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Preface

Without RF engineering, life as we know it today would be impossible. Most people 
are familiar with radar that allows them to fly safely across continents in less time 
than it took their ancestors to travel to the next town. They take cellphones for 
granted that allow them to talk to and see loved ones on the other side of the globe 
in real time. They rely heavily on microwave ovens to quickly cook or heat up their 
food after a long day’s work. When they go to the dentist, or if they break a bone, 
or have some other internal medical issue, they assume that their care provider will 
have some non-invasive way to peer inside their body to diagnose what is going on. 
They are not surprised when doors at their local supermarket open automatically for 
them as they approach, nor that stores have inventory control tags on merchandise 
to prevent theft. Many pet owners also pay to have microchips embedded in their 
loved ones to help ensure their safe return should they go astray. Anyone who has 
flown is only too familiar with security screening devices they must walk through 
before boarding the flight to help protect their safety. All of these applications rely 
on RF technology. As we move into the future, with the rapid growth of the Inter-
net of Things (IoT) and self-driving cars, our dependence on such technology will 
become ever greater.

The field of RF engineering encompasses an enormously wide domain of design 
and analysis. Included within it are both passive and active devices, which are fre-
quently required to operate in unison. The devices may have operational frequencies 
ranging from a few hertz to those in the terahertz range, increasingly the focus of 
recent efforts seeking ever higher data rates, or even higher into the optical range. 
However, despite the seemingly wide divergence of RF technologies and applications, 
they all operate under the same physical laws and thus many of the same design and 
analytic analysis approaches are widely shared across the field.

Beginning as a microwave engineer, during my career I worked as a surface-
acoustic-wave (SAW) designer, a non-destructive-testing (NDT) engineer in the oil 
industry, an RF front-end module designer, a power-amplifier designer, and a filter 
designer in the cellphone industry. Over the years, I had to develop many analyti-
cal tools to aid my design challenges. Invariably, to be sure that I fully understood 
the problem, I began from first principles to develop the underlying equations for 
a circuit that would best achieve the requirements for the device. This book is an 
attempt to share those fundamental design analyses, and the synthesis approaches 
derived from them, with the practicing RF engineer.

In the early years of RF engineering, an engineer had little alternative to devel-
oping the basic circuit equations by themselves to predict the performance of a 
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design, to best ensure it would meet the design goals. Computers were limited in 
their capabilities and RF design tools were rudimentary.

Nowadays, in contrast, there are several excellent, very powerful, though expen-
sive, design tools available to aid the practicing RF engineer. Two such examples 
are Advanced Design System® from Keysight and Microwave Office® from AWR 
Corporation. These allow even a relatively inexperienced RF engineer to design a 
circuit with a high degree of confidence that if realized, the circuit will perform 
much as predicted. The design tools also include very capable optimizers for improv-
ing the performance of a selected circuit configuration. However, invariably, such 
optimizations are very time consuming.

Without a doubt, modern RF software tools are absolutely required for the 
design of today’s complex and compact RF devices. In particular, they are essential 
for incorporating the effects of parasitic and 3D interaction effects into the final 
design. However, a complete dependence on advanced software tools, especially in 
the early conceptual stages of RF circuit design, can result in designs that are non-
optimal in performance, larger, more expensive, have lower production yield, and 
higher cost than one conceived from a more first-principles approach.

Under the constraint of time-pressure, RF engineers approaching a new design 
all too frequently seek to “leverage” an existing circuit design to meet the new 
requirements. With the advanced software design tools, this may consist of simply 
adding a few components to an existing design and letting the software reoptimize 
the circuit. This approach frees the engineer from having to spend time on any 
basic circuit analysis or having to consider any new fundamentally different cir-
cuit topologies that might be advantageous. Unfortunately, this design approach 
does not guarantee that the resulting solution is optimal for the requirements. To 
achieve a more optimal solution would require alternate circuit topologies be built 
and their performance evaluated in the software tool. Time constraints typically 
preclude this course of action.

A principal objective of this book is to detail how analytic design approaches 
can be used for rapid design optimization and design of RF circuits. Formulae, 
algorithms, and analysis and data display techniques are presented for use by the 
practicing RF design engineer. Not only do these techniques allow for a rapid com-
parison to be made of the performance of alternate RF circuit topologies, but they 
also impart to the designer a deeper understanding of the critical design trade-offs 
that can be made for each of the solutions. The optimum circuit topology selected 
can then either be implemented directly, or if further refinements are needed due 
to, for example, parasitic interactions, used as a starting point for a more complex 
RF design tool for final optimization.

The use of analytic solutions for RF circuit design has fallen out of favor in recent 
times as design engineers have increasingly shied away from writing equations and 
performing detailed circuit analysis. Instead, designers have become increasingly 
dependent on software packages to do the circuit design and optimization for them. 
This book is an attempt to change that by providing techniques that are relatively 
simple to apply and can help the designer become more creative by exploring circuit 
innovations that might otherwise have been time-prohibitive to consider.



Preface xv

Motivation for This Book

Practicing RF engineers are constantly under pressure to quickly wrap up their cur-
rent design and move on quickly to the next. The next project will typically have 
design specifications very close to those of a previous design. The fastest design 
approach is then to reuse the old design configuration and simply reoptimize it in 
an off-the shelf computer-aided design (CAD) package. While this approach may 
frequently yield a conforming design, alternative configurations with advantageous 
characteristics in terms of performance, size, and cost may be never be considered.

To take full advantage of the many analyses presented in this book, it is impor-
tant to understand the prime goal of the work. Its purpose is not to provide ana-
lytic design solutions as an alternative to full 3D CAD radio frequency (RF) design 
suites. Quite the opposite! The information is intended to complement the latter. 
With the solutions, it is envisaged that the engineer can use them to quickly evalu-
ate critical performance parameters of alternate architectures and thereby select 
the best configuration for the application. To this end, the frequency ranges and 
element dissipative factors used for the majority of design examples are kept largely 
constant throughout the book. Extensive performance plots are also provided to 
allow the reader to quickly visually compare trade-offs between design scenarios.

It was my intention when beginning the book to simply collate the accumula-
tion of analytic design solutions I had worked on during my career. However, it 
quickly expanded to be much more than that. While the design equations I had 
used in practice were in a large part valid, providing them in book form forced me 
to return to first principles and provide rigorous justification for them. To my sur-
prise, in many instances this threw up the possibilities of new circuit architectures 
and applications that had not been obvious previously. In addition, rigorous circuit 
analyses threw new light on some well-known circuit architectures, for example 
Chireix and Doherty, that I had previously viewed as largely disadvantageous. 
The rigorous analyses pointed the way to new configurations that could overcome 
many of the previous disadvantages. Such welcome revelations occurred frequently 
throughout the book. As a result, many novel circuit architectures are provided that 
offer significant performance advantages to the practicing engineer.

Overview of This Book

This work contains design approaches and formulae intended to aid the practicing 
RF engineer in designing high-performance RF components for mobile applica-
tions. In particular, the focus is on RF couplers, combiners, splitters, and cellular 
power amplifiers. The approach followed is based on using lumped-element models, 
incorporating all important parasitics, to obtain analytically derived closed-form 
expressions for the behavior of the network. These solutions, which can be instantly 
updated with changing inputs, typically give greater insight into the behavior of a 
network than is obtained by simply trying to optimize the performance of a network 
in an EM software simulation program. Rather than an alternative to the latter, 
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these analytic tools are best exploited in the initial design stages by employing them 
to quickly explore the capabilities of alternate architectures before embarking on a 
lengthy EM design optimization.



1

C H A P T E R  1

[ABCD] Parameters: Key Relationships

Before commencing the analysis of any radio frequency (RF) circuit, the engineer 
must decide which set of mathematical parameters will be used to represent the elec-
trical characteristics of the network. Typically, there are multiple options available, 
each of which is equally capable of representing the network. The choice made is 
usually based on the personal preferences of the designer, the software tools avail-
able, the dominant circuit architecture, and the number of network ports and inter-
connections. In general, the designer should choose the set of electrical parameters 
that most simplifies the design task.

In this and following chapters, we shall summarize the salient characteristics of 
several of the most commonly employed network parameters used for characteriza-
tion. We begin with a set that is restricted to two-port networks, but that offers great 
simplification for the series-cascading of multiple networks. A complex network may 
often be reduceable to an equivalent two-port, after all internal interconnections 
and terminations are applied. In those cases, these parameters can also be used to 
concisely express the key network transfer characteristics.

[ABCD], or matrix [M], parameters are restricted to representing two-port 
networks. However, frequently, even complex RF networks can comprise an inter-
connection of such two-port sections. As [ABCD] parameters are extremely user-
friendly and convenient manipulating two-port sections, their use is encouraged 
wherever possible. [ABCD] parameters are particularly useful in calculations of 
impedance matching, power transfer calculations, and the design of filter networks.

The circuit variables defined for an [ABCD] description of a two-port network 
are shown in Figure 1.1. Note that the input current I1 flows into the network, while 
the output current I2 flows out of the network. This is contrary to almost all other 
network matrix characterizations in which the power-flow vectors are assigned the 
same sense (i.e., either in or out) on all ports. However, for [ABCD] parameters 
this choice greatly facilitates series cascading multiple two-port network elements.

Figure 1.1 Two-port [ABCD] parameter network variables.
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The network is represented by the following matrix equation:

 

V1

I1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

A B

C D

⎡

⎣
⎢

⎤

⎦
⎥

V2

I2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.1)

that is,

 V1 = AV2 + BI2  (1.2)

 I1 = CV2 + DI2  (1.3)

with

 

A =
V1

V2 I2=0

B =
V1

I2 V2=0

C =
I1

V2 I2=0

D =
I1

I2 V2=0

 (1.4)

and inversion formulas are

 
V2 =

DV1 − BI1

AD − BC
 (1.5)

 
I2 =

−CV1 + AI1

AD − BC  (1.6)

In the following section, formulas are provided for deriving key circuit electri-
cal characteristics from the network [ABCD] parameters. Subsequently, a list of 
[ABCD] parameters is provided for network topologies that are commonly used in 
RF design. Following that, parameter expressions are provided for both a series or 
a parallel cascade of two-port networks, and also those to account for a nonzero 
voltage on the reference ground plane. The latter is particularly useful for including 
a circuit a series impedance element, whether intended or parasitic, in the ground 
path of an active device.

1.1 Some Useful [ABCD] Relationships

If the network is reversed, the matrix equation becomes

 

V1

I1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

D

AD − BC
B

AD − BC
C

AD − BC
A

AD − BC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

V2

I2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.7)

Since, for a reciprocal network,

 AD − BC = 1  (1.8)
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for a reversed reciprocal network

 

V1

I1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

D B

C A

⎡

⎣
⎢

⎤

⎦
⎥

V2

I2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.9)

Hence, for a symmetric network,

 A ⇔ D  (1.10)

If the external source and load impedances are ZS and ZL, respectively,

Input impedance Zin =
V1

I1

=
AZL + B

CZL + D
 (1.11)

where V1 is the voltage at the input terminal 1, and I1 is current flowing into ter-
minal 1, with load ZL on output terminal 2.

Output impedance Zout =
V2

I2

=
DZS + B

CZS + D
 (1.12)

where V2 is the voltage at the output terminal 2, and I2 is current flowing into ter-
minal 2, with load ZS on output terminal 1.

If the network is driven by a source voltage VS, having a series impedance ZS, 
and the output of the network is terminated by an impedance ZL, then the output 
voltage V2 on port 2, across the load, is given by

 

V2

VS

=
ZL

AZL + B + ZS CZL + D( )
 (1.13)

Alternatively, V2 may be expressed in terms of the input voltage at port 1, V1, as

 

V2

V1

=
ZL

AZL + B
 (1.14)

where

 

V1

VS

=
AZL + B

AZL + B + ZS CZL + D( )
 (1.15)

Input reflection coefficient on port 1 is given by

 
Γ1 =

Zin − ZS

Zin + ZS

=
AZL + B − ZS CZL + D( )
AZL + B + ZS CZL + D( )

 (1.16)

The transmission coefficient T of a network, is the ratio of the amplitude of 
the complex transmitted wave V2, to that of the incident wave Vi. For the two-
port network

 
V1 = 1 + Γ1( )Vi  (1.17)
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thus, from (1.16),

 

V1

Vi

=
2 AZL + B( )

AZL + B + ZS CZL + D( )  

Hence, from (1.14)

 
T =

V2

Vi

=
2ZL

AZL + B + ZS CZL + D( )
 (1.18)

The current entering the input port 1 is

 

I1

VS

=
CZL + D

AZL + B + ZS CZL + D( )
 (1.19)

The DC component is

 

I1

VS

⎛
⎝⎜

⎞
⎠⎟

DC

= ℜ CZL + D

AZL + B + ZS CZL + D( )

⎛
⎝⎜

⎞
⎠⎟  (1.20)

1.2 Common Two-Port Network [M] Parameters

 

M[ ] =
1 Z

0 1

⎡

⎣
⎢

⎤

⎦
⎥  (1.21)

Figure 1.2 Series impedance.

 

M[ ] =
1 0

Y 1

⎡

⎣
⎢

⎤

⎦
⎥  (1.22)

Figure 1.3 Shunt admittance.

 

M[ ] =
1 + Y2Z Z

Y1 + Y2 1 + Y1Z( ) 1 + Y1Z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.23)

Figure 1.4 π-network.

 

M[ ] =
1 + YZ1 Z1 + Z2 1 + YZ1( )

Y 1 + YZ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (1.24)

Figure 1.5 T network.
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M[ ] =

L1 /L2

k

jw 1 − k2( ) L1L2

k

1

jwk L1L2

L2 /L1

k

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (1.25)

Figure 1.6 Coupled inductors.

 

M[ ] =

L2

L2 + k L1L2

jw 1 − k2( )L1L2

L2 + k L1 /L2

1

jw L2 + k L1L2( )
1 +

L1 + k L1 /L2

L2 + k L1 /L2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (1.26)

Figure 1.7 Coupled-inductors auto-transformer.

 

M[ ] =

n1

n2

0

0
n2

n1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (1.27)

Figure 1.8 Transformer.

 

M[ ] =

1

1 + n2 /n1

0

0 1 + n2 /n1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (1.28)

Figure 1.9 Ideal auto-transformer.

 

M[ ] =
cosh gl( ) Zt sinh gl( )

sinh gl( ) /Zt cosh gl( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (1.29)

For the lossless case M[ ] =
cosf jZt sinf

j sinf/Zt cosf

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.30)

Figure 1.10 Transmission line.
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In (1.29) and (1.30), Zt = transmission-line impedance. The complex propagation 
constant γ = α + j(2π/λ), where α = dissipative coefficient, λ = wavelength, and l 
= length of transmission line in wavelengths. The phase length of the transmission 
line is represented by ϕ = 2πl/λ.

As a further aid to the designer, a compendium of useful [ABCD] formulae for 
additional common two-port RF topologies is given in Appendix A. In Appendix 
B, formulae are provided for converting between the various sets of two-port net-
work parameters.

1.3 Interconnection of Two [ABCD] Matrices

Figure 1.11 shows a series cascade of two [ABCD] networks.
Cascaded parameters are

 

M′[ ] =
A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (1.31)

Figure 1.12 shows a parallel connection of two [ABCD] networks.
Parallel parameters are

 

M′[ ] =
A′ B′
C′ D′

⎡

⎣
⎢

⎤

⎦
⎥  (1.32)

where

 

A′ =
A1B2 + A2B1( )
B1 + B2( )

B′ = B1B2

B1 + B2( )

C′ =
B1 + B2( ) C1 + C2( ) − A1 + A2( ) D1 + D2( )( )

B1 + B2( )

D′ =
B1D2 + B2D1( )
B1 + B2( )

 (1.33)

1.4 Modified Matrix Coefficients with Ground Impedance

In practical RF circuits, it frequently happens that the ground reference in the device 
or module is not at the same potential as the external system ground. This is typi-
cally attributable to parasitic resistance or reactance in the connection between the 
device and system ground planes. If the device [M] matrix coefficients are known 
with reference to the device ground, the modified coefficients referenced to the 
external ground can be determined from the formulas below.
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Let the parasitic impedance between the device and external ground planes be 
represented by Zg, as shown in Figure 1.13.

Modified parameters [M′] are:

 

M′[ ] =
A′ B′
C′ D′

⎡

⎣
⎢

⎤

⎦
⎥  (1.34)

where

 

A′ = A + CZg( ) / CZg + 1( )

B′ = B − Zg A − 1( ) D − 1( ) / CZg + 1( )

C′ = C( ) / CZg + 1( )

D′ = D + CZg( ) / CZg + 1( )

 (1.35)

Figure 1.11 Cascaded [ABCD] networks.

Figure 1.13 Network with ground impedance.

Figure 1.12 Parallel [ABCD] networks.
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C H A P T E R  2

S-Parameters: Key Relationships

Unlike [ABCD] parameters, scattering (S) parameters can be used to characterize 
networks with an unlimited number of ports. They are by far and away the most 
widely used electrical parameters for characterizing RF networks. The reason for 
this is that they are based on normalized power flow variables. For a high-frequency 
RF network, it is typically very difficult to directly measure the currents and volt-
ages at the network ports, while power flow measurements are relatively straight-
forward. Thus, rather than direct current and voltage parameters, the S-parameters 
are based on power-based normalized voltages at each of the ports. The normalized 
input voltages are customarily denoted by an, while the normalized output voltages 
are denoted by bn. These voltages are normalized to characteristic impedances on 
each of the ports, which may be different from one another. However, it is com-
mon practice to choose 50Ω as the default normalization impedance for all ports 
of an RF network.

Given the dominance of S-parameters in RF circuit analysis, a wider range 
of formulae for differing network configurations than in those for other network 
parameters is presented in this chapter.

A network with n ports and the S-parameter voltage variables and scattering 
matrix is shown schematically in Figure 2.1.

The network is represented by the scattering equations:

 

b1

⋅
⋅
bn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

S11 ⋅ ⋅ S1n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
Sn1 ⋅ ⋅ Snn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a1

⋅
⋅
an

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.1)

Figure 2.1 Definition of multiport scattering parameters.
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that is,

 

b1 = S11a1!! + S1nan

⋅ ⋅ ⋅
⋅ ⋅ ⋅
bn = Sn1a1!! + Snnan

 (2.2)

The variables an and bn, at each port, are related to the voltages and currents 
at the port by the following relations

 Vn = an + bn  (2.3)

 
In = an − bn( ) /Zn  (2.4)

where Ẕn = characteristic reference impedance at port n.
Thus,

 
an = Vn + InZn( ) /2  (2.5)

 
bn = Vn − InZn( ) /2  (2.6)

S-parameters are extensively used for representing linear RF networks because 
of the ease with which they can be measured on the bench and because they can be 
used to characterize a network with an unlimited number of ports. However, they 
are generally very unwieldly to manipulate directly mathematically. S-parameter 
formulae for even relatively simple network interconnections are typically very 
complex. This is not an issue when using RF commercial analysis software tools to 
manipulate the networks. However, it typically makes them unattractive to use as 
the basis for the development of analytic network synthesis solutions.

2.1 Some Useful S-Parameter Relationships

Some useful S-parameter relationships are the following. If the network is reciprocal

 Smn = Snm  (2.7)

In addition, if the network is lossless

 

S11 ⋅ ⋅ S1n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
Sn1 ⋅ ⋅ Snn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅

S11
∗ ⋅ ⋅ S1n

∗

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
Sn1
∗ ⋅ ⋅ Smn

∗

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

T

= 1[ ]  (2.8)
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where [ ]T represents the transpose of the matrix, and [1] represents the unitary 
matrix, that is,

 

S11
2
+ S12

2!! + S1n
2
= 1

⋅ ⋅ ⋅ = 1

⋅ ⋅ ⋅ = 1

S1n
2
+ S2n

2!! + Snn
2
= 1

 (2.9)

and

 

S11S12
∗
+ S12S22

∗ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +S1nSn2
∗

= 0

⋅ ⋅ ⋅ = 0

⋅ ⋅ ⋅ = 0

Sn1S1 n−1( )
∗

+ Sn2S2 n−1( )
∗ ⋅ ⋅ ⋅ + SnnSn(n−1)

∗
= 0

 (2.10)

Input reflection coefficient at port n

 Γn = bn /an  (2.11)

Input impedance at port n

 
Zin( )

n
=
an + bn
an − bn

Zn  (2.12)

Output voltage at port n

 
Vn = 1 + Γn( )bn  (2.13)

where Γn = load reflection coefficient at port n.
If VS = voltage driving source on port n and ZS = series source impedance, as 

in Figure 2.2,

 
VS =

Zn + ZS

Zn

an +
Zn − ZS

Zn

bn  (2.14)

or with

Figure 2.2 Voltage driving source on port n of a multiport network.
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ΓS =

ZS − Zn

ZS + Zn

 (2.15)

 
VS =

2

1 − ΓS

an − ΓSbn( )  (2.16)

2.2 Changing Port Normalization Impedances

The S-parameters for an RF network may be based on differing normalization 
impedances on each of the ports. They may be chosen, for example, to match the 
loading impedances on the ports. Occasionally, it may be desirable to change the 
normalization impedance on one or more of the network ports. This is not straight-
forward as the S-parameters are all interdependent. Thus, changing the normaliza-
tion impedance on only one port can result in a change in all the S-parameters.

The formulae for changing the normalization impedance on port P of a network 
from ẔP to !ZP  are given below.

The network S-parameters are modified from Smn = !Smn, where

For m = P, n ≠ P,

 

!SPn =
2SPn

1 + ZP / !ZP − SPP 1 − ZP / !ZP( )
 (2.17)

For m = n = P,

 

!SPP =

1 − ZP / !ZP − SPP 1 + ZP / !ZP( )
1 + ZP / !ZP − SPP 1 − ZP / !ZP( )

 (2.18)

For m ≠ P, n ≠ P,

 

!Smn = Smn +
SmPSPn 1 − ZP / !ZP( )

1 + ZP / !ZP − SPP 1 − ZP / !ZP( )
 (2.19)

For m ≠ P, n = P,

 

!SmP
2SmPZP / !ZP

1 + ZP / !ZP − SPP 1 − ZP / !ZP( )
 (2.20)

These formulae yield the modified scattering parameters of a multiport network 
when the normalization impedance is changed on one of the ports, n = P. If it is 
desired to change the normalization impedances on more than one port, the above 
formulae should be applied sequentially to the ports in question.
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2.3 Some Useful Two-Port S-Parameter Relationships

Complex RF networks are typically characterized by S-parameter representations 
comprising multiple ports. However, it is frequently the case that, for the final 
analysis, the network is reduced to a two-port representation by terminating the 
remaining ports with impedance networks. The characteristics of the network for 
transforming an input signal on one of the ports to an output signal at the second 
port can then be evaluated. Among the key characteristics of interest are the network 
input and output impedances, gain, and phase or group delay through the network.

The S-parameter matrix for a two-port is reduced to

 

b1

b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

S11 S12

S21 S22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a1

a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.21)

corresponding to scattering equations

 b1 = S11a1 + S12a2  (2.22)

 b2 = S21a1 + S22a2  (2.23)

where the normalization impedances on ports 1 and 2 are Ẕ1 and Ẕ2, respectively.
If the network is reversed,

 

b1

b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

S22 S21

S12 S11

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a1

a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.24)

For a two-port network, with port 1 as input, and source voltage VS and out-
put on port 2,

 Vin = a1 + b1  (2.25)

 
Iin = a1 − b1( ) /Z1  (2.26)

Defining

 
ΓS =

ZS − Z1

ZS + Z1

     and     ΓL =
ZL − Z2

ZL + Z2

 (2.27)

Figure 2.3 Two-port S-parameter network variables.
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a1 =
1 − ΓS

2

1 − ΓLS22

1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S22

⎛
⎝⎜

⎞
⎠⎟
VS  (2.28)

 
b1 = S11 +

ΓLS12S21

1 − ΓLS22

⎛
⎝⎜

⎞
⎠⎟
a1  (2.29)

 
a2 =

ΓLS21

1 − ΓLS22

a1  (2.30)

 
b2 =

S21

1 − ΓLS22

a1  (2.31)

 
VL =

1 + ΓL( )S21

1 − ΓLS22

a1  (2.32)

 

Zin =
2

1 − S11 − ΓLS12S21 / 1 − ΓLS22( )

⎛
⎝⎜

⎞
⎠⎟
Z1  (2.33)

 

Vin

VS

=
1 + S11( ) 1 − ΓLS22( ) + ΓLS12S21( )Z1

Z1 + ZS + S11 Z1 − ZS( )( ) 1 − ΓLS22( ) + ΓLS12S21 Z1 − ZS( )
 (2.34)

 

Zout =
2

1 − S22 − ΓSS12S21 / 1 − ΓSS11( )

⎛
⎝⎜

⎞
⎠⎟
Z2  (2.35)

 

VL

VS

=
S21 1 − ΓS( ) 1 + ΓL( )

2 1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S21

 (2.36)

2.4 Common Two-Port Network S-Parameters

 

S[ ] =

Z + Z2 − Z1

Z + Z1 + Z2

2Z1

Z + Z1 + Z2

2Z2

Z + Z1 + Z2

Z + Z1 − Z2

Z + Z1 + Z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.37)

 

S[ ] =

Z2 − 1 + YZ2( )Z1

Z1 + Z2 + YZ1Z2

2Z1

Z1 + Z2 + YZ1Z2

2Z2

Z1 + Z2 + YZ1Z2

Z1 − 1 + YZ1( )Z2

Z1 + Z2 + YZ1Z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.38)
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S[ ] =

S11

D

S12

D

S21

D

S22

D

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.39)

where

S11 = − Y1 + Y2 − 1 + Y2Z( ) /Z1 + 1 + Y1Z( )Z2 + Z Y1Y2 − 1/Z1Z2( )( )

S12 = 2/Z2

S21 = 2/Z1

S22 = − Y1 + Y2 + 1 + Y2Z( ) /Z1 − 1 + Y1Z( )Z2 + Z Y1Y2 − 1/Z1Z2( )( )

D = Y1 + Y2 + 1 + Y2Z( ) /Z1 + 1 + Y1Z( )Z2 + Z Y1Y2 + 1/Z1Z2( )  

 

S[ ] =

S11

D

S12

D

S21

D

S22

D

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.40)

where

S11 = 1 + Z2 /Z2( ) /YZ1 − 1 − Z1 /Z1( ) /YZ2 − 1 − Z1 /Z1( ) 1 + Z2 /Z2( )

S12 = 2/YZ2

S21 = 2/YZ1

S22 = 1 + Z1 /Z1( ) /YZ2 − 1 − Z2 /Z2( ) /YZ1 − 1 + Z1 /Z1( ) 1 − Z2 /Z2( )

D = 1 + Z2 /Z2( ) /YZ1 + 1 + Z1 /Z1( ) /YZ2 + 1 + Z1 /Z1( ) 1 + Z2 /Z2( )  

 

S[ ] =

S11

D

S12

D

S21

D

S22

D

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.41)

where
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S11 = jw L1 /Z1 − L2 /Z2( ) − 1 − w2 1 − k2( )L1L2 /Z1Z2

S12 = 2 jwk L1L2 /Z2

S21 = 2 jwk L1L2 /Z1

S22 = jw L2 /Z2 − L1 /Z1( ) − 1 − w2 1 − k2( )L1L2 /Z1Z2

D = jw L1 /Z1 + L2 /Z2( ) + 1 − w2 1 − k2( )L1L2 /Z1Z2
 

 

S[ ] =

S11

D

S12

D

S21

D

S22

D

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.42)

where

S11 = − 1 + w2 1 − k2( )L1L2 /Z1Z2 + jw L1 + L2 + 2k L1L2( ) /Z2 − L2 /Z1( )( )
S12 = 2 jw L2 + k L1L2( ) /Z2

S21 = 2 jw L2 + k L1L2( ) /Z1

S22 = − 1 + w2 1 − k2( )L1L2 /Z1Z2 − jw L1 + L2 + 2k L1L2( ) /Z2 − L2 /Z1( )( )
D = 1 − w2 1 − k2( )L1L2 /Z1Z2 + jw L1 + L2 + 2k L1L2( ) / Z2 + L2 /Z1( )

 

 

S[ ] =

n1
2Z2 − n2

2Z1

n2
2Z1 + n1

2Z2

2n1n2Z1

n2
2Z1 + n1

2Z2

2n1n2Z2

n2
2Z1 + n1

2Z2

n2
2Z1 − n1

2Z2

n2
2Z1 + n1

2Z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.43)

 

S[ ] =

Z2 /Z1 + 1 + n2 /n1( )
2

Z2 /Z1 − 1 + n2 /n1( )
2 −

2 1 + n2 /n1( )

Z2 /Z1 − 1 + n2 /n1( )
2

2 1 + n2 /n1( )Z2 /Z1

Z2 /Z1 − 1 + n2 /n1( )
2 −

Z2 /Z1 + 1 + n2 /n1( )
2

Z2 /Z1 − 1 + n2 /n1( )
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (2.44)
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S[ ] =

S11

D

S12

D

S21

D

S22

D

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.45)

where

S11 = Zt Z2 − Z1( )cosh gl( ) + Zt
2 − Z1Z2( )sinh gl( )

S12 = 2Z1Zt

S21 = 2Z2Zt

S22 = Zt Z1 − Z2( )cosh gl( ) + Zt
2 − Z1Z2( )sinh gl( )

D = Zt Z1 + Z2( )cosh gl( ) + Zt
2
+ Z1Z2( )sinh gl( )

 

where Ẕt = transmission-line impedance. The complex propagation constant γ = 
α + j(2π/λ), where α = dissipative coefficient, λ = wavelength, and l = length of 
transmission line in wavelengths.

2.5 Coupled-Inductor Multiport S-Parameters

Coupled inductors are an important component and building block essential to the 
functioning of many RF communications circuits. They are used principally for 
phase splitting/combining of two RF signals or for impedance matching. A simpli-
fied schematic representation for such a component is shown in Figure 2.4.

Such a pair of coupled inductors is often referred to as a transformer. However, 
it should be noted that the coupled-inductor pair is characterized by two induc-
tance values L1 and L2 and not by a turns ratio as would typically be used for a 
true transformer. This difference can be seen in the two-port examples in Figures 
1.6 and 1.8. Viewing a coupled-inductor pair as a transformer can lead to many 
unrealistic expectations as is discussed in detail in Section 12.1.

Because coupled-inductor pairs are such an important component of RF circuits, 
it is worthwhile to characterize their S-parameter representations in the common 
topologies in which they are used.

As shown in Figure 2.4, in its most general form, a coupled-inductor pair con-
stitutes a four-port network. Due to reciprocity and top-to-bottom symmetry of 

Figure 2.4 Coupled-inductor four-port schematic.
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the network, the number of independent S-parameters required to represent the 
network reduces from 16 to 6. These are S11, S12, S13, S14, S33, and S34. The four-
port S-parameter matrix for a coupled-inductor pair takes the form

 

b1

b2

b3

b4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

S11 S12 S13 S14

S12 S11 S14 S13

S13 S14 S33 S34

S14 S13 S34 S33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅

a1

a2

a3

a4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2.46)

or, writing the equations out explicitly,

 

b1 = S11a1 + S12a2 + S13a3 + S14a4

b2 = S12a1 + S11a2 + S14a3 + S13a4

b3 = S13a1 + S14a2 + S33a3 + S34a4

b4 = S14a1 + S13a2 + S34a3 + S33a4

 (2.47)

With the following definitions:

 

Z0 = common four-port normalization impedance

k = mutual coupling coefficient

ZL1 = RL1 + jωL1

ZL2 = RL2 + jω  L2

 (2.48)

The individual S-parameters can be expressed in terms of the circuit elements as

 

S11 =
2Z0 + ZL2( )ZL1 + wk( )

2
L1L2

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

S12 =
2Z0 2Z0 + ZL2( )

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

S13 =
2 jwk L1L2Z0

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

S14 =
−2 jwk L1L2Z0

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

S33 =
2Z0 + ZL2( )ZL2 + wk( )

2
L1L2

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

S34 =
2Z0 2Z0 + ZL1( )

2Z0 + ZL1( ) 2Z0 + ZL2( ) + wk( )
2
L1L2

 (2.49)

Another, more restricted, application of the coupled-inductor configuration is 
its use as a three-port. In this case, one of the ports of the generalized network is 
grounded, as shown in Figure 2.5.



This architecture is commonly employed for differential combining or splitting 
and its use is considered in detail in Chapter 14.

Due to reciprocity and top-to-bottom symmetry of the network, in this con-
figuration, the network requires only five independent S-parameters to represent it. 
In terms of the four-port S-parameters, given in (2.49), the modified S-parameter 
matrix [S′] for the three-port configuration is

 

b1

b2

b3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

′S11 ′S12 ′S13

′S12 ′S11 ′S23

′S13 ′S23 ′S33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

a1

a2

a3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2.50)

or, writing the equations out explicitly,

 

b1 = ′S11a1 + ′S12a2 + ′S13a3

b2 = ′S12a1 + ′S11a2 + ′S23a3

b3 = ′S13a1 + ′S23a2 + ′S33a3

 (2.51)

From circuit analysis, the three-port S-parameters can be derived in terms of 
the four-port S-parameters as:

 

′S11 = S11 −
S13

2

1 + S33

′S12 = S12 +
S13

2

1 + S33

′S13 =
2S13

1 + S33

′S23 =
−2S13

1 + S33

′S33 =
3S33 − 1

1 + S33

 (2.52)

A still more restricted use of the four-port coupled-inductor network is it use 
as a two-port. In this case, the four-port network is grounded on two ports, as 
shown in Figure 2.6.

Applications of this inline coupler configuration for PA output matching are 
examined in Chapter 12.

Figure 2.5 Coupled-inductor three-port schematic.
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For this configuration, only three independent S-parameters are required to 
represent the network. The modified two-port S-parameter network matrix [S′] is

 

b1

b3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

′S11 ′S13

′S13 ′S33

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅

a1

a3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (2.53)

or, writing the equations out explicitly,

 

b1 = ′S11a1 + ′S13a3

b1 = ′S13a1 + ′S33a3
 (2.54)

From circuit analysis, the two-port S-parameters can be derived in terms of the 
four-port S-parameters as:

 

′S11 =
1 − 3S11( ) 1 + S33( ) + 3S13

2

S13
2 − 1 + S11( ) 1 + S33( )

′S13 =
−4S13

S13
2 − 1 + S11( ) 1 + S33( )

′S33 =
1 + S11( ) 1 − 3S33( ) + 3S13

2

S13
2 − 1 + S11( ) 1 + S33( )

 (2.55)

When a coupled-inductor pair is incorporated in a compact RF layout, for opti-
mum circuit performance, it is generally desirable that the mutual magnetic coupling 
factor be made as large as possible. Doing this requires that the two inductors are 
placed in the closest possible proximity to each other. The two inductors are typi-
cally implemented by conductor traces on the substrate or printed circuit board 
(pcb). These traces may be on the same layer, as in Figure 12.2, or superposed on 
adjacent layers. In either case, with the inductors in close proximity, in addition to 
the magnetic coupling, there will be a distributed capacitive coupling. This undesired 
capacitive coupling between the two coils can significantly impact the performance 
of the coupler, especially at higher frequencies.

Adding capacitive cross-coupling into the model for the generalized four-port 
coupler of Figure 2.4 is extremely challenging. However, closed-form analytic solu-
tions can be obtained for a more restricted case, which are helpful in understand-
ing the impact of cross-capacitance on a coupled-inductor performance. For the 
restricted case L1 = L2, the terminating external impedances on all ports are Z0. A 
coupled-inductor network with equal-value inductors is an important building block 
in many circuits. These include shunted-inductor lattice couplers (SILCs) (Chapter 

Figure 2.6 Coupled-inductor two-port schematic.



1 of Volume 2 of this series), branch-line couplers (Chapter 2 of Volume 2 of this 
series), Wilkinson couplers (Chapter 8 of Volume 2 of this series), and others. A 
simplified schematic for such a coupler is shown in Figure 2.7.

The S-parameters for the four-port network are again represented by (2.46) 
and (2.47). The following variables are defined for the analysis:

Definitions:

 L = inductance of top and bottom inductors

 QL = inductor quality factors

 RL = ω0L/QL = series resistance of each inductor

 ZL = RL + jωL

 k = inductors’ mutual coupling coefficient

 C = total cross-capacitance between inductors

 QC = capacitor quality factors

 GC = ω0C/QC = capacitive parallel conductance

 YC = GC + jωC

Determination of the S-parameters is most easily carried out using an incre-
mental model for the coupler. The incremental schematic to be used for analysis is 
shown in Figure 2.8.

The generalized four-port coupled-inductor network with L1 = L2 = L is repre-
sented by the distributed schematic shown in Figure 2.8. The external terminating 
impedances on all four-ports are Z0.

Here, δL is the incremental inductance per unit length and δC is the incremental 
capacitance. In terms of the overall inductor values, these incremental values are 
given by δL = L/l, and δC = C/l, where l = length of the inductor. The analysis of 
the coupled-inductor network is most readily carried out using an even-odd mode 
analysis. For this, the boundary conditions applied are a source voltage VS on port 
1, with zero excitation on port 3. This excitation is then split into an odd-mode 
drive with +V/2 on port 1 and −V/2 on port 3 and an even-mode drive with +V/2 
applied to both ports. The two drive scenarios are shown schematically in Figure 2.9.

Figure 2.7 Equal coupled inductors with cross-capacitance.

Figure 2.8 Distributed four-port coupled-inductor model with cross-capacitance.
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The net transfer coefficients defining the network are then obtained by lin-
ear superposition.

For the odd-mode drive, the equivalent network for both the upper and lower 
inductors is as shown in Figure 2.10. For the even-mode drive, the equivalent net-
work for both the upper and lower inductors is as shown in Figure 2.11.

For the odd-mode drive, the network is equivalent to a transmission line. The 
[ABCD] matrix coefficients for such a transmission line, with lossy elements are 
determined from (1.29), as:

 

M[ ] =

coshf Zl sinhf

sinhf

Zl

coshf

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2.56)

where line impedance

 
Zl =

ZL − jwkL( )
2YC

 (2.57)

Figure 2.9 Even-odd mode drive on ports 1 and 3 of equal coupled inductors: (a) odd mode, 
and (b) even mode.

Figure 2.10 Odd-mode network schematic for equal coupled inductors with capacitance.

Figure 2.11 Even-mode network schematic for equal coupled inductors with capacitance.



propagation coefficient g =
ZL − jwkL( )2YC

l
 (2.58)

and

 
f = gl = ZL − jwkL( )2YC  (2.59)

From analysis, we determine on port 1

 

V1

VS /2
=

Zl Z0 coshf + Zl sinhf( )

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.60)

and on port 2

 

V2

VS /2
=

Z0Zl

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.61)

For the even-mode drive, circuit analysis yields:

 

V1

VS /2
=

Z0 + RL + jw 1 + k( )L
2Z0 + RL + jw 1 + k( )L

 (2.62)

 

V2

VS /2
=

Z0

2Z0 + RL + jw 1 + k( )L
 (2.63)

Hence, for excitation on port 1, the net voltages are

 

V1

VS /2
=

Z0 + RL + jw 1 + k( )L
2Z0 + RL + jw 1 + k( )L

+
Zl Z0 coshf + Zl sinhf( )

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.64)

 

V2

VS /2
=

Z0

2Z0 + RL + jw 1 + k( )L
+

Z0Zl

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.65)

 

V3

VS /2
=

Z0 + RL + jw 1 + k( )L
2Z0 + RL + jw 1 + k( )L

−
Zl Z0 coshf + Zl sinhf( )

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.66)

 

V4

VS /2
=

Z0

2Z0 + RL + jw 1 + k( )L
− Z0Zl

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.67)

Assuming the normalization impedance Z0 to be pure real, as is invariably the 
case, for the S-parameters, we have

 
V1 = 1 + S11( )VS /2  (2.68)

2.5 Coupled-Inductor Multiport S-Parameters 23



24 S-Parameters: Key Relationships

thus

 
S11 =

V1

VS /2
− 1  (2.69)

 
S12 =

V2

VS /2
 (2.70)

 
S13 =

V3

VS /2
 (2.71)

 
S14 =

V4

VS /2
 (2.72)

Substituting from (2.64) to (2.67), the S-parameter expressions for the equal-
valued, coupled-inductor network, accounting for cross-coupling capacitance are 
determined as

 

S11 = S22 = S33 = S44

=
−Z0

2Z0 + RL + jw 1 + k( )L
+

Zl Z0 coshf + Zl sinhf( )

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.73)

 

S12 = S21 = S34 = S43

=
Z0

2Z0 + RL + jw 1 + k( )L
+

Z0Zl

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.74)

 

S13 = S31 = S24 = S42

=
Z0 + RL + jw 1 + k( )L

2Z0 + RL + jw 1 + k( )L
−

Zl Z0 coshf + Zl sinhf( )

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.75)

 

S14 = S41 = S23 = S32

=
Z0

2Z0 + RL + jw 1 + k( )L
− Z0Zl

2Z0Zl coshf + Z0
2
+ Zl

2( )sinhf
 (2.76)

2.6 Interconnection of Two Two-Port S-Parameter Networks

Figure 2.12 shows a series cascade of two two-port S-parameter networks.
Denoting S-parameters resulting from the cascade of the two two-port networks 

by !Smn, we have

 

!S11 = S111 +
S112S121S211

1 − S122S211
 (2.77)
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!S12 =
S112S212

1 − S122S211
 (2.78)

 

!S21 =
S121S221

1 − S122S211
 (2.79)

 

!S22 = S222 +
S122S212S221

1 − S122S211
 (2.80)

Figure 2.13 shows a parallel connection of two two-port S-parameter networks 
with the following equalities:

 
D1 = 1 + S111( ) 1 + S122( ) − S112S121  (2.81)

 
D2 = 1 + S211( ) 1 + S222( ) − S212S221  (2.82)

 

E = D1D2 − 2 S111 + S122( )D2 − 2 S211 + S222( )D1

+ 4 1 + S111( ) 1 + S222( ) + 1 + S211( ) 1 + S222( ) − S112S221 − S212S221( )  (2.83)

Denoting S-parameters resulting from the cascade of the two two-port networks 
by !Smn, we have

 
!S11 = −1 +

2 2 1 + S111( )D2 + 2 1 + S211( )D1 − D1D2( )
E

 (2.84)

 
!S12 =

4 S111D2 + S212D1( )
E

 (2.85)

 
!S21 =

4 S121D2 + S221D1( )
E

 (2.86)

Figure 2.12 Cascaded two-port S-parameter networks.

Figure 2.13 Two parallel two-port S-parameter networks.
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!S22 = −1 +

2 2 1 + S122( )D2 + 2 1 + S222( )D1 − D1D2( )
E

 (2.87)

Figure 2.14 shows a stacked connection of two two-port S-parameter networks 
with the following equalities:

 
D1 = 1 − S111( ) 1 − S122( ) − S112S121  (2.88)

 
D2 = 1 − S211( ) 1 − S222( ) − S212S221  (2.89)

 

E = D1D2 + 2 S111 + S122( )D2 + 2 S211 + S222( )D1

+ 4 1 − S122( ) 1 − S211( ) + 1 − S111( ) 1 − S222( ) − S112S221 − S121S212( )  (2.90)

Denoting S-parameters resulting from the cascade of the two two-port networks 
by !Smn, we have

 
!S11 = 1 −

2 2 1 − S111( )D2 + 2 1 − S211( )D1 − D1D2( )
E  (2.91)

 
!S12 =

4 S112D2 + S212D1( )
E

 (2.92)

 
!S21 =

4 S121D2 + S221D1( )
E

 (2.93)

 
!S22 = 1 −

2 2 1 − S122( )D2 + 2 1 − S222( )D1 − D1D2( )
E

 (2.94)

Figure 2.15 shows a parallel-series connection of two two-port S-parameter 
networks with the following equalities:

 
D1 = 1 + S111( ) 1 − S122( ) + S112S121  (2.95)

 
D2 = 1 + S211( ) 1 − S222( ) + S212S221  (2.96)

 

E = D1D2 − 2 S111 − S122( )D2 − 2 S211 − S222( )D1

+ 4 1 + S111( ) 1 − S222( ) + 1 + S211( ) 1 − S122( ) + S112S221 + S121S212( )  (2.97)

Figure 2.14 Two stacked two-port S-parameter networks.



Denoting S-parameters resulting from the cascade of the two two-port networks 
by !Smn, we have

 
!S11 = −1 +

2 2 1 + S111( )D2 + 2 1 + S211( )D1 − D1D2( )
E

 (2.98)

 
!S12 =

4 S112D2 + S212D1( )
E

 (2.99)

 
!S21 =

4 S121D2 + S221D1( )
E

 (2.100)

 
!S22 = 1 −

2 2 1 − S122( )D2 + 2 1 − S222( )D1 − D1D2( )
E

 (2.101)

Figure 2.16 shows a series-parallel connection of two two-port S-parameter 
networks with the following equalities:

 
D1 = 1 − S111( ) 1 + S122( ) + S112S121  (2.102)

 
D2 = 1 − S211( ) 1 + S222( ) + S212S221  (2.103)

 

E = D1D2 + 2 S111 − S122( )D2 + 2 S211 − S222( )D1

+ 4 1 − S111( ) 1 + S222( ) + 1 + S122( ) 1 − S211( ) + S112S221 + S121S212( )  (2.104)

Denoting S-parameters resulting from the cascade of the two two-port networks 
by !Smn, we have

 
!S11 = 1 −

2 2 1 − S111( )D2 + 2 1 − S211( )D1 − D1D2( )
E

 (2.105)

Figure 2.15 Parallel-series connection of two, two-port S-parameter networks.

Figure 2.16 Series-parallel connection of two, two-port S-parameter networks.
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!S12 =

4 S112D2 + S212D1( )
E

 (2.106)

 
!S21 =

4 S121D2 + S221D1( )
E

 (2.107)

 
!S22 = −1 +

2 2 1 + S122( )D2 + 2 1 + S222( )D1 − D1D2( )
E

 (2.108)

Figure 2.17 shows a two-port with a direct input-output connection across 
the network.

Denoting the resulting S-parameters of the two-port network by !Smn, we have

 

!S11 = !S22 =
S11S22 − 1 − S12( ) 1 − S21( )
2 + S11 + S22 − S12 − S21

 (2.109)

 

!S12 = !S21 =
1 + S11( ) 1 + S22( ) − S12S21

2 + S11 + S22 − S12 − S21

 (2.110)

Figure 2.18 shows a two-port comprising a direct line with terminated two-
port shunt to ground.

The reflection coefficient on output port of the two-port is

 
ΓL =

ZL − Z2

ZL + Z2
 (2.111)

where Ẕ2 is the characteristic impedance on port 2 of the network.
Denoting the resulting S-parameters of the two-port network by !Smn, we have

 

!S11 = !S22 =
S11 − 1 + ΓL S22 − S11S22 + S12S21( )
S11 + 3 − ΓL 3S22 + S11S22 − S12S21( )

 (2.112)

Figure 2.17 Two-port with input-output short S-parameters.

Figure 2.18 Terminated two-port in parallel with through-line S-parameters.



 
!S12 = !S21 = 1 + !S11  (2.113)

Figure 2.19 shows a terminated two-port connected in series with direct line.

 

!S11 = !S22 =
S11 + 1 − ΓL S22 + S11S22 − S12S21( )

3 − S11 − ΓL 3S22 − S11S22 + S12S21( )
 (2.114)

 
!S12 = !S21 = 1 − !S11  (2.115)

Figures 2.20(a, b) show the schematic exchange of port 1 with the ground of 
a two-port network. Such a transformation could be used, for example, to convert 
the S-parameters of a transistor, measured in common-emitter configuration, to 
common-base, as shown in Figures 2.20(c, d).

Defining

 
D = 1 + S11( ) 1 − S22( ) + 2 − S12( ) 2 − S21( )  (2.116)

and, denoting the resulting S-parameters of the two-port network by !Smn, we have

 
!S11 = −1 +

4 1 + S11( )
D

 (2.117)

 

!S12 = 2 1 −
2 2 − S21( )

D

⎛
⎝⎜

⎞
⎠⎟  (2.118)

Figure 2.19 Terminated two-port in series with through-line S-parameters.

Figure 2.20 Exchanging port 1 and ground port S-parameters: (a), (b), (c), and (d).
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30 S-Parameters: Key Relationships

 

!S21 = 2 1 −
2 2 − S12( )

D

⎛
⎝⎜

⎞
⎠⎟  (2.119)

 
!S22 = 1 −

4 1 − S22( )
D

 (2.120)

The transformations for exchanging port 2 with ground follow trivially 
from above.

2.7 S-Parameter Reduction of a Terminated Three-Port to a Two-
Port Network

When a three-port S-parameter network is terminated on one-port by a complex 
impedance, the resulting network reduces to an equivalent two-port network. This 
section presents the modified S-parameters of the resultant two-port network in 
terms of the original network parameters. Figure 2.21 shows the S-parameter rep-
resentation of a three-port network with a complex termination impedance, ZL, 
on port 3.

The reflection coefficient of the load on port 3 is defined by

 
ΓL =

ZL − Z3

ZL + Z3
 (2.121)

where Ẕ3 is the characteristic impedance on port 3 of the network.
Denoting the S-parameters, the resulting two-port network by !Smn, we find

 

!S11 = S11 +
ΓLS13S31

1 − ΓLS33

 (2.122)

 

!S12 = S12 +
ΓLS13S32

1 − ΓLS33

 (2.123)

 

!S21 = S21 +
ΓLS23S31

1 − ΓLS33

 (2.124)

Figure 2.21 Terminated three-port S-parameter network.
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!S22 = S22 +
ΓLS23S32

1 − ΓLS33

 (2.125)

2.8 S-Parameter Reduction of a Terminated Four-Port to a Three-
Port Network

When a four-port S-parameter network is terminated on one-port by a complex 
impedance, the resulting network reduces to an equivalent three-port. This section 
presents the modified S-parameters of the resultant three-port network in terms of 
the original network parameters. Figure 2.22 shows the S-parameter representation 
of a four-port network with the complex termination impedance, ZL, on port 4.

The reflection coefficient of the load on port 4 is defined by

 
Γ4 =

ZL − Z4

ZL + Z4

 (2.126)

where Ẕ4 is the characteristic impedance on port 4 of the network.
Denoting the S-parameters, the resulting three-port network by !Smn, we find

 
!S11 = S11 + Γ4S14S41 / 1 − Γ4S44( )  (2.127)

 
!S12 = S12 + Γ4S14S42 / 1 − Γ4S44( )  (2.128)

 
!S13 = S13 + Γ4S14S43 / 1 − Γ4S44( )  (2.129)

 
!S21 = S21 + Γ4S24S41 / 1 − Γ4S44( )  (2.130)

 
!S22 = S22 + Γ4S24S42 / 1 − Γ4S44( )  (2.131)

 
!S23 = S23 + Γ4S24S43 / 1 − Γ4S44( )  (2.132)

 
!S31 = S31 + Γ4S34S41 / 1 − Γ4S44( )  (2.133)

Figure 2.22 Terminated four-port S-parameter network.
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!S32 = S32 + Γ4S34S42 / 1 − Γ4S44( )  (2.134)

 
!S33 = S33 + Γ4S34S43 / 1 − Γ4S44( )  (2.135)

2.9 Useful Three-Port Formulae

Three-port networks are very common and find many applications in RF circuits. 
Examples include couplers, power splitters and combiners, and diplexers. In this 
chapter, some useful formulae are presented to aid in their analysis and design. 
Figure 2.23 shows key circuit parameters appropriate to analysis of a three-port 
network characterized by scattering parameters.

Three-port S-parameter equations are:

 

b1

b2

b3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

S11 S12 S13

S21 S22 S23

S31 S32 S33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

a1

a2

a3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (2.136)

that is,

 b1 = S11a1 + S12a2 + S13a3  (2.137)

 b2 = S21a1 + S22a2 + S23a3  (2.138)

 b3 = S31a1 + S32a2 + S33a3  (2.139)

From circuit analysis, we have

 V1 = a1 + b1  (2.140)

 V2 = a2 + b2  (2.141)

 V3 = a3 + b3  (2.142)

Figure 2.23 Three-port network with voltage and current variables.
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and

 
I1 = a1 − b1( ) /Z1  (2.143)

 
I2 = a2 − b2( ) /Z2  (2.144)

 
I3 = a3 − b3( ) /Z3  (2.145)

where Ẕ1, Ẕ2, and Ẕ3 are the normalization impedances on ports 1, 2, and 3, 
respectively.

If the external impedances on the three ports are Z1, Z2, and Z3, the loading 
reflection coefficients are given by

 

Γ1 =
Z1 − Z1

Z1 + Z1

Γ2 =
Z2 − Z2

Z2 + Z2

Γ3 =
Z3 − Z3

Z3 + Z3

 (2.146)

While three-port networks are extremely useful, some care must be taken when 
working with them, on the bench or analytically. The principal difficulty is that, 
from simple analysis, it can be shown that the three ports of a lossless network can-
not be matched simultaneously, which implies that the following equation cannot 
be realized in any physical lossless reciprocal network

 S11 = S22 = S33 = 0  (2.147)

Although a lossless three-port network cannot be simultaneously matched on 
all ports, this does not mean that power transfer through the network must incur 
some mismatch losses. In fact, power transfer through the network can occur with 
great efficiency, save only for dissipative losses, so what is the consequence of not 
being able to implement a three-port network that satisfies (2.147)?

Consider a network with two ports arbitrarily terminated. At a given frequency, 
it will generally be possible to conjugately match the input at the third port to an 
arbitrary source impedance. Power will then flow from the source to the two loads 
with no mismatch loss, despite the fact that at the two loaded ports there would 
not exist a conjugate match between the loads and the network. Due to the latter, if 
all external impedances were left unchanged and one of the two previously loaded 
ports now driven instead, there would be power loss due to mismatch at that port.

In the case that a three-port is used as a coupler, two ports, rather than one, 
are simultaneously driven. Again, this function can be accomplished in the three-
port without any mismatch loss on the two ports or output if it is designed appro-
priately. It is simply necessary to imagine the three-port scenario in the previous 
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paragraph being operated in reverse. By reciprocity, if the input power on one port 
of the network is split efficiently to the two alternate ports, then simultaneously 
applying corresponding output voltages to the said output ports will result in the 
network efficiently combining the two inputs at the previous input port. Note that, 
in this case, the two input ports strongly interact. If either of the ports were to be 
excited independently, there would be a mismatch loss at that port. Furthermore, 
if the two ports are excited simultaneously, but the relative drive voltages differ 
from the ratio resulting from the splitter scenario, each of the two ports will suffer 
a mismatch loss.

The subtleties of the use of a three-port as a combiner are most easily understood, 
and analyzed, using linear superposition. For example, to analyze the three-port as 
a coupler, we can first determine the reflected power at the first coupled input, set-
ting the voltage source at the second coupled port to zero. Next, setting the voltage 
at the first coupled port to zero and that at the second coupled port to its appropri-
ate value, the power coupled (or leaking) to the first port can be determined. There 
will be a perfect match (i.e., no reflected power) at the first port if the sum of the 
reflected and coupled power at the first coupled port exactly cancel. This is similar 
for the match at the second coupled port.

2.9.1 Input Impedance and Voltage Division, Driving Port 1 Alone

Z1in =
2

1 − S11 −
Γ2S12 S21 + Γ3 S23S31 − S21S33( )( ) + Γ3S13 S31 + Γ2 S32S21 − S22S31( )( )

1 − Γ2S22( ) 1 − Γ3S33( ) − Γ2Γ3S23S32

− 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Z1

 

 (2.148)

 

V2

VS1

=
1 + Γ2( ) S21 + Γ3 S23S31 − S21S33( )( )

1 − Γ2S22( ) 1 − Γ3S33( ) − Γ2Γ3S23S32

Z1 + Z1_ in

2 Z1 + Z1_ in( )
 (2.149)

 

V3

VS1

=
1 + Γ3( ) S31 + Γ2 S32S21 − S22S31( )( )

1 − Γ2S22( ) 1 − Γ3S33( ) − Γ2Γ3S32S23

Z1 + Z1_ in

2 Z1 + Z1_ in( )
 (2.150)

These equations may be used to calculate power transfer.

2.9.2 Input Impedance and Voltage Division, Driving Port 2 Alone

Z2in =
2

1 − S22 −
Γ1S21 S12 + Γ3 S13S32 − S12S33( )( ) + Γ3S23 S32 + Γ1 S12S31 − S11S32( )( )

1 − Γ1S11( ) 1 − Γ3S33( ) − Γ1Γ3S13S31

− 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Z2

 

(2.151)
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V1

VS2

=
1 + Γ1( ) S12 + Γ3 S13S32 − S12S33( )( )
1 − Γ1S11( ) 1 − Γ3S33( ) − Γ1Γ3S13S31

Z2 + Z2_ in

2 Z2 + Z2_ in( )
 (2.152)

 

V3

VS2

=
1 + Γ3( ) S32 + Γ1 S12S31 − S11S32( )( )
1 − Γ1S11( ) 1 − Γ3S33( ) − Γ1Γ3S13S31

Z2 + Z2_ in

2 Z2 + Z2_ in( )
 (2.153)

These equations may be used to calculate power transfer.

2.9.3 Input Impedance and Voltage Division, Driving Port 3 Alone

Z3in =
2

1 − S33 −
Γ1S31 Γ2S12S23 + S13 1 − Γ2S22( )( ) + Γ2S32 Γ1S13S21 + S23 1 − Γ1S11( )( )

1 − Γ1S11( ) 1 − Γ2S22( ) − Γ1Γ2S12S21

− 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Z3

 

(2.154)

 

V1

VS3

=
1 + Γ1( ) S13 + Γ2 S12S23 − S13S22( )( )
1 − Γ1S11( ) 1 − Γ2S22( ) − Γ1Γ2S12S21

Z3 + Z3_ in

2 Z3 + Z3_ in( )
 (2.155)

 

V3

VS3

=
1 + Γ2( ) S23 + Γ1 S21S13 − S11S23( )( )
1 − Γ1S11( ) 1 − Γ2S22( ) − Γ1Γ2S21S12

Z3 + Z3_ in

2 Z3 + Z3_ in( )
 (2.156)

These equations may be used to calculate power transfer.

2.9.4 Input Impedances, Driving Ports 1 and 2 Simultaneously

Frequently, when a three-port network is used to combine two input powers to sum 
as an output at the third port, the magnitudes of the two input voltages are equal. 
In this scenario, two of the most common cases are: (1) the voltages are in phase, 
or (2) the voltages are out-of-phase. When the two voltages are in-phase, this is 
referred to as an even-mode drive; when they are out-of-phase, this is referred to as 
an odd-mode drive. Alternatively, more commonly, the latter mode is also known 
as differential. When a three-port is used in this manner to combine two differen-
tial input powers into a single output, it is referred to as a balun (abbreviation of 
balanced-to-unbalanced). A balun can equally function in reverse to split a single 
input signal into two equal differential outputs. Some basic examples of three-port 
networks are shown in Figure 2.24.

Figure 2.25 shows the defining circuit variables for a three-port network under 
even-mode and odd-mode drives.

The impedances at the two input ports (1 and 2) are given by

Z1in =
1 + S11( ) 1 − Γ3S33( ) + Γ3S13S31( )a1 + S12 1 − Γ3S33( ) + Γ3S13S32( )a2

1 − S11( ) 1 − Γ3S33( ) − Γ3S13S31( )a1 − S12 1 − Γ3S33( ) + Γ3S13S32( )a2

Z1  (2.157)



36 S-Parameters: Key Relationships

and

Z2in =
S21 1 − Γ3S33( ) + Γ3S23S31( )a1 + 1 + S22( ) 1 − Γ3S33( ) + Γ3S23S32( )a2

− S21 1 − Γ3S33( ) + Γ3S23S31( )a1 + 1 − S22( ) 1 − Γ3S33( ) − Γ3S23S32( )a2

Z2  (2.158)

where a1 and a2 are the incident voltage amplitudes at each port.
For the even-mode drive

 a2 = a1  (2.159)

and for the odd-mode drive

 a2 = −a1  (2.160)

thus, for the even-mode drive, the input port impedances are

 

Z1even =
2 1 − Γ3S33( )

1 − S11 − S12( ) 1 − Γ3S33( ) − Γ3S13 S31 + S32( )
− 1

⎛
⎝⎜

⎞
⎠⎟
Z1  (2.161)

 

Z2even =
2 1 − Γ3S33( )

1 − S21 − S22( ) 1 − Γ3S33( ) − Γ3S23 S31 + S32( )
− 1

⎛
⎝⎜

⎞
⎠⎟
Z2  (2.162)

Figure 2.24 Basic three-port network examples: (a) in-phase discrete combiner, (b) in-phase 
discrete splitter, (c) differential transformer combiner, and (d) differential transformer splitter.

Figure 2.25 Three-port with even-mode and odd-mode drive.
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and for the odd-mode drive

 

Z1odd =
2 1 − Γ3S33( )

1 − S11 + S12( ) 1 − Γ3S33( ) − Γ3S13 S31 − S32( )
− 1

⎛
⎝⎜

⎞
⎠⎟
Z1  (2.163)

 

Z2odd =
2 1 − Γ3S33( )

1 + S21 − S22( ) 1 − Γ3S33( ) + Γ3S23 S31 − S32( )
− 1

⎛
⎝⎜

⎞
⎠⎟
Z2  (2.164)

2.9.5 S-Parameters from Terminal Voltages and Currents

On occasion, having determined the port voltage-current relations for such a net-
work, from, say, circuit analysis, it is desired to use these values to derive an S-param-
eter representation for the network.

Consider the three-port network shown in Figure 2.23, with the voltages and 
currents shown at each port. Suppose the following voltage-current relationships 
have been determined for the network

 

V1 = Z11I1 + Z12I2 + Z13I3

V2 = Z21I1 + Z22I2 + Z23I3

V3 = Z31I1 + Z32I2 + Z33I3

 (2.165)

Assuming the same normalization impedance Ẕ0, on all three ports, the S-param-
eters for the network may be derived from the following formulae, with

 

D = a23a32 a11 + Z0( ) + a13a31 a22 + Z0( ) + a12a21 a33 + Z0( )

−a12a23a31 − a13a21a32 − a11 + Z0( ) a22 + Z0( ) a33 + Z0( )
 (2.166)

The S-parameters are

 
S11 = 1 −

2 a23a32 − a22 + Z0( ) a33 + Z0( )( )Z0

D
 (2.167)

 
S12 =

2 a13a32 − a12 a33 + Z0( )( )Z0

D
 (2.168)

 
S13 =

2 a12a23 − a13 a22 + Z0( )( )Z0

D
 (2.169)

 
S21 =

2 a23a31 − a21 a33 + Z0( )( )Z0

D
 (2.170)

 
S22 = 1 −

2 a13a31 − a11 + Z0( ) a33 + Z0( )( )Z0

D
 (2.171)
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S23 =

2 a13a21 − a23 a11 + Z0( )( )Z0

D
 (2.172)

 
S31 =

2 a21a32 − a31 a22 + Z0( )( )Z0

D
 (2.173)

 
S32 =

2 a12a31 − a32 a11 + Z0( )( )Z0

D
 (2.174)

 
S33 = 1 −

2 a12a21 − a11 + Z0( ) a22 + Z0( )( )Z0

D
 (2.175)

2.9.6 Derivation of Terminal Voltages and Currents from S-Parameters

As an inverse to the previous section, sometimes it is desired to determine the volt-
ages and currents on the ports of a three-port network, given its S-parameters and 
nature of the externally applied sources.

Consider the three-port network shown in Figure 2.26, with the voltages, cur-
rents, and external driving sources shown at each port.

Assuming the same normalization impedance Ẕ0, on all three ports, the volt-
ages and currents at the network ports may be derived from the following formulae.

With

 

E1 = VS1 −
Z0 − ZS1( )S13VS3

Z0 + ZS3 + Z0 − ZS3( )S33

⎛
⎝⎜

⎞
⎠⎟
Z0  (2.176)

 
E2 = Z0 + ZS1 + Z0 − ZS1( )S11 −

Z0 − ZS1( ) Z0 − ZS3( )S13S31

Z0 + ZS3 + Z0 − ZS3( )S33

 (2.177)

 
E3 = Z0 − ZS1( )S12 −

Z0 − ZS1( ) Z0 − ZS2( )S13S32

Z0 + ZS3 + Z0 − ZS3( )S33

 (2.178)

 

E4 = VS2 −
Z0 − ZS2( )S23VS3

Z0 + ZS3 + Z0 − ZS3( )S33

⎛
⎝⎜

⎞
⎠⎟
Z0  (2.179)

Figure 2.26 Three-port network with voltage and current variables.
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E5 = Z0 − ZS2( )S21 −

Z0 − ZS2( ) Z0 − ZS3( )S23S31

Z0 + ZS3 + Z0 − ZS3( )S33

 (2.180)

 
E6 = Z0 + ZS2 + Z0 − ZS2( )S22 −

Z0 − ZS2( ) Z0 − ZS3( )S23S32

Z0 + ZS3 + Z0 − ZS3( )S33

 (2.181)

we have

 
a1 =

E1E6 − E3E4

E2E6 − E3E5

 (2.182)

 
a2 =

E2E4 − E1E5

E2E6 − E3E5

 (2.183)

 
a3 =

VS3Z0 − Z0 − ZS3( ) S31a1 + S32a2( )
Z0 + ZS3 + Z0 − ZS3( )S33

 (2.184)

The voltages are

 
V1 = 1 + S11( )a1 + S12a2 + S13a3  (2.185)

 
V2 = S21a1 + 1 + S22( )a2 + S23a3  (2.186)

 
V3 = S31a1 + S32a2 + 1 + S33( )a3  (2.187)

The currents are

 
I1 =

1 − S11( )a1 − S12a2 − S13a3( )
Z0

 (2.188)

 
I2 =

−S21a1 + 1 − S22( )a2 − S23a3( )
Z0

 (2.189)

 
I3 =

−S31a1 − S32a2 + 1 − S33( )a3( )
Z0

 (2.190)
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Y and Z-Parameters: Key Relationships

For certain networks and interconnections, S-parameters may not always provide 
the most convenient matrix representation for circuit modeling and analysis. Some 
basic properties of two alternate sets of matrix parameters, namely, Y and Z, are 
presented in this chapter.

3.1 Y-Parameters

Y-parameters provide an alternative to S-parameters, for characterizing a multiport 
network with an unlimited number of ports. They are particularly advantageous 
when networks are to be connected in parallel. Y-parameters are admittance param-
eters and thus are current-based, rather than power-based, as are S-parameters. 
This makes them particularly suitable for analyzing solid-state designs comprising 
current-driven active components such as transistors.

A network with n ports, the Y-parameter voltage, and current variables and 
matrix parameters is shown schematically in Figure 3.1(a). In Figure 3.1(b), an 
example schematic is shown of a parallel connection of two Y-parameters repre-
sented two-port networks.

The Y-parameter matrix network equations are:

 

I1

⋅
⋅
In

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

Y11 ⋅ ⋅ Y1n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Yn1 ⋅ ⋅ Ynn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

V1

⋅
⋅
Vn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.1)

Figure 3.1 Multiport Y-parameter network schematics: (a) n-port Y network elements, and (b) 
two-port parallel Y-parameters.
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that is,

 

I1 = Y11V1!! + Y1nVn

⋅ ⋅ ⋅
⋅ ⋅ ⋅
In = Yn1V1!! + YnnVn

 (3.2)

thus,

 

Ymn =
Im
Vn Vi=0,for i≠n

 (3.3)

Hence, the Y-parameters for each port are determined by the ratio of the ter-
minal input current to an applied independent voltage source, while all other ports 
are simultaneously short-circuited. This can prove very challenging to achieve in a 
bench measurement. In light of (3.3), Y-parameters are often referred to as short-
circuit admittance parameters.

Port admittances Ym =

YmnVnn∑( )
Vm

 (3.4)

Thus, for the parallel-connected two-ports in Figure 3.1(b), the Y-parame-
ters of the combined network are simply the sum of the corresponding individual 
Y-parameters on each port.

3.2 Some Useful Two-Port Y-Parameter Relationships

Complex RF networks are typically characterized by Y-parameter representations 
comprising multiple ports. However, it is frequently the case that, for final analysis, 
the network is reduced to a two-port representation by terminating the remaining 
ports with impedance networks. The characteristics of the network for transforming 
an input signal on one of the ports to an output signal at the second port can then 
be evaluated. Among the key characteristics of interest are the network input and 
output impedances, gain, and phase or group delay through the network. Figure 
3.2 shows the key circuit parameters for analysis of a two-port network character-
ized by Y-parameters.

The Y-parameter matrix for a two-port is reduced to

 

Y[ ] =
Y11 Y12

Y21 Y22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (3.5)

Figure 3.2 Two-port Y-parameter network variables.
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 I1 = Y11V1 + Y12V2  (3.6)

 I2 = Y21V1 + Y22V2  (3.7)

with

 

Y11 =
I1

V1 V2=0

Y12 =
I1

V2 V1=0

 (3.8)

 

Y21 =
I2

V1 V2=0

Y22 =
I2

V2 V1=0

 (3.9)

Input admittance Y1 =
I1

V1

= Y11 −
Y12Y21

Y22 + YL  

Input impedance Z1 =
V1

I1

=
Y22 + YL

Y11 Y22 + YL( ) − Y12Y21

 (3.10)

Output admittance Y2 =
I2

V2

= Y22 − Y12Y21

YS + Y11

 (3.11)

Output impedance Z2 =
V2

I2

=
YS + Y11

Y22 YS + Y11( ) − Y12Y21

 (3.12)

3.3 Common Two-Port Network Y-Parameters

 

Y[ ] =

1

Z
− 1

Z

− 1

Z

1

Z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.13)

 

Y[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.14)

 

Y[ ] =

Y1 + 1

Z
− 1

Z

− 1

Z

Y2 + 1

Z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.15)
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Y[ ] =

1 + YZ2

Z1 + Z2 + YZ1Z2

−1

Z1 + Z2 + YZ1Z2

−1

Z1 + Z2 + YZ1Z2

1 + YZ1

Z1 + Z2 + YZ1Z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.16)

 

Y[ ] =

− j
w 1 − k2( )L1

jk

w 1 − k2( ) L1L2

jk

w 1 − k2( ) L1L2

− j
w 1 − k2( )L2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.17)

 

Y[ ] =

L1 + L2 + 2k L1L2

jw 1 − k2( )L1L2

L2 + k L1L2

jw 1 − k2( )L1L2

L1 + k L1L2

jw 1 − k2( )L1L2

L2

jw 1 − k2( )L1L2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.18)

 

Y[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.19)

 

Y[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.20)

 

Y[ ] =

1

Zt

⎛
⎝⎜

⎞
⎠⎟

coth gl( )
−1

Zt sinh gl( )( )

−1

Zt sinh gl( )( )
1

Zt

⎛
⎝⎜

⎞
⎠⎟

coth gl( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.21)



3.4 Z-Parameters 45

where Ẕt = transmission-line impedance. The complex propagation constant γ = 
α + j(2π/λ), where α = dissipative coefficient, λ = wavelength, and l = length of 
transmission line in wavelengths.

Note that finite Y-parameters do not exist for several of the above networks. In 
those cases, Y-parameters cannot be used to characterize such networks.

3.4 Z-Parameters

Z-parameters provide another alternative set of variables for characterizing a mul-
tiport network with an unlimited number of ports. They are particularly advanta-
geous when networks are to be connected in series. Z-parameters are impedance 
parameters and thus are voltage-based.

A network with n ports, the Z-parameter voltage, and current variables and 
matrix parameters is shown schematically in Figure 3.3(a). In Figure 3.3(b), an 
example schematic is shown of a series connection of two Z-parameters represented 
two-port networks.

The network is represented by the Z-parameter matrix equations:

 

V1

⋅
⋅
Vn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

Z11 ⋅ ⋅ Z1n

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Zn1 ⋅ ⋅ Znn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

I1

⋅
⋅
In

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.22)

that is,

 

V1 = Z11I1!! + Z1nIn

⋅ ⋅ ⋅
⋅ ⋅ ⋅
Vn = Zn1I1!! + ZnnIn

 (3.23)

Figure 3.3 Definition of multiport Z-parameters: (a) n-port Z network elements, and (b) two-
port series Z-parameters.
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thus

 

Zmn =
Vm

In Ii=0,for i≠n
 (3.24)

Hence, the Z-parameters for each port are determined by the ratio of the ter-
minal voltage to an applied independent current source, while all other ports are 
simultaneously open-circuited. This can prove very challenging to achieve in a 
bench measurement.

Port impedances Zm =

ZmnInn∑( )
Im

 (3.25)

3.5 Some Useful Two-Port Z-Parameter Relationships

Complex RF networks are typically characterized by Z-parameter representations 
comprising multiple ports. However, it is frequently the case that, for final analysis, 
the network is reduced to a two-port representation by terminating the remaining 
ports with impedance networks. The characteristics of the network for transforming 
an input signal on one of the ports to an output signal at the second port can then 
be evaluated. Among the key characteristics of interest are the network input and 
output impedances, gain, and phase or group delay through the network. Figure 
3.4 shows the key circuit parameters for analysis of a two-port network character-
ized by Z-parameters.

The Z-parameter matrix for a two-port is reduced to

 

Z[ ] =
Z11 Z12

Z21 Z22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (3.26)

that is,

 V1 = Z11I1 + Z12I2  (3.27)

 V2 = Z21I1 + Z22I2  (3.28)

with

 

Z11 =
V1

I1 I2=0

Z12 =
V1

I2 I1=0

 (3.29)

Figure 3.4 Two-port Z-parameter network variables.



3.6 Common Two-Port Network Z-Parameters 47

 

Z21 =
V2

I1 I2=0

Z22 =
V2

I2 I1=0

 (3.30)

Thus, the Z-parameters on port 1 are obtained by open-circuiting port 2 (i.e., 
V2 = 0) and vice versa.

Input admittance Y1 =
I1

V1

=
Z22 + ZL

Z11 Z22 + ZL( ) − Z12Z21

 (3.31)

Input impedance Z1 =
V1

I1

= Z11 −
Z12Z21

Z22 + ZL

 (3.32)

Output admittance Y2 =
I2

V2

=
ZS + Z11

Z22 ZS + Z11( ) − Z12Z21

 (3.33)

Output impedance Z2 =
V2

I2

= Z22 − Z12Z21

ZS + Z11

 (3.34)

3.6 Common Two-Port Network Z-Parameters

 

Z[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.35)

 

Z[ ] =

1

Y

1

Y

1

Y

1

Y

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.36)

 

Z[ ] =

1 + Y2Z

Y1 + Y2 + Y1Y2Z

1

Y1 + Y2 + Y1Y2Z

1

Y1 + Y2 + Y1Y2Z

1 + Y1Z

Y1 + Y2 + Y1Y2Z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.37)

 

Z[ ] =
Z1 +

1

Y

1

Y

1

Y
Z2 +

1

Y

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.38)
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Z[ ] =
jwL1 jwk L1L2

jwk L1L2 jwL2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (3.39)

 

Z[ ] =
jwL2 jw L2 + k L1L2( )

jw L2 + k L1L2( ) jw L1 + L2 + 2k L1L2( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (3.40)

 

Z[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.41)

 

Z[ ] =
∞ ∞
∞ ∞

⎡

⎣
⎢

⎤

⎦
⎥  (3.42)

 

Z[ ] =

Zt coth gl( )
Zt

sinh gl( )

Zt

sinh gl( )
Zt coth gl( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.43)

where Ẕt = transmission-line impedance. The complex propagation constant γ = α 
+ j(2π/λ), where α = dissipative coefficient, λ = wavelength, and l = length of the 
transmission line in wavelengths.

In Appendix C, formulae are given for converting four-port network S param-
eters to equivalent Y parameters.
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Power Relationships

Once a preferred set of parameters capable of accurately modeling the performance 
of a network has been determined, either experimentally or analytically, invariably, 
the designer will seek to use them to determine how efficiently the network per-
forms an assigned task. For this, the power transfer relationships for the network 
are required.

There are two distinct measures of power-transfer efficiency (i.e., insertion 
loss) that can be used to characterize a network. While for many networks, in the 
band of interest, they may be very similar, there is a subtle but important differ-
ence between the two. Taken together, these two transfer parameters can tell us a 
lot about the network.

1. Pdel/Pin: This ratio, referred to as the operating power gain, describes the 
power delivered to the load(s) relative to the input power (i.e., entering the 
network). This power loss characterizes any dissipative losses in the network.

2. Pdel/Pavail.: This ratio, referred to as the transducer power gain, describes 
the power delivered to the load(s) relative to the maximum power available 
from the source. This power ratio accounts for power loss to the load arising 
from any mismatch loss on the input and power dissipated in the network.

In all cases, Pdel/Pavail. ≤ Pdel/Pin. It is generally very instructive to plot these two 
insertion gain characteristics when analyzing any RF network. Over any frequency 
range in which the input to the network is well matched to the source, they will be 
essentially the same. Any discrepancy between the two is indicative that the network 
input impedance is not well-matched to the source impedance at that frequency. 
The parameter Pdel/Pin is helpful in revealing the best power transfer efficiency that 
could possibly be achieved with the network, for the given source and load imped-
ances, given the dissipative nature of the network.

4.1 Fundamental Power Relations

Power available from the source

 
Pavail = ℜ VI∗( ) =

VS
2

4ℜ ZS( )
 (4.1)

Power into the network
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Pin =
ℜ Zin( )VS

2

ZS + Zin
2  (4.2)

Power delivered to the load

 

Pdel = ℜ VLVL
∗

ZL
∗

⎛
⎝⎜

⎞
⎠⎟
=
VL

2

ZL
2 ℜ ZL( )  (4.3)

where ℜ( ) denotes the real part and * denotes the complex conjugate.
Hence, the transmission gain in decibels is

 

Pdel

Pavail

= 10log
VL /VS

ZL

2

4ℜ ZS( )ℜ ZL( )
⎛

⎝
⎜

⎞

⎠
⎟

≡ 20log 2
VL /VS

ZL

ℜ ZS( )ℜ ZL( )
⎛
⎝⎜

⎞
⎠⎟

 (4.4)

 

Pdel

Pin

= 10log
ZS + Zin( )VL /VS

ZL

2 ℜ ZL( )
ℜ Zin( )

⎛

⎝
⎜

⎞

⎠
⎟

= 20log
ZS + Zin( )VL /VS

ZL

ℜ ZL( )
ℜ Zin( )

⎛

⎝
⎜

⎞

⎠
⎟

 (4.5)

and, if ZS, ZL are real,

 

Pdel

PAvail

= 10log
VL

VS

2
4RS

RL

⎛

⎝
⎜

⎞

⎠
⎟ ≡ 20log 2

VL

VS

RS

RL

⎛
⎝⎜

⎞
⎠⎟

 (4.6)

4.2 [ABCD] Power Relations

Power into the network is

 

Pin = ℜ VinVin
∗

Zin
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ AZL + B( ) CZL + D( )
∗( )VS

2

AZL + B + ZS CZL + D( )
2  (4.7)

Power delivered to the load is

 

Pdel = ℜ VLVL
∗

ZL
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ ZL( )

AZL + B + ZS CZL + D( )
2 VS

2
 (4.8)

Hence,
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Pdel

Pin

= 10log
ℜ ZL( )

ℜ AZL + B( ) CZL + D( )
∗( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ dB  (4.9)

This expression provides a measure of the power dissipation in the network.

 

Pdel

Pavail

= 10log
4ℜ ZS( )ℜ ZL( )

AZL + B + ZS CZL + D( )
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⋅ dB  (4.10)

This expression incorporates transmission losses due to both reflection on the 
input port and dissipation in the network.

4.3 Two-Port S-Parameter Power Relations

With

 

Zin =
2

1 − S11 − ΓLS12S21 / 1 − ΓLS22( )

⎛
⎝⎜

⎞
⎠⎟
Z1  (4.11)

and

 

Vin

VS

=
1 + S11( ) 1 − ΓLS22( ) + ΓLS12S21( )Z1

Z1 + ZS + S11 Z1 − ZS( )( ) 1 − ΓLS22( ) + ΓLS12S21 Z1 − ZS( )
 (4.12)

The power into network is

 

Pin = ℜ VinIin
∗( ) = ℜ Vin

Vin
∗

Zin
∗

⎛
⎝⎜

⎞
⎠⎟
= VS

2 Vin

VS

2

ℜ 1

Zin

⎛
⎝⎜

⎞
⎠⎟  (4.13)

or

Pin =
ℑ 1 + S11( ) 1 − ΓLS22( ) + ΓLS12S21( )Z1( )ℜ 1 − S11( ) 1 − ΓLS22( ) − ΓLS12S21( )

Z1 + ZS + S11 Z1 − ZS( )( ) 1 − ΓLS22( ) + ΓLS12S21 Z1 − ZS( )
2  (4.14)

where ℜ( ) and ℑ( ) represent real and imaginary components.
The power delivered to the load is

 

Pdel =
VL

ZL

2

ℜ ZL( )

= VS
2 S21 1 − ΓS( ) 1 + ΓL( )

2 1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S21( )ZL

2

ℜ ZL( )

 (4.15)
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and

 

Pdel

Pin

=
S21 1 − ΓS( ) 1 + ΓL( ) ZS + Zin( )

2 1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S21( )ZL

2
ℜ ZL( )
ℜ Zin( )

 (4.16)

This expression provides a measure of the power dissipation in the network.

 

Pdel

Pavail

= 20log
S21 1 − ΓS( ) 1 + ΓL( ) ℜ ZS( )ℜ ZL( )

1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S21( )ZL

 (4.17)

This expression incorporates transmission losses due to both reflection on the 
input port and dissipation in the network.

4.4 Two-Port Y-Parameter Power Relations

The power into the network is

 

Pin = ℜ VinVin
∗

Zin
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ 1 + ZLY22( ) Y11 − ZL Y12Y21 − Y11Y22( )( )
∗( )VS

2

1 + ZLY22 + ZS Y11 − ZL Y12Y21 − Y11Y22( )( )
2  (4.18)

The power delivered to the load is

 

Pdel = ℜ VLVL
∗

ZL
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ ZL( )Y21
2

1 + ZLY22 + ZS Y11 − ZL Y12Y21 − Y11Y22( )( )
2 VS

2  (4.19)

and

 

Pdel

Pin

= 10log
ℜ ZL( )Y21

2

ℜ 1 + ZLY22( ) Y11 − ZL Y12Y21 − Y11Y22( )( )( )
∗

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ dB  (4.20)

This expression provides a measure of the power dissipation in the network.

 

Pdel

Pavail

= 10log
4ℜ ZS( )ℜ ZL( )Y21

2

1 + ZLY22 + ZS Y11 − ZL Y12Y21 − Y11Y22( )( )
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ dB  (4.21)

4.5 Two-Port Z-Parameter Power Relations

The power into the network is
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Pin = ℜ VinVin
∗

Zin
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ ZLZ11 + Z11Z22 − Z12Z21( ) ZL + Z22( )
∗( )VS

2

ZLZ11 + Z11Z22 − Z12Z21 + ZS ZL + Z22( )
2  (4.22)

The power delivered to the load is

 

Pdel = ℜ VLVL
∗

ZL
∗

⎛
⎝⎜

⎞
⎠⎟
=

ℜ ZL( )Z21
2

ZLZ11 + Z11Z22 − Z12Z21 + ZS ZL + Z22( )
2 VS

2
 (4.23)

and

 

Pdel

Pin

= 10log
ℜ ZL( )Z21

2

ℜ ZLZ11 + Z11Z22 − Z12Z21( ) ZL + Z22( )
∗( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ dB  (4.24)

This expression provides a measure of the power dissipation in the network.

 

Pdel

Pavail

= 10log
4ℜ ZS( )ℜ ZL( )Z21

2

ZLZ11 + Z11Z22 − Z12Z21 + ZS ZL + Z22( )
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⋅ dB  (4.25)

This expression incorporates transmission losses due to both reflection on the 
input port and dissipation in the network.

4.6 Some Useful Power Relationships

Due to their compact nature, mobile devices are invariably powered by low-voltage 
batteries, typically 5V or less. If they must drive a high-impedance output load 
(e.g., 50Ω), this substantially limits the power that can be delivered directly into 
the load. If more power is required to the load, an output matching network must 
be inserted between the network and the load to adapt the output impedance of 
the network to that of the load. Output matching networks are invariably required 
for RF power amplifiers (PAs) in a cellphone, for example. Regrettably, any output 
matching network will invariably reduce the system performance somewhat from 
that of the network alone. The matching network will result in additional power 
losses, reducing overall efficiency, and also reduce the system bandwidth. A princi-
pal goal of the designer must be to minimize both these downsides. Some formulae 
useful to these efforts are given below.

If η0 = inherent network efficiency, into an ideal conjugately-matched load and 
dBL = post-network insertion gain, the resulting network efficiency (network + 
output circuitry) is

 h = h0 ⋅10−dBL/10
 (4.26)
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or inverting, if the measured efficiency of a network plus output circuitry is η, then 
the inherent transfer efficiency of the network is

 h0 = h ⋅10dBL/10
 (4.27)

Mobile RF PAs invariably have some form of output power control. In the major-
ity of cases, the power control is implemented in the active devices and associated 
with a change in efficiency; the output matching network usually remains fixed.

For a system delivering power into a load impedance RL, the power is deter-
mined from

 

PdBm = 30 + 10log
Vrms

2

RL

⎛
⎝⎜

⎞
⎠⎟  (4.28)

or

 

PdBm = 30 + 10log
Vpeak

2

2RL

⎛

⎝⎜
⎞

⎠⎟
 (4.29)

thus

 
Vpeak = 2RL10(PdBm /10−3)/2

 (4.30)

In a special case in which RL = 50Ω,

 
Vpeak = 10(PdBm /10−1)/2

 (4.31)

4.7 Maximum Available Gain: Optimum Conjugate Matching of a 
Passive Two-Port

As mentioned in the previous chapter, how to optimize the performance of a given 
network to provide maximum power transfer between a given source and load is 
typically of prime importance to the practicing RF engineer. In general, for a pre-
scribed network, this may require adding additional elements to both the input and 
output of the network, to achieve optimum power transfer over a desired frequency 
range, as shown in Figure 4.1.

In seeking to understand what the given RF network is capable of, the designer 
often is interested in knowing the best possible performance that could be achieved 

Figure 4.1 Two-port S-parameter conjugate matching.
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from the network with optimum external matching networks. The term “optimum” 
here means those matching networks that would result in the network having the 
lowest power loss when driven by a specified source impedance on the input to a 
specified load impedance on the output. To achieve this minimum insertion loss 
state, the intermediate matching networks (M1 and M2 in Figure 4.1) must provide 
simultaneous complex matches ΓS and ΓL on the two ports of the network.

Achieving the simultaneous match condition is nontrivial as, in general, the two 
ports of the network interact. Thus, changing the external impedance on one port 
will modify the impedance seen at the second port. In consequence, for example, 
if an arbitrary load is applied to the output, an input matching network M1 can be 
determined that provides for a complex conjugate match on the input port of the 
network. However, despite this input match, network analysis will generally show 
that the complex conjugate match condition is not met on the output. Due to the 
interactive complexities, to ensure the minimum possible insertion, or dissipative loss 
in the network, the conjugate matching networks are best determined analytically.

For a simultaneous-match analysis, the matching networks M1 and M2 are gener-
ally assumed to be lossless and continuously adaptable to maintain the simultaneous 
conjugate matching conditions at every frequency. As such, these matching networks 
may not be physically realizable. Typically, they can only be approximated by physi-
cal networks over a restricted frequency range. Nonetheless, the analysis can be 
helpful to the designer in understanding the circuit limitations and its capabilities.

There are a few important aspects to be aware of when performing a simulta-
neous conjugate match analysis of a passive two-port network:

1. The network must be linear.
2. Unique solutions for the matching networks only exist providing:

Stability factor K =
1 − S11

2 − S22
2
+ S11S22 − S12S21

2

2 S12S21

> 1  (4.32)

3. For a lossless reciprocal network, K = 1. In this limiting case, there will exist 
an infinite possible set of solutions for the conjugate matching requirements. 
If the source or load impedances are chosen arbitrarily, a conjugate match-
ing impedance at the alternate port may always be determined that results 
in 0-dB insertion loss through the system.

The simultaneous conjugate matching impedances are determined as follows.
Defining

 
A = S11 1 − S22

2( ) + S12S21S22
∗

 (4.33)

and

 

B = 1 − S22
2
+
A

2 − S12S21
2

1 − S22
2  (4.34)
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the required simultaneous conjugate matching reflection coefficients on the input 
and output ports are

 
ΓS =

B − B2 − 4A
2

2A
ΓL = S22 +

ΓSS12S21

1 − ΓSS11

⎛
⎝⎜

⎞
⎠⎟
∗

 (4.35)

The corresponding external impedances are then

 
ZS =

1 + ΓS

1 − ΓS

Z1 ZL =
1 + ΓL

1 − ΓL

Z2  (4.36)

where Ẕ1 and Ẕ2 are the normalization impedances on ports 1 and 2, respectively.
From the formulae presented with simultaneous conjugate matches on the net-

work, the minimum insertion loss through the network is

 

Pdel

Pavail

⎛
⎝⎜

⎞
⎠⎟

max

= 20log
S21 1 − ΓS( ) 1 + ΓL( ) ℜ ZS( )ℜ ZL( )

1 − ΓSS11( ) 1 − ΓLS22( ) − ΓSΓLS12S21( )ZL

⋅ dB  (4.37)

where ℜ( ) denotes the real component.
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C H A P T E R  5

Lumped-Element Basics

Typically, RF circuits comprise both active and passive components. These must 
be modeled accurately over frequency in any analytic model to be used for device 
simulation and design. The modeling of passive elements is especially critical, as 
active device models invariably include passive elements in their circuit representa-
tions. This chapter is thus focused on presenting circuit models, which can repre-
sent passive elements over an extended frequency range, and describing how the 
characterizing parametric values can be extracted from measurement.

Individual circuit elements can be divided up into three distinct groups, those 
whose function is primarily inductive, capacitive, or resistive in nature. The inclu-
sion of the qualifying word “primarily” is especially critical for reactive elements, 
as their characteristics will typically vary significantly over frequency. This varia-
tion is due to undesired parasitics associated with any physical element. As a result, 
an element that is capacitive over one frequency range may appear inductive over 
another. Likewise, an element that is inductive over one frequency range may appear 
capacitive over another. For high-frequency RF circuits, such parasitics are critical 
to predicting device behavior over an extended frequency range and thus must be 
included in any analytic model if it is to be useful.

A common initial step to developing a valid equivalent circuit model for an RF 
component is to obtain its key electrical parameters by measurement on the bench. 
Alternatively, these parameters may also be obtained from complex, typically time-
consuming and expensive, electromagnetic modeling software tools. Either way, 
the goal is to use the data to develop a lumped-element model of the minimum 
complexity to match the characteristics over frequency.

5.1 Parametric Model Extraction

Lumped-element component models are only useful if the parametric values for the 
models can be extracted from either measured or modeled data. Scattering param-
eters, commonly referred to as S-parameters, are typically used to characterize the 
electrical characteristics of an RF component. Commonly, they are normalized to 
a characteristic impedance Z0 = 50Ω.

5.1.1 Extracting Immittances from S-Parameters

Capacitors and inductors are one-port devices. To fit model parameters to measured 
component data, first the impedance Z, or admittance Y = 1/Z, of the element must 
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be derived from the S-parameters. The S-parameters of a one-port element may be 
measured in one of three configurations, as shown in Figure 5.1.

With the circuit topology shown in Figure 5.1(a), only input S-parameter data 
S11 is taken. In that case, the elemental impedance and admittance are determined 
by Figure 5.1(a):

 
Z = Z0

1 + S11

1 − S11

          and          Y = Y0

1 − S11

1 + S11

 (5.1)

where Y0 = 1/Z0.
With the circuit topology shown in Figure 5.1(b), full two-port S-parameters 

may be taken. However, due to the circuit symmetry, there are only two indepen-
dent parameters to consider, S11 and S21. The elemental immittance values may be 
derived from either of the latter.

In Figure 5.1(b), from S11,

 
Z = −Z0

1 + S11

2S11

          or          Y = −Y0

2S11

1 + S11

 (5.2)

In Figure 5.1(b), from S21,

 

Z = Z0

S21

2 1 − S21( )

⎛
⎝⎜

⎞
⎠⎟

          or          Y = 2Y0

1 − S21

S21

⎛
⎝⎜

⎞
⎠⎟  (5.3)

With the circuit topology shown in Figure 5.1(c), again full two-port S-param-
eters may be taken. As before, due to the circuit symmetry, there are only two 
independent parameters to consider S11 and S21. The elemental immittance values 
may be derived from either of the latter.

In Figure 5.1(c), from S11,

 
Z = Z0

2S11

1 − S11

          or          Y = Y0

1 − S11

2S11

 (5.4)

In Figure 5.1(c), from S21,

 

Z = −2Z0

1 − S21

2 − S21

⎛
⎝⎜

⎞
⎠⎟

          or          Y = −Y0

2 − S21

2 1 − S21( )

⎛
⎝⎜

⎞
⎠⎟  (5.5)

In the two-port measurement configurations (Figure 5.1(b, c)), the component 
immittances can be determined in two ways. This can be a useful check to verify 
the device is actually behaving as a true one-port. If the immittances obtained from 

Figure 5.1 Alternate topologies for component S-parameter characterization: (a) termination, 
(b) shunt element, and (c) series element.
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the dual calculations are significantly different, this implies that the device is likely 
coupling to a neighboring device, or ground plane, and that it cannot be reliably 
represented in the circuit as a simple one-port component.

Once the immittances of a physical component have been obtained from mea-
surement, as described above, the next step in creating a lumped-element equivalent 
circuit model of the components is to determine the value of the elements over fre-
quency. The formulations for doing this for both capacitors and inductors follow. 
Both two and three-element models are considered and their usefulness contrasted.

5.2 Capacitor Lumped-Element Models

An ideal capacitor is a passive circuit element that presents a negative series reactance 
at the frequency of interest, which is inversely proportional to frequency, that is,

 Z = − j /wC  (5.6)

where ω = 2πf, f = frequency, and C = capacitance, typically expressed in picofarads 
(pF) or nanofarads (nF).

Unfortunately, due to parasitics, (5.6) is generally insufficient for describing 
the behavior of a capacitor in any analytic model that is to be useful for reliable 
RF design.

The first aspect lacking in (5.6) is that any practical capacitor will have loss, or 
dissipation, associated with it. Thus, its impedance Z will have a real component to it.

Such dissipation can easily be accommodated in an equivalent circuit model by 
the addition of a series resistor, as in Figure 5.2(b). In this lumped-element model 
for a capacitor, Ceff = effective capacitance of the element at a given frequency, and 
Reff = resistance (Ω), included to account for losses in the element. This model is 
commonly used both in the literature and for design.

A prime motivation for employing a two-element model for a capacitor is that 
the elemental values can be readily determined from its characterization data. As 
discussed above, this is the impedance, or admittance, of the device. Because these 
complex parameters comprise only two discrete values (i.e., real and imaginary), 
only two equations can be directly written to yield two parameters for a model. 
Despite the great advantage of this simplicity, unfortunately, the two-element model 
has severe limitations.

For any lumped-element device model to be useful over a wide frequency range, 
it is highly desirable that the elements of the model do not have a strong frequency 
dependence. For the model of Figure 5.2(b), however, this is frequently not the case. 
The reason is that the reactance of a physical capacitor does not generally behave 
exactly inversely proportional to frequency, as predicted by (5.6). It may even change 
sign. In consequence, Ceff in Figure 5.2(b) will often be determined to have values 

Figure 5.2 Capacitor lumped-element representations: (a) ideal, (b) added dissipative 
elements, and (c) added dissipative and inductive elements.
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that vary greatly with frequency and may even go negative, when extracted from 
physical data.

To address this issue, a greatly improved lumped-element capacitor model may 
be achieved by the addition of a series inductor to Figure 5.2(b), as shown in Figure 
5.2(c). In the latter, C = capacitance, with parasitic elements, LC = inductance (typi-
cally, nH or µH), and RC = resistance. As a result of the inclusion of this additional 
parasitic inductance, the elements C, LC, and RC, generally have a much-reduced 
frequency dependence over those in Figure 5.2(b), when fitting measured data. In 
many cases, over even wide bandwidths, the elements can frequently be assumed 
to be relatively constant.

The implications and significant differences between the models of Figure 5.2(b) 
and Figure 5.2(c) are now examined.

5.2.1 Capacitor: Extracting Two-Element Model Values

The two-element model for a capacitor is shown in Figure 5.3.
Defining

 Z = Zr + jZi           and          Y = Yr + jYi  (5.7)

where the subscripts denote real and imaginary parts. Then

 
Ceff =

−1

wZi

          and          Reff = Zr  (5.8)

or

 

Ceff =
Y

2

wYi
          and          Reff =

Yr

Y
2  (5.9)

5.2.2 Capacitor: Extracting Three-Element Model Values

The three-element model for a capacitor is shown in Figure 5.4.
Because this model has three values to be determined, and impedance, or admit-

tance, data from measurement have only real and imaginary values, the fitting 
problem appears to be overconstrained. Additional boundary conditions must be 
introduced to determine the most appropriate values for the three elements.

Figure 5.3 Capacitor two-element model.

Figure 5.4 Capacitor three-element model.
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One possible approach would be to assume that the element values remain fixed 
between two frequencies and determine the element values to satisfy the boundary 
conditions at the two frequencies. However, such an approach requires an arbitrary 
choice of frequencies and does not yield a continuous representation as to how the 
element values might vary over frequency. Size and performance are dual critical 
design requirements for passive on-die RF circuit design, invariably involving a 
compromise between the two. To enable optimal layout for a capacitor, or inductor, 
the designer needs to carefully evaluate how the component characteristics, and its 
associated parasitics, vary over frequency with layout changes. Otherwise, incor-
rect conclusions may be drawn. For example, if a smaller capacitor footprint leads 
to a higher associated parasitic series inductance, the equality factor may appear to 
degrade. However, it may well be that this is simply an artifact of the latter and of 
no consequence if the capacitor is to be series-resonated in the circuit.

Rather than the dual-frequency boundary condition approach mentioned above, 
another approach was developed for determining the values of three-element capaci-
tor representation of Figure 5.4. This approach was found to be extremely simple 
and effective to use in the design process. The element values are extracted over 
frequency directly from capacitor impedance data with no designer inputs. The 
necessary third equation for determining the three element values is obtained by 
equating the derivative of the capacitive reactance, at each frequency, of the model 
and the measured data.

First, we define

 ′Zi = dZi /dw  (5.10)

A prime motivation of using the three-element model in place of the two-element 
model is to obtain a model whose element values vary only slowly with frequency. 
Consistent with the latter, we make the following assumptions in deriving the ele-
ment values using the reactive derivative of the component, namely,

 w ′C << C           and          w ′LC << LC  (5.11)

From analysis, we then determine the lumped-element values as:

 
C ≈ 2

w w ′Zi − Zi( )
     and     LC ≈

Zi /w + ′Zi( )
2

     and     RC = Zr  (5.12)

5.2.3 Capacitor: Quality Factor

The unloaded quality factor (Q) of a reactive element is a measure of how much 
energy is stored to how much energy is dissipated in the element, per RF cycle. The 
latter is typically due to resistive or radiative losses. It is a critical factor in determin-
ing insertion losses in RF circuits employing the component. In general, the higher 
the Q factor, the less the loss in the circuit. Q-factor is determined by
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 Q = Zi /Zr  (5.13)

For a capacitor having the equivalent circuit of Figure 5.4, we have

 
Z =

wCRC − j 1 − w2LCC( )
wC

 (5.14)

Thus,

 
Q =

1−w2LCC

wCRC

 (5.15)

Hence, if LC = 0,

 
QL0 =

1

wCRC

 (5.16)

From (5.16), we can see that the Q-factor of a pure capacitor (i.e., one with LC 
= 0) is inversely proportional to frequency. However, for a practical capacitor, with 
some associated series inductance, the Q value decreases faster than the inverse 
dependence, according to (5.14), and approaches zero as the frequency approaches 
a resonance condition where

 wr
2LCC = 1  (5.17)

For frequencies above the resonance, the reactance changes sign, implying that, 
for higher frequencies, the capacitor reactance is inductive.

High-quality capacitors used employed in RF circuits typically have Q values 
in the range of 50 to 100, provided that they are operated significantly below self-
resonance. The Q value of a capacitor is inversely proportional to both frequency 
and capacitor value; thus, it is more difficult to achieve a high-quality factor for a 
capacitor: (1) at higher frequencies, and (2) with higher capacitance values.

5.2.4 Capacitor: Comparing Two and Three-Element Models

We shall now compare the major characteristics of the two and three-element 
equivalent circuit models for a capacitor, with a view to their use in circuit design.

All physical capacitors have a self-resonance frequency, above which they become 
inductive. In practice, the type and form factor of a capacitor are specifically selected 
to ensure that this frequency is well above the desired operating frequency to neglect 
any resonance effects. However, sometimes this may not be possible. In other cases, 
it may not even be necessary if the capacitor is to be used in a series resonant circuit, 
in which case, it is only necessary to choose a capacitor that has its self-resonance 
frequency above that of the series resonant frequency circuit.

To compare the major differences in the two equivalent-circuit models for a 
capacitor, we shall consider a capacitor with the following characteristics:
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Capacitance: C = 2.8 pF

Series resistance: RC = 0.4Ω
Series inductance: LC = 0.4 nH

 (5.18)

With these values, the capacitor has a self-resonant frequency ∼3,052 MHz.
For the two-element model, if we extract the element values according to the 

formulae in Section 5.2.1, we find the values of the elements over frequency to have 
the dependencies shown in Figure 5.5(a).

Figure 5.5 Two-element capacitor parametric plots.
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The resistance, extracted from the data, shows a constant series resistance of 
0.4Ω, consistent with the model. However, the capacitance value, determined from 
the data, varies greatly over frequency. As expected, it shows a strong resonance 
around 3 GHz. However, below this, even far below the self-resonance, it has a 
strong frequency dependence, rising continuously with increasing frequency. A 
lumped-element model whose elements are strongly frequency-dependent is highly 
undesirable for use in analytic design approaches. To be useful, the elements of the 
model should remain relatively constant at least across the desired frequency band 
of operation.

Figure 5.5(b) shows the dependence of the capacitor quality factor, Q, over fre-
quency. The trace on the left shows the Q of a capacitor having the elemental values 
of (5.18), but with LC = 0. This is the inverse frequency dependence expected of 
“pure” capacitor with finite dissipation. In contrast, the trace on the right shows the 
Q of a capacitor, having the element values of (5.18), calculated for the two-element 
model from the equations of Section 5.2.1. The Q approaches zero as the capacitor 
approaches its self-resonant frequency. At all frequencies below resonance, the Q 
value of the capacitor is visibly lowered by the presence of the series inductance, 
from what would be expected of the lossy capacitor alone. This can obfuscate a 
clear understanding of the key physical parameters of the capacitor.

Now we turn to examining the characteristics of the three-element model. If we 
extract the element values according to the three-element formulae in Section 5.2.2, 
we find the values of the various parameters of the model over frequency to have 
the dependencies shown in Figure 5.6(a). Except at very low frequencies, the values 
of the capacitance and resistance determined from the equations are in excellent 
agreement with the model values in (5.18) used to generate the data.

The plot referred to in the left axis of Figure 5.6(b) shows the calculated series 
inductance of the capacitor. Again, except at very low frequencies, this is in excel-
lent agreement with the constant value expected from (5.18).

As long as the electrical characteristics of a capacitor are slowly varying with 
frequency, that is, the inequalities in (5.11) are valid, the three-element formulae in 
(5.12) will be appropriate for extracting the lumped-element values.

To illustrate this, we consider a capacitor having the same constant reactive 
element values of (5.18), but with a resistance that is frequency-dependent. The 
dependence on frequency, shown in Figure 5.7(a), is ∝ 1/√f that is classically asso-
ciated with skin resistance.

Figure 5.7(b) shows the extracted reactive parameters for the capacitor having 
the frequency-dependent resistance. The capacitance and inductance values are in 
close alignment with the model and essentially identical with those in Figure 5.6(a).

Observe that the parametric values of the elements extracted with the three-
element capacitor model are well-behaved with no singularities over frequency. This 
is dramatically different from the capacitance value derived for the two-element 
model, which showed a strong frequency dependence and a singularity at resonance.

The three-element equivalent-circuit model is thus much superior to the two-
element model for characterizing a capacitor. The values are much less frequency-
dependent; they do not exhibit any singularity at self-resonance; and they give a 
much better physical insight into the key physical properties of the capacitor.
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Figure 5.6 Three-element capacitor parametric plots.

5.3 Inductor Lumped-Element Models

An ideal inductor is a passive circuit element that presents a positive series reactance 
that is directly proportional to frequency, that is,

 Z = jwL  (5.19)

where ω =2f, f = frequency, and L = inductance, typically expressed in microHenries 
(µH) or nanoHenries (nH).
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Figure 5.7 Three-element capacitor parametric plots with nonconstant resistance.

As with a capacitor, due to parasitics, (5.19) is generally insufficient for describ-
ing the behavior of an inductor in an analytic model that is to be used for RF design. 
Again, the first aspect lacking in (5.19) is that any practical inductor will have loss or 
dissipation associated with it. Thus, its impedance Z will have a real component to it.

Such dissipation can easily be accommodated in an equivalent circuit model by 
the addition of a series resistor, as in Figure 5.8(b). In this lumped-element model 
for an inductor, Leff = effective inductance of the element at a given frequency, and 
Reff = resistance (Ω), included to account for losses in the element. This model is 
commonly used both in the literature and design.

As with the capacitor, a prime motivation for employing a two-element model 
for an inductor is that the elemental values can be readily determined from its 
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characterization data, which again is a single parameter measurement of the imped-
ance, or admittance, of the element. Because a complex parameter comprises only 
two discrete values (i.e., real and imaginary), only two equations can be directly 
written to yield two parameters for a model. Despite the great advantage of this sim-
plicity, unfortunately, the two-element model for an inductor has severe limitations.

As with a capacitor, for any lumped-element device model to be useful over a 
wide frequency range, it is highly desirable that the elements of the model do not 
have a strong frequency dependence. For the model of Figure 5.8(b), however, this 
is frequently not the case. The reason is that the reactance of a physical capacitor 
does not generally behave directly proportional to frequency, as predicted by (5.19). 
In fact, it may even change sign. In consequence, Leff in Figure 5.8(b) will often be 
determined to have values that vary greatly with frequency and may even go nega-
tive when extracted from physical data.

To address this issue, a greatly improved lumped-element capacitor model may 
be achieved by the addition of a parallel inductor to Figure 5.8(b), as shown in Figure 
5.8(c). In the latter, L = inductance, with parasitic elements, CL = capacitance, and 
RL = resistance. As a result of the inclusion of this additional parasitic inductance, 
the elements L, CL, and RL generally have a much-reduced frequency dependence 
over those in Figure 5.8(b), when fitting measured data. In many cases, over even 
wide bandwidths, the elements can frequently be assumed to be constant.

Note that, in Figure 5.8(c), the parasitic capacitor CL is added around the series 
elements L and RL, not directly across L. This ensures that the model predicts dis-
sipative losses even when the inductor and capacitor are close to parallel resonance. 
This more closely reflects the electrical behavior of a physical inductor.

The implications and significant differences between the models in Figure 5.8(b) 
and Figure 5.8(c) are now examined.

5.3.1 Inductor: Extracting Two-Element Model Values

The two-element model for an inductor is shown in Figure 5.9.

 Z = Zr + jZi           and          Y = Yr + jYi  (5.20)

where the subscripts denote real and imaginary parts. Then

 
Leff =

Zi

w
          and          Reff = Zr  (5.21)

Figure 5.8 Inductor lumped-element representations: (a) ideal, (b) added dissipative 
elements, and (c) added dissipative and capacitive elements.

Figure 5.9 Inductor two-element model.
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or

 

Leff = − Yi

wY
2           and          Reff =

Yr

Y
2  (5.22)

5.3.2 Inductor: Extracting Three-Element Model Values

The three-element model for an inductor is shown in Figure 5.10. As with the capaci-
tor, because there are three values to be determined, and impedance, or admittance, 
data from measurement, have only real and imaginary values, the fitting problem 
appears to be overconstrained. A necessary third equation is thus again required for 
determining the three element values. Similar to the capacitor, the necessary third 
equation can be obtained by equating the derivative of the inductive reactance, at 
each frequency, of the model and the measured data.

First, we define

 ′Yi = dYi /dw  (5.23)

Again, we shall assume that the three element values vary only slowly with fre-
quency. Consistent with this, we make the following assumptions in deriving the 
element values using the reactive derivative of the component, namely,

 
w ′L << L       and       w ′CL << CL        and       ′RL <<

wL2

RL

 (5.24)

Derivation of the element values, under these assumptions, is significantly more 
complex than was the case for the three-element model for the capacitor. This is 
because, in the inductor, lumped elements are interconnected in a series and paral-
lel configuration. However, after some analysis, we can obtain the solutions in the 
following form.

Defining

 
a =

w ′Yi − Yi
Yr

2  (5.25)

wL ≈
a 54 + a2Yr

2
+ 18 9 + a2Yr

2 /3( )3 + a 54 + a2Yr
2 − 18 9 + a2Yr

2 /3( )3

6 ⋅ Yr
23

− a

3
 (5.26)

Figure 5.10 Inductor three-element model.
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RL ≈ wLYr

2wL

w ′Yi − Yi
= wL

2wL

a
 (5.27)

 

CL ≈ ′Yi +
RL

2 − wL( )
2( )L

RL
2
+ wL( )

2( )
2  (5.28)

The solution for the inductor L simplifies significantly, if the following addi-
tional assumption can be made

 RL << wL          that is,          Yr ≈ 0  (5.29)

Then

 

wL ≈
2 w ′Yi − Yi( )

3

4Yr
2
+ w ′Yi − Yi( )

2( )
2  (5.30)

5.3.3 Inductor: Quality Factor

As discussed in the capacitor section, the unloaded quality factor (Q) of a reactive 
element is determined by

 
Q =

Zi

Zr

 (5.31)

For an inductor having the equivalent circuit of Figure 5.10, we have

 

Z =

RL + jw L − wL( )
2
+ RL

2( )CL( )
1 − w2LCL( )

2
+ wCLRL( )

2
 (5.32)

Thus,

 
Q =

w L − wL( )
2
+ RL

2( )CL( )
RL

 (5.33)

Hence, if CL = 0,

 
QC0 =

wL

RL

 (5.34)

From (5.34), we can see that the Q-factor of a pure inductor (i.e., one with CL 
= 0) is directly proportional to frequency. However, for a practical inductor with 
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some associated series capacitance, (5.33) predicts that, beginning from zero at low 
frequency, the Q value will grow increasingly more slowly with frequency. Eventu-
ally, it will achieve a stationary maximum value before decreasing to zero at a higher 
frequency. At the frequency corresponding to zero Q, the inductor is self-resonant.

From (5.33), the frequency at which the inductor is self-resonant, with Q = 0, 
occurs when

 1 − wr
2LCL = RL

2CL /L ≈ 0  (5.35)

For frequencies above the resonance at ωr, the inductor has a negative reactance, 
characteristic of a capacitor.

Let us now determine where the maximum Q value occurs, relative to the self-
resonant frequency, and how this relates to the inherent Q of the inductor (i.e., 
with CL = 0).

From (5.35),

 
CL =

1

wr
2L + RL

2 /L
 (5.36)

thus, from (5.33),

 

Q =
wL3

RL

wr
2 − w2

wrL( )
2
+ RL

2
 (5.37)

The maximum value occurs at

 wmax = wr / 3 ≈ 0.577wr  (5.38)

and the maximum value is

 

Qmax =
2 wmaxL( )

3

3 wmaxL( )
2
+ RL

2( )RL

 (5.39)

Also, if RL << ωmaxL,

 
Qmax ≈ 2

3 wmaxL/RL( )
 (5.40)

These expressions give great insight into the physical characteristics of the induc-
tor. We see that the self-resonant frequency of an inductor is predicted to occur 
at ∼√3 × the maximum Q frequency. Also, at the frequency at which the inductor 
Q is a maximum, the apparent Q is reduced by 30% from what it would be if the 
inductor had no parallel capacitance.
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It is common for designers to seek to determine the Q of various inductors from 
bench measurements so they can determine which configurations may be the most 
advantageous for their designs. As we see from the above equations, however, the 
Q of an inductor is multifaceted. Simply comparing which inductor exhibits the 
maximum Q value may be inappropriate, depending on how the inductor is to be 
used in the circuit.

If the inductor is to be used as a series element, then the apparent (i.e., measured) 
Q value is appropriate. However, if the inductor is to be used in a parallel (e.g., tank) 
circuit, then the inherent inductor Q, ignoring the inductor’s parallel capacitance, 
is more appropriate. The inductor’s parallel capacitance can be absorbed into the 
parallel capacitance required in the circuit. This design approach is valid so long as 
the inductor’s self-resonant frequency is less or equal to that required for the par-
allel combination. In the limit that the inductor’s self-resonant frequency is equal 
to that of the required parallel combination, no additional capacitor will even be 
required across the inductor.

In general, RF inductors cannot achieve the high Q values possible for induc-
tors. They are the primary loss element in passive RF circuits. Typically, good RF 
inductors have Q values in the range of 30 to 70, limited by skin-effect resistance, 
eddy-current, and radiative loss mechanisms. Inductor Qs can be increased by 
allowing an increased volume for the inductor (i.e., a larger footprint) and increas-
ing the distance from neighboring conductors or ground planes. Unfortunately, 
the ultra-compact size requirements of modern RF circuits for mobile applications 
make large-volume inductors impractical. Apart from this, at gigahertz frequen-
cies, even with no size constraint, it is still an overwhelming challenge to achieve 
inductor Qs approaching 100.

The Q value of a pure inductor is directly proportional to both frequency and 
inductor value; thus, it is more difficult to achieve a high-quality factor for an induc-
tor at lower frequencies and with smaller inductance values.

5.3.4 Inductor: Comparing Two and Three-Element Models

We shall now compare the major characteristics of the two-element and three-element 
equivalent circuit models for an inductor, with a view to their use in circuit design.

All physical inductors have a self-resonance frequency above which they become 
capacitive. As discussed in the previous section, if the inductor is to be used as a 
series element, its design must ensure that the self-resonant frequency occurs sig-
nificantly above the frequencies of interest. If not, the network Q will be degraded 
and exhibit undesirable frequency dependence. If the inductor is to be used in a 
parallel (i.e., tank network), it is only necessary that the self-resonant frequency 
of the inductor be at or above the nominal resonant frequency of the tank circuit.

To compare the major differences in the two equivalent-circuit models for an 
inductor, we shall consider an inductor with the following characteristics:

 

Inductance: L = 3.0 nH

Series resistance: RL = 0.4Ω
Series capacitance: CL = 1.0 pF

 (5.41)
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With these values, the capacitor has a self-resonant frequency ∼2,906 MHz.
For the two-element model, if we extract the element values according to the 

formulae in Section 5.3.1, we find the values of the elements over frequency to have 
the dependencies shown in Figure 5.11(a).

For the inductor, we see that both the inductance value and resistance, as 
determined from the data, vary greatly over frequency. Both are singular around 
3 GHz, which corresponds to the self-resonant frequency of the inductor. Even far 
below this self-resonance, both parameters continue to have a significant frequency 

Figure 5.11 Two-element inductor parametric plots.
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dependence, both rising continuously with increasing frequency. A lumped-element 
model whose elements are strongly frequency-dependent is highly undesirable for 
use in analytic design approaches. To be useful for the latter, the elements of the 
model should remain relatively constant at least across the desired frequency band 
of operation.

Figure 5.11(b) shows the dependence of the capacitor quality factor Q over 
frequency. The trace on the left shows the Q of a capacitor having the elemental 
values of (5.41), but with CL = 0. This is the frequency-proportional dependence 
expected of a “pure” inductor with finite dissipation. In contrast, the trace on the 
right shows the Q of an inductor, having the element values of (5.41), calculated for 
the two-element model from the equations of Section 5.3.1. As predicted in Section 
5.3.3, the Q grows from DC, although slower than proportional, and then reaches 
a maximum value before decreasing with increasing frequency until Q = 0 around 
the inductor self-resonance frequency of ∼2.9 GHz. A maximum effective inductor 
value Qmax = ∼52.7 occurs ∼1.68 GHz, compared to the inherent inductor Q (i.e., 
CL = 0) ∼79.2 at this frequency. The ratio 52.7/79.2 = ∼0.66, in line with (5.40). 
Also, the ratio of the frequency at Qmax to the self-resonant frequency, 1.68/2.91 = 
∼0.577, is as predicted by (5.38).

The singular nature of both the inductance and resistance values of the two-
element equivalent circuit models for an inductor make this model of limited utility 
in circuit analysis and synthesis. Such rapidly changing values obfuscate any clear 
understanding of the key physical characteristics of the element. In order to opti-
mize the layout of an inductor in design, it is critical to have a clear picture of how 
the key elements of the inductor respond to design changes.

Having seen disadvantages of the two-element inductor model, we now turn to 
examining the characteristics of the three-element model. If we extract the element 
values according to the three-element formulae in Section 5.3.2, we find the values 
of the various parameters of the model over frequency to have the dependencies 
shown in Figure 5.12(a). The values of the inductance and resistance determined 
from the equations are in excellent agreement with the model values in (5.41), used 
to generate the data.

The plot referred to the left axis of Figure 5.12(b) shows the calculated series 
inductance of the capacitor. Again, except at very low frequencies, this is in excel-
lent agreement with the constant value expected from (5.41).

As long as the electrical characteristics of an inductor are slowly varying with 
frequency, that is, the inequalities in (5.24) are valid, the three-element formulae 
in (5.25) to (5.28) will be appropriate for extracting the lumped-element values.

To illustrate this, we consider a capacitor having the same constant reactive ele-
ment values of (5.41), but with a resistance that is frequency-dependent. The depen-
dence on frequency, shown in Figure 5.13(a), is ∝ 1/√f that is classically associated 
with skin resistance.

Figure 5.13(b) shows the extracted reactive parameters for the inductor with 
the frequency-dependent resistance. The inductance and capacitance values are in 
close alignment with the model and essentially identical with those in Figure 5.12.

Observe that the parametric values of the elements extracted with the three-
element inductor model are well-behaved with no singularities over frequency. This 
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Figure 5.12 Three-element inductor parametric plots.

is dramatically different from the inductance value derived for the two-element 
model which showed a strong frequency dependence and a singularity at resonance.

The three-element equivalent-circuit model is thus much superior to the two-
element model for characterizing an inductor. The values are much less frequency-
dependent; they do not exhibit any singularity at self-resonance; and they give a 
much better physical insight into the key physical properties of the inductor.
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Figure 5.13 Three-element inductor parametric plots with nonconstant resistance.

5.4 Quadratic Interpolation for dY/dω and dZ/dω

For derivation of the three-element capacitor and inductor equivalent circuit models, 
the derivatives of impedance or inductance must be determined on a frequency-
by-frequency basis. This is best done by fitting a quadratic polynomial through 
the frequency of interest and the frequency data above and below it. Assuming, 
for admittance,
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 Yn = a0 + a1fn + a2fn
2
 (5.42)

and for impedance

 Zn = b0 + b1fn + b2fn
2  (5.43)

based on expressions in Appendix E, after some manipulation, we determine

 

dY

df

⎡

⎣
⎢

⎤

⎦
⎥
f 2

=
− f3 − f2( )

2
Y1 + f3 − f1( ) f1 − 2f2 + f3( )Y2 + f2 − f1( )

2
Y3

f3 − f2( ) f1
2 − f3 − f1( ) f2

2
+ f2 − f1( ) f3

2  (5.44)

 

dZ

df

⎡

⎣
⎢

⎤

⎦
⎥
f 2

=
− f3 − f2( )

2
Z1 + f3 − f1( ) f1 − 2f2 + f3( )Z2 + f2 − f1( )

2
Z3

f3 − f2( ) f1
2 − f3 − f1( ) f2

2
+ f2 − f1( ) f3

2  (5.45)

5.5 Integration of RF Inductors into a Compact Module Design

Inductors in RF modules are invariably planar in construction. They may be imple-
mented in one or more layers in a laminate carrier, on an active die, or on a passive 
die. For optimum performance characteristics and highest yield, critical RF inductors 
are invariably implemented on die, rather than in a laminate. The reason for this is 
that on die the inductor traces are controlled lithographically and thus subject to 
less variation in the manufacturing process. Smaller trace widths and gaps between 
the traces can also be achieved.

Figure 5.14 shows examples of some common planar on-die RF inductor lay-
outs. To minimize the footprint area required to achieve a given inductance value, 
they typically comprise metal traces wrapped tightly around one another. If both 
ends of the inductor need to be in close physical proximity, then some type of via 
or underpass metallization is required on the wafer. Such compact planar induc-
tors may be implemented on an active die, such as a PA. Alternatively, a separate 
passive die may be designed for inclusion in a module. This approach typically has 
the advantage of lower cost.

One particularly advantageous approach for implementing a low-cost compact 
PA module utilizes flip-chip attach technology. Such a module is typically realized 
with two or more dies mounted on a laminate carrier. Passive dies for implement-
ing multiple planar RF inductors required for biasing, matching, and filtering func-
tions, have the dual advantages of low cost and low production variability. Active 
die carry the transistors and associated circuitry required for signal processing and 
amplification. Flip-chip bumps are plated on each die. Figure 5.15 shows a profile 
of a representative on-die stud bump.

The active and passive die are flip-chip-attached to a laminate carrier by 
reflowing the Sn solder cap on top of the stud bumps. After reflow, the module is 
overmolded with a resin and the individual modules are then singulated. This con-
struction technique is shown schematically in Figure 5.16.
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Figure 5.14 Examples of on-die critical RF inductor layouts.

Figure 5.15 Multiple inductive passive die and Cu stud bump profile.
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This flip-chip module construction technique has several very significant advan-
tages over conventional die wire bonding.

1. The Cu bumps have very low resistance.
2. The Cu bumps have very low inductance.
3. There is minimal RF magnetic coupling between the bumps and other cir-

cuit elements.
4. Because the bumps are lithographically defined, they have minimal vari-

ability in production.
5. The bumps permit a very low-profile module.

5.6 Summary

Reactive elements (i.e., capacitors and inductors) are critical elements in all RF 
circuits and circuit models, whether active or passive. Because they are essentially 
one-port devices, they are characterized by only a single complex parameter, namely 
impedance or admittance, Z or Y. Consequently, lumped-element models of reactive 
elements generally comprise only single reactive and resistive elements.

In order to develop useful analytic synthesis approaches for the RF circuit, 
lumped-element models for inductors and capacitors, with relatively constant values 
over frequency, are essential. In practice, all reactive elements have an associated 
self-resonance, above which their reactance changes sign. If the self-resonance is 
sufficiently above the frequencies of interest for the design, it may be of little conse-
quence and may be ignored. However, for high-frequency RF circuits, for example, 
hundreds of megahertz or gigahertz, this is frequently not the case and becomes 
ever truer as designers are continuously pressured to reduce the size of their designs.

When self-resonances of the reactive components cannot be ignored, simple 
two lumped-element representations are not useful for analytic circuit design. The 
reason for this is that the element values become increasingly frequency-dependent 
as the resonance is approached and change sign above resonance. With such behav-
ior, it is nearly impossible to derive analytic formulae useful for circuit design. It 
also masks any clear understanding of how the key design parameters affect the 
element’s performance and how it might be improved by redesign.

Figure 5.16 Flip chip PA module construction.
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Formulae are presented in this chapter for deriving three-element, equivalent-
circuit models for reactive elements from the one-port data. These formulae do 
not rely on a best fit of the models to the data over a moving range of frequencies. 
Instead, the element values are derived in a closed form on a frequency-by-frequency 
basis. The additional parameter required for these solutions is the derivative of the 
reactance at each frequency.

The three-element, equivalent-circuit models for reactive elements are greatly 
advantageous compared to the two-element models. The three-element component 
values are much better behaved and typically vary only slowly and smoothly over 
frequency. This makes them eminently suitable for deriving analytic formulae for 
RF circuit design. It also greatly aids in understanding how design trade-offs impact 
the key RF characteristics of the reactive element.

When referencing the quality factor Q of a reactive element, there are two 
alternate values that are relevant, depending on how the element will be used in the 
circuit. The first we shall call the inherent Q factor of the element. For a capaci-
tor, this would be its Q factor, ignoring any series inductance of the element; for 
an inductor, this would be its Q factor, ignoring any parallel capacitance of the 
element. The second Q factor would be the apparent Q factor of the reactive as 
determined by measurement.

The inherent Q factor of a capacitor (i.e., ignoring any self-inductance) is the 
appropriate parameter to use when a capacitor is to be used in a series configura-
tion. In this case, any series inductance can be absorbed in the series inductance 
required in the circuit, thereby reducing the required value of the inductance. This 
design approach is applicable, providing only that the self-resonant frequency of the 
capacitor is at or above the desired self-resonant frequency of the series configuration.

The inherent Q of an inductor (i.e., ignoring any self-capacitance) is the appro-
priate parameter to use when an inductor is to be used in a parallel (i.e., tank) 
configuration. In this case, any parallel capacitance can be absorbed in the paral-
lel capacitance required in the circuit, thereby reducing the required value of the 
capacitance. This design approach is applicable, providing only that the self-resonant 
frequency of the inductor is at or above the desired self-resonant frequency of the 
parallel configuration.
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C H A P T E R  6

Efficient Analytic Optimization Approach

The starting point for any RF design is the set of electrical requirements for the 
circuit supplied by the end user. The choice of circuit topology to best meet these 
requirements is generally left to the designer. Frequently, there can be multiple pos-
sible design approaches with the potential to meet the sought-after design goals. 
It is up to the designer to select the best circuit for the application in terms of size, 
cost, performance, and production yield.

When faced with a new set of required performance specifications for an RF 
module, the designer must decide as quickly as possible the topology to be used 
that will have the best chance to meet these requirements. The choices are typically 
to modify an existing design or to start afresh with a new approach that may offer 
the chance for improved performance, smaller size, or lower cost. While the latter 
may be advantageous in the long run, in the short run, it requires significantly more 
time and effort. To minimize such an effort, the approach as detailed in this book is 
to develop a set of easily applied test benches that can rapidly provide the designer 
with all the key design trade-offs for each approach. These test benches will allow 
the optimum design architecture to be selected as expeditiously as possible and at 
the same time give the designer a comprehensive appreciation of what each circuit 
option is, and is not, capable of.

Like a set of colored paints for an artist, a set of test benches can be developed 
for each of the common basic circuit functions that a designer may face. These may 
include input and output amplifier impedance matching in various forms, filtering, 
diplexing, power splitting and combining, and couplers. The test benches to be 
described are based on analytic circuit analysis combined with a novel approach to 
circuit optimization that makes them extremely time-efficient.

To illustrate the fundamentals of this approach, consider the schematic of an 
archetypal two-section amplifier matching architecture shown in Figure 6.1. The 
two cascaded lowpass π-sections comprise a total of 10 elements. The amplifier, on 

Figure 6.1 Example of two-section amplifier output match with frequency traps.
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the left, has complex source impedance ZS, and the load impedance, on the right, 
has a complex impedance ZL. This circuit is representative of those commonly used 
for matching the low output impedance of an RF PA to a higher impedance load, 
typically the antenna.

Optional reactive elements Ct## and Lt## are included in the matching circuit to 
implement frequency traps at user-specified frequencies. Commonly, these may be 
harmonic frequencies of the passband, for example, second and third harmonics, 
where the network is required to have desired impedances or rejection character-
istics. Because the circuit has 10 elements, determining unique values for the ele-
ments would require 10 equations with associated boundary conditions (i.e., input 
specifications). Given that both the complex source and load impedances are speci-
fied, for a low insertion loss through the network, we require the input impedance 
to the network Zin = ZS

∗, where “*” denotes a complex conjugate. Combined with 
this impedance requirement, we can write the following equations for the network:

1. (Zin)real = (ZS)real.
2. (Zin)imag = −(ZS)imag.
3. LtC1 = 1/ω2

C1C1, where ωC1 = trap frequency for C1.
4. LtC2 = 1/ω2

C2C2, where ωC2 = trap frequency for C2.
5. LtC3 = 1/ω2

C3C3, where ωC3 = trap frequency for C3.
6. CtL1 = 1/ω2

L1L1, where ωL1 = trap frequency for L1.
7. CtL2 = 1/ω2

L2L2, where ωL2 = trap frequency for L2.

This comprises only seven equations, yet the network has a total of 10 element 
values to be determined. Consequently, the network synthesis problem is under-
constrained, implying that there is a limitless set of solutions that is possible for the 
element values. While this might at first appear to be disadvantageous, presenting 
an insurmountable challenge for the optimization of the network via synthesis, the 
opposite is actually true. The fact that a limitless set of network solutions is pos-
sible, each with differing performance characteristics, presents the designer with the 
freedom to select an optimum configuration, for the application, from an infinite 
spectrum of possibilities. No single “optimum” solution exists. Among the pos-
sible configuration choices, each may be optimum for one parameter, for example, 
insertion loss, input impedance, and harmonic rejection. Invariably, none will be 
optimum for each of the desired characteristics simultaneously.

Because there is no one optimum solution for the network, what is the best 
and most time-efficient way for the designer to find the best compromise for the 
application? A common approach, typically used in powerful RF computer-aided 
design (CAD) software suites, is to begin with a starting solution for the network 
and arrive at an improved solution by means of an optimizing algorithm. However, 
this approach typically has the following drawbacks:

1. The designer must set design goals for key performance characteristics.
2. Only a single design configuration is returned.
3. The optimization can be very time-consuming.
4. There is a risk that only a local optimum will be found.
5. Optimization must be rerun if minor design parameters are changed.
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For an unfamiliar network, it can be a challenge for the designer to set goals 
for key network characteristics a priori. The designer first needs to have a good feel 
(i.e., understanding) how individual goals might impact each other. For example, 
it might be that requiring too good an impedance match across a passband limits 
the minimum insertion loss that can be achieved.

Optimization algorithms, if they are successful, generally stop when they find 
the first set of component values, which result in the circuit performance being just 
within the design goals. They do not continue to improve the circuit performance 
beyond that point, because a computer algorithm cannot decide what is better 
without further user input. With only a single design solution, the designer has 
little insight into the limitations, capabilities, and sensitivities of the circuit. This 
can only be gained by running repeated circuit optimizations with different goal-
setting objectives. Such an approach can be very challenging and time-consuming.

Optimization algorithms are notoriously challenged by being trapped by a local 
optimum. If the initial circuit values going into the optimizer are not well-chosen, the 
best performing circuit design returned may not be truly the best solution possible. 
Wider ranging, randomized optimization algorithms do exist, but in practice the 
results are frequently disappointing. Conservative optimization algorithms applied 
to an already well-conceived design typically yield the best results.

Finally, once circuit values have been selected for a design, using some type of 
optimization process, designers will frequently want to slightly modify its perfor-
mance or make minor modifications to the circuit. In Figure 6.1, for example, the 
designer might want to replace one or more of the ideal elements by a three-element 
equivalent circuit, as discussed in Chapter 1, to account for parasitics. Alternatively, 
there might be a need to improve harmonic rejection. To maintain optimum per-
formance, such small changes would inevitably result in the need to modify all the 
circuit elements, even if only slightly. Consequently, using the software optimizer 
approach, every time the designer wants to make any changes to the circuit, the 
optimizer must be rerun. The designer does not get instantaneous feedback to cir-
cuit modifications, which can slow down the design process.

The analytic optimization approach developed overcomes the drawbacks listed 
above. It allows circuit prototyping to be performed very rapidly, at minimal cost, 
on computers with only moderate processor capability. It is very flexible and allows 
rapid comparison of different design approaches by clearly providing the perfor-
mance trade-offs of each architecture.

Consider again the amplifier output matching circuit in Figure 6.1. It is imprac-
tical to consider all possibilities for the network as, even if only 10 values for each 
element were to be considered, there would be a total of 1010 solutions for the 
network to be analyzed, which would take considerable computational time. For 
this reason, software optimization algorithms generally begin with a set of “seed” 
network element values and proceed by methodically making progressive and incre-
mental changes to each of the elements in turn, and then repeating the process, in an 
attempt to bring the network performance closer to the design goals. This approach 
is very time-consuming, requires considerable computation, and has no guarantee 
of finding a global optimum.

If we apply circuit analysis, as detailed above, we can write only seven circuit 
equations for the network, which has 10 unknowns. We thus need three additional 
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boundary conditions (i.e., equations) to determine unique solutions for the element 
values of the network. One possible approach might be to set arbitrary values for 
three of the elements and then determine values for the remaining elements from 
the circuit equations. If the values of these three elements are then stepped, through 
a predetermined range, a spectrum of solutions for the network could be obtained. 
However, such an approach is highly problematic for the following reasons:

1. The key circuit performance parameters will have varying sensitivities to 
each of the individual circuit elements (in this case, 10). Consequently, the 
three elements chosen for the analysis will be critical to the outcome.

2. With no a priori knowledge of the appropriate values for the elements chosen, 
it is extremely difficult to set well-chosen values for the span and increments 
for the elements being varied.

3. Circuit solutions may not even exist for some of the three-element value 
combinations being evaluated.

Thus, choosing element values for the additional circuit boundary conditions 
to generate a spectrum of circuit solutions is not a recommended approach. The 
better choice, and the one that forms the basis of the approaches in this book, is to 
identify key circuit characteristics whose limits can be identified a priori and then 
step though the ranges for each of them to provide the spectrum of circuit solutions. 
These alternate analytic solutions can then be compared and the one that provides 
the best compromise of electrical characteristics selected.

By way of example, the circuit of Figure 6.1 can be viewed as a concatenation of 
two π-networks. Each of these networks will have a transmission phase shift associ-
ated with it. In addition, at the common node of the networks, the impedance look-
ing to the right and left will be complex conjugates of each other if the network is to 
provide the required input match. The phase shifts of the two sections plus the real 
impedance at the common node can then be chosen to complete the three variables 
to be used for the network scan. Limits can be placed on these three parameters 
relatively easily without preassigning any of the element values. This approach has 
been found to be very effective at providing a rapid and comprehensive knowledge 
of a network’s capabilities and trade-offs, as is illustrated in the following chapter.

It should be emphasized that the analytic optimization approaches described 
here are not proposed as an alternative to a full, typically three-dimensional (3D) 
CAD analysis. Quite the opposite, they are meant to complement it. On being 
given a list of desired device specifications, a designer must first decide upon the 
best circuit architecture to employ for achieving the goals and to what extent they 
are achievable. In practice, there are only a relatively few number of passive circuit 
architectures employed for PA output matching. Flexible analytic models for these 
can be extremely helpful to the designer to decide which architecture is the best 
starting point for a full CAD simulation and optimization.
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C H A P T E R  7

Excel: A Powerful Interactive RF 
Design Tool

One of the most important aspects of any circuit analysis and optimization software 
tool is its visualization capability. The design equations and optimization algo-
rithms presented in this book may be implemented by a competent designer using 
any number of programming choices. However, in this book, we shall be illustrat-
ing the RF circuit design approaches using Microsoft Excel. This may strike many 
designers, who have likely never contemplated Excel as being capable of complex 
RF analysis, to be a surprising choice. However, the latest versions of Excel have 
many overlooked capabilities that can be exploited for efficient RF design. We 
shall explain how these capabilities can be used to build powerful RF design and 
analysis software tools. The built-in conditional statements functionality in Excel 
is particularly powerful in enabling the creation of dynamic circuit visualizations, 
which are more flexible and fluid than those available in even the most expensive 
RF software design suites.

The principal advantages for RF circuit analysis in Excel are:

1. Dynamic circuit visualization.
2. Low cost, much lower than any commercial RF design software suite.
3. Widely available, being part of the Microsoft Office suite.
4. No additional licensing fee required.
5. Design tools can be run anywhere, without the need to access a license server.
6. Readily customizable.
7. Easy to exchange data with other programs.
8. Programming help and tips widely available, for free, on the internet.

Excel can be used as RF analysis tool as it has complex functional and calcula-
tion capabilities built in. It is a very flexible tool used by millions around the world 
for a multitude of disparate purposes. To satisfy the varying needs of its wide user 
base, its data manipulation capabilities have been dramatically expanded on a con-
tinual basis to the point where the typical user today is only cognizant of a very 
small range of its capabilities. We shall attempt, in this book, to demonstrate how 
some of these capabilities may be applied to efficient and user-friendly RF analysis.

While Excel has the capacity for use as an RF design tool, it does not have any 
built-in RF functions. It is, in essence, a programming platform with an excellent 
visual interface, which can be used for building RF applications.
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7.1 Visualizations in Excel

As listed above, a major incentive for building RF applications in Excel is its visual 
display capabilities. There are three classes of visual interaction tools available to 
the designer:

1. Data display plots. The data may be displayed in a variety of plot formats, 
for example, Cartesian, polar, bar, and π. Excel incorporates a wide variety 
of built-in display formats. They provide the designer with near unrestricted 
freedom to display in the best format for visualization.

2. Dynamic circuit schematic layout. This is made possible by the “conditional 
format” capability of Excel. To arrive at an optimum design, the RF designer 
needs to begin by considering a layout that encompasses as many variants 
as possible. For example, if the design is for a filter, the order of the filter 
should be a variable; if the design is for a matching network, the number of 
sections and whether they should be highpass or lowpass networks should be 
investigated. Depending on the analysis/optimization, the circuit schematics 
could look very different. Excel has the unique ability to cleanly present a 
schematic for the chosen solution on the spreadsheet, with no crossed-out 
elements or disconnects. Even the most expensive RF design tools are not 
capable of this.

3. Contour plots. In addition to the dynamic schematic layout, the “conditional 
format” capability also makes a form of contour plotting relatively easy to 
implement. This is achieved by populating a grid of cells with colors that 
correspond to a discrete range of element values. Multiple contour plots of 
this kind may be linked together to how important network parameters can 
be traded off with one another in the design and linked to the schematic 
layout. These contour plots are elements to design optimization.

7.1.1 Display Plots

The majority of RF network performance data is typically presented in a rectan-
gular Cartesian plot format. Such plots may have left and right axes to display, for 
example, displaying various characteristics of the network. Most commonly, the 
abscissa, or horizontal axis, is frequency; however, it may be another network vari-
able such as the value of one of the elements.

Figure 7.1 shows a Cartesian plot example from an Excel spreadsheet for a cou-
pler. In this example, the coupler was assumed to have a coupling coefficient of 22 
dB, and 20 dB directivity. The load reflectivity for the plot was VSWR = 2.5. The 
coupler parameters are plotted versus the phase of the mismatch on the output of 
the coupler. Note that multiple parameters may appear on one plot and each may 
be referred to either of the vertical axes. In addition, parameters can be turned on 
or off in the display window at will.

In RF design, reflection data and input and output impedances are invariably 
displayed on a Smith chart. Fortunately, Smith charts can easily be created on an 
Excel spreadsheet. Complex data is displayed using the polar chart option in Excel. 
Hence, the parametric data to be plotted need simply to be converted to its polar 
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format (i.e., magnitude and phase). If a Smith chart graphic is then used as the fill 
option for the chart, a classic Smith chart representation of the data may be obtained.

Figure 7.2 shows examples of two different Smith chart fill options displaying 
the same data. The first has an immittance background, showing both impedance 
and admittance contours. The second shows only the impedance contours. Multiple 
contours may be included on the same chart. Note also in Figure 7.2 that the titles 
capability may be used to display dynamic information related to the data displayed 
in the chart. In the charts shown, the frequency range of the data is displayed on 
the left at the top and bottom of the charts. A description of the data being plotted 
is shown on the top right, which is also dynamically linked to the system variables.

On the Cartesian plots, the ranges on the abscissa and ordinate axes can be 
modified interactively and the resulting ranges are displayed on each of the axes. 
Thus, for example, if the abscissa displays frequency data, the user can change the 
frequency range for the plot and the modified frequency range of the data will be 
instantly and clearly displayed on the axis. However, for the Smith chart plots, 
varying the range of the data being displayed is a little more complicated. The nor-
mal extent of the data on both axes is −1 to + 1, the nominal range for a reflection 
coefficient. However, what we are commonly interested in seeing on a Smith chart 
is data over a limited frequency range. For example, we might only want to see the 
input impedance of a filter over the passband frequency range. How do we accom-
plish this? The workaround is relatively simple. In two cells, close to the Smith 
chart, allow the user to enter the range to be displayed on the chart. For example, 
if the independent variable is frequency, the two cells could look like Table 7.1. On 
the Excel sheets, for convenience, data values in cells that the user is free to modify 
are always assigned to the color blue.

These values can then be used in conditional statements in each of the data 
cells where the values to be displayed are calculated. For example, if the entries 
specify a frequency range and the frequency associated with a data value is within 
that range, the cell value is left untouched. However, if the associated frequency is 
outside the specified range, the cell value is set to NA(), the null value. Cells with 

Figure 7.1 Cartesian plot example for a coupler in Excel.
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Figure 7.2 Smith chart examples in Excel.

Table 7.1 Smith Chart Display Range Entry on Spreadsheet

Smith range (MHz) 1700 2025
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this value (#N/A) will not be displayed on the chart. Hence, even if the data range 
in the Smith chart plot window is set to include the full extent of the data, only 
data within the specified range will be displayed.

By way of example, Figure 7.3 illustrates how the input impedance of a filter 
may be displayed over differing frequency ranges, depending on the user inputs, 

Figure 7.3 Smith chart examples illustrating reduced data display range.
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using this technique. On a spreadsheet in the workbook, frequently hidden from 
the user, the filter characteristics are calculated over an extended frequency range, 
say, 10 to 12,000 MHz. The range of the input impedance data to be displayed on 
the chart is set to encompass this full range. However, in the case of the plot on the 
left, the user specifies a desired frequency display range for the data from 1,000 
to 3,000 MHz by means of entries such as those in Table 7.1. For the plot on the 
right, the user specifies a reduced frequency display range, corresponding to the 
filter passband, from 1,700 to 2,025 MHz by changing the entries in cells such as 
those in Table 7.1.

This facility in Excel of conditionally equating a data value to the null value is a 
very useful tool that can be exploited in many ways beyond the example described 
for the Smith chart. When displaying multiple data sets on the same chart, it can 
be used to dynamically turn data sets on and off. If the designer is trying to meet 
customer-defined performance specifications, it can be used to include dynamically 
variable template limits on the chart.

7.1.2 Dynamic Circuit Schematic Layout

The RF design challenge begins with a set of electrical performance specifications 
that the circuit will be required to meet. In most cases, there will be multiple alter-
nate circuit approaches to consider that could potentially meet the specifications. 
The challenge for the designer is to narrow down these choices, with a minimal 
expenditure of time and resources, to arrive at an “optimum” solution based on a 
set of critical criteria.

Alternate circuit design solutions that an engineer may want to consider in 
the initial stage of the design will usually comprise significantly different circuit 
topologies. Thus, the circuit schematics for each approach will be different. Not 
only that, but even for a single approach, there may be a choice between highpass 
and lowpass elements or the number of sections required in the circuit. Therefore, 
as the engineer progresses through the early stages of design, many circuit sche-
matics will typically have to be drawn and redrawn many times. These schematics 
can also become inevitably cluttered with many elements that are open-circuited 
or short-circuited in the schematic that can lead to confusion.

Even the most advanced RF design tools have static circuit schematic visualiza-
tions. Thus, if a matching network has three sections, even after optimization, it 
will still have three sections albeit if some of the elements are unneeded. Likewise, 
a lowpass section or filter in a schematic will remain lowpass in nature, regardless 
of any circuit optimization applied to it.

In contrast to the commercial RF design tools, the “conditional format” capa-
bility of Excel enables the creation of dynamic circuit schematics on a spreadsheet. 
This means that if, as a result of optimization, for example, a highpass network is 
required in place of a lowpass one, the schematic can immediately be redrawn as 
the former with no superfluous elements in the schematic. Similarly, if as a result of 
optimization or user inputs, a two-section matching network is preferred to a three-
section network, the schematic can immediately morph from the latter to the former.

The dynamic schematic morphing capability, combined with the associated 
optimization and analysis capabilities that can be incorporated into an Excel work-
book, makes it a powerful tool for RF design. Lossy and reactive parasitics can be 
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included in the circuit analysis, as described in Chapter 1. While these parasitics 
are relatively basic, and do not incorporate higher-order parasitic element coupling, 
they are generally sufficient to give the designer a solid understanding of the cir-
cuit behavior and capabilities. Because schematic changes can be evaluated easily 
and essentially instantaneously, the designer can rapidly compare different circuit 
topologies to determine the optimum for the application.

Figure 7.4 shows an example of the dynamic schematic capability on an Excel 
spreadsheet. Both circuit topologies are from the same spreadsheet, but with differ-
ing user inputs. As can be seen, inductors are represented as rectangles, but, other 
than that, other components take their conventional form.

Figure 7.4(a) shows a two-section lowpass PA matching network, with a bias 
feed network for the amplifier. In contrast, Figure 7.4(b) shows a two-section high-
pass PA matching network, with the same bias feed, but with a frequency trap on 
one of the series inductors, a series blocking capacitor, and a two-port network 
(e.g., a filter) on the output of the network. These significantly different circuit 
schematics are displayed in the identical area on the spreadsheet. The morphing 

Figure 7.4 Dynamic output matching network schematics: (a) basic two-section lowpass 
network, and (b) network with added elements.
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is accomplished using the “conditional format” capability of Excel in response to 
changes in user inputs.

A more striking example of the dynamic schematic capability of Excel is shown 
in Figure 7.5. In that figure, four different schematics are shown corresponding to 
the filter type selected by the user. Again, all four schematics shown occupy the 

Figure 7.5 Dynamic filter network schematics: (a) lowpass, (b) highpass, (c) passband, and (d) 
stopband.
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same area on the spreadsheet. This spreadsheet allows the filter designer to rapidly 
change the filter type, with all other parameters being equal, to compare the attri-
butes of the varying filter type for the application in question. In addition, while 
in Figure 7.5 all the filters comprise two sections, by changing only one entry on 
the spreadsheet, the designs can be immediately reconfigured to have anywhere 
from one to five cavities. Each time, the schematics are redrawn accordingly and 
instantly. This greatly facilitates the RF design challenge by significantly reducing 
design cycle time and permits the designer to consider more options that can hope-
fully result in a more “optimum” design.

An example of how conditional formatting can be used to cause two groups of 
cells to display as either a vertically orientated capacitor or an inductor is shown 
in Table 7.2.

7.1.3 Contour Plots

As discussed earlier, there is invariably never a single design whose performance 
is optimal in all key aspects of design. A design that is best for, say, insertion loss 
may not be best for input impedance or harmonic rejection. Faced with a spectrum 
of possible design solutions, the engineer must choose the one that offers the best 
compromise between the critical performance parameters for the RF functionality 
of the module. A visual representation of the compromises available to the designer 
for the various circuit options available can greatly facilitate this choice. Colored 
contour plots are an effective option for doing this.

To generate the contour plots in Excel, the designer needs to first identify two 
key independent circuit variables that can best be used to characterize the network. 
This approach was described in Chapter 6. By sweeping these variables in turn and 
determining the associated analytic solutions for the network, the values of key 
performance parameters can be entered on a 2 × 2 grid on the spreadsheet. Once 
such a scan is complete, colors can be assigned to each of the cells, based on the 
cell value relative to the extreme values in the grid, using the “conditional format” 
capability in Excel.

Figure 7.6 shows an example of two such grids for a scan of a two-section 
amplifier output match, such as that shown in Figure 7.4(a). The two independent 
variables δφπ1 and δφπ2 are the phase shifts through the two lowpass π matching 
sections, as will be explained more fully in Section 11.8. The first contour plot, 
Figure 7.6(a), shows the value of network insertion gain as a function of δφπ1 and 
δφπ2. The second contour plot, Figure 7.6(b), shows the magnitude of the complex 
input impedance mismatch of the network also as a function of δφπ1 and δφπ2. In 
each chart, the green cells have the most desirable values for the corresponding 

Table 7.2 LC-Series Resonator Design Parameters

Formula Border Format Applies To

=IF($E$5=1,TRUE,FALSE) AaBbCcYyZz =$F$17:$G$18,$V$17:$W$18

=IF(OR($E$5=2,$E$5=4),TRUE,FALSE) AaBbCcYyZz =$F$17:$G$18,$V$17:$W$18
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dependent variable, while the dark red cells have the least desirable values. The cells 
in each chart that are dark green are the most favorable value in each chart. The 
cells in each chart that are yellow represent the current design selection, which can 
be simply changed by selecting a different cell in one of the charts. Each time the 
active cell is changed, the color of the corresponding cells in each of the charts is 
changed to yellow to highlight where the current design choice lies on each of the 
charts. The schematic and all network performance data and plots on the spread-
sheet are determined based on the active cell selection. Thus, by simply moving 
the mouse around on the contour plot, the schematic and performance parameters 
displayed are instantly updated to reflect the design changes.

Figure 7.6 shows only two contour plots for the matching network, yet, in prac-
tice, there would typically be more. The designer can create as many of the coupled 
contour plots as are necessary to display all the key parameters of interest for the 

Figure 7.6 Contour plots for (a) insertion gain, and (b) mismatch.



7.1 Visualizations in Excel 95

design. Such contour plots can greatly aid the design process. The designer can 
clearly choose the parametric area that offers the best compromise in performance 
characteristics. They also give a clear visual indication of areas to avoid, where 
one or more of the parameters is too close to a design region where performance 
degrades rapidly. The fact that the schematic and all circuit parametric plots also 
change immediately in response to a change in the selected active design cell, rein-
forces the feedback to the designer.

The ability to include contour plots on the design spreadsheet is highly advan-
tageous both in letting the designer quickly explore design concepts and in clearly 
conveying the design compromises of which the network is capable.

7.1.4 Bar Plots

The engineer is under constant pressure to minimize both the size and cost of an 
RF module destined for use in a modern mobile RF device. Passive components in 
these modules, inductors and capacitors, typically consume a significant area of 
the footprint and comprise a significant portion of the module bill of materials. 
For capacitors, higher-quality factors typically require higher-cost components. For 
printed RF inductors, a higher-quality factor generally requires a larger footprint. 
In both cases, therefore, there is an inherent cost for higher Q elements. A key chal-
lenge in coming up with a cost-effective design is to understand how the Q factor 
of the individual components impacts the overall module performance. This can be 
visualized easily in Excel by use of bar chart plots.

Using an Excel macro, a bar chart can be generated showing the sensitivity of 
a module performance parameter to variations in parasitic parameters of the pas-
sive elements.

Figure 7.7 shows the variation in module insertion gain for bracketed changes 
in the ESR (equivalent series resistance) of the capacitors in the circuit.

Figure 7.7 Bar plot showing insertion gain dependence on capacitor ESR.
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Figure 7.8 shows the variation in module insertion gain for bracketed changes 
in the Q factors of the inductors in the circuit.

It is clear from both plots that improved module performance can be achieved 
by focusing on the design of only a few key components.

7.2 Complex Expressions in Excel

The ability to evaluate complex expressions is an essential requirement of any RF 
software design tool. Fortunately, Excel contains all the basic mathematical complex 
functions for fulfilling this requirement. Some of the principal complex functions are:

To represent a complex number, for example, a + jb “= complex(a, b)”

To sum complex numbers, for example, Z1 + Z2 “= imsum(Z1, Z2)”

To subtract complex numbers, for example, Z1 − Z2 “= imsub(Z1, Z2)”

To multiply two complex numbers, for example, Z1 
× Z2

“= improduct(Z1, 
Z2)”

To divide two complex numbers, for example, Z1/
Z2 “= imdiv(Z1, Z2)”

For real part of complex number, for example, 
real(Z) “= imreal(Z)”

For imaginary part of complex number, for exam-
ple, imag.(Z) “= imaginary(Z)”

For conjugate part of complex number, for exam-
ple, imag.(Z) “= imconjugate(Z)”

For magnitude of complex number, for example, 
imag.(Z) “= imabs(Z)”

For square root of complex number, for example, 
√Z “= imsqrt(Z)”

For exponent of complex number, for example, eZ “= imexp (Z)”

For power of complex number, for example, Zn “= impower (Z, n)”

There are many more. With such built-in functions, essentially any complex 
expression may be evaluated within a cell. Evaluating expressions with many terms 
can be a little cumbersome due to the verbose nature of some of the functions. 
However, where this is problematic, the expression may be broken down in parts 
and evaluated over more than one cell.

To keep the user interface uncluttered and unconfusing, it is recommended 
that all the calculation cells be assigned to a separate spreadsheet from the one 
that accepts user inputs and displays the results. It is further recommended that 
the calculation spreadsheets be even hidden from the user to prevent inadvertent 
corruption of the embedded formulae.
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On the user interface spreadsheet, there will inevitably be some cells assigned 
for user inputs, while others contain the results from calculations on other pages of 
the workbook. It is important that the user can easily distinguish these two types of 
cells so only the user-input cells are modified. A simple way to do this is to assign a 
specific color to those cells that the user is free to modify. In the examples provided 
in this book, data in those cells are always assigned the color blue.

7.3 Use of Macros in Excel

Excel incorporates a Visual Basic programming capability. Subroutines written in 
Visual Basic may be saved and run as macros by selecting a control box on one of 
the spreadsheets. While macros can be very powerful, but they have one potential 
drawback that the user should guard against. Namely, if cell values are dependent 
upon being updated by a macro after, say, the user makes input changes, the values 
will remain unchanged until the macro is executed. Since there is no way to tell if 
a macro has been executed, after changes, cell values may be inconsistent with the 
data inputs on the spreadsheet.

Macros are also inconsistent with instantaneous user feedback. Each time an 
input is modified, ideally the network characteristics should be immediately updated 
in response to the change. If equations are written directly in cells on a calculation 
spreadsheet, the cells will be immediately recalculated as desired. The user will 
therefore see the results of the changes immediately. However, if the calculations 
are implemented in a Visual Basic subroutine, the user will only see the results of 
any changes if the macro is executed, which thus requires an extra step that might 
even be forgotten.

Figure 7.8 Bar plot showing insertion gain dependence on inductor Q.
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Where macros are best used is in stepping through a series of changes. This is 
where they excel. For the contour plots discussed earlier, macros provide the means 
to step through a sequence of input changes and tabulate the results. Another very 
useful utility they have is in being able to change chart parameters on the spread-
sheet. If there are multiple charts, or plots, on a spreadsheet and we wish to change 
the frequency span of the data on multiple charts, it is time-consuming to have to 
do this manually and interactively on each of the charts in turn. A macro can relieve 
this task. By clicking on a single macro button, the x or y ranges on one or more 
charts can be changed instantaneously. Below is an example of a set of Visual Basic 
commands to change the x-axis range on one chart:

ActiveSheet.Shapes(“chart_name”).Select

Name = ActiveChart.ChartTitle.Caption

ActiveChart.Axes(xlCategory).MinimumScale = x1

ActiveChart.Axes(xlCategory).MaximumScale = x2
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C H A P T E R  8

LC Resonator Basics

LC resonators, at their simplest, comprise a single inductor (L) and capacitor (C). 
The two elements may be connected either in series, or in parallel, depending on 
the application. Figure 8.1 shows the basic configurations of an LC-series and an 
LC-parallel resonator incorporating parasitic resistances RS and RP, respectively, 
to account for dissipative losses. In both cases, the two elements will resonate at a 
specific frequency fr, where the reactive impedances of the two elements are equal 
to each other, but of opposite sign, that is,

 
jwrL − j

wrC
= 0  (8.1)

Thus,

 wr
2LC = 1  (8.2)

At resonance, energy in the elements rapidly exchanges between magnetic and 
electric storage.

RF systems are invariably optimized to process signals within a finite specified 
range of frequencies. If strong enough, frequencies outside this range can often result 
in negative effects, such as saturation of an amplifier or nonlinear mixing resulting 
in the generation of unwanted spurious emissions. To attenuate unwanted signal 
energy relative to the desired RF signal, LC resonators are frequently employed by 
suitable placement in the RF circuit. Depending how they are incorporated into 
the circuit, they may be used to effect either bandpass or bandstop filtering. When 
employed as bandstop elements, they are usually referred to as “traps.”

Both the series and parallel resonator types can be designed to have very similar 
bandpass or bandstop characteristics in the neighborhood of the design (i.e., reso-
nant) frequency. The major distinguishing feature between the two is the impedance 
that they present in the circuit.

If the resonating elements are in series, below resonance, they exhibit a capacitive 
reactance. Above resonance, they exhibit an inductive reactance. At the resonant 

Figure 8.1 LC resonator configurations: (a) LC-series, and (b) LC-parallel.
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frequency, ideally, they have zero reactance and thus present no inhibition to the 
flow of RF energy.

If the resonating elements are in parallel, below resonance, they exhibit an 
inductive reactance. Above resonance, they exhibit a capacitive reactance. At the 
resonant frequency, ideally, they have infinite reactance and thus completely restrict 
the flow of RF energy.

The impedance of a frequency trap on the output of an RF PA can be critical 
to its efficiency. To understand why, it is helpful to consider their interaction with 
the energy in the desired system passband. Due to inevitable nonlinearities in an RF 
PA, mixing products (i.e., harmonic products of the desired signal inputs) appear 
on the output.

A high impedance mismatch on the output of an amplifier serves to attenuate 
this energy by reflecting it back into the amplifier. Depending on the phase of the 
reflected energy, it may remix with the desired signal energy to reduce distortion 
of the waveform, thereby increasing efficiency, or increase the distortion leading to 
reduced efficiency. Using a mixer analogy, we think of the efficiency being maximized 
when the harmonic energy is reflected back into the amplifier with the appropriate 
phase to cancel the harmonic energy being generated.

Whether used in a bandpass or bandstop function, LC resonators have two 
defining characteristics for their design:

1. The center frequency fr, that is, the frequency at which the resonator provides 
minimum or maximum attenuation.

2. Its quality factor (Q). This incorporates aspects of both insertion loss and 
bandwidth. In general, the higher the resonator Q, the lower will be its dis-
sipative losses at resonance. However, the higher the Q, the narrower will 
be the bandwidth of the resonance.

For an LC-series resonator, with series parasitic resistance RS, and in terms of 
ωr from (11.2):

 
QS =

1

RS

LS

CS

=
wrLS

RS

 (8.3)

For an LC-parallel resonator, with parallel parasitic resistance RP, and in terms 
of ωr from (11.2):

 
QP = RP

CP

LP

= wrCPRP  (8.4)

8.1 Formulae for Equivalency Between LC-Series and 
Parallel Resonators

As mentioned above, in theory, LC resonators implemented with either the series or 
parallel configurations can be designed to have near-identical gain characteristics in 
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the neighborhood of resonance. Given one form, the element values for the alternate 
form, with similar characteristics, can be obtained from the following mappings.

Mapping from parallel to series resonators is:

 CS = LP /Z0
2  (8.5)

 LS = CPZ0
2

 (8.6)

 RS = Z0
2 /RP

 (8.7)

and from series to parallel resonators is:

 CP = LS /Z0
2  (8.8)

 LP = CSZ0
2

 (8.9)

 RP = Z0
2 /RS

 (8.10)

where Z0 = line impedance.
By way of example, employing the above formulae, consider the equivalent 

LC-parallel and LC-series implemented traps, resonant at 3 GHz, with the follow-
ing parameters:

LC-series resonator 1 LC-parallel resonator 1

RS = 2.36Ω RP = 1061Ω
LS = 5 nH LP = 1.41 nH

CS = 0.56 pF CP = 2 pF

QS = 40 QP = 40

 (8.11)

For the same resonant frequency, if the inductance and resistance are both 
doubled for the LC-series resonator, the quality factor will remain unchanged (see 
(8.3)). The equivalent LC-resonator element values are then

LC-series resonator 2 LC-parallel resonator 2

RS = 4.71Ω RP = 531Ω
LS = 10 nH LP = 0.7 nH

CS = 0.28 pF CP = 4 pF

QS = 40 QP = 40

 (8.12)

These solutions are used in the sections below to illustrate some basic LC reso-
nator design concepts.
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8.2 Design of LC Resonators for Passband Filtering

In this section, we consider the use of LC-series and LC-parallel resonators in RF 
circuits, primarily targeted as implementing a bandpass function. The resonant fre-
quency fr is the center of the desired signal bandwidth and the resonator’s purpose 
is to provide increasing attenuation of RF energy away from the passband. The 
two resonator types are incorporated into the RF circuit as shown in Figure 8.2.

Figure 8.3 shows the bandpass characteristics of the two resonator types with 
the values listed in Section 8.1. For reference, the dashed line shows the passband 
gain of series and parallel LC resonators with the element values of (8.11), but with 
no dissipative loss.

The series and parallel LC equivalent bandpass implementations have near 
identical gain characteristics, as expected. Despite the fact that the type 1 and 2 
resonator designs all have an identical Q of 40, however, note that the type 2 designs 
have a much narrower resonant bandwidth.

This illustrates that the major design parameter for controlling bandwidth is 
actually the ratio of the two reactive elements used in the resonators. For the LC-
series resonator, the bandwidth is reduced with increasing inductor value LS. In 
contrast, for the LC-parallel resonator, the bandwidth is reduced with the increasing 
capacitor CP. These observations are consistent with (8.3) and (8.4).

In Figure 8.3, comparing the type 1 resonator designs, with and without loss, 
we observe only a very minor difference in the resonant bandwidths. Changing the 
resonator Qs from 40 to ideally infinity has only a minor impact on the resonant 
bandwidth. The major difference, again as would be expected, is in the insertion 
loss, especially close to the resonance.

Although the passband gain characteristics for the LC-series and LC-parallel 
equivalent resonators are essentially identical, their impedance behavior in the neigh-
borhood of resonance is significantly different, as shown in Figure 8.4. The series 
LC resonator impedance transitions from capacitive to inductive as the frequency 
moves up through resonance. In comparison, the parallel LC resonator impedance 
transitions from inductive to capacitive as the frequency moves up through resonance.

Also of note is that the type 2 LC resonators exhibit a wider swing in reactance 
across resonance than do the type 1 designs. It is this that is responsible for their 
narrower passband width.

Figure 8.2 LC-bandpass resonator configurations: (a) LC-series, and (b) LC-parallel.
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Figure 8.3 LC-bandpass resonator insertion gains: (a) LC-series, and (b) LC-parallel.

8.3 Design of LC Resonators for Stopband Rejection

In this section, we consider the use of LC-series and LC-parallel resonators in RF 
circuits, primarily targeted as implementing a stopband rejection function. In such 
traps, the resonant frequency fr is the center of the desired rejection bandwidth and 
the resonators’ purpose is to provide high levels of attenuation of the unwanted RF 
energy. The two resonator types are incorporated into the RF circuit as shown in 
Figure 8.5.
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Figure 8.4 Smith chart impedances of bandpass LC-series and LC-parallel resonators.

Figure 8.5 LC-resonator trap architectures: (a) LC-series, and (b) LC-parallel.

Figure 8.6 shows the bandpass characteristics of the two resonator types with 
the values listed in Section 8.1. For reference, the dashed gray line shows the pass-
band gain of series and parallel LC resonators with the element values of (8.11), 
but with no dissipative loss.

The series and parallel LC equivalent bandpass implementations have near-
identical gain characteristics, as expected. Despite the fact that the type 1 and 2 
resonator designs all have an identical Q of 40, however, note that the type 2 designs 
have a much narrower resonant bandwidth.

This illustrated that the major design parameter for controlling bandwidth is 
actually the ratio of the two reactive elements used in the resonators. For the LC-
series resonator, the bandwidth is reduced with an increasing inductor value LS. In 



contrast, for the LC-parallel resonator, the bandwidth is reduced with increasing 
capacitor CP. These observations are consistent with (8.3) and (8.4).

In Figure 8.6, comparing the type 1 resonator designs, with and without loss, 
we observe only a very minor difference in the resonant bandwidths. Changing the 
resonator Qs from 40 to ideally infinity has only a minor impact on the rejection 
bandwidth. The major difference is in the depth of the notch. Thus, dissipation in 
the bandstop configurations primarily limits the maximum attenuation achievable 
and has little influence on the rejection bandwidth.

Although the passband gain characteristics for the LC-series and LC-parallel 
equivalent resonators are essentially identical, their impedance behavior in the 

Figure 8.6 LC-bandstop resonator insertion gains: (a) LC-series, and (b) LC-parallel.
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neighborhood of resonance are dramatically different, as shown in Figure 8.7. 
The series LC resonator impedance transitions from capacitive to inductive as the 
frequency moves up through resonance. In comparison, the parallel LC resona-
tor impedance transitions from inductive to capacitive as the frequency moves up 
through resonance. However, in the neighborhood of resonance, the series LC 
resonator presents close to a short circuit to the source. In contrast, the parallel LC 
resonator presents close to an open circuit.

Also, of note is that the type 2 LC resonators exhibit a wider swing in reactance 
across resonance than do the type 1 designs. It is this that is responsible for their 
narrower passband width.

8.4 Design of LC-Series Resonators with Desired In-Band Capacitance 
and a High-Side Resonance

In an RF circuit where a capacitor is needed in the passband, for matching or other 
purposes, it can be implemented with an LC-series resonator, rather than a simple 
capacitor. The advantage is in addition to the passband capacitance; the resonator 
can be designed to have its self-resonance at a desired frequency above the pass-
band. This can be useful for achieving attenuation of unwanted high-frequency 
signal components.

For such a resonator design, there are two requirements for the circuit designer: 
(1) achieve the desired capacitance at the passband frequency f0, and (2) effect a series 
resonance at a frequency fr above the passband. Because we only have two elemen-
tal values to determine (i.e., L and C), there is a unique solution to this problem.

Figure 8.7 Smith chart impedances of bandstop LC-series and LC-parallel resonators.
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It is important to note here that the capacitance in the passband will be affected 
by the high-side resonance. While the desired capacitance can be designed for f0, 
the effective capacitance of the resonator will vary across the passband. The closer 
fr is to f0, the greater will be the capacitance variation across the passband. Fortu-
nately, in many cases, the frequency band for rejection is at a harmonic frequency 
and thus significantly removed from the passband.

As discussed in Chapter 5, the majority of components used in practical RF 
circuits have significant associated dissipative and reactive parasitics. For any useful 
synthesis, these parasitic elements must be taken into account in the design equations.

Figure 8.8 shows an LC-series resonator with a composite equivalent incor-
porating the parasitic elements described in Chapter 5. Rather than determine the 
values of L and C directly from the design constraints, we seek to determine the 
values of L′ and C ′, which incorporate the effects of the parasitics on the overall 
resonator response. Because the reactive parasitics have the dominant influence on 
the resonator characteristics, the resistive elements can typically be ignored in such 
a synthesis. The parasitic resistive elements contribute little to frequency shifts of 
the resonator and predominantly result in dissipative losses that are unavoidable.

The required capacitance is obtained from the solution to a quadratic equa-
tion, with

 

a ≈ wr
2 1/C + w0

2LC( )LCCL − 1/ wr
2 − w0

2( )C( )
b ≈ 1 − CL /C − wr

2
+ w0

2( )LCCL

c ≈ CL  

The solution is

 
′C ≈ −b − b2 − 4ac

2a
 (8.13)

and

 

′L ≈ 1

wr
2 CL + 1/ 1/ ′C − wr

2LC( )( )
 (8.14)

By way of example, consider the LC-series resonator parameters in Table 8.1. 
As in Chapter 7, the entries in blue are user inputs. The parasitic element values 
associated with both the inductor and capacitor are typically obtained from manu-
facturers’ data sheets, bench measurement, or sophisticated RF electromagnetic 
simulation software. The element values in the two right columns of the table are 

Figure 8.8 LC-series resonator with parasitics.
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the required element values for the resonator obtained by applying the formulae 
above which incorporate any detuning due to the parasitics.

In this case, the LC-series resonator is desired to have a capacitance of 0.6 pF 
at the center of the band f0 = 2,000 MHz and to have a series resonance at fr = 
4,000 MHz.

Figure 8.9 shows the key performance characteristics of the LC-series resonator 
obtained when implemented with the values for L′ and C ′ given in Table 8.1. Note 
that both the key goals for the resonator have been achieved.

8.5 Design of LC-Series Resonators with Desired In-Band Inductance 
and a Low-Side Resonance

In an RF circuit where an inductor is needed in the passband, for matching or other 
purposes, it can be implemented with an LC-series resonator, rather than a simple 

Table 8.1 LC-Series Resonator Design Parameters

Series (Type 1)

f0 2000 MHz Parasitics Elements

fr 4000 MHz RC(Ω) LC(nH) QL CL(pF) L′ (nH) C′ (pF)

CS (at f0) 0.6 pF 0.2 0.1 40 0.15 2.46633 0.47708

Figure 8.9 LC-series resonator characteristics: (a) capacitance, and (b) reactance.
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inductor. The advantage is in addition to the passband inductance, the resonator 
can be designed to have its self-resonance at a desired frequency below the pass-
band. This can be useful for achieving attenuation of unwanted low-frequency 
signal components.

For such a resonator design, there are two requirements for the circuit designer: 
(1) achieve the desired inductance at the passband frequency f0, and (2) effect a series 
resonance at a frequency fr below the passband. Because we only have two elemen-
tal values to determine (i.e., L and C), there is a unique solution to this problem.

It is important to note here that the inductance in the passband will be affected 
by the low-side resonance. While the desired inductance can be designed for f0, the 
effective inductance of the resonator will vary across the passband. The closer fr is 
to f0, the greater will be the inductance variation across the passband.

As discussed in Chapter 5, the majority of components used in practical RF 
circuits have significant associated dissipative and reactive parasitics. For any useful 
synthesis, these parasitic elements must be taken into account in the design equations.

As in the previous section, Figure 8.8 shows an LC-series resonator with a 
composite equivalent incorporating the parasitic elements described in Chapter 5. 
Rather than determine the values of L and C directly from the design constraints, 
we seek to determine the values of L′ and C ′, which incorporate the effects of the 
parasitics on the overall resonator response. Because the reactive parasitics have 
the dominant influence on the resonator characteristics, the resistive elements can 
typically be ignored in such a synthesis. The parasitic resistive elements contribute 
little to frequency shifts of the resonator and predominantly result in dissipative 
losses that are unavoidable.

The required capacitance is obtained from the solution to a quadratic equa-
tion, with

 

a ≈ w0
2wr

2 L − LC( )LCCL + L/ w0
2 − wr

2( )( )
b ≈ −1 − w0

2LCL + w0
2
+ wr

2( )LCCL

c ≈ −CL  

The solution is

 
′C ≈ −b + b2 − 4ac

2a
 (8.15)

and

 

′L ≈ 1

wr
2 CL + 1/ 1/ ′C − wr

2LC( )( )
 (8.16)

By way of example, consider the LC-series resonator parameters in Table 8.2. 
As in Chapter 7, the entries in blue are user inputs. The parasitic element values 
associated with both the inductor and capacitor are typically obtained from manu-
facturers’ data sheets, bench measurement, or sophisticated RF electromagnetic 
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simulation software. The element values in the two right columns of the table are 
the required element values for the resonator obtained by applying the formulae 
above which incorporate any detuning due to the parasitics.

In this case, the LC-series resonator is desired to have an inductance of 2.0 
nH at the center of the band f0 = 2,000 MHz, and to have a series resonance at 
fr = 1,000 MHz.

Figure 8.10 shows the key performance characteristics of the LC-series resona-
tor obtained when implemented with the values for L′ and C ′ given in Table 8.2. 
Note that both the key goals for the resonator have been achieved.

8.6 Design of LC-Parallel Resonators with Desired In-Band Inductance 
and a High-Side Resonance

In an RF circuit where an inductor is needed in the passband, for matching or 
other purposes, it can be implemented with an LC-parallel resonator, rather than 

Table 8.2 LC-Series Resonator Design Parameters

Series (Type 2)

f0 2000 MHz Parasitics Elements

fr 1000 MHz RC (Ω) LC (nH) QL CL (pF) L′ (nH) C′ (pF)

LS (at f0) 2 nH 0.2 0.2 45 0.3 2.15791 10.4909

Figure 8.10 LC-series resonator characteristics: (a) capacitance, and (b) reactance.



8.6 Design of LC-Parallel Resonators with Desired In-Band Inductance and a High-Side Resonance 111

a simple inductor. The advantage is, in addition to the passband inductance, the 
resonator can be designed to have its self-resonance at a desired frequency above the 
passband. This can be useful for achieving attenuation of unwanted high-frequency 
signal components.

For such a resonator design, there are two requirements for the circuit designer: 
(1) achieve the desired inductance at the passband frequency f0, and (2) effect a par-
allel resonance at a frequency fr above the passband. Because we only have two ele-
mental values to determine (i.e., L and C), there is a unique solution to this problem.

It is important to note here that the inductance in the passband will be affected 
by the high-side resonance. While the desired inductance can be designed for f0, the 
effective inductance of the resonator will vary across the passband. The closer fr is 
to f0, the greater will be the inductance variation across the passband. Fortunately, 
in many cases, the frequency band for rejection is at a harmonic frequency and thus 
significantly removed from the passband.

As discussed in Chapter 5, the majority of components used in practical RF 
circuits have significant associated dissipative and reactive parasitics. For any useful 
synthesis, these parasitic elements must be taken into account in the design equations.

Figure 8.11 shows an LC-parallel resonator with a composite equivalent incor-
porating the parasitic elements described in Chapter 5. Rather than determine the 
values of L and C directly from the design constraints, we seek to determine the 
values of L′ and C ′, which incorporate the effects of the parasitics on the overall 
resonator response. Because the reactive parasitics have the dominant influence on 
the resonator characteristics, the resistive elements can typically be ignored in such 
a synthesis. The parasitic resistive elements contribute little to frequency shifts of 
the resonator and predominantly result in dissipative losses that are unavoidable.

The required capacitance is obtained from the solution to a quadratic equa-
tion, with

 

a ≈ wr
2 1/L + w0

2CL( )LCCL − 1/ wr
2 − w0

2( )L( )
b ≈ 1 − LC /L − wr

2
+ w0

2( )LCCL

c ≈ LC  

The solution is

 
′L ≈ −b − b2 − 4ac

2a
 (8.17)

and

Figure 8.11 LC-parallel resonator with parasitics.
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′C ≈ 1

wr
2 LC + 1/ 1/ ′L − wr

2CL( )( )
 (8.18)

By way of example, consider the LC-parallel resonator parameters in Table 8.3. 
As in Chapter 7, the entries in blue are user inputs. The parasitic element values 
associated with both the inductor and capacitor are typically obtained from manu-
facturers’ data sheets, bench measurement, or sophisticated RF electromagnetic 
simulation software. The element values in the two right columns of the table are 
the required element values for the resonator obtained by applying the formulae 
above, which incorporate any detuning due to the parasitics.

In this case, the LC-parallel resonator is desired to have an inductance of 2.0 
nH at the center of the band f0 = 2,000 MHz and to have a parallel resonance at 
fr = 4,000 MHz.

Figure 8.12 shows the key performance characteristics of the LC-series resona-
tor obtained when implemented with the values for L′ and C ′ given in Table 8.3. 
Note that both the key goals for the resonator have been achieved.

Table 8.3 LC-Parallel Resonator Design Parameters

Parallel (Type 1)

f0 2000 MHz Parasitics Elements

fr 4000 MHz RC(Ω) LC(nH) QL CL(pF) L′ (nH) C′ (pF)

LP (at f0) 2 nH 0.2 0.3 45 0.3 1.53344 0.64315

Figure 8.12 LC-parallel resonator characteristics: (a) inductance, and (b) susceptance.
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8.7 Design of LC-Parallel Resonators with Desired In-Band 
Capacitance and a Low-Side Resonance

In an RF circuit where a capacitor is needed in the passband, for matching or 
other purposes, it can be implemented with an LC-parallel resonator, rather than 
a simple capacitor. The advantage is in addition to the passband inductance, the 
resonator can be designed to have its self-resonance at a desired frequency below the 
passband. This can be useful for achieving attenuation of unwanted low-frequency 
signal components.

For such a resonator design, there are two requirements for the circuit designer: 
(1) achieve the desired inductance at the passband frequency f0, and (2) effect a par-
allel resonance at a frequency fr above the passband. Because we only have two ele-
mental values to determine (i.e., L and C), there is a unique solution to this problem.

It is important to note here that the inductance in the passband will be affected 
by the low-side resonance. While the desired inductance can be designed for f0, the 
effective inductance of the resonator will vary across the passband. The closer fr is 
to f0, the greater will be the inductance variation across the passband.

As discussed in Chapter 5, the majority of components used in practical RF 
circuits have significant associated dissipative and reactive parasitics. For any useful 
synthesis, these parasitic elements must be taken into account in the design equations.

As in the previous section, Figure 8.11 shows an LC-parallel resonator with a 
composite equivalent incorporating the parasitic elements described in Chapter 5. 
Rather than determine the values of L and C directly from the design constraints, 
we seek to determine the values of L′ and C ′, which incorporate the effects of the 
parasitics on the overall resonator response. Because the reactive parasitics have 
the dominant influence on the resonator characteristics, the resistive elements can 
typically be ignored in such a synthesis. The parasitic resistive elements contribute 
little to frequency shifts of the resonator and predominantly result in dissipative 
losses that are unavoidable.

The required capacitance is obtained from the solution to a quadratic equa-
tion, with

 

a ≈ w0
2wr

2 C − CL( )LCCL + C / w0
2 − wr

2( )( )
b ≈ −1 − w0

2LCC + w0
2
+ wr

2( )LCCL

c ≈ −LC  

The solution is

 
′L ≈ −b + b2 − 4ac

2a
 (8.19)

and

 

′C ≈ 1/ ′L − wr
2CL

wr
2 1 + 1/ ′L − wr

2CL( )LC( )
 (8.20)
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By way of example, consider the LC-parallel resonator parameters in Table 8.4. 
As in Chapter 7, the entries in blue are user inputs. The parasitic element values 
associated with both the inductor and capacitor are typically obtained from manu-
facturers’ data sheets, bench measurement, or sophisticated RF electromagnetic 
simulation software. The element values in the two right columns of the table are 
the required element values for the resonator obtained by applying the formulae 
above, which incorporate any detuning due to the parasitics.

In this case, the LC-parallel resonator is desired to have a capacitance of 3.0 
pF at the center of the band f0 = 2,000 MHz and to have a parallel resonance at 
fr = 1,000 MHz.

Figure 8.13 shows the key performance characteristics of the LC-parallel reso-
nator obtained when implemented with the values for L′ and C ′ given in Table 8.4. 
Note that both the key goals for the resonator have been achieved.

Table 8.4 LC-Parallel Resonator Design Parameters

Parallel (Type 2)

f0 2000 MHz Parasitics Elements

f 1000 MHz RC(Ω) LC(nH) QL CL(pF) L′ (nH) C′ (pF)

CP (at f0) 3 pF 0.2 0.5 45 0.5 7.73831 2.62942

Figure 8.13 LC-parallel resonator characteristics: (a) inductance, and (b) susceptance.
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8.8 Practical Bandpass Filter Design

LC-series and -parallel resonator elements are critical components in many RF 
designs. For optimum performance, it is critical that the resonator quality factor 
be as high as possible. This improves the fidelity of the desired frequency charac-
teristics and reduces parasitic losses.

Figure 8.14 shows the schematic of a Cauer elliptic bandpass filter designed 
to meet stringent passband characteristics. Implementing the filter required seven 
parallel LC resonator sections. Each of the resonators was designed for a unique 
individual resonant frequency. This necessitated a different capacitor and inductor 
design for each of the resonators. The filter was implemented on a 200-mm high-
resistivity Si IPD wafer with two thick Cu layers available, which were critical to 
maximizing inductor quality factor. Even so, there were several important aspects 
of the physical realization that were critical to achieving optimum performance 
characteristics for the filter.

The physical die layout for the filter is shown in Figure 8.15.

1. In the layout, each of the inductors was designed to maximize its inherent 
Q (see Section 5.3.3), while ensuring that its self-resonant frequency was 
inferior to the desired tank frequency for the resonator. This absorbed the 
parasitic capacitance of the inductor into the design while eschewing a com-
mon error in assuming that the latter implies low inductor Q.

2. In a high-Q parallel LC resonator, the circulating currents in the resonator 
are substantially higher than the currents entering and leaving the resona-
tor. In each RF cycle, the energy stored in the resonator flips back and forth 
between the magnetic and capacitive components. Hence, it is critical that 
any resistance in the path between the two components of the resonator be 
minimized as much as possible. To this end, as seen in Figure 8.15, each of 
the tank capacitors was placed directly across the terminals of the inductors. 
This greatly enhanced the Q factor of the resonators.

Figure 8.14 Bandpass elliptic filter circuit schematic.
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3. As is evident in Figure 8.14, the filter required ground connections to certain 
of the resonators. To minimize resistance in the ground connections, the fil-
ter was designed for a flip-chip attach to a laminate carrier, as described in 
Section 5.5. The Cu flip-chip bumps, as shown in Figure 5.15(b), provided 
minimal series resistance to ground.

Figure 8.16 shows the measured response for the filter. At the center of the pass-
band, the insertion gain is ∼ −1.3 dB. This is extremely low considering the wide 
passband and steep rejection shirts. (For details of this development, see Wright, 

Figure 8.15 Bandpass elliptic filter circuit IPD layout.

Figure 8.16 Bandpass elliptic filter measured insertion characteristics.
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P. V., “Radio Frequency Filtering Circuitry on Integrated Passive Die,” US Patent 
11,489,506, November 1, 2022.)

8.9 Novel Resonator Pairing for Bandpass Shaping

The design and basic properties of LC-series and LC-parallel resonators were pre-
sented in some detail in at the beginning of this chapter. If the former is employed 
in shunt with the line, or the latter in series with the line, as shown in Figure 8.17, 
significant attenuation can be achieved for frequencies close to the resonances. How-
ever, in the desired passband, which occurs away from the resonance, either higher 
or lower in frequency, the traps will exhibit some residual reactance. The extent of 
this reactance, and whether it significantly impacts the insertion loss of the desired 
signal energy, depends on the frequency separation between the passband and the 
traps. This residual in-band reactance can also be negated by matching network, 
subsequent to the trap, as discussed in Chapter 9.

In some cases, one frequency trap may be required above the passband while 
another is required below it. In this case, we may take advantage of the requirement 
by code-signing the trap pair such that there is no residual reactance at the center 
of the passband to disrupt the signal path. The result is a bandpass-type response 
for the desired signal.

8.10 Novel LC-Series Resonator Pairing for a Passband-Type Response

Figure 8.18 shows an LC-series resonator pair connected in shunt across the signal 
line. Let the critical system frequencies be defined as:

f1 ∼ lower trapband frequency.

f0 ∼ center passband frequency.

f2 ∼ upper trapband frequency.

Figure 8.17 LC-resonator traps employed for filtering: (a) LC-series, and (b) LC-parallel.

Figure 8.18 LC-series resonator traps employed for bandpass filtering.
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Suppose the first resonator LS1/CS1 resonates at f1, while the second resonator 
LS2/CS2 resonates at f2. At the center of the passband f0, resonator 1, which is above 
resonance, will be inductive. In contrast, resonator 2, which is below resonance, 
will remain capacitive. Because these two loading reactances are of opposite sign, 
we may design them to cancel as parallel elements at f0, thereby negating any net 
loading reactance on the signal line.

If the capacitance of resonator 2 at f0 is C0, the solutions for the critical ele-
ment values are

 
CS1 = w0 /w1( )

2 − 1( )C0
 (8.21)

 
LS1 =

1

w1
2CS1

 (8.22)

 
CS2 = 1 − w0 /w2( )

2( )C0
 (8.23)

 
LS2 =

1

w2
2CS2

 (8.24)

The value of C0 is a design parameter that the designer can use to compromise 
the depth of the notches for the passband insertion loss. Smaller values for C0 are 
associated with lower notch depths but a wider passband. This can be seen in Fig-
ure 8.19.

Two factors contribute to the passband loss: (1) reactive mismatch away from 
f0, and (2) dissipative losses due to nonideal components. The responses shown in 
Figure 8.19 assume each inductor has a Q = 35, while each capacitor has an Equiva-
lent Series Resistance (ESR) = 0.2Ω.

8.11 Novel LC-Parallel Resonator Pairing for a Passband-Type Response

Figure 8.20 shows an LC-parallel resonator pair connected in series with the signal 
line. Let the critical system frequencies be defined as:

f1 ∼ lower trapband frequency.

f0 ∼ center passband frequency.

f2 ∼ upper trapband frequency.

Suppose that the first resonator LP1/CP1 resonates at f1, while the second reso-
nator LP2/CP2 resonates at f2. At the center of the passband f0, resonator 1, which 
is above resonance, will be capacitive. In contrast, resonator 2, which is below 
resonance, will remain inductive. Because these two series reactances are of the 
opposite sign, we may design them to cancel at f0, thereby negating any net series 
reactance in the signal line.
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Figure 8.19 LC-series resonator pairing passband-type response: (a) C0 = 0.8 pF, and (b) C0 = 
0.4 pF.

Figure 8.20 LC-parallel resonator traps employed for bandpass filtering.



120 LC Resonator Basics

If the capacitance of resonator 1 at f0 is C0, the solutions for the critical ele-
ment values are

 

CP1 =
C0

1 − w1 /w0( )
2  (8.25)

 
LP1 =

1

w1
2CP1

 (8.26)

 

CP2 =
C0

w2 /w0( )
2 − 1

 (8.27)

 
LP2 =

1

w2
2CP2

 (8.28)

The value of C0 is a design parameter that the designer can use to compromise 
the depth of the notches for the passband insertion loss. Larger values for C0 are 
associated with lower notch depths but a wider passband. This can be seen in Fig-
ure 8.21.

Two factors contribute to the passband loss: (1) reactive mismatch away from 
f0, and (2) dissipative losses due to nonideal components. The responses shown in 
Figure 8.21 assume that each inductor has a Q = 35, while each capacitor has an 
Equivalent Series Resistance (ESR) = 0.2Ω.



Figure 8.21 LC-parallel resonator pairing a passband-type response: (a) C0 = 2 pF, and (b) C0 = 
4 pF.
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C H A P T E R  9

Fundamentals of Amplifier Output 
Matching

Power amplifiers (PAs) are critical components in all of today’s mobile communica-
tions devices. They are essential to raise the power level of an incoming modulated 
RF signal, containing information, to a sufficiently high-power level such that when 
it is transmitted it can be demodulated by a receiver at some distance away.

In a mobile device, the supply voltage is invariably low (∼3V), since it is sup-
plied by a battery, usually Li-ion. A typical transmit power for a handheld device 
is ∼1W (30 dBm). Since power ∝V2/R, the amplifier output impedance (R) must 
necessarily be also low, ∼2−5Ω. However, the amplifier must typically drive a load 
with a much higher impedance, ∼50Ω. Common examples of amplifier loads are 
filters, couplers, and antennas.

A network is thus required between the output of the PA and its load to avoid 
power loss due to the high impedance mismatch between the two. This matching 
network must transform the low PA impedance to that of the load with as little 
loss as possible and across the full bandwidth of the signal. However, it also must 
also be designed to meet other stringent requirements. In addition to achieving the 
required passband loading impedance, desired loading impedances across the har-
monic frequencies are invariably specified. These are important for waveform shaping 
in the PA and maximizing PA efficiency. Desired harmonic impedances, typically 
close to open or short, are generally dependent on the modulation waveform. Yet 
another requirement generally imposed on the output matching network is for it 
to provide an out-of-band frequency filtering function. Rejection requirements for 
the network may be both below and above the passband. As a result, the design of 
such networks can be very challenging, invariably requiring compromises between 
the various requirements. A number of varying circuit topologies is employed for 
PA matching networks. The one chosen for a particular application typically being 
dependent on the designer’s previous experience, ease of implementation within the 
module, and the overall system performance specifications.

In addition to a PA requiring a matching network following the PA, it must be 
also be biased from the DC power source in the mobile device. This is typically 
accomplished via a bias inductor, Lb, connected to the supply line, Vcc, and the out-
put of the PA. To reduce induced RF ripple on the supply line, which might interfere 
with the performance of other components within the module, the bias inductor 
must be bypassed by a capacitor Cb to ground.

Further to the bias inductor, as mentioned in Chapter 6, a shunt trap is generally 
included across the output of the amplifier. The trap serves two purposes:



124 Fundamentals of Amplifier Output Matching

1. It provides a low-impedance termination on the amplifier output over a har-
monic frequency band, most frequently the second harmonic, for waveform 
shaping, which serves to maximize the amplifier efficiency.

2. It provides rejection of unwanted harmonic output, again commonly the 
second harmonic.

Figure 9.1 shows a simplified block diagram of a typical single-ended mobile 
PA matching network.

It should be noted that the resonant frequency of the shunt series Lh/Ch trap 
is not typically set to correspond exactly to the second-harmonic frequency. This 
design freedom allows the harmonic impedance on the output of the amplifier to 
be adjusted from slightly inductive, or slightly capacitive, as required by the PA for 
optimal in-band efficiency.

The PA architecture in Figure 9.1 shows a single PA and signal line. That archi-
tecture is referred to as “single-ended.” Another PA architecture, in common use, is 
typically referred to as “differential” or sometimes as “push-pull.” In the differential 
PA architecture two amplifiers and signal lines are used with the signal energy on 
the two lines of equal amplitude but 180° out of phase with each other.

Figure 9.2 shows a simplified block diagram of a differential PA architecture.
In Figure 9.2, coupled inductors (often referred to as transformers) are shown for 

implementing both the differential drive to the two amplifier chains, and combining 
the outputs for delivery to the load. In practice, lumped elements may also be used for 
either the differential phase splitting or combining instead of the coupled inductors.

While single-ended and differential PA architectures are most commonly 
employed, other dual or multiple PA architectures also find application. Each has 
its own distinct advantages and drawbacks. In general, the single-ended architecture 
offers a size advantage over the multiple PA architectures. A comparison of single-
ended versus differential architectures is presented in Chapter 13.

Figure 9.1 Simplified block diagram of single-ended PA.

Figure 9.2 Simplified block diagram of a differential PA.
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Whether a single or multiple PA architecture, there is a commonality of match-
ing and termination characteristics for each of the amplifiers. We may thus consider 
only a single PA in isolation to illustrate some of these fundamentals. Consider 
the simplified schematic of a single PA output stage such as that shown in Figure 
9.3. More complex and multisection LC-matching networks for single-ended PAs 
are considered in Chapter 11. The source voltage VS represents the PA, with out-
put impedance ZS. A simple lowpass matching network comprising Lm and Cm is 
employed to match the low output impedance of the PA to that of the load. Note 
that, even in this very basic circuit, there are six components whose values must be 
chosen to optimize the performance of the amplifier. To achieve optimum perfor-
mance, it is essential that the values for these elements be chosen simultaneously 
and not individually.

We will now present a rational approach for doing this. First, consider the bias 
inductor Lb and its bypass capacitor Cb. The latter is required to shunt any RF energy 
“leaking” through Lb on to the supply line VCC. For this to be the case, we require

 
ZCb( ) << Z Lb( )  (9.1)

which implies

 Cb << 1/w0
2Lb  (9.2)

This inverse relationship between Cb and Lb signifies that lower values for Lb 
will require larger values for Cb to effectively bypass it. While small values for the 
bias inductor might be advantageous in terms of size, the associated requirement for 
a large bypass capacitor can be problematic, for reasons other than size. A common 
technique in today’s mobile power amplifiers, often referred to as Envelope Tracking 
(ET), is based on being able to modulate the supply line with the envelope of the 
signal. This can significantly boost the overall efficiency of the amplifier. However, 
for such a technique to be practical, there must not be too much capacitance across 
the supply line or the modulator will have difficulty driving the line. Given that 
there are usually multiple amplifiers connected to the supply line, the restrictions 
on supply-line capacitance for each amplifier can be extremely restrictive. A typical 
limit on Cb for any individual PA is ∼50 pF. Given (9.2), this puts a practical lower 
limit on the value of the bias inductor Lb.

For an initial exploration of some key aspects of PA matching, let us assume 
that Cb is sufficiently large (and lossless), such that all RF energy on the supply line 
VCC is fully shorted to ground. This is represented in Figure 9.3 by the dashed short 

Figure 9.3 Simplified single PA lowpass matching network.
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circuit shown across Cb. For an illustrative analysis, assume the following values 
for the circuit parameters in Figure 9.3.

 

flo = 3,300 MHz fhi = 4,200 MHz

f 2lo = 6,600 MHz f 2hi = 8,400 MHz

ZS = 5Ω ZL = 50Ω
QL = 40,  for all inductors ESR = 0.15Ω,  for all capacitors

 (9.3)

Thus, the fundamental band of interest (i.e., signal passband) is from 3,300 to 
4,200 MHz. The second-harmonic band limits are double the latter.

In the simplified circuit of Figure 9.3, Lh and Ch are determined such that their 
series resonant frequency is close to the center of the second-harmonic bandwidth. 
This places a low impedance across the amplifier in this band and also results in 
high attenuation across the band. The lower the Q of this resonator (i.e., the lower 
the value of Lh) the lower the impedance and the higher the harmonic rejection that 
can be achieved. However, in the passband, at approximately half the frequency, 
the Lh/Ch resonator presents a positive (i.e., capacitive) susceptance across the line. 
For low loss in the passband, this susceptance must be compensated by an inductive 
susceptive loading on the line, which can come from two places: (1) the bias induc-
tor Lb, or (2) the lowpass matching network, comprising Lm and Cm.

We shall consider first the situation in which the harmonic resonator suscep-
tance is fully compensated by the bias inductor alone. In this case, the matching 
network Lm/Cm is only required to match the real source impedance (5Ω) to the 
real load impedance (50Ω). The latter requirement uniquely determines the values 
for Lm and Cm.

9.1 Passband Harmonic Susceptance Compensated Uniquely by 
Bias Inductor

Because the harmonic resonator must resonate at or close to the center of the second-
harmonic band, Ch, will be dependent on Lh. However, Lb and Lh are interdepen-
dent because we require no residual susceptance across the signal line at the center 
of the passband. This leaves us with only a single independent variable Lb or Lh.

Although the bias inductor can be chosen to completely cancel the residual 
susceptance of the harmonic resonator at a single frequency, typically at the center 
of the passband, this cancellation becomes less complete moving away from the 
center of the band. This is especially true on the high side. The smaller the resona-
tor inductor Lh, the greater is the susceptance variation across the passband, due to 
the resonance of Lh/Ch close to the second harmonic. This results in an increased 
insertion loss towards the edges of the passband due to reactive mismatch.

In enumerating the design options for the circuit of Figure 9.3, rather than tak-
ing the value of either of the inductors as the independent variable, it is generally 
more instructive to take the maximum in-band insertion loss as the independent 
variable, as insertion loss is a prime PA system performance parameter for the PA 
designer. The maximum insertion loss, for the case we are considering here, is in 
the passband 3,300 to 4,200 MHz, with the maximum loss invariably occurring 
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at 4,200 MHz. Higher insertion losses will be associated with lower values for Lh, 
greater second-harmonic rejection, and less impedance variation across the second-
harmonic bandwidth. This can be seen in Figure 9.4.

In Figure 9.4, note that Lb and Lh decrease in tandem with increasing system 
insertion loss. This is because the bias inductor must provide an increasing sus-
ceptive loading on the signal line to compensate for the increasingly large residual 
susceptance of the harmonic resonator in the passband.

Figures 9.5 and 9.6 show the in-band and second-harmonic reflection coeffi-
cients for 1-dB and 2-dB maximum system insertion loss, respectively. As expected, 

Figure 9.4 Key circuit variables versus insertion loss: (a) inductor variation with loss, and (b) 
second-harmonic reflection angle dispersion.
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Figure 9.5 Network impedances for 1-dB insertion loss: (a) in-band, and (b) second-harmonic 
band.
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Figure 9.6 Network impedances for 2-dB insertion loss: (a) in-band, and (b) second-harmonic 
band.
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there is more variation in the match across the passband, but the phase variation 
in the second harmonic reflection coefficient is significantly reduced at the higher 
insertion loss. Corresponding insertion losses across the two bands are shown in 
Figures 9.7 and 9.8.

The data clearly illustrates that the greater the second-harmonic rejection 
required or the less variation in the second-harmonic impedance, the higher the 
associated system insertion loss. The designer must trade off these two parameters 
against each other and decide on an acceptable compromise.

Figure 9.7 Network losses for 1-dB insertion loss: (a) passband insertion gain, and (b) second-
harmonic insertion gain.
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In the previous analysis, the harmonic resonator susceptance across the pass-
band is compensated entirely by the bias inductor. However, this requires increas-
ingly lower values for the bias inductor for reduced second-harmonic variation. As 
discussed above, this would, in turn, require larger values for the bypass capacitor 
Cb beyond what is acceptable. This is illustrated in Figure 9.9.

Figure 9.9 shows key in-band performance characteristics for the circuit param-
eters above having a 2-dB insertion loss, but Cb = 100 pF in place of the perfect 

Figure 9.8 Network losses for 2-dB insertion loss: (a) passband insertion gain, and (b) second-
harmonic insertion gain.
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Figure 9.9 In-band characteristics with 100-pF bypass capacitor: (a) reflection coefficient, and 
(b) insertion loss.
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short previously assumed. There is a clear degradation in the passband reflection 
coefficient seen in Figure 9.9(a) compared with that in Figure 9.6(a). An even more 
significant degradation is observed in insertion gain, comparing Figure 9.8(a) with 
Figure 9.9(b). Primarily, these degradations are caused by a change in the effective 
shunt susceptance of the bias inductor Lb across the RF line. This indicates that the 
100-pF bypass capacitor is inadequate for effectively grounding the VCC supply end 
of Lb. Such a change in susceptance could easily be compensated for, by a change 
in the value of the bypass capacitor. However, that would not address the remain-
ing problem of inadequate grounding the VCC supply line. Permitting RF energy to 
leak on to the supply line, via the bias inductor, degrades the Power-Supply Rejec-
tion (PSR), a critical parameter in any mobile device. Thus, the data indicates that 
a 100-pF bypass capacitor is insufficient for a bias inductor Lb ≈ 0.1 nH.

As a practicality, therefore, in most cases, the bias inductor alone cannot be 
used to fully compensate for the residual susceptance of the harmonic resonator 
across the passband. Partial reactive compensation must also be provided by the 
matching network.

For example, this would require, in the illustrative case here, that the match-
ing network match a complex impedance at the output of the amplifier, to the 50Ω 
load, rather than a real 5Ω impedance. By requiring the matching network to com-
pensate for any residual susceptance left over from the bias inductor and harmonic 
resonator at the center of the passband, the value of the bias inductor can be set 
independent of network insertion loss.

9.2 Passband Harmonic Susceptance Compensated by Bias Inductor 
and Matching Network

Defining a residual susceptance to be absorbed by the matching network on the 
output of a PA, such as that shown in Figure 9.3, gives the designer the freedom to 
set the bias inductor Lb to a preferred value. This, in turn, can minimize the value 
required for the bypass capacitor Cb. Unfortunately, there is a price to pay for this 
design flexibility; in general, the greater the residual susceptance the matching net-
work must absorb, the greater the network insertion loss. The second-harmonic 
impedance variation for a given insertion loss will also typically be higher. This is 
illustrated in the example data in Figure 9.10.

For each insertion loss data point, the residual susceptance B1, required of the 
matching network for each insertion loss, was selected to maintain a constant value 
for the bias inductor of 0.5 nH. The variation required for B1 is shown in Figure 
9.10(b), and the values for Lb and Lh are shown in Figure 9.10(a). Also shown in 
Figure 9.10(b) is the angular dispersion of the second-harmonic reflection coefficient.

Comparing Figure 9.4(b) and Figure 9.10(b), we can see significantly more 
dispersion in the second-harmonic reflection coefficient, at a given insertion loss, 
in the latter. This is due to an increase in both resistive dissipation and mismatch 
loss in the matching network when it must adapt the complex source impedance 
to the load, rather than when the source impedance is pure real. The amount of 
performance degradation will depend on how much residual susceptance must be 
absorbed and the nature of the matching network.
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Figure 9.10 Key circuit variables versus insertion loss for constant Lb: (a) inductor variation with 
loss, and (b) second-harmonic reflection angle dispersion and residual susceptance.
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C H A P T E R  1 0

Basic RF PA Bias and Harmonic Trap 
Networks

In the previous chapter, some of the basic concepts and trade-offs associated with 
matching the output of an RF PA were introduced. Principal among these are:

1. Series LC traps in shunt on the output of a PA output are effective in provid-
ing a low impedance and rejection across harmonic bands.

2. The wider or deeper the harmonic trap (i.e., smaller LS), the greater will be 
its susceptive loading in the passband leading to increased insertion loss.

3. The susceptance of harmonic traps in the passband must be canceled by a 
combination of the bias inductor and matching network.

4. An appropriate value for the bias inductor may be chosen by adjusting the 
“residual” susceptance in the passband of the matching network. This resid-
ual susceptance negates that of the bias inductor plus traps in the passband.

5. The greater the residual susceptance for which a matching network is required 
to compensate, the higher will be its insertion loss.

In this chapter, the design and analysis of some basic PA bias and harmonic 
termination networks are presented.

10.1 PA Shunting Inductance and Single Harmonic Trap

Figure 10.1 shows a schematic of single shunt inductance in parallel with a series 
LC trap. Such an arrangement is commonly placed directly at the output of an 
RF PA. The inductance Leff represents the combined inductive susceptance of the 
bias inductor and any residual inductance of the matching network at the PA. The 
inductance Leff is required to negate the unwanted capacitive susceptance of the 
harmonic network (or networks) in the passband.

Figure 10.1 PA shunting inductance and single harmonic trap.



136 Basic RF PA Bias and Harmonic Trap Networks

In the case of the simple network in Figure 10.1, taking Lh as the independent 
variable, the value of the effective inductance required is

 
Leff = wr /w0( )

2 − 1( )Lh  (10.1)

and

 Ch = 1/wr
2Lh  (10.2)

where ωr is the center frequency of the harmonic trap and ω0 is the center frequency 
of the passband. If, as is common, the harmonic trap is placed close to the second-
harmonic frequency (i.e., ωr ≈ 2ω0), then

 Leff ≈ 3Lh  (10.3)

For analysis, the combined admittance of the network is determined as

 

Y =
1

RLeff + jwLeff

+
1

RLh + RC + jwLh −
j

wCh

 (10.4)

where Relement = resistance of associated element.
To compare and contrast the performance characteristics of this simple single-

trap architecture, with those that follow, we use the following basic parameters 
for all the data:

 

flo = 1,710 MHz fhi = 2,025 MHz

f 2lo = 3,420 MHz f 2hi = 4,050 MHz

ZS = 5Ω ZL = 5Ω
QL = 40,  for all inductors QC ≈ 100,  for all capacitors

 (10.5)

In the analyses, Leff is assumed to be a single inductor, although in practice it 
would be a combination of the bias inductor Lb with a susceptive inductance gener-
ated by the matching network. In addition, it is assumed that Leff shunts the signal 
line directly to ground, thereby neglecting the series reactance and resistance of the 
bypass capacitor Cb. These additional complexities are avoided here in an effort to 
more clearly illustrate the basic differences between the architectures being presented.

The data shown in Figure 10.2 corresponds to a circuit with Lh set to the 
minimum value consistent with a maximum in-band insertion loss ≤0.1 dB. For 
meaningful comparisons to subsequent architectures, this same insertion loss target 
will be used.

The reflection coefficient Γin in the passband is very tight, consistent with the 
low insertion loss requirement. However, the reflection coefficient across the second-
harmonic band shows much more variation, with significant phase dispersion. The 
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Figure 10.2 Single-trap characteristics: (a) Γ in across passband, (b) Γ in across second-harmonic 
band, (c) passband insertion loss, and (d) second-harmonic insertion loss.
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Figure 10.2 (Continued)

second-harmonic rejection also varies greatly across the band, with as low as 7-dB 
rejection at the low end of the band.

As discussed in Chapter 9, the second-harmonic response characteristics can be 
tightened by lowering the value of Lh; however, this will result in an increase in the 
in-band insertion loss. In an effort to increase the minimum rejection and lower the 
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impedance variation in the harmonic band, without degrading the in-band charac-
teristics, designers have considered numerous circuit approaches.

One such circuit approach that is a simple extension of the single trap is to add 
a second trap in the circuit. This approach is examined in the next section.

10.2 PA Shunting Inductance and Dual Harmonic Traps

Figure 10.3 shows a schematic of single shunt inductance Leff in parallel with two 
series LC traps. Again, the single inductance Leff represents the combined inductive 
susceptance of the bias inductor and any residual inductance of the matching net-
work at the PA. The inductance Leff is required to negate the unwanted capacitive 
susceptance of the harmonic networks in the passband.

The object of adding the additional trap is to broaden the second-harmonic 
characteristics without increasing the passband insertion loss. We shall now exam-
ine whether this technique can really be effective.

First, because the goal is to widen the harmonic passband and keep it flat, we 
require the relative bandwidth of the two series resonators to be equal. For this the 
resonant quality, factors must be equal, that is,

 

Lh1

Ch1

=
Lh2

Ch2
 (10.6)

If lower trap frequency = fh1 and upper trap frequency = fh2, then

 
Ch1 =

1

wh1
2 Lh1

          and          Ch2 =
1

wh2
2 Lh2

 (10.7)

and

 
Lh2 = wh1 /wh2( )Lh1  (10.8)

Second, the central frequency of the combined trap responses should remain 
the center of the harmonic band. Thus, the two trap frequencies should be equally 
disposed about the center of the band.

Defining

 fh1 = fr − a ⋅ Δfr /2  (10.9)

 fh2 = fr + a ⋅ Δfr /2  (10.10)

Figure 10.3 PA shunting inductance and dual harmonic traps.
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where Δfr = harmonic bandwidth, and α characterizes the separation of the 
trap frequencies.

For α = 0,

 fh1 = fh2 = fr  (10.11)

For α = 1,

 fh1 =  lower end of harmonic band  (10.12)

and

 fh2 =  upper end of harmonic band  (10.13)

For in-band susceptance cancelation, we require

 

Leff =
1

w0
2

wh1
2 − w0

2( )Lh1

+
w0

2

wh2
2 − w0

2( )Lh2

 (10.14)

For analysis, the combined admittance of the network is determined as

 

Y =
1

RLeff + jwLeff

+
1

RLh1 + RCh1 + jwLh1 −
j

wCh1

+
1

RLh2 + RCh2 + jwLh2 − j

wCh2

 (10.15)

where Relement = resistance of associated element.
For a valid comparison of the characteristics of the single and dual-trap architec-

tures, in the dual-trap architecture, inductor Lh was set, as in the previous section, 
to ensure a minimum value consistent with a maximum in-band insertion loss of 
≤0.1 dB. Key electrical response data for both the single and dual-trap architectures 
is shown in Figure 10.4. The frequency separation of the dual traps was consistent 
with α = 0.3.

The design element values and parameters used for the data are provided in 
Table 10.1.

Comparing the passband characteristics of the single and dual-trap architectures, 
they are seen to be nearly identical. However, the characteristics of the second-har-
monic band are significantly different. The goal of adding the second trap was to 
widen the second-harmonic response, in particular, to decrease the impedance, reduce 
its variation, and increase the rejection. None of these goals have been achieved.

The angular dispersion of the reflection coefficient across second-harmonic 
band of the single and dual traps is identical. Also, the impedance is not noticeably 
increased anywhere in the band. More troubling still is the rejection characteristics 
achieved with the two traps. Instead of a single maximum rejection point at center 
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Figure 10.4 Single and dual-trap (α = 0.3) characteristics: (a) Γ in across passband, (b) Γ in across 
second-harmonic band, (c) passband insertion losses, and (d) second-harmonic insertion losses.
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Figure 10.4 (Continued)
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band, we have two maximums equally disposed about the center. At the center of 
the band, the rejection response actually has a local minimum value, correspond-
ing to a significant increase in the impedance of the combined traps. In actuality, 
if ideal elements had been assumed for the analysis, at the center of the harmonic 
band, the traps would have presented no impedance loading and would have achieved 
zero rejection.

In Figure 10.4(d), it can also be noted that rejection at the band edges is little 
changed. Thus, in addition to the other deficiencies, adding a second trap does not 
even serve to widen the harmonic rejection response. Based on this data, there-
fore, in the majority of cases, there does not appear to be anything to be gained by 
replacing a single harmonic trap with two in parallel. However, there is one limited 
exception. If a PA is required only to operate at two ends of a frequency band, and 
not in the middle of the band, then the two-trap architecture may be beneficial. If 
the two maximum rejection frequencies, as in Figure 10.4(d), are centered on these 
two separated bands, then the rejection can be improved across both compared to 
employing just a single trap.

The reason that there is a pole (zero loss with ideal components) at the center 
of the band is because the two traps are in parallel with no intermediate series ele-
ments. All practical filter architectures employ both series and shunt elements. If 
there were, for example, a parallel LC resonator in the line between the two traps, 
this could be used to decouple the shunt traps at the center frequency. However, 
such an arrangement would not meet the other circuit goals for harmonic imped-
ance and in-band loss.

In the dual-trap architecture, at the center frequency of the harmonic band, 
resonator 1 is above resonance, while resonator 2 is below resonance. This means 
that resonator 1 presents a negative (i.e., inductive) susceptance on the signal line, 
while resonator 2 presents a positive (i.e., capacitive) susceptance. These two mutu-
ally cancel, resulting in the response pole for the network.

In addition to the poor performance of the dual-trap architecture, save for one 
limiting case, there is yet another drawback to its practical implementation. Both 
traps need to be physically located close to the output of the PA. This requires that 
the two inductors in the traps also be located in close proximity to each other on 
the circuit board, which can result in mutual coupling between the two. Mutual 
coupling is also an aspect that might be considered to improve the performance of 
the two-trap approach. The effects of mutual coupling between the trap inductors 
are considered in the next section.

Table 10.1 Dual Trap (α = 0.3, k = 0) Elements

Element Values

α = 0.3 k = 0

QL = 40 QC = 100

Leff = 0.905 nH

Lh1 = 0.62 nH Ch1 = 3.083 pF

Lh2 = 0.589 nH Ch2 = 2.931 pF
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10.3 PA Shunting Inductance and Dual Coupled Harmonic Traps

Figure 10.5 shows a schematic of single shunt inductance Leff in parallel with two 
series LC traps. This circuit is identical with that in the previous section with the 
exception that finite coupling is assumed between the two trap inductors. Such cou-
pling may be intentional or parasitic. In practice, in a compact RF module design, 
if two traps were employed, the two inductors would inevitably have to be in close 
proximity, and this would inevitably lead to some coupling. It is instructive to 
examine the effects of such coupling on the circuit and whether it might be useful 
to improve the characteristics of the circuit.

The coupling constant k is defined in terms of mutual inductance M, by

 M = k L1L2  (10.16)

where 0 ≤ k ≤ 1.
As in the previous section, the single inductance Leff represents the combined 

inductive susceptance of the bias inductor and any residual inductance of the match-
ing network at the PA. The inductance Leff is required to negate the unwanted 
capacitive susceptance of the harmonic networks in the passband.

For a flat harmonic passband, we again require the quality factors of the two 
series resonators to be equal, that is,

 

Lh1

Ch1

=
Lh2

Ch2

 (10.17)

Also, the two trap frequencies are taken to be equally disposed about the center 
of the band. That is,

 fh1 = fr − a ⋅ Δfr /2  (10.18)

 fh2 = fr + a ⋅ Δfr /2  (10.19)

where Δfr = harmonic bandwidth and α characterizes the separation of the 
trap frequencies.

For α = 0,

 fh1 = fh2 = fr  (10.20)

For α = 1,

 fh1 =  lower end of harmonic band  (10.21)

Figure 10.5 PA shunting inductance and dual-coupled harmonic traps.
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and

 fh2 =  upper end of harmonic band  (10.22)

From circuit analysis, seeking solutions for Ch1 and Ch2 consistent with the 
above conditions, we find that solutions only exist providing

 

k ≤
2 Δwh /wr( )

1 + Δwh /wr( )
2  (10.23)

where

 Δwh = a ⋅ Δwr /2  (10.24)

Consistent with the previous section, the following basic parameters are to be 
used in the analysis

 

flo = 1,710 MHz fhi = 2,025 MHz

f 2lo = 3,420 MHz f 2hi = 4,050 MHz

ZS = 5Ω ZL = 5Ω
QL = 40,  for all inductors QC ≈ 100,  for all capacitors

a = 0.3

 (10.25)

In this case, from (10.23), we find the limiting value for the mutual coupling 
coefficient is |k| ≤ 0.05. This extremely small value indicates that, in the presence 
of finite mutual coupling between the inductors, it is not possible to achieve two 
equal and distinct minima in the insertion loss through the network.

Given that network solutions, with the above constraints, do not exist for 
reasonable values of mutual coupling, we use the same element solutions as in the 
previous section for |k| = 0, that is,

 
Lh2 = wh1 /wh2( )Lh1  (10.26)

 
Ch1 =

1

wh1
2 Lh1

 (10.27)

 
Ch2 =

1

wh2
2 Lh2

 (10.28)

from uncoupled analysis

 

Leff =
1

w0
2

wh1
2 − w0

2( )Lh1

+
w0

2

wh2
2 − w0

2( )Lh2

 (10.29)
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For analysis, the admittance of the first trap is

Y1 =
RLh2 + RCh2 + j wLh2 − 1/wCh2( ) − jwk Lh1Lh2

RLh1 + RCh1 + j wLh1 − 1/wCh1( )( ) RLh2 + RCh2 + j wLh2 − 1/wCh2( )( ) + w2k2Lh1Lh2  

 (10.30)

while the admittance of the second trap is

 

Y2 =
RLh1 + RCh1 + j wLh1 − 1/wCh1( ) − jwk Lh1Lh2

RLh2 + RCh2 + j wLh2 − 1/wCh2( ) − jwk Lh1Lh2

Y1  (10.31)

where Relement = resistance of associated element. The combined admittance of the 
network is then

 
Y =

1

RLeff + jwLeff

+ Y1 + Y2  (10.32)

Figure 10.6 shows the key response characteristics of the dual coupled traps 
together with that of the conventional single trap of Section 10.1. Coupled trap 
responses are shown for k = −0.05 and k = 0.05. In both cases, the response char-
acteristics are degraded from that of the single trap. While the passband responses 
are little changed, the second-harmonic impedances and rejection characteristics are 
much inferior. The maximum rejection harmonic frequency is shifted up or down 
in frequency, depending on the sign of the mutual coupling. The harmonic char-
acteristics are also highly asymmetric, with one rejection minimum much reduced 
from the other. Increasing the magnitude of the coupling coefficient beyond 0.05, 
already very small, degrades the characteristics further.

The data in Figure 10.6 clearly illustrates one further disadvantage of trying to 
employ dual traps to widen the amplifier’s harmonic characteristics without incur-
ring the usual in-band insertion loss penalty. Namely, any coupling between the 
two trap inductors is extremely deleterious to the performance of the network and 
thus great efforts must be made to minimize it on the circuit board.

To summarize, dual LC-series harmonic traps in parallel on the output of a PA 
are ineffective in widening the second-harmonic rejection bandwidth. Any inductive 
coupling between the trap inductors further degrades the performance. Only in the 
restrictive case that a PA need operate on two close, but separate bands, could it be 
beneficial to employ the two-trap configuration.

10.4 Differential PA Shunting Inductances and Harmonic Traps

An amplifier or PA with a cascaded chain of amplification along a single signal 
line is referred to as “single-ended.” In addition to single-ended architectures, 
there are many alternative PA circuit architectures employing multiple PA chains 
whose outputs are combined in a phasing network before the power is delivered to 
the load. There may be two or more amplifier chains in such PA architectures, the 
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Figure 10.6 Single and dual coupled traps (α = 0.3, |k| = 0.05) characteristics: (a) Γ in across 
passband, (b) Γ in across second-harmonic band, (c) passband insertion losses, and (d) second-
harmonic insertion losses.
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Figure 10.6 (Continued)

particular embodiment chosen depending on its merits for the application needed. 
Among the alternative PA architectures to the single-ended, the differential PA 
architecture employing two amplifier chains finds most widespread application. In 
this architecture, the desired signals on the two signal lines are of opposite phase. 
An example of a simplified schematic of a differential PA is shown in Figure 9.2.
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Each of the signal lines in a differential PA can be regarded as two separate 
single-ended amplifiers up to the point where the signals are combined. Thus, all 
the discussions in the previous sections of this chapter apply equally to the indi-
vidual signal paths in a differential PA. With this in mind, Figure 10.7 shows the 
two signal paths in a differential PA with the effective shunting inductance Leff (a 
combination of the bias inductors with the matching networks in each chain) plus 
the LC-series traps to provide a low impedance and rejection across the second-
harmonic bandwidth.

Since each of the amplifier chains behaves essentially as an independent single-
ended PA chain, the passband and harmonic characteristics would be expected to 
be near identical. Such is the case.

Figure 10.8 shows the fundamental and second-harmonic characteristics of the 
differential architecture of Figure 10.7, together with the responses of the conven-
tional single-ended architecture of Figure 10.1. For equivalency, the harmonic trap 
inductor Lh has again been set to maintain a maximum in-band insertion loss of 0.1 
dB. In addition, to maintain power equivalency, the line impedance for the differen-
tial architecture is 10Ω, compared to the 5Ω impedance for the single-ended data.

For the differential configuration, the signal energy on the two lines is of equal 
magnitude but inverted in phase. This is represented in Figure 10.7 by the (+, −) 
drive notation, commonly referred to as odd-mode. However, the second-harmonic 
components on the signal lines, generated by nonlinearities in the two PAs, will be 
in-phase, as will all even harmonic components. In Figure 10.7, the even harmonic 
component phase relationships are represented by the (+, +) drive notation, com-
monly termed even-mode. In contrast, all generated odd harmonic components, like 
the fundamental, will be in anti-phase.

In Figure 10.8, for the differential architecture, the fundamental signal data 
is shown for odd-mode drive, while that for the second harmonic is shown for an 
even-mode drive. For the circuit of Figure 10.7, because the two paths are essentially 
independent, the even and odd-mode responses in all bands are identical. However, 
this is not the case if there is any coupling between the two signal paths, as is con-
sidered in the subsequent sections.

As expected, the fundamental and second-harmonic characteristics of the dif-
ferential architecture are identical to those of the conventional single-ended, single 
LC resonator architecture. This confirms, as anticipated, that simply transitioning 
from a single-ended architecture to an equivalent differential architecture brings no 
benefit to the fundamental trade-off between the second-harmonic stop bandwidth 
and the passband insertion loss. Because the two differential amplifier chains can 
be viewed as two independent amplifiers chains, no change in fundamental char-
acteristics could be expected.

Figure 10.7 Differential PA shunting inductances and harmonic traps.
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Figure 10.8 Single-ended and differential characteristics: (a) Γ in across passband, (b) Γ in across 
second-harmonic band, (c) passband insertion losses, and (d) second-harmonic insertion losses.
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Figure 10.8 (Continued)
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10.5 Differential PA Shunting Inductances and Coupled 
Harmonic Traps

For the single-ended PA architecture with dual coupled harmonic traps in Section 
10.3, the coupling was shown to degrade the overall characteristics of the circuit. 
In that circuit, the two traps were at different frequencies and in parallel with each 
other on a single signal line. However, in the differential circuit of Figure 10.7, the 
two harmonic traps are separate signal lines and are centered at the same frequency. 
Thus, inductively coupling the two harmonic traps in the differential circuit may 
have benefits that did not occur in the single-ended case.

Figure 10.9 shows a similar differential architecture to that in the previous 
section, but with finite coupling assumed between the two trap inductors. In this 
circuit, the coupling constant kh is defined in terms of mutual inductance Mh, by

 Mh = khLh  (10.33)

where 0 ≤ kh ≤ 1.
There are three potential benefits sought from seeking to couple the har-

monic inductors.

1. Decreasing the effective susceptance of Lh in the passband.
2. Decreasing the physical value required for the harmonic inductors Lh.
3. Decreasing the Q of the harmonic traps.

Why should inductive coupling be a benefit for the differential circuit, when it 
degraded the performance of the single-ended dual resonator configuration? The key 
is the relative phase difference between the signals in the passband and harmonic 
bands in the differential circuit.

The even harmonic on the signal lines are products of nonlinear mixing within 
the PAs. Because they are products of even-ordering mixing, they are necessarily in 
phase on the two lines. In contrast, since all odd harmonic products are products of 
odd-ordering mixing, they are out-of-phase as are the incoming fundamental signals.

Because the second-harmonic energy on the two paths in Figure 10.9 are in 
phase, and of equal amplitude, currents flowing through the inductors Lh will 
likewise be in phase and serve to increase the net magnetic flux in the inductors. 
In consequence, the value of the inductors Lh, required to achieve a given effective 
inductance value, can be decreased. This reduction in the physical value of induc-
tors Lh, by itself, would result in a reduced loading susceptance on the lines in 
the passband, resulting in a reduced insertion loss. However, there is yet another 
advantage to be gained from the coupling. In the passband, the signal energies are 

Figure 10.9 Differential PA shunting inductances and coupled harmonic traps.
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in anti-phase. Thus, in contrast to the even-harmonic bands, the currents flowing 
in the two harmonic inductors Lh are also in anti-phase. This effectively reduces 
the susceptive loading of the harmonic traps still further.

Coupling between the two harmonic inductors Lh, in the differential case, is thus 
advantageous in breaking the unavoidable trade-off required between the second-
harmonic characteristics and passband insertion loss in the single-ended architec-
tures. A physical reduction can be achieved in the size of the harmonic inductors 
Lh required, allowing for a more compact design. In addition, because the effective 
susceptive loading of the inductors in the passband is reduced, the Q of the harmonic 
traps can be reduced leading to improved harmonic characteristics (i.e., less disper-
sion and higher rejection). These benefits are evident in the data in Figure 10.10.

Figure 10.10 shows the passband and second-harmonic characteristics of the 
differential architecture of Figure 10.9 without, and with, coupling between the 
harmonic inductors Lh. The characteristics of the differential architecture with no 
Lh coupling are identical to those for the single-ended architecture as was demon-
strated in the previous section. For near-equivalent pass characteristics, the second-
harmonic characteristics with coupling are notably improved. There is both reduced 
dispersion and increased rejection evident across the full harmonic bandwidth. For 
the data in Figure 10.10, a coupling coefficient kh = 0.7 was assumed, which is eas-
ily achievable on a typical RF module laminate board.

A very significant reduction in the value of the harmonic inductors is also obtained 
by introducing the coupling as can be seen from the data in Table 10.2. There is 
an accompanying modest reduction in the effective bias inductance required Leff.

10.6 Differential PA Shunting Inductances and Coupled Bias and 
Harmonic Traps

In the previous section, significant advantages were demonstrated for inductively 
coupling the two harmonic trap inductors. Additional advantages may be obtained 
for the differential circuit if the bias inductors Leff are also inductively coupled, as 
shown in Figure 10.11.

In this circuit in Figure 10.11, the coupling constant kb, between inductors Leff, 
is defined in terms of mutual inductance Mb, by

 Mb = kbLeff  (10.34)

where 0 ≤ kb ≤ 1.
Observe that opposite ends of the bias inductors Leff are connected to their 

respective signal lines, in contrast to the connection of the harmonic inductors. For 
analysis, this is accounted for by a negative value for the coupling coefficient kb. As 
a result, the currents are flowing in the same direction through the inductors Leff in 
the passband but in opposite directions in the even-harmonic bands.

The motivations for inductively coupling the bias inductors are similar to those 
for coupling the harmonic inductors. In the passband, the magnetic flux in the bias 
inductors is enhanced, thereby increasing the effective inductance. This allows the 
values of the bias inductors required in the circuit to be reduced, thus helping to 
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Figure 10.10 Differential characteristics, without and with harmonic coupling (kh = 0.7): (a) 
Γ in across passband, (b) Γ in across second-harmonic band, (c) passband insertion loss, and (d) 
second-harmonic insertion losses.
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Figure 10.10 (Continued)

Table 10.2 Differential Coupling and Inductor Values

Coupling Leff Lh

None 1.8 nH 0.6 n H

kh = 0.7 1.56 nH 0.24 nH
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reduce the size of the module. In the even harmonic bands, because the currents flow 
in opposite directions through the bias inductors, their susceptive loading in these 
bands is reduced, which helps to further improve the even-harmonic characteristics.

Figure 10.12 shows the key characteristics of the differential circuit of Figure 
10.11 with coupling coefficients kh = 0.7 and kb = −0.7. For reference, the responses 
of the same circuit with no coupling and kh = 0.7, kb = 0 are also shown.

In the figures, the passband characteristics are all essentially equivalent. In each 
case, the values of the inductors Lh were set to the minimum value consistent with 
a maximum in-band insertion loss of 0.1 dB. However, passband characteristics 
differ significantly. The harmonic response is improved by coupling only the har-
monic inductors, as in the previous section. It is improved yet again by additionally 
coupling the bias inductors. The differential harmonic passband with both bias and 
harmonic inductors coupled, as in Figure 10.11, shows the lowest impedance, least 
dispersion, and greatest rejection of all the networks. In addition, a further benefit 
is that this implementation can be realized with the smallest footprint.

Table 10.3 shows the inductor element values for each of the three alternatives. 
The best performing architecture, with bias and harmonic inductor coupling, has 
significant inductor values that would thus require less area to implement.

The magnitude of the mutual coupling coefficient value of 0.7 used in the analy-
sis is relatively arbitrary. The response characteristics of the circuit are not critically 
dependent on this value but steadily improve for higher coupling. The value of 0.7 
is simply one that usually easy to achieve in practice.

For analysis, the admittance on the signal lines in odd mode (i.e., fundamental 
and odd harmonics) is

  

YO =
1

RLeff + jw 1 − kb( )Leff

+
1

RLh + RCh + j w 1 − kh( )Lh − 1/wCh( )
 (10.35)

while the admittance on the signal lines in even mode (i.e., second and even har-
monics) is

  

YE =
1

RLeff + jw 1 + kb( )Leff

+
1

RLh + RCh + j w 1 + kh( )Lh − 1/wCh( )
 (10.36)

where Relement = resistance of the associated element.
The capacitance required for resonance at the harmonic frequency fr is

 

Ch =
1

wr
2 1 + kh( )Lh

 (10.37)

Figure 10.11  Differential PA with coupled bias and harmonic traps.
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Figure 10.12 Differential characteristics with bias and harmonic coupling (|kh|=0.7): (a) Γ in 
across passband, (b) Γ in across second-harmonic band, (c) passband insertion losses, and (d) 
second-harmonic insertion losses.
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Figure 10.12 (Continued)

and the value required for the effective bias inductance, for the minimal passband 
loss at f0, is

 
Leff =

wr /w0( )
2

1 + kh( ) − 1 + kh
1 − kb

Lh  (10.38)
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10.7 All-Pass Bridge-T Lowpass Differential Network

The all-pass bridge-T lowpass network is a circuit commonly employed in RF 
circuits for introducing a phase shift into the RF signal path. It is termed an “all-
pass network” in light of the fact that, if implemented with ideal circuit elements, 
it introduces a phase delay into the signal, with no associated insertion loss across 
all frequency. In the ideal case, the input and output impedances of the network 
are equal to the characteristic impedance of the signal line and have no frequency 
dependence. The schematic for the basic all-pass bridge-T lowpass network is shown 
in Figure 10.13(a).

The bridge-T lowpass network comprises two equal-valued inductors and two 
unequal value capacitors. The network is left-right symmetric, consistent with pre-
senting the same impedance on both sides. In a generalization of the network, some 
magnetic coupling may be assumed between the two inductors, as shown in Figure 
10.13(b). This may be inadvertent, the result of unwanted coupling on the circuit 
board, or deliberate to gain more flexibility in the design.

In still another variant, shown in Figure 10.13(c), the nodal connections to one 
of the inductors may be reversed, resulting in a negative effective coupling coeffi-
cient between the inductors.

For these networks, the element values are determined by

 

wL =

sinf + sin2 f + 4 1 − cosf( )
2

1 + k( ) / 1 − k( )( )R0

2 1 − cosf( ) 1 + k( )
 (10.39)

 
C1 =

1 + k( )L
2R0

2  (10.40)

 
C2 =

2 1 − k( )L
R0

2  (10.41)

Table 10.3 Differential Coupling and Inductor Values

Coupling Leff Lh

None 1.8 nH 0.6 nH

kh = 0.7 1.56 nH 0.24 nH

kh = 0.7, kb = −0.7 0.69 nH 0.18 nH

Figure 10.13 All-pass bridge-T lowpass networks: (a) conventional, (b) with positive inductor 
coupling, (c) with negative inductor coupling.
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where Φ = desired phase delay and R0 = characteristic line real impedance.
While the phase shift characteristics of the bridge-T lowpass network are not 

directly relevant to the biasing and harmonic termination of a differential PA, the 
circuit architecture itself may be exploited to great advantage in the differential 
PA architecture.

Figure 10.14(a) shows the schematic of a biasing and harmonic termination 
network for a differential amplifier that is essentially identical to the bridge-T net-
work of Figure 10.13(c). To understand the functioning of this network, consider 
its properties under odd-mode and even-mode drives.

For the fundamental and odd-harmonic frequencies, the network is driven by 
an odd-mode excitation (+, −) on the two signal lines. The circuit has top-to-bottom 
symmetry, so under the odd-mode drive, the horizontal center line through the 
circuit is a virtual ground plane. As a result, the equivalent circuit under the odd-
mode drive is that shown in Figure 10.14(b). If the parallel resonance of the coupled 
inductors Lh and capacitor 2Ct is set to the center of the passband, the insertion 
loss will be minimal.

For the second and even-harmonic frequencies, the network is driven by an even-
mode excitation (+, +) on the two signal lines. Due to the top-to-bottom symmetry 
of the circuit, no current will flow through Ct. The equivalent circuit under the 
even-mode drive is thus that shown in Figure 10.14(c). In this figure, the loading of 
the bias inductor is shown in gray, as generally Lb can be made large enough to have 
negligible loading effect on the circuit. Unlike the previous single and differential 
circuits, in this circuit Lb can be chosen independently of the passband (odd-mode), 
as it is virtually grounded in the passband.

In Figure 10.14(c), it can be seen if the series resonance of the coupled inductors 
Lh and capacitors Ch/2 is set to coincide with the center of the second-harmonic 
band, a short-circuit impedance will be realized in the band. The bridge-T bias and 
harmonic trap architecture is more compact than the more conventional approaches 
described in the previous sections, as it uses only one bias inductor. It is also much 
more flexible as the harmonic and passband equivalent circuits are effectively decou-
pled. The decoupling of the passband and harmonic band characteristics gives this 
network significant performance advantages.

Figure 10.15 shows the key performance characteristics of the bridge-T network, 
compared to two of those considered previously. With equal in-band insertion loss 
for all the networks, the bridge-T circuit has much improved second-harmonic 
characteristics. The dispersion across the harmonic band is greatly reduced and the 

Figure 10.14 Differential bridge-T lowpass network: (a) schematic, (b) odd mode, and (c) even 
mode.



Figure 10.15 Differential characteristics of bridge-T lowpass with previous circuits: (a) Γ in 
across passband, (b) Γ in across second-harmonic band, (c) passband insertion losses, and (d) 
second-harmonic insertion losses.
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Figure 10.15 (Continued)

rejection across the band is much deeper and flatter than the previous alternatives. 
Compared to the differential architecture with no coupling, which is identical to 
that for the single-ended circuit, there is between 5 and 10-dB increase in rejection 
across the band.

In all responses shown in Figure 10.15, an arbitrary coupling coefficient |k| = 
0.7 was assumed.



If needed, the bridge-T circuit of Figure 10.14(a) can also be easily modified to 
additionally provide high third-harmonic rejection (odd-mode). This requires only 
one additional inductor L3, as shown in Figure 10.16(a). The second-harmonic 
response is essentially unaffected by this addition, because no current flows through 
L3/Ct under even-mode excitation. In the passband and third-harmonic band, which 
are odd-mode, the equivalent circuit of Figure 10.14(b) is transformed into that in 
Figure 10.16(b). To maintain minimum insertion loss in the passband L3 and Ct 
are chosen to have an equivalent series capacitive reactance to that of 2Ct in Figure 
10.14(b). For low impedance and high rejection across the third-harmonic band, L3 
and Ct are chosen to have a series resonance at the center of the band.

The very significant reduction in impedance across the third-harmonic band, 
achieved by the addition of inductor L3 to the bridge-T circuit, can be seen in Figure 
10.17. There is little dispersion across the entire band and a very low impedance is 
demonstrated. All other passband and second-harmonic responses are essentially 

Figure 10.16 Differential bridge-T lowpass network with second and third-harmonic shorts: (a) 
schematic, and (b) odd mode.

Figure 10.17 Differential bridge-T lowpass network third-harmonic reflection coefficients, 
without and with additional inductor L3.
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unchanged from those shown in Figure 10.15, save for a very minimal increase in 
passband insertion loss due to the nonideal nature assumed for the components.

The element values for the circuit are (accounting for Lb):

 

Ch =
2

w2h
2 1 + kh( )Lh

+
1

w2h
2 Lb

 (10.42)

For no third-harmonic short

 

Ct =
1

2 1 − kh( )w0
2Lh

 (10.43)

with third-harmonic short

 
L3 =

1

w3h
2 Ct

 (10.44)

and

 

Ct =
1/w0

2 − 1/w3h
2

2 1 − kh( )Lh

 (10.45)

The odd-mode loading impedance (i.e., fundamental and odd harmonics) on 
the two lines is

 

ZO =
RLh + jw 1 − kh( )Lh( ) RCt + RL3 + j wL3 − 1/wCt( )( ) /2

RLh + jw 1 − kh( )Lh + RCt + RL3 + j wL3 − 1/wCt( )( ) /2
 (10.46)

while the even-mode loading impedance (i.e., even harmonics) on the two lines is, 
accounting for Lb,

 

ZE = RLh + jw 1 + kh( )Lh +
2

1

RCh − j /wCh

+
1

RLb + jwLb

 (10.47)

where Relement = resistance of associated element.
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C H A P T E R  1 1

LC Single-Ended Matching Networks 
Overview

LC networks are the workhorses of passive RF networks. As building blocks, they 
are used for implementing matching networks, splitters, couplers, phase shifters, 
and filters. In general, such networks comprise multiple ports that interface with 
other network elements in an RF module. In this chapter, however, we shall focus 
on the most basic network form, the two-port. It is essential to have an intimate 
understanding of the capabilities and limitations of two-port networks to be able 
to be able to build upon them to implement networks of greater complexity, which 
are discussed later in this book.

Generally, two-port networks are divided into three classes: lowpass, highpass, 
and bandpass. Lowpass networks have insertion loss characteristics that increase 
with frequency, while highpass networks have insertion loss characteristics that 
decrease with frequency. To achieve a bandpass response, resonant elements, such 
as those discussed in Chapter 8, must be introduced into the networks. Typical 
frequency characteristics of the three network classes are shown in Figure 11.1.

For impedance matching the typically low output impedance (∼5Ω) of a mobile 
power amplifier (PA) to a near universal 50Ω load, multiple cascaded matching sec-
tions are often required. The network class chosen for the sections may be the same 
or different. In addition, for optimum transmission characteristics, the intermediate 
impedances at the common nodes between sections must be allowed to be complex. 
Given the design complexity, achieving optimum overall network performance is 
dependent upon having a well-founded analytic description of each section.

The most basic form of a discrete matching network configuration comprises 
two elements, one element typically capacitive and the second element inductive. 
The possible configurations can take four different forms, as shown in Figure 11.2.

There are two lowpass options, with the appropriate choice dependent upon 
the relative impedances on the two ports. Likewise, there are two highpass options, 
again with the appropriate choice dependent upon the relative impedances on the 
two ports.

More complex discrete matching configurations comprise three elements and 
employ coupling between inductive elements or combinations thereof. General 
configurations for three of the most important two-port matching network archi-
tectures, used in RF design, are shown in Figure 11.3.

The π and T-network forms are widely used in PA matching applications. Here, 
the elements Yn and Zn represent the admittance and impedance, respectively, of 
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Figure 11.1 Typical transmission characteristics of two-port LC networks: (a) lowpass response, 
(b) highpass response, and (c) bandpass response.

Figure 11.2 Basic two-port LC network architectures: (a) lowpass 1, (b) lowpass 2, (c) highpass 
1, and (d) highpass 2.
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either inductive or capacitive circuit elements. The nature of the latter is dependent 
on the source and load impedances on the network.

A simplified two-port transformer schematic, as is commonly employed in 
low-frequency applications, is shown in Figure 11.3(c). Such a schematic is not 
physically realizable in high megahertz frequency ranges and above. This is due 
to the dual challenge of realizing large inductance values simultaneous with very 
tight coupling. Its function can be approximated by a pair of coupled inductors in 
RF circuits, although it is rarely used in single-ended impedance matching applica-
tions. However, coupled inductors do find widespread application in differential 
impedance matching networks. The application of coupled inductors for impedance 
matching for both single-ended and differential networks is examined in detail in 
subsequent chapters.

This chapter will focus on the design of π and T-networks and their two-element 
lowpass and highpass derivatives. The following parametric definitions are com-
mon for all the analyses:

Source impedance ZS = RS + jXS  (11.1)

Load impedance ZL = RL + jXL  (11.2)

Source admittance 
YS = GS + jBS =

RS

RS
2
+ XS

2 − jXS

RS
2
+ XS

2  (11.3)

Load admittance YL = GL + jBL =
RL

RL
2
+ XL

2 − jXL

RL
2
+ XL

2  (11.4)

11.1 Basic Two-Element Matches

The simple two-element network configurations shown in Figure 11.2 can be used 
for effecting impedance matching either in isolation or in a cascade arrangement. 
For a single section, as there are only two network variables to determine (i.e., L and 
C) and a complex impedance match is required, the elemental solutions are unique.

The choice of whether a lowpass or highpass match is most appropriate in a 
given design must be made by the designer in the light of system requirements. Once 
that choice is made, which of the alternate versions is required depends entirely on 
the source and load impedances to be matched.

Figure 11.3 More complex two-port network architectures: (a) π-network, (b) T-network, and 
(c) transformer.
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For the lowpass match, the lowpass 1 type match is required, when

 ZL > RSRL  (11.5)

or, if XL = 0,

 RL > RS  (11.6)

with required element values

 
wC =

XL ± RL
2
+ XL

2( )RL /RS − RL
2

RL
2
+ XL

2  (11.7)

 
wL = wC RL

2
+ XL

2( ) − XL( )RS /RL − XS  (11.8)

For the lowpass match, the lowpass 2 type match is required, when

 ZS > RSRL  (11.9)

or, if XS = 0,

 RS > RL  (11.10)

with required element values

 
wC =

XS ± RS
2
+ XS

2( )RS /RL − RS
2

RS
2
+ XS

2  (11.11)

 
wL = wC RS

2
+ XS

2( ) − XS( )RL /RS − XL  (11.12)

For the highpass match, the highpass 1 type match is required, when

 ZL > RSRL  (11.13)

or, if XL = 0,

 RL > RS  (11.14)

with required element values

 
wL =

−XL ± RL
2
+ XL

2( )RL /RS − RL
2

1 − RL /RS

 (11.15)

 

C =
LRL /RS

wL XSRL /RS + XL( ) + RL
2
+ XL

2  (11.16)

For the highpass match, the highpass 2 type match is required, when
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 ZS > RSRL  (11.17)

or, if XS = 0,

 RS > RL  (11.18)

with required element values

 
wL =

−XS ± RS
2
+ XS

2( )RS /RL − RS
2

1 − RS /RL

 (11.19)

 

C =
LRS /RL

wL XLRS /RL + XS( ) + RS
2
+ XS

2  (11.20)

11.2 Basic Two-Element Matching Networks Characteristics

Characteristics of the basic two-element matching networks of the previous sec-
tion can be obtained by straightforward application of the relationships provided 
in Chapters 1 and 4. Some examples are given below.

First, see the design parameters given in Table 11.1.
With these external impedances, the lowpass and highpass matching networks 

take the form shown in Figure 11.4 with the parameters in Table 11.2.

Table 11.1 Design Parameters for Basic 
Two-Element LC Matches

Design Parameters

flo 
1,710 MHz

fhi 
2,025 MHz

ZS = 5Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100

Figure 11.4 Basic two-element LC matching networks, with RS < RL: (a) lowpass, and (b) 
highpass.

Table 11.2 Design Parameters for Basic Two-
Element LC Matches, with RS < RL

Lowpass Parameters

L = 1.278 nH C = 5.11 pF

Highpass parameters

C = 5.682 pF L = 1.420 nH
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The impedance and gain characteristics of the lowpass network are shown in 
Figure 11.5.

With the elemental dissipation factors specified in Table 11.1, the minimum 
passband insertion gain, Pdel/Pavail ≈ 0.71 dB. Note that, in Figure 11.5(c), the two 
dependencies Pdel/Pavail and Pdel/Pin increasingly diverge at the band edges. The latter 

Figure 11.5 Lowpass LC characteristics, with RS < RL: (a) input reflection coefficient, (b) input 
impedance, and (c) insertion gain.
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represents the power delivered to the load relative to the power entering the network. 
This insertion gain dependency is thus indicative of losses within the network due 
to dissipation in the elements. The insertion gain dependency Pdel/Pavail, in addition 
to Pdel/Pin, also includes reflective losses on the input to the network. Thus, the sig-
nificant divergence between the two dependencies, particularly at the band edges, 
indicates that the simple two-element network is not capable of maintaining a good 
impedance match across the full bandwidth, with the 10:1 impedance mismatch. 
The variation of the input match over frequency can be seen in Figure 11.5(a, b). 
At the top end of the band, ∼0.25-dB insertion loss can be seen to be attributable 
to mismatch.

The impedance and gain characteristics of the highpass network, for the design 
parameters of Table 11.1, are shown in Figure 11.6.

With the elemental dissipation factors specified in Table 11.1, the minimum 
passband insertion gain, Pdel/Pavail ≈ 0.69 dB, is almost identical to the lowpass 
configuration. Similar to the lowpass configuration, there is a significant divergence 
between the two insertion gain dependencies. An additional loss due to mismatch 
∼0.3 dB can be seen in Figure 11.6(c), this time at the low end of the band.

In conclusion, assuming the same elemental quality factors, the insertion gains 
across the passband for the two-element lowpass and highpass network configura-
tions are approximately equivalent. Thus, the decision as which is most advantageous 
for a given application is generally decided by considerations of the transmission 
characteristics either above, or below, the passband.

11.3 Three-Element Network Dependency Options

The π and T-networks both comprise three independent elements, as is seen in Figure 
11.3(a, b). However, to permit an impedance match between a complex source and 

Figure 11.5 (Continued)
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Figure 11.6 Highpass LC characteristics, with RS < RL: (a) input reflection coefficient, (b) input 
impedance, and (c) insertion gain.
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Figure 11.6 (Continued)

a complex load, only two equations must be satisfied, for the real and imaginary 
parts of either the terminated input or output impedance of the network. With three 
variables, the two equations are undetermined and capable of an infinite number 
of solutions. To address this issue, an additional constraint must be introduced to 
arrive at a unique set of solutions for the equations.

A first choice for an additional constraint is to treat one of the elements as an 
independent variable. Solutions for the remaining two elements will then be expressed 
in terms of this variable. Depending on which of the three circuit elements is selected 
as the independent variable, this would then yield three independent sets of solu-
tions. Instead of one of the element values, a less obvious, but extremely useful, 
independent variable that can be chosen for each of the networks is the through-
network phase shift. Choosing the network phase shift as the independent variable 
has the advantage of a frequency-independent quantity. This greatly facilitates the 
reuse of cascaded multisection amplifier matching network designs in differing 
frequency bands.

In the following sections for π and T networks, distinct sets of design solutions 
are developed for the alternate options of independent variables.

11.4 π-Network Design

For the synthesis solutions provided, all three network elements are assumed to be 
ideal (i.e., purely reactive). However, the solutions provided are for matching an 
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arbitrary complex source to an arbitrary complex load. The nomenclature for the 
reactive components of the network elements is detailed in Figure 11.7.

Case 11.1: Independent Variable = X

In terms of the parametric values in Figure 11.7, and those in (11.1) to (11.4), if the 
independent variable is taken to be the series reactance X, in order to match the 
complex source to the complex load impedance, require

 
B1 = 1 ∓ GS 1/GL −GSX

2( )( ) /X − BS  (11.21)

 
B2 = 1 ∓ GL 1/GS −GLX

2( )( ) /X − BL  (11.22)

Case 11.2: Independent Variable = B1

In terms of the parametric values in Figure 11.7 and those in (11.1) to (11.4), if the 
independent variable is taken to be the left shunt susceptance B1, in order to match 
the complex source to the complex load impedance, require

 

X =
BS + B1 ±GS GS

2
+ BS + B1( )

2
/GSGL − 1

GS
2
+ BS + B1( )

2  (11.23)

 
B2 = 1 ∓ GL 1/GS −GLX

2( )( ) /X − BL  (11.24)

Case 11.3: Independent Variable = B2

In terms of the parametric values in Figure 11.7 and those in (11.1) to (11.4), if the 
independent variable is taken to be the right shunt susceptance B2, in order to match 
the complex source to the complex load impedance, we require

 

X =

BL + B2 ±GL BL + B2( )
2
+GL

2( ) /GSGL − 1

GL
2
+ B2 + BL( )

2  (11.25)

Figure 11.7 π-network reactive element definitions.



 
B1 = 1 ∓ GS 1/GL −GSX

2( )( ) /X − BS  (11.26)

Case 11.4: Independent Variable = Network Phase Shift

Either the phase shift from the source to the load can be referenced, that is,

 
Φ1 = −∠ VL /VS( ) = − tan−1 VL /VS( )  (11.27)

in which case

 

X =
± RS sinΦ1 − XS cosΦ1( )

RSGL

 (11.28)

or the phase shift through the network can be referenced, that is,

 
Φ2 = −∠ VL /V1( ) = − tan−1 VL /V1( )

 (11.29)

in which case

 

X =
± sinΦ2

RSGL
 (11.30)

For both phase references from (11.21),

 
B1 = 1 ∓ cosΦ2 GS /GL( ) /X − BS  (11.31)

and, from (11.22),

 
B2 = 1 ∓ cosΦ2 GL /GS( ) /X − BL  (11.32)

For lowpass networks, the series reactance X must be inductive (i.e., X > 0). For 
highpass networks, the series reactance X must be capacitive (i.e., X < 0).

B1 = 0, for

 

Φ2 B1 0( )( ) = ± cos−1 1 − BSX( )

GS /GL

⎛

⎝⎜
⎞

⎠⎟
 (11.33)

B2 = 0, for

 

Φ2 B2 0( )( ) = ± cos−1 1 − BLX( )

GL /GS

⎛

⎝⎜
⎞

⎠⎟
 (11.34)

11.4.1 Dual Section π-Network Design

As mentioned above, multiple cascaded matching sections are frequently used to 
implement large impedance matching transformations. Employing two sections in 
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the place of one invariably increases the bandwidth of the impedance match and 
significantly reduces insertion loss. However, these advantages are gained at the 
expense of an increase in the footprint of the network.

In the two cascaded sections, there are a total of five elements. As with the single-
section match, only two equations need to be satisfied for the real and imaginary 
components of impedance. Thus, in this case, three independent variables must be 
defined to determine a unique set of element values.

A convenient choice for two of these variables is the phase shifts in each of the 
sections. Again, this choice is advantageous for ease of application to multiple fre-
quency scenarios, as the phase shifts are independent of frequency.

For the third variable, an optimal choice, which is also frequency-independent, 
is the conductance GN, at the common node between the two sections. This is not 
meant to imply any assumption that the impedance at this node is pure real. In 
general, for optimal network characteristics, particularly bandwidth and insertion 
loss, it will not be. However, requiring a conjugate match at the common combining 
node implies a common real conductance at this point, namely, GN.

The network element definitions, for a dual-section π-network impedance match, 
are shown in Figure 11.8.

In this case, the phase shifts for the two sections are chosen as

 
Φ1 = −∠ VN /V1( ) = − tan−1 VN /V1( )  (11.35)

and

 
Φ2 = −∠ VL /VN( ) = − tan−1 VL /VN( )  (11.36)

In order for the cascaded sections to realize an impedance match between com-
plex impedances ZS to ZL, we require

 

X1 =
sinΦ1

GSGN
 (11.37)

 

X2 =
sinΦ2

GNGL

 (11.38)

and

Figure 11.8 Dual-section π-network impedance matching network.
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B1 =

1 ∓ GS 1/GN −GSX1
2( )( )

X1 − BS
 (11.39)

 
B2 =

1 ∓ GN 1/GS −GNX1
2( )( )

X1

+

1 ∓ GN 1/GL −GNX2
2( )( )

X2

 (11.40)

 
B3 =

1 ∓ GL 1/GN −GLX2
2( )( )

X2 − BL
 (11.41)

Thus, in these design equations, there are three independent variables to define 
the match: Φ1, Φ2, and GN.

11.5 T-Network Design

For the synthesis solutions provided, all three network elements are assumed to be 
ideal (i.e., purely reactive). However, the solutions provided are for matching an 
arbitrary complex source to an arbitrary complex load. The nomenclature for the 
reactive components of the network elements is detailed in Figure 11.9.

Case 11.5: Independent Variable = B

In terms of the parametric values in Figure 11.9, and those in (11.1) to (11.4), if the 
independent variable is taken to be the series reactance X, in order to match the 
complex source to the complex load impedance, we require

 
X1 = 1 ± RS /RL − BRS( )

2( ) /B − XS  (11.42)

 
X2 = 1 ± RL /RS − BRL( )

2( ) /B − XL  (11.43)

Figure 11.9 T-network reactive element definitions.
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Case 11.6: Independent Variable = X1

In terms of the parametric values in Figure 11.9, and those in (11.1) to (11.4), if the 
independent variable is taken to be the left shunt susceptance B1, in order to match 
the complex source to the complex load impedance, we require

 

B =

X1 + XS ± RS
2
+ X1 + XS( )

2( )RS /RL − RS
2

RS
2
+ X1 + XS( )

2  (11.44)

 
X2 = 1 ± RL /RS − BRL( )

2( ) /B − XL  (11.45)

Case 11.7: Independent Variable = X2

In terms of the parametric values in Figure 11.9, and those in (11.1) to (11.4), if the 
independent variable is taken to be the right shunt susceptance B2, in order to match 
the complex source to the complex load impedance, we require

 

B =

X2 + XL ± RL
2
+ X2 + XL( )

2( )RL /RS − RL
2

RL
2
+ X2 + XL( )

2  (11.46)

 
X1 = 1 ± RS /RL − BRS( )

2( ) /B − XS  (11.47)

Case 11.8: Independent Variable = Network Phase Shift

Either the phase shift from the source to the load can be referenced, that is,

 
Φ1 = −∠ VL /VS( ) = − tan−1 VL /VS( )  (11.48)

in which case

 

B = ±
XL cosΦ1 + RL sinΦ1

RSRL RL
2
+ XL

2( )
 (11.49)

or the phase shift through the network can be referenced, that is,

 
Φ2 = −∠ VL /V1( ) = − tan−1 VL /V1( )  (11.50)

in which case

 

B = ±
GSGL − BSBL( )sinΦ2 − GSBL +GLBS( )cosΦ2

GSGL

 (11.51)
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For both phase references, as above,

 
X1 = 1 ± RS /RL − BRS( )

2( ) /B − XS  (11.52)

 
X2 = 1 ± RL /RS − BRL( )

2( ) /B − XL  (11.53)

For lowpass networks, the shunt susceptance B must be capacitive (i.e., B > 
0). For highpass networks, the shunt susceptance B must be inductive (i.e., B < 0).

11.6 π and T-Network Characteristics

As an aid to understanding of the key distinguishing features between π and T-net-
work impedance matches, some of their key characteristics are presented here with 
the design parameters listed in Table 11.3. To allow a direct comparison of between 
the two types of networks, all responses are determined using the following com-
mon design specifications.

Also, for each of the networks, the base design values listed correspond to a 
through-network phase shift |Φ| = 90°.

11.6.1 Lowpass π-Network

An example of a lowpass π-network is shown in Figure 11.10. Note, in general, that 
the shunt elements may be either inductive or capacitive depending on the imped-
ance terminations and through phase shift.

With element values:

L = 1.348 nH

C1 = 5.390 pF

C2 = 5.390 pF

and minimum passband insertion gain, Pdel/Pavail ≈ 0.73 dB.

Table 11.3 Common Parameters Used for 
Evaluating Two-Port LC Networks

Design Parameters

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift |ΔΦ| = 90°

ZS = 5Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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Figure 11.11 Lowpass π-network key characteristics: (a) insertion gain versus frequency, (b) 
insertion phase versus frequency, (c) insertion gain versus phase shift, and (d) element values 
versus phase shift.

Figure 11.10 Lowpass π-network implementation.



Figure 11.11 (Continued)

Note that, for insertion phase shifts in the range of 0° to ∼ −71°, the correspond-
ing value of C1 is negative. For physical realization, to implement phase shifts in 
this range, C1 must be replaced by a shunt inductor with an equivalent susceptance.

11.6.2 Highpass π-Network

An example of a highpass π-network is shown in Figure 11.12. Note, in general, that 
the shunt elements may be either inductive or capacitive depending on the imped-
ance terminations and through phase shift.

11.6 π and T-Network Characteristics 181



182 LC Single-Ended Matching Networks Overview

Figure 11.12 Highpass π-network implementation.

Figure 11.13 Highpass π-network key characteristics: (a) insertion gain versus frequency, (b) 
insertion phase versus frequency, (c) insertion gain versus phase shift, and (d) element values 
versus phase shift.



With element values:

C = 5.39 pF

L1 = 1.348 nH

L2 = 1.348 nH

and minimum passband insertion gain, Pdel/Pavail ≈ 0.81 dB.

Figure 11.13 (Continued)
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In this case, the value of L1 is negative for insertion phase shifts in the range 
of 0° to ∼71°. For physical realization, to implement phase shifts in this range, L1 
must be replaced by a shunt capacitor with an equivalent susceptance.

11.6.3 Lowpass T-Network

An example of a lowpass T-network is shown in Figure 11.14. Note, in general, that 
the series elements may be either inductive or capacitive depending on the imped-
ance terminations and through phase shift.

With element values:

C = 5.390 pF

L1 = 1.348 nH

L2 = 1.348 nH

and minimum passband insertion gain, Pdel/Pavail ≈ 0.73 dB.

In this case, the value of L2 is negative for insertion phase shifts in the range of 
0° to ∼ −71°. For physical realization, to implement phase shifts in this range, L2 
must be replaced by a shunt capacitor with an equivalent susceptance.

11.6.4 Highpass T-Network

An example of a highpass T-network is shown in Figure 11.16. Note, in general, that 
the series elements may be either inductive or capacitive depending on the imped-
ance terminations and through phase shift.

With element values:

L = 1.348 nH

C1 = 5.390 pF

C2 = 5.390 pF

and minimum passband insertion gain, Pdel/Pavail ≈ 0.81 dB.

In this case, the value of C2 is negative for insertion phase shifts in the range 
of 0° to ∼71°. For physical realization, to implement phase shifts in this range, C2 
must be replaced by a shunt inductor with an equivalent susceptance.

Figure 11.14 Lowpass T-network implementation.



Figure 11.15 Lowpass T-network implementation: (a) insertion gain versus frequency, (b) 
insertion phase versus frequency, (c) insertion gain versus phase shift, and (d) element values 
versus phase shift.
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Figure 11.15 (Continued)



Figure 11.16 Highpass T-network implementation.

Figure 11.17 Highpass T-network key characteristics: (a) insertion gain versus frequency, (b) 
insertion phase versus frequency, (c) insertion gain versus phase shift, and (d) element values 
versus phase shift.
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Figure 11.17 (Continued)



11.6.5 π and T-Network Equivalencies

Any π-network can be transformed into an equivalent T-network or vice versa. 
Figure 11.18 shows generic schematics for a π-network and a T-network.

The π-network will be equivalent to the T-network, given the following elemen-
tal relationships

 
ZA =

Z1Z2 + Z1Z3 + Z2Z3

Z2

 (11.54)

 
ZB =

Z1Z2 + Z1Z3 + Z2Z3

Z1

 (11.55)

 
ZC =

Z1Z2 + Z1Z3 + Z2Z3

Z3

 (11.56)

or, alternately,

 
YA =

Z2

Z1Z2 + Z1 + Z2( ) /Y3

 (11.57)

 
YB =

Z1

Z1Z2 + Z1 + Z2( ) /Y3

 (11.58)

 ZC = Z1 + Z2 + Y3Z1Z2  (11.59)

Reciprocally, the T-network will be equivalent to the π-network, given the fol-
lowing elemental relationships

 
Z1 =

ZAZC

ZA + ZB + ZC

 (11.60)

 
Z2 =

ZBZC

ZA + ZB + ZC

 (11.61)

 
Z3 =

ZAZB

ZA + ZB + ZC

 (11.62)

Figure 11.18 Equivalent π and T-networks: (a) generic π-network, and (b) generic T network.
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or, alternately,

 
Z1 =

YBZC

YA + YB + YAYBZC

 (11.63)

 
Z2 =

YAZC

YA + YB + YAYBZC

 (11.64)

 Y3 = YA + YB + YAYBZC  (11.65)

11.7 Two-Element, Single-Ended Matching Networks

The π and T-matching networks each comprise three elements. This gives them 
extreme flexibility with an infinite set of possible element values available for pro-
viding an impedance match between two arbitrary complex impedances. Having 
an infinite set of solutions from which to choose gives the RF designer the freedom 
to choose the design set that most closely optimizes the parameter of most impor-
tance, typically insertion loss.

In some cases, however, this additional degree of freedom is not required and 
the designer would prefer to use a matching network with fewer elements (i.e., two). 
This has advantages for both footprint and cost. Unfortunately, it will inevitably 
result in incurring some degradation in performance. In addition, depending on 
the terminating impedances, a two-element solution might not even be possible.

The two-element match has two potential forms, either a series-shunt connec-
tion, or a shunt-series connection. These are shown in Figure 11.19, together with 
the element parameters.

Values for the network elements can be derived directly from those for either 
the π or T-networks. Simply equating one of the susceptances on either side of 
the π-network to zero yields solutions for the two-element networks. Conversely, 
equating one of the reactances on either side of the T-network to zero will also yield 
solutions for the two-element networks.

The formulae for determining the appropriate element values for each of the 
four two-element LC matches networks are given below (see Figure 11.20):

 
L = −XS + RS 1/GL − RS( )( ) /w  (11.66)

Figure 11.19 Two-element LC impedance matching networks: (a) series-shunt match, and (b) 
shunt-series match.
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C = −BL + GL 1/RS −GL( )( ) /w  (11.67)

 

C =
1

w XS + RS 1/GL − RS( )( )
 (11.68)

 

L =
1

w BL + GL 1/RS −GL( )( )
 (11.69)

 
C = −BS + GS 1/RL −GS( )( ) /w  (11.70)

 
L = XL + RL 1/GS − RL( )( ) /w  (11.71)

 

L =
1

w BS + GS 1/RL −GS( )( )
 (11.72)

 

C =
1

w XL + RL 1/GS − RL( )( )
 (11.73)

Details of the impedance contours for these networks are shown in Figure 11.21.

11.8 Dual-π Single-Ended PA Matching

The most common exploited matching network configuration for a single-ended 
mobile PA comprises a serial cascade of two π-networks. In general, such a network 
is easy to design, not challenging to lay out, and has good performance. A simpli-
fied schematic of a typical two-section π PA output match is shown in Figure 11.22.

In the schematic, the bias and harmonic trap taken together constitute the 
leftmost susceptance of the two-section π match. Including the latter, there are a 

Figure 11.20 Two-element LC impedance matching networks: (a) series-shunt–lowpass (11.66) and 
(11.67), (b) series-shunt–highpass (11.68) and (11.69), (c) shunt-series–lowpass (11.70) and (11.71), and 
(d) shunt-series–highpass (11.72) and (11.73).
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total of five elements in the two cascaded sections. Capacitor CL is included in the 
circuit to isolate the load from the DC bias, and it is accounted for in the analysis 
as an additional series impedance with the load. As only two equations need to be 
satisfied for the real and imaginary components of impedance at a single frequency, 
the element values are underconstrained and thus an infinite set of solutions is 
possible. To constrain the element values, additional boundary conditions must be 
applied. Examples of these are limits on the element values or passband variations 
in insertion loss, impedance match, and insertion phase, or out-of-band, rejection.

In addition to requiring an impedance match at the design frequency, three inde-
pendent variables must be defined to determine a unique set of element values for 
the network. Sweeping these variables then permits contour maps, such as those in 
Section 7.1.3, to be generated of the performance parameters of most importance. 
A network configuration that offers the best performance compromise can then 
be selected.

Figure 11.21 Two-element LC impedance matches.

Figure 11.22 Cascaded two-section π PA match.



In Section 11.4.1, a convenient design approach was described based on choosing 
two of the swept variables as the phase shifts in the two π-sections. The phase shifts 
are advantageous choices as they are independent of frequency. An optimal choice 
for the third swept variable, again frequency-independent, is the conductance Gin, 
or resistance Rin, of the complex conjugate match at the common node between the 
two sections. Full design equations for this approach were given in Section 11.4.1.

Given that there are two cascaded π sections, each of which could be a high-
pass or lowpass network (Section 11.6), there are four possible configurations to be 
considered. Some of the basic characteristics of each are analyzed in the following 
sections, with the common target specifications listed in Table 11.4.

The residual susceptance value, BS of the harmonic termination elements at f0, 
was chosen to achieve an acceptable second-harmonic response. The impact of this 
parameter on the matching network performance was described fully in Section 9.2. 
Succinctly, increasing BS decreases the value of Lh, which reduces dispersion in the 
second-harmonic band, but increases insertion loss in the passband.

11.8.1 Lowpass + Lowpass π-Networks Cascade

Figure 11.23 shows a simplified schematic of the elements in a typical PA output 
match comprising a cascade of a lowpass π-network followed by a second lowpass 
π-network.

Because the impedance matching requirement for the network can be satis-
fied by an unlimited set of solutions, the designer must select, from among them, 
a compromise solution that comes closest to meeting the design goals. In order to 

Table 11.4 Common Single-Ended PA Match 
Target Specifications

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 180°

Input impedance 4Ω

Output impedance 50Ω

Residual susceptance BS = 0.11

Cb = 50 pF CL = 50 pF

Inductors, QL = 60 Capacitors, QC ≈ 100

Figure 11.23 Lowpass π + lowpass π PA match.
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make this choice, the designer must have a clear understanding of the performance 
trade-offs available for the network. An effective way to do this is to present the 
designer with visual presentations that clearly convey the sensitivities of the key 
parameters of concern to the network solutions available.

For the network “optimal” design approach proposed, therefore, a first step is 
to define the key parameters that are of most importance to the performance of the 
network. An example for such a list is:

1. Insertion gain.
2. Input impedance match |Zin − ZS

∗|, where ZS = RS + jXS = source impedance.
3. Real input impedance match |Rin − RS|.
4. Imaginary input impedance match |Xin + XS|.
5. Second-harmonic rejection.

Two-dimensional contour plots for each of these parameters are then generated 
by sweeping the phase shifts in the first and second π-networks, δΦπ1 and δΦπ2, 
respectively. For each pair of phase shifts, the value of the real part of the complex 
impedance at the common node of the π-networks, Rin, is chosen to satisfy the 
parameter listed that is most critical. Because the optimum value for Rin is only 
typically weakly dependent on the choice of critical parameter, the choice has little 
effect on the contour plots generated. Furthermore, an optimal value of Rin, for 
any of the listed parameters, can be chosen once the designer has selected values 
for δΦπ1 and δΦπ2.

Figure 11.24 shows typical sensitivity plots of four key parameters on Rin. Data 
points corresponding to a selected value of Rin ≈ 17.62Ω are denoted by the markers.

Any software suite capable of rendering visual presentations of data could be 
used for generating the parametric contour plots. As described in Chapter 7, Micro-
soft Excel provides one such option that is readily available to many. The contour 
plots below were generated in Excel, using the techniques described in Chapter 7.

In each of the contour plots shown in Figure 11.25(a–d), the green cells have 
the most desirable values for the corresponding dependent variable, while the dark 
red cells have the least desirable values. The cells in each chart that are dark green 
are the most favorable value in each chart. The cells in each chart that are yellow 
represent the current design selection, which can be simply changed by selecting 
a different cell in one of the charts. Each time the active cell is changed, the color 
of the corresponding cells in each of the charts is changed to yellow to highlight 
where the current design choice lies on each of the charts. The schematic and all 
network performance data and plots on the spreadsheet are determined based on 
the active cell selection. Thus, by simply moving the mouse around on the contour 
plot, the schematic and performance parameters displayed are instantly updated 
to reflect the design changes.

By way of example, Figure 11.25(e) provides one additional contour plot to aid in 
the selection of an optimal configuration for the network. In each cell, corresponding 
to a particular combination of phase shifts, the value of inductor L1 (Figure 11.23) 
is displayed. Darker shading is used to denote an increase in value. Such data can 
be of benefit to the designer if there may be some limits on the practical size of the 
inductor in a compact module.



Figure 11.24 Lowpass π + lowpass π PA match Rin dependence: (a) insertion gain and |Zin − Z∗
S|, 

and (b) |Rin − RS| and |Xin + XS|.

Taken together, contour plots such as those shown in Figure 11.25 provide the 
designer with invaluable insight into the performance compromises that are avail-
able with the network.

Based on those plots, the optimal values were chosen as Rin ≈ 17.62Ω, δΦπ1 = 
61°, and δΦπ2 = 63°. The corresponding set of optimal element values, to meet the 
design specifications of Table 11.4, are given in Table 11.5.

Using these element values, key plots that characterize the performance of the 
impedance matching network are shown in Figure 11.26.
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Figure 11.25 Lowpass π + lowpass π PA match parametric contour plots: (a) insertion gain, (b) |Zin − Z∗
S|, 

(c) |Rin − RS|, (d) |Xin + XS|, (e) second-harmonic rejection, and (f) inductor L1 value.

The dual lowpass π impedance matching network exhibits good characteristics. 
Its input impedance across the passband is close to ideal, as is the output imped-
ance. Across the second-harmonic bandwidth, the input impedance is close to the 
desired goal of an ideal short circuit. Angular dispersion of the impedance is low 
and could be further reduced at the expense of insertion loss, if desired.

The maximum insertion loss of the network over the passband is ∼0.53 dB, and 
the rejection across the second-harmonic band is >25 dB.



Figure 11.25 (Continued)

11.8.2 Lowpass + Highpass π-Networks Cascade

Figure 11.27 shows a simplified schematic of the elements in a typical PA output 
match comprising a cascade of a lowpass π-network followed by a second highpass 
π-network.

Figure 11.28 shows typical sensitivity plots of four key parameters on the value 
of Rin. Data points corresponding to the optimal selected value of Rin ≈ 19.28Ω are 
denoted by the markers.

Parametric contour plots of the most critical performance parameters were again 
generated, as in Section 11.8.1. Based on those plots, the optimal values were chosen 

11.8 Dual-π Single-Ended PA Matching 197



198 LC Single-Ended Matching Networks Overview

Figure 11.25 (Continued)

Table 11.5 Lowpass π + Lowpass π 
Optimal PA Match Elements

Element Values

Lb = 0.755 nH

Lh = 0.273 nH Ch = 6.934 pF

L1 = 0.623 nH C1 = 9.731 pF

L2 = 2.256 nH C2 = 2.295 pF



Figure 11.26 Lowpass π + lowpass π characterization plots: (a) input impedance, (b) passband 
output impedance, (c) passband insertion gain, (d) second-harmonic input impedance, and (e) 
second-harmonic insertion gain.

as Rin ≈ 19.28Ω, δΦπ1 = 61°, and δΦπ2 = 64°. The corresponding set of optimal ele-
ment values, to meet the design specifications of Table 11.4, are given in Table 11.6.

Using these element values, key plots that characterize the performance of the 
impedance matching network are shown below.
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Figure 11.26 (Continued)

The dual-π lowpass + highpass impedance matching network exhibits good 
characteristics. Its input impedance across the passband is close to ideal, as is the 
output impedance. Across the second-harmonic bandwidth, the input impedance 
is close to the desired goal of an ideal short circuit. Angular dispersion of the lat-
ter is low and could be further reduced at the expense of insertion loss, if desired.

The maximum insertion loss of the network over the passband is ∼0.52 dB, and 
rejection across the second-harmonic band is >18 dB.



Figure 11.26 (Continued)

Table 11.6 Lowpass π + Highpass π 
Optimal PA Match Elements

Element Values

Lb = 0.716 nH

Lh = 0.273 nH Ch = 6.934 pF

L1 = 0.652 nH C1 = 7.796 pF

C2 = 3.051 pF L2 = 3.187 pF
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Figure 11.27 Lowpass π + highpass π PA match.

Figure 11.28 Lowpass π + highpass π PA match Rin dependence: (a) insertion gain and |Zin − 
Z∗

S|, and (b) |Rin − RS| and |Xin + XS|.



Figure 11.29 Lowpass π + highpass π characterization plots: (a) input impedance, (b) 
passband output impedance, (c) passband insertion gain, (d) second-harmonic input 
impedance, and (e) second-harmonic insertion gain.
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Figure 11.29 (Continued)

11.8.3 Highpass + Lowpass π-Networks Cascade

Figure 11.30 shows a simplified schematic of the elements in a typical PA output 
match comprising a cascade of a highpass π-network followed by a second lowpass 
π-network.



Figure 11.29 (Continued)

Figure 11.30 Highpass π + lowpass π PA match.
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Figure 11.31 shows typical sensitivity plots of four key parameters on the value 
of Rin. Data points corresponding to the optimal selected value of Rin ≈ 18.41Ω are 
denoted by the markers.

Parametric contour plots of the most critical performance parameters were again 
generated, as in Section 11.8.1. Based on those plots, the optimal values were chosen 
as Rin ≈ 18.41Ω, δΦπ1 = 61°, and δΦπ2 = 64°. The corresponding set of optimal ele-
ment values, to meet the design specifications of Table 11.4, are given in Table 11.7.

Using these element values, key plots that characterize the performance of the 
impedance matching network are shown in Figure 11.32.

Figure 11.31 Highpass π + lowpass π PA match Rin dependence: (a) insertion gain and |Zin − Z∗
S|, 

and (b) |Rin − RS| and |Xin + XS|.



Table 11.7 Highpass π + Lowpass π 
“Optimal” PA Match Elements

Element Values

Lb = 0.819 nH

Lh = 0.273 nH Ch = 6.934 pF

L1 = 0.911 nH C1 = 11.404 pF

C2 = 2.235 pF L2 = 2.326 pF

Figure 11.32 Highpass π + lowpass π characterization plots: (a) input impedance, (b) 
passband output impedance, (c) passband insertion gain, (d) second-harmonic input 
impedance, and (e) second-harmonic insertion gain.
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Figure 11.32 (Continued)



Figure 11.32 (Continued)
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The dual-π highpass + lowpass impedance matching network exhibits good 
characteristics. Its input impedance across the passband is close to ideal, as is the 
output impedance. Across the second-harmonic bandwidth, the input impedance 
is close to the desired goal of an ideal short circuit. Angular dispersion across the 
band is low and could be further reduced at the expense of insertion loss, if desired.

Maximum insertion loss of the network over the passband is ∼0.49 dB, and 
rejection across the second-harmonic band is >19 dB.

11.8.4 Highpass + Highpass π-Networks Cascade

Figure 11.33 shows a simplified schematic of the elements in a typical PA output 
match comprising a cascade of a highpass π-network followed by a second high-
pass π-network.

Figure 11.34 shows typical sensitivity plots of four key parameters on the value 
of Rin. Data points corresponding to the optimal selected value of Rin ≈ 21.7Ω are 
denoted by the markers.

Parametric contour plots of the most critical performance parameters were again 
generated, as in Section 11.8.1. Based on those plots, the optimal values were chosen 
as Rin ≈ 21.7Ω, δΦπ1 = 61°, and δΦπ2 = 64°. The corresponding set of optimal ele-
ment values, to meet the design specifications of Table 11.4, are given in Table 11.8.

Using these element values, key plots that characterize the performance of the 
impedance matching network are shown below.

The dual-π highpass + highpass impedance matching network exhibits good 
characteristics. Its input impedance across the passband is close to ideal, as is the 
output impedance. Across the second-harmonic bandwidth, the input impedance 
is close to the desired goal of an ideal short circuit. Angular dispersion across the 
band is low and could be further reduced at the expense of insertion loss, if desired.

The maximum insertion loss of the network over the passband is ∼0.56 dB, and 
the rejection across the second-harmonic band is >14 dB.

The above data, related to the design of dual-π PA output impedance matching 
networks, are intended to convey the performance trade-offs required to decide upon 
a preferred configuration. First, there is the basic decision as to the nature of each 
of the two π-sections (i.e., either lowpass or highpass). The data presented above 
shows that any of the four possible network combinations can be designed to achieve 
relatively similar performance characteristics. Second, for each of the π-network 
pairs, no one configuration exists that will simultaneously optimize all the key 
parameters of the network. Thus, the designer must seek a compromise solution.

Table 11.8 Highpass π + Highpass π 
Optimal PA Match Elements

Element Values

Lb = 0.912 nH

Lh = 0.273 nH Ch = 6.934 pF

L1 = 0.782 nH C1 = 10.503 pF

C2 = 2.876 pF L2 = 3.452 pF



Figure 11.33 Highpass π + highpass π PA match.

Figure 11.34 Highpass π + highpass π PA match RN dependence: (a) insertion gain and |Zin − 
ZS|, and (b) |Rin − RS| and |Xin − XS|.
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Figure 11.35 Highpass π + highpass π characterization plots: (a) input impedance, (b) 
passband output impedance, (c) passband insertion gain, (d) second-harmonic input 
impedance, and (e) second-harmonic insertion gain.



Figure 11.35 (Continued)
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Figure 11.35 (Continued)
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C H A P T E R  1 2

Coupled-Inductor Single-Ended PA 
Matching

Chapter 11 explored the use of three-element and two-element LC networks for 
impedance matching. Such networks are widely used for the output matching of 
mobile PAs, where a high impedance transformation ratio, typically >10:1, is usu-
ally required. Such a high transformation ratio is challenging to achieve with low 
loss over wide frequency bandwidths. In the majority of cases, a cascade of two or 
more matching networks is required. Because, in addition to the two aforementioned 
parameters, size is equally a major constraint in any mobile device, designers are 
always looking for alternate solutions. One such alternative is the use of networks 
based on coupled inductors.

In the LC networks of Chapter 11, all the RF energy is coupled through the net-
work via direct electrical connection. Current and voltage flows between the nodes 
of the network provide the sole path for energy transfer through the network from 
input to output. However, there is another potential physical means for transferring 
energy across a network and that is magnetic. Transformers, which are common-
place for converting voltages and currents at low frequencies, ideally convert all 
the energy through the network via magnetic coupling. There is no direct electrical 
path across the transformer.

Magnetic energy transfer can also be exploited in RF circuits. Two inductors in 
close proximity, but electrically isolated, can be constructed to efficiently transfer 
RF energy between them and change the voltage level of the signal. This action is 
somewhat analogous to the low-frequency transformer and thus a pair of coupled 
inductors used in an RF network is frequently referred to as a “transformer.” How-
ever, there are some fundamental differences and use of the transformer can lead 
to incorrect assumptions being made regarding key performance characteristics of 
the network.

Coupled inductors are not widely used for the output impedance matching of 
single-ended PAs, for reasons that will become evident in this chapter. However, 
coupled inductors are widely used for the output matching and combining of dif-
ferential PAs.

In this chapter, we examine the use of coupled inductors for single-ended imped-
ance matching. Their use in differential PA architectures is examined in subse-
quent chapters.
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12.1 Terminology: Coupled Inductors Versus Transformers

Transformers are one of the most basic and widely used electronic components in 
innumerable low-frequency (i.e., <1 MHz) applications. The most common appli-
cation with which most people are familiar is their use in AC power conversion, 
where, they transform voltage levels, either up or down, and typically accomplish 
this function with extremely high efficiencies. Such low-frequency (<100 Hz) devices 
are physically implemented with two windings of copper (Cu) wire wrapped mutu-
ally and tightly together around a magnetic former, typically iron (Fe).

The two sets of turns, one for input and one for output, are electrically isolated. 
All energy transfer from input to output is via the magnetic coupling between the 
turns, which is greatly enhanced by the high magnetic permeability of the former. 
Typically, each set of windings employs over 100 turns. The ratio between the 
number of primary turns n1 to the number of secondary turns n2 sets the voltage 
transfer ratio and impedance ratio as

 
V2 /V1 = n2 /n1          and          R2 /R1 = n2 /n1( )

2
 (12.1)

Although the classic low-frequency transformer from a physical viewpoint truly 
functions as a pair of coupled inductors, it is not usually thought of in this context. 
The reason for this is that, for an ideal transformer, the parametric values for the 
coupled inductors are inherently assumed to be limited value extrema that permit 
a simplified model.

Figure 12.1 shows the contrasting representations for an ideal transformer 
and an ideal pair of coupled inductors. Note that, for the ideal transformer, there 
is only one defining parameter, the turns ratio n2/n1. In contrast, for the coupled 
inductors, there are three defining parameters required, L1, L2, and the mutual 
coupling coefficient k.

For the ideal transformer, it is assumed that if the secondary winding is open-
circuited, the input impedance on the primary winding will likewise be an open-
circuit (i.e., Z1 = ∞).

From the matrix representations for these two networks from Chapter 1, we 
find that this implies

(1) L1 = L2 ≈ ∞

(2) k = 1

Figure 12.1 Circuit models for (a) ideal transformer and (b) pair of coupled inductors.
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While these two limiting approximations may be close to valid for low-frequency 
transformers, they are far from reality for any realizable pair of coupled inductors for 
RF applications in the gigahertz region. One major challenge in trying to realize tight 
magnetic coupling between inductors at high frequencies is that most materials with 
high permeabilities are extremely lossy at high frequencies. Thus, in practice, they 
are rarely used in RF circuits, limiting the mutual coupling coefficient achievable. 
In addition, achieving very high inductance values at RF is extremely challenging 
due to the resistive skin effect and also interwinding capacitance.

In practice, coupled RF inductors are generally realized by printed planar traces 
either on a die or on a module substrate. Broadly speaking, such classes of coupled 
inductors can be divided into predominantly edge-coupled or overlap coupled topolo-
gies, although frequently a combination of the two may be used. In predominantly 
coupled inductor layouts, seeking to achieve strong magnetic coupling via edge 
coupling, the two inductor traces are tightly interwound on a single metal layer, as 
illustrated in Figure 12.2.

For enhanced quality factor, the line widths of the traces may not be constant 
along the length of the spirals as illustrated in Figure 12.2(b).

For coupled-inductor layouts, seeking to achieve strong magnetic coupling via 
overlap or broadside coupling, the two inductor traces are typically superposed on 
top of one another in two or more isolated metal layers. A representative layout for 
an overlap coupled-inductor pair is shown in Figure 12.3.

Figure 12.2 Edge-coupled printed inductors: (a) spiral, (b) high-Q spiral, and (c) meander 
lines.
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In this three-layer implementation, inductor L1 is realized in intermediate layer 
two. Coils on layers one and three are connected in series to realize output inductor 
L2. Coupling between the two inductive traces results from the magnetic fields gen-
erated by the current flowing through the coils. The magnetic fields flow partially 
through air above the plane and partially through the supporting material below. 
Given that the magnetic fields of the inductors extend some distance away from 
the traces, care must be taken to exclude other components from the immediate 
neighborhood. Extraneous coupling to other circuit elements can degrade the per-
formance of the coupler or otherwise degrade critical characteristics of the module.

Faced with the challenge of designing a set of coupled inductors to function 
as splitters and/or combiners in a differential PA architecture, it is not helpful for 
the designer to approach the problem as having to design a transformer. The single 
parameter that characterizes a classic transformer, that is, the turns ratio n1/n2 is 
an irrelevant parameter to the design. The challenge for the designer is to determine 
the optimum physical layout for the device, which requires determining the opti-
mum value for the two inductors L1 and L2, given the coupling coefficient that can 
be achieved. Knowing these values also facilitates scaling the device in frequency if 
required in another application.

Lastly, another conceptual error in associating a pair of RF coupled inductors 
with a transformer is the expectation that a matching network based on coupled 
inductors will have wide bandwidth characteristics. This is because low-frequency 
transformers are widely regarded as nonresonant devices. However, as will be 
seen in this chapter, at RF inductors are predominantly reactive. Thus, to achieve 
real input and output impedances for the network, the inductors must be tuned 
with capacitive elements. Tuning with capacitors implies a resonant network with 
frequency-dispersive characteristics.

For these reasons, from hereon in this book, the term coupled inductors will 
be preferred to the term “transformer” when describing circuit elements as those 
shown in Figures 12.2 and 12.3.

Figure 12.3 Overlay printed inductors.
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12.2 Basic Single-Ended Coupled-Inductor Design

Coupled inductors can be on the output stage of a single-ended PA design to increase 
the impedance level towards that of the load. A single pair of coupled inductors 
is generally not sufficient to provide the full impedance transformation required, 
typically ∼10:1. If used alone, the insertion loss and bandwidth would generally 
be inferior to those achievable with a two-stage matching network. Therefore, for 
optimum PA design, the coupled inductors would be followed by an additional 
matching stage employing a network of discrete elements.

Figure 12.4 shows three basic alternative circuit configurations for output 
matching a single-ended PA using coupled inductors. The coupled inductors serve 
to match the relatively low output impedance ZS of the PA to a higher load imped-
ance ZL, which is typically an intermediate impedance between ZS and the external 
impedance that the PA must drive, which is usually 50Ω. In general, both ZS and ZL 
may be complex. For an impedance match on the input to the network, we require

 Zin = ZS
∗
 (12.2)

Because inductors, by their very nature, exhibit a positive reactance, to achieve 
an input match, with a real impedance component identical to that of the source 
(i.e., PA output), a capacitive tuning element on the input, output, or both must 
be included in the network as shown in Figure 12.4. Taken together, the inductive 
and capacitive elements comprise a resonant network, which will inevitably have 
band-limiting characteristics. This is in contrast with the popular equivalence of a 
coupled-inductor impedance match being equivalent to a low-frequency transformer.

In order to satisfy (12.2), two independent variables are required for the network 
because both the real and imaginary parts of the equality must be satisfied. In the 
networks of Figures 12.4(a, b), there are three independent variables, namely L1, 
L2, and CS/CL. If one of the inductor values is chosen as the independent variable, 
there are associated unique solutions for the remaining two elements of the circuit 
required to satisfy (12.2). For the circuit in Figure 12.4(c), there is an additional 
degree of flexibility allowing for the choice of two independent variables. In all 
cases, the matching network performance may be optimized by choosing appropri-
ate values of the independent variables based on numerical analysis.

First, defining the input and output terminating impedances and admittances 
on the network as

 ZS = RS + jXS           and          ZL = RL + jXL  (12.3)

Figure 12.4 Basic single-ended, coupled-inductor matching alternatives: (a) input, (b) output, 
and (c) input and output.
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 YS = 1/ZS = GS + jBS          and         YL = 1/ZL = GL + jBL  (12.4)

with k = mutual coupling factor between the inductors and ω = angular 
design frequency.

Solutions for the dependent variables in the networks are as given below.

Case 12.1: Shunt Input Match Only (Figure 12.4(a)), with Independent Variable L1

L2 =

k2RL /GS − 2 1 − k2( )wL1XL − k2 /GS( )
2
− 2 1 − k2( )wL1( )

2⎛
⎝

⎞
⎠ RL

2 − 4 1 − k2( )k2wL1RLXL /GS

2w2 1 − k2( )
2
L1

 

 (12.5)

 

CS =

1/wL1 − 1 − k2( )BS( )RL − 1 − k2( )GSXL( )wL2 − RL
2
+ XL

2( )GS

w2 1 − k2( )RLL2

 (12.6)

For a solution to exist to (12.5), the argument of the square root must be ≥0. This 
leads to a constraint on the maximum value permissible for the independent vari-
able L1. We find

 

wL1 ≤
−XL /RL + 1 + XL /RL( )

2

2 1/k2 − 1( )GS

 (12.7)

Thus, when seeking to explore the range of possible solutions for the coupled-
inductor network of Figure 12.4, the value of the primary inductance L1 cannot 
exceed the upper limit given by (12.7).

Case 12.2: Shunt Output Match Only (Figure 12.4(b)), with Independent 
Variable L2

L1 =

k2RS /GL − 2 1 − k2( )wL2XS − k2 /GL( )
2
− 2 1 − k2( )wL2( )

2⎛
⎝

⎞
⎠ RS

2 − 4 1 − k2( )k2wL2RSXS /GL

2w2 1 − k2( )
2
L2

 

 (12.8)

 

CL =

1/wL2 − 1 − k2( )BL( )RS − 1 − k2( )GLXS( )wL1 − RS
2
+ XS

2( )GL

w2 1 − k2( )RSL1

 (12.9)

For a solution to exist to (12.12), the argument of the square root must be ≥0. This 
leads to a constraint on the maximum value permissible for the independent vari-
able L2. We find
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wL2 =
−XS /RS + 1 + XS /RS( )

2

2 1/k2 − 1( )GL

 (12.10)

Thus, when seeking to explore the range of possible solutions for the coupled-
inductor network of Figure 12.4, the value of the secondary inductance L2 cannot 
exceed the upper limit given by (12.10).

As discussed in Chapter 9, a low impedance is frequently required on the output 
of the active devices across the second-harmonic frequency band. This is readily 
accomplished for the single-ended, coupled-inductor matches in Figure 12.4(a, c) 
by the addition of an inductor LS in series with the input shunt capacitor CS, as 
shown in Figure 12.5.

To preserve the impedance match in the passband, this trap must provide an iden-
tical susceptance to CS, while it is series resonant at the second-harmonic frequency.

Denoting the frequency at the center of the passband by ω0 and that at the center 
of the second-harmonic band by ω2, we require

 
′CS = 1 − w0 /w2( )

2( )CS  (12.11)

 

LS =
1

w2
2 − w0

2( )CS

 (12.12)

Analysis of the coupled-inductor, single-ended match is most easily carried out 
using two-port [ABCD] matrix parameters as described in Chapter 1.

Defining the finite Q impedances of the inductor elements as

 ZL1 = RL1 + jwL1          and          ZL2 = RL2 + jwL2  (12.13)

and the finite Q admittances of the shunt input and output elements as

 YCS = GCS + jBCS           and          YCL = GCL + jBCL  (12.14)

The network [ABCD] parameters for the general form of the coupled-inductor 
match in Figure 12.5(b) are

Figure 12.5 Basic single-ended, coupled-inductor matching networks with harmonic short: (a) 
input match, and (b) input and output matching.
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A =
1 + YCLZL2( )ZL1 + wk( )

2
L1L2YCL

jwk L1L2

 (12.15)

 

B =
ZL1ZL2 + wk( )

2
L1L2

jwk L1L2

 (12.16)

 

C =
1 + YCSZL1( ) 1 + YCLZL2( ) + wk( )

2
L1L2YCSYCL

jwk L1L2

 (12.17)

 

D =
1 + YCSZL1( )ZL2 + wk( )

2
L1L2YCS

jwk L1L2

 (12.18)

12.2.1 Basic Single-Ended, Coupled-Inductor Matching Configurations

In this section, we apply the design and analysis formulae of the previous section 
to a practical design, in order to illustrate the basic performance capabilities of this 
type of PA matching architecture.

For simplicity, we shall assume both source and load impedance are pure real, 
together with the additional network parameters given in Table 12.1.

Case 12.3: Shunt Input Match Only (Figure 12.4(a)), with Dependent Variable L1

With the values from Table 12.1, from (12.7), we determine

 L1 max ≈ 0.1638 nH  (12.19)

First, we investigate how the minimum passband insertion gain (Pdel/Pavail) 
varies as a function of the independent variable L1. This dependence is shown in 
Figure 12.6(a).

It can be seen that the lowest insertion loss ∼0.73 dB occurs for a value of L1 = 
∼0.14 nH, which is approximately 14.5% below the maximum possible value given 

Table 12.1 Coupled-Inductor Impedance Match 
Parameters

Design Parameters

Mutual coupling, k = 0.7

flo 
1,710 MHz

fhi 
2,025 MHz

f2lo 
3,420 MHz

f2hi 
4,050 MHz

ZS = 4Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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by (12.19). Figure 12.6(b) shows the required value for the secondary inductance 
L2, as a function of L1.

The optimized circuit element values for the input shunt-tuned, coupled-inductor 
network are given in Table 12.2.

The corresponding input and output impedances of the network, in Cartesian 
form, are shown in Figure 12.7. The corresponding passband insertion gain depen-
dence is shown in Figure 12.8.

Figure 12.6 Insertion gain and secondary inductance dependence on primary inductance: (a) 
gain, and (b) secondary inductance.
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Table 12.2 Optimum Input Shunt-Matched 
Coupled-Inductor Element Values

Element Values

L1 = 0.142 nH L2 = 4.841 nH

CS = 63.467 pF Ls = 0 nH

Figure 12.7 Optimized input shunt-matched coupled-inductor network impedances: (a) input 
impedance, and (b) output impedance.
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For the ideal transformer, the ratio of the matched input and output impedances 
are related to the square of the turn’s ratio, as expressed in (12.1). How is this ratio 
related to the inductor ratio for the coupled-inductor matching network of Figure 
12.4(a)? Figure 12.9 shows the dependence of the inductor ratio on the impedance 
ratio for this network with input shunt tuning. It is a straight-line relationship. This 
is analogous to the transformer impedance relationship as the value of an inductor 
is proportional to square of the number of turns.

Figure 12.8 Optimized input shunt-matched coupled-inductor insertion gain.

Figure 12.9 Optimized input shunt-matched coupled-inductor ratio dependence on 
impedance ratio.
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Case 12.4: Shunt Output Match Only (Figure 12.4(b)), with Dependent Variable L2

With the values from Table 12.1, from (12.10), we determine

 L2 max ≈ 2.047 nH  (12.20)

First, we investigate how the minimum passband insertion gain (Pdel/Pavail) 
varies as a function of the independent variable L2. This dependence is shown in 
Figure 12.10(a).

Figure 12.10 Insertion gain and primary inductance dependence on secondary inductance: (a) 
gain, and (b) secondary inductance.
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It can be seen that the lowest insertion loss ∼0.73 dB occurs for a value of L2 
= ∼1.78 nH, which is approximately 13.2% below the maximum possible value 
given by (12.19). Thus, the minimum passband insertion loss achievable with shunt-
matching the output of the coupled-inductor pair is near identical to that achiev-
able with input shunt-matching. Figure 12.10(b) shows the required value for the 
primary inductance L1 as a function of L2.

Table 12.3 lists the optimum circuit element values for maximum passband 
gain with output shunt matching.

The corresponding input and output impedances of the network, in Cartesian 
form, are shown in Figure 12.11.

The corresponding passband insertion gain dependence is shown in Figure 
12.12. Note that the passband insertion dependence is almost identical to that for 
input shunt tuning in Figure 12.8.

Figure 12.13 shows the dependence of the inductor ratio on the impedance 
ratio for this network with output shunt tuning. As with shunt input tuning, it is 
a straight-line relationship. However, comparing Figure 12.13 with Figure 12.9, it 
can be seen that the optimized inductor ratio for output shunt tuning is significantly 
less than that required for input shunt tuning. The reason for this is that a capacitor 
C, in parallel with a load RL, reduces the real part of the impedance, as is evident 
in the following relationship

 

Z =
RL − jwCRL

2

1 + wCRL( )
2  (12.21)

Thus, output shunt tuning reduces the impedance ratio that must be matched by 
the coupled inductors. Conversely, shunt tuning on the input increases the needed 
transformation ratio.

Case 12.5: Shunt Input and Output Match (Figure 12.4(c))

For this case, both L1 and L2 may be taken as separate independent variables and 
the optimum combination for achieving maximum passband insertion gain deter-
mined by a numerical approach. For the parameters of Table 12.1, the optimum 
network element values are as listed in Table 12.4.

The corresponding input and output impedances of the network, in Cartesian 
form, are shown in Figure 12.14. The corresponding passband insertion gain depen-
dence is shown in Figure 12.15. The maximum passband insertion loss is ∼0.48 
dB. This is substantially lower than ∼0.73 dB for the solely input or output shunt 
tuning configurations considered above.

Table 12.3 Optimum Output Shunt-Matched, 
Coupled-Inductor Element Values

Element Values

L1 = 0.387 nH L2 = 1.776 nH

CL = 5.077 pF Ls = 0 nH
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Figure 12.11 Optimized output shunt-matched, coupled-inductor network impedances: (a) 
input impedance, and (b) output impedance.

Figure 12.16 shows the dependence of the inductor ratio on the impedance ratio 
for this network with output shunt tuning. Again, it is essentially linear. Comparing 
Figure 12.16 with Figures 12.9 and 12.13, the optimized inductor ratio is interme-
diary between the two.

The impedance plots in Figure 12.7, with tuning only on the input port of a 
pair of coupled inductors, show a good input match can be obtained, but the output 
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Figure 12.12 Optimized output shunt-matched, coupled-inductor insertion gain.

Figure 12.13 Optimized output shunt-matched, coupled-inductor ratio dependence on 
impedance ratio.

Table 12.4 Optimum Input and Output Shunt-
Matched, Coupled-Inductor Element Values

Element Values

L1 = 0.162 nH L2 = 2.727 nH

CS = 39.526 pF CL = 1.328 pF
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Figure 12.14 Optimized input and output shunt-matched, coupled-inductor network 
impedances: (a) input impedance, and (b) output impedance.

match is poor. Conversely, the impedance plots in Figure 12.11, with tuning only on 
the output port of a pair of coupled inductors, show that a good output match can 
be obtained, but the input match is poor. In contrast, the impedance plots in Figure 
12.14, with both input and output shunt-tuning, show a well-balanced compromise 
between the two. However, the significantly increased inductor ratio required in 
the latter case may not be achievable in a practical device layout.
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Figure 12.15 Optimized input and output shunt-matched, coupled-inductor insertion gain.

Figure 12.16 Optimized output shunt-matched, coupled-inductor ratio dependence on 
impedance ratio.

12.2.2 Basic Single-Ended, Coupled-Inductor Matching Complexities

There are two significant disadvantages requiring that compromises be made associ-
ated with the coupled-inductor matching architectures examined in Section 12.2.1. 
The first one is related to the relative values of the inductors in the networks. The sec-
ond is related to the second-harmonic termination impedances presented to the PAs.

Figures 12.6(b) and 12.10(b) show the required value of the secondary inductance 
L2, as a function of L1, for the input and output shunt-tuned scenarios, respectively. 
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It is instructive to replot this data in a form showing how the ratio L2/L1 varies as 
a function of the independent variable, either L1 or L2.

Figure 12.17(a) plots the required ratio L2/L1 as a function of the independent 
variable L1, for the shunt input tuned network of Figure 12.4(a). For all values of L1, 
it is >25:1 everywhere. Such a high ratio would make the layout of the two coupled 
inductors extremely difficult to realize in practice, making the input shunt tuning 
only option physically challenging.

Another important takeaway from Figure 12.17 is that the appropriate induc-
tor ratio L2/L1 depends dramatically on how the coupled-inductor pair is tuned. 

Figure 12.17 Secondary to primary inductance ratio dependence on independent variable: (a) 
input shunt tuning, and (b) output shunt tuning.
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The impedance transformation ratio for both scenarios is 12.5:1 from Table 12.1. 
If the coupled inductors were naïvely regarded as the equivalent to a transformer, 
as is frequently done in practice, the secondary to primary inductance ratio would 
also be expected to be about this value. However, for the input shunt-tuned case, 
the ratio is approximately double that. For the output shunt-tuned case, it is about 
one-half that.

Figure 12.17(b) plots the required ratio L2/L1 as a function of the independent 
variable L2 for the shunt output tuned network of Figure 12.4(b). For all values of 
L2, it is ∼5:1. This ratio is much more attractive than that for the input shunt-tuned 
option and should not be problematic for layout. However, there is another aspect 
of any PA output matching network that must be considered. Namely, its charac-
teristics across the second-harmonic band.

By virtue of the mixing of nonlinear products generated in the amplification 
process in a PA, there are inevitably frequency components within the second-
harmonic frequency band at the output of the PA. Any output matching network is 
required to accomplish two functions: (1) correctly terminate these components to 
maximize the efficiency of the PA, and (2) prevent them from reaching the output.

Figure 12.18(a) shows the input reflection coefficient of the output shunt-tuned, 
coupled-inductor match across the second-harmonic band. It is entirely inductive 
and not easy to modify. This is not ideal. For maximum PA efficiency, typically, 
the second-harmonic PA terminating impedances are desired to be close to a short-
circuit. Figure 12.18(b) shows the corresponding network gain across the second-
harmonic band. It is ∼ −10 dB. This is far from ideal. A much higher attenuation 
is generally required.

Higher second-harmonic rejection can be readily achieved by adding an inductor 
in series with the output shunt-tuning capacitor CL, in a manner like that shown for 
the input tuning configuration in Figure 12.5(a). Figure 12.19 shows the network 
characteristics equivalent to those in Figure 12.18 with such an output shunt trap.

It can be seen in Figure 12.19(a) that the network input admittance remains 
inductive and, in fact, is further away from presenting a low impedance termina-
tion on the output of the PA, as is desirable. As expected, the network does provide 
higher rejection on the output of undesired second-harmonic components.

Turn now to Case 12.5, considered above, with both input and output shunt tun-
ing, as in Figure 12.4(c). This architecture exhibited overall superior characteristics 
to isolated input or output shunt tuning. For the optimum case, from Table 12.4, 
the ratio L2/L1 is ∼17:1, which would be difficult to implement in a practical layout.

Figure 12.20 shows the input reflection coefficient of the input and output 
shunt-tuned, coupled-inductor match, with parameters in Table 12.4, across the 
second-harmonic band.

With this configuration, the network input impedance in Figure 12.20(a), which 
is presented to the output of the PA, is capacitive with a significant real component. 
This is consistent with the insertion gain plot in Figure 12.20(b), which shows little 
isolation of the load from second-harmonic output from the PA.

To address these problems, the input shunt capacitor CS may be resonated a 
series inductor LS, as shown in Figure 12.5(b). The network elements for this case 
are listed in Table 12.5.
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Figure 12.18 Output shunt-tuned, coupled-inductor match second-harmonic characteristics: 
(a) input reflection coefficient, and (b) insertion gain.
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Figure 12.19 Output shunt-tuned, coupled-inductor match second-harmonic characteristics, 
with trap: (a) input reflection coefficient, and (b) insertion gain.
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Figure 12.20 Input and output shunt-tuned, coupled-inductor match second-harmonic 
characteristics: (a) input reflection coefficient, and (b) insertion gain.

Table 12.5 Optimum Input and Output Shunt-
Matched, Coupled-Inductor Element Values with 
Trap

Element Values

L1 = 0.162 nH L2 = 2.179 nH

CS = 24.618 pF LS = 0.074 nH

CL = 2.086 pF



12.2 Basic Single-Ended Coupled-Inductor Design 237

Figure 12.21 shows the resulting input and gain characteristics for the match-
ing network.

The network input impedance is close to a pure reactive short across the second-
harmonic passband, as generally desired. The actual value of the reactance can be 
skewed slightly towards inductive or capacitive by recentering the trap. In Figure 
12.21(b), the second-harmonic isolation across the network is seen to exceed ∼15 dB.

Figure 12.21 Input and output shunt-tuned, coupled-inductor match second-harmonic 
characteristics with trap: (a) input reflection coefficient, and (b) insertion gain.
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The corresponding insertion gain for this network, shown in Figure 12.22(a), 
is ∼ −0.6 dB.

From Table 12.5, the inductor ratio L2/L1 is ∼13.4:1. This is higher than would 
be desired and would typically prove very challenging for layout. To avoid this, it is 
common to reduce the input impedance ratio required of the network by following 
the coupled-inductor match by a single-section LC network.

Figure 12.22 Optimized input and output shunt-matched coupled inductors with trap, 
insertion gains: (a) QL = 60, and (b) QL = 40.
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In general, it is increasingly difficult to achieve a high inductor Q factor for 
lower values of inductance. Thus, achieving a Q-factor of 60, for an inductance 
value of 0.162 nH, would be extremely problematic. Figure 12.22(b) shows the 
modified insertion gain characteristic for the matching network with the quality 
factor of inductor L1 reduced to 40. The minimum insertion gain in the passband 
is reduced to ∼ −0.66 dB.

Lastly, the appropriate inductor values for a coupled-inductor matching net-
work are highly dependent on the mutual coupling factor k, which can be achieved. 
This greatly complicates the challenges for both design and layout. Figure 12.23 

Figure 12.23 Dependence of coupled-inductor independent inductor value on mutual 
coupling: (a) L1 for input shunt tuning, and (b) L2 for output shunt tuning.
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shows the dependence of the independent inductor value on the mutual cou-
pling coefficient.

The deleterious effect on insertion gain of a coupled-inductor impedance match-
ing network with reduced coupling coefficient is equally dramatic. Consider the 
simple input and output shunt-tuned coupled-inductor matching network of Fig-
ure 12.4(c). If the coupling coefficient is reduced from 0.7 to 0.5, inductor quality 
factors are all maintained as QL = 60, and no required input trap is included, the 
optimized required element values are as shown in Table 12.6.

Two problems are immediately apparent in Table 12.6. The primary inductance 
value is too small to be practical and the inductance ratio L2/L1 = ∼49:1 would 
also be similarly very difficult to achieve in a physical layout. More disappointing, 
if both these challenges could be overcome, the insertion gain dependence for the 
network would be as shown in Figure 12.24(a).

The minimum passband gain = ∼ −1.7 dB. This compares to a minimum pass-
band gain = ∼ −0.48 dB for k = 0.7, as shown in Figure 12.15.

The extreme sensitivity of the simple input and output shunt-tuned, coupled-
inductor matching network, to the mutual coupling coefficient, is shown in Figure 
12.24(b). It can be seen that without a strong mutual coupling coefficient between 
the two inductors such a network would not be a viable candidate for PA output 
impedance matching for k < ∼0.55.

12.2.3 Single-Ended, Coupled-Inductor Matching Compared with 
Conventional LC-Output Matching

To understand why coupled inductors are rarely used for PA-output matching, it is 
instructive to compare their key performance characteristics to those of an equivalent 
conventional dual lowpass LC network. Such a network was presented in Section 
11.8.1. Key performance parameters from that data, placed side by side with those 
for the optimized coupled-inductor match of the previous section, are provided below.

In all cases, it can be seen that the conventional dual lowpass match has supe-
rior performance parameters to those of the coupled-inductor matching network, 
which, in general, exhibits increased insertion loss and more dispersion across the 
passband. Second-harmonic characteristics are also inferior. This demonstrates that 
any expectations that a coupled-inductor network will have superior characteristics, 
as they are akin to a transformer, are not supported by the data.

The inferior performance characteristics of a single-ended, coupled-inductor 
impedance match, compared to a conventional LC match, might surprise those who 
consider an RF coupled-inductor pair as being the equivalent of a transformer. As 
discussed in Section 12.1, however, this is a misguided conception that is likely to 
misdirect. Rather than achieving the low loss and very wide bandwidth, which would 

Table 12.6 Optimum Input and Output Shunt-
Matched, Coupled-Inductor Element Values for k = 0.5

Element Values

L1 = 0.056 nH L2 = 2.727 nH

CS = 134.040 pF CL = 0.497 pF
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Figure 12.24 Mutual coupling factor impact on gain of coupled-inductor matching networks: 
(a) k = 0.5, and (b) input and output shunt tuning gain.

be expected of a true transformer, a coupled-inductor network alone generally has 
significantly inferior characteristics to the LC networks presented in Section 11.8. 
For this reason, and others given earlier in the section, it is invariably a poor choice 
for impedance matching of single-ended networks and therefore almost never used.

In general, impedance matching networks employing coupled inductors, which 
depend solely on magnetic transduction for RF energy transport through the net-
work, have inferior performance characteristics compared to those that also have 
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Figure 12.25 Network input reflection coefficients: (a) dual lowpass, and (b) optimized 
coupled inductors.
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direct electrical conduction through the network. Efficient RF magnetic energy 
transduction between a pair of inductors invariably relies upon a resonance-type 
condition between the inductors. This resonance increases resistive losses in the 
inductors and results in a relatively narrow bandwidth for efficient energy transfer.

A detailed examination of the use of coupled inductors for impedance matching 
of both single-ended and multiphase amplifier networks is given in the following 
two chapters.

Figure 12.26 Network input impedances: (a) dual lowpass, and (b) optimized coupled 
inductors.
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Figure 12.27 Network output reflection coefficients: (a) dual lowpass, and (b) optimized 
coupled inductors.
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Figure 12.28 Network output impedances: (a) dual lowpass, and (b) optimized coupled 
inductors.
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Figure 12.29 Network insertion gains: (a) dual lowpass, and (b) optimized coupled inductors.
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Figure 12.30 Networks second-harmonic insertion gains: (a) dual lowpass, and (b) optimized 
coupled inductors.
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12.3  Single-Ended Coupled Inductors with an Interwinding 
Capacitance Analysis Approach

As discussed in Section 12.2, a high magnetic coupling coefficient k is essential 
in any type of coupled inductors impedance match; k = 1 would be ideal. Unfor-
tunately, this is not achievable in practice, with printed inductor layouts typically 
being limited to |k| ≤ ∼0.7.

To achieve higher magnetic coupling factors, the inductor traces must be very 
close together in order for the magnetic fields associated with the currents flowing 
in each inductor to overlap. This has the unfortunate side effect of also resulting in 
significant interwinding capacitance between the traces, which can have important 
consequences for the performance of the impedance match, particularly at frequen-
cies above the passband.

If the two coupled inductors are of equal value, closed-form expressions for the 
four-port S-parameters can be obtained, as presented in Section 2.5. However, in 
general, this is not the case. For matching applications, it is generally required that 
the inductors be of different values. Accounting for the cross-coupling capacitance 
with a discrete lumped-element model is challenging. Two such models that attempt 
to account for the effects of cross-coupling are shown in Figure 12.31. However, in 
order to most accurately account for the effects of cross-coupling on the performance 
characteristics of a pair of coupled inductors, an incremental model is required.

Figure 12.32 shows the schematic representation to be modeled. The admittance 
elements across both inductors are possible matching elements. Typically, when 
present, they are predominantly capacitive in the passband.

In Appendix F, a detailed analytic analysis is provided for a pair of coupled 
inductors with uniformly distributed interwinding capacitance. Closed-form ana-
lytical expressions are provided for all key network performance parameters. The 
performance parameters for the single-ended, coupled-inductor schematic shown 
in Figure 12.32 can be derived from these solutions.

Figure 12.31 Lumped-element models approximating interwinding capacitance: (a) direct 
capacitive coupling, and (b) intermediate capacitive coupling.

Figure 12.32 Single-ended, coupled-inductor schematic including interwinding capacitance 
and external matching.
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12.3.1 Impact of Interwinding Capacitance on Single-Ended, Coupled-
Inductor Characteristics

The focus of this section is to illustrate how the interwinding capacitance between 
two coupled inductors impacts key performance characteristics. The network per-
formance characteristics are derived applying the generalized analytic solutions 
provided in Appendix F. With reference to Figure A.3, in this case, VS2 = VS3 = 
VS4 = 0, and Z2 = Z4 = 0. Unfortunately, the analytic solutions of Appendix F are 
not readily invertible for synthesis. Thus, the design equations of Section 12.2 will 
again be used for network synthesis.

To clearly distinguish the effects of interwinding capacitance on coupled-inductor 
performance, design parameters identical to those in Table 12.1 are used, except for 
the addition of an interwinding capacitance value of 3 pF, as listed in Table 12.7.

Element values are identical to those in Table 12.2, as no allowance is made in 
the design equations for the interwinding capacitance. The network insertion gain 
and input impedance are shown in Figure 12.33.

The input impedance observed in Figure 12.33(a) is ∼2.5Ω across the passband. 
This is substantially below the target input impedance of 4Ω. It is inferior to that 
without the interwinding capacitance shown in Figure 12.7(a). Likewise, comparing 
the insertion gain response with finite interwinding capacitance in Figure 12.33(b) 
to that without interwinding capacitance in Figure 12.8, the insertion gain is seen to 
be significantly reduced across the passband. There are two potential causes of the 
performance degradation: (1) it is directly attributable to the presence of capacitive 
coupling, or (2) it results from not accounting for the capacitance in synthesizing 
the network elements. To investigate the latter cause, the network synthesis equa-
tions of Section 12.2 were recalculated with a higher target input impedance than 
the desired 4Ω for the network.

A design input target impedance of 6Ω was used in applying the synthesis equa-
tions of Section 12.2 for the network element values. The modified element values 
are listed in Table 12.8.

The equivalent performance parameters to Figure 12.33 are shown in Figure 
12.34.

The input impedance in Figure 12.34(a) is now seen to very close to the desired 
value of 4Ω across the full passband. Perhaps, even more importantly, the insertion 

Table 12.7 Coupled Inductors with Capacitive 
Coupling Impedance Match Parameters

Design Parameters

Mutual coupling, k = 0.7

Cross-coupling capacitance, CX = 3 pF

flo 
1,710 MHz

fhi 
2,025 MHz

f2lo 
3.420 MHz

f2hi 
4,050 MHz

ZS = 4Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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Figure 12.33 Optimized input shunt-matched, coupled-inductor network characteristics with 
3-pF interwinding capacitance: (a) input impedance, and (b) insertion gain.

Table 12.8 Single-Ended, Coupled-Inductor 
Match Elements with 3-pF Interwinding 
Capacitance and Target Zin = 6Ω

Element Values

L1 = 0.205 nH L2 = 4.532 nH

CS = 43.195 pF LS = 0 nH
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gain in Figure 12.34(b) is also seen to be relatively flat across the passband and 
significantly higher than that in Figure 12.33(b). Moreover, the insertion gain is 
higher than that in Figure 12.8 with no interwinding capacitance. Thus, for this 
case, the presence of the interwinding capacitance actually leads to improved cou-
pled-inductor performance.

Figure 12.34 Optimized input shunt-matched, coupled-inductor network characteristics with 
3-pF interwinding capacitance and target Zin = 6Ω: (a) input impedance, and (b) insertion gain.
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As a further example, consider a configuration designed similarly to meet the 
specifications of Table 12.7, but with optimized input and output matching. For 
optimum performance, in this case, a design input target impedance of 5.6Ω was 
used. The optimized element values were determined as listed in Table 12.9.

The corresponding input and insertion gain characteristics are shown in Figure 
12.35. The insertion gain in Figure 12.35(b) is flatter, and overall higher across 
the passband, than that in Figure 12.15 for the equivalent network with no inter-
winding capacitance. Impedance plots in Figure 12.35(a) and Figure 12.14(a) are 
comparable. Thus, for this matching scenario also, the interwinding capacitance 
is not deleterious.

One important aspect of the coupled-resonator performance that must be 
explored to gain a full appreciation of the impact of interwinding capacitance is an 
examination of how network characteristics are affected above the passband. Due 
to the capacitive nature of the coupling, it might be expected that the coupling will 
lead to increased transmission above the passband, thereby decreasing high-side 
rejection. To evaluate this, the insertion gains of the coupled-resonator network, 
considered above, were determined without and with the 3-pF interwinding capaci-
tance. The wideband high-frequency insertion gain for both scenarios is presented 
for comparison in Figure 12.36.

Possibly somewhat counterintuitively, introducing the interwinding capacitance 
does not lead to significantly reduced rejection above the passband. In fact, for the 
majority of frequencies, there is higher rejection. Moreover, at multiple frequencies, 
there are deep transmission nulls. In the data shown, one of these nulls occurs only 
slightly above the center of the second-harmonic band. If value of the interwinding 
capacitance CX is increased to ∼4 pF, the null could be located exactly at the center 
of the second-harmonic band. The complex transmission characteristics above the 
passband result from the interplay of the distributed inductance and capacitance 
of the network.

To summarize, the presence of some interwinding capacitance in a coupled-
inductor matching network can result in improved performance characteristics, 
in particular, improved input impedance characteristics and reduced insertion 
loss. An additional, perhaps unanticipated, benefit is the potential for increased 
rejection above the passband and specifically within the second-harmonic band. 
However, too much interwinding capacitance will inevitably harm the network 
characteristics. In the example given, if CX is increased above 4 pF, the null at the 
second-harmonic frequency moves down towards the passband. As it does so, the 
insertion gain and input impedance characteristics are increasingly degraded from 
the high end of the passband.

Table 12.9 Optimum Input and Output Shunt-
Matched, Coupled-Inductor Element Values with 3-pF 
Interwinding Capacitance and Target Zin = 5.6Ω

Element Values

L1 = 0.232 nH L2 = 3.159 nH

CS = 30.514 pF CL = 0.948 pF
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Figure 12.35 Optimized input and output shunt-matched, coupled-inductor network 
characteristics with 3-pF interwinding capacitance and target Zin = 5.6Ω: (a) input impedance, 
and (b) insertion gain.

12.4 Lowpass π-Network with Auto-Transformer Action

In Section 12.2.1, it was demonstrated that networks relying solely on magnetic 
coupling for energy transfer generally have performance characteristics inferior to 
those that rely entirely on direct electrical transfer. In Section 12.3.1, it was demon-
strated that the added presence of interwinding capacitance in a coupled-inductor 
pair significantly improved the overall characteristics of the matching network. 
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Figure 12.36 Optimized input shunt-matched, coupled-resonator network insertion gain 
without, and with 3 pF, interwinding capacitance.

This suggests the possibility of creating a matching network with optimal features 
that combines both magnetic and direct electrical coupling. A way to implement 
such an approach is suggested by a device technology commonly employed in low-
frequency applications and, in particular, in the field of power voltage conversion.

Section 12.1 discussed the basics of classic transformers, which comprise two 
ideally infinite lossless inductors whose magnetic fields are wholly coupled together. 
The two inductors, the primary and secondary, are electrically isolated, and the 
voltage ratio on the two inductors is given by the turns’ ratio of the inductors (Equa-
tion (12.1)). In addition to the classic transformer for voltage conversion, however, 
there is another class of transformers that are referred to as “auto-transformers.”

The differentiating feature of an auto-transformer is that it comprises only one 
inductance coil, again ideally infinite, in place of two. One terminal of the induc-
tor is generally ground, while the other is one of the two network terminals. The 
remaining network terminal is connected to the inductor at some intermediate point 
along its length. Figure 12.37(a) shows a basic schematic of an auto-transformer.

Unlike a classic transformer, the auto-transformer does not provide electrical 
isolation between its two terminals. This can be a safety issue in power distribution 
networks. However, it has the advantage that energy transfer thorough the network 
results from both magnetic and direct electrical couplings. In consequence, an auto-
transformer is typically more efficient than a classic transformer.

One further advantage of the auto-transformer is that the intermediate con-
tact point along the inductor for the one terminal can often be moved. This makes 
it relatively simple to adjust the voltage transformation ration of the device. In 
contrast, the turns ratio in a classic transformer is fixed and cannot be adjusted 
after manufacture.

Similar to the classic transformer and referring to Figure 12.37(a), the voltage 
transformation ratio for the auto-transformer is



 
V2 = n1 + n2( ) /n1( )V1  (12.22)

and the resistances on the two ports are related by

 
R2 = n1 + n2( ) /n1( )

2
R1  (12.23)

The voltage and impedance levels can thus be stepped up across an auto-trans-
former in a manner similar to that of a classic transformer. However, it has the 
potential advantage of improved characteristics due to its direct electrical coupling.

To see how an auto-transformer type action might be used to advantage in an 
impedance matching network, consider redrawing the auto-transformer in a folded 
topology as shown in Figure 12.37(b). No change to the elements or magnetic cou-
pling of the inductor are implied; thus, the transfer properties will be unchanged. 
However, in the folded form, it can now be identified as similar in form to the left-
most part of a lowpass π-network.

Figure 12.38(a) shows the lowest-loss form of a lowpass π-network, for imple-
menting an impedance transformation from 4Ω to 10Ω. For the latter network, the 
through insertion phase ΔΦ ≈ −69°. Figure 12.38(b) shows a generalization of this 
network in which magnetic coupling is introduced between the inductive elements. 
The mutual coupling coefficient between the inductors is denoted by k. In the limit 
k = 0, the network reverts to the classic form of Figure 12.38(a). The objective is 
to determine whether having k > 0 can augment the performance of the lowpass 
network via the auto-transformer action, resulting from the magnetic coupling.

Just as with the coupled-inductor correspondence to a classic transformer, 
the coupled inductors in Figure 12.38(b) do not correspond exactly to a true 

Figure 12.37 Auto-transformer schematics: (a) auto-transformer, and (b) folded 
auto-transformer.

Figure 12.38 Lowpass π-networks with and without magnetic coupling: (a) classic lowpass 
π-network, and (b) lowpass π-network with coupling.
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auto-transformer. The magnetic coupling between the inductor is less than ideal 
and neither of the inductances are infinite. Nonetheless, the magnetic coupling 
does introduce an auto-transformer like magnetic coupling aspect into the network.

In Figure 12.38, three additional capacitors Cb, CL1, and CL have been included 
as optional components in the schematics. As such, they are all accounted for in the 
circuit analysis matrix element formulae given at the end of this section.

Capacitor Cb is only required when, for reasons to be explained in Section 
12.4.2, the designer desires to replace the hard ground, at the bottom of inductor 
L2, by a virtual one. In this case, Cb should ideally be large enough to present only 
a negligible reactance across the passband. If this is not the case, it will generally be 
deleterious to the operation of the matching network. The elemental synthesis equa-
tions in this section thus do not account for the presence of Cb. However, if present, 
the analysis formulae permit any consequences of Cb in the circuit to be determined.

For reasons linked to those related to the inclusion of capacitor Cb in the circuit, 
a second capacitor CL is frequently required in the circuit on the output side of series 
inductor L1. In this position, capacitor CL serves to block any DC flow across the 
network. Again, the utility of including these two capacitors in the circuit is fully 
elucidated in Section 12.4.2.

Lastly, capacitor CL1, included in the schematics across series inductor L1, is also 
not an essential part of the lowpass networks. However, for a lowpass π-network 
such as shown in Figure 12.38(a), it is common practice to add a capacitor in shunt 
across L1 to provide attenuation for frequency bands above the passband. Deter-
mining the appropriate value for this capacitor and L1 is relatively simple in the 
uncoupled case. Design equations for the latter are given in Section 8.6. However, 
designing a resonant trap for inductor L1 in the presence of magnetic coupling, as in 
Figure 12.38(b), is more complex. The precise values for L1 and CL1 are dependent 
upon the coupling. Thus, it is important to include this dependency in the synthesis 
equations for them to be useful.

Defining the basic network parameters (with Cb = ∞) as

 ZS = RS + jXS  (12.24)

 ZL = RL + jXL  (12.25)

 ZL1 = RL1 + jwL1  (12.26)

 ZL2 = RL2 + jwL2  (12.27)

 ZCL1 = RCL1 − j /wCL1  (12.28)

 ZCL = RCL − j /wCL  (12.29)

also,

 wr = angular frequency at the center of L1 stopband  (12.30)

Synthesis equations for the elements of the auto-transformer-like form of the 
lowpass π-network shown in Figure 12.38(b) are
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CL1 =
1 + k L1 /L2
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2
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which are dependent upon solving the governing equation

L1 1 − k2( )L2 − w /wr( )
2
L2 + k L1L2( )( ) RL

2
+ XL

2( )RS + w 1 − k2( )L1L2( )
2

RL
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2
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 (12.33)

Given a value for the independent variable L1, (12.33) must be solved to deter-
mine the corresponding value for L2. Unfortunately, a closed-form solution for L2 
is not available; however, a solution for L2 that satisfies (12.33) is readily derivable 
by numeric techniques.

Having determined the element values for the network, all electrical parameters 
are readily determined from an [ABCD] matrix analysis, using the equations given 
in Chapter 1. For the network, the individual [ABCD] parameters are given by

 

A = 1 +

ZL2 + ZCb( )ZL1 + wk( )
2
L1L2( ) / Z1 − jwk L1L2

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L2 /ZCL1 + jwk L1L2

 (12.34)

 

B =
ZL2 + ZCb( )ZL1 + wk( )

2
L1L2

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L/ZCL1 + jwk L1L2

 (12.35)

 

C =
1

Z1

+

1 + ZL1 + jwk L1L2( ) /Z1 + ZL1 /ZCL1

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L/ZCL1 + jwk L1L2

 (12.36)

 

D = 1 +
ZL1 + jwk L1L2

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L/ZCL1 + jwk L1L2

 (12.37)
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12.4.1 Lowpass π-Network with Auto-Transformer Action Example

In order to determine whether adding magnetic coupling between the two inductors 
in a lowpass π-network is beneficial, consider the design of an impedance matching 
network with identical parameters to those specified in Table 12.1.

The lowest-loss lowpass π-network gain with no inductor coupling, as in Figure 
12.38(a), is shown in Figure 12.39(a). In contrast, allowing for mutual coupling 
between the two inductors, as in Figure 12.38(b), the lowest network loss achiev-
able is shown in Figure 12.39(b).

Figure 12.39 Lowpass π-matches without and with mutual inductive coupling: (a) uncoupled 
lowpass π-match, and (b) coupled-inductor lowpass π-match.



Table 12.10 Lowpass π-Network 
Element Values

Uncoupled Lowpass π-Match

k = 0.

L1 = 1.125 nH

L2 = 4.214 nH

C1 = 5.801 pF

Coupled-Inductor Lowpass π-Match

k = 0.7

L1 = 2.230 nH

L2 = 0.557 nH

C1 = 2.399 pF

Element values for the two networks are provided in Table 12.10.
The maximum passband insertion loss for the uncoupled lowpass π match is 

∼0.74 dB, while the maximum passband insertion loss for the coupled-inductor 
lowpass π-match is only ∼0.27 dB. This is a dramatic reduction in insertion loss, 
attributable entirely to the introduction of magnetic coupling between the induc-
tors. In addition to improving overall insertion loss, the coupled network also shows 
considerably less dispersion across the passband. The increase in gain (i.e., lower 
insertion loss) for the network, as a function of the increased coupling factor, is 
shown in Figure 12.40.

Another important consequence of the added coupling between the inductors, 
which can be noted in Table 12.10, is a large reduction in the required value of the 
shunt inductor L2. The dependence of L2 on the coupling coefficient is shown in 
Figure 12.40. While this might be seen as an advantage, unfortunately, low values 

Figure 12.40 Auto-transformer characteristics’ dependence on inductive coupling.
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Figure 12.41 Lowpass π-matches without and with mutual inductive coupling: (a) uncoupled 
lowpass π-match, and (b) coupled-inductor lowpass π-match.

for the shunt inductor can be problematic if the network is to be used simultane-
ously for matching and supplying bias current to a PA output stage. The impact of 
a very low value shunt inductor in a PA output matching circuit is examined fully 
in Section 12.4.2.

While the reduction in passband insertion loss for the lowpass π-network, with 
inductor coupling, is highly desirable, unfortunately, this also continues above the 



Figure 12.42 Coupled-inductor lowpass π-match with a second-harmonic trap on L1: (a) 
coupled lowpass π-match passband, and (b) coupled lowpass π-match wideband.

passband. Figure 12.41 shows wide-bandwidth plots for the insertion loss of the 
network, without and with inductor coupling.

Harmonic rejection above the passband can be seen to be significantly reduced 
as a result of the inductor coupling. In a PA matching application, this will com-
monly require some additional “trapping” to be added to the network to further 
reduce harmonic emissions arising from nonlinear mixing in the PA. This will incur 
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some additional insertion loss, which will somewhat reduce the passband insertion 
loss advantage of coupling in the network.

Figure 12.42 shows the passband and wide-bandwidth response of the lowpass 
π-match with inductor coupling and a second-harmonic harmonic trap implemented 
on inductor L1 by inclusion of CL1 in Figure 12.38(b).

The modified element values for the network are given in Table 12.11.
Comparing with the bottom part of Table 12.10, it can be seen that imple-

menting the frequency trap on inductor L1 requires significant modification of all 
the element values in the matching network. Also, comparing Figure 12.38(b) and 
Figure 12.42(a), the maximum passband insertion loss is seen to increase by ∼0.28 
dB. While the second-harmonic response is significantly attenuated, rejection of the 
higher harmonics remains very poor compared to the uncoupled lowpass π-network.

In addition to parallel resonating inductor L1, a second possibility for trapping 
frequencies above the passband exists by series resonating shunt inductor C1, as 
shown in Figure 12.43.

With C1 again determined from (12.32), the modified capacitor value C ′1 and 
series inductor are given by

 
′C1 = 1 − w0 /wr( )

2( )C1  (12.38)

 

LC1 =
1

wr
2 − w0

2( )C1

 (12.39)

For a trap at the second-harmonic frequency, the modified element values for 
this network are given in Table 12.12.

Figure 12.44 shows the passband and wide-bandwidth response of the coupled 
lowpass π-network with a second-harmonic harmonic trap implemented on capaci-
tor C1.

Table 12.11 Coupled Lowpass 
π-Match Element Values with a 
Second-Harmonic Trap on L1

k = 0.7

L1 = 1.533 nH

CL1 = 4.826 pF

L2 = 0.646 nH

C1 = 0.738 pF

Figure 12.43 Coupled lowpass π-network with a second-harmonic trap on C1.
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Table 12.12 Coupled Lowpass 
π Match Element Values with a 
Second-Harmonic Trap on C1

k = 0.7

L1 = 2.317 nH

L2 = 0.591 nH

C′1 = 1.774 pF

LC1 = 1.365 pF

Figure 12.44 Coupled-inductor lowpass π-match with second-harmonic trap on C1: (a) 
coupled lowpass π-match passband, and (b) coupled lowpass π-match wideband.
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Comparing Figure 12.44 with Figure 12.42, it can be seen that with the trap 
on C1, rather than on L1, there is significantly more rolloff in insertion loss across 
the passband. Also, the harmonic rejection characteristic is narrower than that with 
the trap on L1. Thus, any harmonic trapping in the network is best accomplished 
across L1 rather than C1.

12.4.2 Lowpass π-Network with Auto-Transformer Action and Virtual 
Inductor Ground

This section provides the synthesis equations and expressions necessary for deter-
mining the electrical characteristics of a lowpass π-network with auto-transformer 
action. The network was generalized to permit the inclusion of a capacitor Cb 
between inductor L2 and ground. Because such a capacitor is not normally required 
in a π-network capacitor, what was the motivation for including it? That will be 
explained in this section. Some potential pitfalls in the auto-transformer approach 
will also be examined.

A detailed discussion on the critical aspects of matching a single-ended PA is 
provided in Chapter 9. Figure 9.1 shows a simplified schematic of the output match 
on a single-ended PA. The initial elements of the matching network are invariably 
required to provide harmonic termination and bias to the active output cells of the PA.

The purpose of harmonic termination is twofold. First, by optimally terminating 
the loading impedance on the PA across the harmonic frequency band, particularly 
the second harmonic, the PA efficiency may be optimized. Second, the harmonic 
termination reduces harmonic emissions from the PA that arise from nonlinear 
mixing. Most commonly, the harmonic termination presents a near short-circuit 
impedance at the second harmonic. As a consequence, the harmonic termination 
presents a capacitive loading in the passband.

As in Figure 9.1, the PA output stage is typically biased from the supply rail 
VCC via an inductor Lb, which is, in turn, RF grounded through a bias capacitor 
Cb. In order to limit the RF leakage on to the supply line through Lb, the latter 
must present a sufficiently large reactance in the passband. Capacitor Cb serves to 
further reduce the leakage that does occur through the inductor. This RF leakage 
onto the supply rail is a critical parameter in a mobile device that typically includes 
lots of digital circuitry. If there is too much ripple on the supply rail, it will interfere 
with the operation of the digital components. Typically, any RF module in a mobile 
device is required to meet a Power-Supply Rejection (PSR) requirement that speci-
fies a maximum value for the RF leakage on the supply rail.

Following the harmonic termination and bias networks, the matching network 
then comprises one or two sections of inductive and capacitive elements to increase 
the line impedance to that of the load. These matching sections are most commonly 
implemented with series inductor–shunt capacitor lowpass networks, as they provide 
increasing rejection above the passband. Replacing the generic “matching network” 
in Figure 9.1 by a single lowpass LC matching section the output matching elements 
close to the PA comprise those shown schematically in Figure 12.45.

Figure 12.45 incorporates the possibility of magnetic coupling between the bias 
inductor and the series inductor of the LC matching section. Such a coupling may 
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be incidental or deliberate. As discussed in Section 12.4, any magnetic coupling 
will result in an auto-transformer impedance matching contribution to the network. 
Given the minimalistic footprints of modern PA modules, some coupling between 
the two inductors is almost inevitable, as the two inductors must be located in 
close proximity to each other. Thus, even unintentionally, most mobile PA module 
layouts with classic harmonic, bias, and LC matching elements likely have an auto-
transformer element inherent in their matching networks.

The focus of this section is to examine how the performance of a lowpass 
π-network with intentional strong magnetic coupling between the inductors may 
be influenced by exploiting the shunt inductor for PA biasing. In order to imple-
ment this, the inductor (Lb ≡ L2) must have virtual ground through a capacitor Cb, 
rather than a direct connection to ground.

Absorbing the bias inductor into the π-network has a significant size advantage 
for the module, but unfortunately has some potential disadvantages that may limit 
the full benefits of the technique. In a typical PA output matching network, the bias 
inductor must do double duty. As discussed in Chapter 9, in addition to biasing 
the PA output stage, the bias inductor must also provide some passband compensa-
tion for the reactive loading of the harmonic terminations. Any remaining reactive 
compensation must be provided by the matching network. In Section 9.2, it was 
shown that the trade-off between how much reactive compensation is provided by 
the bias inductor and how much is provided by the matching network can critically 
impact the network insertion loss. For the schematic of Figure 12.45, the residual 
reactance of the harmonic termination in the passband must be accommodated for 
entirely by the lowpass π-network, which can impact both the bandwidth and the 
loss of the network.

As mentioned above, RF leakage onto the supply rail is a critical parameter that 
must be limited. Increasing the value of either Lb or Cb will reduce the amount of 
RF leakage onto the supply rail, thus increasing the PSR for the network. To achieve 
a sufficiently high PSR value for the matching network, the following requirement 
must be met:

 w2LbCb >> 1  (12.40)

Lower values of the bias inductor will thus require a larger bypass capacitor to 
provide sufficient rejection. Unfortunately, in many of today’s mobile platforms, 

Figure 12.45 Coupled lowpass π-network with virtual ground on Lb.
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there are limits on how large a bypass capacitor is practical. A technique known 
as Envelope Tracking (ET) is frequently employed to increase PA efficiency. In this 
technique, the supply rail is amplitude-modulated with the envelope bandwidth. 
Unfortunately, such modulators can only effectively modulate supply rail if the 
capacitance to ground on the rail is severely limited. In a modern mobile device, 
there are typically multiple RF PA modules, which permit the device to operate 
across multiple frequency bands. Although the device may only operate within one 
frequency band at a time, the bypass capacitors for each transmit module continu-
ously load the supply line. Thus, for this reason, the maximum bypass capacitance 
of any individual PA module is typically limited to ≤∼50 pF.

Figure 12.40 illustrated the very significant reduction required, in the lowpass 
π-network, for the value of the shunt inductance L2 (≡Lb) as a function of the induc-
tive coupling factor. For the practical example given in Table 12.10, the shunt induc-
tor value is reduced by more than a factor of 5 in the presence of a coupling factor 
of k = 0.7. Given the inequality requirement of (12.40), this implies that, to achieve 
the same PSR for the module, the bypass capacitor Cb must be >5 times larger for 
the π-network with inductor coupling than without. In an ET PA module, if there 
is a limit on the capacitance that can be tolerated, this can potentially significantly 
limit the degree to which the auto-transformer action can be exploited. Effectively, 
this would mean limiting the mutual coupling factor k between the inductors.

In addition to limits on the bias capacitor Cb, there is another potential issue 
that must be accounted for when considering any potential benefits of exploiting 
the auto-transformer action in a lowpass π-network. Again, the required value for 
the shunt inductor in the π-network is reduced substantially when strong coupling 
is employed. In response to the reduction in inductor value, the ground currents 
through the inductor increase in an inverse manner. Thus, with strong mutual 
coupling and associated reduction in shunt inductor value, there will be increased 
power dissipation resulting from any resistance in the inductive path to ground. This 
implies that greater attention will be needed to be taken to minimize any resistance 
in the RF return path from the shunt inductor to the active PA module ground, in 
the case of strong mutual coupling in the network. Regrettably also in this respect, 
if the shunt inductor is virtually grounded through Cb, rather than being directly 
grounded, any series resistance in the capacitor can contribute significantly to net-
work resistive losses. Some of these issues are quantized in Figure 12.46.

In Figure 12.46, relative network insertion loss dependences are plotted as a 
function of the mutual coupling coefficient, k. The dashed line shows the increased 
insertion loss dependency for the network resulting from a simple resistor of 200 
mΩ in series with the shunt inductor to ground. Such a resistance could be associ-
ated with a capacitor Cb to ground or even with a via in the circuit board. Whatever 
the cause, the loss due to any series shunt resistance clearly increases with coupling, 
as expected.

The solid curve in Figure 12.46 shows the increased network insertion loss, as 
a function of inductor coupling, resulting from a bias capacitor Cb in the shunt arm 
having the following characteristics:

 Cb = 40 pF                    RCb = 200 mΩ  (12.41)



Figure 12.46 Relative π-network losses due to series elements as a function of coupling.

With a coupling coefficient k = 0.7, as in the example of Section 12.4.1, the 
introduction of the capacitor results in an additional insertion loss of ∼0.2 dB for 
the network, relative to the loss that would occur in the network without coupling. 
There are two components to the additional insertion loss: (1) is mismatch loss 
because the reactance of the 40-pF capacitor is too large to sufficiently ground the 
reduced value shunt inductor; and (2) results from dissipative losses due to the series 
resistance of the capacitor.

Figure 12.47 shows the network gains of the coupled lowpass π-network of 
Section 12.4.1 with k = 0, without and with Cb = 40 pF (RCb = 200 mΩ) to permit 
the shunt inductor to be used for PA biasing.

There is no perceptible change in the network gains resulting from the virtual 
ground on the bias inductor. This is what is desirable as it indicates that introducing 
the virtual ground is not significantly affecting the characteristics of the matching/
bias network. This, in turn, implies that the capacitor is effectively grounding the 
bias inductor.

For comparison, Figure 12.48 shows the corresponding network gains of the 
coupled lowpass π-network with k = 0.7. In this case, with strong magnetic cou-
pling, there is a noticeable increase in insertion loss in the network. This is highly 
undesirable, as it indicates that the introduction of the capacitor is perturbing the 
performance of the network. This implies that the virtual ground node to which the 
supply rail VCC is attached is not effectively grounded and thus has an appreciable 
RF component on the node. This is further evidenced by Table 12.13.

The top of Table 12.13 shows the optimized element values for the coupled 
network with inductor L2 connected directly to ground (i.e., Cb = 0). The bottom 
of Table 12.13 shows the optimized element values for the coupled network with 
the inductor L2 connected directly to ground via capacitor Cb = 40 pF. The fact 
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Figure 12.47 Coupled lowpass π-network gains for k = 0, without and with virtual ground: (a) 
network gain without Cb, and (b) network gain with Cb = 40 pF.



Figure 12.48 Coupled lowpass π-network gains for k = 0.7, without and with virtual ground: 
(a) network gain without Cb and (b) network gain with Cb = 40 pF.
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that the two sets of element values are different is indicative that Cb is insufficiently 
large to effectively ground the inductor.

The voltage on capacitor Cb can be readily calculated in terms of the [ABCD] 
matrix parameters given in Section 12.4. In terms of the supply voltage VS, we find

 

VCb

VS

=
CZL + D − 1 − ZL /Z1

AZL + B + ZS CZL + D( )
 (12.42)

Using (12.42), the voltages on the bias bypass capacitor Cb = 40 pF and RCb 
= 200 mΩ were determined across the passband and are shown in Figure 12.49.

The dashed dependency is the voltage on the capacitor (i.e., VCC node) when 
the inductors in the π-network are uncoupled (k = 0), which is the classic case with 
no auto-transformer action. The solid dependency in Figure 12.49 is the voltage 
on the capacitor when the mutual coupling coefficient between the bias and series 
inductors k = 0.7. As expected from the ratio of the shunt inductor values in the 
two cases (Table 12.10) in the auto-transformer case with strong coupling, the RF 
voltage on the VCC node is increased ∼7 times. Such a large increase in RF leakage 
onto the supply line VCC will generally not be acceptable. To reduce the leakage, 
either the coupling coefficient in the network must be reduced, thereby reducing the 
auto-transformer action, or the bypass capacitor VCb must be increased. Accord-
ing to (12.40), the capacitor will have to be increased by the same ratio that the 
inductor is decreased, in this example, by ∼7 times. Thus, the capacitor Cb must 
be increased from 40 pF to ∼280 pF in the presence of strong inductor coupling in 
order to achieve the same PSR for the uncoupled network.

So far in this section, no consideration has been given to any potential impact 
that the harmonic network might have on the perceived benefits of exploiting induc-
tor coupling in the lowpass π-network. In the large majority of PA designs, a low 
or slightly inductive impedance is required at the second-harmonic frequency on 
the output of the PA.

Table 12.13 Lowpass π-Network 
Element Values

Uncoupled Lowpass π-Match

k = 0.7

Cb = 0 pF

L1 = 2.230 nH

L2 = 0.557 nH

C1 = 2.399 pF

Coupled-Inductor Lowpass π-Match

k = 0.7

Cb = 40 pF

L1 = 2.752 nH

L2 = 0.812 nH

C1 = 2.291 pF



Figure 12.50(a) shows the input network reflection coefficient across the second-
harmonic band with no harmonic network present. In Figure 12.45, this would 
imply Lh and Ch not being present in the circuit.

With the harmonic network present and Lh = 0.3 nH, the input reflection coef-
ficient becomes as shown in Figure 12.50(b). As desired, the impedance remains 
very low across the full second-harmonic band.

With no inductor coupling, the lowest passband insertion loss for the network 
of Figure 12.45 is obtained with the network parameters shown in Table 12.14.

The network gain for such a network is shown in Figure 12.51. Comparing 
Figure 12.47(b) and Figure 12.51(a), there is an increase of ∼0.13 dB in insertion 
loss in the passband due to the presence of the harmonic trap.

With inductor coupling, the lowest passband insertion loss for the network of 
Figure 12.45 is obtained with the network parameters shown in Table 12.15.

The network gain for this network is shown in Figure 12.52(a), while the cor-
responding second-harmonic reflection coefficient is shown in Figure 12.52(b).

Comparing Figure 12.48(b) and Figure 12.52(a), there is an increase >0.2 dB 
in insertion loss in the passband. Comparing Figure 12.50(b) and Figure 12.52(b), 
the inductor coupling has resulted in significantly more variation in the desired low 
impedance across the second-harmonic band compared to the uncoupled case. To 
rectify this problem, the harmonic inductor Lh would have to be reduced in value, 
but this would lead to yet higher network insertion loss.

Plots of the RF voltage on the VCC node are shown in Figure 12.53, which again 
indicate that, for the coupled-inductor case, the bypass capacitor must be increased 
to ∼280 pF to effectively ground the bias inductor.

Figure 12.49 Bypass bias capacitor voltage.
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Figure 12.50  π-network second-harmonic reflection coefficient for k = 0, without and with 
trap: (a) no harmonic trap, (b) with harmonic trap.



Table 12.14 Lowpass π-Network 
Parameters for k = 0, with a Second-
Harmonic Trap

k = 0

Cb = 40 pF

Lh = 0.3 nH

Ch = 6.053 pF

L1 = 1.187 nH

L2 = 1.372 nH

C1 = 5.855 pF

Figure 12.51 Lowpass π-network gain for k = 0, with second-harmonic trap.

Table 12.15 Coupled Lowpass 
π-Network Parameters for k = 0.7, 
with a Second-Harmonic Trap

k = 0.7

Cb = 40 pF

Lh = 0.3 nH

Ch = 6.053 pF

L1 = 2.810 nH

L2 = 0.490 nH

C1 = 1.645 pF
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Figure 12.52 Coupled lowpass π-network characteristics for k = 0.7, with a second-harmonic 
trap: (a) network gain, and (b) second-harmonic reflection coefficient.
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If size permits, optimum advantage can be taken of the auto-transformer action 
in a lowpass π impedance matching network if the shunt inductor is not simultane-
ously used for PA biasing. This requires a separate bias inductor and capacitor as in 
a conventional match. The shunt inductor in the π-network can then be grounded 
directly, eliminating the issues associated with the capacitor required to achieve a 
virtual ground for the inductor.

12.5 Highpass T-Network with Auto-Transformer Action

A highpass T-network is another possible network architecture that can be used to 
transform a low impedance to a higher one. When transforming from a very low 
impedance to a much higher one, such as a transformation from 5Ω to 25Ω, as with 
the lowpass π-network, the highpass T-network comprises both a shunt and a series 
inductor. The schematic of such a highpass T-network is shown in Figure 12.54(a).

Figure 12.53 Bypass bias capacitor voltage with a second-harmonic trap.

Figure 12.54 Highpass T-networks with and without magnetic coupling: (a) classic highpass 
T-network, and (b) highpass T-network with coupling.
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Just as with the lowpass π-network, the possibility exists for magnetically cou-
pling the two inductors to take advantage of an auto-transformer action, as shown 
in Figure 12.54(b). For completeness in analysis, and in a like manner to the lowpass 
π-network analysis, a capacitor in shunt with the series inductor and a capacitor in 
series with the shunt inductor are included in the schematics.

Lowpass networks are generally preferred for PA output matching because of 
their inherent ability to increasingly attenuate frequencies above the passband. Thus, 
highpass networks are seldom used. However, for completeness, and for those less 
common instances in which a highpass network may be preferred, full synthesis 
and analysis solutions are presented in this section. It should be noted from Figure 
12.54 that in this architecture the shunt inductor cannot be used to bias the PA as 
the DC path to the PA is blocked by the series capacitor C1. Despite this, a capaci-
tor Cb is still included in the analysis to permit the evaluation of how ineffective 
grounding of the shunt inductor L2 might affect the characteristics of the network.

Defining the basic network parameters as

 ZS = RS + jXS  (12.43)

 ZL = RL + jXL  (12.44)

 ZL1 = RL1 + jwL1  (12.45)

 ZL2 = RL2 + jwL2  (12.46)

 ZCL1 = RCL1 − j /wCL1  (12.47)

 Z1 = RC1 − j /wC1  (12.48)

also,

 wr = angular frequency at the center of L1 stopband  (12.49)

Synthesis equations for the elements of the auto-transformer-like form of the 
highpass T-network shown in Figure 12.54(b) are

 

CL1 =
1 + k L1 /L2

wr
2 1 − k( )

2
L1

 (12.50)

  

−1

wC1

=
RS

RL

⎛
⎝⎜

⎞
⎠⎟
XL − XS − wL2

+

w L1 + L2 + 2k L1L2( )RS − 1 − k2( )RS + k
2RL( )w2L1L2CL1( )

1 − w2L1CL1( )RL

 (12.51)

which are dependent upon solving the governing equation



XL − w2L1CL1 XL + w 1 − k2( )L2( ) + w L1 + L2 + 2k L1L2( )( )
2

RS

+

1 − w2L1CL1( ) 1 − w2L1CL1( ) RSRL − wL2( )
2( ) − 2 w2kL2( )

2
L1CL1( )

−w2L2 k2L1 + 2k L1L2 + w2k4L1L2CL1 − 2 1 − k2( )k L1L2( )w2L1CL1( )

⎛

⎝

⎜
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⎜

⎞

⎠

⎟
⎟
⎟
RL = 0  (12.52)

Given a value for the independent variable L1, (12.52) must be solved to deter-
mine the corresponding value for L2. Unfortunately, a closed-form solution for L2 
is not available; however, a solution for L2 that satisfies (12.52) is readily derivable 
by numeric techniques.

Having determined the element values for the network, all electrical parameters 
are readily determined from an [ABCD] matrix analysis, using the equations given 
in Chapter 1. For the network, the individual [ABCD] parameters are given by

  

A = 1 +
1 + ZL1 /ZCL1( )Z1 − jwk L1L2

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L2 /ZCL1 + jwk L1L2

 (12.53)

  

B = Z1 +
Z1 + ZL2 + ZCb( )ZL1 + wk( )

2
L1L2 + jwk L1L2Z1

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L2 /ZCL1 + jwk L1L2

 (12.54)

   

C =
1 + ZL1 /ZCL1

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L2 /ZCL1 + jwk L1L2

 (12.55)

   

D = 1 +
ZL1 + jwk L1L2

1 + ZL1 /ZCL1( ) ZL2 + ZCb( ) + wk( )
2
L1L2 /ZCL1 + jwk L1L2

 (12.56)

12.5.1 Highpass T-Network with Auto-Transformer Action Example

In order to examine how adding magnetic coupling between the two inductors in 
a highpass T-network can impact its performance as an impedance matching net-
work, consider a design with parameters identical to those specified in Table 12.1.

The lowest-loss highpass T-network gain with no inductor coupling, as in Figure 
12.54(a), is shown in Figure 12.55(a). Allowing for mutual coupling between the 
two inductors, as in Figure 12.54(b), the lowest network loss achievable is shown 
in Figure 12.55(b).

Element values for the two networks are provided in Table 12.16.
Comparing the network characteristics in Figure 12.39 for the lowpass π and 

those in Figure 12.55 for the highpass T-network, they are seen to be very compa-
rable. As with the π-network, the T-network also shows a significant improvement 
in performance with the introduction of mutual inductor coupling. As previously, 
the magnetic coupling component markedly reduces the network insertion loss and 
significantly widens the bandwidth of the impedance match.
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Figure 12.55 Highpass T-matches without and with mutual inductive coupling: (a) uncoupled 
highpass T-match, and (b) coupled-inductor highpass T-match.

Because this network has highpass characteristics, its attenuation characteris-
tics are expectedly poor, as shown in Figure 12.56(a). Unfortunately, as with the 
π-network, the high-side attenuation is further reduced by the coupling, as shown 
in Figure 12.56(b).

In a PA matching application, this will commonly require some additional “trap-
ping” to be added to the network to further reduce harmonic emissions arising from 



Table 12.16 Highpass T-Network 
Element Values

Uncoupled Highpass T Match

k = 0

C1 = 6.166 pF

L1 = 0.8 nH

L2 = 1.35 nH

Coupled-Inductor Highpass T Match

k = 0.7

C1 = 15.226 pF

L1 = 2.4 nH

L2 = 0.907 nH

Figure 12.56 Highpass T-matches without and with mutual inductive coupling: (a) uncoupled 
highpass T-match, and (b) coupled-inductor highpass T-match.
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nonlinear mixing in the PA. This will incur some additional insertion loss, which will 
somewhat reduce the passband insertion loss advantage of coupling in the network.

Figure 12.57 shows the passband and wide-bandwidth response of the highpass 
T-network with a second-harmonic trap implemented on inductor L1.

The modified element values for the network are given in Table 12.17.
Comparing with the bottom of Table 12.16, it can be seen that implementing 

the frequency trap on inductor L1 again requires significant modification in the ele-
ment values in the matching network. Also, comparing Figure 12.55(b) and Figure 

Figure 12.57 Coupled-inductor highpass T-match with a second-harmonic trap on L1: (a) 
coupled highpass T-match passband, and (b) coupled highpass T-match wideband.



12.57(a), the maximum passband insertion loss is seen to increase by >0.1 dB. This 
is a much smaller increase in insertion loss than was observed with the comparable 
π-network case. Comparing Figure 12.42(a) with Figure 12.57(a), the insertion loss 
for the T-network is seen to be ∼0.15 dB less than for the equivalent π-network.

Comparing the high-side responses for the two networks with L1 traps, the rejec-
tion characteristics are virtually the same. Thus, if the shunt inductor is not required 
to be used for PA bias, with second-harmonic trapping on the series inductor, the 
highpass T has a performance advantage over the lowpass π when the inductors 
are mutually coupled.

These results taken together with the observations at the end of the previous 
section suggest that the highest-performance matching network architecture would 
be one with a conventional harmonic termination and bias inductor, followed by a 
highpass T-network with an L1 trap.

Table 12.17 Highpass T-Network 
Element Values with a Second-
Harmonic Trap on L1

k = 0.7

C1 = 39.38 pF

L1 = 2.4 nH

CL1 = 3.274 pF

L2 = 0.807 nH
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C H A P T E R  1 3

Considerations of Single-Phase Versus 
Multiphase Power Amplifiers

RF power amplifiers (PAs) for mobile applications may employ a single chain of 
amplifiers or multiple chains of amplifiers with varying phase relationships. As 
mentioned in Chapter 9, the single-chain architecture is commonly referred to as 
single-ended. An example of a simplified single-ended PA output architecture is 
shown in Figure 9.1.

For the multiphase configurations, the two most popular phase relationships 
employed between the varying amplifier chains are differential (180°) and quadra-
ture (90°). An example of a simplified differential output matching architecture 
employing coupled inductors for the 180° phase splitting and combining is shown 
in Figure 9.2.

Quadrature PA architectures are commonly referred to as balanced PAs. A 
simplified block diagram of a balanced PA architecture is shown in Figure 13.1.

Common choices for the quadrature splitter and the quadrature combiner are the 
branch-line coupler or the Lange coupler. The balanced architecture has the advan-
tage of extremely low input and output reflection coefficients across the operational 
bandwidth of the couplers, independent of the amplifier characteristics (assuming 
the two PAs are identical). Power incident on the inputs or outputs of the ampli-
fiers is absorbed by the two loads Z0. The balanced PA architecture is not widely 
employed in handset applications as the couplers typically require a relatively large 
area to implement. Nonetheless, it has found some application as it has another 
advantage, namely, reduced power output variation with load mismatch. This aspect 
is explored in some detail in Chapter 4 of Volume 2 of this series.

In addition to the three principal classes of PA architectures above, there are 
also limitless other variants with two or more PA chains and varying phase angles 
between each of the chains. Several of these are covered in later chapters in this 
book. Each has its own advantages and disadvantages.

Figure 13.1 Simplified block diagram of balanced PA architecture.
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Having selected a particular PA architecture for an application, the design 
engineer must then decide upon the most effective way to implement the design. 
Invariably, there is no single way to implement an RF circuit function and the engi-
neer must make a trade-off between size and performance. For mobile applications, 
such as cellular handsets, size is critical, but because battery power is limited, PA 
efficiency is equally important. The engineer is therefore always faced with the 
challenge of trading off size versus performance.

Because single-ended and differential architectures are by far the most common 
choices for PA matching output networks, in today’s mobile applications, we focus 
on the characteristics of each and how they compare in the next section.

13.1 Considerations of Single-Ended Versus Differential 
PA Architectures

Even among veteran RF PA designers, frequently the relative merits and drawbacks 
of single-ended versus differential output PA matching is poorly understood. More 
often than not, this is due to a prejudice or familiarity that one group of designers 
has for one of the architectures, which results in the other never being considered. 
This can be a missed opportunity for the design. In this section, we try to clarify 
the similarities and differences between the two architectures to enable the engineer 
to make a more informed choice.

The single-ended lowpass PA output matching network of Figure 9.3 is imple-
mented with discrete reactive elements. In comparison, the differential PA output 
matching architecture of Figure 9.2 is implemented with coupled inductors, fre-
quently referred to as “transformers.” The use of “transformers” for implementing 
a differential design is often taken for granted by many designers. However, this 
need not be the case, as a transformer can also be used in a single-ended design. 
Equally, a differential phasing network comprising only discrete (i.e., uncoupled) 
reactive elements can also be used in place of a transformer in a differential design. 
One example of a lumped-element differential combiner/splitter is shown in Figure 
13.2. Other versions, their design details, and their potential use in PA matching 
networks are detailed in Chapter 15.

Before delving into a detailed comparison of the basic characteristics of single-
ended versus differential designs, it is instructive to first consider how a transformer 
is implemented in a typical high-frequency RF circuit.

Figure 13.2 One version of a lattice differential combiner/splitter.
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13.2 Comparative Aspects of Single-Ended Versus Differential 
PA Architectures

To be able to make the optimum design choice between a single-ended or a dif-
ferential PA architecture, it is important to understand fully the relative merits of 
each. Unfortunately, this is frequently not the case and conclusions are based on 
incorrect assumptions.

Two of the most common misconceptions, frequently cited in claims, that a dif-
ferential PA architecture has inherent advantages over a single-ended architecture are:

1. A differential solution in which the combining and splitting networks are 
implemented using coupled inductors is inherently wider bandwidth than a 
single-ended version.

2. A differential design has 4 times the input impedance of a single-ended design.

Neither of these statements is correct.
The first misconception is largely attributable to the poor but widely-repeated 

description of a coupled-resonator RF network as a transformer. This was covered 
in detail in the previous section. The term “transformer” is associated with a wide 
(ideally infinite) bandwidth device since their sole defining parameter (i.e., turns 
ratio) is frequency-independent. In actuality, the coupled-resonator network has fre-
quency-limiting characteristics similar to those of any other reactive RF component.

The first misconception is additionally inappropriate for the simple reason that 
a coupled-resonator network can equally be used for implementing an impedance 
transformation in a single-ended architecture. A differential PA architecture is not 
required for a coupled-resonator network to be made use of for impedance match-
ing purposes.

Figure 13.3 shows a single-ended PA output network with a coupled-resonator 
network for impedance matching on the output of the amplifier. The voltage at the 
output of the coupled inductors network is double that on the input at the output 
of the PA. From power conservation, this implies the impedance level at the output 
of the resonators is 4 times that on the input (i.e., the PA output impedance).

The second misconception concerns input impedance. The source of the confu-
sion here is more subtle. The network input impedance is the output loading imped-
ance on the PA. This is a critical parameter for all RF PAs used in mobile devices. As 
discussed in Chapter 9, due to the low battery voltages available in mobile devices, 
sufficient RF output power can only be generated at a low impedance level. Because 
the power must be fed to an antenna with a usual input impedance of 50Ω, this 

Figure 13.3 Single-ended PA with coupled inductors output impedance setup.
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requires a matching network between the PA output and antenna to match these 
disparate impedances. Typically, a setup in impedance > 10:1 is required.

In general, the greater the impedance setup required for the network, the lower 
its operational bandwidth and the higher its insertion loss. It would therefore be a 
significant advantage for a differential network if it could truly provide a PA out-
put impedance 4 times higher than a single-ended architecture. Unfortunately, this 
advantage is illusory and results from a misinterpretation of circuit theory.

By way of example, consider a PA with an output impedance of 3Ω. If a cou-
pled-resonator network with a voltage setup ratio of n:1 is connected directly on its 
output, as in Figure 13.4(a), the transformed impedance at the output of the reso-
nators will be 3 n2 Ω. If we now take the same PA output periphery (i.e., active cell 
output area) and divide the output cells into two groups, I and II, each group will 
have an output impedance of 6Ω. If the signal input to one of the PA groupings is 
then phase-shifted by 180°, the two outputs will form a differential drive that can 
be applied directly to the same coupled-resonator pair as in the single-ended case. 
Such a network is shown in Figure 13.4(b). Note that, for this case, the output 
impedance is 12 n2 Ω, an increase of 4 times over the single-ended configuration 
of Figure 13.4(a).

Figure 13.4(a, b) might seem to support the conjecture that a differential PA 
architecture has a 4 times increase in output impedance over a single-ended one. 
However, the increase here is not due to the differential nature of the network, but 
simply to dividing up the output cell groupings. To understand this, refer to Figure 
13.5(a, b).

Figure 13.5(a) shows a single-ended PA and coupled inductor network essentially 
equivalent to the differential network of Figure 13.4(b) and having the same higher 
output impedance of 12 n2 Ω. The PA periphery is the same, as are the two inductors 
and mutual coupling coefficients assumed for the two. The sole difference between 

Figure 13.4 PA with single-ended and differential output configurations: (a) single-ended PA, 
and (b) equivalent differential implementation.

Figure 13.5 Single-ended PA with split outputs to coupled inductors: (a) single-ended PA, and 
(b) coupled inductors.
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Figure 13.4(a) and Figure 13.5(a) is that the primary inductor has been split in two, 
with the two halves being driven in anti-phase by the single PA. The periphery of 
the single PA could even split into two groups, as in the differential case, with each 
output similarly driving the two halves of the split primary inductor in anti-phase. 
This configuration is shown in Figure 13.5(b). Comparing Figure 13.4(b) to Figure 
13.5(b), we can see that there is little difference between the two. The active output 
cells of the PA experience identical voltage and current excursions in both cases 
and have exactly the same loading. The true impedance on the cells is unchanged 
between Figure 13.4(b) and Figure 13.5(a, b).

It is easy to draw the wrong conclusion from Figure 13.4(b) regarding the poten-
tial impedance advantages of a differential PA architecture over a single-ended one. 
The impedance across the primary resonator is 4 times higher than a single-ended 
PA with equal total periphery. However, this is not comparing like impedances. The 
higher impedance is a differential impedance; it should not be compared directly 
with a single-ended one. Because the load is generally single-ended, not balanced, 
any differential impedance must be transformed back into a single-ended imped-
ance for valid comparison.

In the differential case, rather than viewing the drive to the primary resonator 
as a single balanced impedance with an impedance 4 times that of a single PA, it is 
more appropriate to view the drive as two independent single-ended PA chains hav-
ing 2 times the impedance of a single PA, as shown in Figure 13.6. Note, however, 
that the coupled inductors in each track only provide an impedance transformation 
ratio of n2, which is identical to the single-ended case. For this reason, we should not 
expect any bandwidth advantage of the differential PA architecture, with coupled-
inductor matching, over a similar single-ended one.

In summary, the sole reason that the primary impedance in a differential PA 
architecture is higher results from dividing the output periphery of the PA. It is not 
inherent in the differential architecture itself. Regardless of the relative phasing, the 
PA output periphery can be and sometimes is actually divided into more than two 
groups and each of the outputs combined via multiple pairs of coupled inductors 
or discrete elements. If the output periphery is divided into N groups, the output 
impedance of each will be increased by a factor of N.

13.3 Additional Comments on Single-Ended Versus Differential 
PA Architectures

As discussed in the section above, differential PA architectures have no inherent 
bandwidth or impedance advantages over single-ended ones. Coupled inductors 

Figure 13.6 Differential amplifiers transformation ratios.



288 Considerations of Single-Phase Versus Multiphase Power Amplifiers

can equally be used for impedance transformation in both types of architecture. 
Likewise, differential PA architectures can be very effectively realized with LC 
networks, entirely devoid of any magnetic coupling.

If differential PA architectures do not effectively raise the PA loading imped-
ances, are there alternatives that could? There are two, but, unfortunately, neither 
is practical. The two possibilities that exist are: (1) reduce the PA output power, 
or (2) raise the supply voltage. The PA output power is invariably a requirement 
of the application and thus cannot be arbitrarily reduced. The low battery voltage 
in a mobile device can be increased by an inverter, but these have challenges with 
noise, size, and efficiency.

What, if any, then are the potential advantages for a differential PA architecture 
over a single-ended one? Three possibilities are:

1. The bias inductor for supplying DC power to the output stages can be very 
small, without impacting insertion loss or degrading power-supply rejection 
on the supply rails.

2. The differential architecture permits the second-harmonic responses to be 
terminated without having to trade off passband insertion loss. This was 
demonstrated in Section 10.7 with the all-pass bridge-T lowpass network.

3. In Figure 13.4(b), it can be observed that ideally there is no returning ground 
current at the center of the primary inductor, as it is a voltage null. This 
eliminates any voltage drop attributable to finite resistivity of ground vias 
that could potentially improve PA gain and reduce insertion loss.

Unfortunately, there are also potential disadvantages to a differential architecture:

1. A differential PA architecture typically requires a larger active die area than 
single-ended in order to implement the two preliminary and output ampli-
fier chains.

2. Coupled inductors for output combining may occupy larger substrate or die 
(active or passive) area than discrete elements in single-ended design. There 
are similar size concerns for the differential input splitter.

3. For optimum performance, care must be taken in layout to ensure that split-
ter and combiner coupled inductors are both truly differential.

4. Given size constraints, it is not practical to achieve tight magnetic coupling 
between printed inductor traces without also having significant interwinding 
capacitance. The latter can have important impacts on design and perfor-
mance that are examined in detail in volume 2 of this book.

Because differential PA designs commonly employ coupled inductors for combin-
ing the two out-of-phase signal paths, one further disadvantage of the architecture 
might be added. Namely, the design, layout, and optimization of coupled-inductor 
elements is invariably more complex than a design based on discrete components. 
Lengthy EM simulation is invariably required. However, in volume 2, it is shown 
how differential designs can also be implemented very effectively with only discrete 
components, in which case, this disadvantage does not apply.
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One final point to bear in mind is that a coupled-inductor combiner and imped-
ance transformer generally do not provide the full impedance transformation required 
to match a mobile PA output to the output/antenna. As mentioned earlier, this ratio 
is typically ∼10:1. A second single-ended impedance match, typically using discrete 
elements, must be added on the output of the secondary inductor to provide the 
additional output impedance match. For an optimized performance, the designer 
must decide the proportion of the impedance match to assign to the coupled induc-
tors, and the portion to the single-ended match.
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Classic Coupled-Inductor Matching for 
Differential PAs

In this chapter, we consider the “classic” application of coupled inductors to imped-
ance matching and combining of the outputs of differential PAs. The term “clas-
sic” here refers to the transformer-like manner in which the coupled inductors are 
connected transverse to the signal path as in Figure 14.1. The outputs of both PAs 
are applied to the primary inductor and all RF energy transfer to the output is via 
magnetic coupling between the inductors. This is similar to their use for the single-
ended case matching as described in the previous chapter.

The following chapter details how coupled inductors may also be used in an 
in-line architecture for the output matching of differential PAs.

14.1 Basic Differential Coupled-Inductor Design

Figure 14.1 shows a basic schematic of a differential PA matching combiner architec-
ture employing coupled inductors. As with the similar single-ended PA architectures 
in Figure 12.4, shunt input and/or output tuning elements are generally required to 
match the network to the external impedances.

In the schematic, the two input drive voltages, VS1 and VS2, represent the output 
signal voltages from two PAs. In the neighborhood of the passband, if the input 
voltages have a differential relationship, then

(fundamental and odd) VS1 = −VS2  (14.1)

This relationship is relatively true for all the odd harmonics, generated as a 
result of internal nonlinear mixing.

In contrast, the even-harmonic frequencies, also generated by nonlinear inter-
nal mixing in the amplifiers, will generally be in-phase in the two tracks. Thus, for 
even-harmonic frequencies,

Figure 14.1 Differential PA matching architecture with coupled inductors.
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 VS1 = VS2  (14.2)

For the general case, the two source impedances are assumed to be equal, that is,

 ZS1 = ZS2  (14.3)

In some less common examples, both the voltages and impedances of the two 
amplifiers might differ between the tracks. One motivation for this is if there is 
a need for improved backed-off efficiency of the PA, in which case the amplifiers 
might be sized differently and one turned off in low-power mode.

As with the single-ended matching analyses in Chapter 12, an inductor LS may 
be added in series the input tuning shunt capacitor, CS, to implement a desired 
harmonic termination. For the differential case, however, rather than being able to 
terminate the second-harmonic frequencies, the trap can only be used for terminat-
ing odd harmonics.

Neglecting any interwinding capacitance, as discussed in Chapters 10 and 12, 
the differential input voltages (Equation (14.1)) result in the center point of the 
input resonator L1 being a virtual ground in the passband. This thus provides a 
convenient network node for applying an external DC voltage to bias the output 
stages of the two PAs, without significantly perturbing the RF characteristics of 
the network. It also has the advantage that the bias inductor does not need to be as 
large as required in the single-ended case to avoid causing passband insertion loss 
(see Chapter 9). As shown in Figure 14.1, this is typically via a bias inductor Lb, 
frequently in combination with a shunt capacitor Ch. The capacitance Ch is included 
to provide a low impedance on the output of the amplifiers for frequencies around 
the second harmonics of the passband.

For the differential PA case, the coupled inductors have two functions:

1. They combine the two out-of-phase inputs into a single output. As discussed 
in Section 5.4, a three-port network used for this purpose is generally referred 
to as a balun.

2. They increase the line impedance on the output from that on the two 
input lines.

In Section 2.9, expressions for all the key performance characteristics of a 
three-port network are given in terms of the network S-parameters. Moreover, in 
Appendix D, the full four-port S-parameters are provided for a pair of coupled 
inductors, including a shunt capacitor across the primary inductor. Unfortunately, 
the S-parameters are very unwieldly and not useful for network synthesis. Fortu-
nately, such complexity is not required as, due to the top-to-bottom symmetry of 
the architecture, the design and analysis can be reduced to that of only a two-port, 
single-ended PA. Effectively, each of the two amplifier chains can be viewed as 
operating independently into a single-ended load.

The analysis and synthesis of the differential network of Figure 14.1 are reducible 
to a two-port, single-ended problem using an even/odd-mode analysis, as described 
in Section 10.4. For the odd-mode drive (Equation (14.1)), the center point of the 
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primary inductor, L1, is a virtual ground. Thus, the odd-mode equivalent circuit is 
as shown in Figure 14.2(a).

For the even-mode drive (Equation (14.2)), no current flows between the two 
amplifier chains. Equally, because the currents flowing into the primary at ports 
1 and 2 are equal and opposed, there will be no net current flow in the secondary 
inductor L2. Thus, the even-mode equivalent circuit for the network is as shown 
in Figure 14.2(b).

For element synthesis, first consider the odd-mode circuit. By analogy with 
Section 12.2, if k is the mutual coupling factor between the inductors, ignoring 
elemental resistive components, L2 is determined as

L2 =

k2RL /GS − 1 − k2( )wL1XL − k2 /GS( )
2
− 1 − k2( )wL1( )

2⎛
⎝

⎞
⎠ RL

2 − 2 1 − k2( )k2wL1XLRL /GS

w2 1 − k2( )
2
L1

 

 (14.4)

and the shunt input tuning capacitor CS is determined as

 

CS =

2/wL1 − 1 − k2( )BS( )RL − 1 − k2( )GSXL( )wL2 − RL
2
+ XL

2( )GS

2w2 1 − k2( )RLL2

 (14.5)

where ω = angular design frequency.
For a solution to exist to (14.4), the argument of the square root must be ≥ 0. 

This leads to a constraint on the maximum value permissible for the independent 
variable L1. We find

 

wL1 ≤ −XL /RL + 1 + XL
2 /RL

2

1/k2 − 1( )GS

 (14.6)

Analogous to Section 12.2, if a low input impedance is required at the third 
harmonic, an inductor LS may be added in series with capacitor CS. Denoting the 
frequency at the center of the passband by ω0 and that at the center of the third-
harmonic band by ω3, the modified capacitor value, and that of the inductor, are 
given by value

Figure 14.2 Differential PA architecture odd-mode and even-mode schematics: (a) odd mode, 
and (b) even mode.
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′CS = 1 − w0 /w3( )

2( )CS  (14.7)

 

LS =
1

w3
2 − w0

2( )CS

 (14.8)

Finally, considering the even-mode circuit, achieving a low impedance at the 
second-harmonic frequency requires

 
Ch =

L1 + 4Lb

4w2
2L1Lb

 (14.9)

As with the single-ended, coupled-inductor match of Chapter 12, analysis of the 
network is most easily achieved by determining the [ABCD] parameters for each 
of the two equivalent networks in Figure 14.2.

14.1.1 Basic Differential Coupled-Inductor Design Example

In this section, we apply the design and analysis formulae of the previous section 
to a practical differential PA design, in order to illustrate the basic performance 
capabilities of this type of matching architecture.

For simplicity, we take both source and load impedance as purely real, together 
with the additional network parameters given in Table 14.1. Note that the out-
put impedances of the two differential amplifiers, ZS, are both set to 8Ω, while 
the single-ended load impedance is assumed to be 50Ω. This is equivalent to the 
single-ended impedance of 4Ω for the coupled-inductor design analysis in Chapter 
12. Both amplifiers are assumed to have the same output power (i.e., |VS1| = |VS2|).

With these values, from (14.6), we determine

 L1 max ≈ 0.655 nH  (14.10)

Table 14.1 Differential Coupled-Inductor 
Impedance Match Parameters

Design Parameters

Mutual coupling, k = 0.7

flo 
1,710 MHz

fhi 
2,025 MHz

f2lo 
3,420 MHz

f2hi 
4,050 MHz

f3lo 
5,130 MHz

f3hi 
6,075 MHz

ZS1 = ZS2 = 8Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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which is ∼4 times L1 maximum for the comparable single-ended case, given in 
(12.19). This is to be expected as the effective source impedance across the primary 
inductor 2 × 8 = 16Ω, is 4 times that of the single-ended case.

First, we investigate how the maximum passband insertion gain (Pdel/Pavail) 
varies as a function of the independent variable L1. This dependence is shown in 
Figure 14.3(a).

Figure 14.3 Differential insertion gain and secondary inductance dependence on primary 
inductance L1: (a) gain, and (b) secondary inductance.
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It can be seen that the lowest insertion loss ∼0.73 dB occurs for a value of L1 = 
∼0.56 nH, which is approximately 15% below the maximum possible value given 
by (14.6). The optimum gain is close to that of the single-ended case. The optimum 
value for L1 is ∼4 times that of the single-ended case in Section 12.2.1.

Figure 14.3(b) shows the required value for the secondary inductance L2, as a 
function of L1. The dependence is almost identical to that for the single-ended case, 
except for the primary inductor value being scaled by 4 times.

The ratio L2/L1, as a function of L1, is presented in Figure 14.4 for the differ-
ential case. This can be compared to the comparable single-ended data in Figure 
12.17(a). Due to the equivalent source impedance being increased by a factor of 4, 
L1 is increased by the same factor. This results in the ratio L2/L1 being decreased 
by 4 times. The reduced L2/L1 ratio helps to make the differential layout more prac-
tical. However, it should be remembered, as noted elsewhere, that this advantage 
derives from dividing the output cells into two groupings, not from the differential 
phase relationship per se.

For the optimum value of L1, the network element values are as shown in Table 
14.2.

The corresponding passband insertion gain and input impedance Cartesian 
dependencies are shown in Figure 14.5. The input and output reflection coefficients 
for the network are shown in Figure 14.6.

Figure 14.4 Differential secondary to primary inductance ratio.

Table 14.2 Optimum Differential 
Coupled-Inductor Element Values

Element Values

L1 = 0.56 nH L2 = 4.703 nH

CS = 15.968 pF
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These responses demonstrate that a differential coupled-inductor network is 
capable of providing the desired impedance transformation across ∼17% fractional 
bandwidth with good characteristics. The insertion loss is relatively flat and the 
input and output reflection coefficients are well behaved.

With the differential impedance network of Figure 14.1, the termination across 
the PA outputs across the second-harmonic band can be designed close to a short 
circuit. This is achieved by setting the value of Ch according to (14.9). Because the 

Figure 14.5 Differential coupled-inductor network gain and impedance: (a) gain, and (b) input 
impedance.
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Figure 14.6 Differential coupled-inductor network input and output impedances: (a) input 
impedance, and (b) output impedance.
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center point of primary inductor L1 is effectively a ground for the odd-mode passband 
frequencies, this does not result in additional passband loss, as in the single-ended 
case. The input reflection coefficient of the network across the second-harmonic 
band is shown in Figure 14.7 for Lb = 0.3 nH and Ch = 19.02 pF.

The responses above are all without the additional trap inductor, LS, in Figure 
14.1, to provide an optional low impedance to the PA output stage across the third-
harmonic band. The associated input third-harmonic reflection coefficient of the 
network is shown in Figure 14.8(a).

If the value of CS is modified according to (14.7), and the inductor LS is intro-
duced in series as determined by (14.8), the reflection coefficient across the third-
harmonic band becomes that shown in Figure 14.8(b). As desired, the impedance 
across the full third-harmonic band is now effectively a short circuit across the 
full band.

Figure 14.9(a, b) show the corresponding passband characteristics of the network 
with the third-harmonic trap. Introducing the trap increases the passband insertion 
loss and impedance variation across the passband, although only modestly. This 
can be seen by comparing these figures with those in Figure 14.5.

Because the trap resonance is at the third harmonic and not the second as in 
the single-ended case, the deleterious effects in the passband are much reduced 
compared to the latter.

In determining the above responses, a mutual coupling factor k = 0.7 was 
assumed throughout. The bandwidth of the impedance match achievable with the 
coupled-inductor architecture is critically dependent on this parameter. For the real 
6.25:1 impedance transformation ratio specified by the parameters in Table 14.1, 

Figure 14.7 Differential second-harmonic band input reflection coefficient.
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Figure 14.8 Differential network third-harmonic input reflection coefficients: (a) no trap, CS 
only, and (b) with trap, CS + LS.
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Figure 14.9 Differential network gain and impedance with third-harmonic trap: (a) gain, and 
(b) input impedance.

the maximum possible value for the primary inductance L1 can be determined from 
(14.6) as a function of the coupling factor. This dependence is shown in Figure 14.10.

Note that the maximum possible value for L1 drops precipitously with a reduced 
coupling factor. The consequence of a reduced primary inductance is a significant 
reduction in the bandwidth of the impedance matching characteristics. To illustrate 
this, consider the network response with identical parameters to those of Table 14.1, 
but with a mutual inductance value, k = 0.55. In this case, the maximum value for 
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the primary inductance L1 is limited to ∼0.30 nH. A value L1 ≈ 0.28 nH is found 
to result in the best characteristics.

For this reduced coupling factor, insertion impedance and input impedance 
responses, corresponding to those of Figure 14.5, are shown in Figure 14.11.

Comparing these figures reveals a significant degradation of the characteristics 
of the differential network with the reduced coupling factor. This illustrates how 
critical it is to be able to achieve a high magnetic coupling factor for the coupled 
inductor impedance match for the network to be viable.

14.2 Differential Coupled Inductors with Interwinding Capacitance

As discussed previously, a high magnetic coupling coefficient, k, is essential for a 
coupled-inductor impedance match, whether for single-ended or differential. Ide-
ally, k = 1 would be ideal, but, unfortunately, this is not achievable. In practice, 
with typical printed inductor layouts, |k| ≤ ∼0.7.

To achieve the higher coupling values, the inductor traces must be very close 
together in order for the magnetic fields associated with the currents flowing in 
each inductor to overlap. As mentioned in Section 13.1.2 and elsewhere, this has 
the unfortunate side effect of also resulting in significant interwinding capacitance 
between the traces. This can have important consequences for the performance of 
the impedance match, particularly at frequencies above the passband.

A differential coupled-inductor impedance network in addition to transform-
ing impedance must also function as a balun. Looking at the network in reverse, 
this means that a signal entering the output (single-ended) port must be split by the 
network into two equal-amplitude but anti-phase outputs on the differential ports. 
With no interwinding capacitance, as in the previous section, the top-to-bottom 

Figure 14.10 Maximum primary inductance versus coupling factor.
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Figure 14.11 Differential coupled inductor network gain and impedance: (a) gain, and (b) 
input impedance.

symmetry of the network ensures symmetry of the reverse outputs. There is a voltage 
null at the center of the primary inductor L1, for all odd-mode inputs, which includes 
the passband. For even-mode inputs, which includes the second harmonic, there 
is no net current flow down L1 and thus no induced current flow in the secondary 
inductor L2. These characteristics greatly simplify both the analysis and synthesis 
of the network. Unfortunately, they no longer hold in the presence of capacitive 
coupling across the inductors.



304 Classic Coupled-Inductor Matching for Differential PAs

With interwinding capacitance between the two inductors, there is a direct 
signal transmission path between the two differential ports and the single-ended 
port independent on the magnetic coupling. On the primary inductor side, there 
is top-to-bottom symmetry. However, on the secondary inductor side, this is not 
the case as one terminal is grounded. There are several consequences to the lack of 
secondary symmetry in the presence of capacitive coupling:

1. The mid-point of the primary inductor L1 is generally no longer a vir-
tual ground.

2. The input impedances on the two terminals of L1 will, in general, be unequal.
3. RF energy incident on the secondary single-ended terminal of L2 will not, 

in general, be split with equal amplitude and 180° phase on the two termi-
nals of L1.

4. With a lack of top-to-bottom symmetry, both the network analysis and 
synthesis are significantly more complex.

In the presence of an interwinding capacitance CX and the lack of an overall 
top-to-bottom symmetry, even with a pure differential drive, the virtual ground 
location on the primary inductor L1 does not necessarily coincide with the center 
of the inductor. However, ideally, the bias network should be located at the virtual 
ground. A further consequence of the asymmetry is that the input impedances on 
ports 1 and 2 can no longer assumed to be equal. In addition, if the bias node is 
not appropriately located at the virtual ground location, the two input impedances 
will become dependent upon the bias network.

Referring to Figure 14.1, it is clear that, in the presence of any capacitive coupling 
between inductors L1 and L2, port 1 will be more tightly coupled to the ground 
than port 2, due to the single-ended nature of the output load. Hence, it should be 
expected that the minimum voltage point along L1 in the presence of interwinding 
capacitance will be shifted down from its center.

Any useful circuit model to be the basis for analyzing the characteristics of a 
coupled-inductor pair network model, with interwinding capacitance, must allow 
for a noncentral location of the bias network on L1. To this end, the architecture 
of Figure 14.1 is generalized to that shown in Figure 14.12.

In the generalized differential configuration of Figure 14.12, the bias network 
node is located a distance αL1 from the bottom of the inductor, (0 ≤ α ≤ 1).

The top coupled-inductor sections have inductances (1 − α)L1 and (1 − α)L2, 
with an interwinding capacitance CX2, where

Figure 14.12 Differential PA matching architecture with coupled inductors including 
interwinding capacitance and input bias node.



14.2 Differential Coupled Inductors with Interwinding Capacitance 305

 
CX2 = 1 − a( )CX  (14.11)

The bottom coupled inductor sections have inductances αL1 and αL2, with an 
interwinding capacitance CX1, where

 CX1 = aCX  (14.12)

and CX = total interwinding capacitance.
These two discrete capacitors are assumed to be located at the center of each of 

their respective sections. The coupled-inductor network in Figure 14.12 is assumed 
to be identical to that in Figure 14.1 except for the inclusion of the interwinding 
capacitance CX.

As stated above, synthesis and analysis of the differential coupled-inductor net-
work with interwinding capacitance are greatly complicated by the lack of symmetry. 
An important consequence of this is the number of dependent variables required to 
synthesize the network element values. With no interwinding capacitance, by virtue 
of the symmetry and the assumption of a differential drive, the input impedances on 
the two differential ports are necessarily identical. Thus, to synthesize the network 
elements required for an input match, only two dependent variables are required. 
The two elements are sufficient to allow both the real and imaginary input match-
ing equations to be met on ports 1 and 2, that is,

 
ℜ Zin{ } = RS  (14.13)

and

 
ℑ Zin{ } = −XS  (14.14)

where source impedance, ZS = RS + jXS, and ℜ{ } ℑ{ } represent the real and imagi-
nary parts of the argument, respectively.

With interwinding capacitance between the inductors, however, and the result-
ing loss of top-to-bottom symmetry, a minimum of four, rather than two, equations 
must now be satisfied. Equations (14.13) and (14.14) must now be independently 
satisfied for the unequal impedances on ports 1 and 2, at the top and bottom of L1. 
Assuming that the primary inductance L1 is again taken as an independent variable 
and L2 and CS remain dependent variables, a minimum of two more variables must 
be introduced in order to be able to satisfy the four equations.

With no interwinding capacitance, the center point of inductor L1 is a virtual 
ground when the inductor is driven by a differential input, as in the passband. Thus, 
the impedances on ports 1 and 2 are completely independent of any loading at the 
center point of the inductor. This attribute is usually taken advantage of to apply 
bias to the amplifier output stages through a small inductor Lb, as in Figure 14.12.

With interwinding capacitance, however, the center point of inductor L1 is no 
longer a virtual ground, and thus reactive loading at this point will generally affect 
the input impedances on ports 1 and 2. The effect on the two impedances will 
depend on both the value of the reactive loading and where it is located along the 
inductor. There should be no expectation that the optimum location for the reactive 
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loading is at the mid-point of L1. Referring to Figure 14.12, it is clear that, in the 
presence of any capacitive coupling between inductors L1 and L2, port 1 will be 
more tightly coupled to the ground than port 2, due to the single-ended nature of 
the output load. Hence, it should be expected that the minimum voltage point along 
L1 in the presence of interwinding capacitance will be shifted down from its center.

Therefore, the two additional variables to try to achieve a simultaneous input 
match on ports 1 and 2 are α and Xb, where α quantifies the location along the 
inductor L1 where a susceptive loading is located and Xb is its value. The suscep-
tance comprises elements Lb and Ch.

It is all too often the case that a designer seeking to optimize a coupled-inductor 
match on the output of a PA limits the scope of the optimization by assuming that 
the bias feed inductor must be located at the center of the primary inductor. This 
predisposition is driven by the belief that the center of the inductor is a voltage null. 
Because this assumption is incorrect in any practical layout, in which there is finite 
interwinding capacitance, a truly optimized design cannot be achieved with even 
the best design software package. It is essential that the value of the bias inductor 
and its position on the primary inductor must be input as variables to arrive at a 
truly optimized design. Failing this, the design will have to incorporate some design 
asymmetry between ports 1 and 2 to achieve a simultaneous match on the two ports.

Equations for the full analysis and synthesis of the coupled-inductor network of 
Figure 14.12 are given in Appendix G. As discussed above, due to the lack of sym-
metry, their computation is very involved relying on the definition of many inter-
mediate variables. While the equations might require too much effort for a typical 
RF design engineer to implement in practice, they can actually be of great use in 
understanding key characteristics of a coupled-inductor match with interwinding 
capacitance. The improved understanding of the network that results can signifi-
cantly benefit any design approach to optimizing the performance of the structure.

The equations of Appendix G were implemented in an Excel workbook and 
applied to a coupled inductor matching network analogous to that in the previous 
section. The key aspects of that analysis are presented in the following section.

14.2.1 Differential Coupled Inductor with an Interwinding Capacitance 
Design Example

This section focuses on the ways in which interwinding capacitance between a pair 
of coupled inductors can have significant impacts on network performance. To illus-
trate these, consider the design of a matching network with identical parameters to 
those of Section 14.1.1, but with the addition of an interwinding capacitance CX. 
These parameters are listed in Table 14.3.

With no interwinding capacitance and no susceptive loading on L1, the imped-
ances on the two input ports 1 and 2 are necessarily identical. The key characteristics 
of the network are those shown in Figure 14.6. However, with finite interwinding 
capacitance between the inductors, the network characteristics become much more 
complex. Maintaining L1 = 0.56 nH, and with no susceptive loading on L1, the 
synthesis equations can only be used to determine optimized values of L2 and CS 
for an input match on either port 1 or port 2. There is an insufficient number of 
variables to allow for a simultaneous match on both input ports.
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The top of Table 14.4 shows the network values determined to achieve an opti-
mum impedance match on port 1. Conversely, the bottom of Table 14.4 shows the 
network values determined to achieve an optimum impedance match on port 2.

Note that these two sets of matching requirements are significantly different. 
The result is that, when one port is well matched in the passband, the other is sig-
nificantly mismatched. This can be seen in Figure 14.13.

As a result of one of the ports being badly mismatched in either scenario, the 
network exhibits high insertion loss in each case. The corresponding insertion gains 
for the network are shown in Figure 14.14.

Rather than optimizing the match on either port 1 or port 2, the network may 
be optimized instead to simultaneously minimize the mismatch on the two ports. 
The element values for such a compromise match are shown in Table 14.5.

The corresponding key network performance characteristics are shown in Figure 
14.15. It can be observed that this does result in significantly reduced insertion loss.

While illustrating some of the complications arising from the presence inter-
winding capacitance in a coupled-inductor matching network, the above elements 

Table 14.3 Differential Coupled-Inductor 
Impedance Match Parameters

Design Parameters

Mutual coupling, k = 0.7

Cross-coupling capacitance, CX = 4 pF

flo 
1,710 MHz

fhi 
2,025 MHz

f2lo 
3,420 MHz

f2hi 
4,050 MHz

f3lo 
5,130 MHz

f3hi 
6,075 MHz

ZS1 = ZS2 = 8Ω ZL = 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100

Table 14.4 Network Values for Optimum 
Match on Port 1 and Port 2, for CX = 4 pF

Match on Port 1

Element Values

k = 0.7 CX = 4 pF

Lb = ∞ nH CS = 9.499 pF

L1 = 0.56 nH L2 = 1.858 nH

Match on Port 2

Element Values

k = 0.7 CX = 4 pF

Lb = ∞ nH CS = 15.14 pF

L1 = 0.56 nH L2 = 3.398 nH
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Figure 14.13 Differential input reflection coefficients for CX = 4 pF: (a) match on port 1, and (b) 
match on port 2.
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Figure 14.14 Differential insertion gains for L1 = 0.56 pF and CX = 4 pF: (a) match on port 1, 
and (b) match on port 2.

Table 14.5 Network Values for 
Compromise Match on Ports 1 and 
2, for CX = 4 pF

Element Values

k = 0.7 CX = 4 pF

Lb = ∞ nH CS = 12.32 pF

L1 = 0.56 nH L2 = 2.628 nH
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Figure 14.15 Compromise match performance parameters, for CX = 4 pF: (a) input reflection 
coefficients, and (b) gain.

and performance parameters neglect any influence of the bias network. In practice, 
a finite bias network is invariably required on L1. The bias is usually applied at 
the mid-point of the primary inductor L1. However, if interwinding capacitance is 
important, such a choice will typically be nonoptimum. Instead, careful choice of 
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the bias network, and its position along inductor L1, can provide significant com-
pensation for the deleterious effects of the capacitance, as is demonstrated below.

Before considering how the bias loading on L1 might aid the performance of 
the coupled-inductor match, it is instructive to first examine how the capacitance 
affects the voltage distribution along primary inductor L1. Equations are provided 
in Appendix G to allow the voltage VC to be determined as a function of α (see 
Figure 14.12). The actual voltage distribution along L1 with finite interwinding 
capacitance will vary somewhat with matching conditions. To understand qualita-
tively the influence that interwinding capacitance has on the voltage distribution, 
however, it is sufficient to maintain the same matching element values for CX = 0, 
for the cases CX > 0.

Figure 14.16 shows the voltage VC/VS along primary inductor L1 = 0.56 nH, 
for CX = 0, 2, and 4 pF. These dependencies were again determined with no bias 
loading on L1 (i.e., Xb = 0). With no interwinding capacitance (CX = 0), the volt-
age is zero at the mid-point, as expected. However, for increasing values of CX, the 
voltage null on the inductor moves down closer to port 1. This is consistent with 
expectations, because the lower terminal of secondary inductor L2 is grounded and 
is more tightly coupled to port 1.

With no interwinding capacitance, it is ideal to place the bias feed at the voltage 
null in the center of the primary inductor, where it has no effect on the passband 
characteristics. With finite interwinding capacitance, if the bias feed were located at 
the voltage null on the inductor, although now further down the inductor, similar 
advantages would accrue. However, without additional circuit elements to permit 
a simultaneous match on both ports 1 and 2, high insertion losses such as those 
shown in Figure 14.14 would be unavoidable.

With interwinding capacitance and no bias loading on L1, ports 1 and 2 can-
not be matched simultaneously as evidenced by the data in Figure 14.13. The two 
variables L2 and CS provide an insufficient degree of freedom to satisfy the four 

Figure 14.16 Voltage along the primary inductance for differing values of CX.
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equations required for a simultaneous complex match on the two ports. In an attempt 
to remedy this, two new design variables were introduced, that is, the bias reactance 
Xb, and its position along the inductor, α. Unfortunately, the equations of Appendix 
G reveal that an exact simultaneous match on the two ports cannot, in general, 
be obtained. This is due to the complex interplay of the parameters. Fortunately, a 
compromise match can usually be obtained with good characteristics that greatly 
exceed those that can be obtained without optimization of the bias feed.

A set of element values for the network that compromises the impedances on 
the two input ports with the placement of an inductive loading strategically located 
along L1 is listed in Table 14.6.

With these values, the input reflection coefficients on ports 1 and 2 are shown 
in Figure 14.17(a), and the corresponding network insertion gain is shown in Fig-
ure 14.17(b).

Corresponding input impedances are shown in Figure 14.18.
These results verify that by optimally choosing the value of the reactive loading 

of the bias feed on the primary inductor, and adjusting its location, the deleterious 
effects of interwinding capacitance can be largely compensated for. In any opti-
mization approach to the network design, therefore, it is important that these two 
parameters be incorporated as variables.

Table 14.6 Compromise Differential 
Coupled-Inductor Element Values for CX = 
4 pF

Element Values

k = 0.7 CX = 4 pF

α = 0.38 Lb = 0.27 nH

L1 = 0.6 nH L2 = 2.59 nH

CS = 11.617 pF
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Figure 14.17 Compromise differential input reflection coefficients and gain for CX = 4 pF: (a) 
input reflection coefficients, and (b) insertion gain.
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Figure 14.18 Compromise port input impedances for CX = 4 pF: (a) match on port 1, and (b) 
match on port 2.
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C H A P T E R  1 5

Lattice Splitter/Combiner

Figure 15.1 shows the common form of a schematic for a lumped-element three-
port network that has found an application for combining or splitting differential 
signals. Given the form of the schematic, the network is commonly referred to as a 
“lattice balun.” The network comprises two equal capacitors and two equal induc-
tors. The appropriate values for these elements are determined from

 L = 2R1R2 /w         and         C = 1/w 2R1R2  (15.1)

where R1 = impedance at port 1, and R2 = R3 = impedances at ports 2 and 3. All 
external impedances, for the circuit as shown, must be pure real. The real termi-
nating impedances on ports 2 and 3 must additionally be equal. Furthermore, the 
network of Figure 15.1 is only capable of splitting or combining two signals with 
equal amplitude and a phase difference of 180°. These are critical constraints that 
greatly limit widespread applicability of the circuit. However, the circuit topol-
ogy of Figure 15.1 is actually capable of satisfying much more demanding design 
requirements than is evident from the limited balun example of Figure 15.1, with 
element values determined from (15.1). This becomes clear from a detailed circuit 
analysis of the topology.

To understand how the design flexibility of a three-port network, with the topol-
ogy of Figure 15.1, may be expanded, it is instructive to first redraw the network 
of Figure 15.1 in the form shown in Figure 15.2(a). Note that the circuits in these 
two schematics are entirely equivalent. It is a little clearer now that the top arm 
has a series inductor followed by a shunt capacitor, with the elements interchanged 
in the lower arm. This still does not shed the light on the true basis for design and 
operation of the circuit. For that, we turn to Figure 15.2(b).

In Figure 15.2(b), additional shunt elements are shown, in a lighter tone, on 
both upper and lower arms. With these elements, the top arm comprises a low-
pass π-network, while the lower arm comprises a highpass π-network. Both these 

Figure 15.1 Lattice-balun splitter/combiner.
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networks can be designed to achieve a given insertion phase shift and match an 
arbitrary terminating complex impedance on one end to a second arbitrary complex 
impedance at the second end (see Chapter 11).

For the lattice balun of Figure 15.1, all external impedances are assumed to be 
real, and the impedances on ports 2 and 3 are assumed to be equal. Likewise, the 
voltages on ports 2 and 3 are taken to be equal but in anti-phase (i.e., differential). 
To function, the lowpass π-network must be designed to implement a phase lag of 
90°, whereas the lowpass π-network must be designed to implement a phase advance 
of 90°. From these requirements, it follows, from the design equations of Chapter 
11, that the elements in the top and bottom arms must be complex conjugates of 
each other. Because the first network elements, on the left, are connected to the 
same node 1 and are complex conjugates of each other, they self-cancel and thus 
can be excluded from the circuit. Hence, the circuit of Figure 15.2(b) simplifies to 
that of Figure 15.2(a).

The lattice-type balun can therefore be understood by viewing it as constituted 
from low and highpass π-networks in which the common node shunt elements of 
each are eliminated as a result of self-cancellation. In addition to minimizing the 
complexity of the network, eliminating the two elements from the circuit also has 
the additional benefit of improving performance for two reasons:

1. Resistive losses in the two elements are eliminated.
2. Reactive cancellation of the two elements is effectively achieved over infinite 

bandwidth, rather than just at the design frequency.

The lattice balun of Figure 15.1, and equivalently on Figure 15.2(a), with con-
jugate elements in the two arms, is limited to differential operation under the 
restrictive boundary conditions listed above. However, if the form is maintained, 
but more freedom is allowed in the design of the lattice elements, a much greater 
range of performance characteristics can be achieved.

Figure 15.3(a) shows a generalized form for a lattice coupler. The network series 
reactance elements jXn1, and shunt susceptance elements jBn1, are assumed inde-
pendent of one another. Despite this, the design of the generalized form can still be 
approached as a combination of lowpass and highpass π-networks, following the 
design equations of Chapter 11. Complete synthesis and analysis equations for the 
coupler are given in Section 15.1.1.

Figure 15.2 Lattice-balun splitter/combiner evolution: (a) lattice redrawn, and (b) lattice dual 
π-network equivalent.
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As with the conventional lattice balun, regardless of the complex nature of the 
boundary conditions, complex impedances, and relative power levels, the gener-
alized lattice coupler can continue to be designed such that the π-network shunt 
susceptances at the common node, jB12 and jB22, are self-complex conjugates. In 
general, therefore, no resulting shunt susceptance, shown as jB12 in Figure 15.3(b), 
is required to implement the generalized form of the lattice coupler.

The generalized three-port coupler, with four independent variables, is capa-
ble of satisfying four independent boundary conditions or equations. As a result, 
the network can be designed to couple together three arbitrary complex external 
impedances, with an arbitrary power and phase relationship between the voltages 
on ports 2 and 3.

15.1 Generalized Lattice Splitter/Combiner Design Basics

The design of a generalized lattice three-port network, as in Figure 15.3(b), can 
simply be approached by analyzing the network requirements for the topology to 
operate as a power splitter. By reciprocity, the derived network can be expected 
to operate equally well in reverse mode as a power combiner. As described above, 
the analysis approach is based on viewing the three-port configuration as arising 
from the interconnection of lowpass and highpass π-networks, as in Figure 15.3(a).

For the conventional lattice-balun network at the beginning of the chapter, the 
phase shifts in the top and bottom arms of the network were ±90°, and the top 
and bottom elements were complex conjugates of each other. This resulted in very 
simple design criteria, at the price of very limited performance capabilities. If any of 
the simplified boundary conditions for the network are perturbed, in even a minor 
way, the design of the network becomes significantly more complicated and the top 
and bottom symmetry is broken.

To illustrate how the complexity arises, suppose that all the boundary condi-
tions and performance requirements for the conventional lattice-balun of Figure 
15.1 were maintained, save for a series capacitor added to the common port 1. This 
requires that at node 1, the “virtual” shunt elements of the two π-networks have 
a net susceptance equal to that of the now complex external admittance on port 
1 to maintain an impedance match. To achieve this, the magnitudes of the phase 
shifts in the two arms of the network must now be unequal, although their phase 
difference must still be equal to 180°.

Figure 15.3 Generalized lattice coupler configuration: (a) dual π-network equivalent, and (b) 
resultant coupler elements.
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Likewise, if the terminating impedances on any of the three ports become 
complex, if an unequal power split between ports 2 and 3 is required, or a nondif-
ferential phase is required, a difference in the magnitudes of the phase shifts in the 
two arms is required. In all cases, the required network will no longer have the 
top-to-bottom symmetry of Figure 15.1.

In the following section, design equations are presented that allow the design 
of a generalized lattice three-port network, capable of coupling arbitrary complex 
loads with arbitrary amplitude and phase splitting. Despite the greatly enhanced 
performance capabilities, the network still requires only four reactive elements.

15.1.1 Generalized Lattice Splitter/Combiner Design Equations

Figure 15.4(a) shows the general form of the three-port lattice splitter of Figure 
15.3(b), with critical voltages and currents defined for operation as a splitter. Figure 
15.4(b) shows an equivalent schematic for the coupler when used as a combiner.

In contrast to the assumptions made for the conventional lattice balun of Figure 
15.1, the synthesis will be developed allowing for all external impedances Zn to be 
complex. Likewise, no assumptions are made of the relative impedances and power 
levels at the two output splitter ports, or the two input combiner ports.

The three-port generalized lattice coupler can be used both for combining or 
splitting waveforms. However, it is sufficient to synthesize the coupler network 
elements for only one scenario. Reciprocity ensures that the derived network will 
also function equally well in the reverse mode. Here, for convenience, the synthesis 
equations will be presented for the generalized lattice coupler when used as a splitter.

For the lattice splitter synthesis, the following quantities are defined

 
Z1 = R1 + jX1 = 1/ G1 + jB1( )  (15.2)

 
Z2 = R2 + jX2 = 1/ G2 + jB2( )  (15.3)

 
Z3 = R3 + jX3 = 1/ G3 + jB3( )  (15.4)

Figure 15.4 Generalized lattice splitter configurations: (a) splitter schematic, and (b) combiner 
schematic.
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Let the phase shift required between the desired outputs on ports 2 and 3 be 
ΔΦ. In contrast to the conventional, but constrained, lattice balun, the magnitude 
of the phase shifts in each of the π-networks will not be assumed equal (i.e., |ΔΦ|/2). 
Instead, the phase shifts through the upper and lower π-networks will be taken as 
ΔΦ2 and ΔΦ3, respectively, which requires

 
Δf2 − Δf3 = Δf  (15.5)

If the coupled power ratio between the outputs on ports 2 and 3 is

 
dB_power_ratio =

P2

P3

= r_dB  (15.6)

consequently, the conductance looking into the upper lowpass π-network, G2S, 
and the conductance looking into the lower highpass π-network, G3S, must satisfy

 
G2S = G1 / 1 + 10−r_dB/10( )  (15.7)

and

 
G3S = G1 / 1 + 10r_dB/10( )  (15.8)

where G1 is the source conductance on port 1 (Equation (15.2)).
An additional requirement, to ensure a match to the source on port 1, and simul-

taneously eliminate the need for either of the lattice shunt elements on port 1, is

 
B1_ top + B1_bot = B1  (15.9)

where B1_top and B1_bot are the susceptances of the leftmost elements of the top and 
bottom π-networks, respectively, and B1 is the susceptance of the source.

The key design variables for the network synthesis approach are the phase shifts 
in the two π-networks (i.e., ΔΦ2 and ΔΦ3), which are related to the desired phase 
split between the outputs on ports 2 and 3 by (15.5).

In addition to the phase shift through each of the π-networks, there is also a 
potential additional phase shift in each path due to the complex nature of the source 
and loads. To account for this, the modified net phase shifts required in the two 
paths are defined as ΔΦ′2 and ΔΦ′3, where

 
Δ ′f2 = − Δfn + tan−1 Z2 /Z1( )( )  (15.10)

and

 
Δ ′f3 = Δf − Δfn + tan−1 Z3 /Z1( )( )  (15.11)
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Here, ΔΦn is a phase-shift variable to be used in deriving the optimum element 
values for the coupler.

For network synthesis, the coupler elements will be assumed lossless, with

 Zn# = jXn#          and         Yn# = jBn#  (15.12)

In terms of the phase shifts, ΔΦ′2 and ΔΦ′3, and design frequency ω0, from 
analysis, the following relationships are derived

 

Xn1 =
R2 sin Δ ′f2( ) + X2 cos Δ ′f2( )

G2SR2

 (15.13)

 
Bn1 =

G2 R2 − X2 tan Δ ′f2( )( ) − G2SR2 sec Δ ′f2( )

R2 tan Δ ′f2( ) + X2

− B2  (15.14)

 

Xn2 = −
R3 sin Δ ′f3( ) + X3 cos Δ ′f3( )

G3SR3

 (15.15)

 
Bn2 =

G3 R3 − X3 tan Δ ′f3( )( ) − G3SR3 sec Δ ′f3( )

R3 tan Δ ′f3( ) + X3

− B3  (15.16)

Also, the net shunt susceptance on port 1 is given by

 

Yn3 =
G2S R2 − X2 tan Δ ′f2( )( ) − G2SR2 sec Δ ′f2( )

R2 tan Δ ′f2( ) + X2

+
G3S R3 − X3 tan Δ ′f3( )( ) − G3SR3 sec Δ ′f3( )

R3 tan Δ ′f3( ) + X3

− B1

 (15.17)

In certain cases, it might be desirable to include a shunt reactive element, typi-
cally a capacitor, at the common node of the network. However, in most cases, in 
order to minimize the size of the module, a shunt element is not required, in which 
case, in (15.17), Yn3 = 0.

The above equations allow all the desired element values for the coupler to 
be determined in terms of the two phase shifts ΔΦ′2 and ΔΦ′3, which are, in turn, 
dependent on the single phase-shift variable ΔΦn ((15.10) and (15.11)). The design 
challenge is thus reduced to determining the appropriate value for ΔΦn. A solu-
tion for the phase shift must be found that is consistent with satisfying Yn3 = 0 in 
(15.17). Unfortunately, in general, a closed-form expression for the appropriate value 
of ΔΦn, to set the value of (15.17) to zero, is not normally attainable. Therefore, a 
solution must typically be obtained from a numerical approach. Fortunately, this 
is typically not challenging.

Having determined the appropriate element values for the design of a general-
ized three-port lattice coupler, in order to evaluate its capabilities, expressions must 
be derived for the key electrical circuit parameters. Separate equations are required 
to characterize the network, when employed as a splitter or as a power combiner.
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For the analysis, complex impedances for the network elements are defined as 
follows, to account for resistive dissipation in the elements

 Zn# = Rn# + jXn#          and         Yn# = Gn# + jBn#  (15.18)

where Rn# denotes a resistive component and Gn# denotes a conductance component.
Equations to determine the key electrical circuit parameters for the lattice, in 

both the splitter and combiner modes, are given below.
Lattice splitter mode: key electrical parameters

 

V2

V1

=
1

1 + Zn1 Yn1 + 1/Z2( )
 (15.19)

 

V3

V1

=
1

1 + Zn2 Yn2 + 1/Z3( )
 (15.20)

 
I1 = 1/Znl + 1/Zn2( )V1 −V2 /Zn1 −V3 /Zn2  (15.21)

Lattice combiner mode: key electrical parameters

V3 =

− VS1

Z1 1 + Zn1 1/Z1 + Yn1( )( )
+

VS2

Z2 1 + Zn2 1/Z2 + Yn2( )( )

⎛

⎝⎜
⎞

⎠⎟

1

Zn1 1 + Zn1 1/Z1 + Yn1( )( )
+

1

Zn2 1 + Zn2 1/Z2 + Yn2( )( )
− 1

Zn1

− 1

Zn2

− 1

Z3

⎛

⎝⎜
⎞

⎠⎟

 (15.22)

 

V1 =
V3 + Zn1 /Z1( )VS1

1 + Zn1 1/Z1 + Yn1( )( )
 (15.23)

 

V2 =
V3 + Zn2 /Z2( )VS2

1 + Zn2 1/Z2 + Yn2( )( )
 (15.24)

15.2 Generalized Lattice Design Examples

In this section, some design examples are presented to illustrate the flexibility and 
performance capabilities of the generalized three-port lattice in various scenarios. 
Its use in both splitter and combiner modes is examined.

15.2.1 Splitter Example: Conventional Lattice-Balun

First, for a baseline, the design of a conventional lattice-balun splitter, in the con-
figuration of Figure 15.4(a), is evaluated, having performance specifications fully 
compatible with those for the conventional lattice-balun configuration of Figure 
15.1. The required electrical specifications are given in Table 15.1.
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To satisfy these specifications, applying the formulae of Section 15.1.1, the 
required schematic for the conventional lattice balun splitter, is as shown in Figure 
15.5.

The required element values are determined as listed in Table 15.2.
Using these element values, the input reflection coefficient of the splitter on port 

1 is as shown in Figure 15.6(a). A corresponding plot of the complex input imped-
ance over frequency is shown in Figure 15.6(b).

In Figure 15.7(a), the net insertion gain for the splitter is shown, together with 
the associated power split to the two output ports 2 and 3 in Figure 15.7(b). The 
insertion loss is observed to be <∼0.3 dB across the full design bandwidth. In addi-
tion, Figure 15.7(a) shows a maximum insertion loss delta of ∼0.05 dB between 
the two insertion gain plots. This indicates that the insertion loss is primarily due 
to dissipation in the lattice elements, rather than to mismatch.

Figure 15.7(b) shows a maximum coupling imbalance between the two out-
puts across the band ∼±1.5 dB. At the center band, the insertion gain to each of 
the outputs is ∼ −3.25 dB, where the 0.25-dB loss is again attributable to resistive 
dissipation in the elements.

Table 15.1 Conventional Lattice-Balun Splitter 
Specifications

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 180°

Impedance—port 1 50Ω

Impedance—port 2 8Ω

Impedance—port 3 8Ω

Inductors, QL = 60 Capacitors, QC ≈ 100

Figure 15.5 Conventional lattice-balun splitter schematic.

Table 15.2 Conventional Lattice-Balun 
Splitter Elements

Element Values

L2 = 2.410 nH C1 = 3.013 pF

C2 = 3.013 pF L1 = 2.410 nH
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Figure 15.6 Conventional lattice-balun splitter impedance: (a) input reflection coefficient, and 
(b) input impedance.
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Figure 15.7 Conventional lattice-balun splitter gains: (a) net insertion gain, and (b) output 
power split.

Lastly, to complete the characterization of the key splitter performance char-
acteristics, Figure 15.8 shows the insertion phases from port 1 to the two output 
ports 2 and 3.

The most important dependency is the relative phase shift ΔΦ° between the 
two outputs, which is observed to be extremely flat across the full bandwidth, 
with a value of ∼ −178.5°, very close to the differential target of 180°. Once more, 
the small phase deviation is attributable to resistive losses in the coupler elements.
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15.2.2 Combiner Example: Conventional Lattice-Balun

In this section, again for a baseline, the design of the lattice-balun splitter of Sec-
tion 15.2.1 is evaluated when used in the reverse mode as a power combiner. The 
equivalent combiner schematic is as shown in Figure 15.9.

Using the element values of Table 15.2, the input reflection coefficients of the 
combiner on the input ports 1 and 2, are shown in Figure 15.10(a). Corresponding 
plots of the complex input impedances over frequency are shown in Figure 15.10(b).

In Figure 15.11, the net insertion gain for the combiner is shown. The insertion 
loss is observed to be <∼0.33 dB across the full design bandwidth. Figure 15.11 
also shows a maximum insertion loss delta of ∼0.1 dB between the two insertion 
gain plots. This indicates that the insertion loss is primarily due to dissipation in 
the lattice elements, rather than to mismatch.

Overall, the conventional lattice coupler/splitter has good wide-bandwidth 
characteristics for use as both a power splitter or combiner.

15.2.3 Splitter Example: Lattice-Balun with Complex Input Impedance

In practical circuits, a series capacitor is frequently required on the input port of 
a splitter, to function as a DC block. The presence of the capacitor results in the 
source impedance, as seen by the coupler on port 1, being complex.

Figure 15.8 Conventional lattice-balun splitter insertion phase shifts.

Figure 15.9 Conventional lattice balun combiner schematic.



326 Lattice Splitter/Combiner

Figure 15.10 Conventional lattice-balun combiner impedances: (a) input reflection 
coefficients, and (b) input impedances.

In the conventional lattice-balun design, elements in the top and bottom arms are 
complex conjugates of each other. Therefore, with reference to the splitter of Figure 
15.4(a), no residual shunt susceptance Y3 is required at the input node. As such, the 
splitter presents a pure real input impedance at the port 1. If the source impedance 
on port 1 becomes complex, and the impedances on ports 2 and 3 remain equal and 
pure real, the network terminations still retain top-to-bottom symmetry. However, 
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Figure 15.11 Conventional lattice-balun combiner gain.

in order to realize the required complex conjugate match on port 1, without the 
need for the shunt susceptance Y3, in Figure 15.4(a), the complex conjugate duality 
of the two arms of the coupler can no longer be maintained.

The modified electrical specifications required for this example are given in 
Table 15.3. Note that the only difference between these specifications and those in 
Table 15.1 is the addition of the 22-pF series capacitor on port 1.

The splitter schematic to satisfy these specifications maintains the same form 
as in Figure 15.5, but with the modified element values listed in Table 15.4.

Note that these element values differ significantly from those for the conven-
tional lattice-balun splitter in Table 15.2 without the series capacitor. The lattice 
with these element values is found to implement an insertion phase shift of −94.4° 
in the top path and 85.6° in the bottom path. This differs from the insertion phase 
shifts of ±90° in the conventional lattice-balun.

Using the element values of Table 15.4, the input reflection coefficient of the 
splitter on port 1, including the series capacitor, is shown in Figure 15.12(a). A 

Table 15.3 Lattice-Balun Splitter Specifications with 
Complex Z1

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 180°

Impedance—port 1 50Ω + series 22 pF

Impedance—port 2 8Ω

Impedance—port 3 8Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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Table 15.4 Lattice-Balun Splitter 
Elements with Complex Z1

Element Values

L2 = 2.403 nH C1 = 3.841 pF

C2 = 3.022 pF L1 = 3.297 nH

Figure 15.12 Lattice-balun splitter impedance with complex Z1: (a) input reflection coefficient, 
and (b) input impedance.
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corresponding plot of the complex input impedance over frequency is shown in 
Figure 15.12(b).

In Figure 15.13(a), the net insertion gain for the splitter is shown, together with 
the associated power split to the two output ports 2 and 3 in Figure 15.13(b). The 
insertion loss is observed to be <∼0.3 dB across the full design bandwidth. In addi-
tion, Figure 15.13(a) shows a maximum insertion loss delta of ∼0.06 dB between 
the two insertion gain plots.

Figure 15.13 Lattice-balun splitter gains with complex Z1: (a) net insertion gain, and (b) output 
power split.
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Figure 15.13(b) shows a maximum coupling imbalance between the two out-
puts across the band ∼ ±1.5 dB. At the center band, the insertion gains to each of 
the outputs is ∼ −3.25 dB, where the 0.25-dB loss is again attributable to resistive 
dissipation in the elements.

Figure 15.14 shows the insertion phases from port 1 to the two output ports 
2 and 3. The relative phase shift ΔΦ° between the two outputs is observed to be 
relatively flat, varying from ∼ −178° to ∼ −179° across the band. From these plots, 
it can be seen that the modified lattice splitter, designed in accordance with the 
equations of Section 15.1.1, correctly accommodates for the case of a complex input 
impedance. The splitter performance characteristics are little perturbed from those 
for the conventional lattice-balun with real impedances of Section 15.2.1.

15.2.4 Combiner Example: Lattice-Balun with a Complex Input Impedance

In this section, the design of the lattice-balun splitter of Section 15.2.3 is evaluated 
when used in the reverse mode as a power combiner. The coupler schematic remains 
that shown in Figure 15.9.

Using the element values of Table 15.4, the input reflection coefficients of the 
combiner on the input ports 1 and 2 are shown in Figure 15.15(a). Corresponding 
plots of the complex input impedances over frequency are shown in Figure 15.15(b).

In Figure 15.16, the net insertion gain for the combiner is shown. The inser-
tion loss is observed to be <∼0.34 dB across the full design bandwidth. In addition, 
Figure 15.16 also shows a maximum insertion loss delta of ∼0.1 dB between the 
two insertion gain plots.

As with the splitter, the combiner performance characteristics are little perturbed 
from those for the conventional lattice-balun with real impedances of Section 15.2.2.

Figure 15.14 Lattice-balun splitter insertion phase shifts with complex Z1.
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Figure 15.15 Lattice-balun combiner impedances with a complex load: (a) input reflection 
coefficients, and (b) input impedances.
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Figure 15.16 Lattice-balun combiner gain with a complex load.

15.2.5 Splitter Example: Lattice-Balun with a Complex Input Impedance and 
an Unequal Power Split

In many applications, a power splitter is required to implement an unequal power 
split of the output signals. The generalized lattice configuration is capable of achiev-
ing both arbitrary power and phase splitting. In this section, the design specifications 
of Section 15.2.3 are maintained, but with the additional requirement of a desired 
output power split ratio of 3 dB. With the series capacitor still included on port 1, 
a complex conjugate match is again required on port 1 of the lattice.

The full electrical specifications for this example are given in Table 15.3. Note 
that the specifications include both the 22-pF series capacitor on port 1 and an 
output power ratio of 3 dB.

In the conventional lattice-balun splitter schematic of Figure 15.5, and in the pre-
vious examples, the top-arm shunt element is a capacitor C1, while the bottom-arm 
shunt element is an inductor L1. However, in order to meet the required unbalanced 

Table 15.5 Lattice-Balun Splitter Specifications 
with Complex Z1 and 3-dB Power Split

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 180°

Output power ratio 3 dB

Impedance—port 1 50Ω + series 22 pF

Impedance—port 2 8Ω

Impedance—port 3 8Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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power split in Table 15.3, the lattice takes a different form, following with the design 
equations of Section 15.1.1. The modified configuration in this instance is shown 
in Figure 15.17, which shows also the input series capacitor CS. For simplicity, the 
virtual elements are emitted in Figure 15.17.

The change from the previous configurations is that now the shunt elements 
in both arms are inductive. The shunt element C1 in Figure 15.4 is replaced by the 
inductor L3. The appropriate element values are listed in Table 15.6.

In this case, the lattice exhibits an insertion phase shift of −57.72° in the top 
arm and 122.28° in the bottom arm, far removed from the insertion phase shifts 
of ±90° in the conventional lattice-balun.

Using the element values of Table 15.6, the input reflection coefficient of the 
splitter on port 1, including the series capacitor, is shown in Figure 15.18(a). A cor-
responding plot of the complex input impedance over frequency is shown in Figure 
15.18(b).

Figure 15.19(a) shows the net insertion gain for the splitter. The insertion loss 
is observed to be <∼0.34 dB across the full design bandwidth. There is a maximum 
insertion loss delta of ∼0.07 dB between the two insertion gain plots, again confirm-
ing the network incurs minimal mismatch loss across the full band.

These three plots are little changed from the corresponding ones in Section 
15.2.3. This demonstrates that the modified lattice configuration is well suited to 
implementing wide power splits without significantly degrading the key performance 
characteristics of the splitter.

The associated power split between the two output ports 2 and 3 is shown in 
Figure 15.19(b). At the center of the band the network achieves almost exactly the 
3-dB power split desired. Over the full bandwidth, the power ratio between the 
two outputs varies from ∼1.5 dB to 4.8 dB.

Figure 15.20 shows the insertion phases from port 1 to the two output ports 
2 and 3. The relative phase shift ΔΦ° between the two outputs is observed to be 
slightly less flat than in the previous examples; however, it only varies from ∼−176° to 
∼−180° across the band. This is likely to be more than adequate in most applications.

Figure 15.17 Lattice-balun splitter schematic with complex Z1 and 3-dB power split.

Table 15.6 Lattice-Balun Splitter Elements with 
Complex Z1 and 3-dB Power Split

Element Values

L2 = 1.766 nH L3 = 2.776 nH

C2 = 2.912 pF L1 = 0.753 nH



334 Lattice Splitter/Combiner

Figure 15.18 Lattice-balun splitter input impedance with complex Z1 and 3-dB power split: (a) 
input reflection coefficient, and (b) input impedance.

This design example shows that the generalized modified lattice splitter archi-
tecture is very capable of accommodating a complex input impedance, simultane-
ously with a nonequal power split requirement. There is negligible degradation in 
the splitter performance characteristics from those of the conventional lattice-balun.
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Figure 15.19 Lattice-balun splitter insertion gains with complex Z1 and 3-dB power split: (a) 
net insertion gain, and (b) output power split.

15.2.6 Combiner Example: Lattice-Balun with a Complex Input Impedance 
and an Unequal Power Split

In this section, the design of the lattice-balun splitter of Section 15.2.5 is evaluated 
when used in reverse mode as a power combiner. Analogous with Section 15.2.5, 
the corresponding modified combiner schematic is shown in Figure 15.21.
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Using the element values of Table 15.6, the input reflection coefficients of the 
combiner on the input ports 1 and 2 are shown in Figure 15.22(a). Corresponding 
plots of the complex input impedances over frequency are shown in Figure 15.22(b).

In this configuration, the real impedances on the two input ports track much 
more closely than do the imaginary components. This is a reversal of the imped-
ance characteristics in Section 15.2.4 for the equal power combiner. Nonetheless, 
the magnitude of the reflection coefficients in both cases are very similar, resulting 
in no significant increase in insertion loss.

Figure 15.23 shows the net insertion gain for the combiner across the full band. 
The insertion loss is observed to be <∼0.38 dB across the full design bandwidth. 
In addition, Figure 15.23 also shows a maximum insertion loss delta of ∼0.1 dB 
between the two insertion gain plots. These characteristics are almost identical to 
those of the combiner in Section 15.2.4.

As with the splitter, the generalized lattice combiner architecture is very capable 
of accommodating a complex load impedance, together with unequal power inputs. 
There is negligible degradation in the combiner performance compared with the 
conventional lattice-balun combiner.

Figure 15.20 Lattice-balun splitter phase shifts with complex Z1 and 3-dB power split.

Figure 15.21 Lattice-balun combiner schematic with a 3-dB power split and a complex load.
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Figure 15.22 Lattice-balun combiner impedances with a 3-dB power split and a complex load: 
(a) input reflection coefficients, and (b) input impedances.
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15.2.7 Splitter Example: Lattice with Multiple Mixed Specifications

This last splitter example is given to exemplify the broad capabilities of the lattice 
coupler. In the previous examples, the lattices were all designed to affect a differ-
ential signal splitting or combining. However, the generalized lattice architecture 
is capable of splitting or combining signals with an arbitrary phase relationship. 
To illustrate, in this example, a phase split ΔΦ = 90° is specified. Thus, the lattice 
no longer performs as a balun.

For this example, a series capacitor CS is again included on the input port, 
maintaining a complex impedance on port 1. As in the previous splitter example, 
an output power split of 3 dB is also specified. However, an additional complex-
ity, in this example, is that the impedances on the two output ports are no longer 
identical. The detailed design specifications for the splitter are listed in Table 15.7.

The requirement for a quadrature phase split, in addition to the 3-dB power 
split, results in a further architectural change to the configuration of Figure 15.17. 

Figure 15.23 Lattice-balun combiner gain with a 3-dB power split and a complex load.

Table 15.7 Lattice Splitter Multiple Mixed 
Specifications

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 90Ω

Output power ratio 3 dB

Impedance—port 1 50Ω + series 22 pF

Impedance—port 2 8 + 2jΩ

Impedance—port 3 8°

Inductors, QL = 60 Capacitors, QC ≈ 100
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In order to satisfy the specifications in Table 15.7, the required lattice configuration 
takes the form shown in Figure 15.24. In this instance, both shunt element types 
are inverted relative to the conventional lattice-balun architecture of Figure 15.5.

The appropriate element values are listed in Table 15.8.
In this case, the lattice exhibits an insertion phase shift of −65.95° in the top 

arm and 38.08° in the bottom arm. Note that the insertion phase difference between 
the two arms ≠ 90° as there is an additional relative phase shift in the top arm due 
to the complex impedance on port 2.

Using the element values of Table 15.8, the input reflection coefficient of the 
splitter on port 1, including the series capacitor, is as shown in Figure 15.25(a). A 
corresponding plot of the complex input impedance over frequency is shown in 
Figure 15.25(b).

These dependencies are little changed from the previous lattice-balun splitter of 
Section 15.2.5, confirming that the lattice architecture is very capable of realizing 
the 90° phase shift with negligible impact on it input impedance.

Figure 15.26(a) shows the net insertion gain for the splitter. The insertion loss 
is observed to be <∼0.27 dB across the full design bandwidth. The maximum inser-
tion loss delta between the two insertion gain plots is again <0.07 dB, confirming 
that the network continues to exhibit only minimal mismatch loss across the full 
band. The insertion loss in this case is actually slightly less than that of the similar 
180° splitter.

The associated power split between the two output ports 2 and 3 is shown in 
Figure 15.26(b). At the center of the band, the network achieves almost exactly the 
3-dB power split desired. Over the full bandwidth, the power ratio between the two 
outputs varies from ∼2.2 dB to 3.8 dB. This is also somewhat less than the coupling 
power ratio variation for the similar 180° splitter.

Figure 15.27 shows the insertion phases from port 1 to the two output ports 
2 and 3.

Figure 15.24 Lattice splitter schematic with multiple mixed specifications.

Table 15.8 Lattice Splitter Elements with 
Multiple Mixed Specifications

Element Values

L2 = 1.694 nH L3 = 6.830 nH

C2 = 3.992 pF C3 = 9.603 nH
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Figure 15.25 Lattice splitter impedance with multiple mixed specifications: (a) input reflection 
coefficient, and (b) input impedance.
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Figure 15.26 Lattice splitter insertion gains with multiple mixed specifications: (a) net 
insertion gain, and (b) output power split.

The relative phase shift ΔΦ° between the two outputs is observed to be extremely 
flat and very close to the objective of 90°, varying from only ∼ −89.5° to ∼ −88.1° 
across the full band.

This design example demonstrates the wide capabilities of the generalized lat-
tice splitter architecture. It offers excellent performance characteristics for power-
splitting applications, regardless of source impedances, the power-splitting ratio, 
and the relative phase offset of the outputs. The splitter performs equally well under 
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Figure 15.27 Lattice splitter insertion phase shifts with multiple mixed specifications.

all scenarios. In addition, the configuration is capable of meeting the varied speci-
fications with only four components.

15.2.8 Combiner Example: Lattice with Multiple Mixed Specifications

In this section, the design of the mixed specifications lattice splitter of Section 15.2.7 
is evaluated when used in reverse mode as a power combiner. Analogous with Section 
15.2.7, the corresponding modified combiner schematic is shown in Figure 15.28.

Using the element values of Table 15.8, the input reflection coefficients of the 
combiner on the input ports 1 and 2 are shown in Figure 15.29(a). Corresponding 
plots of the complex input impedances over frequency are shown in Figure 15.29(b).

Note that the input impedance on port 1 is capacitive, consistent with a conju-
gate match to the inductive load. In this configuration, the real impedances on the 
two input ports vary across the band from ∼6.5Ω to ∼10Ω. The magnitude of the 
reflection coefficients on both ports are relatively low, resulting in no significant 
increase in insertion loss.

Figure 15.30 shows the net insertion gain for the combiner across the full band. 
The insertion loss is observed to be <∼0.29 dB across the full design bandwidth. 

Figure 15.28 Lattice combiner schematic with multiple mixed specifications.
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Figure 15.29 Lattice combiner impedances with multiple mixed specifications: (a) input 
reflection coefficients, and (b) input impedances.
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In addition, Figure 15.30 also shows a maximum insertion loss delta of <0.07 dB 
between the two insertion gain plots. This is further confirmation that the combiner 
manifests only minimal insertion loss due to mismatch across the band.

As with the splitter, the generalized lattice combiner architecture maintains 
excellent performance characteristics with widely varying specifications. As 
with the splitter scenario, only four elements are required to meet the disparate 
design requirements.

15.2.9 Limited Case for Lattice with Additional Shunt Susceptance

In the previous sections, it was shown that the generalized lattice can be designed 
to meet multiple complex boundary conditions without the need for a shunt sus-
ceptance at the common node. The question arises as to whether improved perfor-
mance for the lattice might be obtained if a finite value for the shunt element were 
allowed for in the design. The requirement for such an element can be generated by 
adjusting the relative phase shift between the two arms of the lattice according to 
(15.17). In all cases but one, the answer is that generally no significant performance 
improvement can be obtained by inclusion of such an element. To understand why, 
consider the insertion loss data shown in Figure 15.31.

Figure 15.31 is a composite of the lowpass and highpass π-network phase shifts 
in Figures 11.11(c) and 11.13(c); plotted as a function of |ΔΦ|, the net relative phase 
shift between the two arms. The assumption in the figure is that the magnitude of 
the phase shifts in each arm is equal. It can be seen that, across the range of typical 
values for |ΔΦ|, the insertion gain in each of the arms are close to the same. This 
implies that, if the phase shift in one arm was increased and the other necessarily 
decreased, no improvement in insertion gain could be expected. In consequence, 
the inclusion of a shunt element at the common node of the lattice generally offers 
no benefit.

Figure 15.30 Lattice combiner gain with multiple mixed specifications.
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Figure 15.31 Lowpass and highpass π-network insertion gains versus phase shift.

There is one exceptional case in which the inclusion of an additional shunt 
element in the lattice network is required. That is when the coupler is required to 
implement specified insertion phases in each of the two arms. Adjusting the indi-
vidual phase shifts, while retaining their desired offset, is the basis described in 
Section 15.1.1 for eliminating the undesired additional component. By specifying the 
individual phase shifts, this degree of freedom is removed and an additional shunt 
element may be required. In practice, for the composite lattice coupler of Figure 
15.4, this is seldom a useful option as elucidated below.

For the conventional differential lattice-balun of Section 15.2.2, the phase shift 
in the upper arm is ΔΦ1 = −90°, while that in the lower arm is ΔΦ2 = +90°. Suppose 
that a constraint is added requiring ΔΦ1 = −120° and ΔΦ2 = +60°. The reconfigu-
ration of the coupler required to meet these constraints is shown in Figure 15.32.

The insertion gain for the conventional differential coupler design of Figure 15.9, 
previously shown in Figure 15.11, is duplicated in Figure 15.33(a) for comparison. 
Next to it, in Figure 15.33(b), the insertion loss is shown for the modified lattice 
coupler of Figure 15.32.

There is a noticeable increase in insertion loss for the coupler architecture 
required to meet the predefined phase shifts in the two arms. The reason for this can 

Figure 15.32 Lattice-balun combiner with defined ΔΦ’s schematic with the element values 
listed in Table 15.9.
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Table 15.9 Lattice-Balun Combiner with 
Defined ΔΦ’s Elements

Element Values

L = 2.088 nH C1 = 9.630 pF

C2 = 2.671 pF C3 = 3.479 pF

C4 = 0.984 pF

Figure 15.33 Comparison of conventional and modified lattice gains: (a) conventional lattice, 
and (b) lattice with defined ΔΦ.
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be ascertained by reference to Figures 11.11(c) and 11.13(c). The former illustrates 
that increasing the insertion phase from −90° to the required −120° in the upper 
lowpass π-network is expected to result in a significant decrease in insertion gain 
for the section. On the contrary, Figure 11.13(c) shows that decreasing the insertion 
phase from +90° to the +60° in the lower highpass π-network is expected to result 
in higher insertion gain for that arm. However, this does not adequately compen-
sate for the decreased insertion gain in the lowpass arm. In general, the greater the 
required difference in the magnitude of the phase offset in the two arms, the greater 
the insertion loss penalty.

If a significant difference in the magnitude of the phase offset between the two 
arms is required, the six-element lattice described in the following section is gener-
ally the preferred option.

15.3 Development of Six-Element Lattice Coupler

In the previous sections, it was described how two complementary π-networks could 
be combined to achieve a low-loss, three-port splitter/combiner architecture, typi-
cally referred to as a lattice. In combining the two networks, the two common-node 
elements can generally be eliminated. Thus, the overall configuration comprises only 
four elements, rather than six elements of the individual π-networks (Figure 15.2).

The question arises as to whether a lattice coupler with improved characteristics 
might be constructed from a combination of two T-networks, such as described 
in Section 11.6, rather than the two π-networks. An obvious disadvantage is that 
since a T-network comprises series elements at both ends, the opportunity for two 
of the elements to mutually cancel does not arise. Therefore, a lattice comprising 
two T-networks will necessarily require six elements. However, it is the focus of 
this section to demonstrate the many advantages that can accrue from the more 
complex dual T-based coupler network.

The four-element lattice coupler was constructed from a combination of two 
π-networks having conjugate shunt elements at the combining node. Schematics 
for the synthesis models used to design such a splitter and combiner are shown in 
Figures 15.2 and 15.3. As the elements at the combining node are self-conjugate, 
their physical representations are not required in the resulting coupler. Despite the 
absence of these virtual elements in the physical coupler configuration, their pres-
ence in the models used for synthesis significantly aids in the development of the 
design equations for the coupler.

Seeking to profit from this approach, a similar pair of virtual shunt elements is 
included in the synthesis models proposed for a dual T-based coupler. The synthesis 
models for the T-based couplers are shown in Figure 15.34. All components of the 
couplers are ideally pure reactive.

As with the π-based coupler designs, the shunt susceptive elements jBV and −jBV 
will not be required in the physical implementation and are only present to aid in 
the synthesis. The splitter and combiner couplers can operate reciprocally, given 
the same boundary conditions; thus, without loss of generality, it is sufficient to 
develop the design equations for only one. We shall consider the design approach 
for the combiner coupler schematic shown in Figure 15.34(b).
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To develop a generally applicable synthesis approach for the six-element cou-
pler, as in Section 15.1.1, the power at the two paired input or output ports will be 
assumed unequal, having a power ratio defined by

 
dBR = 10log P1 /P2( )  (15.25)

If the external load impedance at the combining node, port 3, is

 ZL = RL + jXL  (15.26)

then the corresponding external load admittance at port 3 is

 YL = 1/ZL = GL + jBL
 (15.27)

where GL is the load conductance and BL is the load susceptance.
It follows that the effective loading conductance on the upper track 1, at the 

combining node, must be

 
G1L =

GL

1 + 10−dBR /10
 (15.28)

and the effective loading conductance on the lower track 2, at the combining node, 
must be

 
G2L =

GL

1 + 10dBR /10  (15.29)

The most straightforward approach to synthesizing the appropriate values for 
the T-network elements would be to set the loading admittances on the two tracks 
at the combining node as

 Y1L = G1L + jBL /2  (15.30)

and

 Y2L = G2L + jBL /2  (15.31)

Figure 15.34 Six-element lattice configurations: (a) splitter schematic, and (b) combiner 
schematic.
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Referring to Figure 15.34(b), these equalities imply BV = 0; thus, the virtual ele-
ments are excluded from the network. A valid configuration for the coupler would 
be obtained using these equalities, but, in general, the resulting network would be 
far from optimal in performance. To implement a coupler with more optimal per-
formance characteristics, finite values for BV must be evaluated.

In the case of the π-based lattice couplers, there was a unique value required 
for the virtual shunt susceptances in order to satisfy the boundary conditions. In 
such couplers, there were only three variables (i.e., elements) in each of the lattice 
arms of the conceptual models, as in Figure 15.34. For each arm, there are three 
boundary conditions to meet, namely, the real and imaginary parts of the imped-
ance equation, plus the insertion phase through the network. Thus, only a unique 
solution is possible.

For the dual T-based couplers, each of the arms has the same three boundary 
conditions as with the π-based couplers. However, there are now four elements 
in each arm. Thus, the synthesis equations for the elements are underdetermined, 
implying an infinite set of solutions. These solutions can be obtained as a function 
of the virtual susceptance value BV. By scanning through a range of values for BV, a 
corresponding set of performance characteristics for the coupler may be obtained. 
The solution set that best optimizes one or more key performance parameters, such 
as insertion gain, input/output impedance, power balance, and maximum component 
value, can then be selected. In most cases, for synthesis, it is sufficient to assume 
that the magnitudes of the phase shifts through each arm are the same, that is,

 
Δf1 = Δf2  (15.32)

although this is not required.
The T-based coupler synthesis equations are derived following the design equa-

tions for T-networks given in Section 11.5.
Equations are given in terms of the following variables

 Zn = Rn + jXn Yn = 1/Zn = Gn + jBn (15.33)

 ZL = RL + jXL YL = 1/ZL = GL + jBL  (15.34)

 YnL = GnL + jBnL ZnL = 1/YnL = RnL + jXnL  (15.35)

 
G1L =

GL

1 + 10−dBR /10
B1L = BV  (15.36)

 
G2L =

GL

1 + 10+dBR /10
B2L = −BV + BL  (15.37)

Elemental parameters are determined by

 

Bn1 =
BnBnL −GnGnL( )sinΔΦn − BnGnL +GnBnL( )cosΔΦn

GnGnL

 (15.38)
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Xn1 =

1 − Rn /RnL − Bn1Rn( )
2( )

Bn1 − Xn

 (15.39)

 
Xn2 =

1 − RnL /Rn − Bn1RnL( )
2( )

Bn1 − XnL

 (15.40)

where n = 1 for the top arm and n = 2 for the bottom arm.
To compare the performance of the six-element lattice to the four-element lattice 

examined in detail earlier in the chapter, consider the target specifications for the 
four-element lattice coupler in Section 15.2.2, which are duplicated in Table 15.10.

The insertion loss and input impedances for the four-element combiner from Fig-
ure 15.11 and Figure 15.10(b) are repeated for comparison purposes in Figure 15.35.

The optimal configuration of the six-element lattice to meet the specifications 
of Table 15.12, in terms of maximum insertion gain, is shown in Figure 15.36.

The equivalent performance characteristics to those for the four-element lattice 
balun in Figure 15.35, are shown in Figure 15.37.

Both plots for the dual T-based combiner show noticeably improved character-
istics over those for the four-element lattice combiner in Figure 15.35.

In the previous section, it was shown that imposing an offset in the magnitude of 
the insertion phases in the two arms of a four-element lattice results in an increased 
insertion loss for the coupler. This is shown in Figure 15.33. The increased loss was 
attributed to the steep drop-off in insertion gain of a π-network when the magnitude 
of the insertion phase moves outside the range

 ~ 45° ≤ Δf ≤ 90°  (15.41)

T-networks have very similar insertion gain versus insertion phase characteris-
tics to the π-networks, as can be seen from Figures 11.15(c) and 11.17(c). It might 
therefore be expected that the T-based lattice couplers would likewise suffer from 
increased insertion loss for insertion phases outside the range listed at the end of 
the previous paragraph. Fortuitously, this turns out not to be the case. The rea-
son for this is that, rather than regarding each of the arms as comprising a single 

Table 15.10 Target Six-Element Lattice 
Combiner Specifications

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Phase shift ΔΦ = 180°

Impedance—port 1 8Ω

Impedance—port 2 8Ω

Impedance—port 3 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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Figure 15.35 Four-element lattice-balun combiner characteristics: (a) insertion gain, and (b) 
input impedances.

Figure 15.36 Six-element lattice-balun combiner configuration with the element values listed 
in Table 15.11.
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Figure 15.37 Six-element lattice-balun combiner characteristics: (a) insertion gain, and (b) 
input impedances.

Table 15.11 Six-Element Lattice Balun Elements

Element Values

L1 = 0.793 nH L2 = 2.411 nH

L3 = 2.411 nH C1 = 3.013 pF

C2 = 9.157 pF C3 = 3.013 pF
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T-network, they should instead be viewed as effectively comprising four-element 
networks, as shown in Figure 15.34. A four-element network does not have the same 
limitations as a three-element T-network. In fact, an impedance matching network 
with minimal phase shift and low loss can readily be implemented using only four 
elements. This is examined in detail in Section 5.1 of Volume 2 of this series. As a 
result, the six-element T-based coupler is particularly advantageous compared to 
the four-element configuration.

To compare the performance of the two networks, when used as coupler, if ΔΦ 
denotes the difference in phase between the two input waveforms, that is,

 ΔΦ = f1 − f2  (15.42)

then the insertion phase shifts in the upper and lower arms of the coupler, Δϕ1 and 
Δϕ2, respectively, must satisfy the relationship

 ΔΦ = Δf2 − Δf1  (15.43)

All the couplers are designed to meet the following specifications.
The alternate coupler configurations are to be compared for two values of rela-

tive input phase offset ΔΦ, namely, 45° and 90°.
Figures 15.38 to 15.40 show alternative combiner architectures and element 

values for three network types designed to meet the specifications in Table 15.12. 
The first configurations, shown in Figure 15.38, are for four-element lattice designs. 
The second configurations, shown in Figure 15.39, are for six-element lattice designs 
optimized for insertion loss in the manner described earlier in this section. The third 
configurations, shown in Figure 15.40, are also for six-element lattice designs, but 
with the simplifying assumption that each of the arms is terminated in a pure real 
conductance at the common node. The purpose of these designs is to illustrate the 
enhanced performance characteristics of the six-element lattices, resulting from the 
optimization process.

In Figure 15.41, insertion gains for the three network types are shown for three 
relative input phase differences ΔΦ, as defined by (15.42). For all plots, the mag-
nitudes of the phase shifts in the two arms of the combiner were assumed to be 
equal. For example, for ΔΦ = 45°, the assigned phase shift in the upper arm of the 
network Δϕ1 = −22.5°, while that in the lower arm Δϕ2 = +22.5°.

Table 15.12 Three-Port Combiner Networks 
Design Specifications

Design Specifications

flo 
1,710 MHz

fhi 
2,025 MHz

Impedance—port 1 8Ω

Impedance—port 2 8Ω

Impedance—port 3 50Ω

Inductors, QL = 60 Capacitors, QC ≈ 100
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Figure 15.38 Four-element lattice combiner architectures and element values.

Figure 15.39 Optimized T-network combiner architectures and element values.
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In Figure 15.41(a), for ΔΦ = 45°, the optimized six-element lattice combiner is 
seen to exhibit significantly higher gain across the passband than the alternative 
configurations. Its gain is much higher than the four-element lattice, particularly 
at the band edges, due to the broader bandwidth characteristics of the virtual four-
element networks in each arm. The insertion gain plot for the nonoptimized dual 
T-configuration (T0 Elems), designed assuming real terminating admittances on 
both arms at the common node, is significantly inferior and more dispersive than 
the other two.

In Figure 15.41(b), for ΔΦ = 90°, the insertion gain plots for the four-element 
lattice combiner, and the optimized six-element lattice combiner are near identical. 
The improved characteristics of the four-element lattice, compared to ΔΦ = 45°, 
are due to the magnitude of the insertion phases in each of the π-networks being 
within the range specified by (15.41). Hence, for a relative input phase offset of 
|ΔΦ| = ∼90°, the optimized six-element lattice offers little advantage over the four-
element configuration. Again, the nonoptimized dual T-configuration (T0 Elems) 
response is significantly inferior.

In Figure 15.41(c), for ΔΦ = 180°, the optimized six-element lattice combiner 
has higher insertion gain than that of the four-element lattice combiner. However, 
the gain advantage is less than it was for ΔΦ = 90°. As in the previous plots, the 
nonoptimized dual T-configuration (T0 Elems) has a greatly inferior gain response.

Given that the six-element lattice couplers are a composite of two four-element 
phase shift networks, they have considerably more design flexibility than do the 

Figure 15.40 T-networks combiner with real common node architectures and element values.
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Figure 15.41 Combiner network gain variation and dependence on insertion phase delta: (a) 
ΔΦ = 45°, (b) ΔΦ = 90°, and (c) ΔΦ = 180°.

conventional four-element lattice couplers. With the four-element designs, to accom-
modate a complex termination at the common node and avoid the need for an addi-
tional component, a trade-off must be made in the relative insertion phases through 
the two arms. With the six-element designs, this is unnecessary. The elements for 
the two arms are simply designed according to (15.38) to (15.40) for a given value 
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of the virtual susceptance BV. The optimum values are determined that are associ-
ated with the best performance characteristics for the coupler.

In Section 15.2.9, the design of a four-element lattice coupler was considered, 
with the requirement for unequal magnitudes of insertion phase in the two arms. 
This required the addition of a fifth element to the network and, in addition, there 
was an increase in insertion loss. As explained earlier in this section, the further 
either of the insertion phases falls outside the range from (15.41), the higher the 
expected insertion loss. However, this is not an issue with the six-element lattice.

For the optimized six-element lattice combiner, the insertion phase shifts in the 
upper and lower arms of the coupler, Δϕ1 and Δϕ2, respectively, are solely constrained 
by (15.43). This allows for great flexibility in assigning an appropriate combination 
of the two phase shifts. In choosing the latter, it is important to determine how the 
overall coupler characteristics are affected by the choice.

Figure 15.42 shows the coupler gain dependencies versus upper-arm phase shift 
Δϕ1 for three relative input phase differences ΔΦ = 45°, 90°, and 180°.

The fine structure in these plots is attributable to two factors: (1) the discrete 
nature of the optimization algorithm, and (2) discontinuities arising from circuit 
elements changing in type from inductive to capacitive, or vice versa.

For ΔΦ = 45° and 90°, it can be seen, from Figures 15.42(a, b), that the insertion 
gain plots are remarkedly unchanged for all values of ΔΦ. Essentially, the insertion 
gain value is near constant ∼ −0.3 dB, irrespective of the chosen value Δϕ1 for the 
insertion phase shift in the upper arm. For the case ΔΦ = 180°, the coupler gain is 
a maximum for Δϕ1 = −90° and Δϕ2 = +90°. As the phase shifts move away from 
this point, the coupler gain decreases.

Figure 15.41 (Continued)
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Figure 15.42 Six-element coupler gain dependencies versus upper-arm phase shift ΔΦ1: (a) ΔΦ 
= 45°, (b) ΔΦ = 90°, and (c) ΔΦ= 180°.

For the case in which the magnitudes of the phase shifts in the two arms are close 
to equal and ΔΦ = 90°, Figure 15.41(b) shows that there is negligible gain advantage 
to employing an optimized six-element coupler compared to using a conventional 
four-element design. Furthermore, Figure 15.42(b) shows the gain of the optimized 
six-element coupler phase shift is essentially independent of the value chosen for the 
upper arm insertion phase value Δϕ1. Thus, an optimized six-element coupler design 
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with Δϕ1 = −90° and Δϕ2 = 0°, or Δϕ1 = 0° and Δϕ2 = +90°, could be expected to 
have near the same gain characteristic as the four-element coupler. Given that there 
is no expected gain advantage (or disadvantage), there are other possible advantages 
to choosing these phase combinations. Three potential advantages are:

1. Real parts of input impedances are less dispersive across the passband.
2. The coupler can be used to implement an efficient switchable dual power-

state amplifier architecture (i.e., with high and low power output levels).
3. The coupler can be used to implement a Doherty-type amplifier.

The latter two advantages are examined fully in Chapter 4 of Volume 2 of this 
series. To illustrate the first point, Figure 15.43 shows the gain and input imped-
ances for an optimized six-element coupler for ΔΦ = 90° and |Δϕ1| = |Δϕ2| = 45°.

Figure 15.44 shows the gain and input impedances for an optimized six-element 
coupler for ΔΦ = 90°, Δϕ1 = −90°, and Δϕ2 = 0°.

Figure 15.42 (Continued)
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Figure 15.43 Six-element lattice configuration with ΔΦ = 90°, |ΔΦ1|= |ΔΦ2| = 45°: (a) gain, and 
(b) input impedances.
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Figure 15.44 Six-element lattice configuration with ΔΦ = 90°, ΔΦ1 = −90°, ΔΦ2 = 0°: (a) gain, 
and (b) input impedances.
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A P P E N D I X  A

Miscellaneous Generic [M] = [ABCD] 
Network Parameters

In the expressions below, matrix coefficients have been expanded, where possible, 
to share common expressions in order to minimize computation.

 

M[ ] =
1 + Y2Z1 Z1 + Z2 1 + Y2Z1( )

Y2 + Y1 1 + Y2Z1( ) 1 + Y2Z2 + Y1 Z1 + Z2 1 + Y2Z1( )( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (A.1)

 

M[ ] =
1 + Y2Z2 + Z1 Y1 + Y2 1 + Y1Z2( )( ) Z2 + Z1 1 + Y1Z2( )

Y1 + Y2 1 + Y1Z2( ) 1 + Y1Z2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (A.2)

M[ ] =
1 + Y2Z1 + Y3 Z1 + Z2 1 + Y2Z1( )( ) Z1 + Z2 1 + Y2Z1( )

Y2 + Y1 1 + Y2Z1( ) + Y3 1 + Y2Z2 + Y1 Z1 + Z2 1 + Y2Z1( )( )( ) 1 + Y2Z2 + Y1 Z1 + Z2 1 + Y2Z1( )( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

 (A.3)

Figure A.1 Four-element topology.

Figure A.2 Alternate four-element topology.

Figure A.3 Five-element topology.
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M[ ] =
1 + Y2Z2 + Z1 Y2 + Y1 1 + Y2Z2( )( ) Z2 + Z3 1 + Y2Z2( ) + Z1 1 + Y1Z2 + Z3 Y2 + Y1 1 + Y2Z2( )( )( )

Y2 + Y1 1 + Y2Z2( ) 1 + Y1Z2 + Z3 Y2 + Y1 1 + Y2Z2( )( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

 (A.4)

 

M[ ] =
A B

C D

⎡

⎣
⎢

⎤

⎦
⎥

 

with

 

A = 1 + Y2Z2( ) 1 + Y3Z3( ) + Y3Z2 + CZ1

B = Z2 + Z3 1 + Y2Z2( ) + DZ1

C = Y2 + Y1 1 + Y2Z2( ) 1 + Y3Z3( ) + Y3 1 + Y1Z2 + Y2Z3( )

D = Y1Z3 + 1 + Y1Z2( ) 1 + Y2Z3( )

 (A.5)

 

M[ ] =
A B

C D

⎡

⎣
⎢

⎤

⎦
⎥

 

where

 

A = 1 + Y2Z1 + Y3 Z1 + Z2 1 + Y2Z1( )( )

B = AZ3 + Z1 + Z2 1 + Y2Z1( )

C = Y2 + Y1 1 + Y2Z1( ) + Y3 1 + Y2Z2 + Y1 Z1 + Z2 1 + Y2Z1( )( )( )
D = CZ3 + 1 + Y2Z2 + Y1 Z1 + Z2 1 + Y2Z1( )( )

 (A.6)

Figure A.4 Alternate five-element topology.

Figure A.5 Six-element topology.

Figure A.6 Alternate six-element topology.
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With [ABCD] parameters from previous six element analysis

 

M[ ] =
A + BY4 B

C + DY4 D

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (A.7)

M[ ] =
A + CZ2 + Z1 C + Y A + CZ2( )( ) B + DZ2 + Z1 D + Y B + DZ2( )( )

C + Y A + CZ2( ) D + Y B + DZ2( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (A.8)

 

M[ ] =
A 1 + YZ1( ) + BY AZ1 + B + Z2 A 1 + YZ1( ) + BY( )

C 1 + YZ1( ) + DY CZ1 + D + Z2 C 1 + YZ1( ) + DY( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (A.9)

 

M[ ] =
′A ′B
′C ′D

⎡

⎣
⎢

⎤

⎦
⎥

 

Figure A.7 Seven-element topology.

Figure A.8 Network with an input T-match.

Figure A.9 Network with an output T-match.

Figure A.10 Network with a two-element input match and output T-match.
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where

 

′A = A 1 + Y2Z2( ) + BY2 + Z1 C 1 + Y2Z2( ) + DY2( )

′B = AZ2 + B + Z1 CZ2 + D( )

+ Z3 A 1 + Y2Z2( ) + BY2 + Z1 C 1 + Y2Z2( ) + DY2( )( )
′C = Y1 A 1 + Y2Z2( ) + BY2( ) + 1 + Y1Z1( ) C 1 + Y2Z2( ) + DY2( )

′D = Y1 AZ2 + B( ) + 1 + Y1Z1( ) CZ2 + D( )

+ Z3 Y1 A 1 + Y2Z2( ) + BY2( ) + 1 + Y1Z1( ) C 1 + Y2Z2( ) + DY2( )( )

 (A.10)

 

M[ ] =
′A ′B
′C ′D

⎡

⎣
⎢

⎤

⎦
⎥

 

where

  

′A = A + CZ1 + Y2 AZ2 + B + Z1 CZ2 + D( )( )

′B = AZ2 + B + Z1 CZ2 + D( )

′C = AY1 + C 1 + Y1Z1( ) + Y2 CZ2 + D + Y1 AZ2 + B + Z1 CZ2 + D( )( )( )
′D = CZ2 + D + Y1 AZ2 + B + Z1 CZ2 + D( )( )

 (A.11)

 

M[ ] =
A + BY1 + Y2 AZ + B 1 + Y1Z( )( ) AZ + B 1 + Y1Z( )

C + DY1 + Y2 CZ + D 1 + Y1Z( )( ) CZ + D 1 + Y1Z( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (A.12)

Figure A.11 Network with a two-element input and output matches.

Figure A.12 Network with an output π-match.

Figure A.13 Network with input and output π-matches.
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M[ ] =
1 + Y2Z1 Z1

Y1 + Y2 1 + Y1Z1( ) 1 + Y1Z1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⋅
A + BY3 + Y4 AZ2 + B 1 + Y3Z2( )( ) AZ2 + B 1 + Y3Z2( )

C + DY3 + Y4 CZ2 + D 1 + Y3Z2( )( ) CZ2 + D 1 + Y3Z2( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (A.13)

or

M[ ] =
A 1 + Y2Z1( ) + CZ1 B 1 + Y2Z1( ) + DZ1

C + AY2 + Y1 A 1 + Y2Z1( ) + CZ1( ) D + BY2 + Y1 B 1 + Y2Z1( ) + DZ1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⋅
1 + Y4Z2 Z2

Y3 + Y4 1 + Y3Z2( ) 1 + Y3Z2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (A.14)

 

M[ ] =
A B

C D

⎡

⎣
⎢

⎤

⎦
⎥

 

where

 

A = A2 A1 + B1Y2( ) + B1C2

B = B2 A1 + B1Y2( ) + B1D2

C = A2 C1 + D1Y2( ) + C2D1 + Y1 A2 A1 + B1Y2( ) + B1C2( )

D = B2 C1 + D1Y2( ) + D1D2 + Y1 B2 A1 + B1Y2( ) + B1D2( )

 (A.15)

 

M[ ] =
A B

C D

⎡

⎣
⎢

⎤

⎦
⎥

 

where

Figure A.14 Two networks with shunt elements.

Figure A.15 Alternate two networks with shunt elements.
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A = A2 A1 + B1Y2( ) + B1C2 + B2 A1 + B1Y2( ) + B1D2( )Y3

B = B2 A1 + B1Y2( ) + B1D2

C = A2 C1 + D1Y2( ) + C2D1 + A2 A1 + B1Y2( ) + B1C2( )Y1

+ B2 C1 + D1Y2( ) + D1D2 + Y1 B2 A1 + B1Y2( ) + B1D2( )( )Y3

D = B2 C1 + D1Y2( ) + D1D2 + B2 A1 + B1Y2( ) + B1D2( )Y1

 (A.16)



369

A P P E N D I X  B

Conversion Formulae Between Two-Port 
Network Parameters

Two-port network parametric, current, and voltage definitions are the following.
For S-parameters, the normalization impedances on ports 1 and 2 are Ẕ1 and 

Ẕ2, respectively.

From two-port [ABCD] parameters:

⇒ S

 
S11 =

A + B/Z2 − CZ1 − DZ1 /Z2

A + B/Z2 + CZ1 + DZ1 /Z2
 (B.1)

 
S12 =

2 AD − BC( ) Z1 /Z2( )
A + B/Z2 + CZ1 + DZ1 /Z2

 (B.2)

 
S21 =

2

A + B/Z2 + CZ1 + DZ1 /Z2

 (B.3)

 
S22 =

−A + B/Z2 − CZ1 + DZ1 /Z2

A + B/Z2 + CZ1 + DZ1 /Z2

 (B.4)

Figure B.1 Electrical parameters for network characterization: (a) matrix parameters, (b) 
scattering parameters, (c) admittance parameters, and (d) impedance parameters.
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⇒ Y

 Y11 = D/B  (B.5)

 Y12 = C − AD/B  (B.6)

 Y21 = −1/B  (B.7)

 Y22 = A/B  (B.8)

⇒ Z

 Z11 = A/C  (B.9)

 Z12 = AD/C − B  (B.10)

 Z21 = 1/C  (B.11)

 Z22 = D/C  (B.12)

From two-port S-parameters:

⇒ [ABCD]

 
A =

1 + S11( ) 1 + S22( ) + S12S21

2S21

 (B.13)

 
B =

1 + S11( ) 1 + S22( ) − S12S21

2S21

Z2  (B.14)

 
C =

1 − S11( ) 1 − S22( ) − S12S21

2S21Z1

 (B.15)

 
D =

1 − S11( ) 1 + S22( ) + S12S21

2S21

Z2

Z1

 (B.16)

⇒ Y

 

Y11 =
1 − S11( ) 1 + S22( ) + S12S21

1 + S11( ) 1 + S22( ) − S12S21( )Z1

 (B.17)

 

Y12 =
−2S12

1 + S11( ) 1 + S22( ) − S12S21( )Z1

 (B.18)



Conversion Formulae Between Two-Port Network Parameters 371

 

Y21 =
−2S21

1 + S11( ) 1 + S22( ) − S12S21( )Z2
 (B.19)

 

Y22 =
1 + S11( ) 1 − S22( ) + S12S21

1 + S11( ) 1 + S22( ) − S12S21( )Z2

 (B.20)

⇒ Z

 
Z11 =

1 + S11( ) 1 − S22( ) + S12S21

1 − S11( ) 1 − S22( ) − S12S21

Z1  (B.21)

 
Z12 =

2S12

1 − S11( ) 1 − S22( ) − S12S21

Z2  (B.22)

 
Z21 =

2S21

1 − S11( ) 1 − S22( ) − S12S21

Z1  (B.23)

 
Z22 =

1 − S11( ) 1 + S22( ) + S12S21

1 − S11( ) 1 − S22( ) − S12S21

Z2  (B.24)

From two-port Y-parameters:

⇒ [ABCD]

 A = −Y22 /Y21  (B.25)

 B = −1/Y21  (B.26)

 C = Y12 − Y11Y22 /Y21  (B.27)

 D = −Y11 /Y21  (B.28)

⇒ S

 
S11 =

1/Z1 − Y11( ) 1/Z2 − Y22( ) + Y12Y21

1/Z1 + Y11( ) 1/Z2 − Y22( ) − Y12Y21

 (B.29)

 
S12 =

− 2/Z2( )Y12

1/Z1 + Y11( ) Y22 + 1/Z2( ) − Y12Y21

 (B.30)

 
S21 =

− 2/Z1( )Y21

1/Z1 + Y11( ) 1/Z2 + Y22( ) − Y12Y21

 (B.31)
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S22 =

1/Z1 + Y11( ) 1/Z2 − Y22( ) + Y12Y21

1/Z1 + Y11( ) Y22 + 1/Z2( ) − Y12Y21
 (B.32)

⇒ Z

 
Z11 =

Y22

Y11Y22 − Y12Y21

 (B.33)

 
Z12 =

Y12

Y11Y22 − Y12Y21

 (B.34)

 
Z21 =

Y21

Y11Y22 − Y12Y21  (B.35)

 
Z22 =

Y11

Y11Y22 − Y12Y21

 (B.36)

From two-port Z-parameters:

⇒ [ABCD]

 A = Z11 /Z21  (B.37)

 B = Z11Z22 /Z21 − Z12  (B.38)

 C = 1/Z21  (B.39)

 D = −Z22 /Z21  (B.40)

⇒ S

 
S11 =

Z11 − Z1( ) Z22 + Z2( ) − Z12Z21

Z11 + Z1( ) Z22 + Z2( ) − Z12Z21

 (B.41)

 
S12 =

2Z12Z1

Z11 + Z1( ) Z22 + Z2( ) − Z12Z21

 (B.42)

 
S21 =

2Z21Z2

Z11 + Z1( ) Z22 + Z2( ) − Z12Z21
 (B.43)

 
S22 =

Z11 + Z1( ) Z22 − Z2( ) − Z12Z21

Z11 + Z1( ) Z22 + Z2( ) − Z12Z21

 (B.44)
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⇒ Y

 
Y11 =

Z22

Z11Z22 − Z12Z21

 (B.45)

 
Y12 =

Z12

Z11Z22 − Z12Z21

 (B.46)

 
Y21 =

Z21

Z11Z22 − Z12Z21

 (B.47)

 
Y22 =

Z11

Z11Z22 − Z12Z21

 (B.48)





375

A P P E N D I X  C

Conversion of Four-Port S-Parameters to 
Y-Parameters

For S-parameters:

 

b1

b2

b3

b4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

S11 S12 S13 S14

S12 S22 S23 S13

S13 S23 S22 S12

S14 S13 S12 S11

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅

a1

a2

a3

a4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (C.1)

with Z0 = characteristic impedance.
For Y-parameters:

 

I1

I2

I3

I4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅

V1

V2

V3

V4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (C.2)

in terms of:

E1 =
S14S23 − S13S24( )S32 + 1 + S22( ) S13S34 − 1 + S33( )S14( ) + S12 1 + S33( )S24 − S23S34( )
S13S24 − S14S23( )S42 + 1 + S22( ) S14S43 − 1 + S44( )S13( ) + S12 1 + S44( )S23 − S24S43( )

 (C.3)

E2 =
S13S24 − S14S23( )S31 + 1 + S11( ) S23S34 − 1 + S33( )S24( ) + S21 1 + S33( )S14 − S13S34( )
S14S23 − S13S24( )S41 + 1 + S11( ) S24S43 − 1 + S44( )S23( ) + S21 1 + S44( )S13 − S14S43( )

 (C.4)

Figure C.1 Definition of S- and Y-matrix parameters.
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E3 =
S32S41 − S31S42( )S14 + 1 + S44( ) S12S31 − 1 + S11( )S32( ) + S34 1 + S11( )S42 − S12S41( )
S31S42 − S32S41( )S24 + 1 + S44( ) S21S32 − 1 + S22( )S31( ) + S34 1 + S22( )S41 − S21S42( )

 (C.5)

E4 =
S31S42 − S32S41( )S13 + 1 + S33( ) S12S41 − 1 + S11( )S42( ) + S43 1 + S11( )S32 − S12S31( )
S32S41 − S31S42( )S23 + 1 + S33( ) S21S42 − 1 + S22( )S41( ) + S43 1 + S22( )S31 − S21S32( )

 (C.6)

we have:

 
Y11 = − 1

Z0

+
Y13 S23S34 − 1 + S33( )S24( ) + Y14 1 + S44( )S23 − S24S43( )

S13S24 − S14S23

 (C.7)

 
Y12 =

Y13 1 + S33( )S14 − S13S34( ) + Y14 S14S43 − 1 + S44( )S13( )
S13S24 − S14S23

 (C.8)

Y13 =
2 S13S24 − S14S23( ) /Z0

S13S24 − S14S23( )S31 + 1 + S11( ) S23S34 − 1 + S33( )S24( ) + S21 1 + S33( )S14 − S13S34( )

+E1 S13S24 − S14S23( )S41 + 1 + S11( ) 1 + S44( )S23 − S24S43( ) + S21 S14S43 − 1 + S44( )S13( )( )
 

 (C.9)

Y14 = E1Y13

 
Y21 =

Y23 1 + S33( )S24 − S23S34( ) + Y24 S24S43 − 1 + S44( )S23( )
S14S23 − S13S24

 (C.10)

 
Y22 = − 1

Z0

+
Y23 S13S34 − 1 + S33( )S14( ) + Y24 1 + S44( )S13 − S14S43( )

S14S23 − S13S24
 (C.11)

Y23 =
2 S14S23 − S13S24( ) /Z0

S14S23 − S13S24( )S32 + 1 + S22( ) S13S34 − 1 + S33( )S14( ) + S12 1 + S33( )S24 − S23S34( )

+E2 S14S23 − S13S24( )S42 + 1 + S22( ) 1 + S44( )S13 − S14S43( ) + S12 S24S43 − 1 + S44( )S23( )( )
 

 (C.12)

Y24 = E2Y23

Y31 =
2 S31S42 − S32S41( ) /Z0

S31S42 − S32S41( )S13 + 1 + S33( ) S12S41 − 1 + S11( )S42( ) + S43 1 + S11( )S32 − S12S31( )

+E3 S31S42 − S32S41( )S23 + 1 + S33( ) 1 + S22( )S41 − S21S42( ) + S43 S21S32 − 1 + S22( )S31( )( )
 

 (C.13)
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Y32 = E3Y31

 
Y33 = − 1

Z0

+
Y31 S12S41 − 1 + S11( )S42( ) + Y32 1 + S22( )S41 − S21S42( )

S31S42 − S32S41

 (C.14)

 
Y34 =

Y31 1 + S11( )S32 − S12S31( ) + Y32 S21S32 − 1 + S22( )S31( )
S31S42 − S32S41

 (C.15)

Y41 =
2 S32S41 − S31S42( ) /Z0

S32S41 − S31S42( )S14 + 1 + S44( ) S12S31 − 1 + S11( )S32( ) + S34 1 + S11( )S42 − S12S41( )

+E4 S32S41 − S31S42( )S24 + 1 + S44( ) 1 + S22( )S31 − S21S32( ) + S34 S21S42 − 1 + S22( )S41( )( )
 

 (C.16)

 Y42 = E4Y41  (C.17)

 
Y43 =

Y41 1 + S11( )S42 − S12S41( ) + Y42 S21S42 − 1 + S22( )S41( )
S32S41 − S31S42

 (C.18)

 
Y44 = − 1

Z0

+
Y41 S12S31 − 1 + S11( )S32( ) + Y42 1 + S22( )S31 − S21S32( )

S32S41 − S31S42

 (C.19)
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A P P E N D I X  D

Four-Port Scattering Parameters for Basic 
Coupled-Inductors with Primary Shunt 
Capacitor

Four-port scattering matrix equations for the two coupled lines are:

 

b1

b2

b3

b4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⋅

a1

a2

a3

a4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (D.1)

If the normalization impedances on ports 1 to 4 are Ẕ1 to Ẕ4, respectively, and

k = mutual coupling coefficient

YC = capacitor admittance

ZL1 = impedance of primary inductor L1

ZL2 = impedance of secondary inductor L2

then S-parameters are:

S11 =
wk( )

2
L1L2 1 − YC Z1 − Z2( )( ) + ZL1 − Z1 + Z2 − YCZL1 Z1 − Z2( )( ) ZL2 + Z3 + Z4( )

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.2)

S12 =

2 wk( )
2
L1L2YC + 1 + YCZL1( ) ZL2 + Z3 + Z4( )( )Z1

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.3)

Figure D.1 Basic coupled inductors with primary shunt capacitor.
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S13 =
−2 jwk L1L2Z1

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.4)

S14 =
2 jwk L1L2Z1

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.5)

S21 =

2 wk( )
2
L1L2YC + 1 + YCZL1( ) ZL2 + Z3 + Z4( )( )Z2

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.6)

S22 =
wk( )

2
L1L2 1 + YC Z1 − Z2( )( ) + ZL1 + Z1 − Z2 + YCZL1 Z1 − Z2( )( ) ZL2 + Z3 + Z4( )

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.7)

S23 =
2 jwk L1L2Z2

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.8)

S24 =
−2 jwk L1L2Z2

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.9)

S31 =
−2 jwk L1L2Z3

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.10)

S32 =
2 jwk L1L2Z3

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.11)

S33 =
wk( )

2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 − Z3 + Z4( )

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.12)

S34 =
2 ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( )Z3

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.13)

S41 =
2 jwk L1L2Z4

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.14)

S42 =
−2 jwk L1L2Z4

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.15)

S43 =
2 ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( )Z4

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.16)
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S44 =
wk( )

2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 − Z4( )

wk( )
2
L1L2 1 + YC Z1 + Z2( )( ) + ZL1 + Z1 + Z2 + YCZL1 Z1 + Z2( )( ) ZL2 + Z3 + Z4( )

 (D.17)

Special Case: Common Normalization Impedance

 Z0 = Z1 = Z2 = Z3 = Z4  (D.18)

  

S11 = S22 =
wk( )

2
L1L2 + ZL2 + 2Z0( )ZL1

wk( )
2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2 + 2Z0( )

 (D.19)

 

S12 = S21 =

2 wk( )
2
L1L2YC + 1 + YCZL1( ) ZL2 + 2Z0( )( )Z0

wk( )
2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2 + 2Z0( )

 (D.20)

 

−S13 = −S31 = −S24 = −S42 = S14 = S41 = S23 = S32

=
2 jwk L1L2Z0

wk( )
2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2 + 2Z0( )

 (D.21)

 

S33 = S44 =
wk( )

2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2( )

wk( )
2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2 + 2Z0( )

 (D.22)

 

S34 = S43 =
2 ZL1 + 2 1 + YCZL1( )Z0( ) Z0( )

wk( )
2
L1L2 1 + 2YCZ0( ) + ZL1 + 2 1 + YCZL1( )Z0( ) ZL2 + 2Z0( )

 (D.23)
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A P P E N D I X  E

Quadratic Polynomial Fit Through Three 
Data Points

If dependencies at three data points are

at x1 
y1 = a0 + a1x1 + a2x1

2
 (E.1)

at x2 
y2 = a0 + a1x2 + a2x2

2
 (E.2)

at x3 
y3 = a0 + a1x3 + a2x3

2
 (E.3)

then coefficients are given by

 

a0 =
x2x3 x3 − x2( )y1 − x1x3 x3 − x1( )y2 + x1x2 x2 − x1( )y3

x3 − x2( )x1
2 − x3 − x1( )x2

2
+ x2 − x1( )x3

2  (E.4)

 

a1 =

x2
2 − x3

2( )y1 + x3
2 − x1

2( )y2 − x2
2 − x1

2( )y3

x3 − x2( )x1
2 − x3 − x1( )x2

2
+ x2 − x1( )x3

2  (E.5)

 

a2 =
x3 − x2( )y1 − x3 − x1( )y2 + x2 − x1( )y3

x3 − x2( )x1
2 − x3 − x1( )x2

2
+ x2 − x1( )x3

2  (E.6)

The location of the minimum/maximum value will occur at

 x = −a1 /2a2  (E.7)

that is,

 

x =

x2
2 − x1

2( )y3 − x2
2 − x3

2( )y1 − x3
2 − x1

2( )y2

2 x3 − x2( )y1 − x3 − x1( )y2 + x2 − x1( )y3( )
 (E.8)
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A P P E N D I X  F

Analysis of Coupled Inductors Including 
Interwinding Capacitance

Coupled inductors are critical circuit elements widely employed in most compact 
RF modules in today’s mobile communications devices. Typically, the inductors are 
implemented as metalized traces printed on one or more layers of a passive or active 
die. Magnetic coupling between the inductors is achieved principally through one 
of two ways. First, the inductors are wound tightly together in a coplanar topol-
ogy; this is commonly referred to as proximity coupling. Second, the inductors are 
superposed on one another on different metallization layers; this is referred to as 
overlap coupling. In some structures, a combination of the two coupling methods 
may be employed. Whatever the case, the goal is generally to achieve as high a 
magnetic coupling coefficient (k) as possible.

Magnetic coupling between the two coils is maximized by minimizing the dis-
tance between the coils, either horizontally or vertically. Unfortunately, minimizing 
the distance between the coils also has the undesirable effect of maximizing the 
capacitance between the coils. This capacitance can significantly impact the perfor-
mance characteristics of the coupled inductor pair. Thus, deriving a lumped-element 
model that accurately accounts for this capacitance is highly desirable. However, 
introducing the interwinding capacitance into a lumped-element model for a pair 
of coupled inductors presents significant complexity.

Figure F.1 shows a schematic representing a coupled-inductor pair having inter-
winding capacitance, and shunt reactive matching elements YS and YL. The driving 
sources on all four terminals are assumed unequal and arbitrary. In order to ana-
lyze this network, it is first necessary to derive the system equations for the coupled 
inductors in isolation. To accomplish this, an incremental model was developed, as 
detailed in Figure F.2.

The model assumes that the interwinding capacitance CX is uniformly distrib-
uted along the length of the inductors. The primary inductor value is denoted by 
L1, and that of the second by L2. The magnetic coupling coefficient is denoted by k.

Figure F.1 Coupled inductors including interwinding capacitance and external shunt 
matching and sources.
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Incremental circuit analysis yields

 

dIP x( )
dx

= − VP x( ) −VS x( )( )YC /l  (F.1)

 

dIS x( )
dx

= VP x( ) −VS x( )( )YC /l  (F.2)

 

dVP x( )
dx

= −IP x( )ZL1 /l − jwk L1L2 /l( )IS x( )  (F.3)

 

dVS x( )
dx

= −IS x( )ZL2 /l − jwk L1L2 /l( )IP x( )  (F.4)

where VP and IP represent the voltage and current along the primary inductor L1, 
and VS and IS represent the voltage and current along the secondary inductor L2. 
The equal lengths of the two inductors are denoted by l.

From these equations, we determine

 

d2VP x( )
dx2 = ZL1 − jwk L1L2( )

YC
l2

⎛
⎝⎜

⎞
⎠⎟ VP x( ) −VS x( )( )  (F.5)

 

d2VS x( )
dx2 = ZL2 − jwk L1L2( )

YC
l2

⎛
⎝⎜

⎞
⎠⎟ VS x( ) −VP x( )( )  (F.6)

Hence,

 

d2VP x( ) /dx2

d2VS x( ) /dx2 = −
ZL1 − jwk L1L2( )
ZL2 − jwk L1L2( )

 (F.7)

Integration yields

 
ZL2 − jwk L1L2( )VP x( ) + ZL1 − jwk L1L2( )VS x( ) = Ax + B  (F.8)

where A and B are arbitrary constants. For simplification of the subsequent equa-
tions, the following substitutions are made

Figure F.2 Incremental model of coupled-inductor pair with interwinding capacitance.
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 h1 = ZL1 − jwk L1L2          and         h2 = ZL2 − jwk L1L2  (F.9)

thus

 
h2VP x( ) + h1VS x( ) = AX + B  (F.10)

substituting in (F.1)

 
h1

dIP x( )
dx

= − h1 + h2( ) YC /l( )VP x( ) + Ax + B( ) YC /l( )  (F.11)

substituting in (F.2)

 
h2

dIS x( )
dx

= − h1 + h2( ) YC /l( )VS x( ) + Ax + B( ) YC /l( )  (F.12)

substituting in (F.5)

 
d2VP x( ) /dx2

= h1 + h2( ) YC /l2( )VP x( ) − Ax + B( ) YC /l2( )  (F.13)

substituting in (F.6)

 
d2VS x( ) /dx2

= h1 + h2( ) YC /l2( )VS x( ) − Ax + B( ) YC /l2( )  (F.14)

Equations (F.13) and (F.14) are second-order nonhomogenous equations. To 
obtain a solution for VP(x) satisfying (F.13), first consider the homogeneous equation

 
d2VP x( ) /dx2 − h1 + h2( ) YC /l2( )VP x( ) = 0  (F.15)

with trial solution

VP x( ) = erx

substituting

 
r2erx − h1 + h2( ) YC /l2( )erx = 0  (F.16)

thus

 
r = ± h1 + h2( )YC /l  (F.17)
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leading to the complete homogeneous solution

 
VP x( ) = x1e

− h1+h2( )YCx /l
+ x2e

h1+h2( )YCx /l
 (F.18)

where ξ1 and ξ2 are arbitrary constants.

For the particular solution to (F.13), assume

 
VP x( ) = ax2

+ bx + c  (F.19)

where a, b, and c are constants.

Substituting in (F.13),

 
2a − h1 + h2( )

YC
l2

⎛
⎝⎜

⎞
⎠⎟ ax2

+ bx + c( ) + Ax + B( )
YC
l2

⎛
⎝⎜

⎞
⎠⎟ = 0  (F.20)

 

2a − a h1 + h2( )
YC
l2

⎛
⎝⎜

⎞
⎠⎟ x

2 − h1 + h2( )b − A( )
YC
l2

⎛
⎝⎜

⎞
⎠⎟ x

   + B − h1 + h2( )c( )
YC
l2

⎛
⎝⎜

⎞
⎠⎟ = 0

 (F.21)

Hence,

 
a = 0                    b = A/ h1 + h2( )  (F.22)

 
c = B/ h1 + h2( )  (F.23)

thus, the particular solution is

 
VP x( ) = Ax + B( ) / h1 + h2( )  (F.24)

yielding a complete solution to (F.13) as

 
VP x( ) = x1e

− h1+h2( )YCx /l
+ x2e

h1+h2( )YCx /l
+ Ax + B( ) / h1 + h2( )  (F.25)

Similarly, for a secondary inductor, the solution to (F.14) is

 
VS x( ) = x3e

− h1+h2( )YCx /l
+ x4e

h1+h2( )YCx /l
+ Ax + B( ) / h1 + h2( )  (F.26)

Differentiating, we have

d2VP x( ) /dx2
= h1 + h2( ) YC /l2( )x1e

− h1+h2( )YCx /l
+ h1 + h2( ) YC /l2( )x2e

h1+h2( )YCx /l
 (F.27)

and
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d2VS x( ) /dx2
= h1 + h2( ) YC /l2( )x3e

− h1+h2( )YCx /l
+ h1 + h2( ) YC /l2( )x4e

h1+h2( )YCx /l
 (F.28)

Substituting in (F.7),

x1e
− h1+h2( )YCx /l

+ x2e
h1+h2( )YCx /l

x3e
− h1+h2( )YCx /l

+ x41e
h1+h2( )YCx /l

= − h1

h2

from which it follows

 x3 = −x1h2 /h1  (F.29)

and

 x4 = −x2h2 /h1  (F.30)

For convenience, define new variables as

 x1 = h1y1  (F.31)

 x2 = h1y2  (F.32)

Equations (F.25) and (F.26) become

 
VP x( ) = h1y1e

− h1+h2( )YCx /l
+ h1y2e

h1+h2( )YCx /l
+ Ax + B( ) / h1 + h2( )  (F.33)

and

 
VS x( ) = −h2y1e

− h1+h2( )YCx /l − h2y2e
h1+h2( )YCx /l

+ Ax + B( ) / h1 + h2( )  (F.34)

Applying boundary conditions, VP(0) = V2, VS(0) = V4 gives

V2 = h1 y1 + y2( ) + B/ h1 + h2( )

V4 = −h2 y1 + y2( ) + B/ h1 + h2( )

Hence,

V2 −V4 = h1 + h2( ) y1 + y2( )

and

 
B/ h1 + h2( ) = V2 − h1 y1 + y2( ) = V4 + h2 y1 + y2( )  (F.35)

thus
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 y1 + y2 = V2 −V4 /h1 + h2  (F.36)

Hence,

 B = h2V2 + h1V4  (F.37)

Applying boundary conditions, VP(l) = V1, VS(l) = V3, we have

 
Al / h1 + h2( ) = V1 −V2 + h1y1 1 − e− h1+h2( )YC( ) + h1y2 1 − e h1+h2( )YC( )  (F.38)

 
Al / h1 + h2( ) = V3 −V4 − h2y1 1 − e− h1+h2( )YC( ) − h2y2 1 − e h1+h2( )YC( )  (F.39)

thus

 

V1 −V2 −V3 +V4 + h1 + h2( )y1 1 − e− h1+h2( )YC( )
     + h1 + h2( )y2 1 − e h1+h2( )YC( ) = 0

 (F.40)

from (F.36) and (F.40) determine

 

V1 −V2 −V3 +V4 + h1 + h2( )y1 1 − e− h1+h2( )YC( )
     + V2 −V4 − h1 + h2( )y1( ) 1 − e h1+h2( )YC( ) = 0

 (F.41)

hence,

 

y1 =
V1 −V3 − V2 −V4( )e

h1+h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

 (F.42)

also

 

V1 −V2 −V3 +V4 + V2 −V4 − h1 + h2( )y2( ) 1 − e− h1+h2( )YC( )
     + h1 + h2( )y2 1 − e h1+h2( )YC( ) = 0

 (F.43)

hence,

 

y2 =
V1 −V3 − V2 −V4( )e

− h1+h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

 (F.44)
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from (F.38), (F.42), and (F.44),

 
Al = h2 V1 −V2( ) + h1 V3 −V4( )  (F.45)

substituting in (F.33),

  

VP x( ) =
1

h1 + h2( )

h1

V1 −V3( ) e
− h1+h2( )YCx /l − e h1+h2( )YCx /l( )

  + V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC − e 1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

e
− h1+h2( )YC − e h1+h2( )YC

+ h2V1 + h1V3( ) x/l( ) + h2V2 + h1V4( ) 1 − x/l( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 (F.46)

which, if YC = 0, reduces to

 
VP x( ) = V2 + V1 −V2( )

x

l

⎛
⎝⎜

⎞
⎠⎟  (F.47)

substituting in (F.34),

  

VS x( ) = − 1

h1 + h2( )

h2

V1 −V3( ) e
− h1+h2( )YCx /l − e h1+h2( )YCx /l( )

  + V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC − e 1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

e
− h1+h2( )YC − e h1+h2( )YC

− h2V1 + h1V3( ) x/l( ) + h2V2 + h1V4( ) 1 − x/l( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 (F.48)

from (F.11) and (F.33),

 
IP x( ) = h1 + h2( )YC y1e

− h1+h2( )YCx /l − y2e
h1+h2( )YCx /l( ) + y3  (F.49)

from (F.12) and (F.34),

 
IS x( ) = − h1 + h2( )YC y1e

− h1+h2( )YCx /l − y2e
h1+h2( )YCx /l( ) + y4  (F.50)

from (F.42), (F.44), and (F.49),

 

IP x( ) =
h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

− V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC

+ e
1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ y3

 (F.51)
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from (F.42), (F.44), and (F.50),

 

IS x( ) =
− h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

− V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC

+ e
1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ y4

 (F.52)

from (F.46),

dVP x( )
dx

=
1

h1 + h2( )

h1 h1 + h2( )YC

− V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

  + V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC − e 1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

e
− h1+h2( )YC − e h1+h2( )YC

+ h2V1 + h1V3 − h2V2 + h1V4( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

/l

 

 (F.53)

substituting in (F.3), with (F.51) and (F.52),

 

h1 + h2( )y3ZL1 + h1 + h2( ) jwk L1L2y4

    + h2V1 − h2V2 + h1V3 − h1V4 = 0
 (F.54)

from (F.48),

dVS x( )
dx

=
1

h1 + h2

h2 h1 + h2( )YC

− V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

  + V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC

+ e
1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

e
− h1+h2( )YC − e h1+h2( )YC

− h2V1 + h1V3 − h2V2 + h1V4( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

/l
 (F.55)

substituting in (F.4), with (F.51) and (F.52),

 

h1 + h2( ) jwk L1L2y3 + h1 + h2( )y4ZL2

    + h2V1 − h2V2 + h1V3 − h1V4 = 0
 (F.56)

Hence from (F.54) and (F.56),

 

y3 =
h2

2 V2 −V1( ) + h1h2 V4 −V3( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.57)
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and

 

y4 =
h1

2 V4 −V3( ) + h1h2 V2 −V1( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.58)

Substituting in (F.51) yields

 

IP x( ) =
h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

− V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC

+ e
1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+
h2

2 V2 −V1( ) + h1h2 V4 −V3( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.59)

and in (F.52) yields

 

IS x( ) =
− h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YCx /l

+ e
h1+h2( )YCx /l( )

− V2 −V4( ) e
− 1−x /l( ) h1+h2( )YC

+ e
1−x /l( ) h1+h2( )YC( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+
h1

2 V4 −V3( ) + h1h2 V2 −V1( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.60)

In summary, the spatially variant voltages and currents in a coupled inductor 
pair, with distributed capacitance, are governed by (F.46), (F.48), (F.59), and (F.60), 
with the variables η1 and η2 as defined in (F.9).

To apply the above equations to a circuit analysis of the coupled inductors, the 
spatially variant current equations must be related to the nodal currents at the four 
network terminals. If the currents flowing into the inductors are defined as IX1 to 
IX4, as shown in Figure F.3, we have

 
IX1 x( ) = −IP l( )  (F.61)

 
IX2 x( ) = IP 0( )  (F.62)

 
IX3 x( ) = −IS l( )  (F.63)
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IX4 x( ) = IS 0( )  (F.64)

Hence,

−IX1 =
h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YC

+ e
h1+h2( )YC( )

− 2 V2 −V4( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
h2

2 V2 −V1( ) + h1h2 V4 −V3( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.65)

 

IX2 =
h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

2 V1 −V3( ) − V2 −V4( )

e
− h1+h2( )YC

+ e
h1+h2( )YC( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
h2

2 V2 −V1( ) + h1h2 V4 −V3( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.66)

−IX3 =
− h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

V1 −V3( ) e
− h1+h2( )YC

+ e
h1+h2( )YC( )

− 2 V2 −V4( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
h1

2 V4 −V3( ) + h1h2 V2 −V1( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.67)

 

IX4 =
− h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

2 V1 −V3( ) − V2 −V4( )

e
− h1+h2( )YC

+ e
h1+h2( )YC( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
h1

2 V4 −V3( ) + h1h2 V2 −V1( )

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.68)

To facilitate subsequent analysis, the following variables are defined.
Defining

Figure F.3 Coupled-inductors including interwinding capacitance and nodal current 
relationships.
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h3 =
h1 + h2( )YC

h1 + h2( ) e
− h1+h2( )YC − e h1+h2( )YC( )

 (F.69)

If YC = 0,

 
h3 =

−1

2 h1 + h2( )
 (F.70)

 
h4 = h3 e

− h1+h2( )YC
+ e

h1+h2( )YC( )  (F.71)

 

h5 =
1

h1 + h2( ) ZL1ZL2 + wk( )
2
L1L2( )

 (F.72)

In terms of these variables, the nodal currents are

IX1 = h2
2h5 − h4( )V1 + 2h3 − h2

2h5( )V2 + h4 + h1h2h5( )V3 − 2h3 + h1h2h5( )V4  (F.73)

IX2 = 2h3 − h2
2h5( )V1 + h2

2h5 − h4( )V2 − 2h3 + h1h2h5( )V3 + h4 + h1h2h5( )V4  (F.74)

IX3 = h4 + h1h2h5( )V1 − 2h3 + h1h2h5( )V2 − h4 − h1
2h5( )V3 + 2h3 − h1

2h5( )V4  (F.75)

IX4 = − 2h3 + h1h2h5( )V1 + h4 + h1h2h5( )V2 + 2h3 − h1
2h5( )V3 − h4 − h1

2h5( )V4  (F.76)

From the circuit analysis of Figure F.3, we have

Port 1 V1 = VS1 − I1Z1  (F.77)

Port 2 V2 = VS2 − I2Z2  (F.78)

Port 3 V3 = VS3 − I3Z3  (F.79)

Port 4 V4 = VS4 − I4Z4  (F.80)

Consequently,

 
IX1 = −YS VS1 −VS2( ) + 1 + YSZ1( )I1 − YSZ2I2  (F.81)

 
IX2 = −YS VS2 −VS1( ) − YSZ1I1 + 1 + YSZ2( )I2  (F.82)

 
IX3 = −YL VS3 −VS4( ) + 1 + YLZ3( )I3 − YLZ4I4  (F.83)
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IX4 = −YL VS4 −VS3( ) − YLZ3I3 + 1 + YLZ4( )I4  (F.84)

The above equations can be used to derive the terminal currents on all four 
ports of the network of Figure F.3 in terms of arbitrary external source voltages 
VS1 to VS4, having associated source impedances Z1 to Z4.

Using these equations, closed-form expressions are developed below, for the 
slightly limited, although important, scenario in which the output inductor oper-
ates in single-ended mode. In this case, VS4 = Z4 = 0. The input inductor may be 
driven either in single-ended or differential mode.

From (F.73) and (F.81)

  

1 + YS − h4 + h2
2h5( )Z1( )I1 − YS − 2h3 + h2

2h5( )Z2I2 + h4 + h1h2h5( )Z3I3

= YS − h4 + h2
2h5( )VS1 − YS − 2h3 + h2

2h5( )VS2 + h4 + h1h2h5( )VS3

 (F.85)

from (F.74) and (F.82),

  

YS − 2h3 + h2
2h5( )Z1I1 − 1 + YS − h4 + h2

2h5( )Z2( )I2 + 2h3 + h1h2h5( )Z3I3

= YS − 2h3 + h2
2h5( )VS1 − YS − h4 + h2

2h5( )VS2 + 2h3 + h1h2h5( )VS3

 (F.86)

from (F.75) and (F.83),

 

h4 + h1h2h5( )Z1I1 − 2h3 + h1h2h5( )Z2I2 + 1 + YL − h4 + h1
2h5( )Z3( )I3

= h4 + h1h2h5( )VS1 − 2h3 + h1h2h5( )VS2 + YL − h4 + h1
2h5( )VS3

 (F.87)

For simplification, define

 h6 = YS − h4 + h2
2h5  (F.88)

 h7 = −YS + 2h3 − h2
2h5  (F.89)

 h8 = h4 + h1h2h5  (F.90)

 h9 = 2h3 + h1h2h5  (F.91)

 h10 = YL − h4 + h1
2h5  (F.92)

then equations are

 
1 + h6Z1( )I1 + h7Z2I2 + h8Z3I3 = h6VS1 + h7VS2 + h8VS3  (F.93)
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−h7Z1I1 − 1 + h6Z2( )I2 + h9Z3I3 = −h7VS1 − h6VS2 + h9VS3  (F.94)

 
h8Z1I1 − h9Z2I2 + 1 + h10Z3( )I3 = h8VS1 − h9VS2 + h10VS3  (F.95)

from (F.93),

 
h8Z3I3 = h6VS1 + h7VS2 + h8VS3 − 1 + h6Z1( )I1 − h7Z2I2  (F.96)

substituting in (F.94),

 

h7h8Z1 + 1 + h6Z1( )h9( )I1 + h7h9Z2 + 1 + h6Z2( )h8( )I2

= h6h9 + h7h8( )VS1 + h6h8 + h7h9( )VS2
 (F.97)

substituting in (F.95),

 

h8
2Z3Z1 − 1 + h6Z1( ) 1 + h10Z3( )( )I1 − h8h9Z2Z3 + h7 1 + h10Z3( )Z2( )I2

= h8
2Z3 − h6 1 + h10Z3( )( )VS1 − h8h9Z3 + h7 1 + h10Z3( )( )VS2 − h8VS3

 (F.98)

From which it is determined

 

h7
2 1 + h10Z3( )Z1Z2 + h8

2 1 + h6Z2( )Z1Z3 + h9
2 1 + h6Z1( )Z2Z3

+ 2h7h8h9Z1Z2Z3 − 1 + h6Z1( ) 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟ I1

=
h7

2 1 + h10Z3( )Z2 + h8
2 1 + h6Z2( )Z3 + h9 h6h9 + 2h7h8( )Z2Z3

− h6 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟VS1

+
h6h7 1 + h10Z3( )Z2 − h8h9 1 + h6Z2( )Z3 + h6h8h9Z2Z3

− h7 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝⎜
⎞

⎠⎟
VS2

− h8 + h6h8 + h7h9( )Z2( )VS3

 (F.99)

and

 

h7
2 1 + h10Z3( )Z1Z2 + h8

2 1 + h6Z2( )Z1Z3 + h9
2 1 + h6Z1( )Z2Z3

+ 2h7h8h9Z1Z2Z3 − 1 + h6Z1( ) 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟ I2

=
h6h7 1 + h10Z3( )Z1 − h8h9 1 + h6Z1( )Z3 + h6h8h9Z1Z3

− h7 1 + h6Z1( ) 1 + h10Z3( )

⎛

⎝⎜
⎞

⎠⎟
VS1

+
h7

2 1 + h10Z3( )Z1 + h9
2 1 + h6Z1( )Z3 + h8 h6h8 + 2h7h9( )Z1Z3

− h6 1 + h6Z1( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟VS2

+ h9 + h6h9 + h7h8( )Z1( )VS3

 (F.100)
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It should be noted that this pair of equations can also be applied in reverse to 
model the characteristics of a coupled inductor pair employed for differential split-
ting. In that case, the voltage source VS3 on inductor L2 is treated as the input drive 
and voltages V1 and V2 represent the output amplitudes. Additionally, VS1 = VS2 
= 0, and ZL1 and ZL2 are the output loads. The above equations then simplify to

 

h7
2 1 + h10Z3( )Z1Z2 + h8

2 1 + h6Z2( )Z1Z3 + h9
2 1 + h6Z1( )Z2Z3

+ 2h7h8h9Z1Z2Z3 − 1 + h6Z1( ) 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟ I1

= − h8 + h6h8 + h7h9( )Z2( )VS3

 (F.101)

and

 

h7
2 1 + h10Z3( )Z1Z2 + h8

2 1 + h6Z2( )Z1Z3 + h9
2 1 + h6Z1( )Z2Z3

+ 2h7h8h9Z1Z2Z3 − 1 + h6Z1( ) 1 + h6Z2( ) 1 + h10Z3( )

⎛

⎝
⎜

⎞

⎠
⎟ I2

= h9 + h6h9 + h7h8( )Z1( )VS3

 (F.102)
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A P P E N D I X  G

Analysis of Differential Coupled Inductors 
Including Interwinding Capacitance and 
Bias Network

Figure G.1 Differential PA matching architecture with coupled inductors including 
interwinding capacitance and bias network.

Defining basic network parameters:

 CX = total interwinding capacitance  (G.1)

 ZS = RS + jXS  (G.2)

 YS = 1/ZS = GS + jBS  (G.3)

 ZL = RL + jXL  (G.4)

 ZL1 = RL1 + jwL1  (G.5)

 ZL2 = RL2 + jwL2  (G.6)

 ZCS = RCS − j /wCS  (G.7)

 ZLS = RLS + jwLS  (G.8)

 ZCt = ZCS + ZLS  (G.9)
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 ZLb = RLb + jwLb  (G.10)

 ZCh = RCh − j /wCh  (G.11)

 
Zb = ZLbZCh / ZLb + ZCh( )  (G.12)

and dependent variables:

 y−L1 = ZL1 − jwk L1L2  (G.13)

 y+L1 = ZL1 + jwk L1L2  (G.14)

 y−L2 = ZL2 − jwk L1L2  (G.15)

 y+L2 = ZL2 + jwk L1L2  (G.16)

 
y1 =

1 − a( )y−L1

2
 (G.17)

 
y2 =

1 + a 1 − a( )y−L1

2Zb

 (G.18)

 
y5 = jy2 − 1 − a( )wk L1L2 + a2y1y−L2wCX /2( )  (G.19)

y6 = j y2 a − 1 − 2a( )y−L1 /2ZCt( ) + a2 1 − a( )y−L2 /2Zb( )wk L1L2

+ a2 1 + y2ZL1 /ZCt( )y−L2 /2 − 1 − a( ) 1 + y2ZL1 /ZCt + y1 /Zb( ) ZL + 1 − a( )y−L2 /2( )

− jay1 ay2y−L1ZL /2ZCt + ZL + 1 − a( )y−L2 /2( ) 1 + a 1 − a( ) ZL1 + ZL2( ) /2Zb( )( )wCX  

 (G.20)

y7 = j y2 1 − a + 1 − 2a( )y−L1 /2ZCt( ) + a3y−L2 /2Zb( )wk L1L2

− a 1 − a( ) ZL + 1 − a( )y−L2 /2( )y−L2 /2Zb

+ 1 + ayZ+L1 /2Zb + y2Z1 /ZCt( ) 1 − a( )ZL + 1 − 2a( )y−L2 /2( )

+ ja2y1 y2 y−L1ZL /ZCt − y−L2( ) − a ZL + 1 − a( )y−L2 /2( )y−L2 /Zb( )wCX /2

 (G.21)

y8 = y1 ZL + 1 − a( )y−L2 /2( ) y2 + a 1 + y1 /Zb( )( ) − a3y−L1y−L1 /4

+ ja2 y2 y−L1 + y−L2( ) + ay1y−L2 /Zb( ) wk L1L2 − y1 ZL + 1 − a( )y−L2 /2( )wCX( ) /2
 

 (G.22)
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y9 = − j y1y2 1 − a( ) + a2y−L2 y2 + ay1 /Zb( ) /2( )wk L1L2

+ ZL + 1 − a( )y−L2 /2( ) y1 y2 + a 1 + y1 /Zb( )( ) − y2 1 − a( )ZL1( )
+ a2 y2ZL1 − ay−L1 /2( )y−L2 /2

+ ja2y1y−L2 y1y2 + ZL + 1 − a( )y−L2 /2( ) y2 + ay1 /Zb( )( )wCX /2

 (G.23)

 
y10 = j 1 − a( )y−L2wk L1L2 /2 + y1 ZL2 − 1 − a( )y−L2 /2( )  (G.24)

  

y11 = y1y2 jy1 ZL + ZL2( ) − ZL + 1 − a( )y−L2( )wk L1L2( ) /ZCt

+ j 1 − a( ) ZL + 1 − a( )y−L2 /2( ) 1 + y2ZL1 /ZCt( )y−L2 − ay1y+L2 /Zb( ) /2
 (G.25)

y12 = y2 y1 1 − a( )y−L2 + ZL( ) /ZCt + 1 − a( )y−L2 /2( )wk L1L2

− j ZL + 1 − a( )y−L2 /2( ) y2y−L2 1 + 1 − a( )ZL1 /ZCt( ) − a y−L2 − ay1y+L2 /Zb( )( ) /2

− jy1y2 ZL2 + ZL( ) 1 + y1 /ZCt( )  

 (G.26)

     
y13 = ja 1 − a( )y1 ZL + 1 − a( )y−L2 /2( ) y−L1y+L2 + y+L1y−L2( ) /2Zb  (G.27)

y14 = y1y2 jy1 ZL + ZL2( ) − 1 − a( ) 4 − a( )y−L2 /2 + 2 − a( )ZL( )wk L1L2 /2( )
+ j ZL + 1 − a( )y−L2 /2( ) 1 − a( )y2y−L2ZL1 + ay1 y2ZL2 − y−L2 + ay1y+L2 /Zb( )( ) /2

 

 (G.28)

 

y15 =
y5wCX

y2 + a ZS + y1( ) /Zb( )wk L1L2 + y7ZS − y9( )wCX

 (G.29)

 

y16 =
y2 + 1 − a( )ZS + ay1( ) /Zb( )wk L1L2 + y6ZS + y8( )wCX

y2 + a ZS + y1( ) /Zb( )wk L1L2 + y7ZS − y9( )wCX

 (G.30)

y17 = −
y2ZS wk( )

2
L1L2 /ZCt + ja y2y−L2 + y+L2 1 − a( )ZS + ay1( ) /Zb( )wk L1L2 /2

+ ZL2 + ZL( ) ay−L1 /2 + ZS 1 + y2ZL1 /ZCt( )( ) + y11ZS + ay13 /2( )wCX

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 (G.31)

y18 = y2 1 − a /2 + ZS /ZCt( ) wk( )
2
L1L2

− ja ay+L2 ZS + y1( ) /Zb + y2ZL2( )wk L1L2 /2

+ ZL2 + ZL( ) ZS 1 + ay+L1 /2Zb + y2ZL1 /ZCt( ) + y2ZL1 − ay−L1 /2( )

− y12ZS + y14( )wCX

 (G.32)
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x1 =

a 1 − a( ) ZL2 + ZL( )ZL1 + wk( )
2
L1L2( ) y+L1 + 2y2ZL1( ) /ZCt

+ y2

ZL2 + ZL( ) 1 + ZS /ZCt − 2a( )ZL1 − jaZL2 1 − 2a( )wk L1L2 /2

+ 1 + ZS /ZCt + a2 − 5a /2( ) wk2( )L1L2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ ja 1 − 2a( )y+L2 1 + a 1 − a( )ZL1 − y1( ) /Zb( )wk L1L2 /2

+ ZL2 + ZL1( )
ZS + a y+L1 − 1 − 2a( )y−L1( ) /2

+ a 1 − a( ) 2ZL1 + y+L1( ) ZS + aZL1( ) /2Zb

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

wk L1L2 /Zb

 

 (G.33)

x2 =

y11 − y12( ) 1 + a 1 − a( )ZL1 /Zb( ) + ay11 − 1 − a( )y12( )ZS /Zb

+ 1 − 2a( )y14 /Zb

⎛

⎝
⎜

⎞

⎠
⎟ wk L1L2

+ y6

ZL2 + ZL( ) ZS + y2 1 + ZS /ZCt( )ZL1 + a y+L1ZS /Zb − y−L1( ) /2( )

− y12ZS − y14( )wCX + y2 ZS /ZCt + 1 − a /2( ) wk( )
2
L1L2

− ja y2ZL2 + ay+L2 y1 + ZS( ) /Zb( )wk L1L2 /2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ y7

ZL2 + ZL( ) ZS − y2 1 − ZS /ZCt( )ZL1 + ay−L1 /2( ) + y11ZS − y14( )wCX

+ y2 ZS /ZCt − 1 + a /2( ) wk( )
2
L1L2

+ ja y2ZL2 + y+L2 ay1 + 1 − a( )ZS( ) /Zb( )wk L1L2 /2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− y9

ZL2 + ZL( ) 2 + 2y2ZL1 /ZCt + ay+L1 /2Zb( ) − y12 − y11( )wCX

+ 2y2 wk( )
2
L1L2 /ZCt + jay+L2 1 − 2a( )wk L1L2 /2Zb

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

wCX

 

 (G.34)

x3 = a wk( )
2
L1L2 + ZL2 + ZL( )ZL1( ) 1 − a( )y+L1 /2 + y2 ZS + 1 − a( )ZL1( )( )wk L1L2 /Zb

+

1 + a ZS + 1 − a( )ZL1( ) /Zb( ) ay13 /2 + y14( )wk L1L2

+ y7ZS − y9( ) y2 wk( )
2
L1L2 + ZL2 + ZL( )y2ZL1 + ay13 /2 + y14( )wCX( )

+ y9 − y8( )

ZL2 + ZL( ) ZS + y2 1 + ZS /ZCt( )ZL1 + a y+L1ZS /Zb − y−L1( ) /2( )

− y12ZS − y14( )wCX + y2 ZS /ZCt + 1 − a /2( ) wk( )
2
L1L2

− ja y2ZL2 + ay+L2 y1 + ZS( ) /Zb( )wk L1L2 /2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

wCX

 

 (G.35)
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x4 =

a 1 − a( )y+L1 + ZS + 2a 1 − a( )ZL1( )y2( ) wk2( )L1L2 /ZCt

+ ZL2 + ZL( )

a y+L1 − 1 − 2a( )y−L1( ) /2

+ 1 + y2ZL1 /ZCt( ) ZS + 2a 1 − a( )ZL1( )

− ZS + aZL1( ) 1 − y2 + a 1 − a( )y+L1ZL1 /ZCt( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

− ja 1 − 2a( )
y2y−L2 − y+L2

+ ay+L2 y1 − 1 − a( )ZL1( ) /Zb

⎛

⎝⎜
⎞

⎠⎟
wk L1L2 /2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

wk L1L2 /Zb  (G.36)

x5 =

y6 + y7( ) y2 wk( )
2
L1L2ZS /ZCt + ZL2 + ZL( )ZS 1 + y2ZL1 /ZCt( )( )

− y6 − y7( )
ZL2 + ZL( )ay−L1 /2

+ ja y2y−L2 + ay+L2 y1 + ZS( ) /Zb( )wk L1L2 /2

⎛

⎝
⎜

⎞

⎠
⎟

− y8 2y2 wk( )
2
L1L2 /ZCt + ZL2 + ZL( ) 2 1 + y2ZL1 /ZCt( ) + ay+L1 /2Zb( )( )

+

1 + a ZS + 1 − a( )ZL1( ) /Zb( ) y11 − y12( )

+ 1 − 2a( ) jay+L2 y7ZS − y8( ) /2 − y12ZS − ay13 /2( ) /Zb

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
wk L1L2

+ y6 ZL2 + ZL( )ZSay+L1 /2Zb

− y6 y12ZS + ay13 /2( ) − y7 y11ZS + ay13 /2( ) − y8 y12 − y11( )( )wCX

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

wCX  (G.37)

x6 = 1 − a( ) wk( )
2
L1L2 + ZL + ZL2( )ZL1( ) ay+L1 /2 + y2 ZS + aZL1( )( )wk L1L2 /Zb

+

+ y8 − y9( )

ZL2 + ZL( ) ZS 1 + y2ZL1 /ZCt( ) + ay−L1 /2( ) + y11ZS + ay13 /2( )wCX

+ ja y2y−L2 + y+L2 ay1 + 1 − a( )ZS( ) /Zb( )wk L1L2 /2

+ y2 wk( )
2
L1L2ZS /ZCt

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1 + 1 − a( ) ZS + aZL1( ) /Zb( ) ay13 /2 + y14( )wk L1L2

+ y6ZS − y8( ) y2 wk( )
2
L1L2 + ZL + ZL2( )y2ZL1 + ay13 /2 + y14( )wCX( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

wCX

 

 (G.38)
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G.1 Odd-Mode Network Solutions

For these modes,

 VS1 = VS = −VS2  (G.39)

In terms of

denom = wk( )
2
L1L2 1 + 2ZS /ZCt( ) + ZL2 + ZL( ) ZL1 + 2ZS 1 + ZL1 /ZCt( )( )( )wk L1L2  (G.40)

Network solutions are

  

I1

VS

=

2 wk( )
2
L1L2 /ZCt + ZL2 + ZL( ) 1 + ZL1 /ZCt( )( )wk L1L2 + x1 + x2

denom + x1 + x2( )ZS + x3

 (G.41)

 

V1

VS

=

wk( )
2
L1L2 + ZL2 + ZL( )ZL1( )wk L1L2 + x3

denom + x1 + x2( )ZS + x3

 (G.42)

 
Z1 =

V1 /VS( )
I1 /VS( )

 (G.43)

  

I2

VS

=

2 wk( )
2
L1L2 /ZCt + ZL2 + ZL( ) 1 + ZL1 /ZCt( )( )wk L1L2 + x4 + x5

denom + x4 + x5( )ZS + x6

 (G.44)

 

V2

VS

=

wk( )
2
L1L2 + ZL2 + ZL( )ZL1( )wk L1L2 + x6

denom + x4 + x5( )ZS + x6

 (G.45)

 
Z2 =

V2 /VS( )
I2 /VS( )

 (G.46)

  

IL =

1 + y2 ZL1 + jy1
2wCX( ) /ZCt( )V1

− 1 + ay+L1 /2Zb + y2ZL1 /ZCt + j 1 + y1 /ZCt( )y1y2wCX( )V2

− ay−L1I1 /2 + y2ZL1 − ay−L1 /2 + jy1
2y2wCX( )I2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

jy2 wk L1L2 − ZL + 1 − a( )y−L2 /2( )y1wCX( )
 (G.47)

 VL = ILZL  (G.48)
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VC = V2 + 1 − a( ) jwk L1L2IL + V2 −V1( )ZL1 /ZCt − ZL1I2( )
+ j 1 − a( )

2
y−L1 V2 −VL − 1 − a( ) y−L1 V1 −V2( ) /ZCt + y−L1I2 + y−L1IL( ) /2( )wCX /2

 

 (G.49)

G.2 Output Impedance on Port 3

Driving port 3 with voltage VS3, we have

 

I1

VS3

= −
y15y18 + jy2 wk L1L2 + y10wCX( )

y17 + y16y18

 (G.50)

 

I2

VS3

= y15 + y16I1 /VS3  (G.51)

IL
VS3

=

jy1y2wCX − ay−L1 /2 + 1 + y2 ZL1 + jy1
2wCX( ) /ZCt( )ZS( )I1 /VS3

+

−ay−L1 /2 + y2 1 + ZS /ZCt( ) ZL1 + jy1
2wCX( )

+ 1 + ay+L1 /2Zb + jy1y2wCX( )ZS

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
I2 /VS3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

jy2 wk L1L2 − ZL + 1 − a( )y−L2 /2( )y1wCX( )
 (G.52)

 
VL /VS3 = 1 + IL /VS3( )ZL  (G.53)

 
Zout = −VL /IL = − VS3 /IL + ZL( )  (G.54)

G.3 Design Synthesis

For lossless case

 ZL1 = jwL1          &          ZL2 = jwL2  (G.55)

and for Ls = 0

 1/ZCt = jwCt  (G.56)

G.3.1 For Input Match on Ports 1 and 2

For input match, we require

Yin = GS − jBS
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Defining

 
a = 1 − k2( )

2
wL1GS /RL( )  (G.57)

 
b = 2 1 − k2( )

2
wL1GSXL /RL − k2( )  (G.58)

and for port 1

c = wL1GS RL + XL
2 /RL( )

+

GSℑ x3( ) − BSℜ x3( ) − ℑ x1 + x2( )

− GSℜ x3( ) + BSℑ x3( ) − ℜ x1 + x2( )( ) XL + 1 − k2( )wL2( ) /RL

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

/wk L1L2
 (G.59)

and for port 2

c = wL1GS RL + XL
2 /RL( )

+

GSℑ x6( ) − BSℜ x6( ) − ℑ x4 + x5( )

− GSℜ x6( ) + BSℑ x6( ) − ℜ x4 + x5( )( ) XL + 1 − k2( )wL2( ) /RL

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

/wk L1L2  (G.60)

where ℜ( ) represents the real part of the argument, and ℑ( ) represents the imaginary 
part. Solutions for the secondary inductance L2 can be expressed in the standard 
quadratic form

 
L2 =

−b − b2 − 4ac

2a
 (G.61)

Also,

wCS =
1

wL1

+

GS 1 − k2( )wL2 + XL( ) − BSRL

− GSℜ x3( ) + BSℑ x3( ) − ℜ x1 + x2( )( ) /w2L1k L1L2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

/2RL  (G.62)

Solution of (G.61) and (G.62) requires a recursive approach, as with the single-
ended coupled-resonators synthesis with interwinding capacitance of Section 12.3. 
A recursive solution is required since the ξ-terms are themselves f(L2). Since the 
ξ-terms all have first-order dependencies on CX and 1/Zb, and the latter are assumed 
to be small, and the initial seed solution for L2 is generated with ξn = 0, for all n. 
This is used to obtain a first solution for CS, which, in turn, generates first solu-
tions for all ξn. An improved estimate for L2 is then generated and the procedure 
is repeated recursively. Typically, ∼20 recursions are required to arrive at relatively 
precise values for L2 and CS.

In lieu of a single shunt capacitor CS, if a low-input impedance is required at 
the third harmonic, as in Section 14.1, denoting the frequency at the center of the 
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passband by ω0 and that at the center of the third-harmonic band by ω3, we must 
replace it by a series trap with

 
′CS = 1 − w0 /w3( )

2( )CS
 (G.63)

 

LS =
1

w3
2
+ w0

2( )CS

 (G.64)





409

A P P E N D I X  H

Some Useful Materials Data
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Index

[ABCD] matrix analysis, 257, 277
[ABCD] parameters

about, 1
auto-transformers and, 257
cascaded networks, 7
coupled-inductor match, 221–22
five-element topology, 363–64
four-element topology, 363
highpass T-network, 277
input impedance and, 3
input reflection coefficient and, 3
intersection of two matrices, 6
key relationships, 1–7
modified matrix coefficients with ground 

impedance, 6–7
network, matrix equation, 2
network with input/output π-matches, 366
network with input/output T-match, 365
network with input T-match, 365
network with output π-match, 366
network with output T-match, 365
network with two-element input/output 

matches, 366
output impedance and, 3
parallel networks, 7
reciprocal network, 2
reversed network, matrix equation, 2
reversed reciprocal network, 3
seven-element topology, 365
six-element topology, 364
symmetric network, 3
transmission coefficient and, 3–4
two networks with shunt elements, 367
two-port, conversion formulae, 369–70
two-port, network variables, 1
two-port network [M] parameters, 4–6
useful relationships, 2–4

[ABCD] power relations, 50–51
π-based lattice coupler, 349
π-network

about, 173–74
architecture, 167
characteristics, 179–90
dual section design, 175–77

equivalencies, 189–90
highpass, 181–84
highpass + highpass cascade, 210–14
highpass + lowpass cascade, 204–10
independent variable = B1, 174
independent variable = B2, 174–75
independent variable = network phase shift, 

175
independent variable = X, 174
lowpass, 179–81
lowpass + highpass cascade, 197–204
lowpass + lowpass cascade, 193–97
in matching applications, 165–67
parametric definitions, 167
reactive element definitions, 174
as three-element network, 171–73, 190
two-port network [M] parameters, 4
See also Matching networks

A

All-pass bridge-T lowpass network
about, 159
capacitors, 159
differential, 163
dispersion, 160–62
element values, 159
equal in-band insertion loss, 160
even mode, 160, 164
inductors, 159
modification, 163
with negative inductor coupling, 159
odd mode, 160, 164
performance characteristics, 160, 161–62
with positive inductor coupling, 159
schematics, 159, 160
with second-harmonic short, 163
shift characteristics, 160
third-harmonic reflection coefficients, 163
with third-harmonic short, 163, 164

Analytic optimization approach, 81–84
Auto-transformers

[ABCD] parameters and, 257
advantages, 254
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classical transformers versus, 254
coupled inductors, 5
highpass T-networks with, 275–81
ideal, 5
impedance matching and, 265
in impedance matching networks, 255
inductance coil, 254
lowpass π-networks with, 253–75
schematics, 255
synthesis equations, 256–57
voltage transformation ratio, 254–55

B

Bandpass filters
elliptic filter insertion characteristics, 116
elliptic filter layout, 116
LC-parallel resonator traps, 119
LC-series resonator traps, 117
physical layout, 115–16
practical design, 115–17

Bar plots (Excel), 95–96, 97
Bias inductor coupling

about, 153
admittance, 156
alternatives, 156, 159
characteristics, 157–58
motivations for, 153–56
passband characteristics, 156
values, 156, 159

Bias inductors
about, 123
coupling, 153–54, 264
harmonic susceptance and, 126–34, 135
inductive susceptance and, 135, 136, 139, 144
values for, 125, 135

Bypass bias capacitor voltage, 271, 275

C

Capacitive cross-coupling, 20–21
Capacitor lumped-element models, 59–65, 67
Capacitors

all-pass bridge-T lowpass network, 159
comparing two and three-element models, 62
dissipation, 59
electrical characteristics, 64
quality factor (Q), 61–62, 64, 73
self-resonance frequency, 62
three-element model, 60–61, 62–65, 66
two-element model, 59, 60, 62–65

Cartesian plots, 86, 87
Cascaded [ABCD] networks, 7
Combiner with complex input impedance

about, 330

gain with complex load, 330, 332
impedances with complex load, 330, 331
insertion phase shifts, 330
See also Lattice splitter/combiner

Combiner with complex input impedance and 
unequal power split

about, 335–36
complex load impedance and, 336
gain, 336, 338
impedances, 336, 337
schematic, 335, 336
See also Lattice splitter/combiner

Combiner with multiple mixed specifications
about, 342–44
gain, 342–44
impedances, 342, 343
performance characteristics, 344
schematic, 342
See also Lattice splitter/combiner

Compact modules, flip-chip attach technology 
and, 76–78

Complex expressions, in Excel, 96–97
Compromise coupled inductors

differential input reflection coefficients and 
gain, 313

element values, 312
match performance parameters, 307, 310
network values, 307, 309
port input impedances, 314

Computer-aided design (CAD), 82
Conjugate matching, 54–56
Contour plots

about, 86
in design process, 95
generation of, 93
highpass + lowpass π-networks, 207–9
insertion gain, 94
lowpass + lowpass π-networks, 194–95, 

196–97
mismatch, 94

Conversion formulae
two-port [ABCD] parameters, 369–70
two-port S-parameters, 370–71
two-port Y-parameters, 371–72
two-port Z-parameters, 372–73

Coupled harmonic inductors
about, 152
advantage of, 153
characteristics, 154–55
potential benefits of, 152
schematic, 152
values, 155

Coupled inductors
about, 17
auto-transformer, 5
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basic design, 219–47
circuit model, 216
conceptual errors, 218
as critical circuit element, 385
edge-coupled printed, 217
equal, with cross-capacitance, 21
equal with capacitance, even-mode network, 

22
equal with capacitance, odd-mode network, 

22
four-port schematic, 17
four-port S-parameters for, 379–81
impedance matching and, 215
layout, 217
overlay printed, 218
pair, as transformer, 17
with primary shunt capacitor, 379–81
as splitters and/or combiners, 218
terminology, 216–18
three-port schematic, 19
transformers versus, 216–18
two-port network [M] parameters, 5
See also Single-ended coupled inductors

Coupled inductors with 
interwinding capacitance

about, 385
analysis of, 385–98
boundary conditions and, 389–90
homogeneous solution, 388
incremental circuit analysis, 386
incremental model, 386
input inductor, 396
nodal current relationships, 394
schematic, 385
second-order nonhomogeneous equations, 

387
summary, 393
variables for analysis, 394–95

D

Differential all-pass bridge-T lowpass network, 
163

Differential coupled inductor analysis
bias network, 399–407
dependent variables, 400–403
design synthesis, 405–7
interwinding capacitance, 399–407
network parameters, 399–400
odd-mode network solutions, 404–5
output impedance on port 3, 405

Differential coupled inductors
architecture, 291
design, 291–302
differential insertion gain, 295

differential secondary to primary inductance 
ratio, 295

element synthesis, 293
even-harmonic frequencies and, 291–92
even-mode schematic, 293
example, 294–302
functions, 292
impedance match parameters, 294
interwinding capacitance and, 292, 302–14
matching for PAs, 291–314
network gain and impedance, 296, 297, 303
network gain and impedance with third-

harmonic trap, 299, 301
network input and output impedances, 296, 

298
odd-mode schematic, 293
optimum element values, 296
primary inductance versus coupling factor, 

302
secondary inductance dependence, 295
second-harmonic reflection coefficient, 299
third-harmonic reflection coefficients, 299, 

300
Differential coupled inductors with 

interwinding capacitance
about, 302–4
architecture, 304
center point of inductor, 305
compromise, element values, 312
compromise, input reflection coefficients and 

gain, 313
compromise, port input impedances, 313
compromise match performance parameters, 

307, 310
differential input reflection coefficients, 308
differential insertion gains, 307, 309
discrete capacitors, 305
example, 306–14
impedance matching parameters, 307
inductances, 304–5
insertion losses, 307
lack of secondary symmetry, 304
matching requirements, 307, 308
network values for compromise match, 307, 

309
network values for optimum match, 307
with no bias loading, 311–12
voltage along primary inductance, 311

Differential PAs
about, 283
advantages, misconceptions of, 285
advantages and disadvantages, 288
coupled-resonator networks and, 285
in high-frequency RF circuit, 284
impedance advantages and, 287
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Differential PAs (Cont.)
loading impedances and, 288
in matching output networks, 284
primary impedance in, 287
transformation ratios, 287
transformers and, 284

Differential PA shunting inductance
about, 146–49
amplifier chains and, 149
architecture, 148
characteristics, 150–51
coupled bias and harmonic traps and, 153–59
coupled harmonic traps and, 152–53
harmonic traps and, 146–51
lattice combiner splitter, 284
schematic, 149
signal lines and, 149
See also PA shunting inductance

Display plots (Excel)
about, 86
Cartesian, 86, 87
Smith charts, 86–90

Dual-coupled trap architecture
about, 144
characteristics, 146, 147–48
circuit analysis, 145
combined admittance, 146
disadvantages of, 146
schematic, 144
trap frequencies, 144
uncoupled analysis, 145

Dual section π-network design
about, 175–76
design equations, 176–77
elements, 176
phase shifts, 176
schematic, 176
See also π-network

Dual-π single-ended PA matching
about, 191–92
cascaded two-section PA match, 192
configurations, 193
highpass + highpass cascade, 210–14
highpass + lowpass cascade, 204–10
lowpass + highpass cascade, 197–204
lowpass + lowpass cascade, 193–97
residual susceptance, 193
target specifications, 193

Dual-trap architecture
about, 139
center frequency, 143
characteristics, 141–42
combined admittance, 140
elements, 143
passband characteristics comparison, 140

performance, 143
reflection coefficient, 140
schematic, 139
trap frequencies, 139

Dynamic circuit schematic layout (Excel)
about, 86
creation of, 90
filter network, illustrated, 92–93
morphing capabilities, 90–91
output matching, illustrated, 91

E

Edge-coupled printed inductors, 217
Envelope Tracking (ET), 125
Excel

bar plots, 95–96
complex expressions in, 96–97
contour plots, 86, 93–95
display plots, 86–90
dynamic circuit schematic layout, 86, 90–93
macros in, 97–98
as programming platform, 85
RF circuit analysis, 85
visualizations in, 86–96

F

Flip-chip attach technology, 76–78
Four-element combiner

architectures, 353, 354
characteristics, 350, 351
element values, 353

Four-port scattering matrix equations, 379
Four-port S-parameters

conversion to Y-parameters, 375–77
for coupled inductors, 379–81
coupled inductor schematic, 17
distributed model, 21
matrix equations, 379
terminated network, 31
three-port S-parameters from, 19
variables, 21
See also S-parameters

H

Harmonic traps
about, 135
coupled, differential shunting inductances 

and, 152–53
differential PA shunting inductance and, 

146–51
differential shunting inductances and coupled 

bias and, 153–59
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dual, 139–43
dual coupled, 144–46
PA shunting inductance and, 135–46
single, 135–39

Highpass + highpass π-networks
about, 210
contour plots, 210, 212–14
dependence, 211
insertion losses, 210
optimal PA match elements, 210
schematic, 211
sensitivity plots, 210, 211
See also Dual-π single-ended PA matching

Highpass + lowpass π-networks
about, 204–6
characterization plots, 207–9
dependence, 206
input impedance, 210
insertion losses, 210
“optimal” PA match elements, 207
schematic, 205
sensitivity plots, 206
See also Dual-π single-ended PA matching

Highpass π-network
about, 181
characteristics, 182–83
element values, 183
implementation, 182
insertion phase shifts, 184
See also π-network

Highpass networks
about, 169
impedance and gain characteristics, 171, 

172–73
series reactance, 175
series-shunt, 191
shunt-series, 191
shunt susceptance, 179
See also Matching networks

Highpass T-network
about, 184
characteristics, 187–88
element values, 184
implementation, 187
insertion phase shifts, 184
with/without magnetic coupling, 275

Highpass T-network with 
autotransformer action

about, 275–76
element values, 279
element values, with second-harmonic trap, 

281
example, 277–81
network parameters, 276
with second-harmonic trap, 280

synthesis equations, 276–77
with/without mutual inductive coupling, 278, 

279

I

Ideal auto-transformer, 5
Impedance matching

[ABCD] parameters in, 1
auto-transformers and, 255, 265
auto-transformer type action and, 255, 265, 

275
bandwidth characteristics, 301
coupled-inductor network, 240–41, 243, 291
coupled inductors for, 167
coupled-resonator network, 285
dual-π lowpass + highpass network, 200, 210
dual-section π-network, 176
network performance, 195, 199, 206, 277
PA output impedance and, 165
two-element LC network, 190, 191, 215
two-element network for, 167

Inductor coupling, 156, 159, 258, 260–62, 271
Inductor lumped-element models, 65–75
Inductors

all-pass bridge-T lowpass network, 159
characteristics for model comparison, 71
comparing two and three-element models, 

71–75
dissipation, 66
extracted reactive elements, 73
ideal, 65
integration into compact module design, 

76–78
quality factor (Q), 69–71
reactance, 219
as self-resonant, 70
as series elements, 71
three-element model, 68–69, 71–75
two-element model, 66–68, 71–75
See also Coupled inductors

Insertion losses
circuit variables versus, 127, 134
highpass + highpass π-networks, 210
highpass + lowpass π-networks, 210
maximum in-band, 126
network losses, 1-dB, 130
network losses, 2-dB, 131
network variables, 1-dB, 128
network variables, 2-dB, 129
residual susceptance and, 135

Insertion phase shifts
highpass π-network, 184
highpass T-network, 184
lattice-balun splitter, 325, 330
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Insertion phase shifts (Cont.)
lowpass π-network, 181
lowpass T-network, 184
six-element lattice coupler, 357
splitter with multiple mixed specifications, 

339–41, 342
Interwinding capacitance

coupled inductors with, 385–98
differential coupled inductors with, 292, 

399–407
single-ended coupled inductors with, 248–54

Interwinding capacitance single-ended 
coupled inductors

about, 248
characteristics, 249
element values, 250
equivalent performance parameters, 249, 250
impedance match parameters, 249
lumped-element models, 248
optimized, 250
optimized, characteristics, 251
optimized, element values, 252
optimized, insertion gain, 254
optimized, network characteristics, 253
schematic, 248

L

Lattice-balun combiner
about, 325
gains, 325, 327
impedances, 325, 326
schematic, 325
See also Lattice splitter/combiner

Lattice-balun splitter
about, 321
element values, 322
example, 321–25
gains, 322, 324
impedance, 322, 323
insertion phase shifts, 324, 325
maximum coupling imbalance, 322, 324
performance characteristics, 324, 325
relative phase shift dependency, 325
schematic, 322
specifications, 322
See also Lattice splitter/combiner

Lattice splitter/combiner
about, 315–17
combiner example, 325, 326, 327
combiner with complex input impedance, 

330–32
combiner with complex input impedance and 

unequal power split, 335–38

combiner with multiple mixed specifications, 
342–44

complexity, 317
design basics, 317–21
design equations, 318–21
design examples, 321
differential, 284
evolution of, 316
generalized coupler configuration, 317
generalized splitter configurations, 318
key design variables, 319
lattice with additional shunt susceptance, 

344–47
phase shifts, 317, 319
six-element coupler, 347–61
spitter synthesis, 318
splitter example, 321–25
splitter with complex input impedance, 

325–30
splitter with complex input impedance and 

unequal power split, 332–35, 336
splitter with multiple mixed specifications, 

338–42
Lattice with additional shunt susceptance

about, 344
conventional/modified gains comparison, 346
elements, 346
insertion loss, 345, 346
lowpass/highpass π-network insertion gains 

versus phase shift, 345
schematic, 345
See also Lattice splitter/combiner

LC-parallel resonators
about, 99
in-band capacitance and low-side resonance, 

113–14
in-band inductance and high-side resonance, 

110–12
bandpass, Smith chart impedances, 104
bandpass configurations, 102, 104
bandstop, Smith chart impedances, 106
characteristics, 112, 114
design parameters, 112, 114
formulae for equivalency, 100–101
insertion gains, bandpass, 103
insertion gains, bandstop, 105
mapping to serial resonators, 101
novel pairing for passband-type response, 

118–21
with parasitics, 111
passband gain characteristics, 105–6
trap architecture, 104

LC resonators
about, 99
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bandpass characteristics, 102
center frequency, 100
characteristics, 100
configurations, 99
gain characteristics, 100–101
novel pairing for bandpass shaping, 117
for passband filtering, 102
quality factor (Q), 100
for stopband rejection, 103–6
traps employed for filtering, 117
See also LC-parallel resonators; 

LC-series resonators
LC-series resonators

about, 99
in-band capacitance and high-side resonance, 

106–8
in-band inductance and low-side resonance, 

108–10
bandpass, Smith chart impedances, 104
bandpass configurations, 102, 104
bandstop, Smith chart impedances, 106
characteristics, 108, 110
design parameters, 108, 110
formulae for equivalency, 100–101
insertion gains, bandpass, 103
insertion gains, bandstop, 105
mapping to parallel resonators, 101
novel pairing for passband-type response, 

117–18, 119
with parasitics, 107
passband gain characteristics, 105–6
trap architecture, 104
traps employed for bandpass filtering, 117, 

119
traps employed for filtering, 117

LC single-ended matching networks. See 
Matching networks

Load admittance, 167
Load impedance, 167
Lowpass + highpass π-networks

about, 197–99
characterization plots, 197, 203–5
dependence, 202
optimal PA match elements, 201
schematic, 202
sensitivity plots, 197, 202
See also Dual-π single-ended PA matching

Lowpass + lowpass π-networks
characterization plots, 199–201
contour plots, 194–95, 196–97
match dependence, 195
“optimal” design approach, 194
optimal PA match elements, 198
PA match, 193

sensitivity plots, 194, 195
See also Dual-π single-ended PA matching

Lowpass π-networks
about, 179
characteristics, 180–81
implementation, 179
insertion phase shifts, 180
with/without magnetic coupling, 255
with/without mutual inductive coupling, 

258
See also π-network

Lowpass π-network with autotransformer action
about, 253–55
bypass bias capacitor voltage, 271
bypass bias capacitor voltage, with second-

harmonic trap, 275
characteristics, with second-harmonic trap, 

274
characteristics dependence, 259
dashed dependency, 270
element values, 259, 270
element values, with second-harmonic trap, 

262
example, 258–64
gain, with second-harmonic trap, 273
gains with/without virtual ground, 268, 269
inductor coupling, 271
with intentional strong magnetic coupling, 

265
losses due to series elements, 267
maximum passband insertion loss, 259
with mutual inductive coupling, 260
second-harmonic reflection coefficient, 272
with second-harmonic trap, 261, 263, 273
solid dependency, 270
virtual inductor ground an, 264–75
See also Lowpass π-networks

Lowpass networks
about, 169
impedance and gain characteristics, 170–71
series reactance, 175
series-shunt, 191
shunt-series, 191
shunt susceptance, 179
See also specific types of lowpass networks

Lowpass T-network, 184–86
Lumped-element models

about, 57
capacitor, 59–65
inductor, 65–75
parametric model extraction, 57–59
quadratic interpolation and, 75–76
RF inductor integration and, 76–78
summary, 78–79
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M

Macros, in Excel, 97–98
Magnetic coupling

between bias inductor, 264–65
highpass T-network with/without, 275
between inductor, 256
lowpass π-network with/without, 255
maximizing, 385

Magnetic coupling factors, 248
Matching networks

configurations, 165, 166
dual-π single-ended PA matching, 191–214
elements, 165
π-network, 165–67, 173–77
three-element, 171–73
T-network, 165–67, 177–79
two-element, 167–69
two-element single-ended, 190–91
two-port networks and, 165, 166

Materials data, 409–10
Motivation, this book, xv
Multiphase power amplifiers

about, 283
differential, 283
quadrature, 283
single-phase versus, 283–89

Multiport S-parameters
capacitive cross-coupling and, 20–21
coupled inductor, 17–24

Mutual coupling
coupled-inductor value dependence on, 239
factors, impact on gain, 241
highpass T-network with/without, 278, 279
lowpass π-network with autotransformer 

action, 260

N

Network efficiency, 53–54
Network impedances, 128, 129, 224, 228, 230
Network losses, 130, 131

O

Objective, this book, xiv
Optimization algorithms, 82–83, 84
Overlay printed inductors, 218
Overview, this book, xv–xvi

P

Parallel [ABCD] networks, 7
Parametric model extraction, 57–59

PA shunting inductance
differential, coupled bias and harmonic traps 

and, 153–59
differential, coupled harmonic traps and, 

152–53
differential, harmonic traps and, 146–51
dual coupled harmonic traps and, 144–46
dual harmonic traps and, 139–43
single harmonic trap and, 135–39

Passband filtering, 102–3
Passband harmonic susceptance

compensated by bias inductor, 126–33
compensated by bias inductor and matching 

network, 133–34
residual, 133

Phase shifts. See Insertion phase shifts
Port normalization impedances, changing, 12
Power amplifiers (PAs)

about, 123
balanced architecture, 283
differential, 283–89
differential, block diagram, 124
lowpass matching network, 125
matching network requirement, 123
output matching, 123–34
quadrature, 283
single-ended, block diagram, 124
single-ended lowpass, 284
single-phase versus multiphase, 283–89

Power relationships
[ABCD], 50–51
about, 49
fundamental, 49–50
maximum available gain and, 54–56
power available from source, 49
power delivered to the load, 50, 51–52, 53
power dissipation in the network, 52, 53
power into the network, 49–50, 51, 52–53
two-port S-parameters, 51
two-port Y-parameters, 52
two-port Z-parameters, 52
useful, 53–54

Power transfer calculation, 35

Q

Quadratic polynomial fit, through 3 data points, 
383

Quadrature PAs, 283
Quadrature splitter/combiner, 283
Quality factor (Q)

capacitors, 61–62, 64, 73
inductors, 69–71
LC resonators, 100
reactive elements, 69, 79
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R

Reactive elements
importance of, 78
π-network, 174
optional, 82
quality factor (Q), 69, 79
self-resonances of, 78
three-element, equivalent circuit models, 79
T-network, 177
See also Capacitors; Inductors

Residual susceptance, 126–27, 133–34, 135
RF engineering, xii–xiv

S

Scattering equations, 9–10
Scattering parameters. See S-parameters
Shunted-inductor lattice couplers (SILCs), 20–21
Single-ended coupled inductors

about, 215
with harmonic short, 221
impedance transformation ratio, 233
input and output shunt-matched, element 

values, 240
input and output shunt-matched, element 

values with trap, 236
input and output shunt-matched impedances, 

230
input and output shunt-matched insertion 

gain, 231
input and output shunt-matched ratio 

dependence, 231
input and output shunt-matched reflection 

coefficient, 233, 236
input and output shunt-matched with trap, 

insertion gains, 238
input and output shunt-tuned, match second-

harmonic characteristics, 233, 236
input and output shunt-tuned, match second-

harmonic characteristics, with trap, 237
input shunt-matched impedances, 224
input shunt-matched insertion gain, 225
input shunt-matched ratio dependence, 225
insertion gain and, 240
insertion gain and secondary inductance 

dependence, 223, 226
with interwinding capacitance analysis 

approach, 248–53
match analysis, 221
matching alternatives, 219
matching comparison with LC-output 

matching, 240–47
matching complexities, 231–40
matching configurations, 222–31

matching network input and gain 
characteristics, 237

match parameters, 222
mutual coupling factor impact on gain, 241
network input impedances, 243
network input reflection coefficients, 242
network insertion gains, 246
network output impedances, 245
network output reflection coefficients, 244
network second-harmonic insertion gains, 247
optimum input and output shunt-matched 

values, 229
optimum input shunt-matched values, 224
optimum output shunt-matched values, 227
output shunt-matched impedances, 228
output shunt-matched insertion gain, 229
output shunt-matched ratio dependence, 229
output shunt-tuned, match second-harmonic 

characteristics, 233, 234
output shunt-tuned, match second-harmonic 

characteristics, with trap, 233, 235
secondary to primary inductance ratio 

dependence, 232
shunt input and output match, 227
shunt input match only, 220, 222–25
shunt output match only, 220–21, 226–27
terminating impedances and admittances, 

219–20
value dependence on mutual coupling, 239
See also Coupled inductors

Single-ended PAs
misconceptions, 285
with split outputs to coupled inductors, 286

Single-ended versus differential PAs
about, 283–84
advantages and disadvantages, 288
comments on, 287–89
configurations, 285
considerations of, 284
input impedance and, 285
misconceptions, 285

Single-trap shunt inductance
about, 135
characteristics, 137–38
combined admittance, 136
reflection coefficient, 136
schematic, 135

Six-element lattice coupler
π-based, 349
about, 347
combiner characteristics, 350, 352
combiner configuration, 350, 351
combiner specifications, 350
combining node, 348
configurations, 347, 348
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Six-element lattice coupler (Cont.)
effective loading conductance, 348
elemental parameters, 349–50
elements, 350, 352
gain advantage, 358
gain and input impedances, 60, 359
gain dependencies, 357, 358–59
insertion gains, 353, 356–57
insertion phase shifts, 357
load impedance and load admittance, 348
network gain variation, 355, 356–57
optimized, gain and input impedances, 359, 

361
performance comparison, 353
T-based, 349
T-network combiner, 353, 354, 355
as two four-element phase shift networks, 

355–56
See also Lattice splitter/combiner

Smith charts
bandpass LC resonators, 104
bandstop LC resonators, 106
creation of, 86
data display range examples, 89
display range entry, 88
examples of, 87, 88

Source admittance, 167
Source impedance, 167
S-parameters

about, 9
circuit elements, 18
component, alternate topologies, 58
derivation of terminal voltages and currents, 

38–39
distributed four-port model, 21
for equal coupled-inductor network, 24
extracting immittances from, 57–59
formulae, 9
four-port, 17, 19
four-port, conversion to Y-parameters, 

375–77
four-port, variables, 21
input impedance and, 11
input reflection coefficient and, 11
interdependence, 12
lossless network, 10–11
multiport, coupled-inductor, 17–24
multiport, definition, 9
normalization impedance and, 23–24
one-port measurement, 58
output voltage and, 11
port normalization impedances, changing 

and, 12
reciprocal network, 10
reduction, four-port to three-port, 31–32

reduction, three-port to two-port network, 
30–31

relationships, 10–12
with terminal voltages and currents, 36–37
three-port, 19, 30–31
two-port, conversion formulae, 370–71
two-port, relationships, 13–14
two-port, schematic, 20
two-port network, common, 14–17
two-port S-parameters, 58
use of, 10
voltage driving force and, 11–12

Splitter with complex input impedance
about, 325–26
element values, 327, 328
input reflection coefficient, 327–29
insertion phase shifts, 330
maximum coupling imbalance, 329, 330
net insertion gain, 329
output power split, 329
real input impedance, 326
specifications, 327
See also Lattice splitter/combiner

Splitter with complex input impedance and 
unequal power split

about, 332
elements, 333
insertion gains, 333, 335
phase shifts, 333, 336
schematic, 333
specifications, 332
See also Lattice splitter/combiner

Splitter with multiple mixed specifications
about, 338–39
elements, 339
impedance, 339, 340
insertion gains, 339, 341
insertion phase shifts, 339–41, 342
performance characteristics, 341–42
schematic, 339
specifications, 338
See also Lattice splitter/combiner

Stability factor, 55
Stopband rejection, 103–6

T

T-based lattice coupler, 349
Three-element matching networks

dependency options, 171–73
equation satisfaction, 173
See also π-network; T-network

Three-element models
capacitor, 60–61, 62–65, 67
inductor, 68–69, 71–75
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Three-port networks
combiner design specifications, 353
in combining two input powers, 35
design flexibility, 315
example, 36
lattice, 317, 318
performance characteristics, 292
S-parameter equations, 32
S-parameter reduction, 31–32
use caution, 33
with voltage and current variables, 32, 38

Three-port S-parameters
as combiner, 34
as coupler, 33–34
equations, 32
with even-mode and odd-mode drive, 36–37
external impedances, 33
input impedance and voltage, port 1 alone, 

34
input impedance and voltage, port 2 alone, 

34–35
input impedance and voltage, port 3 alone, 

35
input impedance and voltage, ports 1 and 2 

simultaneously, 35–37
network, reduction of four-port to, 31–32
network examples, 36
network with voltage and current variables, 

32–33, 38
reduction to two-port network, 30–31
terminated network, 30
working with, 33
See also S-parameters

T-network
architecture, 167
characteristics, 179–90
design, 177–79
equivalencies, 189–90
highpass, 184
independent variable = B, 177
independent variable = network phase shift, 

178–79
independent variable = X1, 178
independent variable = X2, 178
lowpass, 184
in matching applications, 165–67
parametric definitions, 167
reactive element definitions, 177
as three-element network, 171–73, 190
two-port network [M] parameters, 4
See also Matching networks

T-network combiner
architectures, 353, 354
elemental values, 353, 354
with real node architectures, 353, 355

Transformers
about, 216
circuit model, 216
coupled inductors versus, 216–18
in differential designs, 284
two-port network [M] parameters, 5
See also Auto-transformers

Transmission gain, 50
Transmission line parameter, 5–6
Two-element matching networks

about, 167
characteristics, 169–71
design parameters, 169
highpass LC characteristics, 171, 172–73
high-pass match, 167, 168–69
lowpass LC characteristics, 170–71
low-pass match, 167–68, 169–70
See also Matching networks

Two-element models
capacitor, 59, 60, 62–65
inductor, 66–68, 71–75
three-element models and, 61, 79

Two-element single-ended matching networks
about, 190
LC impedance matches, 192
series-shunt highpass, 191
series-shunt-lowpass, 191
series-shunt match, 190
shunt-series highpass, 191
shunt-series lowpass, 191
shunt-series match, 190

Two-port network parameters
about, 5–6
conversion formulae between, 369–73
coupled inductors, 5
coupled inductors auto-transformer, 5
electrical parameters, 369
ideal auto-transformer, 5
π-network, 4
series impedance, 4
shunt admittance, 4
T-network, 4
transformer, 5
transmission line, 5–6
Y-parameters, 41, 42–45
Z-parameters, 45, 46–48
See also [ABCD] parameters

Two-port networks
[ABCD] parameters and, 1
about, 165
common parameters used for evaluation of, 

179
transmission characteristics, 166
See also Two two-port S-parameter networks; 

specific lowpass and highpass networks
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Two-port S-parameters
conjugate matching, 54
conversion formulae, 370–71
coupled inductor, schematic, 20
deriving in terms of four-port S-parameters, 

20
extracting immittances from, 58–59
network, common, 14–17
network variables, 13
parallel with through-line, 28–29
power relations, 51–52
series with through-line, 29–30
three-port reduction, 30–31
two networks, interconnection of, 24–30
useful relationships, 13–14

Two-port Y-parameters
conversion formulae, 371–72
input admittance, 43
input impedance, 43
matrix, 42
network, common, 43–45
network variables, 42
output admittance, 43
output impedance, 43
power relations, 52
useful relationships, 42–43

Two-port Z-parameters
conversion formulae, 372–73
input admittance, 47
input impedance, 47
matrix, 46
network, common, 47–48
network variables, 46
output admittance, 47
output impedance, 47
power relations, 52–53
See also Z-parameters

Two two-port S-parameter networks
cascading, 25, 26, 27
direct input-output connection, 28
interconnection, 24–30

parallel, 25–26
parallel, through-line, 28–29
parallel-series connection, 27
series, through-line, 29–30
stacked connection, 26
See also S-parameters; Two-port S-parameters

V

Visualizations (Excel)
about, 96
bar plots, 95–96, 97
contour plots, 86, 93–95
display plots, 86–90
dynamic circuit schematic layout, 86, 90–93

Y

Y-parameters
about, 41
determination for each port, 42
finite, 45
four-port S-parameters conversion to, 

375–77
multiport network schematics, 41
network matrix equations, 41
port admittances, 42
two-port, conversion formulae, 371–72
two-port, relationships, 42–43
two-port network, 43–45

Z

Z-parameters
about, 45
determination, 46
multiport, definition, 45
network, two-port, 47–48
relationships, 46–47
two-port, 46–48
two-port, conversion formulae, 372–73



Artech House Microwave Library

Behavioral Modeling and Linearization of RF Power Amplifiers, John Wood

Chipless RFID Reader Architecture, Nemai Chandra Karmakar, Prasanna Kalansuriya,
Randika Koswatta, and Rubayet E-Azim

Chipless RFID Systems Using Advanced Artificial Intelligence, Larry M. Arjomandi and
Nemai Chandra Karmakar

Control Components Using Si, GaAs, and GaN Technologies, Inder J. Bahl

Design of Linear RF Outphasing Power Amplifiers, Xuejun Zhang, Lawrence E. Larson, and
Peter M. Asbeck

Design Methodology for RF CMOS Phase Locked Loops, Carlos Quemada, Guillermo Bistué, and
Iñigo Adin

Design of CMOS Operational Amplifiers, Rasoul Dehghani

Design of RF and Microwave Amplifiers and Oscillators, Second Edition, Pieter L. D. Abrie

Digital Filter Design Solutions, Jolyon M. De Freitas

Discrete Oscillator Design Linear, Nonlinear, Transient, and Noise Domains, Randall W. Rhea

Distortion in RF Power Amplifiers, Joel Vuolevi and Timo Rahkonen

Distributed Power Amplifiers for RF and Microwave Communications, Narendra Kumar and
Andrei Grebennikov

Electric Circuits: A Primer, J. C. Olivier

Electronics for Microwave Backhaul, Vittorio Camarchia, Roberto Quaglia, and
Marco Pirola, editors

An Engineer’s Guide to Automated Testing of High-Speed Interfaces, Second Edition,
José Moreira and Hubert Werkmann

Envelope Tracking Power Amplifiers for Wireless Communications, Zhancang Wang

Essentials of RF and Microwave Grounding, Eric Holzman

Frequency Measurement Technology, Ignacio Llamas-Garro, Marcos Tavares de Melo, and
Jung-Mu Kim

FAST: Fast Amplifier Synthesis Tool—Software and User’s Guide, Dale D. Henkes

Feedforward Linear Power Amplifiers, Nick Pothecary

Filter Synthesis Using Genesys S/Filter, Randall W. Rhea

Foundations of Oscillator Circuit Design, Guillermo Gonzalez

Frequency Synthesizers: Concept to Product, Alexander Chenakin

Fundamentals of Nonlinear Behavioral Modeling for RF and Microwave Design, John Wood and
David E. Root, editors

Generalized Filter Design by Computer Optimization, Djuradj Budimir

Handbook of Dielectric and Thermal Properties of Materials at Microwave Frequencies,
Vyacheslav V. Komarov

Handbook of RF, Microwave, and Millimeter-Wave Components, Leonid A. Belov,
Sergey M. Smolskiy, and Victor N. Kochemasov



High-Efficiency Load Modulation Power Amplifiers for Wireless Communications,
Zhancang Wang

High-Linearity RF Amplifier Design, Peter B. Kenington

High-Speed Circuit Board Signal Integrity, Second Edition, Stephen C. Thierauf

Integrated Microwave Front-Ends with Avionics Applications, Leo G. Maloratsky

Intermodulation Distortion in Microwave and Wireless Circuits, José Carlos Pedro and
Nuno Borges Carvalho

Introduction to Modeling HBTs, Matthias Rudolph

An Introduction to Packet Microwave Systems and Technologies, Paolo Volpato

Introduction to RF Design Using EM Simulators, Hiroaki Kogure, Yoshie Kogure, and
James C. Rautio

Introduction to RF and Microwave Passive Components, Richard Wallace and Krister Andreasson

Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons,
A. S. Gilmour, Jr.

Lumped Element Quadrature Hybrids, David Andrews

Lumped Elements for RF and Microwave Circuits, Second Edition, Inder J. Bahl

Microstrip Lines and Slotlines, Third Edition, Ramesh Garg, Inder Bahl, and Maurizio Bozzi

Microwave Component Mechanics, Harri Eskelinen and Pekka Eskelinen

Microwave Differential Circuit Design Using Mixed-Mode S-Parameters, William R. Eisenstadt,
Robert Stengel, and Bruce M. Thompson

Microwave Engineers’ Handbook, Two Volumes, Theodore Saad, editor

Microwave Filters, Impedance-Matching Networks, and Coupling Structures, George L. Matthaei,
Leo Young, and E. M. T. Jones

Microwave Imaging Methods and Applications, Matteo Pastorino and Andrea Randazzo

Microwave Material Applications: Device Miniaturization and Integration, David B. Cruickshank

Microwave Materials and Fabrication Techniques, Second Edition, Thomas S. Laverghetta

Microwave Materials for Wireless Applications, David B. Cruickshank

Microwave Mixer Technology and Applications, Bert Henderson and Edmar Camargo

Microwave Mixers, Second Edition, Stephen A. Maas

Microwave Network Design Using the Scattering Matrix, Janusz A. Dobrowolski

Microwave Power Amplifier Design with MMIC Modules, Howard Hausman

Microwave Radio Transmission Design Guide, Second Edition, Trevor Manning

Microwave and RF Semiconductor Control Device Modeling, Robert H. Caverly

Microwave Transmission Line Circuits, William T. Joines, W. Devereux Palmer, and
Jennifer T. Bernhard

Microwave Techniques in Superconducting Quantum Computers, Alan Salari

Microwaves and Wireless Simplified, Third Edition, Thomas S. Laverghetta

Millimeter-Wave GaN Power Amplifier Design, Edmar Camargo

Modern Microwave Circuits, Noyan Kinayman and M. I. Aksun

Modern Microwave Measurements and Techniques, Second Edition, Thomas S. Laverghetta



Modern RF and Microwave Filter Design, Protap Pramanick and Prakash Bhartia

Neural Networks for RF and Microwave Design, Q. J. Zhang and K. C. Gupta

Noise in Linear and Nonlinear Circuits, Stephen A. Maas

Nonlinear Design: FETs and HEMTs, Peter H. Ladbrooke

Nonlinear Microwave and RF Circuits, Second Edition, Stephen A. Maas

On-Wafer Microwave Measurements and De-Embedding, Errikos Lourandakis

Parameter Extraction and Complex Nonlinear Transistor Models, Günter Kompa

Passive RF Component Technology: Materials, Techniques, and Applications, Guoan Wang and
Bo Pan, editors

PCB Design Guide to Via and Trace Currents and Temperatures, Douglas Brooks with
Johannes Adam

Practical Analog and Digital Filter Design, Les Thede

Practical Microstrip Design and Applications, Günter Kompa

Practical Microwave Circuits, Stephen Maas

Practical RF Circuit Design for Modern Wireless Systems, Volume I: Passive Circuits and Systems,
Les Besser and Rowan Gilmore

Practical RF Circuit Design for Modern Wireless Systems, Volume II: Active Circuits and Systems,
Rowan Gilmore and Les Besser

Principles of RF and Microwave Design, Matthew A. Morgan

Production Testing of RF and System-on-a-Chip Devices for Wireless Communications,
Keith B. Schaub and Joe Kelly

Q Factor Measurements Using MATLAB, Darko Kajfez

Radio Frequency Integrated Circuit Design, Second Edition, John W. M. Rogers and Calvin Plett

Radio Frequency Machine Learning: A Practical Deep Learning Perspective, Scott Kuzdeba

Relativistic Field Theory for Microwave Engineers, Matthew A. Morgan

Reflectionless Filters, Matthew A. Morgan

RF Bulk Acoustic Wave Filters for Communications, Ken-ya Hashimoto

RF Circuits and Applications for Practicing Engineers, Mouqun Dong

RF Design Guide: Systems, Circuits, and Equations, Peter Vizmuller

RF Linear Accelerators for Medical and Industrial Applications, Samy Hanna

RF Measurements of Die and Packages, Scott A. Wartenberg

RF and Microwave Power Amplifiers, Frederick H. “Fritz” Raab

The RF and Microwave Circuit Design Handbook, Stephen A. Maas

RF and Microwave Coupled-Line Circuits, Rajesh Mongia, Inder Bahl, and Prakash Bhartia

RF and Microwave Oscillator Design, Michal Odyniec, editor

RF Passive Network Design and Synthesis for Mobile Communications, Volume 1, Peter V. Wright

RF Power Amplifiers for Wireless Communications, Second Edition, Steve C. Cripps

RF Systems, Components, and Circuits Handbook, Ferril A. Losee

Scattering Parameters in RF and Microwave Circuit Analysis and Design, Janusz A. Dobrowolski



The Six-Port Technique with Microwave and Wireless Applications, Fadhel M. Ghannouchi and
Abbas Mohammadi

Solid-State Microwave High-Power Amplifiers, Franco Sechi and Marina Bujatti

Stability Analysis of Nonlinear Microwave Circuits, Almudena Suárez and Raymond Quéré

Substrate Integrated Suspended Line Circuits and Systems, Kaixue Ma and Yongqiang Wang

Substrate Noise Coupling in Analog/RF Circuits, Stephane Bronckers, Geert Van der Plas,
Gerd Vandersteen, and Yves Rolain

System-in-Package RF Design and Applications, Michael P. Gaynor

Technologies for RF Systems, Terry Edwards

Terahertz Metrology, Mira Naftaly, editor

Understanding Quartz Crystals and Oscillators, Ramón M. Cerda

Vertical GaN and SiC Power Devices, Kazuhiro Mochizuki

The VNA Applications Handbook, Gregory Bonaguide and Neil Jarvis

Wideband Microwave Materials Characterization, John W. Schultz

Wired and Wireless Seamless Access Systems for Public Infrastructure, Tetsuya Kawanishi

For further information on these and other Artech House titles, including previously

considered out-of-print books now available through our In-Print-Forever® (IPF®) pro-

gram, contact:

Artech House Artech House
685 Canton Street 16 Sussex Street
Norwood, MA 02062 London SW1V 4RW UK
Phone: 781-769-9750 Phone: +44 (0)20 7596 8750
Fax: 781-769-6334 Fax: +44 (0)20 7630 0166
e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at: www.artechhouse.com


	RF Passive Network Design and Synthesisfor Mobile Communications, Volume 1
	Contents
	Preface
	Motivation for This Book
	Overview of This Book

	CHAPTER 1
[ABCD] Parameters: Key Relationships
	1.1 Some Useful [ABCD] Relationships
	1.2 Common Two-Port Network [M] Parameters
	1.3 Interconnection of Two [ABCD] Matrices
	1.4 Modified Matrix Coefficients with Ground Impedance

	CHAPTER 2
S-Parameters: Key Relationship
	2.1 Some Useful S-Parameter Relationships
	2.2 Changing Port Normalization Impedances
	2.3 Some Useful Two-Port S-Parameter Relationships
	2.4 Common Two-Port Network S-Parameters
	2.5 Coupled-Inductor Multiport S-Parameters
	2.6 Interconnection of Two Two-Port S-Parameter Networks
	2.7 S-Parameter Reduction of a Terminated Three-Port to a Two-Port Network
	2.8 S-Parameter Reduction of a Terminated Four-Port to a Three-Port Network
	2.9 Useful Three-Port Formulae
	2.9.1 Input Impedance and Voltage Division, Driving Port 1 Alone
	2.9.2 Input Impedance and Voltage Division, Driving Port 2 Alone
	2.9.3 Input Impedance and Voltage Division, Driving Port 3 Alone
	2.9.4 Input Impedances, Driving Ports 1 and 2 Simultaneously
	2.9.5 S-Parameters from Terminal Voltages and Currents
	2.9.6 Derivation of Terminal Voltages and Currents from S-Parameters


	CHAPTER 3 Y and Z-Parameters: Key Relationships
	3.1 Y-Parameters
	3.2 Some Useful Two-Port Y-Parameter Relationships
	3.3 Common Two-Port Network Y-Parameters
	3.4 Z-Parameters
	3.5 Some Useful Two-Port Z-Parameter Relationships
	3.6 Common Two-Port Network Z-Parameters

	CHAPTER 4 Power Relationships
	4.1 Fundamental Power Relations
	4.2 [ABCD] Power Relations
	4.3 Two-Port S-Parameter Power Relations
	4.4 Two-Port Y-Parameter Power Relations
	4.5 Two-Port Z-Parameter Power Relations
	4.6 Some Useful Power Relationships
	4.7 Maximum Available Gain: Optimum Conjugate Matching of a
Passive Two-Port

	CHAPTER 5
Lumped-Element Basics
	5.1 Parametric Model Extrac
	5.1.1 Extracting Immittances from S-Parameters

	5.2 Capacitor Lumped-Element Models
	5.2.1 Capacitor: Extracting Two-Element Model Values
	5.2.2 Capacitor: Extracting Three-Element Model Values
	5.2.3 Capacitor: Quality Factor
	5.2.4 Capacitor: Comparing Two and Three-Element Models

	5.3 Inductor Lumped-Element Models
	5.3.1 Inductor: Extracting Two-Element Model Values
	5.3.2 Inductor: Extracting Three-Element Model Values
	5.3.3 Inductor: Quality Factor
	5.3.4 Inductor: Comparing Two and Three-Element Models

	5.4 Quadratic Interpolation for dY/dω and dZ/dω
	5.6 Summary

	CHAPTER 6
Efficient Analytic Optimization Approach
	CHAPTER 7
Excel: A Powerful Interactive RF
Design Tool
	7.1 Visualizations in Excel
	7.1.1 Display Plots
	7.1.2 Dynamic Circuit Schematic Layout
	7.1.3 Contour Plots
	7.1.4 Bar Plots

	7.2 Complex Expressions in Excel
	7.3 Use of Macros in Excel

	CHAPTER 8
LC Resonator Basics
	8.1 Formulae for Equivalency Between LC-Series and
Parallel Resonators
	8.2 Design of LC Resonators for Passband Filtering
	8.3 Design of LC Resonators for Stopband Rejection
	8.4 Design of LC-Series Resonators with Desired In-Band Capacitance
and a High-Side Resonance
	8.5 Design of LC-Series Resonators with Desired In-Band Inductance
and a Low-Side Resonance
	8.6 Design of LC-Parallel Resonators with Desired In-Band Inductance
and a High-Side Resonance
	8.7 Design of LC-Parallel Resonators with Desired In-Band
Capacitance and a Low-Side Resonance
	8.8 Practical Bandpass Filter Design
	8.9 Novel Resonator Pairing for Bandpass Shaping
	8.10 Novel LC-Series Resonator Pairing for a Passband-Type Response
	8.11 Novel LC-Parallel Resonator Pairing for a Passband-Type Response

	CHAPTER 9
Fundamentals of Amplifier Output
Matching
	9.1 Passband Harmonic Susceptance Compensated Uniquely by
Bias Inductor
	9.2 Passband Harmonic Susceptance Compensated by Bias Inductor
and Matching Network

	CHAPTER 10
Basic RF PA Bias and Harmonic Trap
Networks
	10.1 PA Shunting Inductance and Single Harmonic Trap
	10.2 PA Shunting Inductance and Dual Harmonic Traps
	10.3 PA Shunting Inductance and Dual Coupled Harmonic Traps
	10.4 Differential PA Shunting Inductances and Harmonic Traps
	10.5 Differential PA Shunting Inductances and Coupled
Harmonic Traps
	10.6 Differential PA Shunting Inductances and Coupled Bias and
Harmonic Traps
	10.7 All-Pass Bridge-T Lowpass Differential Network

	CHAPTER 11
LC Single-Ended Matching Networks
Overview
	11.1 Basic Two-Element Matches
	11.2 Basic Two-Element Matching Networks Characteristics
	11.3 Three-Element Network Dependency Options
	11.4 π-Network Design
	11.4.1 Dual Section π-Network Design
	11.5 T-Network Design
	11.6 π and T-Network Characteristics
	11.6.1 Lowpass π-Network
	11.6.2 Highpass π-Network
	11.6.3 Lowpass T-Network
	11.6.4 Highpass T-Network
	11.6.5 π and T-Network Equivalencies

	11.7 Two-Element, Single-Ended Matching Networks
	11.8 Dual-π Single-Ended PA Matching
	11.8.1 Lowpass + Lowpass π-Networks Cascade
	11.8.2 Lowpass + Highpass π-Networks Cascade
	11.8.3 Highpass + Lowpass π-Networks Cascade
	11.8.4 Highpass + Highpass π-Networks Cascade


	CHAPTER 12
Coupled-Inductor Single-Ended PA
Matching
	12.1 Terminology: Coupled Inductors Versus Transformers
	12.2 Basic Single-Ended Coupled-Inductor Design
	12.2.1 Basic Single-Ended, Coupled-Inductor Matching Configurations
	12.2.2 Basic Single-Ended, Coupled-Inductor Matching Complexities
	12.2.3 Single-Ended, Coupled-Inductor Matching Compared with
Conventional LC-Output Matching

	12.3 Single-Ended Coupled Inductors with an Interwinding
Capacitance Analysis Approach
	12.3.1 Impact of Interwinding Capacitance on Single-Ended, Coupled-
Inductor Characteristics

	12.4 Lowpass π-Network with Auto-Transformer Action
	12.4.1 Lowpass π-Network with Auto-Transformer Action Example
	12.4.2 Lowpass π-Network with Auto-Transformer Action and Virtual
Inductor Ground

	12.5 Highpass T-Network with Auto-Transformer Action
	12.5.1 Highpass T-Network with Auto-Transformer Action Example


	CHAPTER 13 Considerations of Single-Phase Versus
Multiphase Power Amplifiers
	13.1 Considerations of Single-Ended Versus Differential
PA Architectures
	13.2 Comparative Aspects of Single-Ended Versus Differential
PA Architectures
	13.3 Additional Comments on Single-Ended Versus Differential
PA Architectures

	CHAPTER 14
Classic Coupled-Inductor Matching for
Differential PAs
	14.1 Basic Differential Coupled-Inductor Design
	14.1.1 Basic Differential Coupled-Inductor Design Example

	14.2 Differential Coupled Inductors with Interwinding Capacitance
	14.2.1 Differential Coupled Inductor with an Interwinding CapacitanceDesign Example


	CHAPTER 15
Lattice Splitter/Combiner
	15.1 Generalized Lattice Splitter/Combiner Design Basics
	15.1.1 Generalized Lattice Splitter/Combiner Design Equations

	15.2 Generalized Lattice Design Examples
	15.2.1 Splitter Example: Conventional Lattice-Balun
	15.2.2 Combiner Example: Conventional Lattice-Balun
	15.2.3 Splitter Example: Lattice-Balun with Complex Input Impedance
	15.2.4 Combiner Example: Lattice-Balun with a Complex Input Impedance
	15.2.5 Splitter Example: Lattice-Balun with a Complex Input Impedance andan Unequal Power Split
	15.2.6 Combiner Example: Lattice-Balun with a Complex Input Impedanceand an Unequal Power Split
	15.2.7 Splitter Example: Lattice with Multiple Mixed Specifications
	15.2.8 Combiner Example: Lattice with Multiple Mixed Specifications
	15.2.9 Limited Case for Lattice with Additional Shunt Susceptance

	15.3 Development of Six-Element Lattice Coupler

	Appendix A Miscellaneous Generic [M] = [ABCD]Network Parameters

	Appendix B
Conversion Formulae Between Two-PortNetwork Parameters
	Appendix C
Conversion of Four-Port S-Parameters toY-Parameters
	Appendix D
Four-Port Scattering Parameters for BasicCoupled-Inductors with Primary ShuntCapacitor
	Appendix E
Quadratic Polynomial Fit Through ThreeData Points
	Appendix F
Analysis of Coupled Inductors IncludingInterwinding Capacitance
	Appendix G
Analysis of Differential Coupled InductorsIncluding Interwinding Capacitance andBias Network
	G.1 Odd-Mode Network Solutions
	G.2 Output Impedance on Port 3
	G.3 Design Synthesis

	Appendix H
Some Useful Materials Data
	Selected Bibliography
	About the Author
	Index


