMATp(n4z[i],n2z[i],n4,n2)@matFAI(n2z[i],d2 ,k0)

@mMATp(n2z[i],n1z[i],n2,n1)

61 # s-polarization transfer

matrix T0

62 matT1[i]=mMATp(n4z[i],n3z[i],n4,n3)@matFAI(n3z[i],d3 ,k0)

@mMATp(n3z[i],n2z[i],n3,n2)@matFAI(n2z[i],d2 ,k0)@mMATp(n2z

[i],n1z[i],n2 ,n1)

63 # p-polarization transfer

matrix T0

64
65 r0[i]=-matT0[i,1 ,0]/ matT0[i,1,1] # reflection coefficient

w/o dielectric layer

66 r1[i]=-matT1[i,1 ,0]/ matT1[i,1,1] # reflection coefficient

with dielectric layer

67
68 R0Abs=abs(r0)**2 # reflectivity w/o dielectric layer

69 R1Abs=abs(r1)**2 # reflectivity with dielectric layer

70
71 plt.figure(figsize =(8 ,6))

72 plt.figure(figsize =(8 ,6))

73 plot(t1DegOut ,R1Abs , label ="R1",linewidth = 3.0, color=‘gray ’)

74 plot(t1DegOut ,R0Abs , label ="R0",linewidth = 3.0, color=‘black ’)

75 xlabel(r"$\theta_1$ (deg.)",fontsize =20)

76 ylabel(r"Reflectivity",fontsize =20)

77 title(" Surface Plasmon Resonance",fontsize =20)

78 grid(True)

79 legend(fontsize =20,loc=‘lower right ’)
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80 plt.tick_params(labelsize =20)

81 tight_layout ()

82 show()

8.2 Multilayer EMA calculation program

Program A.2 (multilayerEMA.py)

1 import scipy as sp

2 import matplotlib as mpl

3 import matplotlib.pyplot as plt

4
5 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,sqrt ,zeros ,

matrix ,arrange

6 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

7
8
9 def func_nAg(WLs):

10 ep =3.691 -9.1522**2/((1240/ WLs)**2+1j*0.021*(1240/ WLs))

11 index=sqrt(ep)

12 return index

13
14 def func_nTiO2(WLs):

15 ep =5.193 + 0.244/(( WLs /1000) **2 -0.0803)

16 index=sqrt(ep)

17 return index

18
19 def mMATs(n1z ,n2z):

20 return (1/(2* n1z))*matrix ([[n1z+n2z ,n1z -n2z],[n1z -n2z ,n1z+n2z

]])

21 # s-pol Mij matrix

22 def mMATp(n1z ,n2z ,n1,n2):

23 return (1/(2* n1*n2*n1z))*matrix ([[n1**2* n2z+n2**2*n1z ,n1**2*

n2z -n2**2* n1z],[n1**2*n2z -n2**2*n1z ,n1**2* n2z+n2**2* n1z ]])

24 # p-pol Mij mat

25 def matFAI1(n1z ,d1 ,k0):

26 return matrix ([[exp(1j*n1z*k0*d1), 0],[0,exp(-1j*n1z*k0*d1)

]])

27 # Phi matrix

28
29 def matPI1(n1 ,n1z):

30 return matrix ([[n1z/n1,n1z/n1 ,0,0],[n1 ,-n1

,0,0],[0,0,1,1],[0,0,n1z ,-n1z ]])

31
32 def matPI2(n2o ,n2oz ,n2ez ,c2dash):

33 return matrix ([[c2dash ,-c2dash ,0,0],[n2o **2/ n2ez*c2dash ,n2o

**2/ n2ez*c2dash ,0,0],[0,0,1,1],[0,0,n2oz ,-n2oz ]])

34
35 def matPI2inv(n2o ,n2oz ,n2ez ,c2dash):

36 return 0.5* matrix ([[1/ c2dash ,n2ez/(n2o **2* c2dash) ,0,0],[-1/
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c2dash ,n2ez/(n2o **2* c2dash) ,0,0],[0,0,1,1/n2oz],[0,0,1,-1/

n2oz ]])

37
38 def matPI3(n3 ,n3z):

39 return matrix ([[n3z/n3,n3z/n3 ,0,0],[n3 ,-n3

,0,0],[0,0,1,1],[0,0,n3z ,-n3z ]])

40
41 def matPI3inv(n3,n3z):

42 return 0.5* matrix ([[n3/n3z ,1/n3 ,0,0],[n3/n3z ,-1/n3

,0,0],[0,0,1,1/n3z],[0,0,1,-1/n3z]])

43
44 def matFAI2(k0 ,n2ez ,n2oz ,d2):

45 return matrix ([[exp(1j*n2ez*k0*d2), 0,0,0],[0,exp(-1j*n2ez*k0

*d2) ,0,0],[0,0,exp(1j*n2oz*k0*d2) ,0],[0,0,0,exp(-1j*n2oz*

k0*d2)]])

46
47 ############# Initialization ##############

48 WLmin = 300 # start wavelength

49 WLmax = 1000 # end wavelength

50 WLperiod = 1 # wavelength period

51 WLx = arrange(WLmin , WLmax+1, WLperiod) # array of wavelength

52 NumWLx = int((WLmax -WLmin)/WLperiod)+1 # number of wavelength

53 k0=2*pi/WLx # array of wavenumber

54
55 t1Deg = 45 # angle of incidence

56 t1 = t1Deg /180*pi # Convert angle of incidence into radians

57
58 ############# Calculation of multilayer A model ##############

59
60 n1=1

61 nA=1

62 n2=zeros(NumWLx , dtype=complex)

63 n3=zeros(NumWLx , dtype=complex)

64 n4=zeros(NumWLx , dtype=complex)

65 n5=zeros(NumWLx , dtype=complex)

66 n6=zeros(NumWLx , dtype=complex)

67 n7=zeros(NumWLx , dtype=complex)

68 n8=zeros(NumWLx , dtype=complex)

69 n9=zeros(NumWLx , dtype=complex)

70 d2=d4=d6=d8=10

71 d3=d5=d7=d9=10

72
73 for i in range(NumWLx):

74 n2[i]=n4[i]=n6[i]=n8[i]= func_nAg(WLx[i])

75 n3[i]=n5[i]=n7[i]=n9[i]= func_nTiO2(WLx[i])

76
77 s1 = sin(t1)

78 c1 = cos(t1)

79 s2, s3 , s4 , s5, s6, s7, s8, s9 , sA = n1/n2*s1 , n1/n3*s1, n1/n4*s1

, n1/n5*s1, n1/n6*s1, n1/n7*s1, n1/n8*s1 , n1/n9*s1, n1/nA*s1

80 c2, c3 , c4 , c5, c6, c7, c8, c9 , cA = sqrt(1-s2**2), sqrt(1-s3**2)

, sqrt(1-s4**2), sqrt(1-s5**2), sqrt(1-s6**2), sqrt(1-s7**2),

\

81 sqrt(1-s8**2), sqrt(1-s9**2)

, sqrt(1-sA**2),

82 n1z , n2z , n3z , n4z , n5z , n6z , n7z , n8z , n9z , nAz = n1*c1 , n2*c2,

n3*c3, n4*c4, n5*c5, n6*c6 , n7*c7 , n8*c8, n9*c9, nA*cA
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83
84 matTs=zeros ((NumWLx ,2,2),dtype=complex) # initialization of s-

pol transfer matrix

85 matTp=zeros ((NumWLx ,2,2),dtype=complex) # initialization of p-

pol transfer matrix

86 rsML1=zeros (( NumWLx),dtype=complex) # initialization of s-pol

reflection coefficient

87 tsML1=zeros (( NumWLx),dtype=complex) # initialization of s-pol

transmission coefficient

88 rpML1=zeros (( NumWLx),dtype=complex) # initialization of p-pol

reflection coefficient

89 tpML1=zeros (( NumWLx),dtype=complex) # initialization of p-pol

transmission coefficient

90
91 for i in range(NumWLx):

92
93 matTs[i]= mMATs(nAz ,n9z[i]) @matFAI1(n9z[i],d9 ,k0[i]) @mMATs(

n9z[i],n8z[i]) @matFAI1(n8z[i],d8,k0[i]) @mMATs(n8z[i],n7z[i

]) \

94 @matFAI1(n7z[i],d7 ,k0[i]) @mMATs(n7z[i],n6z[i]) @matFAI1(n6z

[i],d6,k0[i]) @mMATs(n6z[i],n5z[i]) @matFAI1(n5z[i],d5,k0

[i]) \

95 @mMATs(n5z[i],n4z[i]) @matFAI1(n4z[i],d4,k0[i]) @mMATs(n4z[i

],n3z[i]) @matFAI1(n3z[i],d3 ,k0[i]) @mMATs(n3z[i],n2z[i])

\

96 @matFAI1(n2z[i],d2 ,k0[i]) @mMATs(n2z[i],n1z)

97 # s-pol transfer matrix

98 matTp[i]= mMATp(nAz ,n9z[i],nA,n9[i]) @matFAI1(n9z[i],d9,k0[i])

@mMATp(n9z[i],n8z[i],n9[i],n8[i]) @matFAI1(n8z[i],d8,k0[i])

\

99 @mMATp(n8z[i],n7z[i],n8[i],n7[i]) @matFAI1(n7z[i],d7,k0[i])

@mMATp(n7z[i],n6z[i],n7[i],n6[i]) @matFAI1(n6z[i],d6,k0[

i]) \

100 @mMATp(n6z[i],n5z[i],n6[i],n5[i]) @matFAI1(n5z[i],d5,k0[i])

@mMATp(n5z[i],n4z[i],n5[i],n4[i]) @matFAI1(n4z[i],d4,k0[

i]) \

101 @mMATp(n4z[i],n3z[i],n4[i],n3[i]) @matFAI1(n3z[i],d3,k0[i])

@mMATp(n3z[i],n2z[i],n3[i],n2[i]) @matFAI1(n2z[i],d2,k0[

i]) \

102 @mMATp(n2z[i],n1z ,n2[i],n1)

103 # p-pol transfer matrix

104 rsML1[i]=-matTs[i,1 ,0]/ matTs[i,1,1] # reflection

coefficient calculation for s-polarization

105 tsML1[i]=matTs[i,0,0]- matTs[i,0,1]* matTs[i,1,0]/ matTs[i,1,1]

# transmission coefficient calculation for s-

polarization

106 rpML1[i]=-matTp[i,1 ,0]/ matTp[i,1,1] # reflection

coefficient calculation for p-polarization

107 tpML1[i]=matTp[i,0,0]- matTp[i,0,1]* matTp[i,1,0]/ matTp[i,1,1]

# transmission coefficient calculation for p-

polarization

108
109 RsML1=abs(rsML1)**2 # s-pol reflectivity (Multilayer model A)

110 RpML1=abs(rpML1)**2 # p-pol reflectivity (Multilayer model A)

111 TsML1=abs(tsML1)**2 # s-pol transmittance (Multilayer model A)

112 TpML1=abs(tpML1)**2 # p-pol transmittance (Multilayer model A)

113
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114 ########## Calculation of multilayer B model ############

115
116 n1=1

117 nA=1

118 n2=zeros(NumWLx , dtype=complex)

119 n3=zeros(NumWLx , dtype=complex)

120 n4=zeros(NumWLx , dtype=complex)

121 n5=zeros(NumWLx , dtype=complex)

122 n6=zeros(NumWLx , dtype=complex)

123 n7=zeros(NumWLx , dtype=complex)

124 n8=zeros(NumWLx , dtype=complex)

125 n9=zeros(NumWLx , dtype=complex)

126 d2=d4=d6=d8=10

127 d3=d5=d7=d9=10

128
129 for i in range(NumWLx):

130 n2[i]=n4[i]=n6[i]=n8[i]= func_nTiO2(WLx[i])

131 n3[i]=n5[i]=n7[i]=n9[i]= func_nAg(WLx[i])

132
133 s1 = sin(t1)

134 c1 = cos(t1)

135 s2, s3 , s4 , s5, s6, s7, s8, s9 , sA = n1/n2*s1 , n1/n3*s1, n1/n4*s1

, n1/n5*s1, n1/n6*s1, n1/n7*s1, n1/n8*s1 , n1/n9*s1, n1/nA*s1

136 c2, c3 , c4 , c5, c6, c7, c8, c9 , cA = sqrt(1-s2**2), sqrt(1-s3**2)

, sqrt(1-s4**2), sqrt(1-s5**2), sqrt(1-s6**2), sqrt(1-s7**2),

\

137 sqrt(1-s8**2), sqrt(1-s9**2)

, sqrt(1-sA**2),

138 n1z , n2z , n3z , n4z , n5z , n6z , n7z , n8z , n9z , nAz = n1*c1 , n2*c2,

n3*c3, n4*c4, n5*c5, n6*c6 , n7*c7 , n8*c8, n9*c9, nA*cA

139
140 matTs=zeros ((NumWLx ,2,2),dtype=complex) # initialization s-pol

transfer matrix

141 matTp=zeros ((NumWLx ,2,2),dtype=complex) # initialization p-pol

transfer matrix

142 rsML2=zeros (( NumWLx),dtype=complex) # initialization of rs

143 tsML2=zeros (( NumWLx),dtype=complex) # initialization of ts

144 rpML2=zeros (( NumWLx),dtype=complex) # initialization of rp

145 tpML2=zeros (( NumWLx),dtype=complex) # initialization of tp

146
147 for i in range(NumWLx):

148
149 matTs[i]= mMATs(nAz ,n9z[i]) @matFAI1(n9z[i],d9 ,k0[i]) @mMATs(

n9z[i],n8z[i]) @matFAI1(n8z[i],d8,k0[i]) @mMATs(n8z[i],n7z[i

]) \

150 @matFAI1(n7z[i],d7 ,k0[i]) @mMATs(n7z[i],n6z[i]) @matFAI1(n6z

[i],d6,k0[i]) @mMATs(n6z[i],n5z[i]) @matFAI1(n5z[i],d5,k0

[i]) \

151 @mMATs(n5z[i],n4z[i]) @matFAI1(n4z[i],d4,k0[i]) @mMATs(n4z[i

],n3z[i]) @matFAI1(n3z[i],d3 ,k0[i]) @mMATs(n3z[i],n2z[i])

\

152 @matFAI1(n2z[i],d2 ,k0[i]) @mMATs(n2z[i],n1z)

153 # s-pol transfer matrix

154 matTp[i]= mMATp(nAz ,n9z[i],nA,n9[i]) @matFAI1(n9z[i],d9,k0[i])

@mMATp(n9z[i],n8z[i],n9[i],n8[i]) @matFAI1(n8z[i],d8,k0[i])

\

155 @mMATp(n8z[i],n7z[i],n8[i],n7[i]) @matFAI1(n7z[i],d7,k0[i])
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@mMATp(n7z[i],n6z[i],n7[i],n6[i]) @matFAI1(n6z[i],d6,k0[

i]) \

156 @mMATp(n6z[i],n5z[i],n6[i],n5[i]) @matFAI1(n5z[i],d5,k0[i])

@mMATp(n5z[i],n4z[i],n5[i],n4[i]) @matFAI1(n4z[i],d4,k0[

i]) \

157 @mMATp(n4z[i],n3z[i],n4[i],n3[i]) @matFAI1(n3z[i],d3,k0[i])

@mMATp(n3z[i],n2z[i],n3[i],n2[i]) @matFAI1(n2z[i],d2,k0[

i]) \

158 @mMATp(n2z[i],n1z ,n2[i],n1)

159 # p-pol transfer matrix

160 rsML2[i]=-matTs[i,1 ,0]/ matTs[i,1,1] # s-pol reflection

coefficient

161 tsML2[i]=matTs[i,0,0]- matTs[i,0,1]* matTs[i,1,0]/ matTs[i,1,1]

# transmission coefficient calculation for s-

polarization

162 rpML2[i]=-matTp[i,1 ,0]/ matTp[i,1,1] # p-pol reflection

coefficient

163 tpML2[i]=matTp[i,0,0]- matTp[i,0,1]* matTp[i,1,0]/ matTp[i,1,1]

# transmission coefficient calculation for p-

polarization

164
165 RsML2=abs(rsML2)**2 # s-pol reflectivity (Multilayer model

B)

166 RpML2=abs(rpML2)**2 # p-pol reflectivity (Multilayer model

B)

167 TsML2=abs(tsML2)**2 # s-pol transmittance (Multilayer

model B)

168 TpML2=abs(tpML2)**2 # p-pol transmittance (Multilayer

model B)

169
170 ##### EMA model calculations (3-layer problem for anisotropic

thin films)######

171
172 n1=1

173 n3=1

174 d2=80

175
176 nTiO2=zeros (( NumWLx),dtype=complex)

177 nAg=zeros(( NumWLx),dtype=complex)

178
179 for i in range(NumWLx):

180 nTiO2[i]= func_nTiO2(WLx[i])

181 nAg[i]= func_nAg(WLx[i])

182
183 epx =0.5*( nTiO2 **2 + nAg **2)

184 epz =2*( nTiO2 **2)*(nAg **2) /(( nTiO2 **2)+(nAg **2))

185
186 no=sqrt(epx)

187 ne=sqrt(epz)

188
189 s1 = sin(t1)

190 c1 = cos(t1)

191 kappa=n1*s1

192 s3 = n1/n3*s1

193 c3 = sqrt(1-s3**2)

194
195 n1z=n1*c1
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196 n3z=n3*c3

197
198 n2oz=sqrt(no**2-kappa **2)

199 n2ez=(no/ne)*sqrt(ne**2- kappa **2)

200 n2eEff=sqrt(kappa **2+ n2ez **2)

201
202 matT=zeros((NumWLx ,4,4),dtype=complex) # initialization of s-

pol transfer matrix

203 rsEMA=zeros (( NumWLx),dtype=complex) # initialization of rs

204 tsEMA=zeros (( NumWLx),dtype=complex) # initialization of ts

205 rpEMA=zeros (( NumWLx),dtype=complex) # initialization of rp

206 tpEMA=zeros (( NumWLx),dtype=complex) # initialization of tp

207
208 for i in range(NumWLx):

209 matT[i]= matPI3inv(n3,n3z)@matPI2(n2ez[i],n2eEff[i],n2oz[i])

@matFAI2(k0[i],n2ez[i],n2oz[i],d2)@matPI2inv(n2ez[i],

n2eEff[i],n2oz[i]) @matPI1(n1,n1z)

210 rsEMA[i]=-matT[i,3 ,2]/ matT[i,3,3]

211 tsEMA[i]=matT[i,2,2]-matT[i,2,3]* matT[i,3 ,2]/ matT[i,3,3]

212 rpEMA[i]=-matT[i,1 ,0]/ matT[i,1,1]

213 tpEMA[i]=matT[i,0,0]-matT[i,0,1]* matT[i,1 ,0]/ matT[i,1,1]

214
215 RsEMA=abs(rsEMA)**2 # s-pol reflectivity(EMA model)

216 RpEMA=abs(rpEMA)**2 # p-pol reflectivity(EMA model)

217 TsEMA=abs(tsEMA)**2 # s-pol transmittance(EMA model)

218 TpEMA=abs(tpEMA)**2 # p-pol transmittance(EMAmodel)

219
220
221 ############# PLOT ##############

222
223 plt.figure(figsize =(8 ,6))

224 plot(WLx ,RsML1 , label =" RsML1",linewidth = 3.0, color=‘black ’)

225 plot(WLx ,RsML2 , label =" RsML2",linewidth = 3.0, color=‘gray ’)

226 plot(WLx ,RsEMA , label =" RsEMA",linewidth = 3.0, color=‘black ’,

linestyle=‘dashed ’)

227 xlabel(r"Wavelength(nm)",fontsize =22)

228 ylabel(r"reflectivity",fontsize =22)

229 title("", fontsize =22)

230 grid(True)

231 axis ([300 ,1000 ,0 ,1.1])

232 legend(fontsize =20,loc=‘lower right ’)

233 plt.tick_params(labelsize =20)

234 tight_layout ()

235 show()

236
237 plt.figure(figsize =(8 ,6))

238 plot(WLx ,RpML1 , label =" RpML1",linewidth = 3.0, color=‘black ’)

239 plot(WLx ,RpML2 , label =" RpML2",linewidth = 3.0, color=‘gray ’)

240 plot(WLx ,RpEMA , label =" RpEMA",linewidth = 3.0, color=‘black ’,

linestyle=‘dashed ’)

241 xlabel(r"Wavelength(nm)",fontsize =22)

242 ylabel(r"reflectivity",fontsize =22)

243 title("", fontsize =22)

244 grid(True)

245 axis ([300 ,1000 ,0 ,1.1])

246 legend(fontsize =20,loc=‘lower right ’)

247 plt.tick_params(labelsize =20)
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248 tight_layout ()

249 show()

250
251 plt.figure(figsize =(8 ,6))

252 plot(WLx ,TsML1 , label =" TsML1",linewidth = 3.0, color=‘black ’)

253 plot(WLx ,TsML2 , label =" TsML2",linewidth = 3.0, color=‘gray ’)

254 plot(WLx ,TsEMA , label =" TsEMA",linewidth = 3.0, color=‘black ’,

linestyle=‘dashed ’)

255 xlabel(r"Wavelength(nm)",fontsize =22)

256 ylabel(r"transmittance",fontsize =22)

257 title("", fontsize =22)

258 grid(True)

259 axis ([300 ,1000 ,0 ,1.1])

260 legend(fontsize =20,loc=‘lower right ’)

261 plt.tick_params(labelsize =20)

262 tight_layout ()

263 show()

264
265 plt.figure(figsize =(8 ,6))

266 plot(WLx ,TpML1 , label =" TpML1",linewidth = 3.0, color=‘black ’)

267 plot(WLx ,TpML2 , label =" TpML2",linewidth = 3.0, color=‘gray ’)

268 plot(WLx ,TpEMA , label =" TpEMA",linewidth = 3.0, color=‘black ’,

linestyle=‘dashed ’)

269 xlabel(r"Wavelength(nm)",fontsize =22)

270 ylabel(r"transmittance",fontsize =22)

271 title("", fontsize =22)

272 grid(True)

273 axis ([300 ,1000 ,0 ,1.1])

274 legend(fontsize =20,loc=‘lower right ’)

275 plt.tick_params(labelsize =20)

276 tight_layout ()

277 show()

8.3 Optical response of a bisphere

Program A.3 (Bisphere.py)

1 import scipy as sp

2 import scipy.special

3 import matplotlib as mpl

4 import matplotlib.pyplot as plt

5 import math

6 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,arrange ,sqrt

,zeros ,array ,matrix ,asmatrix ,real ,imag ,interpolate

7 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis ,tight_layout

8 from scipy.special import spherical_jn ,spherical_yn , factorial

9 from RI import WLx , epAg , epAu , RIAu , RIAg

10
11 def kjo(k):

12 return math.factorial(k)
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13
14 def perpendi(k,j,r0 ,ep1 ,ep2 ,ep3):

15 return ((ep1 -ep3)*k*kjo(k+j))/(((k+1)*ep1+k*ep3)*kjo(k)*kjo(j

)*(2*r0)**(k+j+1))

16
17 def paralleldi(k,j,r0,ep1 ,ep2 ,ep3):

18 return -((ep1 -ep3)*k*kjo(k+j))/(((k+1)*ep1+k*ep3)*kjo(k+1)*

kjo(j-1) *(2*r0)**(k+j+1))

19
20
21 def uhen(ep1 ,ep2 ,ep3):

22 return (ep1 -ep3)/(2* ep1+ep3)

23
24 k0=2*pi/WLx k0 = 2 * pi / WLx # vacuum wavenumber

25 qq=15 # order of multipoles

26 r=50 # radius of sphere

27 gap =1/2 # half of gap

28 d=gap+r # d parameter

29 r0=d/r # r0 parameter

30
31 alpha_A=zeros(NumWLx , dtype=complex) # initialization of A

32 alpha_B=zeros(NumWLx , dtype=complex) # initialization of B

33
34 ep1=zeros(NumWLx , dtype=complex)

35 ep2=zeros(NumWLx , dtype=complex)

36 ep3=zeros(NumWLx , dtype=complex)

37 al=zeros ([NumWLx ,qq,qq], dtype=complex)

38 bl=zeros ([NumWLx ,qq,qq], dtype=complex)

39 fl=zeros ([NumWLx ,qq], dtype=complex)

40 Xal=zeros([NumWLx ,qq], dtype=complex)

41 Xbl=zeros([NumWLx ,qq], dtype=complex)

42 a11l=zeros([NumWLx ,qq], dtype=complex)

43 b11l=zeros([NumWLx ,qq], dtype=complex)

44
45
46 for i in range(NumWLx):

47 ep1[i]=1 # dielectric constant of ambient

48 ep2[i]=RI.epAu[i] # dielectric constant of sphere

49 ep3[i]=RI.epAu[i] # dielectric constant of substrate

50 for k in range(qq): # A coefficient

51 for j in range(qq):

52 if k==j:

53 al[i,k,j]=1+ perpendi(k+1,j+1,r0,ep1[i],ep2[i],

ep3[i])

54 else:

55 al[i,k,j]= perpendi(k+1,j+1,r0,ep1[i],ep2[i],ep3[

i])

56
57 for k in range(qq): # B coefficient

58 for j in range(qq):

59 if k==j:

60 bl[i,k,j]=1+ paralleldi(k+1,j+1,r0,ep1[i],ep2[i],

ep3[i])

61 else:

62 bl[i,k,j]= paralleldi(k+1,j+1,r0,ep1[i],ep2[i],ep3

[i])

63
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64 for k in range(qq):

65 if k==0:

66 fl[i,k]=uhen(ep1[i],ep2[i],ep3[i])

67 else:

68 fl[i,k]=0

69
70 Xal[i]=sp.linalg.solve(al[i],fl[i]) # Solving simultaneous

equations(A coefficient)

71 Xbl[i]=sp.linalg.solve(bl[i],fl[i]) # Solving

simultaneous equations(B coefficient)

72
73 alpha_A[i]=-4*pi*r**3* ep1[i]*Xal[i,0] # polarizability(A

coefficient)

74 alpha_B[i]=-4*pi*r**3* ep1[i]*Xbl[i,0] # polarizability(B

coefficient)

75
76 Csca_A = k0 **4/(6* pi)*abs(alpha_A)**2 # scattering cross -

section(A coefficient)

77 Csca_B = k0 **4/(6* pi)*abs(alpha_B)**2 # scattering cross -

section(B coefficient)

78 Cabs_A = k0*imag(alpha_A) # absorption cross -

section(A coefficient)

79 Cabs_B = k0*imag(alpha_B) # absorption cross -

section(B coefficient)

80
81 Qsca_A = Csca_A / (2* (r**2) * pi) # scattering efficiency(A

coefficient)

82 Qabs_A = Cabs_A / (2* (r**2) * pi) # absorption efficiency(A

coefficient)

83 Qsca_B = Csca_B / ((r**2) * pi) # scattering efficiency(B

coefficient)

84 Qabs_B = Cabs_B / ((r**2) * pi) # absorption efficiency(B

coefficient)

85
86 plt.figure(figsize =(8 ,6))

87 plot(WLx ,Qsca_A , label=r"$Q_{\rm sca}$",linewidth = 3.0, color=‘

black ’)

88 plot(WLx ,Qabs_A , label=r"$Q_{\rm abs}$",linewidth = 3.0, color=‘

gray ’)

89 axis ([400 ,700 ,0 ,12])

90 #xlabel (" wavelength (nm)",fontsize =22)

91 #ylabel (" efficiency",fontsize =22)

92 plt.tick_params(labelsize =20)

93 #legend(fontsize =20,loc=‘upper left ’)

94 tight_layout ()

95 show()

96
97 plt.figure(figsize =(8 ,6))

98 plot(WLx ,Qsca_B , label=r"$Q_{\rm sca}$",linewidth = 3.0, color=‘

black ’)

99 plot(WLx ,Qabs_B , label=r"$Q_{\rm abs}$",linewidth = 3.0, color=‘

gray ’)

100 axis ([400 ,700 ,0 ,4])

101 #xlabel (" wavelength (nm)",fontsize =12)

102 #ylabel (" efficiency",fontsize =12)

103 plt.tick_params(labelsize =20)

104 #legend(fontsize =20,loc=‘upper right ’)
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105 tight_layout ()

106 show()

8.4 Optical response of a truncated sphere

Program A.4 (truncated.py)

1 import scipy as sp

2 import scipy.special

3 import math

4 import matplotlib as mpl

5 import matplotlib.pyplot as plt

6
7 from scipy import pi,sin ,cos ,tan ,arcsin ,exp ,linspace ,arrange ,sqrt

,zeros ,array ,matrix ,asmatrix ,real ,imag ,interpolate ,integrate

8 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid ,axis ,tight_layout

9 from scipy.special import spherical_jn ,spherical_yn , factorial ,

lpmv ,eval_legendre

10 from RI import WLx , NumWLx , epAg , epAu , RIAu , RIAg

11
12 def kjo(k):

13 return math.factorial(k)

14
15 def perpen(k,j,r0,ep1 ,ep2 ,ep3):

16 return ((ep2 -ep1)*(ep1 -ep3)*k*kjo(k+j))/((ep2+ep1)*((k+1)*ep1

+k*ep3)*kjo(k)*kjo(j)*(2*r0)**(k+j+1))

17
18 def parallel(k,j,r0 ,ep1 ,ep2 ,ep3):

19 return ((ep2 -ep1)*(ep1 - ep3)*k*kjo(k+j))/((ep2+ep1)*((k+1)*

ep1+k*ep3)*kjo(k+1)*kjo(j-1) *(2*r0)**(k+j+1))

20
21 def uhen(ep1 ,ep2 ,ep3):

22 return (ep1 -ep3)/(2* ep1+ep3)

23
24 def funcIMG(r, r0 , t):

25 return r*r-4*r*r0*t+4*r0*r0

26
27 def funcIMG2(r0, t):

28 return 1+4*r0*r0 -4*r0*t

29
30 def funcV(m, j, r, t, r0):

31 return funcIMG(r,r0,t)**(-(j+1) /2)*lpmv(m,j,(r*t-2*r0)*

funcIMG(r,r0 ,t)**( -1/2))

32
33 def funcV2(m, j, t, r0):

34 return funcIMG2(r0,t)**( -0.5*(3+j))*(-(1+j)*funcIMG2(r0,t)*

lpmv(m,j,(t-2*r0)/sqrt(funcIMG2(r0,t))) -2*(1+j-m)*r0*sqrt(

funcIMG2(r0,t))*lpmv(m,j+1,(t-2*r0)/sqrt(funcIMG2(r0,t))))

35
36 def funcW(m, j, r, t, r0):
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37 return funcIMG(r,r0,t)**(j/2)*lpmv(m,j,(r*t-2*r0)*funcIMG(r,

r0,t)**( -1/2))

38
39 def funcW2(m, j, t, r0):

40 return funcIMG2(r0,t)**(j/2-1)*((j-4*j*r0*r0+2*r0*(t-2*r0))*

lpmv(m,j,(t-2*r0)/sqrt(funcIMG2(r0,t))) -2*(1+j-m)*r0*sqrt(

funcIMG2(r0,t))*lpmv(m,j+1,(t-2*r0)/sqrt(funcIMG2(r0,t))))

41
42 qq=11 # order of multipoles

43 theta_a = 90 # theta_a = 180 - theta_sh sphere: 0deg

hemisphere: 90 deg

44 theta_a = theta_a * pi/180

45 r0 = cos(theta_a)

46 rr=25 # radius

47
48 k0=2*pi/WLx

49
50 ep1=zeros(NumWLx , dtype=complex)

51 ep2=zeros(NumWLx , dtype=complex)

52 ep3=zeros(NumWLx , dtype=complex)

53 ep4=zeros(NumWLx , dtype=complex)

54
55 matrixCinteg=zeros ([qq ,qq], dtype=float)

56 matrixDinteg=zeros ([qq ,qq], dtype=float)

57 matrixEinteg=zeros ([qq], dtype=float)

58 matrixFinteg=zeros ([qq ,qq], dtype=float)

59 matrixGinteg=zeros ([qq ,qq], dtype=float)

60 matrixJinteg=zeros ([qq ,qq], dtype=float)

61 matrixKinteg=zeros ([qq ,qq], dtype=float)

62 matrixMinteg=zeros ([qq ,qq], dtype=float)

63 matrixNinteg=zeros ([qq ,qq], dtype=float)

64 matrixPinteg=zeros ([qq], dtype=float)

65
66 matrixClist=zeros([NumWLx ,qq ,qq], dtype=complex)

67 matrixDlist=zeros([NumWLx ,qq ,qq], dtype=complex)

68 matrixElist=zeros([NumWLx ,qq], dtype=complex)

69 matrixFlist=zeros([NumWLx ,qq ,qq], dtype=complex)

70 matrixGlist=zeros([NumWLx ,qq ,qq], dtype=complex)

71 matrixHlist=zeros([NumWLx ,qq], dtype=complex)

72 matrixJlist=zeros([NumWLx ,qq ,qq], dtype=complex)

73 matrixKlist=zeros([NumWLx ,qq ,qq], dtype=complex)

74 matrixLlist=zeros([NumWLx ,qq], dtype=complex)

75 matrixMlist=zeros([NumWLx ,qq ,qq], dtype=complex)

76 matrixNlist=zeros([NumWLx ,qq ,qq], dtype=complex)

77 matrixPlist=zeros([NumWLx ,qq], dtype=complex)

78
79 matrixRA=zeros([NumWLx ,2*qq ,2*qq], dtype=complex)

80 matrixRB=zeros([NumWLx ,2*qq ,2*qq], dtype=complex)

81 matrixQA=zeros([NumWLx ,2*qq], dtype=complex)

82 matrixQB=zeros([NumWLx ,2*qq], dtype=complex)

83 vectorA=zeros ([NumWLx ,2*qq], dtype=complex)

84 vectorB=zeros ([NumWLx ,2*qq], dtype=complex)

85 alpha_A=zeros ([ NumWLx], dtype=complex)

86 alpha_B=zeros ([ NumWLx], dtype=complex)

87
88 ep1 = 1

89 ep2 = ep4 = 1.5**2
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90 ep3 = epAu

91
92 for k in range(qq):

93 matrixEinteg[k], dummy = integrate.quad(lambda t: lpmv(0,k+1,

t)*(t-r0), -1, r0)

94 matrixPinteg[k], dummy = integrate.quad(lambda t: lpmv(1,k+1,

t)*lpmv(1,1,t), -1, r0)

95
96 for j in range(qq):

97 matrixCinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(0,k+1,t)*(lpmv(0,j+1,t) -(-1)**(j+1)*funcV(0,j+1,1,t,

r0)), -1, r0)

98 matrixDinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(0,k+1,t)*(lpmv(0,j+1,t) -(-1)**(j+1)*funcW(0,j+1,1,t,

r0)), -1, r0)

99 matrixFinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(0,k+1,t)*((j+2)*lpmv(0, j+1, t) -(-1)**(j+1)*funcV2(0,

j+1, t, r0)), -1, r0)

100 matrixGinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(0,k+1,t)*((j+1)*lpmv(0, j+1, t)+(-1)**(j+1)*funcW2(0,

j+1, t, r0)), -1, r0)

101
102 matrixJinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(1,k+1,t)*(lpmv(1,j+1,t)+(-1)**(j+1)*funcV(1,j+1,1,t,

r0)), -1, r0)

103 matrixKinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(1,k+1,t)*(lpmv(1,j+1,t)+(-1)**(j+1)*funcW(1,j+1,1,t,

r0)), -1, r0)

104 matrixMinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(1,k+1,t)*((j+2)*lpmv(1, j+1, t)+(-1)**(j+1)*funcV2(1,

j+1, t, r0)), -1, r0)

105 matrixNinteg[k,j], dummy = integrate.quad(lambda t: lpmv

(1,k+1,t)*((j+1)*lpmv(1, j+1, t) -(-1)**(j+1)*funcW2(1,

j+1, t, r0)), -1, r0)

106
107 for i in range(NumWLx):

108 for k in range(qq):

109 for j in range(qq):

110 if k==j:

111 matrixClist[i,k,j]=4* ep1/((ep1+ep2)*(2*(k+1) +1))

-(ep1 -ep2)/(ep1+ep2)*matrixCinteg[k,j]

112 else:

113 matrixClist[i,k,j]=-(ep1 -ep2)/(ep1+ep2)*

matrixCinteg[k,j]

114
115 for k in range(qq):

116 for j in range(qq):

117 if k==j:

118 matrixDlist[i,k,j]=-4*ep3[i]/(( ep3[i]+ep4)*(2*(k

+1) +1))+(ep3[i]-ep4)/(ep3[i]+ep4)*

matrixDinteg[k,j]

119 else:

120 matrixDlist[i,k,j]=( ep3[i]-ep4)/(ep3[i]+ep4)*

matrixDinteg[k,j]

121
122 for k in range(qq):

123 if k==0:
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124 matrixElist[i,k]=-2*ep1 /(3* ep2) -(1-ep1/ep2)*

matrixEinteg[k]

125 else:

126 matrixElist[i,k]=-(1-ep1/ep2)*matrixEinteg[k]

127
128 for k in range(qq):

129 for j in range(qq):

130 if k==j:

131 matrixFlist[i,k,j]=-4*ep1*ep2*(k+2) /((ep1+ep2)

*(2*(k+1)+1))-(ep1*(ep1 -ep2))/(ep1+ep2)*

matrixFinteg[k,j]

132 else:

133 matrixFlist[i,k,j]=-(ep1*(ep1 -ep2))/(ep1+ep2)*

matrixFinteg[k,j]

134
135 for k in range(qq):

136 for j in range(qq):

137 if k==j:

138 matrixGlist[i,k,j]=-4*ep3[i]*ep4*(k+1)/((ep3[i]+

ep4)*(2*(k+1)+1))-(ep3[i]*( ep3[i]-ep4))/(ep3[

i]+ep4)*matrixGinteg[k,j]

139 else:

140 matrixGlist[i,k,j]=-(ep3[i]*( ep3[i]-ep4))/(ep3[i

]+ep4)*matrixGinteg[k,j]

141
142 for k in range(qq):

143 if k==0:

144 matrixHlist[i,k]=-2*ep1/3

145 else:

146 matrixHlist[i,k]=0

147
148
149 for k in range(qq):

150 for j in range(qq):

151 if k==j:

152 matrixJlist[i,k,j]=4* ep1*(k+1)*(k+2)/(( ep1+ep2)

*(2*(k+1)+1))-(ep1 -ep2)/(ep1+ep2)*

matrixJinteg[k,j]

153 else:

154 matrixJlist[i,k,j]=-(ep1 -ep2)/(ep1+ep2)*

matrixJinteg[k,j]

155
156 for k in range(qq):

157 for j in range(qq):

158 if k==j:

159 matrixKlist[i,k,j]=-4*ep3[i]*(k+1)*(k+2)/(( ep3[i

]+ep4)*(2*(k+1)+1))+(ep3[i]-ep4)/(ep3[i]+ep4)

*matrixKinteg[k,j]

160 else:

161 matrixKlist[i,k,j]=( ep3[i]-ep4)/(ep3[i]+ep4)*

matrixKinteg[k,j]

162
163 for k in range(qq):

164 if k==0:

165 matrixLlist[i,k]= -4/3

166 else:

167 matrixLlist[i,k]=0
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168
169 for k in range(qq):

170 for j in range(qq):

171 if k==j:

172 matrixMlist[i,k,j]=-4*ep1*ep2*(k+1)*(k+2) **2/((

ep1+ep2)*(2*(k+1) +1))-(ep1*(ep1 -ep2))/(ep1+

ep2)*matrixMinteg[k,j]

173 else:

174 matrixMlist[i,k,j]=-(ep1*(ep1 -ep2))/(ep1+ep2)*

matrixMinteg[k,j]

175
176 for k in range(qq):

177 for j in range(qq):

178 if k==j:

179 matrixNlist[i,k,j]=-4*ep3[i]*ep4*(k+1) **2*(k+2)

/(( ep3[i]+ep4)*(2*(k+1)+1))-(ep3[i]*(ep3[i]-

ep4))/(ep3[i]+ep4)*matrixNinteg[k,j]

180 else:

181 matrixNlist[i,k,j]=-(ep3[i]*( ep3[i]-ep4))/(ep3[i

]+ep4)*matrixNinteg[k,j]

182
183 for k in range(qq):

184 if k==0:

185 matrixPlist[i,k]=-4*ep2/3-(ep1 -ep2)*matrixPinteg[k]

186 else:

187 matrixPlist[i,k]=-(ep1 -ep2)*matrixPinteg[k]

188
189 for i in range(NumWLx):

190 for k in range(qq):

191 for j in range(qq):

192 matrixRA[i,k,j]= matrixClist[i,k,j]

193 matrixRA[i,k,j+qq]= matrixDlist[i,k,j]

194 matrixRA[i,k+qq ,j]= matrixFlist[i,k,j]

195 matrixRA[i,k+qq ,j+qq]= matrixGlist[i,k,j]

196
197 for i in range(NumWLx):

198 for k in range(qq):

199 matrixQA[i,k]= matrixElist[i,k]

200 matrixQA[i,k+qq]= matrixHlist[i,k]

201
202 for i in range(NumWLx):

203 for k in range(qq):

204 for j in range(qq):

205 matrixRB[i,k,j]= matrixJlist[i,k,j]

206 matrixRB[i,k,j+qq]= matrixKlist[i,k,j]

207 matrixRB[i,k+qq ,j]= matrixMlist[i,k,j]

208 matrixRB[i,k+qq ,j+qq]= matrixNlist[i,k,j]

209
210 for i in range(NumWLx):

211 for k in range(qq):

212 matrixQB[i,k]= matrixLlist[i,k]

213 matrixQB[i,k+qq]= matrixPlist[i,k]

214
215 for i in range(NumWLx):

216 vectorA[i]=sp.linalg.solve(matrixRA[i],matrixQA[i])

217 vectorB[i]=sp.linalg.solve(matrixRB[i],matrixQB[i])

218
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219 alpha_A[i]=-4*pi*rr**3* ep1*vectorA[i,0]

220 alpha_B[i]=-4*pi*rr**3* ep1*vectorB[i,0]

221
222 alpha_A_Re = real(alpha_A)

223 alpha_B_Re = real(alpha_B)

224 alpha_A_Im = imag(alpha_A)

225 alpha_B_Im = imag(alpha_B)

226 alpha_A_Abs = abs(alpha_A)

227 alpha_B_Abs = abs(alpha_B)

228
229 Csca_A = k0**4 / (6*pi) * abs(alpha_A)**2

230 Csca_B = k0**4 / (6*pi) * abs(alpha_B)**2

231 Cabs_A = k0 * imag(alpha_A)

232 Cabs_B = k0 * imag(alpha_B)

233
234 crossA = rr**2 * ((pi - theta_a) + 0.5 * sin(2 * theta_a))

235 crossB = rr**2 * pi

236
237 Qsca_A = Csca_A / crossA

238 Qabs_A = Cabs_A / crossA

239 Qsca_B = Csca_B / crossB

240 Qabs_B = Cabs_B / crossB

241
242 plt.figure(figsize =(8 ,6))

243 plot(WLx ,Qabs_A , label=r"$Q_{\rm abs}^{z}$",linewidth = 3.0,

color=‘black ’)

244 plot(WLx ,Qabs_B , label=r"$Q_{\rm abs }^{||}$",linewidth = 3.0,

color=‘gray ’)

245 axis ([400 ,800 ,0 ,5])

246 xlabel (" wavelength (nm)",fontsize =22)

247 ylabel (" efficiency",fontsize =25)

248 plt.tick_params(labelsize =20) # scale fontsize =18pt

249 legend(fontsize =20,loc=‘upper right ’)

250 tight_layout ()

251 show()

8.5 Program of RCWA

Program A.5 (RCWA.py)

1 import scipy.interpolate , scipy.special , scipy.linalg

2 import math

3 import cmath

4 import numpy as np

5 import matplotlib.pyplot as plt

6
7 def Rcwa1d(pol , lambda0 , kx0 , period , layer , norder):

8 """ RCWA for 1D binary grating

9 pol: polarization , ‘p’ or ‘s’

10 lambda0: wavelength of incident wave (µm)
11 kx0: in-plane wave number of incident wave (1/µm)
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12 period: period (µm)
13 layer: layer structure

14 norder: maximum diffraction order (2m+ 1 for ±m order) """

15
16 nlayer = len(layer) # the number of layers including incident

space and exiting space

17 depth = np.zeros(nlayer) # thickness of each layer

18 metal = np.array([False ]* nlayer) # True , if at least one

medium has dielectric constaant having imaginary part

19 maxsect = max([len(v) for v in layer])//2 # the maximum

number of elements composing 1 period

20 nsect = np.zeros(nlayer , dtype=int) # the number of elements

composing 1 period

21 refra = np.zeros((nlayer , maxsect)) # (complex) refractive

index of element

22 filfac = np.zeros((nlayer , maxsect)) # width of elements

normalized with period

23
24 for j in range(nlayer): # retrieving of parameters from layer

25 nsect[j] = len(layer[j])//2

26 nsect [0] = 1

27 nsect[nlayer -1] = 1

28 depth[j] = layer[j][0]

29 for i in range(nsect[j]):

30 refra[j][i] = layer[j][i*2+1]

31 if abs(refra[j][i].imag) > 1e-100:

32 metal[j] = True

33 filfac[j][i] = layer[j][i*2+2]

34 filfac [0][0] = 1.

35 filfac[nlayer -1][0] = 1.

36
37 k0 = 2.0* math.pi/lambda0 # wave number in vacuum

38 kc = k0*refra[nlayer -1][0] # wave number in incident space

39 ks = k0*refra [0][0] # wave number in exiting space

40
41 nmax = (norder -1)/2 # maximum diffraction order

42 I = np.arrange(-nmax , nmax +1) # array of diffraction orders

43
44 Zm = np.zeros([norder , norder ]) # zero matrix

45 p = norder //2 # location of zeroth order in matrix

46 Eye = np.eye(norder) # identity matrix

47 M = norder -1 # maximum order of Fourier series of dielectric

constant

48
49 K = 2.0* math.pi/period # grating vector

50 kx = kx0+I*K # in-plane wave number of diffracted wave

51
52 kzc = np.sqrt((kc**2-kx**2).astype(np.complex))

53 # normal component of wave number of diffracted wave in

incident space

54 np.where ((kzc.real+ kzc.imag)>0, kzc , -kzc) # correction of

sign

55
56 kzs = np.sqrt((ks**2-kx**2).astype(np.complex))

57 # normal component of wave number of diffracted wave in

exiting space

58 if metal [0]:
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59 np.where ((kzs.imag)>0, kzs , -kzs) # correction of sign

60 else:

61 np.where ((kzs.real+ kzs.imag)>0, kzs , -kzs) # correction

of sign

62
63 Kx = np.diag(kx)/k0 # diagonal matrix of in -plane wave number

of diffracted wave

64 Kzc = np.diag(kzc)/k0

65 # diagonal matrix of normal component of wave number of

diffracted wave in incident space

66 Kzs = np.diag(kzs)/k0

67 # diagonal matrix of normal component of wave number of

diffracted wave in exiting space

68
69 EpsilonX = np.zeros([nlayer , norder , norder], dtype=np.

complex)

70 # Toeplitz matrix of Fourier coefficients of dielectric

constant

71 AlphaX = np.zeros([nlayer , norder , norder], dtype=np.complex)

72 # Toeplitz matrix of Fourier coefficients of inverse of

dielectric constant

73
74 for kk in range(0, nlayer):

75 if nsect[kk] > 1:

76 vX = np.zeros(M*2+1) # array for Fourier coefficients

of dielectric constant

77 ivX = np.zeros(M*2+1) # array for Fourier

coefficients of inverse of dielectric constant

78
79 for jj in range(0, nsect[kk]): # calculation of

Fourier coefficients

80 disp = np.sum(filfac[kk][0:jj+1])-filfac[kk][jj

]/2.0

81 epsX = refra[kk][jj]**2 # permittivity

82 asinc = filfac[kk][jj]*np.sinc(filfac[kk][jj]* np

.arrange(1, M+ 1))

83 vm = epsX*asinc [::-1]

84 v0 = np.array([epsX*filfac[kk][jj]])

85 vp = epsX*asinc

86 vX = vX+ np.concatenate ((vm, v0, vp)) \

87 * np.exp(-1j*2* math.pi*disp*np.arrange(-M, M

+1))

88
89 ivm = 1/epsX* asinc [:: -1]

90 iv0 = np.array ([1/ epsX*filfac[kk][jj]])

91 ivp = 1/epsX* asinc

92 ivX = ivX+np.concatenate ((ivm , iv0 , ivp)) \

93 * np.exp(-1j*2* math.pi*disp*np.arrange(-M, M

+1))

94
95 EpsilonX[kk, :, :] = scipy.linalg.toeplitz(vX[norder

-1: 2*norder -1], \

96 vX[norder -1:: -1]) # generation of Toeplitz matrix

of Fourier coefficients of dielectric

constant

97 AlphaX[kk, :, :] = scipy.linalg.toeplitz(ivX[norder

-1: 2* norder -1], \
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98 ivX[norder -1:: -1]) # generation of Toeplitz

matrix of Fourier coefficients of inverse of

dielectric constant

99 else: # generation of Toeplitz matrix for homogeneous

layer

100 EpsilonX[kk, :, :] = Eye*( refra[kk ][0]**2)

101 AlphaX[kk, :, :] = Eye/( refra[kk ][0]**2)

102
103 if pol == "s": # in the case of s-polarization

104 Rdu = Zm

105 Rud = Zm

106 Tuu = Eye

107 Tdd = Eye

108 for ii in range(0, nlayer):

109 epsr = refra[ii ][0]**2 # dielectric constant of

exitting space

110 if nsect[ii] > 1:

111 A = Kx*Kx -EpsilonX[ii, :, :] # matrix in right -

hand side of Eq. 5.14
112 Eigen , W1 = np.linalg.eig(A) # eigenvalues and

eigenvectors of above matrix

113 else:

114 W1 = Eye # eigenvectors for homogeneous layer

115 Eigen = ((kx/k0)**2-epsr).astype(np.complex) #

eigenvalues for homogeneous layer

116 if ii == 0:

117 W00 = W1

118 Q = np.sqrt(-Eigen) # diagonal elements of matrix Q
in Eq. 5.20

119 if metal[ii]:

120 Q = np.where(Q.imag >0.0, Q, -Q) # correction of

sign

121 else:

122 Q = np.where((Q.real+ Q.imag)> 0.0, Q, -Q) #

correction of sign

123 V1 = np.dot(W1, np.diag(Q)) # Eq. 5.20
124 if ii > 0:

125 Q1 = np.dot(np.linalg.inv(W1), W0) # Eq. 5.118
126 Q2 = np.dot(np.linalg.inv(V1), V0) # Eq. 5.118
127 RudTilde = np.dot(Phip , np.dot(Rud , Phip)) # Eq.

5.110
128 TddTilde = np.dot(Tdd , Phip) # Eq. 5.111
129 F = np.dot(Q1, Eye+RudTilde) # Eq. 5.116
130 G = np.dot(Q2, Eye -RudTilde) # Eq. 5.117
131 Tau = np.linalg.inv(F+G) # Eq. 5.117
132 Rud = Eye -2.0* np.dot(G, Tau) # Eq. 5.120
133 Tdd = 2.0*np.dot(TddTilde , Tau) # Eq. 5.121
134 if ii != nlayer -1:

135 Phip = np.diag(np.exp(1j*k0*Q*depth[ii])) # Φ+ in

Eq. 5.25
136 W0 = W1

137 V0 = V1

138 Rud = np.dot(np.dot(W1 , Rud), np.linalg.inv(W1))

139 # right -hand side of Eq. 5.131 (except i)
140 Tdd = np.dot(np.dot(W00 , Tdd), np.linalg.inv(W1))

141 # right -hand side of Eq. 5.132 (except i)
142 Rs = Rud[:, p] # Eq. 5.131
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143 Ts = Tdd[:, p] # Eq. 5.132
144 IR = (np.abs(Rs)**2)*np.real(kzc)/np.real(kzc[p]) #

diffraction efficiencies of reflected waves

145 IT = (np.abs(Ts)**2)*np.real(kzs)/np.real(kzc[p]) #

diffraction efficiencies of transmitted waves

146
147 else: # in the case of p-polarization

148 Rdu = Zm

149 Rud = Zm

150 Tuu = Eye

151 Tdd = Eye

152 for ii in range(0, nlayer):

153 epsr = refra[ii ][0]**2 # dielectric constant of

exitting space

154 if nsect[ii] > 1:

155 A = np.dot(Kx, np.dot(np.linalg.inv(EpsilonX[ii,

:, :]), Kx)) \

156 - Eye # inside of parentheses in right -hand

side of Eq. 5.39
157 Eigen , W1 = np.linalg.eig(np.dot(np.linalg.inv(

AlphaX[ii, :, :]), A))

158 # eigen values and eigenvectors of matrix in

right -hande side of Eq. 5.39
159 else:

160 W1 = Eye # eigenvectors for homogeneous layer

161 Eigen = ((kx/k0)**2-epsr).astype(np.complex) #

eigenvalues for homogeneous layer

162 if ii == 0:

163 W00 = W1

164 Q = np.sqrt(-Eigen) # diagonal elements of matrix Q
in Eq. 5.39

165 if metal[ii]:

166 Q = np.where(Q.imag >0.0, Q, -Q) # correction of

sign

167 else:

168 Q = np.where((Q.real+Q.imag) >0.0, Q, -Q) #

correction of sign

169 if nsect[ii] > 1:

170 V1 = np.dot(np.dot(AlphaX[ii , :, :], W1), np.diag

(Q)) # Eq. 5.47
171 else:

172 V1 = np.diag(Q)/epsr # Eq.~5.47
173 if ii > 0:

174 Q1 = np.dot(np.linalg.inv(W1), W0) # Eq. 5.118
175 Q2 = np.dot(np.linalg.inv(V1), V0) # Eq. 5.118
176 RudTilde = np.dot(np.dot(Phip , Rud), Phip) # Eq.

5.110
177 TddTilde = np.dot(Tdd , Phip) # Eq. 5.111
178 F = np.dot(Q1, (Eye+RudTilde)) # Eq. 5.116
179 G = np.dot(Q2, (Eye -RudTilde)) # Eq. 5.117
180 Tau = 2.0*np.linalg.inv(F+G) # Eq. 5.117
181 Rud = Eye -np.dot(G, Tau) # Eq. 5.120
182 Tdd = np.dot(TddTilde , Tau) # Eq. 5.121
183 if ii != nlayer -1:

184 Phip = np.diag(np.exp(1j*k0*Q*depth[ii])) # Φ+ in

Eq. 5.25
185 W0 = W1
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186 V0 = V1

187 Rud = np.dot(np.dot(W1 , Rud), np.linalg.inv(W1))

188 # right -hand side of Eq. 5.131 (except i)
189 Tdd = np.dot(np.dot(W00 , Tdd), np.linalg.inv(W1))

190 # right -hand side of Eq.~5.132 (except i)
191 Rp = Rud[:, p] # Eq. 5.131
192 Tp = Tdd[:, p] # Eq. 5.132
193 IR = (np.abs(Rp)**2)*np.real(kzc)/np.real(kzc[p]) #

diffraction efficiencies of reflected waves

194 IT = (np.abs(Tp)**2)*np.real(kzs/refra [0][0]**2) \

195 /np.real(kzc[p]/refra[nlayer -1][0]**2) # diffraction

efficiencies of transmitted waves

196 return IR, IT

197
198 if __name__ == "__main__ ":

199 layer = ((0, 1.5, 1.0), (0.25 , 1.5, 1/2, 1.0, 1/3, 1.5, 1/6),

\

200 (0.25, 1.5, 1/3, 1.0, 2/3), (0, 1.0, 1.0)) # layer

structure

201 pitch = 1. # period (µm)
202 norder = 21 # diffraction order taken into account (2m+1)

203 disporder = range (-2,3) # diffraction order to be displayed

(2m+1)

204 angle = 30* math.pi/180 # angle of incidence (rad)

205 wl_start = 0.5+1e-10 # starting wavelength (µm)
206 wl_end = 1.5 # finishing wavelength (µm)
207 wl = np.linspace(wl_start , wl_end , 200) # array if

wavelengths

208 imax = len(wl)

209 ir = np.zeros([imax , norder ]) # array for storing diffraction

efficiencies of reflected waves

210 it = np.zeros([imax , norder ]) # array for storing diffraction

efficiencies of transmitted waves

211 for i in range(0, imax):

212 ir[i,:], it[i,:] = Rcwa1d(‘p’, wl[i], 2*math.pi*math.sin(

angle)/wl[i], \

213 pitch , layer , norder) # calling function RCWA

214
215 plt.figure (1) # display of diffraction efficiencies of

transmitted waves

216 lines= (‘solid ’, ‘dashed ’, ‘dashdot ’, ‘dotted ’, ‘solid ’)

217 for m in disporder:

218 plt.plot(wl , it[:, m+norder //2], label="m = {0}". format(

m), \

219 linewidth=3, linestyle=lines[m-disporder [0]])

220 plt.xlim(wl_start , wl_end)

221 plt.xlabel(‘Wavelength (µm)’, fontsize =16)

222 plt.ylabel(‘Transmittance ’, fontsize =16)

223 plt.legend(loc=‘center ’, frameon=False , fontsize =16)

224
225 plt.figure (2) # display of diffraction efficiencies of

reflected waves

226 for m in disporder:

227 plt.plot(wl , ir[:, m+norder //2], label="m = {0}". format(

m), \

228 linewidth=3, linestyle=lines[m-disporder [0]])

229 plt.xlim(wl_start , wl_end)
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230 plt.xlabel(‘Wavelength (µm)’, fontsize =16)

231 plt.ylabel(‘Reflectance ’, fontsize =16)

232 plt.legend(loc=‘center ’, frameon=False , fontsize =16)

233
234 plt.show()

8.6 Program of FDTD

Program A.6.1 (runfdtd.py)

1 import time

2 from collections import namedtuple

3 from fdtd import *

4
5 if __name__ == "__main__ ":

6
7 regionx = 200.0e-9 # object region

8 regiony = 200.0e-9 # object region

9 regionz = 200.0e-9 # object region

10 dxtarget = 2.5e-9 # dx [m]

11 dytarget = 2.5e-9 # dy [m]

12 dztarget = 2.5e-9 # dz [m]

13
14 source = ‘dipole ’ # ‘dipole ’ or ‘plane ’ wave source

15 pulse = ‘pulse ’ # ‘pulse ’ or ‘cw ’ source

16
17 lambda0 = 0.561e-6 # center wavelength in vacuum [m]

18 courantfac = 0.98 # Courant factor

19 mt = 2**15 # number of iterations , must be integer power of

2

20 mfft = 2**9 # number of sampling for FFT , must be integer

power of 2

21 extrapol = 4 # zero -filling factor before FFT

22
23 msf = 3 # width for scattering field region (>=3)

24 mpml = 8 # number of perfectly matched layers

25 kappamax = 100.0 # parameter for CFS -CPML

26 amax = 10.0 # parameter for CFS -CPML

27 mpow = 3 # parameter for CFS -CPML

28
29 r1 = 25.0e-9 # radius of inner sphere

30 Obj = namedtuple(‘Obj ’, (‘shape ’, ‘material ’, ‘position ’,

‘size ’))

31 objs = (

32 Obj(‘background ’, ‘vacuum ’, 0, 0),

33 Obj(‘substrate ’, ‘SiO2 ’, (0, 0, r1), 0),

34 Obj(‘sphere ’, ‘Au’, (0, 0, 0), r1)

35 )

36
37 Dipole = namedtuple(‘Dipole ’, (‘pol ’, ‘phase ’, ‘x’, ‘y’, ‘z’)

)
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38 # phase: ‘in’ in-phase , ‘anti ’ antiphase

39 dipoles = (

40 Dipole(‘z’, ‘in ’, 0, 0, -30e-9),

41 )

42
43 # field monitors

44 savenum = 32 # total number of data saving

45 saveint = mt// savenum # interval for data saving

46 Fmon= namedtuple(‘Fmon ’, (‘ehfield ’, ‘axis ’, ‘position ’))

47 fieldmons = (savenum , saveint ,

48 Fmon(‘Ex ’, ‘y’, 0),

49 Fmon(‘Ex ’, ‘z’, 0),

50 Fmon(‘Ez ’, ‘y’, 0),

51 Fmon(‘Hy ’, ‘x’, 0)

52 )

53
54 # epsilon monitors

55 Epsmon = namedtuple(‘Epsmon ’, (‘pol ’, ‘axis ’, ‘position ’))

56 epsmons = (

57 Epsmon(‘x’, ‘z’, 0), \

58 Epsmon(‘x’, ‘y’, 0), \

59 Epsmon(‘z’, ‘z’, 0))

60
61 r1 = 25.0e-9 # radius of sphere

62 Dtct = namedtuple(‘Dtct ’, (‘pol ’, ‘x’, ‘y’, ‘z’))

63 detectors = (

64 Dtct(‘x’, 0, 0, 0),

65 Dtct(‘x’, r1 + 5.0e-9, 0, 0),

66 Dtct(‘z’, r1 + 5.0e-9, 0, 0),

67 Dtct(‘x’, r1, 0, r1),

68 Dtct(‘z’, r1, 0, r1),

69 )

70
71 em = Fdtd(\

72 source , pulse , lambda0 , courantfac , mt , mfft , extrapol , \

73 regionx , regiony , regionz , dxtarget , dytarget , dztarget ,

\

74 mpml , msf , kappamax , amax , mpow , \

75 objs , fieldmons , epsmons , detectors , dipoles)

76 start = time.time()

77 em.sweep ()

78 print(‘Elapsed time = %f s’ % (time.time() - start))

ProgramA.6.2 (fdtd.py)

1 import sys

2 import math

3 import os

4 import numpy as np

5 from preprocess import *

6
7 class Fdtd(Preprocess):

8
9 def sweep(self):
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10 """ Time development with CFS -PML and ADE """

11
12 self.save_idv ()

13 numt = 0

14 for jt in range(self.mt):

15 # update E-field

16 self.sweep_isolate_e ()

17 self.sweep_boundary_e ()

18 # E-field source injection

19 if self.source == ‘plane ’:

20 self.normalinc_p_e(jt)

21 else:

22 self.dipole_source(jt)

23 # auxiary E-field update

24 self.develop_pcurrent ()

25
26 # update H-field

27 self.sweep_isolate_h ()

28 self.sweep_boundary_h ()

29 # H-field source injection

30 if self.source == ‘plane ’:

31 self.normalinc_p_h ()

32
33 # store H and E fields

34 if (jt+1)%self.saveint == 0 and numt < self.savenum:

35 self.save_ehfield(numt)

36 numt = numt+1

37 self.detect_efield(jt)

38
39 # update arrays

40 self.update_field ()

41
42 # calculate spectra

43 self.detect_spectra ()

44
45 def dipole_source(self , jt):

46 """ Dipole source """

47
48 env_factor = 1.0/4.0

49
50 tau = math.pi/self.omega0

51 if self.pulse == ‘pulse ’:

52 t0 = 5.0* tau

53 else:

54 t0 = 0.0

55 omega_env = self.omega0*env_factor

56 tempe = (jt -1)*self.dt - t0

57
58 if self.pulse == ‘pulse ’:

59 campe = math.sin(self.omega0*tempe)

60 j00 = math.exp(-tempe*tempe/tau/tau) * campe

61 else:

62 tempe2 = tempe - math.pi/omega_env

63 campe = math.cos(self.omega0*tempe2)

64 if tempe2 < -math.pi/omega_env:

65 j00 = 0

66 elif tempe2 < 0:
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67 j00 = 0.5 * (1+ math.cos(omega_env*tempe2)) *

campe

68 else:

69 j00 = campe

70
71 for dipole in self.idipoles:

72 if dipole.pol == ‘x’:

73 self.Ex2[dipole.iz, dipole.iy , dipole.ix] = \

74 self.Ex2[dipole.iz, dipole.iy , dipole.ix] -

dipole.phase* j00

75 elif dipole.pol == ‘y’:

76 self.Ey2[dipole.iz, dipole.iy , dipole.ix] = \

77 self.Ey2[dipole.iz, dipole.iy , dipole.ix] -

dipole.phase* j00

78 elif dipole.pol == ‘z’:

79 self.Ez2[dipole.iz, dipole.iy , dipole.ix] = \

80 self.Ez2[dipole.iz, dipole.iy , dipole.ix] -

dipole.phase* j00

81 else:

82 print(‘Error at dipole_source !’)

83
84 self.esource[jt] = j00

85
86 def normalinc_p_e(self , jt):

87 """

88 Source: x-polarized and z-propagating plane wave

89 TF/SF compensation for E

90 """

91
92 # generation of the temporal shape of the source wave

93 iz00 = self.mz1 # origin for incident wave

94 env_factor = 1.0/4.0

95 tau = math.pi/self.omega0

96 if self.pulse == ‘pulse ’:

97 t0 = 5.0* tau

98 else:

99 t0 = 0.0

100 omega_env = self.omega0*env_factor

101
102 tempe = (jt+ 0.5)*self.dt - t0 \

103 - (self.izst - iz00)*self.dz*math.sqrt(self.epsr[self.

bgmater ])/self.cc

104 temph = jt*self.dt - t0 - (self.izst -iz00 -0.5) \

105 * self.dz*math.sqrt(self.epsr[self.bgmater ])/self.cc

106 campe = math.sin(self.omega0*tempe)

107 camph = math.sin(self.omega0*temph)

108 if self.pulse == ‘pulse ’:

109 SEx00 = math.exp(-tempe*tempe/tau/tau)*campe

110 SHy00 = math.exp(-temph*temph/tau/tau)*camph \

111 / (self.zz0/math.sqrt(self.epsr[self.bgmater ]))

112 else:

113 if tempe < 0.0:

114 SEx00 = 0.0

115 elif tempe < math.pi/omega_env:

116 SEx00 = 0.5 * (1.0- math.cos(omega_env*tempe)) *

campe

117 else:
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118 SEx00 = campe

119
120 if temph < 0.0:

121 SHy00 = 0.0

122 elif temph < math.pi/omega_env:

123 SHy00 = 0.5*(1.0 - math.cos(omega_env* temph))*

camph \

124 / (self.zz0/math.sqrt(self.epsr[self.bgmater

]))

125 else:

126 SHy00= camph / (self.zz0/math.sqrt(self.epsr[self

.bgmater ]))

127
128 # store source E field

129 self.esource[jt] = SEx00

130
131 # store source E and H fields for FFT

132 if jt%self.sampint == 0:

133 jfft = jt//self.sampint

134
135 # Ex development

136 for iz in range(1, self.mzz):

137 imater = self.isdx[iz]

138 self.SEx2[iz] = self.SEx1[iz]*self.ce1[imater] \

139 - self.spx2[iz]*self.ce3[imater] \

140 - (self.SHy1[iz]-self.SHy1[iz -1])*self.ckez[iz]*

self.ce2[imater]

141
142 # -z pml

143 for iz in range(1, self.mz1):

144 self.SpsiExz2m[iz] = self.SpsiExz1m[iz]*self.cbze[iz]

\

145 + (self.SHy1[iz]-self.SHy1[iz -1])*self.ccze[iz]

146 self.SEx2[iz] = self.SEx2[iz] - self.SpsiExz2m[iz]*

self.ce2[self.isdx[iz]]

147
148 # +z pml

149 for iz in range(self.mz2+ 1, self.mzz):

150 izz = iz - self.mz2

151 izzr = self.mzz - iz

152 self.SpsiExz2p[izz] = self.SpsiExz1p[izz]*self.cbze[

izzr] \

153 + (self.SHy1[iz]-self.SHy1[iz -1])*self.ccze[izzr]

154 self.SEx2[iz] = self.SEx2[iz] - self.SpsiExz2p[izz]*

self.ce2[self.isdx[iz]]

155
156 # source compensation for E

157 self.SEx2[self.izst] = self.SEx2[self.izst] + self.cez2[

self.isdx[self.izst ]]* SHy00

158
159 self.SEx2 [0] = 0.0

160 self.SEx2[self.mzz] = 0.0

161
162 # Hy development

163 for iz in range(self.mzz):

164 self.SHy2[iz] = self.SHy1[iz] - (self.SEx2[iz+1]-self

.SEx2[iz])*self.ckhz1[iz]
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165
166 # -z pml

167 for iz in range(self.mz1):

168 self.SpsiHyz2m[iz] = self.SpsiHyz1m[iz]*self.cbzh[iz]

\

169 + (self.SEx2[iz+1]-self.SEx2[iz])*self.cczh[iz]

170 self.SHy2[iz] = self.SHy2[iz]- self.SpsiHyz2m[iz]*

self.coefh

171
172 # +z pml

173 for iz in range(self.mz2 , self.mzz):

174 izz = iz - self.mz2

175 izzr = self.mzz - iz - 1

176 self.SpsiHyz2p[izz] = self.SpsiHyz1p[izz]*self.cbzh[

izzr] \

177 + (self.SEx2[iz+1]-self.SEx2[iz])*self.cczh[izzr]

178 self.SHy2[iz] = self.SHy2[iz] - self.SpsiHyz2p[izz]*

self.coefh

179
180 # source compensation for H

181 self.SHy2[self.izst -1] = self.SHy2[self.izst -1] + self.

ckhz1[self.izst]* SEx00

182
183 iy1 = self.mox1

184 iy2 = self.moy2

185 iz1 = self.moz1

186 iz2 = self.moz2 - 1

187
188 # -x boundary

189 ix = self.mxx1

190 for iz in range(iz1 , iz2):

191 self.Ez2[iz ,iy1:iy2 ,ix] = self.Ez2[iz ,iy1:iy2 ,ix] \

192 - self.cex2[self.isdz[iz]]* self.SHy2[iz]

193
194 # +x boundary

195 ix = self.mox2

196 for iz in range(iz1 , iz2):

197 self.Ez2[iz ,iy1:iy2 ,ix] = self.Ez2[iz ,iy1:iy2 ,ix] \

198 + self.cex2[self.isdz[iz]]* self.SHy2[iz]

199
200 ix1 = self.mox1

201 ix2 = self.mox2 - 1

202
203 # -z boundary

204 iz = self.moz1

205 self.Ex2[iz,iy1:iy2 ,ix1:ix2] = self.Ex2[iz ,iy1:iy2 ,ix1:

ix2] \

206 + self.cez2[self.isdx[iz]]* self.SHy2[iz -1]

207
208 # +z boundary

209 iz = self.moz2 - 1

210 self.Ex2[iz,iy1:iy2 ,ix1:ix2] = self.Ex2[iz ,iy1:iy2 ,ix1:

ix2] \

211 - self.cez2[self.isdx[iz]]* self.SHy2[iz]

212
213 # develop spx2 for ADE

214 iz1 = 1
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215 iz2 = self.mzz

216 self.spx2[iz1:iz2] = self.cj1[self.isdx[iz1:iz2]]* self.

spx2[iz1:iz2] \

217 + self.cj3[self.isdx[iz1:iz2 ]]*( self.SEx2[iz1:iz2]+

self.SEx1[iz1:iz2])

218
219 # update

220 self.SEx1 [:] = self.SEx2 [:]

221 self.SHy1 [:] = self.SHy2 [:]

222 self.SpsiExz1m [:] = self.SpsiExz2m [:]

223 self.SpsiExz1p [:] = self.SpsiExz2p [:]

224 self.SpsiHyz1m [:] = self.SpsiHyz2m [:]

225 self.SpsiHyz1p [:] = self.SpsiHyz2p [:]

226
227 def normalinc_p_h(self):

228 """

229 Source: x-polarized and z-propagating plane wave

230 TF/SF compensation for H

231 """

232
233 ix1 = self.mox1

234 ix2 = self.mox2 - 1

235 iz1 = self.moz1

236 iz2 = self.moz2

237
238 # -y boundary

239 iy = self.my1+ self.msf

240 for iz in range(iz1 , iz2):

241 for ix in range(ix1 , ix2):

242 self.Hz2[iz ,iy -1,ix] = self.Hz2[iz,iy -1,ix] \

243 - self.ckhy1[iy -1]* self.SEx1[iz]

244
245 # +y boundary

246 iy = self.my2 - self.msf

247 for iz in range(iz1 , iz2):

248 for ix in range(ix1 , ix2):

249 self.Hz2[iz ,iy,ix] = self.Hz2[iz ,iy,ix] + self.

ckhy1[iy]*self.SEx1[iz]

250
251 iy1 = self.moy1

252 iy2 = self.moy2

253
254 # -z boundary

255 iz = self.moz1

256 for iy in range(iy1 , iy2):

257 for ix in range(ix1 , ix2):

258 self.Hy2[iz -1,iy ,ix] = self.Hy2[iz -1,iy,ix] \

259 + self.ckhz1[iz -1]* self.SEx1[iz]

260
261 # +z boundary

262 iz = self.moz2 - 1

263 for iy in range(iy1 , iy2):

264 for ix in range(ix1 , ix2):

265 self.Hy2[iz ,iy,ix] = self.Hy2[iz ,iy,ix]- self.

ckhz1[iz]*self.SEx1[iz]

266
267 def sweep_isolate_h(self):
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268
269 ix1 = 0

270 iy1 = 0

271 iz1 = 0

272
273 # Hx development

274
275 ix2 = self.mxx+ 1

276 iy2 = self.myy

277 iz2 = self.mzz

278
279 for iy in range(iy1 , iy2):

280 self.Hx2[iz1:iz2 ,iy,ix1:ix2] = self.Hx1[iz1:iz2 ,iy,

ix1:ix2] \

281 - (self.Ez2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ez2[iz1:

iz2 ,iy ,ix1:ix2]) \

282 * self.ckhy1[iy]

283 for iz in range(iz1 , iz2):

284 self.Hx2[iz ,iy1:iy2 ,ix1:ix2] = self.Hx2[iz ,iy1:iy2 ,

ix1:ix2] \

285 + (self.Ey2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ey2[iz,iy1

:iy2 ,ix1:ix2]) \

286 * self.ckhz1[iz]

287
288 # Hy development

289
290 ix2 = self.mxx

291 iy2 = self.myy+ 1

292 iz2 = self.mzz

293
294 for iz in range(iz1 , iz2):

295 self.Hy2[iz ,iy1:iy2 ,ix1:ix2] = self.Hy1[iz ,iy1:iy2 ,

ix1:ix2] \

296 - (self.Ex2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ex2[iz,iy1

:iy2 ,ix1:ix2]) \

297 * self.ckhz1[iz]

298 for ix in range(ix1 , ix2):

299 self.Hy2[iz1:iz2 ,iy1:iy2 ,ix] = self.Hy2[iz1:iz2 ,iy1:

iy2 ,ix] \

300 + (self.Ez2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ez2[iz1:

iz2 ,iy1:iy2 ,ix]) \

301 * self.ckhx1[ix]

302
303 # Hz development

304
305 ix2 = self.mxx

306 iy2 = self.myy

307 iz2 = self.mzz+ 1

308
309 for ix in range(ix1 , ix2):

310 self.Hz2[iz1:iz2 ,iy1:iy2 ,ix] = self.Hz1[iz1:iz2 ,iy1:

iy2 ,ix] \

311 - (self.Ey2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ey2[iz1:

iz2 ,iy1:iy2 ,ix]) \

312 * self.ckhx1[ix]

313 for iy in range(iy1 , iy2):
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314 self.Hz2[iz1:iz2 ,iy,ix1:ix2] = self.Hz2[iz1:iz2 ,iy,

ix1:ix2] \

315 + (self.Ex2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ex2[iz1:

iz2 ,iy ,ix1:ix2]) \

316 * self.ckhy1[iy]

317
318 def sweep_boundary_h(self):

319
320 # -x boundary

321
322 # Hy PML

323 ix1 = 0

324 iy1 = 0

325 iz1 = 0

326 ix2 = self.mx1

327 iy2 = self.myy+ 1

328 iz2 = self.mzz

329
330 for ix in range(ix1 , ix2):

331 self.psiHyx2m[iz1:iz2 ,iy1:iy2 ,ix] \

332 = self.psiHyx1m[iz1:iz2 ,iy1:iy2 ,ix]*self.cbxh[ix]

\

333 + (self.Ez2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ez2[iz1:

iz2 ,iy1:iy2 ,ix]) \

334 * self.ccxh[ix]

335 self.Hy2[iz1:iz2 ,iy1:iy2 ,ix]= self.Hy2[iz1:iz2 ,iy1:

iy2 ,ix] \

336 + self.psiHyx1m[iz1:iz2 ,iy1:iy2 ,ix]* self.coefh

337
338 # Hz PML

339 ix2 = self.mx1

340 iy2 = self.myy

341 iz2 = self.mzz+ 1

342
343 for ix in range(ix1 , ix2):

344 self.psiHzx2m[iz1:iz2 ,iy1:iy2 ,ix] \

345 = self.psiHzx1m[iz1:iz2 ,iy1:iy2 ,ix]*self.cbxh[ix]

\

346 + (self.Ey2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ey2[iz1:

iz2 ,iy1:iy2 ,ix]) \

347 * self.ccxh[ix]

348 self.Hz2[iz1:iz2 ,iy1:iy2 ,ix]= self.Hz2[iz1:iz2 ,iy1:

iy2 ,ix] \

349 - self.psiHzx1m[iz1:iz2 ,iy1:iy2 ,ix]*self.coefh

350
351 # +x boundary

352
353 # Hy PML

354 ix1 = self.mx2

355 iy1 = 0

356 iz1 = 0

357 ix2 = self.mxx

358 iy2 = self.myy+ 1

359 iz2 = self.mzz

360
361 for ix in range(ix1 , ix2):

362 ixx = ix - self.mx2
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363 ixxr = self.mxx - ix- 1

364 self.psiHyx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

365 = self.psiHyx1p[iz1:iz2 ,iy1:iy2 ,ixx]* self.cbxh[

ixxr] \

366 + (self.Ez2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ez2[iz1:

iz2 ,iy1:iy2 ,ix]) \

367 * self.ccxh[ixxr]

368 self.Hy2[iz1:iz2 ,iy1:iy2 ,ix]= self.Hy2[iz1:iz2 ,iy1:

iy2 ,ix] \

369 + self.psiHyx1p[iz1:iz2 ,iy1:iy2 ,ixx]*self.coefh

370
371 # Hz PML

372 ix2 = self.mxx

373 iy2 = self.myy

374 iz2 = self.mzz+ 1

375
376 for ix in range(ix1 , ix2):

377 ixx = ix - self.mx2

378 ixxr = self.mxx - ix- 1

379 self.psiHzx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

380 = self.psiHzx1p[iz1:iz2 ,iy1:iy2 ,ixx]*self.cbxh[

ixxr] \

381 + (self.Ey2[iz1:iz2 ,iy1:iy2 ,ix+1]-self.Ey2[iz1:

iz2 ,iy1:iy2 ,ix]) \

382 * self.ccxh[ixxr]

383 self.Hz2[iz1:iz2 ,iy1:iy2 ,ix]= self.Hz2[iz1:iz2 ,iy1:

iy2 ,ix] \

384 - self.psiHzx1p[iz1:iz2 ,iy1:iy2 ,ixx]*self.coefh

385
386 # -y boundary

387
388 # Hx PML

389 ix1 = 0

390 iy1 = 0

391 iz1 = 0

392 ix2 = self.mxx+ 1

393 iy2 = self.my1

394 iz2 = self.mzz

395
396 for iy in range(iy1 , iy2):

397 self.psiHxy2m[iz1:iz2 ,iy,ix1:ix2] \

398 = self.psiHxy1m[iz1:iz2 ,iy,ix1:ix2]*self.cbyh[iy]

\

399 + (self.Ez2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ez2[iz1:

iz2 ,iy ,ix1:ix2]) \

400 * self.ccyh[iy]

401 self.Hx2[iz1:iz2 ,iy,ix1:ix2]= self.Hx2[iz1:iz2 ,iy,ix1

:ix2] \

402 - self.psiHxy1m[iz1:iz2 ,iy,ix1:ix2]*self.coefh

403
404 # Hz PML

405 ix2 = self.mxx

406 iy2 = self.my1

407 iz2 = self.mzz+ 1

408
409 for iy in range(iy1 , iy2):

410 self.psiHzy2m[iz1:iz2 ,iy,ix1:ix2] \
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411 = self.psiHzy1m[iz1:iz2 ,iy,ix1:ix2]*self.cbyh[iy]

\

412 + (self.Ex2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ex2[iz1:

iz2 ,iy ,ix1:ix2]) \

413 * self.ccyh[iy]

414 self.Hz2[iz1:iz2 ,iy,ix1:ix2]= self.Hz2[iz1:iz2 ,iy,ix1

:ix2] \

415 + self.psiHzy1m[iz1:iz2 ,iy,ix1:ix2]*self.coefh

416
417 # +y boundary

418
419 # Hx PML

420 ix1 = 0

421 iy1 = self.my2

422 iz1 = 0

423 ix2 = self.mxx+ 1

424 iy2 = self.myy

425 iz2 = self.mzz

426
427 for iy in range(iy1 , iy2):

428 iyy = iy - self.my2

429 iyyr = self.myy - iy- 1

430 self.psiHxy2p[iz1:iz2 ,iyy ,ix1:ix2] \

431 = self.psiHxy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.cbyh[

iyyr] \

432 + (self.Ez2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ez2[iz1:

iz2 ,iy ,ix1:ix2]) \

433 * self.ccyh[iyyr]

434 self.Hx2[iz1:iz2 ,iy,ix1:ix2]= self.Hx2[iz1:iz2 ,iy,ix1

:ix2] \

435 - self.psiHxy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.coefh

436
437 # Hz PML

438 ix2 = self.mxx

439 iy2 = self.myy

440 iz2 = self.mzz+ 1

441
442 for iy in range(iy1 , iy2):

443 iyy = iy - self.my2

444 iyyr = self.myy - iy- 1

445 self.psiHzy2p[iz1:iz2 ,iyy ,ix1:ix2] \

446 = self.psiHzy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.cbyh[

iyyr] \

447 + (self.Ex2[iz1:iz2 ,iy+1,ix1:ix2]-self.Ex2[iz1:

iz2 ,iy ,ix1:ix2]) \

448 * self.ccyh[iyyr]

449 self.Hz2[iz1:iz2 ,iy,ix1:ix2]= self.Hz2[iz1:iz2 ,iy,ix1

:ix2] \

450 + self.psiHzy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.coefh

451
452 # -z boundary

453
454 # Hx PML

455 ix1 = 0

456 iy1 = 0

457 iz1 = 0

458 ix2 = self.mxx+ 1
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459 iy2 = self.myy

460 iz2 = self.mz1

461
462 for iz in range(iz1 , iz2):

463 self.psiHxz2m[iz ,iy1:iy2 ,ix1:ix2] \

464 = self.psiHxz1m[iz,iy1:iy2 ,ix1:ix2]*self.cbzh[iz]

\

465 + (self.Ey2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ey2[iz,iy1

:iy2 ,ix1:ix2]) \

466 * self.cczh[iz]

467 self.Hx2[iz ,iy1:iy2 ,ix1:ix2]= self.Hx2[iz,iy1:iy2 ,ix1

:ix2] \

468 + self.psiHxz1m[iz,iy1:iy2 ,ix1:ix2]*self.coefh

469
470 # Hy PML

471 ix2 = self.mxx

472 iy2 = self.myy+ 1

473 iz2 = self.mz1

474
475 for iz in range(iz1 , iz2):

476 self.psiHyz2m[iz ,iy1:iy2 ,ix1:ix2] \

477 = self.psiHyz1m[iz,iy1:iy2 ,ix1:ix2]*self.cbzh[iz]

\

478 + (self.Ex2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ex2[iz,iy1

:iy2 ,ix1:ix2]) \

479 * self.cczh[iz]

480 self.Hy2[iz ,iy1:iy2 ,ix1:ix2]= self.Hy2[iz,iy1:iy2 ,ix1

:ix2] \

481 - self.psiHyz1m[iz,iy1:iy2 ,ix1:ix2]*self.coefh

482
483 # +z boundary

484
485 # Hx PML

486 ix1 = 0

487 iy1 = 0

488 iz1 = self.mz2

489 ix2 = self.mxx+ 1

490 iy2 = self.myy

491 iz2 = self.mzz

492
493 for iz in range(iz1 , iz2):

494 izz = iz - self.mz2

495 izzr = self.mzz - iz- 1

496 self.psiHxz2p[izz ,iy1:iy2 ,ix1:ix2] \

497 = self.psiHxz1p[izz ,iy1:iy2 ,ix1:ix2]*self.cbzh[

izzr] \

498 + (self.Ey2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ey2[iz,iy1

:iy2 ,ix1:ix2]) \

499 * self.cczh[izzr]

500 self.Hx2[iz ,iy1:iy2 ,ix1:ix2]= self.Hx2[iz,iy1:iy2 ,ix1

:ix2] \

501 + self.psiHxz1p[izz ,iy1:iy2 ,ix1:ix2]*self.coefh

502
503 # Hy PML

504 ix2 = self.mxx

505 iy2 = self.myy+ 1

506 iz2 = self.mzz
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507 for iz in range(iz1 , iz2):

508 izz = iz - self.mz2

509 izzr = self.mzz - iz- 1

510 self.psiHyz2p[izz ,iy1:iy2 ,ix1:ix2] \

511 = self.psiHyz1p[izz ,iy1:iy2 ,ix1:ix2]*self.cbzh[

izzr] \

512 + (self.Ex2[iz+1,iy1:iy2 ,ix1:ix2]-self.Ex2[iz,iy1

:iy2 ,ix1:ix2]) \

513 * self.cczh[izzr]

514 self.Hy2[iz ,iy1:iy2 ,ix1:ix2]= self.Hy2[iz,iy1:iy2 ,ix1

:ix2] \

515 - self.psiHyz1p[izz ,iy1:iy2 ,ix1:ix2]*self.coefh

516
517 def sweep_isolate_e(self):

518
519 ix2 = self.mxx

520 iy2 = self.myy

521 iz2 = self.mzz

522 """---------------------

523 Ex development

524 ---------------------"""

525 ix1 = 0

526 iy1 = 1

527 iz1 = 1

528 for iy in range(iy1 , iy2):

529 self.Ex2[iz1:iz2 ,iy,ix1:ix2] \

530 = self.Ex1[iz1:iz2 ,iy,ix1:ix2]*self.ce1[self.idx[

iz1:iz2 ,iy ,ix1:ix2]] \

531 - self.px2[iz1:iz2 ,iy,ix1:ix2]*self.ce3[self.idx[

iz1:iz2 ,iy ,ix1:ix2]] \

532 + (self.Hz1[iz1:iz2 ,iy,ix1:ix2]-self.Hz1[iz1:iz2 ,

iy -1,ix1:ix2]) \

533 * self.ckey[iy]*self.ce2[self.idx[iz1:iz2 ,iy ,ix1:

ix2]]

534
535 for iz in range(iz1 , iz2):

536 self.Ex2[iz ,iy1:iy2 ,ix1:ix2]= self.Ex2[iz,iy1:iy2 ,ix1

:ix2] \

537 - (self.Hy1[iz ,iy1:iy2 ,ix1:ix2]-self.Hy1[iz -1,iy1

:iy2 ,ix1:ix2]) \

538 * self.ckez[iz]*self.ce2[self.idx[iz,iy1:iy2 ,ix1:

ix2]]

539
540 """---------------------

541 Ey development

542 ---------------------"""

543 ix1 = 1

544 iy1 = 0

545 iz1 = 1

546 for iz in range(iz1 , iz2):

547 self.Ey2[iz ,iy1:iy2 ,ix1:ix2] \

548 = self.Ey1[iz,iy1:iy2 ,ix1:ix2]*self.ce1[self.idy[

iz,iy1:iy2 ,ix1:ix2]] \

549 - self.py2[iz,iy1:iy2 ,ix1:ix2]*self.ce3[self.idy[

iz,iy1:iy2 ,ix1:ix2]] \

550 + (self.Hx1[iz,iy1:iy2 ,ix1:ix2]-self.Hx1[iz -1,iy1

:iy2 ,ix1:ix2]) \
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551 * self.ckez[iz]*self.ce2[self.idy[iz,iy1:iy2 ,ix1:

ix2]]

552 for ix in range(ix1 , ix2):

553 self.Ey2[iz1:iz2 ,iy1:iy2 ,ix] = self.Ey2[iz1:iz2 ,iy1:

iy2 ,ix] \

554 - (self.Hz1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hz1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

555 * self.ckex[ix]*self.ce2[self.idy[iz1:iz2 ,iy1:iy2

,ix]]

556
557 """---------------------

558 Ez development

559 ---------------------"""

560 ix1 = 1

561 iy1 = 1

562 iz1 = 0

563 for ix in range(ix1 , ix2):

564 self.Ez2[iz1:iz2 ,iy1:iy2 ,ix] \

565 = self.Ez1[iz1:iz2 ,iy1:iy2 ,ix]*self.ce1[self.idz[

iz1:iz2 ,iy1:iy2 ,ix]] \

566 - self.pz2[iz1:iz2 ,iy1:iy2 ,ix]*self.ce3[self.idz[

iz1:iz2 ,iy1:iy2 ,ix]] \

567 + (self.Hy1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hy1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

568 * self.ckex[ix]*self.ce2[self.idz[iz1:iz2 ,iy1:iy2

,ix]]

569 for iy in range(iy1 , iy2):

570 self.Ez2[iz1:iz2 ,iy,ix1:ix2]= self.Ez2[iz1:iz2 ,iy,ix1

:ix2] \

571 - (self.Hx1[iz1:iz2 ,iy,ix1:ix2]-self.Hx1[iz1:iz2 ,

iy -1,ix1:ix2]) \

572 * self.ckey[iy]*self.ce2[self.idz[iz1:iz2 ,iy ,ix1:

ix2]]

573
574 def sweep_boundary_e(self):

575
576 ix2 = self.mxx

577 iy2 = self.myy

578 iz2 = self.mzz

579
580 # -x-side boundary

581 # Ey PML

582 iy1 = 0

583 iz1 = 1

584 for ix in range(1, self.mx1):

585 self.psiEyx2m[iz1:iz2 ,iy1:iy2 ,ix] \

586 = self.psiEyx1m[iz1:iz2 ,iy1:iy2 ,ix]*self.cbxe[ix]

\

587 + (self.Hz1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hz1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

588 * self.ccxe[ix]

589 self.Ey2[iz1:iz2 ,iy1:iy2 ,ix] = self.Ey2[iz1:iz2 ,iy1:

iy2 ,ix] \

590 - self.psiEyx2m[iz1:iz2 ,iy1:iy2 ,ix] \

591 * self.ce2[self.idy[iz1:iz2 ,iy1:iy2 ,ix]]

592 self.Ey2[:,:,0] = 0.0

593
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594 # Ez PML

595 iy1 = 1

596 iz1 = 0

597 for ix in range(1, self.mx1):

598 self.psiEzx2m[iz1:iz2 ,iy1:iy2 ,ix] \

599 = self.psiEzx1m[iz1:iz2 ,iy1:iy2 ,ix]*self.cbxe[ix]

\

600 + (self.Hy1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hy1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

601 * self.ccxe[ix]

602 self.Ez2[iz1:iz2 ,iy1:iy2 ,ix]= self.Ez2[iz1:iz2 ,iy1:

iy2 ,ix] \

603 + self.psiEzx2m[iz1:iz2 ,iy1:iy2 ,ix] \

604 * self.ce2[self.idz[iz1:iz2 ,iy1:iy2 ,ix]]

605 self.Ez2[:,:,0] = 0.0

606
607 # +x-side boundary

608 # Ey PML

609 iy1 = 0

610 iz1 = 1

611 for ix in range(self.mx2+ 1, self.mxx):

612 ixx = ix - self.mx2

613 ixxr = self.mxx - ix

614 self.psiEyx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

615 = self.psiEyx1p[iz1:iz2 ,iy1:iy2 ,ixx]*self.cbxe[

ixxr] \

616 + (self.Hz1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hz1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

617 * self.ccxe[ixxr]

618 self.Ey2[iz1:iz2 ,iy1:iy2 ,ix] = self.Ey2[iz1:iz2 ,iy1:

iy2 ,ix] \

619 - self.psiEyx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

620 * self.ce2[self.idy[iz1:iz2 ,iy1:iy2 ,ix]]

621 self.Ey2[:,:,self.mxx] = 0.0

622
623 # Ez PML

624 iy1 = 1

625 iz1 = 0

626 for ix in range(self.mx2+ 1, self.mxx):

627 ixx = ix - self.mx2

628 ixxr = self.mxx - ix

629 self.psiEzx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

630 = self.psiEzx1p[iz1:iz2 ,iy1:iy2 ,ixx]*self.cbxe[

ixxr] \

631 + (self.Hy1[iz1:iz2 ,iy1:iy2 ,ix]-self.Hy1[iz1:iz2 ,

iy1:iy2 ,ix -1]) \

632 * self.ccxe[ixxr]

633 self.Ez2[iz1:iz2 ,iy1:iy2 ,ix] = self.Ez2[iz1:iz2 ,iy1:

iy2 ,ix] \

634 + self.psiEzx2p[iz1:iz2 ,iy1:iy2 ,ixx] \

635 * self.ce2[self.idz[iz1:iz2 ,iy1:iy2 ,ix]]

636 self.Ez2[:,:,self.mxx] = 0.0

637
638 # -y-side boundary

639 # Ex PML

640 ix1 = 0

641 iz1 = 1



240 Appendix

642 for iy in range(1, self.my1):

643 self.psiExy2m[iz1:iz2 ,iy,ix1:ix2] \

644 = self.psiExy1m[iz1:iz2 ,iy,ix1:ix2]*self.cbye[iy]

\

645 + (self.Hz1[iz1:iz2 ,iy,ix1:ix2]-self.Hz1[iz1:iz2 ,

iy -1,ix1:ix2]) \

646 * self.ccye[iy]

647 self.Ex2[iz1:iz2 ,iy,ix1:ix2] = self.Ex2[iz1:iz2 ,iy,

ix1:ix2] \

648 + self.psiExy2m[iz1:iz2 ,iy,ix1:ix2] \

649 * self.ce2[self.idx[iz1:iz2 ,iy ,ix1:ix2]]

650 self.Ex2[:,0,:] = 0.0

651
652 # Ez PML

653 ix1 = 1

654 iz1 = 0

655 for iy in range(1, self.my1):

656 self.psiEzy2m[iz1:iz2 ,iy,ix1:ix2] \

657 = self.psiEzy1m[iz1:iz2 ,iy,ix1:ix2]*self.cbye[iy]

\

658 + (self.Hx1[iz1:iz2 ,iy,ix1:ix2]-self.Hx1[iz1:iz2 ,

iy -1,ix1:ix2]) \

659 * self.ccye[iy]

660 self.Ez2[iz1:iz2 ,iy,ix1:ix2] = self.Ez2[iz1:iz2 ,iy,

ix1:ix2] \

661 - self.psiEzy2m[iz1:iz2 ,iy,ix1:ix2] \

662 * self.ce2[self.idz[iz1:iz2 ,iy ,ix1:ix2]]

663 self.Ez2[:,0,:] = 0.0

664
665 # +y-side boundary

666 # Ex PML

667 ix1 = 0

668 iz1 = 1

669 for iy in range(self.my2+ 1, self.myy):

670 iyy = iy - self.my2

671 iyyr = self.myy - iy

672 self.psiExy2p[iz1:iz2 ,iyy ,ix1:ix2] = \

673 self.psiExy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.cbye[iyyr

] \

674 + (self.Hz1[iz1:iz2 ,iy,ix1:ix2]-self.Hz1[iz1:iz2 ,

iy -1,ix1:ix2]) \

675 * self.ccye[iyyr]

676 self.Ex2[iz1:iz2 ,iy,ix1:ix2] = self.Ex2[iz1:iz2 ,iy,

ix1:ix2] \

677 + self.psiExy2p[iz1:iz2 ,iyy ,ix1:ix2] \

678 * self.ce2[self.idx[iz1:iz2 ,iy ,ix1:ix2]]

679 self.Ex2[:,self.myy ,:] = 0.0

680
681 # Ez PML

682 ix1 = 1

683 iz1 = 0

684 for iy in range(self.my2+ 1, self.myy):

685 iyy = iy - self.my2

686 iyyr = self.myy - iy

687 self.psiEzy2p[iz1:iz2 ,iyy ,ix1:ix2] \

688 = self.psiEzy1p[iz1:iz2 ,iyy ,ix1:ix2]*self.cbye[

iyyr] \
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689 + (self.Hx1[iz1:iz2 ,iy,ix1:ix2]-self.Hx1[iz1:iz2 ,

iy -1,ix1:ix2]) \

690 * self.ccye[iyyr]

691 self.Ez2[iz1:iz2 ,iy,ix1:ix2] = self.Ez2[iz1:iz2 ,iy,

ix1:ix2] \

692 - self.psiEzy2p[iz1:iz2 ,iyy ,ix1:ix2] \

693 * self.ce2[self.idz[iz1:iz2 ,iy ,ix1:ix2]]

694 self.Ez2[:,self.myy ,:] = 0.0

695
696 # -z-side boundary

697 # Ex PML

698 ix1 = 0

699 iy1 = 1

700 for iz in range(1, self.mz1):

701 self.psiExz2m[iz ,iy1:iy2 ,ix1:ix2] \

702 = self.psiExz1m[iz,iy1:iy2 ,ix1:ix2]*self.cbze[iz]

\

703 + (self.Hy1[iz,iy1:iy2 ,ix1:ix2]-self.Hy1[iz -1,iy1

:iy2 ,ix1:ix2]) \

704 * self.ccze[iz]

705 self.Ex2[iz ,iy1:iy2 ,ix1:ix2] = self.Ex2[iz ,iy1:iy2 ,

ix1:ix2] \

706 - self.psiExz2m[iz,iy1:iy2 ,ix1:ix2] \

707 * self.ce2[self.idx[iz,iy1:iy2 ,ix1:ix2]]

708 self.Ex2[0,:,:] = 0.0

709
710 # Ey PML

711 ix1 = 1

712 iy1 = 0

713 for iz in range(1, self.mz1):

714 self.psiEyz2m[iz ,iy1:iy2 ,ix1:ix2] \

715 = self.psiEyz1m[iz,iy1:iy2 ,ix1:ix2]*self.cbze[iz]

\

716 + (self.Hx1[iz,iy1:iy2 ,ix1:ix2]-self.Hx1[iz -1,iy1

:iy2 ,ix1:ix2]) \

717 * self.ccze[iz]

718 self.Ey2[iz ,iy1:iy2 ,ix1:ix2]= self.Ey2[iz,iy1:iy2 ,ix1

:ix2] \

719 + self.psiEyz2m[iz,iy1:iy2 ,ix1:ix2] \

720 * self.ce2[self.idy[iz,iy1:iy2 ,ix1:ix2]]

721 self.Ey2[0,:,:] = 0.0

722
723 # +z-side boundary

724 # Ex PML

725 ix1 = 0

726 iy1 = 1

727 for iz in range(self.mz2+ 1, self.mzz):

728 izz = iz - self.mz2

729 izzr = self.mzz - iz

730 self.psiExz2p[izz ,iy1:iy2 ,ix1:ix2] \

731 = self.psiExz1p[izz ,iy1:iy2 ,ix1:ix2]*self.cbze[

izzr] \

732 + (self.Hy1[iz,iy1:iy2 ,ix1:ix2]-self.Hy1[iz -1,iy1

:iy2 ,ix1:ix2]) \

733 * self.ccze[izzr]

734 self.Ex2[iz ,iy1:iy2 ,ix1:ix2] = self.Ex2[iz ,iy1:iy2 ,

ix1:ix2] \
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735 - self.psiExz2p[izz ,iy1:iy2 ,ix1:ix2] \

736 * self.ce2[ self.idx[iz ,iy1:iy2 ,ix1:ix2]]

737 self.Ex2[self.mzz ,:,:] = 0.0

738
739 # Ey PML

740 ix1 = 1

741 iy1 = 0

742 for iz in range(self.mz2+ 1, self.mzz):

743 izz = iz - self.mz2

744 izzr = self.mzz - iz

745 self.psiEyz2p[izz ,iy1:iy2 ,ix1:ix2] \

746 = self.psiEyz1p[izz ,iy1:iy2 ,ix1:ix2]*self.cbze[

izzr] \

747 + (self.Hx1[iz,iy1:iy2 ,ix1:ix2]-self.Hx1[iz -1,iy1

:iy2 ,ix1:ix2]) \

748 * self.ccze[izzr]

749 self.Ey2[iz ,iy1:iy2 ,ix1:ix2]= self.Ey2[iz,iy1:iy2 ,ix1

:ix2] \

750 + self.psiEyz2p[izz ,iy1:iy2 ,ix1:ix2] \

751 * self.ce2[ self.idy[iz ,iy1:iy2 ,ix1:ix2]]

752 self.Ey2[self.mzz ,:,:] = 0.0

753
754 def develop_pcurrent(self):

755
756 ix2 = self.mxx

757 iy2 = self.myy

758 iz2 = self.mzz

759
760 # px2 development

761 ix1 = 0

762 iy1 = 1

763 iz1 = 1

764 self.px2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \

765 = self.cj1[self.idx[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

766 * self.px2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \

767 + self.cj3[self.idx[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

768 * (self.Ex2[iz1:iz2 ,iy1:iy2 ,ix1:ix2]+ self.Ex1[iz1:

iz2 ,iy1:iy2 ,ix1:ix2])

769
770 # py2 development

771 ix1 = 1

772 iy1 = 0

773 iz1 = 1

774 self.py2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \

775 = self.cj1[self.idy[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

776 * self.py2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \

777 + self.cj3[self.idy[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

778 * (self.Ey2[iz1:iz2 ,iy1:iy2 ,ix1:ix2]+ self.Ey1[iz1:

iz2 ,iy1:iy2 ,ix1:ix2])

779
780 # pz2 development

781 ix1 = 1

782 iy1 = 1

783 iz1 = 0

784 self.pz2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \

785 = self.cj1[self.idz[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

786 * self.pz2[iz1:iz2 ,iy1:iy2 ,ix1:ix2] \
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787 + self.cj3[self.idz[iz1:iz2 ,iy1:iy2 ,ix1:ix2]] \

788 * (self.Ez2[iz1:iz2 ,iy1:iy2 ,ix1:ix2]+ self.Ez1[iz1:

iz2 ,iy1:iy2 ,ix1:ix2])

789
790 def update_field(self):

791
792 self.Ex1[:,:,:] = self.Ex2[:,:,:]

793 self.Ey1[:,:,:] = self.Ey2[:,:,:]

794 self.Ez1[:,:,:] = self.Ez2[:,:,:]

795 self.Hz1[:,:,:] = self.Hz2[:,:,:]

796 self.Hx1[:,:,:] = self.Hx2[:,:,:]

797 self.Hy1[:,:,:] = self.Hy2[:,:,:]

798
799 self.psiEzx1m [:,:,:] = self.psiEzx2m [:,:,:]

800 self.psiEyx1m [:,:,:] = self.psiEyx2m [:,:,:]

801 self.psiHzx1m [:,:,:] = self.psiHzx2m [:,:,:]

802 self.psiHyx1m [:,:,:] = self.psiHyx2m [:,:,:]

803 self.psiHzx1p [:,:,:] = self.psiHzx2p [:,:,:]

804 self.psiHyx1p [:,:,:] = self.psiHyx2p [:,:,:]

805 self.psiEzx1p [:,:,:] = self.psiEzx2p [:,:,:]

806 self.psiEyx1p [:,:,:] = self.psiEyx2p [:,:,:]

807
808 self.psiEzy1m [:,:,:] = self.psiEzy2m [:,:,:]

809 self.psiExy1m [:,:,:] = self.psiExy2m [:,:,:]

810 self.psiHzy1m [:,:,:] = self.psiHzy2m [:,:,:]

811 self.psiHxy1m [:,:,:] = self.psiHxy2m [:,:,:]

812 self.psiEzy1p [:,:,:] = self.psiEzy2p [:,:,:]

813 self.psiExy1p [:,:,:] = self.psiExy2p [:,:,:]

814 self.psiHzy1p [:,:,:] = self.psiHzy2p [:,:,:]

815 self.psiHxy1p [:,:,:] = self.psiHxy2p [:,:,:]

816
817 self.psiEyz1m [:,:,:] = self.psiEyz2m [:,:,:]

818 self.psiExz1m [:,:,:] = self.psiExz2m [:,:,:]

819 self.psiHyz1m [:,:,:] = self.psiHyz2m [:,:,:]

820 self.psiHxz1m [:,:,:] = self.psiHxz2m [:,:,:]

821 self.psiEyz1p [:,:,:] = self.psiEyz2p [:,:,:]

822 self.psiExz1p [:,:,:] = self.psiExz2p [:,:,:]

823 self.psiHyz1p [:,:,:] = self.psiHyz2p [:,:,:]

824 self.psiHxz1p [:,:,:] = self.psiHxz2p [:,:,:]

825
826 def save_idv(self):

827 """ save material index distribution """

828
829 for epsmon in self.iepsmons:

830 if epsmon.pol == ‘x’:

831 if epsmon.axis == ‘x’: # normal to x-axis

832 ieps2d = self.idx[:self.mzz+1, \

833 :self.myy+1, epsmon.position]

834 elif epsmon.axis == ‘y’:

835 ieps2d = self.idx[:self.mzz+1, \

836 epsmon.position , :self.mxx]

837 else:

838 ieps2d = self.idx[epsmon.position , \

839 :self.myy+1, :self.mxx]

840 elif epsmon.pol == ‘y’:

841 if epsmon.axis == ‘x’:

842 ieps2d = self.idy[:self.mzz+1, \
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843 :self.myy , sepsmon.position]

844 elif epsmon.axis == ‘y’:

845 ieps2d = self.idy[:self.mzz+1, \

846 epsmon.position , :self.mxx +1]

847 else:

848 ieps2d = self.idy[epsmon.position , \

849 :self.myy , :self.mxx+1]

850 else:

851 if epsmon.axis == ‘x’:

852 ieps2d = self.idz[:self.mzz , \

853 :self.myy+1, epsmon.position]

854 elif epsmon.axis == ‘y’:

855 ieps2d = self.idz[:self.mzz , \

856 epsmon.position , :self.mxx +1]

857 else:

858 ieps2d = self.idz[epsmon.position , \

859 :self.myy+1, :self.mxx +1]

860
861 if not os.path.exists (‘./field ’):

862 os.mkdir (‘./field ’)

863 np.savetxt(epsmon.fname , ieps2d , fmt= ‘%d’, delimiter

= ‘ ’)

864
865 def save_ehfield(self , numt):

866 """ save electric field and magnetic field """

867
868 for ifieldmon in self.ifieldmons:

869 location = ifieldmon.position

870 ehfield = ifieldmon.ehfield

871
872 # normal to x-axis

873 if ifieldmon.axis == ‘x’:

874 if ehfield == ‘Ex ’:

875 field2d = self.Ex2[0: self.mzz+1,0: self.myy+1,

location]

876 elif ehfield == ‘Ey ’:

877 field2d = self.Ey2[0: self.mzz+1,0: self.myy ,

location]

878 elif ehfield == ‘Ez ’:

879 field2d = self.Ez2[0: self.mzz ,0: self.myy+1,

location]

880 elif ehfield == ‘Hx ’:

881 field2d = self.Hx2[0: self.mzz ,0: self.myy ,

location]

882 elif ehfield == ‘Hy ’:

883 field2d = self.Hy2[0: self.mzz ,0: self.myy+1,

location]

884 elif ehfield == ‘Hz ’:

885 field2d = self.Hz2[0: self.mzz+1,0: self.myy ,

location]

886
887 # normal to y-axis

888 elif ifieldmon.axis == ‘y’:

889 if ehfield == ‘Ex ’:

890 field2d = self.Ex2[0: self.mzz+1,location ,0:

self.mxx]

891 elif ehfield == ‘Ey ’:
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892 field2d = self.Ey2[0: self.mzz+1,location ,0:

self.mxx+1]

893 elif ehfield == ‘Ez ’:

894 field2d= self.Ez2 [0: self.mzz ,location ,0: self.

mxx +1]

895 elif ehfield == ‘Hx ’:

896 field2d= self.Hx2 [0: self.mzz ,location ,0: self.

mxx +1]

897 elif ehfield == ‘Hy ’:

898 field2d= self.Hy2 [0: self.mzz ,location ,0: self.

mxx]

899 elif ehfield == ‘Hz ’:

900 field2d= self.Hz1 [0: self.mzz+1,location ,0:

self.mxx]

901
902 # normal to z-axis

903 elif ifieldmon.axis == ‘z’:

904 if ehfield == ‘Ex ’:

905 field2d = self.Ex2[location ,0: self.myy+1,0:

self.mxx]

906 elif ehfield == ‘Ey ’:

907 field2d = self.Ey2[location ,0: self.myy ,0: self

.mxx+1]

908 elif ehfield == ‘Ez ’:

909 field2d = self.Ez2[location ,0: self.myy+1,0:

self.mxx+1]

910 elif ehfield == ‘Hx ’:

911 field2d = self.Hx2[location ,0: self.myy ,0: self

.mxx+1]

912 elif ehfield == ‘Hy ’:

913 field2d = self.Hy2[location ,0: self.myy+1,0:

self.mxx]

914 elif ehfield == ‘Hz ’:

915 field2d = self.Hz2[location ,0: self.myy ,0: self

.mxx]

916
917 if not os.path.exists (‘./field ’):

918 os.mkdir (‘./field ’)

919 fname = ifieldmon.prefix + ‘{0:0>3}’. format(numt) +

‘.txt ’

920 np.savetxt(fname , field2d , fmt= ‘%e’, delimiter=‘ ‘)

921
922 def detect_efield(self , jt):

923 """ detection of E field """

924
925 for i, detector in enumerate(self.idetectors):

926 ix = detector.x

927 iy = detector.y

928 iz = detector.z

929 if detector.pol == ‘x’:

930 self.edetect[i][jt] = self.Ex1[iz,iy ,ix]

931 elif detector.pol == ‘y’:

932 self.edetect[i][jt] = self.Ey1[iz,iy ,ix]

933 else:

934 self.edetect[i][jt] = self.Ez1[iz,iy ,ix]

935
936 def detect_spectra(self):
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937 """ Fourier Transformation to obtain E-field spectra """

938
939 if not os.path.exists(‘field ’):

940 os.mkdir(‘field ’)

941 fname = ‘field/Response.txt ’

942 col = ‘Time(ps) Source ’

943 for i in range(len(self.idetectors)):

944 col= col+ ‘ Detector[’+ str(i)+ ‘]’

945 atime = np.arrange(0, self.mt)*self.dt*1.0 e12

946 atime = np.append ([ atime], [self.esource], axis =0)

947 atime = np.append(atime , self.edetect , axis =0)

948 np.savetxt(fname , atime.T, fmt=‘%.4e’, delimiter=‘ ‘, \

949 header=col , comments=‘’)

950
951 esource2 = self.esource [:: self.sampint]

952 esourceft = np.absolute(np.fft.rfft(esource2 , n=self.

mfft2))** 2

953 edetect2 = self.edetect [:,:: self.sampint]

954 edetectft = np.absolute(np.fft.rfft(edetect2 , n=self.

mfft2))** 2

955 col = ‘Frequency(THz) Wavelength(um) Source ’

956 for i in range(len(self.idetectors)):

957 col = col + ‘ Detector[’ + str(i) + ‘]’

958 thz = np.arrange(self.mfft2 //2+1, dtype=np.float64 ) \

959 * 1.0e-12/( self.dt*self.sampint*self.mfft2)

960 wavelength= np.ones(self.mfft2 //2+1) * self.cc * 1.0e-6

961 wavelength [1:] = wavelength [1:] / thz [1:]

962 wavelength [0] = wavelength [1]

963 thz = np.append ([thz], [wavelength], axis =0)

964 thz = np.append(thz , [esourceft], axis =0)

965 thz = np.append(thz , edetectft , axis =0)

966 if not os.path.exists (‘./field ’):

967 os.mkdir (‘./field ’)

968 fname = ‘./field/Spectra.txt ’

969 np.savetxt(fname , thz.T, fmt=‘%.4e’, delimiter=‘ ‘, \

970 header=col , comments=‘’)

8.7 Visualize shapes (for DDSCAT)

Program A.7 (ShapePlot.py)

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from mpl_toolkits.mplot3d import Axes3D

5 from scipy import zeros , array

6 from matplotlib.pyplot import plot ,show ,xlabel ,ylabel ,title ,

legend ,grid , axis ,subplot

7
8 num=1

9
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10 xmin = -100 # Calculation range setting

11 xmax = 100

12 ymin = -100

13 ymax = 100

14 zmin = -100

15 zmax = 100

16
17 numx = xmax -xmin+1 # Number of points in x direction

18 numy = ymax -ymin+1 # Number of points in y direction

19 numz = zmax -zmin+1 # Number of points in z direction

20 num = numx*numy*numz # Number of total points in x direction

21
22 p = np.zeros([numx ,numy ,numz],dtype=int) # initialization of

flag p(x,y,z)

23
24 iii=0

25 xorigin =0 # initialization of gravity center in x-direction

26 yorigin =0 # initialization of gravity center in y-direction

27 zorigin =0 # initialization of gravity center in z-direction

28
29 for z in range(zmin , zmax):

30 for y in range(ymin , ymax):

31 for x in range(xmin , xmax):

32 if (x/10) **2 + (y/25) **2 + (z/10) **2 <= 1: #

determine whether the coordinates constitute a

shape

33 p[x-xmin ,y-ymin ,z-zmin] = 1 # p=1 for the

coordinates that make up the shape

34 # Since the array of p is an integer

greater than or equal to 0, it is

shifted by xmin

35 xorigin=xorigin+x # Sum the x-coordinates to

find the gravity center

36 yorigin=yorigin+y # Sum the y-coordinates to

find the gravity center

37 zorigin=zorigin+z # Sum the z-coordinates to

find the gravity center

38 iii +=1

39 else:

40 p[x-xmin ,y-ymin ,z-zmin] = 0 # p=0 if

the coordinates do not constitute a shape

41
42 Xorigin=xorigin/iii # the gravity center x component

43 Yorigin=yorigin/iii # the gravity center y component

44 Zorigin=zorigin/iii # the gravity center z component

45
46 xx=zeros(iii , dtype=int)

47 yy=zeros(iii , dtype=int)

48 zz=zeros(iii , dtype=int)

49
50 i=0

51 for z in range(zmin , zmax):

52 for y in range(ymin , ymax):

53 for x in range(xmin , xmax):

54 if p[x-xmin ,y-ymin ,z-zmin] == 1:

55 xx[i]=x

56 yy[i]=y
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57 zz[i]=z

58 i+=1

59
60 fig = plt.figure ()

61 ax = Axes3D(fig)

62 ax.scatter3D(np.ravel(xx),np.ravel(yy),np.ravel(zz)) #3D plot

63
64 plt.show()
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[13] M. Kerker and E. Matijević. Scattering of electromagnetic waves from
concentric infinite cylinders. J. Opt. Soc. Am., 51:506–508, 1961.

249



250 Bibliography

[14] M. M. Wind, J. Vliger, and D. Bedeaux. The polarizability of a truncated
sphare on a substrate I. Physica A, 141A:33–57, 1987.

[15] T. Okamoto and Yamaguchi I. Optical absorption study of the surface
plasmon resonance in gold nanoparticles immobilized onto a gold sub-
strate by self-assembly techniqe. J. Phys. Chem. B, 107:10321–10324,
2003.

[16] R. Ruppin. Optical absorption of two spheres. J. Phys. Soc. Jpn.,
58:1446–1451, 1989.

[17] G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mit-
sui, and K. Kajikawa. Absorption spectroscopy of gold nanoisland films:
Optical and structural characterization. Nanotechnology, 20:025703,
2009.

[18] G. Gupta, Y. Nakayama, K. Furuya, K. Mitsuishi, M. Shimojo, and
K. Kajikawa. Cross-sectional transmission electron microscopy and opti-
cal characterization of gold nanoislands. Jpn. J. Appl. Phys., 48:080207,
2009.

[19] M. G. Moharam and T. K. Gaylord. Rigorous coupled-wave analysis of
planar-grating diffraction. J. Opt. Soc. Am., 71:811–818, 1981.

[20] M. G. Moharam and T. K. Gaylord. Diffraction analysis of dielectric
surface-relief gratings. J. Opt. Soc. Am., 72:1385–1392, 1982.

[21] M. G. Moharam and T. K. Gaylord. Rigorous coupled-wave analysis of
grating diffraction– E-mode polarization and losses. J. Opt. Soc. Am.,
73:451–455, 1983.

[22] M. G. Moharam and T. K. Gaylord. Rigorous coupled-wave analysis of
metallic surface-relief gratings. J. Opt. Soc. Am. A, 3:1780–1787, 1986.

[23] L. Li and C. W. Haggans. Convergence of the coupled-wave method for
metallic lamellar diffraction gratings. J. Opt. Soc. Am. A, 10:1184–1189,
1993.

[24] M. G. Moharam, E. B. Grann, and D. A. Pommet. Formulation for
stable and efficient implementation of the rigorous coupled-wave analysis
of binary grating. J. Opt. Soc. Am. A, 12:1068–1076, 1995.

[25] G. Granet and B. Guizal. Efficient implementation of the coupled-wave
method for metallic lamellar gratings in tm polarization. J. Opt. Soc.
Am. A, 13:1019–1023, 1996.

[26] P. Lalanne and G. M. Morris. Highly improved convergence of the
coupled-wave method for tm polarization. J. Opt. Soc. Am. A, 13:779–
784, 1996.



Bibliography 251

[27] L. Li. Formulation and comparison of two recursive matrix algorithms for
modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13:1024–1035,
1996.

[28] P. Lalanne. Improved formulation of the coupled-wave method for two-
dimensional gratings. J. Opt. Soc. Am. A, 14:1592–1598, 1997.

[29] E. Popov, M. Nevière, B. Gralak, and G. Tayeb. Staircase approximation
validity for arbitrary-shaped gratings. J. Opt. Soc. Am. A, 19:33–42,
2002.

[30] M. Nevière and E. Popov. Light Propagation in Periodic Media. Marcel
Dekker, New York, 2003.

[31] L. Li. Note on the S-matrix propagation algorithm. J. Opt. Soc. Am. A,
20:655–661, 2003.

[32] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord. Stable
implementation of the rigorous coupled-wave analysis for surface-relief
gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A,
12:1077–1086, 1995.

[33] L. Li. Bremmer series, R-matrix propagation algorithm, and numerical
modeling of diffraction gratings. J. Opt. Soc. Am. A, 11:2829–2836, 1994.

[34] T. Vallius, J. Tervo, P. Vahimaa, and J. Turunen. Electromagnetic field
computation in semiconductor laser resonators. J. Opt. Soc. Am. A,
23:906–911, 2006.

[35] L. Li. New formulation of the fourier modal method for crossed surface-
relief gratings. J. Opt. Soc. Am. A, 14:2758–2767, 1997.

[36] K. S. Yee. Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat.,
14:302–307, 1966.

[37] A. Taflove and S. C. Hagness. Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 3rd ed. Artech House, Boston,
2005.

[38] M. Okoniewski, M. Mrozowski, and M. A. Stuchly. Simple treatment of
multi-term dispersion in FDTD. IEEE Microwave Guided Wave Lett.,
7:121–123, 1997.

[39] V. G. Padalka and I. N. Shklyarevskii. Determination of the microchar-
acteristics of silver and gold from the infrared optical constants and the
conductivity at 82 and 295◦k. Opt. Spectrosc., 11:285–288, 1961.

[40] J.-P. Berenger. A perfectly matched layer for the absorption of electro-
magnetic waves. J. Comput. Phys., 114:185–200, 1994.



252 Bibliography

[41] S. D. Gedney. An anisotropic PML absorbing media for the FDTD simu-
lation for fields in lossy and dispersive media. Electromagnetics, 16:399–
415, 1996.

[42] W. C. Chew and W. H. Weedon. A 3D perfectly matched medium from
modified Maxwell’s equations with stretched coordinates. Microwave Opt.
Tech. Lett., 7:599–604, 1994.

[43] S. D. Gedney. An anisotropic perfectly matched layer-absorbing medium
for truncation of FDTD lattices. IEEE Trans. Antennas and Propagation,
44:1630–1639, 1996.

[44] J. A. Roden and S. D. Gedney. Convolution PML (CPML): An efficient
FDTD implementation of the CFS-PML for arbitrary media. Microwave
Opt. Tech. Lett., 27:334–339, 2000.

[45] M. Kuzuoglu and R. Mittra. Frequency dependence of the constitutive
parameters of causal perfectly matched anisotropic absorbers. IEEE Mi-
crowave Guided Wave Lett., 6:447–449, 1996.

[46] S. D. Gedney. CIntroduction to the Finite-Difference Time-Domain
(FDTD) Method for Electromagnetics. Mprgan & Claypool, 2011.

[47] L. Zhang and T. Seideman. Rigorous formulation of oblique incidence
scattering from dispersive media. Phys. Rev. B, 82:155117, 2010.

[48] Y.-N. Jiang, D.-B. Ge, and S.-J. Ding. Analysis of TF-SF boundary for
2D-FDTD with plane P-wave propagation in layered dispersive and lossy
media. Prog. Electromagn. Res., 83:157–172, 2008.
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Courant condition 125
covariant vector 111
critical angle 9
damping harmonic oscillation 182
DDA 195
DDSCAT 195
depolarization field coefficient 65
diffraction order 83
dipole mode 189
dispersion relation 2
E-cell 125
Eccentricity 66
effective medium approximation 26
efficiency 37
eigen propagation modes 21
electric current source 170
electrical dipole 151

ENZ medium 134
evanescent light 10
evanescent wave 85
extinction cross-section 37, 49,

180
extinction efficiency 37, 56
extraordinary light 21
extraordinary principal refractive

index 21
extraordinary refractive index 21
Gaussian pulse 168
grid dispersion 159
grating constant 83
H-cell 125
HMM 26
hyperbolic metamaterial 26
intensity 3
interface S matrix 94
interface T matrix 94
Laurent’s rule 90
layer S matrix 94
local field 195
localized surface plasmon resonance

36
long wavelength approximation 36
magnetic current source 170
Mie theory 36
module 41
numerical dispersion 159
Nuttall window 189
octupole mode 192
ordinary index 21
ordinary light 21
p-polarization 3
pancake-shaped 65, 68
PEC 127
penetration depth 11
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256 Index

perfect electric conductor 127
perfect magnetic conductor 127
phase lag efficiency 198
piecewise linear recursive convolution

method 131
PLRC method 131
PMC 129
polarizability 36, 65
polarization 2
polarization efficiency factor 198
Poynting vector 2
quadrupole mode 191
quasi-static approximation 36
R matrix 93
RC method 131
reactance matrix 93
recursive convolution method 131
reflection coefficient 4
reflection diffraction efficiency 100
reflectivity 5
resonance angle 20
Riccati Bessel function 41, 49
rotating ellipsoids 65
s-polarization 3
scattering cross-section 37, 40
scattering efficiency 37, 56
sextupole mode 191

Sin–Cosine method 169
size parameter 38, 40, 56
Snell’s law 3
Spectral FDTD method 169
Split–Field method 169
Stretched–Coordinate Formulation

144
surface integration method 170
surface plasmon resonance 20
T matrix 92
T matrix method 92
TE polarization 3
TM polarization 3
Toeplitz matrix 85
total reflection 10
transfer matrix 16, 24
transmission coefficient 4
transmission diffraction efficiency 100
transmittance 5
truncated sphere 77
uniaxial medium 21
Uniaxial PML 144
UPML 144
vacuum impedance 2
volume integral method 170
window function 189
Yee grid 119
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