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Preface

Spread-spectrum communication systems are digital wireless systems that forgo
spectral efficiency to make secure communications difficult to detect and pro-
cess, accommodate fading and multipath channels, and provide a multiple-
access capability. I have written this fifth edition of “Principles of Spread-
Spectrum Communication Systems” because spread-spectrum systems are an
important option in designing a digital communication system. Although spread-
spectrum systems have been eclipsed in the world of commercial cellular com-
munications by orthogonal frequency-division multiplexing systems, spread-
spectrum systems remain a force in other worlds, such as the Global Positioning
System, Bluetooth, and military communications.

About 10% of the book is new or essentially new, and the presentation of the
remainder has been substantially improved. Among the additions to this edition
are more technical details and more detailed analyses of frequency synchroniza-
tion, fading rates, spread-spectrum systems with differential phase-shift and
quadrature phase-shift keying, and multisymbol demodulation of frequency-
hopping systems with continuous-phase frequency-shift keying. Obsolete and
unimportant material in the previous edition has been purged.

This book provides a comprehensive and intensive examination of spread-
spectrum communication systems that is suitable for graduate students, prac-
ticing engineers, and researchers with a solid background in the theory of digital
communication. No textbook can cover in detail the myriad implemented and
plausible spread-spectrum systems and their subsystems. The principal goal
of this book is to provide a concise but lucid explanation of the fundamentals
of spread-spectrum systems that will enable readers to understand the current
state-of-the-art and analyze a proposed system. The choice of specific topics
to include was tempered by my judgment of their practical significance and
interest to both researchers and system designers. The book contains many
improved derivations of the classical theory and presents the latest research
results that bring the reader to the frontier of the field.

The book emphasizes theoretical principles and methods of mathematical
analysis that will facilitate future research. Simulation is the best way to deter-
mine the performance of a complicated spread-spectrum system, but simulation
often deprives one of insight into the mechanisms of a system. Consequently, I
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have pursued and stressed analysis by itself or in support of a simulation. When
analysis cannot be continued without excessive approximations or assumptions,
I have provided simulation results.

The analytical methods and subsystem descriptions are applicable to a wide
variety of digital communication systems. Problems at the end of each chapter
are intended to assist readers in consolidating their knowledge and to provide
practice in analytical techniques. The listed references are ones that I recom-
mend for further study and as sources of additional references. The appendices
contain detailed theorems and proofs that prepare the reader for the mathe-
matical methods used throughout the main text.

A spread-spectrum signal is a signal with an extra modulation that expands
the signal bandwidth greatly beyond what is required by the underlying chan-
nel code and modulation. The most practical and dominant spread-spectrum
systems are direct-sequence and frequency-hopping systems. There is no fun-
damental theoretical barrier to the effectiveness of spread-spectrum commu-
nications. This remarkable fact is not immediately apparent because the in-
creased bandwidth of a direct-sequence signal necessitates a receiver filter that
passes more noise power to the demodulator. However, when any signal and
white Gaussian noise are applied to a filter matched to the signal, the sampled
filter output has a signal-to-noise ratio that depends solely on the energy-to-
noise-density ratio. Thus, the bandwidth of the input signal is irrelevant, and
spread-spectrum signals have no inherent limitations.

Chapter 1 reviews fundamental results about most of the underlying mod-
ulations that are used or might be used for spread-spectrum communication.
Coding theory and channel codes that are essential to a full understanding
of spread-spectrum systems are presented. Channel codes, which are also
called error-correction or error-control codes, are vital in fully exploiting the
potential capabilities of spread-spectrum communication systems. Although
direct-sequence systems greatly suppress interference, practical systems require
channel codes to limit the effects of the residual interference and channel im-
pairments, such as fading. Frequency-hopping systems are designed to avoid
interference, but the possibility of hopping into an unfavorable spectral region
usually requires a channel code to maintain adequate performance. Turbo and
LDPC codes are examined because of their importance in the implementation
of robust spread-spectrum systems, such as the ones described in Chapter 9.
The first section of this chapter is particularly important for the understanding
of the mathematical analysis in other parts of the book.

Chapter 2 presents the fundamentals of direct-sequence systems. After the
information bits are mapped into code symbols, direct-sequence modulation
entails the direct addition of a high-rate spreading sequence with the lower-rate
data or code-symbol sequence, resulting in a transmitted signal with a relatively
wide bandwidth. The removal of the spreading sequence in the receiver causes a
contraction of the bandwidth of the direct-sequence signal while not altering the
bandwidth of the interference. The difference in bandwidths can be exploited
by appropriate filtering to remove a large portion of the interference. This
chapter describes basic spreading sequences, both linear and nonlinear, and
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data modulations that are detected coherently or noncoherently. A detailed
analysis shows how the direct-sequence receiver suppresses various forms of
interference. The devices that enable despreading with bandpass matched filters
are described.

Chapter 3 covers the fundamentals of frequency-hopping systems. Fre-
quency hopping is the periodic changing of the carrier frequency of a transmitted
signal. This time-varying characteristic potentially endows a communication
system with great strength against interference. Whereas a direct-sequence sys-
tem relies on spectral spreading, spectral despreading, and filtering to suppress
interference, the basic mechanism of interference suppression in a frequency-
hopping system is that of avoidance. When the avoidance fails, it is only tem-
porary because of the periodic changing of the carrier frequency. The impact
of the interference is further mitigated by the pervasive use of channel codes,
which are more essential for frequency-hopping systems than for direct-sequence
systems. The basic concepts, spectral and performance aspects, and coding and
modulation issues of frequency-hopping systems are presented in this chapter.
A detailed description of the versatile continuous-phase frequency-shift keying
as the data modulation is presented. The potentially powerful multisymbol
noncoherent demodulation and the digital demodulation of continuous-phase
frequency-shift keying are explored. The effects of partial-band interference
and multitone jamming are examined, and the most important issues in the
design of frequency synthesizers are described.

The methods of frequency and timing synchronization for both direct-
sequence and frequency-hopping systems are presented in Chapter 4. Frequency
synchronization refers to the synchronization of the receiver-generated carrier
frequency with the received carrier frequency. Although the use of precision
clocks in both the transmitter and the receiver limits the frequency uncertainty
in the receiver, clock drifts, range uncertainty, and the Doppler shift may cause
synchronization problems. A spread-spectrum receiver requires timing synchro-
nization to generate a spreading sequence or frequency-hopping pattern that is
synchronized with the received spreading sequence or frequency-hopping pat-
tern. After timing synchronization, the received and receiver-generated chips
or dwell intervals must precisely or nearly coincide. Any misalignment causes
the signal amplitude at the demodulator output to fall in accordance with the
autocorrelation or partial autocorrelation function. A practical implementation
of timing synchronization is greatly facilitated by dividing synchronization into
the two operations of acquisition and tracking. Timing acquisition provides
coarse synchronization by limiting the possible timing offsets of the receiver-
generated chips or dwell intervals to a finite number of quantized candidates.
Timing acquisition is almost always the dominant design issue and most expen-
sive component of a complete spread-spectrum system. Following the timing ac-
quisition, timing tracking is activated to provide fine synchronization by which
synchronization errors are further reduced or at least maintained within certain
bounds. Symbol synchronization, which is needed to provide timing pulses for
symbol detection to the decoder, is derived from the timing synchronization.
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Adaptive filters and adaptive arrays have numerous applications as com-
ponents of communication systems. Chapter 5 covers the principal adaptive
filters and adaptive arrays that are amenable to exploiting the special spectral
characteristics of spread-spectrum signals to enable interference suppression be-
yond that inherent in the despreading or dehopping. Adaptive filters for the
rejection of narrowband interference or primarily for the rejection of wideband
interference are presented. The LMS, normalized LMS, and Frost algorithms
are derived, and conditions for the convergence of their mean weight vectors are
determined. Adaptive arrays for both direct-sequence systems and frequency-
hopping systems are described and shown to potentially provide a very high
degree of interference suppression.

Chapter 6 provides a general description of the most important aspects of
fading and the role of diversity methods in counteracting it. Fading is the vari-
ation in received signal strength due to changes in the physical characteristics
of the propagation medium, which alter the interaction of multipath compo-
nents of the transmitted signal. The principal means of counteracting fading
are diversity methods, which are based on the exploitation of the latent redun-
dancy in two or more independently fading copies of the same signal. The basic
concept of diversity is that even if some copies are degraded, there is a high
probability that others will not be. This chapter provides a general description
of the most important aspects of fading and the role of diversity methods in
counteracting it. Both direct-sequence and frequency-hopping signals are shown
to provide diversity through various blends of spatial diversity, maximal-ratio
combining, equal-gain combining, noncoherent combining, selection combining,
transmit diversity, channel codes, and bit-interleaved coded modulation. The
rake receiver, which is of central importance in most direct-sequence systems,
is shown to be capable of exploiting undesired multipath signals rather than
simply attempting to reject them. Multicarrier direct-sequence systems and
frequency-domain equalization are analyzed in great detail and shown to be
viable alternative methods of advantageously processing multipath signals.

Multiple access is the ability of many users to communicate with each other
while sharing a common transmission medium. Wireless multiple-access com-
munications are facilitated if the transmitted signals are orthogonal or separable
in some sense. Signals may be separated in time (time-division multiple ac-
cess [TDMA]), frequency (frequency-division multiple access [FDMA]), or code
(code-division multiple access [CDMA]). Chapter 7 presents the general charac-
teristics of direct-sequence CDMA (DS-CDMA) and frequency-hopping CDMA
(FH-CDMA) systems. The use of spread-spectrum modulation in CDMA allows
the simultaneous transmission of signals from multiple users in the same fre-
quency band. All signals use the entire allocated spectrum, but the spreading
sequences or frequency-hopping patterns differ. Information theory indicates
that in an isolated cell, CDMA systems achieve the same spectral efficiency as
TDMA or FDMA systems only if optimal multiuser detection is used. However,
even with single-user detection, CDMA has advantages for mobile communica-
tion networks because it eliminates the need for frequency and time-slot coordi-
nation, allows carrier-frequency reuse in adjacent cells, imposes no sharp upper
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bound on the number of users, and provides resistance to interference and inter-
ception. The vast potential and practical difficulties of spread-spectrum mul-
tiuser detectors, such as optimal, decorrelating, minimum mean-square-error, or
adaptive detectors, are described and assessed. The tradeoffs and design issues
of direct-sequence multiple-input multiple-output with spatial multiplexing or
beamforming are determined.

The impact of multiple-access interference in mobile ad hoc and cellular
networks with DS-CDMA and FH-CDMA systems is analyzed in Chapter 8.
Phenomena and issues that become prominent in mobile networks using spread
spectrum include exclusion zones, guard zones, power control, rate control,
network policies, sectorization, and the selection of various spread-spectrum
parameters. The outage probability, which is the fundamental network per-
formance metric, is derived for both ad hoc and cellular networks and both
DS-CDMA and FH-CDMA systems. Acquisition and synchronization methods
that are needed within a cellular DS-CDMA network are addressed.

Chapter 9 examines the role of iterative channel estimation in the design
of advanced spread-spectrum systems. The estimation of channel parameters,
such as the fading amplitude and the power spectral density of the interference
and noise, is essential to the effective use of soft-decision decoding. Channel
estimation may be implemented by the transmission of pilot signals that are
processed by the receiver, but pilot signals entail overhead costs, such as the loss
of data throughput. Deriving maximum-likelihood channel estimates directly
from the received data symbols is often prohibitively difficult. There is an
effective alternative when turbo or low-density parity-check codes are used. The
expectation–maximization algorithm, which is derived and explained, provides
an iterative approximate solution to the maximum-likelihood equations and is
inherently compatible with iterative demodulation and decoding. Two examples
of advanced spread-spectrum systems that apply iterative channel estimation,
demodulation, and decoding are described and analyzed. These systems provide
good illustrations of the calculations required in the design of advanced systems.

The ability to detect the presence of spread-spectrum signals is often re-
quired by cognitive radio, ultra-wideband, and military systems. Chapter 10
presents an analysis of the detection of spread-spectrum signals when the spread-
ing sequence or the frequency-hopping pattern is unknown and cannot be accu-
rately estimated by the detector. Thus, the detector cannot mimic the intended
receiver, and alternative procedures are required. The goal is limited in that
only detection is sought, not demodulation or decoding. Nevertheless, detection
theory leads to impractical devices for the detection of spread-spectrum signals.
An alternative procedure is to use a radiometer or energy detector, which relies
solely on energy measurements to determine the presence of unknown signals.
The radiometer has applications not only as a detector of spread-spectrum sig-
nals but also as a general sensing method in cognitive radio and ultra-wideband
systems.

Eight appendices contain important mathematical details about Gaussian
processes and the central limit theorem, the moment-generating function and
the Laplace transform, the Fourier transform and the characteristic function,
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fundamental signal characteristics, probability distributions, orthonormal func-
tions and parameter estimation, Hermitian matrices, and special functions.

In writing this book, I have relied heavily on the notes and documents
prepared and the perspectives gained during my work at the US Army Research
Laboratory. I am grateful to my wife, Nancy, who provided me with her usual
unwavering support and also with editorial assistance.

Silver Spring, MD, USA Don Torrieri
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Chapter 1

Modulations and Channel
Codes

Spread-spectrum systems superimpose an additional modulation on an under-
lying modulation. This chapter reviews fundamental results about most of the
underlying modulations that are used or might be used for spread-spectrum
communication. Coding theory and channel codes that are essential to a full
understanding of spread-spectrum systems are presented. Channel codes, which
are also called error-correction or error-control codes, are vital in fully exploit-
ing the potential capabilities of spread-spectrum communication systems. Al-
though direct-sequence systems greatly suppress interference, practical systems
require channel codes to limit the effects of the residual interference and channel
impairments, such as fading. Frequency-hopping systems are designed to avoid
interference, but the possibility of hopping into an unfavorable spectral region
usually requires a channel code to maintain adequate performance. Turbo and
LDPC codes are examined because of their importance in the implementation
of robust spread-spectrum systems, such as the ones described in Chapter 9.
The first section of this chapter is particularly important for the understanding
of the mathematical analysis in other parts of the book.

1.1 Modulations and Codeword Metrics

Matched Filter

A basic operation performed in demodulators is matched filtering. A filter is
said to be matched to a time-limited signal x(t) that is zero outside the interval
[0, T ] if the impulse response of the filter is

h(t) = x∗(T − t) (1-1)
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(a) (b)

A

A2T

T �me 2T

amplitude amplitude

T �me

Figure 1.1: (a) Rectangular input to matched filter, and (b) filter response

where the asterisk denotes complex conjugation. When x(t) is applied to a filter
matched to it, the filter output is

y(t) =

∫ ∞

−∞
x(u)h(t− u)du

=

∫ min(t,T )

max(t−T,0)

x(u)x∗(u+ T − t)du, 0 ≤ t ≤ 2T (1-2)

and is zero if t > 2T . If the matched-filter output is sampled at t = T , then

y(T ) =

∫ T

0

|x(u)|2 du (1-3)

which is equal to the energy of the signal and is the largest value of y (t) in the
interval [0, 2T ]. The response of matched filter to a rectangular input signal is
illustrated in Figure 1.1. The ideal sampling instant occurs at the peak of the
triangular output pulse.

If a filter matched to a time-limited signal x (t) receives a signal s (t) to
which it is not matched, then the output at t = T is

y(T ) =

∫ T

0

s (u)x∗(u)du (1-4)

which is a measure of the correlation between x (t) and s (t) .

Downconversion and Filtering

Most modern digital receivers use a downconverter to convert the received signal
into a filtered baseband signal. A frequency translation or downconversion to
baseband is followed by baseband filtering. The downconversion is represented
mathematically by the multiplication of the received signal by a complex expo-
nential but is physically realized as an in-phase and quadrature decomposition.

Consider the received signal

r(t) = Re[sl (t) e
j2πfct+jθ] + n(t), 0 ≤ t < T (1-5)
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where j =
√
−1, sl(t) is the complex envelope of the desired signal, fc is the

carrier frequency, θ is the phase offset of the received carrier relative to the
receiver-generated one, and n (t) is the noise. Let h(t) denote the impulse
response of the baseband filter. If h (t) = 0, t < 0, then the output of the
baseband filter due to the desired signal is

s1(t) =

∫ t

−∞
Re[sl (u) e

j2πfcu+jθ]e−j2πfcuh(t− u) du. (1-6)

Substituting Re(x) = (x+ x∗)/2, we obtain

s1(t) =
1

2

∫ t

−∞
sl(u)e

jθh(t− u) du+
1

2

∫ t

−∞
sl(u)h(t− u)e−j4πfcu−jθdu. (1-7)

We assume that fcT � 1 so that the second term in (1-7) is negligible compared
with the first term, leaving

s1(t) =
1

2

∫ t

−∞
sl(u)e

jθh(t− u) du. (1-8)

The downconverter alters the character of the noise n(t) entering it. For
the additive white Gaussian noise (AWGN) channel, the noise is a zero-mean,
white Gaussian process with autocorrelation

Rn(τ) = E[n(t)n(t+ τ)] =
N0

2
δ (τ) (1-9)

where δ(·) is the Dirac delta function (Appendix F.3), and N0/2 is the power
spectral density (PSD) of the noise. After downconversion and filtering, the
complex-valued noise at the output of the downconverter is

z(t) =

∫ t

−∞
n(u)e−j2πfcuh(t− u)du. (1-10)

Let zR(t) and zI(t) denote the real and imaginary parts of z(t), respec-
tively. The approximating Riemann sums of the real and imaginary parts
of the integral in (1-10) are sums of independent zero-mean Gaussian random
variables. Therefore, zR(t) and zI(t) are jointly zero-mean Gaussian processes
(Appendix A.1). The autocorrelation of the complex-valued process z(t) is
defined as

Rz(t, τ) = E[z∗(t)z(t+ τ)]. (1-11)

Substituting (1-10), interchanging the expectation and integration operations,
using (1-9) to evaluate one of the integrals, and then changing variables, we
obtain

Rz(t, τ) =
N0

2

∫ T

0

h∗(t− u)h(t− u+ τ)du. (1-12)

Equations (1-10) and (1-9) imply that

E[z(t)z(t+ τ)] =
N0

2

∫ T

0

e−j4πfcuh(t− u+ τ)h(t− u) du. (1-13)
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We assume that fcT � 1 so that the integral in (1-13) is negligible, leaving

E[z(t)z(t+ τ)] = 0. (1-14)

A complex-valued stochastic process z(t) that satisfies (1-14) is called a circu-
larly symmetric process. Setting τ = 0 in (1-14) and (1-12), we obtain

E[(zR(t))
2] = E[(zI(t))

2] =
1

2
E[|z(t)|2] = N0

4

∫ T

0

|h (t− u)|2 du (1-15)

E[(zR(t)zI(t))] = 0. (1-16)

To summarize, a downconversion followed by baseband filtering converts
zero-mean white Gaussian noise into circularly symmetric, zero-mean complex
Gaussian noise with real and imaginary components that are zero-mean inde-
pendent Gaussian processes with the same variance.

If the signal is zero outside the interval [0, T ], then the filter output at
sampling time t = T is

s1(T ) =
1

2

∫ T

0

sl(u)e
jθh(T − u) du. (1-17)

Using (1-17) and (1-15) and then applying the Cauchy–Schwarz inequality (F-12),
we find that the signal-to-noise ratio (SNR) of the sampled output is

γ =
E
[
|s1 (T )|2

]

E
[
|z (T )|2

]

≤
∫ T

0
|sl (u) |2du
2N0

. (1-18)

This upper bound is realized if the baseband filter is matched to sl(t) and there
is coherent detection so that we may assume that θ = 0. We conclude that for
the AWGN channel and a time-limited signal pulse, coherent downconversion
followed by filtering matched to the input signal and sampling maximizes the
SNR at the sampling instant.

Pulse Amplitude Modulation

After the signal representing a codeword is received and demodulated, a number
called the codeword metric is associated with each possible codeword of n code
symbols representing k information symbols. The decoder decides that the
codeword with the largest metric is the transmitted codeword and then produces
the corresponding information bits as the decoder output. If the codeword
metrics consist of a sequence of discrete symbol decisions, the receiver is said
to make hard decisions. Conversely, if the codeword metrics are functions of
analog or multilevel quantized samples of the demodulated signal, the receiver is
said to make soft decisions. The advantage of soft decisions is that reliability or
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quality information is provided to the decoder, which can use this information
to improve its performance.

Let y = ya + jyb denote the 1 × n random vector of demodulator outputs
after downconversion, matched filtering, and sampling. Let f (y) = f (ya,yb)
denote the joint density of ya = Re (y) and yb = Im (y) . Let d denote a
codeword vector with complex-valued symbols di, 1 ≤ i ≤ n, each of which
is a complex number representing any of the q complex numbers in the signal
constellation for an alphabet of size q. Let f(y|d) denote the likelihood function,
which is the conditional density of y given that d was transmitted.

A soft-decision decoder may use the likelihood function as the codeword
metric, or any monotonically increasing function of f(y|d) may serve as the
metric. A convenient choice is often proportional to the natural logarithm of
f(y|d), which is called the log-likelihood function. For statistically independent
demodulator outputs, the log-likelihood function for each of the qk possible
codewords of an (n, k) block code is

ln f(y|d) =
n∑

i=1

ln f(yi|di) (1-19)

where f(yi|di) is the conditional density of yi given the value of di.
Consider pulse amplitude modulation (PAM), which includes quadrature

amplitude modulation (QAM) and phase-shift keying (PSK). One of the qk

codewords of an (n, k) block code is transmitted over the AWGN channel. For
symbol i of codeword d, the received signal is

ri(t) =Re[αi

√
2Esdiψs[t− (i− 1)Ts]e

j(2πfct+θi ] + n(t)

(i− 1)Ts ≤ t ≤ iTs, i = 1, 2, . . . , n (1-20)

where αi is the fading amplitude, Es is the average symbol energy when αi = 1,
Ts is the symbol duration, fc is the carrier frequency, ψs(t) is the real-valued
symbol waveform, θi is the carrier phase, and n(t) is zero-mean Gaussian noise.
The fading amplitude is a real-valued positive attenuation that may vary from
symbol to symbol. The symbol waveform ψs(t) is assumed to be largely confined
to a single-symbol interval to avoid intersymbol interference and has unit energy
in a symbol interval: ∫ Ts

0

ψ2
s(t)dt = 1. (1-21)

The signal constellation is normalized so that

1

q

q∑
m=1

|d (m)|2 = 1 (1-22)

where d (m) denotes the complex number corresponding to the mth constella-
tion point.
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We make the spectral assumption that the spectrum of ψs(t) is negligible
unless |f | < fc. The average symbol energy is defined as

1

q

q∑
m=1

∫ iTs

(i−1)Ts

{
Re
[√

2Esdi (m)ψs [t− (i− 1)Ts] e
j(2πfct+θi)

]}2

dt (1-23)

which equals Es, as verified by expanding the sum in terms of integrals and then
using the spectral assumption to eliminate negligible integrals.

After downconversion, the signal is applied to a filter matched to ψsi(t) =
ψs [t− (i− 1)Ts] and sampled. After invoking the spectral assumption to dis-
card a negligible integral, we find that the matched-filter output samples are

yi =
√
2

∫ iTs

(i−1)Ts

ri(t)ψsi (t) e
−j(2πfct)dt

= αi

√
Esdiej θi + ni, i = 1, 2, . . . , n (1-24)

where the factor
√
2 has been inserted for mathematical convenience. The noise

component is

ni =
√
2

∫ iTs

(i−1)Ts

n(t)ψsi (t) e
−j(2πfct+φi)dt. (1-25)

To allow for interference that is modeled as zero-mean Gaussian noise with
a time-varying power spectrum, we generalize the AWGN channel. For the
time-varying AWGN channel, the autocorrelation of the zero-mean Gaussian
noise process is modeled as

E[n(t)n(t+ τ)] =
N0i

2
δ(τ), (i− 1)Ts ≤ t ≤ iTs, i = 1, 2, . . . , n (1-26)

where N0i/2 is the PSD of n(t) during the interval (i− 1)Ts ≤ t ≤ iTs.
Let the superscript T denote the transpose of a vector or matrix. For the

time-varying AWGN channel, the disjoint symbol intervals imply that the {ni}
are independent zero-mean complex Gaussian random variables, and the n ×
1 random noise vector n = [n1n2 . . . nn]

T is a zero-mean, complex Gaussian
random vector. The preceding noise analysis and (1-14) indicate that E

[
n2
i

]
=

0, and hence

E
[
nnT

]
= 0. (1-27)

A zero-mean, complex random vector n that satisfies this equation is said to
have circular symmetry . Similarly, the preceding results and (1-15) indicate
that

E
[
nnH

]
= N0iI (1-28)

where the superscript H denotes the conjugate transpose of a vector or matrix,
and I denotes the identity matrix. The preceding results and (1-16) indicate
that the 2n real and imaginary components of the {ni} are all independent
Gaussian random variables with the same variance N0i/2.
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The density of a complex Gaussian random variable is defined as the joint
density of its real and imaginary components. The density of ni with indepen-
dent, identically distributed components is

f (ni) =
1

πN0i
exp

(
−|ni|2

N0i

)
, i = 1, 2, . . . , n. (1-29)

Therefore, the conditional density of yi given the value of di is

f(yi | di) =
1

πN0i
exp

(
−
∣∣yi − αi

√
Esdiejθi

∣∣2
N0i

)
, i = 1, 2, . . . , n. (1-30)

Since the components of y are independent random variables, the likelihood
function is the product of the n conditional densities of (1-30). Therefore, the
log-likelihood function for the codeword is

ln f(y|d) = −1

2

n∑
i=1

log (πN0i)−
n∑

i=1

∣∣yi − αi

√
Esdiejθi

∣∣2
N0i

. (1-31)

For coherent demodulation, the receiver is synchronized with the carrier
phase so that θi = 0. Since the first sum in (1-31) is independent of the codeword
d, it may be discarded in metrics derived from the log-likelihood function. After
discarding another irrelevant sum, the codeword metric for coherent PAM and
the time-varying AWGN channel is

U(d) =
n∑

i=1

[2αi

√
Es Re(d∗i yi)− Es |di|2]

N0i
(1-32)

which requires that the receiver can extract channel-state information that
leads to accurate estimates of

√
Esαi/N0i and Es/N0i, i = 1, 2, . . . , n.

For coherent demodulation and the AWGN channel with αi = α, the {N0i}
are all equal. Therefore, (1-30) reduces to

f(yi | di) =
1√
πN0

exp

[
− (yi − α

√
Esdi)2

N0

]
, i = 1, 2, . . . , n. (1-33)

After factors irrelevant to the decision making are discarded, the log-likelihood
function implies that a codeword metric for coherent PAM and the AWGN
channel without fading (α = 1) is

U(d) = −
∥∥∥y −

√
Esd
∥∥∥2 (1-34)

where ‖·‖ denotes the Euclidean norm of a vector. This equation indicates that
the optimal decision is to choose the signal constellation vector

√
Esd that has

the minimum Euclidean distance from the received vector y. A simplification of
the computation of the codeword metric results from expanding the Euclidean
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distance and then discarding irrelevant terms. Thus, the codeword metric for
coherent PAM, an (n, k) block code, and the AWGN channel is

U(d) =
n∑

i=1

[2Re (d∗i yi)−
√

Es |di|2] (1-35)

which requires that the receiver can accurately estimate Es.
A symbol metric is a demodulator output that can be used to make hard

symbol decisions or can be used in computing codeword metrics for soft-decision
decoding. Each of the {yi} in (1-35) is a symbol metric. A comparator is a
device that compares two or more inputs and produces an output that identifies
the largest of the inputs. For hard-decision decoding, a comparator decides
which of q symbols was transmitted by computing

d̂i = argmax
di

[2Re (d∗i yi)−
√

Es |di|2], 1 ≤ i ≤ n. (1-36)

These hard decisions are sent to the decoder. For soft-decision decoding, the
decoder uses the symbol metrics to calculate the qk codeword metrics and then
selects the codeword with the largest metric.

Symbols are represented by q uniformly spaced phases in the constellation
for q-ary phase-shift keying (PSK). Since all symbol magnitudes are equal, (1-35)

and (1-36) are valid if the terms involving |di|2 are omitted.
Let r denote the code rate, which is the ratio of information bits to trans-

mitted channel symbols. For (n, k) block codes with m = log2 q information
bits per symbol, r = mk/n. Thus, the energy per received channel symbol Es
is related to the energy per information bit Eb by

Es = rEb =
mk

n
Eb. (1-37)

Binary and Quadrature Phase-Shift Keying

For binary phase-shift keying (BPSK), di = +1 when binary symbol i is a 1,
and di = −1 when binary symbol i is a 0. For coherent demodulation, the
downconversion can be done with a sinusoidal function instead of a complex
exponential. Therefore, (1-24) and (1-25) are replaced by

yi = αi

√
Esdi + ni, i = 1, 2, . . . , n (1-38)

and

ni =
√
2

∫ iTs

(i−1)Ts

n(t)ψsi (t) cos (2πfct) dt. (1-39)

The codeword metric for BPSK and the time-varying AWGN channel is

U(d) =

n∑
i=1

αidiyi
N0i

. (1-40)
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Figure 1.2: Coherent BPSK demodulator

The main components of the BPSK demodulator structure are depicted in
Figure 1.2. The matched-filter (MF) output is sampled by the analog-to-digital
converter (ADC), and each sample is a symbol metric sent to the comparator
or decoder. The timing of the ADC sampling is controlled by a synchronized
symbol-rate clock.

The ADC produces multibit representations of several levels of the analog
voltages at its input. Since the optimal location of the levels is a function of the
signal, thermal noise, and interference powers, automatic gain control is often
necessary. For the AWGN channel, an eight-level quantization represented by
three bits and a uniform spacing between threshold levels cause a loss of no
more than a few tenths of a decibel relative to what could theoretically be
achieved with unquantized analog voltages or infinitely fine quantization.

When αi and N0i are constants over the codeword, the codeword metric for
BPSK and the AWGN channel without fading is

U(d) =
n∑

i=1

diyi. (1-41)

When a single BPSK symbol is considered and a hard decision is made, (1-41)
with k = n = 1 indicates that a bit error is made if d2y > d1y, where d1
denotes the transmitted symbol, and d2 denotes the incorrect symbol. Since
d2 = −d1, an error occurs if the sign of y differs from the sign of d1. Therefore,
an integration over the Gaussian density of (1-33) indicates that the channel-bit
or channel-symbol error probability for the AWGN channel is

Pb = Ps = Q

(√
2rEb
N0

)
, (1-42)

where r = k/n is the code rate, the Gaussian Q-function is defined as

Q(x) =
1√
2π

∫ ∞

x

exp

(
−y2

2

)
dy =

1

2
erf c

(
x√
2

)
(1-43)

and erfc(·) is the complementary error function.
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Consider the detection of a single quadrature phase-shift keying (QPSK)
symbol transmitted over the AWGN channel. The constellation symbols are
di = (±1± j) /

√
2. Since n = 1, the metric of (1-35) becomes

U(d) = Re (d∗y) . (1-44)

Without loss of generality because of the constellation symmetry, we assume
that the transmitted symbol is c = (1 + j) /

√
2. A symbol error occurs if y

does not lie in the first quadrant. As Re (y) and Im (y) are independent, the
channel-symbol error probability is

Ps = 1− P [Re (y) > 0]P [Im (y) > 0] (1-45)

Since Re (y) and Im (y) have Gaussian distributions, an evaluation using Es =
2rEb yields

Ps = 2Q

[√
2rEb
N0

]
−Q2

[√
2rEb
N0

]

� 2Q

[√
2rEb
N0

]
,

2rEb
N0

� 1. (1-46)

If the alphabets of the code symbols and the transmitted symbols differ,
then the q-ary code symbols may be mapped into q1-ary transmitted symbols.
Typically, q = 2ν , q1 = 2ν1 , ν/ν1 > 1, and ν/ν1 is a positive integer. Under
these conditions, there are ν/ν1 received symbols per code symbol. For hard-
decision decoding, if any of these received symbols is demodulated incorrectly,
the corresponding code symbol will be incorrect. If the demodulator errors are
independent and the ν/ν1 demodulated received symbols constitute a channel
symbol that is one of the code symbols, then the channel-symbol error proba-
bility is

Ps = 1− (1− Pdr)
ν/ν1 (1-47)

where Pdr is the error probability of a demodulated received symbol. A common
application is to map nonbinary code symbols into binary channel symbols
(ν1 = 1). For coherent BPSK, (1-42) and (1-47) imply that

Ps = 1−
[
1−Q

(√
2rEb
N0

)]ν
. (1-48)

A constellation labeling is the mapping of m bits to the q = 2m two-
dimensional or complex-valued constellation points representing the possible
symbols. When a PAM signal is transmitted over the AWGN channel and
hard-decision symbol decoding is used, the relation between Ps and the bit er-
ror probability Pb for a channel bit depends on the constellation labeling. A
Gray labeling or Gray coding labels adjacent symbols that are closest in Eu-
clidean distance with the same bits except for one, thereby minimizing the
number of bit errors that occur if an adjacent symbol of a received symbol is
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assigned the highest likelihood or largest metric by the decoder. Since the most
likely erroneous symbol selection is the adjacent symbol, the channel-bit error
probability is

Pb �
1

m
Ps (1-49)

for Gray labeling. For QPSK symbols with Gray labeling, (1-49), (1-46),
and (1-42) indicate that Pb is approximately the same as it is for BPSK. Thus,
there is not much of a loss in transmitting QPSK symbols as two BPSK symbols
transmitted over orthogonal carriers, which is usually done in practice.

Orthogonal Modulation

An orthogonal modulation system transmits one of a set of orthogonal signals for
each codeword symbol. Consider the transmission of a codeword of n symbols
using delayed versions of q-ary orthogonal complex-valued symbol waveforms:
s1(t), s2(t), . . ., sq(t). The receiver requires q matched filters, each implemented
as a pair of baseband matched filters. The nq × 1 observation vector is y =
[y1 y2 . . . yq]

T , where each yl is an 1 × n row vector of matched-filter output
samples for filter l with components yl,i, i = 1, 2, . . . , n.

Suppose that codeword-symbol i uses orthogonal waveform sl,i (t) = sl[t −
(i−1)Ts] representing alphabet-symbol l, where Ts is the code-symbol duration.
For the time-varying AWGN channel, the received signal for symbol i can be
expressed as

ri(t) = Re[αi

√
2Es sl,i (t) e

j(2πfct+θi)] + n(t)

(i− 1)Ts ≤ t ≤ iTs, 1 ≤ i ≤ n (1-50)

where αi is the fading amplitude, and n(t) is the zero-mean time-varying white
Gaussian noise with PSD equal to N0i/2. The symbol energy for all the wave-
forms is Es, and ∫ Ts

0

|sk(t)|2 dt = 1 , k = 1, 2, . . . , q. (1-51)

The orthogonality of symbol waveforms implies that

∫ Ts

0

sl(t)s
∗
k(t)dt = 0 , k �= l. (1-52)

A downconversion to baseband is followed by matched filtering and sam-
pling. Matched-filter l, which is matched to sl(t), produces the output samples

yl,i =
√
2

∫ iTs

(i−1)Ts

ri(t)e
−j.2πfcts∗l,i (t) dt

i = 1, 2, . . . , n , l = 1, 2, . . . , q (1-53)
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where the factor
√
2 has been inserted for mathematical convenience. Let d

denote the n-dimensional codeword vector that has .di. as its ith symbol. The
substitution of (1-50) into (1-53), (1-52) and the assumption that each of the
{sl(t)} has a spectrum confined to |f | < fc yield

yl,i = αi

√
Esej θi δl,di

+ nl,i (1-54)

where δl,di
= 1 if l = di, and δl,di

= 0 otherwise, and

nl,i =
√
2

∫ iTs

(i−1)Ts

n(t)e−j2πfcts∗l.i (t) dt. (1-55)

The nq×1 noise vector is n = [n1 n2 . . . nq]
T , where each nl is an 1×n row

vector of noise outputs for matched filter l with components nl,i, i = 1, 2, . . . , n.
Since (1-55) has the same form as (1-25), n is a zero-mean, circularly symmetric,
complex Gaussian random vector with properties (1-27) and (1-28). Therefore,
the 2nq real and imaginary components of n are all independent zero-mean
Gaussian random variables with the same variance N0i/2.

Since the density of each nl,i is defined as the joint density of its real and
imaginary parts, the conditional density of yl,i given θi and di is

f(yl,i |di, θi ) =
1

πN0i
exp

(
−
∣∣yl,i − αi

√
Esejθiδl,di

∣∣2
N0i

)

i = 1, 2, . . . , n, l = 1, 2, . . . , q. (1-56)

The conditional density of the nq× 1 observation vector y is the product of
the nq densities specified by (1-56):

f(y |d,Θ ) =

(
1

πN0i

)nq

exp

(
−

n∑
i=1

α2
i Es − 2αi

√
Es Re

(
y∗
di
ejθi

)
N0i

−
n∑

i=1

q∑
l=1

|yl,i|2
N0i

)

(1-57)

where Θ is the n-dimensional vector that has the {θi} as components, and ydi

is the sampled output i of the filter matched to the signal representing symbol
di.

For coherent signals, the {θi} are tracked by the phase synchronization sys-
tem, and thus ideally θi = 0. Forming the log-likelihood function and discard-
ing irrelevant terms, we obtain the codeword metric for coherent orthogonal
signals, the time-varying AWGN channel, and an (n, k) code:

U(d) =
n∑

i=1

αi Re(ydi
)

N0i
. (1-58)

The maximum-likelihood decoder finds the value of d for which U(d) is
largest. If this value is d0, the decoder decides that codeword d0 was transmit-
ted. A problem with this metric is that each αi/N0i value must be known or
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estimated. If it is known that αi = α and each N0i = N0, then the codeword
metric for coherent orthogonal signals and the AWGN channel is

U(d) =

n∑
i=1

Re (ydi
) (1-59)

and the common value N0 does not need to be known to apply this metric.
Consider a single binary symbol for which Es = Eb and q = 2. Because of

the symmetry of the model, Pb can be calculated by assuming that s1(t) was
transmitted. With this assumption, the two competing metrics are

U (1) = α
√
Eb +Re(n1), U(2) = Re (n2) . (1-60)

A decision error is made if U (1)−U (2) < 0. Since U (1)−U (2) has a Gaussian
distribution, an evaluation indicates that the bit error probability is

Pb = Q

(√
αEb
N0

)
. (1-61)

For noncoherent orthogonal signals, we assume that each θi in (1-57) is
independent and uniformly distributed over [0, 2π), which preserves the in-
dependence of the {yl,i}. Expressing ydi

in polar form, and using (H-16) of
Appendix H.3 to integrate over each θi, we obtain

f(y |d ) = .

(
1

πN0i

)nq

exp

(
−

n∑
i=1

α2
i Es

N0i
−

n∑
i=1

q∑
l=1

|yl,i|2
N0i

)
n∏

i=1

I0

(
2αi

√
Es | ydi |
N0i

)
.

(1-62)

where I0(·) is the modified Bessel function of the first kind and order zero. The
log-likelihood function gives the codeword metric for noncoherent orthogonal
signals and the time-varying AWGN channel. After discarding irrelevant terms,
we obtain the codeword metric

U(d) =
n∑

i=1

ln I0

(
2αi

√
Es|ydi

|
N0i

)
(1-63)

which requires that the {αi

√
Es/N0i} must be known or estimated.

To determine the symbol metric for the hard-decision decoding of a single
symbol, we set n = k = 1, α1 = 1, and d1 = l in (1-63) and drop the un-
necessary subscript. Each symbol metric is ln I0(2

√
Esrl/N0), where the index

l ranges over the symbol alphabet, and rl = |yl|. Since the latter function
increases monotonically with its argument, the optimal decision variables for
hard-decision decoding are rl for l = 1, 2, . . . , q. A comparator makes a deci-
sion in accordance with the largest of these variables. Although rl could be
computed, the use of r2l in the comparisons is simpler and entails no loss in
performance. The comparator decisions are applied to the decoder. The com-
parator makes the correct decision when symbol s is transmitted if rs is larger
than rl for l = 1, 2, . . . , q, l �= s.
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Let ys = [y1, y2, . . . , yq] denote the vector of complex-valued observations
corresponding to a single symbol s. Let rl,1 = Re (yl) and rl,2 = Im (yl) , 1 ≤
l ≤ q. By definition, f (yl |s ) = f (rl,1, rl,2 | s) .To determine the symbol error
probability for the noncoherent detection, we set n = 1 and d1 = s in (1-62) and
drop the unnecessary subscripts to obtain the conditional density of ys given
that s is the transmitted symbol:

f (ys |s ) = f (rs,1, rs,2 |s )
q∏

l=1,l �=s

f (rl,1, rl,2 |s ) (1-64)

where

f(rs,1, rs,2 |s) =
(

1

πN0

)
exp

(
−α2Es

N0
−

r2s,1 + r2s,2
N0

)
I0

(
2α

√
Es(r2s,1 + r2s,2)

1/2

N0

)

(1-65)

f
(
rl,1, rl,2

)
=

(
1

πN0

)
exp

(
−
r2l,1 + r2l,2

N0

)
, l �= s.

(1-66)

Let φl = tan−1 (rl,2/rl,1) . We calculate the joint density of rl and φl using
the transformation rl,1 = rl cosφl and rl,2 = rl sinφl. Integrating φl over [0, 2π],
we obtain the densities for rs and rl :

f1(rs) =
2rs
N0

exp

(
−r2s + Es

N0

)
I0

(
2
√
Esrs
N0

)
u(rs) (1-67)

f2(rl) =
2rl
N0

exp

(
− r2l
N0

)
u(rl), l �= s (1-68)

where u(r) is the unit step function defined as

u(x) =

{
1, x ≥ 0
0, x < 0.

(1-69)

A symbol error occurs unless rs is larger than all of the {rl}. Since the {rl}
are identically distributed for l = 2, · · · , q, the probability of a symbol error is

Ps = 1−
∫ ∞

0

[∫ r

0

f2(y)dy

]q−1

f1(r)dr. (1-70)

Evaluating the inner integral yields
∫ r

0

f2(y)dy = 1− exp

(
− r2

N0

)
. (1-71)

Expressing the (q− 1)th power of this result as a binomial expansion and then
substituting it into (1-70), the remaining integration may be performed by using

∫ ∞

0

r exp

(
− r2

2b2

)
I0

(
r
√
λ

b2

)
dr = b2 exp

(
λ

2b2

)
(1-72)
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which follows from (E-13). The final result is the symbol error probability for
noncoherent q-ary orthogonal symbols over the AWGN channel:

Ps =

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
exp

[
− iEs
(i+ 1)N0

]
. (1-73)

Orthogonal signals are q-ary symmetric insofar as an incorrectly decoded
symbol is equally likely to be any of the remaining q−1 symbols in the alphabet.
Among the q − 1 incorrect symbols, a given bit is incorrect in q/2 instances.
Therefore, the bit error rate is

Pb =
q

2(q − 1)
Ps. (1-74)

Substituting Es = Eb log2 q into (1-73) and using (1-74), we find that the bit
error rate is a decreasing function of Eb/N0 as q increases. When q = 2, we
obtain the classical formula for the bit error rate:

Pb =
1

2
exp

(
− Eb
2N0

)
. (1-75)

For noncoherent orthogonal frequency-shift keying (FSK), unit-energy or-
thogonal signals have the form

sl(t) = exp(j2πflt)/
√

Ts, 0 ≤ t ≤ Ts, l = 1, 2, . . . , q. (1-76)

The orthogonality condition (1-52) is satisfied if the each frequency equals kl/Ts,
where kl is a positive integer. If r(t) is the received signal, the downconversion,
sampled matched-filtering, and squaring operations provide

R2
l = R2

lc +R2
ls (1-77)

Rlc =

∫ Ts

0

r(t) cos (2πflt) dt (1-78)

Rls =

∫ Ts

0

r(t) sin (2πflt) dt. (1-79)

These equations imply the demodulator structure depicted in Figure 1.3. For
hard-decision decoding, a comparator decides what symbol was transmitted by
observing which of the {R2

l } is the largest. These hard decisions are used by
the decoder to make codeword decisions. For soft-decision decoding, codeword
metrics are computed followed by codeword decisions.

Because we shall be interested in both orthogonal frequency-shift and code-
shift keying in this book, we shall often refer to orthogonal modulations as
orthogonal shift keying (OSK).

Differential Phase-Shift Keying

A differential phase-shift keying (DPSK) system signifies the bit 1 by the trans-
mission of a signal without any change in the carrier phase between consecutive
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Figure 1.3: Noncoherent orthogonal FSK demodulator

bit intervals. The bit 0 is signified by the transmission of a carrier phase that
changes by π radians between consecutive bit intervals. A phase shift of π ra-
dians is equivalent to a change in the sign of a bit. Since the bit information
is embedded in the phase shifts or sign changes, pairs of bits are used in the
demodulation.

A DPSK demodulator with real variables is shown in Figure 1.4. The
matched-filter output samples are given by (1-24), and we assume that the rela-
tive phase shift of the received signal θi and the fading amplitude α = αi = αi−1

remain stable over consecutive bit intervals. The symbol metric for bit i that
is sent to the comparator or decoder may be expressed as

V (i) = Re(yiy
∗
i−1) (1-80)

where the real and imaginary components of yi represent the in-phase and
quadrature samples. To transmit the symbol 1, the transmitter sets di = di−1

and V (i) > 0 in the absence of noise. To transmit the symbol 0, the transmitter
sets di = −di−1 and V (i) < 0 in the absence of noise. The codeword metric is

U (d) =

n∑
i=1

V (i) . (1-81)
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Figure 1.4: DPSK demodulator

In the presence of noise, (1-24) and (1-80) indicate that

V (i) = Re[(α
√

Ebdiej.θi + ni)(α
√

Ebdi−1e
−jθi + n∗

i−1)]. (1-82)

We evaluate the bit error probability when di = di−1 = d. The result is the
same when di = −di−1. When di = di−1 = d, a correct bit decision is made if
V (i) > 0. In both cases, |di| = 1. Let nkc = Re(nk) and nks = Im(nk), k =
i, i− 1. Substitution into (1-82) and algebraic manipulation yield

V (i) = α2Eb + ni−1,cni,c + ni−1,sni,s

+ α
√

Ebd[cos θi (ni−1,c + ni,c) + sin θi (ni−1,s + ni,s)]

= V1 (i)− V2 (i ) (1-83)

where

V1 (i) =

(
α
√

Eb +
d

2
[cos θi (ni−1,c + ni,c) + sin θi (ni−1,s + ni,s)]

)2

+

(
d

2
[sin θi (ni−1,c + ni,c)− cos θi (ni−1,s + ni,s)]

)2

(1-84)

and

V2 (i) =

(
d

2
[cos θi (ni−1,c − ni,c) + sin θi (ni−1,s − ni,s)]

)2

+

(
d

2
[sin θi (ni−1,c − ni,c)− cos θi (ni−1,s − ni,s)]

)2

. (1-85)

As shown previously, nk,c and nk,s, k = i, i − 1, have independent, zero-
mean, Gaussian distributions with the same variance equal to N0/2. Therefore,
V1 (i) is the sum of the squares of two independent Gaussian random variables,
both of which have a variance equal to N0/4, and one of which has a nonzero-
mean. As shown in Appendices E.1 and E.2, V1 (i) has a noncentral chi-squared
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density with two degrees of freedom:

fv1(x) =
2

N0
exp

(
−2x+ 2α2Eb

N0

)
I0

(
4
√
xα2Eb
N0

)
u(x). (1-86)

Similarly, V2 (i) is the sum of the squares of two independent, zero-mean Gaus-
sian random variables with the same variance and has a central chi-squared
density with two degrees of freedom:

fv2(x) =
2

N0
exp

(
− 2x

N0

)
u(x). (1-87)

The two Gaussian random variables that form V1 (i) and the two that form
V2 (i) are jointly Gaussian and uncorrelated. Thus, they are independent of
each other, and hence V1 (i) and V2 (i) are independent random variables. An
incorrect decision occurs if V1 (i) < V2 (i) ,which implies that the bit error prob-
ability is

Pb =

∫ ∞

0

fv1(x)

∫ ∞

x

fv2 (y) dydx

=

∫ ∞

0

fv1(x) exp

(
− 2x

N0

)
dx (1-88)

Substituting (1-86), changing the integration variable, and then applying (1-72),
we obtain

Pb =
1

2
exp

(
−α2Eb

N0

)
. (1-89)

In the absence of fading, α = 1 and (1-89) indicate that DPSK has a 3 dB ad-
vantage relative to the bit detection of a binary noncoherent orthogonal system.

1.2 Block Codes

A channel code for forward error control or error correction [7, 60, 72] is a set of
codewords that are used to improve communication reliability. An (n, k) block
code uses a codeword of n code symbols to represent k information symbols.
Each symbol is selected from an alphabet of q symbols that belong to the Galois
Field GF(q), and there are qk codewords. If q = 2m, then a q-ary symbol may be
represented by m bits, and a nonbinary codeword of n symbols may be mapped
into an (mn,mk) binary codeword. A block encoder can be implemented by
using logic elements or memory to map a k-symbol information word into an
n-symbol codeword.

A block code of length n over GF(q) is called a linear block code if its qk

codewords form a k-dimensional subspace of the vector space of sequences with
n symbols. Thus, the vector sum of two codewords or the vector difference
between them is a codeword. Since a linear block code is a subspace of a vector
space, it must contain the additive identity. Thus, the all-zero sequence is
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always a codeword in any linear block code. Since nearly all practical block
codes are linear, henceforth block codes are assumed to be linear.

The number of symbol positions in which the symbol of one sequence differs
from the corresponding symbol of another equal-length sequence is called the
Hamming distance between the sequences. The minimum Hamming distance
between any two codewords of a code is called the minimum distance of the
code.

The Hamming weight of a codeword is the number of nonzero symbols in a
codeword. For binary block codes, the Hamming weight is the number of ones
in a codeword. For any linear block code, the vector difference between two
codewords is another codeword with weight equal to the distance between the
two original codewords. By subtracting the codeword c from all the codewords,
we find that the set of Hamming distances from any codeword c is the same
as the set of Hamming distances from the all-zero codeword. Consequently,
the minimum Hamming distance of a code is equal to the minimum Hamming
weight of the nonzero codewords.

Let m denote a row vector of k information symbols and d denote a row
vector of n codeword symbols. Let G denote a k × n generator matrix, each
row of which is a basis vector of the subspace of codewords. A linear block code
computes

d = mG (1-90)

to generate a codeword.
The orthogonal complement of the row space of G is an (n−k)-dimensional

subspace of the n-dimensional vector space such that each of its linearly inde-
pendent vectors is orthogonal to the row space of G, and hence to the code-
words. An (n − k) × n parity-check matrix H has row vectors that span the
orthogonal complement. Therefore,

GHT = 0. (1-91)

A systematic block code is a code in which the information symbols appear
unchanged in the codeword, which also has additional parity symbols. Thus, a
systematic codeword can be expressed in the form d = [m p], where p is the
row vector of n− k parity symbols, and the generator matrix has the form

G = [Ik P] (1-92)

where Ik is the k×k identity matrix and P is a k×(n−k) matrix. This equation
and (1-91) indicate that the parity-check matrix for a linear block code is

H =
[
−PT In−k

]
. (1-93)

In terms of performance, every linear code is equivalent to a systematic linear
code that is simpler to implement. Therefore, systematic block codes are the
standard choice and are assumed henceforth. Substituting (1-92) into (1-90),
we obtain

d = [m mP] (1-94)
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Figure 1.5: Conceptual representation of n-dimensional vector space of se-
quences

which indicates the dependence of the parity symbols on the information sym-
bols. For a binary block code, which uses an alphabet of symbols 0 and 1, the
parity bits of a codeword are modulo-2 sums of information bits.

When the demodulator makes hard decisions, the demodulator output sym-
bols are called channel symbols , and the output sequence is called the received
sequence or the received word. Hard decisions imply that the overall channel
between the encoder output and the decoder input is the classical binary sym-
metric channel. If the channel-symbol error probability is less than one-half,
then the maximum-likelihood criterion implies that the correct codeword is the
one that is the smallest Hamming distance from the received word. A complete
decoder is a hard-decision decoder that implements the maximum-likelihood cri-
terion. An incomplete decoder does not attempt to correct all received words.

The n-dimensional vector space of sequences is conceptually represented as
a three-dimensional space in Figure 1.5. Each codeword occupies the center
of a decoding sphere with radius t in Hamming distance, where t is a positive
integer. A complete decoder has decision regions defined by planar boundaries
surrounding each codeword. A bounded-distance decoder is an incomplete de-
coder that attempts to correct symbol errors in a received word if it lies within
one of the decoding spheres. Since unambiguous decoding requires that none
of the spheres may intersect, the maximum number of random errors that can
be corrected by a bounded-distance decoder is

t = 	(dm − 1)/2
 (1-95)
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where dm is the minimum Hamming distance between codewords, and 	x
 de-
notes the largest integer less than or equal to x. When more than t errors occur,
the received word may lie within a decoding sphere surrounding an incorrect
codeword or it may lie in the interstices (regions) outside the decoding spheres.
If the received word lies within a decoding sphere, the decoder selects the in-
correct codeword at the center of the sphere and produces an output word of
information symbols with undetected errors. If the received word lies in the
interstices, the decoder cannot correct the errors but recognizes their existence.

Since there are
(
n
i

)
(q−1)i words at exactly distance i from the center of the

sphere, the number of words in a decoding sphere of radius t is

V =
t∑

i=0

(
n

i

)
(q − 1)i. (1-96)

Since a block code has qk codewords, qkV words are enclosed in spheres. The
number of possible received words is qn ≥ qkV , which yields

qn−k ≥
t∑

i=0

(
n

i

)
(q − 1)i. (1-97)

This inequality implies an upper bound on t and hence dm. The upper bound
on dm is called the Hamming bound.

A cyclic code is a linear block code in which a cyclic shift of the symbols
of a codeword produces another codeword. This characteristic allows the im-
plementation of encoders and decoders that use linear feedback shift registers.
Relatively simple encoding and hard-decision decoding techniques are known
for cyclic codes belonging to the class of Bose–Chaudhuri–Hocquenghem (BCH)
codes. A BCH code has a length that is a divisor of qm − 1, where m ≥ 2, and
is designed to have an error-correction capability of t = 	(δ − 1)/2
, where δ
is the design distance. Although the minimum distance may exceed the design
distance, the standard BCH decoding algorithms cannot correct more than t
errors. The parameters (n, k, t) for binary BCH codes with 7 ≤ n ≤ 127 are
listed in Table 1.1.

A perfect code is a block code such that every n-symbol sequence is at
a distance of at most t from some n-symbol codeword, and the sets of all
sequences at distance t or less from each codeword are disjoint. Thus, the
Hamming bound is satisfied with equality, and a complete decoder of a perfect
code is also a bounded-distance decoder. The only perfect codes are the binary
repetition codes of odd length, the Hamming codes, the binary (23,12) Golay
code, and the ternary (11,6) Golay code.

Repetition codes represent each information bit by n binary code symbols.
When n is odd, the (n, 1) repetition code is a perfect code with dm = n and
t = (n− 1)/2. A hard-decision decoder makes a decision based on the state of
the majority of the demodulated symbols.

An (n, k) Hamming code is a perfect BCH code with dm = 3 and n =
(qn−k − 1)/(q − 1). Since t = 1, a Hamming code is capable of correcting all
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Table 1.1: Binary BCH codes
n k t Dp n k t Dp n k t Dp

7 4 1 1 63 45 3 0.1592 127 92 5 0.0077
7 1 3 1 63 39 4 0.0380 127 85 6 0.0012
15 11 1 1 63 36 5 0.0571 127 78 7 1.68 · 10 −4

15 7 2 0.4727 63 30 6 0.0088 127 71 9 2.66 · 10 −4

15 5 3 0.5625 63 24 7 0.0011 127 64 10 2.48 · 10 −5

15 1 7 1 63 18 10 0.0044 127 57 11 2.08 · 10 −6

31 16 3 0.1523 63 7 15 0.0024 127 36 15 5.42 · 10 −9

31 11 5 0.1968 63 1 31 1 127 29 21 2.01 · 10 −6

31 6 7 0.1065 127 120 1 1 127 22 23 3.56 · 10 −7

31 1 15 1 127 113 2 0.4962 127 15 27 7.75 · 10 −7

63 57 1 1 127 106 3 0.1628 127 8 31 8.10 · 10 −7

63 51 2 0.4924 127 99 4 0.0398 127 1 63 1

Table 1.2: Codewords of Hamming (7,4) code
0000000 0001011 0010110 0011101
0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000
1100010 1101001 1110100 1111111

single errors. Binary Hamming codes with n ≤ 127 are found in Table 1.1. The
16 codewords of a (7,4) Hamming code are listed in Table 1.2. The first four
bits of each codeword are the information bits. The perfect (23,12) Golay code
is a binary cyclic code with dm = 7 and t = 3. The perfect (11,6) Golay code
is a ternary cyclic code with dm = 5 and t = 2.

Any (n, k) linear block code with an odd value of dm can be converted into
an ( n+ 1, k ) extended code by adding a parity symbol. The advantage of the
extended code stems from the fact that the minimum distance of the block code
is increased by one, which improves the performance, but the decoding com-
plexity and code rate are usually changed insignificantly. The (24,12) extended
Golay code is formed by adding an overall parity symbol to the (23,12) Golay
code, thereby increasing the minimum distance to dm = 8. As a result, some
received sequences with four errors can be corrected with a complete decoder.
The (24,12) code is often preferable to the (23,12) code because the code rate,
which is defined as the ratio k/n for a binary code, is exactly one-half, which
simplifies the system timing.

Some systematic codewords have only one nonzero information symbol.
Since there are at most n− k parity symbols, these codewords have Hamming
weights that cannot exceed n− k+ 1. Since the minimum distance of the code
is equal to the minimum codeword weight,

dm ≤ n− k + 1. (1-98)

This upper bound is called the Singleton bound . A linear block code with a
minimum distance equal to the Singleton bound is called a maximum-distance
separable code.
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Table 1.3: Weight distributions of Golay codes
Number of codewords

Weight (23,12) (24,12)
0 1 1
7 253 0
8 506 759
11 1288 0
12 1288 2576
15 506 0
16 253 759
23 1 0
24 0 1

Nonbinary block codes can accommodate high data rates efficiently because
decoding operations are performed at the symbol rate rather than the higher
information-bit rate. A Reed–Solomon code is a nonbinary BCH code and a
maximum-distance separable code with n = q − 1 and dm = n − k + 1. For
convenience in implementation, q is usually chosen so that q = 2m, where m is
the number of bits per symbol. Thus, n = 2m − 1 and the code provides cor-
rection of 2m-ary symbols. Most Reed–Solomon decoders are bounded-distance
decoders with t = 	(dm − 1)/2
.

The most important single determinant of the code performance is its weight
distribution, which is a list or function that gives the number of codewords with
each possible weight. The weight distributions of the Golay codes are listed
in Table 1.3. Analytical expressions for the weight distribution are known in
a few cases. Let Al denote the number of codewords with weight l. For a
binary Hamming code, each Al can be determined from the weight-enumerator
polynomial

A(x) =

n∑
l=0

Alx
l =

1

n+ 1
[(1 + x)n + n(1 + x)(n−1)/2(1− x)(n+1)/2]. (1-99)

For example, the (7,4) Hamming code gives A(x) = 1
8 [(1 + x)7 + 7(1 + x)3(1−

x)4] = 1 + 7x3 + 7x4 + x7, which yields A0 = 1, A3 = 7, A4 = 7, A7 = 1, and
Al = 0, otherwise. For a maximum-distance separable code, A0 = 1 and

Al =

(
n

l

)
(q − 1)

l−dm∑
i=0

(−1)i
(
l − 1

i

)
ql−i−dm , dm ≤ l ≤ n. (1-100)

The weight distribution of other codes can be determined by examining all valid
codewords if the number of codewords is not too large for a computation.

Hard-Decision Decoders

There are two types of bounded-distance decoders: erasing decoders and repro-
ducing decoders. They both produce errors when a received word falls within
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an incorrect decoding sphere, which is called an undetected error. They differ
only in their actions following the detection of uncorrectable errors in a re-
ceived word, which is called a decoding failure. An erasing decoder discards the
received word after a decoding failure and may initiate an automatic retrans-
mission request. For a systematic block code, a reproducing decoder reproduces
the information symbols of the received word as its output after a decoding
failure.

Let Ps denote the channel-symbol error probability, which is the probability
of error in a demodulated code symbol. We assume that the channel-symbol
errors are statistically independent and identically distributed, which is an ac-
curate model for systems with appropriate symbol interleaving (Section 1.4).
Let Pw denote the word error probability, which is the probability that a decoder
does not produce the correct information symbols of a codeword because of an
undetected error or decoding failure. There are

(
n
i

)
distinct ways in which i er-

rors may occur among n channel symbols. Since a received sequence may have
more than t errors but no information-symbol errors, a reproducing decoder
that corrects t or few errors has

Pw ≤
n∑

i=t+1

(
n

i

)
P i
s(1− Ps)

n−i. (1-101)

For an erasing decoder, (1-101) becomes an equality if erased words are consid-
ered word errors.

For error correction with reproducing decoders, t is given by (1-95) because
it is pointless to make the decoding spheres smaller than the maximum allowed
by the code. However, if a block code is used for both error correction and error
detection, an erasing decoder is often designed with smaller decoding spheres
than the maximum. If a block code is used exclusively for error detection, then
t = 0.

A complete decoder correctly decodes even if the number of symbol errors
exceeds t provided that the received word is closest in Hamming distance to the
correct codeword. When a received sequence is equidistant from two or more
codewords, a complete decoder selects one of them according to some arbitrary
rule. Thus, the word error probability for a complete decoder satisfies (1-101).

The word error probability is a performance measure that is important pri-
marily in applications for which only a decoded word completely without symbol
errors is acceptable. When the utility of a decoded word degrades in proportion
to the number of information bits that are in error, the information-bit error
probability is frequently used as a performance measure. To evaluate it for
block codes that may be nonbinary, we first examine the information-symbol
error probability.

Let P(ν) denote the probability of an error in information symbol ν at
the decoder output. To avoid assuming that P(ν) is independent of ν, the
information-symbol error probability is defined as the average error probability
of the information symbols:

Pis =
1

k

k∑
ν=1

P(ν). (1-102)
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The random variables Zν , ν = 1, 2, . . . , k, are defined so that Zν = 1 if infor-
mation symbol ν is in error and Zν = 0 if it is correct. Let E[·] denote the
expected value. The expected number of information-symbol errors is

E[I] = E

[
k∑

ν=1

Zν

]
=

k∑
ν=1

E[Zν ] =

k∑
ν=1

P(ν) = kPis (1-103)

which implies that the information-symbol error rate, which is defined as E[I]/k,
is equal to the information-symbol error probability. Similarly, we find that the
decoded-symbol error probability, which is defined as the average error proba-
bility of all the symbols, is equal to the decoded-symbol error rate.

Consider an erasing bounded-distance decoder, which may produce an er-
ror in an information symbol only if there is an undetected error. As shown
previously, the set of Hamming distances from a specific codeword to the other
codewords is the same for all specific codewords of a linear block code. There-
fore, it is legitimate to assume for convenience in evaluating Pis that the all-zero
codeword was transmitted. If channel-symbol errors in a received word are sta-
tistically independent and occur with the same probability Ps, then the prob-
ability of a specific set of i erroneous symbols among the n codeword symbols
is

Pe(i) =

(
Ps

q − 1

)i

(1− Ps)
n−i. (1-104)

For an undetected error to occur at the output of a bounded-distance de-
coder, the number of channel-symbol errors must exceed t, and the received
word must lie within an incorrect decoding sphere of radius t. Consider an
incorrect decoding sphere of radius t associated with a codeword of weight l,
where dm ≤ l ≤ n. If l− t ≤ i ≤ l+ t, let N(l, i) denote the number of sequences
in the set S (i, l) of sequences with Hamming weight i that lie within this de-
coding sphere. If a received word with i channel-symbol errors matches one of
the sequences in S (i, l), then an incorrect codeword with Hamming weight l
is selected, and the decoder-symbol and information-symbol error probabilities
are l/n. Therefore, (1-104) implies that the information-symbol error probability
for an erasing bounded-distance decoder is

Pis =

n∑
i=t+1

min(i+t,n)∑
l=max(i−t,dm)

AlN(l, i)Pe(i)
l

n

=

n∑
i=t+1

(
Ps

q − 1

)i

(1− Ps)
n−i

min(i+t,n)∑
l=max(i−t,dm)

AlN(l, i)
l

n
. (1-105)

Consider sequences of weight i that are at distance s from a particular
codeword of weight l, where |l − i| ≤ s ≤ t so that the sequences are within
the decoding sphere of the codeword. By counting these sequences and then
summing over the allowed values of s, we can determine N(l, i). The counting
is performed by considering changes in the symbols of this codeword that can
produce one of these sequences.
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Let ν denote the number of nonzero codeword symbols that are changed
to zeros, α the number of codeword zeros that are changed to any of the (q −
1) nonzero symbols in the alphabet, and β the number of nonzero codeword
symbols that are changed to any of the other (q − 2) nonzero symbols. For a
sequence at distance s to result, it is necessary that 0 ≤ ν ≤ s. The number of
sequences that can be obtained by changing any ν of the l nonzero symbols to
zeros is

(
l
ν

)
, where

(
b
a

)
= 0 if a > b. For a specified value of ν, it is necessary

that α = ν+i−l to ensure a sequence of weight i. The number of sequences that
result from changing any α of the n−l zeros to nonzero symbols is

(
n−l
α

)
(q−1)α.

For a specified value of ν and hence α, it is necessary that β = s − ν − α =
s + l − i − 2ν to ensure a sequence at distance s. The number of sequences
that result from changing β of the l − ν remaining nonzero components is(
l−ν
β

)
(q − 2)β , where 0x = 0 if x �= 0 and 00 = 1. Summing over the allowed

values of s and ν, we obtain

N(l, i) =

t∑
s=|l−i|

s∑
ν=0

(
l

ν

)(
n− l

ν + i− l

)(
l − ν

s+ l − i− 2ν

)

× (q − 1)ν+i−l(q − 2)s+l−i−2ν . (1-106)

Equations (1-105) and (1-106) allow the exact calculation of Pis.
When q = 2, the only term in the inner summation of (1-106) that is nonzero

has the index ν = (s + l − i)/2 provided that this index is an integer and
0 ≤ (s+ l − i)/2 ≤ s. Using this result, we find that for binary codes,

N(l, i) =

t∑
s=|l−i|

(
n− l
s+i−l

2

)(
l

s+l−i
2

)
, q = 2 (1-107)

where
(
m
n

)
= 0 unless n is a nonnegative integer.

The number of sequences of weight i that lie in the interstices outside the
decoding spheres is

L(i) = (q − 1)i
(
n

i

)
−

min(i+t,n)∑
l=max(i−t,dm)

AlN(l, i) , i ≥ t+ 1 (1-108)

where the first term is the total number of sequences of weight i, and the second
term is the number of sequences of weight i that lie within incorrect decoding
spheres. When i channel-symbol errors in the received word cause a decoding
failure, the decoded symbols in the output of a reproducing decoder contain
i errors, and the probability of an information-symbol error is i/n. There-
fore, (1-105) implies that the information-symbol error rate for a reproducing
bounded-distance decoder is

Pis =

n∑
i=t+1

(
Ps

q − 1

)i

(1− Ps)
n−i

⎡
⎣

min(i+t,n)∑
l=max(i−t,dm)

AlN(l, i)
l

n
+ L(i)

i

n

⎤
⎦ .
(1-109)
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Two major problems still arise in calculating Pis from (1-105) or (1-109).
The computational complexity may be prohibitive when n and q are large, and
the weight distribution is unknown for many block codes. To derive simple
approximations for reproducing decoders, we consider the packing densities of
block codes.

The packing density is defined as the ratio of the number of words in the qk

decoding spheres to the total number of sequences of length n. From (1-96), it
follows that the packing density is

Dp =
qk

qn

t∑
i=0

(
n

i

)
(q − 1)i. (1-110)

For perfect codes, Dp = 1. If Dp > 0.5, undetected errors tend to occur more
often than decoding failures, and the code is considered tightly packed. If Dp <
0.1, decoding failures predominate, and the code is considered loosely packed.
The packing densities of binary BCH codes are listed in Table 1.1. The perfect
BCH codes and the (15, 5, 3) BCH code are tightly packed. If n ≥ 63 and t ≥ 4,
then the BCH codes are loosely packed.

Consider the transmission of the all-zero codeword of n symbols, indepen-
dent channel-symbol errors, and tightly packed codes. If a received word has i
channel-symbol errors at the decoder input and dm ≤ i ≤ n, then a bounded-
distance decoder usually chooses a codeword with Hamming weight i. However,
there is no codeword with a Hamming weight between 0 and dm. Therefore,
if a received word has i channel-symbol errors and t + 1 ≤ i ≤ dm, then a
reproducing bounded-distance decoder usually chooses a codeword with Ham-
ming weight dm. Therefore, the identity

(
n
i

)
i
n =

(
n−1
i−1

)
indicates that Pis for

reproducing bounded-distance decoders of tightly packed codes is approximated
by

Pis ≈
dm∑

i=t+1

dm
n

(
n

i

)
P i
s(1− Ps)

n−i +

n∑
i=dm+1

(
n− 1

i− 1

)
P i
s(1− Ps)

n−i. (1-111)

The virtues of this approximation are its simplicity and lack of dependence on
the code weight distribution. Let Pdf and Pud denote the probability of a de-
coding failure and the probability of an undetected error, respectively. Compu-
tations for specific codes indicate that the accuracy of (1-111) tends to increase
with Pud/Pdf . The right-hand side of (1-111) gives an approximate upper bound
on Pis for complete decoders because some received sequences with t+1 or more
errors can be corrected and hence produce no information-symbol errors.

For loosely packed codes, the first term on the right side of (1-108) is much
larger than the second term. Therefore, Pis for reproducing bounded-distance
decoders of loosely packed codes is approximated by

Pis ≈
n∑

i=t+1

(
n− 1

i− 1

)
P i
s(1− Ps)

n−i. (1-112)

The virtues of this approximation are its simplicity and independence of the
code weight distribution. The approximation is accurate when decoding failures
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are the predominant error mechanism. For cyclic Reed–Solomon codes, numer-
ical examples indicate that the exact Pis and the approximation are quite close
for all values of Ps when t ≥ 3, a result that is not surprising in view of the
paucity of sequences in the decoding spheres for a Reed–Solomon code with
t ≥ 3.

A symbol is said to be erased when the demodulator, after deciding that
a symbol is unreliable, instructs the decoder to ignore that symbol during the
decoding. Symbol erasures are used to strengthen hard-decision decoding. If a
code has a minimum distance dm and the demodulator erases ε symbols, then
all codewords differ in at least dm − ε of the unerased symbols. Hence, ν errors
can be corrected if 2ν+1 ≤ dm−ε. If dm or more symbols are erased, a decoding
failure occurs. Let Pe denote the probability of an erasure. For independent
symbol errors and erasures, the probability that a received sequence has i errors
and ε erasures is P i

sP
ε
e (1 − Ps − Pe)

n−i−ε. Therefore, for a bounded-distance
errors and erasures decoder of an (n, k) block code,

Pw ≤
n∑

ε=0

n−ε∑
i=i0

(
n

ε

)(
n− ε

i

)
P i
sP

ε
e (1− Ps − Pe)

n−i−ε

i0 = max(0, �(dm − ε)/2) (1-113)

where �x denotes the smallest integer greater than or equal to x. For the
AWGN channel, decoding with optimal erasures provides an insignificant per-
formance improvement relative to hard-decision decoding, but erasures are of-
ten effective against fading or sporadic interference. Codes for which errors-
and-erasures decoding is most useful are those with relatively large minimum
distances, such as Reed–Solomon codes.

Soft-Decision Decoders

A fundamental property of a probability, called countable subadditivity, is
that the probability of a finite or countable union of events Bn, n = 1, 2, . . .,
satisfies

P [∪nBn] ≤
∑
n

P [Bn]. (1-114)

In communication theory, a bound obtained from this inequality is called a
union bound.

To determine upper bounds on Pw and Pis for linear block codes, it suffices
to assume that the all-zero codeword was transmitted. Let P2(l) denote the
probability that the metric for an incorrect codeword at Hamming distance
l from the correct codeword, and hence with Hamming weight l, exceeds the
metric for the correct codeword. The union bound and the relation between
weights and distances imply that Pw for soft-decision decoding satisfies

Pw ≤
n∑

l=dm

AlP2(l). (1-115)
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Let Blmν denote the event that the mth incorrect codeword with Hamming
weight l has a larger metric than the correct codeword and has a nonzero symbol
for its νth information symbol. The information-symbol error probability, which
is defined by (1-102), is

Pis =
1

k

k∑
ν=1

P (∪l ∪m Blmν)

≤ 1

k

n∑
l=dm

k∑
ν=1

Al∑
m=1

P (Blmν) . (1-116)

Let δlmν = 1 if the mth incorrect codeword with Hamming weight l has a
nonzero symbol for its νth information symbol, and δlmν = 0, otherwise. Then
P (Blmν) = δlmνP2(l), and substitution into (1-116) yields

Pis ≤
n∑

l=dm

βl

k
P2(l) (1-117)

where

βl =

k∑
ν=1

Al∑
m=1

δlmν (1-118)

denotes the total information-symbol weight of the codewords of weight l.
To determine βl for any cyclic (n, k) code, consider the set Sl of Al codewords

of weight l. The total weight of all the codewords in Sl is AT = lAl. Let α and
β denote any two fixed positions in the codewords. By definition, any cyclic
shift of a codeword produces another codeword of the same weight. Therefore,
for every codeword in Sl that has a zero in α, there is some codeword in Sl that
results from a cyclic shift of that codeword and has a zero in β. Thus, among
the codewords of Sl, the total weight of all the symbols in a fixed position is
the same regardless of the position and is equal to AT /n. The total weight of
all the information symbols in Sl is βl = kAT /n = klAl/n. Therefore,

Pis ≤
n∑

l=dm

l

n
AlP2(l). (1-119)

This upper bound depends on P2(l), dm ≤ l ≤ n, which depends on the modu-
lation system.

Consider coherent BPSK with codeword metric given by (1-41). After re-
ordering the samples {yi}, the difference between the metrics for the correct
codeword and an incorrect one at Hamming distance l may be expressed as

D(l) =

l∑
i=1

(c1i − c2i)yri = 2

l∑
i=1

c1iyi (1-120)

where the sum includes only the l terms that differ, c1i refers to the correct
codeword, c2i refers to the incorrect codeword, and c2i = −c1i. As each of
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its terms is independent and each yi has a Gaussian distribution, D(l) has a
Gaussian distribution with mean l

√
Es and variance lN0/2. Since P2(l) is the

probability that D(l) < 0 and Es = rEb, a straightforward calculation yields

P2(l) = Q

(√
2lrEb
N0

)
(1-121)

where r = k/n is the code rate.
Optimal soft-decision decoding cannot be efficiently implemented except for

very short block codes, primarily because the number of codewords for which the
metrics must be computed is prohibitively large, but approximate maximum-
likelihood decoding algorithms are available. The Chase algorithm generates a
small set of candidate codewords that almost always include the codeword with
the largest metric. A first test pattern is generated by making hard decisions
on each of the received symbols to determine a received word. Assuming coher-
ent PAM, let

√
Esct denote the constellation vector corresponding to this test

pattern. A reliability measure for the ith symbol in the test pattern is

M (i) =
∣∣∣yi −√Escti

∣∣∣ . (1-122)

Using this reliability measure, the Chase algorithm alters the least reliable
symbols in the test pattern and generates other test patterns. Hard-decision
decoding of each test pattern and the discarding of decoding failures generate
the candidate codewords. The decoder selects the candidate codeword with the
largest metric and declares it to be the transmitted codeword.

Performance Examples

The coding gain of one code compared with another one is the reduction in the
value of Eb/N0 required to produce a specified information-bit or information-
symbol error probability. Calculations for specific communication systems and
codes operating over the AWGN channel have shown that an optimal soft-
decision decoder provides a coding gain of approximately 2 dB relative to a
hard-decision decoder. However, soft-decision decoders are much more com-
plex to implement and may be too slow for the processing of high information
rates. For a given level of implementation complexity, hard-decision decoders
can accommodate much longer block codes, thereby at least partially overcom-
ing the inherent advantage of soft-decision decoders. In practice, soft-decision
decoding other than errors and erasures decoding is seldom used with block
codes of length greater than 50.

Example 1. Figure 1.6 depicts the information-bit error probability Pb =
Pis versus Eb/N0 for various binary block codes with coherent BPSK over the
AWGN channel. Equation (1-111) is used to compute Pb for the (23,12) Go-
lay code with hard decisions. Since the packing density Dp is small for these
codes, (1-112) is used for hard-decision decoding of the (63,36) BCH code, which
corrects t = 5 errors, and the (127,64) BCH code, which corrects t = 10 er-
rors. Equation (1-42) is used for Ps. Inequality (1-119), Table 1.2, and (1-121)
are used to compute the upper bound on Pb = Pis for the (23,12) Golay code
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Figure 1.6: Information-bit error probability for binary (n, k) block codes and
coherent BPSK

with optimal soft decisions. The graphs illustrate the power of the soft-decision
decoding. For the (23,12) Golay code, soft-decision decoding provides an ap-
proximately 2-dB coding gain for Pb = 10−5 relative to hard-decision decoding.
Only when Pb < 10−5 does the (127,64) BCH code begin to outperform the
(23,12) Golay code with soft decisions. If Eb/N0 ≤ 3 dB, an uncoded system
with coherent BPSK provides a lower Pb than a similar system that uses one
of the block codes of the figure. �

Example 2. Figure 1.7 illustrates the performance of loosely packed Reed–
Solomon codes with hard-decision decoding over the AWGN channel as a func-
tion of Eb/N0. Equation (1-112) is used to compute the approximate information-
bit error probabilities for binary channel symbols with coherent BPSK and non-
binary channel symbols with noncoherent orthogonal FSK. For the nonbinary
channel symbols, (1-73) is applicable, and (1-74) is correct or provides a good
approximation. For the binary channel symbols, (1-48) is used. For the chosen
values of n, the best performance at Pb = 10−5 is obtained if the code rate is
k/n ≈ 3/4. Further gains result from increasing n and hence the implementa-
tion complexity. �

Although the figure indicates the performance advantage of Reed–Solomon
codes with q-ary orthogonal FSK, there is a major bandwidth penalty. Let
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Figure 1.7: Information-bit error probability for Reed–Solomon (n, k) codes and
coherent BPSK or noncoherent FSK

B denote the bandwidth required for an uncoded BPSK signal. If the same
data rate is accommodated by using uncoded orthogonal FSK with q = 2m

frequencies, the required bandwidth is 2mB/m because each symbol represents
m bits. If a Reed–Solomon (n, k) code is used with FSK, the required bandwidth
becomes 2mnB/mk.

1.3 Convolutional and Trellis Codes

In contrast to a block codeword, a convolutional codeword represents an entire
message of indefinite length. A convolutional encoder over the binary field
GF (2) uses shift registers of bistable memory elements to convert each input of
k information bits into an output of n code bits, each of which is the modulo-
2 sum of both current and previous information bits. A convolutional code is
linear because the modulo-2 sums imply that the superposition property applies
to the input–output relations and that the all-zero codeword is a member of
the code.
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Encoding and Decoding of Convolutional Codes

The constraint length K of a convolutional code is the maximum number of
sets of n output bits that can be affected by an input bit. A convolutional
code is systematic if the information bits appear unaltered in each codeword;
otherwise, it is nonsystematic.

A nonsystematic convolutional encoder with two memory stages, k = 1,
n = 2, and K = 3 is shown in Figure 1.8a. Information bits enter the shift
register in response to clock pulses. After each clock pulse, the most recent
information bit becomes the content and output of the first memory stage, the
previous contents of stages are shifted to the right, the previous content of the
final stage is shifted out of the register, and a new bit appears at the input
of the first memory stage. The outputs of the modulo-2 adders (exclusive-OR
gates) provide two code bits. The impulse responses of the encoder are the
two output streams of K bits in response to an input 1 bit followed by K − 1
input 0 bits. The generators of the code bits are the vectors g1 = [1 0 1] and
g2 = [1 1 1], which indicate the impulse responses at the two outputs starting
from the left-hand side. In octal form, the three bits of the two generator
vectors are represented by (5, 7).

The encoder of a nonsystematic convolutional code with four memory stages,
k = 2, n = 3, and K = 2 is shown in Figure 1.8b. Its three generators are

1

1

2

2

3

3 4

Input Outputs

+

+

+

+

+

Inputs
Outputs

(a)

(b)

Figure 1.8: Encoders of nonsystematic convolutional codes with (a) K = 3 and
rate = 1/2 and (b) K = 2 and rate = 2/3



34 CHAPTER 1. MODULATIONS AND CHANNEL CODES

g1 = [1 1 0 1], g2[1 1 0 0], and g3[1 0 1 1]. The first two generator bits represent
the response to an upper input bit, whereas the second two bits represent the
response to a lower input bit. By octally representing groups of 3 bits starting
from the right-hand side and inserting zeros when fewer than 3 bits remain, we
obtain the octal forms of the generators, which are (15, 14, 13) for this encoder.

Polynomials allow a compact description of the input and output sequences
of an encoder. A polynomial over the binary field GF (2) has the form

f(x) = f0 + f1x+ f2x
2 + · · ·+ fnx

n (1-123)

where the coefficients f0, f1, · · · , fn are elements of GF (2) and the symbol x is
an indeterminate introduced into the calculations for convenience. The degree
of a polynomial is the largest power of x with a nonzero coefficient.

The sum of a polynomial f(x) of degree n1 and a polynomial g(x) of degree
n2 is another polynomial over GF (2) defined as

f(x) + g(x) =

max(n1,n2)∑
i=0

(fi ⊕ gi)x
i (1-124)

where max(n1, n2) denotes the larger of n1 and n2, and ⊕ denotes modulo-two
addition. An example is

(1 + x2 + x3) + (1 + x2 + x4) = x3 + x4. (1-125)

The product of a polynomial f(x) of degree n1 and a polynomial g(x) of
degree n2 is another polynomial over GF (2) defined as

f(x)g(x) =

n1+n2∑
i=0

(
i∑

k=0

fkgi−k

)
xi (1-126)

where the inner addition is modulo-2. For example,

(1 + x2 + x3)(1 + x2 + x4) = 1 + x3 + x5 + x6 + x7. (1-127)

It is easily verified that associative, commutative, and distributive laws apply
to polynomial addition and multiplication.

The input sequence m0,m1,m2, . . . is represented by the input polynomial
m (x) = m0 +m1x +m2x

2 + . . ., and similarly the output polynomial c (x) =
c0+c1x+c2x

2+ . . . represents an output stream. The transfer function g (x) =
g0 + g1x + . . . + gK−1x

K−1 represents the K bits of an impulse response.
When a single input sequence m is applied to an encoder, an encoder output
sequence c is called the convolution of m and the impulse response g and
may be represented by a polynomial multiplication so that c (x) = m (x) g (x) .
In general, if there are k input sequences represented by the vector m (x) =
[m1 (x)m2 (x) . . .mk (x)] and n encoder output sequences represented by the
vector c (x) = [c1 (x) c2 (x) . . . cn (x)] , then

c (x) = m (x)G (x) (1-128)
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where G (x) = [g1 (x)g2 (x) . . . gn (x)] is the k × n generator matrix with n
columns of k generator polynomials.

In Figure 1.8a, m (x) is the input polynomial, c (x) = [c1 (x) c2 (x)] is
the output vector, and G (x) = [g1 (x) g2 (x)] is the generator matrix with
transfer functions g1 (x) = 1 + x2 and g2 (x) = 1 + x + x2. In Figure 1.8b,
m (x) = [m1 (x)m2 (x)] ,c (x) = [c1 (x) c2 (x) c3 (x)] , and

G (x) =

[
1 + x 1 + x 1
x 0 1 + x

]
. (1-129)

Since k bits exit from the shift register as k new bits enter it, only the
contents of the (K − 1)k memory stages prior to the arrival of new bits affect
the subsequent output bits of a convolutional encoder. Therefore, the contents
of these (K − 1)k stages define the state of the encoder. The initial state of a
feedforward encoder, which has no feedback connections, is generally the zero
state in which the contents of all stages are zeros. After the message sequence
has been encoded (K−1)k zeros must be inserted into the feedforward encoder
to complete and terminate the codeword. If the number of message bits is much
higher than (K − 1)k, these terminal zeros have a negligible effect and the code
rate is well-approximated by r = k/n. However, the need for the terminal
zeros may render the convolutional codes unsuitable for short messages.

A recursive systematic convolutional code uses feedback and has a generator
matrix with at least one rational function. A recursive systematic convolutional
code with K = 4 and rate = 1/2 is generated by the encoder diagrammed in
Figure 1.9. Let m (x) and m1 (x) denote the input polynomial and the output
polynomial of the first adder, respectively. Then the output polynomial of
memory-stage n is m1 (x)x

n, n = 1, 2, 3. The diagram indicates that

m1 (x) = m (x) +m1 (x)x
2 +m1 (x)x

3 (1-130)

which implies that m1 (x)
(
1 + x2 + x3

)
= m (x) . The output polynomials are

c1 (x) = m (x) and c2 (x) = m1 (x)
(
1 + x+ x3

)
. Therefore, the output vector

c (x) = [c1 (x) c2 (x)] is given by (1-128) with G (x) = [1 G2 (x)] and

G2 (x) =

(
1 + x+ x3

)
(1 + x2 + x3)

(1-131)

which may be expressed as a polynomial after long division.
To bring a recursive encoder back to the zero state after a codeword trans-

mission, consecutive feedback bits are inserted as input bits to the leftmost
adder until the encoder returns to the zero state. In the encoder of Figure 1.9,
the zero state is restored after 3 clock pulses.

A trellis diagram displays the possible progression of the states of a finite-
state machine, such as the encoder of a convolutional code. A trellis diagram
corresponding to the encoder of Figure 1.8a is shown in Figure 1.10. Each of the
nodes in a column of a trellis diagram represents the state of the encoder at a
specific time prior to a clock pulse. The first bit of a state represents the content
of the first memory stage, whereas the second bit represents the content of the
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Figure 1.9: Encoder of recursive systematic convolutional code with K =4 and
rate= 1/2
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Figure 1.10: Trellis diagram for encoder of Figure 1.8a

second memory stage. Branches connecting nodes represent possible changes of
state. Each branch is labeled with the output bits or symbols produced following
a clock pulse and the formation of a new encoder state. In this example, the
first bit of a branch label refers to the upper output of the encoder. The upper
branch leaving a node corresponds to a 0 input bit, whereas the lower branch
corresponds to a 1. Every path from left to right through the trellis represents
a possible codeword. If the encoder begins in the zero state, not all of the other
states can be reached until the initial contents have been shifted out. The trellis
diagram then becomes identical from column to column until the final (K−1)k
input bits force the encoder back to the zero state.

Each path through the trellis defines a codeword and is assigned a path
metric equal to the normalized log-likelihood function of the codeword. Each
branch of the trellis is associated with a branch metric, and the codeword metric
is the sum of the branch metrics for the path associated with the codeword. A
maximum-likelihood decoder selects the codeword with the largest metric. The
branch metrics are determined by the modulation, code, and communication
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channel. For example, if BPSK signals are transmitted over the AWGN channel,
then (1-41) indicates that the metric of branch i is diyi, where di = ±1 and yi
is the received sample corresponding to branch i.

The Viterbi decoder implements maximum-likelihood decoding efficiently
by sequentially eliminating many of the possible paths. At any node, only
the partial path reaching that node with the largest partial metric is retained
because any partial path stemming from the node adds the same branch metrics
to all paths that merge at that node.

Since the decoding complexity grows exponentially with constraint length,
Viterbi decoders are limited to use with convolutional codes of short constraint
lengths. A Viterbi decoder for a rate-1/2, K = 7 convolutional code has ap-
proximately the same complexity as a Reed–Solomon (31,15) decoder. If the
constraint length is increased to K = 9, the complexity of the Viterbi decoder
increases by a factor of approximately 4.

The suboptimal sequential decoder of convolutional codes does not invariably
provide maximum-likelihood decisions, but its implementation complexity only
weakly depends on the constraint length. Thus, very low error probabilities
can be attained by using long constraint lengths. The number of computations
needed to decode a frame of data is fixed for the Viterbi decoder but is a random
variable for the sequential decoder. When strong interference is present, the ex-
cessive computational demands and consequent memory overflows of sequential
decoding usually result in a higher bit error probability than for Viterbi decod-
ing and a much longer decoding delay. Thus, Viterbi decoding predominates in
communication systems.

Bit Error Probability for Viterbi Decoder

To bound the bit error probability for the Viterbi decoder of a convolutional
code, we use the fact that the distribution of either Hamming or Euclidean
distances from a codeword to the other codewords is invariant to the choice of
a reference codeword. Consequently, whether the demodulator makes hard or
soft decisions, the assumption that the all-zero sequence is transmitted entails
no loss of generality in the derivation of the bit error probability.

Although the encoder follows the all-zero path through the trellis, the de-
coder in the receiver essentially observes successive columns in the trellis, elim-
inating possible paths and thereby sometimes introducing errors at each node.
The decoder may retain an incorrect path that merges at node ν with the
correct path, thereby eliminating the correct path and introducing errors that
occurred over the unmerged segment of the incorrect retained path.

Let E[Ne(ν)] denote the expected value of the number of errors introduced at
node ν. As shown in Section 1.1, the information-bit error probability Pb equals
the information-bit error rate, which is defined as the ratio of the expected
number of information-bit errors to the number of information bits applied to
the convolutional encoder. If there are N branches in a complete path, then

Pb =
1

kN

N∑
ν=1

E[Ne(ν)]. (1-132)
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Let Bν(l, i) denote the event that among the paths merging at node ν, the
one with the largest metric has a Hamming weight l and i incorrect information
bits over its unmerged segment. Let df denote the minimum free distance,
which is the minimum Hamming distance between any two codewords that can
be generated by the encoder. Then

E [Ne(ν)] =

Iν∑
i=1

Dν∑
l=df

E [Ne(ν)|Bν(l, i)]P [Bν(l, i)] (1-133)

when E[Ne(ν)|Bν(l, i)] is the conditional expectation of Ne(ν) given event
Bν(l, i), P [Bν(l, i)] is the probability of this event, and Iν and Dν are the
maximum values of i and l, respectively, that are consistent with the position
of node ν in the trellis. When Bν(l, i) occurs, i bit errors are introduced into
the decoded bits; thus,

E[Ne(ν)|Bν(l, i)] = i. (1-134)

Consider the paths that would merge with the correct path at node ν if the
trellis were infinitely long. Let a(l, i) denote the number of such paths that have
a Hamming weight l and i incorrect information symbols over the unmerged
segments of the path before it merges with the correct all-zero path. Thus,
these paths are at a Hamming distance l from the correct all-zero path. The
union bound and the fact that the number of paths in an infinite trellis exceeds
the number in a finite trellis imply that

P [Bν(l, i)] ≤ a(l, i)P2(l) (1-135)

where P2(l) is the probability that the correct path segment has a smaller metric
than an unmerged path segment that differs in l code symbols.

The information-weight spectrum or distribution is defined as

B(l) =

∞∑
i=1

ia(l, i), l ≥ df . (1-136)

Substituting (1-133) to (1-135) into (1-132), extending the two summations to
∞, and then using (1-136), we obtain

Pb ≤
1

k

∞∑
l=df

B(l)P2(l). (1-137)

When the demodulator makes hard decisions and a correct path segment is
compared with an incorrect one, correct decoding results if the number of sym-
bol errors in the demodulator output is fewer than half the number of symbols
in which the two segments differ. If the number of symbol errors is exactly half
the number of differing symbols, then either of the two segments is chosen with



1.3. CONVOLUTIONAL AND TRELLIS CODES 39

equal probability. If independent symbol errors occur with probability Ps, then

P2(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l∑
i=(l+1)/2

(
l
i

)
P i
s (1− Ps)

l−i
, l odd

l∑
i=l/2+1

(
l
i

)
P i
s (1− Ps)

l−i
+ 1

2

(
l
l/2

)
[Ps (1− Ps)]

l/2
, l even.

(1-138)
for hard-decision decoding.

Soft-decision decoding typically provides a 2-dB power saving at Pb = 10−5

compared with hard-decision decoding for communications over the AWGN
channel. The additional implementation complexity of soft-decision decoding
is minor, and the loss due to even three-bit quantization usually is only 0.2–0.3
dB. Consequently, soft-decision decoding is highly preferable to hard-decision
decoding.

For coherent BPSK signals over an AWGN channel and soft decisions, (1-121)
and (1-137) yield

Pb ≤
1

k

∞∑
l=df

B(l)Q

(√
2lrEb
N0

)
. (1-139)

Among the convolutional codes of a given code rate and constraint length, the
one giving the smallest upper bound in (1-139) can sometimes be determined by
a complete computer search. The codes with the largest value of df are selected,
and the catastrophic codes, for which a finite number of demodulated symbol
errors can cause an unlimited number of decoded information-bit errors, are
eliminated. All remaining codes that do not have the minimum information-
weight spectrum B(df ) are eliminated. If more than one code remains, codes
are eliminated on the basis of the minimal values of B(df + i), i ≥ 1, until one
code remains.

Convolutional codes with these favorable distance properties have been de-
termined [14] for codes with k = 1 and rates 1/2, 1/3, and 1/4. For these
codes and constraint lengths up to 12, Tables 1.4, 1.5, and 1.6 list the corre-
sponding values of df and B(df + i), i = 0, 1, . . . , 7. Also listed in octal form
are the generator sequences that determine which shift-register stages feed the
modulo-2 adders associated with each code bit. For example, the best K = 3,
rate-1/2 code in Table 1.4 has generators 5 and 7, which specify the connections
illustrated in Figure 1.8a.

Approximate upper bounds on Pb for rate-1/2, rate-1/3, and rate-1/4 con-
volutional codes with coherent BPSK, soft-decision decoding, and infinitely fine
quantization are depicted in Figures 1.11, 1.12, and 1.13. The graphs are com-
puted by using (1-139), k = 1, and Tables 1.4, 1.5, and 1.6 and then truncating
the series after seven terms. This truncation gives a tight upper bound on Pb for
Pb ≤ 10−2. However, the truncation may exclude significant contributions to
the upper bound when Pb > 10−2, and the bound itself becomes looser as Pb in-
creases. The figures indicate that the code performance improves with increases
in the constraint length and decreases in the code rate if K ≥ 4. The decoder
complexity is almost exclusively dependent on K because there are 2K−1 en-
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Table 1.4: Parameter values of rate-1/2 convolutional codes with favorable
distance properties

B(df + i) for i = 0, 1, . . . , 6
K df Generators 0 1 2 3 4 5 6
3 5 5, 7 1 4 12 32 80 192 448
4 6 15, 17 2 7 18 49 130 333 836
5 7 23, 35 4 12 20 72 225 500 1324
6 8 53, 75 2 36 32 62 332 701 2342
7 10 133, 171 36 0 211 0 1404 0 11,633
8 10 247, 371 2 22 60 148 340 1008 2642
9 12 561, 763 33 0 281 0 2179 0 15,035
10 12 1131, 1537 2 21 100 186 474 1419 3542
11 14 2473, 3217 56 0 656 0 3708 0 27,518
12 15 4325, 6747 66 98 220 788 2083 5424 13,771

Table 1.5: Parameter values of rate-1/3 convolutional codes with favorable
distance properties

K df Generators 0 1 2 3 4 5 6
3 8 5, 7, 7 3 0 15 0 58 0 201
4 10 13, 15, 17 6 0 6 0 58 0 118
5 12 25, 33, 37 12 0 12 0 56 0 320
6 13 47, 53, 75 1 8 26 20 19 62 86
7 15 117, 127, 155 7 8 22 44 22 94 219
8 16 225, 331, 367 1 0 24 0 113 0 287
9 18 575, 673, 727 2 10 50 37 92 92 274
10 20 1167, 1375, 1545 6 16 72 68 170 162 340
11 22 2325, 2731, 3747 17 0 122 0 345 0 1102
12 24 5745, 6471, 7553 43 0 162 0 507 0 1420

coder states. However, as the code rate decreases, more bandwidth is required,
and bit synchronization becomes more challenging because of a reduced energy
per symbol.

For convolutional codes of rate 1/m, wherem is a positive integer, two trellis
branches enter each state. For higher-rate codes with k information bits per
branch, 2k trellis branches enter each state, and the computational complexity
may be large. This complexity can be avoided by using punctured convolutional
codes. These codes are generated by periodically deleting bits from one or more
output streams of an encoder for an unpunctured rate-1/m code. Each stream
has mp of its bits stored in a buffer, where p is a positive integer. From these
mp bits, p + ν bits provide transmitted code bits, where 1 ≤ ν < (m − 1)p.
Thus, a punctured convolutional code has a rate

r =
p

p+ ν
, 1 ≤ ν < (m− 1)p. (1-140)

The decoder of a punctured code may use the same decoder and trellis as the
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Table 1.6: Parameter values of rate-1/4 convolutional codes with favorable
distance properties

B(df + i) for i = 0, 1, . . ., 6
K df Generators 0 1 2 3 4 5 6
3 10 5, 5, 7, 7 1 0 4 0 12 0 32
4 13 13, 13, 15, 17 4 2 0 10 3 16 34
5 16 25, 27, 33, 37 8 0 7 0 17 0 60
6 18 45, 53, 67, 77 5 0 19 0 14 0 70
7 20 117, 127, 155, 171 3 0 17 0 32 0 66
8 22 257, 311, 337, 355 2 4 4 24 22 33 44
9 24 533, 575, 647, 711 1 0 15 0 56 0 69

10 27 1173, 1325, 1467, 1751 7 10 0 28 54 58 54

parent code, but uses only the metrics of the unpunctured bits as it proceeds
through the trellis.
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Figure 1.11: Information-bit error probability for rate = 1/2 convolutional codes
with different constraint lengths and coherent BPSK

The pattern of puncturing is concisely described by an n × p puncturing
matrix P in which each column specifies which encoder output bits are trans-
mitted. Matrix element Pij is set equal to 1 if code-bit i is transmitted during
epoch j of the puncturing period p; otherwise, Pij = 0. For most code rates,
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Figure 1.12: Information-bit error probability for rate = 1/3 convolutional codes
with different constraint lengths and coherent BPSK

there are punctured codes with the largest minimum free distance of any con-
volutional code with that code rate. Punctured convolutional codes enable the
efficient implementation of a variable-rate error-control system with a single en-
coder and decoder. However, the periodic character of the trellis of a punctured
code requires that the decoder acquire frame synchronization.

Coded nonbinary sequences can be produced by converting the outputs of a
binary convolutional encoder into a single nonbinary symbol, but this procedure
does not optimize the nonbinary code’s Hamming distance properties. Better
nonbinary codes are possible but do not provide as good a performance as the
nonbinary Reed–Solomon codes with the same transmission bandwidth.

In principle, B(l) can be determined from the generating function, T (D, I),
which can be derived for some convolutional codes by treating the state diagram
as a signal flow graph. The generating function is a polynomial in D and I of
the form

T (D, I) =

∞∑
i=1

∞∑
l=df

a(l, i)DlIi (1-141)

where a(l, i) denotes the number of distinct paths that have Hamming weight l
and i incorrect information symbols before merging with the correct path. The
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Figure 1.13: Information-bit error probability for rate= 1/4 convolutional codes
with different constraint lengths and coherent BPSK

derivative at I = 1 is

∂T (D, I)

∂I

∣∣∣∣
I=1

=
∞∑
i=1

∞∑
l=df

ia(l, i)Dl =
∞∑

l=df

B(l)Dl. (1-142)

Thus, the bound on Pb given by (1-137) is determined by substituting P2(l)
in place of Dl in the polynomial expansion of the derivative of T (D, I) and
multiplying the result by 1/k.

For soft-decision decoding and coherent BPSK, P2(l) is given by (1-121).
Application of inequality (H-25) of Appendix H.4 indicates that an upper bound
on P2(l) may be expressed in the form given by

P2(l) ≤ bZl (1-143)

where

b = Q

(√
2dfrEb
N0

)
exp(dfrEb/N0) <

1

2
(1-144)

Z = exp(−rEb/N0). (1-145)

It then follows from (1-137), (1-142), and (1-143) that

Pb ≤
(
b

k

)
∂T (D, I)

∂I

∣∣∣∣
I=1,D=Z

. (1-146)
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For other channels, codes, and modulations, an upper bound on P2(l) in the
form given by (1-143) can sometimes be derived from the Chernoff bound.

The Chernoff bound is an upper bound on the probability that a random
variable equals or exceeds a constant. The usefulness of the Chernoff bound
stems from the fact that it is often much more easily evaluated than the prob-
ability it bounds. The moment generating function of the random variable X
with distribution function F (x) is defined as (Appendix B.1)

M(s) = E
[
esX
]
=

∫ ∞

−∞
exp(sx)dF (x) (1-147)

for all real-valued s for which the integral is finite. If the moment generating
function is finite for 0 ≤ s < s1, the Chernoff bound is the upper bound in

P [X ≥ b] ≤ min
0≤s<s1

M(s) exp(−sb) (1-148)

which is derived in Appendix B.2.
In soft-decision decoding, the encoded sequence or codeword with the largest

associated metric is converted into the decoded output. Let U(ν) denote the
value of the codeword metric associated with sequence ν of length L. Consider
additive codeword metrics having the form

U(ν) =

L∑
i=1

m(ν, i) (1-149)

where m(ν, i) is the branch metric associated with symbol i of the encoded
sequence. Let ν = 1 label the correct sequence and ν = 2 label an incorrect
one. Let P2(l) denote the probability that the metric for an incorrect codeword
at distance l from the correct codeword exceeds the metric for the correct
codeword. By suitably relabeling the l branch metrics that may differ for
the two sequences, we obtain

P2(l) ≤ P [U(2) ≥ U(1)]

= P

[
l∑

i=1

[m(2, i)−m(1, i)] ≥ 0

]
(1-150)

where the inequality results because U (2) = U (1) does not necessarily cause
an error. Therefore, the Chernoff bound implies that

P2(l) ≤ min
0<s<s1

E

[
exp

{
s

l∑
i=1

[m(2, i)−m(1, i)]

}]
(1-151)

where s1 is the upper limit of the interval over which the expected value is
defined. This bound is usually much simpler to compute than the exact P2(l).
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Trellis-Coded Modulation

If the number of signal constellation points associated with the modulation
remains fixed when the channel coding is added, the additional code parity bits
cause an increase in the bandwidth of the communication system. To add a
channel code to a communication system while avoiding a bandwidth expansion,
one must increase the number of signal constellation points. For example, if a
rate-2/3 code is added to a system using QPSK, then the bandwidth is preserved
if the modulation is changed to eight-phase PSK (8-PSK). Since each symbol
of the latter modulation represents 3/2 as many bits as a QPSK symbol, the
channel-symbol rate is unchanged. The problem is that the change from QPSK
to the more compact 8-PSK constellation causes an increase in the channel-
symbol error probability that cancels most of the decrease due to the encoding.
This problem is avoided by integrating coding into a trellis-coded modulation
system.

Trellis-coded modulation is a combined coding and modulation method that
is usually applied to coherent digital communications over bandlimited chan-
nels. Multilevel and multiphase modulations are used to enlarge the signal
constellation while not expanding the bandwidth beyond what is required for
the uncoded signals. Since the signal constellation is more compact, there is
some demodulation loss that detracts from the coding gain, but the overall gain
can be substantial.

The encoder for trellis-coded modulation has the form shown in Figure 1.14.
For k > 1, each input of k information bits is divided into two groups and
encoded as k + 1 bits. One group of k1 bits is applied to a convolutional
encoder with k1 + 1 output bits. The other group of k2 = k − k1 bits remains
uncoded. The k1 + 1 output bits of the convolutional encoder select one of
2k1+1 possible subsets of the points in a constellation of 2k+1 points. The k2
uncoded bits select one of 2k2 points in the chosen subset. If k2 = 0, there are no
uncoded bits and the convolutional encoder output bits select the constellation
point. After symbol interleaving of the constellation points, they are applied
to the modulator. Each constellation point is a complex number representing
an amplitude and phase. The process of using code bits and uncoded bits to
select or label constellation points is called set partitioning.

Example 3. Suppose that k = 2, k1 = k2 = 1 in the encoder of Figure 1.14,
and an 8-PSK modulator produces an output from a constellation of 8 points.
Each of the four subsets that may be selected by the two convolutional-code
bits comprises two antipodal points in the 8-PSK constellation, as shown in

k1 bits
k1 + 1

bits

k2 bits

Convolut.

encoder Signal

mapper

Constellation 

point
Modulator

Output

Figure 1.14: Encoder for trellis-coded modulation
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Figure 1.15: The constellation of 8-PSK symbols partitioned into four subsets

Figure 1.15. The single uncoded bit chooses between the two antipodal points.
If the convolutional encoder has the form of Figure 1.8a, then the trellis of
Figure 1.10 illustrates the state transitions of both the underlying convolutional
code and the trellis code. �

In general, there are 2k2 parallel transitions between every pair of states in
the trellis. Often, the dominant error events consist of mistaking one of these
parallel transitions for the correct one. If the symbols corresponding to parallel
transitions are separated by large Euclidean distances, and the constellation
subsets associated with transitions are suitably chosen, then the trellis-coded
modulation with soft-decision Viterbi decoding can yield a substantial coding
gain. This gain usually ranges from 4 to 6 dB, depending on the number
of states and hence the implementation complexity. The minimum Euclidean
distance between a correct trellis-code path and an incorrect one is called the
free Euclidean distance and is denoted by df

√
Es, where Es = rEb is the energy

per received symbol. When Es/N0 is high, the free Euclidean distance largely
determines Pb.

1.4 Interleavers

An interleaver is a device that permutes the order of a sequence of code sym-
bols. A deinterleaver is the corresponding device that restores the original
order of the sequence. A major application is the interleaving of symbols trans-
mitted over a communication channel subject to fading or interference. After
deinterleaving at the receiver, a burst of channel-symbol errors or corrupted
symbols is dispersed over a number of codewords or constraint lengths, thereby
facilitating the removal of the errors by the decoding. Ideally, the interleaving
and deinterleaving ensure that the decoder encounters statistically independent
symbol decisions or metrics, as it would if the channel were memoryless. Thus,
communication systems almost invariably include interleavers in their encoders
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Figure 1.16: Block interleaver

and deinterleavers in their decoders, and this inclusion is assumed throughout
this book.

A block interleaver performs identical permutations on successive blocks of
symbols. As illustrated in Figure 1.16, mn successive input symbols are stored
in a random-access memory (RAM) as an array of m rows and n columns.
The input sequence is written into the interleaver in successive rows, but suc-
cessive columns are read to produce the interleaved sequence. Thus, if the
input sequence is numbered 1, 2, . . . , n, n+ 1, . . . ,mn, the interleaved sequence
is 1, n+ 1, 2n+ 1, . . . , 2, n+ 2, . . . ,mn. For continuous interleaving, two RAM
arrays are needed. Symbols are written into one array while previous symbols
are read from the other. In the deinterleaver, symbols are stored by column in
one array, while previous symbols are read by rows from another. Consequently,
a delay of 2mn symbol periods must be accommodated, and synchronization is
required at the deinterleaver.

When channel symbols are interleaved, the parameter n equals or exceeds
the block codeword length or a few constraint lengths of a convolutional code.
Consequently, if a burst of m or fewer consecutive symbol errors occurs and
there are no other errors, then each block codeword or constraint length, after
deinterleaving, has at most one error, which can be eliminated by the error-
correcting code. Similarly, a block code that can correct t errors is capable
of correcting a single burst of errors spanning as many as mt symbols. For
a symbol duration equal to Ts, it is necessary that mTs exceed the channel
coherence time in order for the interleaver to counteract correlated errors due
to the fading.

A pseudorandom interleaver permutes each block of symbols in a RAM
array pseudorandomly. Pseudorandom interleavers may be applied to channel
symbols, but their main application is as critical elements in encoders of turbo
codes and codes that use iterative decoding. The permutation is defined by
a sequence of addresses or permutation indices. If the interleaver size is N =
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mn = 2ν −1, then a linear feedback shift register with ν stages that produces a
maximal-length sequence can generate the permutation. The binary outputs of
the shift-register stages constitute the state of the register. The state specifies
an index from 1 to N that defines the specific symbol in the RAM that enters
the interleaved stream. The shift register generates all N states and indices
periodically.

An S-random interleaver is a pseudorandom interleaver that constrains the
minimum interleaving distance so that error bursts of length S or less are dis-
persed. A tentative permutation index is randomly selected from among N
uniformly distributed indices and then compared with the S previously selected
indices, where 1 < S < N . If the tentative index does not differ by S or more
from each of the S previous ones, then it is discarded and replaced by a new
tentative index. If it does differ enough, then the tentative index becomes the
next selected index. This procedure continues until all N pseudorandom indices
are selected.

A convolutional interleaver consists of a bank of shift registers of successively
increasing length [60]. Convolutional interleavers and their corresponding dein-
terleavers confer an efficiency advantage in that the ratio of the length of the
smallest error burst that exceeds the correction capability of a block code to the
interleaver memory is higher than that ratio for comparable block interleavers.
However, convolutional interleavers do not possess the inherent simplicity and
compatibility with block structures that block, pseudorandom, and S-random
interleavers have.

1.5 Code Combinations

Classical Concatenated Codes

Classical concatenated codes are two serially concatenated codes called the
outer code and the inner code. The encoder and decoder have the forms depicted
in Figure 1.17. The outer encoder produces binary or nonbinary symbols. After
interleaving, these symbols are converted, if necessary, into symbols that are
encoded by the inner encoder. The concatenated-code symbols at the output
of the inner encoder are applied to the modulator.

In the receiver, the demodulator provides the codeword metrics to the inner
decoder, which produces codewords. The deinterleaver groups the symbols of
these codewords into outer-code symbols. Symbol deinterleaving disperses the
outer-code symbol errors. Consequently, the outer decoder is able to correct
most symbol errors originating in the inner-decoder output.

The concatenated code has a rate

r = r1r0 (1-152)

where r1 is the inner-code rate and r0 is the outer-code rate. The bandwidth
required by a concatenated code is B/r, where B is the uncoded bandwidth.
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Figure 1.17: Structure of classical encoder and decoder for serially concatenated
code

The dominant classical concatenated code comprises a binary convolutional
inner code and a Reed–Solomon outer code. At the output of a convolutional
inner decoder using the Viterbi algorithm, the bit errors occur over spans with
an average length that depends on the value of Eb/N0. The deinterleaver is
designed to ensure that Reed–Solomon symbols formed from bits in the same
typical error span do not belong to the same Reed–Solomon codeword.

Let m = log2 q denote the number of bits in a Reed–Solomon code symbol.
In the worst case, the inner decoder produces bit errors that are separated
enough that each one causes a separate symbol error at the input to the Reed–
Solomon decoder. Since there are m times as many bits as symbols, the symbol
error probability Ps1 is upper-bounded by m times the bit error probability at
the inner-decoder output. Thus, for coherent BPSK and binary convolutional
inner codes with soft-decision decoding, (1-139) implies that

Ps1 ≤ log2 q

k

∞∑
l=df

B(l)Q

(√
2lrEb
N0

)
. (1-153)

Assuming that the deinterleaving ensures independent symbol errors at the
outer-decoder input, and that the Reed–Solomon code is loosely packed, (1-112)
and (1-74) imply that

Pb ≈
q

2(q − 1)

n∑
i=t+1

(
n− 1

i− 1

)
P i
s1(1− Ps1)

n−i. (1-154)
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Figure 1.18: Upper bounds on information-bit error probability for concate-
nated codes with inner convolutional code (K = 7, rate = 1/2), various Reed–
Solomon (n, k) outer codes, and coherent BPSK

Example 4. Figure 1.18 depicts the upper bound on the bit error proba-
bility for concatenated codes, the AWGN channel, coherent BPSK, soft demod-
ulator decisions, an inner binary convolutional code with k = 1, K = 7, rate =
1/2, and df = 10, and various Reed–Solomon outer codes. Equation (1-154),
the upper bound in (1-153), and the information-weight spectrum in Table 1.4
are used. �

Product Codes

A product code is a concatenated code that is constructed from a multidimen-
sional array of linear block codes. A set of k = k1k2 information bits are placed
into a k2 × k1 array. Each of the k2 rows is encoded as a codeword of an
(n1, k1) code and n1 columns are formed. Each of these columns is encoded as
an (n2, k2) code and n2 rows are formed. The resulting n2 × n1 array, which is
depicted in Figure 1.19, defines a codeword of a product code with n = n1n2

code bits and code rate

r =
k1k2
n1n2

. (1-155)
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Figure 1.19: Codeword structure for product code

The row codewords serve as inner codewords, and the column codewords serve
as outer codewords. The dual bits in the lower right corner of the figure serve
as parity bits for both the inner and outer codewords.

Let dm1 and dm2 denote the minimum Hamming distances of the row and
column codes, respectively. For a nonzero product codeword, every nonzero
row in the array must have a weight of at least dm1, and there must be at least
dm2 nonzero rows. Thus, the minimum Hamming distance of the product code,
which is equal to the minimum Hamming weight of a nonzero codeword, is at
least dm1dm2. Let c1 and c2 denote row and column minimum-weight code-
words, respectively. One of the valid product codewords is defined by an array
in which all columns corresponding to zeros in c1 are zeros, and all columns
corresponding to ones in c1 are the same as c2. Therefore, a product codeword
of weight dm1dm2 exists, and the product code has a minimum distance

dm = dm1dm2. (1-156)

The n2 × n1 array of code bits may be transmitted row by row or column
by column. Hard demodulator decisions are performed sequentially on an n2 ×
n1 array of received code bits. Successive rows (or columns) of codewords
are decoded, and code-bit errors are corrected. Any residual errors are then
corrected during the decoding of successive columns (or rows) of codewords.

Let t1 and t2 denote the error-correcting capability of the row and column
codes, respectively. Incorrect decoding of the row codewords requires that
there are at least t1 + 1 errors in at least one row codeword. For the column
decoder to fail to correct the residual errors, there must be at least t2 + 1 row
codewords that have t1+1 or more errors, and the errors must occur in certain
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array positions. Thus, the number of errors that is always correctable is

t = (t1 + 1)(t2 + 1)− 1 (1-157)

which is roughly half of what (1-95) guarantees for classical block codes with
the same minimum distance dm. Moreover, although not all patterns with
more than t errors are correctable, many of them are.

1.6 Turbo Codes

Turbo codes are concatenated codes that use iterative decoding [33]. There
are two principal types: turbo codes with parallel concatenated codes, which
are the original turbo codes, and serially concatenated turbo codes, which are
related to the classical concatenated codes. Each of the concatenated codes
of a turbo code is called a component code. The iterative decoding requires
that both component codes be systematic and of the same type; that is, both
convolutional or both block.

The turbo decoder processes the sampled demodulator output streams. Al-
though soft-decision decoders for block and convolutional codes, such as the
Viterbi decoder, minimize the probability that a received codeword or an en-
tire received sequence is in error, a turbo decoder is designed to minimize the
error probability of each information bit. A turbo decoder comprises separate
component decoders for each component code, which is theoretically subopti-
mal but crucial in reducing the decoder complexity. Each component decoder
uses a version of the BCJR (Bahl, Cocke, Jelinek, and Raviv) algorithm, which
is also known as the maximum a posteriori (MAP) algorithm. The algorithm
provides soft-output information for each information bit after each iteration,
thereby enabling the iterative decoding of turbo codes.

BCJR Decoding Algorithm

The BCJR algorithm is a decoding algorithm that uses a priori bit information
and received vectors or symbols to enable the generation of a posteriori proba-
bilities of information or code bits. The BCJR algorithm exploits the Markov
properties of a convolutional code or other code that can be described in terms
of a trellis structure.

Let the sequence of vectors y = [y1,y2, . . . ,yN ] denote the demodulator
outputs. Each noisy symbol yk, k = 1, 2, . . . , N , is associated with a transmit-
ted symbol xk that has a form determined by the modulation and coding. For
a convolutional code and BPSK, xk is a vector comprising outputs associated
with one or more information bits and one or more associated parity symbols.

Let bl (k) denote the lth bit represented by xk. The BCJR algorithm com-
putes the log-likelihood ratio (LLR) of the a posteriori probability that this bit
is 1 or 0 given the vector y. Accordingly, the bit LLR is

Λk,l = ln

[
P [bl (k) = 1|y]
P [bl (k) = 0|y]

]
. (1-158)



1.6. TURBO CODES 53

The BCJR algorithm is provided with the a priori probability P [bl (k) = b],
observes y, and then computes Λk,l.

The state of the encoder of a trellis code is the set of stored bits that can
influence subsequent code bits. Let ψk denote the discrete random variable that
specifies the state of the encoder at discrete-time k. The transmission of vector
xk and bit bl (k) is associated with a state transition from ψk = s′ to ψk+1 = s.
Applying the definition of a conditional probability, algebraic cancelation, and
the mutually exclusive nature of state transitions to (1-158) yields

Λk,l = ln

[
P [bl (k) = 1,y]

P [bl (k) = 0,y]

]

= ln

⎡
⎢⎢⎣

∑
s′,s

f (bl (k) = 1, ψk = s′, ψk+1 = s,y)

∑
s′,s

f (bl (k) = 0, ψk = s′, ψk+1 = s,y)

⎤
⎥⎥⎦

= ln

⎡
⎢⎢⎢⎣

∑
s′,s:bl(k)=1

f (ψk = s′, ψk+1 = s,y)

∑
s′,s:bl(k)=0

f (ψk = s′, ψk+1 = s,y)

⎤
⎥⎥⎥⎦ (1-159)

where f(·) is a generic joint probability and density function, and the summa-
tions are over all states consistent with bl (k) = 1 and bl (k) = 0, respectively.

The observed vector sequence y is decomposed into three separate sets of
observations: y−

k = {yl, l < k} represents the observations prior to time k, yk

is the current observation, and y+
k = {yl, l > k} represents the observations

that occur after time k. We define

αk (s
′) = f

(
ψk = s′,y−

k

)
(1-160)

γk (s
′, s) = f (ψk+1 = s,yk | ψk = s′) (1-161)

βk+1 (s) = f
(
y+
k | ψk+1 = s

)
. (1-162)

After conditioning on the event ψk+1 = s,y+
k is independent of yk, y

−
k , and the

event that ψk = s′. It follows that

f (ψk = s′, ψk+1 = s,y) = f
(
y+
k | ψk+1 = s

)
f
(
ψk = s′, ψk+1 = s,yk,y

−
k

)
= βk+1 (s) f

(
ψk+1 = s,yk | ψk = s′,y−

k

)
αk (s

′) .
(1-163)

After conditioning on the event ψk = s′, the event (ψk+1 = s,yk) is independent
of y−

k . Therefore,

f (ψk = s′, ψk+1 = s,y) = αk (s
′) γk (s

′, s)βk+1 (s) . (1-164)
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Substitution of this equation into (1-159) yields the bit LLR:

Λk,l = ln

⎡
⎢⎢⎢⎣

∑
s′,s:bl(k)=1

αk (s
′) γk (s

′, s)βk+1 (s)

∑
s′,s:bl(k)=0

αk (s′) γk (s′, s)βk+1 (s)

⎤
⎥⎥⎥⎦ . (1-165)

The density γk (s
′, s) serves as a branch metric in a trellis diagram of the

states. Let b1 (k) denote the single information bit associated with xk; ex-
tensions to other cases are straightforward but notationally complex. There
is a unique information bit b (s′, s) that is associated with the transition from
ψk = s′ to ψk+1 = s. Let P [b1 (k) = b (s′, s)] denote the a priori probability
that b1 (k) = b (s′, s) , which is an input to the BCJR algorithm. Then

P (ψk+1 = s|ψk = s′) = P [b1 (k) = b (s′, s)]. (1-166)

Therefore, the branch metric is

γk (s
′, s) = f (yk|ψk+1 = s, ψk = s′)P [b1 (k) = b (s′, s)] (1-167)

where the conditional density f (yk|ψk+1 = s, ψk = s′) can be calculated from
knowledge of the modulation and communication channel. Equation (1-167)
explicitly shows how the a priori bit probabilities are used by the BCJR algo-
rithm. In the numerator of (1-165), P [b1 (k) = b (s′, s)] = P [b1 (k) = 1]; in the
denominator, P [b1 (k) = b (s′, s)] = P [b1 (k) = 0].

To compute the bit LLRs from the branch metrics, the BCJR algorithm first
computes αk+1 (ν) and βk (ν) recursively. The forward recursion for αk+1 (ν)
can be derived from its definition. If {0, 1, . . . , Q − 1} denotes the set of Q
states, then the theorem of total probability implies that

αk+1 (ν) =

Q−1∑
μ=0

f
(
ψk+1 = ν,y−

k ,yk, ψk = μ
)

=

Q−1∑
μ=0

f
(
ψk+1 = ν,yk|y−

k , ψk = μ
)
αk (μ) . (1-168)

After conditioning on the event ψk = μ, the event (ψk+1 = ν,yk) is independent
of y−

k . Therefore,

αk+1 (ν) =

Q−1∑
μ=0

αk (μ) γk (μ, ν) . (1-169)

The backward recursion for βk+1 (s) can be derived similarly. We have

βk (ν) =

Q−1∑
μ=0

f
(
y+
k ,yk, ψk+1 = μ|ψk = ν

)

=

Q−1∑
μ=0

f
(
y+
k |yk, ψk+1 = μ, ψk = ν

)
γk (ν, μ) . (1-170)



1.6. TURBO CODES 55

After conditioning on the event ψk+1 = μ, the event y+
k is independent of the

event (yk, ψk = ν) . Therefore,

βk (ν) =

Q−1∑
μ=0

γk (ν, μ)βk+1 (μ) . (1-171)

Assuming that the encoder begins in the zero state and ends in the zero state
at the time k = L, recursions for αk+1 (ν) and βk (ν) are initialized according
to

α0 (x) = δ (x) , βL (x) = δ (x) (1-172)

where δ (x) = 1 if x = 0, and δ (x) = 0 otherwise.
Example 5. A systematic rate-1/3 binary convolutional code has its code

symbols transmitted as BPSK symbols over the AWGN channel. Let xk =
[xk,1, xk,2, xk3] and yk = [yk,1, yk,2, yk,3] denote the transmitted antipodal and
observed code symbols, respectively, associated with the transition from state
ψk = s′ to state ψk+1 = s. The antipodal mapping {0 → +1, 1 → −1} implies
that xk,m = 1−2bm (k) , m = 1, 2, 3, where bm (k) is a binary code symbol 1 or
0. The transmitted information bit is b1 (k) = b (s′, s) . Equation (1-33) implies
that

f (yk|ψk+1 = s, ψk = s′) =
1

(πN0)
3/2

exp

[
− 1

N0

3∑
m=1

(yk,m −
√

Esxk,m)2

]
.

(1-173)
This equation is used to evaluate the branch metric of (1-167). �

The generic name for a version of the BCJR algorithm or an approximation
of it is soft-in soft-out (SISO) algorithm. The log-MAP algorithm is an SISO
algorithm that transforms the BCJR algorithm into the logarithmic domain,
thereby simplifying operations and reducing numerical problems while causing
no performance degradation.

The log-MAP algorithm expedites computations by using themax-star func-
tion, which is defined as

max
i

∗{xi} = ln

(∑
i

exi

)
. (1-174)

By separately considering x ≥ y and x < y, we verify that for two variables

max ∗ (x, y) = max (x, y) + ln
(
1 + e−|x−y|

)
(1-175)

whereas for more than two variables, the calculation can be performed recur-
sively. For example, for three variables,

max ∗ (x, y, z) = max ∗[x,max ∗ (y, z)] (1-176)

which is verified by applying (1-175) to the right-hand side of the (1-176). The
numerical values of the second term on the right side of (1-175) can be stored
in a table accessed by the log-MAP algorithm.
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The log-MAP algorithm computes

αk (s
′) = ln (αk (s

′)) , βk+1 (s) = ln (βk+1 (s)) , γk (s
′, s) = ln (γk (s

′, s)) .

(1-177)

From (1-169) and (1-171), it follows that the forward and backward recursions
are

αk+1 (s) = max
s′

∗{αk (s
′) + γk (s

′, s)} (1-178)

βk (s
′) = max

s

∗{βk+1 (s) + γk (s
′, s)}, (1-179)

respectively. From (1-165), we obtain the LLR:

Λk,l = max
s′,s:bk=1

∗{αk (s
′) + γk (s

′, s) + βk+1 (s)}

− max
s′,s:bk=0

∗{αk (s
′) + γk (s

′, s) + βk+1 (s)}. (1-180)

If the encoder begins and terminates in the zero state, then the recursions are
initialized by

α0 (s) = βL (s) =

{
0, s = 0

−∞, otherwise.
(1-181)

The log-MAP is roughly 4 times as complex as the standard Viterbi algo-
rithm with the same number of states. The max-log-MAP algorithm and the
soft-output Viterbi algorithm (SOVA) are SISO algorithms that reduce the com-
plexity of the log-MAP algorithm at the cost of some performance degradation.
The max-log-MAP algorithm uses the approximation max ∗ (x.y) � max (x, y)
to reduce its complexity to roughly 2/3 that of the log-MAP algorithm. The
SOVA algorithm is similar to the Viterbi algorithm except that it uses a poste-
riori probabilities in computing branch metrics, and it produces a soft output
indicating the reliability of its decisions. The SOVA algorithm is roughly 1/3 as
complex as the log-MAP algorithm but is less accurate. The BCJR, log-MAP,
max-log-MAP, and SOVA algorithms have complexities that increase linearly
with the number of states of the component codes.

Information

bits Component

Encoder 1

Component

Encoder 2

Interleaver Multiplexer

Output

bits

Figure 1.20: Encoder of turbo code with parallel component codes
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Turbo Codes with Parallel Component Codes

As shown in Figure 1.20, the encoder of a turbo code with two parallel com-
ponent codes uses two parallel encoders. Component encoder 1 receives the in-
formation bits and generates information bits and associated parity bits, while
component encoder 2 receives interleaved information bits and generates parity
bits associated with the interleaved information bits. Within this architecture,
the component codes are usually identical and might be convolutional codes,
block codes, or trellis codes.

The multiplexer output of the turbo encoder in Figure 1.20 comprises both
the information bits received from component encoder 1 and the parity bits
produced by both encoders. If the multiplexer punctures the parity streams,
higher-rate codes can be generated. Although it requires frame synchronization
in the decoder, the puncturing serves as a means of adapting the code rate to
the channel conditions.

The purpose of the interleaver is to permute the input bits of encoder 2 so
that it is unlikely that both component codewords will have a low weight even
if the input word has a low weight. As a result, the turbo codewords tend to
have large weights, which increase the Hamming distances between codewords.
It has been found that pseudorandom or S-random interleavers are the best
types for this purpose.

The interleaver size is equal to the codeword length. The number of low-
weight or minimum-distance codewords tends to be inversely proportional to the
interleaver size. However, as the interleaver size increases, so does the system
latency, which is the delay between the input and final output.

Parallel Convolutional Codes

A convolutional turbo code uses convolutional codes as its component codes.
Recursive systematic convolutional encoders are used in the component encoders
primarily because they map most low-weight information sequences into higher-
weight coded sequences. Terminating tail bits are inserted into both component
convolutional codes so that the turbo trellis terminates in the zero state, and
the turbo code can be treated as a block code. Recursive encoders require
nonzero tail bits that are functions of the preceding nonsystematic output bits.
With a large block length and interleaver and a sufficient number of decoder
iterations, the performance of the convolutional turbo code can approach within
less than 1 dB of the information-theoretic limit.

Let the vector b = [b1, . . . , bN ] denote the information bits applied to
the turbo encoder of Figure 1.20. Let the vectors p1 = [p11, . . . , p1N ] and p2 =
[p21, . . . , p2N ] denote the parity bits generated by encoders 1 and 2, respectively.
If puncturing is used to increase the code rate, then some of the potential parity
bits may not be transmitted.

The basic structure of a turbo decoder for a binary modulation is illustrated
in Figure 1.21. The decoding for nonbinary modulations is presented in Sec-
tion 1.7. Let y = [y1, y2, . . . , yN ] denote the sequence of demodulator outputs
corresponding to b. Let z1 = [z11, z12, . . . , z1N ] and z2 = [z21, z22, . . . , z2N ]
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Component
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D
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Figure 1.21: Decoder of turbo code. I = interleaver; D = deinterleaver

denote the sequences of demodulator outputs associated with the parity bits
generated by component encoders 1 and 2, respectively. Component decoder
1 is fed by demodulator outputs due to the information bits and the parity
bits generated by encoder 1. Component decoder 2 is fed by interleaved de-
modulator outputs due to the information bits and the parity bits generated
by encoder 2. For each information bit bk, the SISO algorithms of decoders 1
and 2 compute estimates of the log-likelihood ratios (LLRs) of the a posteriori
probabilities that this bit is 1 or 0 given by

Λδ,k = ln

[
P (bk = 1|y, zδ)
P (bk = 0|y, zδ)

]
, δ = 1, 2. (1-182)

The LLRs of the information bits are iteratively updated in the two component
decoders by passing information between them and using the SISO algorithm
in each of them

In each decoder δ, the SISO algorithm uses a priori information to compute
Λδ,k. The decoder then computes extrinsic information, which is new informa-
tion that the other decoder did not previously receive or generate. The extrinsic
information is sent to the other decoder, where it serves as that decoder’s a pri-
ori information. The key to the iterative processing of the turbo decoder is the
decomposition of Λδ,k. From the definition of a conditional probability, (1-182)
may be expressed as

Λδ,k = ln

[
f(bk = 1,y, zδ)

f(bk = 0,y, zδ)

]
, δ = 1, 2. (1-183)

Given bk = b, zδ is independent of y. Therefore,

f(bk = b,y, zδ) = f(zδ|bk = b)f(y|bk = b)P (bk = b), b = 1, 2. (1-184)

Substituting this equation into (1-183), observing that yl, l �= k, is independent
of bk, canceling common factors, and decomposing the results, we obtain

Λδ,k = La(bk) + Lc(yk) + Lδ,e(bk), δ = 1, 2 (1-185)
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where the a priori LLR is

La(bk) = ln

[
P (bk = 1)

P (bk = 0)

]
(1-186)

the extrinsic information is

Lδ,e(bk) = ln

[
f(zδ|bk = 1)

f(zδ|bk = 0)

]
, δ = 1, 2 (1-187)

and the channel LLR, which represents information about bk that depends on
knowledge of the channel, is

Lc(yk) = ln

[
f(yk|bk = 1)

f(yk|bk = 0)

]
. (1-188)

Since P (bk = 1) + P (bk = 0) = 1, (1-186) implies that

P (bk = b) =
exp [bLa(bk)]

1 + exp [La(bk)]
, b = 0, 1. (1-189)

In each decoder δ, Λδ,k is computed by the SISO algorithm, and then the
extrinsic information, which is passed between the two decoders, is computed
as

Lδ,e(bk) = Λδ,k − La(bk)− Lc(yk), δ = 1, 2. (1-190)

Except for the first iteration of component decoder 1, the a priori LLR
La(bk) for one decoder is set equal to the extrinsic information calculated by
the other decoder at the end of its previous iteration. Since this extrinsic
information depends primarily on different parity symbols and not on the a
priori information previously provided by the decoder, the extrinsic information
provides additional information to the decoder to which it is transferred. As
indicated in Figure 1.21, appropriate interleaving or deinterleaving is required
to ensure that the extrinsic information L1,e(bk) or L2,e(bk) is applied to each
component decoder in the correct sequence.

Let B{u,v, E} denote the function calculated by the SISO algorithm during
a single iteration of a component decoder, where u and v are input vectors, and
E is the a priori or extrinsic information applied to the component decoder. Let
I[·] denote the interleave operation, D[·] denote the deinterleave operation, and
a numerical superscript (n) denote the nth iteration. For each information bit
and each iteration n ≥ 1, the turbo decoder calculates the following functions:

Λ
(n)
1,k = B{yk, z1, D[L

(n−1)
2,e (bk)]} (1-191)

L
(n)
1,e (bk) = Λ

(n)
1,k − Lc(yk)−D[L

(n−1)
2,e (bk)] (1-192)

Λ
(n)
2,k = B{I[yk], z2, I[L(n)

1,e (bk)]} (1-193)

L
(n)
2,e (bk) = Λ

(n)
2,k − Lc(yk)− I[L

(n)
1,e (bk)] (1-194)
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where D[L
(0)
2,e] = Lc(yk) is the a priori bit LLR used during the first iteration

of component decoder 1.

When the iterative process for a bit terminates after L iterations, the Λ
(L)
2,k

from component decoder 2 is deinterleaved and then applied to a device that
makes a hard decision. The decision for bit k is

b̂k = sgn{D[Λ
(L)
2,k (bk)]} (1-195)

where the signum function is defined as

sgn(x) =

{
1, x ≥ 0
0, x < 0.

(1-196)

Performance improves with the number of iterations L, but simulation results
indicate that typically little is gained beyond 4–12 iterations.

The calculation of Lc(yk) by the demodulator depends on the modulation.
For coherent BPSK over the AWGN channel, let ck = 2bk − 1 denote the
mapping of information bit bk into its constellation value. Equations (1-33)
and (1-188) give

Lc(yk) = 4α

√
Es

N0
yk (BPSK). (1-197)

For binary OSK (BOSK) over the AWGN channel with N0i = N0 and
αi = α, bk = 0 is transmitted as signal 0, bk = 1 is transmitted as signal
1. Let y0,k and y1,k denote the sampled outputs of filters matched to the
two possible signals associated with the transmission of information bit bk.
Application of (1-56) indicates that for coherent demodulation,

Lc(yk) =
2α

√
Es Re (y1,k − y0,k)

N0
(coherent BOSK). (1-198)

Similarly, for noncoherent BOSK demodulation, (1-62) and (1-188) indicate
that

Lc(yk) = ln

⎡
⎣I0
(2α√Es|y1,k|

N0

)
I0
(2α√Es|y0,k|

N0

)
⎤
⎦ (noncoherent BOSK). (1-199)

The preceding equations indicate that both BPSK and BOSK require channel-
state information about α

√
Es/N0.

For identical component decoders and typically 8 algorithm iterations, the
overall complexity of a turbo decoder using the log-MAP algorithm is roughly 64
times that of a Viterbi decoder for one of the component codes. The complexity
of the turbo decoder increases while the performance improves as the constraint
length K of each component code increases. The complexity of a turbo decoder
using 8 iterations and component convolutional codes with K = 3 is approx-
imately the same as that of a Viterbi decoder for a convolutional code with
K = 9. The max-log-MAP algorithm is roughly 2/3 as complex as the log-
MAP algorithm and typically degrades the bit error probability of the turbo
code by 0.1–0.2 dB at Pb = 10−4. The SOVA algorithm is roughly 1/3 as com-
plex as the log-MAP algorithm and typically degrades the bit error probability
of the turbo code by 0.5–1.0 dB at Pb = 10−4.
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Parallel Block Codes

A parallel block turbo code uses two linear block codes as its component codes.
Linear block codes can be represented by a trellis diagram [60], which makes
them amenable to soft-decision decoding by the BCJR algorithm or an SISO
algorithm. To limit the decoding complexity, high-rate binary BCH codes are
generally used as the component codes, and the turbo code is called a turbo
BCH code. The encoder of a block turbo code has the form of Figure 1.20.

Suppose that the component block codes are binary systematic (n1, k1) and
(n2, k2) codes, respectively. Encoder 1 converts each set of k1 information bits
into n1 codeword bits that are passed to the multiplexer. Simultaneously, k2k1
information bits are written successively row-by-row into the interleaver as k1
columns and k2 rows. Encoder 2 converts each column of k2 interleaver bits into
a codeword of n2 bits but passes only the n2 − k2 parity bits of each codeword
to the multiplexer. Consequently, information bits are transmitted only once,
and the code rate of the block turbo code is

r =
k1k2

k2n1 + (n2 − k2)k1
. (1-200)

If the two block codes are identical, then r = k/(2n− k).
Consider component codes with minimum Hamming distances dm1 and dm2,

respectively. We can define a valid nonzero block-turbo codeword with all zeros
in the first k2 rows and k1 columns of information bits except for one bit that
defines a nonzero row and a nonzero column. The weight of the nonzero row is
at least dm1, and the weight of the nonzero column is at least dm2. Since the
row and column have one bit in common, the weight of this defined block-turbo
codeword is at least dm1 + dm2 − 1, and a codeword with this weight can be
generated. Therefore, the minimum distance of the block turbo code is

dm = dm1 + dm2 − 1. (1-201)

A rate-1/2 turbo code can be produced from rate-1/2 systematic compo-
nent codes by alternate puncturing prior to transmission of the even parity bits
generated by encoder 1 and the odd parity bits generated by encoder 2. An
even information bit has an associated parity bit of component code 1 trans-
mitted. However, because of the interleaving that precedes encoder 2, an odd
information bit may have neither its associated parity bit of component code
1 nor that of component code 2 transmitted. Some odd information bits may
have both associated parity bits transmitted, although not successively because
of the interleaving. Since some information bits have no associated parity bits
transmitted, the decoder is less likely to be able to correct errors in those in-
formation bits. A means of avoiding this problem is to use a block interleaver
with an odd number of rows and an odd number of columns. If bits are writ-
ten into the interleaver array in successive rows, but successive columns are
read, then odd and even information bits alternate at the input of encoder 2,
thereby ensuring that all information bits have an associated parity bit that is
transmitted exactly once.
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Figure 1.22: Encoder for turbo trellis-coded modulation. SI= symbol inter-
leaver. SD= symbol deinterleaver. CI= channel interleaver

The decoder of a block turbo code has the form of Figure 1.21, and only
slight modifications of the BCJR or SISO decoding algorithms are required.
Long, high-rate turbo BCH codes approach the Shannon limit in performance,
but their complexities are greater than those of convolutional turbo codes of
comparable performance.

Turbo Trellis-Coded Modulation

Turbo trellis-coded modulation (TTCM), which produces a nonbinary band-
width-efficient modulation, is obtained by using identical trellis codes as the
parallel component codes of a turbo code. The encoder has the form illustrated
in Figure 1.22. Groups of information bits are applied simultaneously to trellis
encoder 1 and to the group interleaver. To ensure that all information bits are
transmitted only once and that parity bits are provided alternately by the two
component encoders, the group interleaver transfers groups in odd positions
to odd positions and groups in even positions to even positions. The trellis
encoders generate parity bits and map code symbols into constellation points.
The symbol deinterleaver establishes the correct ordering of the constellation
points. The selector passes the odd-numbered constellation points from en-
coder 1 and the even-numbered constellation points from encoder 2, thereby
preserving the code rate of the trellis code. The channel interleaver permutes
the selected constellation points prior to the modulation.

The TTCM decoder uses a symbol-based SISO algorithm analogous to that
used by convolutional turbo decoders. TTCM can provide a performance close
to the theoretical limit for the AWGN channel, but its implementation com-
plexity is much greater than that of conventional trellis-coded modulation.

Serially Concatenated Turbo Codes

Serially concatenated turbo codes use inner and outer codes that are amenable
to efficient decoding by the BCJR algorithm or an SISO algorithm. Thus, the
binary codes are either systematic block or recursive systematic convolutional
codes. The encoder for a serially concatenated turbo code has the form of
Figure 1.17. The outer encoder generates a codeword of n1 bits for every k1
information bits. The n1 interleaved outer-code bits are applied to the inner
encoder, which converts each set of n1 bits into n2 channel bits. The overall code
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Figure 1.23: Iterative decoder for serially concatenated code. D=deinterleaver;
I= interleaver

rate of the serially concatenated code is k1n1/n2n1 = k1/n2. The interleaver is
an essential part of the encoder of a serially concatenated turbo code because the
deinterleaving greatly diminishes the possibility that corrupted inner codewords
can undermine the iterative process in the turbo decoder.

A functional block diagram of an iterative decoder for a serially concatenated
code is illustrated in Figure 1.23. Let co denote the outer codeword bits, which

include the information bits b. For the nth iteration, let L
(n)
i,e (co) and L

(n)
o,e (co)

denote the extrinsic LLRs for the outer codeword bits generated by the inner
and outer decoders, respectively. Let B{u, E} denote the function calculated
by the BCJR algorithm during a single iteration of a component decoder, where
u is an input vector, and E is the a priori or extrinsic information applied to
the component decoder. Let I[·] and D[·] denote the interleave and deinterleave
operations, respectively. For each information bit and each iteration n ≥ 1, the
turbo decoder calculates the following functions:

L
(n)
i,e (co) = B

{
y, I
[
L(n−1)
o,e (co)

]}
− I
[
L(n−1)
o,e (co)

]
, n ≥ 1 (1-202)

L(n)
o,e (co) = B

{
0, D

[
L
(n)
i,e (co)

]}
−D

[
L
(n)
i,e (co)

]
, n ≥ 1 (1-203)

L(0)
o,e (co) = 0 (1-204)

where the demodulator outputs y correspond to the n2 inner-code bits. After
N iterations, the final output of the iterative decoder for the lth bit of b is

Λl = B
{
0, D

[
L
(N)
i,e (co)

]}
= ln

[
P [bl (c0) = 1|y]
P [bl (co) = 0|y]

]
. (1-205)

Turbo Product Codes

A turbo product code is a product code that uses iterative decoding of the
component codewords. The primary SISO algorithm uses a version of the Chase
algorithm. The resulting limited search for the maximum-likelihood codewords
of the component codes rather than an exhaustive search enables a practical
implementation with only a small loss in potential performance.

The encoder generates an n2 × n1 array of code bits, which is illustrated
in Figure 1.19. Each of the k2 rows in the array is a codeword of an (n1, k1)
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code, and each of the n1 columns is the codeword of an (n2, k2) code. The array
defines a codeword of a product code with n = n1n2 code bits representing k1k2
information bits. Each transmitted codeword is received as an n2 × n1 array
R of sampled matched-filter outputs. The array R is partitioned into row and
column vectors that are separately decoded by the SISO algorithm.

During the first half-iteration, both hard decisions and bit metrics for the
row vectors are provided by the demodulator. In the second half-iteration and
subsequent iterations, extrinsic information is used in processing either the
column vectors or row vectors. The array R provides a bit-metric vector y of
matched-filter output samples yi, 1 ≤ i ≤ n1n2. During each half-iteration, y is
updated by using extrinsic information. Then hard decisions and the reliability
metric defined by (1-122) are used to detect the r least reliable bits in the array,
and 2r different test patterns are generated by allowing the least reliable bits
to have either of their two possible values. For each test pattern, hard-decision
decoding of the component codewords is performed, and 2r candidate turbo
codewords for the n2 × n1 array are produced. The candidate codeword that
is closest in Euclidean distance to y is selected and stored in the array as the
vector c1. Similarly, the candidate codeword that is second closest in Euclidean
distance to y is selected and stored in the array as the vector c2.

For the (n+ 1)th half-iteration, where n ≥ 1, the turbo decoder updates y
with [62], [78]

y (n+ 1) = y + α (n+ 1)w (n+ 1) , n ≥ 1 (1-206)

where α (n) is a scaling factor that can be determined experimentally, and w (n)
is extrinsic information computed as

w (n+ 1) =

[
‖y (n)− c2‖2 − ‖y (n)− c1‖2

4

]
c1 − y (n) , n ≥ 1. (1-207)

The iterative decoding process terminates when y (n) remains unchanged for
two half-iterations.

Turbo product codes are competitive with other turbo codes in performance
and computational complexity. Advantages of turbo product codes are the ca-
pability of high coding gains at high code rates without resorting to puncturing
and the inherent error-detection capability without the need for additional par-
ity bits. Many modified turbo product codes have been proposed or used and
provide various potential advantages and disadvantages.

1.7 Iterative Demodulation and Decoding

The concept of performing iterative computations using two decoders can be ex-
tended to a demodulator and decoder by designing the demodulator to exploit
a priori information provided by the decoder, which itself receives a priori infor-
mation from the demodulator and may be internally iterative [114]. The major
components of a communication system with iterative decoding and demodu-
lation are diagrammed in Figure 1.24. The code can be a binary or nonbinary
block, convolutional, turbo, or LDPC code.
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Figure 1.24: Iterative demodulation and decoding with transmitter and receiver

In the transmitter, message bits are encoded, bit-interleaved or symbol-
interleaved, and then applied to the modulator. Prior to the modulation, the
modulator applies a constellation labeling map, which is the mapping of a bit
pattern to each symbol or point in a signal constellation. Each set of m = log2 q
consecutive bits in the input b = {b1, . . . , bm} ∈ [0, 1]m is mapped into a q-ary
symbol q̃ = μ(b), where μ(b) is the labeling map, and the set of constellation
symbols has cardinality q. A q-ary modulated signal is transmitted.

In the receiver, the demodulator partitions the received signal into a se-
quence of received symbols. A demapper within the demodulator processes
each received symbol to produce a vector of bit LLRs. This vector provides
extrinsic information that is deinterleaved and passed to the decoder, which
generates a vector of bit LLRs that are interleaved and passed to the demod-
ulator. The demodulator and decoder exchange extrinsic information until bit
decisions are made by the decoder after a specified number of iterations.

When the demodulator receives a q-ary symbol q̃, it computes a LLR for
each of the m = log2 q code bits represented by the symbol. Let bl (q̃) denote
the lth bit associated with symbol q̃. Let y denote the matched-filter outputs
corresponding to q̃. The LLR for bl (q̃) produced by the demodulator is

Λl = ln

[
P [bl (q̃) = 1|y]
P [bl (q̃) = 0|y]

]
(1-208)

where P (·) is a generic probability function or conditional probability function.
We define the set of all possible symbol values such that the lth bit is b as

D(l, b) = {q̃ : bl (q̃) = b} , b = 0, 1. (1-209)

From the theorem of total probability and Bayes’ rule,

Λl = ln

[
f [y|bl (q̃) = 1]P [bl (q̃) = 1]

f [y|bl (q̃) = 0]P [bl (q̃) = 0]

]
]

= ln

[∑
q̃ f [y|q̃, bl (q̃) = 1]P [q̃ | bl (q̃) = 1]P [bl (q̃) = 1]∑
q̃ f [y|q̃, bl (q̃) = 0]P [q̃ | bl (q̃) = 0]P [bl (q̃) = 0]

]
]

= ln

[∑
q̃∈D(l,1) f [y|q̃]P [q̃]∑
q̃∈D(l,0) f [y|q̃]P [q̃]

]
(1-210)



66 CHAPTER 1. MODULATIONS AND CHANNEL CODES

where f(·) is a generic density or conditional density.
During the first iteration of the iterative demodulation and decoding, the

known a priori symbol probability P (q) is used, or each symbol is assumed to
be uniformly distributed over the symbol constellation. After the demodulator
output is passed to the decoder, the decoder feeds back a posteriori probabilities
that become the a priori symbol probabilities of the demodulator. During the
second and subsequent iterations, the assumption of statistically independent
code bits implies that

P (q̃) =

m∏
l=1

P [bl (q̃)] (1-211)

where bl (q̃) is bit l of symbol q̃, and P [bl (q̃)] is the probability that this bit
was transmitted. When (1-211) is substituted into (1-210), we obtain

Λl = ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
q̃∈D(l,1)

f(y| q̃)
m∏
i=1

P [bi (q̃)]

∑
q̃∈D(l,0)

f(y| q̃)
m∏
i=1

P [bi (q̃)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (1-212)

The LLR given by (1-212) can be decomposed as

Λl = vl + zl (1-213)

where the a priori LLR for bit l of symbol q̃ is

vl = ln

[
P [bl (q̃) = 1]

P [bl (q̃) = 0]

]
(1-214)

and the extrinsic LLR for bit l of symbol q̃ is

zl = ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
q̃∈D(l,1)

f(y|q̃)
m∏

i=1,i�=l

P [bi (q̃)]

∑
q̃∈D(l,0)

f(y|q̃)
m∏

i=1,i�=l

P [bi (q̃)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (1-215)

The extrinsic LLR for each bit is sent to the decoder.
The a priori LLR vl for each bit l of each symbol q̃ is calculated by the

decoder and fed back to the demodulator. Since P [bl (q̃) = 1]+P [bl (q̃) = 0] =
1, (1-214) implies that

P [bl (q̃)] =
exp [bl (q̃) vl]

1 + exp (vl)
. (1-216)

The substitution of (1-216) into (1-215) and a cancelation yields

zl = ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
q̃∈D(l,1)

f(y|q̃)
m∏

i=1,i�=l

exp [bi (q̃) vi]

∑
q̃∈D(l,0)

f(y|q̃)
m∏

i=1,i�=l

exp [bi (q̃) vi]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (1-217)
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In terms of the max-star operation of (1-174),

zl = max
q̃∈D(l,1)

∗

⎧⎨
⎩ln [f(y|q̃)] +

m∑
i=1,i�=l

bi (q̃) vi

⎫⎬
⎭

− max
q̃∈D(l,0)

∗

⎧⎨
⎩ln [f(y|q̃)] +

m∑
i=1,i�=l

bi (q̃) vi

⎫⎬
⎭ (1-218)

which is computationally efficient.
For the iterative demodulation and decoding, the demodulator transfers the

{zl} to the decoder during the second and subsequent iterations. The decoder
then uses the {zl} as bit LLRs in the computation of branch metrics in the BCJR
algorithm and to compute the {vi} , which are fed back to the demodulator.
Each receiver iteration includes a demodulator iteration followed by one or more
decoder iterations. After the final receiver iteration, the final decoded bits are
the hard decisions based on the final demodulator or decoder LLRs.

The calculation of ln [f(y | q̃)] depends on the modulation. Consider the
AWGN channel. For coherent PAM, we apply (1-30) to the reception of a
single symbol q̃ by setting n = 1, di = q̃, and θi = 0. Discarding irrelevant
factors that are common to the numerator and denominator in (1-217), we use

ln [f(y | q̃)] = 2α
√

EsRe(q̃y)− α2Es |q̃|2 (PAM) (1-219)

in (1-218), where y is the complex number at the output of the sampled matched
filter.

For coherent OSK, application of (1-57) to the reception of a single symbol,
setting the phase equal to zero, and discarding irrelevant factors, we use

ln [f(y | q̃)] =
(
2α

√
EsRe (yl)
N0

)
(1-220)

in (1-218), where l is the index of the matched filter that is matched to q̃.
For noncoherent OSK, we assume that the phase is uniformly distributed over
[0, 2π). Applying (1-62) to the reception of a single symbol and discarding ir-
relevant factors, we use

ln [f(y | q̃)] = I0

(
2α

√
Es |yl|
N0

)
(1-221)

in (1-218).

1.8 Simulation Examples

The performance examples in this section, which are plots of the bit error
probability as a function of Eb/N0, are generated by Monte Carlo simulations.
We assume here and elsewhere in this book that the front-end and lowpass
filters of both the transmitter and receiver are perfect.
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CDMA2000 is a family of communication standards for the wireless trans-
mission of data. Figures 1.25 and 1.26 illustrate the performance of a system
that conforms to the standards and uses a rate-1/2 turbo code with parallel
rate-1/2 component codes. The turbo encoder has the form shown in Fig-
ure 1.20. Each component code is a recursive systematic convolutional code
that has the configuration shown in Figure 1.9. The puncturing matrix for each
pair of input information bits is

P =

⎡
⎢⎢⎣
1 1
1 0
0 0
0 1

⎤
⎥⎥⎦ (1-222)

where each column defines which output bits of the two component encoders
are transmitted following each input bit. Each set of log2 q bits is encoded
as a q-ary channel symbol that is transmitted by using orthogonal q-ary FSK,
which is henceforth denoted by q-FSK. Channel-state information is assumed
to be available in the receiver, and noncoherent demodulation is used. The
codeword size is k = 1530 information bits, and the AWGN or Rayleigh fading
(cf. Chapter 6) channel is assumed. Ideal bit interleaving is assumed for binary
symbols when bit-interleaved coded modulation (BICM) (cf. Chapter 6) is used.
When BICM is not used, ideal symbol-interleaved coded modulation (SICM)
is assumed. Ideal interleaving is simulated for the Rayleigh channel by having
each modulated symbol associated with an independent fading coefficient.

Example 6. Figure 1.25 illustrates the improvement in the bit error prob-
ability of a system that uses 4-FSK and bit-interleaved coded modulation with
iterative decoding and demodulation (BICM-ID, Section 6.11) over the Rayleigh
channel as the number of decoding iterations increases. The improvement ex-
hibits rapidly diminishing returns beyond four iterations and is insignificant
beyond 10 iterations. The diminishing returns indicate that the adaptive cur-
tailment of iterations based on some measure of the subsequent potential gain
is desirable to reduce system latency, which is one of the principal limitations
of turbo codes. Several potentially effective methods for stopping iterations
are available [15]. Figure 1.26 illustrates the degradation that occurs when the
turbo decoder uses the max-log-MAP algorithm instead of the log-MAP algo-
rithm for communications over the Rayleigh channel. The degradation for the
AWGN channel is similar. �

As the alphabet size increases, the performance improves at the cost of larger
signal bandwidths. For example, a 16-FSK system provides an improvement of
roughly 1.5 dB at a bit error probability of 10−5 relative to the 4-FSK system,
but the bandwidth requirement is increased by a factor of 4.

Plots of the bit error probability for systems with iterative decoding gener-
ally exhibit a waterfall region, which is characterized by a rapid decrease in the
bit error probability as Eb/N0 increases, and an error-floor region, in which the
bit error probability decreases much more slowly. A hypothetical plot illustrat-
ing these regions is shown in Figure 1.27. A low error floor may be important
for radio-relay communication, space-ground communication, compressed-data
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Figure 1.25: Performance of turbo code with 4-FSK and BICM-ID over Rayleigh
channel as number of decoding iterations varies

transfer, optical transmission, or when an automatic-repeat request is not fea-
sible because of the variable delays. Figures 1.25 and 1.26 do not exhibit error
floors because bit error probabilities lower than 10−6 are not displayed. A
Gray labeling map tends to provide an early onset of the waterfall region, but
the error floor, which for the AWGN channel is determined by the minimum
Euclidean distance of the symbol set, is lower for other labeling maps.

The potentially large system latency, the system complexity, and sometimes
the error floor are the primary disadvantages of turbo codes.

1.9 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes [10, 83] are linear block codes spec-
ified by an (n− k) × n parity-check matrix H that is sparsely populated with
nonzero elements. Nonbinary LDPC codes provide an excellent performance
when the codewords are short and allow a direct combination with high-order
modulations. However, binary codes are henceforth assumed because of their
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Figure 1.26: Performance of turbo code with 4-FSK and BICM-ID over the
Rayleigh channel for log-MAP and max-log-MAP algorithms

predominance in applications. A regular LDPC code has the same number of
ones in each column and the same number of ones in each row of H; otherwise,
the LDPC code is irregular. Irregular LDPC codes are competitive with turbo
codes in terms of the performance obtained for a given level of implementation
or computational complexity.

Since (1-90) and (1-91) imply that

HdT = 0 (1-223)

each of the n − k rows of H specifies a parity-check equation that must be
satisfied. Each equation requires that the parity of a subset of must be zero;
that is, the modulo-two sum of the bits in the subset must equal zero.

A Tanner graph is a bipartite graph that represents the parity-check matrix
and equations as two sets of nodes. One set of n nodes, called the variable
nodes, represents the codeword symbols. Another set of n− k nodes, called the
check nodes, represents the parity-check equations. An edge connects variable-
node i to check-node l if component Hli = 1. The (7, 4) Hamming code has the
parity-check matrix

H =

⎡
⎣ 1 1 1 0 1 0 0

0 1 1 1 0 1 0
1 1 0 1 1 0 1

⎤
⎦ (1-224)
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Figure 1.27: Illustration of regions of bit error probability plot
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Figure 1.28: Tanner graph for (7, 4) Hamming code

and the associated Tanner graph is shown in Figure 1.28.
The soft-decision decoding algorithm for LDPC codes is called the sum–

product, message-passing, or belief-propagation algorithm. The first name refers
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to the main computations required. The second name refers to the fact that if
each node is regarded as a processor, then the algorithm can be interpreted as
the iterative passing of information messages between a set of variable nodes
and a set of check nodes in a Tanner graph. The third name emphasizes that
the messages are measures of the credibility of the most recent computations.
The sparseness of the parity-check matrix facilitates the LDPC decoding.

If the ones in a large H matrix are approximately randomly distributed,
then the sparseness of ones in H reduces the probability that a set of corrupted
bits are applied to the same check nodes. Any bit that is corrupted or subjected
to a deep fade is likely to be applied to a check node that also receives more
reliable information from other bits.

A cycle of a graph is a sequence of distinct edges that start and terminate
at the same node. The length of the shortest cycle in a graph is called its girth.
The Tanner graph of the (7, 4) Hamming code has a girth equal to 4, which
is the minimum possible length of a cycle. The most effective LDPC codes
have girths exceeding 4 because a low girth corresponds to a limited amount of
independent information exchange among some variable and check nodes.

A well-designed LDPC code does not require an interleaver following the
encoder because interleaving is equivalent to the permutation of the columns
of the parity-check matrix H. Since a deinterleaver is not required prior to its
decoder, an LDPC code usually has less latency than a turbo code of similar
complexity.

The basis of the sum–product algorithm is a parity-check LLR λs that is a
measure of the likelihood that the parity-check equation is satisfied at check-
node s and can be expressed as a function of the LLRs of the bits. Let S
denote the set of bits used in the parity-check equation for check-node s. The
parity-check equation is the modulo-2 sum

ns =
∑
i∈S

bi, bi ∈ (0, 1) (1-225)

and is equal to zero or one. It may be verified by considering an even number
of ones in S and then an odd number of ones that

ns =
1

2

[
1−
∏
i∈S

(1− 2bi)

]
. (1-226)

The parity-check LLR associated with ns is defined as

λs = ln

[
P (ns = 1)

P (ns = 0)

]
(1-227)
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which indicates that λs → −∞ if P (ns = 0) → 1, and λs → ∞ if P (ns = 0) →
0. A bit LLR is defined as

λi = ln

[
P (bi = 1)

P (bi = 0)

]
, i ∈ S. (1-228)

which implies that

E [bi] = P (bi = 1) =
eλi

1 + eλi
. (1-229)

Equations (1-226) and (1-229) and the independence of the bits imply that

P (ns = 1) = E[ns] =
1

2

[
1−
∏
i∈S

(1− 2E [bi])

]

=
1

2

[
1−
∏
i∈S

(
1− 2eλi

1 + eλi

)]
. (1-230)

Using algebra and the definition

tanh (x) =
ex − e−x

ex + e−x
(1-231)

we obtain

P (ns = 1) =
1

2

[
1−
∏
i∈S

tanh

(
−λi

2

)]
. (1-232)

Combining (1-227) and the fact that P (ns = 1) + P (ns = 0) = 1, we obtain

P (ns = 1) =
eλs

1 + eλs
. (1-233)

From this equation, (1-232), the definition of tanh (x) , and an inversion, we
obtain

λs = −2 tanh−1

[∏
i∈S

tanh

(
−λi

2

)]
(1-234)

which relates the parity-check LLR λs to the LLRs of the individual bits.
Prior to the first iteration of the sum–product algorithm, variable-node i uses

the matched-filter output vector yi associated with code-bit bi to compute an a
posteriori LLR. Using Bayes’ rule and assuming equal a priori bit probabilities,
we obtain the channel LLR:

λ
(0)
i = ln

[
P (bi = 1|yi)

P (bi = 0|yi)

]
= ln

[
P (yi|bi = 1)

P (yi|bi = 0)

]

= Lc(yi) (1-235)

where Lc(yi) is the same channel LLR used in turbo decoding, and hence
(1-197), (1-198), and (1-199) are applicable for BPSK, coherent BOSK, and
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noncoherent BOSK, respectively. Thus, the calculation of λ
(0)
i requires channel-

state information. Each check node receives LLRs from adjacent nodes, which
are those variable nodes corresponding to bits that contribute to the check
node’s parity-check equation.

During iteration ν ≥ 1, check-node l combines the LLRs received from
adjacent nodes during iteration ν − 1. Check-node l updates the LLR that is
subsequently sent to variable-node i by slightly modifying the parity-check LLR
of (1-234):

μ
(ν)
l,i = −2 tanh−1

[
Πtanh
m=Nl/i

(
−
λ
(ν−1)
m − μ

(ν−1)
l,m

2

)]
, ν ≥ 1 (1-236)

where Nl/i is the set of variable nodes adjacent to check-node l but excluding

variable-node i, and μ
(0)
l,i = 0 for all i and l. The exclusion is to prevent re-

dundant information originating in node i from recycling back to it, thereby
causing an instability. The value passed to variable-node m in the preceding

iteration is subtracted from λ
(ν−1)
m to reduce the correlation with previous it-

erations. If μ
(ν)
l,i → −∞, then variable-node i learns that it is highly likely that

the parity-check equation of check-node l is satisfied.
After receiving LLRs from adjacent check nodes during iteration ν ≥ 1,

variable-node i updates its LLR as

λ
(ν)
i = λ

(0)
i +

∑
l∈Mi

μ
(ν)
l,i , ν ≥ 1 (1-237)

where Mi is the set of check nodes adjacent to variable-node i. The algorithm
can terminate when all n−k of the parity-check equations of some codeword are
satisfied or after a specified number of iterations. If the algorithm terminates
after ν0 iterations, then the LDPC decoder sets

bi =

{
1, λ

(ν0)
i > 0

0, λ
(ν0)
i ≤ 0.

(1-238)

LDPC codes are often characterized by the degree distributions of the nodes
in their Tanner graphs. The degree of a node is defined as the number of edges
emanating from it. The degree distribution of the variable nodes is defined as
the polynomial

v(x) =

dv∑
i=2

nix
i−1 (1-239)

where ni denotes the fraction of variable nodes with degree i, and dv denotes
the maximum degree or number of edges connected to a variable node. The
degree distribution of the check nodes is defined as the polynomial

χ(x) =

dc∑
i=2

χix
i−1 (1-240)

where χi denotes the fraction of check nodes with degree i, and dc denotes the
maximum degree or number of edges connected to a check node.



1.9. LOW-DENSITY PARITY-CHECK CODES 75

Structured LDPC Codes

The sparse parity-check matrix of LDPC codes enables decoding with a com-
plexity that increases linearly with the codeword or block length. However,
the corresponding generator matrix of unstructured or pseudorandom LDPC
codes is generally not sparse. Since the encoding requires the matrix multipli-
cation indicated in (1-90), the encoding complexity increases with the codeword
length. To reduce this complexity and the encoding latency, structured LDPC
codes are often used, although the additional structure may make it difficult
to match the outstanding error-correction capabilities of unstructured LDPC
codes. Two of the most practical classes of structured LDPC codes, which offer
rapid encoding, efficient decoding, and excellent performance, are protograph
codes and irregular repeat-accumulate codes.

The protograph LDPC codes are a class of LDPC codes that are constructed
by first repeatedly duplicating a protograph consisting of the Tanner graph
of an LDPC code with a small number of nodes. The protograph may have
parallel edges of different types. The derived graph representing the protograph
code is constructed by combining the duplicates and then permuting edges
that belong to the same type. Many protograph codes increase the code rate
by having punctured variable nodes, which are potential variable nodes that
represent untransmitted code symbols [27].

The repeat-accumulate codes are a class of structured LDPC codes that have
an encoding complexity that increases linearly with the block length. This
class may be considered a subclass of the protograph LDPC codes. A repeat-
accumulate code is a serially concatenated code that may be decoded as either
an LDPC code or a turbo code. An outer repetition encoder repeats each of
k information bits ν times to form a block of kν bits that are passed through
an interleaver. Each interleaver output bit is successively applied to an inner
encoder that is a rate-1 recursive convolutional code functioning as an accu-
mulator. The inner-encoder output is the modulo-2 sum of its input and its
previous output. A limitation of the repeat-accumulate code, whether it is
systematic or not, is that its code rate cannot exceed 1/2.

The irregular repeat-accumulate (IRA) codes are generalizations of repeat-
accumulate codes that retain the linear complexity of encoding and decoding,
but are not limited in their code rates, are more flexible in design options, and
can provide a much better performance. The IRA code repeats each informa-
tion bit a variable number of times. The repeated bits are interleaved, and then
a number of them are combined and applied as successive inputs to an accu-
mulator. A systematic (n, k) IRA encoder generates the codeword d = [m p],
where m is the row vector of k information bits, and p is the row vector of
n− k accumulator outputs.

The (n− k)×n parity-check matrix for a systematic IRA code has the form

H = [H1 H2] (1-241)
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where H1 is an (n− k)×k sparse matrix, and H2 is the (n− k)×(n− k) sparse
matrix with the dual-diagonal form

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
0 1 1

·
·

1 1 0
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1-242)

The k × n generator matrix that satisfies (1-91) is

G =
[
I HT

1 H
−T
2

]
(1-243)

where I is the k×k identity matrix. An array inversion and transpose of (1-242)
yield an upper triangular matrix:

H−T
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 1
0 0 1

·
·

1 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1-244)

As indicated by (1-94), the encoder produces the codeword

c =
[
m mHT

1 H
−T
2

]
. (1-245)

The form of H−T
2 indicates that its premultiplication by the 1 × (n− k) row

vector mHT
1 may be implemented as an accumulator that generates successive

elements of the 1× (n− k) row vector mHT
1 H

−T
2 . Since HT

1 is sparse, far fewer
encoder computations are required than for unstructured LDPC codes.

LDPC Performance

In selecting an LDPC code, there is usually a tradeoff between a favorable
waterfall region and a low error floor. The bit error probability of an LDPC code
in the waterfall region is mostly dependent on the girth because short cycles
prevent nodes from extracting a substantial amount of independent parity-
check information. The bit error probability in the error-floor region is mostly
dependent on the minimum Euclidean distance of the symbol set, which may
be decreased if the girth is too large. Well-designed irregular LDPC codes can
provide lower bit error probabilities than regular codes of the same size in the
waterfall region. The price is an increased implementation complexity and a
raised error floor primarily because of the large girths that are required. An
increase in some column weights tends to decrease the girth but may increase
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Figure 1.29: Performance of LDPC code with 16-QAM over Rayleigh channel
for codewords of length 2304, 4608, and 9216

the minimum Euclidean distance. LDPC codes often provide lower error floors
than turbo codes of similar complexity.

Example 7. Figure 1.29 illustrates the performance over the Rayleigh
channel of coherent 16-QAM, rate-1/2 pseudorandom LDPC codes, and perfect
channel-state information. The codeword lengths are 2304, 4608, and 9216
bits. The steepness of the waterfall region increases rapidly with increases in
the codeword length. �

1.10 Problems

1. Derive (1-12) and (1-18) using the procedures outlined in the text.

2. Consider the DPSK demodulator. The random variable V1 (i) is the sum
of the squares of two Gaussian random variables. Show that these two
random variables are independent.

3. Verify (1-67) and (1-68).

4. (a) Suppose that a binary (7,4) Hamming code is used for coherent BPSK
communications over the AWGN channel with no fading. The received
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output samples are −0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4. Use Table 1.2 of
(7,4) Hamming codewords to find the decision made when the codeword
metric (1-41) is used. (b) Use erasures to show that a Reed–Solomon
codeword with k information symbols can be recovered from any k correct
symbols.

5. Prove that the word error probability for BPSK and a block code with
soft-decision decoding satisfies

Pw ≤ (qk − 1)Q

(√
2dmrEb
N0

)
.

6. Use (1-121) and (1-119) to show that the coding gain or power advantage
of the BPSK system with a binary block code and maximum-likelihood
decoding is roughly log10 dmr relative to no code when Eb/N0 → ∞.

7. (a) Use (1-106) to show that N(dm, dm− t) =
(
dm

t

)
. Can the same result

be derived directly? (b) Use (1-108) with dm = 2t+1 to derive an upper
bound on Amax. (c) Explain why this upper bound becomes an equality
for perfect codes.

8. (a) Derive the Chernoff bound on P [X ≥ b] for a standard zero-mean
Gaussian random variable with unit variance. (b) The Chernoff bound
can be applied to hard-decision decoding, which can be regarded as a
special case of soft-decision decoding with the following branch metric. If
symbol i of a candidate binary sequence ν agrees with the corresponding
detected symbol at the demodulator output, then m(ν, i) = 1; otherwise
m(ν, i) = 0. Prove that

P2(l) ≤ [4Ps(1− Ps)]
l/2

.

This upper bound is not always tight but has great generality since no
specific assumptions have been made about the modulation or coding.

9. Consider a system that uses coherent BPSK and a convolutional code
over the AWGN channel. (a) What is the coding gain of a binary system
with soft decisions, K = 7, and r = 1/2 relative to an uncoded system for
large Eb/N0 ? (b) Use the approximation

Q(x) ≈ 1√
2πx

exp(−x2

2
), x > 0

to show that as Eb/N0 → ∞, soft-decision decoding of a binary convo-
lutional code has slightly less than a 3 dB coding gain relative to hard-
decision decoding.

10. A concatenated code comprises an inner binary (2m, m) Hadamard block
code and an outer (n, k) Reed–Solomon code. The outer encoder maps
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every set of m bits into one Reed–Solomon symbol, and every set of k
symbols is encoded as an n-symbol codeword. After the symbol interleav-
ing, the inner encoder maps every Reed–Solomon symbol into 2m bits.
After the interleaving of these bits, they are transmitted using a binary
modulation. (a) Describe the removal of the encoding by the inner and
outer decoders. (b) What is the value of n as a function of m? (c) What
are the block length and the code rate of the concatenated code?

11. (a) Show that iterative demodulation and decoding offer no advantage
for binary modulations. Let y = yk denote the kth demodulator output
corresponding to bit bk = q̃. Show that the same information is sent to
the decoder as in standard turbo decoding. (b) Use the guidance in the
text to verify (1-176).

12. Consider Example 5 in Section 1.6 for a systematic rate-1/3 binary con-
volutional code with its code symbols transmitted as BPSK symbols over
the AWGN channel. Define the a priori LLR of information bit b1 (k) as

Lk(b1) = ln

[
P (b1 (k) = 1)

P (b1 (k) = 0)

]
.

Show that each branch metric may be economically represented by

γk (s
′, s) ∼ exp

[
2
√
Es

N0

3∑
l=1

yk,lxk,l + b (s′, s)Lk (b1)

]

where xk,1 = 1− 2b1(k).

13. Consider the transmission of information bits over the binary symmetric
channel with bit error probability p. A transmitted bit bk is received as
yk. Show that the channel LLR is

Lc(yk) = (−1)
yk log

(
p

1− p

)
.

14. If N0 is unknown and may be significantly different from symbol to sym-
bol, a potential procedure is to replace the channel LLR of (1-188) with
the generalized channel LLR:

Lg(yk) = ln

[
f(yk|bk = 1, N0 = N1)

f(yk|bk = 0, N0 = N2)

]

where N1 and N2 are maximum-likelihood estimates of N0 obtained from
f(yk|bk = 1) and f(yk|bk = 0), respectively. For BPSK with no coding,
derive the estimators for N1 and N2 from (1-33). Then calculate the
corresponding Lg(yk) in terms of α and Es. What practical difficulty is
encountered if one attempts to use this LLR?
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15. Consider an LDPC decoder. (a) If check node l receives inputs only

from variable nodes α and β, what are the LLRs μ
(1)
l,α and μ

(1)
l,β? (b) If

variable node α then receives an input only from check node l, what is

λ
(1)
α ? Observe how the LLR of one variable node becomes part of the LLR

of another variable node in this case.



Chapter 2

Direct-Sequence Systems

A spread-spectrum signal is one with an extra modulation that expands the sig-
nal bandwidth greatly beyond what is required by the underlying channel code
and modulation. Spread-spectrum communication systems are useful for sup-
pressing interference, making secure communications difficult to detect and pro-
cess, accommodating fading and multipath channels, and providing a multiple-
access capability. Spread-spectrum signals cause relatively minor interference
to other systems operating in the same spectral band. The most practical and
dominant spread-spectrum systems are direct-sequence and frequency-hopping
systems.

There is no fundamental theoretical barrier to the effectiveness of spread-
spectrum communications. This remarkable fact is not immediately apparent
since the increased bandwidth of a direct-sequence signal necessitates a receive
filter that passes more noise power to the demodulator. However, when any
signal and white Gaussian noise are applied to a filter matched to the signal,
the sampled filter output has a signal-to-noise ratio that depends solely on
the energy-to-noise-density ratio. Thus, the bandwidth of the input signal is
irrelevant, and spread-spectrum signals have no inherent limitations.

After the information bits are mapped into code symbols, direct-sequence
modulation entails the direct addition of a high-rate spreading sequence with
the lower-rate data or code-symbol sequence, resulting in a transmitted signal
with a relatively wide bandwidth. The removal of the spreading sequence in
the receiver causes a contraction of the bandwidth of the direct-sequence signal
while not altering the bandwidth of the interference. The difference in band-
widths can be exploited by appropriate filtering to remove a large portion of
the interference. This chapter describes basic spreading sequences, both linear
and nonlinear, and data modulations that are detected coherently or noncoher-
ently. A detailed analysis shows how the direct-sequence receiver suppresses
various forms of interference. The devices that enable despreading with band-
pass matched filters are described.
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Figure 2.1: Examples of (a) data modulation and (b) spreading waveform

2.1 Definitions and Concepts

A direct-sequence signal is a spread-spectrum signal generated by the direct
mixing of the data with a spreading waveform before the final signal modulation.
Ideally, a transmitted signal of a direct-sequence system with binary phase-
shift keying (DS-BPSK system) or differential PSK (DS-DPSK system) can be
represented by

s(t) = Ad(t)p(t) cos(2πfct+ θ) (2-1)

where A is the signal amplitude, d(t) is the data modulation, p(t) is the spread-
ing waveform, fc is the carrier frequency, and θ is the phase at t = 0. The data
modulation is a sequence of nonoverlapping rectangular pulses of duration Ts,
each of which has an amplitude di = +1 if the associated data symbol is a 1 and
di = −1 if it is a 0 (alternatively, the mapping could be 1 → −1 and 0 → +1).
The spreading waveform has the form

p (t) =

N−1∑
i=0

piψ (t− iTc) , 0 ≤ t ≤ NTc (2-2)

where N is a large positive integer, and each pi equals +1 or −1 and represents
one chip of the spreading sequence. The chip waveform ψ(t) is designed to limit
interchip interference in the receiver and is mostly confined to the time interval
[0, Tc]. Figure 2.1 depicts an example of d(t) and p(t) for a rectangular chip
waveform.
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Figure 2.2: Functional block diagram of DS-BPSK or DS-DPSK: (a) transmit-
ter and (b) receiver

Message privacy is provided by a direct-sequence system if a transmitted
message cannot be recovered without knowledge of the spreading sequence. Al-
though message secrecy can be protected by cryptography, message privacy
provides protection even if cryptography is not used. If the data-symbol and
chip transitions do not coincide, then it is theoretically possible to separate the
data symbols from the chips by detecting and analyzing the transitions. To en-
sure message privacy, which is assumed henceforth, the data-symbol transitions
must coincide with the chip transitions. Another reason for common transitions
is the simplification of the receiver implementation. The common transitions
imply that the number of chips per data symbol is a positive integer.

Figure 2.2 is a functional or conceptual block diagram of the basic oper-
ation of a DS-BPSK or DS-DPSK system. To provide common transitions,
data symbols and chips, which represent digital sequences of 0’s and 1’s, are
synchronized by the same clock and then modulo-2 added. The adder output
is converted according to 0 → −1 and 1 → +1 before the chip-waveform mod-
ulation shown in Figure 2.2a. After upconversion and filtering, the modulated
signal is transmitted.

As indicated in Figure 2.2b, the received signal is filtered and then multi-
plied by a synchronized local replica of p(t). If ψ(t) is rectangular with unit
amplitude, then p(t) = ±1 and p2(t) = 1. Therefore, if the filtered signal is
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Figure 2.3: Spectra of desired signal and interference: (a) wideband-filter out-
put and (b) demodulator input

given by (2-1), the multiplication yields the despread signal

s1(t) = p(t)s(t) = Ad(t) cos (2πfct+ θ) (2-3)

at the input of the BPSK or DPSK demodulator. A standard demodulator
extracts the data symbols or provides branch metrics to the decoder.

If W is the bandwidth of p(t) and B is the bandwidth of d(t), the spreading
due to p(t) ensures that s(t) has a bandwidth W � B. Figure 2.3a is a qual-
itative depiction of the relative spectra of the desired signal and narrowband
interference at the output of the wideband filter. Multiplication of the received
signal by the spreading waveform, which is called despreading, produces the
spectra of Figure 2.3b at the demodulator input. The signal bandwidth is re-
duced to B, while the interference energy is spread over a bandwidth exceeding
W . Since the filtering action of the demodulator then removes most of the
interference spectrum that does not overlap the signal spectrum, most of the
original interference energy is eliminated.

The spreading factor or processing gain is defined as the positive integer

G =
Ts

Tc
(2-4)

which equals the number of chips in a symbol interval. An approximate measure
of the interference suppression capability is given by the ratio W/B. What-
ever the precise definition of a bandwidth, W and B are proportional to 1/Tc

and 1/Ts, respectively, with the same proportionality constant. Therefore,
W/B = Ts/Tc, and hence the spreading factor is a measure of the interfer-
ence suppression illustrated in Figure 2.3. Since its spectrum is unchanged by
the despreading, white Gaussian noise is not suppressed by a direct-sequence
system.
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The spectrum of the spreading waveform p(t) is largely determined by the
chip waveform ψ(t), which is designed to cause negligible interchip interference
among the matched-filter output samples in the receiver. If the bandwidth of
ψ(t) is sufficiently large, then the energy in ψ(t) is largely concentrated within
a chip interval of duration Tc. However, in a practical system, a wideband filter
in the transmitter is used to limit the out-of-band radiation. This filter and
the propagation channel disperse the chip waveform so that the received chip
waveform is no longer confined to [0, Tc]. A rectangular chip waveform is ideal
in the sense that it causes no interchip interference and has a minimal peak-to-
average power ratio, but it can only be approximated in practice.

2.2 Spreading Sequences

A direct-sequence receiver computes the correlation between the received
spreading sequence and a stored replica of the spreading sequence it is expect-
ing. The correlation should be high when the receiver is synchronized with the
received sequence, and low when it is not. Thus, it is critical that the spreading
sequence has suitable autocorrelation properties. Synchronization issues are
explained in Chapter 4.

To assess what is desirable in an autocorrelation and its associated power
spectral density, we first examine the random binary sequence.

The autocorrelation of a stochastic process y(t) is defined as

Ry(t, τ) = E [y(t)y(t+ τ)] (2-5)

where E[·] denotes the expected value. A stochastic process is wide-sense sta-
tionary (Appendix D.2) if its mean my(t) is constant and Ry (t, τ) is a function
of τ alone. Thus, the autocorrelation of a wide-sense stationary process may
be denoted by Ry(τ).

A cyclostationary process y(t) is one that has a mean and autocorrelation
with the same period T . Therefore,

my(t+ T ) = my(t) (2-6)

Ry(t+ T, τ) = Ry(t, τ). (2-7)

A deterministic function y(t) with period T is a cyclostationary process with
Ry(t, τ) = y(t)y(t+ τ).

A random binary sequence x(t) is a stochastic process that consists of in-
dependent, identically distributed symbols, each of duration T . The first sym-
bol transition or start of a new symbol after t = 0 is a random variable uni-
formly distributed over the half-open interval (0, T ]. Each symbol takes the
value +1 with probability 1/2 or the value −1 with probability 1/2. Therefore,
E[x(t)] = 0 for all t, and

P [x (t) = i] =
1

2
, i = +1,−1 (2-8)
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Figure 2.4: Sample function of a random binary sequence

where P [·] denotes the probability. A sample function of a random binary
sequence x(t) is illustrated in Figure 2.4. From the definition of an expected
value and the two possibilities, it follows that the random binary sequence has
autocorrelation

Rx(t, τ) = P [x(t+ τ) = x(t)]− P [x(t+ τ) �= x(t)]

= 1− 2P [x(t+ τ) �= x(t)]. (2-9)

This equation and the constant symbol duration T indicate that (2-7) is satis-
fied, and hence the random binary sequence is cyclostationary.

The random binary sequence is also wide-sense stationary. If |τ | > T ,
P [x(t + τ) �= x(t)] = 1/2. If |τ | ≤ T , the uniform distribution of the first
transition time implies that the probability that a transition occurs in [t, t+ τ)
is |τ |/T . If a transition occurs, then x(t) and x(t + τ) are independent, and
hence differ with probability 1/2; otherwise, x(t) = x(t + τ). Consequently,
P [x(t + τ) �= x(t)] = |τ |/2T if |τ | ≤ T . Substitution of this result into (2-9)
confirms the wide-sense stationarity of x(t) and gives the autocorrelation of the
random binary sequence:

Rx(τ) = Λ

(
τ

T

)
(2-10)

where the triangular function is defined by

Λ(t) =

{
1− |t|, |t| ≤ 1

0, |t| > 1.
(2-11)

The power spectral density (PSD) of a stationary stochastic process is the
Fourier transform of the autocorrelation. Since the triangular function can be
generated by the convolution of the rectangular function with itself, the convo-
lution theorem (Appendix C.1) indicates that the Fourier transform of triangu-
lar function is equal to the square of the Fourier transform of the rectangular
function. Therefore, the PSD of the random binary sequence is

Sx (f) =

∫ ∞

−∞
Λ

(
t

T

)
exp (−j2πft) dt

= T sinc2fT (2-12)
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where j =
√
−1 and the sinc function is

sinc(x) =

{
(sinπx)/πx, x �= 0

1, x = 0.
(2-13)

The autocorrelation of a cyclostationary process that is not wide-sense sta-
tionary is not a function of the relative delay τ alone. The periodic autocorre-
lation or average autocorrelation of a cyclostationary process y(t) with period
T is defined as

Ry(τ) =
1

T

∫ c+T

c

Ry(t, τ)dt (2-14)

where c is an arbitrary constant. The average PSD Sy (f) of a cyclostationary
process is the Fourier transform of the average autocorrelation.

The assumption about the random location of the first symbol transition of
the random binary sequence is artificial in many applications. For the cyclo-
stationary binary process x(t), this assumption is not made. If c is chosen as
the start of a symbol interval, then the substitution of (2-9) into (2-14) and an
evaluation yield

Rx(τ) = Λ

(
τ

T

)
(2-15)

which indicates that the average autocorrelation of the cyclostationary binary
process is identical to the autocorrelation of the wide-sense stationary random
binary sequence. Therefore, the average PSD of the cyclostationary binary
process is identical to the PSD of the wide-sense stationary random binary
sequence.

Shift-Register Sequences

Although it has a favorable autocorrelation, a random binary sequence is im-
practical as a spreading sequence because the latter must be known at both
the transmitter and receiver. Practical spreading sequences are periodic binary
sequences. A shift-register sequence is a periodic binary sequence generated by
the output of a feedback shift register or by combining the outputs of feedback
shift registers. A feedback shift register, which is diagrammed in Figure 2.5,
consists of consecutive two-state memory or storage stages and feedback logic.
Binary sequences drawn from the alphabet {0,1} are shifted through the shift
register in response to clock pulses. The contents of the stages, which are
identical to their outputs, are logically combined to produce the input to the
first stage. The initial contents of the stages and the feedback logic determine
the successive contents of the stages. If the feedback logic consists entirely
of modulo-2 adders (exclusive-OR gates), the feedback shift register and its
generated sequence are called linear.

The state of an m-stage shift register after clock pulse i is the vector

S(i) = [s1(i) s2(i) . . . sm(i)], i ≥ 0 (2-16)
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where sl(i) denotes the content of stage l after clock pulse i, and S(0) is the
initial state. The definition of a shift register implies that

sl(i) = sl−k(i− k), i ≥ k ≥ 0, k ≤ l ≤ m (2-17)

where s0(i) denotes the input to stage 1 after clock pulse i. The shift-register
sequence is extracted from stage m. If ai denotes bit i of the shift-register
sequence, then ai = sm(i). The state of a feedback shift register uniquely
determines the subsequent sequence of states and the shift-register sequence.
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The period of a shift-register sequence {ai} is defined as the smallest positive
integer N for which ai+N = ai, i ≥ 0. Since the number of distinct states of an
m-stage nonlinear feedback shift register is 2m, the sequence of states and the
shift-register sequence have period N ≤ 2m.

Example 1. Figure 2.6a illustrates a linear feedback shift register with
three stages and an output sequence extracted from the final stage. The input
to the first stage is the modulo-2 sum of the contents of the second and third
stages. After each clock pulse, the contents of the first two stages are shifted to
the right, and the input to the first stage becomes its content. The content of
the third stage is shifted out of the feedback shift register. If the initial contents
of the shift-register stages are 0 0 1, the subsequent contents after successive
shifts are listed in Figure 2.6b. Since the shift register returns to its initial state
after 7 shifts, the shift-register sequence extracted from the final stage has a
period of 7 bits. �

A general representation of a linear feedback shift register is shown in Fig-
ure 2.7a. If ck = 1, the corresponding switch is closed; if ck = 0, it is open. The
input to stage 1 of a linear feedback shift register is

s0(i) =

m∑
k=1

cksk(i), i ≥ 0 (2-18)

where the additions are modulo-2, and the feedback coefficient ck equals either
0 or 1, depending on whether the output of stage k feeds a modulo-2 adder.
An m-stage shift register is defined to have cm = 1; otherwise, the final state
would not contribute to the generation of the output sequence, but would only
provide a one-shift delay. For example, Figure 2.6 gives c1 = 0, c2 = c3 = 1,
and s0(i) = s2(i)⊕ s3(i), where ⊕ denotes modulo-2 addition.

Since the shift-register sequence bit ai = sm(i), (2-17) and (2-18) imply that
for i ≥ m,

ai = s0(i−m) =

m∑
k=1

cksk(i−m) =

m∑
k=1

cksm(i− k) (2-19)

which indicates that each bit satisfies a linear recurrence relation:

ai =

m∑
k=1

ckai−k, i ≥ m. (2-20)
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Figure 2.7: Linear feedback shift register: (a) standard representation and (b)
high-speed form

The firstm bits of the shift-register sequence are determined solely by the initial
state:

ai = sm−i(0), 0 ≤ i ≤ m− 1. (2-21)

Figure 2.7a is not the fastest configuration to generate a particular shift-
register sequence. Figure 2.7b illustrates an implementation that allows higher-
speed operation. The diagram indicates that

sl(i) = sl−1(i− 1)⊕ cm−l+1sm(i− 1), i ≥ 1, 2 ≤ l ≤ m (2-22)

s1(i) = sm(i− 1), i ≥ 1. (2-23)

Repeated application of (2-22) implies that

sm(i) = sm−1(i− 1)⊕ c1sm(i− 1), i ≥ 1

sm−1(i− 1) = sm−2(i− 2)⊕ c2sm(i− 2), i ≥ 2

... (2-24)

s2(i−m+ 2) = s1(i−m+ 1)⊕ cm−1sm(i−m+ 1), i ≥ m− 1.

Addition of these m− 1 equations yields

sm(i) = s1(i−m+ 1)⊕
m−1∑
k=1

cksm(i− k), i ≥ m− 1. (2-25)

Substituting (2-23) and then ai = sm(i) into (2-25), we obtain

ai = ai−m ⊕
m−1∑
k=1

ckai−k, i ≥ m. (2-26)
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Since cm = 1, (2-26) is the same as (2-20). Thus, the two implementations
can produce the same shift-register sequence indefinitely if the first m bits
coincide. However, the two implementations require different initial states and
have different sequences of states.

Successive substitutions into the first equation of sequence (2-24) yield

sm(i) = sm−i(0)⊕
i∑

k=1

cksm(i− k), 1 ≤ i ≤ m− 1. (2-27)

Substituting ai = sm(i), ai−k = sm(i− k), and l = m− i into (2-27) and then
using binary arithmetic, we obtain

sl(0) = am−l ⊕
m−l∑
k=1

ckam−l−k, 1 ≤ l ≤ m. (2-28)

If a0, a1, . . . am−1 are specified, then (2-28) gives the corresponding initial state
of the high-speed shift register.

The sum of binary sequence a = (a0, a1, · · · ) and binary sequence b =
(b0, b1, · · · ) is defined to be the binary sequence d = a⊕b, each bit of which is

di = ai ⊕ bi , i ≥ 0. (2-29)

Consider sequences a and b that are generated by the same linear feedback
shift register but may differ because the initial states may be different. For the
sequence d = a⊕ b, (2-29), (2-20), and the associative and distributive laws of
binary fields imply that

di =
m∑

k=1

ckai−k ⊕
m∑

k=1

ckbi−k =
m∑

k=1

(ckai−k ⊕ ckbi−k)

=

m∑
k=1

ck(ai−k ⊕ bi−k) =

m∑
k=1

ckdi−k. (2-30)

Since the linear recurrence relation is identical, d can be generated by the same
linear feedback logic as a and b. Thus, if a and b are two shift-register sequences
of a linear feedback shift register, then a⊕ b is also a shift-register sequence.

Maximal Sequences

If a linear feedback shift register reached the zero state with all its contents
equal to 0 at some time, it would always remain in the zero state, and the
output sequence would subsequently be all 0’s. Since a linear m-stage feedback
shift register has exactly 2m−1 nonzero states, the period of its output sequence
cannot exceed 2m − 1. A nonzero sequence of period 2m − 1 generated by a
linear feedback shift register is called a maximal or maximal-length sequence.
If a linear feedback shift register generates a maximal sequence, then all of its
nonzero output sequences are maximal, regardless of the initial states.
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Out of 2m possible states of a linear feedback shift register, the content of
the last stage, which is a bit of the shift-register sequence, is a 0 in 2m−1 states.
Among the nonzero states, this bit is a 0 in 2m−1 − 1 states. Therefore, in one
period of a maximal sequence, the number of 0’s is exactly 2m−1 − 1, whereas
the number of 1’s is exactly 2m−1.

Let a(l) = (al, al+1, . . .) denote a maximal sequence that is shifted by l bits
relative to sequence a(0). If l �= 0, modulo 2m − 1, then a(0) ⊕ a(l) is not the
sequence of all 0’s. Since it has been shown that a(0) ⊕ a(l) is generated by
the same shift register as a(0), it must be a maximal sequence and hence some
cyclic shift of a(0). We conclude that the modulo-2 sum of a maximal sequence
and a cyclic shift of itself by l digits, where l �= 0 modulo 2m − 1, produce
another cyclic shift of the original sequence; that is,

a(0)⊕ a(l) = a(k), l �= 0 (modulo 2m − 1). (2-31)

Example 2. In contrast, a non-maximal linear sequence a(0) ⊕ a(l) is
not necessarily a cyclic shift of a(0) and may not even have the same pe-
riod. As an example, consider the linear feedback shift register depicted in
Figure 2.8. The possible state transitions depend on the initial state. If the
initial state is 0 1 0, then the second state diagram indicates that there are
two possible states, and hence the shift-register sequence has a period of two.
The shift-register sequence is a(0) = (0, 1, 0, 1, 0, 1, . . .), which implies that
a(1) = (1, 0, 1, 0, 1, 0, . . .). Therefore, a(0) ⊕ a(1) = (1, 1, 1, 1, 1, 1, . . .), which
indicates that there is no value of k for which (2-31) is satisfied. �

Maximal sequences with m � 1 are difficult to distinguish from random
sequences. Suppose that one observes i bits within a maximal sequence of
period 2m − 1 bits, and i ≤ m. The i bits were present in the sequence of
m-bit states of the shift register that generated the maximal sequence. If not
all of the i bits are 0’s, the m − i unobserved bits in the m-bit state sequence
may be any of 2m−i possible sequences. Since there are 2m − 1 possible m-bit
state sequences, the relative frequency of a particular sequence of i observed
bits is 2m−i/ (2m − 1) if the bits are not all 0’s. If one observes i 0’s, then the
unobserved bits cannot be all 0’s because the m-bit state sequence constitutes
a state of the maximal-sequence generator. Thus, the relative frequency of i
observed 0’s is (2m−i − 1) / (2m − 1) . Both of these ratios approach 2−i as
m → ∞, which is what would happen if the m-bit sequence were random.

Characteristic Polynomials

Polynomials over the binary field GF (2) (Section 1.3) allow a compact descrip-
tion of the dependence of the shift-register sequence of a linear feedback shift
register on its feedback coefficients and initial state. The characteristic polyno-
mial

f(x) = 1 +

m∑
i=1

cix
i (2-32)

defines a linear feedback shift register of m stages with feedback coefficients
ci, i = 1, 2, . . . ,m. The coefficient cm = 1 assuming that stage m contributes to
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Figure 2.8: (a) Nonmaximal linear feedback shift register and (b) state dia-
grams

the generation of the shift-register sequence. The generating function associated
with the shift-register sequence is defined as

G(x) =

∞∑
i=0

aix
i. (2-33)

Substitution of (2-20) into this equation yields

G(x) =

m−1∑
i=0

aix
i +

∞∑
i=m

m∑
k=1

ckai−kx
i

=

m−1∑
i=0

aix
i +

m∑
k=1

ckx
k

∞∑
i=m

ai−kx
i−k

=

m−1∑
i=0

aix
i +

m∑
k=1

ckx
k

[
G (x) +

m−k−1∑
i=0

aix
i

]
. (2-34)
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Combining this equation with (2-32), and defining c0 = 1, we obtain

G(x)f(x) =

m−1∑
i=0

aix
i +

m∑
k=1

ckx
k(

m−k−1∑
i=0

aix
i)

=

m−1∑
k=0

ckx
k(

m−k−1∑
i=0

aix
i) =

m−1∑
k=0

m−1∑
i=0

ckal−kx
l

=
m−1∑
l=0

l∑
k=0

ckal−kx
l (2-35)

which implies that

G(x) =

m−1∑
i=0

xi

(
i∑

k=0

ckai−k

)

f(x)
, c0 = 1. (2-36)

Thus, the generating function of the sequence generated by a linear feedback
shift register with characteristic polynomial f(x) may be expressed in the form

G(x) =
φ(x)

f(x)
(2-37)

where the degree of φ(x) is less than the degree of f(x). The shift-register
sequence is said to be generated by f(x). Equation (2-36) explicitly shows that
the shift-register sequence is completely determined by the feedback coefficients
ck, k = 1, 2, . . . ,m, and the initial state ai = sm−i(0), i = 0, 1, . . . ,m− 1.

In Figure 2.6, the feedback coefficients are c1 = 0, c2 = 1, and c3 = 1, and
the initial state gives a0 = 1, a1 = 0, and a2 = 0. Therefore,

G(x) =
1 + x2

1 + x2 + x3
. (2-38)

Performing the long polynomial division according to the rules of binary arith-
metic yields G (x) = 1 + x3 + x5 + x6 + x7 + x10 + . . ., which implies the
shift-register sequence listed in the figure.

A polynomial b(x) is divisible by the polynomial p(x) if there is a polynomial
h(x) such that b(x) = h(x)p(x). A polynomial p(x) over GF (2) of degree m is
called irreducible if p(x) is not divisible by any polynomial over GF (2) of degree
less than m but greater than zero. If p(x) is irreducible over GF (2), then p(0) �=
0, for otherwise x would divide p(x). If p(x) has an even number of terms, then
p(1) = 0. Therefore, the fundamental theorem of algebra over GF (2) implies
that x + 1 divides p(x), and thus an irreducible polynomial over GF (2) must
have an odd number of terms. However, since 1+x+x5 = (1+x2+x3)(1+x+x2),
some polynomials with an odd number of terms are not irreducible.
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If a shift-register sequence {ai} is periodic with period n, then its generating
function G(x) = φ(x)/f(x) may be expressed as

G (x) = g (x) + xng (x) + x2ng (x) + · · · = g (x)

∞∑
i=0

xin

=
g (x)

1 + xn
(2-39)

where g(x) is a polynomial of degree n−1 and represents the first period of the
shift-register sequence.

Theorem 1. (a) The polynomial 1/f(x) represents a sequence with period
n or less only if f(x) divides 1 + xn. (b) If f(x) divides 1 + xn, then G (x)
represents a sequence with period n or less.

Proof. If a shift-register sequence has period n, (2-37) and (2-39) indicate
that

g (x) =
φ (x) (1 + xn)

f (x)
(2-40)

and thus f (x) divides φ (x) (1 + xn) . Since it is valid to set φ (x) = 1, it follows
that f (x) divides (1 + xn) . The generating function is G(x) = 1/f(x) and
represents a sequence with period n. Therefore, 1/f(x) represents a sequence
with period n or less only if f(x) divides 1 + xn.

Conversely, if the characteristic polynomial f(x) divides 1 + xn, then f(x)
h(x) = 1 + xn for some polynomial h(x). Therefore,

G (x) =
φ (x)

f (x)
=

φ (x)h (x)

1 + xn
= φ (x)h (x)

∞∑
i=0

xin. (2-41)

Since the degree of φ (x) is less than the degree of f (x), the degree of φ (x)h (x)
is less than the degree of f (x)h (x). Therefore, a sequence with period n or
less is generated if f(x) divides 1 + xn. �

The nonmaximal linear feedback shift register of Figure 2.8 has character-
istic polynomial 1 + x+ x2 + x3, which divides 1 + x4. Sequences of periods 4,
2, and 1 are generated.

A polynomial f (x) over GF (2) of positive degree m is called primitive if the
smallest positive integer n for which the polynomial divides 1+xn is n = 2m−1.
Suppose that a primitive characteristic polynomial f (x) of positive degree m0

is not irreducible and can be factored so that f(x) = f1(x)f2(x), where f1(x) is
of positive degree m1 and f2(x) is of positive degree m0−m1. A partial-fraction
expansion of the generating function G(x) = 1/f(x) yields

1

f (x)
=

a (x)

f1 (x)
+

b (x)

f2 (x)
. (2-42)

Since f1(x) and f2(x) can serve as characteristic polynomials, the period of the
sequence represented by the first term in the expansion cannot exceed 2m1 − 1,
whereas the period of the sequence represented by the second term cannot
exceed 2m0−m1−1. Therefore, the period of the sequence represented by 1/f(x)
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Table 2.1: Primitive polynomials
Degree Primitive Degree Primitive Degree Primitive

2 7 7 103 8 534
3 51 122 9 1201

31 163 10 1102
4 13 112 11 5004

32 172 12 32101
5 15 543 13 33002

54 523 14 30214
57 532 15 300001
37 573 16 310012
76 302 17 110004
75 323 18 1020001

6 141 313 19 7400002
551 352 20 1100004
301 742 21 50000001
361 763 22 30000002
331 712 23 14000004
741 753 24 702000001

772 25 110000002

cannot exceed (2m1 − 1)(2m0−m1 − 1) ≤ 2m0 − 3. However, the definition of
a primitive polynomial and Theorem 1 imply that this period is 2m0 − 1, and
hence we have a contradiction. Thus, a primitive characteristic polynomial must
be irreducible.

Theorem 2. A characteristic polynomial of degree m generates a maximal
sequence of period 2m − 1 if and only if it is a primitive polynomial.

Proof : To prove sufficiency, we observe that if f(x) is a primitive charac-
teristic polynomial, then the generating function 1/f(x) represents a sequence
with period 2m − 1, which indicates that a maximal sequence is generated. If
a sequence of smaller period could be generated, then theorem 1 implies that
f(x) would have to divide 1+xn1 for n1 < n, which contradicts the assumption
of a primitive polynomial.

To prove necessity, we observe that if the characteristic polynomial f(x)
generates the maximal sequence with period n = 2m−1, then f(x) cannot divide
1 + xn1 , n1 < n, because a sequence with a smaller period would result, and
such a sequence cannot be generated by the maximal sequence generator defined
by f(x). Since f(x) does divide 1 + xn, it must be a primitive polynomial. �

Primitive polynomials have been tabulated and may be generated by re-
cursively producing polynomials and evaluating whether they are primitive by
using them as characteristic polynomials [60]. Those that generate maximal
sequences are primitive. Primitive polynomials for which m ≤ 7 and one of
those of minimal coefficient weight for 8 ≤ m ≤ 25 are listed in Table 2.1 as
octal numbers in increasing order (e.g., 51 ↔ 1 0 1 1 0 0 ↔ 1 + x2 + x3).

For any positive integer m, the number of different primitive polynomials of
degree m over GF (2) is [60]

λ(m) =
φe (2

m − 1)

m
(2-43)
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where the Euler function φe(n) is the number of positive integers that are less
than and relatively prime to the positive integer n. If n is a prime number,
φe(n) = n− 1. In general,

φe(n) = n

k∏
i=1

νi − 1

νi
≤ n− 1 (2-44)

where ν1, ν2, . . . , νk are the prime integers that divide n. Thus, λ(6) = φe(63)/6
= 6 and λ(13) = φe(8191)/13 = 630.

Autocorrelations and Power Spectra

Prior to the application of a binary sequence to the modulation waveform, a bi-
nary sequence a with components ai ∈ GF (2) is mapped into a binary antipodal
sequence p with components pi ∈ {−1,+1} by means of the transformation

pi = (−1)ai+1, i ≥ 0 (2-45)

or, alternatively, pi = (−1)ai . The periodic autocorrelation of a periodic binary
sequence a with period N is defined as the periodic autocorrelation of the
corresponding binary antipodal sequence p :

θp(k) =
1

N

n+N−1∑
i=n

pipi+k, n = 0, 1, . . .

=
1

N

N−1∑
i=0

pipi+k (2-46)

which has period N because θp(k +N) = θp(k), where k is an integer. Substi-
tution of (2-45) into (2-46) yields

θp(k) =
1

N

N−1∑
i=0

(−1)ai+ai+k =
1

N

N−1∑
i=0

(−1)ai⊕ai+k

=
Ak −Dk

N
(2-47)

where Ak denotes the number of agreements in the corresponding bits of a
and its shifted version a(k), and Dk denotes the number of disagreements.
Equivalently, Ak is the number of 0’s in one period of a⊕a(k), and Dk = N−Ak

is the number of 1’s.
A deterministic function x(t) with period T is a cyclostationary process with

autocorrelation Rx(t, τ) = x(t)x(t + τ). We derive the average autocorrelation
of the spreading waveform p(t) assuming an ideal periodic spreading waveform
of infinite extent and the rectangular chip waveform

ψ (t) =

{
1, 0 ≤ t < Tc

0, otherwise.
(2-48)
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If a spreading sequence has period N , then p(t) has period T = NTc. If a chip
boundary is aligned with t = 0, then (2-2), (2-48), and (2-14) with c = 0 give
the average autocorrelation of p(t):

Rp (τ) =
1

NTc

N−1∑
i=0

pi

∞∑
l=−∞

pl

∫ NTc

0

ψ (t− iTc)ψ (t− lTc + τ) dt. (2-49)

Any delay can be expressed in the form τ = kTc + ε, where k is an integer and
0 ≤ ε < Tc. Substituting this form into (2-49), we observe that the integrand
is nonzero only if l = i+ k or l = i+ k + 1. Therefore,

Rp (kTc + ε) =
1

NTc

N−1∑
i=0

pipi+k

∫ NTc

0

ψ (t− iTc)ψ (t− iTc + ε) dt

+
1

NTc

N−1∑
i=0

pipi+k+1

∫ NTc

0

ψ (t− iTc)ψ (t− iTc + ε− Tc) dt.

(2-50)

Using (2-46) and (2-48) in (2-50), we obtain

Rp (kTc + ε) =

(
1− ε

Tc

)
θp(k) +

ε

Tc
θp(k + 1) (2-51)

where θp(k) is given by (2-47).
For a maximal sequence with N = 2m − 1, (2-47) and (2-31) imply that

θp(k) =

{
1, k = 0 (modulo N)

− 1
N , k �= 0 (modulo N).

(2-52)

The substitution of (2-52) into (2-51) yields Rp(τ) over one period:

Rp (τ) =
N + 1

N
Λ

(
τ

Tc

)
− 1

N
, |τ | ≤ NTc/2. (2-53)

Since it has period NTc, the average autocorrelation of the maximal-sequence
waveform can be compactly expressed as

Rp(τ) =
N + 1

N
Λ

(
τ

Tc

)
− 1

N
+

N + 1

N

∞∑
i=−∞,i�=0

Λ

(
τ − iNTc

Tc

)
. (2-54)

Over one period, this autocorrelation resembles that of a random binary se-
quence, which is given by (2-10) with T = Tc. Both autocorrelations are shown
in Figure 2.9.

For the DS-BPSK signal with chip duration Tc and energy Ec per chip,

s(t) =

√
2Ec
Tc

d(t)p(t) cos(2πfct+ θ). (2-55)
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Figure 2.9: Autocorrelations of maximal sequence and random binary sequence

The data modulation d(t) is modeled as a random binary sequence with au-
tocorrelation given by (2-10), the chip waveform is given by (2-48), and θ is
modeled as a random variable uniformly distributed over [0, 2π) and statisti-
cally independent of d(t). We obtain the autocorrelation

Rs(t, τ) =
Ec
Tc

p(t)p(t+ τ)Λ

(
τ

Ts

)
cos 2πfcτ (2-56)

where p(t) is the periodic spreading waveform with period Tc. Since its mean is
zero and Rs(t+ Ts, τ) = Rs(t, τ), s(t) is a cyclostationary process with period
Ts. Substituting (2-56) into (2-14), we obtain the average autocorrelation of a
direct-sequence signal :

R̄s (τ) =
Ec
Tc

Rp (τ) Λ

(
τ

Ts

)
cos 2πfcτ (2-57)

where Rp(τ) is the average autocorrelation of p(t). If the spreading factor is
G = Ts/Tc = N and G ≥ 20, the substitution of (2-54) into (2-57) and the
discarding of negligible terms give

R̄s (τ) ≈
Ec
Ts

[
(G+ 1)Λ

(
τ

Tc

)
− 1

]
Λ

(
τ

Ts

)
cos 2πfcτ

≈ Ec
Ts

[
(G+ 1)Λ

(
τ

Tc

)
− Λ

(
τ

Ts

)]
cos 2πfcτ, G ≥ 20. (2-58)

The evaluation of the Fourier transform by using (2-12) provides the average
PSD of a direct-sequence signal with a maximal spreading sequence:

Ss (f) =
Ec
2

[Ss1 (f − fc) + Ss1 (f + fc)] (2-59)

where the lowpass equivalent PSD is

Ss1 (f) ≈
G+ 1

G
sinc2 (fTc)− sinc2 (fTs) . (2-60)

This PSD is plotted in Figure 2.10. The low values of the PSD in the vicinity of
fTc = 0 are due to the imbalance of the ones and zeroes in a maximal sequence.

A pseudonoise or pseudorandom sequence is a periodic binary sequence with
a nearly even balance of 0’s and 1’s and an autocorrelation that roughly re-
sembles, over one period, the autocorrelation of a random binary sequence.



100 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

fT
c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

Figure 2.10: Power spectral density of direct-sequence signal with maximal
spreading sequence and G=31

Maximal sequences are pseudonoise sequences with autocorrelations that facil-
itate timing synchronization in the receiver (Chapter 4). However, maximal
sequences do not have favorable cross-correlations and are inadequate when
direct-sequence systems are part of a network with multiple-access interfer-
ence. Consequently, maximal sequences are not used as spreading sequences in
networks of direct-sequence systems, but they provide building blocks for the
construction of other sequences that are inherently resistant to multiple-access
interference (Chapter 7).

Walsh Sequences

Short orthogonal sequences potentially enable multiple users to synchronously
transmit messages without causing mutual interference in the receiver. They
also serve as components of composite sequences (Chapter 7).

In constructing N orthonormal sequences of length N with components in
{−1,+1}, the first issue is to establish the values ofN for which the construction
is possible. Since the cross-correlation of two sequences is proportional to the
number of chip agreements minus the number of disagreements, N must be an
even number. To find further necessary conditions, suppose thatN orthonormal
sequences are represented as rows in an N ×N matrix H with elements equal
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to +1 or −1. An interchange of the rows or columns of H or a multiplication
of a row or column by −1 does not change the orthonormality. By multiplying
by −1 those columns with −1 in the first row, we obtain an H with a first row
that has all elements equal to +1. The orthonormality condition then requires
that each of the N−1 remaining rows must have N/2 elements equal to +1 and
N/2 elements equal to −1. An appropriate interchange of columns establishes
a second row with its first N/2 elements equal to +1 and its remaining N/2
elements equal to −1. If N ≥ 4, and there are α elements equal to +1 in the
first half of the third row and N/2−α in the second half, then the orthogonality
of the second and third rows requires that α = N/2 − α, which implies that
α = N/4. Since α must be an integer, N must be divisible by 4. Thus, a
necessary condition for the existence of N orthonormal sequences of length N
is that N = 2 or N is a multiple of 4.

This necessary condition is not a sufficient condition. However a specific
construction procedure establishes the existence of 2n × 2n matrices with or-
thonormal rows for n ≥ 1. Two binary sequences, each of length two, are
orthogonal if each sequence is described by one of the rows of the 2× 2 matrix

H1 =

[
+1 +1
+1 −1

]
. (2-61)

A set of 2n mutually orthogonal sequences, each of length 2n, is obtained by
using the rows of the matrix

Hn =

[
Hn−1 Hn−1

Hn−1 H̄n−1

]
, n ≥ 2 (2-62)

where H̄n−1 is the complement of Hn−1, obtained by replacing each +1 and
-1 by -1 and +1, respectively, and H1 is defined by (2-61). Any pair of rows
in Hn differ in exactly 2n−1 columns, thereby ensuring orthogonality of the
corresponding sequences. The 2n × 2n matrix Hn, which is called a Hadamard
matrix, can be used to generate 2n orthogonal spreading sequences for syn-
chronous direct-sequence communications. The orthogonal spreading sequences
generated from a Hadamard matrix are called Walsh sequences.

2.3 Long Nonlinear Sequences

A long spreading sequence is a spreading sequence with a period that is much
longer than the data-symbol duration and may even exceed the message dura-
tion. A short spreading sequence is a spreading sequence with a period that is
equal to or less than the data-symbol duration. Since short sequences are sus-
ceptible to interception, mathematical cryptanalysis, and hence regeneration,
long spreading sequences and programmable sequence generators are needed
for communications with a high level of security. However, if a modest level of
security is acceptable, short or moderate-length spreading sequences are prefer-
able for rapid acquisition, burst communications, multiple-access communica-
tions, and multiuser detection. Suitable short spreading sequences, notably the
Hadamard, Gold, and Kasami sequences, are covered in Chapter 7.



102 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

Susceptibility to Cryptanalysis

The algebraic structure of linear feedback shift registers makes them susceptible
to cryptanalysis. Let

c = [c1 c2 . . . cm]
T

(2-63)

denote the column vector of the m feedback coefficients of an m-stage linear
feedback shift register, where T denotes the transpose of a matrix or vector.
The column vector of m successive sequence bits produced by the shift register
starting at bit i is

ai = [ai ai+1 . . . ai+m−1]
T
. (2-64)

Let A(i) denote the m × m matrix with columns consisting of the ak vectors
for i ≤ k ≤ i+m− 1:

A(i) =

⎡
⎢⎢⎢⎣

ai+m−1 ai+m−2 · · · ai
ai+m ai+m−1 · · · ai+1

...
...

...
ai+2m−2 ai+2m−3 · · · ai+m−1

⎤
⎥⎥⎥⎦ . (2-65)

The linear recurrence relation (2-20) indicates that the shift-register sequence
and feedback coefficients are related by

ai+m = A(i)c , i ≥ 0. (2-66)

If 2m consecutive shift-register sequence bits are known, thenA(i) and ai+m are
completely known for some i. If A(i) is invertible, then the feedback coefficients
can be computed from

c = A−1(i)ai+m , i ≥ 0. (2-67)

A shift-register sequence is completely determined by the feedback coefficients
and any state vector. Since any m successive sequence bits determine a state
vector, 2m successive bits provide enough information to reproduce the shift-
register sequence unless A(i) is not invertible. In that case, one or more addi-
tional bits are required.

Nonlinear Sequence Generators

If a binary sequence has period n, it can always be generated by an n-stage
linear feedback shift register by connecting the output of the last stage to the
input of the first stage and inserting n consecutive bits of the sequence into the
shift-register, as illustrated in Figure 2.11. The polynomial associated with one
period of the binary sequence is

g(x) =

n−1∑
i=0

aix
i. (2-68)

The characteristic function is 1 + xn.
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1 2 n–1 n
Output

Figure 2.11: Linear generator of binary sequence with period n

Let gcd(g(x), 1+xn) denote the greatest common polynomial divisor of the
polynomials g(x) and 1+ xn. Then (2-39) implies that the generating function
of the sequence may be expressed as

G(x) =
g(x)/gcd (g(x), 1 + xn)

(1 + xn) /gcd (g(x), 1 + xn)
. (2-69)

If gcd(g(x), 1 + xn) �= 1, the degree of the denominator of G(x) is less than
n. Therefore, the sequence represented by G(x) can be generated by a linear
feedback shift register with fewer stages than n and with the characteristic
polynomial given by the denominator. The appropriate initial state can be
determined from the coefficients of the numerator.

The linear equivalent of the generator of a sequence is the linear shift register
with the fewest stages that produce the sequence. The number of stages in the
linear equivalent is called the linear span or linear complexity of the sequence.
If the linear span is equal to m, then (2-67) determines the linear equivalent
after the observation of 2m consecutive sequence bits.

Security improves as the linear span of a shift-register sequence increases,
but there are practical limits to the number of shift-register stages. To produce
shift-register sequences with a large enough linear span for high security, the
feedback logic in Figure 2.5 may be nonlinear. Among other alternatives, the
outputs of two or more linear feedback shift registers or several outputs of
shift-register stages may be applied to a nonlinear device to produce the final
shift-register sequence. Nonlinear generators with relatively few shift-register
stages can produce sequences with an enormous linear span.

A spread-spectrum key is a set of parameters that determines the generation
of a specific spreading sequence. The initial states of the shift registers, the
feedback connections, and which stages are accessed for other purposes may
be determined by the spread-spectrum key that is the ultimate source of the
security of the spreading sequences. The basic architecture or configuration
of a sequence generator cannot be kept secret indefinitely, so the key does not
contain this type of information. A change in the key of a generator must result
in a major change in its shift-register sequence.

Example 3. Figure 2.12a depicts a nonlinear generator that preserves the
linear feedback shift register but performs a nonlinear operation on the outputs
of the stages. Two stages have their outputs applied to an AND gate to produce
the shift-register sequence. The initial contents of the shift-register stages are
indicated by the enclosed binary numbers. Since the linear generator produces
a maximal sequence of length 7, the nonlinear sequence has period 7. The first
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Figure 2.12: (a) Nonlinear generator and (b) its linear equivalent

period of the sequence is (0 0 0 0 0 1 1), from which the linear equivalent with
the initial contents shown in Figure 2.12b is derived by evaluating (2-69).

A key for the nonlinear generator of Figure 2.12a comprises the six bits
001011, the first three of which specify the initial contents, and the second
three of which specify the feedback connections. A key for the linear generator
of Figure 2.12b comprises the twelve bits 100000111111. �

Although a large linear span is necessary for the cryptographic integrity of a
sequence, it is not necessarily sufficient because other statistical characteristics,
such as a nearly even distribution of 1’s and 0’s, are required. A long sequence
of many 0’s followed by a single 1 has a linear span equal to the length of
the sequence, but the sequence is very weak. The generator of Figure 2.12a
produces a relatively large number of 0’s because the AND gate produces a 1
only if both of its inputs are 1’s.

Example 4. A sequence generator that uses a multiplexer is shown in
Figure 2.13. The outputs of various stages of feedback shift register 1 are
applied to the multiplexer, which interprets the binary number determined
by these outputs as an address. The multiplexer uses this address to select
one of the stages of feedback shift register 2. The selected stage provides the
multiplexer output and hence one bit of the output sequence. Suppose that
shift register 1 has m stages and shift register 2 has n stages. If h stages of shift
register 1, where h ≤ m, are applied to the multiplexer, then the address is one
of the numbers 0, 1, . . . , 2h − 1. Therefore, if n ≥ 2h, each address specifies a
distinct stage of shift register 2. A key of 2m+ 2n+ h bits specifies the initial
states of the two registers, the feedback connections, and which stages are used
for addressing. The feedback of both shift registers may be nonlinear, but the
structures of the nonlinearities are not specified by the key.
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Figure 2.13: Nonlinear sequence generator with multiplexer

2.4 DS-BPSK System

Modulations are considered energy efficient if they provide a relatively low bit
error rate for a given received energy regardless of the bandwidth requirements.
Modulations are considered spectrally efficient if they provide a relatively high
received information rate for a given bandwidth regardless of the bit error rate.
Spread-spectrum systems are designed to be energy efficient rather than spec-
trally efficient. Although q-ary PAM systems with q > 4 and differential q-ary
PSK systems with q ≥ 4 have higher spectral efficiencies than binary systems,
they are unsuitable for direct-sequence systems because of their lower energy
efficiencies. Therefore, we focus on the BPSK, QPSK, DPSK, and CSK modu-
lations in this chapter.

A received DS-BPSK signal with ideal carrier synchronization can be rep-
resented during a codeword of n symbols by

s(t) =

n−1∑
l=0

αl

√
2Esdlpl(t) cos 2πfct, 0 ≤ t ≤ nTs (2-70)

where αl is the fading amplitude, Es is the energy per symbol when αl = 1,
dl = ±1 is the lth code symbol, pl(t) is the spreading waveform for dl, and fc
is the carrier frequency. Each data or code symbol has a duration of Ts. The
spreading waveform for the lth symbol interval is

pl(t) =

G−1∑
i=0

pl,iψ (t− iTc − lTs) cos 2πfct, lTs ≤ t ≤ (l + 1)Ts (2-71)

where pl,i = ±1, the chip duration is Tc, and the spreading factor is a positive
integer G = Ts/Tc. Assuming that the chip waveform ψ(t) is well-approximated
by a waveform of duration Tc, it is convenient, and entails no loss of generality,
to normalize the energy of ψ(t) according to

∫ Tc

0

ψ2(t)dt =
1

G
. (2-72)
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Using this equation and assuming that fc � 1/Tc so that an integral over a
double-frequency term is negligible, an integration of s(t) over a code-symbol
interval indicates that Es is the energy per code symbol.

A normalized rectangular chip waveform has

ψ(t) =

{ 1√
Ts
, 0 ≤ t < Tc

0, otherwise.
(2-73)

This idealized waveform cannot be transmitted and received over a realistic
channel, but it is useful as a mathematically tractable approximation. A nor-
malized sinusoidal chip waveform has

ψ(t) =

{ √
2
Ts

sin
(

π
Tc
t
)
, 0 ≤ t ≤ Tc

0, otherwise.
(2-74)

To determine the receiver structure, we assume that the received signal and
noise is r (t) = s (t) + n (t) , where n(t) denotes the zero-mean, white Gaussian
noise with a time-varying noise power spectral density. A frequency translation
or downconversion to baseband is followed by matched filtering. Matched-filter
l, which is matched to pl(t), produces the output samples

yl =
√
2

∫ (l+1)Ts

lTs

[s(t) + n (t)]pl(t) cos (2πfct) dt, l = 0, 1, 2, . . . , n− 1 (2-75)

where the factor
√
2 has been inserted for mathematical convenience. Substi-

tuting (2-70) and assuming that fTs � 1, we obtain

yl = αl

√
Esdl + nl, l = 0, 1, 2, . . . , n− 1 (2-76)

where

nl =
√
2

∫ iTs

(i−1)Ts

n(t)pl(t) cos (2πfct) dt. (2-77)

Applying the noise analysis of Section 1.1, we find that the joint density of
yl given dl is

f(yl |dl ) =
1

πN0l
exp

[
(yl − αl

√
Esdl )2

N0l

]
, l = 0, 1, . . . , n− 1 (2-78)

where N0l/2 denotes the noise-power spectral density during the reception of
symbol l. Applying the analytical method of Section 1.1 and dropping irrelevant
terms and factors, we find that the codeword metric is

U(d) =
n∑

i=0

dl
αlyl
N0l

(2-79)

where d is the set of n data symbols. In the lth term, the factor αlyl/N0i is
called a symbol metric because it depends on a single symbol.
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Figure 2.14: Basic elements of the demodulator for DS-BPSK

The main components of the conventional receiver for DS-BPSK are shown
in Figure 2.14. In the receiver, the radio-frequency front end includes devices
for wideband filtering, automatic gain control, and other tasks. These devices
are assumed to have a minor effect on the operation of the demodulator and
hence are omitted from the figure and subsequent analysis. Figure 2.14 depicts
a demodulator in the form of a correlator that is more practical and flexible
for digital processing than the illustrative one shown in Figure 2.2. It is a
suboptimal but reasonable approach against non-Gaussian interference.

In the demodulator of Figure 2.14, the output of a synchronization system
is applied to a mixer that removes the carrier of the received signal and thereby
provides a baseband input to the chip-matched filter (CMF). The output of
the chip-matched filter is applied to the analog-to-digital converter (ADC) that
uses the synchronized chip-rate clock to produce chip-rate samples that are
represented by several bits for subsequent digital computation. These chip-
rate samples are applied to a despreader consisting of a mixer followed by
an accumulator. The mixer multiplies the samples by the synchronized chips
generated by the acquisition and tracking system. Then G successive products
are added in an accumulator to produce the {yl} at the symbol rate.

For soft-decision decoding, channel-state information is used to compute
the symbol metrics. For each codeword, the codeword metrics are computed
by adding the symbol metrics, and a codeword decision is made. Alternatively,
successive hard decisions are made based on the signs of the {yl}. The resulting
symbol sequence is used to make a codeword decision.

The sequence generator, multiplier, and summer function as a discrete-time
matched filter that is matched to eachG -bit sequence of the spreading sequence.
This matched filter has a fixed impulse response for short spreading sequences
and has a time-varying impulse response for long spreading sequences.

Because of the large bandwidth of a direct-sequence signal, the energy of a
symbol can be largely confined to the symbol interval. For the AWGN channel,
the output of a matched filter is largely confined to a time interval of shorter
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duration than a symbol duration, and the intersymbol interference is negligible.
For a fading channel, if the multipath delay spread (Section 6.2) is less than the
data-symbol duration Ts and the spreading factor G is sufficiently large, then
the intersymbol interference is negligible. The lack of significant intersymbol
interference is an important advantage of direct-sequence communications and
is always assumed in this chapter.

In the subsequent analysis of the impact of interference, perfect phase, fre-
quency, sequence, and symbol synchronizations are assumed. Although higher
sampling rates may be advantageous in practical systems, chip-rate sampling
suffices in principle and is assumed in the analysis.

It is assumed that fading is absent and that the AWGN channel is not
time-varying so that the codeword metric is

U(d) =

n∑
i=0

diyi. (2-80)

Therefore, a hard decision for a single symbol l is d̂l = sgn (yl) .
The received signal over a symbol interval is

r(t) = s(t) + i(t) + n(t), 0 ≤ t ≤ Ts (2-81)

where i(t) is the interference, and n(t) denotes the zero-mean, white Gaussian
noise. If fc � 1/Tc, then the ith chip associated with data symbol d0 at the
output of the ADC is

Zi =
√
2

∫ (i+1)Tc

iTc

r(t)ψ (t− iTc) cos 2πfct dt

= Si + Ji +Nsi, 0 ≤ i ≤ G− 1 (2-82)

where the
√
2 is introduced for mathematical convenience, and

Si =
√
2

∫ (i+1)Tc

iTc

s(t)ψ(t− iTc) cos 2πfct dt = d0

√
Es
G

(2-83)

Ji =
√
2

∫ (i+1)Tc

iTc

i(t)ψ(t− iTc) cos 2πfct dt (2-84)

Nsi =
√
2

∫ (i+1)Tc

iTc

n(t)ψ (t− iTc) cos 2πfct dt. (2-85)

The symbol metric is

V = y0 =

G−1∑
i=0

piZi

= d0
√

Es + V1 + V2 (2-86)
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where

V1 =

G−1∑
i=0

piJi (2-87)

V2 =

G−1∑
i=0

piNsi. (2-88)

The white Gaussian noise has autocorrelation

Rn(τ) =
N0

2
δ(τ) (2-89)

where N0/2 is the two-sided noise PSD. As explained in Section 1.1, the {Nsi}
are real-valued, zero-mean, independent, identically distributed Gaussian ran-
dom variables. Since V2 is a linear combination of these independent ran-
dom variables, V2 is a Gaussian random variable. Assuming that fc � 1/Tc,
(2-85), (2-88), and (2-89) yield

E[V2] = 0, var (V2) =
N0

2
. (2-90)

It is natural and analytically desirable to model a long spreading sequence
as a random binary sequence. This model does not seem to obscure important
exploitable characteristics of long sequences and is a reasonable approximation
even for short sequences. A random binary sequence consists of statistically
independent symbols, each of which takes the value +1 with probability 1/2 or
the value −1 with probability 1/2. Thus, E[pi] = E[p(t)] = 0. It then follows
from (2-87) that E[V1] = 0. Since pi and pk are independent for i �= k,

E [pipk] = 0, i �= k (2-91)

and hence

E[V1] = 0, var (V1) =
G−1∑
i=0

E
[
J2
i

]
. (2-92)

Since V1 is the sum of independent, uniformly bounded random variables,
the central limit theorem (Corollary 2, Appendix A.2) implies that the proba-
bility distribution function of V1 is approximately Gaussian if G � 1. Since the
terms in V2 are derived from white noise, V1 and V2 are independent. Therefore,
the symbol metric V is Gaussian with the mean and variance given by

E[V ] = d0
√

Es (2-93)

var (V ) =
N0

2
+

G−1∑
i=0

E
[
J2
i

]
. (2-94)

Consider hard decisions based on the symbol metrics. If d0 = +1 represents
the logic symbol 1 and d0 = −1 represents the logic symbol 0, then the com-
parator produces the symbol 1 if V > 0 and the symbol 0 if V < 0. An error
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occurs if V < 0 when d0 = +1 or if V > 0 when d0 = −1. The probability
that V = 0 is zero. Since V has a Gaussian distribution, a straightforward
evaluation indicates that the symbol-error probability is

Ps = Q

[
|E[V ]|√
var (V )

]
(2-95)

where Q(x) is defined by (1-43).

Tone Interference at Carrier Frequency

For tone interference with the same carrier frequency as the desired signal,
a nearly exact, closed-form equation for the symbol error probability can be
derived. The tone interference has the form

i (t) =
√
2I cos (2πfct+ φ) (2-96)

where I is the average power and φ is the phase relative to the desired signal.
Assuming that fc � 1/Tc, then (2-84), (2-87), (2-96), and a change of variables
give

V1 =
√
I cosφ

G−1∑
i=0

pi

∫ Tc

0

ψ (t) dt. (2-97)

Let k1 denote the number of chips in [0, Ts] for which pi = +1; the number
for which pi = −1 is G− k1. Equations (2-97), (2-73), and (2-74) yield

V1 =

√
Iκ

Ts
Tc (2k1 −G) cosφ (2-98)

where κ depends on the chip waveform, and

κ =

{
1 , rectangular chip
8
π2 , sinusoidal chip.

(2-99)

These equations indicate that the use of sinusoidal chip waveforms instead of
rectangular ones reduces by

√
8/π2 = 0.46 dB the effect of tone interference at

the carrier frequency. Equation (2-98) indicates that tone interference at the
carrier frequency is completely rejected if G is even and hence k1 = G/2 in
every symbol interval.

In the random-binary-sequence model, pi is equally likely to be +1 or −1.
Therefore, the conditional symbol error probability given the value of φ is

Ps (φ) =
G∑

k1=0

(
G
k1

)(
1

2

)G [
1

2
Ps (φ, k1,+1) +

1

2
Ps (φ, k1,−1)

]
(2-100)

where Ps(φ, k1, d0) is the conditional symbol error probability given the values
of φ, k1, and d0. Under these conditions, V1 is a constant, and hence V has a
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Gaussian distribution. Equations (2-86) and (2-98) imply that the conditional
expected value of V is

E [V |φ, k1, d0] = d0
√

Es +
√

Iκ

Ts
Tc (2k1 −G) cosφ. (2-101)

The conditional variance of V is equal to the variance of V2, which is given
by (2-90). Using (2-95) to evaluate Ps(φ, k1,+1) and Ps(φ, k1,−1) separately
and then consolidating the results yield

Ps (φ, k1, d0) = Q

[√
2Es
N0

+ d0

√
2ITcκ

GN0
(2k1 −G) cosφ

]
. (2-102)

Assuming that φ is uniformly distributed over [0, 2π) during each symbol inter-
val and exploiting the periodicity of cosφ, we obtain the symbol error proba-
bility

Ps =
1

π

∫ π

0

Ps (φ) dφ (2-103)

where Ps(φ) is given by (2-100) and (2-102).

General Tone Interference

To simplify the preceding equations for Ps and to examine the effects of tone
interference with a carrier frequency different from the desired frequency, a
Gaussian approximation is used. Consider interference due to a single tone of
the form

i (t) =
√
2I cos (2πf1t+ θ1) (2-104)

where I, f1, and θ1 are the average power, frequency, and phase angle of the
interference signal at the receiver. The frequency f1 is assumed to be close
enough to the desired frequency fc that the tone is undisturbed by the initial
wideband filtering that precedes the correlator. If f1 + fc � fd = f1 − fc so
that a term involving f1 + fc is negligible, then (2-104), (2-84), and a change
of variable yield

Ji =
√
I

∫ Tc

0

ψ (t) cos (2πfdt+ θ1 + i2πfdTc) dt. (2-105)

Substitution into (2-87) gives

var (V1) = I

G−1∑
i=0

[∫ Tc

0

ψ (t) cos (2πfdt+ θ1 + i2πfdTc) dt

]2
. (2-106)

For a rectangular chip waveform, evaluation of the integral and trigonometry
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yields

var (V1) =
ITc

G
sinc2 (fdTc)

G−1∑
i=0

[cos (i2πfdTc + θ1 + πfdTc)]
2

=
ITc

2G
sinc2 (fdTc)

[
G+

G−1∑
i=0

cos (i4πfdTc + 2θ1 + 2πfdTc)

]
. (2-107)

To evaluate the inner summation, we use the identity

n−1∑
ν=0

cos (a+ νb) = cos

(
a+

n− 1

2
b

)
sin (nb/2)

sin (b/2)
(2-108)

which is proved by using mathematical induction and trigonometric identities.
Evaluation and simplification yield

var(V1) =
ITc

2
sinc2 (fdTc)

[
1 +

sinc (2fdTs)

sinc (2fdTc)
cos 2φ

]
(2-109)

where

φ = θ1 + πfdTs. (2-110)

Since V1 is the sum of independent, uniformly bounded random variables,
the central limit theorem (Corollary 2, Appendix A.2) implies that the condi-
tional distribution function of V1 given the value of φ is approximately Gaussian
if G � 1. The independence of the thermal noise and the interference then im-
ply that the conditional distribution of V is approximately Gaussian with mean
and variance given by (2-93) and (2-94).

Using (2-109) and (2-95), we find that the conditional symbol error proba-
bility for rectangular chip waveforms is approximated by

Ps (φ) = Q

[√
2Es

N0e(φ)

]
(2-111)

where

N0e(φ) = N0 + ITcsinc
2 (fdTc)

[
1 +

sinc (2fdGTc)

sinc (2fdTc)
cos 2φ

]
(2-112)

and N0e(φ)/2 can be interpreted as the equivalent two-sided PSD of the inter-
ference and noise, given the value of φ.

For sinusoidal chip waveforms, the substitution of (2-74) into (2-106), and
then the use of trigonometric identities, simple integrations, and (2-108) yield
(2-111) with

N0e(φ) = N0 + ITc

(
8

π2

)(
cosπfdTc

1− 4f2
dT

2
c

)2 [
1 +

sinc (2fdGTc)

sinc (2fdTc)
cos 2φ

]
. (2-113)
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Figure 2.15: Symbol error probability for DS-BPSK system, tone interference
at carrier frequency, and G=17 dB

Equations (2-112) and (2-113) indicate that a sinusoidal chip waveform provides
a π2/8 = 0.91 dB advantage relative to a rectangular chip waveform when
fd = 0, but this advantage decreases as |fd| increases and ultimately disappears.

If θ1 in (2-110) is modeled as a random variable that is uniformly distributed
over [0, 2π) during each symbol interval, then the modulo-2π character of cos 2φ
in (2-112) implies that its distribution is unchanged if φ is assumed to be uni-
formly distributed over [0, 2π). The symbol error probability, which is obtained
by averaging Ps(φ) over the range of φ, is

Ps =
2

π

∫ π/2

0

Q

[√
2Es

N0e (φ)

]
dφ (2-114)

where the fact that cos 2φ takes all its possible values over [0, π/2] has been
used to shorten the integration interval.

Example 5. Figure 2.15 depicts the symbol error probability as a function
of the despread signal-to-interference ratio, Es/ITc, for one tone-interference
signal, rectangular chip waveforms, fd = 0, G = 50 = 17 dB, and Es/N0 = 14
dB and 20 dB. One pair of graphs are computed using the approximate model
of (2-112) and (2-114), whereas the other pair are derived from the nearly
exact model of (2-100), (2-102), and (2-103) with κ = 1. For the nearly exact
model, Ps depends not only on Es/ITc, but also on G. A comparison of the two
graphs indicates that the error introduced by the Gaussian approximation is
on the order of or less than 0.1 dB when Ps ≥ 10−6. This example and others
provide evidence that the Gaussian approximation introduces insignificant error
if G ≥ 50 and practical values for the other parameters are assumed. �

Example 6. Figure 2.16 uses the approximate model to plot Ps versus the
normalized frequency offset fdTc for rectangular and sinusoidal chip waveforms,
G = 17 dB, Es/N0 = 14 dB, and Es/ITc = 10 dB. There is a sharp decrease in
the symbol error probability even for small values of the frequency offset. The
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Figure 2.16: Symbol error probability for DS-BPSK system, rectangular and
sinusoidal chip waveforms, G=17 dB, Es/N0 =14 dB, and Es/ITc =10 dB in
the presence of tone interference

performance advantage of sinusoidal chip waveforms is apparent, but their real-
ization in a received BPSK waveform is impeded by the distortions introduced
by the transmitter and communication channel. �

Gaussian Interference

Gaussian interference is interference that approximates a zero-mean Gaussian
process (Appendix A.1) for which the {Ji} are independent Gaussian random
variables. Assuming that ψ(t) is rectangular,

E
[
J2
i

]
=

1

Ts

∫ Tc

0

∫ Tc

0

R (t1 − t2) cos (2πfct1) cos (2πfct2) dt1dt2 (2-115)

where R(t) is the autocorrelation of i(t). After a trigonometric expansion, we
change variables by using τ = t1 − t2 and s = t1 + t2. Since the Jacobian of
this transformation is 2, we obtain

E
[
J2
i

]
=

1

2Ts

∫ Tc

−Tc

R (τ) dτ

[∫ 2Tc−|τ |

|τ |
(cos 2πfcτ+cos 2πfcs)ds

]

≈ 1

G

∫ Tc

−Tc

R (τ) Λ

(
τ

Tc

)
cos 2πfcτ dτ (2-116)
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where the approximation is valid if we assume that fcTs � 1, which implies
that

1

Ts

∫ 2Tc−|τ |

|τ |
(cos 2πfcs)ds =

sin 2πfc (2Tc − |τ |)− sin 2πfc |τ |)
2πfcTs

� 1. (2-117)

Since E[J2
i ] does not depend on the index i, V1 is the sum of G independent,

identically distributed Gaussian random variables. Therefore, V1 has a Gaussian
distribution function, and (2-92) gives

var (V1) = GE
[
J2
i

]
≈
∫ ∞

−∞
R (τ) Λ

(
τ

Tc

)
cos 2πfcτ dτ (2-118)

where the integration limits are extended to ±∞ because the integrand is trun-
cated. Since R(τ)Λ

(
τ
Tc

)
is an even function, the cosine function may be replaced

by a complex exponential. Then the convolution theorem and the Fourier trans-
form of Λ(t) yield the alternative form

var (V1) ≈ Tc

∫ ∞

−∞
S (f) sinc2 [(f − fc)Tc] df (2-119)

where S(f) is the PSD of the interference after passage through the initial
wideband filter of the receiver.

Since the independence of the thermal noise and the interference implies that
V1+V2 is the sum of independent Gaussian random variables, V has a Gaussian
distribution function. The mean and variance of V are given by (2-93), (2-94),
and ( 2-119). Thus, (2-95) yields the symbol error probability:

Ps = Q

(√
2Es
N0e

)
(2-120)

where

N0e ≈ N0 + 2Tc

∫ ∞

−∞
S (f) sinc2 [(f − fc)Tc] df . (2-121)

Suppose that the PSD of the interference is

S (f) =

{
I

2W1
, [f − f1| ≤ W1

2 , |f + f1| ≤ W1

2

0, otherwise.
(2-122)

If fc � 1/Tc, the integration over negative frequencies in (2-121) is negligible
and

N0e ≈ N0 +
ITc

W1

∫ f1+W1/2

f1−W1/2

sinc2 [(f − fc)Tc] df (2-123)

which indicates that f1 ≈ fc increases the impact of the interference power.
If f1 ≈ fc and W1Tc ≥ 1,

N0 + ITc sin c
2 (W1Tc) < N0e < N0 + ITc (2-124)

which indicates that more interference power is required for worst-case Gaussian
interference to degrade Ps as much as tone interference at the carrier frequency.
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2.5 Quaternary Systems

A received quaternary direct-sequence signal with a chip waveform of duration
Tc has the form

s(t) =
√
Esd1(t)p1(t) cos 2πfct+

√
Esd2(t+ t0)p2(t+ t0) sin 2πfct (2-125)

where two binary spreading waveforms, p1(t) and p2(t), and two binary data
signals, d1(t) and d2(t), are used with two quadrature carriers, and t0 is the
relative delay between the in-phase and quadrature components of the signal.
Let Ts denote the duration of the data symbols or code bits before the generation
of (2-125), and let Ts1 = 2Ts denote the duration of each of the data symbols of
d1(t) and d2(t). Of the available desired-signal power, half is in each of the two
components of (2-125). Let Tc denote the common duration of the chips of the
spreading waveforms p1(t) and p2(t). For a direct-sequence QPSK (DS-QPSK)
system, t0 = 0; for a direct-sequence offset QPSK (DS-OQPSK) system, t0 =
Tc/2.

Since the data signals and chips are binary, the received signal can be rep-
resented by

s(t) =
√
Es/2 cos

{
2πfct− tan−1

[
d2(t+ t0)p2 (t+ t0)

d1(t)p1 (t)

]}
. (2-126)

This signal has a constant envelope if

|d1(t)p1(t)| = |d2(t+ t0)p2(t+ t0)| = 1. (2-127)

Therefore, (2-73) and (2-74) indicate that a direct-sequence signal with OQPSK
has a constant envelope if the chip waveforms are rectangular or sinusoidal.

In addition to having a constant envelope, the OQPSK waveform has maxi-
mum phase transitions of π/2 radians instead of the maximum phase transitions
of π radians for QPSK. As a result, OQPSK limits spectral regrowth after non-
linear amplification in the transmitter and facilitates symbol synchronization in
the receiver. To limit the spectral sidelobes of the direct-sequence signal, which
may interfere with other signals, the OQPSK chip waveforms may be sinusoidal
or have other shapes that make the PSD compact.

The spreading factor for each component of (2-125) is the positive integer

G1 =
Ts1

Tc
= 2G (2-128)

where G is the spreading factor of a BPSK system with the same values of Tc

and Ts. However, we cannot expect any great improvement in the suppression
of interference. In both binary and quaternary systems, the despreading spreads
the interference over a similar spectral band largely determined by Tc and the
chip waveform.

Figure 2.17 displays the main components of the transmitter for a quater-
nary direct-sequence system. A serial-to-parallel (S/P) converter provides two
separate data streams that multiply distinct spreading-sequences produced by



2.5. QUATERNARY SYSTEMS 117

Oscillator

cosine

sine

Transmitted 
signal

S/P

CWM

CWM

∑SSGEncoder
Bits

Delay

Figure 2.17: Basic elements of the transmitter of a quaternary direct-sequence
signal
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Figure 2.18: Quadrature downconverter

the spreading sequence generator (SSG). The chip-waveform modulator (CWM)
provides pulse shaping, which is followed by the modulation of the in-phase and
quadrature signals. The delay is used if the modulation is OQPSK.

After passing through the receiver front end, the received signal is applied
to a quadrature downconverter that produces in-phase and quadrature com-
ponents near baseband, as illustrated in Figure 2.18, where

√
2 is introduced

for mathematical convenience. The pair of mixers have inputs from a phase
synchronization system that generates sinusoidal signals at frequency fc. For
coherent demodulation, the cosine and sine waveforms produced by the syn-
chronization system must have no phase shift relative to the cosine and sine
components, respectively, of the received signal waveform. Without perfect
phase synchronization, crosstalk terms are present in both the in-phase and
quadrature outputs of the quadrature converter, but these terms are suppressed
if p1 (t) and p2 (t) have a low cross-correlation. Even with perfect phase syn-
chronization, there are double-frequency terms that are blocked by the lowpass
filters in the quadrature downconverter.
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Figure 2.19: Basic elements of the demodulator of a direct-sequence signal with
dual quaternary modulation. SS= spreading sequence

Dual Quaternary System

In the classical or dual quaternary system, the data symbols of d1(t) and d2(t)
are independent. As illustrated in Figure 2.19, the in-phase and quadrature
output signals of the quadrature downconverter are applied to chip-matched
filters (CMFs) with outputs that are sampled at the chip rate by analog-to-
digital converters (ADCs). The ADC outputs are the demodulated signals,
which are then despread. The comparator (comp) in each branch is present
when hard-decision decoding is used. Output symbols from the two comparators
are applied to a parallel-to-serial P/S converter, the output of which is applied to
the decoder. When soft-decision decoding is used, the comparators are absent,
and the symbol metrics are directly applied to the P/S converter and then the
decoder.

For the received signal given by (2-125), chip waveforms satisfying (2-72),
and perfect phase synchronization, the upper symbol metric at the end of a
symbol interval during which d1(t) = d10 is

V = d10
√

2Es + V1 + V2 (2-129)

where

V1 =

G1−1∑
i=0

p1iJi, V2 =

G1−1∑
i=0

p1iNsi (2-130)

and Ji and Nsi are given by (2-84) and (2-85), respectively. Similarly, the lower
symbol metric at the end of a channel-symbol interval during which d2(t) = d20
is

U = d20
√

2Es + U1 + U2 (2-131)

where

U1 =

G1−1∑
i=0

p2iJ
′
i , U2 =

G1−1∑
i=0

p2iN
′
i (2-132)
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J ′
i =

√
2

∫ (i+1)Tc

iTc

i(t)ψ (t− iTc) sin 2πfct dt (2-133)

N ′
i =

√
2

∫ (i+1)Tc

iTc

n(t)ψ (t− iTc) sin 2πfct dt. (2-134)

We model the spreading sequences as random binary sequences, which im-
plies that

E[V ] = d10
√

2Es, E(U) = d20
√

2Es. (2-135)

For the reasons stated in Section 2.4, both V2 and U2 are real-valued, zero-
mean, identically distributed Gaussian random variables. Since n(t) is white
noise with PSD N0/2, we find that

var (V2) = var (U2) = N0. (2-136)

Consider the general tone-interference model of Section 2.4. Since both V1

and U1 are sums of independent, uniformly bounded random variables, the
central limit theorem (Corollary 2, Appendix A.2) implies that the distribution
functions of both V1 and U1 are approximately Gaussian if G � 1. Averaging
the error probabilities for the two parallel symbol streams of the dual quaternary
system, we obtain the conditional symbol error probability:

Ps (φ) =
1

2
Q

[√
2Es

N
(0)
0e (φ)

]
+

1

2
Q

[√
2Es

N
(1)
0e (φ)

]
(2-137)

where N
(0)
0e (φ) and N

(1)
0e (φ) arise from the upper and lower branches of Fig-

ure 2.21, respectively.

The equivalent two-sided PSD N
(0)
0e (φ) is given by (2-112) and (2-113) with

symbol duration Ts1 = 2Ts in place of Ts. To calculate N
(1)
0e (φ), we use (2-104),

a trigonometric expansion, and a change of integration variable in (2-133). If
f1 + fc � fd = f1 − fc so that a term involving f1 + fc is negligible, we obtain

J ′
i = −

√
I

∫ Tc

0

ψ (t) sin (2πfdt+ θ1 + i2πfdTc) dt (2-138)

which is the same as (2-105) with θ1 replaced by θ1 + π/2. Therefore, N
(1)
0e (φ)

is given by (2-112) and (2-113) with Ts → Ts1 = G1Tc and φ → φ + π/2. For
rectangular chip waveforms (QPSK and OQPSK signals),

N
(l)
0e (φ) = N0 + ITcsinc

2 (fdTc)

[
1 +

sinc (2fdG1Tc)

sinc (2fdTc)
cos(2φ+ lπ)

]
, l = 0, 1

(2-139)
and for sinusoidal chip waveforms,

N
(l)
0e (φ)=N0+ITc

(
8

π2

)(
cosπfdTc

1− 4f2
dT

2
c

)2 [
1+

sinc (2fdG1Tc)

sinc (2fdTc)
cos(2φ+ lπ)

]
, l=0, 1

(2-140)
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Figure 2.20: Symbol error probability for quaternary and binary direct-sequence
systems with G = 17 dB, Es/N0 = 14 dB, and GEs/ITs = 10 dB in the presence
of tone interference

where

φ = θ1 + 2πfdTs. (2-141)

These equations indicate that Ps(φ) for a DS-QPSK system and the worst
value of φ are usually lower than Ps(φ) for a DS-BPSK system with the same
chip waveform and the worst value of φ. The symbol error probability for DS-
QPSK is determined by integrating Ps(φ) over the distribution of φ during a
symbol interval. For a uniform distribution, the two integrals are equal. Using
the periodicity of cos 2φ to shorten the integration interval, we obtain

Ps =
2

π

∫ π/2

0

Q

[√
2Es

N
(0)
0e (φ)

]
dφ. (2-142)

Example 7. The dual quaternary system provides a slight advantage rela-
tive to the binary system against tone interference. Both systems provide the
same Ps when fd = 0 and nearly the same Ps when fd > 1/Ts. Figure 2.20
illustrates Ps versus the normalized frequency offset fdTc for quaternary and
binary systems, G = 17 dB, Es/N0 = 14 dB, and Es/ITc = 10 dB. �
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Figure 2.21: Basic elements of demodulator for a direct-sequence signal with
balanced QPSK. SS=spreading sequence

Balanced QPSK System

In a balanced QPSK system, the same data symbols are carried by both the
in-phase and quadrature components, which implies that the received direct-
sequence signal has the form given by

s(t) =
√
Esd(t)p1(t) cos 2πfct+

√
Esd(t)p2(t) sin 2πfct. (2-143)

The duration of a data symbol is Ts, the chip duration is Tc, and the spreading
factor for each quadrature component is G = Ts/Tc.

A receiver for this system is shown in Figure 2.21. The synchronization
system is assumed to operate perfectly so that the crosstalk terms are negligible.
If the data symbol is d0, then the symbol metric at the input to the comparator
is

V = d0
√

2Es +
G−1∑
i=0

p1iJi +

G−1∑
i=0

p2iJ
′
i +

G−1∑
i=0

p1iNi +

G−1∑
i=0

p2iN
′
i . (2-144)

If p1(t) and p2(t) are approximated by independent random binary sequences,
then the last four terms of (2-144) are zero-mean uncorrelated random variables.
Therefore, the variance of V is equal to the sum of the variances of these four
random variables, and

E[V ] = d0
√

2Es . (2-145)

Assume that a balanced QPSK system receives tone interference. For a rect-
angular chip waveform, variance calculations of the interference terms in (2-144)
similar to those leading to (2-109) indicate that

var(V ) = N0 +
1

2
ITcsinc

2 (fdTc)

[
1 +

sinc (2fdTs)

sinc (2fdTc)
cos 2φ

]

+
1

2
ITcsinc

2 (fdTc)

[
1− sinc (2fdTs)

sinc (2fdTc)
cos 2φ

]

= N0 + ITcsinc
2 (fdTc) . (2-146)

Thus, Ps(φ) is independent of φ.
The final two sums in (2-144) are Gaussian and independent of each other

and the first two sums. By the central limit theorem, each of the first two sums
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is Gaussian, and these two sums are independent because they are functions
of different spreading sequences. Therefore, V has an approximately Gaussian
probability distribution, and (2-95) yields

Ps = Ps (φ) = Q

(√
2Es
N0e

)
(2-147)

where for rectangular chip waveforms,

N0e = N0 + ITcsinc
2 (fdTc) . (2-148)

Similarly, for sinusoidal chip waveforms,

N0e = N0 + ITc

(
8

π2

)(
cosπfdTc

1− 4f2
dT

2
c

)2

. (2-149)

If fd = 0 and the interference is given by (2-96), a nearly exact model similar
to the one in Section 2.4 implies that the conditional symbol error probability
is

Ps (φ) =

G∑
k1=0

G∑
k2=0

(
G
k1

)(
G
k2

)(
1

2

)2G [ 1
2Ps (φ, k1, k2,+1)

+ 1
2Ps (φ, k1, k2,−1)

]
(2-150)

where k1 and k2 are the number of chips in a symbol for which p1(t) = +1 and
p2(t) = +1, respectively, and Ps(φ, k1, k2, d0) is the conditional symbol error
probability given the values of φ, k1, and k2 and that d(t) = d0.

A derivation analogous to that of (2-102) yields

E [V |φ, k1, k2, d0] = d0
√

2Es +
√

Iκ

Ts
Tc[(2k1 −G) cosφ− (2k2 −G) sinφ]

(2-151)

and hence

Ps (φ, k1, k2,d0) = Q

{√
2Es
N0

+ d0

√
ITcκ

GN0
[(2k1 −G) cosφ− (2k2 −G) sinφ]

}
.

(2-152)
If φ is uniformly distributed over [0, 2π) during a symbol interval, then

Ps =
1

2π

∫ 2π

0

Ps(φ)dφ . (2-153)

Numerical comparisons of the nearly exact model with the approximate results
given by (2-147) for fd = 0 indicate that the approximate results typically
introduce an insignificant error if G ≥ 50.

Example 8. Figure 2.22 illustrates the performance advantage of the bal-
anced QPSK system of Figure 2.19 against tone interference when fd < 1/Ts.
Equations (2-137) to (2-142) and (2-147) to (2-149) are used for the dual quater-
nary and the balanced QPSK systems, respectively, and G1 = 2G, G = 17 dB,
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Figure 2.22: Symbol error probability for direct-sequence systems with balanced
QPSK and dual quaternary modulations, rectangular and sinusoidal chip wave-
forms, G = 17 dB, Es/N0 = 14 dB, and GEs/ITs = 10 dB in the presence of
tone interference

Es/N0 = 14 dB, and Es/ITc = 10 dB. The normalized frequency offset is fdTc.
The advantage of the balanced QPSK system when fd is small exists because
a tone at the carrier frequency cannot have a phase that causes desired-signal
cancelation simultaneously in both receiver branches. �

Straightforward evaluations verify that direct-sequence signals with both
types of quaternary modulation provide the same symbol-error probability
against Gaussian interference as direct-sequence signals with BPSK.

A major benefit of direct-sequence spread spectrum is that the despread-
ing and filtering in the receiver tend to whiten the interference PSD over the
code-symbol passband. The net effect of the interference after the despreading
is similar to what it would have been if the interference and noise were white
Gaussian noise with the equivalent two-sided PSD N0e/2 or N0e (φ) /2. Chap-
ter 9 presents an analysis and simulation of a direct-sequence system with an
LDPC channel code.

Complex Binary Spreading Sequences

A complex binary spreading sequence is a sequence comprising two binary se-
quences that serve as real and imaginary components of the spreading sequence
of a quaternary system. Although they confer no performance advantage,
spreading by complex binary sequences is sometimes used to enable a reduction
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in the peak-to-average power ratio of the transmitted signal.
Consider a complex binary spreading sequence represented by the row vector

p = p1 + jp2, where p1 and p2 are binary sequences that have component or
chip values ±1/

√
2. Similarly, a complex binary data sequence is represented

by d = d1 + jd2, where d1 and d2 are binary sequences that have bit values
= ±1/

√
2. If the spreading factor is G, there is one data bit for every G chips. If

d(t) = d over [0, Ts], pi.1 = Re (pi) , and pi.2 = Im (pi), the transmitted sequence
for this data symbol is generated by the complex multiplication given by

zi = dpi = zi,1 + jzi,2, i = 1, 2, . . . , G (2-154)

where

zi,1 = d1pi,1 − d2pi,2 (2-155)

zi,2 = d1pi,2 + d2pi,1. (2-156)

A general complex multiplier is illustrated in Figure 2.23.
Complex sequences ensure balanced power in the in-phase and quadrature

branches of the transmitter, which limits the peak-to-average power fluctuations
of the transmitted signal. Suppose that different bit rates or quality-of-service
requirements make it desirable for the data sequences to have unequal ampli-
tudes. Consider the data symbol d = d1 + jd2 with |d|2= 1. If the spreading
sequences are zero-mean, antipodal, and independent, then

E[z2i,1] = E[z2i,2] = (d21 + d22)/2 =
|d|2

2
(2-157)

which indicates that the power in the in-phase and quadrature components of
zi are equal despite any disparity between d21 and d22.
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Figure 2.24: Complex-variable representation of direct-sequence receiver with
complex binary spreading sequence

If d(t) = d over [0, Ts], then the received desired signal for this symbol is

s (t) =

G−1∑
i=0

√
2Es Re[dpiψ (t− iTc) e

j2πfct+jφ], 0 ≤ t ≤ Ts. (2-158)

Figure 2.24 displays the receiver representation with complex variables. If there
is perfect phase coherence in the receiver and fc � 1/Tc, then φ = 0 and the
signal component of the ith chip associated with this data symbol at the output
of the ADC is

Si =
√
2

∫ (i+1)Tc

iTc

s(t)ψ (t− iTc) e
−j2πfct dt

=

√
Esdpi
G

, 0 ≤ i ≤ G− 1 (2-159)

where the
√
2 is introduced for mathematical convenience, and a negligible

double-frequency term has been omitted. For G chips per data bit, the sum of
G multiplications by the complex-conjugate spreading sequence produces the
symbol metric equal to

√
Esd.

In terms of real-valued variables, the received desired signal of (2-158) is

s (t) =

G−1∑
i=0

√
2Es[ψ(t− iTc)(d1pi,2 − d2pi,2) cos(2πfct+ φ)

− (d2pi,1 + d1pi.2) sin(2πfct+ φ)], 0 ≤ t ≤ Ts. (2-160)

The physical implementation of the receiver represented in Figure 2.24 is shown
in Figure 2.25. The synchronization system provides the inputs pi.1 and pi.2
to the complex multiplier. The upper and lower ADCs provide the inputs√
Es(d1pi.1 − d2pi,2)/G and

√
Es(d2pi.1 + d1pi,2)/G, respectively. The inputs to

the decision devices are
√
Esd1 and

√
Esd2, respectively.

Complex-valued polyphase sequences are considered in Section 7.2.

Power Spectral Densities

Many communication signals are modeled as bandpass signals having the form

s(t) = Re [sl (t) exp (j2πfct)] (2-161)
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Figure 2.25: Implementation of direct-sequence receiver with complex binary
spreading sequence

where sl (t) is called the complex envelope or equivalent lowpass waveform of
s(t), and

sl(t) =
A√
2
[δ1(t) + jδ2(t)] (2-162)

where
√
2 accounts for the division of power between the two component wave-

forms. We consider modulations with the idealized forms

δi(t) =

∞∑
k=−∞

aikψ(t− kTp − ti), i = 1, 2 (2-163)

where Tp is the pulse duration, ψ(t) is a pulse waveform with energy Tp, and ti is
the relative offset of δi (t). Each {aik} is a sequence of independent, zero-mean,
identically distributed random variables and

E [a1ka2l] = 0, E
[
a21k
]
= E

[
a22l
]
= 1 (2-164)

Equation (2-163) describes an infinite stream of symbols, which is an approxi-
mation that serves to simplify the evaluations of the autocorrelations and PSDs.
As shown in Section 3.5, a finite set of symbols has a less compact spectrum.

Under the preceding assumptions, E[δi(t)δi(t + τ)] is cyclostationary with
period Tp, and the average autocorrelation of the real-valued δi(t) is

Rδi(τ) =
A2

2Tp

∫ Tp

0

E[δi(t)δi(t+ τ)]dt

=

∞∑
k=−∞

A2

2Tp

∫ Tp

0

ψ(t− kTp − ti)ψ(t− kTp − ti + τ)dt . (2-165)
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Changing variables, we obtain

Rδi(τ) =

∞∑
k=−∞

A2

2Tp

∫ t−kTp−ti+Tp

t−kTp−ti

ψ(x)ψ(x+ τ)dx

=
A2

2Tp

∫ ∞

−∞
ψ(x)ψ(x+ τ)dx . (2-166)

Equations (2-162) and (2-166) imply that the average autocorrelation of the
complex process is

Rl(τ) =
A2

Tp

∫ ∞

−∞
ψ(x)ψ(x+ τ)dx. (2-167)

The Fourier transform of ψ(t) is

G(f) =

∫ ∞

−∞
ψ(t)e−j2πftdt . (2-168)

Taking the Fourier transform of (2-167) and using (2-168) twice, we obtain the
PSD

Sl(f) = A2 |G(f)|2
Tp

. (2-169)

For ordinary QPSK and OQPSK with independent and zero-mean δ1 (t)
and δ2 (t), (2-169) is valid if we set Tp = Ts = 2Tb, where Ts is the symbol
duration and Tb is the bit duration. If ψ(t) is rectangular with unit amplitude
over [0, 2Tb], then (2-169), (2-168), and an elementary integration indicate that
the PSD for QPSK and OQPSK is

Sl(f) = 2A2Tb sinc
2(2Tbf) . (2-170)

If the pulse waveform is

ψ(t) =
√
2 sin

(
πt

2Tb

)
, 0 ≤ t < 2Tb (2-171)

then a straightforward evaluation of G(f) using trigonometry and trigonometric
integrals gives the PSD:

Sl(f) =
16A2Tb

π2

[
cos(2πTbf)

16T 2
b f

2 − 1

]2
(2-172)

which is much more compact than that of BPSK, DPSK, QPSK, and OQPSK
with rectangular pulse waveforms.

For a direct-sequence signal with BPSK, DPSK, QPSK, or OQPSK, the
PSDs for rectangular and sinusoidal chip waveforms are given by (2-170) and
(2-172), respectively, with Tc in place of 2Tb.
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2.6 Pulsed Interference and Decoding Metrics

Pulsed interference is interference that occurs periodically or sporadically for
brief durations. Whether it is generated unintentionally or by an opponent,
pulsed interference can cause a substantial increase in the bit error rate of
a communication system relative to the rate caused by continuous interference
with the same average power. Pulsed interference may be produced in a receiver
by a signal with a variable center frequency that sweeps over a frequency range
that intersects or includes the receiver passband.

Consider a DS-BPSK system that operates in the presence of pulsed inter-
ference. Let μ denote either the pulse duty cycle, which is the ratio of the
pulse duration to the repetition period, or the probability of pulse occurrence if
the pulses occur randomly. We assume that the received interference energy is
conserved regardless of μ. During a pulse, the interference is modeled as white
Gaussian interference with two-sided PSD I0/2μ, where I0/2 is the equivalent
PSD of continuous interference (μ = 1). Let N0e/2 denote the equivalent two-
sided noise PSD. In the absence of a pulse, N0e = N0, whereas in the presence
of a pulse,

N0e = N0 + I0/μ. (2-173)

If the interference pulse duration approximately equals or exceeds the channel-
symbol duration, then (1-42) implies that the probability of an error in a binary
code symbol is

Ps � μQ

(√
2Es

N0 + I0/μ

)
+ (1− μ)Q

(√
2Es
N0

)
, 0 ≤ μ ≤ 1. (2-174)

If Es � N0 and I0 � N0, calculus gives the value of μ that minimizes Ps:

μ0 �
{

0.7
(Es

I0

)−1
, Es

I0
> 0.7

1 , Es

I0
≤ 0.7.

(2-175)

Thus, worst-case pulsed interference is more damaging than continuous inter-
ference if Es/I0 > 0.7.

By substituting μ = μ0 into (2-174), we obtain an approximate expression
for the worst-case Ps when I0 � N0:

Ps �

⎧⎨
⎩

0.083
(Es

I0

)−1
, Es

I0
> 0.7

Q
(√

2Es

I0

)
, Es

I0
≤ 0.7

(2-176)

which indicates that the worst-case Ps varies inversely, rather than exponen-
tially, with Es/I0 if this ratio is sufficiently large. To restore a nearly exponential
dependence on Es/I0, a channel code and symbol interleaving are necessary.

Decoding metrics that are effective against white Gaussian noise are not
necessarily effective against worst-case pulsed interference. We examine the
performance of five different metrics against pulsed interference when the direct-
sequence system uses BPSK, ideal symbol interleaving, a binary convolutional
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code, and Viterbi decoding [100]. The results are the same when either dual or
balanced QPSK is the modulation.

Let B(l) denote the total information weight of the paths at Hamming dis-
tance l from the correct path over an unmerged segment in the trellis diagram
of the convolutional code. Let P2(l) denote the probability of an error in com-
paring the correct path segment with a particular path segment that differs in
l symbols. According to (1-137) with k = 1, the information-bit error rate is
upper-bounded by

Pb ≤
∞∑

l=df

B(l)P2(l) (2-177)

where df is the minimum free distance. If r is the code rate, Eb is the energy
per information bit, Tb is the bit duration, and Gu is the spreading factor of
the uncoded system, then

Es = rEb, Ts = rTb, G = rGu. (2-178)

The decrease in the spreading factor is compensated by the coding gain. An
upper bound on Pb for worst-case pulsed interference is obtained by maximizing
the right-hand side of (2-177) with respect to μ, where 0 ≤ μ ≤ 1. The max-
imizing value of μ, which depends on the decoding metric, is not necessarily
equal to the actual worst-case μ because a bound rather than an equality is
maximized. However, the discrepancy is small when the bound is tight.

The simplest practical decoding metric to implement is provided by applying
the input sequence to a hard-decision decoder. Assuming that the deinterleaving
ensures the independence of symbol errors, (1-138) indicates that hard-decision
decoding gives

P2(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l∑
i=(l+1)/2

(
l
i

)
P i
s (1− Ps)

l−i
, l odd

l∑
i=l/2+1

(
l
i

)
P i
s (1− Ps)

l−i
+ 1

2

(
l
l/2

)
[Ps (1− Ps)]

l/2
, l even.

(2-179)
Since μ = μ0 approximately maximizes Ps, it also approximately maximizes
the upper bound on Pb for hard-decision decoding given by (2-176) to (2-179).

Example 9. Figure 2.26 depicts the upper bound on Pb as a function of
Eb/I0 for worst-case pulsed interference, Eb/N0 = 20 dB, and binary convolu-
tional codes with several constraint lengths and rates. Tables 1.4 and 1.5 for
B(l) are used, and the series in (2-177) is truncated after the first 7 terms.
This truncation gives reliable results only if Pb ≤ 10−3 because the series con-
verges very slowly. However, the truncation error is partially offset by the error
incurred by the use of the union bound because the latter error is in the op-
posite direction. Figure 2.26 indicates the significant advantage of raising the
constraint length K and reducing r at the cost of increased implementation
complexity and synchronization requirements, respectively. �

Let yi denote the symbol metric of code symbol di of a codeword of length
n. Let N0i/2 denote the equivalent noise PSD due to the white Gaussian in-
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Figure 2.26: Worst-case performance against pulsed interference of DS-BPSK
system with convolutional codes of constraint length K and rate r, Eb/N0 = 20
dB, and hard decisions

terference and noise in symbol metric yi, which has variance N0i/2. According
to (2-86), yi has mean value

E [yi] = di
√

Es (2-180)

where di = ±1. Therefore, the density of yi is

f (yi|di) =
1√
πN0i

exp

[
−
(
yi − di

√
Es
)2

N0i

]
, i = 1, 2, . . . , n. (2-181)

From the log-likelihood function and the statistical independence of the samples,
it follows that when the values of N01, N02, . . . , N0L are known, the maximum-
likelihood metric for optimal soft-decision decoding of the sequence of n code
symbols is

U(d) =
n∑

i=1

yidi
√
Es

N0i
. (2-182)

Since each yi is assumed to be an independent Gaussian random variable, U(d)
is a Gaussian random variable.

Let d1i denote bit i of the correct sequence, and let d2i denote bit i of an
incorrect sequence at Hamming distance l. If the quantization of the sample
values is infinitely fine, the probability that U(2) = U(1) is zero. Therefore, the
probability of an error in comparing a correct sequence with an incorrect one
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that differs in l symbols, P2(l), is equal to probability that M0 = U(2)−U(1) >
0. The symbols that are the same in both sequences are irrelevant to the
calculation of P2(l) and are ignored subsequently. Since either d2i = d1i or
d2i = −d1i, after reordering the terms, we have

M0 =
√

Es
n∑

i=1

(d2i − d1i) yi
N0i

= −
√
Es

l∑
i=1

2d1iyi
N0i

(2-183)

where l is the number of disagreements between the sequences {d2i} and {d1i} .
Let P2(l|ν) denote the conditional probability that M0 > 0 given that an in-
terference pulse occurs during ν out of l differing symbols and does not occur
during l − ν symbols. Since M0 is a Gaussian random variable, we obtain

P2(l|ν) = Q

(
| E[M0|ν] |√
var [M0|ν]

)
(2-184)

where E[M0|ν] is the conditional mean of M0 and var[M0|ν] is the conditional
variance of M0. Because of the interleaving, the probability that a symbol is
interfered is statistically independent of the other symbols of the sequence and
equals μ. Evaluating P2(l) and substituting into (2-177) yield

Pb ≤
∞∑

l=df

B(l)

l∑
ν=0

(
l
ν

)
μν(1− μ)l−νP2(l/ν). (2-185)

When an interference pulse occurs, N0i = N0 + I0/μ; otherwise, N0i = N0.
Reordering the symbols for notational simplicity, observing that d21i = d22i =
Esd, and using (2-180), we obtain

E[M0|ν] = di
√

Es
ν∑

i=1

(d2i − d1i)E [yi]

N0 + I0/μ
+ di

√
Es

l∑
i=ν+1

(d2i − d1i)E [yi]

N0

=
ν∑

i=1

−2Es
N0 + I0/μ

+
l∑

i=ν+1

−2Es
N0

= −2Es
[

ν

N0 + I0/μ
+

l − ν

N0

]
. (2-186)

Using the statistical independence of the samples and observing that var[yi] =
N0i/2, we find similarly that

var [M0|ν] = 2Es
[

ν

N0 + I0/μ
+

l − ν

N0

]
. (2-187)

Substituting (2-186) and (2-187) into (2-184), we obtain

P2[l|ν] = Q

⎧⎨
⎩
√

2Es
N0

[
l − ν

(
1 +

μN0

I0

)−1
]1/2⎫⎬

⎭ . (2-188)

The substitution of this equation into (2-185) gives the upper bound on Pb for
the maximum-likelihood metric.
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Figure 2.27: Worst-case performance against pulsed interference of direct-
sequence system with convolutional codes of constraint length K and rate r,
Eb/N0 = 20 dB, and maximum-likelihood (ML) and AGC metrics

Example 10. The upper bound on Pb versus Eb/I0 for worst-case pulsed
interference, Eb/N0 = 20 dB, and several binary convolutional codes is shown
in Figure 2.27. Although the worst value of μ varies with Eb/I0, it is found that
worst-case pulsed interference causes very little degradation relative to contin-
uous interference. When K = 9 and r = 1/2, the maximum-likelihood metric
provides a performance that is more than 4 dB superior at Pb = 10−5 to that
provided by hard-decision decoding; when K = 9 and r = 1/3, the advantage is
approximately 2.5 dB. However, the implementation of the maximum-likelihood
metric entails knowledge of not only the presence of interference, but also its
PSD. Estimates of the N0i might be based on power measurements in adja-
cent frequency bands only if the interference PSD is fairly uniform over the
desired-signal and adjacent bands. Any measurement of the power within the
desired-signal band is contaminated by the presence of the desired signal, the
average power of which is usually unknown a priori because of the fading. Since
iterative estimation of the N0i and decoding is costly in terms of system latency
and complexity, we examine another approach. �

Consider an automatic gain control (AGC) device that measures the average
power at the demodulator output before sampling and then weights the sampled
demodulator output yi in proportion to the inverse of the measured power to
form the AGC metric. The average power during channel-symbol i is N0iB +
Es/Ts, where B is the equivalent bandwidth of the demodulator and Ts is the
channel-symbol duration. If the power measurement is perfect and BTs ≈ 1,
then the AGC metric is

U(d) =
n∑

i=1

diyi
N0i + Es

(2-189)
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Figure 2.28: Performance against pulsed interference of direct-sequence system
with convolutional code with white-noise metric, K = 7, r = 1/2, and Eb/N0 =
20 dB

which is a Gaussian random variable. For this metric,

E[M0|ν] = −
ν∑

i=1

2Es
N0 + I0/μ+ Es

−
l∑

i=ν+1

2Es
N0 + Es

= −2Es
[

ν

N0 + I0/μ+ Es
+

l − ν

N0 + Es

]
(2-190)

where ν is the number of symbols affected by interference pulses. Similarly,
since var[yi] = N0i/2,

var[M0|ν] = 2Es

[
ν (N0 + I0/μ)

(N0 + I0/μ+ Es)2
+

(l − ν)N0

(N0 + Es)2

]
. (2-191)

Substitution of these equations into (2-184) yields

P2(l/ν) = Q

⎧⎪⎨
⎪⎩
√

2Es
N0

l (N0 + Es + I0/μ)− νI0/μ[
l (N0 + Es + I0/μ)

2 − ν (N0 + I0/μ−E2
s /N0) I0/μ

]1/2
⎫⎪⎬
⎪⎭ .

(2-192)

This equation and (2-185) give the upper bound on Pb for the AGC metric.



134 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

Example 11. The upper bound on Pb versus Eb/I0 for worst-case pulsed
interference, the AGC metric, the rate-1/2 binary convolutional code with K =
7, and Eb/N0 = 20 dB is plotted in Figure 2.27. The figure indicates that
the potential performance of the AGC metric is nearly as good as that of the
maximum-likelihood metric. �

The energy N0iBTs + Es may be measured by a radiometer , which is a
device that measures the energy at its input. An ideal radiometer (Section 10.2)
provides an unbiased estimate of the energy received during a symbol interval.
The radiometer outputs are accurate estimates only if the standard deviation
of the output is much less than its expected value. Therefore, the potential
performance of the AGC metric is expected to be significantly degraded in
practice unless each interference pulse extends over many channel symbols and
its energy is measured over the corresponding interval.

The maximum-likelihood metric for continuous interference (N0i is constant
for all i) is the white-noise metric:

U(k) =
n∑

i=1

diyi (2-193)

which is much simpler to implement than the AGC metric. For the white-noise
metric, calculations similar to the preceding ones yield

P2(l|ν) = Q

[√
2Es
N0

l

(
l + ν

I0
μN0

)−1/2
]
. (2-194)

This equation and (2-185) give the upper bound on Pb for the white-noise
metric.

Example 12. Figure 2.28 illustrates the upper bound on Pb versus Eb/I0
for K = 7, r = 1/2, Eb/N0 = 20 dB, and several values of ζ = μ/μ0. The
figure demonstrates the vulnerability of soft-decision decoding with the white-
noise metric to short high-power pulses if interference power is conserved. The
high values of Pb for ζ < 1 are due to the domination of the metric by a few
degraded symbol metrics. �

Consider a coherent BPSK demodulator that erases its output and hence
a received symbol whenever an interference pulse occurs. The presence of the
pulse might be detected by examining a sequence of the demodulator outputs
and determining which ones have inordinately large magnitudes compared with
the others. Alternatively, the demodulator might decide that a pulse has oc-
curred if an output has a magnitude that exceeds a known upper bound for
the desired signal. Consider an ideal demodulator that unerringly detects the
pulses and erases the corresponding received symbols. Following the deinter-
leaving of the demodulated symbols, the decoder processes symbols that have
a probability of being erased equal to μ. The unerased symbols are decoded by
using the white-noise metric. The erasing of ν symbols causes two sequences
that differ in l symbols to be compared on the basis of l − ν symbols where
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Figure 2.29: Performance against pulsed interference of DS-BPSK with convo-
lutional code, erasures metric, K = 7, r = 1/2, and Eb/N0 = 20 dB

0 ≤ ν ≤ l. As a result, the erasures metric provides

P2(l|ν) = Q

[√
2Es
N0

(l − ν)

]
. (2-195)

The substitution of this equation into (2-185) gives the upper bound on Pb for
errors-and-erasures decoding.

Example 13. The upper bound on Pb is illustrated in Figure 2.29 for
K = 7, r = 1/2, Eb/N0 = 20 dB, and several values of ζ = μ/μ0. In this
example, erasures provide no advantage over the white-noise metric in reducing
the required Eb/I0 for Pb = 10−5 if ζ > 0.85, but are increasingly useful as ζ
decreases. �

Example 14. Consider an ideal demodulator that unerringly activates
erasures only when μ is small enough that the erasures are more effective than
the white-noise metric. When this condition does not occur, the white-noise
metric is used. The upper bound on Pb for this ideal erasures metric, worst-case
pulsed interference, Eb/N0 = 20 dB, and several binary convolutional codes is
illustrated in Figure 2.30. The required Eb/I0 at Pb = 10−5 is roughly 2 dB less
than for worst-case hard-decision decoding. However, a practical demodulator
sometimes erroneously makes erasures or fails to erase, and its performance
advantage may be much more modest than that of the ideal erasures metric. �
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Figure 2.30: Worst-case performance against pulsed interference of direct-
sequence system with convolutional codes of constraint length K and rate r,
ideal erasures metric, and Eb/N0 = 20 dB

2.7 Noncoherent Systems

Coherent direct-sequence systems may be impractical when high mobility causes
fast fading. A noncoherent direct-sequence system avoids the need for phase
synchronization with the carrier in the receiver. The ADC outputs are chip-rate
in-phase and quadrature sequences that are applied to a metric generator, as
shown in Figure 2.31. The symbol metrics produced by the metric generator
are used to make a symbol decision every symbol period. For soft-decision
decoding, the symbol metrics are directly applied to the decoder.

Because of its relatively simple implementation and the fact that it sacrifices
only 1 dB relative to coherent detection, noncoherent orthogonal q-ary code-
shift keying (CSK) is a prime choice for the data modulation in a noncoherent
direct-sequence system with short spreading sequences.

A direct-sequence system with code-shift keying (DS-CSK system) encodes
q = 2m nonbinary symbols as q orthogonal m-bit Walsh sequences drawn from a
Hadamard matrix Hm. Each of the m bits is combined with an n-bit spreading
sequence p = [p1, p2, . . . , pn] . Let b = [bk,1, bk,2, . . . , bk,m] denote the Walsh
sequence for symbol k. The composite spreading sequence representing a symbol
k is

qk = [bk,1p, bk,2p, . . . , bk,mp] (2-196)
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Figure 2.31: Demodulator for noncoherent direct-sequence system

The length of qk is the spreading factor G = mn. Since the underlying Walsh
sequences for the symbols are orthogonal, the composite symbols remain or-
thogonal.

The principal components of the encoder of the composite spreading se-
quence are depicted in Figure 2.32. The bit sequence of a symbol is stored in
the lower shift register, and the short spreading sequence is stored in the upper
shift register. The outputs of the lower and upper shift registers are applied to
the modulo-two adder at the bit rate and chip rate, respectively. The composite
spreading sequence is mapped into ±1 prior to transmission.

The received direct-sequence signal with q-ary CSK for symbol k of duration
Ts is

sk(t) =
√
Esqk(t) cos (2πfct+ φ) +

√
Esqk(t+ t0) sin (2πfct+ φ)

0 ≤ t ≤ Ts (2-197)

where Es is the energy per q-ary symbol, t0 is the relative delay between the
in-phase and quadrature components of the signal, φ is the received phase, the
composite spreading waveform is

qk(t) =
G−1∑
i=0

qkiψ(t− iTc) (2-198)

and qki is chip i of the composite spreading sequence for symbol k. The chip
duration is Tc, and the energy of the chip waveform satisfies (2-72).

The total received signal during the reception of symbol k is

r(t) = sk(t) + i(t) + n(t) (2-199)

where i(t) is the interference, and n(t) is the AWGN. An evaluation similar to
that in Section 2.5 indicates that the in-phase sequence applied to the metric
generator of Figure 2.33 is

Ii =

√
Es/2
G

qki(cosφ+ sinφ) + Ji +Nsi, i = 0, 1, . . . , G− 1 (2-200)
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Figure 2.32: Encoder of composite spreading sequence for CSK

where Ji and Nsi are defined by (2-84) and (2-85), respectively. Similarly, the
quadrature sequence applied to the metric generator is

Qi =

√
Es/2
G

bki(cosφ− sinφ) + J
′

i +N
′

si, i = 0, 1, . . . , G− 1 (2-201)

where J
′

i and N
′

si are defined by (2-133) and (2-134), respectively.
In the metric generator of Figure 2.33, the sampled outputs of the in-phase

and quadrature matched filters that are matched to transmitted symbol k are

Is (k) =
√
Es/2 (cosφ+ sinφ) + V1 (k) + U1 (k) (2-202)

Qs (k) =
√
Es/2 (cosφ− sinφ) + V2 (k) + U2 (k) (2-203)

respectively, where

V1 (l) =

G−1∑
i=0

qliJi, U1 (l) =

G−1∑
i=0

qliNsil (2-204)

V2 (l) =

G−1∑
i=0

qliJ
′
i , U2 (l) =

G−1∑
i=0

qliN
′l
si (2-205)

are the interference and noise components. Using the orthogonality of the
spreading sequences, we find that the sampled outputs of the in-phase and
quadrature matched filters that are matched to symbol l �= k are

Is (l) = V1 (l) + U1 (l) , Qs (l) = V2 (l) + U2 (l) , l �= k (2-206)
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Figure 2.33: Metric generator for the noncoherent detection of orthogonal
spreading sequences

respectively. After the squaring and combining operations, the symbol metrics
passed to the decoder are

Rk = I2s (k) +Q2
s(k) (2-207)

Rl = I2s (l) +Q2
s (l) , l �= k. (2-208)

Assuming the Gaussian interference model of Section 2.4, we find that each
Is (l) and each Qs (l) has a Gaussian distribution, and

var [Is (l)] = var [Qs (l)] = N0e/2, l = 1, 2, . . . q (2-209)

where N0e is given by (2-121). For hard-decision decoding, the symbol metrics
are compared and a symbol decision is made. As shown in Appendix E, each
symbol metric Rl, l �= k, has a central chi-squared density with two degrees
of freedom and variance σ2 = N0e/2. The symbol metric Rk associated with
transmitted symbol k has a chi-squared density with two degrees of freedom,
variance σ2 = N0e/2, and noncentral parameter λ = Es. We make the plausible
approximation that the {Is (k) , Qs (k)} are independent of the {Is (l) , Qs (l)} ,
in the sense that any dependence is negligible. A derivation paralleling that of
(1-73) leads to the symbol error probability:

Ps =

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
exp

[
− iEs
(i+ 1)N0e

]
. (2-210)

For the same N0e and Es = mEb, a comparison of (2-210) with (2-120)
indicates that the bit error probability as a function of Eb/N0e of the direct-
sequence system with noncoherent binary CSK is approximately 4 dB worse
than that of the system with coherent BPSK. This difference arises primarily



140 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

Bit
Delay

X

Bit
Delay

X

∑

In-phase
samples

Quadrature
samples

Symbol
metrics

.

.
Bit �ming

SSG

X

X

In-phase

Quadrature

Figure 2.34: Metric generator for a DS-DPSK system

because binary CSK uses orthogonal rather than antipodal signals. A much
more complicated system with coherent binary CSK would only recover roughly
1 dB of the disparity. The performance of a noncoherent 8-ary DS-CSK system
in the presence of wideband Gaussian interference and the same N0e is slightly
better than that of a coherent DS-BPSK system. However, 8 matched filters
are required, which offsets the advantage that phase synchronization is not
required.

In a system that uses a single binary sequence and a minimum amount of
hardware, the symbol 1 is signified by the transmission of the sequence, whereas
the symbol 0 is signified by the absence of a transmission. Decisions are made
after comparing the envelope-detector output with a threshold. One problem
with this system is that the optimal threshold is a function of the amplitude
of the received signal, which must somehow be estimated. Another problem is
the degraded performance of the symbol synchronizer when many consecutive
zeros are transmitted. Thus, a system with two binary CSK sequences is much
more practical.

A DS-DPSK system signifies the symbol 1 by the transmission of a spread-
ing sequence without any change in the carrier phase; the symbol 0 is signified
by the transmission of the same sequence after a phase shift of π radians in
the carrier phase. Thus, the symbol sequence is determined by the phase shifts
between consecutive spreading sequences. In the metric generator, chip-rate
in-phase and quadrature sequences are multiplied by the spreading sequence to
produce symbol-rate despread sequences, as illustrated in Figure 2.34. These
sequences are multiplied by previous despread sequences in mixers, the outputs
of which are added to generate the symbol metrics. Since the symbol informa-
tion is embedded in the phase shifts, pairs of symbol metrics are used in the
decoding. An analysis of this system for hard decisions and wideband Gaussian
interference indicates that its performance is roughly 1 dB inferior to that of a
system with noncoherent 8-ary CSK.



2.8. DESPREADING WITH BANDPASS MATCHED FILTERS 141

2.8 Despreading with Bandpass Matched Fil-
ters

A matched filter can be implemented at baseband as a digital filter. Alter-
natively, bandpass matched filtering can be implemented by analog devices.
Despreading short spreading sequences with bandpass matched filters provides
sinusoidal pulses with polarities that depend on the data modulation. The
pulses can be used for timing synchronization and as the basis for producing
the symbol metrics of simple direct-sequence receivers.

The spreading waveform for a short spreading sequence

p (t) =
N∑

i=−N

p1 (t− iTs) ,−NTs ≤ t ≤ NTs (2-211)

where N is a large positive integer, p1 (t) is one period of the spreading wave-
form, and Ts is its period. Over a single symbol interval,

p1(t) =

⎧⎨
⎩

G−1∑
i=0

p1iψ (t− iTc) , 0 ≤ t ≤ Ts

0, otherwise
(2-212)

where ψ (t) is the chip waveform, p1i = ±1, and Ts = GTc. As explained in
Section 1.1, a filter is said to be matched to a signal x(t), 0 ≤ t ≤ T , if the
impulse response of the filter is h(t) = x(T − t). Consider a bandpass matched
filter that is matched to

x(t) =

{
p1(t) cos (2πfct+ θ1) , 0 ≤ t ≤ Ts

0, otherwise
(2-213)

where fc is the desired carrier frequency or a suitable intermediate frequency.
We evaluate the filter response to the received signal corresponding to a

single data symbol:

s(t) =

{
2Ap1(t− t0) cos (2πf1t+ θ) , t0 ≤ t ≤ t0 + Ts

0, otherwise
(2-214)

where t0 is a measure of the uncertainty in the arrival time, the polarity of
A is determined by the data symbol, and f1 is the received carrier frequency,
which differs from fc because of oscillator instabilities and the Doppler shift.
Let fd = f1 − fc denote the frequency mismatch. We assume that

|t0| � Ts, fdTs � 1 � fcTs. (2-215)
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Then the matched-filter response to s (t) is

ys (t) =

∫ t

.t−Ts

s(u)p1(u+ Ts − t) cos [2πfc(u+ Ts − t) + θ1] du

= A

∫ min(t,t0+Ts)

max(t−Ts,t0)

p1 (u− t0) p1(u− t+ Ts) cos (2πfdu+ 2πfct+ θ2) du

≈ As(t) cos (2πfct+ θ3) , t0 ≤ t ≤ t0 + 2Ts

(2-216)

where θ2 = θ − θ1 − 2πfcTs, θ3 = θ2 + 2πfdt0, and

As(t) = A

∫ min(t,t0+Ts)

max(t−Ts,t0)

p1 (u− t0) p1(u− t+ Ts)du. (2-217)

In the absence of noise, the matched-filter output ys(t) is a compressed bipolar
sinusoidal pulse of duration 2Ts. At the sampling time t = Ts,

As(Ts) = A

∫ min(Ts,t0+Ts)

max(0,t0)

p1 (u− t0) p1(u)du

≈ ATs, |t0| � Ts (2-218)

with a polarity determined by A.
The response of the matched filter to the interference and noise, denoted by

N(t) = i(t) + n(t), may be expressed as

yn(t) =

∫ t

t−Ts

N(u)p(u+ Ts − t) cos [2πfc(u+ Ts − t) + θ1] du

= N1(t) cos (2πfct+ θ3) +N2(t) sin (2πfct+ θ3) (2-219)

where

N1(t) =

∫ t

t−Ts

N(u)p(u+ Ts − t) cos (2πfcu+ θ + 2πfdt0) du (2-220)

N2(t) =

∫ t

t−Ts

N(u)p(u+ Ts − t) sin (2πfcu+ θ + 2πfdt0) du. (2-221)

These equations exhibit the spreading and filtering of the interference spectrum
required in a direct-sequence receiver.

The matched-filter output is

y(t) = ys(t) + yn(t)

= E(t) cos [2πft+ θ4 (t)] (2-222)

where the envelope is

E(t) =
{
[As(t) +N1(t)]

2
+N2

2 (t)
}1/2

. (2-223)
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Figure 2.35: Surface-acoustic-wave (SAW) transversal filter

If
|As(t) +N1(t)| � |N2 (t)| (2-224)

then at the sampling time,

E (Ts) ≈ |ATs +N1 (Ts) |. (2-225)

This equation indicates that the degradation due to the interference and noise
in the sampled bandpass-filter envelope is comparable to the degradation in the
sampled output of the baseband matched filter.

Surface-Acoustic-Wave Filters

Figure 2.35 illustrates the basic form of a surface-acoustic-wave (SAW) transver-
sal filter, which provides an implementation of a bandpass matched filter. The
SAW transversal filter is a passive matched filter that essentially stores a replica
of the underlying spreading sequence and waits for the received sequence to align
itself with the replica. The SAW delay line consists primarily of a piezoelectric
substrate, which serves as the acoustic propagation medium, and interdigital
transducers, which serve as the taps and the input transducer. The transversal
filter is matched to one period of the spreading waveform, the propagation delay
between taps is Tc, and fcTc is an integer. The bandpass chip-matched filter
following the summer is matched to ψ(t) cos (2πfct+ θ). It is easily verified
that the impulse response of the transversal filter is that of a filter matched to
p1(t) cos (2πfct+ θ).

An active matched filter can be implemented as a SAW convolver [61], which
is depicted in Figure 2.36. The received signal and a reference signal are applied
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Figure 2.36: SAW convolver. IDT = interdigital transducer

to separate interdigital transducers that generate acoustic waves at opposite
ends of a substrate. The reference signal is a recirculating, time-reversed replica
of the spreading waveform. The acoustic waves travel in opposite directions
with speed υ, and the acoustic terminations suppress reflections. The received-
signal wave is launched at position x = 0 and the reference wave at x = L. The
received-signal wave travels to the right in the substrate and has the form

F (t, x) = f
(
t− x

υ

)
cos
[
2πfc

(
t− x

υ

)
+ θ
]

(2-226)

where f(t) is the modulation at position x = 0. The reference wave travels to
the left and has the form

G(t, x) = g

(
t+

x− L

υ

)
cos

[
2πfc

(
t+

x− L

υ

)
+ θ1

]
(2-227)

where g(t) is the modulation at position x = L. Both f(t) and g(t) are assumed
to have bandwidths much smaller than fc.

Beam compressors, which consist of thin metallic strips, focus the acoustic
energy to increase the convolver’s efficiency. When the acoustic waves overlap
beneath the central electrode, a nonlinear piezoelectric effect causes a surface
charge distribution that is spatially integrated by the electrode. The primary
component of the convolver output is proportional to

y(t) =

∫ L

0

[F (t, x) +G(t, x)]2dx. (2-228)

Substituting (2-226) and (2-227) into (2-228) and using trigonometry, we
find that y(t) is the sum of a number of terms, some of which are negligible if
fcL/v � 1. Others are slowly varying and are easily blocked by a filter. The
most useful component of the convolver output is

ys(t) =

[∫ L

0

f
(
t− x

υ

)
g

(
t+

x− L

υ

)
dx

]
cos (4πfct+ θ2) (2-229)

where θ2 = θ + θ1 − 2πfcL/v. Changing variables, we find that the amplitude
of the output is

As(t) =

∫ t

t−L/υ

f(y)g(2t− y − L/υ)dy (2-230)
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where the factor 2t results from the counterpropagation of the two acoustic
waves.

Suppose that an input pulse over a symbol interval is a single period p1 (t)
of the spreading waveform p (t) given by (2-211). Then

f (t) =

{
Ap1 (t− t0) t0 ≤ t ≤ t0 + Ts

0, otherwise
(2-231)

where t0 is the uncertainty in the arrival time of an acquisition pulse relative
to the launching of the reference signal at x = L. The reference signal is

g (t) =

N∑
i=−N

p1 (Ts − t+ iTs) rect (t− iTs, Ts) (2-232)

where rect (t, Ts) is the unit rectangular pulse over [0, Ts] . Then (2-230) in-
dicates that As(t) = 0 unless t0 < t < t0 + L/υ + Ts. We assume that
0 < L ≤ 2vTs. Substitution of (2-231) and (2-232) into (2-230) and a change of
the integration variable yield

As(t) =
3∑

i=−3

∫ min(t−t0,Ts)

max(t−t0−L/υ,0)

p1(y)p1[.y − 2t+ (i+ 1)Ts + t0 + L/υ].

×rect(−y + 2t− t0 − L/v − iTs, Ts)dy

0 < L ≤ 2vTs, t0 < t < t0 + L/υ + Ts, |t0| < Ts (2-233)

Let

τ =
Ts + t0 + L/υ

2
(2-234)

When t = τ ,

As (τ) = A

∫ min(τ−t0,Ts)

max(τ−t0−L/υ,0)

p21(y)dy. (2-235)

The maximum possible magnitude of As(τ) is produced if τ − t0 ≥ Ts and
τ − t0 − L/υ ≤ 0; that is, if

t0 + Ts ≤ τ ≤ t0 +
L

υ
. (2-236)

This requirement is satisfied if

L ≥ υTs. (2-237)

Thus, if L is large enough, then the envelope of the convolver output at t = τ
has the maximum possible magnitude, which is |A|Ts.

Thus, the envelope has a large peak value. For acquisition, a preamble
is transmitted that comprises several periods of a spreading sequence with an
autocorrelation that has sharp spikes. The received preamble is applied to a
SAW convolver that feeds an envelope detector. Then a peak detector produces
timing information that facilitates acquisition.



146 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

2 1 4 3 2 1 1 4 3 2 1 4 4 3 2 1 4 3

4 3 2 1 4 3 2 1 4 3 2 1

t = 4Tc t = 5Tc t = 6Tc

reference

signal

Figure 2.37: Chip configurations within convolver at time instants t = 4Tc,5Tc,
and 6Tc when t0 = 0,L/υ = 6TcT = 4Tc

Example 15. Let t0 = 0, L/υ = 6Tc, and T = 4Tc. The chips propagat-
ing in the convolver for three separate time instants t = 4Tc, 5Tc, and 6Tc are
illustrated in Figure 2.37. The top diagrams refer to the counterpropagating
periodic reference signal, whereas the bottom diagrams refer to the single re-
ceived pulse of four chips. The chips are numbered consecutively. The received
pulse is completely contained within the convolver during 4Tc ≤ t ≤ 6Tc. The
maximum magnitude of the output occurs at time t = 5Tc, which is the instant
of perfect alignment of the reference signal and the received chips. �

Multipath-Resistant Coherent System

The coherent demodulation of a direct-sequence signal requires the generation
of a phase-coherent synchronization signal with the correct carrier frequency
in the receiver. Prior to the despreading, the signal-to-noise ratio (SNR) may
be too low for the received signal to serve as the input to a phase-locked loop
that produces a synchronization signal. An inexpensive method of generating
a synchronization signal is to use a recirculation loop, which is a loop designed
to reinforce a periodic input signal by positive feedback.

As illustrated in Figure 2.38, the feedback elements are an attenuator of gain
K and a delay line with a delay T0. The basic concept behind this architecture
is that successive signal pulses are coherently added while the interference and
noise are noncoherently added, thereby producing an output pulse with an
improved SNR.

The input consists of a symbol waveform having the form

s0(t) = A(t) cos(2πfct+ θ), 0 ≤ t ≤ Ts (2-238)

where Ts is the symbol duration. The figure indicates that the loop output is

s1(t) = s0(t) +Ks1 (t− T0) , T0 ≤ t ≤ NTs

s1(t) = s0(t), 0 ≤ t ≤ Ts. (2-239)

Substitution of this equation into itself and then repeating this substitution
process lead to

s1(t) =
n−1∑
m=0

Kms0 (t−mT0) +Kns1(t− nT0), nT0 ≤ t ≤ Ts (2-240)
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Figure 2.38: Recirculation loop

which indicates that s1(t) increases with n if enough input pulses are available.
To prevent an eventual loop malfunction, K < 1 is a design requirement that
is assumed henceforth.

We assume that varies much more slowly than the cosine and that

nfcT0 � 1. (2-241)

Under this condition, the feedback waveforms add constructively, and

s0 (t−mT0) ≈ s0 (t) , m ≤ n

s1 (t− nT0) ≈ s0 (t) . (2-242)

Therefore, (2-240) reduces to

s1(t) ≈ s0 (t)

n∑
m=0

Km

= s0 (t)

(
1−Kn+1

1−K

)
, nT0 ≤ t ≤ Ts. (2-243)

If S is the average power in the input waveform, then (2-243) indicates that

the average power in the output pulse waveform in the interval nT̂s ≤ t <
(n+ 1)T̂s is approximately

Sn =

(
1−Kn+1

1−K

)2

S, K < 1. (2-244)

If T̂s is large enough that the recirculated noise is uncorrelated with the in-
put noise, which has average power σ2, then the output noise power after n
recirculations is

σ2
n = σ2

n∑
m=0

(
K2
)m

= σ2

(
1−K2n+2

1−K2

)
, K < 1. (2-245)
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Figure 2.39: Direct-sequence receiver with decision-directed loop

The improvement in the SNR due to the presence of the recirculation loop is

I (n,K) =
Sn/σ

2
n

S/σ2
=

(
1−Kn+1

)
(1 +K)

(1 +Kn+1) (1−K)

≤ 1 +K

1−K
, K < 1. (2-246)

If Kn is small, the upper bound on I (n,K) is nearly attained after n recir-
culations. However, the upper bound on n is constrained by (2-241).

Figure 2.39 illustrates a coherent decision-directed demodulator for a direct-
sequence signal with BPSK. The bandpass matched filter despreads the in-
put signal and produces compressed bipolar sinusoidal pulses, as indicated
by (2-217). A compressed pulse due to a direct-path signal may be followed
by one or more compressed pulses due to multipath signals (Chapter 6), as
illustrated conceptually in Figure 2.40a for pulses corresponding to the trans-
mitted symbols 101. Each compressed pulse is delayed by one symbol and
then mixed with the digital symbol produced by the decision device. If this
symbol is correct, it coincides with the same data symbol that is modulated
onto the compressed pulse. Consequently, the mixer removes the data mod-
ulation and produces a phase-coherent reference pulse that is independent of
the data symbol, as illustrated in Figure 2.40b, where the two middle pulses
are inverted in phase relative to the corresponding pulses in Figure 2.40a. The
reference pulses have the correct phases and the spreading waveforms needed
for despreading and coherent detection. The reference pulses are amplified
by the recirculation loop. The loop output and the matched-filter output are
applied to a mixer that produces the despread baseband integrator input il-
lustrated in Figure 2.40c. The length of the integration interval is equal to a
symbol duration. The sampling times, which occur at the boundaries of the
integration intervals, are determined by the synchronized pulses produced by
the symbol synchronizer. The sampled integrator output is applied to a deci-
sion device that produces the data output. Since multipath components are
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Figure 2.40: Conceptual waveforms of the demodulator: (a) matched-filter
output, (b) recirculation loop input or output, and (c) baseband integrator
input

coherently integrated, the demodulator provides an improved performance in a
fading environment.

This coherent decision-directed receiver potentially suppresses interference
almost as much as the receiver of Figure 2.14. The decision-directed receiver is
much simpler to implement because specialized timing acquisition and tracking
systems are unnecessary, but it requires a short spreading sequence, and the
implementation losses are considerable. More efficient exploitation of multipath
components is possible with rake combining (Section 6.12).

2.9 Problems

1. The characteristic polynomial associated with a linear feedback shift reg-
ister is f(x) = 1+x2+x3+x5+x6. The initial state is a0 = a1 = 0, a2 =
a3 = a4 = a5 = 1. Use polynomial long division to determine the first
nine bits of the output sequence.

2. If the characteristic polynomial associated with a linear feedback shift
register is 1 + xm, what is the linear recurrence relation? Write the
generating function associated with the output sequence. Use polynomial
long division to determine the possible periods of the output sequence.

3. Prove by exhaustive search that the polynomial f(x) = 1 + x2 + x3 is
primitive.

4. Derive the characteristic polynomial of the linear equivalent of
Figure 2.12a. Verify the structure of Figure 2.12b and derive the ini-
tial contents indicated in the figure.
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5. Derive the first line of (2-107) using the steps specified in the text.

6. This problem illustrates the limitations of an approximate model in an
extreme case. Suppose that tone interference at the carrier frequency is
coherent with a DS-BPSK signal so that φ = 0 in (2-96). Assume that
N0 → 0 and Es > GITcκ. Show that Ps → 0. Show that the general
tone-interference model of Section 2.4 leads to a nonzero approximate
expression for Ps.

7. Starting with (2-115), verify (2-116).

8. Consider DS-QPSK systems with complex binary sequences that satisfy:
(a) d2 = 0, (b) d1 = d2, (c) p2 = 0 p1 = p2. Which of these systems is
potentially viable and which have significant weaknesses?

9. Consider DS-BPSK with hard decisions, a required Ps = 10−5, and N0

= 0. How much additional power is required against worst-case pulsed
interference beyond that required against continuous interference. Use
Q(

√
20) = 10−5.

10. Assuming that Es � N0 and I0 � N0, (2-174) implies that the probability
of an error in a binary code symbol is

Ps � μQ

(√
2Esμ
I0

)
, 0 ≤ μ ≤ 1.

Use this equation and the fact Q (1.2) = 0.115 to verify (2-175).

11. Consider DS-DPSK over the AWGN channel and hard decisions. Derive
the worst-case duty cycle and Ps for strong pulsed interference when the
PSD of continuous interference is I0/2 � N0/2. Show that DPSK has
more than 3 dB disadvantage relative to BPSK against worst-case pulsed
interference when Es/I0 is large.

12. What are the values of E[M0|ν] and var[M0|ν] for the white-noise metric?
Derive the worst-case duty cycle and Ps for strong pulsed interference
when the PSD of continuous interference is I0/2 � N0/2. Show that
DPSK has more than 3 dB disadvantage relative to BPSK against worst-
case pulsed interference when Es/I0 is large.

13. Expand (2-216) to determine the degradation in As(T ) when fdTs is not
negligible and the chip waveform is rectangular.

14. Evaluate the impulse response of a transversal filter with the form of
Figure 2.35. Show that this impulse response is equal to that of a bandpass
filter matched to p1(t)cos(2πfct+ θ) if fcTc is an integer.

15. Why can the terms with i > 3 and i < −3 be omitted in (2-233)? Why is
there only a single term in (2-235)?



Chapter 3

Frequency-Hopping
Systems

Frequency hopping is the periodic changing of the carrier frequency of a trans-
mitted signal. This time-varying characteristic potentially endows a commu-
nication system with great strength against interference. Whereas a direct-
sequence system relies on spectral spreading, spectral despreading, and filtering
to suppress interference, the basic mechanism of interference suppression in a
frequency-hopping system is that of avoidance. When the avoidance fails, it is
only temporary because of the periodic changing of the carrier frequency. The
impact of the interference is further mitigated by the pervasive use of channel
codes, which are more essential for frequency-hopping systems than for direct-
sequence systems. The basic concepts, spectral and performance aspects, and
coding and modulation issues of frequency-hopping systems are presented in this
chapter. A detailed description of the versatile continuous-phase frequency-shift
keying as the data modulation is presented. The potentially powerful multi-
symbol noncoherent demodulation and the digital demodulation of continuous-
phase frequency-shift keying are explored. The effects of partial-band interfer-
ence and multitone jamming are examined, and the most important issues in
the design of frequency synthesizers are described.

3.1 Concepts and Characteristics

The sequence of carrier frequencies transmitted by a frequency-hopping sys-
tem is called the frequency-hopping pattern . The set of M possible carrier
frequencies {f1, f2, . . . , fM} is called the hopset. The rate at which the carrier
frequency changes is called the hop rate. Frequency hopping occurs over a fre-
quency band called the hopping band, which includes M frequency channels.
Each frequency channel is defined as a spectral region that includes a single
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Figure 3.1: Frequency-hopping pattern

carrier frequency of the hopset as its center frequency and has a bandwidth B
large enough to include most of the power in a signal pulse with a specific car-
rier frequency. Figure 3.1 illustrates the frequency channels associated with a
particular frequency-hopping pattern. The time interval between hops is called
the hop interval. Its duration is called the hop duration and is denoted by Th.
The hopping band has hopping bandwidth W ≥ MB.

Figure 3.2a depicts the general form of a frequency-hopping transmitter.
Pattern-control bits, which are the output bits of a pattern generator, change
at the hop rate so that a frequency synthesizer produces a frequency-hopping
pattern. The data-modulated signal is mixed with the frequency-hopping pat-
tern to produce the frequency-hopping signal. If the data modulation is some
form of angle modulation φ(t), then the received signal for the ith hop is

s(t) =
√
2Es/Ts cos [2πfcit+ φ(t) + φi] , (i− 1)Th ≤ t ≤ iTh (3-1)

where Es is the energy per symbol, Ts is the symbol duration, fci is the carrier
frequency for the ith hop, and φi is a random phase angle for the ith hop.

The frequency-hopping pattern produced by the receiver synthesizer of
Fig. 3.2b is synchronized with the pattern produced by the transmitter but
is offset by a fixed intermediate frequency, which may be zero. The mixing
operation removes the frequency-hopping pattern from the received signal and
hence is called dehopping. The mixer output is applied to a bandpass filter
that excludes double-frequency components and power that originated outside
the appropriate frequency channel. The filter output is the data-modulated
dehopped signal, which has the form of (3-1) with fci for all hops replaced by
the common intermediate frequency.

Although it provides no advantage against white noise, frequency hopping
enables signals to hop out of frequency channels with interference or slow
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Figure 3.2: Basic elements of frequency-hopping system: (a) transmitter and
(b) receiver

frequency-selective fading. To fully escape from the effects of narrowband inter-
ference signals, disjoint frequency channels are necessary. The disjoint channels
may be contiguous or have unused spectral regions between them. Some spec-
tral regions with steady interference or a susceptibility to fading may be omitted
from the hopset, a process called spectral notching.

To ensure that a frequency-hopping pattern is difficult to reproduce or dehop
by an opponent, the pattern should be pseudorandom with a large period and an
approximately uniform distribution over the frequency channels. The pattern
generator is a nonlinear sequence generator that maps each generator state to
the pattern-control bits that specify a frequency. The linear span or linear
complexity of a nonlinear sequence is the number of stages of the shortest linear
feedback shift register that can generate the sequence or the successive generator
states. A large linear span inhibits the reconstruction of a frequency-hopping
pattern from a short segment of it.

An architecture that enhances the transmission security of a frequency-
hopping system is shown in Fig. 3.3. The structure or algorithm of the pattern
generator is determined by a set of pattern-control bits that comprise the
spread-spectrum key and the time-of-day (TOD). The spread-spectrum key,
which is the ultimate source of security, is a set of bits that are changed infre-
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quently. The spread-spectrum key may be generated by combining secret bits
with two sets of address bits that identify both the transmitting device and
the receiving device at the other end of a communication link. The TOD is
a set of bits that are derived from the stages of the TOD counter and change
with every transition of the TOD clock. For example, the spread-spectrum key
might change daily, whereas the TOD might change every second. The pur-
pose of the TOD is to vary the pattern-generator algorithm without constantly
changing the spread-spectrum key. In effect, the pattern-generator algorithm is
controlled by a time-varying key. The hop-rate clock, which regulates when the
changes occur in the pattern generator, operates at a much higher rate than
the TOD clock. In a receiver, the hop-rate clock is produced by the synchro-
nization system. In both the transmitter and receiver, the TOD clock may be
derived from the hop-rate clock. The TOD control bits initiate or reset the
TOD counter to a desired state.

A frequency-hopping pulse with a fixed carrier frequency occurs during a
portion of the hop interval called the dwell interval. As illustrated in Fig. 3.4,
the dwell time is the duration of the dwell interval during which the channel
symbols are transmitted and the peak amplitude occurs. The hop duration
Th is equal to the sum of the dwell time Td and the switching time Tsw. The
switching time is equal to the dead time, which is the duration of the interval
when no signal is present, plus the rise and fall times of a pulse. Even if the
switching time is insignificant in the transmitted signal, it is more substantial in
the dehopped signal in the receiver because of the imperfect synchronization of
received and receiver-generated waveforms. The nonzero switching time, which
may include an intentional guard time, decreases the transmitted symbol dura-
tion Ts. If Tso is the symbol duration in the absence of frequency hopping, then
Ts = Tso(Td/Th). The reduction in symbol duration expands the transmitted
spectrum and thereby reduces the number of frequency channels within a fixed
hopping band. Since the receiver filtering ensures that rise and fall times of
pulses have durations on the order of a symbol duration, Tsw > Ts in practical
systems.
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Frequency hopping may be classified as fast or slow relative to the informa-
tion rate. Fast frequency hopping occurs if there is more than one hop for each
information symbol. Slow frequency hopping occurs if one or more information
symbols are transmitted in the time interval between frequency hops. Slow fre-
quency hopping is highly preferable because the transmitted waveform is much
more spectrally compact (cf. Section 3.5), there is no noncoherent combining
loss due to the subdivision of symbols, and the overhead cost of the switching
time is greatly reduced.

To obtain the full advantage of block or convolutional channel codes in a
slow frequency-hopping system, the code symbols should be interleaved in such
a way that the symbols of a block codeword or the symbols within a few free
distances in a convolutional code fade independently. In frequency-hopping
systems operating over a frequency-selective fading channel, the realization of
this independence requires certain constraints among the system parameter
values (Section 6.13).

Frequency-selective fading and Doppler shifts make it difficult to maintain
phase coherence from hop to hop between frequency synthesizers in the trans-
mitter and the receiver. Furthermore, the time-varying delay between the fre-
quency changes of the received signal and those of the synthesizer output in the
receiver causes the phase shift in the dehopped signal to differ for each hop inter-
val. Thus, frequency-hopping systems use noncoherent or differentially coherent
demodulators unless a pilot signal is available, the hop duration is very long, or
elaborate iterative phase estimation (perhaps as part of turbo decoding) is used.

In military applications, the ability of frequency-hopping systems to avoid
interference is potentially neutralized by a repeater jammer (also known as a
follower jammer), which is a device that intercepts a signal, processes it, and
then transmits jamming at the same center frequency. To be effective against a
frequency-hopping system, the jamming energy must reach the victim receiver
before it hops to a new carrier frequency. Thus, the hop rate is the critical
factor in protecting a system against a repeater jammer. Hop rates of at most
a few kilohops per second are adequate. The limitations of repeater jamming
are analyzed in [101].
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3.2 Basic Data Modulations

In this section, we describe three suitable data modulations. The more pow-
erful and complex continuous phase-shift keying modulations are described in
subsequent sections.

OSK

In a frequency-hopping system with orthogonal-shift keying (OSK), each trans-
mitted symbol is represented by a member of a set of orthogonal signals. The
predominant form of OSK is frequency-shift keying (FSK), in which the orthog-
onal signals have different subcarrier frequencies. The frequency subchannels
associated with FSK signals do not have to be contiguous, but contiguous sub-
channels simplify the system and expedite synchronization. Continuous-phase
FSK signals with N possible carrier frequencies and symbol duration Ts require
that each carrier frequency fi is selected so that

fiTs = mi, 1 ≤ i ≤ N (3-2)

where mi is a positive integer. Therefore, subcarrier frequencies must be sep-
arated by integer multiples of 1/Ts. Subsequently in this book, orthogonal
continuous-phase FSK is called OSK.

The inner product or correlation of two signals s1(t) and s2(t) over an in-
terval [0, Ts] is

C =

∫ Ts

0

s1(t)s2(t)dt. (3-3)

If C = 0, the two signals are said to be orthogonal. Two possible OSK signals,
each representing a different channel symbol, are proportional to

s1(t) = cos(2πf1t+ θ1) , s2(t) = cos(2πf2t+ θ2). (3-4)

The substitution of these equations into (3-3), a trigonometric expansion, the
evaluation of the resulting integrals, and the use of (3-2) indicates that the
orthogonality condition is satisfied.

In a frequency-hopping system with OSK (FH-OSK system), a frequency
channel comprises q subchannels. Each subchannel has a center frequency that
is one of a set Sq of q orthogonal OSK frequencies that offset the frequency-
hopping carrier frequency for each transmitted symbol within each hop dwell
interval. The bandwidth of a subchannel is determined by the bandlimited fil-
tering in the receiver. In a typical design, the q subchannels are separated
by 1/Ts and a frequency channel has a bandwidth approximately equal to
q/Ts. In the modulator of an FH-OSK system, each code symbol selects one of
the frequencies in Sq. The sequence of symbol frequencies are mixed with the
frequency-hopping pattern to produce the frequency-hopping signal.

In a noncoherent receiver, the frequency-hopping carrier frequency is re-
moved, and the remaining OSK signal is applied to a demodulator that may
have the structure of Fig. 1.3. Figure 3.5 depicts the main elements of an alter-
native noncoherent OSK demodulator. To derive the alternative implementa-
tion, we observe that when the received waveform r(t) = A cos[2πflt+ θ], 0 ≤
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Figure 3.5: Noncoherent demodulator of FH-OSK

t ≤ Ts, is applied to a filter with impulse response cos[2πfl(Ts− t)], 0 ≤ t ≤ Ts,
the filter output at time t is

yl(t) =

∫ t

0

r(τ) cos [2πfl(τ − t+ Ts)] dτ

=

{∫ t

0

r(τ) cos (2πflτ) dτ

}
cos [2π + fl(t− Ts)]

+

{∫ t

0

r(τ) sin (2πfl τ)dτ

}
sin [2πfl(t− Ts)]

= Rl(t) cos [2πfl(t− Ts) + φ(t)] , 0 ≤ t ≤ Ts (3-5)

where the envelope of yl(t) is

Rl(t) =

{[∫ t

0

r(τ) cos (2πflτ) dτ

]2
+

[∫ t

0

r(τ) sin (2πflτ) dτ

]2}1/2

. (3-6)

The envelope is extracted by an envelope detector and sampled to produce
Rl(Ts) = Rl, which is given by (1-77)–(1-79). Thus, the demodulator structure
depicted in Fig. 3.5 provides the same symbol metrics as that of Fig. 1.3. A
practical envelope detector consists of a peak detector followed by a lowpass
filter.

The computational requirements of the maximum-likelihood metric (1-63)
lead to a consideration of suboptimal ones. Comparing the series representation
of the Bessel function I0 (x) given by (H-14) to that of exp

(
x2/2

)
, it follows

that

I0(x) ≤ exp

(
x2

2

)
. (3-7)
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Substituting this upper bound into the maximum-likelihood codeword metric,
we obtain the square-law metric:

U(d) =

n∑
i=1

EsR2
di

N2
0i

(3-8)

where Rdi
is the sample value of the envelope-detector output that is associated

with code symbol di of candidate codeword d, and N0i/2 is the two-sided power
spectral density (PSD) of the interference and noise over all the OSK subchan-
nels during code symbol di. The constant Es has been retained in this metric
to make it dimensionless. The advantage of this metric is that the impact of a
large Rdi

is alleviated by a large N0i, and hence a single large symbol metric
due to interference is unlikely to completely corrupt the codeword metric.

The implementation of the square-law metric requires the measurement of
the interference power. An iterative method of power estimation based on
the expectation–maximization algorithm (Section 9.1) provides approximate
maximum-likelihood estimates, but system latency and computational require-
ments are greatly increased.

Another strategy is to revert to hard-decision decoding. A third strategy
is to use a square-law metric with clipping or soft-limiting of each envelope-
detector output:

U(d) =

n∑
i=1

cl(b,R2
di
) (3-9)

where the clipping function is defined as

cl (b, x) =

⎧⎨
⎩

1, x ≥ b
x, −b < x < b
−1, x ≤ −b.

(3-10)

and b is the clipping level. Hard decisions and clipping prevent a single cor-
rupted sample from undermining the codeword detection. Although clipping
is potentially more effective than hard decisions, its implementation requires
an accurate measurement of the signal power for properly setting the clipping
level.

Instead of the square-law metric with clipping, one might use a suboptimal
metric that has the form

U(d) =

n∑
i=1

g

(
R2

di∑n
m=1 R

2
dm

)
(3-11)

for some monotonically increasing function g(·). Although this metric does not
require the estimation of each N0i, it is sensitive to each N0i.

DPSK

To avoid spectral spreading due to an amplifier nonlinearities, it is desirable
for the data modulation to have a constant amplitude, as it is often impossible
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to implement a filter with the appropriate bandwidth and center frequency for
spectral shaping of a signal after it emerges from the final power amplifier.
Since it has a constant amplitude, does not require coherent demodulation,
and is energy efficient, differential phase-shift keying (DPSK) is a good data-
modulation candidate for a frequency-hopping system.

After the dehopping of frequency hopping with DPSK (FH-DPSK), the
DPSK demodulator is configured as in Fig. 1.4. Hard decisions and clipping
prevent a single corrupted sample from undermining the codeword detection.
When clipping is used, the codeword metric is

U(d) =

n∑
i=1

cl[b, V (i)], 1 ≤ di ≤ q (3-12)

where V (i) is defined by (1-80).
A disadvantage of FH-DPSK is the need for an initial phase-reference symbol

at the start of every dwell interval. This extra symbol reduces Es by a factor
(N − 1)/N , where N is the number of symbols per hop or dwell interval and
N ≥ 2. A more significant disadvantage is that the maximum phase shift
between symbols is π radians, which can cause spectral regrowth after nonlinear
amplification in the transmitter.

π/4-DQPSK

As discussed in Section 2.5, OQPSK limits spectral regrowth after nonlinear
amplification in the transmitter and facilitates symbol synchronization in the
receiver by having a maximum phase change between symbols of π/2 radians
instead of the π radians of QPSK. However, OQPSK is not amenable to nonco-
herent or differential detection. A version of differential QPSK (DQPSK) called
π/4-DQPSK has an intermediate maximum phase change of 3π/4 radians and
can be differentially detected.

After the dehopping of frequency hopping with π/4-DQPSK (FH-DQPSK),
one of four possible differential phases representing two bits are detected by the
demodulator of a π/4-DQPSK receiver. These differential phases are equal to
πxn/4, where the symbol xn is equal to ±1 or ±3. Thus, π/4-DQPSK symbols
have one of eight possible phases, and these phases are selected alternately from
two identical constellations that are rotated by π/4 radians with respect to each
other. The complex envelope of a π/4-DQPSK signal with an infinite stream
of symbols is

sl (t) = A

∞∑
n=−∞

ψ (t− nTs) exp
(
jφn−1 + j

πxn

4

)

φn−1 =
π

4

n−1∑
k=∞

xk (3-13)

where ψ (t) is a unit rectangular pulse over [0, Ts] .
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The demodulator has the form of Fig. 2.31 with a metric generator shown
in Fig. 3.6 and a complex multiplier shown in Fig. 2.23 in the absence of noise;
the normalized complex inputs to the complex multiplier for symbol n are

an = an,1 + jan,2 = exp(jφn−1 + j
πxn

4
)

bn = bn,1 + jbn,2 = exp (jφn−1) (3-14)

Therefore, in the absence of noise, the complex output of the complex multiplier
is

cn = cn,1 + jcn,2 = anb
∗
n =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
j π
4

)
xn = +1

exp
(
−j π

4

)
xn = −1

exp
(
j 3π

4

)
xn = +3

exp
(
−j 3π

4

)
xn = −3

. (3-15)

This equation indicates that the comparator should decide which symbol
was transmitted by observing in which quadrant cn lies. An analysis [72] shows
that the Gray-labeled π/4-DQPSK has the bit error probability

Pb = Q1 (α, β)−
1

2
I0 (αβ) exp

(
−α2 + β2

2

)
(3-16)

where Q1 (α, β) is the Marcum Q-function defined by (H-26) of Appendix H.3,
and

α =

√√√√2Eb
N0

(
1−
√

1

2

)
, β =

√√√√2Eb
N0

(
1 +

√
1

2

)
(3-17)

Equation (3-16) indicates that there is an approximate 2.3 dB disadvantage in
bit error rate compared with QPSK.
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We assume that the {xn} are independent and that the four possible symbol
values are equally likely. Then the autocorrelation of the complex envelope given
by (3-13) is

R (t, t+ τ) = E [s∗l (t) sl (t+ τ)]

= A2
∞∑

n=−∞
ψ (t− nTs)ψ (t− nTs + τ) (3-18)

which indicates that the signal is a cyclostationary process with period Ts.
Therefore, the average autocorrelation is

R (τ) =
A2

Ts

∞∑
n=−∞

∫ Ts

0

ψ (t− nTs)ψ (t− nTs + τ) dt

=
A2

Ts

∞∑
n=−∞

∫ −nTs+Ts

−nTs

ψ (x)ψ (x+ τ) dx

=
A2

Ts

∫ ∞

−∞
ψ (x)ψ (x+ τ) dx. (3-19)

Taking the inverse Fourier transform and evaluating two consecutive integrals,
we obtain (2-170). Thus, the π/4-DQPSK signal has the same PSD as QPSK
and OQPSK. The Bluetooth frequency-hopping system includes π/4-DQPSK
as a modulation scheme.

3.3 Partial-Band Interference

Dependence on Data Modulation

If partial-band interference has power that is uniformly distributed over J fre-
quency channels out of M in the hopping band, then the fraction of the hopping
band with interference is μ = J/M. The interference PSD in each of the inter-
fered channels is It0/2μ, where It0/2 denotes the interference PSD that would
exist if the interference power were uniformly distributed over the hopping band.
When the frequency-hopping signal uses a carrier frequency that lies within the
spectral region occupied by the partial-band interference, this interference is
modeled as additional white Gaussian noise that increases the two-sided noise
PSD from N0/2 to N0/2 + It0/2μ. Assuming that the interference power is
always much larger than the noise power, the symbol error probability is

Ps = μG

(
Es

N0 + It0/μ

)
+ (1− μ)G

(
Es
N0

)

≈ μG

(
μEs
It0

)
, It0 � μN0 (3-20)

where G(x) is the symbol error probability with Es/N0 replaced by x.
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Consider an FH-OSK system with noncoherent detection and hard decisions.
For the AWGN channel, (1-73) indicates that

G (x) =

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
exp

[
− ix

(i+ 1)

]
(3-21)

where q is the alphabet size of the orthogonal symbols.
For the fading channel, the symbol energy may be expressed as Esα2, where

Es represents the average energy, and α is a random fading amplitude with
E[α2] = 1. For Ricean fading, which is fully discussed in Section 6.2, (6-161)
indicates that

G (x) =

q−1∑
i=1

(−1)i+1

(
q − 1

i

)
κ+ 1

κ+ 1 + (κ+ 1 + x)i
exp

[
− iκx

κ+ 1 + (κ+ 1 + x)i

]
.

(3-22)
For Rayleigh fading and binary FH-OSK, we set κ = 0 and q = 2 to obtain

G (x) =
1

2 + x
. (3-23)

In a frequency-hopping system with DPSK (FH-DPSK system), the first
symbol in each dwell interval serves as a reference signal that carries no infor-
mation. If this loss is negligible, then for the AWGN channel, (1-89) indicates
that

G (x) =
1

2
exp (−x) . (3-24)

For Rayleigh fading and DPSK, (6-151) indicates that

G (x) =
1

2 + 2x
(3-25)

Using (3-20) and approximating μ by a continuous variable, both (3-23)
and (3-25) indicate that the worst-case value of μ in the presence of strong in-
terference is μ0 = 1. Thus, for both binary orthogonal FH-OSK and FH-DPSK
over the Rayleigh channel, strong interference spread uniformly over the entire
hopping band hinders communications more than interference concentrated over
part of the band.

If a large amount of interference power is received over a small portion of the
hopping band, then unless accurate channel-state information is available, soft-
decision decoding metrics for the AWGN channel may be ineffective because of
the possible dominance of a codeword metric by a single-symbol metric (cf. Sec-
tion 2.6 on pulsed interference). This dominance is reduced by hard decisions,
erasures, or clipping.

Examples of Impact

In this subsection, we consider several examples of the use of a Reed–Solomon
code (Section 1.2) with an FH-OSK system in the presence of partial-band
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interference. A primary advantage of the Reed–Solomon code is that the code
is maximum-distance separable and hence accommodates erasures. Another
advantage is its inherent compatibility with q-ary modulations.

In a frequency-hopping system, symbol interleaving (Section 1.4) within a
hop dwell interval and among different dwell intervals and subsequent deinter-
leaving in the receiver are used to disperse errors due to the fading or inter-
ference. This dispersal facilitates the removal of the errors by the decoder. In
the subsequent examples, we assume ideal interleaving and deinterleaving that
ensures the independence of symbol errors and assume that the switching time
between hops is negligible.

Example 1. We consider a q-ary FH-OSK system that uses a Reed–
Solomon code with no erasures in the presence of partial-band interference and
Ricean fading. For hard-decision decoding of a loosely packed Reed–Solomon
code, (1-112) and (1-74) indicate that the information-bit error probability is

Pib ≈
q

2(q − 1)

n∑
i=t+1

(
n− 1

i− 1

)
P i
s(1− Ps)

n−i. (3-26)

The energy per channel symbol is

Es = r(log2 q)Eb (3-27)

where r is the code rate. Equations (3-20) and (3-22) are applicable.
Figure 3.7 shows Pib for an FH-OSK system with q = 32, Eb/It0 = 10dB,

and an extended Reed–Solomon (32,12) code in the presence of Ricean fading.
For κ > 0, the graphs exhibit peaks as the fraction of the band with inter-
ference varies. These peaks indicate that the concentration of the interference
power over part of the hopping band (perhaps intentionally by a jammer) is
more damaging than uniformly distributed interference. Smaller peaks become
sharper and occur at smaller values of μ as Eb/It0 increases. For Rayleigh fad-
ing, which corresponds to κ = 0, peaks are absent in the figure, and full-band
interference is the most damaging. �

Much better performance against partial-band interference can be obtained
by inserting erasures (Section 1.2) among the demodulator output symbols be-
fore the symbol deinterleaving and hard-decision decoding. The decision to
erase is made independently for each code symbol. It is based on channel-state
information (CSI), which indicates the codeword symbols that have a high
probability of being incorrectly demodulated. The CSI must be reliable so that
only degraded symbols are erased.

The CSI may be obtained from ν known pilot symbols that are transmitted
along with the data symbols in each dwell interval of a frequency-hopping signal.
A hit is said to occur in a dwell interval if the signal encounters partial-band
interference during the interval. If δ or more of the ν pilot symbols are incor-
rectly demodulated, then the receiver decides that a hit has occurred, and all N
symbols in the same dwell interval are erased. Only one symbol of a codeword
is erased if the interleaving ensures that only a single symbol of the codeword
is in any particular dwell interval. Pilot symbols decrease the information rate,
but this loss is negligible if ν � N , which is assumed henceforth.
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Figure 3.7: Performance of orthogonal FH-OSK system with Reed–Solomon
(32,12) code, q = 32, no erasures, Eb/It0 = 10 dB, and Ricean factor κ. SNR =
Eb/N0

The probability of the erasure of a code symbol is

Pε = μPε1 + (1− μ)Pε0 (3-28)

where Pε1 is the erasure probability given that a hit occurred, and Pε0 is the
erasure probability given that no hit occurred. If δ or more errors among the ν
known pilot symbols cause an erasure, then

Pεi =

ν∑
l=δ

(
ν

l

)
P l
si(1− Psi)

ν−l , i = 0, 1 (3-29)

where Ps1 is the conditional channel-symbol error probability given that a hit
occurred, and Ps0 is the conditional channel-symbol error probability given that
no hit occurred.

A codeword symbol error can only occur if there is no erasure. Since pilot
and codeword symbol errors are statistically independent when the partial-
band interference is modeled as a white Gaussian process, the probability of a
codeword symbol error is

Ps = μ(1− Pε1)Ps1 + (1− μ)(1− Pε0)Ps0 (3-30)

and the conditional channel-symbol error probabilities are

Ps1 = G

(
Es

N0 + It0/μ

)
, Ps0 = G

(
Es
N0

)
(3-31)

where G(x) depends on the modulation and fading.
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Figure 3.8: Performance of orthogonal FH-OSK system over the AWGN channel
with Reed–Solomon (32,12) code, q = 32, ν = 2, and δ = 1. SNR = Eb/N0 and
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The word error probability for errors-and-erasures decoding is upper-
bounded in (1-113). Most word errors result from decoding failures. If the
associated bits are arbitrarily assigned values, then Pb ≈ Pw/2. Therefore, the
information-bit error probability is given by

Pb ≈
1

2

n∑
l=0

n−l∑
i=i0

(
n

l

)(
n− l

i

)
P i
sP

l
ε(1− Ps − Pε)

n−i−l (3-32)

where i0 = max(0, �(dm − l)/2) and �x denotes the smallest integer greater
than or equal to x.

Example 2. Figure 3.8 plots the bit error probability Pb given by (3-28)–
(3-32) for FH-OSK and errors-and-erasures decoding. In Fig. 3.8, the FH-OSK
system transmits over the AWGN channel and uses q = 32, an extended Reed–
Solomon (32,12) code, ν = 2, and δ = 1. A comparison of this figure with
the κ = ∞ graphs of Fig. 3.7 indicates that when Eb/N0 = 20dB, erasures
provide nearly a 7 dB improvement in the required Eb/It0 for Pb = 10−5. The
erasures also confer strong protection against partial-band interference that is
concentrated in less than 20% of the hopping band. �

There are other options for generating CSI in addition to demodulating pi-
lot symbols. One might use a radiometer (Section 10.2) to measure the energy
in the current frequency channel, a future channel, or an adjacent channel.
Erasures are inserted if the energy is inordinately large. This method does
not have the overhead cost in information rate that is associated with the use
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Figure 3.9: Performance of orthogonal FH-OSK system over the AWGN channel
with Reed–Solomon (8,3) code, q = 8, ν = 4, and δ = 1. SNR = Eb/N0 and
SIR = Eb/It0

of pilot symbols. Other methods include attaching a parity-check bit to each
code symbol representing multiple bits to check whether the symbol was cor-
rectly received, or using the soft information provided by the inner decoder of
a concatenated code.

The envelope-detector outputs in Fig. 3.5 provide the symbol metrics used in
several low-complexity schemes for erasure insertion [4]. The output threshold
test (OTT) compares the largest symbol metric to a threshold to determine
whether the corresponding demodulated symbol should be erased. The ratio
threshold test (RTT) computes the ratio of the largest symbol metric to the
second largest one. This ratio is then compared with a threshold to determine
an erasure. If the values of both Eb/N0 and Eb/It0 are known, then optimal
thresholds for the OTT, the RTT, or a hybrid method can be calculated. The
OTT is resilient against fading and tends to outperform the RTT when Eb/It0
is sufficiently low, but the opposite is true when Eb/It0 is sufficiently high.
The main disadvantage of the OTT and the RTT relative to the pilot-symbol
method is the need to estimate Eb/N0 and either Eb/It0 or Eb/(N0 + It0). The
joint maximum-output ratio threshold test (MO-RTT) uses both the maximum
and the second largest of the symbol metrics. It is robust against both fading
and partial-band interference.

Example 3. Figure 3.9 depicts the information-bit error probability Pib

for an orthogonal FH-OSK system over the AWGN channel with q = 8, an
extended Reed–Solomon (8,3) code, ν = 4, and δ = 1. A comparison of Figs. 3.9
and 3.8 indicates that reducing the alphabet size while preserving the code rate
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Figure 3.10: Performance of FH-DPSK system over the AWGN channel with
Reed–Solomon (32,12) code, binary channel symbols, ν = 10, and δ = 1.
SNR = Eb/N0 and SIR = Eb/It0

has increased the system sensitivity to Eb/N0, increased the susceptibility to
interference concentrated in a small fraction of the hopping band, and raised
the required Eb/It0 for a specified Pib by 5 to 9 dB. �

Another approach is to represent each nonbinary code symbol by a sequence
of log2 q consecutive binary channel symbols. We consider binary DPSK be-
cause it is inherently stronger than binary FH-OSK. Equations (3-28), (3-29),
(3-31), and (3-32) are applicable. However, since a code-symbol error occurs if
any of its log2 q component channel symbols is incorrect, (3-30) is replaced by

Ps = 1− [1− μ(1− Pε1)Ps1 − (1− μ)(1− Pε0)Ps0]
log2 q. (3-33)

Example 4. The results for an FH-DPSK system with an extended Reed–
Solomon (32,12) code, ν = 10 binary pilot symbols, and δ = 1 are shown in
Fig. 3.10. We assume that N � 10 so that the loss due to the reference symbol
in each dwell interval is negligible. The graphs in Fig. 3.9 are similar in form to
those of Fig. 3.8, but the transmission of binary rather than nonbinary symbols
has caused approximately a 10 dB increase in the required Eb/It0 for a specified
Pib. Figure 3.10 is applicable to FH-OSK if Eb/It0 and Eb/N0 are both increased
by 3 dB. �

Example 5. An alternative to erasures is an FH-DPSK system with con-
catenated coding (Section 1.5). Consider a concatenated code comprising a
Reed–Solomon (n, k) outer code, a binary convolutional inner code, and a
channel interleaver to ensure independent channel-symbol errors. After demod-
ulation and deinterleaving in the receiver, the inner Viterbi decoder performs
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Figure 3.11: Performance of FH-DPSK system over the AWGN channel with
Reed–Solomon (32,12) code, binary channel symbols, ν = 10, and δ = 1.
SNR = Eb/N0 and SIR = Eb/It0

hard-decision decoding to limit the impact of individual symbol metrics. For
the AWGN channel, the analysis of Section 1.5, (3-20), and (3-24) indicate that
the upper bound on the symbol error probability is given by

Ps1 ≤ μ log2 q

2k

∞∑
l=df

B(l) exp

(
μlEs
It0

)
(3-34)

where B(l) is the information-weight distribution defined by (1-136). Equa-
tion (1-154) then provides an upper bound on Pb. Figure 3.11 depicts this
bound for an outer Reed–Solomon (31,21) code and an inner rate-1/2, K = 7
convolutional code. Based on this upper bound, the concatenated code provides
a better performance than the Reed–Solomon (32,12) code with erasures and
binary channel symbols but a much worse performance than the latter code
with erasures and nonbinary channel symbols. �

Figures 3.8 through 3.11 indicate that a reduction in the alphabet size for
channel symbols increases the system susceptibility to partial-band interfer-
ence. The primary reason is the reduced energy per channel symbol. However,
for a fixed hopping band, the number of frequency channels decreases as q in-
creases, thereby making an FH-OSK system more vulnerable to multiple-access
interference (Chapter 7).
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Turbo and LDPC Codes

Turbo and LDPC codes (Chapter 1) are potentially the most effective codes for
suppressing partial-band interference if the system latency and computational
complexity of these codes are acceptable. A turbo-coded frequency-hopping sys-
tem that uses spectrally compact channel symbols also resists multiple-access
interference. Accurate estimates of channel parameters, such as the variance of
the interference and noise and the fading amplitude, are needed in the iterative
decoding algorithms. When the channel dynamics are slower than the hop rate,
all the received symbols of a dwell interval may be used in estimating the channel
parameters associated with that dwell interval. After each iteration by a compo-
nent decoder, its log-likelihood ratios are updated and the extrinsic information
is transferred to the other component decoder. A channel estimator can convert
a log-likelihood ratio transferred after a decoder iteration into a posteriori prob-
abilities that can be used to improve the estimates of the fading attenuation
and the noise variance for each dwell interval (Section 9.4). Known symbols
may be inserted into the transmitted code symbols to facilitate the estimation,
but the energy per information bit is reduced. The operation of a receiver with
iterative LDPC decoding and channel estimation is similar (Section 9.2).

3.4 CPM and CPFSK

In a network of frequency-hopping systems and a fixed hopping bandwidth, it
is highly desirable to choose a spectrally compact data modulation so that the
hopset is large and hence the number of collisions among the frequency-hopping
signals in a network is kept small. A continuous-phase modulation (CPM) be-
longs to a class of frequency modulations that maintain a continuous-phase
variation and hence provide spectrally compact modulations. The main issue
for CPM is energy efficiency, which is reduced by non-orthogonality and spec-
tral compactness. However, when one imposes bandwidth constraints because
many frequency channels are desired, information theory indicates that the
disadvantage disappears. The information-theory details are in Section 9.3.

Modulations

We define the frequency pulse g(t) as a piecewise continuous function that van-
ishes outside the interval [0, LTs]; that is,

g(t) = 0 , t < 0 , t > LTs (3-35)

where L is a positive integer and Ts is the symbol duration. The function is
normalized so that ∫ LTs

0

g(x)dx =
1

2
. (3-36)
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The phase response is defined as the continuous function

φ (t) =

⎧⎨
⎩

0, t < 0∫ t

0
g(x)dx, 0 ≤ t ≤ LTs

1/2, t > LTs.

(3-37)

The general form of a signal with CPM is

s(t) = A cos[2πfct+ φ(t,q)] (3-38)

where A is the amplitude, fc is the carrier frequency, and φ(t,q) is the phase
function that carries the message. The phase function has the form

φ(t,q) = 2πh

∞∑
i=−∞

qiφ(t− iTs) (3-39)

where h is a constant called the deviation ratio or modulation index, and the
vector q is a sequence of q-ary channel symbols. Each symbol qi takes one of q
values; if q is even,

{qi} ∈ ±1,±3, . . . ,±(q − 1). (3-40)

The phase function is continuous and (3-39) indicates that the phase in any
specified symbol interval depends on the previous symbols.

Since g(t) is a piecewise continuous function, φ(t,q) is differentiable. The
frequency function of the CPM signal, which is proportional to the derivative
of φ(t,q), is

1

2π
φ′(t,q) = h

n∑
i=−∞

qig(t− iTs), nTs ≤ t ≤ (n+ 1)Ts. (3-41)

If L = 1, the CPM is called a full-response modulation; if L > 1, it is called a
partial-response modulation, and each frequency pulse extends over two or more
symbol intervals. The normalization condition for a full-response modulation
implies that the phase change over a symbol interval is equal to hπqi.

Continuous-phase frequency-shift keying (CPFSK) is a full-response subclass
of CPM for which the instantaneous frequency is constant over each symbol
interval. Because of the normalization, a CPFSK frequency pulse is given by

g(t) =

{
1

2Ts
, 0 ≤ t ≤ Ts

0 , otherwise
(3-42)

and its phase response is

φ (t) =

⎧⎨
⎩

0, t < 0
t

2Ts
, 0 ≤ t ≤ Ts

1
2 , t > Ts.

(3-43)

A CPFSK signal shifts among frequencies separated by fd = h/Ts. The substi-
tution of (3-43) into (3-39) indicates that

φ(t,q) = φ (nTs) +
πhqn
Ts

(t− nTs), nTs ≤ t ≤ (n+ 1)Ts (3-44)

φ (nTs) = φ [(n− 1)Ts ] + πhqn−1. (3-45)



3.4. CPM AND CPFSK 171

Minimum-shift keying (MSK) is defined as binary CPFSK with h = 1/2.
The two frequencies are separated by fd = 1/2Ts, and the two possible signals
are proportional to

s1(t) = cos[2πfct−
π

2Ts
t+ φ1], s2(t) = cos[2πfct+

π

2Ts
t+ φ2]. (3-46)

Assuming that fc = m/4Ts, where m is a positive integer, the substitution
of (3-46) into (3-3) yields C = 0, which indicates that MSK signals are orthog-
onal.

Multitone Jamming

A sophisticated jammer with knowledge of the spectral locations of the fre-
quency channels can cause increased system degradation by transmitting one
tone or narrowband signal of sufficient power in a subset of the frequency chan-
nels, which is calledmultitone jamming. Frequency channels with many symbols
per dwell interval have an approximate bandwidth

B ≈ hq

Ts
=

hq

Tb log2 q
(3-47)

where Tb is the duration of a bit, and the factor log2 q accounts for the increase
in symbol duration when a nonbinary modulation is used. For FH-CPFSK, h
is the deviation ratio, whereas for FH-OSK, h = 1. For FH-DPSK, hq ≈ 1. If
the hopset size is M, the total hopping bandwidth is

W ≈ MB. (3-48)

To assess the impact of this sophisticated multitone jamming on hard-
decision decoding, we assume that thermal noise is absent and that each jam-
ming tone is located in one CPFSK or OSK subchannel within a frequency
channel encompassing q subchannels. There will be no symbol error if the
desired-signal power S exceeds the power of the jamming tone. Thus, if It is
the total available jamming power, then the jammer can maximize symbol er-
rors by placing tones with power levels slightly above S whenever possible in
approximately J frequency channels such that

J =

⎧⎨
⎩

1, It < S⌊
It
S

⌋
, S ≤ It < MS

M, MS ≤ It.
(3-49)

If a transmitted tone enters a jammed frequency channel and It ≥ S, then
we assume that Ps = 1/2. Since J/M is the probability that a frequency channel
is jammed, and no error occurs if It < S, the symbol error probability is

Ps ≈
{

0, It < S
J

2M , It ≥ S.
(3-50)

Let Eb = STb denote the energy per bit, and It0 = It/W denote the PSD
of the interference power that would exist if it were uniformly spread over the
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hopping band. Substitution of (3-47) - (3-49) into (3-50) and the approximation
	x
 ≈ x yield

Ps ≈

⎧⎪⎨
⎪⎩

1
2 ,

Eb

It0
< hq

log2 q(
hq

2 log2 q

)(Eb

It0

)−1
, hq

log2 q ≤ Eb

It0
≤ WTb

0, Eb

It0
> WTb.

(3-51)

This equation exhibits an inverse linear dependence of Ps on Eb/It0, which indi-
cates that the jamming has an impact qualitatively similar to that of Rayleigh
fading. The symbol error probability decreases with q and h, which indicates
that FH-CPFSK with h < 1 is more resistant to multitone jamming than FH-
OSK. The FH-DPSK and FH-MSK systems are equally resistant.

3.5 Power Spectral Densities of FH-CPM

The finite extent of the dwell intervals causes a spreading of the power spectral
density of an FH-CPM signal relative to a CPM signal of infinite duration.
The reason is that an FH-CPM signal has a continuous phase over each dwell
interval with N symbols but has a phase discontinuity every Th = NTs + Tsw

seconds at the beginning of another dwell interval, where N is the number
of symbols per dwell interval. Thus, the dehopped signal is a cyclostationary
process with period Th, and hence its average autocorrelation can be determined
by integrating its autocorrelation over a single dwell time.

To simplify the derivation of the PSD, we neglect the switching time and set
Th = Td = NTs. Let ψ(t) denote a rectangular pulse over [0, Th]. The received
signal during a dwell time may be expressed as

s(t) = Re {Aψ (t) exp [jφ(t,q) exp (j2πfct+ jθ)]} , 0 ≤ t ≤ Th (3-52)

where A is the amplitude during a dwell interval, fc is the carrier frequency
during the hop interval, θ is the phase at the beginning of the dwell interval,
and φ(t,q) is the phase function defined by (3-39). The complex envelope of
the FH-CPM signal is

F (t,q) = Aψ (t) exp[jφ(t,q) + jθ]. (3-53)

The data symbols are modeled as independent random variables. We find
that the autocorrelation of F (t,q) is

Rf (t, t+ τ) = E [F ∗ (t,q)F (t+ τ,q)]

= A2Rc (t, t+ τ)ψ (t)ψ (t+ τ) (3-54)

where the asterisk denotes the complex conjugate, and the autocorrelation of
the complex envelope of the underlying CPM signal is

Rc (t, t+ τ) = E {exp [jφ(t+ τ,q)− jφ(t,q)]} . (3-55)
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The average autocorrelation of F (t,q}, found by substituting (3-54) into
the definition (2-14), is

Rf (τ) =
1

NTs

∫ NTs

0

Rf (t, t+ τ)dt

=
A2

NTs

∫ NTs

0

ψ (t)ψ (t+ τ)Rc (t, t+ τ) dt. (3-56)

Since ψ (t)ψ (t+ τ) = 0 if |τ | ≥ NTs,

Rf (τ) = 0, |τ | ≥ NTs. (3-57)

Since the data symbols are independent random variables,

Rc(t, t− τ) = R∗
c(t− τ, t). (3-58)

The substitution of (3-57) and (3-58) into (3-56) and a change of the integration
variable yield

Rf (−τ) = R∗
f (τ) . (3-59)

Thus, only Rf (τ) for 0 ≤ τ < NTs remains to be evaluated, and

Rf (τ) =
A2

NTs

∫ NTs−τ

0

Rc (t, t+ τ) dt, τ ∈ [0, NTs). (3-60)

Let τ = νTs+ε, where ν is a nonnegative integer, 0 ≤ ν < N , and 0 ≤ ε < Ts.
Since the data symbols are independent, (3-45) and (3-55) imply that Rc(t, t+τ)
is periodic with period Ts. Then

Rf (νTs + ε) =
A2

NTs

∫ (N−ν)Ts−ε

0

Rc (t, t+ νTs + ε) dt

=
A2

NTs

[
N−ν−2∑

i=0

∫ (i+1)Ts

iTs

Rc (t, t+ νTs + ε) dt+

∫ (N−ν)Ts−ε

(N−ν−1)Ts

Rc (t, t+ νTs + ε) dt

]

=
A2

NTs

[
(N − ν − 1)

∫ Ts

0

Rc (t, t+ νTs + ε) dt+

∫ Ts−ε

0

Rc (t, t+ νTs + ε) dt

]
.

(3-61)

Let
φd (t, τ, k) = φ (t+ τ − kTs)− φ (t− kTs) . (3-62)

The definition of φ (t) in (3-43) implies that if k̇ > (t+ τ) /Ts or k < 1 − L,
then φd(t, τ, k) = 0. Thus, the substitution of (3-45) into (3-55) yields

Rc (t, t+ τ) =


(t+τ)/Ts�∏
k=1−L

E {exp[j2πhqkφd (t, τ, k)]}

t ∈ [0, Ts), τ ∈ [0, NTs). (3-63)
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If each symbol is equally likely to have any of the q possible values, then

Rc (t, t+ τ) =


(t+τ)/Ts�∏
k=1−L

⎧⎨
⎩

1

q

q−1∑
l=−(q−1),odd

exp [j2πhlφd (t, τ, k)]

⎫⎬
⎭ (3-64)

where the sum only includes odd values of the index l. After a change of the
index to m = (l + q − 1) /2, the sum can be evaluated as a geometric series.
We obtain

Rc (t, t+ τ) =


(t+τ)/Ts�∏
k=1−L

1

q

sin [2πhqφd (t, τ, k)]

sin [2πhφd (t, τ, k)]

t ∈ [0, Ts), τ ∈ [0, NTs) (3-65)
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Figure 3.12: Dirichlet function for L = 4 and L = 8

where a factor in the product is set equal to +1 if 2hφd (t, τ, k) is equal to an
even integer, and is set equal to −1 if 2hφd (t, τ, k) is equal to an odd integer.

Equation (3-65) indicates that Rc (t, t+ τ) is real valued, and then (3-60)
and (3-59) indicate that Rf (τ) is a real-valued, even function. Therefore, the
average PSD of the dehopped signal, which is the Fourier transform of the
average autocorrelation Rf (τ) , is
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Sl (f) = 2

∫ NTs

0

Rf (τ) cos (2πfτ) dτ. (3-66)

The average PSD can be calculated by substituting (3-61) and (3-65) into (3-66)
and then numerically evaluating the integrals, which extend over finite intervals
[45]. The PSD of CPM with or without frequency hopping but with many data
symbols is obtained by taking N → ∞.

For FH-CPM with full-response CPM, analytical simplifications are com-
putationally useful. A version of the Dirichlet function, which is used in the
theory of Fourier series, is defined as

DL (x) =

{
sin(Lx/2)
L sin(x/2) , x �= 2πn

1 x = 2πn
(3-67)

where L and n are integers. The Dirichlet function is plotted in Fig. 3.12 for
L = 4 and L = 8. We define

B (x) = Dq

(
2πhx

Ts

)
=

⎧⎨
⎩

sin( qπh
Ts

x)
q sin(πh

Ts
x)

hx
Ts

�= 1, 2 . . .

1 hx
Ts

= 1, 2 . . .
(3-68)

Using τ = νTs + ε, L = 1, and (3-62) in (3-65), we obtain

Rc(t, t+ τ) =

⎧⎨
⎩

B (ε) , ν = 0, 0 ≤ t ≤ Ts − ε
B (Ts − t)B (t+ ε) Φν−1, 1 ≤ ν < N, 0 ≤ t ≤ Ts − ε

B (Ts − t)B (t− Ts + ε) Φν , 0 ≤ ν < N, Ts − ε ≤ t < Ts

Φ = B (Ts) . (3-69)

The substitution of (3-69) into (3-61) and changes in the integration vari-
ables yield

Rf (ε) =
A2

Ts
[B (ε) (Ts − ε) +

N − 1

N

∫ ε

0

B (t− ε)B (t) dt], ν = 0

Rf (νTs + ε) =
A2

Ts
Φν−1

[
N−ν
N

∫ Ts−ε

0
B (Ts − t)B (t+ ε) dt

+ΦN−ν−1
N

∫ ε

0
B (t− ε)B (t) dt

]
, 1 ≤ ν < N

(3-70)

which can be evaluated numerically. Equation (3-66) indicates that the PSD is

Sl (f) = 2

N−1∑
ν=0

∫ Ts

0

Rf (νTs + ε) cos[2πf (νTs + ε)]dε. (3-71)

Substitution of (3-70) into (3-71) followed by numerical integrations of the finite
integrals give the PSDs for FH-CPM with full-response q-ary CPM.

When there are many data symbols per hop, we take N → ∞ in (3-70) and
obtain the autocorrelation:
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Rf (ε) =
A2

Ts
[B (ε) (Ts − ε) +

∫ ε

0

B (t− ε)B (t) dt], ν = 0

Rf (νTs + ε) = Φν−1D (ε) , ν ≥ 1

D (ε) =
A2

Ts

[∫ Ts−ε

0

B (Ts − t)B (t+ ε) dt+Φ

∫ ε

0

B (t− ε)B (t) dt

]
. (3-72)

Separating the first term of (3-71), expressing the cosines in (3-71) as the real
parts of complex exponentials, substituting (3-72), taking N → ∞, calculating
the infinite sum, and simplifying algebraically, we obtain

Sl (f) = 2

∫ Ts

0

Rf (ε) cos(2πfε)dε

+
2
∫ Ts

0
D (ε) [cos 2πf (Ts + ε)− Φcos 2πfε]dε

1 + Φ2 − 2Φ cos 2πfTs
. (3-73)

A lengthy series of integral evaluations and mathematical manipulations
leads to the closed-form expression [72]:

Sl(f) = A2Ts

q

q∑
n=1

[
A2

n (f) +
2

q

q∑
m=1

An (f)Am (f)Bnm (f)

]
(3-74)

where

An (f) =
sin
[
πfTs − πh

2 (2n− q − 1)
]

πfTs − πh
2 (2n− q − 1)

(3-75)

Bnm (f) =
cos (2πfTs − qnm)− Φcos qnm

1 + Φ2 − 2Φ cos 2πfTs
(3-76)

qn,m = π (n+m− q − 1) , Φ =
sin qπh

q sinπh
. (3-77)

If the denominator in (3-75) is zero, we set An (f) = 1. If h is an even integer,
we set Φ = 1; if h is an odd integer, we set Φ = −1.

A measure of the spectral compactness of a signal is provided by the frac-
tional in-band power Fib(B) defined as the fraction of power for f∈ [−B/2, B/2] .
Thus,

Fib(B) =

∫ B/2

−B/2
Sl(f)df∫∞

−∞ Sl(f)df
, B ≥ 0. (3-78)

The required bandwidth B of a frequency channel is determined by setting
Fib(B) equal to a required fraction of signal power in the output of a receiver
filter with the same bandwidth as the frequency channel. We define the nor-
malized bandwidth as

ζ = BTs. (3-79)

The required fraction of signal power must exceed at least 0.9 and often 0.95
to prevent significant signal distortion and excessive spectral splatter, which is
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Table 3.1: Normalized bandwidth (99%) for FH-CPFSK

.

Deviation ratio
Symbols/dwell h = 0.5 h = 0.7

1 18.844 18.688
2 9.9375 9.9688
4 5.1875 5.2656
16 1.8906 2.1250
64 1.2813 1.8750
256 1.2031 1.8125
1024 1.1875 1.7969

No hopping 1.1875 1.781

the interference produced in frequency channels other than the one being used
by a frequency-hopping pulse.

The degree to which spectral splatter may cause errors depends primarily
on the separation Fs between carrier frequencies and the percentage of the sig-
nal power included in a frequency channel. Usually, only pulses in adjacent
frequency channels produce a significant amount of spectral splatter in a fre-
quency channel. An increase in Fs decreases the impact of spectral splatter
but also reduces the number of frequency channels if the hopping bandwidth is
fixed. As a result, the rate at which users hop into the same channel increases.
This increase may cancel any improvement due to the reduction of the spectral
splatter.

The normalized 99% bandwidth, which is denoted by ζ99, is determined
from (3-78) by setting Fib(B99) = 0.99, solving the equation for B99, and then
computing ζ99 = B99Ts. The normalized 99% bandwidths of frequency hopping
with binary CPFSK and deviation ratios h = 0.5 and h = 0.7 are listed in
Table 3.1 for different values of N . As N increases, the PSD becomes more
compact and approaches that of CPFSK without frequency hopping. For N ≥
64, the frequency hopping causes little spectral spreading.

Fast frequency hopping, which corresponds to N = 1, entails a very large
99% bandwidth. This fact and the large switching times are the main reasons
why slow frequency hopping is preferable to fast frequency hopping and is the
predominant form of frequency hopping. Consequently, frequency hopping is
always assumed to be slow frequency hopping subsequently unless it is explicitly
stated otherwise.

An advantage of FH-CPFSK with h < 1 is that it requires less bandwidth
than orthogonal CPFSK (h = 1). The increased number of frequency chan-
nels due to the decreased bandwidth does not improve performance over the
AWGN channel. However, the increase is advantageous against a fixed number
of interference tones, optimized jamming, and multiple-access interference in a
network of frequency-hopping systems (Section 9.4).

For MSK and a large number of symbols, the substitution of q = 2 and
h = 1/2 into (3-74)–(3-77) and mathematical simplification indicate that the
PSD of MSK is

Sl(f) =
16A2Tb

π2

[
cos(2πTbf)

16T 2
b f

2 − 1

]2
. (3-80)
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Figure 3.13: Fractional out-of-band power (FOBP) for equivalent lowpass wave-
forms of QPSK and MSK and positive frequencies

The fractional out-of-band power of the complex envelope is defined as
Fob(f) = 1−Fib(f). The closed-form expressions for the PSDs of QPSK and bi-
nary MSK are used to generate Fig. 3.13. The graphs depict Fob(f) in decibels
for positive frequencies in units of 1/Tb, where Tb = Ts/ log2 q for a q-ary mod-
ulation. The normalized bandwidth ζ99 for positive and negative frequencies is
approximately 1.2 for binary MSK, but approximately 8 for BPSK.

An even more compact spectrum is obtained by passing the MSK frequency
pulses through a Gaussian filter with transfer function

H(f) = exp

[
− (ln 2)

B2
f2

]
(3-81)

where B1 is the two-sided 3-dB bandwidth, which is the positive frequency such
that H(B1) ≥ H(0)/2. The filter response to a unit-amplitude MSK frequency
pulse is the Gaussian MSK (GMSK) pulse:

g(t) = Q

[
2πB1√
ln 2

(t− Ts

2
)

]
−Q

[
2πB1√
ln 2

(t+
Ts

2
)

]
(3-82)

where Ts = Tb. As B1 decreases, the spectrum of a GMSK signal becomes more
compact. However, each pulse has a longer duration, and hence there is more
intersymbol interference. If B1Ts = 0.3, which is specified in the Global System
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for Mobile (GSM) cellular communication system, the normalized bandwidth
ζ99 = 0.92. Each pulse may be truncated for | t |> 1.5Ts with little loss.
The performance loss relative to unfiltered MSK is approximately 0.5 dB but
can be reduced by using equalization techniques that mitigate the intersymbol
interference.

3.6 Digital Demodulation of FH-CPFSK

In principle, the FH-CPFSK receiver does symbol-rate sampling of matched-
filter outputs. However, the details of an actual implementation are more in-
volved, primarily because aliasing is to be avoided. A practical digital demodu-
lator for symbol-by-symbol detection is described in this section. Multisymbol
detection is analyzed in the next section.

The dehopped FH-CPFSK signal during a dwell interval has the form

s1(t) = A cos [2πf1t+ φ(t,q) + φ0] (3-83)

where A is the amplitude, f1 is the intermediate frequency, φ(t,q) is the phase
function, and φ0 is the initial phase. This signal is applied to the noncoherent
digital demodulator illustrated in Fig. 3.14. An error fe in the estimated carrier
frequency used in the dehopping leads to an f1 that differs from the desired fIF
by the carrier offset frequency fe = f1 − fIF . The quadrature downconverter,
which is shown in Fig. 2.17, uses a sinusoidal signal at frequency fIF − fo,
where fo is the downconverter offset frequency, and a pair of mixers to pro-
duce in-phase and quadrature components near baseband. The mixer outputs
are passed through lowpass filters to remove the double-frequency components.
The filter outputs are the in-phase and quadrature CPFSK signals with center
frequency at fo + fe. As shown in Fig. 3.14, each of these signals is sampled by
an analog-to-digital converter (ADC).

A critical choice in the design of the digital demodulator is the sampling rate
of the ADCs. This rate must be large enough to prevent aliasing and to accom-
modate the IF offset. To simplify the demodulator implementation, it is highly
desirable for the sampling rate to be an integer multiple of the symbol rate 1/Ts.
Thus, we assume a sampling rate fs = L/Ts, where L is a positive integer.

Quadrature 
downconverter Clock

Complex
demodulator

Metric
generator

ADC

ADC

Dehopped
signal

Decision 
variables

In-phase

Quadrature

Figure 3.14: Digital demodulator of dehopped FH-CPFSK signal
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To determine the appropriate sampling rate and offset frequency, we use
the sampling theorem and its corollary (Appendix D.4), which pertain to the
recovery of a signal from its samples. If x(t) is sampled at rate 1/T , then x(t)
can be recovered from the samples if the Fourier transform of x (t) is bandlimited
so that X(f) = 0 for |f | > 1/2T . If the sampling rate is not high enough to
satisfy this condition, which is called aliasing, the samples may not correspond
to a unique continuous-time signal.

The lowpass filters of the quadrature downconverter have bandwidths wide
enough to accommodate both fo + fe and the bandwidth of s1(t). The receiver
timing or symbol synchronization may be derived from the frequency-hopping
pattern synchronization (Section 4.8). If the timing is correct, then the sampled
ADC output due to the desired signal in the upper branch of Fig. 3.14 is the
sequence

xn = A cos [2π (fo + fe)nTs/L+ φ(nTs/L,q) + φ0] (3-84)

where φ(nTs/L, q) is the sampled phase function of the CPFSK modulation,
and φ0 is the unknown initial phase. A similar sequence

yn = A sin [2π (fo + fe)nTs/L+ φ(nTs/L,q) + φ0] (3-85)

is produced in the lower branch. Equation (3-45) indicates that during the mth
symbol interval,

φ(nTs/L,q) =
πhqm
L

(n− Lm) + φ1 (m) , Lm ≤ n ≤ Lm+ L− 1 (3-86)

where qm denotes the symbol received during the interval, the phase due to
previous symbols is

φ1 (m) = πh

m−1∑
i=m0

qi (3-87)

m0 is the starting symbol, and the {qi} are previous symbols.
The Fourier transforms of the in-phase and quadrature outputs of the quad-

rature downconverter occupy the upper band [fo + fe − B/2, fo + fe + B/2]
and the lower band [−fo− fe−B/2, −fo− fe+B/2], where B is the one-sided
bandwidth of the dehopped FH-CPFSK signal. To avoid aliasing when the
sampling rate is L/Ts, the sampling theorem requires that

fo + fmax +
B

2
<

L

2Ts
(3-88)

where fmax is the largest |fe| that is likely to occur.
To prevent the upper and lower bands from overlapping, and hence dis-

torting the discrete-time Fourier transforms (DTFTs) (Appendix D.4), it is
necessary that fo + fe −B/2 > −fo − fe +B/2. Thus, the necessary condition
is

fo > fmax +
B

2
. (3-89)
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Combining the two preceding inequalities, we obtain the necessary condition:

fmax < min

[
fo,

L

2Ts
− fo

]
− B

2
. (3-90)

To accommodate the largest possible value of fmax, this upper bound should
be maximized by choosing

fo =
L

4Ts
. (3-91)

With this choice of the downconverter offset, we find that fmax can be accom-
modated provided that L is large enough that

L

4Ts
> fmax +

B

2
. (3-92)

Let xn + jyn denote the complex-valued representation of the input to the
complex demodulator. Once the ADC outputs with appropriate DTFTs are
produced, the downconverter offset has no further role. It is removed by the
complex demodulator, which computes

zn = (xn + jyn) exp
[
−j2πfonTs/L− jφ̂1 (m)

]

= A exp

{
j2π

[
n

(
2feTs + hqm

2L

)
− hqmm

2

]
+ jφe (m)

}

Lm ≤ n ≤ Lm+ L− 1 (3-93)

where φ̂1 (m) is the estimate of φ0+φ1 (m) obtained from previous demodulated
symbols, and

φe (m) = [φ0 + φ1 (m)]− φ̂1 (m) . (3-94)

As shown in Fig. 3.14, this sequence and the accompanying noise are applied to
a metric generator.

The metric generator comprises q discrete-time symbol-matched filters.
Symbol-matched filter k of the metric generator, which is matched to symbol
βk, has an impulse response gk,n of length L:

gk,l = exp

{
j2π

[
hβk(L− 1− l)

2L

]}
, 0 ≤ l ≤ L− 1, 1 ≤ k ≤ q. (3-95)

The response of symbol-matched filter k to zn at discrete-time Lm+L−1, which
is denoted by Ck(qm), is the result of a complex discrete-time convolution:

Ck(m) =
Lm+L−1∑
n=Lm

zng
∗
k,Lm+L−1−n, 1 ≤ k ≤ q. (3-96)

The Dirichlet function, which is defined by (3-67) and plotted in Fig. 3.12,
arises when computing the following sum:

L−1∑
n=0

ejxn =
1− ejxL

1− ejx
= LDL (x) e−jx(L−1)/2. (3-97)
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The Dirichlet function has a positive main lobe over x∈ (−2π/L, 2π/L) .
Substituting (3-93) and (3-95) into (3-96), changing the summation index,

evaluating the resulting geometric series, and then using (3-97), we obtain the
matched-filter outputs in the absence of noise:

Ck(m) = ALDL

(
2πfeTs + πh (qm − βk)

L

)

× exp

{
jπ

[
(L− 1) (2feTs + h (qm − βk))

2L
+ 2feTsm

]
+ jφe (m)

}

1 ≤ k ≤ q. (3-98)

These outputs are generated at the symbol rate.
For noncoherent detection, the q symbol metrics produced at the symbol rate

are the magnitudes of the matched-filter outputs. Assuming that βk0
= qm, the

symbol metrics in the absence of noise are

|Ck(m)| =

⎧⎨
⎩

ALDL

(
2πfeTs

L

)
, k = k0

ALDL

([
πh(qm−βk)

L + 2πfeTs

L

])
, k �= k0.

(3-99)

When hard decisions are made, the largest of the |Ck(m)| determines the symbol
decision. If feTs � 1 , then

|Ck(m)| ≈
{

AL, k = k0, feTs � L

ALDL

[πh(qm−βk)
L

]
k �= k0, feTs � L

(3-100)

which indicates an increased susceptibility to noise as h decreases. However,
the performance of an FH-CPFSK system with a modest value of h, which
makes more frequency channels available, can be greatly improved by using
multisymbol detection and a turbo code.

3.7 Multisymbol Noncoherent Demodulation of
CPFSK

With multisymbol noncoherent demodulation [113] for N symbols, the receiver
correlates the received waveform over all possible N -symbol patterns before
making a decision about all N symbols. The reason multisymbol detection
is effective is that it exploits the memory embedded in the phase function of
the CPFSK. The drawback is the considerable implementation complexity of
multisymbol detection, even for two-symbol detection.

The multisymbol demodulation for CPFSK differs from the demodulations
analyzed in Section 1.1 primarily because the phase shift associated with a
symbol is related to the phase shift associated with the previous symbol. A
multisymbol block of N consecutive symbols, each drawn from an alphabet of
q symbols, is denoted by

q̃ = [q1, . . . , qN ] , qi ∈ {±1,±3, . . . ,± (q − 1)}. (3-101)
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Equation (3-45) indicates that for the block time interval 0 ≤ t ≤ NTs, the
phase shift at the beginning of the time interval for symbol i is related to the
phase shifts for the previous symbols by

φi = φ0 +
N−1∑
i=1

πhqi−1 (3-102)

where φ0 is the initial phase for symbol 0 including the channel phase shift,
which remains constant over the block. Because of the recursive phase relation-
ship given by (3-102), knowledge of the initial phase φ0 and the multisymbol
block q̃ is equivalent to knowing all the {φi} .

The N symbols to be detected are represented by delayed versions of q-ary
complex envelopes: s1(t), s2(t), . . ., sq(t), where

sk(t) =
1√
Ts

exp

(
j2πkht

Ts

)
, t ∈ [0, Ts), k = 1, 2, . . . , q. (3-103)

The cross-correlation of the symbol waveforms is

Kl,m =

∫ Ts

0

sm(t)s∗l (t)dt

=
sin [πh (l −m)]

πh (l −m)
ejπh(l−m), m �= l (3-104)

and ∫ Ts

0

|sl(t)|2 dt = 1 , l = 1, 2, . . . , q. (3-105)

The fading amplitude α is assumed to be constant over the multisymbol
block, and the symbol energy for all the waveforms when α = 1 is Es. For the
AWGN channel, α = 1. For the fading channel, α is a random variable. For both
channels, Es and N0 are assumed to be known. If sqi (t) is transmitted during
the time interval [(i− 1)Ts, iTs] , then for the AWGN channel, the received
signal can be expressed as

ri(t) = Re
[
α
√
2Essm [t− (i− 1)Ts]e

j(2πfct+φi)
]
+ n(t)

(i− 1)Ts ≤ t ≤ iTs, 1 ≤ i ≤ n (3-106)

where n(t) is the zero-mean white Gaussian noise with PSD equal to N0/2.
A frequency translation or downconversion to baseband is followed by

matched filtering. The receiver requires q matched filters, each implemented as
a pair of baseband matched filters. When symbol m is transmitted, matched-
filter l, which is matched to sl (t), produces the output samples

yl,m (i) =
√
2

∫ iTs

(i−1)Ts

ri (t) exp e
−j.2πfct.s∗l [t− (i− 1)Ts] dt,

l = 1, 2, . . . , q (3-107)
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where the factor
√
2 has been inserted for mathematical convenience. The

substitution of (3-104) and (3-106) into (3-107) and the assumption that each
of the {sk(t)} has a spectrum confined to |f | < fc yields

yl,m (i) = α
√
EsejφiKl,m + nl,i (3-108)

where

nl,i =
√
2

∫ iTs

(i−1)Ts

n (t) exp e−j.2πfct.s∗l [ t− (i− 1)Ts ]dt. (3-109)

This equation implies that

E
[
nl,in

∗
m,i

]
= N0Kl,m. (3-110)

Let K denote the q × q matrix with (�,m)th element equal to Kl,m. Let
ni denote the 1 × q row vector with its lth element equal to nl,i. For 1 ≤ i ≤
N, (3-110) indicates that the covariance of the noise is the q × q matrix

R = E(nin
H
i ) = N0K. (3-111)

Let yi denote the 1 × q column vector with its lth element equal to yl,qi .
Equation (3-110) indicates that

yi = αejφi
√

Eskqi + ni (3-112)

where kqi denotes the qthi column of K.
Since ni is Gaussian, the vector yi given the values of α, q̃, and φ0 has a

Gaussian distribution with mean αejφi
√
Eskm and covariance R = N0K. Thus,

the conditional joint density is

f(yi|q̃, α, φ0) =
1

πMdet(R)
exp[−(yi − αejφi

√
Eskqi)

HR−1(yi−αejφi
√

Eskqi)]

(3-113)

where det(R) is the determinant of R. The exponent of the conditional density
can be simplified as

− (yi − αejφi
√

Eskqi)
HR−1(yi − αejφi

√
Eskqi)

= −yH
i R−1yi − α2EskH

qiR
−1kqi + 2Re(αe−jφi

√
EskH

qiR
−1yi). (3-114)

Since KK−1 = I and KH = K, kH
qiK

−1 is the row vector with “1” in position
m and zeros elsewhere. Therefore, the exponent becomes

− yH
i K−1yi + a2Es

N0
+ 2

a
√
Es

N0
Re(e−jφiyi,qi) (3-115)

where yqi,qi is the output of the filter matched to symbol qi given that symbol qi
was transmitted. Using (3-115) as the exponent of the conditional density and
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discarding terms that are common to all hypotheses, the normalized conditional
likelihood function becomes

f(yi|q̃, α, φ0) = exp [2
α
√
Es

N0
Re(e−jφiyi,qi)] . (3-116)

Let ỹ = [y1, · · · ,yN ] denote the received q×N block of N received vectors.
The multisymbol noncoherent detector computes the conditional probability
density f(ỹ|q̃, α, φ0) for each of the qN possible values of q̃. Given q̃, the fad-
ing amplitude α of the block, and the phase φ0, each phase φi is specified.
Therefore, the {yi} are independent, and

f (ỹ|q̃, α, φ0) =

N∏
i=1

f(yi|q̃, α, φ0)

=

N∏
i=1

f(yi|qi, α, φ0). (3-117)

Substituting (3-116) and (3-102) into (3-117), the conditional likelihood func-
tion given the postulated symbol block q̃ is

f (ỹ|q̃, α, φ0) = exp

{
2
α
√
Es

N0
Re
[
e−jφ0μ(q̃)

]}
(3-118)

where

μ (q̃) =
N∑
i=1

yi,qi exp

{
−jπh

N−1∑
k=1

qk

}
. (3-119)

Marginalizing (3-118) with respect to φ0, which is assumed to be uniformly
distributed over [0, 2π), yields

f (ỹ|q̃, α) = I0

(
2
α
√
Es

N0
|μ (q̃)|

)
. (3-120)

For each of the qN hypotheses about the N symbols in a block, the multisym-
bol detector computes the conditional likelihood function using (3-120) or its
logarithm. A hard-decision detector selects the hypothesis that maximizes the
conditional likelihood function.

To enable soft-decision decoding of a binary code with iterative demodula-
tion and decoding (Section 1.7), the demodulator computes the log-likelihood
ratio (LLR) for each code bit. Let b (q̃) denote the vector of N log2 q code
bits associated with the hypothetical block of symbols q̃. Let bl(q̃) denote code
bit l of the vector b(q̃). Equation (1-209) and a derivation analogous to the
derivation of (1-215) give the extrinsic LLR:

Λ(bl) = ln

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
q̃∈D(l,1)

f (ỹ|q̃, α)
N log2 q∏
i=1,i�=l

P [bi (q̃)]

∑
q̃∈D(l,0)

f (ỹ|q̃, α)
N log2 q∏
i=1,i�=l

P [bi (q̃)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3-121)
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where P [bi (q̃)] is the a priori probability of bi(q̃). Substituting (3-120) into
(3-121) yields

Λ(bl) = ln

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
q̃∈D(l,1)

I0

(
2α

√
Es

N0
|μ (q̃)|

)N log2 q∏
i=1,i�=l

P [bi (q̃)]

∑
q̃∈D(l,0)

I0

(
2α

√
Es

N0
|μ (q̃)|

)N log2 q∏
i=1,i�=l

P [bi (q̃)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3-122)

The a priori LLR computed by the decoder is

vi = ln

{
P [bi (q̃) = 1]

P [bi (q̃) = 0]

}
. (3-123)

Substitution of this equation into (3-122) and the application of the max-star
operator defined by (1-174) give

Λ(bl) = max ∗
q̃∈D(l,1)

⎡
⎣ln I0

(
2
α
√
Es

N0
|μ(q̃)|

)
+

N log2 q∑
i=1,i�=l

bi (q̃) vi

⎤
⎦

− max ∗
q̃∈D(l,0)

⎡
⎣ln I0

(
2
α
√
Es

N0
|μ(q̃)|

)
+

N log2 q∑
i=1,i�=l

bi (q̃) vi

⎤
⎦ . (3-124)

In a non-iterative BICM receiver (Section 6.11), the a priori probabilities
are all equal and therefore may be dropped from the logarithm by setting all vi
in (3-124) to zero. In an iterative BICM-ID receiver, the extrinsic information
feedback from the decoder may be used as an estimate for the a priori LLRs vi.
When q = 2 and N = 1, there is just a single bit per block, which eliminates
the two summations in (3-124) and implies that there is no benefit to iterating.
However, when qN > 2, there will be more than one bit per block and it becomes
advantageous to iterate.

The bandwidth of coded CPFSK is a function of the modulation index h,
code rate r, and modulation order q. When the bandwidth is constrained to
not exceed Bmax, there is a particular combination of these parameters that
minimizes the value of Eb/N0 required to achieve a specified bit error rate. To
find accurate approximations of the optimal parameters, one can leverage the
information-theoretic analysis of Section 9.3 and use the average mutual infor-
mation (AMI) as the performance metric. The parameter values that maximize
this metric are selected. The benefit of using AMI as a performance metric
is that it provides a fairly accurate prediction of the performance that can be
achieved with a capacity-approaching code without requiring that the code ac-
tually be simulated. Once a good design is identified, the effectiveness of the
design is confirmed by simulation.

When there is no bandwidth constraint, the Eb/N0 required for reliable com-
munication increases as h decreases from h = 1. This behavior changes when
there is a bandwidth constraint imposed to limit the bandwidth of frequency
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channels in a frequency-hopping system. The normalized bandwidth is defined
by (3-79). The bandwidth constraint may be expressed as

ζ99 = B99Ts/r ≤ BmaxTs/r = ζmax (3-125)

where the symbol duration is Ts = rTb. The AMI-based optimization minimizes
the Eb/N0 required for reliable communication under this bandwidth constraint,
which is achieved by jointly optimizing the parameters q, h, and r for the given
channel type (AWGN or Rayleigh fading) and decoder type.

For each value of q, the procedure is to find the minimum Eb/N0 and the
optimum code rate for each valid value of h that is considered. To determine
the global minimum, the process must be repeated for all h, but it is sufficient
to consider closely sampled values of h. There is an upper limit on h such that
even if a full-rate code were used (i.e. r = log2 q), the bandwidth constraint
would be violated.

Simulations were performed to demonstrate the achievable performance
when an actual channel code is used, thereby confirming the relevance of the
information-theoretic bounds. Systems with CPFSK modulation and q = 2 and
q = 4 were considered. For systems with q = 2, the modulation index was set to
h = 0.6, which is the optimal value for the single-symbol noncoherent detector
under bandwidth constraint ζmax = 2Hz/bps according to the information-
theoretic analysis. The code rate was set to its corresponding optimal value
r = 0.64. The simulated system uses the widely deployed turbo code from
the Universal Mobile Telecommunications System (UMTS) specification, which
uses parallel convolutional codes with a constraint length of 4, a specified code-
rate matching algorithm, and an optimized variable-length interleaver that is
set to 2048 [26]. The rate r = 0.64 was achieved by using a message length
of K = 4800 bits and a codeword length of Nc = 7500 bits. The demodulator
was implemented using the proposed noncoherent N -symbol demodulator with
N = 1, 2, and 4. The turbo code was decoded using 30 iterations of the log-
MAP algorithm. When qN > 2, a BICM-ID receiver was used, in which case
the soft output from each decoder iteration was used by the demodulator as a
priori information.

Example 6. Simulations were run for both an AWGN channel and a Rayleigh
fading channel. Figure 3.15 shows results for the AWGN channel with q = 2.
Three curves are shown corresponding to length N = 1, 2, and 4 multisymbol
blocks. In addition, a vertical line is shown for each value of N which corre-
sponds to the minimum Eb/N0 found from the previous information-theoretic
analysis. The value of Eb/N0 required for the turbo-coded system to achieve a
bit error rate of 10−5 in AWGN is 8.90 dB, 6.13 dB, and 4.44 dB for N = 1, 2,
and 4, respectively. These values are less than 1 dB from the corresponding
information-theoretic bounds. �

Example 7. Figure 3.16 shows results for the Rayleigh fading channel
with q = 2. In the simulations, the fading amplitude was held constant for
blocks of N consecutive symbols and varied independently from one block to
the next. As in the previous figure, a vertical line is shown for each value of N
which corresponds to the minimum Eb/N0 found from the information-theoretic
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Figure 3.15: Bit error rate for N-symbol detection of CPFSK signal over AWGN
channel when q = 2, h = 0.6, and r = 0.64 [113]
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Figure 3.16: Bit error rate for N-symbol detection of CPFSK signal with
Rayleigh fading when q = 2, h = 0.6 and r = 0.64 [113]
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analysis. The value of Eb/N0 required for the turbo-coded system to achieve a
bit error rate of 10−5 in Rayleigh fading is 12.04 dB, 9.41 dB, and 7.72 dB for
N = 1, 2, and 4, respectively. These values are between 1.26 and 1.41 dB from
the corresponding information-theoretic bounds. Thus, the gap between the
theoretical Eb/N0 and the value required with the actual turbo code is slightly
higher for Rayleigh fading than it is for AWGN.

For systems with q = 4, the modulation index was set to h = 0.67 for the
AWGN channel and h = 0.45 for the Rayleigh fading channel. These are the
information-theoretic optimal values for the single-symbol noncoherent detector
under bandwidth constraint ζmax = 2 Hz/bps. The UMTS standard turbo code
was again used, with the rate set to r = 5100/6528 for the AWGN channel and
r = 3800/6528 for the Rayleigh fading channel. The codeword length was 6528
bits for both channels. For all values of N , 30 iterations of BICM-ID reception
were performed by using a combination of the proposed receiver and the log-
MAP decoding algorithm. �

Example 8. Figure 3.17 shows results for the AWGN channel with q = 4
and three values of N . The value of Eb/N0 required for the turbo-coded system
to achieve a bit error rate of 10−5 in AWGN is 6.70 dB, 4.72 dB, and 3.37 dB
for N = 1, 2, and 4, respectively. These values are between 0.94 and 1.37 dB
from the corresponding information-theoretic bounds, which are indicated by
the dashed lines. By increasing the alphabet size from q = 2 to q = 4, the value
of Eb/N0 required to achieve a bit error rate of 10−5 in AWGN is decreased by
approximately 3 dB. �

Example 9. Figure 3.18 shows results for the Rayleigh fading channel with
q = 4. The value of Eb/N0 required for the turbo-coded system to achieve a
bit error rate of 10−5 in Rayleigh fading is 9.63 dB, 7.65 dB, and 6.54 dB for
N = 1, 2, and 4, respectively. These values are between 1.44 and 2.13 dB from
the corresponding information-theoretic bounds. By increasing the alphabet
size from q = 2 to q = 4, the value of Eb/N0 required to achieve a bit error rate
of 10−5 in Rayleigh fading is decreased by approximately 3 dB. �

For symbol-by-symbol demodulation, we set N = 1 in (9-49). Since the
Bessel function increases monotonically with x > 0, the symbol metric for hard
symbol decisions reduces to

f (ỹ|q, α) = |y1,q1 | (3-126)

which indicates that for each of the q hypotheses, we compute the magnitude
of the output of the filter matched to the hypothesis, and hence the digital
demodulation of Section 3.6 is applicable.

There are three primary problems associated with multisymbol demodula-
tion:

1. Phase stability over N symbols is required.

2. The computational requirements, including those for channel-state esti-
mation, are very high.

3. The large latency or processing delay must be accommodated.
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Figure 3.17: Bit error rate for N-symbol detection of CPFSK signal over AWGN
channel when q = 4, h = 0.67, and r = 0.78 [113]
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Figure 3.18: Bit error rate for N-symbol detection of CPFSK signal with
Rayleigh fading when q = 4, h = 0.45, and r = 0.58 [113]
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An alternative to multisymbol demodulation that alleviates these problems
is symbol-by-symbol demodulation with N = 1 and q ≥ 4, which entails much
less computational complexity and latency than N = 4 and q = 2. The cost
of using symbol-by-symbol demodulation instead of multisymbol demodulation
is the increased Eb/N0 required to achieve a specified bit error rate. An FH-
CPFSK system with channel-state estimation and symbol-by-symbol demodu-
lation is analyzed and simulated in Chapter 9.

3.8 Hybrid Systems

Frequency-hopping systems reject interference by hopping to avoiding it,
whereas direct-sequence systems reject interference by spreading and then filter-
ing it. This distinction leads to several relative advantages. When frequency-
hopping and direct-sequence systems are constrained to use the same fixed
bandwidth, the direct-sequence systems have an inherent advantage because
they can use coherent BPSK rather than a noncoherent modulation. Coherent
BPSK has an approximately 4 dB advantage relative to noncoherent orthogo-
nal CPFSK over the AWGN channel and an even larger advantage over fading
channels.

A major advantage of frequency-hopping systems is that it is possible to
hop into noncontiguous frequency channels over a much wider band than can
be occupied by a direct-sequence signal. Other major advantages of frequency
hopping are the possibility of excluding frequency channels with steady or
frequent interference, the reduced susceptibility to the near-far problem (Sec-
tion 7.7), and the relatively rapid acquisition of the frequency-hopping pattern
(Section 4.8). A disadvantage of frequency hopping is that it is not amenable to
transform-domain or nonlinear adaptive filtering (Section 5.3) to reject narrow-
band interference within a frequency channel. In practical systems, the dwell
time is too short for adaptive filtering to have a significant effect.

A hybrid frequency-hopping direct-sequence (FH-DS) system is a frequency-
hopping system that uses direct-sequence spreading during each dwell interval
or, equivalently, a direct-sequence system in which the carrier frequency changes
periodically. In the transmitter of the hybrid FH-DS system of Fig. 3.19, a
single code generator controls both the spreading sequence and the hopping
pattern. The spreading sequence is added modulo-2 to the data sequence.
Hops occur periodically after a fixed number of sequence chips. Because of
the phase changes due to the frequency hopping, noncoherent modulation such
as CSK or DPSK is usually required unless the hop rate is very low. In the
noncoherent receiver, the frequency hopping and the spreading sequence of the
FH-DS signal are removed in succession to produce the inputs to the metric
generator. The metric generators for CSK and DPSK are shown in Figs. 2.30
and 2.31, respectively.

Frequency synchronization is done by the same methods used by other
frequency-hopping systems. Serial-search timing acquisition occurs in two
stages. The first stage provides alignment of the hopping patterns, whereas
the second stage over the unknown timing of the spreading sequence finishes
acquisition rapidly because the timing uncertainty has been reduced by the first
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Figure 3.19: Hybrid frequency-hopping direct-sequence system: (a) transmit-
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stage to a fraction of a hop duration.
In principle, the receiver of a hybrid FH-DS system curtails partial-band

interference by both dehopping and despreading, but diminishing returns are
encountered. The hopping of the FH-DS signal allows the avoidance of the
interference spectrum part of the time. When the system hops into a frequency
channel with interference, the interference is spread and filtered by the hybrid
receiver. However, during a hop interval, interference that would be avoided
by an ordinary frequency-hopping receiver is passed by the bandpass filter of a
hybrid receiver because the bandwidth must be large enough to accommodate
the direct-sequence signal that remains after the dehopping. This large band-
width also limits the number of available frequency channels, which increases
the susceptibility to narrowband interference and the near-far problem. Thus,
hybrid FH-DS systems are seldom used except perhaps in specialized military
applications because the addition of direct-sequence spreading weakens some
of the strengths of frequency hopping, and the addition of frequency hopping
weakens some of the strengths of direct-sequence spreading.

A chirp is a signal that monotonically increases or decreases its frequency
uniformly in time. It is essentially a frequency-hopping signal with predictable
hops and hence is not as useful as unpredictable frequency-hopping signals for
communications. A time-hopping system transmits codewords at a high rate
during transmission intervals and does not transmit during intervals of pseu-
dorandom duration between transmission intervals. When transmitting, it has
a reduced number of available frequency channels or a reduced spectral factor.
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The synchronization complexity is the main obstacle to the implementation
of time hopping by itself or in a hybrid time-hopping and frequency-hopping
system.

3.9 Frequency Synthesizers

A frequency synthesizer [80–82, 90] converts a standard reference frequency
into many desired frequencies. In a frequency-hopping system, each hopset
frequency must be synthesized. In practical applications, a hopset frequency
has the form

fhi = f1 + rifr, i = 1, 2, . . . ,M (3-127)

where the {ri} are rational numbers, fr is the reference frequency, and f1 is a
frequency in the spectral band of the hopset. The reference signal, which is a
tone at the reference frequency, is usually generated by dividing or multiplying
by a positive integer the frequency of the tone produced by a stable source,
such as an atomic or crystal oscillator. The use of a single reference signal
ensures that any output frequency of the synthesizer has the same stability and
accuracy as the reference. The two predominant types of frequency synthesizers
are the direct digital and indirect synthesizers. Most practical synthesizers are
hybrids of these fundamental types.

Direct Digital Synthesizer

A direct digital synthesizer converts the stored sample values of a sinusoidal
wave into a continuous-time sinusoidal wave with a specified frequency.
Figure 3.20 illustrates the principal components of a digital frequency syn-
thesizer. A signal at frequency f1 upconverts the synthesizer output frequency
f0 to a desired spectral location. Therefore, if f1 + fmin and f1 + fmax are the
minimum and maximum desired frequencies, respectively, the synthesizer needs
to generate frequencies such that

fmin ≤ f0 ≤ fmax. (3-128)

The sine table stores N values of sin θ for θ = 0, 2π/N, . . . , 2π (N − 1) /N .
Frequency data, which is produced by the pattern control bits in a frequency-
hopping system, determines the synthesized frequency by specifying a phase
increment 2πk/N , where k is a positive integer. The phase accumulator, which
is a discrete-time integrator, converts the phase increment into successive sam-
ples of the phase by adding the increment to the content of an internal reg-
ister at the rate fr after every cycle of the reference signal. A phase sample
θ (i, k) = i (2πk/N) , where i denotes the reference signal cycle, defines an ad-
dress or memory location in the sine table in which the values of sin (θ (i, k))
are stored. Each value of sin (θ (i, k)) is applied to a digital-to-analog converter
(DAC), which performs a sample-and-hold operation at a sampling rate fr. The
DAC output is applied to an anti-aliasing lowpass filter, the output of which
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is upconverted by frequency f1 to generate the desired output signal. The
reference frequency is limited by the speed of the DAC.

Let ν denote the number of bits used to represent the 2ν ≥ N possible values
of the phase accumulator contents. Since the contents are updated at the rate
fr, the longest time period of distinct phase samples before repetition is N/fr.
Therefore, the smallest frequency that can be generated by the direct digital
synthesizer before upconversion, which is produced when k = 1, is

fmin =
fr
N

. (3-129)

When the phase accumulator input is k, the generated frequency before upcon-
version is

f0k = kfmin, 1 ≤ k ≤ N (3-130)

which implies that fmin is the frequency resolution.
The maximum frequency fmax that can be generated is produced by using

only a few samples of sin θ per period. From the sampling theorem, it is known
that fmax < fr/2 is required to avoid aliasing. Practical DAC and lowpass-filter
requirements further limit fmax to approximately 0.4 fr. Thus, s ≥ 2.5 samples
of sin θ per period are used in synthesizing fmax, and

fmax ≤ fr
s
. (3-131)

The lowpass filter may be implemented with a linear phase across a flat pass-
band extending slightly above fr/s. Suppose that fmin and fmax are specified
minimum and maximum frequencies that must be produced by a synthesizer.
Equations (3-129) and (3-131) imply that

sfmax

fmin
≤ N ≤ 2ν . (3-132)

The sine table stores 2n words, each comprising m bits, and hence has a
memory requirement of 2nm bits. The periodic and symmetric character of a
sine wave implies that only sample values for the first quadrant of the sine wave
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need to be stored. Each stored word represents one possible value of sin θ in the
first quadrant or, equivalently, one possible magnitude of sin θ. The input to
the sine table from the phase accumulator requires n+2 parallel bits. The two
most significant bits are the sign bit and the quadrant bit. The sign bit specifies
the polarity of sin θ. The quadrant bit specifies whether sin θ is in the first or
second quadrant or in the third or fourth quadrant. The n least significant bits
of the input determine the address in which the magnitude of sin θ is stored.
The address specified by the n least significant bits is appropriately modified
by the quadrant bit when θ is in the second or fourth quadrants. The sign bit
along with the m output bits of the sine table are applied to the DAC.

During each cycle of the reference frequency, the phase accumulator gener-
ates ν ≥ log2 N bits. If ν > n, then the ν − n least significant bits are not
passed by the quantizer to the sine table. The truncation of the potential table
input bits from ν + 2 to n+ 2 bits causes the table output to remain constant
for ν −n+1 samples of sin θ per period. If ν < n, then all ν bits are used, but
some of the words in the sine table are not needed.

If ν < n, then the output of the sine table is sin[θ̂ (i, k)], where θ̂ (i, k) ap-

proximates θ (i, k). The phase error, θe (i, k) = θ (i, k)− θ̂ (i, k), causes spurious

spectral lines in the spectrum of sin[θ̂ (i, k)]. The amplitudes of the spurious
spectral lines are determined by the coefficients of the Fourier series of θe (i, k) ,
and the largest amplitude is approximately 2−(n+2). If no reduction method is
implemented, the power in the largest of the spectral lines in the worst case is

Es = (2−(n+2))2 = (−6n− 12) dB. (3-133)

For θe (i, k) � 1, a trigonometric expansion indicates that

sin (θ (i, k)) ≈ sin[θ̂ (i, k)] + θe (i, k) cos[θ̂ (i, k)]. (3-134)

To reduce the amplitudes of the spurious spectral lines, the quantizer is included
in the synthesizer shown in Fig. 3.20. The quantizer computes θe (i, k) and
sends it to a combiner that implements the right-hand side of (3-134), thereby
providing a more accurate estimate of the desired sin (θ (i)) . The computational
requirements are a multiplication and an addition with m bits of precision at
the sample rate. Another method of reducing the spurious amplitudes is to
add random dithering samples to the quantizer input. These samples cause the
randomization of θe (i) and hence a reduction in the spurious amplitudes.

Since m output bits of the sine table specify the magnitude of sin θ, a
quantization error is produced. The worst-case amplitude-quantization noise
power is

Eq = (2−m)2 ∼= −6m dB. (3-135)

Amplitude-quantization noise increases the amplitudes of spurious spectral lines
in sin[θ̂ (i, k)].

Example 10. A direct digital synthesizer is to be designed to cover 1 kHz
to 1MHz with a 1 kHz spacing, Eq ≤−45 dB, and Es≤ −60 dB. We set fmin =
1kHz, and hence f1 = 0. According to (3-135), the use of 8-bit words in the sine
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table is adequate for the required quantization noise level. According to (3-133),
n = 8 is adequate for the required Es. With n = 8, the table contains 28 = 256
distinct words, and the sine table has n+2 = 10 input bits. If s ≤ 4, then since
fmax/fmin = 103, (3-132) is satisfied by N = 4 · 103 and ν = 12. Thus, a 12-bit
phase accumulator is needed, but the 4 least significant bits in the accumulator
are not used in the addressing of the sine table. Equation (3-129) indicates that
fr = 4MHz is required. �

The direct digital synthesizer can be easily modified to produce a modulated
output when high-speed digital data is available. For amplitude modulation, the
table output is applied to a multiplier. Phase modulation may be implemented
by adding the appropriate bits to the phase accumulator output. Frequency
modulation entails a modification of the accumulator input bits. For a qua-
ternary modulation, the quadrature signals may be generated by separate sine
and cosine tables.

A direct digital synthesizer can produce nearly instantaneous, continuous-
phase frequency changes and a very fine frequency resolution despite its rela-
tively small size, weight, and power requirements. Its output frequencies span
the range [fmin, fmax] , but its maximum frequency is increased by an upconver-
sion. The phase response of the lowpass filter largely determines the switching
time to change frequencies. A disadvantage is the stringent requirement for
the lowpass filter to suppress frequency spurs generated during changes in the
synthesized frequency.

Indirect Frequency Synthesizers

An indirect frequency synthesizer uses voltage-controlled oscillators and feed-
back loops. Like direct digital synthesizers, indirect synthesizers inherently
produce phase-continuous outputs after frequency changes. Indirect synthesiz-
ers usually require less hardware than comparable direct digital synthesizers,
but require more time to switch from one frequency to another. Since indirect
synthesizers rely on feedback and direct digital synthesizers have a feedforward
configuration, the amount of phase noise in the outputs of indirect synthesizers
is larger.

The principal components of a single-loop indirect synthesizer, which is
similar in operation to a phase-locked loop, are depicted in Fig. 3.21. The control
bits, which determine the value of the modulus or divisor N , are supplied by a
pattern generator. The input signal at frequency f1 may be provided by another
synthesizer. Since the feedback loop forces the frequency of the divider output,
(f0 − f1)/N , to closely approximate the reference frequency fr, the output of
the voltage-controlled oscillator (VCO) is a sine wave with frequency

f0 = Nfr + f1 (3-136)

where N is a positive integer.
Phase detectors in frequency-hopping synthesizers are usually digital devices

that measure zero-crossing times rather than the phase differences measured
when mixers are used. Digital phase detectors have an extended linear range,
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are less sensitive to input-level variations, and simplify the interface with a
digital divider.

Equation (3-136) indicates that the frequency resolution of the single-loop
synthesizer is fr. It is usually necessary to have a loop bandwidth on the order
of fr/10 to ensure stable operation and the suppression of sidebands that are
offset from f0 by fr. The switching time ts required for changing frequencies
is less than or equal to Tsw defined previously for frequency-hopping pulses,
which may have additional guard time inserted. The switching time tends to
be inversely proportional to the loop bandwidth and is roughly approximated
by

ts =
25

fr
(3-137)

which indicates that a low resolution and a low switching time may not be
achievable by a single loop.

To decrease the switching time while maintaining the frequency resolution
of a single loop, a coarse steering signal can be stored in a ROM, converted
into analog form by a DAC, and applied to the VCO (as shown in Fig. 3.21)
immediately after a frequency change. The steering signal reduces the frequency
step that must be acquired by the loop when a hop occurs. An alternative
approach is to place a fixed divider with modulus M after the loop so that
the divider output frequency is f0 = Nfr/M + f1/M . By this means, fr
can be increased without sacrificing resolution provided that the VCO output
frequency, which equals Mf0, is not too large for the divider in the feedback
loop. To limit the transmission of spurious frequencies, it may be desirable to
inhibit the transmitter output during frequency transitions.

The switching time can be dramatically reduced by using two synthesizers
that alternately produce the output frequency. One synthesizer produces the
output frequency while the second one is being tuned to the next frequency fol-
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lowing a command from the pattern generator. If the hop duration exceeds the
switching time of each synthesizer, then the second synthesizer begins produc-
ing the next frequency before a control switch routes its output to a modulator
or a mixer.

A divider, which is a binary counter that produces a square-wave output,
counts down by one unit every time its input crosses zero. If the modulus or
divisor is the positive integer N , then after N zero crossings, the divider output
crosses zero and changes state. The divider then resumes counting down from
N . As a result, the output frequency is equal to the input frequency divided
by N . Programmable dividers have limited operating speeds that impair their
ability to accommodate a high-frequency VCO output. A problem is avoided
by the down-conversion of the VCO output by the mixer shown in Fig. 3.21,
but spurious components are introduced. Since fixed dividers can operate at
much higher speeds than programmable dividers, one might consider placing a
fixed divider before the programmable divider in the feedback loop. However,
if the fixed divider has a modulus N1, then the loop resolution becomes N1fr,
so this solution is usually unsatisfactory.

Figure 3.22 depicts a dual-modulus divider, which maintains a frequency
resolution equal to fr while allowing synthesizer operation at high frequencies.
The principal component of the dual-modulus divider is the dual prescalar,
which comprises two fixed dividers with divisors equal to the positive integers
P and P +Q, respectively. Divider 1 and divider 2 are programmable dividers
that divide by the nonnegative integers A and B, respectively, where B > A.
These programmable dividers are only required to accommodate a frequency
fin/P . The dual prescalar initially divides by the modulus P+Q. This modulus
changes whenever a programmable divider reaches zero. After (P +Q)A input
transitions, divider 1 reaches zero, and the modulus control causes the dual
prescalar to divide by P . Divider 2 has counted down to B−A. After P (B−A)
more input transitions, divider 2 reaches zero and causes an output transition.
The two programmable dividers are then reset, and the dual prescalar reverts
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to division by P +Q. Thus, each output transition corresponds to A(P +Q) +
P (B −A) = AQ+ PB input transitions, which implies that the dual-modulus
divider has a modulus

N = AQ+ PB , B > A (3-138)

and produces the output frequency fin/N .
If Q = 1 and P = 10, then the dual-modulus divider is called a 10/11

divider, and
N = 10B +A , B > A (3-139)

which can be increased in unit steps by changing A in unit steps. Since B > A
is required, a suitable range for A and minimum value of B are

0 ≤ A ≤ 9, Bmin = 10. (3-140)

The relations (3-136), (3-139), and (3-140) indicate that the range of a syn-
thesized hopset is from f1 + 100fr to f1 + (10Bmax + 9)fr, where Bmax is the
maximum value of B. Therefore, a spectral band between fmin and fmax is
covered by the hopset if

f1 + 100fr ≤ fmin (3-141)

and

f1 + (10Bmax + 9)fr ≥ fmax. (3-142)

Example 11. The Bluetooth communication system is used to establish
wireless communications among portable electronic devices. The system has
a hopset of 79 carrier frequencies, its hop rate is 1600 hops per second, its
hop band is between 2400 and 2483.5MHz, and the bandwidth of each fre-
quency channel is 1MHz. Consider a system in which the 79 carrier frequencies
are spaced 1MHz apart from 2402MHz to 2480MHz. A 10/11 divider with
fr = 1MHz provides the desired increment, which is equal to the frequency
resolution. Equation (3-137) indicates that ts = 25μs, which indicates that 25
potential data symbols have to be omitted during each hop interval. Inequal-
ity (3-141) indicates that f1 = 2300MHz is a suitable choice. Then (3-142) is
satisfied by Bmax = 18. Therefore, dividers A and B require 4 and 5 control
bits, respectively, to specify their potential values. If the control bits are stored
in a random access memory (ROM), then each ROM location contains 9 bits.
The number of ROM addresses is at least 79, the number of frequencies in the
hopset. Thus, a ROM input address requires 7 bits. �

Multiple Loops

A multiple-loop frequency synthesizer uses two or more single-loop synthesiz-
ers to obtain both fine frequency resolution and fast switching. A three-loop
frequency synthesizer is shown in Fig. 3.23. Loops A and B have the form of
Fig. 3.22, but loop A does not have a mixer and filter in its feedback. Loop C



200 CHAPTER 3. FREQUENCY-HOPPING SYSTEMS

fr
Loop A

Loop B

 M Loop C

f1

A fr A
fr

M B fr + A       + f1

Control bits

B fr + f1

fr
M�
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has the mixer and filter but lacks the divider. The reference frequency fr is
chosen to ensure that the desired switching time is realized. The divisor M is
chosen so that fr/M is equal to the desired resolution. Loop A and the divider
generate increments of fr/M while loop B generates increments of fr. Loop C
combines the outputs of loops A and B to produce the output frequency

f0 = Bfr +A
fr
M

+ f1 (3-143)

where B, A, and M are positive integers because they are produced by dividers.
Loop C is preferable to a mixer and bandpass filter because the filter would
have to suppress a closely spaced, unwanted component when Afr/M and Bfr
were far apart.

To ensure that each output frequency is produced by unique values of A
and B, it is required that Amax = Amin + M − 1. To prevent degradation in
the switching time, it is required that Amin > M . Both requirements are met
by choosing

Amin = M + 1, Amax = 2M. (3-144)

According to (3-143), a range of frequencies from fmin to fmax is covered if

Bminfr +Amin
fr
M

+ f1 ≤ fmin (3-145)

and

Bmaxfr +Amax
fr
M

+ f1 ≥ fmax. (3-146)

Example 12. Consider the Bluetooth system of Example 11 but with the
more stringent requirement that ts = 2.5μs, which only sacrifices 3 potential
data symbols per hop interval. The single-loop synthesizer of Example 11
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Figure 3.24: Fractional-N frequency synthesizer. CP=charge pump;
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cannot provide this short switching time. The required switching time is pro-
vided by a three-loop synthesizer with fr = 10MHz. The resolution of 1MHz
is achieved by taking M = 10. Equations (3-144) indicate that Amin = 11 and
Amax = 20. Inequalities (3-145) and (3-146) are satisfied if f1 = 2300MHz,
Bmin = 9, and Bmax = 16. The maximum frequencies that must be ac-
commodated by the dividers in loops A and B are Amaxfr = 200MHz and
Bmaxfr = 160MHz, respectively. Dividers A and B require 5 control bits. �

Fractional-N Synthesizer

A fractional-N synthesizer uses a single loop and auxiliary hardware to produce
an average output frequency

f0 = (B +
A

M
)fr + f1, 0 ≤ A ≤ M − 1. (3-147)

Although the switching time is inversely proportional to fr, the resolution is
fr/M , which can be made arbitrarily small in principle.

The synthesis method uses a dual-modulus divider with frequency-division
modulus equal to either B or B + 1. As shown in Fig. 3.24, the modulus is
controlled by a digital sequence β (n) , where n is the discrete-time index. The
sequence is generated by the delta-sigma converter at a clock rate equal to fr,
and the divider modulus is B + β (n). The average value of β (n) is

β (n) =
A

M
(3-148)

so that the average divider modulus is B+A/M . The phase detector compares
the arrival times of the rising edges of the frequency-divider output with those of
the reference signal and produces an output that is a function of the difference
in arrival times. A charge pump, which uses two current sources to charge or
discharge capacitors, draws proportionate charge into the lowpass filter, the
output of which is the control signal of the VCO. Since the feedback forces the
lower input to the phase detector to have an average frequency fr, the average
output frequency is given by (3-147).
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A delta-sigma converter, which is also called a sigma-delta converter, is
a high resolution analog-to-digital converter. When its input is a multiple-
bit representation of A/M , the delta-sigma modulator generates the sequence
β (n) . If this sequence were periodic, then high-level fractional spurs, which
are harmonic frequencies that are integer multiples of fr/M , would appear at
the VCO input, thereby frequency-modulating its output signal. Fractional
spurs are greatly reduced by modulus randomization, which randomizes β (n)
while maintaining (3-148). Modulus randomization is implemented by dithering
or randomly changing the least significant bit of the input to the delta-sigma
modulator. Quantization noise q (n) = β (n) − β (n) is introduced into the
synthesizer loop. To limit the effect of the quantization noise, the modulus ran-
domization is designed so that the quantization noise has a high-pass spectrum.
A lowpass loop filter can then eliminate most of the noise.

Example 13. Consider a fractional-N synthesizer for the Bluetooth system
of Example 12 but with ts = 2.5μs. If we set f1 = 2300MHz, then effectively
the synthesizer needs to cover 102MHz to 180MHz. The switching time is
achieved by taking fr = 10MHz. The resolution is achieved by taking M = 10.
Equation (3-147) indicates that the required frequencies are covered by varying
B from 10 to 18 and A from 0 to 9. The integers B and A require 5 and 4
control bits, respectively. �

3.10 Problems

1. Approximate μ, the fraction of frequency channels with interference, by a
continuous variable over the interval [0, 1] . What is the worst-case value
of μ for binary FH-OSK, noncoherent detection, hard decisions, and the
AWGN channel in the presence of strong interference? What is the cor-
responding worst-case symbol error probability? Why does it not depend
on the number of frequency channels?

2. This problem illustrates the importance of a channel code to a frequency-
hopping system in the presence of worst-case partial-band interference.
Consider binary FH-OSK, noncoherent detection, hard decisions, and the
AWGN channel. (a) Use the results of Problem 1 to calculate the required
Eb/It0 to obtain a bit error rate Pb = 10−5 when no channel code is used.
(b) Calculate the required Eb/It0 for Pb = 10−5 when a (23,12) Golay
code is used. As a first step, use the first term in (1-111) to estimate the
required symbol error probability. What is the coding gain?

3. Consider binary FH-OSK, noncoherent detection, hard decisions, and the
Rayleigh channel in the presence of strong interference. Show that inter-
ference spread uniformly over the entire hopping band hinders commu-
nications more than uniform interference concentrated over part of the
band.

4. An interference tone with power I has the same carrier frequency as an
FH-DPSK signal with power S during a dwell interval. Derive the bit
error probability in the absence of noise.
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5. Derive the PSD of a π/4-DQPSK signal.

6. Use the procedure outlined in the text to verify (3-65).

7. Derive (3-73) by following the steps outlined in the text.

8. Use (3-74)–(3-77) to derive the PSD of an MSK signal given by (3-80).

9. Derive (3-98) by following the steps outlined in the text.

10. Design a direct digital synthesizer to cover 2402MHz to 2480MHz with
a 1MHz frequency resolution, Eq ≤ −45 dB, and Es ≤ −60 dB.

11. It is desired to cover 100–100.99MHz in 10 kHz increments with an in-
direct frequency synthesizer containing a single loop and a dual-modulus
divider. A 10/11 divider is used with f1 = 0 and Q = 1. (a) What is
a suitable range of values of A? (b) What are a suitable value of P and
a suitable range of values of B if it is required to minimize the highest
frequency applied to the programmable dividers?

12. It is desired to cover 198–200MHz in 10Hz increments with a switching
time equal to 2.5ms. An indirect frequency synthesizer with three loops
in the form of Fig. 3.23 is used. It is desired to limit the maximum fre-
quency to be accommodated by loop B. What are suitable values of the
parameters fr, f1,M,Amin, Amax, Bmin, and Bmax?

13. Specify the design parameters of a fractional-N synthesizer that covers
198–200MHz in 10Hz increments with a switching time equal to 250μs.



Chapter 4

Frequency and Timing
Synchronization

The methods of frequency and timing synchronization for both direct-sequence
and frequency-hopping systems are presented in this chapter. Frequency syn-
chronization refers to the synchronization of the receiver-generated carrier fre-
quency with the received carrier frequency. Although the use of precision clocks
in both the transmitter and the receiver limits the frequency uncertainty in
the receiver, clock drifts, range uncertainty, and the Doppler shift may cause
synchronization problems. A spread-spectrum receiver requires timing synchro-
nization to generate a spreading sequence or frequency-hopping pattern that is
synchronized with the received spreading sequence or frequency-hopping pat-
tern. After timing synchronization, the received and receiver-generated chips or
dwell intervals must precisely or nearly coincide. Any misalignment causes the
signal amplitude at the demodulator output to fall in accordance with the au-
tocorrelation or partial autocorrelation function. A practical implementation of
timing synchronization is greatly facilitated by dividing synchronization into the
two operations of acquisition and tracking. Timing acquisition provides coarse
synchronization by limiting the possible timing offsets of the receiver-generated
chips or dwell intervals to a finite number of quantized candidates. Timing
acquisition is almost always the dominant design issue and the most expensive
component of a complete spread-spectrum system. Following the timing ac-
quisition, timing tracking is activated to provide fine synchronization by which
synchronization errors are further reduced or at least maintained within certain
bounds. Symbol synchronization, which is needed to provide timing pulses for
symbol detection to the decoder, is derived from the timing synchronization.
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4.1 Synchronization of Direct-Sequence Signals

Both frequency and timing synchronization of direct-sequence signals must pre-
cede phase synchronization. Timing synchronization, which is often called code
synchronization, refers to the synchronization of the receiver-generated spread-
ing sequence with the received spreading sequence. Prior to despreading, which
requires timing synchronization, the signal-to-noise ratio (SNR) is unlikely to
be sufficiently high for successful phase tracking by a phase-locked loop even
if the frequency synchronization is perfect. Therefore, noncoherent synchro-
nization of the frequency and timing is required. The timing synchronization
provides not only the chip timing but also the symbol timing. Then the symbol
timing is used to facilitate the tracking of the carrier phase, which can be done
with standard decision-directed or power-law methods [7].

Consider the estimation of waveform parameters that are components of the
vector θ. The observed signal is

r(t) = s (t,θ) + n (t) , 0 ≤ t ≤ T (4-1)

where the real-valued signal s (t,θ) has a known waveform except for θ, and n (t)
is zero-mean, white Gaussian noise. We assume that for all values of the wave-
form parameters, s(t,θ) belongs to the signal space L2 [0, T ] of complex-valued

functions f such that |f |2 is integrable over [0, T ] . As shown in Appendix F.4,
the sufficient statistic for maximum-likelihood estimation is

Λs [r(t)] = 2

∫ T

0

r(t)s(t,θ)dt−
∫ T

0

s2(t,θ)dt. (4-2)

If s (t,θ) depends on a random vector φ, we base the maximum-likelihood es-
timation on Eφ [Λs [r(t)]] , where Eφ[·] denotes the expected value with respect
to φ. Therefore, the sufficient statistic becomes

Λa [r(t)] = Eφ

[
2

∫ T

0

r(t)s(t,θ)dt−
∫ T

0

s2(t,θ)dt

]
. (4-3)

The maximum-likelihood estimator is

θ̂ = argmax
θ

Λa [r(t)] . (4-4)

Joint Frequency and Timing Synchronization

We assume that pilot signals without data symbols are transmitted to enable
estimation. For a DS-BPSK system, the pilot signal is

s(t,θ) =
√
2Sp(t− τ) cos (2πfct+ 2πfdt+ φ) , 0 ≤ t ≤ T (4-5)

where S is the average power, p(t) = ±1 is the known spreading waveform, fc
is the known carrier frequency, φ is the received carrier phase, τ is the timing
offset in the receiver, 0 ≤ τ < T , and fd is the frequency offset relative to
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the nominal carrier frequency. The frequency offset may be due to a Doppler
shift or to a drift or instability in the transmitter or receiver oscillator. Since
the phase synchronization must follow the acquisition of the code timing and
frequency offsets, θ =(τ, fd) and the carrier phase φ is modeled as a random
variable.

The second term within the brackets of (4-3) is the signal energy over the
observation interval. If we assume that τ � T , then this energy does not vary
significantly with τ . Therefore, we drop this term and base the maximum-
likelihood estimation on the sufficient statistic

Λa[r(t)] = Eφ

[∫ T

0

r(t)s(t,θ)dt

]
. (4-6)

The substitution of (4-5) into (4-6) yields

Λa[r(t)] = Eφ

{
.
√
2S

∫ T

0

r(t)p(t− τ) cos (2πfct+ 2πfdt+ φ) dt

}
. (4-7)

Prior to frequency synchronization, it is assumed that φ is uniformly dis-
tributed over [0, 2π). A trigonometric expansion and an integration of (4-7)
over φ using (H-16) of Appendix H.3 give

Λs[r(t)] = I0

(√
2SV (τ, fd)

)
(4-8)

where I0(·) is the modified Bessel function of the first kind and order zero
defined by (H-14), and

V (τ, fd) =

[∫ T

0

r(t)p(t− τ) cos (2πfct+ 2πfdt) dt

]2

+

[∫ T

0

r(t)p(t− τ) sin (2πfct+ 2πfdt) dt

]2
. (4-9)

Since I0(x) is a monotonically increasing function of x, (4-8) implies that
V (τ, fd) is a sufficient statistic for maximum-likelihood estimation. Ideally, the

estimates τ̂ and f̂d are determined by considering all possible values of τ and
fd and then choosing those values that maximize (4-9):(

τ̂ , f̂d

)
= arg max

(τ,fd)
V (τ, fd) . (4-10)

In a practical implementation of this joint estimation, the receiver correlates the
received signal with quantized values of the candidate code phases and carrier
frequencies.

Frequency Synchronization

An alternative to the joint synchronization of the frequency and timing is se-
quential synchronization. The frequency estimation, which is called frequency
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binning, is done by passing the pilot signal through a bank of filters, each of
which is followed by a detector. The largest detector’s output provides the fre-
quency estimate. If the detector is a radiometer, the frequency estimator is a
channelized radiometer, which is analyzed in Section 10.4. Another method is
to apply a single discrete Fourier transform that covers the set of candidate car-
rier frequencies. The transform may be implemented as a fast Fourier transform
[71] but is still more computationally complex and slower than other methods.

If τ̂ ≈ 0, then the sufficient statistic for frequency estimation is

V (fd) =

[∫ T

0

r(t)p(t) cos (2πfct+ 2πfdt) dt

]2

+

[∫ T

0

r(t)p(t) sin (2πfct+ 2πfdt) dt

]2
. (4-11)

If V (fd) exceeds a threshold for at least one value of fd, the maximum-likelihood
estimator is

f̂d = argmax
fd

V (fd) . (4-12)

We assume that f ∈ [−fmax, fmax] , where fmax is the maximum deviation of
the carrier frequency from its nominal value fc. If V (fd) is computed for 2K
values of fd and the observation time T is sufficiently long, then the frequency
estimation error in the absence of noise is

fe ≤
fmax

K
. (4-13)

The maximum phase shift caused by frequency estimation error fe over
one received chip interval is 2πfeTc. Let φmax denote the maximum phase shift
that can be accommodated. Then the maximum number of chips that can be
safely received before pilot symbols are needed for a new estimation of fd is

N =
φmax

2πfeTc
≥ Kφmax

2πfmaxTc
. (4-14)

The maximum number of data symbols is 	N/G
. In a practical system, we
want N � G = Ts/Tc, which implies that we need

K � 2πfmaxTs

φmax
. (4-15)

Once the frequency is initially estimated, the small changes in the Doppler shift
and the oscillators can be tracked with versions of the phase-locked loop.
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Timing Synchronization

Assuming that f̂d ≈ fd, the sufficient statistic for the estimation of the received
timing offset τ is

V (τ) =

[∫ T

0

r(t)p(t− τ) cos (2πfct+ 2πfdt) dt

]2

+

[∫ T

0

r(t)p(t− τ) sin (2πfct+ 2πfdt) dt

]2
(4-16)

and the maximum-likelihood estimate is

τ̂ = argmax
τ

V (τ) (4-17)

where τ is restricted to some set of possible values or uncertainty region.
The estimator defined by (4-17) entails quadrature downconversion and cor-

relations with a T -second portion of the spreading waveform. The estimation
accuracy increases with T until it approaches the duration of the spreading
sequence.

4.2 Rapid Timing Acquisition

Timing acquisition is the operation by which the timing of the receiver-generated
spreading sequence is brought to within a fraction of a chip of the timing of
the received sequence. The fundamental challenge is that the usual despreading
mechanism cannot be used to reduce the bandwidth of the desired signal and
suppress interference during acquisition or coarse synchronization.

When the spreading sequences are relatively short, rapid acquisition is pos-
sible. For long spreading sequences, serial-search or sequential acquisition is
necessary. To reduce the acquisition time, parallel processors may be used.
Since the presence of the data modulation impedes acquisition, the latter is
facilitated by the transmission of the spreading sequence without any data
modulation until acquisition occurs.

Matched-Filter Acquisition

Matched-filter acquisition provides potentially rapid acquisition based on im-
plementing (4-17) when short programmable sequences give adequate security.
Successive periods of the spreading waveform are transmitted without data
modulation during the time allocated to acquisition, and the matched filter is
matched to one period of the spreading waveform. The matched-filter output
is given by (1-2) and (1-3).

In an analog implementation, the envelope of the matched-filter output,
which ideally comprises sharp autocorrelation spikes, is compared with one or
more thresholds, one of which is closest to the peak value of a spike. This
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Figure 4.1: Digital matched filter for noncoherent acquisition

peak value marks the end of one period of the spreading sequence. Since the
data-symbol boundaries coincide with the beginning and end of a spreading se-
quence, the occurrence of this peak provides information used for both symbol
synchronization and timing acquisition. The sequence length and integration
time of the matched filter are limited by errors in compensating for the fre-
quency offsets and chip-rate errors, both of which decrease the peak value of
the spike.

A digital matched filter (DMF) for noncoherent matched-filter acquisition
of a binary spreading waveform, which offers great flexibility, is illustrated in
Fig. 4.1. The received spreading waveform is decomposed into in-phase and
quadrature baseband components, each of which is applied to a separate branch.
In each branch, the output of a chip-matched filter (CMF) is sampled by an
analog-to-digital converter (ADC). The ADC produces quantized samples of
n ≥ 1 bits at a sampling rate that is m ≥ 1 times the chip rate. For exam-
ple, a one-bit ADC makes hard decisions on the received chips by observing
the polarities of the sample values. Successive samples are applied to a mul-
tidimensional data shift register, which comprises n shift registers in parallel.
Shifts occur at the sampling rate. A reference shift register stores reference
weights equal to the chip values of the spreading sequence, and m consecutive
identical reference weights correspond to each chip. The multiple-bit output of
each stage of a data shift register is multiplied by the multiple-bit output of
the corresponding stage of the reference shift register. The sum of the products
calculated by each shift register is squared, and the two squares are added to
produce the DMF samples. When the peak is detected, a threshold is exceeded,
the counter records the corresponding sample time, and an enabling signal is
sent to the tracking system and demodulator.

The effect of the sampling times on the matched-filter output amplitude
is illustrated in Fig. 4.2, which depicts the idealized output amplitude for one
period of a short spreading sequence, a high sampling rate, and no noise. The
duration of the high amplitude is 2T0 = 2Tc. If the peak output occurs at
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time t = 0, then the two sampling times closest to the peak occur at times −x
and T − x, where T = Tc

m . The magnitude of the smallest sampling-time offset
relative to t = 0 is

y = min (x, Tc/m− x) , 0 ≤ x ≤ T. (4-18)

If x is uniformly distributed over [0, Tc/m], then y is uniformly distributed over
[0, Tc/2m] . Therefore,

E [y] =
Tc

4m
, E
[
y2
]
=

T 2
c

12m2
. (4-19)

If the amplitude function approximates the triangular shape depicted in the
figure, the average output power is attenuated by

E

[(
1− y

Tc

)2
]
= 1− 1

2m
+

1

12m2
. (4-20)

Thus, if m = 1, the power loss is nearly 3 dB, whereas if m = 4, the power loss
is 0.58 dB.

Matched-filter acquisition is useful when serial-search acquisition with a long
sequence fails or takes too long. A short sequence for acquisition is embedded
within the long sequence. The short sequence may be a subsequence of the long
sequence and is stored in the programmable reference shift register. Figure 4.3
depicts the configuration of a matched filter for short-sequence acquisition and a
serial-search system for long-sequence acquisition. The control signal activates
the matched filter when it is needed and deactivates it otherwise. When the
matched-filter output crosses a threshold, the sample number of the crossing
time and the output level are applied to the peak detector. The peak detector
sends to the serial-search system the sample number of the largest level during
the short-sequence duration. The receipt of the sample number starts a long-
sequence generator in the serial-search system at a predetermined initial state.
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The long sequence is used for verifying the acquisition and for despreading the
received direct-sequence signal. Several matched filters in parallel may be used
to expedite the process.

Sequential Estimator

In a benign environment, sequential estimation methods [33] provide rapid ac-
quisition when a short spreading sequence is adequate for security. The basic
idea is to exploit the structure of the linear feedback shift register (Section 2.2).
Successive received chips are detected and then loaded into the shift regis-
ter of the receiver’s spreading-sequence generator to establish its initial state,
which then uniquely and unambiguously determines the subsequently generated
spreading sequence in synchronism with the received sequence. The tracking
system then ensures that the local spreading sequence remains synchronized.

A recursive soft sequential estimator, which provides some protection against
interference, is illustrated in Fig. 4.4. Each sampled output of the chip-matched
filter (Section 2.4) is applied to a recursive soft-in, soft-out (SISO) decoder sim-
ilar to those used in turbo decoders (Section 1.6). The SISO decoder simul-
taneously receives extrinsic information from prior sampled outputs associated
with prior chips. The extrinsic information is related to the current chip but
was dispersed by the spreading-sequence generator in the transmitter. The
SISO decoder processes all soft information to calculate the log-likelihood ratio
(LLR) associated with each chip. These LLRs are sent to the first stage of
the soft shift register, which stores and shifts successive LLRs at the chip rate
and provides the extrinsic information. The soft shift register stores the most
recent consecutive LLRs and shifts out the oldest LLR from its final stage. If
the stored LLRs have sufficiently high values, then a load command activates
hard decisions that convert the consecutive LLRs into consecutive chip values.
After they are loaded into the appropriate successive stages, the chip values de-
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termine the initial state of the linear feedback shift register (LFSR). The LFSR
generates the receiver’s synchronized spreading sequence, which is used for de-
spreading and is applied the tracking system. If the tracking system detects
a synchronization problem, it sends a reload signal to the soft shift register,
which begins a new estimation of an initial state of the LFSR.

4.3 Serial-Search Acquisition

The timing uncertainty of a local spreading sequence relative to a received
spreading sequence covers a region that may be quantized into a finite number
of smaller regions called cells. Serial-search acquisition is acquisition based on
consecutive or serial tests of the cells until it is determined that a particular
cell corresponds to the alignment of the two sequences to within a fraction of a
chip. To access different cells, the receiver changes its clock rate. These changes
adjust the timing offset of the local sequence generated by the receiver relative
to the timing offset of the received sequence.

Figure 4.5 depicts the principal components of a serial-search acquisition
system. The received direct-sequence signal and a local spreading sequence
are applied to a noncoherent acquisition correlator (Section 4.4) that produces
a decision variable (4-16) for each cell. If the received and local spreading
sequences are not aligned, the decision variable is unlikely to exceed the test
threshold, and the test fails. If there are one or more test failures, the cell under
test is rejected, and the phase of the local sequence is retarded or advanced,
possibly by generating an extra clock pulse or by blocking one. A new cell
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is then tested. If the sequences are nearly aligned, the decision variable is
high, the threshold is exceeded, the search is stopped, and the two sequences
run in parallel at some fixed phase offset. Subsequent tests verify that the
correct cell has been identified. If a cell fails the verification tests, the search
is resumed. If a cell passes, the two sequences are assumed to be coarsely
synchronized, demodulation begins, and the tracking system is activated. The
threshold-detector output continues to be monitored so that any subsequent
loss of synchronization activates the serial search.

There may be several cells that potentially provide a valid acquisition. How-
ever, if none of these cells corresponds to perfect synchronization, the detected
energy is reduced below its potential peak value. The step size is the separa-
tion between cells. If the step size is one-half of a chip, then one of the cells
corresponds to an alignment within one-fourth of a chip. On the average, the
misalignment of this cell is one-eighth of a chip, which may cause a negligi-
ble degradation. As the step size decreases, both the average detected energy
during acquisition and the number of cells to be searched increase.

The dwell time is the amount of time required for testing a cell and is ap-
proximately equal to the length of the integration interval in the noncoherent
acquisition correlator. An acquisition system is called a single-dwell system if
a single test determines whether a cell is accepted as the correct one. If veri-
fication testing occurs before acceptance, the system is called a multiple-dwell
system. The dwell times either are fixed or are variable but bounded by some
maximum value. The dwell time for the initial test of a cell is usually designed
to be much shorter than the dwell times for verification tests. This approach
expedites the acquisition by quickly eliminating the bulk of the incorrect cells.
In any serial-search system, the dwell time allotted to a test is limited by the
Doppler shift, which causes the received and local chip rates to differ. As a
result, an initial close alignment of the two sequences may disappear by the end
of the test.
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A multiple-dwell system may use a consecutive-count strategy, in which a
failed test causes a cell to be immediately rejected, or an up–down strategy, in
which a failed test causes a repetition of a previous test. Figures 4.6 and 4.7
depict the flow graphs of the consecutive-count and up–down strategies, respec-
tively, that require D tests to be passed before acquisition is declared. If the
threshold is not exceeded during test 1, the cell fails the test, and the next cell
is tested. If it is exceeded, the cell passes the test, the search is stopped, and
the system enters the verification mode. The same cell is tested again, but the
dwell time and the threshold may be changed. Once all the verification tests
have been passed, the timing tracking is activated, and the system enters the
lock mode. In the lock mode, the lock detector continually verifies that timing
synchronization is maintained. If the lock detector decides that synchronization
has been lost, reacquisition begins in the search mode.

The order in which the cells are tested is determined by the general search
strategy. Figure 4.8a depicts a uniform search over the q cells of the timing
uncertainty. The broken lines represent the discontinuous transitions of the
search from one part of the timing uncertainty to another. The broken-center Z
search, illustrated in Fig. 4.8b, is appropriate when a priori information makes
part of the timing uncertainty more likely to contain the correct cell than the
rest of the region. a priori information may be derived from the detection of a
short preamble. If the sequences are synchronized with the time of day, then
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Figure 4.8: Trajectories of search positions: (a) uniform search and (b) broken-
center Z search

the receiver’s estimate of the transmitter range combined with the time of day
provides the a priori information.

The acquisition time is the amount of time required for an acquisition system
to locate the correct cell and initiate the tracking system. To derive the statistics
of the acquisition time [56], one of the q possible cells is considered the correct
cell, and the other (q − 1) cells are incorrect. The difference in timing offsets
among cells is ΔTc, where the step size Δ is usually either 1 or 1/2. Let L denote
the number of times the correct cell is tested before it is accepted and acquisition
terminates. Let C denote the number of the correct cell and πj denote the
probability that C = j. Let ν(L,C) denote the number of incorrect cells tested
during the acquisition process. The functional dependence is determined by the
search strategy. Let Tr(L,C) denote the total rewinding time, which is the time
required for the search to move discontinuously to a different cell within the
timing uncertainty. Since an incorrect cell is always ultimately rejected, there
are only three types of events that occur during a serial search. Either the nth
incorrect cell is dismissed after T11(n) seconds, a correct cell is falsely dismissed
for the mth time after T12(m) seconds, or a correct cell is accepted after T22

seconds, where the first subscript is 1 if dismissal occurs, and 2 otherwise; the
second subscript is 1 if the cell is incorrect, and 2 otherwise. Each of these
decision times is a random variable. If an incorrect cell is accepted, the receiver
eventually recognizes the mistake and reinitiates the search at the next cell.
The wasted time expended in timing tracking is a random variable called the
penalty time. These definitions imply that the acquisition time is the random
variable given by

Ta =

ν(L,C)∑
n=1

T11(n) +

L−1∑
m=1

T12(m) + T22 + Tr(L,C). (4-21)

The most important performance measures of the serial search are the mean
and variance of Ta. Given L = i and C = j, the conditional expected value of
Ta is

E [Ta|i, j] = ν(i, j)T̄11 + (i− 1)T̄12 + T̄22 + Tr(i, j) (4-22)
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where T̄11, T̄12, and T̄22 are the expected values of each T11(n), T12(m), and T22,
respectively. Therefore, the mean acquisition time is

T̄a = T̄22 +

∞∑
i=1

PL(i)

q∑
j=1

πj

[
ν(i, j)T̄11 + (i− 1)T̄12 + Tr(i, j)

]
(4-23)

where PL(i) is the probability that L = i, and πj is the probability that C = j.
After calculating the conditional expected value of T 2

a given that L = i and
C = j, and using the identity x2 = var(x) + x̄2, we obtain

T 2
a =

∞∑
i=1

PL(i)

q∑
j=1

πj{[ν(i, j)T̄11 + (i− 1)T̄12 + T̄22 + Tr(i, j)]
2

+ ν(i, j)var(T11) + (i− 1)var(T12) + var(T22)}. (4-24)

Assuming that the test statistics are independent and identically distributed,
we obtain

PL(i) = PD (1− PD)
i−1

(4-25)

where PD is the probability that the correct cell is detected when it is tested
during a scan of the uncertainty region.

In some applications, the serial-search acquisition must be completed within
a specified period of duration Tmax. If it is not, the serial search is terminated,
and special measures, such as the matched-filter acquisition of a short sequence,
are undertaken. The probability that Ta ≤ Tmax can be bounded by using
Chebyshev’s inequality (Appendix A.2). Let σ2

a denote the variance of Ta.
Then

P [Ta ≤ Tmax] ≥ P [
∣∣Ta − T̄a

∣∣ ≤ Tmax − T̄a]

≥ 1− σ2
a(

Tmax − T̄a

)2 . (4-26)

Uniform Search with Uniform Distribution

As an important application, we consider the uniform search of Fig. 4.8a and a
uniform a priori distribution for the location of the correct cell given by

πj =
1

q
, 1 ≤ j ≤ q. (4-27)

If the cells in the figure are labeled consecutively from left to right, then

ν(i, j) = (i− 1)(q − 1) + j − 1. (4-28)

The rewinding time is

Tr(i, j) = Tr(i) = (i− 1)Tr (4-29)



218 CHAPTER 4. FREQUENCY AND TIMING SYNCHRONIZATION

where Tr is the rewinding time associated with each broken line in the figure.
If the timing uncertainty covers an entire sequence period, then the cells at the
two edges are actually adjacent and Tr = 0.

To evaluate T̄a and T 2
a , we substitute (4-25), (4-27), (4-28), and (4-29)

into (4-23) and (4-24) and use the following identities:

∞∑
i=0

ri =
1

1− r
,

∞∑
i=1

iri =
r

(1− r)2
,

∞∑
i=1

i2ri =
r(1 + r)

(1− r)3

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(4-30)

where 0 ≤ |r| < 1. Defining

α = (q − 1)T̄11 + T̄12 + Tr (4-31)

we obtain

T̄a = (q − 1)

(
2− PD

2PD

)
T̄11 +

(
1− PD

PD

)(
T̄12 + Tr

)
+ T̄22 (4-32)

and

T 2
a = (q − 1)

(
2− PD

2PD

)
var (T11) +

(
1− PD

PD

)
var (T12) + var (T22)

+
(2q + 1)(q + 1)

6
T̄ 2
11 +

α2 (1− PD) (2− PD)

P 2
D

+ (q + 1)α

(
1− PD

PD

)

+ (q + 1)T̄11

(
T̄22 − T̄11

)
+ 2α

(
1− PD

PD

)(
T̄22 − T̄11

)
+
(
T̄22 − T̄11

)2
.

(4-33)

In most applications, the number of cells to be searched is large, and sim-
pler asymptotic forms for the mean and variance of the acquisition time are
applicable. As q → ∞, (4-32) gives

T̄a → q

(
2− PD

2PD

)
T̄11, q → ∞. (4-34)

Similarly, (4-33) and (4-34) yield

σ2
a → q2

(
1

P 2
D

− 1

PD
+

1

12

)
T̄ 2
11, q → ∞. (4-35)

Consecutive-Count Double-Dwell System

For further specialization, consider the consecutive-count double-dwell system
described by Fig. 4.6 with D = 2. Assume that a composite correct cell actually
subsumes two consecutive cells that have sufficiently low timing offsets that
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either one of these consecutive cells could be considered a correct cell. The
detection probabilities of the two consecutive cells are Pa and Pb, respectively. If
the test results are assumed to be statistically independent, then the probability
of detection of the composite correct cell is

PD = Pa + (1− Pa)Pb. (4-36)

Let τ1, PF1, Pa1, and Pb1 denote the search-mode dwell time, false-alarm
probability, and successive detection probabilities respectively. Let τ2, PF2, Pa2,
and Pb2 denote the verification-mode dwell time, false-alarm probability, and
successive detection probabilities, respectively. Let T̄p denote the mean penalty
time, which is incurred by the incorrect activation of the tracking mode. The
flow graph indicates that each cell must pass two tests, and the passing proba-
bilities are

Pa = Pa1Pa2, Pb = Pb1Pb2. (4-37)

If an incorrect cell is rejected, a delay of at least τ1 occurs. If there has been a
false alarm, then an additional average delay of τ2 + PF2T̄p occurs. Therefore,

T̄11 = τ1 + PF1

(
τ2 + PF2T̄p

)
. (4-38)

Equations (4-36) to (4-38) are sufficient for the evaluation of the asymptotic
values of the mean and variance given by (4-34) and (4-35).

For a more accurate evaluation of the mean acquisition time, expressions
for the conditional means T̄22 and T̄12 are needed. Expressing T̄22 as the con-
ditional expectation of the correct-cell test duration given cell detection and
enumerating the three possible durations and their conditional probabilities,
we obtain

T̄22 =
∞∑
i=1

tiP (T22 = ti |detection)

= τ1 + τ2 +
1

PD

∞∑
i=1

tiP ([T22 = ti + τ1 + τ2] ∩ detection)

= τ1 + τ2 +
1

PD
[τ1 (1− Pa1)Pb + (τ1 + τ2)Pa1 (1− Pa2)Pb]

= τ1 + τ2 + τ1
(1− Pa)Pb

PD
+ τ2

(Pa1 − Pa)Pb

PD
. (4-39)

Similarly,

T̄12 = 2τ1 +
1

1− PD

∞∑
i=1

tiP ([T12 = ti + 2τ1] ∩ rejection)

= 2τ1 + (1− PD)−1

{
τ1 [Pa1(1− Pa2)Pb1(1− Pb2)]

+τ2 [Pa1 + Pb1 − Pa − Pb − Pa1Pb1 + 2PaPb]

}
.

(4-40)
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Single-Dwell and Matched-Filter Systems

Results for a single-dwell system are obtained by setting Pa2 = Pb2 = PF2 =
1, τ2 = 0, Pa = Pa1, Pb = Pb1, PF1 = PF , and τ1 = τd in (4-38)–(4-40). We
obtain

T̄11 = τd + PF T̄p, T̄22 = τd

[
1 +

(1− Pa)Pb

PD

]
, T̄12 = 2τd. (4-41)

Thus, (4-32) yields

T̄a =
(q − 1) (2− PD)

(
τd + PF T̄p

)
+ 2τd (2− Pa) + 2 (1− PD)Tr

2PD
. (4-42)

Since the single-dwell system may be regarded as a special case of the double-
dwell system, the latter can provide a better performance by the appropriate
setting of its additional parameters.

The approximate mean acquisition time for a matched filter can be derived
in a similar manner. Suppose that many periods of a short spreading sequence
with N chips per period are received, and the matched-filter output is sampled
m times per chip. Then the number of cells that are tested is q = mN and
Tr = 0. Each sampled output is compared with a threshold, so τd = Tc/m is
the time duration associated with a test. For m = 1 or 2, it is reasonable to
regard two of the cells as the correct ones. These cells are effectively tested
when a signal period fills or nearly fills the matched filter. Thus, (4-42) yields

T̄a ≈ NTc

(
2− PD

2PD

)
(1 +mKPF ) , q � 1 (4-43)

where K = T̄p/Tc. Ideally, the threshold is exceeded once per period, and each
threshold crossing provides a timing marker.

Up–Down Double-Dwell System

For the up–down double-dwell system with a composite correct cell of two
subsumed correct cells, the flow graph of Fig. 4.7 with D = 2 indicates that

Pa = Pa1Pa2

∞∑
i=0

[Pa1 (1− Pa2)]
i
=

Pa1Pa2

1− Pa1 (1− Pa2)
. (4-44)

Similarly,

Pb =
Pb1Pb2

1− Pb1 (1− Pb2)
(4-45)

and PD is given by (4-36). If an incorrect cell passes the initial test but fails
the verification test, then the cell begins the testing sequence again without
any memory of the previous testing. Therefore, for an up–down double-dwell
system, we have the recursive relation

T̄11 = (1− PF1) τ1 + PF1PF2

(
τ1 + τ2 + T̄p

)
+ PF1 (1− PF2)

(
τ1 + τ2 + T̄11

)
.

(4-46)
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Solving this equation yields

T̄11 =
τ1 + PF1

(
τ2 + PF2T̄p

)
1− PF1 (1− PF2)

. (4-47)

Substitution of (4-44) to (4-47) into (4-34) to (4-36) gives the asymptotic values
of the mean and variance of the acquisition time.

For a more accurate evaluation of the mean acquisition time, expressions
for the conditional means T̄22 and T̄12 are needed. We begin the derivation
of T̄22 = E [T22 |detection ] by adding further conditioning. Let T0 denote the
additional delay when the testing of the composite correct cell restarts at the
first subsumed cell, and the composite cell is ultimately detected. Let T1 denote
the additional delay when the testing of the composite correct cell restarts at
the second subsumed cell, and the composite cell is ultimately detected. Then

T̄22 = E{E [T22 |detection,T0, T1 ]}

= τ1 + τ2 + E

{
1

PD

∞∑
i=1

tiP ([T22 = ti + τ1 + τ2] ∩ detection |T0, T1 )

}
.

(4-48)

From the possible durations and their conditional probabilities, we obtain

T̄22 = τ1 + τ2 +
1

PD

{
Pa1 (1− Pa2)PDE [T0] + (1− Pa1)Pb1Pb2τ1
+(1− Pa1)Pb1 (1− Pb2)Pb (τ1 + E [T1])

}
(4-49)

and a recursive relation gives

E [T1] = τ1 + τ2 + Pb1 (1− Pb2)E [T1]

=
τ1 + τ2

1− Pb1 + Pb
. (4-50)

Substituting this equation and E [T0] = T̄22 into (4-49) and solving for T̄22 yield

T̄22 =
1

1 − Pa1 + Pa1Pa2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

τ1

[

1 +
(1−Pa1)Pb1Pb2

PD
+

(1−Pa1)(Pb1−Pb1Pb2)Pb
PD

(1 + 1
1−Pb1+Pb

)

]

+τ2

[

1+
(1−Pa1)(Pb1−Pb1Pb2)Pb

PD(1−Pb1+Pb)

]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(4-51)
Similarly, T̄12 is determined by the recursive equation

T̄12 = τ1 +
(1− Pa1) (1− Pb1)

1− PD
τ1 + Pa1 (1− Pa2)

(
τ2 + T̄12

)

+
(1− Pa1)Pb1 (1− Pb2) (1− Pb)

1− PD

(
τ1 + τ2 + T̄ ′

12

)
(4-52)

where T̄ ′
12 denotes the mean additional delay when the testing of the compos-

ite correct cell restarts at the second subsumed cell and the composite cell is
ultimately rejected. A recursive evaluation gives

T̄ ′
12 = τ1 + Pb1 (1− Pb2) (τ2 + T̄ ′

12)

=
τ1 + (Pb1 − Pb1Pb2) τ2

1− Pb1 + Pb1Pb2
. (4-53)



222 CHAPTER 4. FREQUENCY AND TIMING SYNCHRONIZATION

Substituting this equation into (4-52) and solving for T̄12 yield

T̄12 =
1

1− Pa1 + Pa1Pa2

⎧⎪⎪⎨
⎪⎪⎩

τ1

[
1 + (1−Pa1)(1−Pb1)

1−PD

+ (1−Pa1)(Pb1−Pb1Pb2)(1−Pb)
1−PD

(1 + 1
1−Pb1+Pb1Pb2

)

]

+τ2
[
Pa1 − Pa1Pa2 +

(1−Pa1)(Pb1−Pb1Pb2)(1−Pb)
(1−PD)(1−Pb1+Pb1Pb2)

]
⎫⎪⎪⎬
⎪⎪⎭ .

(4-54)

Penalty Time

The lock detector that monitors the timing synchronization in the lock mode
performs tests to verify the lock condition. The time that elapses before the
system incorrectly leaves the lock mode is called the holding time. It is desirable
to have a large mean holding time and a small mean penalty time, but the
realization of one of these goals tends to impede the realization of the other. As
a simple example, suppose that each test has a fixed duration τ and that timing
synchronization is actually maintained. A single missed detection, which occurs
with probability 1−PDL, causes the lock detector to assume a loss of lock and
to initiate a search. Assuming the statistical independence of the lock-mode
tests, the mean holding time is

T̄h =
∞∑
i=1

iτ (1− PDL)P
i−1
DL

=
τ

1− PDL
, PDL < 1. (4-55)

This result may also be derived by recognizing that T̄h = τ +PDLT̄h, PDL < 1,
because once the lock mode is verified, the testing of the same cell is renewed
without any memory of the previous testing.

If the locally generated code phase is incorrect, the penalty time expires
unless false alarms, each of which occurs with probability PFL, continue to
occur every τ seconds. Therefore, T̄p = τ + PFLT̄p, PFL < 1, which yields the
mean penalty time for a single-dwell lock detector:

T̄p =
τ

1− PFL
, PFL < 1. (4-56)

A tradeoff between a high T̄h and a low T̄p exists because increasing PDL tends
to increase PFL.

When a single test verifies the lock condition, the synchronization system is
vulnerable to deep fades and pulsed interference. A preferable strategy is for
the lock mode to be maintained until a number of consecutive or cumulative
misses occur during a series of tests. The performance analysis is analogous to
that of serial-search acquisition.

Other Search Strategies

In a Z search, no cell is tested more than once until all cells in the timing
uncertainty have been tested. Both strategies of Fig. 4.9 are Z searches. A
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characteristic of the Z search is that the number of incorrect cells tested when
i correct cells are tested and C = j is

ν(i, j) = (i− 1)(q − 1) + ν(1, j) (4-57)

where ν(1, j) is the number of incorrect cells tested when PD = 1, and hence
L = 1. For simplicity, we assume that q is even. For the broken-center Z search,
the search begins with cell q/2 + 1, and

ν(1, j) =

{
j − q

2 − 1, j ≥ q
2 + 1

q − j, j ≤ q
2

(4-58)

whereas ν(1, j) = j−1 for the uniform search. If the rewinding time is negligible,
then (4-23), (4-25), and (4-57) yield

T̄a =
1− PD

PD

[
(q − 1)T̄11 + T̄12

]
+ T̄22 + T̄11ν(1) (4-59)

where

ν(1) =

q∑
j=1

ν(1, j)πj (4-60)

is the average number of incorrect cells tested when PD = 1.
If the correct cell number C has a uniform distribution, then ν(1) and hence

T̄a are the same for both the uniform and broken-center Z searches. If the
distribution of C is symmetrical about a pronounced central peak and PD ≈ 1,
then a uniform search gives ν(1) ≈ q/2. Since a broken-center Z search usually
ends almost immediately or after slightly more than q/2 tests,

ν(1) ≈ 0

(
1

2

)
+

q

2

(
1

2

)
=

q

4
(4-61)

which indicates that for large values of q and PD close to unity, the broken-
center Z search reduces T̄a by nearly a factor of 2 relative to its value for the
uniform search.

If C has a unimodal distribution with a distinct peak, then this feature
can be exploited by continually retesting cells with high a priori probabilities of
being the correct cell. An expanding-window search tests all cells within a radius
R1 from the center. If the correct cell is not found, then tests are performed
on all cells within an increased radius R2. The radius is increased successively
until the boundaries of the timing uncertainty are reached. The expanding-
window search then becomes a Z search. If the rewinding time is negligible and
C is centrally peaked, then the broken-center search of Fig. 4.9a is preferable to
the continuous-center search of Fig. 4.9b because the latter retests cells before
testing all the cells near the center of the timing uncertainty.

In an equiexpanding search, the radii have the form

Rn =
nq

2N
, n = 1, 2, . . . , N (4-62)
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Figure 4.9: Trajectories of expanding-window search positions: (a) broken-
center and (b) continuous-center search

where N is the number of sweeps before the search becomes a Z search. If the
rewinding time is negligible, then it can be shown [41] that the broken-center
equiexpanding-window search is optimized for PD ≤ 0.8 by choosing N = 2.
For this optimized search, T̄a is moderately reduced relative to its value for the
broken-center Z search.

When Tr(i, j) = 0 and PD = 1, the optimal search, which is called a uniform
alternating search, tests the cells in order of decreasing a priori probability. For
a symmetric, unimodal, centrally peaked distribution of C, this optimal search
has the trajectory depicted in Fig. 4.10a. Once all the cells in the timing uncer-
tainty have been tested, the search repeats the same pattern. Equations (4-57)
and (4-59) are applicable. If PD ≈ 1, Tr(i, j) � T̄11, and the distribution of C
has a pronounced central peak, then ν(1) is small, and the uniform alternating
search has a significant advantage over the broken-center expanding-window
search. However, computations show that this advantage dissipates as PD de-
creases [56], which occurs because all cells are tested once a detection fails.

In the nonuniform alternating search, illustrated in Fig. 4.10b, a uniform
search is performed until a radius R1 is reached. Then a second uniform search
is performed within a larger radius R2. This process continues until the bound-
aries of the timing uncertainty are reached and the search becomes a uniform
alternating search. Computations show that for a centrally peaked distribution
of C, the nonuniform alternating search can give a significant improvement over
the uniform alternating search if PD < 0.8, and the radii Rn, n = 1, 2, . . ., are
optimized [41]. However, if the radii are optimized for PD < 1, then as PD → 1
the nonuniform search becomes inferior to the uniform search.

Density of the Acquisition Time

Let Sn = X1+X2+. . .+Xn denote the sum of n independent random variables,
and let gi (t) , 1 ≤ i ≤ n, denote the density of Xi. From elementary probability
theory, it follows that the density of Sn is equal to the n-fold convolution gi (t) =
g1 (t)∗g2 (t)∗. . .∗gni (t) , where the asterisk ∗ denotes the convolution operation
(Appendix C.1).
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Figure 4.10: Trajectories of alternating search positions: (a) uniform search
and (b) nonuniform search

The density of Ta, which is needed to accurately calculate P [Ta ≤ Tmax]
and other probabilities, may be decomposed as

fa(t) = PD

∞∑
i=1

(1− PD)
i−1

q∑
j=1

πjfa(t|i, j) (4-63)

where fa(t|i, j) is the conditional density of Ta given that L = i and C = j. Let
[f(t)]∗n denote the n-fold convolution of the density f(t) with itself, [f(t)]∗0 = 1,
and [f(t)]∗1 = f(t). Using this notation, we obtain

fa(t|i, j) = [f11(t)]
∗ν(i,j) ∗ [f12(t)]∗(i−1) ∗ [f22(t)] (4-64)

where f11(t), f12(t), and f22(t) are the densities associated with T11, T12, and
T22, respectively. If one of the decision times is a constant, then the associated
density is a delta function.

The exact evaluation of fa(t) is complicated [64], but an approximation
usually suffices. Since the acquisition time conditioned on L = i and C = j
is the sum of independent random variables, it is reasonable to approximate
fa(t|i, j) by a truncated Gaussian density with mean

μij = ν(i, j)T̄11 + (i− 1)T̄12 + T̄22 + Tr(i) (4-65)

and variance

σ2
ij = ν(i, j)var (T11) + (i− 1)var (T12) + var (T22) . (4-66)

The truncation is such that fa(t|i, j) �= 0 only if 0 ≤ t ≤ μij + 3σij . When PD

is large, the infinite series in (4-63) converges rapidly enough that the fa(t) can
be accurately approximated by its first few terms.

Alternative Analysis

An alternative method of analyzing acquisition relies on transfer functions [69].
Each phase offset of the local code defines a state of the system. Of the total
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Figure 4.11: Circular state diagram for serial-search acquisition

number of q states, q− 1 are states that correspond to offsets (cells) that equal
or exceed a chip duration. One state is a collective state that corresponds to all
phase offsets that are less than a chip duration and hence cause acquisition to
be terminated and timing tracking to begin. The rewinding time is assumed to
be negligible. The serial-search acquisition process is represented by its circular
state diagram, a segment of which is illustrated in Fig. 4.11.

The branch labels between two states are transfer functions that contain
information about the delays that may occur during the transition between the
two states. Let z denote the unit-delay variable, and let the power of z denote
the time delay. A single-dwell system with dwell τ , false-alarm probability
PF , and constant penalty time Tp has transfer function H0(z) = (1− PF ) z

τ +
PF z

τ+Tp for all branches that do not originate in collective state q because the
transition delay is τ with probability 1− PF and τ + Tp with probability PF .

For a multiple-dwell system, H0(z) is determined by first drawing a sub-
sidiary state diagram representing intermediate states and transitions that may
occur as the system progresses from one state to the next one in the original
circular state diagram. For example, Fig. 4.12 illustrates the subsidiary state
diagram for a consecutive-count double-dwell system with false alarms PF1 and
PF2 and delays τ1 and τ2 for the initial test and the verification test, respec-
tively. Examination of all possible paths between the initial state and the next
state indicates that

H0(z) = (1− PF1) z
τ1 + PF1z

τ1
[
(1− PF2) z

τ2 + PF2z
τ2+TP

]
= (1− PF1) z

τ1 + PF1 (1− PF2) z
τ1+τ2 + PF1PF2z

τ1+τ2+Tp . (4-67)

LetHD(z) denote the transfer function between the collective state q and the
lock mode. Let HM (z) denote the transfer function between state q and state
1 in Fig. 4.11, which represents the failure to recognize code-phase offsets that
are less than a chip duration. These transfer functions may be derived in the
same manner as H0(z). For example, consider a consecutive-count double-dwell
system with a collective state that comprises two states. Figure 4.13 depicts
the subsidiary state diagram representing intermediate states and transitions
that may occur as the system progresses from state q (with subsidiary states
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Figure 4.12: Subsidiary state diagram for determination of H0(z) for
consecutive-count double-dwell system

a and b) to either the lock mode or state 1. Examination of all possible paths
yields

HD(z) = Pa1Pa2z
τ1+τ2 + Pa1 (1− Pa2)Pb1Pb2z

2τ1+2τ2

+ (1− Pa1)Pb1Pb2z
2τ1+τ2 (4-68)

HM (z) = (1− Pa1) (1− Pb1) z
2τ1 + (1− Pa1)Pb1 (1− Pb2) z

2τ1+τ2

+ Pa1 (1− Pa2) (1− Pb1) z
2τ1+τ2

+ Pa1 (1− Pa2)Pb1 (1− Pb2) z
2τ1+2τ2 . (4-69)

For a single-dwell system with a collective state that comprises N states,

HD(z) = P1z
τ +

N∑
j=2

Pj

[
j−1∏
i=1

(1− Pj)

]
zjτ (4-70)

HM (z) =

⎡
⎣ N∏
j=1

(1− Pj)

⎤
⎦ zNτ (4-71)

H0(z) = (1− PF ) z
τ + PF z

τ+Tp (4-72)

where τ is the dwell time, PF is the false-alarm probability, and Pj is the
detection probability of state j within the collective state.

To calculate the statistics of the acquisition time, we seek the generating
function of the acquisition time defined as the series

H(z) =

∞∑
i=0

pi (τi) z
τi (4-73)
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Figure 4.13: Subsidiary state diagram for calculation of HD(z) and HM (z) for
consecutive-count double-dwell system with two-state collective state

where pi(τi) is the probability that the acquisition process will terminate in the
lock mode after τi seconds. Since the probability that the lock mode is reached
is equal to or less than unity, H(1) ≤ 1 and H(z) converges at least for |z| ≤ 1.
If H(z) is known, then a direct differentiation of (4-73) indicates that

dH(z)

dz
=

∞∑
i=0

τipi(τi)z
τi−1. (4-74)

Therefore, the mean acquisition time is

T̄a =

∞∑
i=0

τipi(τi) =
dH(z)

dz

∣∣∣∣
z=1

. (4-75)

Similarly, the second derivative of H(z) gives

d2H(z)

dz2

∣∣∣∣
z=1

=

∞∑
i=0

τi (τi − 1) pi (τi) = T 2
a − T̄a. (4-76)

Therefore, the variance of the acquisition time is

σ2
a =

{
d2H(z)

dz2
+

dH(z)

dz
−
[
dH(z)

dz

]2}∣∣∣∣∣
z=1

. (4-77)

To derive H(z), we observe that it may be expressed as

H(z) =

q∑
j=1

βjHj(z) (4-78)
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where βj , j = 1, 2, . . . , q, is the a priori probability that the search begins
in state j, and Hj(z) is the transfer function from an initial state j to the
lock mode. Since the circular state diagram of Fig. 4.11 may be traversed an
indefinite number of times during the acquisition process,

Hj(z) = Hq−j
0 (z)HD(z)

∞∑
i=0

[
HM (z)Hq−1

0 (z)
]i

=
Hq−j

0 (z)HD(z)

1−HM (z)Hq−1
0 (z)

. (4-79)

Substitution of this equation into (4-78) yields

H(z) =
HD(z)

1−HM (z)Hq−1
0 (z)

q∑
j=1

βjH
q−j
0 (z). (4-80)

For the uniform a priori distribution βj =
1
q , 1 ≤ j ≤ q,

H(z) =
HD(z) [1−Hq

0 (z)]

q
[
1−HM (z)Hq−1

0 (z)
]
[1−H0(z)]

. (4-81)

Since the progression from one state to another is inevitable until the lock mode
is reached, H0(1) = 1. Since HD(1) +HM (1) = 1, (4-80) and (4-75) yield

T̄a =
1

HD(1)

{
H ′

D(1) +H ′
M (1) + (q − 1)H ′

0(1)

[
1− HD(1)

2

]}
(4-82)

where the prime indicates differentiation with respect to z. As an example,
consider a single-dwell system with a two-state collective state. The evaluation
of (4-82) using (4-70) to (4-72) with N = 2 yields (4-42) with Tr = 0 if we set
P1 = Pa, P2 = Pb, Tp = T̄p, and τ = τd and define PD by (4-36).

The presence of the multipath signals may be exploited by using a noncon-
secutive serial search, which can be shown to provide a lower mean acquisition
time than the conventional serial search in which cells are tested serially [30, 93].
The cost is increased computational complexity.

4.4 Acquisition Correlator

An acquisition correlator must correctly identify the autocorrelation peaks and
be impervious to the autocorrelation sidelobes. The noncoherent acquisition
correlator in Fig. 4.5 has the form depicted in Fig. 4.14. The sequences {xk}
and {yk} are obtained by in-phase and quadrature downconversions followed by
chip-matched filters sampled at times t = kTc. The dwell time or duration of
the test interval is MTc, where M is the number of chip-matched filter output
samples that are summed, and Tc is the chip duration. The decision variable for
one test of a specific code phase is applied to a threshold detector and compared
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Figure 4.14: Noncoherent acquisition correlator. CMG=chip-matched filter;
SSG= spreading-sequence generator; ADC=analog-to-digital converter

with a threshold. If the threshold is exceeded, then the particular code phase
being tested is accepted as the correct one. As indicated by the figure, the
decision variable is proportional to the sum of the outputs of the squarers in
the upper and lower branches, respectively.

The acquisition correlator could be used for acquisition when the direct-
sequence signal has either BPSK or QPSK modulation. For BPSK and the
AWGN channel, we assume that the received signal is

r(t) =
√
2GEcp(t− τ) cos(2πfct+ θ) + n(t) (4-83)

where Ec is the energy per chip, G is the spreading factor, fc is the carrier
frequency, θ is the random carrier phase, τ is the delay due to the unknown
code phase, and n(t) is zero-mean, white Gaussian noise with two-sided PSD
equal to N0/2. The random carrier phase is present because the acquisition
correlator processes the received signal prior to carrier synchronization.

During the acquisition interval, the spreading waveform has the form:

p(t) =

M∑
i=0

piψ(t− iTc), 0 ≤ t ≤ MTc (4-84)

where pi is equal to +1 or −1 and represents one chip of a spreading sequence
{pi}. The chip waveform is normalized so that

∫ Tc

0

ψ2(t)dt =
1

G
. (4-85)

With this normalization, an integration over a chip interval indicates that Ec
is the energy per chip assuming that fcTc � 1 so that the integral over a
double-frequency term is negligible. The data modulation d(t) is omitted in
(4-83) because pilot symbols with known data bits are generally transmitted
during acquisition, and the modeling of {pi} is unaffected. We assume an ideal
downconversion by the quadrature downconverter.

If the local spreading sequence produced by the spreading-sequence gen-
erator is delayed by ν chips relative to an arbitrary time origin, where ν is
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an integer, then the test interval begins with chip −ν of the local spreading
sequence. When a cell is tested, the despreading produces the inner products

Vc =

M−1∑
k=0

pk−νxk, Vs =

M−1∑
k=0

pk−νyk (4-86)

where

xk =

√
2G

N0

∫ (k+1)Tc

kTc

r(t)ψ (t− kTc) cos 2πfct dt (4-87)

yk =

√
2G

N0

∫ (k+1)Tc

kTc

r(t)ψ (t− kTc) sin 2πfct dt (4-88)

and the constant multipliers are for mathematical convenience.
The delay τ may be expressed in the form τ = νTc −NTc − εTc, where N

is an integer and 0 ≤ ε < 1. For a rectangular chip waveform, the preceding
equations, fcTc � 1, and the definition of chip ν yield

Vc = g(ε) cos θ +Nc (4-89)

Vs = −g(ε) sin θ +Ns (4-90)

where

g(ε) =

√
Ec
N0

M−1∑
k=0

pk−ν [(1− ε) pk−ν+N + εpk−ν+N+1] (4-91)

Nc =

√
2G

N0

M−1∑
k=0

pk−ν

∫ (k+1)Tc

kTc

n(t)ψ (t− kTc) cos 2πfct dt (4-92)

Ns =

√
2G

N0

M−1∑
k=0

pk−ν

∫ (k+1)Tc

kTc

n(t)ψ (t− kTc) sin 2πfct dt. (4-93)

The alignment of the received and local spreading sequences is often close
enough for acquisition if N = −1 or N = 0. If N �= −1, 0, then the cell is
considered incorrect.

The decision variable is

V = V 2
c + V 2

s

= N2
t + g2 (ε) +K (4-94)

where

N2
t = N2

c +N2
s (4-95)

K = Nsg(ε) cos θ −Ncg(ε) sin θ (4-96)

The decision variable is applied to a threshold detector with threshold Vt > 0,
and acquisition is declared if V > Vt.
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In the performance analysis, the spreading sequence {pk} is modeled as a
zero-mean random binary sequence with independent symbols or chips, each of
which is equal to +1 with probability 1/2 and −1 with probability 1/2. The
spreading sequence is independent of the white Gaussian noise n(t). The chip
offset ε is modeled as an independent random variable uniformly distributed
over [0, 1], and the carrier phase θ is modeled as an independent random variable
uniformly distributed over [−π, π] . Both θ and ε change from test to test.

As explained in Section 1.1 and Appendix D.2, each integral in the summa-
tions in (4-92) and (4-93) is an independent Gaussian random variable. Since
the {pk} are independent random variables and pk = +1 or −1, each term in
the summations is an independent Gaussian random variable. Therefore, both
Nc and Ns are zero-mean, jointly Gaussian random variables. Since they are
uncorrrelated, Nc and Ns are independent, and

E
[
N2

t

]
= M, var

(
N2

t

)
= M2. (4-97)

Since N2
t is the sum of the squares of two independent, zero-mean Gaussian

random variables, it has a central chi-squared distribution with two degrees of
freedom (Appendix C.2). The distribution is

Fn(x) ≈
[
1− exp

(
− x

M

)]
u(x) (4-98)

where u(x) is the unit step function defined by (1-69).
When calculating the probability P (X + Y > z) for the random variables

X and Y subsequently, we make the approximation

P (X + Y > z) = P ({X + E [Y ]}+ {Y − E [Y ]} > z)

≈ P (X + E[Y ] > z) (4-99)

which is based on the assumption that Y − E [Y ] has a minor effect on the
distribution of X + E[Y ] if

var(Y ) � var (X) . (4-100)

This approximation implies that we set

X + Y ≈ X + E [Y ] (4-101)

when calculating P (X + Y > z).
We define

R =
Ec
N0

(4-102)

and assume that
1

3
> R � 8

M
, M ≥ 200. (4-103)

Assume that N �= −1, 0 and an incorrect cell is tested. Then g(ε) is the
sum of independent, identically distributed, zero-mean random variables. Since
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M ≥ 200, the central limit theorem (corollary A.1, Appendix A.2) indicates
that g(ε) is approximated by a Gaussian random variable. Therefore,

E
[
g2(ε)

]
=

2

3
RM, var

(
g2(ε)

)
=

8

9
R2M2, var (K) =

1

3
RM2. (4-104)

Let V0 denote the decision variable when an incorrect cell is tested. To apply
approximation (4-101), let X = N2

t and Y = g2(ε) +K. Substituting (4-104)
and (4-103), we find that the requirement (4-100) is sufficiently satisfied. There-
fore, (4-101) yields

V0 ≈ 2

3
RM +N2

t . (4-105)

Since N2
t has the distribution (4-98), the distribution of V0 is

F0(x) ≈
[
1− exp

(
−x− 2RM/3

M

)]
u(x). (4-106)

A false alarm occurs if V0 > Vt. Therefore, the false-alarm probability Pf

for a test of an incorrect cell is

Pf ≈ exp

(
−Vt − 2RM/3

M

)
(4-107)

and the threshold required to realize a specified Pf is

Vt ≈
2

3
RM −M lnPf . (4-108)

Assume that the correct cell is tested, and hence N = −1 or 0. We derive
the detection probability under the condition that N = −1. Since the detec-
tion probability is the same given that N = 0, the unconditional detection
probability is the same. Assuming that N = −1, we have

g (ε) =
√
R [Mε+ (1− ε)U ] (4-109)

where the random variable

U =

M−1∑
k=0

pk−νpk−ν−1 (4-110)

is the sum of independent, identically distributed, zero-mean random variables.
Since M ≥ 200, the central limit theorem indicates that U is approximated by
a Gaussian random variable. Therefore,

E
[
U2
]
= M, var

(
U2
)
= 2M2. (4-111)

Let V1 denote the decision variable when the correct cell is tested. Then
V1 = X + Y, where

X = N2
t +RM2ε2 (4-112)
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and
Y = 2

√
RMε (1− ε)U +R (1− ε)

2
U2 +K. (4-113)

Applying (4-104) and (4-103), we find that the requirement (4-100) is sufficiently
satisfied. Therefore, (4-101) and (4-111) yield

V1 ≈ N2
t +RM2ε2 +

1

3
RM. (4-114)

The detection probability Pd for a test of a correct cell is the probability
that V1 > Vt, where Vt is given by (4-108). The distribution of the first term
in (4-114) is given by (4-98). The distribution of the final two terms is

F1 (x) =

⎧⎪⎨
⎪⎩

0, x ≤ 1
3RM√

x−RM/3
RM2 , 1

3RM ≤ x ≤ RM2 + 1
3RM

1, x ≥ RM2 + 1
3RM.

(4-115)

The detection probability is

Pd ≈ 1−
∫ ∞

0

F1 (Vt − x) dFn (x) . (4-116)

The substitution of (4-98) and (4-115) into (4-116) yields

Pd ≈ exp
(
− a

M

)
− 1√

RM2

∫ Vt−RM/3

a

√
Vt −RM/3− x exp

(
− x

M

)
dx

a = max(0, Vt −RM2 − 1

3
RM) (4-117)

which is easily evaluated numerically. A notable attribute of the equation is its
lack of dependence on the spreading factor G. The reason is that the spectral
spreading has no effect on white Gaussian noise. In the presence of other types
of interference, we can expect a significant dependence.

In an implementation of the acquisition correlator, the normalizations in (4-87)
and (4-88) require the estimation of N0, which may be obtained by using a ra-
diometer (Section 10.2). In the presence of rapidly varying interference power,
an adaptive threshold may be set by estimating the instantaneous received
power for each correlation interval prior to acquisition. As a result, the mean
acquisition time is less degraded by pulsed interference [19].

The presence of either data bits or an uncompensated Doppler shift during
acquisition degrades performance. If data bits {dn} are present, then pk−ν in
(4-86) and (4-91) is replaced by dnpk−ν . Although a data bit has a transition
to a new value at most once every G chips, a data-bit transition in (4-91) can
cause cancelations that reduce g(ε) when a correct cell is tested. If the residual
frequency offset due to the Doppler shift is fe, then θ = θ1 + 2πfet in (4-89)
and (4-90), and feMTc � 1 is required to prevent a large increase in the mean
acquisition time.

An alternative to the noncoherent acquisition correlator is the differentially
coherent acquisition correlator, which potentially provides superior performance
[121]. However, the noncoherent correlator is generally preferred because it is
simpler to implement and more robust.
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4.5 Performance of Serial-Search Acquisition

In this section, the results of the two preceding sections are applied to two
specific examples of serial-search acquisition.

The step size Δ of the serial search is the separation in chips between cells.
When Δ = 1/2, the two consecutive cells that correspond to N = −1 and N = 0
are considered the two correct cells out of the q in the timing uncertainty region.
When Δ = 1, it is plausible to assume that there is only one correct cell, which
corresponds to either N = −1 or N = 0. Let Cu denote the number of chip
durations in the timing uncertainty. The normalized mean acquisition time
(NMAT) is defined as T̄a/CuTc. The normalized standard deviation (NSD) is
defined as σa/CuTc. For step size Δ = 1, q = Cu; for Δ = 1/2, q = 2Cu.

Example 1. As an example of the application of the preceding results,
consider a single-dwell system with a uniform search and a uniform a priori
correct-cell location distribution. Let τd = MTc, where M is the number of
chips per dwell time, and T̄p = KTc, where K = 104 is the number of chip
durations in the mean penalty time. For Δ = 1/2, we assume that there are two
independent correct cells with the common detection probability Pd = Pa = Pb.
If q � 1, (4-42) and (4-36) yield the NMAT:

NMAT =

(
2− PD

2PD

)
q

Cu
(M +KPF ) (4-118)

where
PD = 2Pd − P 2

d , Δ = 1/2. (4-119)

For Δ = 1, we assume that there is one correct cell so that

PD = Pd, Δ = 1. (4-120)

In a single-dwell system, PF = Pf . Equations (4-107) and (4-117) provide Pf

and Pd.
Figure 4.15 shows the NMAT as a function of Ec/N0 for the design choices

Pf = 0.001, M = 200 and Pf = 0.01, M = 400. It is observed that the relative
effectiveness of these two pairs depends on R = Ec/N0. Also shown in the
figure is the minimum NMAT that is obtained if the optimal choices of Pf

and M are made at each value of Ec/N0. The minimization of the NMAT is
calculated with the constraint that M ≥ 200. To implement the optimal choice
of Pf and M at the receiver would require the accurate measurement of Ec/N0.
The figure indicates the slight advantage of Δ = 1 in a single-dwell system.
From (4-35), it is found that each plot of the NSD has a shape similar to that
of the corresponding NMAT plot.

The potential impact of fading is considerable. For example, suppose that
Ec/N0 = −4 dB in the absence of fading, but 10 dB of adverse fading causes
Ec/N0 = −14 dB during acquisition. Then the figure indicates that the NMAT
increases by a large factor relative to its value in the absence of fading.�

Example 2. Consider double-dwell systems with a uniform search, a
uniform a priori correct-cell location distribution, Δ = 1/2, K = 104, and two
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Figure 4.15: NMAT versus Ec/N0 for single-dwell system with K = 104 in the
absence of fading. Three design choices of Pf and M are illustrated

independent correct cells with Pd = Pa = Pb, Pa1 = Pb1, and Pa2 = Pb2. The
dwell times are τ1 = M1Tc and τ2 = M2Tc. If q � 1, the NMAT is obtained
from (4-34) and (4-119), where T̄11 is given by (4-38) for a consecutive-count
system and (4-47) for an up–down system. Since q/Cu = 2, a consecutive-count
system has

NMAT =

(
2− 2Pd + P 2

d

2Pd − P 2
d

)
[M1 + PF1 (M2 + PF2K)] (4-121)

and an up–down system has

NMAT =

(
2− 2Pd + P 2

d

2Pd − P 2
d

)[
M1 + PF1 (M2 + PF2K)

1− PF1 (1− PF2)

]
. (4-122)

By replacing Pd with Pai, Pf with PFi, and M with Mi, the probabilities Pai

and PFi, i = 1 or 2, are related through (4-117) and (4-107). Equation (4-37)
implies that a consecutive-count system has

Pd = Pa1Pa2 (consecutive-count) (4-123)

and (4-44) and (4-45) imply that an up–down system has

Pd =
Pa1Pa2

1− Pa1 (1− Pa2)
(up–down). (4-124)

Figure 4.16 shows the NMAT as a function of Ec/N0 for double-dwell sys-
tems with the design choices PF1 = 0.01, PF2 = 0.1,M1 = 200, and M2 = 1500.
The step size is Δ = 1/2, which is found to be slightly advantageous in typical
double-dwell systems. Also shown in the figure is the minimum NMAT that is
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Figure 4.16: NMAT versus Ec/N0 for double-dwell systems with K = 104 in
the absence of fading. Step size is Δ = 1/2. Two design choices PF1, PF2, M1,
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obtained if the optimal choices of PF1, PF2, M1, and M2 are made at each value
ofR = Ec/N0. The minimization of the NMAT is calculated with the constraints
that M1, M2≥ 200. To implement the optimal choices at the receiver would
require the accurate measurement of Ec/N0. The figure illustrates the slight
advantage of the up–down system in most practical applications. From (4-35),
it is found that each plot of the NSD has a shape similar to that of the corre-
sponding NMAT plot. A comparison of Fig. 4.16 with Fig. 4.15 indicates that
double-dwell systems are capable of lowering the NMAT relative to single-dwell
systems. �

The NMAT may be reduced by nearly the factor η if the sequences {xk}
and {yk} are applied to η parallel computations of decision variables. In each
computation, a different delay of the spreading-sequence generator output is
used, and the delays are separated by multiples of the chip duration. This pro-
cedure allows a parallel search of various code phases with a moderate amount
of additional hardware or software.

The downlinks of cellular networks require special methods of timing acqui-
sition that differ significantly from the methods used for point-to-point com-
munications. These methods are presented in Section 8.3.
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4.6 Sequential Acquisition

The acquisition correlator of Section 4.4, which supports single-dwell or multiple-
dwell serial-search acquisition systems, provides tests of fixed dwell times based
on fixed numbers of chip-matched filter output samples. An alternative strat-
egy for acquisition is sequential acquisition [99], which is a type of serial-search
acquisition that uses only the number of samples necessary for reliable deci-
sions. Thus, some sample sequences may allow a quick decision, whereas others
may warrant using a large number of samples in the evaluation of a single cell
or code phase of the spreading waveform. Sequential acquisition is based on
the sequential probability-ratio test [49], which minimizes the average detection
time for specified error probabilities when the samples are independent and
identically distributed.

The principal components of a sequential acquisition system are diagrammed
in Fig. 4.17. To determine whether a cell passes a test, classical detection theory
requires that one choose between the hypothesis H1 that the cell is correct and
the hypothesis H0 that the cell is incorrect. Let V (n) = [V1 V2 . . . Vn ] denote
n consecutive output samples. Let f(V (n) |Hi) denote the conditional density
of V (n) given hypothesis Hi, i= 0, 1. The sequential probability-ratio test
recalculates the log-likelihood ratio

Λ [V (n)] = ln
f(V (n) |H1)

f(V (n) |H0)
(4-125)

after each new acquisition-correlator output is produced during the testing of
a cell. The log-likelihood ratio, or a function of it, is compared with both the
upper and lower thresholds to determine if the test is terminated and no more
outputs need to be extracted for the cell being tested. If the upper threshold
is exceeded, the receiver declares acquisition, and the lock mode is entered.
If Λ [V (n)] drops below the lower threshold, the test fails, and the testing of
another cell begins. As long as Λ [V (n)] lies between the two thresholds, a
decision is postponed, another correlator output for the same cell is observed,

Likelihood-ratio
computer

Voltage-
controlled clock

Spreading-
sequence 
generator

Sequential-
detection logic

Acquisition 
correlator

Search control

Input

From tracking system
To tracking system 
and demodulator

Figure 4.17: Sequential acquisition system
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and Λ [V (n+ 1)] is computed. A truncation procedure that forces a decision
after a maximum number of outputs prevents an excessive number of tests for
a single cell when many ambiguous observations are encountered.

Although sequential acquisition is capable of significantly reducing the mean
acquisition time relative to acquisition systems that use a fixed dwell time for
each decision, it presents a number of practical problems that have limited its
use. Chief among them is the computational complexity of repeatedly calcu-
lating the log-likelihood ratio, particularly when the {Vn} are not independent
and identically distributed. Another problem arises when the desired-signal
components of the {Vn} for correct cells are significantly less than expected.
In that case, the sequential detector may increase the mean acquisition time
relative to that required by acquisition systems with fixed dwell times.

4.7 Tracking

The noncoherent tracking of the timing occurs while the data symbols are re-
ceived. Assuming that frequency synchronization has been established, the
desired signal is

s(t,θ) =
√
2Es/Tsd (t) p(t− τ) cos (2πfct+ φ) , 0 ≤ t ≤ T (4-126)

where d (t) is the data sequence, Es is the energy per symbol, Ts is the symbol
duration, and fc is the carrier frequency. The sufficient statistic of (4-9) becomes

V (τ) =

[∫ T

0

r(t)d (t− τ) p(t− τ) cos (2πfc1t) dt

]2

+

[∫ T

0

r(t)d (t− τ) p(t− τ) sin (2πfc1t) dt

]2
. (4-127)

Since V (τ) may not be a differentiable function of τ , the maximum-likelihood
estimator of τ is approximated by

τ̂ = argmin
τ

|V (τ + δTc)− V (τ − δTc)| , δ ≤ 1. (4-128)

The two principal means of approximately realizing this estimator are the delay-
locked loop and the tau-dither loop.

Delay-Locked Loop

The noncoherent delay-locked loop implements an approximate computation
of (4-128) by continually adjusting τ̂ so that it remains near the correct value.
This fine adjustment establishes or maintains an accurately synchronized local
spreading sequence that is used for despreading the received direct-sequence
signal.
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Figure 4.18: Delay-locked loop

The delay-locked loop, which is diagrammed in Fig. 4.18, has a spreading-
sequence generator that produces three synchronous sequences, one of which
is the reference sequence used for demodulation. The other two sequences are
advanced and delayed, respectively, by δTc relative to the reference sequence.
Although usually δ = 1/2, other values such that δ ∈ (0, 1) are plausible. The
advanced and delayed sequences modulate spreading waveforms. The direct-
sequence signal, after downconversion to a suitable intermediate frequency, mul-
tiplies the advanced and delayed spreading waveforms in two separate branches.

In the subsequent analysis, the processing of the downconverted direct-
sequence signal and the noise are treated separately for clarity. For the direct-
sequence signal (4-126) downconverted to intermediate frequency f1, the desired-
signal portion of the upper-branch mixer output is

su1(t) = Ad(t)p(t)p (t+ δTc − εTc) cos(2πf1t+ θ ) (4-129)

where εTc is the delay of the reference sequence relative to the received sequence,
θ is the phase offset, and

A =

√
2Es
Ts

. (4-130)

Although ε is a function of time because of the loop dynamics, it is slowly
varying and hence is treated as a constant in the subsequent analysis. Similarly,
the desired-signal portion of the lower-branch mixer output is

sl1(t) = Ad(t)p(t)p (t− δTc − εTc) cos(2πf1t+ θ ). (4-131)

Each bandpass filter has the impulse response

h0 (t) =
2

T0
[u (t)− u (t− T0)] cos (2πf1t) (4-132)

where u (t) is the unit step function, and the intermediate frequency is chosen
to satisfy the condition

f1T0 � 1. (4-133)
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After discarding a term that is negligible under condition (4-133), the response
of the filter to su1 (t) is approximately

[
A

T0

∫ t

t−T0

d(x)p(x)p (x+ δTc − εTc) dx

]
cos(2πf1t+ θ) (4-134)

where the integral does time averaging over an interval of duration T0.
By choosing

Tc � T0 � Ts (4-135)

the filter does time averaging over an interval short enough that d (t) , which
has symbol duration Ts, is unlikely to change its value, but long enough that
most of the spectral components of the much more rapidly varying products
p(t)p(t± δTc − εTc) are suppressed except for the slowly varying time averages.
Therefore, after a similar calculation of the filter response to sl2(t), we conclude
that the desired components of the upper-branch and lower-branch filter outputs
are

su2(t) ≈ Ad(t)R1 cos (2πf1t+ θ) (4-136)

sl2(t) ≈ Ad(t)R2 cos (2πf1t+ θ) (4-137)

respectively, where

R1 =
1

T0

∫ t

t−T0

p(x)p (x+ δTc − εTc) dx (4-138)

R2 =
1

T0

∫ t

t−T0

p(x)p (x− δTc − εTc) dx. (4-139)

Both su2(t) and sl2(t) are accompanied by residual undesired spectral compo-
nents that are suppressed downstream by the loop filter.

Since d2(t) = 1, the square-law devices remove the data modulation. The
devices generate double-frequency components near 2f1, but these components
are ultimately mostly suppressed by the loop filter and thus are negligible. The
difference between the outputs of the two branches is the error signal :

se(t) ≈
A2

2
[R

2

1 −R
2

2] (4-140)

which is applied to the loop filter. Since se(t) is slowly varying (due to ε), the
loop-filter output, which controls the VCC, has a signal component approxi-
mately equal to se(t).

To calculate se(t), we model the spreading waveform as a wide-sense-stationary
binary random process. Then the time averages R1 and R2 are unbiased esti-
mators of autocorrelations. Applying (2-10), we obtain the approximations

R1 ≈ E
[
R1

]
= Λ(δ − ε) (4-141)

R2 ≈ E
[
R2

]
= Λ(δ + ε) . (4-142)
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The substitution of (4-141) and (4-142) into (4-140) yields

se(t) ≈
A2

2
S(ε, δ) (4-143)

where S(ε, δ) is the discriminator characteristic or S-curve of the tracking loop.
For δ ≥ 0,

S(ε, δ) =

⎧⎪⎪⎨
⎪⎪⎩

−2 (|δ − ε| − |δ + ε|+ 2δε) , |δ − ε| ≤ 1, |δ + ε| ≤ 1
(1− |δ − ε|)2, |δ − ε| ≤ 1, |δ + ε| > 1
−(1− |δ + ε|)2, |δ − ε| > 1, |δ + ε| ≤ 1

0, otherwise

(4-144)

which indicates that

S(−ε, δ) = −S(ε, δ), S(0, δ) = 0. (4-145)

If 0 ≤ δ ≤ 1/2,

S(ε, δ) =

⎧⎪⎪⎨
⎪⎪⎩

4ε(1− δ), 0 ≤ ε ≤ δ
4δ(1− ε), δ ≤ ε ≤ 1− δ

1 + (ε− δ)(ε− δ − 2), 1− δ ≤ ε ≤ 1 + δ
0, 1 + δ ≤ ε

(4-146)

and if 1/2 ≤ δ ≤ 1,

S(ε, δ) =

⎧⎪⎪⎨
⎪⎪⎩

4ε(1− δ), 0 ≤ ε ≤ 1− δ
1 + (ε− δ)(ε− δ + 2), 1− δ ≤ ε ≤ δ
1 + (ε− δ)(ε− δ − 2), δ ≤ ε ≤ 1 + δ

0, 1 + δ ≤ ε.

(4-147)

Figure 4.19 illustrates the discriminator characteristic for δ = 1/2.
As shown in Fig. 4.18, the filtered error signal se(t) is applied to the voltage-

controlled clock (VCC), which generates timing pulses at the clock rate for
the three spreading sequences. The error signal causes the VCC to change the
clock rate in such a way that the reference spreading sequence converges toward
alignment with the received spreading sequence. As illustrated in Fig. 4.19 for
δ = 1/2, S(ε, δ) is positive when the reference sequence is delayed relative to
the received sequence and 0 < ε(t) < 1.5. The positive error signal increases
the clock rate, and hence ε(t) decreases. The figure indicates that se(t) → 0 as
ε(t) → 0. Similarly, when −1.5 < ε(t) < 0, we find that se(t) → 0 as ε(t) → 0.
Thus, the delay-locked loop tracks the received spreading-sequence timing once
the acquisition system has finished the coarse alignment.

The discriminator characteristic of a tracking loop has the appropriate form
for tracking only over a finite range of ε(t). Outside that range, timing tracking
cannot be sustained, the synchronization system loses lock, and a reacquisition
search is initiated by the lock detector. Tracking resumes once the acquisition
system reduces ε(t) to within the range for which the discriminator character-
istic leads to a reduction of ε(t).
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Figure 4.19: Discriminator characteristic of delay-locked loop for δ = 1/2

The noise at the input to the VCC causes a distortion of the ideal discrimi-
nator characteristic displayed in Fig. 4.19. To determine the noise that accom-
panies the error signal, we first assume that white Gaussian noise n (t) with
two-sided PSD N0/2 enters both the upper-branch and lower-branch mixers of
the delay-locked loop. The noise outputs of the upper-branch and lower-branch
mixers are

nu1 (t) = n (t) p (t+ δTc − εTc) (4-148)

nl1 (t) = n (t) p (t− δTc − εTc) , (4-149)

respectively. Both nu1 (t) and nl1 (t) remain zero-mean Gaussian and white
with PSD N0/2.

The upper-branch and lower-branch zero-mean Gaussian noise outputs of
the bandpass filters are denoted by nu2 (t) and nl2 (t), respectively. We assume
that the hardware and the processing in the upper and lower branches are
sufficiently similar that nu2 (t) and nl2 (t) are independent random processes but
have the same autocorrelation. Since nu1 (t) and nl1 (t) are white noises and the
impulse response of the bandpass filters is given by (4-132), the autocorrelation
of both nu2 (t) and nl2 (t) is

Rb (τ) =
N0

2

∫ ∞

−∞
h (x)h (x+ τ) dx

≈ N0

T0
Λ

(
τ

T0

)
cos (2πf1τ) (4-150)

where a negligible term has been discarded under condition (4-133).
In the upper and lower branches, the squaring devices produce noise outputs

nu3 (t) = n2
u2 (t) + 2nu2 (t) su2(t) (4-151)

nl3 (t) = n2
l2 (t) + 2nl2 (t) sl2(t) (4-152)
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respectively. After substituting (4-136) and (4-137), we find that the noise input
to the loop filter is

n4 (t) = nu3 (t)− nl3 (t)

= z (t) + y (t) (4-153)

where

z (t) = n2
u2 (t)− n2

l2 (t) (4-154)

y (t) = 2Ad(t)[R1nu2 (t)−R2nl2 (t)] cos (2πf1t+ θ) . (4-155)

The cyclostationary process cos (2πf1t+ θ) has an average autocorrelation equal
to cos (2πf1τ) /2. We model d(t) as a random binary sequence with a period Ts.
Since nu2 (t) , nl2 (t) , and d (t) are independent processes, the autocorrelation
function of y (t) is

Ry (τ) = 2A2N0

T0
(R

2

1 +R
2

2 )Λ

(
τ

Ts

)
Λ

(
τ

T0

)
cos2 (2πf1τ) . (4-156)

Applying (4-133) and Ts > T0, we obtain the PSD at frequency f = 0:

Sy (0) =

∫ ∞

−∞
Ry (τ) dτ

≈ A2N0

T0
(R

2

1 +R
2

2 )

∫ ∞

−∞
Λ

(
τ

Ts

)
Λ

(
τ

T0

)
dτ

= A2N0(R
2

1 +R
2

2 )

(
1− T0

3Ts

)
. (4-157)

The joint characteristic function of jointly Gaussian, zero-mean random vari-
ables X1 and X2 with the same variance σ2 is given by (A-14) of Appendix A.1.
Applying (C-29) of Appendix C.2, we find that

E
[
X2

1X
2
2

]
= σ4 + 2 {E [X1X2]}2 (4-158)

Since nu2 (t) is derived by filtering a Gaussian process, nu2 (t) and nu2 (t+ τ)
are jointly Gaussian, as are nl2 (t) and nl2 (t+ τ) . It follows from (4-158) and
the independence of nu2 (t) and nl2 (t) that the autocorrelation of the stationary
process z (t) is

Rz (τ) = E
[
n2
u2 (t)n

2
u2 (t+ τ)

]
+ E

[
n2
l2 (t)n

2
l2 (t+ τ)

]
− E

[
n2
u2 (t)

]
E
[
n2
l2 (t+ τ)

]
− E

[
n2
l2 (t)

]
E
[
n2
u2 (t+ τ)

]
= 4R2

b (τ) . (4-159)

The PSD at frequency f = 0 is

Sz (0) =

∫ ∞

−∞
4R2

b (τ) dτ

≈2N2
0

T 2
0

∫ ∞

−∞
Λ2

(
τ

T0

)
dτ

=
4N2

0

3T0
(4-160)

where (4-150) and condition (4-133) are applied in the second line.
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Figure 4.20: SNR at loop-filter input as function of ε for delay-locked and tau-
dither loops

The narrowband loop filter has a unity frequency response over a passband
of bandwidth WL. Therefore, the average noise power due to n4 (t) that ac-
companies the error signal at the VCC input is

Ne ≈ Sy (0)WL + Sz (0)WL

= A2N0WL

[(
R

2

1 +R
2

2

)(
1− T0

3Ts

)
+

4N0

3A2T0

]
. (4-161)

If δ = 1/2 and |ε| ≤ 1/2, then (4-143) and (4-146) indicate that the sig-
nal power applied to the VCC is A4ε2. Equations (4-141), (4-142), (4-161),
and (4-130) indicate that the SNR at the input of the VCC is

SNR ≈
(
Es
N0

)(
ε2

TsWL

)[(
ε2 +

1

4

)(
1− T0

3Ts

)
+

(
Es
N0

)−1(
Ts

3T0

)]−1

δ = 1/2, |ε| ≤ 1/2.
(4-162)

Figure 4.20 illustrates the SNR as a function of ε when Es/N0 = 16dB, Ts = 2T0,
and TW = 0.5. The SNR is low when ε is small but increases rapidly as ε
increases.
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Figure 4.21: Tau-dither loop

In the presence of a tracking error, the delay-locked-loop branch with the
larger offset relative to the correct spreading-sequence phase contributes more
noise power to the VCC input than the other branch. This disparity reduces
the slope of the discriminator characteristic and may cause a tracking offset
[11].

Tau-Dither Loop

Satisfactory performance of the noncoherent delay-locked loop depends on an
accurate matching of the gains, frequency responses, and delays of the two
input branches. The noncoherent tau-dither loop, which is a lower-complexity
alternative tracking system, is shown in Fig. 4.21. The single branch rather than
the two branches of the delay-locked loop resolves the issue of implementing two
nearly identical branches.

The dither signal D(t) is a square wave that alternates between the symbols
+1 and −1 with dither-symbol duration TD that is approximately equal to the
data-symbol duration Ts. The dither signal controls a switch that alternately
passes an advanced or delayed version of the spreading sequence. In the absence
of noise, the output of the switch can be represented by

sw(t) =

[
1 +D(t)

2

]
p (t+ δTc − εTc) +

[
1−D(t)

2

]
p (t− δTc − εTc) (4-163)

where the two factors within brackets are orthogonal functions of time that
alternate between +1 and 0, and only one of the factors is nonzero at any
instant. After downconversion of the received signal (4-126) to intermediate
frequency f1, the signal is applied to the mixer. The mixer output is

s1(t) = Ad(t)p(t)sw(t) cos(2πf1t+ θ ). (4-164)
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The bandpass filter has a center frequency f1 and an impulse response given
by (4-132). If

Tc � T0 � Ts ≈ TD, (4-165)

the bandpass filter does not significantly distort d (t) and D(t) but suppresses
most of the spectral components of the much more rapidly varying product
p(t)p(t ± δTc − εTc) except for its slowly varying time average. Thus, the
desired-signal portion of the filter output is

s2(t) ≈ Ad(t)

{[
1 +D(t)

2

]
R1 +

[
1−D(t)

2

]
R2

}
cos (2πf1t+ θ) (4-166)

where R1 and R2 are defined by (4-138) and (4-139). This signal is accompanied
by residual undesired spectral components that are blocked downstream by the
loop filter.

The signal output of the square-law device is

s3(t) ≈
A2

2

[
1 +D(t)

2

]
R

2

1 +
A2

2

[
1−D(t)

2

]
R

2

2 (4-167)

plus a double-frequency component that is blocked downstream by the loop
filter. Since D(t)[1 +D(t)] = 1 +D(t) and D(t)[1 −D(t)] = −[1 −D(t)], the
relevant signal input to the loop filter is

s4(t) ≈
A2

2

[
1 +D(t)

2

]
R

2

1 −
A2

2

[
1−D(t)

2

]
R

2

2. (4-168)

If the slow time variation of ε is ignored, then s4(t) is a rectangular wave with
the same period as D(t).

The loop filter has an impulse response

h1 (t) =
2

TL
[u (t)− u (t− TL)] (4-169)

which indicates that the filter averages its input over a time interval of duration
TL. We choose this duration so that

Tc � T0 � Ts ≤ TD � TL. (4-170)

Therefore, the desired-signal output of the loop filter is approximately equal to
the average value of s4(t). Averaging the two terms of (4-168) and using (4-141)
and (4-142), we obtain the error signal that is applied to the VCC:

s5(t) ≈
A2

4
S(ε, δ) (4-171)

where the discriminator characteristic S(ε, δ) is given by (4-145)–(4-147).
The error signal regulates the clock rate of the VCC output, which causes

the reference spreading sequence to align with the received spreading sequence.
Thus, the tau-dither loop can track the spreading-sequence timing in a manner
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similar to that of the delay-locked loop, but with less hardware than the delay-
locked loop and no need to balance the gains and delays in two branches.

The white Gaussian noise at the input to the mixer remains white Gaussian
noise at its output, and the bandlimited noise n2(t) in the output of the band-
pass filter remains Gaussian. If the impulse response of the bandpass filter is
given by (4-132), then the calculation in (4-150) indicates that the autocorre-
lation of n2(t) is

Rn2 (τ) ≈
N0

T0
Λ

(
τ

T0

)
cos (2πf1τ) . (4-172)

The noise in the output of the square-law device is n3(t) = n2
2(t) + 2n2(t)s2(t).

Therefore, the noise input to the loop filter is

n4(t) = z (t) + y (t) (4-173)

z (t) = D(t)n2
2(t) (4-174)

y (t) = 2D(t)s2(t)n2 (t) . (4-175)

The substitution of (4-166) into (4-175) gives

y (t) = [(R1 −R2) + (R1 +R2)D(t)]d (t)n2 (t)A cos (2πf1t+ θ) . (4-176)

We model d (t) as a random binary sequence with period Ts. Similarly, we
model D(t) as an independent random binary sequence with period TD. Assum-
ing condition (4-133), calculations similar to those in the previous subsection
lead to the following results. The autocorrelation of z(t) is

Rz (τ) ≈ Λ

(
τ

TD

)[
R2

n2 (0) + 2R2
n2 (τ)

]

=
N2

0

T 2
0

Λ

(
τ

TD

)[
1 + 2Λ2

(
τ

T0

)
cos2 (2πf1τ)

]
. (4-177)

Integrating Rz (τ) , we obtain the PSD of z (t) at f = 0:

Sz (0) =
2N2

0

3T0

(
1− T0

4TD
+

3TD

2T0

)
. (4-178)

Using (4-176) and (4-172), we find that the autocorrelation of y (t) is

Ry (τ) =
A2N0

2T0
Λ

(
τ

T0

)
Λ

(
τ

Ts

)[(
R1 −R2

)2
+

(
R1 +R2

)2
Λ

(
τ

TD

)]
cos2 (2πf1τ) .

(4-179)
Integrating Ry (τ), we obtain the PSD of y(t) at f = 0:

Sy (0) ≈
A2N0

4

⎡
⎣

(
R1 −R2

)2 (
1− T0

3Ts

)

+(R1 +R2)
2
(
1− T0

3Ts
− T0

3TD
+

T 2
0

6TsTD

)
⎤
⎦ . (4-180)
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The narrowband loop filter has a unity frequency response over a passband
of bandwidth WL. Therefore, the average noise power due to n4 (t) that ac-
companies the error signal at the VCC input is

Ne ≈ Sy (0)WL + Sz (0)WL. (4-181)

If δ = 1/2 and |ε| ≤ 1/2, then (4-141) and (4-142) give

(R1 −R2)
2 = 4ε2, (R1 +R2)

2 = 1. (4-182)

Equations (4-171) and (4-146) indicate that the signal power applied to the
VCC is A4ε2/4, and hence (4-181), (4-182), (4-178), and (4-180) indicate that
the SNR at the input of the VCC is

SNR ≈
(
Es
N0

)(
ε2

2TsWL

)
[(ε2 +

1

4
)(1− T0

3Ts
) +

(
Es
N0

)−1
Ts

3T0
+ C]−1

C =

(
Es
N0

)−1

(
TsTD

2T 2
0

− Ts

12TD
)− .

T0

12TD
+

T 2
0

24TsTD

δ = 1/2, |ε| ≤ 1/2. (4-183)

Assuming identical filters in the delay-locked and tau-dither loops, a com-
parison of (4-183) with (4-162) indicates that even if C is negligible for prac-
tical parameter values satisfying (4-170), the SNR at the clock input of the
delay-locked loop exceeds the SNR at the clock input of the tau-dither loop
by 3 dB. Figure 4.20 illustrates the SNR of both loops as a function of ε when
Es/N0 = 16dB, Ts = TD = 2T0, and TsWL = 0.5. Thus, the choice of a tracking
system is primarily a choice between the hardware simplicity of the tau-dither
loop and the potential SNR advantage of the delay-locked loop with much more
expensive hardware.

4.8 Frequency-Hopping Synchronization

Frequency synchronization for a frequency-hopping system requires the receiver
to synchronize its generated frequencies with the received frequencies. Since the
received frequency changes periodically, joint frequency and timing synchroniza-
tion is generally not feasible. Once frequency synchronization is sufficiently ac-
curate, the timing or pattern synchronization is established, The symbol timing
within a dwell interval is determined once pattern synchronization occurs.

Frequency Synchronization

Frequency synchronization entails transmitting a pilot signal with a carrier
frequency near the center of the hopping band. The receiver estimates this
frequency and compensates for any relative drift of the receiver clock and the
Doppler shift. The frequency-estimation methods in Section 4.1 are applicable
for obtaining this coarse frequency estimate. Since the drift and the Doppler
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shift vary over the hopping band, a fine frequency estimate or correction to the
coarse estimate is generally necessary.

The outputs of the digital demodulator can be used to obtain the fine fre-
quency estimates. We use the sequence F (m) obtained by taking the matched-
filter output with the largest magnitude at each discrete-time n = Lm+m− 1.
Assuming that F (m) always corresponds to the transmitted symbol, (3-98)
and (3-99) indicate that

F(m) = ADL

(
2πfeTs

L

)
exp

{
jπ

[
(L− 1) feTs

L
+ 2feTsm

]
+ jφe (m)

}

m = 0, 1, . . . , N − 1 (4-184)

which has a complex exponential with a component that increases or decreases
linearly with fem. Therefore, we can estimate the frequency error fe from the
discrete Fourier transform (DFT) of successive values of this symbol-rate se-
quence.

Figure 4.22 is a block diagram of the estimator. The phase φe (m) is usually
small, fluctuates in sign as m varies, and adds to the noise. Assuming that it
is negligible, we first apply F (m) to a normalizer that computes the magnitude
of its input and then divides the input by its magnitude. For N samples, we
obtain the sequence

F1 (m) = A exp (j2πfeTsm) , m = 0, 1, . . . , N − 1. (4-185)

where |A| = 1. Applying the DFT to F1 (m) and using (3-97), we obtain

A√
N

N−1∑
m=0

F1 (m) exp
(
−j2π

κm

N

)
= A |G (κ)| exp

[
j2π(

(
N − 1

2

)
)(feTs −

κ

N
)

]

κ = 0, 1, . . . , N − 1 (4-186)

where the magnitude of the DFT is

|G (κ)| = 1√
N

DN

[
2π(feTs −

κ

N
)
]
, κ = 0, 1, . . . , N − 1 (4-187)

and DN [·] is defined by (3-67).
Let κ0 denote the value of κ that gives the largest value of |G (κ)|. Since

DN (θ) increases monotonically as θ → 0, the estimate of fe is

f̂e =
κ0

NTs
+

D−1
N [

√
N |G (κ0)|]
2πTs

. (4-188)

This equation indicates that the DFT resolution is 1/NTs. If the SNR is high,
the average estimation error is approximately 1/2NTs. Applying (4-13), we
find that the estimator is useful if

N � K

2fmaxTs
. (4-189)
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Figure 4.22: Estimator of carrier-frequency offset

If this inequality is not satisfied, then the number of samples used by the DFT
can be increased by zero padding. The estimate f̂e is sent to the receiver’s
frequency synthesizer as a refined correction, and it could be used in an iterative
computation of the symbol metrics or decisions. The actual computation of the
DFT is executed by the efficient fast Fourier transform.

Pattern Synchronization

Like the timing synchronization in a direct-sequence receiver, the synchroniza-
tion of the reference frequency-hopping pattern produced by the receiver syn-
thesizer with the received pattern proceeds in two stages. During acquisition,
the reference pattern is synchronized with the received pattern to within a frac-
tion of a hop duration. The tracking system further reduces the synchronization
error or at least maintains it within certain bounds.

For communication systems that require a strong capability to reject in-
terference, matched-filter acquisition and serial-search acquisition are the most
effective techniques. The matched filter provides rapid acquisition of short
frequency-hopping patterns but requires the simultaneous synthesis of multi-
ple frequencies. The matched filter may also be used in the configuration of
Fig. 4.2 to detect short patterns embedded in much longer frequency-hopping
patterns. Such a detection can be used to initialize or supplement serial-search
acquisition, which is more reliable and accommodates long patterns.

Matched-Filter Acquisition

A matched-filter acquisition system uses one or more programmable frequency
synthesizers that produce tones at frequencies f1, f2, . . . , fN that are offset by
a constant frequency from the consecutive frequencies of the hopping pattern
for timing acquisition. Each of these tones produces a downconversion of the
received signal in a branch of the matched-filter acquisition system. If a tone
minus the offset matches the carrier frequency of a received frequency-hopping
pulse, then dehopping occurs and the energy of the pulse is detected. A ver-
sion of a matched-filter acquisition system that provides substantial protection
against interference [57] is depicted in Fig. 4.23. The threshold detector of
branch k produces dk(t) = 1 if its threshold is exceeded, which ideally occurs
only if the received signal hops to a specific frequency. Otherwise, the threshold
detector produces dk(t) = 0. The use of binary detector outputs prevents the
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Figure 4.23: Matched-filter acquisition system for frequency-hopping signals
with protection against interference

system from being overwhelmed by a few strong interference signals.
Input D(t) of the comparator is the number of frequencies in the hopping

pattern that were received in succession. This discrete-valued, continuous-time
function is

D(t) =
N∑

k=1

dk[t− (N − k + 1)Th] (4-190)

where Th is the hop duration. These waveforms are illustrated in Fig. 4.24a for
N = 8. The input to the threshold generator is

L(t) = D(t+ Th). (4-191)

Acquisition is declared when D(t) ≥ V (t), where V (t) is an adaptive threshold
that is a function of L(t). An effective choice is

V (t) = min[L(t) + l0, N ] (4-192)
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Figure 4.24: Ideal acquisition system waveforms: (a) formation of D(t) when
N = 8 and (b) comparison of D(t) and V (t)

where the adaptation parameter l0 is a positive integer. When acquisition is
declared, a comparator output pulse is applied to a voltage-controlled clock.
The clock output regulates the timing of the pattern generator so that the
receiver-generated pattern nearly coincides with the received frequency-hopping
pattern. The matched-filter acquisition system is deactivated, and the dehopped
signal is applied to the demodulator.

In the absence of interference and noise, L(t) = 0 and V (t) = l0 during the
hop interval in which D(t) = N , as illustrated in Fig. 4.24b. If j of the N
frequency channels monitored by the matched filter receive strong, continuous
interference and j ≤ N − l0, then L(t) = j and V (t) = j + l0 during this hop,
and D(t) ≥ V (t). During other intervals, j + l0 ≤V (t) ≤ N , but D(t) = j.
Therefore, V (t) > D(t), and the matched filter does not declare acquisition.
False alarms are prevented because L(t) provides an estimate of the number of
frequency channels with continuous interference.

Bandpass filters are used instead of filters matched to the acquisition tones
because the appropriate sampling times are unknown. The passbands of the
bandpass filters in the branches are assumed to be spectrally disjoint so that
tone interference that affects one branch has negligible effect on the other
branches. If zero-mean, white Gaussian noise n(t) enters the branches, then
the bandpass-filter noise outputs are jointly Gaussian (Appendix A.1).

The noise outputs are also statistically independent of each other if the
downconversion tones are sufficiently separated in frequency. We prove this
independence for white Gaussian noise. Let h (t) denote the impulse response,
and let H (f) denote the transfer function of each bandpass filter. Let

hi(t) = h (t) exp (−j2πfit) , i = 1, 2 (4-193)

denote the impulse responses of the combined downconverter and bandpass filter
in two branches, and let H(f − f1) and H(f − f2) denote the corresponding
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transfer functions. The cross-covariance of the jointly Gaussian, zero-mean
bandpass-filter outputs is

C = E

[∫ T

0

h1(τ1)n(t− τ1)dτ1

∫ T

0

h∗
2(τ2)n(t− τ2)dτ2

]

=
N0

2

∫ T

0

∫ T

0

h1(τ1)h2(τ2)δ(τ2 − τ1)dτ1 dτ2

=
N0

2

∫ T

0

h1(τ)h2(τ) exp[j2π(f2 − f1)τ ]dτ (4-194)

which is equal to the Fourier transform of h1(τ)h2(τ) at f1 − f2. Therefore,
C → 0 as |f1 − f2| increases.

In practice, the matched filter of Fig. 4.21 might operate in continuous time
so that acquisition might be declared at any moment. However, for analytical
simplicity, the detection and false-alarm probabilities are calculated under the
assumption that there is one sample taken per hop dwell time. Suppose that
when acquisition tone k is received, the signal at the bandpass-filter output in
branch k of the matched filter is

rk(t) =
√
2S cos 2πf0t+

√
2I cos(2πf0t+ φ) + n(t) (4-195)

where f0 is the intermediate frequency, the first term is the desired signal with
average power S, the second term represents tone interference with average
power I, n(t) is zero-mean Gaussian interference and noise, and φ is the phase
shift of the tone interference relative to the desired signal. The power in n(t) is

N1 = Nt +Na (4-196)

where Nt is the power of the thermal noise and Na is the power of the statisti-
cally independent noise interference that affects all branches equally. According
to (D-29) of Appendix D.2, the zero-mean Gaussian interference and noise has
the representation

n(t) = nc(t) cos 2πf0t− ns(t) sin 2πf0t (4-197)

where nc(t) and ns(t) are statistically independent zero-mean Gaussian pro-
cesses with noise powers equal to N1. From (4-195), (4-197), and trigonometry,
it follows that

rk(t) =
√
Z2
1 (t) + Z2

2 (t) cos[2πf0t+ ψ(t)] (4-198)

where

Z1(t) =
√
2S +

√
2I cosφ+ nc(t) , Z2(t) =

√
2I sinφ+ ns(t)

ψ(t) = tan−1

[
Z2(t)

Z1(t)

]
. (4-199)

Since nc(t) and ns(t) are statistically independent, zero-mean Gaussian pro-
cesses with the same variance, R =

√
Z2
1 (t0) + Z2

2 (t0) at a specific sampling
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time t0 has a chi-squared distribution (Appendix E.1) with two degrees of free-
dom and noncentral parameter

λ = 2(S + I +
√
SI cosφ). (4-200)

The distribution function is given by (E-12) with N = 2.
We assume that the bandpass filter causes negligible distortion of R. When

the acquisition tone is present, the detection probability for the threshold de-
tector in the branch is the probability that the envelope-detector output R
exceeds the threshold η. We make the pessimistic assumption that the inter-
ference tone has a frequency exactly equal to that of the acquisition tone, as
indicted in (4-195). Then the conditional detection probability given the value
of φ is

P11(φ) = Q1

⎛
⎝
√

2S + 2I + 2
√
SI cosφ

N1
,

η√
N1

⎞
⎠ (4-201)

where Q1(α, β) is the first-order Marcum Q-function defined by (H-26) of Ap-
pendix H.4. If φ is modeled as a random variable uniformly distributed over
[0, 2π), then the detection probability is

P11 =
1

π

∫ π

0

P11(φ)dφ (4-202)

where the fact that cosφ takes all its possible values over [0, π] has been used
to shorten the integration interval. In the absence of tone interference, the
detection probability is

P10 = Q1

(√
2S

N1
,

η√
N1

)
. (4-203)

If the acquisition tone is absent from a branch, the false-alarm probability
when the tone interference is present or absent is

P01 = Q1

(√
2S

N1
,

η√
N1

)
, P00 = exp

(
− η2

2N1

)
. (4-204)

In (4-201) to (4-204), the first subscript is 1 when the acquisition tone is present
and 0 otherwise, whereas the second subscript is 1 when interference is present
and 0 otherwise.

Suppose that tone interference is absent, but noise interference may be
present in some branches. When present, the noise interference in a branch
is modeled as a zero-mean Gaussian process with power Na. Then the detec-
tion probability when the noise interference is present or absent is

P11 = Q1

(√
2S

Na +Nt
,

η√
Na +Nt

)
, P10 = Q1

(√
2S

Nt
,

η√
Nt

)
(4-205)
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respectively. If the acquisition tone is absent from a branch, the false-alarm
probability when the noise interference is present or absent is

P01 = exp

(
− η2

2Na + 2Nt

)
, P00 = exp

(
− η2

2Nt

)
(4-206)

respectively.
It is convenient to define the function

β(i,N,m, Pa, Pb) =
i∑

n=0

(
m

n

)(
N −m

i− n

)
Pn
a (1− Pa)

m−nP i−n
b (1− Pb)

N−m−i+n

(4-207)

where
(
b
a

)
= 0 if a > b. Given that m of the N matched-filter branches receive

interference of equal power, let the index n represent the number of interfered
channels with envelope-detector outputs above η. If 0 ≤ n ≤ i, there are

(
m
n

)
ways to choose n channels out of m and

(
N−m
i−n

)
ways to choose i− n channels

with envelope-detector outputs above η from among the N −m channels that
are not interfered. Therefore, the conditional probability that D(t) = i given
that m channels receive interference is

P (D = i|m) = β(i,N,m, Ph1, Ph0), h = 0, 1 (4-208)

where h = 1 if the acquisition tones are present and h = 0 if they are not.
Similarly, given that m of N acquisition channels receive interference, the con-
ditional probability that L(t) = l is

P (L = l|m) = β(l, N,m, Ph1, Ph0), h = 0, 1. (4-209)

If there are J interference signals randomly distributed among a hopset of
M frequency channels, then the probability that m out of N matched-filter
branches have interference is

Pm =

(
N
m

)(
M−N
J−m

)
(
M
J

) . (4-210)

The probability that acquisition is declared at a particular sampling time is

PA =

min(N,J)∑
m=0

Pm

N∑
l=0

P (L = l|m)

N∑
k=V (l)

P (D = k|m). (4-211)

When the acquisition tones are received in succession, the probability of detec-
tion is determined from (4-208) to (4-211). The result is

PD =

min(N,J)∑
m=0

(
N
m

)(
M−N
J−m

)
(
M
J

)
N∑
l=0

β(l, N,m, P01, P00)
N∑

k=V (l)

β(k,N,m, P11, P10).

(4-212)
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For simplicity in evaluating the probability of a false alarm, we ignore the
sampling time preceding the peak value of D(t) in Fig. 4.23 because this prob-
ability is negligible at that time. Since the acquisition tones are absent, the
probability of a false alarm is

PF =

min(N,J)∑
m=0

(
N
m

)(
M−N
J−m

)
(
M
J

)
N∑
l=0

β(l, N,m, P01, P00)
N∑

k=V (l)

β(k,N,m, P01, P00).

(4-213)
If there is no interference so that J = 0, then (4-212) and (4-213) reduce to

PD =

N∑
l=0

(
N

l

)
P l
00(1− P00)

N−1
N∑

k=V (l)

(
N

k

)
P k
10(1− P10)

N−k (4-214)

PF =
N∑
l=0

(
N

l

)
P l
00(1− P00)

N−1
N∑

k=V (l)

(
N

k

)
P k
00(1− P00)

N−k. (4-215)

If D(t) and L(t) are sampled once every hop dwell interval, then the false-alarm
rate is PF /Th.

When tone or noise interference may be present and S/N1 or S/Nt is spec-
ified, the normalized channel threshold η/

√
N1 or η/

√
Nt and the adaptation

parameter l0 are selected to maintain a required PF while maximizing PD in
the absence of interference. The best choice is generally l0 = 	N/2
, where 	x

denotes the largest integer less than or equal to x.

Example 3. Suppose that N = 8, PF = 10−7, and the SNR is S/N1 =
10dB when an acquisition tone is received. A numerical evaluation of (4-215)
then yields η/

√
N1 = 3.1856 and l0 = 4 as the parameter values that main-

tain PF = 10−7 while maximizing PD in the absence of interference. The
nearly identical threshold pair η/

√
N1 = 3.1896, l0 = 4 is the choice when a

fixed comparator threshold V (t) = l0 is used instead of the adaptive thresh-
old of (4-192). Various other performance and design issues and the impact of
frequency-hopping interference are addressed in [57]. �

Example 4. Suppose that noise interference with total power Ntot is
uniformly distributed over J of the N matched-filter frequency channels so that
Na = Ntot/J in each of these J frequency channels. The noise power in each
of the N − J other channels is Nt. Interference tones are absent, and N = 8,
M = 128, and S/Nt = 10dB. To ensure that PF = 10−7 in the absence of
interference, we set l0 = 4 and η/

√
Nt = 3.1856 when an adaptive comparator

threshold is used and set l0 = 4 and η/
√
Nt = 3.1896 when a fixed comparator

threshold is used. Since PD is relatively insensitive to J , the effect of J is
assessed by examining PF . Figure 4.25 depicts PF as a function of Ntot/S, the
interference-to-signal ratio. The figure indicates that an adaptive threshold is
much more resistant to partial-band interference than a fixed threshold when
Ntot/S is large. When Ntot/S < 10 dB, the worst-case partial-band interference
causes a considerably higher PF than full-band interference. It is found that
multitone jamming tends to produce fewer false alarms than noise interference
of equal power. �
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Serial-Search Acquisition

As illustrated by Fig. 4.26, a serial-search acquisition system for frequency-
hopping signals tests acquisition by using a locally generated frequency-hopping
pattern to downconvert the received frequency-hopping pattern to a fixed in-
termediate frequency and then comparing the output of a radiometer or energy
detector (Section 10.2) to a threshold. If the threshold is exceeded, the test
passes; if not, the test fails. The energy detector comprises a squarer, analog-
to-digital converter, and a summer of sample values. A trial alignment of the
frequency-hopping pattern synthesized by the receiver with the received pat-
tern is called a cell. If a cell passes certain tests, acquisition is declared and the
tracking system is activated. When acquisition is declared, the search control
system applies a constant input to a voltage-controlled clock that maintains the
timing of the pattern generator so that the receiver-generated pattern nearly
coincides with the received frequency-hopping pattern. The dehopped signal at
the output of the bandpass filter is applied to the demodulator. If a cell does
not pass the tests, it is rejected. A new candidate cell is produced when the
search control system sends a signal to the voltage-controlled clock that causes
it to advance or delay the reference pattern synthesized by the receiver relative
to the received pattern.

A number of search techniques are illustrated in Fig. 4.27, which depicts suc-
cessive frequencies in the received pattern and six possible receiver-generated
patterns. The small arrows indicate test times at which cells are usually re-
jected, and the large arrows indicate typical times at which the search-mode
test is passed and subsequent verification testing begins. The step size, which
is the separation in hop durations between cells, is denoted by Δ.

Techniques (a) and (b) entail inhibiting the pattern-generator clock after
each unsuccessful test. Technique (c) is the same as technique (b) but extends
the test duration to 3 hops. Technique (d) advances the reference pattern by
skipping frequencies in the pattern after each unsuccessful test. The inhibiting
or advancing of techniques (a) to (d) or an alternation of them continues until
the search-mode test is passed.

The small-misalignment technique (e) is effective when there is a high prob-
ability that the reference and received patterns are within r hops of each other,
which usually is true immediately after the tracking system loses lock. The
pattern generator temporarily forces the reference pattern to remain at a fre-
quency for 2r + 1 hop intervals extending both before and after the interval
in which the frequency would ordinarily be synthesized. If the misalignment is
less than r hops relative to the central hop of the reference pattern, then the
search-mode test is passed within 2r+1 hop durations. In the figure, r = 1, the
initial misalignment is one-half hop duration, and we assume that the first time
the reference and received frequencies coincide, detection fails, but the second
time results in a detection.

The wait technique (f) entails waiting at a fixed reference frequency until this
frequency is received. The reference frequency is determined from the estimated
timing uncertainty, key bits, and time-of-day (TOD) bits (Section 3.1) but must
be periodically shifted so that neither fading nor interference in any particular
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Figure 4.27: Search techniques for acquisition

frequency channel prevents acquisition. If no acquisition verification occurs
within a specified time interval, then the reference frequency must be changed.
The wait technique results in a rapid search if the reference frequency can be
selected so that it has an unambiguous position within the frequency-hopping
pattern and is soon reached.

When the period of the frequency-hopping pattern is large, special measures
may be used to reduce the timing uncertainty during an initial system acquisi-
tion. A reduced hopset with a short pattern period may be used temporarily
to reduce the timing uncertainty and hence the acquisition time. In a network,
a separate communication channel or cueing frequency may provide the TOD
bits to subscribers.

The synchronization-channel technique assigns a set of dedicated synchro-
nization frequencies and periodically selects one of them during an initial system
acquisition. Prior to acquisition, the receiver waits at the selected synchroniza-
tion frequency until a received signal is detected at that frequency, whereas
the transmitted signal periodically hops among the dedicated synchronization
frequencies. When the transmitted frequency matches the selected synchroniza-
tion frequency, the demodulated and decoded data bits indicate the TOD bits of
the transmitter and other information that facilitates acquisition of the timing.
Once initial system acquisition is declared by the receiver and the transmitter
is informed or a specified time duration expires, the transmitter begins to use
the frequency-hopping pattern for communication.
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The search control system determines the timing, thresholds, and logic of
the tests to be conducted before acquisition is declared and the tracking system
is activated. The details of the search control strategy determine the statistics
of the acquisition time. The control system is usually a multiple-dwell system
that uses an initial test with one of the search techniques to quickly eliminate
improbable cells. Subsequent tests are used for verification testing of cells that
pass the initial test. The multiple-dwell strategy may be a consecutive-count
strategy , in which a failed test causes a cell to be immediately rejected, or an
up–down strategy , in which a failed test causes a repetition of a previous test.
The up–down strategy is preferable when the interference or noise level is high
[76].

Since acquisition for frequency-hopping signals is analogous to acquisition
for direct-sequence signals, the statistical description of acquisition given in
Section 4.3 is applicable if a chip interval is interpreted as a hop dwell interval.
Only the specific equations of the detection and false-alarm probabilities Pd and
Pf are different. For example, consider a single-dwell system with a uniform
search, a uniform a priori correct-cell location distribution, two independent
correct cells with the common detection probability Pd, and qh cells. By
analogy with (4-118), the NMAT is

NMAT =
T̄a

ChTh
=

(
2− PD

2PD

)
qh
Ch

(N +KhPF ) (4-216)

whereN is the number of hops per test,Kh is the number of hop durations in the
mean penalty time, Ch is the number of hop durations in the timing uncertainty,
qh � 1, PD = 2Pd − P 2

d , and PF = Pf . For step size Δ = 1, qh/Ch = 1; for
Δ = 1/2, qh/Ch = 2.

Even if the detector integration is over several hop intervals, strong inter-
ference or deep fading over a single hop interval can cause a false alarm with
high probability. This problem is mitigated by making a hard decision after
integrating over each hop interval. After N decisions, a test for acquisition
is passed or failed if the comparator threshold has been exceeded l0 or more
times out of N . Let Pdp and Pda denote the probabilities that the compara-
tor threshold is exceeded at the end of a hop interval when the correct cell is
tested and interference is present and absent, respectively. Let Pd denote the
probability that an acquisition test is passed when the correct cell is tested.
If there is a single correct cell, then the detection probability is PD = Pd; if
there are two independent correct cells, then PD =2Pd − P 2

d . If J denotes the
number of frequency channels with interference, and each of the N frequency
channels in a test is distinct, then (4-210) gives the probability that m of the N
hops encounters interference when J of the M hopset frequencies are interfered.
Therefore, when a correct cell is tested, the detection probability is

Pd =

min(N,J)∑
m=0

(
N
m

)(
M−N
J−m

)
(
M
J

)
N∑

l=l0

β(l, N,m, Pdp, Pda) (4-217)
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where l0 ≥ 1. Similarly, the false-alarm probability when an incorrect cell is
tested is

PF =

min(N,J)∑
m=0

(
N
m

)(
M−N
J−m

)
(
M
J

)
N∑

l=l0

β(l, N,m, Pfp, Pfa) (4-218)

where Pfp and Pfa are the probabilities that the threshold is exceeded when a
single hard decision is made and interference is present or absent, respectively.
A suitable choice for l0 is 	N/2
. Since the serial-search system of Fig. 4.25 has
an embedded radiometer, the performance analysis of the radiometer given in
Section 10.2 can be used to obtain expressions for Pdp, Pda, Pfp, and Pfa.

Although a large step size limits the number of incorrect cells that must
be tested before the correct cell is tested, it causes a loss in the average signal
energy in the integrator output of Fig. 4.26 when a correct cell is tested. Let
τe denote the delay of the reference pattern relative to the received pattern. If
we set T0 equal to the hop dwell time Td and set the time variable equal to
τe, then Fig. 4.2 depicts the idealized output amplitude for a single pulse of the
received and reference signals in the absence of noise. Suppose that one tested
cell has τe = −x, where 0 ≤ x ≤ ΔTh, Th is the hop duration, and 0 < Δ < 1.
The next tested cell has τe = ΔTh − x following a cell rejection. The largest
amplitude of the integrator output occurs when |τe| = y, where

y = min(x,ΔTh − x) , 0 ≤ x < ΔTh. (4-219)

Assuming that x is uniformly distributed over (0, ΔTh), y is uniformly
distributed over (0, ΔTh/2). Therefore,

E[y] =
ΔTh

4
, E[y2] =

Δ2T 2
h

12
. (4-220)

The cell for which |τe| = y is the correct cell or one of them. If the output
function approximates the triangular shape depicted in the figure, its amplitude
when |τe| = y is

A = Amax

(
1− y

Td

)
. (4-221)

Therefore, when the correct cell with |τe| = y is tested, the average signal energy
in the integrator output is attenuated by the factor

E

[(
1− y

Td

)2
]
= 1− ΔTh

2Td
+

Δ2T 2
h

12T 2
d

(4-222)

which indicates the loss due to the misalignment of patterns. For example,
if Td = 0.9Th, then (4-222) indicates that the average loss is 1.26 dB when
Δ = 1/2; if Δ = 1, then the loss is 2.62 dB. These losses should be taken into
account when calculating Pdp and Pda.

The serial-search acquisition of frequency-hopping signals is faster than the
acquisition of direct-sequence signals because the hop duration is much greater
than a spreading-sequence chip duration for practical systems. Given the same
timing uncertainty, fewer cells have to be searched to acquire frequency-hopping
signals because each step covers a larger portion of the region.
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Pattern Tracking

The acquisition system ensures that the receiver-synthesized frequency-hopping
pattern is aligned in time with the received pattern to within a fraction of a
hop duration. The pattern-tracking system must provide a fine synchronization
by reducing the residual misalignment after acquisition. The pattern tracking
in frequency-hopping systems is provided by the noncoherent early–late system
[77], which resembles the tau-dither loop. The early–late system is shown in
Fig. 4.28 along with the ideal associated waveforms for a typical example in
which there is a single carrier frequency during a hop dwell interval. The
voltage-controlled clock (VCC), pattern generator, and frequency synthesizer
are shared with the acquisition system.

The bandpass filter has a center frequency equal to the intermediate fre-
quency fi. In the absence of noise, the bandpass-filter output and hence the
positive envelope-detector output v(t) are significant only when the received
frequency-hopping signal r(t) and the receiver-generated frequency-hopping
replica r1(t) are offset in frequency by fi. As illustrated in Fig. 4.28, the frac-
tion of time that v(t) is positive decreases with increases in ε (t) , the normal-
ized delay of r1(t) relative to r(t). The gating signal g(t) is a square-wave
clock signal at the hop rate with transitions from −1 to +1 that control the
frequency transitions of r1(t). The early–late gate functions as a mixer with
output u(t) = v(t)g(t). The narrowband loop filter blocks noise and produces
an error signal that is approximately equal to the average value of u(t) over one
period of g(t).

The error signal is proportional to the discriminator characteristic S(ε),
which is a function of ε (t). The discriminator characteristic is plotted in
Fig. 4.28 for an ideal loop filter. For the typical waveforms illustrated in Fig. 4.29,
ε (t) is positive and so is S(ε). Therefore, the voltage-controlled clock (VCC)
increases the transition rate of the gating signal, which will bring r1(t) into
better time alignment with r(t).

4.9 Problems

1. Prove that for a random variable Y and a random variable X with distri-
bution function F (x), the relation

∫
var(Y |X = x)dF (x) = var(Y ) is not

true in general. If it were, then the variance of the acquisition time σ2
a

could be simplified. Give a sufficient condition under which this relation
is valid.

2. Consider a uniform search with a uniform a priori distribution for the
location of the correct cell. (a) What is the average number of sweeps
through the timing uncertainty during acquisition? (b) For a large number
of cells, calculate an upper bound on P (Ta > cTa) as a function of PD

for c > 1. (c) For a large number of cells to be searched, show that the

standard deviation of the acquisition time satisfies Ta√
3
≤ σa ≤ Ta.
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3. Derive (4-40) for a consecutive-count double-dwell system by first express-
ing T12 as a conditional expectation and then enumerating the possible
values of T12 and their conditional probabilities.

4. Derive (4-52) for an up–down double-dwell system by using a method
similar to the one used in deriving T̄22.

5. Consider a lock detector with equal detection probabilities, equal false-
alarm probabilities, and equal test durations. Use recursive relations to
find Th and Tp if (a) the lock detector uses a consecutive-count double-
dwell system, and (b) the lock detector maintains lock if either of the two
consecutive tests is passed.

6. Assume that the correct cell number C has a uniform distribution and
the rewinding time is negligible. Derive the difference between T̄a for the
uniform search and T̄a for the broken-center Z search.

7. For the acquisition correlator, prove that Nc and Ns are statistically in-
dependent and verify (4-97).

8. Justify the approximation of V0 by (4-105). Calculate the variances of
X = N2

t and Y = g2(ε) +K. Then show that (4-100) is satisfied.

9. Justify the approximation of V1 by (4-114). Calculate the variances of X
and Y given by (4-112) and (4-113). Then show that (4-100) is satisfied.

10. The Cramer–Rao inequality (F-60) in Appendix F.4 provides a means of
assessing the tradeoff between the observation time required to make an
unbiased frequency estimate and the standard deviation of the estimate.
Suppose that the received pilot signal is

√
2Es/Ts cos 2πft over the inter-

val [0, T ] , where T is time required to estimate f . The white Gaussian
noise has PSD equal to N0/2. The desired standard deviation of the fre-
quency estimate is 1 kHz, Es/N0 = 10dB, and Ts = 10μs. Assume that
2πfT � 1 so that an integral can be approximated. What is the lower
bound on T?

11. Compare the NMAT for a frequency-hopping system given by (4-216)
with the NMAT for a direct-sequence system given by (4-118) when the
penalty times and test durations for both systems are equal. Under the
latter condition, it is reasonable to assume that PD and PF are roughly
equal for both systems. With these assumptions, what is the ratio of the
direct-sequence NMAT to the frequency-hopping NMAT? What is the
physical reason for the advantage of frequency hopping?

12. Consider the serial-search acquisition of frequency-hopping signals with
J = 0. Reduce (4-217) to a single summation and simplify. Could the
result have been derived directly?

13. Use (4-217) and (4-218) to derive Pd and PF for serial-search acquisition
of frequency-hopping signals when a single acquisition tone is used. Could
the results have been derived directly?



Chapter 5

Adaptive Filters and
Arrays

Adaptive filters and adaptive arrays have numerous applications as components
of communication systems. This chapter covers the principal adaptive filters
and adaptive arrays that are amenable to exploiting the special spectral charac-
teristics of spread-spectrum signals to enable interference suppression beyond
that inherent in the despreading or dehopping. Adaptive filters for the re-
jection of narrowband interference or primarily for the rejection of wideband
interference are presented. The LMS, normalized LMS, and Frost algorithms
are derived, and conditions for the convergence of their mean weight vectors are
determined. Adaptive arrays for both direct-sequence systems and frequency-
hopping systems are described and shown to potentially provide a very high
degree of interference suppression.

5.1 Real and Complex Gradients

Real Gradients

Let R denote the set of real numbers, Rn denote the set of n× 1 vectors with
real components, and the superscript T denote the transpose. If the function
f : Rn → R is differentiable with respect to the n×1 vector x = [x1x2 . . . xn]

T
,

then the gradient of f is defined as

∇xf (x) =

[
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

]T
(5-1)

which is a function from Rn to Rn. Let A denote an n × n matrix, and let y
denote an n× 1 vector. Using the vector and matrix components and the chain
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rule, we find that

∇x

[
yTx

]
= ∇x

[
xTy

]
= y (5-2)

∇x

[
xTAx

]
=
(
A+AT

)
x (5-3)

and if A is a symmetric matrix, then ∇x

[
xTAx

]
= 2Ax.

Complex Gradients

One can define a complex variable in R2 as a two-dimensional vector of its real
and imaginary parts. One can then define a differentiable function from R2 into
itself in the usual manner without any allusion to the Cauchy–Riemann condi-
tions. Instead, one can define a complex variable as a single variable subject to
complex arithmetic. Then an analytic function may be defined, provided that
the Cauchy–Riemann conditions are satisfied. The benefits of analytic functions
are their useful properties, but they are a much more restricted set of functions
than the set of differentiable functions from R2 into itself.

Let C denote the set of complex numbers. The complex variable z may be
expressed in terms of its real and imaginary parts as z = x+jy, where j =

√
−1.

Similarly, the complex function f (z) : C → C may be expressed as

f (z) = u (x, y) + jv (x, y) (5-4)

where u (x, y) and v (x, y) are real-valued functions. A complex function f (z)
defined in a neighborhood of the point z0 has a derivative at z0 defined by

f ′ (z0) = lim
Δz→0

f (z0 +Δz)− f (z0)

Δz
(5-5)

if the limit exists and is the same when z approaches z0 along any path in
the complex plane. The complex function f (z) is analytic in a domain if f (z)
is differentiable at all points of the domain. If f (z) is analytic in a domain,
then the first partial derivatives of u (x, y) and v (x, y) exist and satisfy the
Cauchy–Riemann conditions:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
. (5-6)

Conversely, if the real-valued functions u (x, y) and v (x, y) have continuous first
partial derivatives that satisfy the Cauchy–Riemann equations in a domain,
then f (z) = u (x, y) + jv (x, y) is analytic in that domain [5].

To establish the necessity of the Cauchy–Riemann conditions, let Δz =
Δx+ jΔy and Δf = f (z0 +Δz)− f (z0) = Δu+ jΔv. Then

Δf

Δz
=

Δu+ jΔv

Δx+ jΔy
. (5-7)

Consider Δz → 0 by two different approaches. If we set Δy = 0 and let Δx → 0,
then

lim
Δz→0

Δf

Δz
=

∂u

∂x
+ j

∂v

∂x
(5-8)
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whereas if we set Δx = 0 and let Δy → 0, then

lim
Δz→0

Δf

Δz
= −j

∂u

∂y
+

∂v

∂y
. (5-9)

The definition of the derivative of a complex function requires that both limits
must be identical. Equating the real and imaginary parts yields the Cauchy–
Riemann conditions. Similar proofs establish the same differentiation rules as
the standard ones in the calculus of real variables. Thus, the derivatives of
sums, products, and quotients of differentiable functions are the same. The
chain rule, the derivative of an exponential function, and the derivative of a
variable raised to a power are the same.

Although they have many applications, analytic functions are inadequate for
some scientific and engineering applications because frequently the functions of
interest are functions of both z and its complex conjugate z∗. A difficulty occurs
because f (z) = z∗ is not an analytic function of z, as verified by observing that
the Cauchy–Riemann conditions are not satisfied. To remove this problem,
the complex function g(z,z∗) is not required to be analytic with respect to
z = x + jy but is regarded as a function of x and y, and a second type of
derivative is defined.

A complex function f (z∗) defined in a neighborhood of the point z∗0 has a
derivative at z∗0with respect to z∗ defined by

f ′ (z∗0) = lim
Δz∗→0

f (z∗0 +Δz∗)− f (z∗0)

Δz∗
(5-10)

if the limit exists and is the same when z∗ approaches z∗0 along any path in the
complex plane. The complex function f (z∗) is analytic with respect to z∗ in a
domain if f (z∗) is differentiable at all points of the domain. A calculation of
the right-hand side of (5-10) for two different paths indicates that if f (z∗) =
u (x, y) + jv (x, y) is analytic with respect to z∗ in a domain, then the first
partial derivatives of u (x, y) and v (x, y) exist and satisfy the conditions

∂u

∂x
= −∂v

∂y
,

∂u

∂y
=

∂v

∂x
. (5-11)

Conversely, if the real-valued functions u (x, y) and v (x, y) have continuous
first partial derivatives that satisfy these equations in a domain, then f (z∗) =
u (x, y) + jv (x, y) is analytic with respect to z∗ in that domain. Again, the
derivatives of sums, products, and quotients of differentiable functions are the
same as usual. The chain rule, the derivative of an exponential function, and the
derivative of a variable raised to a power are the same. The function f (z∗) =z
is not an analytic function of z∗, as verified by observing that the conditions
(5-11) are not satisfied.

The complex function g(z,z∗) is called an analytic function of z and z∗ if
g(z,z∗) is an analytic function of z when z∗ is held constant and an analytic
function of z∗ when z is held constant. Since z and z∗ are distinct functions of
the x and y, the chain rule can be used to evaluate partial derivatives of g(z,z∗)



270 CHAPTER 5. ADAPTIVE FILTERS AND ARRAYS

with respect to x and y. Since z = x+ jy,

∂z

∂x
= 1,

∂z

∂y
= j,

∂z∗

∂x
= 1,

∂z∗

∂y
= −j. (5-12)

The chain rule then implies that an analytic function of z and z∗ has partial
derivatives

∂g

∂x
=

∂g

∂z
+

∂g

∂z∗
(5-13)

∂g

∂y
= j

∂g

∂z
− j

∂g

∂z∗
(5-14)

from which it follows that the partial derivatives of g(z,z∗) with respect to z
and z∗ are

∂g

∂z
=

1

2

(
∂g

∂x
− j

∂g

∂y

)
(5-15)

∂g

∂z∗
=

1

2

(
∂g

∂x
+ j

∂g

∂y

)
. (5-16)

These derivatives might not exist if g(z,z∗) had been required to be analytic
only with respect to z or with respect to z∗.

Let Cn denote the set of n × 1 vectors with complex components. Let
g(z, z∗) denote a function of z ∈ Cn and its complex conjugate z∗ ∈ Cn.
The function g(z, z∗) is an analytic function of z and z∗ if g(z, z∗) is an an-
alytic function of each component zi when z∗ is held constant and an ana-
lytic function of each component z∗i when z is held constant. Let zi, xi, and
yi, i = 1, 2, . . . , n, denote the components of the n × 1 column vectors z, x,
and y, respectively, where z = x + jy. The complex gradient of g(z, z∗) with
respect to the n-dimensional complex vector z is defined as the column vec-
tor ∇zg with components ∂g/∂zi, i = 1, 2, . . . , n. Similarly, ∇xg and ∇yg are
the n× 1 gradient vectors with respect to the real-valued vectors x and y, re-
spectively. The complex gradient of g(z, z∗) with respect to the n-dimensional
complex vector z∗ is defined as the column vector ∇z∗g (z, z∗) with components
∂g/∂z∗i , i = 1, 2, . . . , n. Applying (5-15) and (5-16), we obtain

∇zg (z, z
∗) =

1

2
[∇xg (z, z

∗)− j∇yg (z, z
∗)] (5-17)

∇z∗g (z, z∗) =
1

2
[∇xg (z, z

∗) + j∇yg (z, z
∗)] . (5-18)

Application of (5-17) and (5-18) indicates that if b is an n× 1 vector and A is
an n× n matrix, then

∇z

(
zHb

)
= 0, ∇z

(
zHAz

)
= AT z∗ (5-19)

∇z∗
(
bHz

)
= 0, ∇z∗

(
zHAz

)
= Az (5-20)
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where the superscript H denotes the conjugate transpose. As desired, (5-19)
is the result obtained if z∗ is held constant while calculating the gradient with
respect to z, and (5-20) is the result obtained if z is held constant while calcu-
lating the gradient with respect to z∗.

As a one-dimensional example, consider the real-valued function f (z) =

|z|2 = x2+ y2. The Cauchy–Riemann equations are not satisfied, so f (z) is not
an analytic function of z. However, the function g (z, z∗) = zz∗ is an analytic
function of z and z∗. Applying (5-19) and (5-20), we obtain

∂g (z, z∗)

∂z
= z∗,

∂g (z, z∗)

∂z∗
= z (5-21)

which could also be calculated using (5-15) and (5-16). In contrast, if f (z) =
g (z, z∗) = z2, then

∂g (z, z∗)

∂z
= 2z,

∂g (z, z∗)

∂z∗
= 0. (5-22)

5.2 Adaptive Filters

Optimal Weight Vector

Adaptive filters [23, 29, 35, 86] are linear filters with weight vectors that respond
to the filter input and approximate optimal weight vectors. Let x(k) and d(k)
denote the N×1 input vector and the desired response, respectively, at discrete-
time k, which represents a sampling time. Let w(k) denote the weight vector
of the adaptive filter,

y (k) = wH(k)x(k) (5-23)

denote the adaptive-filter output, and

ε (k) = d (k)− y (k) = d (k)−wH(k)x(k) (5-24)

denote the estimation error. The derivation of the optimal filter weights that
provide an estimate of the desired signal depends on the specification of a
performance criterion or estimation procedure. Estimators may be derived by
using the maximum-a-posteriori or the maximum-likelihood criteria, but the
standard application of these criteria includes the restrictive assumption that
any interference in x(k) has a Gaussian distribution. Unconstrained estimators
that depend only on the second-order moments of x(k) can be derived by using
other performance criteria.

The most widely used method of estimating the desired signal is based on
the minimization of the mean-square error, which is proportional to the mean
power in the estimation error. The conditional expected value of |ε|2 given that
w (k) = w is

E[|ε (k) |2|w] = E
[(
d (k)−wHx (k)

) (
d (k)−wHx (k)

)H |w
]

= E[|d (k) |2]−wHRxd −RH
xdw +wHRxw (5-25)
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where the correlation matrix of x(k) is the N × N Hermitian positive-semi-
definite matrix (Appendix G)

Rx = E
[
x(k)xH(k)

]
(5-26)

and the N × 1 cross-correlation vector is

Rxd = E [x(k)d∗(k)] . (5-27)

In terms of its real part wR, and its imaginary part wI , a complex weight
vector is defined as

w = wR + jwI . (5-28)

We define ∇w∗,∇wr, and ∇wi as the gradients with respect to w∗,wR, and wI ,
respectively. Equation (5-25) indicates that E[|ε (k) |2|w] is an analytic function
of w and w∗. Since (5-18) indicates that ∇wrg = 0 and ∇wig = 0 imply that
∇w∗g = 0, a necessary condition for the optimal weight is obtained by setting
∇w∗E[|ε (k) |2|w] = 0. Equation (5-25) yields

∇w∗E[|ε (k) |2|w] = Rxw −Rxd. (5-29)

Assuming that the Hermitian positive-semidefinite matrix Rx is positive defi-
nite and hence nonsingular (Appendix G), the necessary condition provides the
Wiener–Hopf equation for the optimal weight vector:

w0 = R−1
x Rxd. (5-30)

Equations (5-25) and (5-30) imply that

E[|ε (k) |2|w] = ε2m + (w −w0)
H
Rx (w −w0) (5-31)

where

ε2m = E[|d (k) |2]−RH
xdR

−1
x Rxd. (5-32)

Since Rx is positive definite, the second term on the right side of (5-31) is
positive if w �= w0. Therefore, the Wiener–Hopf equation provides a unique
optimal weight vector, and ε2m is the minimum mean-square error.

Method of Steepest Descent

The implementation of the Wiener–Hopf equation requires the computation of
the inverse matrixR−1

x . Since time-varying signal statistics may require frequent
computations of R−1

x , adaptive algorithms not entailing matrix inversion are
advantageous. The method of steepest descent is an iterative method for solving
the optimization problem by making successive estimates that improve with
each iteration.

Consider the real-valued performance measure P (w) that is to be recursively
minimized by successive values of a real-valued weight vector w. Let ∇wP (w)
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denote the N × 1 gradient vector with respect to w. If P (w) is a continuously
differentiable function, u is an N × 1 unit vector, and t is a scalar, then

P (w + tu) = P (w) + tuT∇wP (w) + o (t) (5-33)

where o (t) /t → 0 as t → 0. By the Cauchy–Schwarz inequality (Appendix
F.1), the inner product ∇T

wP (w)u is largest for the unit vector u =∇wP (w)/
‖∇wP (w)‖ , which is the unit gradient vector. Thus, ∇wP (w) points locally
in the direction of steepest ascent of P (w), and −∇wP (w) points locally in
the direction of steepest descent. When t is sufficiently small, then P (w− t∇w

P (w)/ ‖∇wP (w)‖) < P (w).
The method of steepest descent changes the weight vector at discrete-time

k + 1 along the direction of −∇wP (w) at discrete-time k, thereby tending to
decrease P (w) whenw = w(k). If the signals and weights are complex, separate
steepest-descent equations can be written for the real and imaginary parts of
the weight vector. Combining these equations and applying (5-18), we obtain

w(k + 1) = w(k)− 2μ(k)∇w∗P [w(k)] (5-34)

where the adaptation parameter μ(k) controls the rate of convergence and the
stability, and the initial weight vector w(0) is arbitrary.

For complex signals and weights, a suitable performance measure is the
least-mean-square (LMS) error criterion P (w) = E[|ε|2|w]. The application
of (5-29) and (5-34) leads to the LMS steepest-descent algorithm:

w(k + 1) = w(k)− 2μ(k) [Rxw(k)−Rxd] (5-35)

where the initial weight vector w(0) is arbitrary, but a convenient value is

w(0) = [1 0 . . . 0]
T
. This ideal algorithm produces a deterministic sequence of

weights and does not require a matrix inversion, but it requires the knowledge
of Rx and Rxd. At each iteration, μ(k) can be determined by a line search that
minimizes the performance measure. However, for computational simplicity, a
constant adaptation parameter μ(k) = μ is often preferable.

LMS Algorithm

The presence of interference and noise means that Rx and Rxd are time-varying
and generally unknown, and hence stochastic-gradient algorithms are gener-
ally used instead of steepest-descent algorithms. A stochastic-gradient algo-
rithm is derived from a steepest-descent algorithm by replacing the gradient of
the performance measure by approximations that are more easily obtained. A
stochastic-gradient algorithm includes a mechanism for tracking time variations
in the desired-signal statistics.

The least-mean-square (LMS) algorithm is the stochastic-gradient algorithm
obtained from (5-35) when Rx is estimated by x(k)xH(k), Rxd is estimated by
x(k)d∗(k), and μ(k) =μ. The LMS algorithm is

w(k + 1) = w(k) + 2με∗(k)x(k), k ≥ 0 (5-36)
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where the initial weight vector w(0) is arbitrary, but a convenient value is

w(0) = [1 0 . . . 0]
T
. The adaptation constant μ controls the rate of convergence

of the algorithm. According to this algorithm, the next weight vector is obtained
by adding to the present weight vector the input vector scaled by the amount
of error.

Convergence of the Mean

We prove convergence of the mean weight vector of the LMS algorithm assuming
that x(k) and d (k) are jointly stationary random vectors and that x(k + 1) is
independent of x(i) and d(i), i ≤ k. The assumption is valid at least when
the sampling times are separated by intervals that are large compared with the
correlation time of the input process. This assumption and (5-36) imply that
w(k) is independent of x(k) and d (k) . Thus, the expected value of the weight
vector satisfies

E[w(k + 1)] = (1− 2μRx)E[w(k)] + 2μRxd. (5-37)

Let
v(k) = w(k)−w0, k ≥ 0. (5-38)

From (5-37) and (5-30), it follows that

E[v(k + 1)] = (I− 2μRx)E[v(k)]. (5-39)

With an initial weight vector w(0), this equation implies that

E[v(k + 1)] = (I− 2μRx)
k+1v(0) (5-40)

where v(0) = w(0) − w0. Assuming that the Hermitian positive-semidefinite
matrix Rx is positive definite, it can be represented as (Appendix G)

Rx = QΛQ−1 = QΛQH (5-41)

where Q is a unitary matrix with eigenvectors as its columns, and Λ is the
diagonal matrix of eigenvalues of Rx. Therefore, (5-40) can be expressed as

E[v(k + 1)] = [I− 2μQΛQ−1]k+1v(0)

= Q[I− 2μΛ]k+1Q−1v(0). (5-42)

This equation indicates that

lim
k→∞

[I− 2μΛ]k+1 = 0 (5-43)

is necessary and sufficient for E[v(k)] → 0 and hence for the mean weight vector
to converge to the optimal weight vector of the Wiener–Hopf equation:

lim
k→∞

E[w(k)] = w0 = R−1
x Rxd. (5-44)
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A necessary and sufficient condition for (5-43) and hence (5-44) is that the
diagonal elements of the diagonal matrix [I − 2μΛ] have magnitudes less than
unity:

|1− 2μλi| < 1, 1 ≤ i ≤ N. (5-45)

Since Rx is Hermitian positive definite, its eigenvalues are positive (Appendix
G), and hence (5-45) implies that μ > 0 and 1 − 2μλmax > −1, where λmax

is the largest eigenvalue. Therefore, the necessary and sufficient condition for
convergence to the optimal weight vector is

0 < μ <
1

λmax
. (5-46)

Although stronger convergence results can be proved if the inputs are station-
ary processes and μ is allowed to decrease with the iteration number, making
μ constant gives the adaptive system flexibility in processing nonstationary
inputs.

The matrix multiplications in (5-42) indicate that during adaptation the
weights undergo transients that vary as sums of terms proportional to (1 −
2μλi)

k. These transients determine the rate of convergence of the mean vector.
The time constants{τi} of the convergence are defined so that

|1− 2μλi|k = exp

(
− k

τi

)
, i = 1, 2, . . . , N (5-47)

which yields

τi = − 1

ln(|1− 2μλi|)
, i = 1, 2, . . . , N. (5-48)

The maximum time constant is

τmax = − 1

ln(1− 2μλmin)
<

1

2μλmin
, 0 < μ <

1

λmax
(5-49)

where λmin is the smallest eigenvalue of Rx. If μ is selected to be close to its
upper bound in (5-49), then τmax increases with the eigenvalue spread defined
as λmax/λmin.

Misadjustment

If the random vectors w(k) and x(k) are independent, then (5-24), (5-30),
and (5-38) imply that

E[|ε(k)|2] = ε2m + E[vH(k)Rxv(k)] (5-50)

where the minimum mean-square error ε2m is given by (5-32). If w(k) = w0,
then E[|ε|2] = ε2m. However, even if E[v(k)] → 0 as k → ∞, it does not
necessarily follow that E[|ε(k)|2] → ε2m. A measure of the extent to which the
LMS algorithm fails to provide the ideal performance is the excess mean-square
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error, E[|ε(k)|2] − ε2m. The misadjustment is a dimensionless measure of the
performance loss defined as

M =
limk→∞ E[|ε(k)|2]− ε2m

ε2m
. (5-51)

With four plausible assumptions, the misadjustment can be shown to be a
function of μ tr(Rx), where tr(·) denotes the trace of a matrix:

1. The jointly stationary random vectors x(k + 1) and d(k + 1) are inde-
pendent of x(i) and d(i), i ≤ k. It then follows from (5-36) that w(k) is
independent of x(k) and d(k).

2. The adaptation constant satisfies

0 < μ <
1

tr(Rx)
. (5-52)

3. E
[
‖v(k)‖2

]
converges as k → ∞.

4. As k → ∞, |ε(k)|2 and ‖ x(k) ‖2 become uncorrelated so that

lim
k→∞

E[‖x(k)‖2 |ε(k)|2] = tr(Rx)

{
lim
k→∞

E[|ε(k)|2]
}
. (5-53)

Assumptions 1 and 2 imply convergence of the mean weight vector, which
requires (5-46), because the sum of the eigenvalues of a square matrix is equal
to its trace, and hence

λmax <
N∑
i=1

λi = tr(Rx). (5-54)

The total input power is E
[
‖x(k)‖2

]
= tr(Rx). For Assumption 3 to be true,

a tighter restriction on μ than Assumption 2 may be necessary. Assumption 4
is physically plausible, but it is an approximation.

Equations (5-36) and (5-38) imply that

v(k + 1) = v(k) + 2με∗ (k)x(k). (5-55)

Using this equation to calculate E
[
‖v(k + 1)‖2

]
, taking the limit as k → ∞,

and then using Assumptions 3 and 4, we obtain

lim
k→∞

Re{E[vH(k)x(k)ε∗ (k)]} = −μtr(Rx)

{
lim
k→∞

E[|ε(k)|2]
}
. (5-56)

Assumption 1, (5-24), (5-26), (5-27), (5-38), and (5-50) yield

lim
k→∞

E[vH(k)x(k)ε∗ (k)] = lim
k→∞

E[vH(k)]Rxd − lim
k→∞

E[vH(k)Rxv(k)]

= ε2m − lim
k→∞

E[|ε(k)|2] (5-57)
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which is real valued. Substituting this equation into (5-56), we obtain

lim
k→∞

E[|ε(k)|2] = ε2m
1− μ tr(Rx)

. (5-58)

Assumption 2 ensures that the right-hand side of this equation is positive and
finite, which could not be guaranteed if the less restrictive (5-46) were assumed
instead.

Substituting (5-58) into (5-51), we obtain

M =
μ tr(Rx)

1− μ tr(Rx)
. (5-59)

According to this equation, increasing μ to improve the convergence rate has
the side effect of increasing the misadjustment. For fixed μ, the misadjustment
increases with the total input power.

Normalized LMS Algorithm

In some applications of the LMS algorithm, large fluctuations in x(k) can cause
excessive fluctuations inw(k+1) , as indicated by (5-36). This adverse behavior
can be curbed by inserting an additional normalizing factor into the stochastic
gradient term. The normalized LMS algorithm is

w(k + 1) = w(k) +
2με∗(k)x(k)

δ + ‖x(k)‖2
, k ≥ 0 (5-60)

where ε(k) is defined by (5-24), and δ is a positive constant that prevents a
singularity when ‖x(k)‖ is very small.

Rayleigh Quotient

As a preliminary to the convergence analysis, we define the Rayleigh quotient
of a Hermitian matrix A as

ρ (x) =
xHAx

‖x‖2 (5-61)

where x �= 0. Let u1, . . . ,uN denote the orthonormal eigenvectors of A, and
λ1, . . . , λN the corresponding real-valued eigenvalues (Appendix G) .The vector
x may be expressed as x = v1u1 + . . .+ vNuN . Then

xHAx = λ1 |v1|2 + . . .+ λN |vN |2 ≤ λmax

(
|v1|2 + . . .+ |vN |2

)
= λmax‖x‖2

(5-62)
where λmax is the largest eigenvalue. Similarly, xHAx ≥ λmin‖x‖2, where λmin

is the smallest eigenvalue. Thus, the Rayleigh quotient satisfies

λmin ≤ xHAx

‖x‖2 ≤ λmax. (5-63)
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Since the upper bound can be attained if x is equal to the eigenvector associated
with λmax, the maximum eigenvalue of A is

λmax (A) = max
x

[
xHAx

‖x‖2
]
. (5-64)

Convergence of the Mean

The mean weight vector of the normalized LMS algorithm converges under
the same principal assumptions as convergence of the LMS algorithm. Thus,
we assume that x(k) and d(k) are jointly stationary random vectors and that
x(k + 1) is independent of x(i) and d(i), i ≤ k , which implies that w(k) is
independent of x(k) and d(k). We define the normalized correlation matrix and
the normalized cross-correlation vectors as

B = E

[
x(k)xH(k)

δ + ‖x(k)‖2
]
, A = E

[
x(k)d∗(k)

δ + ‖x(k)‖2
]

(5-65)

respectively. The Hermitian positive-semidefinite matrix B is assumed to be
positive definite and hence invertible. We define the vector

v1(k) = w(k)−B−1A, k ≥ 0. (5-66)

Equations (5-60), (5-24), and (5-66) imply that

v1(k + 1) = v1(k) +
2μx(k)

[
d(k)− xH(k)w(k)

]∗
δ + ‖x(k)‖2

. (5-67)

Then (5-65) and the mutual independence of w(k), x(k), and d(k) give

E[v1(k + 1)] = (I− 2μB)E[v1(k)]. (5-68)

Since this equation has the same form as (5-39), a derivation similar to the one
leading to (5-44) implies that

lim
k→∞

E[w(k)] = B−1A (5-69)

under the necessary and sufficient condition given by (5-46) with λmax defined
as the maximum eigenvalue of B .

Applying (5-64) and the Cauchy–Schwarz inequality, the upper bound of
the maximum eigenvalue of B is found:

λmax (B) = max
y

{
yHBy

‖y‖2
}

= max
y

⎧⎨
⎩E

[ ∣∣yHx
∣∣2

‖y‖2
(
δ + ‖x(k)‖2

)
]⎫⎬
⎭

≤ max
y

{E [1]} = 1. (5-70)
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Therefore, a sufficient condition for the convergence of the mean weight vector
of the normalized LMS algorithm is

0 < μ < 1. (5-71)

The fact that this convergence condition does not depend on the total input
power is a major advantage of the normalized LMS algorithm.

The normalized mean-square error is

E[|ε1(k)|2] = E

[
|ε(k)|2

δ + ‖x(k)‖2
]
= ε2m1 + E[vH

1 (k)Bv1(k)] (5-72)

where the minimum normalized mean-square error is

ε2m1 = E

[
|d|2

δ + ‖x(k)‖2
]
−AHB−1A. (5-73)

Misadjustment

We define

C = E

[
‖x(k)‖2

δ + ‖x(k)‖2
]
. (5-74)

With four plausible assumptions, the misadjustment can be derived:

1. The jointly stationary random vectors x(k+1) and d(k+1) are indepen-
dent of x(i) and d(i), i ≤ k, which implies that w(k) is independent of
x(k) and d(k) .

2. The adaptation constant satisfies (5-71).

3. E[‖v1(k)‖2] converges as k → ∞ .

4. As k → ∞, |ε1(k)|2 and ‖x(k)‖2 become uncorrelated so that

lim
k→∞

E

⎡
⎢⎣|ε(k)|2 ‖x(k)‖2(

δ + ‖x(k)‖2
)2
⎤
⎥⎦ = C

{
lim
k→∞

E[|ε1(k)|2]
}
. (5-75)

Using (5-67) to calculate E
[
‖v1(k + 1)‖2

]
, taking the limit as k → ∞, and

then using Assumptions 3 and 4, we obtain

lim
k→∞

Re

{
E

[
vH
1 (k)ε∗ (k)x(k)

δ + ‖x(k)‖2
]}

= −μC

{
lim
k→∞

E[|ε1(k)|2]
}
. (5-76)
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Assumption 1, (5-24), (5-66), (5-69), (5-65), and (5-72) yield

lim
k→∞

E

[
vH
1 (k)ε∗ (k)x(k)

δ + ‖x(k)‖2
]
= − lim

k→∞
E[vH

1 (k)Bv1(k)]

= ε2m1 − lim
k→∞

E[|ε1(k)|2] (5-77)

which is real valued. Substituting this equation into (5-76), we obtain

lim
k→∞

E[|ε1(k)|2] =
ε2m1

1− μC
. (5-78)

Since C ≤ 1, Assumption 2 ensures that the right-hand side of this equation is
positive and finite. The misadjustment is

M =
limk→∞ E[|ε1(k)|2]− ε2m1

ε2m1

=
μC

1− μC

≤ μ

1− μ
. (5-79)

This upper bound on the misadjustment is independent of the total input power.
This independence provides an advantage of the normalized LMS algorithm
relative to the computationally simpler LMS algorithm.

5.3 Rejection of Narrowband Interference

Narrowband interference presents a crucial problem for spread-spectrum over-
lay systems, which are systems that have been assigned a spectral band already
occupied by narrowband communication systems. Jamming against spread-
spectrum communications is another instance of narrowband interference that
may exceed the natural resistance of a practical spread-spectrum system, which
has a limited spreading factor. There are a wide variety of techniques that
supplement the inherent ability of a direct-sequence system to reject narrow-
band interference [59, 119]. All of the techniques directly or indirectly exploit
the spectral disparity between the narrowband interference and the wideband
direct-sequence signal. The most useful methods can be classified as time-
domain adaptive filtering, transform-domain processing, or nonlinear filtering
techniques. The processor that implements one of the rejection methods for
a direct-sequence signal follows the chip-rate sampling of the chip-matched-
filter outputs in Fig. 2.14 or Fig. 2.18. The processor provides the input to the
despreader, as shown in Fig. 5.1. Since the narrowband interference is rarely
known with any precision, adaptive filters are an essential part of transform-
domain processing and nonlinear filtering.

Time-Domain Adaptive Filters

A time-domain adaptive filter [55] for interference suppression processes the
baseband sample values of a received signal to adaptively estimate the inter-
ference. This estimate is subtracted from the sample values, thereby canceling
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Figure 5.1: Direct-sequence receiver with processor for rejecting narrowband
interference

the interference. The adaptive filter is primarily a predictive system that ex-
ploits the inherent predictability of a narrowband signal to form an accurate
replica of it for the subtraction. Since the wideband desired signal is largely
unpredictable, it does not significantly impede the prediction of a narrowband
signal. When adaptive filtering is used, the processor in Fig. 5.1 has the form of
Fig. 5.2a. The adaptive filter comprises a one-sided or two-sided digital delay
line or shift register with each stage providing a delay equal to the chip duration
Tc. The outputs of the stages are multiplied by the adaptive weights.

The two-sided adaptive filter multiplies each tap output by a weight except
for the central tap output, as diagrammed in Fig. 5.2b. This filter is an inter-
polator in that it uses both past and future samples to estimate the value to be
subtracted. The two-sided filter provides a better performance than the one-
sided filter, which is a predictor. The adaptive algorithm of the weight-control
mechanism is designed to adjust the weights so that the power in the filter out-
put is minimized. The direct-sequence components of the tap outputs, which
are delayed by integer multiples of a chip duration, are largely uncorrelated
with each other, but the narrowband interference components are strongly cor-
related. As a result, the adaptive algorithm causes the interference cancelation
in the filter output, but the direct-sequence signal is largely unaffected.

An adaptive filter with 2N + 1 taps and 2N weights is shown in Fig. 5.2b.
The 2N × 1 input and weight vectors at iteration k are

x(k) = [x1(k) x2(k) . . . x2N (k)]
T

(5-80)

and

w(k) = [w−N (k) w−N+1(k) . . . w−1(k) w1(k) . . . wN (k)]
T

(5-81)

respectively. The central tap output, which is denoted by d(k) and serves as
an approximation of the desired response, has been excluded from x(k). The
LMS algorithm computes the weight vector using (5-23)–(5-36). If coherent
demodulation of DS-BPSK produces real-valued inputs to the adaptive filter,
x(k) and w(k) are assumed to have real-valued components. The output of the
adaptive filter is applied to the despreader.
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Figure 5.2: (a) Processor using adaptive filter and (b) two-sided adaptive
transversal filter

Under certain conditions, the mean weight vector converges to the optimal
weight vector w0 given by (5-30) after a number of iterations. If we assume that
w(k) → w0, then a straightforward analysis indicates that the adaptive filter
provides a substantial suppression of narrowband interference [59]. Although
the interference suppression increases with the number of taps, it is always
incomplete if the interference has a nonzero bandwidth because a finite-impulse-
response filter can only place a finite number of zeros in the frequency domain.

The adaptive filter is inhibited by the presence of direct-sequence compo-
nents in the filter input vector x(k). These components can be suppressed
by using decision-directed feedback, as shown in Fig. 5.3. Previously detected
symbols remodulate the spreading sequence delayed by G chips (long sequence)
or one period of the spreading sequence (short sequence). After an ampli-
tude compensation by a factor η, the resulting sequence provides estimates of
the direct-sequence components of previous input samples. A subtraction then
provides estimated sample values of the interference and noise that are largely
free of direct-sequence contamination. These samples are then applied to an
adaptive filter that has the form of Fig. 5.2 except that it has no central tap.
The adaptive filter produces refined interference estimates that are subtracted
from the input samples to produce samples that have relatively small inter-
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Figure 5.3: Processor with decision-directed adaptive filter

ference components. An erroneous symbol from the decision device causes an
enhanced direct-sequence component in samples applied to the adaptive filter,
and error propagation is possible. However, for moderate values of the signal-
to-interference ratio at the input, the performance is not degraded significantly.
A time-domain adaptive filter is only effective after the convergence of the adap-
tive algorithm, which may not be able to track time-varying interference. In
contrast, transform-domain processing suppresses interference almost instanta-
neously.

Transform-Domain Filters

The principal components of a transform-domain filter are depicted in Fig. 5.4.
The input consists of the output samples of chip-matched filters. Blocks of these
samples feed a discrete-time Fourier or wavelet transformer. The transform is
selected so that the transforms of the desired signal and interference are easily
distinguished. The array of transform values are called transform bins. Ideally,
the transform produces interference components that are largely confined to
a few transform bins, whereas the desired-signal components have nearly the
same magnitude in all the transform bins. A simple exciser can then suppress
the interference with little impact on the desired signal by setting to zero the
spectral weights corresponding to components in bins containing strong inter-
ference while setting to one all remaining spectral weights. The decision as to
which bins contain interference can be based on the comparison of each bin to
a threshold or by selecting those transform bins with the largest average mag-
nitudes. After the excision operation, the desired signal is largely restored by
the inverse transformer, which provides output samples to the demodulator.

Much better performance against stationary narrowband interference may
be obtained by using a transform-domain adaptive filter as the exciser [119].
This filter adjusts a single nonbinary weight at each transform-bin output. The
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adaptive algorithm is designed to minimize the difference between the weighted
transform and a desired signal that is the transform of the spreading sequence
used by the input block of the processor. If the direct-sequence signal uses
the same short spreading sequence for each data symbol and each processor
input block includes the chips for a single data symbol, then the desired-signal
transform may be stored in a read-only memory. However, if a long spreading
sequence is used, then the spreading-sequence transform must be periodically
produced from outputs of the receiver’s code generator. The main disadvantage
of the adaptive filter is that its convergence rate may be insufficient to track
rapidly time-varying interference.

A transform that operates on disjoint blocks of N input samples may be
defined in terms of N orthonormal, N -component basis vectors:

φi = [φi1 φi2 . . . φiN ]
T
, i = 1, 2, . . . , N (5-82)

which span a linear vector space of dimension N . Since the components may
be complex numbers, the orthonormality implies that

φH
i φk =

{
0, i �= k
1, i = k.

(5-83)

The input block x = [x1 x2 . . . xN ]
T
may be expressed in terms of the basis as

x =

N∑
i=1

ciφi (5-84)

where
ci = φH

i x, i = 1, 2, . . . , N. (5-85)

If the discrete Fourier transform is used, then φik = exp(j2πik/N), where
j =

√
−1.

The transformer extracts the transform vector c = [c1 c2 . . . cN ]
T
by com-

puting
c = BHx (5-86)

where B is the unitary matrix of basis vectors:

B = [φ1 φ2 . . . φN ] . (5-87)

The exciser reduces components of c that are excessively large and hence likely
to have large interference components. The exciser computes

e = W(c) c (5-88)
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whereW(c) is theN×N diagonal weight matrix with diagonal elements wi, 1 ≤
i ≤ N . In general, the diagonal elements of W(c) are set to +1 or 0 by either
a threshold device or an adaptive filter fed by c.

The inverse transformer produces the excised block that is applied to the
despreader:

z = [z1 z2 . . . zN ]
T
= B e

= B W (c) c

= B W (c)BHx. (5-89)

If there were no excision, then W(c) = I, BBH = I, and z = x would result, as
expected when the transformer and inverse transformer are in tandem.

Let
p = [p1 p2 . . . pN ]

T
(5-90)

denote a synchronous replica of N chips of the spreading sequence generated
by the receiver’s code generator. The despreader correlates its input block with
the local replica to form the decision variable:

V = pT z. (5-91)

The filtering and despreading can be simultaneously performed in the transform
domain because (5-89) and (5-91) give

V = pTBW (c) c. (5-92)

Extension of Kalman Filter

By modeling the narrowband interference as part of a dynamic linear system,
one can use the linear Kalman filter [86] to extract an optimal linear estimate
of the interference. A subtraction of this estimate from the filter input then
removes a large part of the interference from the despreader input. However, a
superior nonlinear filter can be designed by approximating an extension of the
Kalman filter.

Consider the estimation of an n × 1 state vector xk of a dynamic system
based on the r×1 observation vector zk. Let φk denote the n×n state transition
matrix, Hk an r × n observation matrix, and uk and vk disturbance vectors
of dimensions n × 1 and r × 1, respectively. According to the linear dynamic
system model, the random state and observation vectors satisfy

xk+1 = Φkxk + uk (5-93)

zk = Hkxk + vk, 0 ≤ k < ∞ (5-94)

where all variables are real valued, and uk,vk, k ≥ 0, are sequences of indepen-
dent, zero-mean random vectors that are also independent of each other and
the initial state x0. The covariances of uk and vk are

E
[
uku

T
k

]
= Qk, Rk = E

[
vkv

T
k

]
. (5-95)
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Let Zk = (z1, z2, . . . zk) denote the first k observation vectors. Let
f(xk|Zk) denote the density of xk conditioned on Zk. The conditional mean
and covariance of xk with respect to Zk are denoted by

x̂k = E
[
xk

∣∣Zk
]

(5-96)

and
Pk = E

[
(xk − x̂k) (xk − x̂k)

T ∣∣Zk
]

(5-97)

respectively. The conditional mean and covariance of xk with respect to Zk−1

are denoted by
x̄k = E

[
xk

∣∣Zk−1
]

(5-98)

and
Mk = E

[
(xk − x̄k) (xk − x̄k)

T ∣∣Zk−1
]

(5-99)

respectively. If f(xk|Zk−1) is an n-dimensional Gaussian density with mean x̄k

and n× n covariance matrix Mk, then (A-19) of Appendix A.1 gives

f(xk|Zk−1) = (2π)
−n/2

(detMk)
−1/2

exp

[
−1

2
(xk − x̄k)

TM−1
k (xk − x̄k)

]
.

(5-100)
From (5-94), it follows that the expectation of zk conditioned on Zk−1 is

z̄k = E
[
zk
∣∣Zk−1

]
= Hkx̄k. (5-101)

From (5-94), (5-99), and (5-95), it follows that the covariance of zk conditioned
on Zk−1 is

Lk = E
[
(zk − z̄k) (zk − z̄k)

T ∣∣Zk−1
]
= HkMkH

T
k +Rk. (5-102)

The following theorem extends the Kalman filter by not assuming that
f(zk|Zk−1) is a Gaussian density.

Theorem (Masreliez). Consider the dynamic system described by (5-93)
to (5-95). Assume that f(xk|Zk−1) is a Gaussian density with n-dimensional
mean x̄k and n×n covariance matrix Mk, and that f(zk|Zk−1) is twice differen-
tiable with respect to the r components of zk. Then the conditional expectation
x̂k and the conditional covariance Pk are generated by

x̂k = x̄k +MkH
T
k gk (zk) (5-103)

Pk = Mk −MkH
T
kGk (zk)HkMk (5-104)

Mk+1 = ΦkP
T
kΦ

T
k +Qk (5-105)

x̄k+1 = Φkx̂k (5-106)

where gk(zk) is the r × 1 vector

gk (zk) = − 1

f (zk |Zk−1 )
∇zk

f
(
zk
∣∣Zk−1

)
(5-107)
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and Gk(zk) is an r × r matrix

Gk (zk) = ∇zk
gT
k (zk) . (5-108)

Proof : When xk is given, (5-94) indicates that zk is independent of Zk−1.
Therefore, Bayes’ rule gives

f
(
xk

∣∣Zk
)
= f

(
xk

∣∣Zk−1, zk
)

= f
(
xk

∣∣Zk−1
)
f (zk |xk ) . (5-109)

We define
b = [f(zk|Zk−1)]−1. (5-110)

Equations (5-96) and (5-109) yield

x̂k − x̄k = b

∫
Rn

(xk − x̄k) f (zk |xk ) f
(
xk

∣∣Zk−1
)
dxk. (5-111)

Using (5-100) in the integrand to express it in terms of ∇xk
f
(
xk

∣∣Zk−1
)
, inte-

grating by parts, and observing that the Gaussian density f
(
xk

∣∣Zk−1
)
is zero

at its extreme points, we obtain

x̂k − x̄k = bMk

∫
Rn

f (zk |xk )M
−1
k (xk − x̄k) f

(
xk

∣∣Zk−1
)
dxk

= −bMk

∫
Rn

f (zk |xk )∇xk
f
(
xk

∣∣Zk−1
)
dxk

= bMk

∫
Rn

f
(
xk

∣∣Zk−1
)
∇xk

f (zk |xk ) dxk (5-112)

where the n × 1 gradient vector ∇xk
has ∂/∂xki as its ith component. Equa-

tion (5-94) implies that

∇xk
f (zk |xk ) = ∇xk

fv (zk −Hkxk) = −HT
k∇zk

fv (zk −Hkxk)

= −HT
k∇zk

f (zk |xk ) (5-113)

where fv(·) is the density of vk. Substitution of this equation into (5-112) gives

x̂k − x̄k = −bMkH
T
k

∫
Rn

f
(
xk

∣∣Zk−1
)
∇zk

f (zk |xk ) dxk

= −bMkH
T
k∇zk

∫
Rn

f
(
xk

∣∣Zk−1
)
f (zk |xk ) dxk

= −bMkH
T
k∇zk

∫
Rn

f(zk|Zk−1)f
(
xk

∣∣Zk
)
dxk

= −bMkH
T
k∇zk

f(zk|Zk−1)

= MkH
T
k gk (zk) (5-114)

where the second equality results because f(xk|Zk−1) is not a function of zk,
the third equality is obtained by substituting (5-109) and (5-110), and the final
equality is obtained by substituting (5-107).
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To derive (5-104), we substitute (5-103) into (5-97), which gives

Pk = E
[
(xk − x̄k) (xk − x̄k)

T ∣∣Zk
]
−MkH

T
k gk (zk)g

T
k (zk)HkMk. (5-115)

The first term, which we denote by Pk1, may be evaluated in a similar manner
as the derivation of (5-103). After the substitution of (5-109), we obtain

Pk1 = b

∫
Rn

(xk − x̄k) f (zk |xk ) f
(
xk

∣∣Zk−1
)
(xk − x̄k)

T
dxk

= −bMk

∫
Rn

∇xk
f
(
xk

∣∣Zk−1
)
f (zk |xk ) (xk − x̄k)

T
dxk

= bMk

∫
Rn

f
(
xk

∣∣Zk−1
) [

f (zk |xk ) I+∇xk
f (zk |xk ) (xk − x̄k)

T
]
dxk

= Mk − bMkH
T
k

∫
Rn

f
(
xk

∣∣Zk−1
)
∇zk

f (zk |xk ) (xk − x̄k)
T
dxk

= Mk − bMkH
T
k

∫
Rn

∇zk
[f(zk|Zk−1)f

(
xk

∣∣Zk
)
] (xk − x̄k)

T
dxk

= Mk +MkH
T
k gk (zk)g

T
k (zk)HkMk

−MkH
T
k∇zk

∫
Rn

f
(
xk

∣∣Zk
)
(xk − x̄k)

T dxk

(5-116)

where the second equality follows from a differentiation of (5-100), the third
equality is obtained by an integration by parts, the fourth equality follows
from (5-109) and (5-113), the fifth equality follows from (5-109), and the final
equality is obtained by using the chain rule and substituting (5-107), (5-103),
and (5-110). Combining (5-116) and (5-115) and then substituting (5-96),
(5-114), and (5-108) yields (5-104).

Equation (5-105) is derived by using the definition of Mk+1 given by (5-99)
and then substituting (5-93), (5-98), and (5-97). Equation (5-106) follows
from (5-98) and (5-94). �

The filter defined by this theorem is the Kalman filter if f(zk|Zk−1) is a
Gaussian density:

f(zk|Zk−1) = (2π)
−n/2

(detLk)
−1/2

exp

[
−1

2
(zk − z̄k)

TL−1
k (zk − z̄k)

]
.

(5-117)
This equation and (5-101), (5-102), (5-107), and (5-108) imply

gk (zk) =
(
HkMkH

T
k +Rk

)−1
(zk −Hkx̄k) (5-118)

Gk (zk) =
(
HkMkH

T
k +Rk

)−1
. (5-119)

Substitution of these two equations into (5-103) and (5-104) yields the usual
Kalman-filter equations.
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ACM Filter

To apply the theorem to interference suppression in a DS-BPSK system, the
narrowband interference sequence {ik} at the filter input is modeled as an
autoregressive process that satisfies

ik =

q∑
l=1

φlik−l + ek (5-120)

where ek is an independent zero-mean random variable with variance σ2
e , and the

{φl} are known to the receiver. Since it is desired to estimate ik, the observation
noise vk is the sum of the direct-sequence signal sk and the independent zero-
mean Gaussian noise nk:

vk = sk + nk. (5-121)

The state-space representation of the system is

xk = Φxk−1 + uk (5-122)

zk = Hxk + vk

= ik + sk + nk (5-123)

where
xk = [ik ik−1 . . . ik−q+1]

T
(5-124)

Φ =

⎡
⎢⎢⎢⎢⎢⎣

φ1 φ2 . . . φq−1 φq

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

(5-125)

uk = [ek 0 . . . 0]
T

(5-126)

H = [1 0 . . . 0] . (5-127)

The covariance matrix Qk contains a single nonzero element equal to σ2
e . Since

the first component of the state vector xk is the interference ik, the state esti-
mate Hx̂k = îk provides an interference estimate that can be subtracted from
the received signal to cancel the interference.

For a random spreading sequence, sk = +c or −c with equal probability. If
nk is zero-mean and Gaussian with variance σ2

n, then vk has the density

fv(x) =
1

2
Nx

(
c,σ2

n

)
+

1

2
Nx

(
−c,σ2

n

)
(5-128)

where

Nx

(
m,σ2

)
=

1√
2πσ

exp

(
− (x−m)

2

2σ2

)
. (5-129)
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Since ik and nk are independent of sk, the expected value of zk conditioned on
Zk−1 and sk = ±c is

E
[
zk
∣∣Zk−1, sk = ±c

]
= ik ± c (5-130)

where ik is the conditional expected value of ik :

ik = E
[
ik
∣∣Zk−1

]
. (5-131)

It follows that the variance of zk conditioned on Zk−1 and sk = ±c is

σ2
z = E

[(
zk − ik ∓ c

)2 ∣∣Zk−1, sk = ±c
]

= E
[(
ik − ik

)2 ∣∣Zk−1
]
+ σ2

n. (5-132)

Equation (5-120) indicates that ik is not the sum of independent Gaussian
random variables even if ek has a Gaussian distribution. Therefore, ik does not
have a Gaussian distribution (Appendix A.1), and the density f(xk|Zk−1) is
not Gaussian as required by Masreliez’s theorem. However, by assuming that
f(xk|Zk−1) is approximately Gaussian, we can use results of the theorem to
derive the nonlinear approximate conditional mean (ACM) filter [119].

Since f(xk|Zk−1) is approximated by a Gaussian density and ik is indepen-
dent of sk, f(Hxk|Zk−1, sk) =f(ik|Zk−1, sk) is approximated by a Gaussian
density. Since nk has a Gaussian density, it follows that f

(
zk
∣∣Zk−1, sk

)
is ap-

proximated by a Gaussian density. Therefore, the theorem of total probability
and (5-128) imply that

f
(
zk
∣∣Zk−1

)
=

1

2
Nzk

(
ik + c,σ2

z

)
+

1

2
Nzk

(
ik − c,σ2

z

)

=
1√
2πσz

exp

(
−ε2k + c2

2σ2
z

)
cosh

(
cεk
σ2
z

)
(5-133)

where the innovation or prediction residual is

εk = zk − ik. (5-134)

From (5-130), it follows that

zk = E
[
zk
∣∣Zk−1

]
= ik. (5-135)

Substitution of (5-133) into (5-107) yields

gk (zk) =
1

σ2
z

[
εk − c tanh

(
cεk
σ2
z

)]
(5-136)

and the substitution of (5-136) into (5-108) yields

Gk (zk) =
1

σ2
z

[
1− c2

σ2
z

sech2
(
cεk
σ2
z

)]
. (5-137)

The update equations of the ACM filter are given by (5-103) - (5-106), (5-136),
and (5-137). The difference between the nonlinear ACM filter and the linear
Kalman filter is the presence of the nonlinear tanh and sech functions in (5-136)
and (5-137).
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Adaptive ACM Filter

In practical applications, the elements of the matrix Φ in (5-125) are unknown
and may vary with time. To cope with these problems, an adaptive algorithm
that can track the interference is desirable. The adaptive ACM filter produces
an interference estimate denoted by ẑk and an output

ε̂k = zk − ẑk (5-138)

which ideally is sk + nk plus a small residual of ik. Thus, the interference, but
not the noise, is suppressed.

To use the structure of the nonlinear ACM filter, we observe that the second
term inside the brackets in (5-136) would be absent if sk were absent. Therefore,
c tanh(cεk/σ

2
z) may be interpreted as a soft decision on the direct-sequence

signal sk. The input to the adaptive filter at time k is computed as the difference
between the observation zk and the soft decision:

z̃k = zk − c tanh

(
cε̂k
σ2
z

)

= ẑk + ρ (ε̂k) (5-139)

where

ρ (ε̂k) = ε̂k − c tanh

(
cε̂k
σ2
z

)
. (5-140)

The input z̃k is a rough estimate of the interference that is made more accu-
rate by the adaptive filter. The architecture of the one-sided adaptive ACM
filter [119] is shown in Fig. 5.5. The output of the adaptive filter provides the
interference estimate

ẑk = wT (k)z̃(k) (5-141)

where w(k) is the weight vector after iteration k and

z̃(k) = [z̃k−1 z̃k−2 . . . z̃k−N ]
T

(5-142)

is the input vector for iteration k, which is extracted from the filter taps. When
z̃(k) has only a small component due to sk, the filter can effectively track the
interference, and its output ẑk provides a good estimate of this interference.

The normalized LMS algorithm (Section 5.2) may be used to implement
the adaptive ACM filter with z̃k serving as an approximation of the desired
response ik. The normalized LMS algorithm may be expressed as

w(k) = w(k − 1) +
2μ

δ + ||z̃(k)||2
(z̃k − ẑk) z̃(k) (5-143)

where μ is the adaptation constant, 0 < μ < 1, and δ is a positive constant.
The calculation of ρ(ε̂k) requires the estimation of σ2

z . If the ẑk produced
by the adaptive filter approximates ik, then var(ε̂k) ≈ σ2

z . Therefore, if var(ε̂k)
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Figure 5.5: Adaptive ACM filter

is estimated by computing the sample variance of the filter output, then the
latter provides an estimate of σ2

z .
A figure of merit for filters is the SINR improvement, which is the ratio of the

output signal-to-interference-and-noise ratio (SINR) to the input SINR. Since
the filters of concern do not change the signal power, the SINR improvement is

R =
E
{
|zk − sk|2

}

E
{
|ε̂k − sk|2

} . (5-144)

In terms of this performance measure, the nonlinear adaptive ACM filter has
been found to provide much better suppression of narrowband interference than
the linear Kalman filter if the noise power in nk is less than the direct-sequence
signal power in sk. If the latter condition is not satisfied, the advantage is
small or absent. Disadvantages apparent from (5-140) are the requirements to
estimate the parameters c and σ2

z and to compute or store the tanh function.
The preceding linear and nonlinear methods are primarily predictive meth-

ods that exploit the inherent predictability of narrowband interference. Further
improvements in interference suppression are theoretically possible by using
methods that were originally developed for multiuser detection (Section 7.7).
Some of them can potentially be used to simultaneously suppress both narrow-
band interference and multiple-access interference, but they require even more
computation and parameter estimation than the ACM filter, and the most pow-
erful of the adaptive methods are practical only for short spreading sequences,
if at all.

5.4 Rejection of Wideband Interference

When a direct-sequence system is part of a mobile network of similar systems,
multiple-access interference (Chapter 7) by similar systems is of primary con-



5.4. REJECTION OF WIDEBAND INTERFERENCE 293

cern because this interference may be too strong for the inherent resistance
of a practical spread-spectrum system with a limited spreading factor. Since
this type of interference has a spectrum that is similar to that of a desired
direct-sequence signal, the narrowband interference-rejection filters are ineffec-
tive, and another type of adaptive filter is needed. By exploiting the known
spreading sequence, an adaptive filter is potentially capable of suppressing both
multiple-access interference and general wideband interference. As illustrated
in Fig. 5.1, chip-rate processing is performed prior to the despreading.

Lagrange Multipliers

Consider minimizing or maximizing the differentiable function f(x) subject to
the m equality constraints gi(x) = 0, i = 1, . . . ,m, where each gi(x) is differen-
tiable. In principle, one could use each constraint to solve for a component of x
and then proceed to minimize or maximize a function of a smaller set of inde-
pendent variables. In practice, such a procedure is often difficult. The method
of Lagrange multipliers [20, 46] provides an alternative procedure that provides
local minima or maxima. We focus on minimizing f(x) since maximizing it is
equivalent to minimizing −f(x).

Let x0 denote a local minimum of a continuously differentiable function
f :Rn → R subject to gi(x) = 0, i = 1, . . . ,m, where each gi(x) is a con-
tinuously differentiable function gi:Rn → R, m ≤ n, and the {∇xgi(x0)} are
linearly independent. Let

G =

⎡
⎢⎣

∇T
x g1(x0)

...
∇T

x gm(x0)

⎤
⎥⎦ (5-145)

denote an m × n matrix of gradients. Let R
(
GT
)
denote the range space

of GT , which is the m-dimensional vector subspace spanned by the linearly
independent {∇xgi(x0)}. Let N (G) denote the (n-m)−dimensional null space
of G, which implies that an n× 1 vector t ∈ N (G) satisfies

Gt = 0. (5-146)

Thus, any vector in N (G) is a tangent vector at the point x0 on the multi-
dimensional surface defined by the constraints, and an infinitesimal movement
from x0 along a tangent vector gives a point that remains on the surface.

Since x0 is a local minimum and ∇xf(x0) has continuous components, any
vector in N (G) must be perpendicular to ∇xf(x0) so that an infinitesimal
movement along the vector cannot decrease f(x). Therefore, at a local minimum
x0 that satisfies the constraints, it is necessary that

∇T
x f(x0)t = 0 (5-147)

for every vector t ∈ N (G) . Using linear algebra and (5-147), we have∇xf(x0) ∈
(N (G))

⊥
= R

(
GT
)
, where A⊥ denotes the subspace perpendicular to the sub-
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space A. Therefore, ∇xf(x0) must be a linear combination of the {∇xgi(x0)}:

∇xf(x0) = −
m∑
i=1

λi∇xgi(x0) (5-148)

for properly chosen Lagrange multipliers λ1, . . . , λm. This equation implies that
a necessary condition for x0 to be a local minimum of f(x) subject to constraints
is for x0 to be a stationary point of the unconstrained Lagrangian function

L (x, λ) = f(x) +

m∑
i=1

λigi(x). (5-149)

The method of Lagrange multipliers requires the finding of the stationary points
of the Lagrangian function and the Lagrange multipliers that satisfy the con-
straints gi(x) = 0, i = 1, . . . ,m. Once the stationary points are found, it must
be determined whether they locally minimize or globally minimize f(x) or nei-
ther.

Constrained Minimum-Power Criterion

The constrained minimum-power criterion is a performance criterion that in-
herently limits the inadvertent cancelation of the desired signal while canceling
interference by an adaptive filter. Let p denote the G × 1 vector of the short
spreading sequence of a desired signal. Let x = dAp + n denote the G × 1
output vector of the G successive outputs of a chip-matched filters that process
one symbol d = ±1, where n is the interference and noise in the filter output
and A is the amplitude. The output of a linear detector is y = wHx, where w
is a complex-valued G × 1 weight vector. Each component of p has the value
+1 or −1, and hence

pTp = G. (5-150)

We assume that x has stationary statistics and a positive-definite correlation
matrix Rx. The constrained minimum-power criterion requires that the weight
vector minimize the mean output power

E
[
|y|2
]
= wHRxw (5-151)

subject to the constraint

wHp = 1. (5-152)

By forcing this inner product to be unity, the constraint inhibits suppression
of the desired signal. Thus, the power minimization tends to suppress the
interference and noise.

Applying the method of Lagrange multipliers, we find the stationary points
of the real-valued Lagrangian function

H (w,w∗) = wHRxw + γ1
[
Re
(
wHp

)
− 1
]
+ γ2

[
Im
(
wHp

)]
(5-153)
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where γ1 and γ2 are real-valued Lagrange multipliers, and an irrelevant constant
has been dropped. Defining γ = γ1 − jγ2, we obtain

H (w,w∗) = wHRxw +Re
(
γwHp

)

= wHRxw +
1

2
γwHp+

1

2
γ∗wTp (5-154)

which is an analytic function ofw andw∗. Let∇w∗ denote the complex gradient
with respect to w∗. Then (5-20) indicates that

∇w∗H (w,w∗) = Rxw +
1

2
γp. (5-155)

Assuming that the Hermitian matrix Rx is positive definite, its inverse ex-
ists (theorem 2, Appendix G). Setting ∇w∗H (w,w∗) = 0 and applying the
constraint to eliminate γ give the necessary condition for the optimal weight
vector :

w0 =
R−1

x p

pTR−1
x p

(5-156)

where the denominator is a scalar.
To show that the local minimum given by (5-156) is the optimal weight

vector, we combine this equation with (5-151) and (5-152), which yields

E
[
|y|2
]
= (w −w0)

H
Rx (w −w0) +

(
pTR−1

x p
)−1

. (5-157)

Since the final term is independent ofw andRx is positive definite, this equation

indicates that w0 is the unique weight vector that minimizes E
[
|y|2
]
.

Frost Algorithm

The Frost algorithm or linearly constrained minimum-variance algorithm is an
adaptive algorithm that approximates the constrained optimal weight of (5-156)
while avoiding the matrix inversion. Let the index k denote successive symbols
of G matched-filter outputs. By the method of steepest descent and (5-155), the
gradient of the Lagrangian for the kth iteration is Rxw(k) + γ (k)p/2, where
Rx is the correlation matrix of x (k) = d (k)p+ n (k) .

The weight vector w(k) is updated according to

w(k + 1) = w(k)− μ [2Rxw(k) + γ (k)p] (5-158)

where μ is a constant that regulates the algorithm convergence rate. The La-
grange multiplier is chosen so that

pTw(k + 1) = wH(k + 1)p = 1. (5-159)

Substituting (5-158) and (5-150) into (5-159), we find that

γ (k) =
1

μG

[
pTw(k)− 2μpTRxw(k)− 1

]
. (5-160)
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Substituting this equation into (5-158) and exploiting that pTw(k) and pTRx

w(k) are scalars, we obtain

w(k + 1) =

(
I− 1

G
ppT

)
[w(k)− 2μRxw(k)] +

1

G
p. (5-161)

This equation provides a deterministic steepest-descent algorithm that would
be used if Rx were known.

The Frost algorithm is the stochastic-gradient algorithm that approximates
Rx by x (k)xH (k) and uses the linear detector output given by (H-9) to deter-
mine symbol d (k). A suitable choice for the initial weight vector that satisfies
the constraint is w(0) = p/G. Thus, the Frost algorithm is

w(0) =
1

G
p (5-162)

w(k + 1) =

(
I− 1

G
ppT

)
[w(k)− 2μx (k) y∗ (k)] +

1

G
p. (5-163)

The output Re [y (k)] can be used as a symbol metric. Symbol decisions are
made according to

d̂ (k) = sgn {Re [y (k)]} (5-164)

where the signum function is defined by (1-196).
Computational errors occur because of truncation, rounding, or quantiza-

tion errors in the computer implementation of the algorithm. These errors may
cause wH (k)p �= 1 after an iteration and could have a significant cumulative
effect after a few iterations. However, the next iteration of the Frost algo-
rithm automatically tends to correct the computational errors in the weight
vector from the preceding iteration, primarily because (5-159) is used in deriv-
ing (5-160). Thus, apart from new sources of error, wH(k + 1)p = 1 even if
wH(k)p �= 1.

Convergence of the Mean

If x (k + 1) is independent of y (i) , i≤ k, then (5-163) implies that w(k) and
x (k) are independent, and hence

E[w(k + 1)] = A[I− 2μRx]E[w(k)] +
1

G
p, k ≥ 0 (5-165)

where

A =

(
I− 1

G
ppT

)
. (5-166)

Let
v(k) = E[w(k)]−w0. (5-167)

From (5-167), (5-165), (5-156), and (5-166), we obtain

v(k + 1) = Av(k)− 2μARxv(k), k ≥ 0. (5-168)
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Direct multiplication verifies that A2 = A. It then follows from (5-168) that
Av(k) = v(k), k ≥ 1. It is easily verified that Av(0) = v(0). Consequently,

v(k + 1) = [I− 2μARxA]v(k)

= [I− 2μARxA]k+1v(0), k ≥ 0. (5-169)

Since A is symmetric and Rx is Hermitian, the matrix ARxA is Hermitian,
and hence it has a complete set of orthonormal eigenvectors. Direct calculation
proves that

ARxAp = 0 (5-170)

which indicates that p is an eigenvector of ARxA with eigenvalue equal to zero.
Let ei, i = 1, 2, . . . , N−1, denote the N−1 remaining orthonormal eigenvectors
of ARxA. The orthogonality implies that

pT ei = 0, i = 1, 2, . . . , N − 1. (5-171)

From this equation and (5-166), it follows that

Aei = ei, i = 1, 2, . . . , N − 1. (5-172)

Let σi denote the eigenvalue of ARxA associated with the unit eigenvector
ei. Using (5-172), we obtain

σi = eHi ARxAei = eHi Rxei, i = 1, 2, . . . , N − 1. (5-173)

Since ei is a unit vector, the Rayleigh quotient bounds of (5-63) imply that

λmin ≤ eHi Rxei ≤ λmax (5-174)

σmin ≤ eHi ARxAei ≤ σmax (5-175)

where λmin and λmax are the smallest and largest eigenvalues, respectively, of
the Hermitian positive-semidefinite matrix Rx, and where σmin and σmax are
the smallest and largest eigenvalues, respectively, of ei, i = 1, 2, . . . , N − 1. If
we assume that Rx is positive definite, then λmin > 0, and hence σmin > 0. We
conclude that the {ei} correspond to nonzero eigenvalues.

It is easily verified that pTv(0) = 0. Therefore, v(0) is equal to a linear
combination of the ei, i = 1, 2, . . . , N − 1, which are the eigenvectors of ARxA
corresponding to the nonzero eigenvalues. If v(0) is equal to the eigenvector ei
with eigenvalue σi, then (5-169) indicates that

v(k + 1) = (1− 2μσi)
k+1ei, k ≥ 0. (5-176)

Therefore, |1 − 2μσi| < 1 for i = 1, 2, . . . , N − 1 is a necessary and sufficient
condition for v(k) → 0, and hence the convergence of the mean weight vector
to its optimal value:

lim
k→∞

E[w(k)] = w0 =
R−1

x p

pTR−1
x p

. (5-177)
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Since σmin > 0, the necessary and sufficient condition for convergence is

0 < μ <
1

σmax
. (5-178)

Analogously to the LMS algorithm, the convergence of the mean weight
vector of the Frost algorithm has transients that can be characterized by the
time constants

τi = − 1

ln(|1− 2μσi|)
, i = 1, 2, . . . , N − 1. (5-179)

If 0 < μ < 1/2σmax, the largest time constant is

τmax = − 1

ln(1− 2μσmin)
<

1

2μσmin
, 0 < μ <

1

2σmax
. (5-180)

If μ is selected to be close to the upper bound in (5-180), then τmax increases
with the eigenvalue spread defined as σmax/σmin.

5.5 Optimal Array

When multiple antennas are available, much more potent interference suppres-
sion is possible than can be obtained by processing the output of a single an-
tenna. An adaptive array is an adaptive filter with inputs derived directly from
an array of antennas. The performance criterion that has led to the most effec-
tive adaptive arrays for spread-spectrum systems is based on the maximization
of the SINR, and hence that criterion is used to derive the optimal weight vector
for adaptive arrays.

Consider an array with N outputs, each of which includes a different signal
copy from a distinct antenna. Each array output is translated to baseband,
and its sampled complex envelope is extracted (Appendix D.2). Alternatively,
each array output is translated to an intermediate frequency, and the sampled
analytic signal is extracted. The subsequent analysis is valid for both these
types of processing, but it is simplest to assume the extraction of sampled
complex envelopes.

The sampled complex envelopes of the array outputs provide the inputs to
a linear filter. The desired signal, interference signals, and thermal noise are
modeled as independent zero-mean, wide-sense stationary stochastic processes.
Let x(i) denote the discrete-time vector of the N complex-valued filter inputs,
where the index i denotes the sample number. This vector can be decomposed
as

x(i) = s(i) + n(i) (5-181)

where s(i) and n(i) are the discrete-time vectors of the desired signal and the
interference-and-noise, respectively. The components of both s(i) and n(i) are
modeled as discrete-time jointly wide-sense stationary processes. Let w denote
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the N × 1 weight vector of a linear filter applied to the input vector. The filter
output is

y(i) = wHx(i) = ys(i) + yn(i) (5-182)

where the output components due to s(i) and n(i) are

ys(i) = wHs(i), yn(i) = wHn(i) (5-183)

respectively.
The N ×N correlation matrices of s(i) and n(i) are defined as

Rs = E
[
s(i)sH(i)

]
, Rn = E

[
n(i)nH(i)

]
(5-184)

respectively. The desired-signal and interference-and-noise powers at the output
are

pso = E
[
|ys(i)|2

]
= wHRsw (5-185)

pn = E
[
|yn(i)|2

]
= wHRnw (5-186)

respectively. The SINR at the filter output is

ρ =
pso
pn

=
wHRsw

wHRnw
. (5-187)

The definitions of Rs and Rn ensure that these matrices are Hermitian
positive semidefinite. Consequently, these matrices have complete sets of or-
thonormal eigenvectors, and their eigenvalues are real valued and nonnegative.
We assume that the positive-semidefinite Hermitian matrix Rn is positive defi-
nite so that it has positive eigenvalues. The spectral decomposition (Appendix
G) of Rn can be expressed as

Rn =

N∑
l=1

λlele
H
l (5-188)

where λl is an eigenvalue and el is the associated eigenvector.
To derive the weight vector that maximizes the SINR with no restriction on

Rs, we define the Hermitian matrix

A =

N∑
l=1

√
λlele

H
l . (5-189)

Direct calculations using the orthonormality of the {el} verify that

Rn = A2 (5-190)

and the inverse of A is

A−1 =

N∑
l=1

1√
λl

ele
H
l . (5-191)
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The matrix A specifies an invertible transformation of w into the vector

v = Aw. (5-192)

We define the Hermitian matrix

C = A−1RsA
−1. (5-193)

Then (5-187), (5-190), (5-192), and (5-193) indicate that the SINR can be ex-
pressed as the Rayleigh quotient

ρ =
vHCv

‖v‖2 . (5-194)

Let μmax and μmin denote the largest and smallest eigenvalues of C, respec-
tively. Then (5-63) indicates that

μmin ≤ ρ ≤ μmax. (5-195)

Let u denote the unit eigenvector of C associated with its largest eigenvalue
μmax. Thus, v = ηu maximizes the SINR, where η is an arbitrary constant.
From (5-192) with v = ηu, it follows that the optimal weight vector that maxi-
mizes the SINR is

w0 = ηA−1u. (5-196)

The purpose of an adaptive-array algorithm is to adjust the weight vector to
converge to the optimal value, which is given by (5-196) when the maximization
of the SINR is the performance criterion.

We assume that the desired signal is sufficiently narrowband or the antennas
are sufficiently close that the desired-signal copies in all the array outputs are
nearly aligned in time. The desired-signal input vector may be represented as

s(i) = s(i)s0 (5-197)

where s(i) denotes the discrete-time sampled complex envelope of the desired
signal, and the steering vector is

s0 = [α1 exp(j θ1) α2 exp(j θ2) . . . αN exp(j θN )]T (5-198)

which has components that represent the relative amplitudes and phase shifts
at the antenna outputs.

Example 1. Equation (5-198) can serve as a model for a narrowband
desired signal that arrives at an antenna array as a plane wave and does not
experience fading. Let Tl, l = 1, 2, . . . , N , denote the arrival-time delay of the
desired signal at the output of antenna l relative to a fixed reference point
in space. Equations (5-197) and (5-198) are valid with θl = −2πfcTl, l =
1, 2, . . . , N , where fc is the carrier frequency of the desired signal. The αl,
l = 1, 2, . . . , N , depend on the relative antenna patterns and propagation losses.
If they are all equal, then the common value can be subsumed into s(i). It is
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convenient to define the origin of a Cartesian coordinate system to coincide
with the fixed reference point. Let (xl,yl) denote the coordinates of antenna
l. If a single plane wave arrives from direction ψ relative to the normal to the
array, then

θl =
2πfc
c

(xl sinψ + yl cosψ), l = 1, 2, . . . , N (5-199)

where c is the speed of an electromagnetic wave. �
The substitution of (5-197) into (5-184) yields

Rs = pss0s
H
0 (5-200)

where
ps = E[|s(i)|2]. (5-201)

After substituting (5-200) into (5-193), it is observed that C may be factored:

C = psA
−1s0s

H
0 A−1 = ffH (5-202)

where
f =

√
psA

−1s0. (5-203)

This factorization explicitly shows that C is a rank-one matrix, and hence its
null space has dimension N−1. Therefore, the eigenvector of C associated with
the only nonzero eigenvalue is u = f , and its eigenvalue is

μmax = ‖f‖2. (5-204)

Substituting (5-203) into (5-196), using (5-190), and then merging
√
ps into the

arbitrary constant, we obtain the optimal weight vector:

w0 = ηR−1
n s0 (5-205)

where η is an arbitrary constant. The maximum value of the SINR, obtained
from the upper bound in (5-195), (5-204), (5-203), and (5-190), is

ρ0 = pss
H
0 R−1

n s0. (5-206)

5.6 Adaptive Array for Direct-Sequence
Systems

If multiple antennas are available, an antenna array may be used to adaptively
suppress both narrowband and wideband interference. The basic configuration
of an adaptive array for spread-spectrum systems is displayed in Fig. 5.6. The
output of each array antenna is applied to an initial processor in a separate
branch. The output of one antenna is applied to the synchronization system,
which provides frequency and timing synchronization. The spreading waveform,
which is produced by a synchronized receiver, is applied to the initial processors
to enable the generation of despread discrete-time branch sequences. These
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Figure 5.6: Architecture of adaptive array for spread-spectrum system

sequences are applied to an adaptive processor that executes the adaptive-array
algorithm.

The maximin algorithm is an adaptive-array algorithm that exploits the
characteristics of spread-spectrum signals to provide a much larger degree of
protection against strong interference than could be provided by spread spec-
trum alone [106]. It is a stochastic-gradient algorithm that is based on the
method of steepest ascent and recursively increases the SINR. As indicated
by its name, the maximin algorithm simultaneously maximizes the despread
desired-signal components and minimizes the spectrally spread interference
components.

Derivation of Maximin Algorithm

Let x(i) denote the ith N × 1 discrete-time vector of filtered branch outputs
that provide the inputs to the maximin algorithm, where i is the sample index.
The vector x(i) can be decomposed as x(i) = s(i) + n(i), where s(i) and n(i)
are the discrete-time vectors of the desired sequence and the interference-and-
noise sequence, respectively. Their N ×N autocorrelation matrices are defined
by (5-184). Since the interference and noise are zero-mean and statistically
independent of the desired signal, the N ×N input correlation matrix is

Rx = E[x(i)xH(i)] = Rs +Rn. (5-207)

The maximin processor is a linear adaptive filter that uses an N × 1 weight
vector w(k), where k is the index that denotes the weight iteration number.
There are m discrete-time samples of the input vector x(i) for every weight
iteration. The adaptive-filter output is

y(i) = wH (k)x(i) = ys (i) + yn (i) (5-208)

ys (i) = wH (k) s(i), yn (i) = wH (k)n(i). (5-209)
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The adaptive-filter output power is

px(k) = E[|y(i)|2] = wH(k)Rxw(k)

= ps(k) + pn(k) (5-210)

where

ps(k) = wH(k)Rsw(k) (5-211)

pn(k) = wH(k)Rnw(k) (5-212)

are the desired-sequence and interference-and-noise sequence powers, respec-
tively. The SINR after iteration k is

ρ(k) =
ps(k)

pn(k)
=

wH(k)Rsw(k)

wH(k)Rnw(k)
. (5-213)

The maximin algorithm changes the weight vector along the direction of the
gradient of the SINR. Combining equations for the real and imaginary parts of
the complex-valued weight vector, we obtain

w(k + 1) = w(k) + μ0(k)∇w∗ρ(k) (5-214)

where μ0(k) is a scalar sequence that controls the rate of change of the weight
vector, and ∇w∗ρ(k) is the complex gradient of the SINR ρ(k) at iteration k.
Using (5-213), we obtain

∇w∗ρ(k) = ρ(k)

[
Rsw(k)

ps(k)
− Rnw(k)

pn(k)

]
. (5-215)

Substitution of (5-207) and (5-210) into (5-215) and simplification yield

∇w∗ρ(k) = [ρ(k) + 1]

[
Rxw(k)

px(k)
− Rnw(k)

pn(k)

]
. (5-216)

Substitution of this equation into (5-214) gives the steepest-ascent algorithm:

w(k + 1) = w(k) + μ0(k)[ρ(k) + 1]

[
Rxw(k)

px(k)
− Rnw(k)

pn(k)

]
. (5-217)

If w(k) is modeled as deterministic, then Rxw(k) = E[x(i)y∗(i)] and Rn

w(k) = E[n(i)y∗n(i)]. Thus, we can avoid estimating the matrices Rx and Rn

in (5-217) by finding estimators of E[x(i)y∗(i)] and E[n(i)y∗n(i)]. A further
simplification that ultimately reduces the amount of computation by nearly a
factor of two is obtained by observing that the components of x(i) are propor-
tional to samples of continuous-time complex envelopes, which are modeled as
zero-mean wide-sense stationary processes. In each array branch, the thermal
noise is independent of the noise in the other branches, and each desired or
interference signal is a delayed version of the corresponding signal in the other
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branches. Therefore, the continuous-time complex envelopes are circularly sym-
metric (Appendix D.2), and thus

E[x(i)xT (i)] = 0 (5-218)

and

E[n(i)nT (i)] = 0. (5-219)

The adaptive-filter output can be decomposed as

y(i) = yr(i) + jyi(i) (5-220)

where yr(i) and yi(i) are the real and imaginary parts of y(i), respectively.
We assume that w(k) varies slowly relative to the symbol rate and hence ap-
proximates a deterministic vector. Then (5-182), (5-218), and the identity
wH (k)x(i) = xT (i)w∗(k) imply that

E[x(i)yr(i)] = E

[
x(i)

{
1

2
xT (i)w∗(k) +

1

2
xH(i)w(k)

}]

=
1

2
E
[
x(i)xH(i)

]
w(k). (5-221)

This equation and (5-207) yield

Rxw(k) = 2E[x(i)yr(i)]. (5-222)

Similarly,

Rnw(k) = 2E[n(i)ynr(i)] (5-223)

where

ynr(i) = Re[yn(i)] = Re[wH(k)n(i)] (5-224)

is the real part of yn(i). Thus, we can avoid estimating the matrices Rx and
Rn in (5-217) by finding estimators of E[x(i)yr(i)] and E[n(i)ynr(i)].

Equations (5-182) and (5-218) imply that E[y2(i)] = 0, and the substitution
of (5-182) yields E[y2r(i)] = E[y2i (i)] and E[yr(i)yi(i)] = 0. Therefore, px(k) =

E[|y(i)|2] = 2E[y2r(i)]. These calculations and similar ones involving pn(k) give

px(k) = 2E[y2r(i)], pn(k) = 2E[y2nr(i)]. (5-225)

To derive the maximin algorithm, let p̂x(k) and p̂n(k) denote estimates of
E[y2r ] and E[y2nr], respectively, following weight iteration k. Let cx(k) and cn(k)
denote estimates following iteration k of the input correlation vector E[xyr] and
the interference-and-noise correlation vector E[nynr], respectively. Substituting
these estimates and μ0(k) = α(k)/[ρ̂(k)+1] into (5-217), we obtain the maximin
algorithm:

w(k + 1) = w(k) + α(k)

[
cx(k)

p̂x(k)
− cn(k)

p̂n(k)

]
, k ≥ 0 (5-226)
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where w(0) is the deterministic initial weight vector, and α(k) is the adaptation
sequence. As the adaptive weights converge, the interference components of
cx(k) and p̂x(k) decrease. Thus, the first term within the brackets can be
interpreted as a signal term that enables the algorithm to direct the array
beam toward the desired signal. The second term within the brackets is a noise
term that enables the algorithm to null interference signals.

The adaptation sequence α(k) should be chosen so that E[w(k)] converges
to a nearly optimal steady-state value. It is also intuitively plausible that α(k)
should decrease rapidly as E[w(k)] converges. A suitable candidate is

α(k) = α
p̂n(k)

t̂(k)
(5-227)

where t̂(k) is an estimate of the total interference-and-noise power in the pass-
bands of the despread desired-signal copies, and α is the adaptation constant.
The subsequent convergence analysis and simulation results confirm that this
choice is effective and robust, provided that the adaptation constant is within
certain numerical bounds. Simulation experiments confirm that for cyclosta-
tionary spread-spectrum signals and tone interference, the maximin algorithm
suffers no performance loss due to the simplification stemming from (5-219).

The remaining issue is the choice of estimators for t̂(k), cx(k), cn(k), p̂x(k),
and p̂n(k). The specific nature of the spread-spectrum signals allows blind
estimates to be made without depending on known steering vectors or reference
signals.

Implementation of the Adaptive Processor

For a DS BPSK system, the principal components of each initial processor in
Fig. 5.6 are depicted in Fig. 2.14. After timing synchronization of the spread-
ing sequence has been established in the receiver, the final mixing operations
produce the complex-valued chip-rate branch sequence comprising the despread
desired sequence, spectrally spread interference, and noise.

This spectral difference is exploited by the maximin algorithm to estimate
the interference and then cancel it. The chip-rate vector of branch sequences

xb(�) = [xb1(�)xb2(�) . . . xbN (�)]T (5-228)

where � is the index of the chip-rate samples. In the maximin processor shown
in Fig. 5.7, each branch sequence is applied to a signal filter that estimates
the desired-signal component of xb(�), and a monitor filter that estimates the
interference component of xb(�). For an adaptive array of N antennas, the
outputs of N pairs of signal and monitor filters are applied to the adaptive
filter, the output of which is applied to a metric generator. The maximin
algorithm seeks to maximize the SINR at the input to the metric generator.

Figure 5.8 is a conceptual diagram of the filter frequency responses that
illustrates the processing of one chip-rate branch sequence. The monitor fil-
ters have the same bandwidths as the signal filters but have center-frequency
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Figure 5.7: Maximin processor for direct-sequence system

offsets equal to ±fo. The despreading of the direct-sequence signal spreads
the spectrum of the interference almost uniformly over the entire passband of
the monitor filter if fo ≤ (g − 1)/Ts. Any spillover or spectral splatter of
the desired-signal spectrum into the monitor filter may lead to some degree of
desired-signal cancelation by the adaptive algorithm. Thus, fo must be suffi-
ciently large to prevent significant spectral splatter. The interference and noise
that pass through a monitor filter are used to estimate the interference and
noise that accompany the desired signal that passes through the associated
signal filter.

In the digital implementation shown in Fig. 5.7, the filters are implemented
as accumulators. Each filter output is sampled at the end of every symbol
interval. The vector of signal-filter outputs is

x(i) =

i∑
�=i−g+1

xb(�) (5-229)

where � is the index of the chip-rate input samples and i is the index of the
symbol-rate output samples. The interference-and-noise components at higher
frequencies are shifted to baseband and then applied to monitor filters that are
identical to the signal filters. Thus, the vector of symbol-rate monitor-filter
outputs is

n̂(i) =
i∑

�=i−g+1

xb(�) exp(−2πfoTc�) (5-230)

which is the vector of interference-and-noise estimates used to generate cn(k)
and p̂n(k). Let nb(�) and n(i) denote the interference-and-noise components of
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xb(�) and x(i), respectively. Then

n(i) =

i∑
�=i−g+1

nb(�). (5-231)

Let nb (l) denote the interference-and-noise component of xb (l) . If nb (l) and
nb (m) are zero-mean and nearly independent when l �= m, then (5-230) and
(5-231) imply that

E[n̂(i)n̂H(i)] ≈ E[n(i)nH(i)], E[n̂(i)n̂T (i)] ≈ E[n(i)nT (i)] = 0. (5-232)

Adaptive Filter

The architecture of the adaptive filter is illustrated in Fig. 5.9. One input vector
is x(i) = s(i) + n(i), where s(i) and n(i) are the discrete-time vectors of the
desired sequence and the interference-and-noise sequence, respectively. Another
input vector is n̂(i), which provides an estimate of n(i). There is one weight
iteration after every m symbol-rate samples of the input vectors. The adaptive
filter produces the output

yr(i) = Re[wH(k)x(i)], i = km+ 1, · · · , (k + 1)m (5-233)

where sample i is taken after weight iteration k. This output is applied to the
demodulator and is used in the estimators

cx(k) =
1

m

(k+1)m∑
i=km+1

x(i)yr(i), k ≥ 0 (5-234)

and

p̂x(k) =
1

m

(k+1)m∑
i=km+1

y2r(i), k ≥ 0 (5-235)

which provide unbiased estimates when x(i) and yr(i) are stationary processes
between weight iterations.
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The adaptive filter also generates

ŷnr(i) = Re[wH(k)n̂(i)], i = km+ 1, · · · , (k + 1)m. (5-236)

Since w(k) varies slowly relative to the symbol rate, it approximates a random
variable that is independent of n̂(i) and n(i). Then (5-232), (5-236), and (5-224)
imply that

E[n̂(i)ŷnr(i)] ≈ E[n(i)ynr(i)] (5-237)

and hence an approximately unbiased estimator of the interference-and-noise
correlation vector at weight iteration k is

cn(k) =
1

m

(k+1)m∑
i=km+1

n̂(i)ŷnr(i), k ≥ 0. (5-238)

Similarly, an approximately suitable estimator proportional to the interference-
and-noise output power is

p̂n(k) =
1

m

(k+1)m∑
i=km+1

ŷ2nr(i), k ≥ 0. (5-239)

Both of these estimators are approximately unbiased when n̂(i) and ŷnr(i) are
stationary processes between weight iterations.

An estimator of the total interference-and-noise power in the passbands of
the despread desired-signal copies is

t̂(k) =
1

m

(k+1)m∑
i=km+1

‖ n̂(i) ‖2, k ≥ 0 (5-240)
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which is approximately unbiased when n̂(i) is a wide-sense stationary process.
A recursive estimator of t̂(k) is

t̂(k) =

{
μt̂(k − 1) + 1−μ

m

∑(k+1)m
i=km+1 ‖ n̂(i) ‖2, k ≥ 1

1
m

∑m
i=1 ‖ n̂(i) ‖2, k = 0

(5-241)

where μ is the memory factor, and 0 ≤ μ < 1. As verified by simulation exper-
iments, recursive versions of the preceding estimators merely slow the conver-
gence of the maximin algorithm when the interference statistics are stationary.
However, the recursive estimator of t̂(k) is useful in a nonstationary environ-
ment, such as one with pulsed interference (Section 2.6).

Timing acquisition, which must be achieved before the maximin algorithm is
activated, may be obtained by using an algorithm that suppresses interference
until acquisition is achieved. One method is to use the estimated direction-of-
arrival of the desired signal followed by beamforming to enhance the desired
signal [75]. In another method, an adaptive-array algorithm exploits the high
power of interference to reduce its level relative to that of a desired direct-
sequence signal before timing acquisition has been achieved [107]. Although the
degree of interference suppression may be sufficient to enable acquisition, it
is usually insufficient to enable timing tracking and demodulation. Both the
despreading and the maximin algorithm are needed after acquisition.

Convergence Analysis

The highly nonlinear nature of the maximin algorithm precludes a completely
rigorous convergence analysis. However, with suitable approximations and as-
sumptions, the convergence of the mean weight vector to w0 can be demon-
strated, and bounds on the adaptation constant can be derived. We assume
that the interference is wide-sense stationary and m is large enough that (5-240)
gives

t̂(k) ≈ E[t̂(k)] = E[‖ n̂(i) ‖2]
≈ E[‖ n(i) ‖2] = tr(Rn). (5-242)

We assume that after a number of algorithm iterations k0,

p̂x(k)

p̂n(k)
=

p̂s(k)

p̂n(k)
+ 1

≈ ρ0 + 1

= pss
H
0 R−1

n s0 + 1. (5-243)

Using these assumptions in (5-226) and (5-227), the maximin algorithm is ap-
proximated by

w(k + 1) = w(k) +
α

tr(Rn)

[
cx(k)

ρ0 + 1
− cn(k)

]
, k ≥ k0. (5-244)
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We make the approximation that w(k) is statistically independent of x(i),
n(i),, and n̂(i) for i ≥ km + 1. We obtain from (5-234), (5-233), (5-218),
and (5-207) that

E[cx(k)] = E[x(i)yr(i)] ≈
1

2
RxE[w(k)]. (5-245)

Similarly, (5-238), (5-237), (5-219), and (5-184) yield

E[cn(k)] ≈ E[n(i))ynr(i)] ≈
1

2
RnE[w(k)]. (5-246)

Taking the expected value of both sides of (5-244), substituting (5-246), (5-245),
and (5-207), and simplifying algebraically, we obtain the approximate recursive
equation for the mean weight vector :

E[w(k + 1)] =

[
I− α

2tr(Rn)(ρ0 + 1)
D

]
E[w(k)], k ≥ k0 (5-247)

where
D = ρ0Rn −Rs = ρ0Rn − pss0s

H
0 . (5-248)

Equations (5-248), (5-205), and (5-206) yield

Dw0 = DR−1
n s0 = 0 (5-249)

which indicates that the optimal weight vector w0 given by (5-205) is an eigen-
vector of D, and the corresponding eigenvalue is 0. Since D is Hermitian, it
has a complete set of N orthogonal eigenvectors (Appendix G), one of which is
w0. Since

wHD w = ρ0w
HRnw −wHRsw ≥ 0 (5-250)

for an arbitrary vector w, D is positive semidefinite and hence has N nonneg-
ative eigenvalues. We assume that only w = w0 maximizes the SINR so that
wHD w > 0, w �= w0. Since it follows that Dw �= 0, w �= w0, one of the
eigenvalues of D is zero, and the other N − 1 eigenvalues are positive.

To solve (5-247), we use the eigenvectors of D to make the spectral decom-
position (Appendix G)

E[w(k)] = η(k)R−1
n s0 +

N∑
l=2

al(k)el (5-251)

where each al(k) and η(k) are scalar functions, and each el is one of the N − 1
eigenvectors orthogonal to R−1

n s0. Substituting this equation into (5-247) and
using the orthonormality of the eigenvectors, we obtain

η(k + 1) = η(k) = η(k0), k ≥ k0 (5-252)

al(k + 1) =

[
1− αλl

2tr(Rn)(ρ0 + 1)

]
al(k), 2 ≤ l ≤ N, k ≥ k0 (5-253)
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where λl is the positive eigenvalue corresponding to el. Assuming that η(k0) �=
0, (5-206), (5-251), and (5-252) indicate that E[w(k)] → w0 as k → ∞ if and
only if each al(k) → 0. The solution to (5-253) is

al(k) =

[
1− αλl

2tr(Rn)(ρ0 + 1)

]k−k0

al(k0), 2 ≤ l ≤ N, k ≥ k0. (5-254)

This equation indicates that al(k) → 0, 2 ≤ l ≤ N , as k → ∞ if and only if

∣∣∣∣1− αλl

2tr(Rn)(ρ0 + 1)

∣∣∣∣ < 1 , 2 ≤ l ≤ N . (5-255)

This inequality implies that the necessary and sufficient condition for the con-
vergence of the mean weight vector is

0 < α <
4tr(Rn)(ρ0 + 1)

λmax
(5-256)

where λmax is the largest eigenvalue of D.
Since the sum of the eigenvalues of a square matrix is equal to its trace,

λmax ≤
N∑
i=1

λi = tr(D) = ρ0tr(Rn)− tr(Rs) ≤ ρ0tr(Rn). (5-257)

Substituting this bound into (5-256) and simplifying the result, we obtain

0 < α < 4 (5-258)

as a sufficient (but not necessary) condition for the convergence of the mean
weight vector to the optimal weight vector. Although this inequality must
be regarded as an approximation because of the approximations used in its
derivation, it gives at least rough guidance in the selection of the adaptation
constant. The fact that the upper bound is numerical and does not depend
on environmental parameters provides support for the choice of (5-227) as the
adaptation sequence.

Simulation of Maximin Algorithm

In the simulation experiments, the array consists of 4 omnidirectional antennas
located at the vertices of a square or in a uniform linear configuration. Let
λ denote the wavelength corresponding to the center frequency of the desired
signal, which is 3GHz. The edge length or the separation between adjacent
antennas is d = 0.5λ, d = 1.0λ, or d = 1.5λ. The DS-BPSK signal with
a rectangular chip waveform arrives from a direction 20◦ clockwise from the
perpendicular to one of the edges. All signals are assumed to arrive as plane
waves. The direct-sequence signal has a frequency offset equal to 1 kHz after
downconversion, which models imperfect frequency synchronization. The data-
symbol and spreading sequences are randomly generated for each simulation



312 CHAPTER 5. ADAPTIVE FILTERS AND ARRAYS

trial at the rates of 100 kbps and 10Mbps, respectively, which imply that the
spreading factor is 20 dB. Perfect chip and spreading-sequence synchronization
in the receiver are assumed. As indicated in Fig. 5.6, the initial sampling is
performed once per spreading-sequence chip. The thermal noise in each branch
output is modeled as bandlimited white Gaussian noise. The signal-to-noise
ratio (SNR) is 0 dB in each branch output. Each signal filter is an accumulator
with a one-sided bandwidth B = 100 kHz. Each monitor filter is a bandpass
accumulator offset by fo = 400 kHz to prevent contamination by the direct-
sequence signal. The maximin algorithm is implemented with α = 1. A weight
iteration occurs after each m = 10 data symbols. In each simulation trial,
the initial weight vector of the adaptive processor is w(0) = [1 0 0 0], which
forms an omnidirectional array pattern.

Each of 1, 2, or 3 interference signals is a tone (continuous-wave signal). Af-
ter the downconversions, the tones have different initial phase shifts and residual
frequency offsets equal to 10 kHz, which reflects the mismatch of the tone fre-
quencies and the carrier frequency of the direct-sequence signal. Multiple tones
do not add coherently, even if they have the same carrier frequencies, because
they arrive from different directions and have different initial phase shifts. The
SINR at the processor output is calculated after each sample time and then
averaged over all samples in the time interval between a weight iteration and
a preceding weight iteration to determine the SINR at each weight iteration.
The SINR is observed to fluctuate, but it tends to gradually increase until it
reaches a steady-state condition with a smaller residual fluctuation.

Let θ denote an arrival angle defined as the angle in the clockwise direction
from the normal to one of the array edges. Let s(θ) denote the array response
vector, which is the array response to an ideal plane wave arriving at angle θ.
For the square array, the components of the array response vector are

sr1 = 1, sr2 = exp(−j2π
d

λ
sin θ)

sr3 = exp(−j2π
d

λ
cos θ), sr4 = exp[−j2π

d

λ
(sin θ + cos θ)]. (5-259)

The array gain pattern after weight iteration k is

G(θ, k) =

∣∣wH(k)s(θ)
∣∣2

‖w(k)‖2
. (5-260)

Example 2. Figure 5.10 illustrates the SINR variation versus the weight
iteration number for a typical simulation trial in which one interference tone
arrives at a 50◦ angle with an interference-to-signal ratio (ISR) equal to 30 dB.
The array gain pattern at the end of the simulation trial of Fig. 5.10 is depicted
in Fig. 5.11. A null deeper than −20 dB in the direction of the interference signal
and a mainlobe slightly displaced from the direction of the desired signal have
formed. In addition, another grating null, which is a low point in the array gain
pattern, and grating lobes, which are high points in the pattern, have formed.
�
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Figure 5.10: SINR variation in typical simulation trial for direct-sequence sys-
tem with one interference tone at 50◦ and ISR=30 dB [106]

Example 3. The results of 15 representative simulation experiments are
summarized in Table 5.1. Each experiment comprises 50 trials with 100 weight
iterations per trial. The first column gives the arrival angles of 1, 2, or 3
interference signals. The ISR for each interference signal is 10 dB. The second
column gives the array type: square with d = 1.0λ, square with d = 1.5λ, or
linear with d = 0.5λ. The SINRs expressed in decibels for the last 20 weight
iterations of all the trials are used to compute the steady-state SINR and the
standard deviation of the SINR. The final column gives the crossing number,
which is the average number of weight iterations required for the SINR to
exceed 20 dB. The crossing number provides a rough measure of the relative
time required for convergence to the steady state.

Table 5.1 indicates that beamforming in the direction of the desired sig-
nal and interference cancelation are achieved in a wide variety of scenarios.
Additional interference signals do not necessarily slow the algorithm conver-
gence or lower the steady-state SINR. The reason is that as the array forms
one pattern lobe or null, it tends to form additional grating lobes and nulls
and thereby may counteract or facilitate the maximin algorithm. The results
for an interference signal with a 30◦ arrival angle and a square array illustrate
the limitations imposed by the resolution of the array. The resolution, which
is the angular separation between the interference and desired signals that can
be accommodated without a large performance degradation, decreases as the
array aperture increases. The square array with d = 1.0λ and the uniform lin-
ear array with d = 0.5λ, despite having an array aperture equal to 1.5λ, have
insufficient resolution for this interference. Increasing the antenna separation in
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Figure 5.11: Array gain pattern at the end of a typical simulation trial for a
direct-sequence system with one interference tone at 50◦ and ISR=30 dB [106]

Table 5.1: Simulation results for interference tones with ISR=10 dB [106]
Arrival angles Array Steady-state Standard Crossing

of interf. type SINR (dB) dev. (dB) number
60 Sq, 1.0 λ 25.81 1.49 3.2

60, −40 Sq, 1.0 λ 22.84 2.22 8.9
60, 85 Sq, 1.0 λ 24.53 1.60 5.0

60, −40, 85 Sq, 1.0 λ 24.39 1.71 5.5
30 Sq, 1.0 λ 20.10 1.57 16.1
60 Sq, 1.5 λ 25.13 1.46 4.2

60, −40 Sq, 1.5 λ 25.38 1.50 3.9
60, 85 Sq, 1.5 λ 24.40 1.47 5.4

60, −40, 85 Sq, 1.5 λ 24.26 1.52 5.4
30 Sq, 1.5 λ 22.95 1.99 7.1
60 Linear 25.75 1.43 3.3

60, −40 Linear 24.98 1.46 4.1
60, 85 Linear 24.81 1.52 4.4

60, −40, 85 Linear 24.67 1.59 4.8
30 Linear 20.25 1.55 10.1
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a square array to 1.5λ provides a large improvement in the convergence speed
and the steady-state SINR. �

Many more simulation experiments [106] confirm that the maximin algo-
rithm supplements the direct-sequence spreading factor with a large amount
of additional interference suppression. The simulation results demonstrate the
robust performance of the algorithm for various array configurations, numbers
of interference signals, interference levels, and fading conditions.

5.7 Adaptive Array for Frequency-Hopping
Systems

The anticipative maximin algorithm [105] is an adaptive-array algorithm that
exploits both the spectral and temporal characteristics of frequency-hopping
signals. The algorithm fuses multisymbol anticipative processing with the max-
imin algorithm to enable a high degree of cancelation of partial-band inter-
ference within a hopping band. The algorithm is executed by an adaptive
maximin processor that includes a main processor and anticipative filters. The
main processor observes spectral regions adjacent to the current frequency chan-
nel occupied by the frequency-hopping signal. The anticipative filters observe
interference in one or more frequency channels that will be occupied by the
frequency-hopping signal after subsequent hops. Both observations are used in
the interference cancelation.

Initial and Main Processors

In the adaptive array illustrated in Fig. 5.6, the spreading waveform is the
unmodulated frequency-hopping replica produced by a synchronized receiver,
which enables the dehopping in each initial processor behind each antenna.
Each of the N branch sequences is produced by the demodulator that extracts
the sampled complex envelope from the dehopped signal. Let x(i) denote the
discrete-time N × 1 vector of filtered branch outputs that provides the main
input to the anticipative maximin algorithm, where the index i denotes the sam-
ple number. The vector x(i) can be decomposed as x(i) = s(i) + n(i), where
s(i) is the desired-signal component and n(i) is the interference and thermal-
noise component. The maximin processor computes a weight vector w (k) ,
where k is the weight iteration index. The output of the maximin processor is
y(i) = wH (k)x(i). To implement the main processor of the maximin proces-
sor, it is necessary to separate the interference n(i) from the total signal x(i).
After each hop, the frequency-hopping signal has a carrier frequency fh, and
its spectrum is largely confined to a frequency channel with one-sided band-
width B, as depicted in Fig. 5.12. In each branch following an array antenna,
the frequency hopping is removed, and the current frequency channel or signal
channel is downconverted to baseband. A signal filter then extracts the total
signal in the signal channel. To cancel the interference embedded in x(i), the
receiver measures the interference in a monitor channel, which is an adjacent
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Figure 5.12: Signal channel and monitor channel during hop dwell time

or nearby frequency channel or spectral region with a center frequency offset
by fo ≥ B from the carrier frequency. For this measurement, the processing in
each branch downconverts the monitor channel to baseband. After the down-
conversion, a baseband monitor filter extracts the interference in the monitor
channel. Ideally, the spectrum of an interference signal overlaps the signal and
monitor channels so that the interference components in the signal-filter and
monitor-filter outputs have the same second-order statistics. The outputs of
all the branch signal and monitor filters are used by the main maximin pro-
cessor to enable interference cancelation and desired-signal enhancement. The
frequency offset fo must be sufficient to ensure that spectral splatter of the
desired-signal spectrum into the monitor filter does not subsequently lead to
significant desired-signal cancelation by the adaptive algorithm.

As shown in Section 3.6 for a FH-CPFSK signal with modulation index h,
the demodulator output for branch l is the sampled complex envelope

zl(i) = exp

{
j2π

[
feTsi

L
+

hqr(i− Lr)

2L

]
+ jφle

}
+ nl1 (i) ,

Lr ≤ i ≤ Lr + L− 1, l = 1, 2, . . . , N (5-261)

where fe is the intermediate-frequency offset frequency, Ts is the symbol du-
ration, L is the number of samples per symbol, qr is the rth symbol, nl1 (i) is
the ith sample of the interference and noise, and the phase shift φle reflects the
different arrival times of the desired signal at the array antennas. To capture
the energy in both the signal and monitor channels, the filter in each initial pro-
cessor must have a bandwidth of 2fmax + fo +B, where fmax is the maximum
value of |fe| .

In the main maximin processor illustrated in Fig. 5.13, each of the N branch
sequences zl(i), l = 1, 2, . . . , N , is applied to a signal filter. A further downcon-
version of each branch sequence by fo provides the monitor-channel sequences
ml(i), l = 1, 2, . . . , N , each of which is applied to a monitor-filter input. Thus,
the vector of branch sequences z(i) is used to produce the vector of monitor-
filter inputs

m(i) = z(i) exp(−j2πfoT0i) (5-262)

where T0 = Ts/L is the sampling interval. The baseband signal and monitor
filters are identical with passbands such that |f | ≤ fmax+B/2. The signal-filter
and the monitor-filter outputs are components of x(i) and n̂(i), respectively,
the vectors applied to the adaptive filter. The vector n̂(i) provides an estimate
of the interference and noise in x(i).
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Figure 5.13: Main maximin processor for frequency-hopping system.
SF= signal filter, MF=monitor filter, and e(i) = exp(−j2πfoT0i)

Let n1(i) denote the interference-and-noise component of z(i), and let h(i)
denote the impulse response of the signal and monitor filters. The interference-
and-noise component of x(i) is

n(i) =

i∑
�=0

n1(�)h(i− �) (5-263)

and the monitor-filter outputs provide

n̂(i) =

i∑
�=0

n1(�)e
−j2πfoT0�h(i− �). (5-264)

The critical requirement of n̂(i) is for it to have approximately the same second-
order statistics as n(i); that is,

E
[
n(i)nH(i)

]
≈ E

[
n̂(i)n̂H(i)

]
. (5-265)

This equation is satisfied for an interference signal that has similar second-
order statistics in each frequency channel it occupies. As an example, suppose
that n1(i) = nt(i) + j1(i) + j2(i), where nt(i) has white-noise components,
and j1(i) and j2(i) are independent interference signals. We assume that j2(i)
resembles a frequency-shifted version of j1(i); that is,

j2(i) ≈ j1(i) exp(j2πfoT0i+ θ) (5-266)

where θ is an arbitrary phase shift. Assuming that fo is sufficiently large, the
signal filters have a negligible response to j2(i), and the monitor filters have
a negligible response to j1(i). Therefore, n(i) is approximated by substituting



318 CHAPTER 5. ADAPTIVE FILTERS AND ARRAYS

n1(i) = nt(i) + j1(i) into (5-263), and n̂(i) is approximated by substituting
n1(i) = nt(i) + j2(i) into (5-264). The substitution of these approximations
and (5-266) into (5-265) indicate that (5-265) is satisfied.

The architecture of the main adaptive filter, which generates the estimates
needed by the anticipative maximin algorithm, is the same as that illustrated
in Fig. 5.9. The vectors applied to the adaptive filter are x(i) and n̂(i), and
m samples are generated per weight iteration. The adaptive filter produces
the outputs and estimates given by (5-233) to (5-239). A recursive estimator
of the total interference-and-noise power in the signal-filter outputs, which is
approximated by the power in the monitor-filter outputs, is given by (5-241).
The recursive estimator is useful in a nonstationary environment, such as one
with partial-band interference.

Anticipative Adaptive Filters

Each of ν anticipative filters observes a future signal channel that does not yet
have desired-signal energy, thereby enabling additional interference cancelation
by the anticipative maximin algorithm. This capability ultimately is due to the
receiver’s knowledge of the frequency-hopping pattern. If ν ≥ 1 and 1 ≤ l ≤ ν,
let fhl denote the carrier frequency after the next l hops. The branch sequence
that feeds anticipative filter l is derived from the frequency channel associated
with fhl. The main branch produces the same outputs as previously described
for the current frequency channel. The configuration of the main processor and
the anticipative processors is displayed in Fig. 5.14. The anticipative processors
provide the initial weight vector of the main adaptive filter after each hop.

The outputs of the monitor filters fed by anticipative branch sequence l
provide the N ×1 vector n̂al(i), which estimates the interference and noise that
will be present in the signal channel after l frequency hops. The vector x(i) is
provided by the signal-filter outputs of the main processor. The vectors n̂al(i)
and x(i) are applied to anticipative adaptive filter l, which adapts its weight
vector wal(k) by using the maximin algorithm (5-226). The recursive equations
executed by the anticipative filters are

wal(k + 1) = wal(k) +

{
α(k)

[
cx(k)

p̂x(k)
− cn(k)

p̂n(k)

]}
l

, k ≥ 0, 1 ≤ l ≤ ν (5-267)

where the subscript l beneath the braces signifies computation by anticipative
filter l. The adaptation constant and the memory factor used in this equation are
set equal to their values in the main processor. After each hop, the weight vector
associated with the new carrier frequency is transferred from anticipative filter 1
to the main processor, and the weight vector computed by filter l is transferred
to filter l−1, where l = 2, . . . , ν. The weight vector of filter ν is reset to waν(0).
Transfers are triggered by the clock that controls the frequency-hopping carrier
transitions. The weight vector in the main processor is updated by computing
the maximin algorithm, except at sampling instants occurring at the end of a
dwell interval or during the switching times of the frequency-hopping waveform.
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Figure 5.14: Anticipative maximin processor for frequency-hopping system

At these instants, the weight vector in the main processor is set equal to that
of the anticipative filter 1. Let k0 denote the number of iterations per hop and
n = 1, 2, . . . denote the hop number. The switching times occur when k = nk0
in the main processor. Thus, the algorithm in the main processor is

w(k + 1) = w(k) + α(k)

[
cx(k)

p̂x(k)
− cn(k)

p̂n(k)

]
, k + 1 �= nk0 (5-268)

w (nk0) = wa1 (nk0) , n ≥ 0. (5-269)

Equations (5-267) to (5-269) constitute the anticipative maximin algorithm.
The anticipative maximin algorithm expedites the convergence of the mean

weight vector in the presence of partial-band interference at the cost of ad-
ditional hardware and an increase in the computational requirements. The
additional hardware comprises ν subsystems in each initial processor that pro-
vide the branch sequences for the ν anticipative processors. The computational
cost per weight iteration of the algorithm can be estimated in terms of the
number of real multiplications, real additions, and real divisions. From the al-
gorithm equations, it is found that each iteration of the anticipative maximin
algorithm requires (ν +1)(4N +1) real divisions, (ν +1)(6Nm+6N +2m+4)
real multiplications, and (ν + 1)(6Nm +m − 1) real additions if k0 � 1. The
computational cost per iteration is (ν + 1)O(mN) real multiplications or divi-
sions and (ν + 1)O(mN) real additions. The computational cost per sampling
interval is (ν + 1)O(N) real multiplications or divisions and (ν + 1)O(N) real
additions.

Multipath components of the desired signal are not canceled by the antici-
pative maximin algorithm because their spectra occupy only the current signal
channel and are insignificant in the monitor channel and subsequent signal
channels. However, the beamforming generated by the algorithm often atten-
uates those multipath signals that arrive from directions much different from
the direction of the main frequency-hopping signal.
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Simulation Experiments

In the simulation experiments, the array consists of 4 omnidirectional antennas
located at the vertices of a square. Let λ denote the wavelength corresponding
to the center frequency of the desired signal, which is 3GHz. The edge length or
the separation between adjacent antennas is d = 0.9λ. All signals are assumed
to arrive as plane waves. The frequency-hopping signal is modulated by binary
minimum-shift keying (Section 3.4) and has a carrier frequency that is randomly
chosen from a hopset. Each frequency channel has a bandwidth B = 100 kHz.
The hopping band has a bandwidth Wh = 30MHz, and there are Wh/B = 300
contiguous frequency channels. The hop dwell time is 1ms. The frequency-
hopping signal arrives from a direction 20◦ clockwise from the normal to one of
the edges and has a frequency offset equal to 1 kHz after downconversion, which
models imperfect frequency synchronization and the Doppler shift. Perfect
timing synchronization of the local frequency-hopping replica is assumed. The
sequence of data symbols is randomly generated at the rate of 100 kbps. The
sample rate is 106 samples per second, which corresponds to 10 samples per
symbol. The signal and monitor filters are digital Chebyshev filters of the
second kind [71] with the 3 dB bandwidths equal to B. The monitor channel is
offset by fo = 200 kHz, which is sufficient to prevent significant contamination
by the desired signal. The anticipative maximin algorithm is implemented with
α = 0.4 and μ = 0.99, values that usually provide close to the best overall
performance against the modeled partial-band interference. A weight iteration
occurs after each 10 data symbols. The weight-iteration rate and the adaptation
constant are both partly selected to ensure that the weights do not increase to
excessively large values. For each simulation trial, the initial weight vector of
each adaptive filter is w(0) = [1 0 0 0], which forms an omnidirectional array
pattern. The filters in the initial processors are modeled as ideal rectangular
filters. The thermal noise in each main and anticipative sequence is modeled as
bandlimited complex Gaussian noise such that the signal-to-noise ratio (SNR)
is 14 dB in the output of each signal filter.

Interference that occupies only a small part of the hopping band, or even
frequency-hopping interference signals, can be suppressed by the adaptive ar-
ray supplemented by an error-control code. If the interference is observed by a
monitor filter often enough, it is rapidly suppressed by the adaptive array; if it is
observed only occasionally, then the interference is primarily suppressed by the
error-control code. In the simulation experiments, each of 1, 2, or 3 interference
signals has its power distributed among equal-power tones (continuous-wave sig-
nals) in frequency channels that cover the fraction 0.1 of the hopping band. For
each interference signal, the interference-to-signal ratio (ISR) is equal to 0 dB
in each frequency channel that contains a tone. After the downconversions,
the first, second, and third interference signals have different initial phase shifts
and residual frequency offsets equal to 10 kHz, 13 kHz, and 16 kHz, respectively,
which reflect the mismatch of the tone frequencies and the hopset carrier fre-
quencies. Multiple interference signals do not add coherently at all antennas,
even if they have the same carrier frequencies, because they arrive from dif-
ferent directions and have different initial phase shifts. When the interference
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Table 5.2: Simulation results
Interference Final Final

angles ν Random Fade SINR st. dev.

40◦ 0 No No 18.89 1.91
40◦ 1 No No 19.10 1.65
40◦ 2 No No 19.13 1.78

40◦, −10◦ 0 No No 18.53 2.16
40◦, −10◦ 1 No No 18.87 1.61
40◦, −10 ◦ 2 No No 19.06 1.62
40◦, −10◦ 0 Yes No 17.11 4.26
40◦, −10◦ 1 Yes No 18.61 2.04
40◦, −10◦ 2 Yes No 18.90 1.77

40◦, −10◦, 85◦ 0 No No 18.18 2.16
40◦, −10◦, 85◦ 1 No No 18.52 1.64
40◦, −10◦, 85◦ 2 No No 18.81 1.66

30◦ 0 No No 17.27 3.20
30◦ 1 No No 17.86 2.70
30◦ 2 No No 18.00 2.84
40◦ 2 No Yes 16.55 5.38

40◦, −10◦ 2 No Yes 16.46 5.33
40◦, −10◦, 85◦ 2 No Yes 16.21 5.38

30◦ 2 No Yes 15.41 5.85

occupies contiguous frequency channels, we assume that an interference tone
in the signal filter is always accompanied by a tone in the monitor filter. The
latter assumption is a good approximation for partial-band interference over a
substantial fraction of the hopping band when the signal and monitor channels
are close. The SINR at the processor output is calculated after each sample
time and then averaged over all samples in the time interval between a weight
iteration and a preceding one to determine the SINR at each weight iteration.

Example 4. The results of 19 representative simulation experiments are
summarized in Table 5.2. The first column gives the arrival angles of 1, 2,
or 3 interference signals. The second column gives the number of anticipative
adaptive filters. The third column indicates when the interference tones occupy
randomly distributed rather than contiguous frequency channels. The fourth
column indicates whether frequency-selective fading is present. The SINRs,
expressed in decibels, for 20 simulation trials with 100 hops and 1000 weight
iterations per trial are averaged over the last 20 hops of the trials to obtain the
steady-state or final SINR and its standard deviation. These statistics, which
are listed in the fifth and sixth columns of the table, are indicators of the degree
of interference cancelation after 80 hops.

The results in Table 5.2 confirm the improved performance as the number
ν of anticipative adaptive filters increases. The improvement occurs primarily
because the interference in a future signal channel is processed over ν dwell
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intervals. When more than one interference signal is present, the adaptation
becomes more difficult as the array encounters a more rapidly varying signal
environment, but the array of 4 antennas is often able to substantially cancel
3 partial-band interference signals, as indicated in the table. Randomly dis-
tributed tones provide a model of sophisticated jamming. Since an interference
tone in the signal channel does not necessarily imply a simultaneous interfer-
ence tone in the monitor channel, the interference cancelation is impeded, and
the convergence to a steady state is slowed. The anticipative maximin algo-
rithm with ν = 1 and 2 greatly improves the convergence rate, as illustrated in
the table. Rows 13 to 15 illustrate the limitations imposed by the resolution
of the array, which improves with increases in the array aperture or antenna
separations. However, an enlarged aperture causes an increase in the number
of grating lobes, which impedes the formation of nulls against two or more
interference signals.

The final four rows illustrate the impact of frequency-selective fading (Sec-
tion 6.2) across the hopping band. The frequency-hopping signal is assumed
to experience independent Rayleigh fading in each frequency channel. During
each dwell interval, the desired-signal amplitude is multiplied by the random
number Ah generated from a Rayleigh distribution. To ensure that the average
power of the desired signal is unchanged by the fading, E[A2

h] = 1. The inter-
ference is assumed to be unaffected by fading. Under these severe conditions,
the frequency-selective fading causes significant but not extreme decreases in
the SINRs and increases in their standard deviations. The sporadic low lev-
els in the SINR can be accommodated by the error-control code in a practical
communication system. Other simulation results indicate that expanding the
hopping band to bandwidth Wh = 300MHz (fractional bandwidth of 0.1) can
be accommodated with only a slight loss. �

5.8 Problems

1. Apply (5-2), (5-3), and (5-18) to derive (5-20).

2. Show that the weight vector of the LMS steepest-descent algorithm with
μ (k) = μ converges to w0. Are the necessary and sufficient conditions
for convergence the same as those for the LMS algorithm? What is the
difference between the two algorithms in terms of the weight vector?

3. Consider the performance measure P (w) = E[|ε|2] + α ‖w‖2 with α > 0,
which is to be minimized. (a) What is the necessary condition for the
optimal weight vector? (b) Derive the steepest-descent algorithm for this
performance measure. (c) What is the corresponding stochastic-gradient
algorithm? (d) Derive the conditions for the convergence of the mean
weight vector. To what value does the mean weight vector converge?
(e) What is the engineering justification for this choice of performance
measure?
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4. Consider the performance measure P (w) = E[(M − |y|)2], where y =
wHx and M is a known scalar. (a) Derive the steepest-descent algorithm
for this performance measure, assuming that the gradient and expectation
operations can be interchanged. (b) What is the corresponding stochastic-
gradient algorithm? (c) What is the engineering justification for this
choice of performance measure?

5. Assuming that x(k+1) is independent of x(i) and d(i), i ≤ k, show that
w(k) in the LMS algorithm is independent of x(k).

6. Derive (5-118) and (5-119) by following the steps specified in the text.

7. Consider the soft-decision term in (5-136). What are its values as σz → ∞
and as σz → 0 ? Give an engineering interpretation of these results.

8. In the convergence analysis of the Frost algorithm, derive (5-168), and
verify that Av(k) = v(k), k ≥ 1.

9. In the convergence analysis of the Frost algorithm, verify that Av(0) =
v(0), ARxA is Hermitian, and ARxAp = 0, which indicates that p is
an eigenvector of ARxA with eigenvalue equal to zero.

10. Consider the performance measure P (w) = E[|ε|2] subject to the con-
straint wHp = 1, where pTp = G. Use the method of Lagrange multipli-
ers to derive the corresponding steepest-descent and stochastic-gradient
algorithms. Under what condition might this algorithm be preferred to
the Frost algorithm?

11. Derive (5-237), which is used in the design of an adaptive array for direct-
sequence systems.

12. Verify (5-245) and (5-246), which are used in the convergence analysis of
the adaptive array for direct-sequence systems..



Chapter 6

Fading and Diversity

Fading is the variation in received signal strength due to changes in the phys-
ical characteristics of the propagation medium, which alter the interaction of
multipath components of the transmitted signal. The principal means of coun-
teracting fading are diversity methods, which are based on the exploitation of
the latent redundancy in two or more independently fading copies of the same
signal. The basic concept of diversity is that even if some copies are degraded,
there is a high probability that others will not be. This chapter provides a gen-
eral description of the most important aspects of fading and the role of diversity
methods in counteracting it. Both direct-sequence and frequency-hopping sig-
nals are shown to provide diversity through various blends of spatial diversity,
maximal-ratio combining, equal-gain combining, noncoherent combining, selec-
tion combining, transmit diversity, channel codes, and bit-interleaved coded
modulation. The rake receiver, which is of central importance in most direct-
sequence systems, is shown to be capable of exploiting undesired multipath sig-
nals rather than simply attempting to reject them. Multicarrier direct-sequence
systems and frequency-domain equalization are analyzed in great detail and
shown to be viable alternative methods of advantageously processing multipath
signals.

6.1 Path Loss, Shadowing, and Fading

Free-space propagation losses of electromagnetic waves vary inversely with the
square of the distance between a transmitter and a receiver. Analysis indicates
that if a signal traverses a direct path and combines in the receiver with a mul-
tipath component that is perfectly reflected from a plane, then the composite
received signal has a power loss proportional to the inverse of the fourth power of
the distance. For terrestrial wireless communications with frequencies between
30MHz and 50GHz, measurements averaged over many different positions of
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a transmitter and a receiver in a specified geographic area confirm that the
average received power, measured in decibels and called the area-mean power,
tends to vary linearly with the logarithm of the transmitter–receiver distance
d. If the receiver lies in the far field of the transmitted signal, then it is found
that the area-mean power, when expressed in decimal units, is approximately
given by

pa = p0

(
d

d0

)−α

, d ≥ d0 (6-1)

where p0 is the average received power when the distance is d = d0, α is the
attenuation power law, and d0 is a reference distance that exceeds the mini-
mum distance at which the receiver lies in the far field. The parameters p0
and α are functions of the carrier frequency, antenna heights and gains, ter-
rain characteristics, vegetation, and various characteristics of the propagation
medium. Typically, the parameters vary with distance but are nearly constant
within a range of distances. The attenuation power law increases with the car-
rier frequency, and typical values for microwave frequencies are in the range
3 ≤ α ≤ 4.

For a specific propagation path between a stationary transmitter and re-
ceiver, the received local-mean power departs from the area-mean power be-
cause of shadowing, which is the effect of diffractions, reflections, and terrain
features that are unchanging or slowly changing. When the transmitter and
receiver are stationary, fading occurs when something moves and causes the
creation and elimination of multipath components. Only measurements can
provide the local-mean power with high accuracy, but they are rarely available.
Numerous path-loss models have been developed for approximate estimates of
the local-mean power, and it is difficult to choose among them [68]. An alterna-
tive approach is to use a stochastic model that provides a distribution function
for the local-mean power in a specified geographic area. A stochastic model
greatly facilitates analysis and simulation.

Each diffraction or reflection due to obstructing terrain or an obstacle causes
the signal power to be multiplied by an attenuation factor. Thus, the received
signal power is often the product of many attenuation factors, and hence, the
logarithm of the signal power is the sum of many factors. If each factor is
modeled as a uniformly bounded, independent random variable that varies from
path to path, then the central limit theorem (corollary 2, Appendix A.2) implies
that the logarithm of the received signal power has an approximately normal or
Gaussian distribution if the number of attenuation factors and their variances
are sufficiently large. Empirical data confirms that the ratio of the received
local-mean power to the area-mean power is approximately zero-mean and has
a lognormal distribution; that is, its logarithm has a Gaussian distribution.
Thus, the local-mean power has the form

pl = p0

(
d

d0

)−α

10ξ/10, d ≥ d0 (6-2)

where ξ is the shadowing factor, and p0 is the average received power when
ξ = 0 and d = d0. The shadowing factor is expressed in decibels and is modeled
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as a zero-mean random variable with a normal or Gaussian distribution and
standard deviation σs . The lognormal density of Z = 10ξ/10 is

f(z) =
10 log10 e

z
√
2πσ2

s

exp

{
− [10 log10 z]

2

2σ2
s

}
. (6-3)

The standard deviation increases with carrier frequency and terrain irregularity
and sometimes exceeds 10 dB for terrestrial communications. The value of the
shadowing factor for a propagation path is usually strongly correlated with its
value for nearby propagation paths. For mobile communications, the typical
time interval during which the shadowing factor is nearly constant corresponds
to a movement of five to ten meters.

A signal experiences fading when the interaction of multipath components
and varying channel conditions cause significant fluctuations in its received
power [88, 92]. Fading may be classified as time-selective, frequency-selective, or
both. Time-selective fading is fading caused by the movement of the transmitter
or receiver or by changes in the propagation medium. Frequency-selective fading
occurs when the delays of the multipath components significantly affect some
frequencies more than others.

The multipath components that cause fading are generated by particle scat-
tering, inhomogeneities in the propagation medium, or reflections from small
transient obstacles. These components travel along different paths before being
recombined at the receiver. Because of the different time-varying delays and
attenuations encountered by the multipath components, the recombined signal
is a distorted version of the original transmitted signal. Fading changes occur
at a much faster rate than shadowing changes. During an observation interval
in which the shadowing factor is nearly constant, the received signal power may
be expressed as the product

pr(t) = p0

(
d

d0

)−α

10ξ/10g(t), d ≥ d0 (6-4)

where the factor g(t) is due to the fading and is normalized so that E[g(t)] = 1.
The Doppler shift arises because of the relative motion between the trans-

mitter and the receiver, which causes a change in the propagation delay. In
Figure 6.1a, the receiver is moving at speed v during a short time interval, and
the angle between the velocity vector and the propagation direction of an elec-
tromagnetic wave is ψ. Since the transmitter is moving toward the receiver, the
propagation delay d (t) at time t is shortened relative to the delay d0 at time
t0 by v cosψ(t− t0)/c, where c is the speed of an electromagnetic wave. Thus,
the received phase increases from 2πfc (t0 − d0/c) to

2πfc [t− d (t) /c] = 2π[(fc + fd) (t− t0) + fc (t0 − d0/c)]

which implies that the received frequency is increased by the Doppler shift

fd = fc
v

c
cosψ. (6-5)
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Figure 6.1: Examples of the Doppler effect: (a) receiver motion and (b) trans-
mitter motion and reflecting surface

In Figure 6.1b, the transmitter is moving at speed v, and there is a reflect-
ing surface that changes the arrival angle of the electromagnetic wave at the
receiver. If ψ represents the angle between the velocity vector and the initial
direction of the electromagnetic wave, then (6-5) again gives the Doppler shift.

A bandpass transmitted signal can be expressed as

st(t) = Re[s(t) exp(j2πfct)] (6-6)

where s(t) denotes its complex envelope, fc denotes its carrier frequency, and
Re[·] denotes the real part. Transmission over a time-varying multipath channel
of N(t) paths produces a received bandpass signal that consists of the sum
of N(t) multipath waveforms. The ith multipath waveform is the transmitted
signal delayed by time τi(t), multiplied an attenuation factor ai(t) that depends
on the path loss and shadowing, and shifted in frequency by the amount fdi(t)
due to the Doppler effect. Assuming that fdi(t) is nearly constant during the
path delay, the received signal may be expressed as

sr(t) = Re[s1(t) exp(j2πfct)] (6-7)

where the received complex envelope is

s1(t) =

N(t)∑
i=1

ai(t) exp[jφi(t)]s[t− τi(t)] (6-8)

and its phase is

φi(t) = −2πfcτi(t) + 2πfdi(t) [t− τi(t)] + φi0 (6-9)

where φi0 is the initial phase shift of a multipath component.
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6.2 Characteristics of Fading

In this section and the next one, we consider time intervals small enough that all
attenuation factors and most of the other fading parameters are approximately
constants:

ai(t) = ai, N(t) = N, v(t) = v

fdi(t) = fdi, ψi(t) = ψi, τi(t) = τi. (6-10)

Then (6-5) indicates that multipath component i has Doppler shift

fdi = fd cosψi, fd =
f0 v

c
(6-11)

where fd is the maximum Doppler shift, which occurs when ψi = 0. Equa-
tion (6-9) implies that

φi(t+ τ)− φi(t) = 2πfdτ cosψi (6-12)

where τ is a time delay.
If the time origin is chosen to coincide with the average arrival time of

the principal multipath component at a receiver and the time-delay differences
among the significant multipath components are small, then the received com-
plex envelope of (6-8) may be expressed as

s1(t) ≈ s(t)r(t) (6-13)

where the equivalent lowpass or equivalent baseband channel response is

r(t) =

N∑
i=1

ai exp [jφi(t)] (6-14)

and j =
√
−1. The fluctuations in this factor cause fading at the receiver and

increase the bandwidth of the received signal. If the transmitted signal is an
unmodulated tone, then s(t) = 1, and (6-14) represents the complex envelope
of the received signal.

The channel response can be decomposed as

r(t) = rc(t) + jrs(t) (6-15)

where

rc(t) =
N∑
i=1

ai cos[φi(t)], rs(t) =
N∑
i=1

ai sin[φi(t)]. (6-16)

If the range of the delay values is much larger than 1/fc, then the sensitivity of
φi(t) to small variations in the delay τi makes it plausible to model the phases
φi(t), i = 1, 2, . . . , N, as random variables that are independent of each other
and the attenuation factors {ai} and are uniformly distributed over [0, 2π) at a
specific time t. Therefore,

E[rc(t)] = E[rs(t)] = 0. (6-17)
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Rayleigh, Ricean, and Nakagami Fading

If the attenuation factors {ai} are uniformly bounded, independent random
variables, then according to the central limit theorem (corollary 2, Appendix A.2),
the distributions of both rc(t) and rs(t) approach Gaussian distributions as N
and the variances of both rc(t) and rs(t) increase. Thus, ifN is sufficiently large,
then r(t) at a specific time is modeled as a complex Gaussian random variable
(Section 1.1). Since the phases are independent and uniformly distributed, it
follows that

E[rc(t)rs(t)] = 0 (6-18)

E[r2c (t)] = E[r2s(t)] = σ2
r (6-19)

where we define

σ2
r =

1

2

N∑
i=1

a2i . (6-20)

Equations (6-17)–(6-19) imply that rc(t) and rs(t) are identically distributed,
zero-mean Gaussian random variables.

Let α (t) = |r(t)| denote the fading amplitude, and θ(t) = tan−1[rs(t)/rc(t)]
denote the phase of r(t) at a specific time t. Then

r(t) = αejθ(t) (6-21)

α2 (t) = r2c (t) + r2s(t) . (6-22)

From (6-15), (6-19), and (6-20), it follows that the average fading power gain is

Ω = E[α2 (t)] = 2σ2
r =

N∑
i=1

a2i . (6-23)

In the Rayleigh-fading model, rc (t) and rs (t) are independent, zero-mean
Gaussian stochastic processes (Appendix A.1) with the same variance σ2

r = Ω/2.
As shown in Appendix E.4, θ(t) has a uniform distribution over [0, 2π), and
α (t) at a specific time t has the Rayleigh density:

fα(r) =
2r

Ω
exp

(
−r2

Ω

)
u(r) (6-24)

where u(r) is the unit step function defined by (1-69). The substitution of (6-21)
and (6-13) into (6-7) gives

sr(t) = Re[α (t) s(t) exp(j2πfct+ jθ(t))]

= α (t) A(t) cos[2πfct+ φ(t) + θ(t)] (6-25)

where A(t) is the amplitude and φ(t) the phase of s(t), and sr(t) experiences
Rayleigh fading. Equations (6-23) and (6-25) indicate that the instantaneous
local-mean power is

pl = E[s2r(t)] = ΩA2(t)/2. (6-26)
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Multipath components that produce distinguishable matched-filter output
pulses are said to be resolvable. When a line-of-sight exists between a transmit-
ter and a receiver, a single received multipath component may be resolvable and
much stronger than the other unresolvable multipath components. This strong
component is called the specular component , and the other unresolvable compo-
nents are called diffuse or scattered components. As a result, the multiplicative
channel response of (6-14) becomes

r(t) = a0 exp[jφ0(t)] +

N∑
i=1

ai exp[jφi(t)], (6-27)

where the first term is the specular component, and the summation comprises
the diffuse components. If N is sufficiently large, then at time t the summation
term is well-approximated by a zero-mean, complex Gaussian random variable.
Thus, r(t) at a specific time is a complex Gaussian random variable with a
nonzero mean equal to the deterministic first term, and (6-15) implies that

E[rc(t)] = a0 cos[φ0(t)], E[rs(t)] = a0 sin[φ0(t)]. (6-28)

From the independence of the {ai},(6-20), and (6-27), it follows that the fading
amplitude α (t) = |r(t)| has the average power gain given by

Ω = E[α2 (t)] = a20 + 2σ2
r (6-29)

= 2σ2
r (1 + κ) (6-30)

where the Rice factor, which is the ratio of the specular power to the diffuse
power, is

κ =
a20
2σ2

r

. (6-31)

The type of fading modeled by (6-27)–(6-31) is called Ricean fading. As
shown in Appendix E.3, since rc(t) and rs(t) are Gaussian, α (t) has the Rice
density:

fα(r) =
2(κ+ 1)

Ω
r exp

(
−κ− (κ+ 1)r2

Ω

)
I0

(√
κ(κ+ 1)

Ω
2r

)
u(r) (6-32)

where I0(·) is the modified Bessel function of the first kind and order zero
(Appendix H.3). When κ = 0, Ricean fading is the same as Rayleigh fading.
When κ = ∞, there is no fading.

The Nakagami fading model offers more flexibility than the Rice model.
The Nakagami density of the fading amplitude α (t) is

fα(r) =
2

Γ(m)

(
m

Ω

)m

r2m−1 exp
(
−m

Ω
r2
)
u(r), m ≥ 1

2
(6-33)

where the gamma function Γ(·) is defined by (H-1) of Appendix H.1. When
m = 1, the Nakagami density becomes the Rayleigh density, and when m → ∞,
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there is no fading. When m < 1, the Nakagami density models fading that is
more severe than Rayleigh fading. When m = 1/2, the Nakagami density
becomes the one-sided Gaussian density.

Integrating over (6-33), changing the integration variable, and using (H-1),
we obtain

E[αn] =
Γ(m+ n

2 )

Γ(m)

(
Ω

m

)n/2

, n ≥ 1. (6-34)

A measure of the severity of the fading is var(α2)/(E[α2])2 = 1/m. Equating
this ratio for the Rice and Nakagami densities, it is found that the Nakagami
density approximates a Rice density with Rice factor κ if

m =
(κ+ 1)

2

2κ+ 1
, κ ≥ 0. (6-35)

Since the Nakagami model includes the Rayleigh and Rice models as special
cases and provides for many other possibilities, it is not surprising that this
model often fits well with empirical data.

Let g = α2 denote the fading power gain of a signal undergoing Nakagami
fading. It follows from (6-33) that the density of the power gain is

fg(x) =
1

Γ(m)

(
m

Ω

)m

xm−1 exp
(
−m

Ω
x
)
u(x), m ≥ 1

2
(6-36)

which is the gamma density f (x;m/Ω,m) (Appendix E.6). From (6-34), it
follows that

E[gn] =
Γ(m+ n)

Γ(m)

(
Ω

m

)n

, n ≥ 1. (6-37)

Time-Selective and Fast Fading

If the product of the Doppler spread among the multipath components and the
desired-signal duration exceeds unity, excessive signal distortion is likely. This
observation leads to the definition of the coherence time or correlation time of
the channel as

Tcoh ≈ 1

fd
(6-38)

where fd is the maximum Doppler shift or Doppler spread. The coherence time
is a measure of the time separation between signal samples sufficient for the
samples to be largely decorrelated.

If the coherence time is much longer than the duration of several channel
symbols, then the fading is relatively constant over several symbols and is called
slow fading. Conversely, if the coherence time is less than the duration of
a few channel symbols, then the fading is called fast fading. Slow fading is
characterized by small changes in the amplitude and phase shift of a transmitted
signal, whereas fast fading is characterized by significant changes.
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Isotropic Scattering

The autocorrelation of a complex process r(t) is defined as

Ar(t1, t2) = E[r∗(t1)r(t2)]. (6-39)

For Rayleigh fading, we substitute (6-14) into (6-39), use the independence and
uniform distribution of each φi and the independence of ai and φi, and then
substitute (6-12) to obtain

Ar(τ) =

N∑
i=1

a2i exp(j2πfd τ cosψi), τ = t2 − t1. (6-40)

Let Ω denote the total received power. If all the received multipath components
have approximately the same power and the receive antenna is omnidirectional,
then a2i ≈ Ω/N , i = 1, 2, . . ., N , and (6-40) becomes

Ar(τ) =
Ω

N

N∑
i=1

exp(j2πfd τ cosψi). (6-41)

A communication system, such as a mobile system that receives a signal from
an elevated base station, may be surrounded by many scattering objects. An
isotropic scattering model assumes that multipath components of comparable
power are reflected from many different scattering objects and hence arrive from
many different directions. For two-dimensional isotropic scattering, N is large,
and the {ψi} lie in a plane and have values that are uniformly distributed over
[0, 2π). Therefore, the sum in (6-41) can be approximated by the integral

Ar(τ) ≈
Ω

2π

∫ 2π

0

exp(j2πfd τ cosψ)dψ. (6-42)

This integral has the same form as the integral representation of J0(·), the
Bessel function of the first kind and order zero (Appendix H.3). Thus, the
autocorrelation of the channel response for two-dimensional isotropic scattering
is

Ar(τ) = ΩJ0(2πfd τ). (6-43)

The normalized autocorrelation Ar(τ)/Ar(0), which is a real-valued function of
fd τ , is plotted in Figure 6.2. It is observed that its magnitude is less than 0.3
when fd τ > 1.

The Doppler power spectral density (PSD) for two-dimensional isotropic
scattering, which is defined as the Fourier transform of (6-43), is

Sr (f) =

{
Ω

π
√

f2
d−f2

, | f |< fd

0, otherwise.
(6-44)

To prove that Sr (f) is the Fourier transform of Ar(τ), we observe that Sr (f) is
integrable, and Ar(τ) is bounded, continuous, and integrable. Therefore, theo-
rem C1 of Appendix C.1 implies that Ar(τ) and Sr (f) are a Fourier transform
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Figure 6.2: Autocorrelation of r(t) for isotropic scattering

pair if the inverse Fourier transform of Sr (f) is Ar(τ). Evaluating this inverse
Fourier transform, we obtain

g (τ) =
Ω

π

∫ fd

−fd

exp (j2πfτ)√
f2
d − f2

df

=
Ω

π

∫ π

0

exp(j2πfd τ cosψ)dψ

= Ar(τ) (6-45)

where the change of variable f = fd cosψ has been used to obtain the second
equality.

The normalized Doppler spectrum Sr(f)/Sr(0), which is plotted in
Figure 6.3 versus f/fd, is bandlimited by the Doppler spread fd and tends
to infinity as f approaches ±fd. The Doppler spectrum is the superposition of
contributions from multipath components, each of which experiences a different
Doppler shift upper-bounded by fd.

The PSD of the received signal is calculated from (6-7), (6-13), and (6-44).
For an unmodulated carrier with s(t) = 1, the PSD is

Srec(f) =
1

2
Sr(f − fc) +

1

2
Sr(f + fc). (6-46)
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Figure 6.3: Doppler spectrum for isotropic scattering

In general, when the scattering is not isotropic, the imaginary part of the
autocorrelation Ar(τ) is nonzero, and the amplitude of the real part decreases
much more slowly and less smoothly with increasing τ than (6-43). Both the
real and imaginary parts often exhibit minor peaks for time shifts exceeding
1/fd. Thus, the coherence time provides only a rough characterization of the
channel behavior.

Fading Rate and Fade Duration for the Rayleigh Channel

The fading rate is the rate at which the fading amplitude of a received signal
crosses below the minimum level for acceptable communication quality. Let ρ
denote this minimum level. To derive the fading rate, we denote the square of
the fading amplitude in (6-22) by

β (t) = α2 (t) = r2c (t) + r2s (t) (6-47)

and assume that its sample functions are differentiable. We denote its derivative
by

β (t) =
d

dt
β (t) . (6-48)

Let f(β, β) denote the joint density of β (t) and β (t). The probability
that β (t) lies in the infinitesimal interval (β, β + dβ) and its slope lies in the

infinitesimal interval
(
β, β + dβ

)
is f

(
β, β
)
dβdβ. When the slope is β, the

amount of time required for β (t) to traverse the interval (β, β + dβ) once is
dβ/|β|. Therefore, the number of crossings during the infinitesimal time in-
terval dt is |β|dt/dβ. Given that β < 0, the expected number of downward
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crossings of (β, β + dβ) is −βf
(
β, β
)
dβdt, and the infinitesimal crossing rate

is −βf(β, β)dβ. Setting β = ρ2, we find that the fading rate relative to level ρ
is

Fr = −
∫ 0

−∞
βf
(
ρ2, β

)
dβ

= −f1
(
ρ2
) ∫ 0

−∞
βf2
(
β | ρ2

)
dβ (6-49)

where f1(·) is the density of β (t) and f2
(
· | ρ2

)
is the conditional density of

β (t) given that β (t) = ρ2. Equation (6-47) indicates that if rc (t) = ρc and
rs (t) = ρs, then β (t) =ρ2 = ρ2c + ρ2s, and hence

f2
(
β | ρ2

)
= f2

(
β | ρc, ρs

)
. (6-50)

For Rayleigh fading, rc (t) and rs (t) are independent, identically distributed,
zero-mean Gaussian random variables with variance Ω/2 at a specific time t.
Therefore, (6-47) indicates that β (t) has a central chi-squared distribution with
two degrees of freedom, and hence,

Fr = − 1

Ω
exp

(
−ρ2

Ω

)∫ 0

−∞
βf2
(
β | ρc, ρs

)
dβ. (6-51)

Given that rc (t) = ρc and rs (t) = ρs, (6-47) implies that

β (t) = 2ρcrc (t) + 2ρsrs (t) (6-52)

where

rc (t) =
drc (t)

dt
≈ rc (t+ h)− rc (t)

h
(6-53)

rs (t) =
drs (t)

dt
≈ rs (t+ h)− rs (t)

h
(6-54)

for an arbitrarily small value of h. For Rayleigh fading, the quotients in (6-53)
and (6-54) are independent, identically distributed, zero-mean Gaussian ran-
dom variables with the same variance. Assuming that the sample functions of
rc (t) and rs (t) are differentiable, rc (t) and rs (t) have Gaussian densities with
E
[
r2c
]
= E

[
r2s
]
. Therefore, (6-52) implies that f2

(
β | ρc, ρs

)
has a conditional

Gaussian density with conditional mean E
[
β | ρc, ρs

]
= 0. Equation (6-52)

indicates that the conditional variance is

V = 4ρ2E
[
r2c
]

= 2ρ2E
[
|r|2
]
, (6-55)

where
r (t) = rc (t) + jrs (t) . (6-56)
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Differentiating (6-39) with respect to t1 and then with respect to t2 gives

E[r∗(t1)r (t2)] =
d

dt1
Ar (t2 − t1) (6-57)

E[r∗(t1)r (t2)] =
d2

dt2dt1
Ar (t2 − t1)

= − d2

dτ2
Ar (τ)|τ=t2−t1

. (6-58)

Setting t1 = t2 in this equation, we obtain

E
[
|r|2
]
= − d2

dτ2
Ar (τ)| τ=0 . (6-59)

For isotropic scattering, (6-55), (6-59), and (6-43) yield

V = 4π2Ωρ2f2
d . (6-60)

Substituting the Gaussian density with zero-mean and variance V into (6-51),
we obtain the fading rate relative to level ρ :

Fr =

√
2π

Ω
fdρ exp

(
−ρ2

Ω

)
. (6-61)

Let Tf denote the average fade duration, which is the amount of time the
fading amplitude remains below the specified level ρ ≥ 0. If the product FrTf is
small, this product is the fraction of the time during which a fade occurs. If the
time-varying fading amplitude is assumed to be a stationary ergodic process,
then this fraction is equal to Fα(ρ), the probability that the fading amplitude
is below or equal to the level ρ. Thus,

Tf =
Fα(ρ)

Fr
. (6-62)

Substituting (6-24) and (6-38) into (6-61) and (6-62), we find that

Fr =

[√
2π

Ω
exp(−ρ2/Ω)

]
T−1
coh (6-63)

Tf =

[√
Ω

2π

exp(ρ2/Ω)− 1

ρ

]
Tcoh. (6-64)

These equations indicate that a large coherence time is a mixed blessing. Al-
though it causes a low fading rate, those deep fades that do occur have long
durations.

If the symbol rate is fs, then the average number of symbols that occur
in an error burst during a deep fade is fsTf . Therefore, the interleaver and
deinterleaver (Section 1.4) should be designed to disperse fsTf errors. A block
interleaver needs m > fsTf columns in its arrays.
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Frequency-Selective Fading

Frequency-selective fading occurs because the delays in multipath components
cause them to combine destructively at some frequencies but constructively at
others. The multipath delay spread Td is defined as the maximum delay of a
significant multipath component relative to the minimum delay of a significant
component; that is,

Td = max
i

τi −min
i

τi , i = 1, 2, . . . , N. (6-65)

The coherence bandwidth is defined as

Bcoh ≈ 1

Td
. (6-66)

Consider a typical delay spread small enough that (6-10) is satisfied and fdiTd �
1. Then (6-8) and (6-9) indicate that the received complex fading amplitude is

s1(t) =
N∑
i=1

ai exp (−j2πfcτi + φi0) s(t− τi), τ1 ≤ t ≤ τ1 + Td (6-67)

where τ1 = mini τi. Suppose that BTd � 1, where B is the bandwidth of the
complex envelope s(t). Then s(t − τi) ≈ s(t − τ1), i = 1, 2, . . . , N . Therefore,
all multipath components fade nearly simultaneously, and

s1(t) = s(t− τ1)
N∑
i=1

ai exp (−j2πfcτi + φi0) , τ1 ≤ t ≤ τ1 + Td (6-68)

which indicates that even with fading the spectrum of s1(t) remains propor-
tional to the spectrum of s(t). Thus, this type of fading is called frequency-
nonselective or flat fading and occurs if B � Bcoh.

The coherence bandwidth is a measure of the frequency separation of spec-
tral components after which they fade almost independently. All spectral com-
ponents of a flat-fading signal fade nearly in unison. Since B ≈ 1/Ts, where
Ts is the symbol duration, flat fading occurs when Ts � Td. In contrast, a
signal is said to experience frequency-selective fading if B > Bcoh, and hence,
Ts < Td, because then the time variations of the spectral components of s(t)
may be different enough that s1 (t) loses its resemblance to s (t).

A large delay spread may cause intersymbol interference, which often must
be accommodated by equalization in the receiver. However, if the time delays
are sufficiently different among the multipath components that they are re-
solvable at the demodulator or matched-filter output, then the independently
fading components provide diversity that can be exploited by a rake receiver
(Section 6.12).

Example 1. To illustrate frequency-selective fading, consider the reception
of two multipath components. Calculating the Fourier transform S1 (f) of s1(t)
using (6-67) with N = 2, we obtain

|S1 (f)| =
∣∣a21 + a22 + 2a1a2 cos 2π (f + fc)Td

∣∣1/2 |S (f)| (6-69)
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where Td = τ1 − τ2 and S (f) is the Fourier transform of s(t). This equation
indicates that |S1 (f)| / |S (f)| fluctuates over the range of f . If the range of
f equals or exceeds Bcoh = 1/Td, then |S1 (f)| / |S (f)| varies from |a1 − a2| to
|a1 + a2| , which is very large when a1 ≈ a2. �

6.3 Scattering Models

A generalized impulse response may be used to characterize the impact of the
transmission channel on the signal. The complex-valued impulse response of the
channel h(t, τ) is the response at time t due to an impulse applied τ seconds
earlier. The complex envelope s1 (t) of the received signal is the result of the
convolution of the complex envelope s(t) of the transmitted signal with the
baseband impulse response:

s1(t) =

∫ ∞

−∞
h(t, τ)s(t− τ)dτ. (6-70)

The channel impulse response is usually modeled as a complex-valued stochastic
process:

h(t, τ) =

N(t)∑
i=1

hi(t)δ[τ − τi(t)] (6-71)

where δ[·] is the Dirac delta function. When the fading is flat, a received signal
can often be decomposed into the sum of signals reflected from several clusters
of scatterers. Each cluster is the sum of a number of multipath components
with nearly the same delay. In this model, N(t) is the number of clusters
and τi(t) is the distinct delay associated with the ith cluster. If the channel
impulse response is time-invariant during a time interval starting at t = 0, then
h(t, τ) = h(0, τ) = h(τ) and

h(τ) =
N∑
i=1

hiδ(τ − τi). (6-72)

Therefore, if hi = ai exp (−j2πfcτi + φi0) , then the application of (6-70) leads
to (6-67).

The wide-sense stationary, uncorrelated scattering model is a more general
channel model than (6-71) and is reasonably accurate in nearly all practical
applications. The impulse response is wide-sense stationary if the correlation
between its value at t1 and its value at t2 depends only on t1 − t2. Thus, the
autocorrelation of the impulse response is

Rh(t1, t2, τ1, τ2) = E[h∗(t1, τ1)h(t2, τ2)] = Rh(t1 − t2, τ1, τ2). (6-73)

Uncorrelated scattering implies that the gains and phase shifts associated with
two different delays are uncorrelated so that multipath components fade in-
dependently. Extending this notion, the wide-sense stationary, uncorrelated
scattering model assumes that the autocorrelation has the form

Rh(t1 − t2, τ1, τ2) = Rw(t1 − t2, τ1)δ(τ1 − τ2) (6-74)
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which implies that

Rw(t1 − t2, τ1) =

∫ ∞

−∞
Rh(t1 − t2, τ1, τ2)dτ2. (6-75)

The Fourier transform of the impulse response gives the time-varying chan-
nel frequency response:

H(t, f) =

∫ ∞

−∞
h(t, τ) exp(−j2πfτ)dτ. (6-76)

The autocorrelation of the frequency response for a wide-sense-stationary chan-
nel is defined as

RH(t1, t2, f1, f2) = E[H∗(t1, f1)H(t2, f2)]. (6-77)

For the wide-sense-stationary, uncorrelated–scattering model, the substitution
of (6-76), (6-73), and (6-74) into (6-77) yields

RH(t1, t2, f1, f2) =

∫ ∞

−∞
Rw(t1 − t2, τ) exp[−j2π(f2 − f1)τ ]dτ

= RH(t1 − t2, f1 − f2) (6-78)

which is a function only of the differences t1 − t2 and f1 − f2.
If t1 = t2, then the autocorrelation of the frequency response is

RH(0, f1 − f2) =

∫ ∞

−∞
Sm(τ) exp[−j2π(f2 − f1)τ ]dτ (6-79)

which is the Fourier transform of the multipath intensity profile defined as

Sm(τ) = Rw(0, τ). (6-80)

The form of (6-79) indicates that the coherence bandwidth Bcoh of the channel,
which is a measure of the range of f1 − f2 for which RH(0, f1 − f2) has a
significant value, is given by the reciprocal of the range of Sm(τ). Since this
range is on the order of the multipath delay spread, the multipath intensity
profile is interpreted as the channel output power due to an impulse applied τ
seconds earlier, and (6-66) is confirmed as a suitable definition of Bcoh for this
channel model. The multipath intensity profile has diffuse components if it is a
piecewise continuous function and has specular components if it includes delta
functions at specific values of the delay.

The Doppler shift is the main limitation on the channel coherence time or
range of values of the difference td = t1 − t2 for which Rw(td, 0) is significant.
Thus, the Doppler PSD is defined as

SD(f) =

∫ ∞

−∞
Rw(td, 0) exp(−j2πftd)dtd. (6-81)
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The inverse Fourier transform of SD(f) gives the autocorrelation Rw(td, 0). The
coherence time Tcoh of the channel, which is a measure of the range of td for
which Rw(td, 0) has a significant value, is given by the reciprocal of the spectral
range of SD(f). Since this spectral range is on the order of the maximum
Doppler shift, (6-38) is confirmed as a suitable definition of Tcoh for this channel
model.

6.4 Spatial Diversity

The principal means of accommodating fading are provided by diversity, which
is some form of signal redundancy. Time diversity is provided by channel cod-
ing or by signal copies that differ in time delay. It is discussed primarily in
Sections 6.10–6.12. Frequency diversity may be available when signal copies
using different carrier frequencies experience independent or weakly correlated
fading. It is primarily discussed in Section 6.13. Polarization diversity may
be obtained by using two cross-polarized antennas at the same site. Although
this configuration provides compactness, it is not as potentially effective as spa-
tial diversity because the received horizontal component of an electric field is
usually much weaker than the vertical component.

If each signal copy is extracted from the output of a separate antenna in an
antenna array, then the diversity is called spatial diversity. To obtain spatial
diversity at a receiver in a fading environment, the antennas in an array must be
separated enough that there is little correlation between signal replicas or copies
at the antennas. A few wavelengths are adequate for a mobile receiver because
it tends to receive superpositions of reflected waves arriving from many random
angles. Many wavelengths separation may be necessary for a stationary receiver
located at a high position. To determine what separation is needed, consider the
reception of a signal at two antennas separated by a distance D, as illustrated
in Figure 6.4. If a narrowband signal arrives as an electromagnetic plane wave,
then the signal copy at antenna 1 relative to antenna 2 is delayed by D sin θ/c,
where θ is the arrival angle of the plane wave relative to a line perpendicular
to the line joining the two antennas. Thus, if the phase at antenna i is φi (t),
i = 1, 2, then

φ2 (t) = φ1 (t) + 2π
D

λ
sin θ (6-82)

where λ = c/fc is the wavelength of the signal.
Let φki(t) denote the phase of the complex fading amplitude of multipath

component i at antenna k. Consider a time interval small enough that the fading
amplitudes are constants at the two antennas, and each multipath component
arrives from a fixed angle. If multipath component i of a narrowband signal
arrives as a plane wave at angle ψi, then the phase φ2i (t) of the complex fading
amplitude of the component copy at antenna 2 is related to the phase φ1i (t) at
antenna 1 by

φ2i (t) = φ1i (t) + 2π
D

λ
sinψi. (6-83)
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D

21

� �

Figure 6.4: Two antennas receiving plane wave that results in a signal copy at
each antenna

If the multipath component propagates over a distance much larger than the
separation between the two antennas, then it is reasonable to assume that the
attenuation ai is identical at the two antennas.

If the range of the delay values is much larger than 1/fc, then the sensitivity
of the phases to small delay variations makes it plausible that the phases φ1i (t),
i = 1, 2, . . . , N , are well-modeled as independent random variables that are
uniformly distributed over [0, 2π). From (6-14), the complex fading amplitude
rk of the signal copy at antenna k when the signal is a tone is

rk (t) =

N∑
i=1

ai exp[jφki (t)], k = 1, 2. (6-84)

The cross-correlation between r1 (t) and r2 (t) is defined as

C12(D) = E[r∗1 (t) r2 (t)]. (6-85)

Substituting (6-84) into (6-85), using the independence of each ai and φki (t),
the independence of φ1i (t) and φ2l (t), i �= l, and the uniform distribution of
each φ1i (t), and then substituting (6-83), we obtain

C12(D) =

N∑
i=1

E[a2i ] exp(j2πD sinψi/λ). (6-86)

This equation for the cross-correlation as a function of spatial separation clearly
resembles (6-40) for the autocorrelation as a function of time delay. If all the
multipath components have approximately the same power so that E[a2i ] ≈
Ω/N , i = 1, 2, . . . , N , then

C12(D) =
Ω

N

N∑
i=1

exp(j2πD sinψi/λ). (6-87)

Applying the two-dimensional isotropic scattering model, (6-87) is approx-
imated by an integral. As in the derivation of (6-43), the evaluation of the
integral gives the real-valued cross-correlation

C12(D) = ΩJ0(2πD/λ). (6-88)
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Figure 6.5: Normalized cross-correlation for multipath components arriving
between 7π/32 and 9π/32 radians: real and imaginary parts

This model indicates that an antenna separation of D ≥ λ/2 ensures that
the normalized cross-correlation C12(D)/C12(0) is less than 0.3. A plot of the
normalized cross-correlation is obtained from Figure 6.2 if the abscissa is inter-
preted as D/λ.

When the scattering is not isotropic or the number of scattering objects
producing multipath components is small, then the real and imaginary parts of
the cross-correlation decrease much more slowly with D/λ.

Example 2. Figure 6.5 shows the real and imaginary parts of the nor-
malized cross-correlation when the {ψi} are a nearly continuous band of angles
between 7π/32 and 9π/32 radians so that (6-87) can be approximated by an
integral over that band. Figure 6.6 depicts the real and imaginary parts of the
normalized cross-correlation when N = 9 and the {ψi} are uniformly spaced
throughout the first two quadrants: ψi = (i − 1)π/8, i =1, 2, . . . , 9. In the ex-
ample of Figure 6.5, an antenna separation of at least 5λ is necessary to ensure
approximate decorrelation of the signal copies and obtain spatial diversity. In
the example of Figure 6.6, not even a separation of 10λ is adequate to ensure
approximate decorrelation. �
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Figure 6.6: Normalized cross-correlation for N = 9 multipath components arriv-
ing from uniformly spaced angles in the first two quadrants: real and imaginary
parts

6.5 Maximal-Ratio Combining

Diversity methods mitigate the deleterious effects of fading by using several
signal replicas or different symbols that experience different fading conditions.
Diversity combiners are designed to combine independently fading copies of the
same signal derived from distinct antennas. The combining is performed in such
a way that the combiner output has a power level that is larger and varies more
slowly than that of a single copy. Maximal-ratio and equal-gain combiners use
linear combining with various weights for each signal copy. They differ from
adaptive antenna arrays (Chapter 5) in that they are not designed to suppress
interference signals.

There are two primary measures of the efficacy of a communication system
transmitting over a fading channel. One is the bit error probability averaged
over the density of the fading amplitude, and this measure is the focus of this
chapter. The other measure is the outage probability, which is the probability
that the instantaneous signal-to-noise ratio (SNR) is less than the required
SNR, which is determined by the required bit error probability. Chapter 8 uses
this measure extensively.
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Basic Method

A direct-sequence signal and a phased array can exploit maximal-ratio com-
bining when the phase shift of the received signal in each antenna output is
removed. A phase shifter behind each antenna can make the required com-
pensation by using variable time delays or sampling the signal and using the
discrete Fourier transform. We assume henceforth that each received signal
copy in one of the L diversity branches experiences independent fading that
is constant during the signal interval. This assumption relies on a separation
between antennas of at least a few wavelengths.

Consider a receiver array of L diversity branches, each of which processes a
different desired-signal copy. Let y = [y1 . . . yL]

T denote the discrete-time vec-
tor of the L complex-valued branch output samples associated with a despread
symbol. This vector can be decomposed as

y = s+ n (6-89)

where s and n are the discrete-time vectors of the desired signal and the inter-
ference and thermal noise, respectively. Let w denote the L × 1 weight vector
of a linear combiner applied to the input vector. The combiner output is

z = wHy = zs + zn (6-90)

where the superscript H denotes the conjugate transpose, and

zs = wHs, zn = wHn (6-91)

are the output components due to the desired signal and the interference and
noise, respectively. The components of both s and n are modeled as discrete-
time jointly wide-sense stationary processes. The correlation matrices of the
desired signal and the interference and noise are defined as the L× L matrices

Rs = E
[
ssH
]
, Rn = E

[
nnH

]
(6-92)

respectively.
Let C denote the discrete-time sampled complex envelope of the desired

signal in a fixed reference branch. The desired-signal input vector may be
represented as

s = Cs0 (6-93)

where the steering vector is

s0 = [α1 exp(j θ1) α2 exp(j θ2) . . . αL exp(j θL)]
T (6-94)

and has components that represent the relative amplitudes and phase shifts in
the branch outputs. The substitution of (6-93) into (6-92) yields

Rs = Ess0sH0 , Es = E[|C|2] (6-95)

where Es is the energy per symbol.
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The signal-to-interference-and-noise ratio (SINR) at the combiner output is

ρ =
E
[
|zs|2

]
E [|zn|2]

=
Es
∥∥wHs0

∥∥2
wHRnw

. (6-96)

As shown in Section 5.5, the optimal weight vector for maximizing the SINR is

w0 = ηR−1
n s0 (6-97)

where η is an arbitrary constant, and the maximum value of the SINR is

ρmax = EssH0 R−1
n s0. (6-98)

A maximal-ratio combiner is a linear combiner with a weight vector wm

that is optimal under the assumption that the components of n are zero-mean
and uncorrelated. With this assumption, the correlation matrix Rn is diagonal
and its ith diagonal element has the value

N0i = E[|ni|2]. (6-99)

Since R−1
n is diagonal with diagonal elements N−1

0i , the right-hand side of (6-97)
implies that

wm = η

[
α1

N01
ejθ1

α2

N02
ejθ2 . . .

αL

N0L
ejθL

]T
(6-100)

which can be implemented only if the {αi} ,{θi} , and {N0i} can be estimated.
Equations (6-91), (6-100), (6-94), and (6-93) yield the desired part of the

combiner output:

zs = wH
ms = ηC

L∑
i=1

α2
i

N0i
. (6-101)

Since zs is proportional to C, maximal-ratio combining (MRC) equalizes the
phases of the signal copies in the array branches, a process called cophasing.

In most applications, the interference-and-noise in each array branch is
nearly independent of the other branches, and the powers are approximately
equal so that N0i = N0, i = 1, 2, . . . , L. If this common value is merged with
the constant in (6-97) or (6-100), then the MRC weight vector is

wm = ηs0 = η
[
α1e

jθ1 α2e
jθ2 . . . αLe

jθL
]T

(6-102)

which can be implemented if the {αi} and {θi} can be estimated or compen-
sated. The desired part of the combiner output is

zs = wH
ms = ηC

L∑
i=1

α2
i (6-103)

and (6-98) indicates that the SINR is

γt =

L∑
i=1

γi, γi =
Es
N0

α2
i . (6-104)
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Since the weight vector in (6-102) is not a function of the interference pa-
rameters, the combiner attempts no interference cancelation. The interference
and noise signals are ignored, while the combiner does coherent combining of
the desired signal. If each αi, i = 1, 2, . . . , L, is modeled as a random variable
with an identical distribution function, then (6-104) implies that

γi = γ =
Es
N0

E[α2
1], γt = E[γt] = Lγ (6-105)

which indicates a gain in the mean SINR that is proportional to L.

DS-BPSK and DS-QPSK

For coherent DS-BPSK and the AWGN channel, the analysis of Section 2.4
indicates that the sampled output of diversity branch i due to a single data bit
is

yi = αi

√
Ebd+ ni, i = 1, 2, . . . , L (6-106)

where Eb is the desired-signal energy per bit in the absence of fading, d = +1 or
−1, each αi is a fading amplitude, and ni is independent, zero-mean, Gaussian
noise with E

[
n2
i

]
= N0/2. The predetection combining of the sampled branch

outputs provides the symbol metric:

U(d) =

L∑
i=1

αiyi. (6-107)

For hard-decision decoding, the bit decision is that d = +1 if U(d) > 0, and
d = −1 if U(d) ≤ 0. The substitution of (6-106) into (6-107) yields

U(d) = d
√
Eb

L∑
i=1

α2
i +

L∑
i=1

αini (6-108)

which indicates that the symbol metric U(d) contains an MRC factor with the
same form as (6-103).

The implementation of maximal-ratio predetection combining before the de-
modulation is illustrated in Figure 6.7a. Postdetection combining following
demodulation in each branch, which potentially provides the same performance
but is not as practical as predetection combining, is illustrated in Figure 6.7b.

If the {αi} are known, the symbol metric has a Gaussian distribution with
mean

E(U) = d
√
Eb

L∑
i=1

α2
i . (6-109)

Since the {ni} are independent, the variance of U is

σ2
u =

N0

2

L∑
i=1

α2
i . (6-110)
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Figure 6.7: Maximal-ratio combiners for DS-BPSK with (a) predetection com-
bining and (b) postdetection combining. Coherent equal-gain combiners for
BPSK omit the factors {αi}

Because of the symmetry, the bit error probability is equal to the condi-
tional bit error probability given that d = +1. A decision error is made if
U < 0. Since the symbol metric has a Gaussian conditional distribution, a
standard evaluation (cf. Section 1.1) using (6-109) and (6-110) indicates that
the conditional bit error probability given the α = {αi} is

Pb|α(γt) = Q(
√

2γt) (6-111)

where Q(x) is defined by (1-43), and γt is defined by (6-104). The bit error
probability is determined by averaging Pb|α(γt) over the distribution of γt, which
depends on the {αi} and embodies the statistics of the fading channel.

Suppose that each of the {αi} is independent on the identical Nakagami
distribution. Then each α2

i has the gamma distribution of (6-36). As shown
in Appendix E.6, since γt is the sum of L independent, identically distributed
gamma random variables, the density of γt is

ft(x) =
mmL

Γ(mL) γt
mL

xmL−1 exp(−mx

γt

)u(x), (6-112)

where γt is defined by (6-105). The bit error probability is

Pb(L) =

∫ ∞

0

Q(
√
2x)

mmL

Γ(mL)γ̄tmL
xmL−1 exp(−mx

γt

)dx. (6-113)
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We assume that m is a positive integer. Direct calculations verify that since
mL is a positive integer,

d

dx
Q
(√

2x
)
= − 1

2
√
π

exp(−x)√
x

(6-114)

d

dx

[
e−mx/γ̄

mL−1∑
i=0

(mx/γ̄)i

i!

]
= − mmL

(mL− 1)!γ̄mL
xmL−1 exp

(
−mx

γ̄

)
(6-115)

where γ is defined by (6-105). Applying integration by parts to (6-113), and
using (6-114), (6-115), and Q(0) = 1/2, we obtain

Pb(L) =
1

2
−

mL−1∑
i=0

mi

i!γ̄i2
√
π

∫ ∞

0

exp
[
−x
(
1 +mγ̄−1

)]
xi−1/2 dx. (6-116)

This integral can be evaluated in terms of the gamma function (Appendix H.1).
A change of variable in (6-116) yields

Pb(L) =
1

2
− 1

2

√
γ̄

m+ γ̄

mL−1∑
i=0

Γ(i+ 1/2)mi

√
πi!(m+ γ̄)i

. (6-117)

The identity Γ(1/2) =
√
π and repeated applications of Γ(x) = (x−1)Γ(x−

1) indicate that

Γ(i+ 1/2) =

√
π Γ(2i)

22i−1Γ(i)
=

√
πi!

22i−1

(
2i− 1

i

)
, i ≥ 1. (6-118)

Therefore,

Pb(L) =
1

2
− 1

2

√
γ̄

m+ γ̄
−
√

γ̄

m+ γ̄

mL−1∑
i=1

(
2i− 1

i

)(
m

4m+ 4γ̄

)i

(6-119)

which is valid for QPSK because the latter can be transmitted as two indepen-
dent BPSK waveforms in phase quadrature. This expression explicitly shows
the change in the bit error probability as the number of diversity branches
increases. These results can be approximately related to Ricean fading by us-
ing (6-35).

Since m = 1 for Rayleigh fading, the preceding equations can be simplified.
The bit error probability for no diversity or a single branch is

p =
1

2

(
1−
√

γ̄

1 + γ̄

)
. (6-120)

Solving this equation to determine γ̄ as a function of p and then using this
result in (6-119) with m = 1 give

Pb(L) = p− (1− 2p)

L−1∑
i=1

(
2i− 1

i

)
[p(1− p)]i. (6-121)
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An alternative expression for Pb(L) is

Pb(L) = pL
L−1∑
i=0

(
L+ i− 1

i

)
(1− p)i (6-122)

which can be proved to be equal to (6-121) by using mathematical induction.
To derive an upper bound on Pb(L) that facilitates analysis of its asymptotic

behavior, we use an identity for the sum of binomial coefficients:

L−1∑
i=0

(
L+ i− 1

i

)
=

(
2L− 1

L

)
. (6-123)

To prove (6-123), observe that
(
2L−1

L

)
is the number of ways of choosing L

distinct objects out of 2L− 1. Choices could be made in L steps. In step k = 0,
one object is set aside, and L−1 distinct objects are selected from the remaining
2L − 2 objects. For step k, where 1 ≤ k ≤ L − 1, an object is added to the
objects previously set aside, and L − k − 1 distinct objects are selected from
the remaining 2L− k − 2 objects. Thus,

(
2L− 1

L

)
=

L−1∑
k=0

(
2L− k − 2

L− k − 1

)
=

L−1∑
i=0

(
L+ i− 1

i

)
(6-124)

which proves the identity.
Since 1− p ≤ 1, (6-122) and (6-123) imply that

Pb(L) ≤
(
2L− 1

L

)
pL. (6-125)

This upper bound becomes tighter as p → 0. This inequality motivates the
following general measure of diversity. The diversity order is defined as

Do = − lim
p→0

∂ ln[Pb(L)]

∂ ln(p)
, (6-126)

where p = Pb (1) is the bit error probability when there is no diversity. Apply-
ing this definition to (6-122), we find that a BPSK or QPSK system over the
Rayleigh channel has Do = L.

The advantage of MRC is critically dependent on the assumption of uncor-
related fading in each diversity branch. If there is complete correlation so that
the {αi} are all equal and the fading occurs simultaneously in all the diversity
branches, then there is no diversity gain but only an increase in the bit energy
from Eb to LEb. For Rayleigh fading and complete correlation, (6-120) implies
that the bit error probability is

P cc
b (L) =

1

2

(
1−
√

Lγ̄

1 + Lγ̄

)
(cc, Rayleigh). (6-127)
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Figure 6.8: Bit error probability of DS-BPSK for no fading, completely corre-
lated Rayleigh fading and MRC, and independent Rayleigh fading and MRC

Example 3. Graphs of the bit error probability of DS-BPSK for a single
branch with no fading, L branches with independent Rayleigh fading and MRC,
and L branches with completely correlated Rayleigh fading and MRC are shown
in Figure 6.8. Equations (6-111), (6-120), (6-121), and (6-127) are used in gen-
erating the graphs. The independent variable is γ̄ for MRC and is γb = Eb/N0

for the single branch with no fading. The figure demonstrates the advantages
of both diversity combining and independent fading. Figure 6.9 displays the
bit error probability for independent Nakagami fading with m = 4, DS-BPSK,
and MRC with L = 1, 2, 3, 4. Since the Nakagami fading with m = 4 is much
milder than Rayleigh fading, the bit error probability is lowered significantly.
�

Coherent DS-CSK

In a DS-CSK system, one of the q orthogonal spreading sequences, each repre-
senting log2 q bits, is transmitted. In a coherent system, each chip is transmitted
using BPSK. The maximum-likelihood detector despreads the received signal
and generates q symbol metrics corresponding to the q possible nonbinary sym-
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Figure 6.9: Bit error probability of MRC with DS-BPSK for independent Nak-
agami fading with m = 4

bols. Because of the orthogonality, in the absence of noise, the symbol metrics
for symbols other than the transmitted one are zero.

Consider the detection of a bit in a binary DS-CSK system (DS-BCSK
system) with L diversity branches and coherent detection in each one. Let yl,i
denote the demodulator output after despreading by sequence l in branch i.
Applying the results of Section 1.1 for the AWGN channel to the transmitted
sequence, we find that

yl,i =
√
Ebαiδlk + ni, l, k = 1, 2, i = 1, 2, . . . , L (6-128)

where Eb is the desired-signal energy per bit and branch in the absence of fading,
αi is the fading amplitude in branch i, δlk = 0, l �= k and δkk = 1, and each ni

is an independent, zero-mean, Gaussian random variable with E[n2
i ] = N0/2.

The symbol metric for coherent DS-BCSK is

U (l) =
L∑

i=1

αiyl,i (6-129)

which requires estimates of the {αi}.
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For hard-decision decoding, a symbol decision is made by selecting the
largest of the {U (l)} . Assuming that sequence l = 1 was transmitted, the
substitution of (6-128) into (6-129) indicates that the two symbol metrics are

U (1) =
√

Eb
L∑

i=1

α2
i +

L∑
i=1

αi ni (6-130)

U (2) =

L∑
i=1

αi ni. (6-131)

A decision error is made if U (1)−U (2) < 0. Since U (1)−U (2) has a Gaussian
conditional distribution, an evaluation indicates that the conditional bit error
probability given the {αi} is

Pb|α(γt) = Q(
√
γt) (6-132)

where γt is given by (6-104).
When independent, identically distributed Nakagami fading occurs in each

branch, the bit error probability is determined by averaging Pb|α(γt) over the
distribution of γt, which is given by (6-112). Equation (6-132) differs from
(6-111) only by the replacement of 2γt with γt. Therefore, if m is a positive
integer, a modification of (6-117) indicates that the bit error probability for
coherent BCSK is

Pb(L) =
1

2
− 1

2

√
γ̄

2m+ γ̄

mL−1∑
i=0

Γ(i+ 1/2)(2m)i√
πi!(2m+ γ̄)i

(6-133)

which explicitly shows the change in the bit error probability as the number of
diversity branches increases.

For Rayleigh fading, (6-133) indicates that (6-121) and (6-122) are again
valid, but the bit error probability for no diversity or a single branch is

p =
1

2

(
1−
√

γ̄

2 + γ̄

)
(Rayleigh, BCSK) (6-134)

where the average bit-energy-to-noise-density ratio per branch is defined by
(6-105). Thus, in a fading environment, coherent DS-BCSK has diversity order
Do = L, but DS-BPSK retains its usual 3 dB advantage over DS-BCSK.

6.6 Equal-Gain Combining

Equal-gain combining (EGC) is the cophasing of signal copies without compen-
sating for unequal values of the SNR in each branch. Thus, when a narrowband
desired signal experiences fading, the EGC weight vector is

we = η[exp(jθ1) exp(jθ2) . . . exp(jθL)]
T (6-135)
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where θi is the phase shift of the desired signal in branch i. When MRC
is optimal and the values of the {αi} are unequal, EGC is suboptimal but
requires much less information about the channel. Figure 6.7 displays EGC
with predetection and postdetection combining if the factors {αi} are set equal
to unity.

If the interference and noise in each array branch is zero-mean and uncor-
related with the other branches and E[|ni|2] = N0, i = 1, 2, . . . , L, then Rn is
diagonal, and (6-96) with w = we gives the output SINR:

γe =
Es
LN0

(
L∑

i=1

αi

)2

. (6-136)

An application of the Cauchy–Schwarz inequality (F-5) verifies that this SINR
is less than or equal to γt given by (6-104).

In a Rayleigh-fading environment, each αi , i = 1, 2, . . . , L , has a Rayleigh
distribution. If the desired signal in each array branch is uncorrelated with
the other branches and has identical average power, then using (E-30) of Ap-
pendix E.4, we obtain

E[α2
i ] = E[α2

1], E[αi] =
(π
4
E[α2

1]
)1/2

, i = 1, 2, . . . , L (6-137)

E[αiαk] = E[αi]E[αk] =
π

4
E[α2

1], i �= k. (6-138)

These equations and (6-136) give

E[γe] =
[
1 + (L− 1)

π

4

]
γ̄. (6-139)

A comparison with (6-105) indicates that the average loss associated with using
EGC instead of MRC is on the order of 1 dB.

In nonfading environments, MRC is identical to EGC, but both are distinctly
suboptimal because of interference correlations among the branches. Consider
narrowband desired and interference signals with carrier frequency f0 that do
not experience fading and arrive as plane waves. The array antennas are suf-
ficiently close that the steering vector s0 of the desired signal and the steering
vector J0 of the interference signal can be represented by

s0 =
[
e−j2πf0τ1 e−j2πf0τ2 . . . e−j2πf0τL

]T
(6-140)

J0 =
[
e−j2πf0δ1 e−j2πf0δ2 . . . e−j2πf0δL

]T
. (6-141)

The noise power in each branch is equal. The correlation matrix for the inter-
ference and noise is

Rn = N0 I+N0g J0 JH
0 (6-142)

where g is the interference-to-noise ratio in each array branch. This equation
shows explicitly that the interference in one branch is correlated with the in-
terference in the other branches.
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A direct matrix multiplication using ‖J0‖2 = L verifies that

R−1
n =

1

N0

(
I− g J0 J

H
0

Lg + 1

)
. (6-143)

After merging 1/N0 with the constant in (6-97), it is found that the optimal
weight vector is

w0 = η

(
s0 −

ξL g

L g + 1
J0

)
(6-144)

where ξ is the normalized inner product

ξ =
1

L
JH
0 s0. (6-145)

The corresponding maximum SINR, which is calculated by substituting (6-140),
(6-143), and (6-145) into (6-98), is

ρmax = Lγ

(
1− |ξ|2Lg

L g + 1

)
(6-146)

where γ = Es/N0 is the SNR in each branch. Equations (6-140), (6-141),
and (6-145) indicate that 0 ≤ |ξ| ≤ 1 and that |ξ| = 1 if L = 1. Equation (6-146)
indicates that ρmax decreases as |ξ| increases if L ≥ 2.

Since the values of the SINRs in the branches are all equal, both MRC and
EGC use the weight vector of (6-135), which gives wm = we = ηs0. Substi-
tuting (6-94), (6-135), and (6-142) into (6-96) gives the SINR for MRC and
EGC:

ρm = ρe =
L γ

1 + |ξ|2Lg
. (6-147)

Both ρmax and ρm equal Lγ, the peak value, when ξ = 0. They both equal
Lγ/ (1 + Lg) when |ξ| = 1, which occurs when both the desired and interference
signals arrive from the same direction or L = 1. Using calculus, it is determined
that the maximum value of ρmax/ρm, which occurs when |ξ| = 1/

√
2, is

(
ρmax

ρm

)
max

=
(Lg/2 + 1)2

Lg + 1
, L ≥ 2. (6-148)

This ratio approaches Lg/4 for large values of Lg. Thus, an adaptive ar-
ray based on the maximization of the SINR has the potential to significantly
outperform MRC or EGC if Lg � 1 under the conditions of the nonfading envi-
ronment assumed. Figure 6.10 displays ρmax/ρm as a function of |ξ| for various
values of Lg. These results provide motivation for the use of the maximin
algorithm of Section 5.6.
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6.7 Noncoherent Combining

Noncoherent combining is implemented as equal-gain combining without
cophasing following noncoherent demodulation. The analysis in this section
is directly applicable to FH-DPSK and noncoherent FH-OSK systems. It is
applicable to DS-DPSK and DS-CSK systems, which are used when accurate
phase estimation is unavailable so that cophasing is not possible.

DPSK

The advantage of DPSK for both types of spread-spectrum systems is that
it requires neither phase synchronization nor channel-state estimation. Equa-
tion (1-89) gives the conditional bit error probability for DPSK with no diver-
sity and fading coefficient α. Integrating the equation over the density (6-36),
changing the integration variable, and using (H-1) of Appendix H give the
single-branch bit error probability for Nakagami fading:

Pb =

∫ ∞

0

1

2
exp

(
− γ̄r2

Ω

)
2

Γ (m)

(
m

Ω

)m

r2m−1 exp

(
−mr2

Ω

)
dr

=
m

2(1 + γ̄/m)m
, m ≥ 1

2
(6-149)

where Ω = E
[
α2
1

]
and γ̄ is given by (6-105).
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Figure 6.11: Postdetection noncoherent combining of DPSK signals

For Ricean fading, we integrate the symbol error probability (1-89) over
the Rice density (6-32) and use (1-72). We obtain the single-branch bit error
probability:

Pb =
κ+ 1

2(κ+ 1 + γ)
exp

[
− κγ̄

κ+ 1 + γ̄

]
(6-150)

For Rayleigh fading, the single-branch bit error probability is

p =
1

2(1 + γ̄)
. (6-151)

A block diagram of a DPSK receiver with postdetection combining of L
diversity branches is depicted in Figure 6.11. The forms of the DPSK demodu-
lators for a direct-sequence system are shown in Figures 2.30 and 2.33, and the
form for a frequency-hopping system after the dehopping is shown in Figure 1.4.
Let V1,L(i) − V2,L(i) denote the output of branch i for a bit. Assuming that
the fading coefficient is constant over two successive bits, this output has the
functional form given by (1-83). The combiner output metric is

U (L) = U1 (L)− U2 (L) (6-152)

U1 (L) =

L∑
i=1

V1,L (i) , U2 (L) =

L∑
i=1

V2,L (i) . (6-153)

The sum U1 (L) has a noncentrality parameter equal to N0γt and a conditional
chi-squared density with 2L degrees of freedom:

f(x | γt) =
2

N0

(
x

N0γt

)(L−1)/2

exp

[
−
(
2x

N0
+ 2γt

)]
IL−1

(
4

√
xγt
N0

)
u(x).

(6-154)
We assume that the fading coefficients are independent and identically dis-

tributed with a common Rayleigh distribution function. Since the density of
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α2
k is exponential, the density of γt is (Appendix E.5)

g (γt) =
γL−1
t

Γ (L) γL
exp

(
−γt

γ

)
u (γt) . (6-155)

Integrating the product of (6-154) and (6-155), we obtain the density for U1:

f1 (x) =

(
2a

N0

)L
xL−1

Γ (L)
exp(− 2

N0
ax) u(x), a =

1

1 + 2γ
. (6-156)

The term U2 has a central chi-squared density with 2L degrees of freedom
(Appendix E.2):

f2(y) =

(
2

N0

)L
yL−1

Γ (L)
exp

(
− 2y

N0

)
u(y). (6-157)

The bit error probability is

Pb (L) =

∫ ∞

0

f1 (x)

∫ ∞

x

f2 (y) dydx

=
L−1∑
i=0

1

i!

∫ ∞

0

f1 (x) exp

(
− 2x

N0

)(
2x

N0

)i

dx

=

L−1∑
i=0

1

i!

(
2

N0

)L+i
aL

Γ (L)

∫ ∞

0

xL+i−1 exp

[
− 2

N0
x (a+ 1)

]
dx (6-158)

where the second equality is obtained by applying (H-8). Applying (H-3) to the
evaluation of the integral, we obtain

Pb (L) =
aL

Γ (L)

L−1∑
i=0

1

i!

Γ (L+ i)

(a+ 1)
L+i

= pL
L−1∑
i=0

(
L+ i− 1

i

)
(1− p)i

= p− (1− 2p)
L−1∑
i=1

(
2i− 1

i

)
[p(1− p)]i (6-159)

where the second equality follows from the substitution of (6-151) and a =
(1 + 2γ)-1, and the third equality follows from the equality of (6-122) and
(6-121). DPSK provides the diversity order Do = L.

Noncoherent OSK

Noncoherent OSK can be used in either DS-CSK systems or FH-OSK systems.
Equation (1-73) gives the conditional symbol error probability for OSK with
no diversity and fading coefficient α. Integrating (1-73) over the density (6-36),
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changing the integration variable, and using (H-1) of Appendix H give the
single-branch symbol error probability for Nakagami fading:

Ps =

q−1∑
i=1

(−1)
i+1

(
q − 1

i

)[
1 +

iγ

1 + i

]−m

(6-160)

where γ̄ is given by (6-105). Integrating (1-73) over the Rice probability den-
sity (6-32) and using (1-72), we obtain the single-branch symbol error proba-
bility:

Ps =

q−1∑
i=1

(−1)
i+1

(
q − 1

i

)
κ+ 1

κ+ 1 + (κ+ 1 + γ̄)i
exp

[
− iκγ̄

κ+ 1 + (κ+ 1 + γ̄)i

]
.

(6-161)
For Rayleigh fading and binary OSK, the single-branch bit error probability is

p =
1

2 + γ̄
(Rayleigh, binary). (6-162)

Consider the transmission over a fading channel of the signal representing
a single symbol d. For noncoherent OSK, (1-62) with n = 1 and the analysis
of Section 1.1 yield the conditional density for the sampled output of matched
filter l of branch i :

f(yl,i|d, αi) =
1

πN0
exp

(
−|yl,i|2 + Esα2

i δl,d
N0

)
I0

(
2
√
Esαi|yd,i|δl,d

N0

)

l = 1, 2, . . . , q, i = 1, 2, . . . , L, (6-163)

where d is the transmitted symbol, and δl,d = 1, l = d, and δl,d = 0, otherwise.
If Rayleigh fading is statistically independent in each branch, then the den-

sity f(yl,i|d) may be calculated by integrating f(yl,i|d, αi) over the Rayleigh
density given by (6-24) with Ω = E[α2

i ]. This integral can be evaluated by
using (E-13). The likelihood function of the qL-dimensional observation vector
y, which has components equal to the {yl,i} , is the product of the qL densi-
ties {f(yl,i|d)} . After performing the integration and forming the product, we
obtain

f(y|d) =
L∏

i=1

C (i) exp

(
|yd,i|2γ̄i

N0(1 + γ̄i)

)
(6-164)

where C (i) does not depend on d, and

γi =
Es
N0

E
[
α2
i

]
. (6-165)

To determine the transmitted symbol, we choose the value of d that max-
imizes the log-likelihood ln f(y|d). Dropping irrelevant terms and factors, we
obtain the maximum-likelihood symbol metric for Rayleigh fading :

U(d) =

L∑
i=1

|yd,i|2
(

γ̄i
1 + γ̄i

)
, d = 1, 2, . . . , q (6-166)
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Figure 6.12: Demodulator for q-ary orthogonal signals with postdetection non-
coherent combining. MF = matched filter

which requires the estimation of γ̄i for each branch.
If we assume that all the {γ̄i} are equal, then (6-166) reduces to the square-

law metric:

U(d) =

L∑
i=1

|yd,i|2 , d = 1, 2, . . . , q. (6-167)

This metric implies a noncoherent OSK receiver with postdetection square-law
combining, which is illustrated in Figure 6.12. Each branch feeds q matched
filters, and each matched filter is matched to one of the equal-energy orthogonal
signals s1(t), s2(t), . . ., sq(t). A major advantage of the square-law metric
is that it does not require any channel-state information. If γ̄i is large, the
corresponding terms in the square-law and maximum-likelihood symbol metrics
are nearly equal.

Because of the symmetry of the signals, Ps(L) can be calculated by assum-
ing that s1(t) was transmitted. Given that s1(t) was transmitted, the symbol
metrics at the combiner output are

U (1) =

L∑
i=1

|
√

Ebαie
jθi + n1,i|2

=

L∑
i=1

[(√
Ebαi cos θi + nR

1,i

)2
+
(√

Ebαi sin θi + nI
1,i

)2]
(6-168)

U (l) =

L∑
i=1

|nl,i|2 =

L∑
i=1

[(
nR
l,i

)2
+
(
nI
l,i

)2]
, l �= 1 (6-169)
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where n1,i and nl,i, l �= 1, are the independent, complex-valued, zero-mean,
Gaussian noise variables and nR

l,i and nI
l,i are the real and imaginary parts of

nl,i, respectively. Assuming that the noise PSD in each branch is equal to N0/2,

then E[|nl,i|2] = N0. Because of its circular symmetry, nl,i has independent real
and imaginary components, and

E[(nR
l,i)

2] = E[(nI
l,i)

2] = N0/2 , l = 1, 2, . . . , q, i = 1, 2, . . . , L. (6-170)

When independent, identically distributed, Rayleigh fading occurs in each
branch, αi cos θi and αi sin θi are zero-mean, independent, Gaussian random
variables with the same variance equal to E[α2

i ]/2 = E[α2
1]/2, i = 1, 2, . . . , L,

as shown in Appendix E.4. Therefore, each U (l) has a central chi-squared
distribution with 2L degrees of freedom. From (E-17) of Appendix E.2, it
follows that the density of U (l) is

fl(x) =
1

(2σ2
l )

L(L− 1)!
xL−1 exp

(
− x

2σ2
l

)
u(x), l = 1, 2, . . . , q (6-171)

where (6-170) and (6-105) give

σ2
l = σ2

2 = E[(nR
l,i)

2] = N0/2, l �= 1 (6-172)

σ2
1 = E[(

√
Ebα1 cos θi + nR

1,i)
2] = N0(1 + γ̄1)/2. (6-173)

Since a correct decision is made if U (1) > U (l), l = 2, . . . , q,

Pb(L) = 1−
∫ ∞

0

xL−1 exp
(
− x

2σ2
1

)

(2σ2
1)

L(L− 1)!

⎡
⎣
∫ x

0

yL−1 exp
(
− y

2σ2
2

)

(2σ2
2)

L(L− 1)!
dy

⎤
⎦
q−1

dx

= 1−
∫ ∞

0

xL−1 exp
(
− x

2σ2
1

)

(2σ2
1)

L(L− 1)!

[
1− exp

(
− x

2σ2
2

) L−1∑
i=0

(x/2σ2
2)

i

i!

]q−1

dx

(6-174)

where (H-6) and (H-9) are used to obtain the second equality.
For noncoherent binary OSK (BOSK), q = 2, and the application of (H-1)

gives (6-122), where the bit error probability for L = 1 is given by (6-162).
Thus, Pb(L) for noncoherent BOSK is once again given by (6-121), and the
diversity order is Do = L. Equations (6-151) and (6-162) indicate that less
than 3 dB more power is needed for noncoherent BOSK to provide the same
performance as DPSK in Rayleigh fading.

The analysis for Rayleigh fading has shown that (6-121) is valid for DS-
BPSK and coherent DS-BCSK with MRC, and for spread-spectrum signals with
DPSK and BOSK and noncoherent combining. Once the bit error probability
p in the absence of diversity combining is determined, the bit error probability
Pb(L) for diversity combining in the presence of independent Rayleigh fading
can be calculated from (6-121). Plots of Pb(L) versus p for different values of
L is displayed in Figure 6.13. This figure illustrates the diminishing returns
obtained as L increases.

Plots of Pb(L) versus γ̄ over the Rayleigh channel is displayed in Figure 6.14
for DS-BPSK, and for spread-spectrum signals with DPSK and BOSK. The



362 CHAPTER 6. FADING AND DIVERSITY

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it 

er
ro

r 
pr

ob
ab

ili
ty

Bit error probability for no diversity

L = 1
L = 2
L = 3
L = 4
L = 10
L = 20

Figure 6.13: Bit error probability over the Rayleigh channel for diversity com-
bining versus the absence of diversity combining

plot for coherent DS-BCSK with MRC is nearly the same as that for DS-DPSK
with noncoherent combining. Since (6-121) is valid for all these modulations in
the presence of independent Rayleigh fading, we find that the diversity order
is Do = L for all these modulations. Despite this asymptotic equality, the bit
error probability varies substantially with modulation for the practical range
Pb(L) > 10−6. An evaluation of (6-174) indicates that Ps(L) decreases slightly
as q increases.

6.8 Selection Combining

A selection-combining system selects the branch output that has the largest
SNR and then forwards this branch output for further processing. In a fading
environment, selection is sensible only if the selection rate is much faster than
the fading rate. Selection combining does not provide a performance as good
as maximal-ratio combining or equal-gain combining when the interference and
noise in each branch are uncorrelated with those in the other branches. How-
ever, selection combining requires only a single demodulator, and when noises
or interference signals are correlated, it can provide a superior performance.

Consider selection combining when the average power of the desired signal
in the absence of fading is the same in each branch, and the average power
of the zero-mean noise is the same in each branch. The SNR in each branch
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Figure 6.14: Bit error probability over the Rayleigh channel for DS-BPSK and
for spread-spectrum signals with DPSK and noncoherent BOSK

is proportional to γi, which is defined by (6-104). If each of the {αi}, i =
1, 2, . . . , L, has the same Rayleigh distribution, then the results of Appendix E.4
for the square of a Rayleigh-distributed random variable indicate that each γi
has the distribution function

Fγ(x) =

[
1− exp

(
−x

γ̄

)]
u(x), (6-175)

where γ = E [γi].
Let γ0 denote the γi of the selected branch:

γ0 =
Es
N0

max
i

(
α2
i

)
. (6-176)

The probability that γ0 is less than or equal to x is equal to the probability
that all the {γi} are simultaneously less than or equal to x. If the interference
and noise in each branch are independent, the distribution function of γ0 is

Fγ0
(x) =

[
1− exp

(
−x

γ̄

)]L
u (x) . (6-177)
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The average γ0 obtained by selection diversity is calculated by integrating
γ0 over the density corresponding to (6-177). The result is

E[γ0] =

∫ ∞

0

L

γ̄
x exp

(
−x

γ̄

)[
1− exp

(
−x

γ̄

)]L−1

dx

= γ̄L

∫ ∞

0

ye−y

[
L−1∑
i=0

(
L− 1

i

)
(−1)ie−yi

]
dy

= γ̄

L∑
i=1

(
L

i

)
(−1)i+1

i

= γ̄
L∑

i=1

1

i
. (6-178)

The second equality results from a change of variable and the substitution of the
binomial expansion. The third equality results from a term-by-term integration
using (H-1) and an algebraic simplification. The fourth equality is obtained by
applying the method of mathematical induction. Equations (6-105) and (6-139)
indicate that E[γ0] for selection combining with L ≥ 2 is less than γt for MRC
and EGC.

Consider a DS-BPSK system in which optimal coherent demodulation fol-
lows the selection process. For a single bit, the conditional bit error probability
given the value of γ0 is

Pb(γ0) = Q(
√

2γ0). (6-179)

Therefore, using (6-177) and the binomial expansion, the bit error probability
is

Pb(L) =

∫ ∞

0

Q(
√
2x)

L

γ̄
exp

(
−x

γ̄

)[
1− exp

(
−x

γ̄

)]L−1

dx

=

L−1∑
i=0

(
L− 1

i

)
(−1)i

L

γ̄

∫ ∞

0

Q(
√
2x) exp

[
−x

(
1 + i

γ̄

)]
dx.

(6-180)

The last integral in this equation can be evaluated in the same manner as the
one in (6-113). After changing the summation index, the result is

Pb(L) =
1

2

L∑
i=1

(
L

i

)
(−1)i+1

(
1−
√

γ̄

i+ γ̄

)
(BPSK, QPSK). (6-181)

This equation is valid for DS-QPSK since it can be implemented as two parallel
DS-BPSK waveforms.

To obtain a simple upper bound on Pb(L), we substitute the upper bound

1− exp

(
−x

γ

)
≤ x

γ
, x ≥ 0 (6-182)
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into the integral in the first line of (6-180). We find that Pb(L) is upper-
bounded by LΓ (L) times an integral equal to right-hand side of (6-113) with
m = 1. Therefore, we can upper bound the integral by the right-hand side of
(6-125) and obtain

Pb(L) ≤ LΓ (L)

(
2L− 1

L

)
pL (BPSK, QPSK) (6-183)

where p is given by (6-120). Thus, the diversity order is Do = L, the same as
it is for maximal-ratio combining with BPSK.

For coherent DS-BCSK, the conditional bit error probability is Pb(γ0) =
Q(

√
γ0). Therefore, it is found that

Pb(L) =
1

2

L∑
i=1

(
L

i

)
(−1)i+1

(
1−
√

γ̄

2i+ γ̄

)
(coherent BCSK). (6-184)

Again, 3 dB more power is needed to provide to the same performance as DS-
BPSK, and the diversity order is Do = L.

For either DS-DPSK or FH-DPSK, the conditional bit error probability is

Pb(γ0) =
1

2
exp (−γ0) . (6-185)

Thus, selection combining provides the bit error probability

Pb(L) =

∫ ∞

0

L

2γ̄
exp

(
−x

1 + γ̄

γ̄

)[
1− exp

(
−x

γ̄

)]L−1

dx. (6-186)

Using t = exp(−x/γ̄) to change the integration variable in (6-186) and then
using (H-10) of Appendix H.2 give

Pb(L) =
L

2
B(1 + γ̄, L) (DPSK) (6-187)

where B(α, β) is the beta function.
For spread-spectrum signals with noncoherent OSK, the conditional symbol

error probability given the value of γ0 is obtained from (1-73):

Pb(γ0) =

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
exp

(
− iγ0
i+ 1

)
. (6-188)

Therefore, after using t = exp(−x/γ̄) to change successive integration variables,
the symbol error probability is

Ps(L) =

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
L

γ̄

×
∫ ∞

0

exp

(
−x

i+ 1 + iγ̄

γ̄ (i+ 1)

)[
1− exp

(
−x

γ̄

)]L−1

dx

= L

q−1∑
i=1

(−1)i+1

i+ 1

(
q − 1

i

)
B

(
1 +

iγ̄

i+ 1
, L

)
(noncoherent OSK).

(6-189)
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For noncoherent BOSK, the bit error probability is

Pb(L) =
L

2
B
(
1 +

γ̄

2
, L
)

(noncoherent BOSK) (6-190)

which exhibits the usual 3 dB disadvantage compared with DPSK.
Figure 6.15 shows Pb(L) over the Rayleigh channel as a function of γ̄, as-

suming selection combining and spread-spectrum signals with BPSK, DPSK,
and noncoherent BOSK. A comparison of Figures 6.15 and 6.14 indicates the
reduced gain provided by selection combining relative to MRC and noncoherent
combining.

Other types of selection diversity besides selection combining, which entails
predetection selection, are sometimes of interest. Postdetection selection entails
the selection of the diversity branch with the largest signal and noise power after
detection. It outperforms predetection selection in general but requires as many
matched filters as diversity branches. Thus, its complexity is not much less than
that required for EGC. Switch-and-stay combining (SSC) or switched combining
entails processing the output of a particular diversity branch as long as its
quality measure remains above a fixed threshold. When it does not, the receiver
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selects another branch output and continues processing this output until the
quality measure drops below the threshold. In predetection SSC, the quality
measure is the instantaneous SNR of the connected branch. Since only one
SNR is measured, predetection SSC is less complex than predetection selection
but suffers a performance loss. In postdetection SSC, the quality measure is the
same output quantity used for data detection. The optimal threshold depends
on the average SNR per branch. Postdetection SSC provides a lower bit error
probability than predetection SSC, and the improvement increases with both
the average SNR and less severe fading [88].

A fundamental limitation of selection diversity is made evident by consid-
ering the absence of fading. Since the SINRs are equal in all the diversity
branches, selection diversity can give no better performance than no diversity
combining or the use of a single branch. In contrast, (6-147) indicates that
EGC can improve the SINR significantly.

6.9 Transmit Diversity

Spatial diversity may be implemented as either transmit diversity, which uses
an antenna array at the transmitter, receive diversity, which uses an array at
the receiver, or both. Network requirements and practical issues may motivate
the use of transmit diversity. For example, since multiple antennas are much
more feasible at a base station than at a mobile, transmit diversity is usually the
only type of spatial diversity in the downlink from a base station to a mobile.
The configuration of a transmitter with N transmit antennas is illustrated in
Figure 6.16. The use of spatial diversity is completely compatible with spread-
spectrum systems.

Delay diversity and frequency-offset diversity are elementary forms of trans-
mit diversity [7] that have significant practical limitations. Delay diversity
entails the transmission of the same symbol successively from multiple anten-
nas after appropriate delays. The received signal comprises a set of artificial
multipath signals that are generated at considerable cost in power and cause
multiple-access interference in other systems. Frequency-offset diversity trans-
forms the transmit diversity into a type of frequency diversity by requiring each
transmit antenna to use a different carrier frequency. The main practical issue
is the bandwidth expansion.

Orthogonal transmit diversity, which is included in the CDMA2000 stan-
dard, transmits alternating even and odd interleaved symbols on two antennas.
The deinterleaved bits generated by the different antennas provide both time
diversity due to the deinterleaving and spatial diversity due to the antenna
separations. The gain relative to no diversity is substantial provided that the
fading is slow and the channel code is strong [91].

Transmit antenna selection (TAS) is a form of transmit diversity in which
a subset of the transmit antennas that produce the largest output SNR at the
receiver are selected for transmission [97]. Since fewer transmit antennas are
activated, TAS is able to reduce the number of radio-frequency devices that
are needed in the transmitter. A single-antenna TAS is able to concentrate
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the transmit power in one antenna and does not need to distribute the power
among all the available antennas. The primary disadvantages of TAS are that
it requires channel-state information at the transmitter, and the channel co-
herence time must be large enough to support its operation. This information
comprises the indices of the transmit antennas that the receiver has selected for
maximizing the SNR.

Space-time codes, which include space-time block codes and space-time trellis
codes, are transmitted by multiple antennas and improve the performance of
a communication system in a fading environment without the need for either
multiple receive antennas or channel-state information at the transmitter [7,
43, 47, 72].

A space-time block code, which is analogous to a block code, converts a block
of information bits into constellation points that are mapped into waveforms
that are applied to a set of transmit antennas.

The Alamouti code is by far the most widely used STBC and space-time
code and is included in the CDMA2000 standard. The Alamouti code is an
orthogonal STBC that provides full diversity at full transmission rate and is
decoded by maximum-likelihood decoding that entails only linear processing.
Two transmit antennas are separated enough that their transmissions are un-
correlated at the receiver. Two time intervals are used to transmit two complex
symbols from a PSK or QAM constellation. The transmitted space-time code-
word of length two has a code rate equal to one, the number of information
symbols conveyed per time interval.

A direct-sequence system multiplies each symbol by a spreading sequence
prior to the modulation and transmission. Let p1 (t) and p2 (t) denote the
spreading sequences used during successive time intervals. The 2×2 generator
matrix representing a transmitted codeword for information symbols d1 and d2
is

G =

[
d1p1 (t) d2p1 (t)
−d∗2p2 (t) d∗1p2 (t)

]
(6-191)

where each row identifies the symbols transmitted during a time interval, and
each column identifies the successive symbols transmitted by one of the anten-
nas. The Alamouti code is a member of the class of orthogonal STBCs, which
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have generator matrices with complex-valued orthogonal columns so that GHG
is a diagonal matrix.

Assuming a single receive antenna and AWGN, the received signal during
the first time interval is r1(t) = h1d1p1(t) + h2d2p1(t) + n1(t), where hi, i =
1, 2, is the complex channel response from transmit antenna i to the receive
antenna, and n1(t) is a complex, zero-mean, white Gaussian noise process.
After despreading, sampling, and an amplitude normalization, the observation
at the end of the first time interval is r1 = h1d1 + h2d2 + n1, where n1 is
complex zero-mean Gaussian noise. Similarly, assuming that the channel does
not change during two time intervals, the observation at the end of the second
time interval is r2 = −h1d

∗
2+h2d

∗
1+n2, where n2 is complex zero-mean Gaussian

noise that is independent of n1. These two observations are combined in the
vector yr =[r1, r

∗
2 ]

T
. Then

yr = Hd+ n (6-192)

where d =[d1, d2]
T
, n =[n1, n

∗
2]

T
, and the channel matrix is

H =

[
h1 h2

h∗
2 −h∗

1

]
. (6-193)

Let Es denote the average energy per symbol received from both transmit
antennas. The power splitting between the two transmit antennas implies that

E
[
|dk|2

]
= Es/2, k = 1, 2. In the presence of AWGN with power spectral

density N0/2, the analysis of Section 1.1 indicates that n is the zero-mean
Gaussian random vector with independent components and covariance matrix
E
[
nnH

]
= N0I.

The matrix H satisfies the orthogonality condition:

HHH = ||h||2I (6-194)

where ||h|| denotes the Euclidean norm of h = [h1,h2], and I is the 2×2 identity
matrix. Therefore, the receiver computes the 2× 1 vector

y = HHyr = d||h||2 + n1 (6-195)

where n1 = HHn is a zero-mean Gaussian random vector since the components
of n are independent (Appendix A.1). Its covariance matrix is

E
[
n1n

H
1

]
= N0||h||2I. (6-196)

Equation (6-195) indicates that the maximum-likelihood decision for dk is sep-
arately obtained as

d̂k = argmin
dk

∣∣yk − dk||h||2
∣∣ , k = 1, 2. (6-197)

Since each noise component is independent, each symbol decision is decoupled
from the other one, and there is no intersymbol interference.
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The components of (6-195) may be expressed as

yk = dk

2∑
i=1

α2
i + n1k, k = 1, 2 (6-198)

where αi = |hi| and n1k is the kth component of n1. The desired part of yk
is similar to that in (6-103) obtained by maximal-ratio combining with two
signals and indicative of diversity order 2. Thus, the bit error probabilities for
DS-BPSK, DS-QPSK, and coherent DS-BOSK derived for MRC in the presence

of Rayleigh fading are applicable with one important change. Since E
[
|dk|2

]
=

Es/2 because of the power splitting between the two transmit antennas, γ̄ must
be replaced by γ̄/2 in the equations.

The Alamouti STBC with generator matrix given by (6-191) provides diver-
sity order 2L when there are L receive antennas. Let hi, i = 1, 2, denote an L×1
vector, each component of which is the complex channel response from transmit
antenna i to a receive-antenna. After despreading, sampling, and an amplitude
normalization of each receive-antenna output, the observation at the end of the
first time interval is the L×1 vector r1 = h1d1 + h2d2 + na1, where each com-
ponent of the L×1 vector na1 is complex zero-mean Gaussian noise. Similarly,
assuming that the channel does not change during two time intervals, the obser-
vation at the end of the second time interval is r2 = −h1d

∗
2+h2d

∗
1+na2, where

each component of na2 is complex zero-mean Gaussian noise, and all compo-
nents of na1 and na2 are independent of each other. The combined observation
vector is given by (6-192) with the 2L× 1 vectors

yr =

[
r1
r2

]
, n =

[
na1

na2

]
(6-199)

and the 2L× 2 channel matrix

H =

[
h1 h2

h∗
2 −h∗

1

]
. (6-200)

The Gaussian noise vector n is zero-mean with the 2L×2L covariance matrix
E
[
nnH

]
= N0I, where I is the 2L × 2L identity matrix. The orthogonality

condition (6-194) is satisfied if

h =

[
h1

h2

]
, ||h||2 = ||h1||2 + ||h2||2. (6-201)

The receiver computes the 2 × 1 vector given by (6-195), and the maximum-
likelihood decision for dk is again given by (6-197). The components of (6-195)
may be expressed as

yk = dk

2L∑
i=1

α2
i + n1k, k = 1, 2 (6-202)

which has the same form as maximal-ratio combining and indicates diversity
order 2L and no intersymbol interference. Again the bit error probabilities for
DS-BPSK, DS-QPSK, and coherent DS-BOSK derived for MRC in the presence
of fading are applicable if γ̄ is replaced by γ̄/2 in the equations.
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The Alamouti decoding depends on receiver knowledge of the channel ma-
trix. Thus, separate pilot signals must be transmitted from each of the transmit
antennas. If they are transmitted simultaneously, they must not interfere with
each other in the receiver.

Rate-1 orthogonal STBCs for complex constellations exist only for two trans-
mit antennas. Orthogonal STBCs for more than two transmit antennas require
a code rate that is less than or equal to 3/4, which implies a reduced spectral ef-
ficiency. Nonorthogonal STBCs exist that can provide full diversity at full rate
but require more complex decoding than the separate decoding of real-valued
symbols that is possible with orthogonal STBCs.

The STBCs do not provide a coding gain. For that, the STBC code can be
concatenated with an error-correcting code that serves as an outer code, while
the STBC serves as the inner code.

A space-time trellis code (STTC) combines an extended trellis-coded mod-
ulation with transmit diversity to achieve both coding and diversity gain. En-
coded symbols that determine the trellis transitions are transmitted simulta-
neously from the transmit antennas. The cost is a decoding complexity that
increases rapidly with the number of antennas and exceeds that of concatenated
STBCs with comparable performance.

6.10 Channel Codes and Fading

If the symbols of a channel code are interleaved to a depth beyond the coherence
time of the channel, then the symbols fade independently. As a result, a channel
code provides a form of time diversity.

Consider a DS-BPSK system with an (n, k) linear block code, where n is
the number of code symbols and k is the number of information symbols. We
assume an AWGN channel and fading. If each of the fading amplitudes {αi} is
independent with the identical distribution, then the average energy-to-noise-
density ratio per binary code symbol is

γ̄s =
Es
N0

E[α2
1] =

rEb
N0

E[α2
1] = rγ̄ (binary symbols) (6-203)

where Eb is the information-bit energy, r is the code rate, and γ̄ is the average
bit-energy-to-noise-density ratio.

For a linear block code, the error probabilities may be calculated by assum-
ing that the all-zero codeword 0 was transmitted and its metric is U(0). The
two-codeword error probability is equal to the probability that U(1)−U(0) > 0.
This probability depends only on the d terms that differ, where d is the weight of
codeword 1. Thus, d has the same role as L in uncoded MRC, and hence, (6-117)
implies that the two-codeword error probability in the presence of Nakagami
fading with positive integer m is

P2(d) =
1

2
− 1

2

√
γ̄

m+ γ̄

md−1∑
i=0

Γ(i+ 1/2)mi

√
πi!(m+ γ̄)i

(binary symbols). (6-204)
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For Rayleigh fading,

P2(d) = Ps − (1− 2Ps)

d−1∑
i=1

(
2i− 1

i

)
[Ps(1− Ps)]

i (6-205)

where the symbol error probability is

Ps =
1

2

(
1−
√

γ̄s
1 + γ̄s

)
. (6-206)

The same equations are valid for both BPSK and QPSK because the latter can
be transmitted as two independent BPSK waveforms in phase quadrature.

Since (6-205) has the same form as (6-122), the diversity order for DS-BPSK
and selection combining is Do = dm. In analogy with (6-125), we obtain

P2(d) ≤
(
2d− 1

d

)
P d
s . (6-207)

Substituting this upper bound into (1-119), we obtain an upper bound on the
information-symbol error probability for soft-decision decoding of a block code:

Pis ≤
n∑

d=dm

d

n
Ad

(
2d− 1

d

)
P d
s

≈
(
2dm − 1

dm

)
dmAdm

n
P dm
s , γ̄s � 1 (6-208)

where Ad denotes the number of codewords with weight d, and dm is the mini-
mum Hamming distance between codewords. The final approximation reflects
the domination of the first term in the series as γ̄s → ∞.

Example 4. Figure 6.17 illustrates the upper bound on Pb = Pis for an
extended Golay (24,12) code without diversity combining and Pb for MRC with
L = 1, 4, 5, and 6 diversity branches and no coding. A Rayleigh-fading channel
and DS-BPSK are assumed. The extended Golay (24,12) code is tightly packed
with 12 information bits, r = 1/2, dm = 8, and t = 3. The values of Ad are
listed in Table 1.3. The figure indicates the benefits of coding particularly when
the desired Pb is low. At Pb = 10−3, the Golay (24,12) code with hard decisions
provides an 11 dB advantage in γ̄ over uncoded BPSK with no diversity (MRC,
L = 1); with soft decisions, the advantage becomes 16 dB. The advantage of
soft-decision decoding relative to hard-decision decoding increases to more than
10 dB at Pb = 10−7, a vast gain over the approximately 2 dB advantage of soft-
decision decoding for the AWGN channel. At Pb = 10−9, the Golay (24,12)
code with soft decisions outperforms uncoded MRC with L = 5 and is nearing
the performance of uncoded MRC with L = 6. However, since Adm

= A8 = 759,
the Golay (24,12) code with Do = dm = 8 does not perform as well as might
be anticipated even for Pb = 10−9. �

The linearity of binary convolutional codes ensures that the all-zero path
can be assumed to be the correct one when calculating the decoding error prob-
ability. Let l denote the Hamming distance of an incorrect path from the correct
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Figure 6.17: Upper bound on information-bit error probability for extended
Golay (24,12) code with soft and hard decisions, coherent DS-BPSK modula-
tion, and Rayleigh fading, and for maximal-ratio combining with L = 1, 4, 5,
and 6

all-zero path. If perfect symbol interleaving is assumed and BPSK is used, then
the probability of error in the comparison of two paths with an unmerged seg-
ment is P2(l) given by (6-205). As shown in Section 1.3, the probability of an
information-bit error in soft-decision decoding is upper-bounded by

Pb ≤
1

k

∞∑
l=df

B(l)P2(l)

≈
(
2df − 1

df

)
B (df )

k
P

df
s , γ̄s � 1 (6-209)

where B(l) is the number of information-bit errors over all paths with unmerged
segments at Hamming distance l, k is the number of information bits per trellis
branch, and df is the minimum free distance. Inequality (6-207) is used in the
second line, which indicates that the diversity order is Do = df .

If each encoder output bit is repeated nr times, then the minimum distance
of the convolutional code increases to nrdf without a change in the constraint
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length, but at the cost of a bandwidth expansion by the factor nr. From the
first line of (6-209), we infer that for the code with repeated bits,

Pb ≤
1

k

∞∑
l=df

B(l)P2(nrl) (6-210)

where B(l) refers to the original code. For ideal interleaving, the diversity order
is Do = nrdf if γ̄s � 1.

Example 5. Figure 6.18 illustrates Pb as a function of γ̄ for the Rayleigh-
fading channel and binary convolutional codes with different values of the con-
straint length K, the code rate r, and the number of repetitions nr. Rela-
tions (6-210) and (6-205) with k = 1 are used, and the {B(d)} are taken
from the listings for seven terms in Tables 1.4 and 1.5. The figure indicates
that an increase in the constraint length provides a much greater performance
improvement for the Rayleigh-fading channel than the increase does for the
AWGN channel. For a fixed constraint length, the rate-1/4 codes give a better
performance than the rate-1/2 codes with nr = 2, which require the same band-
width but are less complex to implement. The latter two codes give a better
performance than the rate-1/2 codes with no repetitions but require twice the
bandwidth. �

If parallel state transitions occur in the trellis for trellis-coded modulation,
then df = 1, which implies that the code provides no diversity protection
against fading. Thus, for fading communications, a conventional trellis code or
convolutional code with distinct transitions from each state to all other states
must be selected. Turbo, LDPC, and serially concatenated codes with iterative
decoding provide excellent performance in the presence of fading if the system
can accommodate the decoding delay and computational complexity.

Example 6. Even without iterative decoding, a serially concatenated code
with an outer Reed–Solomon code and an inner binary convolutional code (Sec-
tion 1.5) is effective against Rayleigh fading. An upper bound on Pb is given
by (1-154) and (1-153). Figure 6.19 depicts examples of the upper bound on
Pb as a function γ̄ for Rayleigh fading, coherent DS-BPSK, soft decisions, an
inner binary convolutional code with K = 7, r1 = 1/2, and k = 1, and various
Reed–Solomon (n, k) outer codes. If the spreading factor is maintained, the
required bandwidth is Bu/r, where Bu is the uncoded DS-BPSK bandwidth.
Thus, the codes of the figure require a bandwidth less than 3Bu. �

For coherent DS-BCSK, the analogy with (6-133) implies that the two-
codeword error probability in the presence of independent, identically dis-
tributed Nakagami fading of each codeword symbol is

P2(d) =
1

2
− 1

2

√
γ̄s

2m+ γ̄s

ml−1∑
i=0

Γ(i+ 1/2)(2m)i√
πi!(2m+ γ̄s)i

(6-211)

where γ̄s is given by (6-203). For Rayleigh fading, P2(l) is again given by (6-205),
and hence, the diversity order for coherent DS-BCSK and selection combining
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Figure 6.18: Upper bound on information-bit error probability for Rayleigh
fading, coherent DS-BPSK, and binary convolutional codes with various values
of (K, r) and nr

is Do = dm for block codes and Do = df for convolutional codes. The symbol
error rate is

Ps =
1

2

(
1−
√

γ̄s
2 + γ̄s

)
(coherent BCSK) (6-212)

which indicates a 3 dB disadvantage relative to DS-BPSK. At the cost of band-
width, the performance of coherent 4-ary DS-CSK is similar to that of coherent
DS-BPSK.

When spread-spectrum signals with noncoherent BCSK are used, the square-
law metric has the major advantage that it does not require any channel-state
information. A derivation similar to that of (6-174), the two-codeword er-
ror probability in the presence of independent, identically distributed Rayleigh
fading of each codeword symbol is again given by (6-205) provided that

Ps =
1

2 + γ̄s
(noncoherent BCSK). (6-213)

The diversity order is the same as for coherent DS-BCSK.
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Figure 6.19: Information-bit error probability for Rayleigh fading, coherent
DS-BPSK, soft decisions, and concatenated codes comprising an inner binary
convolutional code with K = 7 and r1 = 1/2, and various Reed–Solomon (n, k)
outer codes

A comparison of (6-206) and (6-213) indicates that for large values of rγ̄
and the same block code, DS-BPSK and DS-QPSK have an approximate 6 dB
advantage over noncoherent DS-BCSK in a fading environment. Thus, the
fading accentuates the advantage that exists for the AWGN channel. However,
DS-BPSK and noncoherent 16-ary DS-CSK provide approximately the same
performance.

6.11 Bit-Interleaved Coded Modulation

In a communication system with symbol-interleaved coded modulation, an en-
coder generates code bits that are grouped into q−ary code symbols that are
interleaved over a depth exceeding the channel coherence time to provide time
diversity. The q−ary code symbols are then applied to a q−ary modulator that
provides spectral efficiency. A more pragmatic approach is to interleave the
code bits over an average depth exceeding the channel coherence time prior
to forming the q−ary code symbols and performing q−ary modulation. The
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Figure 6.20: System with BICM or BICM-ID. BI = bit interleaver; BD = bit
deinterleaver. Dashed lines are for BICM-ID

resulting coded modulation, which is known as bit-interleaved coded modulation
(BICM) [13], increases time diversity, thereby providing improved performance
over a fading channel. BICM has become a standard method for transmitting
over fading channels, forming the basis of most cellular, satellite, and wireless
networking systems.

The transmitter of a system with BICM is illustrated in Figure 6.20. En-
coded bits representing N symbols are applied to a pseudorandom bit inter-
leaver. The interleaver output bits are placed into a m × N matrix D with
columns di of m = log2 q bits. Each di corresponds to a point in the constella-
tion labeling map used to generate the modulated signal that is transmitted.

Although true maximum-likelihood decoding of BICM requires joint demod-
ulation and decoding, the BICM demodulator separately generates bit metrics
that are applied to the decoder. The receiver of a system with BICM is illus-
trated in Figure 6.20. The received signal passes through a demodulator with
q matched filters. The output of each matched filter is sampled at the symbol
rate to produce a 1×N vector ỹ of complex numbers. These complex samples
are used to compute an m ×N matrix Z of demodulator bit LLRs. After the
deinterleaving of Z, the ordered bit LLRs provide a priori information to the
decoder, which generates the final bit decisions. The demodulator bit LLRs
are given by (1-217), where f(y | q̃) depends on the modulation and the {vi}
are equal to zero. For the AWGN channel and coherent q-ary PAM, coher-
ent orthogonal modulation, and noncoherent orthogonal modulation, we apply
(1-219), (1-220), and (1-221), respectively.

The performance of a channel code over the AWGN channel depends on
the minimum Euclidean distance, as exemplified by the metric of (1-34). The
performance of a channel code over a fading channel depends on the minimum
Hamming distance between two codewords. For binary modulations, such as
BPSK, the Euclidean distance increases monotonically with the Hamming dis-
tance. For nonbinary modulations, the increase in one of these distances often
decreases the other one. The reduced minimum Euclidean distance due to the
bit interleaving degrades the performance of BICM over the AWGN channel.
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Bit-interleaved coded modulation with iterative decoding and demodulation
(BICM-ID) uses BICM, bit LLRs generated by both the demodulator and de-
coder, and iterative demodulation and decoding [114]. The transmitter of a
system with BICM-ID is the same as that for BICM. In the receiver, the m×N
matrix Z of bit LLRs is computed, deinterleaved, and then provided as a pri-
ori information to the decoder, which includes the dashed lines in Figure 6.20.
The bit metrics computed by the decoder are interleaved and then fed back to
the demodulator as a priori information in the form of an m × N matrix V
of decoder LLRs, which provides the {vi} of (1-217) in the received-sequence
order. When the iterative process terminates, the decoder provides the final bit
decisions.

BICM-ID compensates for the decrease in the minimum Euclidean distance
and introduces flexibility into communication systems using nonbinary alpha-
bets over an AWGN channel with a variable level of fading. The use of BICM-ID
maintains the advantage of BICM over fading channels while minimizing any
performance degradation experienced by BICM over the AWGN channel. Com-
pared with trellis-coded modulation, BICM-ID has a small free Euclidean dis-
tance, but the decoder feedback exploits the time diversity and greatly mitigates
this disadvantage. As a result, BICM-ID with BPSK or nonbinary modulation
and convolutional codes outperforms systems with trellis-coded modulation or
turbo trellis-coded modulation of similar computational complexity over both
the AWGN and Rayleigh-fading channels [51]. The disadvantage of BICM-ID
relative to BICM is the much greater computational complexity of BICM-ID.

The constellation labeling has a major impact on both BICM and BICM-
ID. A Gray labeling (Section 1.1) is not always possible. With orthogonal
modulation, Gray labeling does not exist since all neighbors are equidistant.
When a Gray labeling exists, it provides the optimal performance for BICM,
but usually not for BICM-ID [115].

Since small alphabets are used in BPSK and QPSK modulations, BICM and
BICM-ID add little to coherent direct-sequence systems. In contrast, frequency-
hopping systems can exploit large alphabets and noncoherent OSK modulation,
and hence, BICM and BICM-ID are often effective.

Example 7. Figure 6.21 compares the bit error probabilities of noncoherent
systems using SICM, BICM, and BICM-ID with 4-ary FH-OSK and the turbo
codes of Section 1.6 over the Rayleigh channel, whereas Figure 6.22 makes
the same comparisons for communications over the AWGN channel. In both
figures, it is observed that BICM provides a small improvement relative to
SICM, but BICM-ID provides a more substantial improvement. As the alphabet
size increases, the performance improvements due to BICM or BICM-ID become
more pronounced, as illustrated for 16-ary FH-OSK in Figure 6.23. �

6.12 Rake Receiver

If the multipath components accompanying a direct-sequence signal are delayed
by more than one chip, then the approximate independence of the chips ensures
that the multipath interference is suppressed by at least the spreading factor.
However, since multipath signals carry information, they are a potential re-
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Figure 6.21: Performance of turbo code with noncoherent 4-ary FH-OSK over
the Rayleigh channel for SICM, BICM, and BICM-ID

source to be exploited rather than merely rejected. A rake receiver provides
path diversity by coherently combining the resolvable multipath components
present during frequency-selective fading , which occurs when the chip rate of
the spreading sequence exceeds the coherence bandwidth.

An idealized sketch of the output of a baseband matched filter that is
matched to a symbol of duration Ts and receives three multipath components
of the signal to which it is matched is shown in Figure 6.24. The duration of
the response of a matched filter to a multipath component is on the order of
the duration of the mainlobe of the autocorrelation function, which is on the
order of the chip duration Tc. Thus, three multipath components are resolv-
able if their relative delays are greater than Tc, as depicted in the figure. A
necessary condition for at least two resolvable multipath components is that
Tc is less than the multipath delay spread Td. Since the signal bandwidth is
W ≈ 1/Tc, (6-66) implies that W > Bcoh is required. As observed in the figure,
the required condition for insignificant intersymbol interference at the symbol
sampling times is

Td + Tc < Ts. (6-214)
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Figure 6.22: Performance of turbo code with noncoherent 4-ary FH-OSK over
the AWGN channel for SICM, BICM, and BICM-ID

If this condition is not satisfied, then rake demodulation becomes impractical,
and another type of system is needed (Sections 6.14 and 6.15).

Consider a multipath channel with frequency-selective fading slow enough
that its time variations are negligible over an observation interval. To harness
the energy in all the multipath components, a direct-sequence receiver should
decide which symbol was transmitted among M spreading waveforms, s1(t),
s2(t), . . . , sM (t), only after processing all the received multipath components
of the signal. The kth spreading waveform is

sk (t) =
G−1∑
i=1

pk,iψ (t− iTc) , 0 ≤ t ≤ Ts (6-215)

where G is the spreading factor, and {pk,i} is the binary spreading sequence.
The symbol energy for all the waveforms is

∫ Ts

0

|sk(t)|2 dt = 1, k = 1, 2, . . . ,M. (6-216)

If there are L resolvable multipath components, τi is the relative delay of the ith
component, and αi is its fading amplitude, then the received signal for symbol
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Figure 6.24: Response of matched filter to input with three resolvable multipath
components

k is

rk(t) = Re

[
L∑

i=1

√
2Es,iαisk(t− τi)e

j2πfc(t−τi)+φi

]
+ n(t)

0 ≤ t ≤ Ts + Td, 1 ≤ k ≤ M (6-217)
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where n(t) is the zero-mean, white Gaussian noise with PSD equal to N0/2, Es,i
is the multipath-component energy when αi = 1, and φi is the ith phase offset.

The received signal for a symbol can be expressed in the form

r(t) = Re
[
v(t)ej2πfct

]
+ n(t), 0 ≤ t ≤ Ts + Td .

When sl (t) is transmitted, v (t) = vl (t) , where

vl(t) =

L∑
i=1

hisl(t− τi), l = 1, 2, . . . ,M, 0 ≤ t ≤ Ts + Td (6-218)

and hi is the complex channel coefficient

hi =
√

2Es,iαie
−j2πfcτi+φi (6-219)

that represents the attenuation and phase shift of multipath component i. The
receiver uses a separate baseband matched filter or correlator for each possible
desired signal including its multipath components. Thus, if sk(t) is the kth
symbol waveform, k = 1, 2, . . . ,M , then the kth matched filter is matched to
the signal vk(t).

A frequency translation or downconversion of r(t) to baseband provides

v (t) = r (t) exp (−j2πfct) (6-220)

as the input to the matched filters. Matched filter k produces the symbol metric

U (k) = Re

(
L∑

i=1

h∗
i

∫ Ts+τi

τi

v(t)s∗k(t− τi)dt.

)
, 1 ≤ k ≤ M (6-221)

where the real part is taken to eliminate noise that is orthogonal to the desired
signal. A receiver implementation based on this equation would require M
delay lines and M matched filters.

A practical receiver implementation that requires only a single delay line
and M matched filters is derived by changing variables in (6-221) with the
result that the kth symbol metric is

U (k) = Re

(
L∑

i=1

h∗
i

∫ Ts

0

v(t+ τi)s
∗
k(t)dt

)
, 1 ≤ k ≤ M. (6-222)

This equation indicates that U (k) is the weighted sum of correlator outputs,
each of which computes the correlation between v(t+ τi) and sk(t). Each cor-
relator is implemented by a filter matched to sk(t) that has its output sampled.

The basic architecture of a rake receiver that implements (6-222) is displayed
in Figure 6.25. The received signal enters a delay line, which may be imple-
mented as a shift register with memory stages (Section 2.2) or as a SAW delay
line (Section 2.8). The timing synchronization is established by processing the
principal multipath component, which is the first component to arrive at the
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Figure 6.25: Rake receiver

receiver. Ideally, the delay-line outputs should correspond to the delays of the
multipath components, but these delays are difficult to estimate and are con-
stantly changing. Therefore, the delay-line outputs are separated by Tc seconds,
and each output enters a separate finger. Each finger independently detects a
single potential multipath component. The finger outputs are combined and
symbol decisions are generated.

If Td is the delay spread, the maximum number of resolvable multipath
components, and hence the maximum number of fingers, is

Lmax =

⌊
Td

Tc

⌋
+ 1. (6-223)

The combiner outputs are given by (6-222) with

τi = (i− 1)Tc, 1 ≤ i ≤ L− 1 (6-224)

and some of the {hi} may be equal to zero.
Path crosstalk is interference in the reception of one multipath component

caused by another multipath component. For the path crosstalk to be negligible
when sk(t) is a spreading waveform with chip duration Tc, it is necessary that

∫ Ts

0

sk[t− (i− 1)Tc]sk[t− (l − 1)Tc]dt � Es

i, l = 1, 2, . . . , L− 1, i �= l (6-225)

which is satisfied if the spreading sequences have small autocorrelations for
relative delays greater than or equal to a chip duration.
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DS-BPSK

In a DS-BPSK system, only a single real-valued symbol waveform s1(t) and its
associated matched filter are needed. Let d =±1 represent the transmitted bit.
Then the received signal for a single symbol is

v(t) =

L∑
i=1

hids1[t− (i− 1)Tc], 0 ≤ t ≤ Ts + Td. (6-226)

A finger for this signal is shown in Figure 6.26.
We assume that s1 (t) has a spectrum confined to |f | < fc and negligible

path crosstalk, which implies that

∫ Ts

0

v1(t+ τi)s1(t)dt =
1

2
hi + ni, i = 1, 2, ..., L (6-227)

where the zero-mean Gaussian noise is

ni =

∫ Ts

0

n(t+ τi)s1(t) exp(−j2πfct)dt. (6-228)

Using (6-227) and (6-222), and assuming that the {hi} are accurately estimated,
we find that the symbol metric is

U (d) =
1

2

L∑
i=1

|hi|2 + n0

= d
L∑

i=1

Eb,iα2
i + n0 (6-229)
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where Eb,i is the average energy per bit in multipath component i when there
is no fading, and the zero-mean Gaussian noise is

n0 = Re

(
L∑

i=1

h∗
ini

)
. (6-230)

The noise has variance

var (n0) =
N0

2

L∑
i=1

Eb,iα2
i (6-231)

which is calculated by the methods of Section 1.1. Equation (6-229) indicates
that the ideal rake receiver with no path crosstalk uses MRC to produce a
symbol metric.

If hard decisions are made on the received bits, then the bit decision is that
d = +1 if U > 0. Because of the symmetry, the bit error probability is equal
to the conditional bit error probability given that d = +1, which implies that a
decision error is made if U < 0. Since the noise is zero-mean Gaussian, (6-111)
is applicable, and the conditional bit error probability is

Pb|α(γt) = Q(
√
2γt) (6-232)

γt =

L∑
i=1

γi, γi =
Eb,i
N0

α2
i . (6-233)

For a rake receiver, each of the {αi} is associated with a different multipath
component that fades independently. If each αi has a Rayleigh distribution,
then each γi has the exponential density (Appendix E.4)

fγi
(x) =

1

γ̄i
exp

(
− x

γ̄i

)
u(x), i = 1, 2, . . . , L (6-234)

where γ̄i = E [γi]. If each multipath component fades independently so that the
{γi} are statistically independent, then γt is the sum of independent, exponen-
tially distributed random variables. However, (6-112) cannot be used because
the multipath components have distinct amplitudes, and hence, γ̄r �= γ̄s when
r �= s.

The Laplace transform of (6-234) is

Li(s) =
1

1 + sγ̄i
, s ≥ 0. (6-235)

Since γt is the sum of independent random variables, theorem 3 of Appendix B.3
implies that its Laplace transform is

Lt(s) =

L∏
k=1

1

1 + sγ̄k
, s ≥ 0. (6-236)
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Expanding the right-hand side of this equation in a partial-fraction expansion
gives

L∏
k=1

1

1 + sγ̄k
=

L∑
k=1

Ak

1 + sγk

. (6-237)

The coefficient Ai is determined by multiplying both sides of this identity by
1 + sγi and then setting s = −1/γi . We obtain

Ai =

⎧⎪⎨
⎪⎩

L∏
k=1
k �=i

γ̄i

γ̄i−γ̄k
, L ≥ 2

1 , L = 1

(6-238)

where γ̄r �= γ̄s when r �= s. Identifying the inverse Laplace transform of each
term, we obtain the density of γt :

ft(x) =

L∑
i=1

Ai

γ̄i
exp

(
− x

γ̄i

)
u(x). (6-239)

The bit error probability for Rayleigh fading is determined by averaging the
conditional bit error probability Pb|γ(γt) given by (6-232) over the distribution
function given by (6-239). An integration similar to that leading to (6-117)
yields

Pb(L) =
1

2

L∑
i=1

Ai

(
1−
√

γ̄i
1 + γ̄i

)
(Rayleigh, BPSK). (6-240)

A channel-state estimator must estimate the complex fading coefficients
{h∗

i } and delays {τi} of the multipath components that are required by the
rake receiver. The joint maximum-likelihood estimation of these amplitudes
and delays is computationally prohibitive. Therefore, each complex fading coef-
ficient is estimated in a separate finger, one of which is illustrated in Figure 6.27.
An unmodulated direct-sequence pilot signal with a distinct spreading sequence
may be transmitted to facilitate the channel-state estimation. Equation (6-227)
indicates that a suitable estimate of h∗

i is provided by finger estimators that
compute

ĥ∗
i = 2

[∫ Ts

0

v1(t+ τi)s
∗
1(t)dt

]∗
, i = 1, 2, ..., L. (6-241)

Channel-state estimates for Rayleigh fading must be updated at a rate exceeding
the fading rate of (6-61).

DS-DPSK

The rake receiver for DS-DPSK applies the delay-line outputs to fingers and
combiners that have the form of Figure 6.7. The advantage of DS-DPSK is
that its rake receiver does not require a channel estimator. The disadvantage is
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the increased impact of path crosstalk, which is only small if the relative path
delays exceed 2Tc.

Equations (6-152) and (6-153) give the metric for the AWGN channel. We
assume independent Rayleigh fading of the multipath components and no path
crosstalk. By applying (6-156), we find that the density of the ith term of U1 (k)
is

f̃i (x) =
2

N0 (1 + 2γ̄i)
exp

[
− 2x

N0 (1 + 2γ̄i)
x

]
u(x) (6-242)

Application of the Laplace transform analysis indicates that the density for
U1 (k) is

f1 (x) =
L∑

i=1

2Ci

N0 (1 + 2γ̄i)
exp

[
− 2x

N0(1 + 2γ̄i)

]
u(x) (6-243)

where

Ci =

⎧⎨
⎩

∏
k=1,k �=i

1+2γ̄i

2(γ̄i−γ̄k)
, L ≥ 2

L = 1.
(6-244)

1,
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The density for U2 (k) is given by (6-157). A calculation similar to that leading
to the first line of (6-159) and then a summation give

Pb (L) =

∫ ∞

0

f1 (x)

∫ ∞

x

f2 (y) dydx

=

L∑
i=1

Ci

1 + 2γ̄i

L−1∑
l=0

(
1 + 2γ̄i
2 + 2γ̄i

)l+1

=

L∑
i=1

Ci

[
1−
(
1 + 2γ̄i
2 + 2γ̄i

)L
]
. (6-245)

Noncoherent DS-BCSK

The rake receiver for the noncoherent q−ary DS-CSK applies the delay-line out-
puts to fingers and combiners that have the form of Figure 6.12 with v (t+ iTc) ,
0 ≤ i ≤ L− 1, as the input signals.

Consider the rake receiver for DS-BCSK over the AWGN channel. Assuming
independent Rayleigh fading in each multipath component, the two symbol met-
rics are given by (6-168) and (6-169). The density for U (2) is given by (6-171).
The density f1 (x) for U (1) must account for the differing fading amplitudes of
the multipath components. From (6-171), the density of the ith term of U (1)
is

f̃i(x) =
1

N0 (1 + γ̄i)
exp

(
− x

N0 (1 + γ̄i)

)
u (x) . (6-246)

Application of the Laplace transform analysis leading to (6-171) indicates that
the density of U (1) is

f1 (x) =

L∑
i=1

Di

N0(1 + γ̄i)
exp

[
− x

N0(1 + γ̄i)

]
u(x) (6-247)

where

Di =

⎧⎪⎨
⎪⎩

L∏
k=1
k �=i

1+γ̄i

γ̄i−γ̄k
, L ≥ 2

1, L = 1

(6-248)

and γ̄r �= γ̄s when r �= s.
If hard decisions are made on the received binary symbols, an erroneous

decision is made if U (2) > U (1), and hence, the bit error probability is

Pb(L) =
L∑

i=1

Di

∫ ∞

0

exp

[
− x

N0(1 + γ̄i)

] ∫ ∞

x

yL−1 exp
(
− y

N0

)

(N0)L(L− 1)!
dydx. (6-249)

Using (H-5) and (H-8) of Appendix H.1 to evaluate the inner integral, changing
the remaining integration variable, applying (H-1), and simplifying yield the
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symbol error probability for two orthogonal signals and a rake receiver with
postdetection noncoherent combining:

Pb(L) =

L∑
i=1

Bi

[
1−
(
1 + γ̄i
2 + γ̄i

)L
]

(Rayleigh, orthogonal) (6-250)

where

Bi =

⎧⎪⎨
⎪⎩

L∏
k=1
k �=i

1+γ̄i

γ̄i−γ̄k
, L ≥ 2

1 , L = 1.

(6-251)

Evaluations of (6-250) and (6-245) indicate that noncoherent DS-BCSK has a
power disadvantage of more than 3 dB compared with DS-DPSK.

For dual rake combining with L = 2 and two orthogonal signals, (6-250)
reduces to

Pb(2) =
8 + 5γ̄1 + 5γ̄2 + 3γ̄1γ̄2
(2 + γ̄1)2(2 + γ̄2)2

. (6-252)

If γ̄2 = 0, then

Pb(2) =
2 + 5

4 γ̄1

(2 + γ̄1)2
≥ 1

2 + γ̄1
= Pb(1). (6-253)

This result illustrates the performance degradation that results when a rake
combiner has an input that provides no desired-signal component. In the ab-
sence of a desired-signal component, this input contributes only noise to the
combiner. For large values of γ̄1, the extraneous noise causes a loss of almost
1 dB.

When MRC and coherent BPSK are used and γ̄2 = 0, we obtain Pb(2) =
Pb(1)! However, this exaggerated result is obtained because we have assumed

that ĥ2 = h2, even when the latter is zero.

Effects of Multipath Components

When a practical channel estimator is used, only a few multipath components
are likely to have a sufficient signal-to-noise ratio to be useful in the rake com-
bining. Typically, the principal component and three significant multipath com-
ponents are available in mobile networks. To assess the potential performance
of the rake receiver, we assume that each multipath component has average
energy-to-noise-density ratio γ̄i = E [γi] and that L = 4 components are re-
ceived and processed. The three minor multipath components have relative
energy-to-noise-density ratios specified by the multipath intensity vector

M =

(
γ̄2
γ̄1

,
γ̄3
γ̄1

,
γ̄4
γ̄1

)
. (6-254)

Example 8. Figure 6.28 plots the bit error probability Pb(4) for coherent
BPSK, an ideal rake receiver, and the AWGN channel as a function of γ̄1,
which is given by (6-240). The vector M = (1,0,0) represents the hypothetical
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Figure 6.28: Bit error probability for coherent DS-BPSK and rake receivers
with L = 4 multipath components and different multipath intensity vectors

environment in which a single additional multipath component has the same
power as the main component. Expressing the components in decibels, M =
(−4,−8,−12) dB represents the minor multipath intensities typical of a rural
environment, and M = (−2,−3,−6) dB represents a typical urban environment.
The figure indicates that despite 2.1 dB less power in the minor components, the
rural environment generally provides a lower symbol error probability than the
hypothetical one. The superior performance in the urban environment relative
to the rural environment is primarily due to its 3.5 dB additional power in the
minor multipath components.

This figure and other numerical data establish two basic features of single-
carrier direct-sequence systems with ideal rake receivers that experience negli-
gible path crosstalk:

1. System performance improves as the total energy in the minor multipath
components increases. The underlying reason is that the rake receiver of
the single-carrier system harnesses energy that would otherwise be un-
available.
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2. When the total energy in the minor multipath components is fixed, the
system performance improves as the number of resolved multipath compo-
nents L increases and as the energy becomes uniformly distributed among
these components. �

An increase in the number of resolved components L is potentially benefi-
cial if it is caused by natural changes in the physical environment that generate
additional multipath components. However, an increase in L due to an increase
in the bandwidth W is not always beneficial [38]. Although new components
provide additional diversity and may exhibit the more favorable Ricean fading
rather than Rayleigh fading, the average power per multipath component de-
creases because some composite components fragment into more numerous but
weaker components. Hence, the estimation of the channel parameters becomes
more difficult, and the fading of some multipath components may be highly
correlated rather than independent.

The number of fingers in an ideal rake receiver equals the number of signifi-
cant resolvable multipath components, which is constantly changing in a mobile
communications receiver. Rather than attempting to implement all the fingers
that may sometimes be desirable, a more practical alternative is to implement
a fixed number of fingers independent of the number of multipath components.
Generalized selection diversity entails selecting the Lc strongest resolvable com-
ponents among the L resolvable ones and then applying MRC or noncoherent
combining of these Lc components, thereby discarding the L− Lc components
with the lowest SNRs. Analysis [88] indicates that diminishing returns are ob-
tained as Lc increases, but for a fixed value of Lc, the performance improves as
L increases provided that the strongest components can be isolated.

If an adaptive array produces a directional beam to reject interference or
enhance the desired signal, it also reduces the delay spread of the significant
multipath components of the desired signal because components arriving from
angles outside the beam are greatly attenuated. As a result, the potential
benefit of a rake receiver diminishes. Another procedure is to assign a separate
set of adaptive weights to each significant multipath component. Consequently,
the adaptive array can form separate array patterns, each of which enhances
a particular multipath component while nulling other components. The set of
enhanced components are then applied to the rake receiver [98].

6.13 Frequency-Hopping Diversity

Rake receivers are not suitable for frequency-hopping systems because of the
required readjustment to a new channel impulse response each time the carrier-
frequency hops. Frequency-hopping systems can potentially exploit diversity
through the inherent frequency-selective fading ensured by the periodic fre-
quency changes.

Consider a frequency-hopping system that transmits each code symbol in
two distinct dwell intervals and undergoes independent Nakagami fading with
the same parameter values in each of these dwell intervals. Let g1 and g2 denote
random variables equal to the power gains at the receiver during the first and
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second hop dwell intervals, respectively. From (6-36), it follows that these power
gains have gamma densities given by

fgi(x) =
1

Γ(m)

(
m

Ω

)m

xm−1 exp
(
−m

Ω
x
)
u(x), m ≥ 1

2
, i = 1, 2 (6-255)

where the average power gain during each dwell interval is E [gi] = Ω. The
average received power gain of the code symbol over the two dwell intervals is
gs = (g1 + g2) /2. If the fading is independent during each of the dwell intervals,
then the results of Appendix E.6 indicate that the density of gs is

fgs(x) =
1

Γ(2m)

(
2m

Ω

)2m

x2m−1 exp

(
−2m

Ω
x

)
u(x), m ≥ 1

2
(6-256)

which is a gamma density with E [gs] = Ω but a different variance. Equa-
tion (6-37) implies that

var (gs)

var (gi)
=

1

2
, m ≥ 1

2
(6-257)

which indicates that the power variation due to the fading is reduced by the
frequency hopping.

Interleaving of the code symbols over many dwell intervals provides a large
level of diversity to frequency-hopping systems because the hops often entail
large separations in carrier frequency. A potential diversity gain occurs with
every hop if B > Bcoh, where B is the bandwidth of a frequency channel,
and Bcoh is the coherence bandwidth of a fading channel. Frequency-hopping
systems usually do not exploit the Doppler spread of the channel because any
additional diversity due to time-selective fading is insignificant.

Let n denote the number of code symbols that are interleaved, and let M
denote the number of frequency channels in the hopset. For each of these
symbols to fade independently with a high probability, n distinct frequency
channels and n ≤ M are necessary. The processing delay or system latency is
at least (n− 1)Th +Ts. If Tdel is the maximum tolerable processing delay, then
Tdel ≥ (n− 1)Th + Ts is necessary. Combining these inequalities, we find that

n ≤ min

(
M, 1 +

Tdel − Ts

Th

)
(6-258)

is required for the full potential benefit of the interleaving.

6.14 Multicarrier Direct-Sequence Systems

When the data rate is sufficiently high that (6-214) is not satisfied, then the rake
receiver is impractical and multipath interference degrades the performance. A
multicarrier direct-sequence system provides a means for preventing multipath
interference and even capturing the energy that would be captured by a rake
receiver.
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A multicarrier direct-sequence system with subcarrier spreading partitions
the bandwidth into subchannels, each of which is used by a separate direct-
sequence signal with a distinct subcarrier frequency. Each subchannel provides
low-complexity equalization that prevents significant multipath interference. A
multicarrier system has the potential ability to avoid transmissions in subchan-
nels with strong interference or where the multicarrier signal might interfere
with other signals. This feature has a counterpart in frequency-hopping sys-
tems. A typical multicarrier system divides the signal power among L subcar-
riers. Each subcarrier signal has a sufficiently small bandwidth to experience
no significant frequency-selective fading. If the chip waveforms are rectangular,
then the subcarrier frequencies can be selected to ensure L orthogonal subcarrier
signals, as shown in Section 3.2. The orthogonality prevents self-interference
among the subcarrier signals in the absence of Doppler shifts.

One type of multicarrier direct-sequence system partitions the data sym-
bols among the subcarriers, as illustrated in Figure 6.29. The transmitter uses
the serial-to-parallel (S/P) converter to convert a stream of code or data sym-
bols d(t) into L parallel substreams of different data symbols, each of which
is multiplied by the spreading waveform p(t) and one of the subcarriers. Both
the chip rate and the data rate for each subchannel are reduced by the same
factor L, and hence, the spreading factor provided by each subcarrier remains
unchanged relative to the single-carrier system with the same total bandwidth.
Each demodulator in the receiver uses the despreading to suppress interference
in the spectral vicinity of its subcarrier. The parallel-to-serial (P/S) converter
restores the stream of data symbols. The cost of this efficient multiplexing with
low intersymbol and multipath interference is the large amount of hardware
and the high peak-to-average-power ratio for the transmitted signal.

Another type of multicarrier direct-sequence system provides frequency di-
versity instead of a high spreading factor for each subchannel. The transmitter
has the form of Figure 6.30a, and the product d(t)p(t) simultaneously mod-
ulates L subcarriers. The chip rate and hence the spreading factor for each
subcarrier of this system are reduced by the factor L relative to a single-carrier
direct-sequence system. The receiver has L parallel demodulators, one for each
subcarrier, and has the form of Figure 6.30b. Each demodulator provides de-
spreading to suppress interference, and the demodulator outputs provide the
inputs to a maximal-ratio combiner (MRC). With appropriate feedback, the
transmitter can omit a subcarrier associated with an interfered subchannel and
redistribute the saved power among the remaining subcarriers.

Figure 6.31 diagrams the acquisition system for the timing of a multicar-
rier direct-sequence system. During acquisition, each subcarrier signal carries
the same acquisition sequence. In each branch, the received subcarrier signal
is downconverted and then applied to an acquisition correlator (Section 4.4).
The outputs of all the correlators are jointly processed by either an equal-gain
combiner (EGC) or a selection combiner (SC) to produce the decision variable
applied to a threshold detector. The output of the threshold detector indicates
when acquisition of the spreading sequence has been achieved. An analysis [123]
indicates that the acquisition performance of this system is superior to that of
a single-carrier direct-sequence system with the identical bandwidth.
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Figure 6.29: Multicarrier direct-sequence system for data multiplexing: (a)
transmitter, and (b) receiver
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Figure 6.30: Multicarrier direct-sequence system for frequency diversity: (a)
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6.15 Single-Channel CDMA Systems

A single-channel direct-sequence code-division multiple-access (SC-DS-CDMA)
system is a direct-sequence system that adapts some aspects of the efficient
digital implementation of orthogonal frequency-division multiplexing (OFDM)
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but differs from OFDM [7, 32] in that a substantial gain from frequency diversity
is provided at the cost of coding gain and throughput. An SC-DS-CDMA
system can transmit the symbol streams of separate users. More general code-
division multiple-access (CDMA) systems that accommodate multiple-access
interference from disparate sources are presented in Chapter 7.

The principal components of the transmitter of an SC-DS-CDMA system
are depicted in Figure 6.32. If there are N users, each of the N data symbols is
modulated by a separate orthogonal spreading sequence with spreading factor
G. Users that require higher data rates may modulate more than one spread-
ing sequence. We consider a synchronous SC-DS-CDMA system for downlink
communications over the AWGN channel with frequency-selective fading. All
data symbols and spreading-sequence chips are synchronized in time.

For a block of N simultaneously transmitted data symbols, the input to the
serial-to-parallel converter (S/P) is the composite sequence

si =

N−1∑
n=0

andnpn,i, i = 0, 1, . . . , G− 1 (6-259)

where dn is the nth PAM data symbol, and pn,i is chip i of the G chips of the
spreading sequence of symbol n. In the SC-DS-CDMA transmitter, each symbol
dn is multiplied by an amplitude factor an. The real-valued factor an ≥ 0 is
not necessarily the same for all symbols because they may be transmitted with
unequal power levels. The spreading sequences take the values

pn,i = ±1, i = 0, 1, . . . , G− 1, n = 0, 1, . . . , N − 1. (6-260)

The vector pn that represents the spreading sequence of symbol n and the
vector d that represents the data symbols are

pn = [pn,0 pn,1 . . . pn,G−1]
T , d = [d0 d1 . . . dN−1]

T . (6-261)
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Figure 6.32: Principal components of the transmitter of an SC-DS-CDMA sys-
tem. DAC = digital-to-analog converter

The G parallel outputs of the S/P converter may be represented by the vector

Pc =

N−1∑
n=0

pncn (6-262)

where column n of the G × N matrix P is pn, and the N × 1 amplified data
vector is

c = [a0d0 a1d1 . . . aN−1dN−1]
T . (6-263)

Orthogonality of the spreading sequences and (6-260) imply that

PTP = GI (6-264)

where I is the N ×N identity matrix.
A G-point discrete Fourier transform of a G × 1 vector z of discrete-time

samples is Fz, where F is the G×G matrix

F =
1√
G

⎡
⎢⎢⎢⎣

1 1 1 · · · 1
1 V V 2 · · · V G−1

...
...

...
...

...

1 V G−1 V 2(G−1) · · · V (G−1)2

⎤
⎥⎥⎥⎦ , V = exp(−j2π/G)

(6-265)
and j =

√
−1. If T is the time between samples, then component i of Fz

approximates the continuous-time Fourier transform at frequency i/T of the
continuous-time signal from which z is obtained. An evaluation using the sums
of finite geometric series and the periodicity of the complex exponentials verifies
that

FHF = FFH = I (6-266)



398 CHAPTER 6. FADING AND DIVERSITY

m chips

G chips

Cyclic prefix

Figure 6.33: Appending the cyclic prefix prior to the data stream

which indicates that F is a unitary matrix (Appendix G), and hence, F−1 = FH .
Thus, FH represents the G-point inverse discrete Fourier transform.

The G serial-to-parallel converter outputs are applied to an inverse fast
Fourier transformer (IFFT), which implements an inverse discrete Fourier trans-
form of its parallel inputs [71]. The G parallel outputs of the IFFT are repre-
sented as components of the vector

x = FHPc. (6-267)

The parallel-to-serial converter (P/S) converts the components of x into a serial
stream at the original chip rate 1/Tc, where Tc = Ts/G is the chip duration of
the composite sequence. The vector x represents one block of data.

A guard interval of duration mTc is inserted between blocks to prevent
intersymbol interference between symbols in adjacent blocks if the multipath
delay spread is less than mTc. The guard interval is implemented by appending
an m-chip cyclic prefix with m ≤ G − 1 prior to the chips of each block, as
illustrated in Figure 6.33. After the insertion of the cyclic prefix, the resultant
sequence with m + G chips associated with one set of N aligned symbols is
x−m, x−m+1, . . . , xG−1, where

xi = xk, k = i modulo-G, −m ≤ i ≤ −1

xi = xi, 0 ≤ i ≤ G− 1. (6-268)

This sequence is applied to a digital-to-analog converter (DAC) and then an
upconverter for transmission, as shown in Figure 6.32. The transmitted signal
uses a single-carrier frequency and has in-phase and quadrature components.

Since appending of the cyclic prefix causes each symbol to be associated
with m+G transmitted chips, the transmitted energy and received energy per
symbol are reduced by the prefix factor

ζ =
G

m+G
(6-269)

which indicates that G � m is needed in a practical system.
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Figure 6.34: Principal components of the SC-DS-CDMA receiver. CP = cyclic
prefix; MF = matched filter

For the AWGN channel, the received signal for N symbols can be expressed
in the form

r(t) =

G−1∑
i=−m

m∑
l=0

Re [hlxiψ(t− iTc − lTc) exp (j2πfct)] , −mTc ≤ t ≤ (G+1)Tc

(6-270)
where n (t) is white Gaussian noise, hl is the channel coefficient associated with
the lth multipath component, and ψ (t) is the chip waveform.

Let
h = [h0 . . . hm . . . 0]

T
(6-271)

denote the G× 1 vector of channel coefficients, at least G−m− 1 of which are
set to zero because the associated multipath component is too weak to affect
the detection of a chip. The coefficients are normalized so that

‖ h ‖2= 1. (6-272)

This normalization is compensated by adjusting the value of the {an}.
The received signal is downconverted and applied to a filter matched to the

chip waveform. Calculations similar to those in Section 1.1 indicate that the
sampled matched-filter outputs are

y1i =
m∑
l=0

xi−l + ni, −m ≤ i ≤ G− 1 (6-273)

where ni is sampled noise. Figure 6.34 depicts the principal components of the
receiver.

The m-sample cyclic prefix of the matched-filter output samples is discarded
because these samples are corrupted by the prior blocks. The remaining G
samples of a block are represented by the G-dimensional received vector

y = [yG−1 yG−2 . . . y0]
T = H1x+ n (6-274)
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where H1 is the G× (G+m) matrix

H1 =

⎡
⎢⎢⎢⎣

h0 h1 · · · hm 0 · · · 0
0 h0 · · · hm−1 hm · · · 0
...

...
...

...
...

...
...

0 · · · 0 h0 · · · hm−1 hm

⎤
⎥⎥⎥⎦ (6-275)

n is the G-dimensional vector of noise samples, and

x = [xG−1 xG−2 . . . x−m]
T
. (6-276)

Since the final m components of x constitute the cyclic prefix, we find that
the received vector may be represented by

y = Hx̃+ n (6-277)

where
x̃ = [xG−1 xG−2 . . . x0]

T
= Pc (6-278)

and H is the G×G matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 · · · hm 0 · · · 0
0 h0 · · · hm−1 hm · · · 0
...

...
...

...
...

...
...

0 · · · 0 h0 · · · hm−1 hm

...
...

...
...

...
...

...
h2 h3 · · · hm−2 · · · h0 h1

h1 h2 · · · hm−1 · · · 0 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6-279)

This matrix is a circulant matrix, which is a matrix in which each row is
obtained from the previous one by circularly shifting the latter to the right
by one element. The form of H indicates that although the cyclic prefix has
been removed, it affects H and hence influences the received vector y. As
shown in Section 1.1 for coherent demodulation and AWGN, n is a zero-mean,
circularly symmetric, Gaussian random vector with

E
[
nnH

]
= N0I, E

[
nnT

]
= 0 (6-280)

where N0/2 is the two-sided noise PSD.
Each column of FH has the form

fi =
1√
G
[1 V −i V −2i · · · V −(G−1)i]T , i = 0, 1, · · · , G− 1. (6-281)

The evaluation of Hfi using the fact that V G = 1 proves that

Hfi = λifi, i = 0, 1, · · · , G− 1 (6-282)

λi =

m∑
k=0

hkV
−ki, i = 0, 1, · · · , G− 1 (6-283)
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which indicate that fi is an eigenvector of H with the associated eigenvalue λi.
Let λ denote the G× 1 eigenvalue vector

λ = [λ0λ1 . . .λG−1]
T
. (6-284)

Then (6-283) implies that

λ =
√
GFHh (6-285)

which indicates that the energy in the time-domain components of the impulse
response has been distributed among the eigenvalues of H, and

h =
1√
G
Fλ. (6-286)

Equations (6-285), (6-272), and (6-286) indicate that

‖λ‖2 = G. (6-287)

Since F is nonsingular, the {fi} are linearly independent. Equation (6-282)
implies that HFH = FHΛ or

H = FHΛF (6-288)

where
Λ = diag (λ) (6-289)

is the diagonal matrix with λi as its ith diagonal element. This diagonalization
is possible because of the way the cyclic prefix is defined, and hence, it provides
the motivation for the definition of the cyclic prefix.

As indicated in Figure 6.34, after a serial-to-parallel conversion, the received
vector is applied to a fast Fourier transformer (FFT), which does a rapid
computation of the discrete Fourier transform. The G parallel FFT outputs
constitute the vector

y = Fȳ. (6-290)

The substitution of (6-277), (6-288), (6-278), and (6-266) into (6-290) yields

y = ΛPc+ n (6-291)

where n = Fn is a zero-mean circularly symmetric Gaussian random vector
with

E
[
nnH

]
= N0I, E

[
nnT

]
= 0. (6-292)

Equalization compensates for the effect of the communication channel on
b = Pc by processing the FFT outputs. A linear equalizer computes the N ×1
estimator

b̂ = Wy (6-293)

where W is a G × G diagonal matrix with diagonal elements wi = Wii. The
diagonal elements are called the weights of the equalizer. As shown in Fig-
ure 6.34, the equalized FFT outputs {b̂i} are applied to a parallel-to-serial
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converter (P/S) that feeds its output to the despreader. The despreader output
is the N × 1 vector

s = PT b̂ = PT Wy. (6-294)

The substitution of (6-293), (6-291), and (6-262) into (6-294) indicates that

s = PTWΛPc+PTWn . (6-295)

Since WΛ is a diagonal matrix, the kth component of s is

sk = cktr (WΛ) +

N−1∑
n=1,n�=k

cnp
T
k WΛ pn + nsk (6-296)

where the first term is the product of symbol dk and a complex number, the
second term is the interference from the other symbols, and the noise is

nsk = pT
k Wn . (6-297)

The constellation function C (u) maps u into the constellation point closest to
u. The estimator of data symbol k is

d̂k = C
[

sk
aktr (WΛ)

]
. (6-298)

The implementation of this estimator requires the prior estimation of λ.

The received energy per chip for data symbol k is a2kE
[
|dk|2

]
, and the

received energy per symbol is

Ek = Ga2kE
[
|dk|2

]
= ζEsk (6-299)

where Esk is the received energy in the absence of a cyclic prefix. Since the
components of n are independent, zero-mean, and Gaussian, nsk is a zero-mean
Gaussian random variable with energy

E
[
|nsk|2

]
= E

[
pT
kWnnHW∗pk

]

= N0tr
(
|W|2

)
(6-300)

where (6-292) is used in obtaining the second equality.

Zero-Forcing Equalizer

A zero-forcing (ZF) equalizer uses

W = Λ−1. (6-301)

Substituting (6-264) and (6-301) into (6-295), we obtain

s = Gc+PTΛ−1n (6-302)
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which indicates that the zero-forcing equalizer allows the unbiased estimation
of each data symbol without interference from the other symbols. The kth
component of s is

sk = Gakdk + nsk, nsk = pT
kΛ

−1n . (6-303)

The estimator of data symbol k is

d̂k = C[
sk
Gak

]. (6-304)

This estimator does not require channel-state information.
Equations (6-299), (6-303), and (6-300) indicate that the ratio of the signal

energy to the noise energy after the ZF equalization is

γsk =
E
[
|sk|2

]

E
[
|nsk|2

] =
ζEsk
N0

G∑G−1
i=0 |λi|−2

. (6-305)

The problem with the zero-forcing equalizer is that if |λi| is low for some i, then
γsk is low.

MRC Equalizer

The noise amplification of the zero-forcing equalizer is avoided by usingmaximal-
ratio combining (MRC), which maximizes γsk when N = 1. Equations (6-296)
and (6-300) indicate that the MRC equalizer maximizes

γsk =
ζEsk
GN0

∣∣∣∑G−1
i=0 wiλi

∣∣∣2
∑G−1

i=0 |wi|2
. (6-306)

Application of the Cauchy–Schwarz inequality (F-5) indicates that γsk is max-
imized if

wi = ηλ∗
i (6-307)

where η is an arbitrary constant. Therefore, W is the diagonal matrix

W = ηΛ∗ (6-308)

which is independent of the particular symbol. We set η = 1 for convenience.
The estimator of data symbol k is

d̂k = C
[

sk

aktr
(
|Λ|2

)
]

(6-309)

which requires channel-state information. Substituting (6-307) and (6-287) into
(6-306), we find that when N = 1, the MRC equalizer provides

γsk =
ζEsk
N0

. (6-310)
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As shown subsequently for binary symbols and BPSK, the Gaussian noise
and (6-310) indicate that the symbol error probability is

Ps (k) = Q

(√
2ζEsk
N0

)
. (6-311)

As indicated by comparing (6-311) with (6-232), the single-carrier direct-
sequence system with rake combining and the SC-DS-CDMA system with an
MRC equalizer give approximately the same performance for N = 1 except for
two principal factors. One is the SC-DS-CDMA system loss due to the prefix
factor ζ ≤ 1, which accounts for the energy allocated to the cyclic prefix. The
other, which is generally much more significant, is the loss in the single-carrier
direct-sequence system because of path crosstalk, which has been neglected in
the derivation of the performance of the rake receiver. Aside from these factors,
we observe the remarkable fact that the SC-DS-CDMA receiver recovers the
same energy captured from the multipath components by the rake receiver .

MMSE Equalizer

The minimum mean-square error (MMSE) equalizer compensates for the effect
of the communication channel on b = Pc with a diagonal matrix W such that
the mean-square error

MSE = E[‖ b−Wy ‖2] (6-312)

is minimized. The trace identity (G-14) of Appendix G indicates that

MSE = tr
{
E[(b−Wy)(b−Wy)H ]

}
. (6-313)

We define the G×G positive-semidefinite Hermitian matrix

Rb = bbH = PccHPT . (6-314)

Using (6-291) and (6-292), we find that the G×G Hermitian correlation matrix
is

Ry = E[yyH ] = N0I+Λ Rb Λ
∗ (6-315)

which indicates that Ry is positive definite and hence invertible (Appendix G).
An expansion of (6-313) and substitution of (6-291) yield

MSE = tr
[
W Ry WH −W Λ Rb −Rb Λ

∗ W∗ +Rb

]
= tr

[
BRy BH

]
+C

where
B = W −Rb Λ

∗ R−1
y (6-316)

C = tr
[
Rb −Rb Λ

∗ R−1
y Λ Rb

]
. (6-317)

Since the Hermitian matrix Ry is positive definite, BRy BH is Hermitian
positive-semidefinite. Therefore, as shown in Appendix G, tr

[
BRy BH

]
≥ 0.
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Since C does not depend on W, the MSE is minimized if B = 0, which implies
that

W = Rb Λ
∗ R−1

y

= Rb Λ
∗ (N0I+Λ Rb Λ

∗)−1
Λ−∗Λ∗

= Rb

(
N0I+ |Λ|2 Rb

)−1

Λ∗. (6-318)

Performance Analysis for Binary Symbols and BPSK

The SINRs for MRC and MMSE equalizers obtained from (6-296) depend on
the N particular spreading sequences and symbols selected and do not provide
much insight into how the equalizers compare. Approximate but more useful
equations for the SINRs can be obtained by modeling theN spreading sequences
as independent random binary sequences. We do the derivations for BPSK with
dn = ±1.

For all three equalizers, WΛ has real-valued elements, and the first two
terms in (6-296) are real-valued. Half the noise energy is in the imaginary
component of the complex noise. Therefore, it does not affect the detection of
the binary symbols, and (6-300) and (6-308) indicate that the variance of the
relevant noise is

v =
N0

2

G−1∑
i=0

|wi|2. (6-319)

For the ZF equalizer, the SINR for data symbol k is γk = 2γsk, and

γk =
2ζEsk
N0

G∑G−1
i=0 |λi|−2

. (6-320)

The second term in (6-296) represents the multiple-access interference that
is not suppressed when the MRC and MMSE equalizers are used. Since the
spreading sequences are modeled as independent random binary sequences,

E
[
pnp

T
m

]
= 0, n �= m, E

[
pnp

T
n

]
= I. (6-321)

For the MRC equalizer, (6-296), (G-14), and (6-321) imply that

var (sk) =

N−1∑
n=0,n�=k

N−1∑
m=0,m �=k

cncmE[pT
kWΛpnp

T
mWΛpk] +

N0

2

G−1∑
i=0

|wi|2

=
ζEt/k
G

tr[(WΛ)
2
] +

N0

2

G−1∑
i=0

|wi|2 (6-322)

where Et/k is the total symbol energy of the multiple-access interference:

Et/k =

N−1∑
n=0,n�=k

Esn. (6-323)
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The SINR for data symbol k is

γk ≈
2ζEsk

GN0
[tr (WΛ)]

2

2ζEt/k

GN0
tr[(WΛ)

2
] +
∑G−1

i=0 |wi|2
. (6-324)

The substitution of (6-308) and (6-287) into (6-324) yields

γk ≈
2ζEsk

GN0

[∑G−1
i=0 |λi|2

]2
2ζEt/k

GN0

∑G−1
i=0 |λi|4 +

∑G−1
i=0 |λi|2

(MRC) (6-325)

which reduces to (6-310) when Et/k = 0.
For the MMSE equalizer, we use (6-314), (6-262), (6-299), and (6-321) to

make the approximation

Rb ≈ E [Rb]

= E

[
N−1∑
i=0

cipi

N−1∑
l=0

clpl

]

=
ζEt
G

I (6-326)

where

Et =
N−1∑
n=0

Esn (6-327)

is the total energy of all N symbols. Therefore, (6-318) becomes

W ≈ ζEt
GN0

[
I+

ζEt
GN0

|Λ|2
]−1

Λ∗. (6-328)

With this approximate weight matrix, (6-298) gives the estimator for symbol
k. The substitution of (6-328) into (6-324) yields

γk =

2ζEsk
GN0

[∑G−1
i=0 |λi|2

(
1 +

ζEt
GN0

|λi|2
)−1

]2

2ζEt/k
GN0

∑G−1
i=0 |λi|4

(
1 +

ζEt
GN0

|λi|2
)−2

+
∑G−1

i=0 |λi|2
(
1 +

ζEt
GN0

|λi|2
)−2

(MMSE). (6-329)

The MRC and MMSE equalizers produce data-symbol estimators that are
degraded by the presence of the other data symbols. However, the noise is
usually not amplified by the processing, and hence, these equalizers are usually
preferred over the zero-forcing equalizer. If N is sufficiently large that

ζEt
N0

� G

mini |λi|2
(6-330)
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then (6-328) and (6-301) indicate that the MMSE equalizer approximates the
zero-forcing equalizer. If we assume that

ζEt
N0

� G

maxi |λi|2
(6-331)

then (6-329) and (6-325) indicate that the MMSE equalizer approximates the
MRC equalizer.

If the spreading sequences are modeled as independent random binary se-
quences, then the middle term of (6-296) is the sum of N − 1 independent,
identically distributed random variables, each of which has a finite mean and
variance. Therefore, the central limit theorem (corollary 1, Appendix A.2) im-
plies that the distribution of sk approximates the Gaussian distribution when
N is large, and hence,

Ps (k) ≈ Q (
√
γk) . (6-332)

A frequency-selective fading channel is characterized by several significant
multipath components with a relatively large delay spread and small coherence
time. Since hk > 0 for several values of k, (6-285) and (6-265) indicate that
it is likely that maxi |λi| � mini |λi| . In contrast, if a flat-fading channel
has hk > 0 for a single value of k, (6-285) and (6-265) indicate that |λi| = 1,
0 ≤ i ≤ G− 1.

Example 7. As an example of the performance of SC-DS-CDMA systems,
we evaluate Ps for the frequency-selective fading channel with

G = 64, h =
4√
21

[1, 0.5, -0.25, 0, . . . , 0]
T
, ‖ h ‖2= 1.

AllN data symbols have the same energy so that Et/k = (N−1)Esk. Calculations
give

max
i

|λi| = 5.59 min
i

|λi|

which indicates the channel is strongly frequency-selective. Figure 6.35 illus-
trates Ps (k) as a function of N for ZF, MRC, and MMSE equalizers, and
ζEsk/N0 = 10dB and 13 dB. It is observed that the MMSE equalizer slightly
outperforms the MRC equalizer in this example. The MMSE equalizer provides
a better performance than the ZF equalizer when N ≤ 8 if ζEsk/N0 = 10dB,
and when N ≤ 5 if ζEsk/N0 = 13dB. �

Channel-State Estimator

The implementation of equalizers requires channel-state estimates of the {λi} ,
which may be determined by transmitting known pilot sequences. Accordingly,
let ba = [ba0 ba1 . . . ba,G−1]

T denote a known G × 1 vector of a pilot sequence
with bai = ±1, and let B denote a G×G diagonal matrix with diagonal elements

Bii = bai, i = 0, 1, . . . , G− 1. (6-333)
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Figure 6.35: Symbol error probability for multiuser SC-DS-CDMA system as
a function of N for G = 64, SNR = cEsk/N0 = 10dB, and SNR = cEsk/N0 =
13dB

When ba is the received vector, (6-291) indicates that the FFT output vector
at the input to the equalizer is

y = Λba + n. (6-334)

The vector λ can be directly estimated by computing

By = λ+Bn. (6-335)

However, by first estimating the vector h and using the fact that it has at most
m nonzero components, we can eliminate some noise and then produce a better
estimate of λ. Equation (6-286) indicates that a rough estimator of h is the
G× 1 vector

ĥr = G−1/2FBy

= h+G−1/2FBn. (6-336)

The final G − m − 1 components of ĥr would be zero, like those of h, in the
absence of noise but are nonzero in the presence of noise. The final G−m− 1
components are set to zero by the refined estimator

ĥ = Im+1ĥr (6-337)
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where Im+1 is the G × G diagonal matrix with its first m + 1 diagonal values
equal to 1 and its remaining diagonal values set equal to 0. Since Im+1 has no
effect on h,

ĥ = h+G−1/2Im+1FBn. (6-338)

Equation (6-285) suggests that a refined channel-state estimator of λ is

λ̂ = G1/2FH ĥ

= FHIm+1FBy (6-339)

where the G × G product matrix FHIm+1FB can be stored in the receiver.
Substituting (6-335) into (6-339), we find that

λ̂ = λ+ ne (6-340)

where
ne = FHIm+1FBn. (6-341)

Since ne is zero-mean, (6-340) indicates that λ̂ defined by (6-339) provides an
unbiased estimate of λ that can be used to calculate the weights in Figure 6.34.
The covariance matrix of ne is

Rne = E[nen
H
e ] = N0F

HIm+1F. (6-342)

Applying the trace identity and (6-266), we obtain the total noise power

E
[
‖ne‖2

]
= tr (Rne)

= (m+ 1)N0 (6-343)

which indicates that the channel-state estimator of (6-339) results in a reduction
in the total noise power by the factor (m+ 1) /G if knowledge of the multipath
delay spread is available in the receiver.

Peak-to-Average Ratio

The chips x−m, x−m+1, . . . , xG−1 applied to the DAC in the SC-DS-CDMA
transmitter have potentially large amplitude variations because each chip is a
sum of numbers that may combine either constructively or destructively. The
DAC output is applied to the transmitter’s power amplifier. The amplifier pro-
duces an output power that is approximately a linear function of the input
power when the input power is relatively low, but the function becomes highly
nonlinear as the input power increases. If the input power level is nearly con-
stant, then operation in the nonlinear region allows the highest transmitted
power level, and hence potentially the best receiver performance. However, if
the input power has large variations, then the nonlinear function causes sig-
nal distortion, excessive radiation into other spectral regions, and intersymbol
interference. If the power amplifier operates in its linear region, then these
problems are largely absent even if the amplifier input has considerable power
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variations. Therefore, it is necessary to reduce the power variations at the input
to the power amplifier enough that the power amplifier nearly always operates
in its linear region but near the onset of its nonlinear region.

The peak-to-average-power ratio (PAPR) of a transmitted signal over a time
interval is defined as the ratio of the maximum instantaneous power of a signal to
its average value during the interval. In an SC-DS-CDMA system, the complex
envelope x(t) of a signal transmitted over the time interval I with duration T
has a PAPR defined as

PAPR [x(t)] =
maxI |x(t)|2
1
T

∫
I |x(t)|2 dt

. (6-344)

The discrete-time PAPR of a transmitted block of m+G chips is

PAPR [{xi}] =
max−m≤i≤G−1 |xi|2

1
G+m

∑G−1
i=−m |xi|2

(6-345)

where the {xi} are defined by (6-267) and (6-268). Pulse shaping may be used
to reduce the PAPR of transmitted signals.

To derive an approximate distribution function for PAPR [{xi}] , we replace
the denominator in (6-345) with E

[
|xi|2

]
so that

PAPR [{xi}] ≈ max
−m≤i≤G−1

{
|xi|2

E
[
|xi|2

]
}

= max
0≤i≤G−1

{
|xi|2

E
[
|xi|2

]
}

(6-346)

where the second equality follows from the redundancy of the cyclic prefix.
Both the real and imaginary components of each xi are sums of uniformly
bounded, zero-mean random variables, which are assumed to be independent.
Both components have variances that → ∞ as G → ∞. Therefore, if G is large,
the central limit theorem (corollary 2, Appendix A.2) indicates that the real
and imaginary parts of xi have distributions that are approximately Gaussian

with variances equal to E
[
|xi|2

]
/2. Since |xi|2 is the sum of the squares of

two zero-mean Gaussian random variables, it has a chi-squared distribution

with two degrees of freedom (Appendix E.2). Therefore, |xi|2 /E
[
|xi|2

]
has an

exponential distribution:

F (z) ≈ 1− exp (−z) . (6-347)

Equation (6-346) then implies that PAPR [{xi}] has a distribution function

approximated by [1− exp (−z)]
G
. The probability that PAPR [{xi}] exceeds z

is
P [PAPR > z] ≈ 1− [1− exp (−z)]

G
. (6-348)
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This equation indicates that an excessive PAPR occurs frequently even for small
values of the spreading factor. For example, P [PAPR > 4] > 0.168 if G > 10.
Since a large PAPR drives the power amplifier into its nonlinear region or
saturation, some method of PAPR reduction is needed to maintain a relatively
high average input power while reducing the peak input power.

Clipping limits the magnitude of the input to the power amplifier. The
nonlinear clipping function is defined by (3-10). The signal distortion due to
the clipping potentially causes increased bit errors in the receiver, but most of
these errors can be corrected by the channel code.

Numerous PAPR reduction techniques for OFDM systems have been pro-
posed [79], and some of these techniques can be adapted to SC-DS-CDMA
systems. However, relative to clipping, other techniques require much more
computational complexity and sometimes a bandwidth expansion.

6.16 DS-CDMA-FDE Systems

The DS-CDMA system with frequency-domain equalization (DS-CDMA-FDE
system) preserves a favorable PAPR by eliminating the IFFT in the transmit-
ter and using a single carrier for transmission. Both the FFT and IFFT are
performed in the receiver as part of the equalization. Although subsequently
we set the spreading factor equal to the FFT window size, this equality is not
required [1, 2].

The transmitter of the DS-CDMA-FDE system has the form of Figure 6.28
without the IFFT. The vector of G chips associated with a set of N aligned
symbols is

x = [xG−1 xG−2 . . . x0]
T

= Pc =

N−1∑
n=0

pncn. (6-349)

After insertion of the cyclic prefix to prevent intersymbol interference, the se-
quence x applied to the DAC has components

xi = xk, k = i modulo-G, −m ≤ i ≤ G− 1. (6-350)

A PAM signal (Section 1.1) is transmitted.
The principal components of the receiver are diagrammed in Figure 6.36.

After coherent demodulation, the m-sample cyclic prefix of the matched-filter
output samples is discarded because these samples are corrupted by the prior
data block. The remaining samples constitute the components of the received
vector y. Assuming the same channel model as in Section 6.15 and substitut-
ing (6-288), we obtain

y = HPc+ n

= FHΛFPc+ n (6-351)



412 CHAPTER 6. FADING AND DIVERSITY
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Figure 6.36: Receiver of DS-CDMA-FDE system. CP = cyclic prefix; MF =
matched filter

where H is defined by (6-279), and n is the Gaussian noise vector with co-
variance matrix E[nnH ] = N0I. As indicated in the figure, the samples are
applied to a serial-to-parallel conversion and FFT. The G parallel FFT outputs
constitute the vector

y = Fȳ

= ΛFPc+ n (6-352)

where n = Fn is a zero-mean, independent, and circularly symmetric Gaussian
random vector with statistics given by (6-292).

The equalizer computes the vector Wy, where W is a diagonal matrix with
diagonal elements wi = Wii. The IFFT produces the vector FH Wy, which
is applied to a parallel-to-serial converter that feeds its output stream to the
despreader. The despreader output is

s = PTFH Wy

= PTFH WΛFPc+PTFH Wn (6-353)

and the kth component of s is

sk = ckp
T
kDpk +

N−1∑
n=0,n�=k

cnp
T
kDpn + nsk (6-354)

where D is the G×G matrix defined as

D = FH WΛF (6-355)

and the noise term is
nsk = pT

kF
H Wn. (6-356)
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The estimator of data symbol k is

d̂k = C
[

sk

ak
(
pT
kDpk

)
]
. (6-357)

The implementation of this estimator requires the prior estimation of λ.
The noise is a zero-mean Gaussian random variable with energy

E
[
‖n‖2

]
= pT

kF
H WnnHW∗Fpk

= N0 pT
kF

H |W|2 Fpk (6-358)

where the second equality results from (6-292).

Zero-Forcing Equalizer

A zero-forcing (ZF) equalizer uses W = Λ−1. Since the spreading sequences
are orthogonal, this equalizer provides

s = Gc+PTFH Λ−1n. (6-359)

Thus, the zero-forcing equalizer allows the recovery of the data symbols without
intersymbol interference at the cost of noise enhancement when one of the
elements of Λ−1 is small. The kth component of s is

sk = Gck + pT
kF

H Λ−1n. (6-360)

The estimator of data symbol k is

d̂k = C
[
sk
Gak

]
(6-361)

which does not require channel-state information.
From (6-360), (6-358), and (6-357), we obtain the ratio of the signal energy

to the noise energy for data symbol k provided by the ZF equalizer:

γsk =
ζEsk
N0

G

pT
kF

H |Λ|−2
Fpk

(6-362)

where Esk is the energy of ck.

MRC and MMSE Equalizers

An MRC equalizer maximizes the signal-to-noise ratio (SNR) of each data sym-
bol without attempting to suppress the interference due to other data symbols.
Thus, the MRC equalizer maximizes γsk when N = 1. Define

u = W∗Fpk, m = ΛFpk. (6-363)

From the first and third terms of (6-354) and (6-358), we find that

γsk =
2ζEsk
N0

(uHm)2

G ‖u‖2
. (6-364)



414 CHAPTER 6. FADING AND DIVERSITY

Application of the Cauchy–Schwarz inequality (F-7) indicates that

(uHm) ≤ ‖u‖ ‖m‖ (6-365)

with equality only if u = ηm, where η is an arbitrary constant. Thus, the MRC
equalizer uses W = Λ∗, and the SNR provided by the MRC equalizer is

γsk =
ζEsk
N0

pT
kF

H |Λ|2 Fpk

G
(MRC). (6-366)

Since the equalizer outputs are applied to an IFFT, the MMSE equalizer
uses the diagonal matrix W such that the mean-square error MSE = E[‖
FPc − Wy ‖2] is minimized. A derivation similar to the previous one for
the SC-DS-CDMA system indicates that the MMSE equalizer uses

W = Rb1

(
N0I+ |Λ|2 Rb1

)−1

Λ∗ (6-367)

where
Rb1 = FPccHPTFH . (6-368)

Performance Analysis for Binary Symbols and BPSK

To compare the three equalizers, an approximate but useful general equation for
the SINR is obtained by modeling the N spreading sequences as independent,
random binary sequences satisfying (6-321). The diagonal matrix WΛ is real-
valued for all three equalizers. We do the derivations for BPSK with dn = ±1.

The first two terms in (6-354) are real-valued. Half the noise energy is in
the imaginary component of the complex noise. Therefore, only half the noise
energy affects the detection of the binary symbols, and (6-358) indicates that
the variance of the relevant noise is

v =
E
[
‖n‖2

]

2
=

N0

2
tr
(
pT
kF

H |W|2 Fpk

)

=
N0

2

G−1∑
i=0

|wi|2. (6-369)

For the ZF equalizer, (6-369) and (6-360) indicate that the SINR for data symbol
k is again given by (6-320).

For the MMSE equalizer, we make the approximation

Rb1 ≈ E [Rb1] = FE

[
N−1∑
i−0

cipi

N−1∑
i=0

clp
T
l

]
FH

=
ζEt
G

I (6-370)

and hence, W is given by (6-328).
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For the MRC and MMSE equalizers and binary symbols, the receiver ex-
tracts

sk1 = Re (sk) . (6-371)

The trace identity, (6-321), (6-354), and (6-355), gives

E [sk1] = ck Re
{
E[tr

(
pT
kDpk

)
]
}

= cktr (WΛ) , (6-372)

and the estimator for symbol k is given by (6-309). The variance of sk1 is

var (sk) = var (si) + var (mai) +
N0

2

G−1∑
i=0

|wi|2 (6-373)

where var (si) is the variance due to the self-interference, and var (mai) is the
variance due to the multiple-access interference.

Since WΛ is real-valued for both equalizers, the matrix

D = Re[FHWΛF] (6-374)

is symmetric so that
Di,l = Dl,i (6-375)

and
tr (D) = tr (WΛ) . (6-376)

Under the binary sequence model, E[pk,ipk,lpk,mpk,n] = 0 unless the indices
are in one of the sets

I1 = (n = m, l = i) , I2 = (n = l,m = i) , I3 = (n = i,m = l) . (6-377)

Since

I1 ∪ I2 ∪ I3 = I1 + I2 + I3 − I1 ∩ I2 − I1 ∩ I3 − I2 ∩ I3 + I1 ∩ I2 ∩ I3

= I1 + I2 + I3 − 2 (I1 ∩ I2) (6-378)

we obtain

var (si) =
ζEsk

G
{E[(pT

k Dpk)
2]− [tr (WΛ)]2}

=
ζEsk

G
{E[

∑
i,l,m,n

pk,iDi,lpk,lpk,mDm,npk,n − [tr (WΛ)]2]}

=
ζEsk

G

⎧⎨
⎩
∑
i,m

Di,iDm,m +
∑
i,l

D2
i,l +

∑
i,l

Di,lDl,i − 2
∑
i

D2
i,i − [tr (WΛ)]2

⎫⎬
⎭

=
2ζEsk

G

∑
i,l �=i

D2
i,l (6-379)

where the final equality follows from the symmetry of D and (6-376).
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The independence of the {pn} implies that var (mai) is equal to the sum of
variances, and we obtain

var (mai) =

N−1∑
n=0,n�=k

ζEsn
G

E[pT
kDpnp

T
nDpk]

= ζ
Et/k
G

E[pT
kD2pk]

= ζ
Et/k
G

tr
(
D2
)

(6-380)

where the second and third equalities use (6-321), and Et/k is defined by (6-323).
The SINR of symbol k is equal to the ratio of the square of E [sk1] to

var (sk1) . Thus, the SINR for MRC and MMSE equalizers is

γk =

2ζEsk

GN0
[tr (WΛ)]

2

2ζEt/k

GN0
tr (D2) + 2

N0
var (si) +

G−1∑
i=0

|wi|2
(MRC, MMSE). (6-381)

The contribution of var (si) in the denominator is due to self-interference that
occurs in the DS-CDMA-FDE system but has no counterpart in the SC-DS-
CDMA system. Consequently, a comparison with (6-324) indicates that the
SC-DS-CDMA is advantageous when Et/k is small. However, when Et/k � Esk,
the performances of the two systems are similar.

If the spreading sequences are modeled as independent random binary se-
quences, then the middle term of (6-354) is the sum of N − 1 independent,
identically distributed random variables each of which has a finite mean and
variance. Therefore, the central limit theorem (corollary 1, Appendix A.2)
implies that Ps (k) is approximately given by (6-332) when N is large.

Channel-State Estimator

The implementation of the equalization requires a channel-state estimator that
estimates the vector λ. This estimator in the DS-CDMA-FDE system is derived
by a method similar to that used in the SC-DS-CDMA system. Let ba =
[ba0 ba1 . . . ba,G−1]

T denote a known G× 1 vector of binary pilot chips received
as a block, and let xa = Fba = [xa0xa1 . . . xa,G−1]

T denote the corresponding
G×1 discrete Fourier transform vector. Let X denote a G×G diagonal matrix
with diagonal elements

Xii = x∗
ai/ |xai|2 , i = 0, 1, . . . , G− 1. (6-382)

When ba is the transmitted vector, the FFT output vector at the input of the
equalizer is

y = FHba + n

= ΛFba + n

= Λxa + n (6-383)
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where E[nnH ] = N0I.
The vector λ could be estimated as

Xy = λ+Xn (6-384)

but noise can be eliminated by first estimating h, which has at most m + 1
nonzero components. A rough estimator of h is the G× 1 vector

ĥr = G−1/2FXy. (6-385)

The final G−m− 1 components are set to zero by the refined estimator

ĥ = Im+1ĥr (6-386)

where Im+1 is the G × G diagonal matrix with its first m + 1 diagonal values
equal to 1 and its remaining diagonal values set equal to 0. A refined estimator
of λ is

λ̂ = G1/2FH ĥ

= FHIm+1FXy (6-387)

where the G × G product matrix FHIm+1FX can be stored in the receiver.
Substituting (6-384) into (6-387), we obtain

λ̂ = λ+ ne (6-388)

where
ne = FHIm+1FX. (6-389)

The covariance matrix of ne is given by (6-342), and the total noise power
is given by (6-343). Thus, knowledge of the multipath delay spread enables
the channel estimator (6-387) to reduce the total noise power by the factor
(m+ 1) /G.

Comparisons

Simulation and numerical results indicate that when the same equalizers are
used, the DS-CDMA-FDE and SC-DS-CDMA systems provide nearly the same
performance [1, 2]. The advantage of the DS-CDMA-FDE system is its large
reduction of the PAPR at the cost of a more elaborate receiver. Both systems
benefit from the use of joint antenna diversity and equalization, but the per-
formance improvement hinges on accurate calculations of the discrete Fourier
transforms.

Although FDE using MRC is essentially rake combining in the spectral do-
main, there are practical differences. As the frequency selectivity increases,
the number of paths with significant power increases, thereby increasing the re-
quired number of rake fingers. In contrast, the FDE implementation complexity
is independent of the frequency selectivity.
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A competitive and frequently adopted alternative to the DS-CDMA-FDE
and SC-DS-CDMA systems is orthogonal frequency-division multiplexing
(OFDM), which uses orthogonal subcarriers with less frequency separation than
achieved by classical FDMA. OFDM transmits code symbols over parallel nar-
rowband channels with flat fading that can be easily equalized. By selecting the
symbol duration in an OFDM system to be significantly larger than the channel
dispersion and using a cyclic prefix, intersymbol interference can be avoided.

The OFDM system does not provide the diversity gain of the DS-CDMA-
FDE and SC-DS-CDMA systems. However, when channel coding and interleav-
ing are used, an OFDM system provides a higher throughput, time diversity,
and more coding gain than the DS-CDMA-FDE and SC-DS-CDMA systems.

6.17 Problems

1. Give an alternative derivation of (6-44). We observe that the total re-
ceived Doppler power Sr(f) |df | in the spectral band [f ,f+df ] corresponds
to arrival angles determined by fd cos θ = f . For |θ| ≤ π, Sr(f)|df | =
P (θ) |dθ|+P (−θ) |dθ|, where P (θ) is the power density arriving from an-
gle θ. Assume that the received power arrives uniformly spread over all
angles |θ| ≤ π.

2. Use mathematical induction to prove that the right-hand side of (6-122)
is equal to the right-hand side of (6-121).

3. Use Taylor series expansions to calculate the ratio of Pb(L) for indepen-
dent Rayleigh fading to P cc

b (L) for completely correlated Rayleigh fading
when γ̄ � 1. Observe that the ratio is proportional to γ̄−L+1, which
clearly shows the large disparity in performance between a system with
completely correlated fading and one with independent fading when γ̄ is
sufficiently large.

4. Derive an explicit equation for C (i) in (6-164). It does not depend on
which orthogonal signal was transmitted.

5. Use the Chernoff bound (1-148) and (H-1) of Appendix H.1 to obtain a
simple upper bound Pb (L) for a noncoherent BOSK system.

6. Use mathematical induction to prove the fourth equality of (6-178).

7. Use (1-217) to show that BICM-ID and BICM are identical for binary
modulations.

8. Three multipath components arrive at a direct-sequence receiver moving
at 30 m/s relative to the transmitter. The second and third multipath
components travel over paths 200 m and 250 m longer than the first com-
ponent. (a) If the chip rate is equal to the bandwidth of the received signal,
what is the minimum chip rate required to resolve all components? (b)
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Let te denote the time required to estimate the relative delay of a multi-
path component, and let v denote the relative radial velocity of a receiver
relative to a transmitter. Then vte/c is the change in delay that occurs
during the estimation procedure, where c is the speed of an electromag-
netic wave. How much time can the receiver allocate to the estimation of
the component delays?

9. Consider dual rake combining and Rayleigh fading. Compare DS-BPSK
and MRC with noncoherent DS-BCSK and EGC by deriving approximate
equations for Pb(2) when γ1 � 1 �γ2. Show that DS-BPSK and MRC
provide a power advantage of more than 6 dB.

10. Consider dual rake combining and Rayleigh fading. (a) For noncoherent
DS-BCSK and EGC, find the lower bound on γ2 such that Ps(2) ≤Ps(1).
(b) What is the physical reason why Ps(2) =Ps(1) when γ2 = 0 for MRC
but not for noncoherent combining?

11. Verify that (6-283) gives the eigenvalues of H.

12. An SC-DS-CDMA system usesG = 8 chips per data symbol and transmits
over a communication channel with h =

√
4/5 [1 0 0.5 0 0 0 0 0]T. (a)

Compute the eigenvalues of F, and assess the frequency selectivity of the
channel by examining their magnitudes. (b) Evaluate γk for MRC and
ZF time-domain equalizers in terms of x = ζEsk/N0 and y = ζEt/k/N0.
What is the maximum y as a function of x for which the MRC equalizer
outperforms the ZF equalizer?

13. Compare SC-DS-CDMA systems for time-domain equalization, N = 1,
and a BPSK signal. Use the Cauchy–Schwarz inequality to show the
SINR for ZF is less than or equal to the SINR for MRC.

14. An SC-DS-CDMA system receives G equal multipath components so that
hi = 1/

√
G, 0 ≤ i ≤ G − 1. Which of the three equalizers provides the

largest SINR?

15. Compare the SINRs of the SC-DS-CDMA system with BPSK for all three
equalizers when each receives a single multipath component. Thus, h0 =
1/
√
G, and hi = 0, 1 ≤ i ≤ G−1. Which of the three equalizers provides

the largest SINR?

16. Compare the SINRs of the SC-DS-CDMA and DS-CDMA-FDE systems
with BPSK for all three equalizers when each receives a single multipath
component. Thus, h0 = 1/

√
G, and hi = 0, 1 ≤ i ≤ G− 1. Which of the

two systems provides the largest SINR?



Chapter 7

Code-Division Multiple
Access

Multiple access is the ability of many users to communicate with each other
while sharing a common transmission medium. Wireless multiple-access com-
munications are facilitated if the transmitted signals are orthogonal or separable
in some sense. Among the possibilities, signals may be separated in time (time-
division multiple access or TDMA), frequency (frequency-division multiple ac-
cess or FDMA), or code (code-division multiple access or CDMA). This chapter
presents the general characteristics of CDMA networks of direct-sequence sys-
tems and networks of frequency-hopping systems. The direct-sequence CDMA
codes are the spreading sequences. The frequency-hopping CDMA codes are
the frequency patterns. The use of spread-spectrum modulation allows the si-
multaneous transmission of signals from multiple users in the same frequency
band. All signals use the entire allocated spectrum, but the spreading sequences
or frequency-hopping patterns differ. Information theory indicates that in an
isolated cell, CDMA systems achieve the same spectral efficiency as TDMA
or FDMA systems only if optimal multiuser detection is used. However, even
without multiuser detection, CDMA has advantages for mobile communication
networks because it eliminates the need for frequency and time-slot coordina-
tion, allows carrier-frequency reuse in adjacent cells, imposes no sharp upper
bound on the number of users, and provides resistance to interference and in-
terception. In this chapter, important short spreading sequences, long random
spreading sequences, and alternative spreading systems are examined. The vast
potential and practical difficulties of spread-spectrum multiuser detectors, such
as optimal, decorrelating, minimum mean-square-error, or adaptive detectors,
are described and assessed. The tradeoffs and design issues of direct-sequence
multiple-input multiple-output systems with spatial multiplexing or beamform-
ing are determined.
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7.1 Implications of Information Theory

Information theory provides a means of ascertaining the potential benefits and
tradeoffs in using the various multiple-access methods. The main results stem
from evaluations of the channel capacity. The channel capacity of an AWGN
channel with noise variance N and power constraint P is defined as the max-
imum of the average mutual information I(X;Y ) over all the possible source-
code or input-symbol distributions. For the one-dimensional AWGN channel
with continuously distributed real-valued input and output symbols, funda-
mental results of information theory [21] are that the optimal input-symbol
distribution is Gaussian and the one-dimensional channel capacity is

C =
1

2
log2

(
1 +

P
N

)
(7-1)

in bits per channel use. For the AWGN channel with a power constraint and a
code-rateR, there exists a sequence of codes such that the maximum probability
of error tends to zero if R ≤ C.

For the two-dimensional AWGN channel with continuously distributed
complex-valued input and output symbols, the real and imaginary components
of the symbols are affected by independent Gaussian noises with the same power
N . The channel capacity is the sum of the capacities of the two components.
The channel capacity is maximized if the total symbol power P is allocated
equally to the two components. Therefore, the two-dimensional channel capac-
ity is

C = log2

(
1 +

P
2N

)
. (7-2)

Since the total noise power is 2N , the signal-to-noise ratio (SNR) for the two-
dimensional channel is P/2N . Thus, the maximum rate R supported by the
two-dimensional AWGN channel is log2 (1 + SNR) .

Consider a bandlimited AWGN channel for which signals are bandlimited by
the one-sided bandwidth W Hz. If the two-sided power spectral density (PSD)
of the noise is N0/2, then the noise power is N = N0W . The sampling theorem
(Appendix D.4) indicates that bandlimited signals are completely determined
by samples spaced 1/2W seconds apart. Since the channel can be used inde-
pendently 2W times per second, (7-1) implies that the one-dimensional channel
capacity is

C = W log2

(
1 +

P
N0W

)
(7-3)

in bits per second, whereas (7-2) implies that the two-dimensional channel ca-
pacity is

C = 2W log2

(
1 +

P
2N0W

)
(7-4)

in bits per second.
Consider the two-dimensional AWGN multiple-access channel that has m

users with powers P1,P2, . . . , Pm and noise with power N = N0W at the
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receiver. The analysis and results are similar for the analogous one-dimensional
AWGN multiple-access channel. Define

C (x) = 2 log2 (1 + x) . (7-5)

Information theory indicates that for a low probability of error in the receiver,
the rates R1,R2, . . . , Rm of the source codes, in bits per second, are bounded
by the individual capacities [21, 43]:

Ri ≤ WC

(
Pi

2N0W

)
, 1 ≤ i ≤ m. (7-6)

Sums of the rates are bounded by the total capacity:

∑
i∈S

Ri ≤ WC

(∑
i∈S Pi

2N0W

)
(7-7)

where S is a subset of the m source codes of the m users. Inequality (7-6)
follows from the upper bound on an individual rate that applies even when
the other users cause no interference. Inequality (7-7) indicates that the sum
of the rates cannot exceed the rate achieved by a single code with a received
power equal to the sum of the m powers. Inequalities (7-6) and (7-7) restrict
the rates R1, R2, . . . , Rm to a bounded region within an m-dimensional rate
hyperspace. Because of (7-7), not all of the individual rates can attain the
individual capacities of (7-6). The underlying cause is the unavoidable mutual
interference among the users.

Assume that all m users cooperate to simultaneously transmit their signals
to a single receiver, S comprises all m source codes, and an interfering signal
can be modeled as additional white Gaussian noise. A multiuser detector jointly
demodulates and decodes all the received signals. Points on the boundary of
the rate hyperspace can be attained by implementing a multi-stage decoding
process that executes successive interference cancelation. In the initial stage,
code 1 is decoded with other codes regarded as sources of additional white
Gaussian noise. Then (7-6) implies that there is a low probability of error for
code 1 if

R1 ≤ WC

(
P1∑

i∈S,i �=1 Pi + 2N0W

)
. (7-8)

The multiuser detector subtracts code 1 from the received signal. The remaining
codes can be extracted with a low probability of error if (7-6) is satisfied for
i = 2, 3, . . . ,m and

∑
i∈S,i�=1

Ri =
∑
i∈S

Ri −R1

≤ WC

(∑
i∈S Pi

2N0W

)
−WC

(
P1∑

i∈S,i �=1 Pi + 2N0W

)
. (7-9)
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Using (7-5) in (7-9), we find that

∑
i∈S,i�=1

Ri ≤ WC

(∑
i∈S,i �=1 Pi

2N0W

)
. (7-10)

Thus, the total capacity of the other codes is the same as it would be in the
absence of code 1. Further stages of the successive interference cancelation
proceed similarly. If all m sources have the same power P, then

∑
i∈S

Ri ≤ W
m∑

k=1

C

(
P

(m− k)P + 2N0W

)
= WC

(
mP

2N0W

)
. (7-11)

A conventional detector does not use multiuser detection. Interfering signals
are modeled as additional Gaussian noise. Therefore, if S includes all m source
codes, the rates of the source codes are bounded by

Ri ≤ WC

(
Pi∑

j∈S,j �=i Pj + 2N0W

)
, 1 ≤ i ≤ m. (7-12)

In general, a conventional detector allows a much lower capacity than a mul-
tiuser detector. For example, if allm sources have the same power P, then (7-12)
implies that a conventional detector requires that

Ri ≤ WC

(
P

(m− 1)P + 2N0W

)
, 1 ≤ i ≤ m (7-13)

and the sum of the code rates is

∑
i∈S

Ri ≤ mWC

(
P

(m− 1)P + 2N0W

)
(7-14)

whereas (7-11) indicates that a multiuser detector requires that

∑
i∈S

Ri ≤ WC

(
mP

2N0W

)
. (7-15)

Inequality (7-15) is directly applicable to a CDMA network with direct-
sequence systems in which all m users have the same power P . In a TDMA
network with equal time slots and the same individual capacity allocated to all
users, each user transmits 1/m of the time with power mP during an assigned
slot and zero otherwise. Therefore, the sum of the code rates and the total
capacity are given by (7-15).

In an FDMA network with an equal bandwidth W/m for each spectral band
and equal rate R allocated to all users, each user can transmit simultaneously in
distinct spectral bands with power P. Since the bandwidth of each spectral band
is W/m, the noise power received by each user is 2N0W/m. Thus, application
of (7-6) indicates that the total capacity is given by (7-15). Consider a CDMA
network with frequency hopping and frequency channels that have the same
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bandwidth W/m. We assume that all users transmit with the same power P,
but their frequency-hopping patterns are synchronous so that no collisions in the
same frequency channel occur. With these assumptions, the CDMA network
is equivalent to an FDMA network with periodic variations in the spectral
allocations, and hence the total capacity is given by (7-15).

These results indicate that FDMA, TDMA, and CDMA networks impose
the same total capacity on the achievable code rates, but the three networks
have important practical limitations. A TDMA network cannot increasemP be-
yond the peak transmitter power that can be sustained. A CDMA network with
direct-sequence systems must use multiuser detection for (7-15) to be applica-
ble. If it does not, the achievable rates for low error probabilities are constrained
by a more restrictive total capacity. A CDMA network with frequency-hopping
systems requires synchronous operation with orthogonal frequency-hopping pat-
terns to ensure that no collisions occur.

7.2 Short Spreading Sequences

Periodic Correlations and Synchronous Signals

The periodic autocorrelation of a periodic unit-magnitude real-valued or
complex-valued sequence with period N is defined as

θp(l) =
1

N

N−1∑
n=0

pnp
∗
n+l (7-16)

where pn is the nth component of the sequence, pn+N = pn, and the aster-
isk denotes the complex conjugate. The periodic cross-correlation of periodic
complex-valued or polyphase sequences p and q with the same period N is
defined as

θpq(l) =
1

N

N−1∑
n=0

pnq
∗
n+l =

1

N

N−1∑
n=0

pn−lq
∗
n. (7-17)

Two sequences are orthogonal if θpq(0) = 0.
Let a = (. . . , a0, a1, . . .) and b = (. . . , b0, b1, . . .) denote binary sequences

with components in GF (2). The sequences a and b are mapped into antipodal
sequences p and q, respectively, with components in {−1,+1} by means of the
transformation

pi = (−1)ai+1, qi = (−1)bi+1. (7-18)

After this mapping, the periodic autocorrelation of a periodic binary sequence
p with period N is defined by (7-16). The periodic cross-correlation of periodic
binary sequences a and b with the same period G is defined as the periodic
cross-correlation of the antipodal sequences p and q, which is defined by (7-17).
The periodic cross-correlation of p and q is given by

θpq(l) =
Al −Dl

N
(7-19)
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where Al denotes the number of agreements in the corresponding components of
p and the shifted sequence q(l), and Dl denotes the number of disagreements.
Synchronous communication signals have data symbols and spreading sequences
with a fixed timing relationship. Synchronous signals are received when a base
station transmits to multiple mobiles, as in the downlinks of cellular networks
(Section 8.4).

Multirate Sequences

Multirate sequences provide a variety of data rates for various services and users.
A way to accommodate different data rates while maintaining the chip rate, and
hence the bandwidth, for all users is to vary the spreading factors in accordance
with the data rates. The spreading sequences are selected to be orthogonal to
each other despite differences in the spreading factors. A tree-structured set
of orthogonal Walsh sequences called the orthogonal variable-spreading-factor
(OV SF ) sequences can be generated recursively and enable the receiver to
completely avoid multiple-access interference among synchronous users [3].

Let CN (n) denote the row vector representing the nth OVSF sequence with
spreading factor N , where n = 1, 2, . . . , N , and N = 2k for some nonnegative
integer k. The set of N sequences with N chips is derived by concatenating
sequences from the set of N/2 sequences with N/2 chips:

CN (1) = [CN/2(1)CN/2(1)]

CN (2) = [CN/2(1)CN/2(1)]

... (7-20)

CN (N − 1) = [CN/2(N/2)CN/2(N/2)]

CN (N) = [CN/2(N/2)CN/2(N/2)].

For example, C16(4) is produced by concatenating C8(2) and C8(2), thereby
doubling the number of chips per code symbol to 16. A sequence used in the
recursive generation of a longer sequence is called a mother code of the longer
sequence. Equation (7-20) indicates that all the sequences with N chips are
orthogonal to each other, and these sequences constitute a set of orthogonal
Walsh sequences.

Let R denote the data rate supported by an OVSF sequence of length N .
Since the chip rate is maintained while the spreading factor decreases from N
to 1, the corresponding data rate increases from R to NR. A tree diagram
illustrating the hierarchy of sequences is shown in Figure 7.1. Each CN (n)
is orthogonal to concatenations of all sequences CN/2(n

′),CN/4(n
′′), . . . and

their complements except for its mother codes. For example, C16(3) is not
orthogonal to its mother codes C8(2), C4(1), or C2(1). If C8(3) is assigned to
a user requesting a data rate twice that of a user assigned a sequence of 16
chips, then the sequences C16(5) and C16(6) descended from C8(3) cannot be
assigned to other users requesting lower data rates, and the mother codes of
C8(3) cannot be assigned to other users requesting higher data rates.
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Figure 7.1: Tree diagram of orthogonal variable-spreading-factor code
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The multirate capacity of multirate OVSF sequences is the maximum data
rate that can be accommodated. Achieving this multirate capacity may re-
quire that high data-rate users transmit with high powers to compensate for
the low spreading factors. The unavailability or blocking of ancestors and de-
scendants may cause some new data-rate requests to be rejected even though
the system has a sufficient capacity to accept them. Thus, potential multirate
capacity is wasted. An inflexibility for rate-matching is due to the quantiza-
tion of data rates and spreading factors that must be powers of 2, but code
assignment schemes have been proposed to reduce or even eliminate the wasted
capacity [84]. Multirate CDMA systems are used for multimedia applications
of CDMA2000 and WCDM.

A multicode system is another multirate system that provides multiple data
rates at a fixed chip rate and spreading factor. The transmitter assigns multi-
ple orthogonal spreading sequences to a subscriber who requires a data-symbol
transmission rate higher than the standard rate defined by the fixed chip rate
and spreading factor. High-rate data sequences are divided into several distinct
standard-rate symbol sequences, each of which modulates a distinct spreading
sequence. The modulated spreading sequences are synchronously combined,
and the combined sequence modulates the sinusoidal carrier. By coherently
demodulating the carrier and using orthogonal spreading sequences, the re-
ceiver can suppress interference among the distinct modulated sequences. In
contrast, a conventional single-rate system operating at the selected high rate
would require a bandwidth expansion or a reduced spreading factor. A primary
disadvantage of both multirate systems is the high peak-to-average-power ratio
in the received signals.

In principle, the orthogonal spreading sequences appear to be the best choice
for direct-sequence systems. The fundamental limitations of orthogonal spread-
ing sequences stem from their poor autocorrelations and cross-correlations. As
a result, orthogonal spreading sequences are usually not preferred when signals
are received asynchronously. In frequency-selective fading channels, the asyn-
chronous multipath components and the poor cross-correlations subvert the
effectiveness of orthogonal spreading sequences. When synchronous signals are
received with perfect timing synchronization, the multiple-access interference
is completely suppressed, but when the tracking system (Section 4.7) produces
timing errors, the poor autocorrelations accentuate the interference.

Polyphase Sequences

Instead of using complex binary spreading sequences (Section 2.5), which are
pairs of short binary sequences, DS-QPSK systems may use complex-valued
polyphase sequences that have better periodic correlation functions. Symbols
of polyphase sequences are powers of the complex qth root of unity, which is

Ω = exp

(
j
2π

q

)
(7-21)
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where j =
√
−1. The complex spreading or signature sequence p of period N

has symbols given by

pi = Ωaiejφ, ai ∈ Zq = {0, 1, 2, . . . , q − 1} , i = 1, 2, . . . , N (7-22)

where φ is an arbitrary phase chosen for convenience. If pi is specified by the
exponent ai and qi is specified by the exponent bi, then the periodic cross-
correlation between sequences p and q is

θpq(k) =
1

N

N−1∑
i=0

Ωai−bi . (7-23)

Polyphase sequences with q = 2 are real-valued binary antipodal sequences,
and polyphase sequences with q = 4 are complex-valued quaternary sequences.

The sequences in a family of polyphase sequences with period N = 2m − 1
can be generated by a shift register with nonlinear feedback. The feedback co-
efficients {ci} are determined by the characteristic polynomial, which is defined
as

f(x) = 1 +

m∑
i=1

cix
i, ci ∈ Zq, cm = 1. (7-24)

The shift-register output sequence {ai} satisfies a linear recurrence relation
with the same form as (2-20). Each output symbol ai ∈ Zq is converted to pi
according to (7-22).

Example 1. A family of quaternary sequences with m = 3 and period N =
7 has the characteristic polynomial f(x) = 1 + 2x+ 3x2 + x3. A feedback shift
register that implements the sequences of the family is depicted in Figure 7.2a,
where all operations are modulo-4. The generation of a particular sequence is
illustrated in Figure 7.2b. �

Different quaternary sequences may be generated by loading the shift regis-
ter with any nonzero initial contents and then cycling the shift register through
its full period N = 2m − 1. Since the shift register has 4m − 1 nonzero states,
there are M = (4m − 1)/(2m − 1) = 2m + 1 cyclically distinct members of the
family. Each cyclically distinct family member may be generated by loading
the shift register with any nonzero triple that is not a state occurring during
the generation of another family member. A polyphase spreading sequence
is multiplied by a complex-valued data sequence to produce the transmitted
sequence.

Since polyphase sequences have more favorable periodic autocorrelations
and cross-correlations than pairs of binary sequences, they provide a potential
advantage in the timing synchronization of synchronous systems (Chapter 4).
In contrast, polyphase sequences do not generally provide smaller error proba-
bilities in asynchronous CDMA because system performance is determined by
the aperiodic autocorrelations and cross-correlations [53, 122].



430 CHAPTER 7. CODE-DIVISION MULTIPLE ACCESS

1 2 3
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1 1 0 0
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3 3 2 1

4 1 3 2
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Shift

(a)

(b)

Figure 7.2: (a) Feedback shift register for quaternary sequence and (b) contents
after successive shifts

Welch Bound

For a set S of M periodic polyphase sequences of length N , let θmax denote the
peak magnitude of the periodic cross-correlations or autocorrelations:

θmax = max {|θpipl
(k)| : 0 ≤ k ≤ N − 1; pi,pl ∈ S; pi �= pl or k �= 0} .

(7-25)
Theorem 1. A set S of M periodic polyphase sequences of length N has

θmax ≥
√

M − 1

MN − 1
. (7-26)

Proof. Consider an extended set Se of MN sequences pi, i = 1, 2, . . . ,MN ,
that comprises the N distinct shifted sequences derived from each of the se-
quences in S. The periodic cross-correlation of sequences pi and pl in Se is

ψi,l =
1

N

N∑
n=1

pi,np
∗
l,n (7-27)



7.2. SHORT SPREADING SEQUENCES 431

and
θmax = max {|ψi,l| : piε Se, pl ε Se, i �= l} .

Define the double summation

Z =

MN∑
i=1

MN∑
l=1

|ψi,l|2 . (7-28)

Separating the MN terms for which ψi,i = 1 and then bounding the remaining
MN(MN − 1) terms yield

Z ≤ MN +MN(MN − 1)θ2max. (7-29)

Substituting (7-27) into (7-28), interchanging summations, and then omit-
ting the terms for which m �= n, we obtain

Z =
1

N2

N∑
n=1

N∑
m=1

MN∑
i=1

pi,np
∗
i,m

MN∑
l=1

p∗l,npl,m

=
1

N2

N∑
n=1

N∑
m=1

∣∣∣∣∣
MN∑
i−1

pi,np
∗
i,m

∣∣∣∣∣
2

≥ 1

N2

N∑
n=1

(
MN∑
i=1

|pi,n|2
)2

= M2N .

Combining this inequality with (7-29) gives (7-26). �
The lower bound in (7-26) is known as the Welch bound. It approaches

1/
√
N for large values of M and N .

Gold and Kasami Sequences

Only small subsets of maximal sequences can be found with θmax close to the
Welch bound, but large sets of binary sequences with θmax approaching the
Welch bound can be obtained by combining maximal sequences with subse-
quences of these sequences. If q is a positive integer, the new binary sequence b
formed by taking every qth bit of binary sequence a is known as a decimation
of a by q, and the components of the two sequences are related by bi = aqi .
Let gcd(x, y) denote the greatest common divisor of x and y. If the original
sequence a has a period N and the new sequence b is not identically zero, then
b has period N/gcd(N, q). If gcd(N, q) = 1, then the decimation is called a
proper decimation. Following a proper decimation, the bits of b do not repeat
themselves until every bit of a has been sampled. Therefore, b and a have the
same period N .

If a is a maximal sequence, then if each bit of a is sampled, b is a maximal
sequence. The sequences a and b are mapped into antipodal sequences p and
q, respectively, with components in {−1,+1} by means of the transformation
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Figure 7.3: Gold sequence generator

of (7-18). The preferred pair of antipodal maximal sequences with period 2m−1
are a pair with a periodic cross-correlation that takes only the three values
−t(m)/N, −1/N , and |t(m)− 2|/N , where

t(m) = 2
(m+2)/2� + 1 (7-30)

and 	x
 denotes the integer part of the real number x.
The Gold sequences [31] are a large set of sequences with period N = 2m−1

that may be generated by the modulo-2 addition of preferred pairs when m is
odd or m = 2 modulo-4. One sequence of the preferred pair is a decimation
by q of the other sequence. The positive integer q is either q = 2k + 1 or
q = 22k − 2k + 1, where k is a positive integer such that gcd(m, k) = 1 when
m is odd and gcd(m, k) = 2 when m = 2 modulo-4. Since the periodic cross-
correlation between any two Gold sequences in a set can take only three values,
the peak magnitude of the periodic cross-correlation between any two Gold
sequences of period N = 2m − 1 is

θmax =
t(m)

2m − 1
. (7-31)

For large values of m, θmax for Gold sequences exceeds the Welch bound by a
factor of

√
2 for m odd and a factor of 2 for m even.

One form of a Gold sequence generator is shown in Figure 7.3. If each
maximal sequence generator has m stages, different Gold sequences in a set are
generated by selecting the initial state of one maximal sequence generator and
then shifting the initial state of the other generator. Since any shift from 0 to
2m−2 results in a different Gold sequence, 2m−1 different Gold sequences can
be produced by the system of Figure 7.3. Gold sequences identical to maximal
sequences are produced by setting the state of one of the maximal sequence
generators to zero. Altogether, there are 2m + 1 different Gold sequences, each
with a period of 2m − 1, in the set.

Example 2. A set of Gold sequences is the set generated by the primitive
characteristic polynomials

f1(x) = 1 + x3 + x7, f2(x) = 1 + x+ x2 + x3 + x7 (7-32)
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which specify a preferred pair of maximal sequences. Since m = 7, there are
129 Gold sequences with period 127 in this set, and (7-31) gives θmax = 0.134.
Equation (2-43) indicates that there are only 18 maximal sequences with m =
7. For this set of 18 sequences, calculations indicate that θmax = 0.323. If
θmax = 0.134 is desired for a set of maximal sequences with m = 7, then one
finds that the set has only 6 sequences. This result illustrates the much greater
utility of Gold sequences in CDMA networks with many subscribers. �

As shown in Section 2.2, the generating function of the output sequence
generated by a linear feedback shift register with characteristic polynomial f(x)
may be expressed in the form

G(x) =
φ(x)

f(x)
. (7-33)

If the degree of f(x) is μ, then

φ(x) =

μ−1∑
i=0

xi
i∑

k=0

ckai−k (7-34)

where c0 = 1, the {ck} are the coefficients of f(x), and the {ak} are the initial
contents. If the sequence generators of Figure 7.2 have the primitive character-
istic polynomials f1(x) and f2(x) of degree m, then the generating function for
the Gold sequence is

G(x) =
φ1(x)

f1(x)
+

φ2(x)

f2(x)

=
φ1(x)f2(x) + φ2(x)f1(x)

f1(x)f2(x)
. (7-35)

Since the degrees of both φ1(x) and φ2(x) are less than m, the degree of the
numerator of G(x) must be less than 2m. Since the product f1(x)f2(x) has
the form of a characteristic polynomial of degree 2m, this product defines the
feedback coefficients of a single linear feedback shift register with 2m stages
that can generate the Gold sequences. The initial state of the register for any
particular sequence can be determined by equating the coefficients of the {xi}
on both sides of

2m−1∑
i=0

xi
i∑

k=0

ckai−k = φ1(x)f2(x) + φ2(x)f1(x) (7-36)

and then solving 2m linear equations. Thus, a Gold sequence of period 2m − 1
can be generated by a single linear feedback shift register with 2m stages.

A small set of Kasami sequences [31] comprises 2m/2 sequences with period
2m − 1 if m is even. To generate a set, a maximal sequence a with period
N = 2m − 1 is decimated by q = 2m/2 + 1 to form a binary sequence b with
period N/gcd(N, q) = 2m/2−1. The modulo-2 addition of a and any cyclic shift
of b from 0 to 2m/2 − 2 provides a Kasami sequence. By including sequence a,
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we obtain a set of 2m/2 Kasami sequences with period 2m − 1. The periodic
cross-correlation between any two Kasami sequences in a set can only take the
values −s(m)/N,−1/N , or |s(m)− 2|/N , where

s(m) = 2m/2 + 1. (7-37)

The peak magnitude of the periodic cross-correlation between any two Kasami
sequences is

θmax =
s(m)

N
=

1

2m/2 − 1
, m ≥ 2 . (7-38)

The Kasami sequences are optimal in the sense that θmax has the minimum
value for any set of sequences of the same size and period. For proof, we observe
that if M = 2m/2 and N = 2m − 1 = M2 − 1, m ≥ 2, then the Welch bound
implies that

Nθmax ≥ N

√
M − 1

MN − 1
=

√
N(M − 1)

M −N−1

=

√
(M + 1) (M − 1)2

M −N−1

> M − 1 = 2m/2 − 1, m ≥ 2. (7-39)

Since N is an odd integer, Al −Dl in (7-19) must be an odd integer, and hence
Nθmax must be an odd integer. Since 2m/2 + 1 is the smallest odd integer
greater than 2m/2 − 1, it follows that M = 2m/2 periodic antipodal sequences
of length N = 2m − 1, m ≥ 2, require

Nθmax ≥ 2m/2 + 1. (7-40)

Since Kasami sequences have Nθmax = 2m/2 + 1, they are optimal given their
size and period.

Example 3. If m = 10, there are 60 maximal sequences, 1025 Gold se-
quences, and 32 Kasami sequences with period 1023. The peak periodic cross-
correlations are 0.37, 0.06, and 0.03, respectively. �

A large set of Kasami sequences [31] comprises 2m/2(2m + 1) sequences if
m = 2 modulo-4 and 2m/2(2m + 1) − 1 sequences if m = 0 modulo-4. The
sequences have period 2m − 1. To generate a set, a maximal sequence a with
periodN = 2m−1 is decimated by q = 2m/2+1 to form a binary sequence b with
period N/gcd(N, q) = 2m/2−1 and then decimated by q1 = 2(m+2)/2+1 to form
another binary sequence c with period N/gcd(N, q1). The modulo-2 addition
of a, a cyclic shift of b, and a cyclic shift of c provide a Kasami sequence with
period N . The periodic cross-correlations between any two Kasami sequences
in a set can only take the values −1/N, −t(m)/N, |t(m)− 2| ./N, −s(m)/N ,
or |s(m)− 2| ./N . A large set of Kasami sequences includes both a small set of
Kasami sequences and a set of Gold sequences as subsets. Since t(m) ≥ s(m),
the value of θmax for a large set is

θmax =
t(m)

2m − 1
=

2
(m+2)/2� + 1

2m − 1
. (7-41)
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Figure 7.4: Generator of Kasami sequences with period 255

This value is suboptimal, but the large size of these sets makes them an attrac-
tive option for asynchronous CDMA networks.

Example 4. A generator of a large set of 4111 Kasami sequences withm =
8 and period 255 is illustrated in Figure 7.4. The two shift registers at the top of
the figure by themselves generate a small set of 16 Kasami sequences withm = 8
and period 15. The top 8-stage shift register generates a maximal sequence
with period 255, and the 4-stage shift register below it generates a maximal
sequence with period 15. The bottom shift register generates a nonmaximal
sequence with period 85. �

In a network of similar systems, interfering sequences are substantially sup-
pressed during acquisition when code modulation is absent if the periodic cross-
correlations among sequences are small, as they are if all the sequences are Gold
or Kasami sequences. Some large families of polyphase sequences have the po-
tential to provide better acquisition performance than the Gold or Kasami
sequences. For a positive integer m, a family A of M = N + 2 quaternary
or Z4 sequences, each of period N = 2m − 1, with θmax that asymptotically
approaches the Welch bound has been identified [34]. In contrast, a small set
of binary Kasami sequences has only

√
N + 1 sequences.

Aperiodic Sequences

When asynchronous CDMA signals are received, low aperiodic
cross-correlations with the desired signal are the most important determinant
of the system performance. Asynchronous signals are received typically when
mobiles independently transmit to a receiver, as in the uplinks of cellular net-
works (Section 8.3). The symbol transitions of asynchronous multiple-access
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signals at a receiver are not simultaneous, usually because of changing path-
length differences among the various communication links. Since the spreading
sequences are shifted relative to each other, sets of sequences with small periodic
cross-correlations for any relative shifts are necessary, but not always sufficient,
to limit the effect of asynchronous multiple-access interference.

The aperiodic autocorrelation of a polyphase sequence {pn}G−1
n=0 of length G

is defined as

A(p,l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
G

G−1−l∑
n=0

pn+lp
∗
n, 0 ≤ l ≤ G− 1

1
G

G−1+l∑
n=0

pnp
∗
n−l, −G+ 1 ≤ l < 0

0, |l| ≥ G.

(7-42)

The aperiodic cross-correlation of two polyphase sequences {pn}G−1
n=0 and

{qn}G−1
n=0 of length G is defined as

A(p, q,l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
G

G−1−l∑
n=0

pn+lq
∗
n, 0 ≤ l ≤ G− 1

1
G

G−1+l∑
n=0

pnq
∗
n−l, −G+ 1 ≤ l < 0

0, |l| ≥ G

(7-43)

and A(p, p,l) = A(p,l).

Complementary Codes

The Welch bound (7-26) indicates that it is not possible for a set of conven-
tional spreading sequences to have periodic cross-correlations that are equal to
zero. To overcome this limitation of both synchronous and asynchronous sys-
tems, spreading sequences may be combined to form complementary codes [94].
Each complementary code comprises a set or flock of elementary sequences that
are separately transmitted, received, and applied to separate correlators. The
combined correlator outputs provide zero aperiodic autocorrelation sidelobes
and zero aperiodic cross-correlations with other complementary codes. Con-
sequently, a complementary-coded direct-sequence system is capable of largely
suppressing asynchronous multipath and multiple-access interference.

Consider a network of K users, each of which uses a complementary code
instead of a conventional spreading sequence. Let C(k) = {cl(k)}Ll=1 denote
the kth complementary code, k = 1, 2, . . . ,K, which comprises a flock of L
elementary sequences, each of which has the form

cl(k) = [cl,1(k), cl,2(k), . . . , cl,N (k)] , l = 1, 2, . . . , L (7-44)

where N is the length of an elementary sequence. The spreading factor, which
determines the amount of spectral spreading due to the complementary code,
is LN . The L elementary sequences are transmitted to the receiver in L in-
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dependent subchannels. The receiver does separate chip-matched filtering of
each elementary sequence and separate correlations with receiver-generated el-
ementary sequences. The results of the separate correlations are combined to
generate the symbol metrics for synchronization and decoding.

The capability of the receiver to synchronize with the desired complementary
code and to reject multiple-access interference from other complementary codes
depends on the complementary aperiodic correlation function. This function is
defined as

Θ [C(k1),C(k2), ν] =

L∑
l=1

A [cl(k1), cl(k2), ν] (7-45)

where A [cl(k1), cl(k2), ν] , which is defined by (7-42) and (7-43), is the aperiodic
autocorrelation function of cl(k1) if k1 = k2 and the aperiodic cross-correlation
function of cl(k1) and cl(k2) if k1 �= k2. Ideal complementary codes provide

Θ [C(k1),C(k2), ν] =

{
LN , k1 = k2, ν = 0
0, otherwise

(7-46)

which overcomes the limitations of the Welch bound on a set of conventional
spreading sequences.

There are two different ways to transmit elementary codes via independent
subchannels: time-division multiplexing and frequency-division multiplexing.
For time-division multiplexing, the L elementary sequences are serially trans-
mitted in different time slots, and guard intervals prevent the overlap of adja-
cent sequences because of multipath propagation, propagation delay, or timing
inaccuracies. In a direct-sequence system, the time-division multiplexing of
complementary codes causes a reduction of the spreading factor and thus a
reduction of the protection against narrowband interference.

For frequency-division multiplexing, the L elementary sequences are trans-
mitted simultaneously by different carrier frequencies in nonoverlapping spec-
tral regions. Both time-division and frequency-division multiplexing lower the
spreading factor of a direct-sequence system because of the guard intervals and
the carrier separations, respectively.

Although the complementary codes are highly desirable in theory, there are
practical and implementation obstacles to their use. A primary limitation is
the small number of users that can be supported because of the relatively small
number of complementary codes for a specified flock size. Time-selective or
frequency-selective fading is likely to undermine the accurate calculation of the
complementary aperiodic correlation function. Timing synchronization among
the subchannel outputs is a significant problem, and there are other practical
issues [94]. Sets of eight and four complementary codes are used in the IEEE
802.11b standards for point-to-multipoint communications.
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7.3 Direct-Sequence Systems with Short
Spreading Sequences

DS-BPSK Systems with Conventional Receivers

Consider a network with DS-BPSK systems and K users, each of which uses a
distinct spreading sequence that causes CDMA interference in the receiver of
each user. The BPSK is coherently detected, short spreading sequences with
spreading factor G are used, and every receiver has the form of Figure 2.14.
The spreading waveform is

pk (t) =

∞∑
n=−∞

pk,nψ(t− nTc), 0 ≤ k ≤ K − 1 (7-47)

where pk,n ∈ {−1,+1}, the {pk,n} are the spreading sequences, and ψ (t) is
the chip waveform. The chip waveform is assumed to be largely confined to an
interval of chip-duration Tc and normalized so that

∫ Tc

0

ψ2(t)dt =
1

G
. (7-48)

The K spreading sequences in the network are often called signature sequences.
The multiple-access interference that enters a receiver synchronized to a

desired signal 0 is

i(t) =

K−1∑
k=1

√
2Ekdk (t− τk) pk (t− τk) cos (2πfct+ φk) (7-49)

where K − 1 is the number of interfering direct-sequence signals, Ek is the
received energy per symbol in interference signal k, dk (t) is its data modulation,
pk(t) is its spreading waveform, τk is its relative delay, and φk is the relative
phase shift of interference signal k. The duration of each data symbol is Ts.

Carrier removal is followed by chip-matched filtering. The desired symbol
over [0, Ts] is d0. As shown in Section 2.4, the decision metric corresponding to
d0 is

V = d0
√

Es + V1 + V2 (7-50)

where the component due to the multiple-access interference is

V1 =
G−1∑
i=0

p0,iJi (7-51)

the component due to the noise is

V2 =

G−1∑
i=0

p0,iNs,i (7-52)
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and

Ji =

K−1∑
k=1

√
Ekdk cosφk

∫ (i+1)Tc

iTc

pk (t− τk)ψ(t− iTc) dt (7-53)

Ns,i =
√
2

∫ (i+1)Tc

iTc

n(t)ψ(t− iTc) cos 2πfct dt. (7-54)

Synchronous CDMA

Synchronous communication signals have data symbols and spreading sequences
with a fixed timing relationship. Synchronous signals are received when a base
station transmits to multiple mobiles, as in the downlinks of cellular networks
(Section 8.4). For synchronous CDMA and coherent demodulation, τk = θk =
0, 1 ≤ k ≤ K − 1. Thus, the substitution of (7-48), (7-47), and (7-53) into
(7-51) yields

V1 =

K−1∑
k=1

√
Ekdkθp0,pk

(0) (7-55)

where θp0,pk
(l) is the periodic cross-correlation of the desired spreading sequence

and interfering sequence k.
Consider hard-decision decoding of a single desired symbol. Let

d = [d0 . . . dK−1]
T

(7-56)

denote the K × 1 vector of data symbols that are received during the symbol
time interval. Let

pk = [pk,0 · · · pk,G−1]
T
, 0 ≤ k ≤ K − 1 (7-57)

denote the G× 1 vector of the kth spreading sequence. The vector of sampled
chip-matched filter outputs may be represented as

y = PAd+ n (7-58)

where column k of the G×K matrix P is the vector pk, and A is the diagonal
matrix with Ak =

√
Ek, 0 ≤ k ≤ K as its kth diagonal element. Since the

desired symbol is d0 = ±1, the decision for this symbol is

d̂0 = sgn[pT
0 y] (7-59)

where the signum function is defined by (1-196).

Let dint = [d1 . . . dK−1]
T
denote the (K − 1) × 1 vector of interfering code

symbols. Substituting (7-58) into (7-59), we obtain

d̂0 = sgn[GA0d0 +GA0B (dint) + pT
0 n] (7-60)

where the noise term pT
0 n is a zero-mean Gaussian random variable,

B (dint) =

K−1∑
i=1

diR0i

√
Ei
E0

(7-61)
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and the correlation matrix for real-valued spreading sequences is defined as

R = G−1PTP. (7-62)

The variance of the noise term is

var
[
pT
0 y
]
=E
[
pT
0 nn

Tp0

]

=
N0

2
. (7-63)

Assuming equally likely code symbols, we derive the symbol error probability
for user 0 as a function of the correlation matrix. Let S0 denote the set of
the 2K−1 distinct vectors that dint can equal. Let dn ∈ S0 denote the nth
one of those distinct vectors. By symmetry, we can assume that d0 = 1 in
the evaluation of the symbol error probability. Conditioning on dint = dn,
1 ≤ n ≤ 2K−1, we find that a symbol error occurs if the sum of the three
terms in (7-60) is negative. Therefore, the conditional symbol error probability
for user k is

Ps (dn) = Q

(√
2E0
N0

[1 +B (dn) ]

)
. (7-64)

If all dn ∈ S0 are equally likely, then the symbol error probability for user k is

Ps = 2−(K−1)
2K−1∑
n=1

Ps (dn) . (7-65)

If K = 2 and ρ = R01, (7-64) and (7-65) yield the symbol error probability
for symbol 0 and the conventional receiver:

Ps(0) =
1

2
Q

(√
2E0
N0

(
1− |ρ|

√
E1
E0

))
+

1

2
Q

(√
2Ek
N0

(
1 + |ρ|

√
E1
E0

))

≤ Q

(√
2E0
N0

(
1− |ρ|

√
E1
E0

))
. (7-66)

For DS-QPSK, the receiver processing is the same except that the inphase and
quadrature components of the received signal are processed separately. Two
streams of symbol metrics are produced and recombined into a single stream of
symbol metrics.

Asynchronous CDMA

Consider the previously described DS-CDMA network with K asynchronous
users in which BPSK is coherently detected and every receiver has the form

of Figure 2.14. Let dk = (d
(k)
−1 , d

(k)
0 ) denote the vector of the two consecutive

binary code symbols of asynchronous multiple-access interference signal k that
are received during the detection of a symbol of the desired signal in the time
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interval [0, Ts). If the transition between the two code symbols occurs at time
τk, then the first symbol began Ts−τk seconds earlier. Therefore, (7-51) implies
that

V1 =
K−1∑
k=1

√
Ek cosφk

[
d
(k)
1 R0k (τk) + d

(k)
0 R0k (τk)

]
, 0 ≤ τk ≤ Ts (7-67)

where the continuous-time partial cross-correlation functions are

R0k(τk) =

∫ τk

0

p0(t)pk(t+ Ts − τk)dt (7-68)

R0k(τk) =

∫ Ts

τk

p0(t)pk(t− τk)dt. (7-69)

Let τk = νkTc + εk, where νk is an integer such that 0 ≤ νk ≤ G − 2, and
0 ≤ εk < Tc. Substitution of (7-47) into (7-68) yields

R0k(τk) =

∞∑
n=−∞

pk,n

G−1∑
i=0

p0,i

∫ νkTc+εk

0

ψ [t− (n+ ν −G)Tc − ε]ψ (t− iTc) dt.

(7-70)
A normalized rectangular chip waveform has

ψ(t) =

{ 1√
Ts
, 0 ≤ t < Tc

0, otherwise.
(7-71)

Since the integrand vanishes unless n = i +G − νk or n = i +G− νk − 1, the
rectangular chip waveform and (7-43) imply that

R0k(τk) =

νk−1∑
i=0

p0,ipk,i+G−νk

∫ νkTc+εk

0

ψ (t− iTc − εk)ψ (t− iTc) dt

+

νk∑
i=0

p0,ipk,i+G−νk−1

∫ νkTc+εk

0

ψ (t− iTc + Tc − εk)ψ (t− iTc) dt

=

νk−1∑
i=0

p0,ipk,i+G−νk

Tc − εk
Ts

+

νk∑
i=0

p0,ipk,i+G−νk−1
εk
Ts

.

=A (p0, pk, νk −G)
Tc − εk

Ts
+A (p0, pk, νk −G+ 1)

εk
Ts

. (7-72)

Similarly, we obtain

R0k (τk) = A (p0, pk, νk)
Tc − εk

Ts
+A (p0, pk, νk + 1)

εk
Ts

. (7-73)

If d
(k)
−1 = d

(k)
0 and νk = εk = 0, then (7-67) reduces to (7-55).

For most sets of short spreading sequences, the aperiodic cross-correlations
are larger than the periodic cross-correlations and hence degrade system perfor-
mance more. In addition, timing synchronization is impaired by the aperiodic
cross-correlations and autocorrelations.
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7.4 Alternative Spreading Systems

Chaotic Spread-Spectrum Systems

Chaotic signals are deterministic wideband signals that resemble noise wave-
forms and are derived from nonlinear dynamic systems. Chaotic sequences are
generated by a discrete-time sampling and nonlinear mapping of chaotic sig-
nals. These aperiodic sequences are desirable as spreading sequences in chaotic
spread-spectrum systems because they comprise an almost unlimited number of
sequences with very low cross correlations. They potentially outperform Gold,
Kasami, and other sequences in multiuser communication systems [28, 42, 96].

The main problem impeding the practical implementation of chaotic coher-
ent spread-spectrum systems is the development of the receiver synchronization
system. Despite their deterministic origin, chaotic sequences are hypersensitive
to the initial conditions of their generating devices. If two identical but distinct
chaotic systems begin with the same initial conditions, their generated chaotic
sequences quickly diverge. Since chaotic sequences cannot be easily repeated,
chaotic systems require modified modulations.

A practical modulation is noncoherent differential chaos-shift keying
(DCSK), which sacrifices 6 dB in performance over the AWGN channel relative
to DPSK but eliminates the need for synchronization with a chaotic sequence.
As illustrated in Figure 7.5a, each bit is split into two successive slots of equal
duration. The first slot is allocated to the reference chaotic sequence, and the
second slot is allocated to the data chaotic sequence. Depending on the bit
value, the data sequence is either the same as the reference sequence or an in-
verted version of it. Let G denote the spreading factor, which is the ratio of the
bit duration to the chip duration. The reference sequence for bit i is the spread-
ing sequence p1i, . . . , pbi, where b = G/2. The data sequence is dip1i, . . . , dipbi,
where di = ±1 determines the bit value. The switch alternately selects one of
these sequences, and the transmitted sequence for bit i is

ri = [p1i, . . . , pbi, dip1i, . . . , dipbi] (7-74)

The transmission of the reference sequence removes the need for the demodu-
lator to generate a synchronized reference chaotic sequence.

The noncoherent demodulator is shown in Figure 7.5b. In the absence of
noise, the ADC output sequence for bit i is proportional to (cosφ)ri in the upper
branch and (sinφ)ri in the lower branch, where φ is the carrier phase. The upper
and lower mixers perform correlations with half-bit delayed sequences. Their
outputs for bit i are (cos2 φ)si and (sin2 φ)svi, respectively, where

si = [q1i, . . . , qbi, di . . . , di] , qki = di−1pk,i−1pk,i, 1 ≤ k ≤ b. (7-75)

The switches pass only the second half of their input sequences. Therefore,
the summer output is bdi = Gdi/2. This output can be used to make a hard
decision or as a symbol metric.

Relative to DPSK, DCSK loses 3 dB because of its orthogonal signaling and
another 3 dB because each data bit uses only one-half of the received energy
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Figure 7.5: Chaotic direct-sequence system with DCSK modulation: (a) trans-
mitter and (b) receiver

during detection. Since the spreading factor is reduced by a factor of two,
the amount of interference that can be suppressed is reduced accordingly. A
practical limitation of DCSK is the requirement of a radio-frequency delay line.
Although these limitations can be somewhat mitigated by more elaborate vari-
ants of DCSK, the complexity and the substantial performance loss remain as
significant disadvantages.

Ultra-Wideband Systems

An ultra-wideband (UWB) system is one with a 10-dB bandwidth exceeding
500MHz or a fractional bandwidth, which is the ratio of the 10-dB bandwidth
to the center frequency, exceeding 0.2. Direct-sequence systems are not practi-
cal at such bandwidths because of the hardware requirements associated with
the carrier-frequency modulation. UWB communication systems share some
features of spread-spectrum systems but differ in their applications. Primar-
ily because of emission-level constraints imposed by regulatory agencies, UWB
systems are relegated to short-range communications, but the information rate
is very high. In contrast, spread-spectrum systems are not intended for high-
throughput communications. The UWB systems achieve their wide bandwidths
by transmitting short pulses that directly generate a wide-bandwidth signal
[24, 25]. Consequently, UWB systems do not need the mixers and oscilla-
tors required for upconversion and downconversion in direct-sequence systems.
However, although operating at low energy levels, UWB systems are far more
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expensive and difficult to design than spread-spectrum systems.
Features shared with spread-spectrum systems that are even stronger in

UWB systems include a low detectability, a high level of security, and the
capability to accommodate multiple-access communications. UWB systems ac-
complish the latter with orthogonal pulses. In common with direct-sequence
systems, UWB systems are susceptible to a performance loss due to the pres-
ence of narrowband interference. Although the interference occupies a spectral
band much smaller than that occupied by the UWB signal, the power of the
narrowband signal in that small band can degrade the UWB system.

There are two major classes of UWB communication systems: impulse-radio
and multiband-OFDM. The impulse-radio UWB systems have some similari-
ties with conventional wireless direct-sequence systems. They use signature
sequences either to specify pulse positions, which is called pulse-position modu-
lation (PPM), or to specify pulse polarities, which is called bi-phase modulation
(BPM).

In PPM-UWB systems, a symbol interval is partitioned into M subintervals
of width Ts/M, and a pulse is transmitted in a single subinterval to convey
log2 M bits of information. A transmitted pulse, which can have a variety
of different shapes of short duration, is denoted by ψ (t) .The ith transmitted
symbol has the form

s (t) = A
G−1∑
k=0

ψ (t− iTs − pkTc − τdi) , iTs ≤ t ≤ (i+ 1)Ts (7-76)

where pk is the kth chip of the signature sequence, A and τ are constants, and
di = ±1 is the ith data symbol. The receiver performs two correlations with
the signals

s0 (t) =
G−1∑
k=0

ψ(t− iTs − pkTc + τ)

s1 (t) =

G−1∑
k=0

ψ (t− iTs − pkTc − τ) (7-77)

before deciding whether di = +1 or −1. Coherent demodulation based on
arrival-time estimation is difficult. PPM can be demodulated noncoherently
by implementing differential pulse-position modulation, which entails encoding
each pulse position relative to the previous one. The receiver measures the
difference in the arrival times of successive pulses.

In BPM-UWB systems, a transmitted symbol has the same form as the
conventional DS-BPSK system except that the pulses are much narrower than
chip waveforms. In these systems, a spreading sequence combined with a data
symbol controls the polarities of a series of pulses that represent a data symbol.
The ith transmitted symbol has the form

s (t) = A

G−1∑
k=0

dipkψ (t− kTs) , iTs ≤ t ≤ (i+ 1)Ts (7-78)
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The receiver has the same form as the receiver of a conventional DS-BPSK
system.

In multiband-OFDM, symbols have the form

s (t) = Re

{
N−1∑
n=0

sn,i (t− iT0) exp[j2πfnt]

}
, iT0 ≤ t ≤ (i+ 1)T0 (7-79)

where sn,i (t) is the nth OFDM subsymbol of duration T0 transmitted over
carrier frequency fn. Both the transmitter and receiver configurations are very
similar to those of OFDM systems.

Because of the brevity of the transmitted pulses, reflected multipath pulses
do not arrive soon enough to cause fading. However, they can still cause inter-
pulse interference if the pulses are generated at a sufficiently high rate. Since the
large bandwidth of UWB signals means that a large number of distinct multi-
path components arrive at the receiver, UWB systems could potentially benefit
from a high diversity order. However, the realization of the diversity benefit is
impeded by two major factors. First, the power in each transmitted pulse is
severely constrained to prevent the disruption of other communication systems.
Each multipath component arriving at the receiver usually has a small fraction
of the energy in the transmitted pulse. Second, a rake receiver requires a large
number of fingers and is difficult to implement because of the synchronization
requirements.

7.5 Systems with Long Spreading Sequences

Long spreading sequences that extend over all code symbols provide an arbitrary
number of sequences and more system security than short periodic sequences.
Furthermore, long sequences ensure that successive code symbols are covered by
different sequences, thereby limiting the time duration of an unfavorable cross-
correlation due to multiple-access interference. Modeling long sequences as
random spreading sequences is clearly desirable, but even if short sequences are
used, the random-sequence model gives fairly accurate performance predictions.

The analysis and comparisons of CDMA systems are greatly facilitated by
applying Jensen’s inequality.

A function g(·) defined on an open interval I is convex if

g(px+ (1− p)y) ≤ pg(x) + (1− p)g(y) (7-80)

for x, y ∈ I and 0 ≤ p ≤ 1. Suppose that g(x) has a continuous, nondecreasing
derivative g′(x) on I. The inequality is valid if p = 0 or 1. If x ≥ y and
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0 < p < 1,

g(px+ (1− p)y)− g(y) =

∫ px+(1−p)y

y

g′(z)dz

≤ p(x− y)g′(px+ (1− p)y)

≤ p

1− p

∫ x

px+(1−p)y

g′(z)dz

=
p

1− p
[g(x)− g(px+ (1− p)y)]. (7-81)

Simplifying this result, we obtain (7-80). If y ≥ x, a similar analysis again
yields (7-80). Thus, if g(x) has a continuous, nondecreasing derivative on I,
it is convex. If g(x) has a nonnegative second derivative on I, it is convex. If
g(x) has a continuous, increasing derivative or a positive second derivative on
I, it is said to be strictly convex.

Lemma 1. If g(x) is a convex function on the open interval I, then the
left derivative g− (x) and the right derivative g+ (x) exist, and

g(y) ≥ g(x) + g+(x)(y − x) (7-82)

for all y, x in I.
Proof. If y − x ≥ z > 0, then substituting p = 1 − z/(y − x) into (7-80)

gives

g(x+ z) ≤
(
1− z

y − x

)
g(x) +

z

y − x
g(y)

which yields

g(x+ z)− g(x)

z
≤ g(y)− g(x)

y − x
, y − x ≥ z > 0. (7-83)

If v > 0 and z > 0, then (7-80) with p = z/v + z implies that

g(x) ≤ z

v + z
g(x− v) +

v

v + z
g(x+ z)

and hence
g(x)− g(x− v)

v
≤ g(x+ z)− g(x)

z
, v, z > 0. (7-84)

Inequality (7-83) indicates that the ratio [g(y)− g(x)]/(y− x) decreases mono-
tonically as y → x from above, and (7-84) implies that this ratio has a lower
bound. Therefore, the right derivative g+(x) exists on I.

If x− y ≥ v > 0, then (7-80) with p = 1− v/(x− y) implies that

g(x− v) ≤
(
1− v

x− y

)
g(x) +

v

x− y
g(y)

which yields

g(x)− g(y)

x− y
≤ g(x)− g(x− v)

v
, x− y ≥ v > 0. (7-85)
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This inequality indicates that the ratio [g(x) − g(y)]/(x − y) increases mono-
tonically as y → x from below, and (7-84) implies that this ratio has an upper
bound. Therefore, the left derivative g−(x) exists on I. Taking the limits as
z → 0 and v → 0 in (7-84) yields

g−(x) ≤ g+(x). (7-86)

Taking the limit as z → 0 in (7-83), we find that (7-82) is valid for all y, x ∈ I.
�

Jensen’s Inequality If X is a random variable with a finite expected value
E[X], and g(·) is a convex function on an open interval containing the range of
X, then

E[g(X)] ≥ g(E[X]). (7-87)

Proof. Set y = X and x = E[X] in (7-82), which gives g(X) ≥ g(E[X]) +
g+(E[X])(X − E[X]). Taking the expected values of the random variables on
both sides of this inequality gives Jensen’s inequality. �

In the subsequent applications, we have

g (X) = Q
(
X−1/2

)
, X > 0. (7-88)

Since the second derivative of g(x) is nonnegative over the interval such that
0 < x ≤ 1/3, g(x) is a convex function over that interval. Therefore,

E [g (X)] ≥ Q
{
(E [X])

−1/2
}
, 0 < X ≤ 1

3
. (7-89)

DS-BPSK Systems

Consider a network of DS-BPSK systems with spreading sequences that are
modeled as independent random binary sequences with chip duration Tc. The
data sequences of the interference signals are modeled as independent random
binary sequences with data-symbol duration Ts = GTc. Therefore, these se-
quences can be subsumed into the random binary spreading sequences with
no loss of generality. Since pk(t) is determined by an independent, random
spreading sequence, only time delays modulo-Tc are significant, and thus we
can assume that 0 ≤ τk < Tc in (7-53) without loss of generality. Therefore,
the substitution of (7-47) into (7-53) yields

Ji =

K−1∑
k=1

√
Ek cosφk

[
pk,i−1

∫ iTc+τi
iTc

ψ(t− iTc)ψ[t− (i− 1)Tc − τk]dt

+pk,i
∫ (i+1)Tc

iTc+τi
ψ(t− iTc)ψ(t− iTc − τk)dt

]
.

(7-90)

The partial autocorrelation for the normalized chip waveform is defined as

Rψ(s) = Ts

∫ s

0

ψ(t)ψ(t+ Tc − s)dt, 0 ≤ s < Tc. (7-91)
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For rectangular chips in the spreading waveform, the substitution of (7-71)
into (7-91) gives

Rψ(s) = s (rectangular). (7-92)

A normalized sinusoidal chip waveform has

ψ(t) =

{ √
2
Ts

sin
(

π
Tc
t
)
, 0 ≤ t ≤ Tc

0, otherwise.
(7-93)

For sinusoidal chips in the spreading waveform, the substitution of (7-93)
into (7-91), use of a trigonometric identity, and evaluation of integrals yield

Rψ(s) =
Tc

π
sin

(
π

Tc
s

)
− s cos

(
π

Tc
s

)
(sinusoidal). (7-94)

Substitution of (7-91) into (7-90) and appropriate changes of variables in
the integrals yield

Ji =
∑K−1

k=1

√
Ei

Ts
cosφk[pk,i−1Rψ(τk) + pk,iRψ(Tc − τk)p]. (7-95)

When

φ = (φ1, φ2, . . . , φK−1), τ = (τ1, τ2, . . . , τK−1) (7-96)

are given, (7-95) indicates that Ji and Ji+l, |l| > 1, are statistically independent.
However, since adjacent terms Ji and Ji+1 contain the same random variable
qk,i, it does not appear at first that adjacent terms in (7-51) are statistically
independent even when φ and τ are given. The following lemma [103] resolves
this issue.

Lemma 2. Suppose that {αi} and {βi} are statistically independent, ran-
dom binary sequences. Let x and y denote arbitrary constants. Then αiβjx
and αiβky are statistically independent random variables when j �= k.

Proof. Let P (αiβjx = a, αiβky = b) denote the joint probability that
αiβjx = a and αiβky = b. From the theorem of total probability, it follows
that

P (αiβjx = a, αiβky = b) =

{
P (αiβjx = a, αiβky = b, αi = 1

+P (αiβjx = a, αiβky = b, αi = −1)

}

= P (βjx = a, βky = b, αi = 1) + P (βjx = −a, βky = −b, αi = −1).

From the independence of {αi} and {βj} and the fact that they are random
binary sequences, we obtain a simplification for j �= k, x �= 0, and y �= 0:

P (αiβjx = a, αiβky = b) = P (βjx = a)P (βky = b)P (αi = 1)

+ P (βjx = −a)P (βky = −b)P (αi = −1)

=
1

2
P
(
βj =

a

x

)
P

(
βk =

b

y

)
+

1

2
P
(
βj = −a

x

)
P

(
βk = − b

y

)
.
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Since βj equals +1 or −1 with equal probability, P (βj = a/x) = P (βj = −a/x)
and thus

P (αiβjx = a, αiβky = b) = P (βj =
a

x
)P

(
βk =

b

y

)

= P (βjx = a)P (βky = b).

A similar calculation gives

P (αiβjx = a)P (αiβky = b) = P (βjx = a)P (βky = b).

Therefore,

P (αiβjx = a, αiβky = b) = P (αiβjx = a)P (αiβky = b)

which satisfies the definition of statistical independence of αiβjx and αiβky.
The same relation is trivial to establish for x = 0 or y = 0. �

The lemma indicates that when φ and τ are given, the terms in (7-51)
are statistically independent. Since the {pk,i} are identically distributed, the
{Ji} are identically distributed, and each term of V is identically distributed.
Equations (7-51) and (7-90) imply that the conditional variance of V1 is

var(V1) =

G−1∑
i=0

var(Ji) =

K−1∑
k=1

Ek
G

h (τk) cos
2 φk (7-97)

where

h (τk) =
1

T 2
c

[R2
ψ(τk) +R2

ψ(Tc − τk)] (7-98)

is the chip function. Using (7-92) and (7-94), we find that for rectangular chip
waveforms,

h (τk) =
2τ2k − 2τkTc + T 2

c

T 2
c

(7-99)

and for sinusoidal chip waveforms,

h (τk)=
2

π2
sin2

(
π
τk
Tc

)
+

(
2
τ2k
T 2
c

− 2
τk
Tc

+ 1

)
cos2

(
π
τk
Tc

)
+

1

π
sin

(
2π

τk
Tc

)
.

(7-100)

The chip factor is the average value of the chip function. If each τk is
uniformly distributed over [0, Tc] , the chip factor is

h = E[h (τk)] =
1

Tc

∫ Tc

0

h (τk) dτk. (7-101)

Integrations using (7-99) and (7-100) give

h =

{
2
3 , rectangular

1
3 + 3

2π2 , sinusoidal.
(7-102)
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Since the terms of V1 in (7-51) are independent, identically distributed, zero-
mean random variables given φ and τ , the central limit theorem (corollary 1,
Appendix A.2) implies that V1 converges in distribution as G → ∞ to a Gaus-
sian random variable. Since the noise component has a Gaussian distribution
and is independent of V1, V has an approximate Gaussian distribution with

E[V ] = d0
√

Es, var (V ) =
N0

2
+ var (V1) . (7-103)

We derive the symbol error probability for a system in which hard decisions
are made on successive symbol metrics to produce a symbol sequence that is
applied to a hard-decision decoder. The Gaussian distribution of the symbol
metric V implies that the conditional symbol error probability given φ and τ
is

Ps(φ, τ ) = Q

[√
2Es

N0e(φ, τ )

]
(7-104)

where Q(x) is defined by (1-43), and the equivalent noise PSD is defined as

N0e(φ, τ ) = N0 +
2

G

K−1∑
k=1

Ekh (τk) cos2 φk. (7-105)

Asynchronous Received Signals

When asynchronous signals are received, we assume that the time delays are
independent and uniformly distributed over [0, Tc) and that the phase angles
are uniformly distributed over [0, 2π). Therefore, the symbol error probability
for symbol 0 is

Ps (0) =

(
2

πTc

)K−1 ∫ π/2

0

. . .

∫ π/2

0

∫ Tc

0

. . .

∫ Tc

0

Ps(φ, τ )dφ dτ (7-106)

where the fact that cos2 φk takes all its possible values over [0,π/2) has been used
to shorten the integration intervals. The conditional symbol error probability
given φ is defined as

Ps(φ) =

(
1

Tc

)K−1 ∫ Tc

0

. . .

∫ Tc

0

Ps(φ, τ )dτ . (7-107)

A closed-form approximation to Ps(φ) greatly simplifies the computation of Ps,
which reduces to

Ps (0) =

(
2

π

)K−1 ∫ π/2

0

. . .

∫ π/2

0

Ps(φ)dφ. (7-108)

To approximate Ps(φ), we first obtain upper and lower bounds on it.
Using calculus for the rectangular chip waveform and a plot for the sinusoidal

chip waveform, we find that

h (τk) ≤ 1, 0 ≤ τk ≤ Tc. (7-109)
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Using this upper bound successively in (7-105), (7-104), and (7-107), and per-
forming the elementary integrations that result, we obtain

Ps(φ) ≤ Q

[√
2Es

N0u(φ)

]
(7-110)

where

N0u(φ) = N0 +
2

G

K−1∑
k=1

Ek cos2 φk. (7-111)

To obtain a lower bound on Ps(φ), we observe that (7-104) and (7-107)
indicate that Ps(φ) can be expressed as

Ps(φ) = Eτ

[
Q

{
N0e(φ, τ )

2Es

}−1/2
]

(7-112)

where the expectation is with respect to τ , each component of which is uni-
formly distributed over [0, Tc). Successive applications of (7-88) and (7-89) in-
dicate that if

0 <
N0e(φ, τ )

2Es
≤ 1

3
(7-113)

then

Ps(φ) ≥ Q

[√
2Es

N0l(φ)

]
(7-114)

where

N0l(φ) = N0 +
2h

G

K−1∑
k=1

Ek cos2 φk. (7-115)

Relations (7-105), (7-109), and cos2 φk ≤ 1 indicate that (7-113) is satisfied for
all τ and φ if

Es ≥
3

2

(
N0 +

2Et
G

)
(7-116)

where the total received interference energy per symbol is

Et =
K−1∑
k=1

Ek. (7-117)

If N0 is negligible, then (7-115) and (7-111) give N0l/N0u = h. Thus, a good
approximation is provided by

Ps(φ) ≈ Q

[√
2Es

N0a(φ)

]
(7-118)

where

N0a(φ) = N0 +
2
√
h

G

K−1∑
k=1

Ek cos2 φk. (7-119)
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Figure 7.6: Symbol error probability of DS-BPSK system in presence of single
multiple-access interference signal and Es/N0 = 15dB

If N0 is negligible, then N0u/N0a = N0a/N0l = 1/
√
h. Therefore, in terms of

the value of Es needed to ensure a given Ps(φ), the error in using approxima-
tion (7-118) instead of (7-107) is bounded by 10 log10(1/

√
h) in decibels, which

equals 0.88 dB for rectangular chip waveforms and 1.57 dB for sinusoidal chip
waveforms.

Example 5. Suppose that rectangular chip waveforms with h = 2/3 are
used, Es/N0 = 15dB, and K = 2. Figure 7.6 illustrates four different eval-
uations of Ps(0) as a function of GEs/E1, the despread signal-to-interference
ratio, which is the signal-to-interference ratio after taking into account the
beneficial results from the despreading in the receiver. The accurate approxi-
mation is computed from (7-104) and (7-106), the upper bound from (7-110)
and (7-108), the lower bound from (7-114) and (7-108), and the simple approx-
imation from (7-118) and (7-108). The figure shows that the accurate approx-
imation moves from the lower bound toward the simple approximation as the
symbol error probability decreases. For Ps = 10−5, the simple approximation
is less than 0.3 dB in error relative to the accurate approximation.

Figure 7.7 compares the symbol error probabilities for K = 2 to K = 4,
rectangular chip waveforms and Es/N0 = 15dB. The simple approximation is
used for Ps(0), and the abscissa shows GEs/E1, where E1 is the symbol energy of
each equal-power interfering signal. The figure shows that Ps (0) increases with
K, but the shift in Ps is mitigated somewhat because the interference signals
tend to partially cancel each other. �
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Figure 7.7: Symbol error probability of DS-BPSK system in presence of K − 1
equal-power multiple-access interference signals and Es/N0 = 15dB

The preceding bounding methods can be extended to the bounds on Ps(φ)
by observing that cos2 φk ≤ 1 and h ≤ 1 for the upper bound and interpreting
successive integrals as successive expected values over the {φk}, where each φk

is uniformly distributed over [0, π/2). We obtain

Q

(√
2Es

N0 + hEt/G

)
≤ Ps (0) ≤ Q

[√
2Es

N0 + 2Et/G

]
. (7-120)

A simple approximation is provided by

Ps (0) ≈ Q

(√
2Es

N0 +
√
2h Et/G

)
. (7-121)

If Ps(0) is specified, then the error in the required GEs/Et caused by us-
ing (7-121) instead of (7-106) is bounded by 10 log10

√
2/h in decibels. Thus,

the error is bounded by 2.39 dB for rectangular chip waveforms and 3.08 dB for
sinusoidal ones.

The lower bound in (7-120) gives the same result as that often called the
standard Gaussian approximation, in which V1 in (7-51) is assumed to be ap-
proximately Gaussian, each φk in (7-95) is assumed to be uniformly distributed
over [0, 2π), and each τk is assumed to be uniformly distributed over [0, Tc).
This approximation gives an optimistic result for Ps (0) that can be as much
as 4.77 dB in error for rectangular chip waveforms according to (7-120). The
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Figure 7.8: Symbol error probability of DS-BPSK system in presence of 3 equal-
power multiple-access interference signals and Es/N0 = 15dB

substantial improvement in accuracy provided by (7-118) or (7-104) is due to
the application of the Gaussian approximation only after conditioning V1 on
given values of φ and τ . The accurate approximation given by (7-104) is a
version of what is often called the improved Gaussian approximation.

Example 6. Figure 7.8 illustrates the symbol error probability for 3 inter-
ferers, each with equal received symbol energy, rectangular chip waveforms, and
Es/N0 = 15dB as a function of GEs/Et. The graphs show the standard Gaus-
sian approximation of (7-120), the simple approximation of (7-121), and the
upper and lower bounds given by (7-110), (7-114), and (7-108). The large error
in the standard Gaussian approximation is evident. The simple approximation
is reasonably accurate if 10−6 ≤ Ps(0) ≤ 10−2. �

Synchronous Received Signals

For synchronous networks, (7-104) and (7-105) can be simplified because the
{τk} are all zero. For either rectangular or sinusoidal chip waveforms, we obtain

Ps(φ) = Q

[√
2Es

N0e(φ)

]
(7-122)

N0e(φ) = N0 +
2

G

K−1∑
k=1

Ek cos2 φk. (7-123)
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Since Ps(φ) given by (7-122) equals the upper bound in (7-110), we observe
that the symbol error probability for a synchronous network equals or exceeds
the symbol error probability for a similar asynchronous network when random
spreading sequences are used. This phenomenon is due to the increased band-
width of a despread asynchronous interference signal relative to the desired
signal, which allows increased filtering of the interference.

DS-QPSK Systems

Consider a DS-CDMA network of systems that use dual QPSK and random
spreading sequences. As described in Section 2.5, each direct-sequence signal is

s(t) =
√
Esd1(t)p1(t) cos 2πfct+

√
Esd2(t)p2(t) sin 2πfct (7-124)

where Es is the received energy per binary channel-symbol component and per
data bit. The multiple-access interference is

i(t) =
K−1∑
k=1

[
√

Ek q1k(t− τk) cos(2πfct+ φk) +
√

Ek q2k(t− τk) sin(2πfct+ φk)]

(7-125)

where q1k(t) and q2k(t) both have the form of (7-47) and incorporate the data
modulation, and Ek is the received energy per binary channel-symbol component
and per code bit of interference signal k.

The symbol metrics are

V = d10
√

2Es +
G1−1∑
i=0

p1,iJi +

G1−1∑
ν=0

p1,iNsi (7-126)

U = d20
√

2Es +
G1−1∑
i=0

p2,iJ
′
i +

G1−1∑
i=0

p2,iN
′
i (7-127)

where Ji, Ni, J
′
i , and N ′

i are defined by (2-84), (2-85), (2-133), and (2-134),
respectively. The substitution of (7-125), (7-91), and the spreading sequences
of q1k(t) and q2k(t) into (2-84) yields

Ji =

K−1∑
k=1

√
Ek
2T 2

s

{cosφk[q1k,i−1Rψ(τk) + q1k,iRψ(Tc − τk)]

− sinφk[q2k,i−1Rψ(τk) + q2k,iRψ(Tc − τk)]}. (7-128)

Let V1 and U1 denote the interference terms in (7-126) and (7-127), respectively.
Lemma 2, (7-128), (7-98), and analogous results for the {J ′

i} yield the variances
of the interference terms of the symbol metrics:

var(V1) = var(U1) =

K−1∑
k=1

2Ek
G1

h (τk) (7-129)
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where h (τk) is given by (7-98). The noise variances and the means are given
by (2-136) and (2-135).

We derive the symbol error probability when asynchronous signals are re-
ceived and hard decisions are made on successive symbol metrics to produce a
symbol sequence that is applied to a hard-decision decoder. Since all variances
and means are independent of φ, the Gaussian approximation yields a Ps(φ, τ )
that is independent of φ, and hence

Ps (0) =

(
1

Tc

)K−1 ∫ Tc

0

. . .

∫ Tc

0

Q

[√
2Es

N0e(τ )

]
dτ (7-130)

where

N0e(τ ) = N0 +
2

G1

K−1∑
k=1

Ekh (τk) . (7-131)

This equation indicates that each interference signal has its power reduced by
the factor G/h (τk). Since h (τk) < 1 in general, G/h (τk) reflects the increased
interference suppression due to the chip waveform and the random timing offsets
of the interference signals. Since a similar analysis for direct-sequence systems
with balanced QPSK yields (7-131) again, both QPSK systems perform equally
well against multiple-access interference.

Application of the previous bounding and approximation methods to (7-130)
yields

Q

(√
2Es

N0 + 2hEt/G1

)
≤ Ps (0) ≤ Q

(√
2Es

N0 + 2Et/G1

)
(7-132)

where the total interference energy Et is defined by (7-117). A sufficient condi-
tion for the validity of the lower bound is

Es ≥
3

2
(N0 + 2Et/G1) . (7-133)

A simple approximation that limits the error in the required G1Es/2Et for a
specified Ps (0) to 10 log10(1/

√
h) is

Ps (0) ≈ Q

(√
2Es

N0 +
√
h2Et/G1

)
. (7-134)

This approximation introduces errors bounded by 0.88 dB and 1.57 dB for rect-
angular and sinusoidal chip waveforms, respectively. In (7-132) and (7-134),
only the total interference power is relevant, not how it is distributed among
the individual interference signals.

To compare asynchronous DS-BPSK with DS-QPSK, we find a lower bound
on Ps(0) for DS-BPSK. Substituting (7-104) into (7-106) and applying (7-89)
successively to the integrations over φk, k = 1, 2, . . . ,K − 1, we find that a
lower bound on Ps(0) is given by the right-hand side of (7-130) if (7-133) is
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Figure 7.9: Symbol error probability of DS-QPSK system in presence of 3 equal-
power multiple-access interference signals and Es/N0 = 15dB

satisfied. This result implies that asynchronous DS-QPSK is more resistant to
multiple-access interference than asynchronous DS-BPSK.

Example 7. Figure 7.9 illustrates Ps(0) for an asynchronous DS-QPSK
system in the presence of 3 interferers, each with equal received symbol en-
ergy, rectangular chip waveforms with h = 2/3, and Es/N0 = 15dB. The
graphs represent the accurate approximation of (7-130), the simple approxi-
mation of (7-134), and the bounds of (7-132) as functions of G1Es/2Et. A
comparison of Figures 7.7 and 7.8 indicates the advantage of QPSK. �

When synchronous signals are received with either rectangular or sinusoidal
chip waveforms, we set the {τk) equal to zero in (7-130) and obtain

Ps (0) = Q

(√
2Es

N0 + 2Et/G1

)
. (7-135)

Since this equation coincides with the upper bound in (7-132), we conclude that
asynchronous networks accommodate more multiple-access interference than
similar synchronous networks using DS-QPSK and random spreading sequences.

7.6 Frequency-Hopping Patterns for CDMA

When two or more frequency-hopping signals using the same frequency channel
are received simultaneously, they are said to collide. To ensure synchronization
and to maximize the throughput in a network or cell of frequency-hopping
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systems, we have to minimize the number of collisions due to all sources. An
elementary method of limiting intracell collisions is to partition the hopset
among the users so that each one transmits over a smaller frequency band
accessed by no other users and hence experiences no collisions. However, this
approach reduces the hopset of each user and hence weakens its resistance to
extraneous interference. Another approach is to schedule transmissions at the
cost of reduced transmissions. Assuming a common hopset and no partitioning
of the hopping band, a better method of collision minimization is to optimize
the set of assigned frequency-hopping patterns to avoid intracell collisions.

Consider the hopset of M frequencies: F = {f1, f2, . . . , fM}. Let L denote
the correlation window length, which is the number of hops processed for acqui-
sition or dehopping after acquisition. For two periodic frequency-hopping pat-
terns X = {xi}, Y = {yi} of length n, their partial Hamming cross-correlation
is defined as

HX,Y (j, k |L ) =

L−1∑
i=0

h [xi+jyi+j+k] , 0 ≤ j, k ≤ L− 1, 1 ≤ L ≤ n (7-136)

where h [xnym] = 1 if xn = ym, and = 0 otherwise. The partial Hamming
cross-correlation is a measure of the number of collisions between two patterns,
and it is desirable to use a set of long frequency-hopping patterns with favorable
partial Hamming correlations. The partial Hamming autocorrelation of X is
HX,X (j, k |L ) .

The maximum partial Hamming cross-correlation of patterns X and Y over
all correlation windows of length L is

H (X,Y ;L) = max
0≤j≤L−1

max
0≤k≤L−1

HX,Y (j, k |L ) (7-137)

and the maximum partial Hamming autocorrelation of pattern X over all cor-
relation windows of length L is

H (X;L) = max
0≤j≤L−1

max
0≤k≤L−1

HX,X (j, k |L ) . (7-138)

Let PN denote a set ofN distinct frequency-hopping patterns, each using hopset
F and having length n. For any L, the maximum nontrivial partial Hamming
correlation of the pattern set is defined as

M (PN ;L) = max

{
max
X∈PN

H (X;L) , max
X,Y ∈PN ,X �=Y

H (X,Y ;L)

}
. (7-139)

The selection of a PN that minimizes M (PN ;L) tends to minimize both colli-
sions among asynchronous frequency-hopping patterns and undesirable sidelobe
peaks in the autocorrelation of a pattern that might hinder frequency-hopping
acquisition in a receiver.

Periodic Hamming Cross-Correlation

Suppose that the correlation window length L is equal to pattern length n.
Since L = n and HX,Y (j, k |n ) is independent of j, the measure of the number
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of collisions between two patterns is the periodic Hamming cross-correlation:

HX,Y (k) =

n−1∑
i=0

h [xiyi+k] , 0 ≤ k ≤ n− 1. (7-140)

The periodic Hamming autocorrelation of X is HX,X (k) . The maximum non-
trivial periodic Hamming correlation of the pattern set is defined as

M (PN ) = max

{
max
X∈PN

H (X) , max
X,Y ∈PN ,X �=Y

H (X,Y )

}
(7-141)

where
H (X) = max

1≤k≤n−1
HX,X (k) (7-142)

H (X,Y ) = max
0≤k≤n−1

HX,Y (k) . (7-143)

For any two patterns in PN , we define

PX,Y (N) =

n−1∑
k=0

HX,Y (k) . (7-144)

Theorem 2. For positive integers N , M , n, and I = 	nN/M
 , the Peng–
Fan bounds [66] are

(n− 1)MH (X) + nM (N − 1)H (X,Y ) ≥ (nN −M)n (7-145)

(n− 1)NH (X) + nN (N − 1)H (X,Y ) ≥ 2InN − (I + 1) IM (7-146)

and

M (PN ) ≥
⌈
.
n

M
· . .nN −M.

.nN − 1.

⌉
(7-147)

M (PN ) ≥
⌈
2InN − (I + 1) IM

(nN − 1)N

⌉
. (7-148)

Proof: Summing over the patterns X,Y ∈ PN , we obtain

∑
X,Y ∈PN

PX,Y (N) =
∑

X∈PN

HX,X (0) +
∑

X∈PN

n−1∑
k=1

HX,X (k)

+
∑

X,Y ∈PN ,X �=Y

n−1∑
k=0

HX,Y (k) . (7-149)

The substitution of (7-142), (7-143), and HX,X (0) = n into (7-149) yields

∑
X,Y ∈PN

PX,Y (N) ≤ nN + (n− 1)NH (X) + nN (N − 1)H (X,Y ) . (7-150)
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Let mX (f) denote the number of times that hopset frequency f appears in
the pattern X. In terms of mX (f) , PX,Y (N) may be expressed as

PX,Y (N) =

fM∑
f=f1

mX (f)mY (f) .

Therefore,
∑

X,Y ∈PN

PX,Y (N) =

M∑
i=1

g2i (7-151)

where
gi =

∑
X∈PN

mX (fi) .

A lower bound on
∑M

i=1 g
2
i may be established by observing that

M∑
i=1

gi =
∑

X∈PN

M∑
i=1

mX (fi)

=
∑

X∈PN

n = nN .

Applying the method of Lagrange multipliers (Section 5.4) to the minimization

of
∑M

i=1 g
2
i subject to the constraint

M∑
i=1

gi = nN (7-152)

we find that ∑
X,Y ∈PN

PX,Y (N) ≥ n2N2

M
. (7-153)

To obtain a tighter alternative lower bound, we use the constraint that the
{gi} must be nonnegative integers. Order these integers {gi} so that 0 ≤ g1 ≤
g2 · · · ≤ gM . If {gi} is a sequence that minimizes

∑M
i=1 g

2
i and gM − g1 > 1,

then construct the sequence {pi} of nonnegative integers such that

p1 = g1 + 1; pi = gi, 2 ≤ i ≤ M − 1; pM = gM − 1. (7-154)

This sequence satisfies constraint (7-152), but

M∑
i=1

g2i −
M∑
i=1

p2i = 2 (gM − g1 − 1) > 0

which contradicts the assumption that {gi} is a sequence that minimizes∑M
i=1 g

2
i . Therefore, gM = g1 +1 or gM = g1, and the minimizing sequence has

the form

g1 = g2 = · · · = gM−r = I

gM−r+1 = gM−r+2 = · · · = gM = I + 1 (7-155)
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where I is a nonnegative integer and 0 ≤ r < M . Summing the minimizing
sequence, we obtain

M∑
i=1

gi = IM + r (7-156)

Combining this result with constraint (7-152) yields

IM + r = nN (7-157)

which implies that

I =

⌊
nN

M

⌋
. (7-158)

Thus, (7-151), (7-155), and (7-157) imply that

∑
X,Y ∈PN

PX,Y (N) ≥ (2I + 1)nN − (I + 1) IM. (7-159)

Combining (7-150), (7-153), and (7-159), we obtain (7-145) and (7-146).
Substituting H (X) ≤ M (PN ) and H (X,Y ) ≤ M (PN ) and recognizing that
M (PN ) must be an integer, we obtain (7-147) and (7-148). �

A set of patterns PN is considered optimal with respect to the periodic Ham-
ming cross-correlation if M (PN ) is equal to the larger or common value of the
two lower bounds of the theorem, which are equal when nN/M is an integer.
Many of these optimal sets of patterns are known. To ensure that all frequen-
cies in the hopset are used in each frequency-hopping pattern, it is necessary
that n ≥ M .

Example 8. Consider the selection of frequency-hopping patterns when
N = M = 4 and n = 7, which imply that M (P4) ≥ 2. The hopset is F =
{f1, f2, f3, f4}, and the set of patterns is P4 = {X1, X2, X3, X4}. If the set of
patterns are

X1 = f1, f2, f3, f2, f4, f4, f3 X2 = f2, f1, f4, f1, f3, f3, f4

X3 = f3, f4, f1, f4, f2, f2, f1 X4 = f4, f3, f2, f3, f1, f1, f2

we find that
max
X∈PN

H (X) = 1, max
X,Y ∈PN ,X �=Y

H (X,Y ) = 2 (7-160)

and hence M (P4) = 2, which verifies optimality. �

Partial Hamming Cross-Correlation

When serial-search acquisition is used (Section 4.3), L ≤ n, and an optimal set
of frequency-hopping patterns is defined to be a set that achieves one of the
lower bounds in the following theorem [125] for a correlation window length
such that 1 ≤ L ≤ n. We define

S (L; j) =
∑

X,Y ∈PN

n−1∑
k=0

HX,Y (j, k |L ) . (7-161)
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Theorem 3. For positive integers N ,M ,n, and I = 	nN/M
 and any
window length such that 1 ≤ L ≤ n ,

M(PN ;L) ≥
⌈
L

M
· nN −M

nN − 1

⌉
(7-162)

M (PN ;L) ≥
⌈
L

n
· 2InN − (I + 1) IM

(nN − 1)N

⌉
. (7-163)

Proof: Substitution of (7-136) into (7-161), an interchange of summations,
evaluation of the outer summation, and then substitution of (7-140) and (7-144)
yield

n−1∑
j=0

S (L; j) =

L−1∑
i=0

∑
X,Y εPN

n−1∑
k=0

n−1∑
j=0

h [xi+jyi+j+k]

= L
∑

X,Y εPN

n−1∑
k=0

n−1∑
j=0

h [xjyj+k]

= L
∑

X,Y εPN

n−1∑
k=0

HX,Y (k)

= L
∑

X,Y εPN

PX,Y (N) . (7-164)

Expanding the right-hand side of (7-161) and using (7-139), we obtain

S (L; j) =
∑

XεPN

HX,X (j, 0 |L ) +
∑

XεPN

n−1∑
k=1

HX,X (j, k |L )

+
∑

X,Y εPNX �=Y

n−1∑
k=0

HX,Y (j, k |L )

≤ NL+N (n− 1)H (X;L) +N (N − 1)nH (X,Y ;L)

≤ NL+N (Nn− 1)M (PN ;L) .

Therefore,
n−1∑
j=0

S (L; j) ≤ nNL+ nN (Nn− 1)M (PN ;L) . (7-165)

Combining (7-164) and (7-165), we obtain

L
∑

X,Y εPN

PX,Y (N) ≤ nNL+ nN (Nn− 1)M (PN ;L) . (7-166)

The successive substitution of (7-153) and (7-159) into (7-166) and the recog-
nition that M (PN ;L) must be an integer yield (7-162) and (7-163). �

Sets of optimal frequency-hopping patterns that achieve the lower bounds
of theorem 3 for any correlation window length such that 1 ≤ L ≤ n have
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been found ([12] and the references therein). Sets of patterns that achieve the
Peng–Fan bounds do not necessarily achieve the bounds of theorem 3 when
L �= n.

Uniform Patterns

The primary purpose of frequency hopping is to avoid interference, but the spec-
tral distribution of the non-network interference is generally unknown. There-
fore, it is prudent to choose n = mM , where m is a positive integer, and to
ensure that a period of a hopping pattern includes every frequency in the hopset
the same number of times. If n = mM and all hopset frequencies are used
equally, the frequency-hopping pattern is called a uniform frequency-hopping
pattern. Theorem 3 implies that the maximum number of collisions during L
hops for a optimal set of uniform frequency-hopping patterns is equal to the
lower bounds in (7-162) and (7-163) with n = mM . Both lower bounds indicate
that the maximum number of collisions is

C(M,N,L) =

⌈
L

(
mM − 1

mMN − 1

)⌉
(7-167)

If mM � 1, then C(M,N,L) → L/M.

7.7 Multiuser Detectors and CDMA

A multiuser detector [43, 72, 87, 118] is a receiver that exploits the deterministic
structure of multiple-access interference and uses joint processing of a set of
multiple-access signals. The multiuser detector must know all the spreading
sequences of the users and estimate their complex amplitudes. An optimal
multiuser detector almost completely eliminates the multiple-access interference
and hence the near-far problem, which occurs when interference sources are
closer to the detector than the source of the desired signal, but such a detector
is prohibitively complex to implement in realistic networks.

Optimal Multiuser Detector

A multiuser detector is jointly optimal if it makes collective symbol decisions
for K received signals based on the maximum a posteriori (MAP) criterion. A
multiuser detector is individually optimal if it selects the most probable set of
symbols of each desired signal separately based on the MAP criterion. Jointly
optimal decisions usually agree with individually optimal decisions unless the
symbol error probability is very high. Assuming equally likely symbols are
transmitted, the jointly optimal MAP detector is the same as the jointly optimal
maximum-likelihood detector, which is henceforth called the optimal detector.

Consider a direct-sequence terminal that receives K signals, each of which
transmits N codeword symbols and has a common carrier frequency fc, chip du-
ration Tc, chip waveform ψ(t) normalized according to (2-72), and G spreading-
sequence chips per symbol. For signal k, let Ek denote the received energy per
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symbol, pk,i denote chip i of the spreading sequence, τk denote the timing offset
relative to a reference signal, dk (t) denote the symbol stream with |dk (t)| = 1,
and θk denote the phase at a reference time. For the symbol time interval
0 ≤ t ≤ Ts and asynchronous communications over the AWGN channel, the
composite received signal is

y(t) =Re

[
K−1∑
k=0

√
2Ekdk (t− τk)

G−1∑
i=0

pk,iψ(t− iTc − τk) exp(j2πfct+ jθk)

]

+ n(t), 0 ≤ t ≤ Ts (7-168)

where n(t) is the white Gaussian noise. The channel effects are included in Ek
and θk. We assume that

|dk| = |pk,i| = 1. (7-169)

A frequency translation or downconversion to baseband is followed by matched
filtering.

For synchronous communications over the AWGN channel, the codeword
symbols of all users are aligned in time at a receiver so that τk = 0, 0 ≤
k ≤ K − 1. This timing synchronization is possible if the receive antennas are
close to each other. Downconversion is represented by the multiplication of the
received signal by

√
2 exp (−j2πfct) , where the factor

√
2 has been inserted

for mathematical convenience. The downconverter outputs are applied to chip-
matched filters, the outputs of which are sampled at the chip rate. A derivation
similar to that in Section 2.4 indicates that the codeword metric is the sum of
symbol metrics. Each symbol metric is a K × 1 vector that depends on the K
synchronously received symbols.

After chip-matched filtering and discarding a negligible integral, the demod-
ulated chip-rate sequence associated with a received composite symbol is

yi =

K−1∑
k=0

Akdkpk,i + ni, i = 0, 1, . . . , G− 1 (7-170)

where dk is the kth data symbol, the symbol amplitude for user k is

Ak = G−1
√

Ek exp (jθk) (7-171)

and the noise sample is

ni =
√
2

∫ (i+1)Tc

iTc

n(t)ψ(t− lTs − iTc) exp (−j2πfct) dt, i = 0, 1, . . . , G− 1.

(7-172)

Let y and n denote the G× 1 demodulated-sequence and noise vectors with
components defined by (7-170) and (7-172), respectively. The K × 1 vector of
data symbols is

d = [d0 . . . dK−1]
T

(7-173)
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and the G× 1 vector of the spreading sequence of user k is

pk = [pk,0 pk,1 . . . pk,G−1]
T . (7-174)

The demodulated vector of sampled chip-matched filter outputs may be repre-
sented as

y = PAd+ n (7-175)

where column k of the G×K matrix P is the vector pk, and A is the K ×K
diagonal matrix with Ak as its kth diagonal element.

As shown in Section 1.1, the noise vector is a Gaussian random vector. If
the two-sided PSD of n(t) is N0/2, then the G×G correlation matrix of n is

E
[
nnH

]
= G−1N0I (7-176)

where the superscript H denotes the conjugate transpose. Since n is a Gaussian
random vector, the jointly optimal detector chooses a constrained estimate of
d that minimizes

||y −PAd||2 (7-177)

Expanding this equation and dropping the term ||y||2 that is irrelevant to the
selection of d, we find that the detector selects the value of d that minimizes

C (d) = dHA∗PHPAd− 2dHA∗PHy (7-178)

subject to the constraint that d ∈ D, where D is the set of K × 1 vectors such
that each element is a constellation point. Thus, the selected value is

d̂ = arg min
d∈D

[C (d)] (7-179)

To evaluate d̂, the K spreading sequences must be known so that P can be
calculated, and the K complex amplitudes must be estimated. Short spreading
sequences are necessary, or P must change with each symbol. In principle,
(7-179) can be evaluated by an exhaustive search of all values of d ∈ D, but
this search requires a computational complexity that increases exponentially
with K, and hence it is only feasible for small values of K and G.

For asynchronous communications and optimal detection, the codeword
symbols cannot be detected one-by-one. The design of the maximum-likelihood
detector is immensely complicated by the timing offsets of the K signals in
(7-168). A timing offset implies that a desired symbol overlaps two consecu-
tive symbols from each interference signal. Consequently, an entire message
or codeword of N correlated data symbols from each of the K users must be
processed, and decisions must be made about NK binary symbols. The vec-
tor d is NK × 1 with the first N elements representing the symbols of signal
1, the second N elements representing the symbols of signal 2, and so forth.
The detector must estimate the transmission delays of all K multiple-access
signals and estimate the partial cross-correlations among the signals. Then the
detector must select K symbol sequences, each of length N , corresponding to
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the maximum-likelihood criterion. Recursive algorithms similar to the Viterbi
algorithm simplify computations by exploiting the fact that each received sym-
bol overlaps at most 2(K − 1) other symbols. Nevertheless, the computational
complexity increases exponentially with K.

In view of both the computational requirements and the parameters that
must be estimated, the optimal asynchronous multiuser detector does not have
practical applications. Subsequently, alternative suboptimal multiuser detec-
tors systems with complexities that increase linearly with K are considered.
All of them use a despreader bank that computes PHy.

Decorrelating Detector

The complexity of the optimal multiuser detector is greatly reduced by not
requiring that the code symbols belong to a finite signal alphabet. The decor-
relating detector for synchronous signals is derived by maximizing each symbol
metric without any constraint on the values of the data symbols.

Applying (5-2) and (5-3), we find that the gradient of C (d) with respect to
the K-dimensional vector d is

∇dC (d) = 2 (PA)
H
y − 2 (PA)

H
PAd (7-180)

We assume that the K×K diagonal matrix A has no zero elements and that the
K ×K Hermitian matrix PHP is invertible. Applying the necessary condition
that ∇dC (d) = 0 to find the stationary point ds, we obtain

ds = G−1A−1R−1 PHy (7-181)

where we define the correlation matrix for complex-valued spreading sequences
as

R = G−1PHP. (7-182)

The elements of R satisfy

Rk,k = 1, |Rik| ≤ θmax, i �= k (7-183)

where θmax is given by (7-31) for Gold sequences and (7-41) for Kasami se-
quences. As the spreading factor G = 2m − 1 increases, Rik decreases for
i �= k, and hence R approaches the unit diagonal matrix achieved by orthog-
onal spreading sequences. If long spreading sequences are modeled as random
binary sequences, then

E [Rik] = 0, var [Rik] = G−1, i �= k (7-184)

which shows the advantage of large spreading factors.
The solution ds corresponds to the minimum of C (d) because the latter

may be expressed in terms of ds as

C (d) = −G (d− ds)
T
A∗RA(d− ds) +GdT

s A
∗RAds. (7-185)
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Figure 7.10: Architecture of complete decorrelating or MMSE detector for a
synchronous direct-sequence system. Despreader bank comprises K parallel
correlators

As shown in Appendix G, since A is invertible and R is positive definite, A∗RA
is a Hermitian positive-definite matrix. Therefore, C (d) has a unique minimum
at d = ds. A decorrelating detector for synchronous signals computes the
decision vector

d̂ = C (ds) (7-186)

where the constellation function C(u) denotes the vector with its kth component
equal to the constellation point closest to the kth component of u.

Substituting (7-175), (7-181), and (7-182) into (7-186), we obtain

d̂ = C(d+ ns) (7-187)

where the noise vector is

ns = G−1A−1R−1PHn (7-188)

Equation (7-187) shows that the components of d̂ are decorrelated from each

other in the sense that the kth component of d̂ depends only on the kth com-
ponent of d, and not on the other components of d. Thus, the decorrelating
detector is a type of zero-forcing detector that forces the multiple-access inter-
ference to be zero. Since the multiple-access interference is completely removed,
the near-far problem does not exist, and the decorrelating detector is near-far
resistant.

Equation (7-188) indicates that ns is a zero-mean Gaussian random vector
(cf. Appendix A.1) because the vector n has components that are independent
zero-mean Gaussian random variables. From (7-188) and (7-176), it follows
that the correlation matrix of ns is

E
[
nsn

H
s

]
= G−2N0A

−1R−1A−∗. (7-189)

The complete decorrelating detector that implements (7-186) forK synchronous
users has the form diagrammed in Figure 7.10. The G sampled outputs of the
chip-matched filter are applied to a despreader bank of K parallel despreaders,
which provide the K-dimensional vector PHy. The linear transformer performs



468 CHAPTER 7. CODE-DIVISION MULTIPLE ACCESS

a linear transformation on PHy to compute the K-dimensional vector ds. Each
of the K metric devices makes a decision by applying the constellation function
to one of the components of ds

Consider the detection of binary symbol dk = ±1, 0 ≤ k ≤ K − 1, which
is usually all that is required by the receiver of user k. Since the imaginary
component of ds is irrelevant, the decision d̂k is

d̂k = sgn [Re (dsk)] (7-190)

where dsk is the kth component of ds. Substitution of (7-187) yields

d̂k = sgn(dk + nsk) (7-191)

where nsk is the kth component of Re (ns) . From (7-171) and (7-189), it follows
that

var (nrk) =
N0

2Ek
(R−1)kk. (7-192)

The noise causes an error if it causes the argument of the signum function in
(7-191) to have a different sign than dk. Since this noise has a Gaussian density,
the symbol error probability for symbol k is

Ps(k) = Q

(√
2Ek

N0(R−1)kk

)
, k = 0, 1, . . . ,K − 1. (7-193)

Thus, the presence of multiple-access interference requires an increase of energy
by the factor (R−1)kk if a specified symbol error probability is to be maintained.

Example 9. Consider synchronous communications with binary code sym-
bols and spreading sequences, K = 2, R01 = R10 = ρ, and |ρ| < 1. The
correlation matrix and its inverse are

R =

[
1 ρ
ρ 1

]
, R−1 =

1

1− ρ2

[
1 −ρ
−ρ 1

]
. (7-194)

Applying (7-186) and (7-181) and then dropping irrelevant factors, we obtain

d̂ =

[
sgn
(
pT
0 y − ρpT

1 y
)

sgn
(
pT
1 y − ρpTy

)
]
. (7-195)

Equation (7-193) yields the symbol error rate for user k:

Ps(k) = Q

⎛
⎝
√

2Ek (1− ρ2)

N0

⎞
⎠ , k = 0, 1. (7-196)

If |ρ| ≤ 1/2, the required increase in Ek/N0 for each Ps(k) to accommodate the
multiple-access interference is less than 1.25 dB. �

The conventional detector for two synchronous signals has an upper bound
on Ps(0) given by (7-66). Comparing this upper bound with (7-196), we observe
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that the decorrelating detector has a lower Ps(0) than the conventional detector
if √

E1
E0

>
1−
√

1− ρ2

|ρ| , ρ �= 0. (7-197)

The right-hand side of this equation is upper bounded by |ρ| /2, and hence√
E1 > |ρ|

√
E0/2 is sufficient for the decorrelating detector to be advantageous

relative to the conventional detector in this example. �
The codeword metric for the soft-decision decoding of an N -symbol code-

word of user k is

U (k) =

N−1∑
i=0

Vki (7-198)

where dki = ±1 is the ith codeword symbol of user k, and Vki is the ith symbol

metric of user k. The ith symbol metric is obtained from d
(i)
sk , the kth component

of d
(i)
s for symbol i, because these components have the correct values of the

data symbols in the absence of noise. Suitable symbol metrics for user k are

Vki = N
(
d
(i)
sk

)
, 0 ≤ i ≤ N − 1 (7-199)

where N (x) is a nonlinear function. A plausible choice for this function is the
clipping function defined by (3-10). Another choice is the hyperbolic tangent
function tanh (αx). If α = 1, then tanh (x) ≈ c (x); if α � 1, then tanh (x) ≈
sgn (x).

For asynchronous communications, an entire message or codeword of N
correlated code symbols from each of the K users must be processed because
of the timing offsets. The symbol vector d and the correlation matrix R of
the decorrelating detector are NK×1 and NK×NK, respectively. Compared
with the optimal detector, the decorrelating detector offers greatly reduced, but
still formidable, computational requirements. Applications of the decorrelating
detector for practical asynchronous communications are doubtful.

Minimum-Mean-Square-Error Detector

The minimum-mean-square-error (MMSE) detector uses the K ×G matrix L0

to compute the linear transformation L0y of the received vector y. The matrix
L0 is the matrix that minimizes

M (L) = E
[
‖d− Ly‖2

]
. (7-200)

In terms of the trace function,

M (L) = tr
{
E
[
(d− Ly) (d− Ly)

H
]}

(7-201)

We define the matrices

Rdy = E
[
dyH

]
, Ry = E

[
yyH

]
. (7-202)
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Expanding (7-201) and substituting (7-202), we obtain

M (L) = tr
{
E[ddH ] + LRyL

H −RdyL
H − LRH

dy

}
. (7-203)

We assume that the positive-semidefinite Hermitian matrix Ry is positive
definite and hence invertible (Appendix G). We define the K ×K linear trans-
formation

L0 = RdyR
−1
y . (7-204)

In terms of this transformation,

M (L) = tr
{
E[ddH ]−RdyR

−1
y RH

dy

}
+ tr

{
(L− L0)Ry (L− L0)

H
}

(7-205)

which is verified by substituting (7-204) into (7-205) and observing that (7-203)
is the result.

Since Ry is Hermitian positive definite, (L− L0)Ry (L− L0)
H

is Hermitian
positive-semidefinite, which implies that it has nonnegative eigenvalues and
hence a nonnegative trace (Appendix G). Let ri denote the ith row of L− L0.
Then

tr
{
(L− L0)Ry (L− L0)

H
}
=

K∑
i=1

riRyr
H
i ≥ 0. (7-206)

Since Ry is symmetric positive definite, each term in the sum equals zero if and
only if ri = 0, 1 ≤ i ≤ K. Therefore, the trace has its minimum value of zero if
and only if L = L0, and hence the minimum value of M (L) is attained if and
only if L = L0. The MMSE detector gives

d̂ = C (L0y) . (7-207)

Assuming that the data symbols are zero-mean and independent and us-
ing (7-169),

E[ddH ] = I. (7-208)

Substitution of (7-202), (7-208), (7-175), and (7-176) into (7-204) yields

L0 = A∗PH
(
P |A|2 PH +G−1N0 I)−1 (7-209)

where the kth diagonal element of |A|2 is equal to |Ak|2 .To express L0 as a
function of R, we observe that

A∗PH = G−1A−1(R+G−2N0 |A|−2
)−1PH(P |A|2 PH +G−1N0I) (7-210)

which can be verified by direct matrix multiplication and the substitution
of (7-182). The substitution of (7-210) into (7-209) gives

L0 = G−1A−1QPH (7-211)

where

Q =
(
R+G−2N0 |A|−2

)−1

. (7-212)
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Equation (7-211) indicates that Figure 7.10 displays the architecture of the
MMSE detector for synchronous DS-CDMA communications.

For the detection of real-valued binary code symbols, the imaginary compo-
nent of L0y is irrelevant, and we have

d̂ = sgn [Re (L0y)] (7-213)

Substituting (7-175) and (7-211) into (7-213), we obtain

d̂ = sgn
[
Re(A−1QRAd) + nm

]
(7-214)

where
nm = Re(G−1A−1QPHn). (7-215)

Equation (7-215) indicates that nm is a Gaussian random vector (cf. Ap-
pendix A.1) because the vector n has components that are independent zero-
mean Gaussian random variables. From (7-215), (7-182), and (7-176), it follows
that the correlation matrix of nm is

E
[
nmnH

m

]
=

N0

2G
A−1QRQA−∗. (7-216)

Equation (7-214) implies that the kth component of d̂ is

d̂k = sgn [Re (uk)] (7-217)

where
uk = Re[(QR)kk dk +B

(
dk

)
] + nmk (7-218)

B
(
dk

)
=

K−1∑
i=0,i�=k

(QR)ki
Ai

Ak
di (7-219)

and dk denotes the vector of K− 1 components of d excluding dk.The variance
of nmk is

var (nmk) =
N0

2Ek
(QRQ)kk. (7-220)

By symmetry, we can assume that dk = 1 in the evaluation of the symbol
error probability. Let Sk denote the set of the 2K−1 distinct vectors that dk can
equal. Let dkn ∈ Sk denote the nth one of those distinct vectors. Conditioning
on dk = dkn, 1 ≤ n ≤ 2K−1, we find that a symbol error occurs if nmk causes
uk to have a different sign than dk. Since the noise has a Gaussian density, the
conditional symbol error probability at the output of decision-device k is

Ps (k|dkn) = Q

(√
2Ek

N0(QRQ)kk
{Re[(QR)kk +B (dkn)]}

)
. (7-221)

If all symbol sets are equally likely and k = 0, then the symbol error probability
is given by (7-64). In contrast to the decorrelating detector, the MMSE detector



472 CHAPTER 7. CODE-DIVISION MULTIPLE ACCESS

0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Energy−to−noise−density ratio, dB

S
ym

bo
l e

rr
or

 p
ro

ba
bi

lit
y

DD, 
 = 0

MMSE, 
 = 0.5, C = 0.5

DD, MMSE, 
 = 0.5, C = 10

Figure 7.11: Symbol error probability for DS-CDMA systems with decorre-
lating detector (DD) and MMSE detectors when there is one multiple-access
interference signal (K = 2)

has a symbol error probability that depends on the symbols and spreading
sequences of the other users.

Example 10. Consider MMSE detection of binary symbols and spreading
sequences for K = 2 and the correlation matrix given by (7-194). Calculations
of the symbol error probability for k = 0 using (7-196), (7-221), and (7-65)
indicate that the performance of the MMSE detector degrades with increasing
|ρ| but is close to that of the decorrelating detector, which does not depend
on C =

√
E1/

√
E0, when C ≥ 1. In contrast, if the conventional detector is

used, (7-66) indicates that the symbol error probability rapidly degrades as C
increases. Representative plots are illustrated in Figure 7.11. �

The codeword metric for soft-decision decoding is given by (7-198). The

ith MMSE symbol metric is obtained from u
(i)
k , the value of uk for symbol i.

Suitable symbol metrics for user k are

Vki = N
[
Re
(
u
(i)
k

)]
, 0 ≤ i ≤ N − 1 (7-222)

where N (x) is a nonlinear function such as the clipping or hyperbolic tangent
function.

The MMSE and decorrelating detectors have almost the same computa-
tional requirements, but they differ in several ways. The MMSE detector does
not obliterate the multiple-access interference, and hence does not completely
eliminate the near-far problem, but does not accentuate the noise to the degree
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that the decorrelating detector does. Although the MMSE detector tends to
suppress strong interference signals, it also suppresses the desired signal to the
degree that its spreading sequence is correlated with the spreading sequences
of strong interference signals. For practical scenarios, the symbol error proba-
bility of the MMSE detector generally tends to be lower than that provided by
the decorrelating detector. As N0 → 0, the MMSE increasingly approximates
the decorrelating detector. Therefore, the MMSE detector is asymptotically
near-far resistant. As N0 increases, the MMSE increasingly approximates the
conventional detector and hence provides diminished near-far resistance.

Like the decorrelating detector, the MMSE detector is impractical for asyn-
chronous multiuser detection because the computational and estimation re-
quirements increase rapidly as N and K increase. For either the MMSE or
decorrelating linear detectors to be practical for synchronous communications,
it is important for the spreading sequences to be short. Short sequences en-
sure that the correlation matrix R is constant for all symbols and limit the
amount of information that has to be stored in the receivers. The price of short
sequences is a security loss.

Adaptive Multiuser Detector

An adaptive multiuser detector is an adaptive system that does not require
explicit receiver knowledge of either the spreading sequences or the timing of
the multiple-access interference signals. At the cost of a reduction in spectral
efficiency, the adaptive multiuser detector learns by processing a known train-
ing sequence of Lt pilot symbols during a training phase. Each pilot symbol is
represented by a spreading sequence of length G. The use of short spreading
sequences affords the opportunity for an adaptive multiuser detector to essen-
tially learn the sequence cross-correlations and thereby to suppress the CDMA
interference. However, the requirement of short spreading sequences limits the
applications of adaptive multiuser detection; e.g., the WCDMA (Wideband
CDMA) and CDMA2000 standards do not support it.

The LMS algorithm (Section 5.2) may be used as the adaptive algorithm in
the adaptive multiuser detector. The nth symbol of the known training sequence
for user k is denoted by dk (n) , n = 0, 1, . . . , L−1. After chip synchronization
for user k, the nth vector of G chip-matched-filter outputs, which is produced
during the reception of symbol n, is denoted by

xk (n) = dk (n)p (7-223)

in the absence of noise, where p is the spreading sequence. If phase synchro-
nization with the carrier has not been established, the complex LMS algorithm
iteratively updates the G-dimensional weight vector:

w(n+ 1) = w(n) + 2με∗(n)xk(n), 0 ≤ n ≤ L− 1 (7-224)

where μ is a constant that regulates the algorithm convergence rate, and

ε(n) = d̂k (n)−wH(n)xk (n) . (7-225)
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During the training phase, d̂k (n) = dk (n) ,and ideally w(n) → p.
This training phase is followed by a decision-directed phase that continues

the adaptation by feeding back the symbol decision

d̂k (n) = C
[
wH(n)xk (n)

]
. (7-226)

Adaptive detectors potentially can achieve much better performance than the
conventional detector at least if the transmission channel is time-invariant, but
coping with fast fading and fluctuating interference sometimes may require
elaborate modifications.

A blind multiuser detector is one that does not require pilot symbols or
training sequences. Instead of training, blind multiuser detectors only require
knowledge of the spreading sequence of the desired signal and its timing, which
is no more information than is required by the simpler conventional single-user
system. Short spreading sequences are necessary, as long spreading sequences
do not possess the cyclostationarity that makes possible the advanced signal
processing techniques used by blind multiuser detectors.

An adaptive blind multiuser detector is necessary to accommodate chang-
ing channel conditions and system recovery, but entails some performance loss
and complexity increase relative to adaptive multiuser detectors with a training
phase. Several adaptive algorithms, including the Frost algorithm (Section 5.4),
can be used in adaptive blind multiuser detectors. The Frost algorithm uses the
known spreading sequence to constrain desired-signal cancelation while cancel-
ing the interference.

Multiuser Detection and Frequency Hopping

Multiuser detection is much more challenging for frequency-hopping systems
than for direct-sequence systems. An optimal multiuser detector requires that
the receiver knows the hopping patterns and hop transition times of all users
to be detected and can simultaneously demodulate the signals at all carrier
frequencies. The periodically changing carrier frequencies and multiple-access
environments make even the partial meeting of these requirements unrealistic
in a practical frequency-hopping network.

7.8 Interference Cancelers

An interference canceler is a multiuser detector that explicitly estimates the
interference signals and then subtracts them from the received signal to produce
a desired signal. Although suboptimal compared with ideal multiuser detection,
multiuser interference cancelers bear much less of an implementation burden
and still provide considerable interference suppression and alleviation of the
near-far problem. An interference canceler is by far the most practical multiuser
detector for a direct-sequence network.

Implementation of an interference canceler entails having stored spreading
sequences of all K desired and potentially interfering signals and a means of
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synchronizing with the desired and interference signals. Accurate power control
is still needed at least during initial synchronization and to avoid overloading
the front end of the receiver.

Interference cancelers [7, 43] may be classified as successive interference can-
celers in which the cancelations are performed sequentially, parallel interference
cancelers in which the cancelations are performed simultaneously, or hybrids
of these types. The basic structures and features of the successive and parallel
cancelers are presented subsequently, but a large number of alternative versions,
some of them being hybrids, adaptive, or blind, have been proposed.

Successive Interference Canceler

A successive interference canceler generates successive symbol decisions for
each of the synchronous direct-sequence interference signals, generates succes-
sive replicas of the interfering symbols, and successively cancels the symbols
and their associated spreading sequences from the chip-matched filter output
stream. The input to the successive interference canceler for each symbol is the
vector y of G sampled chip-matched filter outputs. For K users, (7-175) may
be expressed as

y =

K−1∑
i=0

diAipi. (7-227)

Figure 7.12 illustrates the processing to cancel interference symbol k. Let i = 0
denote the desired symbol and y1 (k) denote the kth processor output. The kth
detector computes the hard decision

d̂k = sgn
[
A−1

k pH
k y1 (k − 1)

]
, 1 ≤ k ≤ K − 1 (7-228)

and then generates d̂kAkpk, which is a replica of the kth term in (7-227). The
interference to downstream symbols due to symbol k is canceled to produce

y1 (k) = y1 (k − 1)− d̂kAkpk, 1 ≤ k ≤ K − 1

y1 (0) = y. (7-229)

The first canceler stage eliminates the symbol of the strongest signal, thereby
immediately alleviating the near-far problem for weaker signals while exploiting
the superior detectability of the strongest signal. The amount of interference
removal prior to the detection of a symbol increases from the strongest received
signal to the weakest one. Any error in a cancelation adversely affects subse-
quent symbol decisions and cancelations. If a decision device makes a symbol
error, then the amplitude of the interference that enters the next stage of the
canceler of Figure 7.12 is doubled. Since each delay in Figure 7.12 exceeds
one symbol in duration, the overall processing delay of the successive interfer-
ence canceler is one of its disadvantages. The delay introduced, the impact of
cancelation errors, and the implementation complexity may limit the number
of useful canceler stages to fewer than K, but usually only a few interference
signals need to be canceled to obtain the bulk of the available performance gain
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Figure 7.13: One substage of second canceler of multistage canceler using suc-
cessive interference cancelers

[120]. At low SINRs, inaccurate cancelations may cause the canceler to lose its
advantage over the conventional detector.

A multistage interference canceler comprising more than one successive in-
terference cancelers potentially improves performance by repeated cancelations
if the delay and complexity can be accommodated. A substage of the second
canceler of a multistage canceler is illustrated in Figure 7.13. The input is the
residual of canceler 1 after its final stage. Replica 1 of canceler 1 is added to
the residual to produce a sum signal that is applied to the first processor of
the second canceler. Since most of the interference has been removed from the
residual, the decision device can produce an improved estimate and hence an
improved cancelation. The resulting difference signal contains less interference
than the corresponding difference signal in Figure 7.12. Subsequently, other im-
proved decisions are made and improved cancelations are done. Rake combining
of multipath components may be incorporated into a multistage or single-stage
interference canceler to improve performance in a fading environment [85]
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Figure 7.14: Recursive structure of parallel interference canceler

Parallel Interference Canceler

A parallel interference canceler subtracts all multiple-access interference signals
from each desired signal simultaneously. The parallel interference canceler is
not as effective in suppressing the near-far problem as the successive interference
canceler, which cancels the strongest interference signals first. The exception
occurs if there are several interference signals of comparable strength.

Consider synchronous signals and the model of Section 7.7. The G × 1
received vector y is given by (7-175), and the output of the despreader bank is
PHy. We define the K ×K matrix

B = PHPA (7-230)

which has diagonal element k equal to GAk. In the absence of noise, (7-175)
indicates that

PHy = Bd. (7-231)

When the noise is insignificant compared with the multiple-access interfer-
ence, (7-231) motivates the realization of the estimator

d̂1 = B−1PHy (7-232)

if B is invertible. The decision is

d̂ = C[d̂1] (7-233)

where C (·) is the constellation function for hard decisions. However, the com-
plexity or number of multiplications required to compute B−1 is O

(
K3
)
, which

might be prohibitively large.
Let Bd denote the diagonal matrix with its kth diagonal element equal to

GAk, which is equal to the kth diagonal element of B. To derive an iterative
computation of d̂, we rearrange (7-231) in the form

d =
(
I−B−1

d B
)
d+B−1

d PHy. (7-234)
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We solve (7-234) iteratively by computing

d̂ (1) = C[B−1
d PTy] (7-235)

d̂ (i+ 1) = C
{(

I−B−1
d B

)
d̂ (i) +B−1

d PHy
]}

, i ≥ 1. (7-236)

This algorithm is similar in form to those of Section 5.2. Therefore, if we omit
C(·), the algorithm converges if the eigenvalues of I−B−1

d B have magnitudes less
than unity, which is true if the spreading sequences have low cross-correlations
and the number of interfering signals is small. When convergence occurs, we
have a major reduction in computation relative to (7-232).

Each iteration of (7-236) can be interpreted as one stage of a multistage par-
allel interference canceler that provides successively improved parallel outputs
that are applied to the next stage. One stage of a parallel interference canceler
is diagrammed in Figure 7.14. Instead of computing d̂ (1) using (7-235), the ini-

tial stage may derive d̂ (1) from a successive interference canceler, decorrelating
detector, or MMSE detector.

7.9 MIMO Systems

A multiple-input multiple-output (MIMO) system comprises one or more trans-
mitters with multiple antennas and one or more receivers with multiple an-
tennas. The multiple antennas enable the realization of increased through-
put, increased spatial diversity, or stronger received signals, but the degree
to which any of these features is implemented entails limitations on the other
features. A single-user MIMO (SU-MIMO) system comprises a single multiple-
antenna transmitter that communicates with a single multiple-antenna receiver.
A multiple-user MIMO (MU-MIMO) system comprises a set of transmitters,
each of which uses one or more antennas, which communicate with a set of
receivers, each of which uses one or more antennas. Multiple-access communi-
cations, which entail several signals sharing the same communication channel,
and broadcast communications are instances of MU-MIMO systems. Multiuser
detectors and interference cancelers are used in MU-MIMO Systems

Diversity techniques, such as space-time coding, exploit the independent
fading in the multiple paths from transmit antennas to receive antennas. These
techniques do not require channel-state information (CSI) but cannot provide a
high throughput or a significant array gain. MIMO systems that provide high
throughput use spatial multiplexing, and those that provide gain use beam-
forming, but hybrid combinations are also possible.

If a MIMO system has only multiple receive antennas, it is called a single-
input multiple-output (SIMO) system. The adaptive arrays of Sections 5.6
and 5.7, which can be used in either SIMO or MIMO systems, use multi-
ple receive antennas for beamforming that suppresses interference entering the
sidelobes of the receive array pattern. Diversity combining methods for receive
antennas in SIMO or MIMO systems, which are described in Sections 6.4–6.8,
compensate for fading and antenna imperfections. If a MIMO system has only
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multiple transmit antennas, it is called a multiple-input single-output (MISO)
system. The use of multiple transmit antennas in providing spatial diversity or
a space-time code, which can be used in either MISO or MIMO systems, is de-
scribed in Section 6.9. The receiver of a MISO system can serve as a multiuser
detector for direct-sequence communications.

Spatial Multiplexing

Spatial multiplexing increases throughput and spectral efficiency by the trans-
mission of different symbols or separate signals simultaneously through different
transmit antennas and the reception of the transmitted signals at each receive
antenna. In each of the paths between transmit and receive-antenna pairs, a
signal encounters a different channel. Therefore, another potential advantage
of spatial multiplexing stems from the diverse propagation paths, which can
provide a diversity gain. The receiver reconstructs the transmitted symbols
or signals by using CSI, which comprises fading or channel coefficients of each
transmit and receive-antenna pair.
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Consider a MIMO system that has Nt transmit antennas and Nr receive an-
tennas and uses spatial multiplexing for direct-sequence communications. The
transmit antennas and receive antennas are closely spaced enough that all NtNr

signals arriving at the receive antennas can be considered synchronous. The
MIMO receiver prior to the despreaders has the form illustrated in Figure 7.15.
Each receive antenna is followed by a chip-matched filter. Chip-rate sampling of
its output by an analog-to-digital converter produces a demodulated sequence of
length G. All Nr demodulated sequences are applied to each of Nt despreaders,
as illustrated in Figure 7.16. Despreader k sends despread symbols to maximal-
ratio combiner k, which uses CSI to produce a symbol metric or decision for
symbol k.

Assuming that accurate timing synchronization provides a synchronous sys-
tem, we can analyze the MIMO receiver by extending the analysis for the op-
timal multiuser detector in Section 7.7. Let

ym = [ym,0 ym,1 . . . ym,G−1]
T

nm = [nm,0 nm,1 . . . nm,G−1]
T

d = [d0 d1 . . . dNt−1]
T (7-237)

denote the demodulated sequence of antenna m, the accompanying noise se-
quence of antenna m, and Nt simultaneously transmitted data symbols with
values di = ±1, respectively. As in (7-171), the complex amplitude at receive
antenna m due to the signal transmitted by transmit antenna k is

Ak,m = G−1
√

Ek,m exp (jθk,m) (7-238)

where Ek,m is the energy per symbol of signal k at antenna m, and θk,m is the
phase of signal k at antenna m.

Equations (7-175) and (7-176) may be applied to the demodulated sequence
at receive antenna m corresponding to a set of Nt synchronous transmitted
symbols. The demodulated sequence is the G× 1 vector

ym = PAmd+ nm, 0 ≤ m ≤ Nr − 1 (7-239)

where column k of the G×Nt matrix P is the vector

pk = [pk,0 pk,1 . . . pk,G−1]
T (7-240)

that represents the spreading sequence that modulates symbol k, pk,i = ±1,
and Am is the Nt ×Nt diagonal matrix with Ak,m as its kth diagonal element.
Assuming that the noise in each receive antenna is independent zero-mean,
white Gaussian noise with two-sided noise PSD N0/2, G × 1 vector nm is a
zero-mean, circularly symmetric, Gaussian random vector with

E
[
nmnH

m

]
= G−1N0I, E

[
nmnT

m

]
= 0 (7-241)

and
E
[
nmnH

p

]
= E

[
nmnT

p

]
= 0, m �= p. (7-242)



7.9. MIMO SYSTEMS 481

Each of the Nt despreaders of Figure 7.16 receives the Nr sequences in the
columns of the G×Nr matrix

Y =
[
y1 y2 . . . yNr

]
. (7-243)

The 1×Nr despread vector produced by the despreader k is pH
k Y. The com-

ponents of this vector are applied to a maximal-ratio combiner that generates

ζk = pH
k

Nr−1∑
m=0

A∗
k,mym. (7-244)

For hard-decision decoding, the decision for symbol k is the constellation point

d̂k = C
(
pH
k

Nr−1∑
m=0

A∗
k,mym

)
. . (7-245)

For binary data symbols,

d̂k = sgn [Re (ζk)] . (7-246)

Substituting (7-239) and (7-244) into (7-246), we find that

d̂k = sgn

[
Re

(
pH
k P

Nr−1∑
m=0

A∗
k,mAmd

)
+ nm,k

]

= sgn

[
dkG

Nr−1∑
m=0

|Ak,m|2 +GB
(
dk

)
+ nm,k

]
(7-247)

where dk is the (K − 1)× 1 vector of interfering symbols,

B
(
dk

)
= Re

⎛
⎝Nr−1∑

m=0

A∗
k,m

K−1∑
i=0,i�=k

Ai,mRk,idi

⎞
⎠ (7-248)

and nm,k is the zero-mean Gaussian random variable

nm,k = Re

(
pH
k

Nr−1∑
m=0

A∗
k,mnm

)
. (7-249)

Applying (7-241) and (7-242), we obtain

var (n2
m,k ) =

N0

2

Nr−1∑
m=0

|Ak,m|2 . (7-250)

By symmetry, we can assume that dk = 1 in the evaluation of the symbol
error probability. Let Sk denote the set of the 2K−1 distinct vectors that dk can
equal. Let dkn ∈ Sk denote the n th one of those distinct vectors. Conditioning
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on dk = dk,n, 1 ≤ n ≤ 2K−1, we find that a symbol error occurs if nm,k causes
Re(ζk) to be negative. Since the noise has a Gaussian density, a straightforward
calculation using (7-247), (7-250), and (7-238) gives the conditional symbol error
probability:

Ps (k | dk,m) = Q

⎛
⎝
√√√√ 2

N0

Nr−1∑
m=0

Ek,m

{
1 +

G2B (dkn)∑Nr−1
m=0 Ek,m

}⎞
⎠ . (7-251)

If all symbol sets are equally likely, then the symbol error probability for user
k is given by (7-65).

Multicode MIMO

In a multicode MIMO system, each set of multicode signals is transmitted
through a distinct transmit antenna. Each multicode signal is spread by a
composite sequence generated by adding a long scrambling sequence to a short
orthogonal spreading sequence. Since the scrambling sequence approximates a
random sequence, the composite sequence does also. Therefore, the compos-
ite sequence has a favorable autocorrelation function for synchronization and
low cross-correlations with the other scrambling and spreading sequences of the
MIMO signals. The short orthogonal spreading sequences enable the receiver
to easily distinguish among the signals within a multicode set of signals.

Figure 7.17 illustrates the receiver processing by the mth despreader set
when it processes the composite sequence of a multicode signal. The descram-
bler removes the scrambling sequence and distributes the M data-modulated
spreading sequences to M despreaders. The 1 ×Nr despread vector produced
by each despreader is applied to a maximal-ratio combiner, which provides a
symbol decision or metric.

CSI and Massive MIMO

A transmitter may gather CSI from a receiver to enable efficient power division
among its transmit antennas and to precode its transmitted signals to com-
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pensate for the channel phase shifts. In a closed-loop system, a transmitter
sends pilot signals through all its transmit antennas to potential receivers, each
of which extracts the CSI for all paths to its receive antennas and then sends
quantized estimates of the CSI to the transmitter. The reciprocity of signal
paths when time-division duplexing is used enables a transmitter to use an
open-loop system with direct measurements of the CSI by its receive antennas.

A massive MIMO system is one that does spatial multiplexing with a large
number of antennas and the required CSI. If there are Nt transmit antennas
and Nr receive antennas, then NtNr pilot sequences are required. In a network,
the frequency with which the pilot sequences are updated increases with the
system mobility and the number of transmitted signals. The pilot sequences
are scheduled for transmission in time slots of duration less than the channel
coherence time.

The degradation of a received pilot signal because of the presence of other
pilot signals is called pilot contamination. To avoid pilot contamination, the
pilot sequences used in a cell should be largely uncorrelated with each other.
Synchronization of pilot transmissions causes pilot contamination, but asyn-
chronous transmissions cause interference from the pilot signals to degrade the
data signals. When highly correlated transmission channels or high-speed mo-
biles cause severe pilot contamination, the absence of accurate CSI may make
the scheduling of transmissions necessary.

The partitioning of the transmitter power among the multiple transmit an-
tennas lowers the SNR for each path to each receive antenna. Low SNRs, insuf-
ficient decorrelation among closely spaced antennas, the mutual contamination
of pilot signals and their multipath components, and the computational com-
plexity impede massive MIMO. The computational complexity may be partially
alleviated by using sphere decoding instead of maximum-likelihood decoding [7].
Deep learning and other machine learning subsystems can improve components
of network and MIMO processing by efficiently accommodating variable envi-
ronments [16, 124].

Beamforming

Beamforming by multiple transmit or multiple receive antennas is the for-
mation of one or more spatially narrow or directional beams. Each beam is
produced by a separate set of delays or phase shifts behind the antennas that
produce a main lobe, sidelobes, and nulls in the beam pattern. The power gain
of each beam is proportional to the number of antennas in its subarray. A
directional receive beam provides enhanced power gain, spatial discrimination,
and interference suppression. In a cellular network, a base station increases its
throughput by generating multiple beams in the directions of multiple mobiles.

Each beam requires only one pilot sequence to determine the complex am-
plitude in a desired direction. The reduction in required CSI relative to spatial
multiplexing makes the use of beams much less susceptible to pilot contamina-
tion and multiple-access interference. Beamforming may be preferable to spatial
multiplexing when the paths from the transmit to the receive antennas are pri-
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marily line-of-sight and hence few multipath signals are significant or when the
paths experience highly correlated fading that inhibits spatial multiplexing.

If an arrival angle is estimated or a transmission direction is selected, a beam
can be formed in the desired direction by setting the delays or phase shifts be-
hind the antennas. The beamforming of a set of disjoint fixed beams that cover
all feasible directions is called sectorization. The advantages of sectorization
at one end of a communication link are the reduction of the beam-alignment
delay, pilot-signal contamination, and beam-steering errors. The primary dis-
advantage of sectorization is the loss of flexibility inherent in adaptive arrays.
The role of sectorization in cellular CDMA networks is examined in Section 8.4.

An adaptive beam for receiving is formed by using an adaptive algorithm,
as described in Sections 5.6 and 5.7. The principal difficulty in adaptive beam-
forming for a MIMO system is the delay resulting from the need for the spa-
tial alignment of both the transmit and the receive beams. The initial search
for alignment entails the exchange of synchronized pilot signals between the
transmit and receive antennas, the estimation of signal arrival angles, and the
steering of both arrays over a range of angles.

In codebook-based beamforming, delays or phase shifts are found as precom-
puted entries, each of which corresponds to a specific direction. The number
of entries in the codebook determines the accuracy of the beam alignment with
the desired direction. The beamforming delay increases as the beams become
narrower to avoid interference. When a large number of antennas operate over
a large spectral band, it is expensive to implement power-consuming radio-
frequency devices, converters, and digital processors behind each antenna. A
hybrid array for a transmitter forms beams with analog subarrays controlled
by a digital processor. A hybrid array for a receiver applies analog subarray
outputs to a digital processor that produces the outputs of one or more beams.
Multiple beam outputs provide spatial multiplexing. The cost of the hybrid
array is some loss in beamforming capability.

7.10 Problems

1. Apply information theory to multiple-access communications over an
AWGN channel. (a) Show that if the bandwidth is infinite, then all users
can send messages at their individual capacities, which implies that the
interference among users does not occur. (b) Prove that whether or not
a multiuser detector is used,

C

(∑
i∈S Pi

2N0W

)
= C

(
P1∑

i∈S,i �=1 Pi + 2N0W

)
+C

(∑
i∈S,i �=1 Pi

2N0W

)
.

2. A Gold sequence is constructed from a maximal sequence with characteris-
tic polynomial 1+x2+x3. The second sequence is obtained by decimation
of the maximal sequence by q = 3. (a) Find one period of each of the two
sequences, and show that the second sequence is maximal. (b) List the 7
cross-correlation values of this pair of sequences. How many are distinct?
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3. The characteristic polynomials for generating Gold sequences of length 7
are: f1(x) = 1+ x+ x3 and f2(x) = 1+ x2 + x3. (a) What is the general
expression for the generating function of an arbitrary Gold sequence when
the initial state for the first maximal sequence generator has a0 = a1 = 0,
and a2 = 1. (b) What is the generating function for the Gold sequence
generated by adding the sequences generated by f1(x) and f2(x) when
both maximal sequence generators have the same arbitrary initial state?

4. A small set of Kasami sequences is formed by starting with the maximal
sequence generated by the characteristic polynomial 1+x2+x3+x4+x8.
After decimation by q, a second sequence with characteristic polynomial
1 + x + x4 is found. (a) What is the value of q? How many sequences
are in the set? What is the period of each sequence? What is the peak
magnitude of the periodic cross-correlation? Draw a block diagram of the
generator of the small Kasami set. (b) Prove whether the second sequence
is maximal.

5. The small set of the preceding problem is extended to a large set of Kasami
sequences by a decimation of the original maximal sequence by q1. A third
sequence with characteristic polynomial 1+x2+x3+x4+x5+x7+x8 is
found. (a) What is the value of q1? How many sequences are in the large
set? What is the period of each sequence? What is the peak magnitude
of the periodic cross-correlation? Draw a block diagram of the generator
of the large Kasami set. (b) Prove whether the third sequence is maximal.

6. Consider the conventional detector for two synchronous users. Evaluate
Ps(0) as N0 → 0 for the three cases: |ρC| < 1, |ρC| > 1, and |ρC| = 1.

7. Under certain circumstances, the noise in a conventional detector can be
beneficial against the multiple-access interference. Consider the conven-
tional detector for two synchronous users with |ρC| > 1. Find the noise
level that minimizes Ps(0).

8. Prove (7-109) and (7-102) for a rectangular chip waveform.

9. Consider two-user synchronous communications over the AWGN chan-
nel with BPSK. Compare the bit error probabilities of short spread-
ing sequences and long random sequences for a conventional receiver.
Use (7-122) and (7-123) with φ1 = 0 for the random sequences. Show
that the deterministic sequences give a lower bit error probability than
the random sequences if

E1
2GN0

� 1, |ρ| <
√

E1
2GN0

√
E0

2GN0
.

10. Use bounding and approximation methods to establish (7-132).
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11. The symbol error probability and other performance measures are func-
tions of Es/N0e(φ, τ ). (a) Show that the average signal-to-interference-
and-noise ratio (SINR) γ̄ has the lower bound given by

γ̄ = E

[
Es

N0e(φ, τ )

]
≥ Es

E [N0e(φ, τ )]
.

(b) Show that for uniform distributions of φ and τ and asynchronous
DS-QPSK signals with identical chip waveforms,

γ̄ ≥ Es
N0 + 2hEt/G1

which indicates a reduction in the interference power by the factor G1/h
on the average.

12. (a) Verify (7-153). (b) How many Hamming correlations need to be
checked to verify (7-160)?

13. Consider randomly generated frequency-hopping patterns. The hopset
size is M , and the correlation window length is L. What are the mean
and standard deviation of the number of collisions of two users?

14. Consider the optimal multiuser detector for two synchronous direct-
sequence signals with BPSK over the AWGN channel. Assume that phase
synchronization is performed and that the two spreading sequences are
identical. Derive in terms of the vector PTy the three conditions that
must be satisfied for the detector to decide that d = [+1,+1] was trans-
mitted.

15. (a) Derive the optimal multiuser detector for synchronous direct-sequence
signals with BPSK over the AWGN channel when all the spreading se-
quences are mutually orthogonal. (b) Show that the detector decouples
the code symbols in the sense that the decision for the code symbol of one
user is not influenced by the other code symbols.

16. Consider two-user synchronous communications over the AWGN channel
with BPSK. Show that a decorrelating detector and the short spreading
sequences give a lower bit error probability than long random sequences
and a conventional receiver if

E1
2GN0

� 1, |ρ| <
√

E1
2GN0

.

17. Consider the MMSE detector for synchronous users that transmit binary
symbols. (a) In (7-221), how do we know that (QRQ)k,k is real valued?
(b) Show that if

Ek
N0

� 1

then the MMSE detector is nearly the same as the decorrelating detector.
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18. Consider a MIMO system with spatial multiplexing, synchronous detec-
tion, and binary symbols. Show that if

K−1∑
i=0,i�=k

|Ai,m| < |Ak,m|, θmax � 1

then the symbol error probability is nearly the same as it is for a maximal-
ratio combiner in the absence of multiple-access interference from other
transmitters.



Chapter 8

Mobile Ad Hoc and
Cellular Networks

The impact of multiple-access interference in mobile ad hoc and cellular net-
works with DS-CDMA and FH-CDMA systems is analyzed in this chapter.
Phenomena and issues that become prominent in mobile networks using spread
spectrum include exclusion zones, guard zones, power control, rate control,
network policies, sectorization, and the selection of various spread-spectrum
parameters. The outage probability, which is the fundamental network per-
formance metric, is derived for both ad hoc and cellular networks and both
DS-CDMA and FH-CDMA systems. Acquisition and synchronization methods
that are needed within a cellular DS-CDMA network are addressed.

8.1 Conditional Outage Probability

In a mobile network, the most useful link performance metric is the outage
probability, which is the probability that the link does not currently support
communications with a specified reliability or quality. Since link performance
can generally be related to the signal-to-interference-and-noise ratio (SINR) at
the receiver, an outage is said to occur if the instantaneous SINR of a system is
less than a specified threshold, which may be adjusted to account for any diver-
sity, rake combining, or channel code. The outage criterion has the advantage
that it simplifies the analysis and does not require explicit specification of the
code-symbol modulation or channel coding.

Let R denote the required SNR when a single signal is received over the
AWGN channel. If α is the fading amplitude, then α2Eb/N0 is the instantaneous
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SNR, and Eb/N0 is the SNR when there is no fading. The outage probability is
the probability that α2Eb/N0 < R. Therefore,

Pout =

RN0/Eb∫

0

fg (r) dr (8-1)

where fg (r) is the density of α2. For Nakagami fading, the substitution of (6-36)
into (8-1), a change of the integration variable, and the application of (H-9) of
Appendix H.1 yield

Pout =
1

Γ (m)
γ(m,mx)

= 1− e−mx
m−1∑
i=0

(mx)i

i!
, x =

RN0

Eb
. (8-2)

For Rayleigh fading, m = 1 and

Pout = 1− exp

(
−RN0

Eb

)
. (8-3)

This equation indicates how disruptive Rayleigh fading can be. Even if Eb/N0 =
10R, the outage probability is still approximately 0.1.

In this section, a model of wireless networks based on geometry is used
to derive a closed-form equation for the conditional outage probability at the
receiver of a reference node [110]. The conditioning is with respect to the
location of the interfering nodes and their shadowing. The expression averages
over the fading, which has timescales much faster than that of the shadowing or
node location. The channel from each node to the reference receiver may have its
own distinct Nakagami fading parameter (Section 6.2), and the ability to vary
the Nakagami parameters can be used to model differing line-of-sight conditions
between the reference receiver and each node. The closed-form equation is then
applied to the assessment of the effects of various network parameters on outage
probabilities.

The network comprises M+2 nodes that include a reference receiver XM+1,
a desired or reference transmitterX0, andM interfering nodesX1, . . . , XM . The
scalar Xi represents the ith node, the vector Xi represents its location, and
||Xi −XM+1|| is the distance from the ith node to the reference receiver. The
nodes can be located in any arbitrary two- or three-dimensional regions. Two-
dimensional coordinates are conveniently represented by allowing Xi to assume
a complex value, where the real component is the East–West coordinate and
the imaginary component is the North–South coordinate. Each mobile uses a
single omnidirectional antenna.

When direct-sequence spreading is used, long spreading sequences are as-
sumed and modeled as random binary sequences with chip duration Tc. The
spreading factor G directly reduces the interference power. The multiple-access
interference is assumed to be asynchronous, and the power from each interfer-
ing Xi is further reduced by the chip function h(τi), which is a function of the
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chip waveform and the timing offset τi of Xi’s spreading sequence relative to
that of the desired signal. Since only timing offsets modulo-Tc are relevant,
0 ≤ τi < Tc. In a network of direct-sequence systems with QPSK, a multiple-
access interference signal with received power Ii before despreading is reduced
after despreading to the level Iih(τi)/G, where h(τi) is given by (7-98). Thus,
the interference power is reduced by the effective spreading factor Gi = G/h(τi),
while the despreading does not significantly affect the desired-signal power.

The power of the desired signal from the reference transmitter at the refer-
ence receiver is

ρ0 = P0g010
ξ0/10f (||X0 −XM+1||) (8-4)

and the power of the interference from Xi at the reference receiver is (Sec-
tion 6.1)

ρi =
Pi

Gi
gi10

ξi/10f (||Xi −XM+1||) , 1 ≤ i ≤ M (8-5)

where Pi, 0 ≤ i ≤ M , is the received power at the reference distance d0 (as-
sumed to be sufficiently far that the signals are in the far field) before despread-
ing when fading and shadowing are absent, gi is the power gain due to fading,
ξi is a shadowing factor, and f(·) is a path-loss function. The path-loss function
of distance d is expressed as the power law

f (d) =

(
d

d0

)−α

, d ≥ d0 (8-6)

where α ≥ 2 is the path-loss exponent. The {gi} are independent with unit-
mean but are not necessarily identically distributed; that is, the channels from
the different {Xi} to the reference receiver may undergo fading with different
distributions. For analytical tractability and close agreement with measured
fading statistics, Nakagami fading is assumed, and gi = a2i , where ai is Nak-
agami with parameter mi. When the channel between Xi and the reference
receiver undergoes Rayleigh fading, mi = 1 and the corresponding gi is ex-
ponentially distributed. The shadowing on the link from one node to another
is determined by the local terrain. If the shadowing is modeled as having a
lognormal distribution, the {ξi} are independent zero-mean Gaussian random
variables (Section 6.1). In the absence of shadowing, ξi = 0.

We assume that the {gi} remain fixed for the duration of a time interval
but vary independently from interval to interval (block fading). The activity
probability pi is the probability that the ith node transmits in the same time
interval as the desired signal. The {pi} can be used to model frequency hopping,
voice-activity factors, controlled silences, or failed link transmissions and the
resulting retransmission attempts. The {pi} need not be the same; for instance,
carrier-sense multiple-access (CSMA) protocols can be modeled by setting pi =
0 only when a mobile lies within the CSMA guard zone of another active mobile.

The SINR at the reference receiver is given by:

γ =
ρ0

N +
∑M

i=1 Iiρi
(8-7)
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where ρ0 is the received power of the desired signal, N is the noise power, and
the indicator Ii is a Bernoulli random variable with probability P [Ii = 1] = pi
and P [Ii = 0] = 1− pi. The substitution of (8-4)–(8-6) into (8-7) yields

γ =
g0Ω0

Γ−1 +
∑M

i=1 IigiΩi

, Γ =
dα0P0

N (8-8)

where

Ωi =

{
10ξ0/10||X0 −XM+1||−α, i = 0
Pi

GiP0
10ξi/10||Xi −XM+1||−α, i > 0

(8-9)

is the normalized power of Xi, and Γ is the SNR when the reference transmit-
ter X0 is at unit distance from the reference receiver XM+1 and fading and
shadowing are absent. When direct-sequence spreading is not used, Gi = 1.

Two preliminary results are needed in the analysis. Consider the expansion
of (x1 + x2 + . . .+ xk)

n
, where n is a positive integer. A typical term in the

expansion is xn1
1 xn2

2 . . . xnk

k , where the {ni} are nonnegative integers such that
n1 + n2 + . . .+ nk = n. The number of times this term appears is

(
n

n1

)(
n− n1

n2

)
· · ·
(
n−

∑k−2
i=1 ni

nk−1

)(
nk

nk

)
=

n!

n1!n2! . . . nk!
(8-10)

because we may count the appearances by selecting x1 from n1 of the n factors,
selecting x2 from n2 of the remaining factors, and so forth. Thus, we obtain
the multinomial expansion:

(x1 + x2 + . . .+ xk)
n
=

∑
ni:

∑k
i=1 ni=n

n!

n1!n2! . . . nk!
xn1
1 xn2

2 . . . xnk

k (8-11)

where the principal sum is over the nonnegative integers that have a sum equal
to n.

For Nakagami fading with parametermi and E[gi] = 1, it follows from (6-33)
and elementary probability that the density of each random variable gi = a2i is
given by the gamma density (Appendix E.5):

fgi(x) =
mmi

i

Γ(mi)
xmi−1 exp (−mix)u(x), mi ≥

1

2
(8-12)

where u(x) is the unit step function defined by (1-69).
In the subsequent analysis [110], the spatial extent of the network and num-

ber of nodes are finite. Each node has an arbitrary location distribution with an
allowance for the node’s duty factor, shadowing, exclusion zones, and possible
guard zones. LetΩ = [Ω0, . . . ,ΩM ] represent the set of normalized powers given
by (8-9). An outage occurs when the SINR γ falls below an SINR threshold β
required for the reliable reception of a signal, and γ is given for the particular
Ω by (8-8). It follows that the outage probability for the given Ω is

ε(Ω) = P [γ ≤ β|Ω] . (8-13)
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Because it is conditioned on Ω, the outage probability is conditioned on the
network geometry and shadowing factors, which have dynamics over timescales
that are much slower than the fading.

Substituting (8-8) into (8-13) and rearranging yield

ε(Ω) = P

[
β−1g0Ω0 −

M∑
i=1

IigiΩi ≤ Γ−1

∣∣∣∣∣Ω
]
. (8-14)

By defining

S = β−1g0Ω0, Yi = IigiΩi (8-15)

Z = S−
M∑
i=1

Yi (8-16)

the outage probability may be expressed as

ε(Ω) = P
[
Z ≤ Γ−1|Ω

]
= FZ

(
Γ−1|Ω

)
(8-17)

which is the distribution function of Z conditioned on Ω and evaluated at Γ−1.
Let fS,Y(s,y|Ω) denote the joint density of S and the vector Y = (Y1, . . . ,YM )
conditioned on Ω. Equation (8-17) implies that

1− ε(Ω) = P [Z > z|Ω] = P

[
S > z +

M∑
i=1

Yi|Ω
]

=

∫
. . .

∫

RM

∫ ∞

z+
∑M

i=1 yi

fS,Y(s,y|Ω)dsdy

=

∫
. . .

∫

RM

∫ ∞

z+
∑M

i=1 yi

fS (s|Ω,y)fY(y|Ω)dsdy (8-18)

where z = Γ−1, fY(y|Ω) is the joint density of Y conditioned on Ω, fS (s|Ω,y)
is the density of S conditioned on (Ω,y), and the outer integral is over M -
dimensional space.

All channels are assumed to fade independently. Since S is independent of
y and Ωi, i �= 0, fS (s|Ω,y) = fS (s|Ω0), where fS (s|Ω0) is the density of S
conditioned on Ω0. Since the {Yi} are independent of each other, and each Yi

is independent of Ωk, k �= i, we have fY(y|Ω) =
∏M

i=1 fi(yi), where fi(yi) =
fYi

(yi|Ωi) is the density of Yi conditioned on Ωi. Since densities are nonnegative
and integrable, by Fubini’s theorem (Appendix C.1) the order of integration is
interchangeable, and hence

ε(Ω) = 1−
∫

. . .

∫

RM

[∫ ∞

z+
∑M

i=1 yi

fS (s|Ω0)ds

]
M∏
i=1

fi(yi)dyi. (8-19)
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The density of the gamma-distributed S with Nakagami parameter m0 is

fS (s|Ω0) =

(
βm0

Ω0

)m0

(m0 − 1)!
sm0−1 exp(−βm0s)u(s). (8-20)

Successive integrations by parts and the assumption thatm0 is a positive integer
provide the evaluation of the inner integral:

∫ ∞

z+
∑M

i=1 yi

fS (s|Ω0)ds = exp

{
−βm0

Ω0
(z +

M∑
i=1

yi)

}
m0−1∑
s=0

1

s!

[
βm0

Ω0
(z +

M∑
i=1

yi)

]s

.

(8-21)
Defining β0 = βm0/Ω0 and substituting (8-21) into (8-19) yield

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s!

∫
. . .

∫
RM

e−β0
∑M

i=1 yi

(
1 + z−1

M∑
i=1

yi

)s M∏
i=1

fi(yi)dyi.

(8-22)
Since s is a positive integer, the binomial theorem indicates that

(
1 + z−1

M∑
i=1

yi

)s

=

s∑
t=0

(
s

t

)
z−t

(
M∑
i=1

yi

)t

. (8-23)

The multinomial expansion (8-11) yields

(
M∑
i=1

yi

)t

=
∑
�i≥0

∑M
i=1 �i=t

t!

(
M∏
i=1

y�ii
�i!

)
(8-24)

where the summation on the right-hand side is over all sets of nonnegative
indices that sum to t. Substituting (8-23) and (8-24) into (8-22) and bringing
the exponential into the product, we obtain

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s!

s∑
t=0

(
s

t

)
z−tt!

×
∑
�i≥0

∑M
i=1 �i=t

∫
. . .

∫

RM

(
M∏
i=1

e−β0yi
y�ii
�i!

)
M∏
i=1

fi(yi)dyi. (8-25)

Using the fact that the {Yi} are nonnegative, we obtain

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s!

s∑
t=0

(
s

t

)
z−tt!

∑
�i≥0

∑M
i=1 �i=t

M∏
i=1

∫ ∞

0

y�i

�i!
e−β0yfi(y)dy.

(8-26)
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Using (8-12) and the activity probability pi, we find that the conditional
density fi(y) is

fi(y) = fYi
(y|Ωi) = (1−pi)δ(y)+pi

(
mi

Ωi

)mi 1

Γ(mi)
ymi−1e−ymi/Ωiu(y) (8-27)

where δ(y) is the Dirac delta function (Appendix F.3). Substituting this equa-
tion, the integral in (8-26) is

∫ ∞

0

y�i

�i!
e−β0yfi(y)dy = (1− pi)δ�i +

(
piΓ(�i +mi)

�i!Γ(mi)

)(
Ωi

mi

)�i

×
(
β0

Ωi

mi
+ 1

)−(mi+�i)

(8-28)

where δ� is the Kronecker delta function, which is equal to 1 when � = 0, and
equal to 0 otherwise. Substituting (8-28) into (8-26) and using

(
s

t

)(
t!

s!

)
=

(
s!

t!(s− t)!

)(
t!

s!

)
=

1

(s− t)!
(8-29)

give

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s∑
t=0

z−t

(s− t)!

×
∑
�i≥0

∑M
i=1 �i=t

M∏
i=1

⎡
⎢⎢⎢⎣(1− pi)δ�i +

piΓ(�i +mi)

(
Ωi

mi

)�i

�i!Γ(mi)

(
β0

Ωi

mi
+ 1

)(mi+�i)

⎤
⎥⎥⎥⎦ . (8-30)

This equation may be written as

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s∑
t=0

z−t

(s− t)!
Ht(Ω),

β0 =
βm0

Ω0
, z = Γ−1 (8-31)

where m0 is a positive integer,

Ht(Ω) =
∑
�i≥0

∑M
i=1 �i=t

M∏
i=1

G�i(i) (8-32)

the summation in (8-32) is over all sets of indices that sum to t,

G�(i) =

{
1− pi(1−Ψmi

i ), � = 0
piΓ(�+mi)
�!Γ(mi)

(
Ωi

mi

)�
Ψmi+�

i , � > 0
(8-33)
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and

Ψi =

(
β0

Ωi

mi
+ 1

)−1

, i = 1, 2, . . . ,M. (8-34)

Equation (8-32) may be efficiently computed as follows. For each possible
t = {0, ..,m0 − 1}, precompute a matrix It that has rows containing all sets of
nonnegative indices {�1, . . . , �M} that sum to t. There are

(
t+M − 1

t

)
(8-35)

rows and M columns in It. The It’s may be reused whenever the same M
is considered. Compute a row vector Ψ containing the Ψi. For each possible
� = {0, ..,m0 − 1}, compute (8-33) using Ψ and place the resulting row into an
m0×M matrix G. Each term of (8-32) can be found by using the corresponding
row from It as an index into G. Taking the product along the length of the
resulting row vector gives the corresponding term of the summation. More
generally, the entire It matrix can be used to index G. To be consistent with
matrix-based languages, such as Matlab, denote the result of the operation as
G(It). Taking the product along the rows of G(It) and then the sum down the
resulting column give (8-32).

In the subsequent examples based on deterministic geometry, we assume
that the nodes are mobiles that lie within a circular region of radius rnet. A
circular exclusion zone of radius rex ≥ d0 surrounds the reference receiver,
and no mobiles are permitted within the exclusion zone. The exclusion zone
is based on the spacing that occurs in actual mobile networks. For instance,
when the radios are mounted on separate vehicles, there is a need for crash
avoidance by maintaining a minimum vehicle separation. A small exclusion
zone maintained by visual sightings exists in practical networks, but a more
reliable and extensive one can be established by equipping each mobile with a
global positioning system (GPS) and periodically broadcasting each mobile’s
GPS coordinates. Mobiles that receive those messages could compare their
locations to those in the messages and alter their movements accordingly.

Consider the network topology shown in the upper-right corner of Figure 8.1.
The reference receiver is at the center of the network, the corresponding ref-
erence transmitter is located to its right, and M = 28 interfering mobiles are
within an annular region with inner radius rex = 0.05 and outer radius rnet = 1.

Mobiles are placed successively according to a uniform clustering model as
follows. Let Xi = rie

jθi represent the location of the ith mobile. A pair of
independent random variables (yi, zi) is selected from the uniform distribution
over [0, 1]. From these variables, the location is initially selected according to a
uniform spatial distribution over a disk with radius rnet by setting ri =

√
yirnet

and θi = 2πzi. If the corresponding Xi falls within an exclusion zone of one of
the i− 1 previous mobile locations, then a new random location is assigned to
the ith mobile as many times as necessary until it falls outside any exclusion
zone.

In the following examples, the {Ωi} are determined by assuming an attenua-
tion power-law exponent α = 3.5, a common transmit power Pi = P0 for all i, no
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Figure 8.1: Example network, which is drawn according to the uniform cluster-
ing model, and the outage probability as a function of SNR Γ, conditioned on
the pictured network topology. Performance is shown for three fading models
without spreading or shadowing. Analytical expressions are plotted by lines,
while dots represent simulation results (with one million trials per point) [110]

shadowing, and that the reference transmitter is at distance ||X0−XM+1|| = 0.1
from the reference receiver. We assume that pi = 0.5 for all i, and that the SINR
threshold is β = 0dB. This threshold corresponds to a maximum code-symbol
rate equal to one information bit per channel symbol, as indicated by (7-2).

Example 1. Suppose that spread-spectrum modulation is not used (G =
h = 1) and that all signals undergo Rayleigh fading. Then, mi = 1 for all i,
β0 = β/Ω0 = β||X0 −XM+1||α, Ωi = ||Xi −XM+1||−α, and (8-31) specializes
to

ε(Ω) = 1− e−β0Γ
−1

M∏
i=1

1 + β0(1− pi)Ωi

1 + β0Ωi
(8-36)

which can be easily evaluated for any given realization of Ω. The outage proba-
bility is shown along with the spatial locations of the mobiles in Figure 8.1. Also
shown is the outage probability generated by simulation, which involves ran-
domly generating the mobile locations and the exponentially distributed power
gains g0, . . . , gM . As can be seen in the figure, the analytical and simulation
results coincide, which is to be expected because (8-36) is exact. Any discrep-
ancy between the curves could be attributed to the finite number of Monte
Carlo trials (one million trials were executed per SNR point). �

Example 2. Now suppose that the link between the source and receiver
undergoes Nakagami fading with parameter m0 = 4, which is much milder than
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Rayleigh fading. The outage probability, found using (8-31) through (8-33), is
also plotted in Figure 8.1. The figure shows two choices for the Nakagami
parameter of the interfering mobiles: mi = 1 and mi = 4, i = 1, 2, . . . ,M .
The mi = 4 case, denoted by “Nakagami” in the figure legend, represents the
situation where the reference transmitter and interfering mobiles are equally
visible to the receiver. The mi = 1 case, denoted by “mixed” in the figure
legend, represents a more typical situation where the interfering mobiles are
not in the line-of-sight. As with the previous example, the analytical curves are
verified by simulations involving one million Monte Carlo trials per SNR point.
�

8.2 DS-CDMA Ad Hoc Networks

A mobile ad hoc network (MANET) or peer-to-peer network comprises au-
tonomous mobiles that communicate without a centralized control or supporting
infrastructure. Communications between two mobiles are either direct or are
relayed by other mobiles. The independent movement of the mobiles creates a
highly dynamic topology. Each mobile must be capable of processing the infor-
mation required to route communications to other destinations. In addition to
being essential when a cellular infrastructure is not possible, MANETs provide
more robustness and flexibility than cellular networks.

In DS-CDMA MANETs, the mobiles of multiple users simultaneously trans-
mit direct-sequence signals in the same frequency band. All signals use the
entire allocated spectrum, but the spreading sequences differ. DS-CDMA is
advantageous for MANETs because it eliminates the need for any frequency or
time-slot coordination, imposes no sharp upper bound on the number of mo-
biles, directly benefits from inactive terminals in the network, and is capable of
efficiently implementing sporadic data traffic, intermittent voice signals, multi-
beam arrays, and reassignments to accommodate variable data rates. Further-
more, DS-CDMA systems are inherently resistant to interference, interception,
and frequency-selective fading.

Example 3. The high outage probabilities of Examples 1 and 2 can be
reduced by using spread spectrum. Suppose that direct-sequence signals are
used with a spreading factor G and common chip function h(τi) = h so that
Gi = G/h. The other parameter values in Examples 1 and 2 remain the same.
In Figure 8.2, the outage probability is shown for DS-CDMA networks using
three different spreading factors and h = 2/3 as well as for an unspread network
(Gi = 1). A mixed-fading model (m0 = 4 and mi = 1 for i ≥ 1) is used. From
this plot, a dramatic reduction in outage probability when using direct-sequence
spreading can be observed. �

Example 4. Because it is conditioned on Ω, the outage probability varies
from one network realization to the next. The variability in outage probability
is illustrated in Figure 8.3, which shows the outage probability for ten differ-
ent network realizations and no spreading. One of the networks is shown in
Figure 8.1, whereas the other nine networks were each realized in the same
manner; that is, with M = 28 interfering mobiles drawn from a uniform clus-
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Figure 8.2: Outage probability as a function of SNR Γ, conditioned on the
network shown in Figure 8.1 with the mixed-fading model. Performance is
shown for several values of the spreading factor G [110]

tering process with rex = 0.05 and rnet = 1 and the reference transmitter placed
at distance ||X0 −XM+1|| = 0.1 from the reference receiver. The same set of
parameters (α, β, pi, Pi, and mi) used to generate the mixed-fading results of
Example 2 were again used. From the figure, it can be seen that the outage
probabilities of different network realizations can vary dramatically. �

In addition to the locations of the interfering mobiles, Ω depends on the
realization of the shadowing. The shadowing factors {ξi} can be modeled as
random variables with any arbitrary distributions and need not be the same for
all i. In the subsequent examples, lognormal shadowing is assumed, and the
shadow factors are independent, identically distributed, and zero-mean Gaus-
sian random variables with a common standard deviation σs.

The conditioning on Ω can be removed by averaging the conditional outage
probability ε with respect to many network geometries, thereby producing the
spatially averaged outage probability or average outage probability. This prob-
ability is useful for assessing the average effects of parameter variations. The
averaging can be performed analytically only under certain limitations [110].
For more general cases of interest, the average outage probability can be esti-
mated through Monte Carlo simulation by generating many different networks
and hence many different Ω vectors, computing the outage probability for each
network, and taking the numerical average. Suppose that N networks are gen-
erated, and let εi denote the outage probability of the ith network, which has
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Figure 8.3: Outage probability conditioned on ten different network realiza-
tions. A uniform clustering model is assumed with rnet = 1.0, rex = 0.05,
M = 28, mixed fading, α = 3.5, and no spreading. The conditional outage
probabilities are indicated by dashed lines. The average outage probability
over 10,000 network realizations ε̄ is shown by the solid line [110]

normalized powers expressed as the vector Ωi. The average outage probability
is

ε̄ =
1

N

N∑
i=1

εi. (8-37)

As an example, the solid line in Figure 8.3 shows the corresponding average
outage probability for N = 10, 000 network realizations.

Example 5. In a finite network, the average outage probability depends on
the location of the reference receiver. Table 8.1 explores the change in perfor-
mance when the reference receiver moves from the center of the radius- rnet cir-
cular network to the perimeter of the network. The SNR was set to Γ = 10 dB,
a mixed-fading channel model was assumed, and other parameter values were
rex = 0.05 , rnet = 1 , β = 0dB, and pi = 0.5 . The interfering mobiles were
placed according to the uniform clustering model and the reference transmitter
was placed at distance ||X0−XM+1|| = 0.1 from the reference receiver. For each
set of values of the parameters G, α, σs, and M , the outage probability at the
network center ε̄c and at the network perimeter ε̄p were computed by averaging
over N = 10, 000 realizations of mobile placement and shadowing. Two values
of each parameter were considered: G = {1, 32}, α = {3, 4}, σs = {0, 8}, and
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Table 8.1: Average outage probability when the receiver is at the center (ε̄c)
or on the perimeter (ε̄p) of the network [110]

Parameters Outage probabilities
M α G σs ε̄c ε̄p
30 3 1 0 0.1528 0.0608

8 0.2102 0.0940
32 0 0.0017 0.0012

8 0.0112 0.0085
4 1 0 0.1113 0.0459

8 0.1410 0.0636
32 0 0.0028 0.0017

8 0.0123 0.0089
60 3 1 0 0.3395 0.1328

8 0.4102 0.1892
32 0 0.0030 0.0017

8 0.0163 0.0107
4 1 0 0.2333 0.0954

8 0.2769 0.1247
32 0 0.0052 0.0027

8 0.0184 0.0117

M = {30, 60}. The table indicates that ε̄p is considerably less than ε̄c in the
finite network. This reduction in outage probability is more significant for the
unspread network and is less pronounced with increasing G. Both ε̄p and ε̄c
increase as M and σs increase and G decreases.

As α increases, both ε̄p and ε̄c increase when G = 32, but decrease when
G = 1. This difference occurs because spread-spectrum systems are less sus-
ceptible to the near–far problem than unspread ones. The increase in α is not
enough to cause a significant increase in the already high outage probability for
unspread systems in those realizations with interfering mobiles close enough to
the reference receiver to cause a near–far problem. In the same realizations, the
less susceptible spread-spectrum systems do experience a significantly increased
outage probability. �

A useful metric for quantifying the spatial variability is the probability that
the conditional outage probability ε is either above or below a threshold εT . In
particular P [ε > εT ] represents the fraction of network realizations that fail to
meet a minimum required outage probability at the reference receiver and can
be construed as a network outage probability. The complement of the network
outage probability P [ε ≤ εT ] is the distribution function of ε.

Example 6. The distribution function P [ε ≤ εT ] is shown in Figure 8.4
for the three fading models without spreading and for the mixed-fading model
with spreading. Each curve was computed by generating N = 10, 000 networks
with M = 28 interfering mobiles drawn from a uniform clustering process with
rex = 0.05, rnet = 1, ||X0 − XM+1|| = 0.1, Γ = 5dB, and no shadowing. For
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Figure 8.4: Probability that the conditional outage probability ε is below the
threshold outage probability ε

T
in a network with rnet = 1.0, rex = 0.05,

M = 28, and Γ = 5dB. Results are shown for the three fading models
without spreading (G = 1) and for the mixed-fading model with spreading
(G = {832, 100}) [110]

each network, the outage probability for the link from a source to a receiver
was computed and compared against the threshold εT . The curves show the
fraction of networks with an ε that does not exceed the threshold. The curves
become steeper with increasing G, which shows that spreading has the effect of
making performance less sensitive to the particular network topology. �

Shadowing can be incorporated into the model by simply drawing an appro-
priate set of independent shadowing factors {ξi} for each network realization
and using them to compute the {Ωi} according to (8-9).

Example 7. In Figure 8.5, shadowing was applied to the same set of
N = 10, 000 networks used to generate Figure 8.4. Two standard deviations
were considered for the lognormal shadowing: σs = 2dB and σs = 8dB, and
again α = 3.5. For each shadowed network realization, the outage probabil-
ity was computed for the mixed-fading model without spreading (G = 1). All
other parameter values are the same ones used to produce Figure 8.4. The fig-
ure shows P [ε ≤ εT ] for both the shadowed and unshadowed realizations. The
presence of shadowing and increases in σs increase the variability of the condi-
tional outage probability, as indicated by the reduced slope of the distribution
functions. Shadowing does not significantly alter the average outage probability
in this example. For low thresholds, such as εT < 0.1, performance is actually
better with shadowing than without. This behavior occurs because the shad-
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Figure 8.5: Probability that the conditional outage probability ε is below the
threshold outage probability ε

T
in a network with rex = 0.05, rnet = 1.0,

M = 28, Γ = 5dB, mixed fading, and no spreading (G = 1). Curves are shown
for no shadowing and for shadowing with two values of σs [110]

owing sometimes may cause the reference signal power to be much higher than
it would be without shadowing. �

The central issue in DS-CDMA MANETs is the prevention of a near–far
problem. If all mobiles transmit at the same power level, then the received
power at a receiver is higher for transmitters near the receiving antenna. There
is a near–far problem because transmitters that are far from the receiving an-
tenna may be at a substantial power disadvantage, and the spreading factor may
not be enough to allow satisfactory reception of their signals. The solution to
the near–far problem in cellular networks (Section 8.3) is power control , which
is the control or regulation of the power levels received from signal sources.
However, the absence of a centralized control of a MANET renders any at-
tempted power control local rather than pervasive and generally not feasible.
Multiuser detection in DS-CDMA networks, such as interference cancelation
(Section 7.8), reduces but does not eliminate the near–far problem. Even if an
interference canceler can suppress a large amount of interference, the residual
interference due to imperfect channel estimation may prevent acquisition.

The IEEE 802.11 standard uses CSMA with collision avoidance in its
medium-access control protocol for MANETs. The implementation entails the
exchange of request-to-send (RTS) and clear-to-send (CTS) handshake packets
between a transmitter and receiver during their initial phase of communication
that precedes the subsequent data and acknowledgment packets. The receipt
of the RTS/CTS packets with sufficient power levels by nearby mobiles causes
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them to inhibit their own transmissions, which would produce interference in
the receiver of interest. The transmission of separate CTS packets in addition
to the RTS packets decreases the possibility of subsequent signal collisions at
the receiver because of nearby hidden terminals that do not sense the RTS
packets. Thus, the RTS/CTS packets essentially establish CSMA guard zones
surrounding a transmitter and receiver and hence prevent a near–far problem
except during the initial reception of an RTS packet. The interference at the
receiver is restricted to concurrent transmissions generated by mobiles outside
the guard zones.

The major advantage of the exclusion zone compared with a CSMA guard
zone is that the exclusion zone prevents near–far problems at receivers while
not inhibiting any potential concurrent transmissions. Another advantage of
an exclusion zone is enhanced network connectivity because of the inherent
constraint on the clustering of mobiles. The CSMA guard zone offers additional
near–far protection beyond that offered by the exclusion zone, but at the cost
of reduced network transmission capacity, as shown subsequently. However,
CSMA guard zones are useful for operating environments that do not permit
large exclusion zones, such as networks with low mobility or a high density of
mobile terminals.

When CSMA is used in a network, the CSMA guard zone usually encom-
passes the exclusion zone. Although both zones may cover arbitrary regions,
they are modeled as circular regions in the subsequent examples for computa-
tional convenience, and the region of the CSMA guard zone that lies outside the
exclusion zone is an annular ring. The existence of an annular ring enhances the
near–far protection at the cost of inhibiting potential concurrent transmissions
within the annular ring. The radii of the exclusion zone and the CSMA guard
zone are denoted by rex and rg , respectively.

An analysis of the impact of guard zones that encompass exclusion zones
[111] begins with an initial placement of the mobiles according to the uniform
clustering model. In generating a network realization, potentially interfering
mobiles within guard zones are deactivated according to the following proce-
dure. First, the reference transmitter X0 is activated. Next, each potentially
interfering mobile is considered in the order it was placed. For each mobile,
a check is made to see if it is in the guard zone of a previously placed active
mobile. Since mobiles are indexed according to the order of placement, X1 is
first considered for possible deactivation; if it lies in the guard zone of X0, it
is deactivated, and otherwise it is activated. The process repeats for each sub-
sequent Xi, deactivating it if it falls within the guard zone of any active Xj ,
j < i, or otherwise activating it.

Figure 8.6 displays an example of a network realization. The reference
receiver is placed at the origin, the reference transmitter is at X0 = 1/6 to
its right, and M = 30 mobiles are placed according to the uniform clustering
model, each with an exclusion zone (not shown) of radius rex = 1/12. Active
mobiles are indicated by filled circles, and deactivated mobiles are indicated
by unfilled circles. A guard zone of radius rg = 1/4 surrounds each active
mobile, as depicted by dashed circles. When CSMA guard zones are used, the
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Figure 8.6: Example network realization [111]

other mobiles within the guard zone of an active mobile are deactivated. The
reference receiver has not been assigned a CSMA guard zone, which reflects
the fact that it has none while it is receiving the initial RTS. In the figure, 15
mobiles have been deactivated, and the remaining 15 mobiles remain active.

Although the outage probability is improved with CSMA because of the
deactivation of potentially interfering mobiles, the overall network becomes less
efficient because of the suppression of transmissions. The network efficiency
can be quantified by the area spectral efficiency :

A = λ(1− ε̄)R (8-38)

where λ is the mobile density, which is the number of active mobiles per unit
area, ε̄ is defined by (8-37), and R is the code rate in units of information
bits per channel use. Generating Ωi for each network realization involves not
only placing the mobiles according to the uniform clustering model but also
realizing the shadowing and deactivating mobiles that lie within the CSMA
guard zones of the active mobiles. The area spectral efficiency represents the
spatially averaged maximum network throughput per unit area. Increasing the
size of the guard zone generally reduces area spectral efficiency because of fewer
simultaneous transmissions.

For a given value of M , the mobile density without a CSMA guard zone
remains fixed since all mobiles remain active. However, with a CSMA guard
zone, the number of potentially interfering mobiles is random with a value
that depends on the value of rg , the locations of the mobiles, and their order
of placement, which affects how they are deactivated. As with the average
outage probability, Monte Carlo simulation is used to estimate the area spectral
efficiency.
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Figure 8.7: Average outage probability as a function of rg/||X0|| for several
values of rex/||X0|| with M = 30 and rnet/||X0|| = 6. Dashed lines are for
spreading (Ge = 48), and solid lines are for no spreading (Ge = 1) [111]

In the following examples, we assume that the SNR is Γ = 10 dB, all channels
undergo mixed fading (m0 = 3 and mi = 1, i ≥ 1) with lognormal shadowing
(σs = 8dB), and the SINR threshold is β = 0dB. Once the mobile locations
{Xi} are realized, the {Ωi} are determined by assuming a path-loss exponent
α = 3.5 and a common transmit power (Pi = P0 for all i). The reference receiver
is at the center of the network, and the spatially averaged outage probability
is computed by averaging over N = 10,000 network realizations. Although the
model permits nonidentical spreading factors, we assume that each effective
spreading factor Gi = Ge = G/h is constant for all interference signals. Both
spread and unspread systems are considered, with Ge = 1 for the unspread
system and Ge = 48 for the spread system, corresponding to a typical direct-
sequence waveform with G = 32 and h(τi) = h = 2/3. Although the model
permits nonidentical pi in the range [0, 1] , the value pi = 0.5 for all active Xi is
chosen, corresponding to a half-duplex mobile terminal with a full input buffer
and a symmetric data transmission rate to a peer terminal.

Example 8. To investigate the influence of the exclusion-zone radius rex
and guard-zone radius rg on the network performance, the outage probabil-
ity and area spectral efficiency were determined over a range of rex and rg .
To remove the dependence on the transmitter–receiver separation, the guard
and exclusion zones were normalized with respect to ||X0 − XM+1|| = ||X0||.
The normalized guard-zone radius was varied over 1/2 ≤ rg/||X0|| ≤ 3, and
three representative values of the normalized exclusion-zone radius were se-
lected: rex/||X0|| = {1/4, 1/2, 3/4}. The number of potentially interfering
mobiles was set to M = 30 and rnet/||X0|| = 6.
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Figure 8.8: Normalized area spectral efficiency as a function of rg/||X0|| for
several values of rex/||X0|| with M = 30 and rnet/||X0|| = 6. Dashed lines are
for spreading (Ge = 48), and solid lines are for no spreading (Ge = 1) [111]

Figure 8.7 shows the spatially averaged outage probability ε̄. For the un-
spread system, the outage probability is insensitive to the exclusion-zone radius
but very sensitive to the guard-zone radius. This sensitivity underscores the
importance of a guard zone for an unspread network. Except when the guard-
zone radius is relatively small, the outage probability of the spread system is
insensitive to both the exclusion-zone and guard-zone radii.

Figure 8.8 shows the normalized area spectral efficiency A/R as a function
of the guard-zone radius. Although the outage probability at the reference
receiver in an unspread network is insensitive to rex , Figure 8.8 shows that
the area spectral efficiency is sensitive to rex , especially at low rg . As rex
increases, there are fewer nearby interfering mobiles that get deactivated by the
guard zone. Thus, more mobiles remain active, and the area spectral efficiency
increases even though the outage probability remains fixed. A similar behavior
is seen for the spread network, which for small rg has a significantly higher
area spectral efficiency than the unspread network because of the lower outage
probability. The main limitation to increasing rex is that it must be small
enough that there is no significant impediment to the movements of mobiles. For
both the spread and unspread networks, the area spectral efficiency diminishes
quickly with increasing rg because of the increased number of silenced mobiles.
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Figure 8.9: Normalized area spectral efficiency for rex = 1/12 and different
transmit distances ||X0||. All distances are normalized to the network radius
[111]

At high rg , the area spectral efficiency is insensitive to the spreading factor and
exclusion-zone radius. �

Example 9. The previous example assumes that the distance between the
reference transmitter and receiver is fixed with respect to the network radius.
However, performance depends on this distance. Figure 8.9 shows the normal-
ized area spectral efficiency as a function of the distance ||X0|| between the
reference transmitter and receiver. All distances are normalized to the network
radius so that rnet = 1. The exclusion-zone radius is set to rex = 1/12, and
both unspread and spread (Ge = 48) networks are considered. Results are
shown for a CSMA guard zone with radius rg = 1/4 and for a system that uses
no additional CSMA guard zone.

It is observed that increasing the transmission distance reduces the area
spectral efficiency because of the increase in the number of interfering mobiles
that are closer to the receiver than the reference transmitter, but this reduction
is more gradual with the spread system than the unspread one. As ||X0||
increases, an increased guard zone alleviates the potential near–far problems.
Consequently, the area spectral efficiency degrades at a more gradual rate when
CSMA is used, and at sufficiently large transmitter distances, a system with
CSMA outperforms a system without it.
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The CSMA guard zone decreases area spectral efficiency at short transmis-
sion distances but increases it at long distances. This variation occurs because
at a long transmission distance, the received signal power from the far reference
transmitter is weak, whereas the received powers from the nearby interfering
mobiles are relatively high. To overcome this near–far problem, nearby inter-
fering mobiles need to be deactivated in order for the SINR threshold to be
met. However, at short distances, the signal power from the nearby reference
transmitter is already strong enough that deactivating the interfering mobiles is
unnecessary and harmful to the area spectral efficiency because of a reduction
of simultaneous transmissions. �

8.3 DS-CDMA Cellular Networks

In a cellular network, a geographic region is partitioned into cells. A base
station that includes a transmitter and receiver is located within each cell.
Cellular networks may be stationary or mobile. A wireless sensor network is
a cellular network with stationary sensors that communicate with one access
point per cell but not with each other. In this section, we focus on cellular
networks with mobiles.

Figure 8.10 depicts an ideal cellular network in which the cells have equal
hexagonal areas and the base stations are at the centers. Each mobile in the
network is associated with or connected to a specific base station that coordi-
nates the radio communications of the mobile. That base station is the one
from which the mobile receives the strongest signal. The base stations collec-
tively act as a switching center for the mobiles and communicate among them-
selves through wirelines in most applications. For the cellular configuration of
Figure 8.10, most of the mobiles in a cell would be associated with the base
station at the center of the cell. Cellular networks with DS-CDMA allow uni-
versal frequency reuse in that the same carrier frequency and spectral band
is shared by all the cells. Distinctions among the direct-sequence signals are
possible because each signal is assigned a unique spreading sequence.

In networks using CDMA2000 and WCDMA, each base station transmits
an unmodulated spreading sequence as a pilot signal to enable the association
of mobiles with base stations. By comparing the pilot signals from several base
stations in a process known as soft handoff, a mobile decides which signal is
strongest relative to the interference at any instant. A soft handoff uses a
form of selection diversity (Section 6.8) to ensure that a mobile is served by the
most suitable base station a majority of the time. In the mobile’s receiver, an
upper threshold determines which pilot signals are strong enough for further
processing and hence which base stations qualify for possible association. A
lower threshold determines when a base station ceases to qualify or a transfer
of association is warranted. The cost of soft handoffs is the need to detect and
process several simultaneously received pilot signals.

Sectorization is the provision of a set of disjoint fixed beams that cover all
feasible directions. A base-station sector is defined as the range of angles from
which a directional sector beam can receive signals. A mobile within a sector
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A

Sector coverage

B

Figure 8.10: Geometry of cellular network with base station at center of each
hexagon. Two concentric tiers of cells surrounding a central cell are shown

is said to be covered by the sector beam. Cells may be divided into sectors by
using several directional sector beams, each covering disjoint angles, at the base
stations. Typically, there are three sectors with 2π/3 radians in each angular
sector, but more sectors are viable as more antennas in the base-station array
become feasible at higher frequencies. Sectorization enables coordination of
spectral assignments and scheduling among the mobiles associated with each
sector. Other advantages of base-station sectorization are the reduction of the
beam-alignment delay, pilot-signal contamination, and beam-steering errors and
the avoidance of interference signals.

An ideal sector antenna has a uniform gain over the covered sector and neg-
ligible sidelobes. Figure 8.10 depicts the directions covered by sector antenna A
at the base station of the central cell. The mobiles in the covered portion of the
central cell are associated with sector antenna A. Only mobiles in the directions
covered by the sector antenna can cause intracell or intercell multiple-access in-
terference on the reverse link or uplink from a mobile to its associated sector
antenna. Only a sector antenna serving a cell sector oriented toward a mobile,
such as sector antenna B in the figure, can cause multiple-access interference on
the forward link or downlink to a mobile from its associated sector antenna, such
as sector antenna A in the figure. Thus, the numbers of interfering signals on
both the uplink and the downlink are reduced approximately by a factor equal
to the number of sectors. The mobile antennas are generally omnidirectional.

The increase in the density of cells, which is called cell densification, has
several benefits. The smaller cells lead to improved received SINRs at both
the mobiles and base stations, reduced spectrum allocations at base stations,
increased coverage, and higher capacity. One limitation on densification is the
cost of more base stations and their required high-speed backhauls. Another is
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the intermittent connectivity that may result from the constantly changing cell
associations and path losses.

Cell Search for Downlinks

The process of timing synchronization in the downlinks of cellular DS-CDMA
networks, which is called cell search, is more elaborate than the methods used
for MANETs or point-to-point communications (Chapter 4). To facilitate the
identification of a base station controlling communications with a mobile, each
spreading sequence for a downlink is formed as the product or concatenation of
two sequences often called the scrambling and channelization codes. A scram-
bling sequence or scrambling code is a spreading sequence that identifies a par-
ticular base station or cell when the code is acquired by mobiles associated
with the cell. A channelization code is the spreading sequence of a mobile that
allows the mobile’s receiver to extract messages to the mobile while suppressing
messages intended for other mobiles within the same cell.

The composite scrambling and channelization sequence is formed by the
modulo-two addition of the two component sequences. Typically, the scram-
bling sequence is a long sequence that provides security, whereas the other
sequence is a short sequence that suppresses multiple-access interference from
other direct-sequence systems. Let p1,i and p2,i with components in {−1,+1}
represent chip i of each of the two spreading sequences, respectively. Then chip
i of the composite sequence is pc,i = p1,ip2,i. In a receiver, the component
spreading sequences are removed from the received sequence pc,i successively.

If the set of base stations use the GPS or some other common timing source,
then each scrambling code may be generated from a distinct starting point
within a common long spreading sequence. The common timing source pre-
vents a timing ambiguity that may lead to code ambiguity. After a mobile
receiver identifies the scrambling code and synchronizes with it, the receiver
despreads it. Since the timing of the scrambling code determines the timing
of the channelization code, the receiver then despreads the channelization code
to extract the message. Walsh or other orthogonal sequences (Section 7.2) are
suitable as channelization codes for downlinks.

The WCDMA system provides an example of the cell-search process by
which the scrambling code is acquired or tracked, and its timing is identified.
Cell search comprises three stages: slot synchronization, frame synchronization
with code-group identification, and scrambling-code determination [52]. Each
stage processes one of three sequence types simultaneously transmitted using a
single carrier frequency. The three sequence types are the primary synchroniza-
tion code (PSC), the secondary synchronization codes (SSCs), and the scram-
bling code. The first two slots of the basic frame structure for cell search are
illustrated in Figure 8.11. Each frame comprises 15 slots, each of which has 2560
chips. The PSC and each of the SSCs are 256 chips long and are only transmit-
ted after a slot boundary, and hence these codes have 10% duty factors. The
chip rate is 3.84 megachips per second.
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Slot 0 Slot 1

Pilot symbols and scrambling codePilot symbols and scrambling code

PSC PSC

SSC SSC

Figure 8.11: First two slots of W-CDMA frame

All cells within the network use a common PSC that is always transmitted
in the same position within each slot, as shown in Figure 8.11. During the
first stage of each cell search, the PSC provides each mobile with a means of
detecting the slot boundaries of the base-station signal with the largest power
at the mobile. Let cpsc (i) denote the ith bit of the PSC generated by the
receiver with assumed slot and frame boundaries. The received signal with the
embedded PSC is applied to a quadrature downconverter and chip-matched
filters, the outputs of which are sampled at the chip rate to produce the complex-
valued received sequence. Let r (q) denote the qth bit of the received sequence.
Let the integer s ∈ [0, 14] denote the slot number of the received PSC relative to
the receiver-generated PSC. Let the integer h ∈ [0, 2559] denote a hypothetical
offset of the received slot boundary relative to the presumed slot boundary
used by the receiver while generating cpsc (i). To estimate the true offset and
thus synchronize with the slot boundaries, the receiver correlates the received
sequence with each possible offset h and computes

ypsc(h) =

N−1∑
s=0

∣∣∣∣∣
255∑
i=0

r (h+ 2560s+ i) cpsc (i)

∣∣∣∣∣ , h = 0, 1, . . . , 2559 (8-39)

where the noncoherent combining overN > 1 receiver-generated slot locations is
performed to accommodate a low signal-to-interference ratio and obtain time-
diversity gain. The hypothesis ĥ that maximizes ypsc(h) is selected as the
identifier of the slot boundaries of the received signal.

During the second stage of the cell search, frame synchronization is achieved
by estimating s, and the degree of code uncertainty is reduced by identifying the
code group of the scrambling code. To enable simultaneous frame synchroniza-
tion and code-group identification, a (15, 3) comma-free Reed–Solomon (CFRS)
code is used to determine the 15 SSCs assigned to each frame. The comma-free
property implies that any cyclic shift of a codeword is not another codeword,
and the minimum Hamming distance between codewords is 13. Each CFRS
codeword of 15 symbols is drawn from a codebook of 64 codewords. Each
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codeword symbol is one of 16 possible symbols, which are represented by 16 or-
thogonal SSCs. Each CFRS codeword defines a code group g, which comprises
8 scrambling codes.

Starting at the slot boundary of each slot, as determined by ĥ, the received
sequence is correlated with each of the 16 possible SSCs. For each value of s,

the PSC output ypsc

(
ĥ, s
)
is used to provide a phase reference to correct the

phase of the SSC correlations. The output of the nth coherent SSC correlator
is

yssc

(
ĥ, s, n

)
= Re

[
y∗psc

(
ĥ, s
) 255∑

i=0

r
(
2560s+ ĥ+ i

)
cssc (n, i)

]

n ∈ [0, 15] , s ∈ [0, 14] (8-40)

where cssc (n, i) is the ith bit of the nth SSC. A hard decision on the SSC
and corresponding CFRS symbol is made for each s by selecting the n that

maximizes yssc

(
ĥ, s, n

)
. After a 15-slot duration, hard-decision decoding of

the CFRS codeword is used to determine an estimate ĝ of the code group and
an estimate ŝ of the slot number.

As indicated in Figure 8.11, all slots of a frame are fully occupied by down-
link pilot symbols representing the scrambling code that identifies the cell.
There are 10 QPSK-modulated pilot symbols in each slot, and each symbol is
spread by 256 chips. The spreading sequence is one of the multirate sequences
(Section 7.2). After the slot and frame synchronizations have been established,
the received sequence is correlated with the 8 scrambling codes of group ĝ. For
each pilot symbol m ∈ [0, 149] in a frame and each scrambling code k ∈ [0, 7] ,
the receiver computes

yscr

(
ĥ, ŝ,m, k

)
=

∣∣∣∣∣
255∑
i=0

r
(
2560ŝ+ ĥ+ 256m+ i

)
c∗scr (k, 256m+ i)

∣∣∣∣∣
m ∈ [0, 149] , k ∈ [0, 7] (8-41)

where cscr (k, l) is chip l of the kth scrambling code. For each pilot symbol

m, the scrambling code k with the maximum yscr

(
ĥ, ŝ,m, k

)
receives one vote,

and a majority vote among the 150 pilot symbols determines a candidate scram-
bling code. Since the acceptance of the incorrect scrambling code is costly and
disruptive for a mobile, the candidate scrambling code is accepted only if its
number of votes exceeds a predetermined threshold designed to maintain an
acceptable probability of false alarm. If the threshold is exceeded, the cell
search is complete, and the despreading of messages with the scrambling and
channelization codes commences.

Inaccurate synchronization by a receiver causes large errors in its clock,
which may cause the failure of the initial cell search. To protect against large
clock errors, more elaborate methods of cell search can be used [52].
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Adaptive Rate Control

It is a fundamental result of information theory that a lowering of the code rate
lowers the SINR required for the successful reception of the transmitted signal
[21], but the cost is a reduced throughput or spectral efficiency. This fact may
be exploited to adapt the code rate to the channel state, which determines the
SINR at the receiver. Adaptive rate control lowers the code rate and improves
reliability when the channel state is unfavorable and raises the code rate and
hence the throughput when the channel state is favorable. If the number of
code symbols per packet is fixed, the code rate is changed by decreasing or
increasing the number of information bits per packet. Adaptive rate control
may be supplemented with adaptive modulation, which entails a change in the
signal constellation or alphabet in response to the channel state, but changes
in the modulation are generally more difficult to implement. Adapting the
spreading factor is possible in principle but presents the practical problem of a
changing bandwidth.

To adapt the code rate to channel conditions, either the SINR is estimated
or some function of the channel state is measured at the receiver, and then
the measurement or a selected code rate is sent to the transmitter. The ratio
P̂v/V̂ν calculated from (8-47) to (8-50) below provides an estimator of the SINR
after the despreading. If a rake receiver (Section 6.12) is used, then the effective
SINR is estimated by adding the SINR estimates generated by each finger of the
rake receiver. There are several other methods of SINR or SNR estimation [65].
Measured functions of the channel state used in adaptive rate control include
bit, packet, and frame successes or failures. In the IEEE 802.11 standard, the
channel measurement comprises a certain number of consecutive transmission
successes or a frame loss.

8.4 DS-CDMA Cellular Uplinks

Uplink Power Control

In cellular DS-CDMA networks, the near–far problem is critical only on the up-
link because on the downlink, the base station transmits orthogonal spreading
sequences synchronously to each mobile associated with it. For cellular net-
works, the usual solution to the near–far problem of uplinks is power control,
whereby all mobiles in a cell or sector regulate their power levels so that their
powers arriving at a base station are all equal. Synchronous, orthogonal uplink
signals in a sector ensure the absence of near–far problems and intrasector in-
terference in principle. However, power control is needed to limit the potential
intrasector interference caused by asynchronous uplink signals, synchronization
errors in synchronous uplink signals, strong multipath signals, and hardware
imperfections. Since solving the near–far problem is essential to the viability
of a cellular DS-CDMA network, the accuracy of the power control is a crucial
issue.
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An open-loop method of power control in a cellular network causes a mobile
to adjust its transmitted power in accordance with changes in the average re-
ceived power of a pilot signal transmitted by the base station. Open-loop power
control is effective if the propagation losses on the uplinks and downlinks are
nearly the same. Whether they are is influenced by the duplexing method used
to allow transmissions on both links. Time-division duplexing is a half-duplex
method that assigns closely spaced but distinct time slots to the uplinks and
downlinks. When time-division duplexing is used, the propagation losses on
the uplinks and downlinks are nearly the same if the duplexing is sufficiently
fast compared with changes in the network topology and fading. Thus, time-
division duplexing is potentially compatible with an open-loop method of power
control.

A full-duplex method allows the simultaneous transmission and reception
of signals but must isolate the received signals from the transmitted signals
because of the vast disparities in power levels. Most cellular systems use
frequency-division duplexing, which is a full-duplex method that assigns dif-
ferent frequencies to the uplinks and downlinks, thereby spectrally separating
signals that could not be accommodated simultaneously in the same frequency
band. When frequency-division duplexing is used, the frequency separation is
generally wide enough that the channel transfer functions of the uplink and
downlink are different. This lack of link reciprocity implies that average power
measurements over the downlink do not provide reliable information for regulat-
ing the average power of subsequent uplink transmissions. Thus, a closed-loop
method of power control is required when frequency-division duplexing is used.

A closed-loop method of power control, which is used by the Long-Term Evo-
lution (LTE), WCDMA, and CDMA2000 systems, attempts to compensate for
both the propagation losses and the fading by a feedback mechanism. Closed-
loop power control requires a base station to dynamically track the received
power of a desired signal from a mobile and then transmit appropriate power-
control information to that mobile. As the fading rate increases, the tracking
ability and hence the power-control accuracy decline. This imperfect power
control in the presence of fast fading is partially compensated by the increased
time diversity provided by the interleaving and channel coding, but some degree
of power control must be maintained.

To implement closed-loop power control [17], the base station receives N
known test bits from a mobile. These bits are processed to provide a power
estimate, which is subtracted from a desired received power. The difference
determines one or more power-control bits that are transmitted to the mobile
every N received bits. The mobile then adjusts its transmitted power in accor-
dance with the power-control bits.

When the received instantaneous power of the desired signal from a mobile
is tracked, there are four principal error components. They are the quantization
error due to the stepping of transmitted power level at the mobile, the error
introduced in the decoding of power-control information at the mobile, the
error in the power estimation at the base station, and the error caused by the
processing and propagation delay. The processing and propagation delay is a



516 CHAPTER 8. MOBILE AD HOC AND CELLULAR NETWORKS

source of error because the multipath propagation conditions change during the
execution of the closed-loop power-control algorithm. The propagation delay is
generally negligible compared with the processing delay. The processing-delay
and power-estimation errors are generally much larger than other errors.

Let s denote the maximum speed of a mobile in the network, fc the carrier
frequency of its direct-sequence transmitted signal, and c the speed of an elec-
tromagnetic wave. We assume that this signal has a bandwidth that is only a
few percent of fc so that the effect of the bandwidth is negligible. The maxi-
mum Doppler shift or Doppler spread is fd = fcs/c, which is proportional to the
fading rate. To obtain a small processing-delay error requires nearly constant
values of the channel attenuation during the processing and propagation delay
Tp. Thus, this delay must be much less than the coherence time (Section 6.2),
which implies that

Tp � 1/fd. (8-42)

For example, if s = 30 m/s and fc = 1GHz, then Tp � 10 ms is required.
Inequality (8-42) indicates that accurate power control becomes more difficult
as the carrier frequency, and hence the Doppler spread, increases.

Let P̂ denote an estimate of p0, the average received signal power from a mo-
bile. Let σ2

p denote the variance of P̂ . A lower bound on σ2
p can be determined

by modeling the multiple-access interference as a white Gaussian process that
increases the one-sided PSD of the noise from N0 to N0e. The received signal
from a mobile that is to be power controlled has the form

√
p0Tms(t), where

the observation interval is [0, Tm], and

∫ Tm

0

s2(t)dt = 1. (8-43)

Application of the Cramer–Rao inequality (F-60) of Appendix F.5 provides a
lower bound on the variance σ2

p of an unbiased estimator of the power:

σ2
p ≥
{

2

N0e

∫ Tm

0

[
∂

∂p0
(
√
p0Tms(t))

]2
dt

}−1

=
N0ep0
Tm

. (8-44)

Therefore,

Tp > Tm ≥ N0ep0
σ2
p

(8-45)

is required. Together, (8-42) and (8-45) not only constrain Tp but also indicate
the Doppler spread that can be accommodated.

Consider a DS-QPSK system. A binary sequence xi = ±1, i = 1, . . . , N , of
test bits is transmitted over the AWGN channel. As shown in Section 2.4, the
despreading produces the received vector y = [y1 . . . yN ]T given by

y =
√
2Ebx+ n (8-46)
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where Eb = p0Tb is the energy per bit, p0 is the average power, Tb is the bit du-
ration, N is the total number of in-phase and quadrature bits in the two receiver
branches, x = [x1 . . . xN ]T is the vector of these bits, and n = [n1 . . . nN ]T is
the interference-and-noise vector. The components of n are assumed to ap-
proximate independent, identically distributed, zero-mean, Gaussian random
variables with variance V = N0e/2.

Let
{
P̂i

}
and

{
V̂i

}
denote sequences of estimators of p0 and V , respec-

tively, that are obtained from the received vector by applying the iterative
expectation–maximization (EM) algorithm. As described in Section 9.1, we
obtain

P̂i =
1

2Tb

(
Âi

)2
(8-47)

Âi+1 =
1

N

N∑
k=1

yk tanh

(
Âiyk

V̂i

)
(8-48)

V̂i+1 =
1

N

N∑
k=1

y2k − Â2
i+1. (8-49)

A suitable set of initial values are

Â0 =
1

N

N∑
k=1

|yk| , V̂0 =
1

N

N∑
k=1

y2k − Â2
0. (8-50)

After ν iterations, the final EM estimators P̂v and V̂ν based on the received
vector are computed. Then the old received vector is discarded, and a new
received vector is used to compute new EM estimators.

Network Topology

Although the subsequent analytical methods are applicable for arbitrary topolo-
gies, the cellular network model in this section enforces a minimum separation
among the base stations for each network realization, which comprises a base-
station placement, a mobile placement, and a shadowing realization. The model
for both mobile and base-station placement is the uniform clustering model
(Section 8.2), which entails a uniformly distributed placement within the net-
work after certain regions have been excluded. The base stations and mobiles
are confined to a finite area, which is assumed to be the interior of a circle of
radius rnet and area πr2net . An exclusion zone of radius rbs surrounds each base
station, and no other base stations are allowed within this zone. Similarly, an
exclusion zone of radius rm where no other mobiles are allowed surrounds each
mobile. The minimum separation between mobiles is generally much smaller
than the minimum separation between the base stations. Base-station exclu-
sion zones are primarily determined by economic considerations and the terrain,
whereas mobile exclusion zones are determined by the need to avoid physical
collisions.
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Figure 8.12: Actual base-station locations from a current cellular deployment.
Base stations are represented by large circles, and cell boundaries are repre-
sented by thick lines [112]

The value of rbs is selected by examining the locations of base stations in
real networks and identifying the value of rbs that provides the best statistical
fit. Figure 8.12 depicts the locations of actual base stations in a small city with
hilly terrain. The base-station locations are given by the large filled circles, and
the Voronoi cells (regions surrounding the base stations) are indicated in the
figure. The minimum base-station separation is observed to be approximately
0.43 km. Figure 8.13 depicts a portion of a randomly generated network with the
average number of mobiles per cell equal to 16, a base-station exclusion radius
rbs = 0.25, and a mobile exclusion radius rm = 0.01. We assume that rbs and
rm exceed reference distance d0 and that there are no mobiles within distance
d0 of any base station. The locations of the mobiles are represented by small
dots, and dashed lines indicate the angular coverage of sector antennas. The
general similarity of the two figures lends credibility to the uniform clustering
model.
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Figure 8.13: Simulated base-station locations using a base-station exclusion
zone rbs = 0.25. The simulated positions of the mobiles are represented by
small dots, the sector boundaries are represented by light lines, and the average
cell load is 16 mobiles per cell. The mobile exclusion radius is rm = 0.01, and
no mobile is within distance d0 < rm of any base station [112]

The downlinks of a cellular DS-CDMA network use orthogonal spreading
sequences. Because the number of orthogonal spreading sequences available to
a cell or cell sector is limited to G, the number of mobiles Mj with either uplink
or downlink service using the base-station or sector antenna Sj is also limited to
Mj ≤ G. If there are Mj > G mobiles, then some of these mobiles will either be
refused service by antenna Sj or given service at a lower rate (through the use
of additional time multiplexing). Two policies for handling this situation are
the denial policy and the reselection policy. With the denial policy, the Mj −G
mobiles with the greatest path losses to the base station are denied service, in
which case they are not associated with any sector antenna. With the reselection
policy, each of the Mj − G mobiles in an overloaded cell sector attempts to
connect to the sector antenna with the next-lowest path loss out to a maximum
reassociation distance dmax . If no suitably oriented sector antenna is available
within distance dmax , the mobile is denied service. As shown subsequently, the
tradeoff entailed in keeping these mobiles connected under the reselection policy
is that the downlink area spectral efficiency decreases slightly for rate control
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and significantly for power control (since the base station must allocate much
of its transmit power for the distant reassociated mobiles).

Outage Probability

For the subsequent analysis [112] and examples of DS-CDMA uplinks, three
ideal sector antennas and sectors per base station, each covering 2π/3 radians,
are assumed. The mobile antennas are assumed to be omnidirectional. The
network comprises C base stations and cells, 3C sectors {S1, . . . , S3C}, and M
mobiles {X1, . . . , XM}. The scalar Sk represents the kth sector antenna, and
the vector Sk represents its location. The scalar Xi represents the ith mobile
and the vector Xi represents its location. Let Ak denote the set of mobiles
covered by base-station or sector antenna Sk, and let Xk ⊂ Ak denote the set
of mobiles associated with antenna Sk. Each mobile is served by a single base-
station or sector antenna. Let g(i) denote a function that returns the index of
the antenna serving Xi so that Xi ∈ Xk if g (i) = k. Usually, the antenna Sg(i)

that serves mobile Xi is selected from among those that cover Xi to be the one
with minimum path loss in the absence of fading from Xi to the antenna. Thus,
the antenna index is

g (i) = argmax
k

{
10ξi,k/10f (||Sk −Xi||) , Xi ∈ Ak

}
(8-51)

where ξi,k is the shadowing factor for the link from Xi to Sk, and f(·) is given
by (8-6). In the absence of shadowing, it is the antenna that is closest to Xi.
In the presence of shadowing, a mobile may actually be associated with an
antenna that is more distant than the closest one if the shadowing conditions
are sufficiently better.

Consider a reference receiver of a sector antenna that receives a desired
signal from a reference mobile within its cell and sector. Both intracell and in-
tercell interferences are received from other mobiles within the covered angle of
the sector, but interference from mobiles outside the covered angle is negligible.
Duplexing is assumed to prevent interference from other sector antennas. The
varying propagation delays cause interference signals to be asynchronous with
respect to the desired signal. We assume that a DS-CDMA network of asyn-
chronous direct-sequence systems with QPSK has a constant effective spreading
factor (Section 8.4) equal to G/h at each base-station, sector, or mobile receiver
in the network.

Let Xr ∈ Xg(r) denote a reference mobile that transmits a desired signal to
a reference receiver at sector antenna Sg(r). The power of Xr at the reference
receiver of Sg(r) is not significantly affected by the spreading factor. The power
of Xi, i �= r, at the reference receiver, which is nonzero only if Xi ∈ Ag(r), is
reduced by the factor Gi = G/h. We assume that path loss has a power-law
dependence on distance and is perturbed by shadowing. When accounting for
fading and path loss, the despread instantaneous power of Xi at the reference
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receiver of Sg(r) is

ρi =

⎧⎪⎨
⎪⎩
Prgr10

ξr/10f
(
||Sg(r) −Xr||

)
, i = r(

h
G

)
Pigi10

ξi/10f
(
||Sg(r) −Xi||

)
, i : Xi ∈ Ag(r)\Xr

0, i : Xi /∈ Ag(r)

(8-52)

where gi is the power gain at the reference receiver due to Nakagami fading
with parameter mi, ξi is the shadowing factor for the link from Xi to Sg(r),
Pi is the power transmitted by Xi, and Ag(r)\Xr is set Ag(r) with element Xr

removed (required since Xr does not interfere with itself). We assume that the
{gi} remain fixed for the duration of a time interval but vary independently
from interval to interval (block fading).

The activity probability pi is the probability that the ith mobile transmits
in the same time interval as the reference signal. The instantaneous SINR at
the reference receiver of sector antenna Sg(r) when the desired signal is from
Xr ∈ Xg(r) is

γ =
ρr

N +
∑M

i=1,i�=r Iiρi
(8-53)

where N is the noise power, and Ii is a Bernoulli variable with probability
P [Ii = 1] = pi and P [Ii = 0] = 1− pi. Substituting (8-52) and (8-6) into (8-53)
yields

γ =
grΩr

Γ−1 +
∑M

i=1,i�=r IigiΩi

, Γ =
dα0Pr

N (8-54)

where Γ is the signal-to-noise ratio (SNR) due to a mobile located at unit
distance when fading and shadowing are absent, and

Ωi =

⎧⎪⎨
⎪⎩
10ξr/10||Sg(r) −Xr||−α, i = r
hPi

GPr
10ξi/10||Sg(r) −Xi||−α, i : Xi ∈ Ag(r)\Xr

0, i : Xi /∈ Ag(r)

(8-55)

is the normalized mean despread power of Xi received at Sg(r), where the
normalization is with respect to Pr. The set of {Ωi} for reference receiver
Sg(r) is represented by the vector Ω = {Ω1, . . . ,ΩM}.

Let β denote the minimum instantaneous SINR required for the reliable
reception of a signal from Xr at the receiver of its serving sector antenna Sg(r).
An outage occurs when the SINR of a signal from Xr falls below β. The value
of β is a function of the rate R of the uplink, which is expressed in units of
information bits per channel use. The relationship between β and R depends
on the modulation and coding schemes used, and typically only a discrete set
of R can be selected.

Let m0 denote the positive-integer Nakagami parameter for the link from
Xr to Sg(r), and let mi denote the Nakagami parameter for the link from Xi to
Sg(r), i �= r. Conditioning on Ω, the outage probability ε(Ω) of a desired signal
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that arrives at the reference receiver Sg(r) is given by (8-31), (8-33), and (8-34)
with Ω0 = Ωr, and

Ht(Ω) =
∑
�i≥0

∑M
i=1 �i=t

M∏
i=1,i�=r

G�i(i). (8-56)

A typical power-control policy for DS-CDMA networks is to select the trans-
mit power {Pi} for all mobiles in the set Xj such that, after compensation for
shadowing and power-law attenuation, each mobile’s transmission is received at
sector antenna Sj with the same average power Pa. For such a power-control
policy, each mobile in Xj transmits with an average power Pi that satisfies

Pi10
ξi,j/10f (||Sj −Xi||) = Pa, Xi ∈ Xj (8-57)

where ξi,j is the shadowing factor for the link from Xi to Sj , and f(·) is given
by (8-6). To accomplish the power-control policy, sector-antenna receivers esti-
mate the average received powers of their associated mobiles. Feedback of these
estimates enables the associated mobiles to change their transmitted powers so
that all received powers are approximately equal on the average.

To provide mobiles with some flexibility in exploiting favorable channel con-
ditions, fractional power control of the constrained local-mean power implies
that

Pi

[
10ξi,j/10f (||Sj −Xi||)

]δ
= Pa, Xi ∈ Xj , 0 < δ < 1 (8-58)

where δ is the power-control parameter. If δ = 0, there is no power control, and
transmitter powers are all equal. If δ = 1, full power control forces the received
local-mean powers from all mobiles to be equal. If 0 < δ < 1, then decreasing
δ improves the performance of some mobiles in a sector while increasing the
interference in neighboring sectors.

For a reference mobile Xr, the interference at the reference receiver of sector
antenna Sg(r) is from the mobiles in the set Ag(r)\Xr. The mobiles in this set
can be partitioned into two subsets. The first subset Xg(r)\Xr comprises the
intracell interferers, which are the other mobiles in the same cell and sector
as the reference mobile. The second subset Ag(r)\Xg(r) comprises the intercell
interferers, which are the mobiles covered by sector antenna Sg(r) but associ-
ated with a cell sector other than Xg(r). Since both the intracell and intercell
interference signals arrive asynchronously, they cannot be suppressed by using
orthogonal spreading sequences.

Consider intracell interference. Since Pr and Pi are obtained from (8-58)
for all mobiles in Xg(r),

Pi

Pr
=

[
10ξr/10||Sg(r) −Xr||−α

10ξi/10||Sg(r) −Xi||−α

]δ
, Xi ∈ Xg(r)\Xr (8-59)

where (8-6) has been used. Therefore, (8-55) implies that the normalized re-
ceived power of the intracell interferers is

Ωi =
h

G
Ωr

[
10ξi,/10||Sg(r) −Xi||−α

10ξr/10||Sg(r) −Xr||−α

]1−δ

, Xi ∈ Xg(r)\Xr. (8-60)
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Although the number of mobiles Mg(r) in the cell sector must be known to
compute the outage probability, the locations of these mobiles in the cell are
irrelevant to the computation of the {Ωi} of the intracell interferers.

Considering intercell interference, the set Ag(r)\Xg(r) can be further parti-
tioned into sets Ag(r) ∩ Xk, k �= g (r), containing the mobiles covered by sector
antenna Sg(r) and associated with some other sector antenna Sk. For those
mobiles in Ag(r) ∩ Xk, fractional power control implies that

Pi

[
10ξi,k/10f (||Sk −Xr||)

]δ
= Pa, Xi ∈ Xk ∩Ag(r), k �= g (r) (8-61)

where ξi,k is the shadowing factor for the link fromXi to Sk. Substituting (8-61),
(8-57) with i = r and (8-6) into (8-55) yields

Ωi =
h

G
10ξ

′
i/10

(||Sg(r) −Xi||||Sg(r) −Xr||
||Sk −Xi||

)−α

ξ′i = ξi + ξr − ξi,k, Xi ∈ Xk ∩Ag(r), k �= g (r) , i ∈ Ag(r)\Xg(r) (8-62)

which is the normalized intercell interference power at the reference sector an-
tenna due to interference from mobile i.

Uplink Rate Control

In addition to controlling the transmitted power, the rate Rk of each uplink k
needs to be selected. Because of the irregular network geometry, which results
in cell sectors of variable areas and numbers of intracell mobiles, the amount of
interference received by a sector antenna can vary dramatically from one sector
to another. With a fixed rate or, equivalently, a fixed SINR threshold β for each
sector k, the result is a highly variable outage probability εk. An alternative
to using a fixed rate for the entire network is to adapt the rate of each uplink
to satisfy an outage constraint or maximize the throughput of each uplink. As-
suming the use of a capacity-approaching channel code, two-dimensional signals
transmitted over an AWGN channel, and Gaussian interference, (7-2) indicates
that the SINR threshold corresponding to rate R nearly equal to the channel
capacity is

β = 2R − 1. (8-63)

Several performance measures are of interest. The average outage probability
over all M uplinks of the network is

E[ε] =
1

M

M∑
k=1

εk. (8-64)

The throughput of the kth uplink is

Tk = Rk(1− εk) (8-65)
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and represents the bits per channel use of successful transmissions. The average
throughput over all M uplinks of the network is

E[T ] =
1

M

M∑
k=1

Rk(1− εk). (8-66)

Example 10. To illustrate the influence of rate on performance, consider
the following example. The network has C = 50 base stations and M = 400
mobiles placed in a circular network of radius rnet = 2. The base-station
exclusion zones have radius rbs = 0.25, whereas the mobile exclusion zones
have radius rm = 0.01. The spreading factor is G = 16, and the chip factor
is h = 2/3. Since M/C = G/2, the network is characterized as being half
loaded. The SNR is Γ = 10 dB, the activity factor is pi = 1, the path-loss
exponent is α = 3, the power-control parameter is δ = 1, and the shadowing
has a lognormal distribution with standard deviation σs = 8dB. A distance-
dependent fading model is assumed, where the Nakagami parameter mi of the
link from Xi to Sj is

mi =

⎧⎪⎨
⎪⎩
3, ||Sj −Xi|| ≤ rbs/2

2, rbs/2 < ||Sj −Xi|| ≤ rbs

1, ||Sj −Xi|| > rbs .

(8-67)

The distance-dependent fading model characterizes the situations where mobiles
close to the base station are in the line-of-sight, but mobiles farther away are
not.

Figure 8.14 shows the outage probability as a function of rate R. The
dashed lines in Figure 8.14 were generated by selecting eight random uplinks and
computing the outage probability for each using the threshold given by (8-63).
Despite the use of power control, there is considerable variability in the outage
probability. The outage probabilities {εk} were computed for all M uplinks in
the network, and the average outage probability E[ε] is displayed as a solid line
in the figure. Figure 8.15 shows the throughputs as functions of the rate for the
same eight uplinks with outages shown in Figure 8.14 and shows the average
throughput E[T ] computed for all M uplinks in the network. �

A fixed-rate policy requires that all uplinks in the system must use the same
rate: Rk = R for all uplinks. A maximal-throughput fixed-rate (MTFR) policy
selects the fixed rate that maximizes the average throughput. With respect
to the example shown in Figure 8.15, this choice corresponds to selecting the
R that maximizes the solid curve, which occurs at R = 1.81. However, at the
rate that maximizes throughput, the corresponding outage probability could be
unacceptably high. When R = 1.81 in the example, the corresponding average
outage probability is E[ε] = 0.37, which is too high for many applications.
As an alternative to maximizing throughput, the outage-constrained fixed-rate
(OCFR) policy selects the rate R that satisfies an outage constraint ζ so that
E[ε] ≤ ζ. For instance, setting R = 0.84 in the example satisfies an average
outage constraint ζ = 0.1 with equality.
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Figure 8.14: Outage probability of eight randomly selected uplinks (dashed
lines) along with the average outage probability for the entire network (solid
line). The results are for a half-loaded network (M/C = G/2), with distance-
dependent fading and shadowing (σs = 8dB), and are shown as a function of
the rate R [112]

If R is selected to satisfy an average outage constraint, the outage proba-
bilities of the individual uplinks vary. Furthermore, selecting R to maximize
the average throughput does not generally maximize the throughput of the
individual uplinks. These issues can be alleviated by selecting each rate Rk

independently for the different uplinks. The outage-constrained variable-rate
(OCVR) policy selects each uplink rate to satisfy the outage constraint εk ≤ ζ
for all k. Alternatively, the maximal-throughput variable-rate (MTVR) policy
selects each uplink rate to maximize the throughput of the uplink; that is,
Rk = argmaxTk for each uplink, where the maximization is over all possible
rates. Both policies can be implemented by having the base station track the
outage probabilities or throughputs of each uplink and feeding back rate-control
commands to ensure that the target performance is achieved. The outage prob-
ability can easily be found by encoding the data with an error-detection code
and declaring an outage whenever a frame fails a check.

For both the OCVR and MTVR rate-control policies, we assume that the
code rate is adapted by maintaining the duration of channel symbols while
varying the number of information bits per channel symbol. The spreading
factor G and symbol rate are held constant, so there is no change in bandwidth.
However, a major drawback with rate control is that the rates required to
maintain a specified outage probability varies significantly among the mobiles
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Figure 8.15: Throughput of eight randomly selected uplinks (dashed lines) along
with the average throughput for the entire network (solid line). System param-
eters are the same used to generate Figure 8.14 [112]

in the network. This variation results in low throughput for some mobiles,
particularly those located at the edges of the cells, whereas other mobiles have
a high throughput. Unequal throughputs may not be acceptable when a mobile
may be stuck or parked near a cell edge for a long time, and an interior mobile
may have more allocated throughput than it needs.

Although the outage probability, throughput, and rate characterize the per-
formance of a single uplink, they do not quantify the total data flow in the
network because they do not account for the number of uplink users that are
served. By taking into account the number of mobiles per unit area, the to-
tal data flow in a given area can be characterized by the average area spectral
efficiency, defined as

A = λE[T ] =
λ

M

M∑
k=1

Rk(1− εk) (8-68)

where λ = M/πr2net is the maximum density of transmissions in the network,
and the units are bits per channel use per unit area. Average area spectral
efficiency can be interpreted as the maximum spatial efficiency of transmissions,
that is, the maximum rate of successful data transmission per unit area.

In the following example, performance metrics are calculated by using a
Monte Carlo approach with 1000 simulation trials as follows. In each simulation
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trial, a realization of the network is obtained by placing C base stations and M
mobiles within the disk of radius rnet according to the uniform clustering model
with minimum base-station separation rbs and minimum mobile separation rm .
The path loss from each base station to each mobile is computed by applying
randomly generated shadowing factors. The set of mobiles associated with each
cell sector is determined. Assuming that the number of mobiles served in a cell
sector cannot exceed G, which is the number of orthogonal sequences available
for the downlink, any excess in the number of mobiles in the cell sector results
in service denials. At each sector antenna, the power-control policy is applied
to determine the power the antenna receives from each mobile that it serves.
In each cell sector, the rate-control policy is applied to determine the rate and
threshold.

For each uplink, the outage probability ε(Ω) is computed for the rate-control
policies by using (8-60) and (8-62). Equation (8-64) is applied to calculate
the average outage probability for the network realization. Equation (8-65) is
applied to calculate the throughputs according to the MTFR, OCFR, MTVR,
or OCVR network policies, and then (8-66) is applied to compute the average
throughput for the network realization. Finally, multiplying by the mobile
density λ and averaging over all simulated network realizations with different
topologies yield the average area spectral efficiency A.

Example 11. The network has C = 50 base stations placed in a circular
network of radius rnet = 2, and the base-station exclusion zones are set to
have radius rbs = 0.25. A variable number M of mobiles are placed within the
network using exclusion zones of radius rm = 0.01. The SNR is Γ = 10 dB,
the activity factor is pi = 1, and the path-loss exponent is α = 3. Two fading
models are considered: Rayleigh fading, where mi = 1 for all i, and distance-
dependent fading, which is described by (8-67). Both unshadowed and shadowed
(σs = 8dB) environments are considered. The chip factor is h = 2/3, and the
spreading factor is G = 16. Figure 8.16 illustrates the variability of the {εk}
with respect to all uplinks and 1000 simulation trials under an OCFR policy
by plotting its complementary distribution function with R = 2, three network
loads, distance-dependent fading, and shadowing.

With the OCVR policy, the rate Rk (equivalently, βk) of each uplink is
selected such that the outage probability does not exceed ζ = 0.1. Although the
outage probability is fixed, the rates of the uplinks are variable. Let E [R] denote
the average rate over all uplinks and 1000 simulation trials. In Figure 8.17,
E [R] is shown as a function of the load M/C. In Figure 8.18, the variability
of Rk is illustrated by showing the complementary distribution function of the
rate for a fully loaded system (M/C = G = 16) in both Rayleigh fading and
distance-dependent Nakagami fading, and both with and without shadowing.
The fairness of the system can be determined from this figure, which shows the
percentage of uplinks that meet a particular rate requirement. In both figures,
the major impact of the much more severe Rayleigh fading is apparent.

Figure 8.19 shows the average area spectral efficiency A of the four network
policies in distance-dependent fading, both with and without shadowing, as a
function of the load M/C. For the OCFR and MTFR policies, the optimal
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Figure 8.16: Complementary distribution function of the outage probability
using an OCFR policy, R = 2, three network loads, distance-dependent fading,
and shadowing (σs = 8dB) [112]

rates are determined for each simulation trial, and then Ā is computed by
averaging over 1000 simulation trials. For the OCVR and MTVR policies, the
uplink rate Rk of each uplink is maximized subject to an outage constraint
or maximum-throughput requirement, respectively, and then Ā is computed
by averaging over 1000 simulation trials. Although the average area spectral
efficiencies of the MTFR and MTVR policies are potentially superior to those
of the OCFR and OCVR policies, this advantage comes at the cost of variable
and high values of the {εk}, which are generally too large for most applications.
The bottom pair of curves in Figure 8.19 indicate that the OCVR policy has a
higher average area spectral efficiency than the OCFR policy.

Calculations indicate that increases in α, G/h, and/or rbs cause increases
in A for all four network policies in distance-dependent fading, both with and
without shadowing. �

8.5 DS-CDMA Cellular Downlinks

A DS-CDMA downlink differs from an uplink in at least four significant ways.
First, the sources of interference are many mobiles for an uplink, whereas the
sources are a few base stations for a downlink. Second, the orthogonality and
the synchronous timing of all transmitted signals prevent significant intracell
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Figure 8.17: Average rate of the OCVR policy as function of the load M/C
for both Rayleigh and distance-dependent Nakagami fading and both shadowed
(σs = 8dB) and unshadowed cases [112]

interference on the downlinks. When the uplink signals arriving at a base
station are asynchronous or there are synchronization errors, orthogonal signals
do not prevent intracell interference. Third, sectorization is a critical factor in
uplink performance, whereas it is expendable or at most of minor importance in
downlink performance. Fourth, base stations are equipped with better transmit
high-power amplifiers and receive low-noise amplifiers than the mobiles. The
net effect is that the operational signal-to-noise ratio is typically more than 5 dB
lower for an uplink than for a downlink. The overall impact of the differences
between uplinks and downlinks is superior performance for the downlinks.

Along with all the signals transmitted to mobiles associated with it, a base
station transmits a pilot signal over the downlinks. A mobile, which is usually
associated with the base station from which it receives the largest pilot signal,
uses the pilot to identify a base station or sector, to initiate uplink power
control, to estimate the attenuation, phase shift, and delay of each significant
multipath component, and to assess the downlink power-allocation requirement
of the mobile.

A base station synchronously combines and transmits the pilot and all the
signals destined for mobiles associated with it. Consequently, all the signals fade
together at each mobile location, and the use of orthogonal spreading sequences
(Section 7.2) prevents intracell interference and hence a near–far problem on a
downlink. There is interference caused by asynchronously arriving multipath
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Figure 8.18: Complementary distribution function of the rate for fully loaded
system (M/C = G) under the OCVR policy in Rayleigh and distance-dependent
Nakagami fading and both shadowed (σs = 8dB) and unshadowed cases [112]

components. However, since these components are weaker than the main signal,
they are suppressed by the despreading process and hence have negligible effect.
Intercell interference, which is the dominant source of performance degradation,
is caused by interference signals from other base stations that arrive at a mobile
asynchronously and fade independently.

Outage Probability

In the analysis of downlink performance [116], we assume that there is no sec-
torization. The network comprises C cellular base stations {S1, . . . , SC} and M
mobiles {X1, . . . , XM} placed in the interior of a circle of radius rnet and area
Anet = πr2net. The signal transmitted by base station Si to mobile Xk ∈ Xi has
average power Pi,k. We assume that all base stations transmit with a common
total power P0 such that

1

1− fp

∑
k:Xk∈Xi

Pi,k = P0, i = 1, 2, . . . , C (8-69)

where fp is the fraction of the base-station power reserved for pilot signals
needed for synchronization and channel estimation. The signal transmitted by
base station Si to mobile Xk /∈ Xi has average power P0.
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Figure 8.19: Average area spectral efficiency for the four network policies as
function of the load M/C for distance-dependent fading and both shadowed
(σs = 8dB) and unshadowed cases [112]

The despreading process in the receiver of the reference mobile reduces the
interference from base stations other than the one associated with the mobile.
After accounting for fading, path loss, and the effective spreading factor, the
despread instantaneous powers transmitted by Sg(r) and Si at reference mobile
Xr are

ρr = Pj,rgj10
ξj,r/10f (||Sj −Xr||) , j = g(r) (8-70)

ρi =
h

G
P0gi10

ξi,r/10f (||Si −Xr||) , i �= j (8-71)

respectively, where gi is the power gain due to fading, and ξi,r is the shadowing
factor for the link from Si to the reference mobile, f(·) is a path-loss function
given by (8-6), and j = g(r) is defined by (8-51).

The activity probability pi is the probability that a base-station is actively
transmitting. The instantaneous SINR at the reference mobile Xr associated
with base station Sj is

γ =
ρr

N +
∑M

i=1,i�=j Iiρi
(8-72)

where N is the noise power, and Ii is a Bernoulli variable with probability
P [Ii = 1] = pi and P [Ii = 0] = 1 − pi. Substituting (8-70), (8-71), and (8-6)
into (8-72) yields

γ =
grΩr

Γ−1 +
∑M

i=1,i�=j IigiΩi

, Γ =
dα0P0

N (8-73)
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where Γ is the SNR at a mobile located at unit distance from its sector antenna
when fading and shadowing are absent, and

Ωr =
Pj,r

P0
10ξj,r/10||Sj −Xr||−α, j = g(r) (8-74)

Ωi =
h

G
10ξi,r/10||Si −Xr||−α, i �= j. (8-75)

Let β denote the minimum SINR required by the reference mobile Xr for
reliable reception and Ω = {Ω1, . . . ,ΩC} represent the set of normalized de-
spread base-station powers received. An outage occurs when the SINR falls
below β. Let m0 denote the positive-integer Nakagami parameter for the link
from Sj to Xr, and let mi denote the Nakagami parameter for the link from Si

to Xr, i �= j . Conditioning on Ω, the outage probability ε(Ω) of a desired signal
from Sj that arrives at the reference receiver of Xr is given by (8-31), (8-33),
and (8-34) with Ω0 = Ωr , M = C, and

Ht(Ω) =
∑
�i≥0

∑M
i=1 �i=t

C∏
i=1,i�=j

G�i(i). (8-76)

Downlink Rate Control

A key consideration in the operation of the network is the manner that the
total power P0 transmitted by a base station is shared by the mobiles it serves.
A simple and efficient way to allocate P0 is with an equal-share policy, which
involves base station Si transmitting to mobile Xk ∈ Xi with power

Pi,k =
(1− fp)P0

Ki
, Xk ∈ Xi (8-77)

where Ki is the number of mobiles associated with Si. Under this policy, the
downlink SINR varies dramatically from close mobiles to more distant ones. If
a common SINR threshold is used by all mobiles, then the outage probability
is likewise highly variable. Instead of using a common threshold, the threshold
βk of mobile Xk can be selected individually such that the outage probability
of mobile Xk is constrained to equal a specified value ε̂.

For a given threshold βk, there is a corresponding transmission rate Rk

that can be supported. Assuming the use of a capacity-approaching code, two-
dimensional signals transmitted over an AWGN channel, and Gaussian inter-
ference, (8-63) indicates that the maximum rate supported by a threshold βk is
Rk = log2(1+βk). With an equal power share, the number of mobiles Ki in the
cell is first determined, and then the power share given to each mobile is found
from (8-77). For each mobile in the cell, the corresponding βk that achieves
the outage constraint εk = ε̂ is found by inverting the equation for ε(Ω). Once
βk is found, the supported Rk is found. The rate Rk is adapted by changing
the number of information bits per channel symbol. The spreading factor and
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symbol rate are held constant, so there is no change in bandwidth. Because
this policy involves fixing the transmit power and then determining the rate
for each mobile that satisfies the outage constraint, it is called downlink rate
control.

Under outage constraint εk = ε̂, the performance of a given network realiza-
tion is largely determined by the set of achieved rates {Rk} of the M mobiles
in the network. Because the network realization is random, it follows that the
set of rates is also random. Let the random variable R represent the rate of an
arbitrary mobile. The statistics of R can be found for a given class of networks
using a Monte Carlo approach as follows. First, a realization of the network
is produced by placing C base stations and M mobiles within the network ac-
cording to the uniform clustering model with minimum base-station separation
rbs and minimum mobile separation rm. The path loss from each base sta-
tion to each mobile is computed with randomly generated shadowing factors if
shadowing is present. The set of mobiles associated with each base station is
determined with a reselection policy if one is used. At each base station, the
power-allocation policy is applied to determine the power it transmits to each
mobile that it serves. For downlink rate control, after setting the outage proba-
bility equal to the outage constraint, an inversion provides the SINR threshold
for each mobile in the cell. For each SINR threshold, the corresponding code
rate is computed.

Downlink Power Control

Downlink power control entails power allocation by the base station in a man-
ner that meets the requirements of the individual mobiles associated with it.
Although there is no near–far problem on the downlinks, power control is still
desirable to enhance the received power of a mobile during severe fading or
when a mobile is near a cell edge. A major drawback with rate control is that
the rates provided to the different mobiles in the network vary significantly.
This variation results in unfairness to some mobiles, particularly those located
at the edges of the cells. To ensure fairness, Rk could be constrained to be the
same for all Xk ∈ Xi. The common rate of a given cell is found by determining
the value of Rk that allows the outage constraint εk = ε̂ for all Xk ∈ Xi and the
power constraint (8-69) to be simultaneously met. Because the power transmit-
ted to each mobile is varied while holding the rate constant for all mobiles in
the cell, this policy is called downlink power control. Although the rate is the
same for all mobiles within a given cell, it may vary from cell to cell.

Let E[R] represent the mean value of the variable R, which can be found
by numerically averaging the values of R over the mobiles and the network
realizations. Under this definition of E[R] and an outage constraint, the average
area spectral efficiency A for downlinks is defined as

A = λ (1− ε̂)E[R] (8-78)

where λ = C/Anet is the maximum density of base-station transmissions in the
network.
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Figure 8.20: Average area spectral efficiency as a function of M/C with rate
control and power control [116]

Example 12. Consider a network with C = 50 base stations placed in a
network of radius rnet = 2 with base-station exclusion zones of radius rbs = 0.25.
The activity probability is pi = 1 for all base stations. A variable number M of
mobiles are placed within the network using exclusion zones of radius rm = 0.01.
The outage constraint is set to ε̂ = 0.1, and both power control and rate control
are considered. A mobile in an overloaded cell is denied service. The SNR is
set to Γ = 10 dB, the fraction of power devoted to pilots is fp = 0.1, and the
spreading factor is set to G = 16 with chip factor h = 2/3. The propagation
environment is characterized by a path-loss exponent α = 3, and the Nakagami
parameters are mi,k = 3 for i = g(k) and mi,k = 1 for i �= g(k); that is,
the signal from the serving base station experiences milder fading than the
signals from the interfering base stations. This model is realistic because the
signal from the serving base station is likely to be in the line-of-sight, whereas
typically the interfering base stations are not.

Figure 8.20 shows the average area spectral efficiency, as a function of the
ratio M/C, for rate control and power control in an unshadowed environment
and in the presence of lognormal shadowing with σs = 8dB. The figure shows
that the average area spectral efficiency under rate control is higher than it is
under power control. This disparity occurs because mobiles that are close to
the base station are allocated extremely high rates under rate control, whereas
with power control, mobiles close to the base station must be allocated the
same rate as mobiles at the edge of the cell. As the network becomes denser
(M/C increases), shadowing actually improves the performance with rate con-
trol, whereas it degrades the performance with power control. This improve-
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Figure 8.21: Average rate as a function of M/C in the presence of shadowing
with rate control and power control. For rate control, the averaging is done
over all mobiles and over just the cell-edge mobiles. With power control, all
mobiles in a cell are given the same rate [116]

ment occurs because shadowing can sometimes cause the signal power of the
base station serving a mobile to increase, while the powers of the interfering
base stations are reduced. The effect of favorable shadowing is equivalent to
the mobile being located closer to its serving base station. When this occurs
with rate control, the rate is increased, sometimes by a very large amount. Al-
though shadowing does not induce extremely favorable conditions very often,
when it does the improvement in rate is significant enough to cause the average
to increase. In contrast, a single mobile with favorable shadowing conditions
operating under power control continues to receive at the same code rate.

Although rate control offers a higher average rate than power control, the
rates it offers are much more variable. This behavior can be seen in Figure 8.21,
which compares the rates of all mobiles against those located at the cell edges.
In particular, the figure shows the rate averaged across all mobiles for both
power control and rate control, as well as the rate averaged across just the
cell-edge mobiles for rate control, where the cell-edge mobiles are defined to be
the 5% of the mobiles that are farthest from their serving base station. The
average rate of cell-edge mobiles is not shown for power control because each
cell-edge mobile has the same rate as that of all the mobiles in the same cell.
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As seen in the figure, the performance of cell-edge mobiles is worse with rate
control than it is with power control. �

Increasing the spreading factor allows more interference to be suppressed,
resulting in a reduced outage probability for a particular SINR threshold. This
improvement can be used to increase the threshold or, equivalently, increase
the rate.

8.6 FH-CDMA Mobile Ad Hoc Networks

Three major advantages of frequency hopping are that it can be implemented
over a much larger frequency band than it is possible to implement direct-
sequence spreading, that the band can be divided into noncontiguous segments,
and that frequency hopping provides inherent resistance to the near–far prob-
lem. These advantages of frequency hopping, particularly the near–far advan-
tage, are decisive in many applications. For example, the Bluetooth system
and combat net radios use frequency hopping primarily to avoid the near–far
problem. Frequency hopping may be added to almost any communication sys-
tem to strengthen it against interference or fading. Thus, frequency hopping
may be applied to the set of carriers used in a multicarrier CDMA system or
the subcarriers of an OFDM system.

Since the probability of a collision in an asynchronous network can be de-
creased by increasing the number of frequency channels, it is highly desirable
to choose a data modulation that has a compact spectrum and produces little
spectral splatter. Continuous-phase frequency-shift keying (CPFSK) has these
characteristics and provides a constant-envelope signal (Section 3.4). CPFSK
is characterized by its modulation order, which is the number of possible tones,
and by its modulation index h, which is the normalized tone spacing. For a fixed
modulation order, the selection of h involves a tradeoff between bandwidth and
performance. When CPSK is the data modulation in an FH-CDMA network,
the number of frequency channels and hence resistance to frequency-hopping
multiple-access interference generally increase with decreasing h, whereas the
bit error probability for the AWGN channel generally decreases with increas-
ing h.

Only a portion of the power in a frequency-hopping signal lies within its se-
lected frequency channel. Let ψ represent the fractional in-band power, which is
the fraction of power in the occupied frequency channel. We assume that a frac-
tion Ks = (1− ψ)/2, called the adjacent-channel splatter ratio, spills into each
of the frequency channels that are adjacent to the one selected by a mobile be-
cause for most practical systems the fraction of power that spills into frequency
channels beyond the adjacent ones is negligible. A typical choice that limits
the spectral splatter into an adjacent frequency channel is ψ = 0.99. However,
one might increase the bit rate while fixing the channel bandwidth, thereby de-
creasing ψ and increasingKs. Although the resulting increased adjacent-channel
interference negatively affects performance, the increased bit rate can be used
to support a lower-rate error-correcting code, thereby improving performance.
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Thus, there is a fundamental tradeoff involved in determining the fractional
in-band power that should be contained within each frequency channel.

In the subsequent analysis and optimization for FH-CDMA MANETs [95],
the basic network model is the same as in Section 8.1. The reference receiver is
XM+1, the reference transmitter is X0, the network lies within a circle of radius
rnet , and a nonzero radius rex defines an exclusion zone or guard zone. The
fading gains {gi} remain fixed for the duration of a hop but vary independently
from hop to hop (block fading). Although the {gi} are independent, the channel
from each transmitting mobile to the reference receiver can have a distinct
Nakagami parameter mi. A hopping band of W Hz is divided into L contiguous
frequency channels, each of bandwidth W/L Hz. The mobiles independently
select their transmit frequencies with equal probability. The source X0 selects a
frequency channel at the edge of the band with probability 2/L and a frequency
channel in the interior of the band with probability (L − 2)/L. Let Di ≤ 1 be
the duty factor of Xi, which is the probability that the mobile transmits any
signal.

We make the worst-case assumption that the hop dwell times of all network
mobiles coincide. Two types of collisions are possible: co-channel collisions,
which involve the source and interfering mobile selecting the same frequency
channel, and adjacent-channel collisions, which involve the source and interfer-
ing mobile selecting adjacent channels. Let pc and pa denote the probabilities
of a co-channel collision and an adjacent-channel collision, respectively. Assume
that Di = D is constant for every mobile. If Xi, 1 ≤ i ≤ M , transmits a signal,
then it uses the same frequency as X0 with probability 1/L. Since Xi trans-
mits with probability D, the probability that it induces a co-channel collision
is pc = D/L. The probability that Xi uses a frequency channel adjacent to
the one selected by X0 is 1/L if X0 selected a frequency channel at the edge
of the band (in which case, there is only one adjacent channel); otherwise, the
probability is 2/L (since there are two adjacent channels). It follows that, for
a randomly chosen channel, the probability that Xi, 1 ≤ i ≤ M , induces an
adjacent-channel collision is

pa = D

[(
2

L

)(
L− 2

L

)
+

(
1

L

)(
2

L

)]
=

2D(L− 1)

L2
. (8-79)

Under the model described above, the instantaneous SINR at the reference
receiver is

γ =
ψρ0

N +
∑M

i=1 Iiρi
(8-80)

where N is the noise power, ρi is given by (8-5), and Ii is a discrete random
variable that may take three values:

Ii =

⎧⎪⎨
⎪⎩
ψ with probability pc

Ks with probability pa

0 with probability pn

(8-81)
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where the probability of no collision is

pn = 1− pc − pa = 1− D(3L− 2)

L2
. (8-82)

Adjacent-channel interference can be neglected by setting ψ = 1 and Ks = 0.
Substituting (8-5), (8-6), and P̃i = Pi (since Gi = 1 for frequency hopping)

into (8-80) and dividing the numerator and denominator by dα0P0, the SINR is

γ =
ψg0Ω0

Γ−1 +
∑M

i=1 giIiΩi

, Γ = dα0P0/N (8-83)

where Γ is the signal-to-noise ratio (SNR) when the transmitter is at unit dis-
tance and the fading and shadowing are absent, and

Ωi =

{
10ξ0/10 ‖X0 −XM+1‖−α

i = 0
Pi

P0
10ξi/10 ‖Xi −XM+1‖−α

i ≥ 1
(8-84)

is the normalized power of Xi at the reference receiver.

Conditional Outage Probability

Let β denote the minimum SINR required for reliable reception and Ω =
{Ω0, . . . ,ΩM} represent the set of normalized received powers. An outage occurs
when the SINR falls below β. Accounting for the statistics of Ii in using (8-12)
to derive the conditional density of Yi = giIiΩi, we obtain

fi(y) = fYi
(y|Ωi)

= pnδ(y) +
ymi−1

Γ(mi)

⎡
⎣pc
(

mi

ψΩi

)mi

e
−
ymi

ψΩi + pa

(
mi

KsΩi

)mi

e
−

ymi

KsΩi

⎤
⎦u(y).
(8-85)

As a result, if m0 is a positive integer, a slight modification of the derivation
of (8-22) indicates that the outage probability is

ε(Ω) = 1− e−β0z
m0−1∑
s=0

(β0z)
s

s∑
t=0

z−t

(s− t)!
Ht(Ω), β0 =

βm0

Ω0
, z = Γ−1

(8-86)

Ht(Ω) =
∑
�i≥0

∑M
i=1 �i=t

M∏
i=1

G�i(i) (8-87)

G�i(Ωi) = pnδ�i +
Γ(�i +mi)

�i!Γ(mi)
[pcφi(ψ) + paφi(Ks)] (8-88)

φi(x) =

(
xΩi

mi

)�i (xβ0Ωi

mi
+ 1

)−(mi+�i)

(8-89)

where δ� is the Kronecker delta function.
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Rate Adaptation

Let C(h, γ) denote the channel capacity when the modulation is CPFSK with
modulation index h. The channel is in an outage when C(h, γ) ≤ R. Assuming
Gaussian interference, the channel is conditionally Gaussian during a particular
hop, and the modulation-constrained AWGN capacity can be used for C(h, γ).
For any value of h and SINR threshold β, the achievable code rate is R =
C(h, β). For any h and R, the SINR threshold required to support that rate is
obtained by inverting R = C(h, β). We assume that a mobile is able to estimate
the channel and appropriately adapt its rate in order that P [γ ≤ β] < ε̂, where
ε̂ is a constraint on the channel outage.

Modulation-Constrained Area Spectral Density

The maximum data transmission rate is determined by the bandwidth W/L of
a frequency channel, the fractional in-band power ψ, the spectral efficiency of
the modulation, and the code rate. Let η denote the spectral efficiency of the
modulation, given in symbols per second per Hz, and defined by the symbol
rate divided by the 100ψ%-power bandwidth of the modulation. Since we as-
sume many symbols per hop, the spectral efficiency of CPFSK can be found
by numerically integrating (3-74) and then inverting the result. To emphasize
the dependence of η on h and ψ, we denote the spectral efficiency of CPFSK
as η(h, ψ) subsequently. When combined with a rate-R code, the spectral ef-
ficiency becomes Rη(h, ψ) bps per Hertz (bps/Hz), where R is the ratio of
information bits to code symbols. Since the signal occupies a frequency chan-
nel with 100ψ%-power bandwidth W/L Hz, the throughput supported by a
single link operating with a duty factor D and outage probability ε̂ is

T =
WRDη(h, ψ)(1− ε̂)

L
(8-90)

bits per second. Averaging the throughput over N network topologies, we
obtain

T̃ =
WDη(h, ψ)(1− ε̂)

L
R̃ (8-91)

where the average code rate is

R̃ =
1

N

N∑
n=1

Rn. (8-92)

Multiplying E[T ] by the mobile density λ = M/Anet and dividing by the
system bandwidth W give the normalized modulation-constrained area spectral
efficiency (MASE):

τ(λ) =
λDη(h, ψ)(1− ε̂)

L
R̃ (8-93)

which has units of bps/Hz per unit area. The normalized MASE is the normal-
ized area spectral efficiency resulting from a conditional outage probability ε̂,
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where the conditioning is with respect to the network topology. As a perfor-
mance measure, the normalized MASE explicitly takes into account the code
rate, the spectral efficiency of the modulation, and the number of frequency
channels.

Optimization Algorithm

For an FH-CDMA MANET that uses CPFSK modulation and adaptive-rate
coding, there is an optimal set of (L, h, ψ) that maximizes the normalized
MASE. For the optimization, the density of interference per unit area λ and
the duty factor D have fixed values. The normalized MASE is computed for
positive-integer values of L fewer than 1000, values of h quantized to a spacing
of 0.01 over the range 0 ≤ h ≤ 1, and values of Ψ quantized to a spacing of 0.005
over the range 0.90 ≤ Ψ ≤ 0.99. For each set of (L, h, ψ) considered, the average
code rate E [R] and the normalized MASE can be found by using a Monte Carlo
approach as follows. A realization of the network is produced by placing M mo-
biles within an area Anet according to the specified spatial distribution. The
path loss from each mobile to the reference receiver is computed with randomly
generated shadowing factors. After setting ε(Ω) given by (8-86) equal to the
outage constraint ε̂, an inversion of the equation determines the adequate SINR
threshold β. The rate Rn = C(h, β) that corresponds to the SINR threshold
for the nth topology is computed, and its value is stored. The entire process
is repeated for a large number of networks N . The average code rate, which is
defined as (8-92), is used to find the spectral efficiency η(h,Ψ) corresponding to
the current h and Ψ, and then (8-93) provides the normalized MASE. Finally,
the optimization is completed by performing an exhaustive search over the sets
of (L, h, ψ) to determine the maximum value of the normalized MASE and the
corresponding values of L, h, and Ψ.

Example 13. Consider a network with the reference receiver at the origin
and interfering mobiles drawn from a uniform distribution within an annular
region. The region has inner radius rex = 0.25, and two outer radii are con-
sidered: rnet = 2 and rnet = 4. The optimization is performed by considering
N = 10, 000 different network topologies. The path-loss exponent is α = 3,
the duty factor is D = 1, the source is located at unit distance away from the
receiver at the origin, the SNR is Γ = 10dB, and when a shadowed scenario is
examined, the standard deviation of the lognormal distribution is σs = 8dB.
Binary CPFSK is used, and the rate is adapted in order to satisfy a typical
outage constraint of ε̂ = 0.1. Three fading models are considered: Rayleigh
fading (mi = 1 for all i), Nakagami fading (mi = 4 for all i), and mixed fading
(m0 = 4 and mi = 1 for i ≥ 1).

Figure 8.22 illustrates the variability of the code rate through its distri-
bution function in the presence of mixed fading and shadowing. The figure
shows three curves, corresponding to the case of a dense network (M = 50),
a moderately dense network (M = 25), and a sparse network (M = 5). The
outer radius of the annular network is rnet = 2. The network parameters are
independently optimized for each mobile density. The figure shows that the
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Figure 8.22: Distribution function of the code rate when the network is opti-
mized [95]

distribution function of the code rate is quite steep for all three scenarios. This
characteristic is indicative of the fairness in the rate selection because most
nodes have similar rates. However, the curves are steeper for dense networks
than for sparse networks. The reason is the scarcity of interfering mobiles in a
sparse network and hence the increased variability in the SINR and code rate
from one realization to the next. �

Example 14. Figures 8.23, 8.24, and 8.25 show the optimal normalized
MASE τ ′opt for a dense network (M = 50 and rnet = 2) as functions of the
number of frequency channels L, the modulation index h, and the fractional in-
band power Ψ, respectively. These three figures demonstrate the effects of each
of the three parameters of the optimization. In Figures 8.23 and 8.24, Ψ = 0.96
is assumed, and for each value of the parameter L or h, respectively, the other
parameter is chosen to maximize the normalized MASE. In Figure 8.25, the
other two parameters are jointly optimized for each value of Ψ.

The results of the optimization are shown in Table 8.2. For each set of
network conditions, the (L, h,Ψ) that maximize the normalized MASE are listed
along with the corresponding τ ′opt. For comparison, the normalized MASE
τsub is shown for the parameters (L, h,Ψ) = (200, 0.5, 0.99). The comparison
illustrates the importance of parameter optimization and indicates that the
selection of optimal parameters may improve the normalized MASE by a factor
greater than two relative to an arbitrary parameter selection.
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Figure 8.23: Optimal normalized MASE as function of the number of frequency
channels L when Ψ = 0.96. A dense network is considered (M = 50, rnet = 2 )
[95]

Table 8.2: Optimization for M = 50 interferers. The normalized MASE τ is
in units of bps/kHz- m2. Channel abbreviations: R indicates Rayleigh fading,
N indicates Nakagami fading ( mi = 4 for all i), M indicates mixed fading
(m0 = 4 and mi = 1 for i ≥ 1), U indicates unshadowed environment, and S
indicates shadowing ( σs = 8dB) [95]

rnet Channel L E[R] h Ψ τ ′opt τsub
2 R/U 315 0.07 0.80 0.96 0.79 0.50

N/U 280 0.36 0.80 0.96 4.42 2.99
M/U 279 0.41 0.80 0.96 5.00 3.56
R/S 320 0.07 0.80 0.96 0.76 0.40
N/S 290 0.42 0.80 0.96 4.24 2.27
M/S 290 0.38 0.80 0.96 4.70 3.02

4 R/U 73 0.05 0.84 0.95 0.63 0.32
N/U 80 0.35 0.84 0.95 3.74 1.87
M/U 75 0.36 0.84 0.95 4.09 1.91
R/S 95 0.05 0.84 0.95 0.49 0.28
N/S 130 0.40 0.84 0.95 2.65 1.75
M/S 100 0.35 0.84 0.95 3.03 1.80
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Figure 8.24: Optimal normalized MASE as function of the modulation index h
when Ψ = 0.96. A dense network is considered (M = 50, rnet = 2 ) [95]

Optimization results are given for different fading channel models and for
both a shadowed and an unshadowed scenario. Performance is very poor for the
pessimistic assumption of Rayleigh fading, but it improves for a more realistic
mixed fading that implies a line-of-sight between the source and destination but
not for the other links. Shadowing is always detrimental, and even though it
leads to a higher code rate, it requires a larger number of frequency channels.
An increase in the density of mobiles per unit area leads to a lower modulation
index, but an increase in the normalized MASE, code rate, number of frequency
channels, and fractional in-band power. �

8.7 FH-CDMA Cellular Networks

In an FH-CDMA cellular network, synchronous and orthogonal frequency-
hopping patterns can be simultaneously transmitted by a base station so that
there is no intracell interference on the downlinks within a cell sector. By choos-
ing frequency-hopping patterns with M hopset frequencies that are circularly
rotated versions of each other, as many as M frequency-hopping signals can
be simultaneously transmitted, and hence as many as M active mobiles can be
accommodated.
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Figure 8.25: Optimal normalized MASE as function of the fractional in-band
power Ψ. For each Ψ, both the number of frequency channels and the modu-
lation index are varied to maximize the normalized MASE. A dense network is
considered (M = 50, rnet = 2 ) [95]

If the cells are sufficiently small and the switching times between hops are
sufficiently large, it may be practical to synchronize the transmit times of the
mobiles in a cell enough to avoid collisions at the base station of the uplink
signals and thereby prevent intracell interference. The synchronization may be
implemented by using the measured arrival times of the downlink signals at the
mobiles. If there are L frequency channels, but fewer than 	L/2
 active mobiles
are present in a cell, then separated frequency-hopping patterns can be selected
so that there is no intracell adjacent-channel interference on either the uplinks
or downlinks.

Intercell interference cannot be entirely prevented because the patterns as-
sociated with different cells or sectors are asynchronous. Consider a sector B
with Nb mobiles covered by sector antenna A. Since the mobiles in sector B
independently and asynchronously use a set of any Nb carrier frequencies in
the network hopset with equal probability, the probability that a mobile in the
covered sector B produces interference in the transmission channel of an uplink
in sector A is

pc =
DNb

L
. (8-94)

This equation also gives the probability that sector antenna B oriented toward
a mobile in sector A produces interference in the transmission channel of the
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downlink of the mobile. Because of orthogonality within each sector, no more
than one signal from a sector produces interference in the transmission channel
of either link in another sector.

FH-CDMA networks largely avoid the near–far problem by continually
changing the carrier frequencies so that frequency collisions become brief, un-
usual events. Thus, power control in an FH-CDMA network is unnecessary,
and all mobiles may transmit at the same power level. When power control is
used, it tends to benefit signals from mobiles far from an associated sector an-
tenna while degrading signals from mobiles close to it so that even perfect power
control typically increases system capacity by only a small amount. There are
good reasons to forego this slight potential advantage and not use power con-
trol. The required overhead may be excessive. If the geolocation of mobiles is
performed by using measurements at two or more base stations, then the power
control may result in significantly less signal power arriving at one or more base
stations and the consequent loss of geolocation accuracy.

The most common FH-CDMA cellular network uses the Bluetooth technol-
ogy. A piconet comprises a master Bluetooth device that communicates with
seven or fewer slave devices. Any Bluetooth device can assume the role of mas-
ter or slave in a particular piconet and may even be the master of one piconet
while serving as a slave in another. To prevent intracell interference, Bluetooth
uses a form of TDMA in which the master communicates with the slaves in suc-
cessive time slots, which are defined by the master through regular messages.
The slave synchronizes with the timing and frequency-hopping pattern of the
master. The communication between master and slave within a time slot is half
duplex.

DS-CDMA cellular networks are preferable to FH-CDMA cellular networks
because coherent demodulation is available. The performance of similar FH-
CDMA networks is potentially inferior because a noncoherent demodulation is
usually necessary. Thus, FH-CDMA cellular networks are seldom implemented
except as the Bluetooth networks.

Long-Term Evolution (LTE) is a fourth-generation standard for the wireless
communication of high-speed data. It uses OFDM for multiple access instead
of CDMA, and different frequency subbands may be assigned to different users.
During a two-slot subframe, frequency hopping is sometimes used on the uplink
to obtain diversity by changing a user’s subband allocation during the first slot
to another one during the second slot.

8.8 Problems

1. (a) For CDMA MANETs, show that if m0 = 1, then

ε(Ω) = 1− exp

(
−βz

Ω0

) M∏
i=1

[
1− pi + pi

(
mi

mi + βΩi/Ω0

)mi
]
.

(b) If m0 = 1 and mi → ∞, 1 ≤ i ≤ M , what is the equation for ε(Ω)?
(c) Verify (8-36) for m0 = mi = 1, 1 ≤ i ≤ M .
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2. (a) For CDMA MANETs with Ω0 → ∞, for what Nakagami parameters
does ε(Ω) → 0 ? (a) For CDMA MANETs with Ω0 → 0, for what
Nakagami parameters does ε(Ω) → 1 ?

3. For CDMA MANETs, derive an equation for ε(Ω) when Ω0 �= 0 and
Ωi → ∞, i ≥ 1, and show that ε(Ω) → 1 regardless of the Nakagami
parameters if and only if pi = 1 for some i.

4. For CDMA MANETs with z = Γ−1 = 0, derive an equation for ε(Ω).

5. Consider a cellular network in which there are M active mobiles that are
independently located throughout the network. The probability that a
mobile is located in a particular cell sector is λ/M . Therefore, the dis-
tribution of K active mobiles in the cell sector is given by the binomial
distribution

P (K = k) =

(
M

k

)(
λ

M

)k (
1− λ

M

)M−k

and E [K] = λ. (a) Show that as M → ∞, this distribution approaches
the Poisson distribution:

P (K = k) =
exp(−λ)λk

k!
, k = 0, 1, 2, . . . ,M .

(b) What is the conditional probability that K = k given that K ≥ 1?

6. Consider the acquisition of the scrambling code associated with a cell.
Suppose that there are K hypothesized scrambling codes in a group, the
number of symbols in a codeword is C, and the acceptance threshold is T
votes. Assume that the correct scrambling code of a cell is not transmitted
and that votes for each of the K codes are equally likely. Use the union
bound to derive an upper bound on the false-alarm probability.

7. Consider an uplink of a DS-CDMA cellular network that has full power
control with δ = 1, m0 = 1, and mi = pi = 1, 1 ≤ i ≤ M , i �= r. Show
that as β → 0,

ε(Ω) → β

[
1

ΩrΓ
+

M − 1

G/h

]
.

8. Consider a downlink of cell j in a DS-CDMA cellular network that has
m0 = 1 and mi = pi = 1, 1 ≤ i ≤ C, i �= j. Show that as β → 0,

ε(Ω) → β

[
1

ΩrΓ
+

∑C
i=1,i�=j Ωi

Ωr

]
.
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9. Consider the downlinks in a cell j of a DS-CDMA network. There is no
fading and no noise, and the required SINR γk of the downlink to Xk in
the cell is γ. Show that the requirement is met only if

γ ≤ (1− fp)G

h

⎡
⎣ ∑
k:Xk∈Xj

∑M
i=1,i�=j IiPi,k10

ξi,k/10||Si −Xk||−α

10ξj,k/10||Sj −Xk||−α

⎤
⎦
−1

.

10. Consider an FH-CDMA MANET that has m0 = mi = 1, 1 ≤ i ≤ M .
Show that as β → 0,

ε(Ω) → β

[
1

Ω0Γ
+

(pcψ + paKs)
∑M

i=1 Ωi

Ω0

]
.

11. Consider an FH-CDMA network with two mobiles that communicate with
a target mobile or base station. The modulation is ideal DPSK, the
target mobile uses noncoherent combining with L0 diversity branches,
the number of frequency channels is L = 10, and both the receiver noise
and the spectral splatter are negligible. Both signals arriving at the target
mobile encounter Rayleigh fading, but one signal has SINR γ̄ = 10dB,
and the other signal has SINR γ̄ = −10 dB. From (6-121) and (6-151),
the channel-symbol error probability is

Ps(L0) = p− (1− 2p)

L0−1∑
i=1

(
2i− 1

i

)
[p(1− p)]i, p =

1

2(1 + γ̄)
.

If power control is used, then γ̄ = 0dB for both signals. For L0 = 1 and
L0 = 2, assess the relative merits for each mobile of introducing power
control. Assume that an acceptable average channel-bit error probability
is 0.02.

12. Consider the transmission channel T of an uplink in sector A of an FH-
CDMA cellular network that uses a hopset with L ≥ 3 frequencies. Sector
B is covered by sector antenna A. The Nb ≤ L mobiles in sector B use
distinct carrier frequencies in the network hopset with equal probability,
and D = 1. Let N1 = 1 if a signal from sector B uses T; let N1 = 0 if no
signal does. (a) Show that the probability that some mobile in the covered
sector B produces interference in exactly one of the adjacent channels of
T is

Pa =
2 (Nb −N1) (L−Nb +N1)

L (L− 1)
, L− 1 ≥ Nb −N1 ≥ 0.

(b) Show that the probability that some mobile in the covered sector B
produces interference in both adjacent channels of T is

Pb =
(Nb −N1) (Nb −N1 − 1)

L (L− 1)
, L− 1 ≥ Nb −N1 ≥ 0.



Chapter 9

Iterative Channel
Estimation, Demodulation,
and Decoding

The acquisition and exploitation of channel-state information, such as the fading
amplitude and the power spectral density of the interference and noise, are
essential to the effective use of soft-decision decoding of spread-spectrum signals.
Channel estimation may be implemented by the transmission of pilot signals
that are processed by the receiver, but pilot signals entail overhead costs, such
as the loss of data throughput. Deriving maximum-likelihood channel estimates
directly from the received data symbols is often prohibitively difficult. There
is an effective alternative when turbo or low-density parity-check codes are
used. The expectation–maximization algorithm, which is derived and explained
in this chapter, provides an iterative approximate solution to the maximum-
likelihood equations and is inherently compatible with iterative demodulation
and decoding. Two examples of advanced spread-spectrum systems that apply
iterative channel estimation, demodulation, and decoding are described and
analyzed. These systems provide good illustrations of the analysis required in
the design of an advanced system.

9.1 Expectation–Maximization Algorithm

The expectation–maximization (EM) algorithm offers a low-complexity itera-
tive approach to maximum-likelihood estimation [46, 49]. A substantial body of
literature exists on EM-based techniques for channel estimation, data detection,
and multiuser detection [18]. In this chapter, random vectors are represented
by upper-case letters, while realizations of the random vectors are represented
by lower-case letters.
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Maximum-likelihood estimation of a nonrandom parameter vector θ of n pa-
rameters is obtained by maximizing the conditional density g(y|θ) of a random

vector Y = [Y1 · · ·Yn]
T
of the observations. Since the logarithm is a monotonic

function of its argument, the maximum-likelihood estimate θ̂ml of θ may be
expressed as

θ̂ml = argmax
θ

ln g(y|θ) (9-1)

where ln g(y|θ) is the log-likelihood function. When the likelihood function is
differentiable, the maximum-likelihood estimate is the solution of the likelihood
equation:

∇θ ln g(y|θ)|θ=θml
= 0 (9-2)

where ∇θ is the gradient vector with respect to θ :

∇θ =

[
∂

∂θ1
· · · ∂

∂θn

]T
. (9-3)

When (9-2) cannot be solved in closed form, it can sometimes be solved itera-
tively by applying Newton’s method or fixed-point methods. When an iterative
maximum-likelihood solution is intractable, an alternative procedure is the EM
algorithm, which has the major advantage that it requires no calculations of
gradients or Hessians.

The EM algorithm is based on considering the set of observations {Yi}
forming the random data vector Y as a subset of or derived from a larger data
set {Zi} forming a random data vector Z such that the maximization of its
conditional density f(z|θ) is mathematically tractable. The data vector Y is
called the incomplete data vector, and the data vector Z is called the complete
data vector. The function ln f(z|θ) does not directly provide a useful estimate
of θ because Z is not observable, so the expectation of ln f(Z|θ) given both
Y = y and an estimate of θ is iteratively maximized by the EM algorithm.

Since Y is determined by Z, the joint conditional density is f(z,y|θ) =
f(z|θ), and the definition of a conditional density implies that

f(z|y,θ) = f(z|θ)
g(y|θ) (9-4)

Therefore,
ln f(z|θ) = ln f(z|y,θ) + ln g(y|θ) (9-5)

Beginning with an initial estimate θ̂0, the EM algorithm computes successive
estimates θ̂i that increase the value of ln f(y|θ̂i). Let

Ez|y,̂θi
[h(Z)] =

∫
h(z)f(z|y, θ̂i)dz (9-6)

denote the expectation of h(Z) with respect to the conditional density f(z|y,
θ̂i), where h(Z) is some function of the random vector Z. Integrating both sides

of (9-5) over f(z|y, θ̂i) yields

ln g(y|θ) = χ(θ, θ̂i)− Ez|y,̂θi
[ln f(Z|Y = y,θ)] (9-7)
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where

χ(θ, θ̂i) = Ez|y,θ̂i
[ln f(Z|θ)]. (9-8)

Lemma. For any θ̂i+1,

Ez|y,θ̂i
[ln f(Z|Y = y, θ̂i+1)] ≤ Ez|y,θ̂i

[ln f(Z|Y = y, θ̂i)] (9-9)

with equality if and only if f(z|y, θ̂i+1) = f(z|y, θ̂i).
Proof. Since ln a− ln b = ln a/b,

E
z|y,θ̂i

[ln f(Z|Y = y, θ̂i+1]− E
z|y,θ̂i

[ln f(Z|Y = y, θ̂i)]

= E
z|y,θ̂i

[
ln

f(Z|Y = y, θ̂i+1)

f(Z|Y = y, θ̂i)

]
.

Since lnx = x − 1 when x = 1 and a double differentiation proves that lnx is
a concave function of x for x > 0, lnx ≤ x − 1 for x > 0 with equality if and
only if x = 1. Therefore, an integration over the domain of z gives

Ez|y,θ̂i

[
ln

f(Z|Y = y, θ̂i+1)

f(Z|Y = y, θ̂i)

]
≤
∫ [

f(z|y, θ̂i+1)

f(z|y, θ̂i)
− 1

]
f(z|y, θ̂i)dz

= 0

which proves the inequality. The condition for equality follows directly. �
Theorem 1. If successive estimates are computed as

θ̂i+1 = argmax
θ

χ(θ, θ̂i) (9-10)

and ln g(y|θ) has an upper bound, then the sequence {ln g(y|θ̂i))} converges to
a limit as i → ∞.

Proof. The hypothesis of the theorem implies that

χ(θ̂i+1, θ̂i) ≥ χ(θ̂i, θ̂i).

This inequality, the lemma, (9-7), and (9-8) imply that

ln g(y|θ̂i+1) ≥ ln g(y|θ̂i)

with equality if and only if

χ(θ̂i+1, θ̂i) = χ(θ̂i, θ̂i), f(z|y,θ̂i+1) = f(z|y, θ̂i).

A bounded monotonically increasing sequence converges to a limit. Therefore,
if ln g(y|θ̂i) has an upper bound, then it converges to a limit as i → ∞. �

This theorem leads directly to the EM algorithm, which has two primary
computational steps: an expectation (E-step) and a maximization (M-step).
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EM Algorithm.

1. Set i = 0 and select the initial estimate θ̂0.

2. E-step: Compute χ(θ, θ̂i) = Ez|y,θ̂i
[ln f(Z|θ)].

3. M-step: Compute θ̂i+1 = argmaxθ χ(θ, θ̂i).

4. If i does not exceed some preset maximum and ‖θ̂i+1− θ̂i‖ > ε, where ε is
preset positive number, then return to the E-step. Otherwise, terminate
the iterations. �

If ln g(y|θ) is not concave, the sequence {ln g(y|θ̂i)} may converge to a local

maximum rather than a global maximum of ln g(y|θ), and θ̂ may not converge

to θ̂ml. Furthermore, an iteration of the EM algorithm might produce a jump
of θ̂i from the vicinity of one local maximum to the vicinity of another local
maximum of ln g(y|θ̂i). Thus, it may be necessary to execute the EM algorithm

with several different values of the initial vector θ0 to ensure that θ̂i → θ̂ml or
a close approximation of it.

In many applications, Y is part of the complete data vector Z = [Y X]T ,
where X is called the missing data vector. In this case, f(z|y,θ) = h(x|y,θ),
where h(x|y,θ) is the conditional density of X given Y = y and θ. There-
fore, (9-8) becomes

χ(θ, θ̂i) = Ex|y,θ̂i
[ln f(Z|θ)]. (9-11)

Bayes’ rule gives

h(x|y, θ̂i) =
g(y|x, θ̂i)h(x|θ̂i)

g(y|θ̂i)
(9-12)

which is used in the evaluation of the expected value in (9-11).
In applications with discrete random variables, probability functions replace

some of the densities.
Example 1. As a practical example, consider a random binary sequence

Xi, i = 1, . . . , n, transmitted over the AWGN channel. The received random
vector Y = [Y1 . . . Yn]

T is
Y = AX+N (9-13)

where A is a positive constant amplitude, X = [X1 . . . Xn]
T is the vector of

bits, and N = [N1 . . . Nn]
T is the vector of noise samples, which are assumed to

be independent, identically distributed, zero-mean, Gaussian random variables
with variance v. The bits are assumed to be independent of each other and the
parameters, and Xi = 1 with probability 1/2 and Xi = −1 with probability
1/2. Thus, densities involving X are replaced by probability functions. It is
desired to estimate the parameter vector θ = [A v]T .

Equation (9-13), the independent bits, and the independent Gaussian noise
imply that

g(yk|xk,θ) = (2πv)
−1/2

exp

[
− (yk −Axk)

2

2v

]
(9-14)
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and

g(y|x,θ) = (2πv)
−n/2

n∏
k=1

exp

[
− (yk −Axk)

2

2v

]
. (9-15)

Since X is independent of θ, the probability that X = x is

p(x) = 2−n. (9-16)

Since the components of Y are independent given θ,

g(y|θ) = 2−n
n∏

k=1

[g(yk|xk = 1,θ) + g(yk|xk = −1,θ)]. (9-17)

Substitution of this equation into the likelihood equation (9-2) results in a
mathematically intractable set of equations. Thus, we apply the EM algorithm
to estimate θ.

We define the complete data vector as Z = [Y,X]T . From (9-15) and (9-16),
we obtain

ln f(z|θ) = ln g(y|x,θ)− n ln 2

= C − n

2
ln v − 1

2v

n∑
k=1

(yk −Axk)
2 (9-18)

where C is a constant that does not depend on the parameters A and v. The
conditional probability that X = x given Y = y and θ̂i = [Âi, v̂i]

T is

p(x|y, θ̂i) =
2−ng(y|x, θ̂i)

g(y|θ̂i)
. (9-19)

The substitution of (9-18) into (9-11) yields

χ(θ, θ̂i) = C − n

2
ln v − 1

2v

n∑
k=1

∑
x:{xl=±1}

(yk −Axk)
2p(x|y, θ̂i) (9-20)

where the summation is over 2n possible vectors. Substituting (9-14), (9-15),
and (9-17) into (9-19), we obtain

p(x|y, θ̂i) = p(x/k|y/k, θ̂i)
g(yk|xk,θ)

g(yk|xk = 1, θ̂i) + g(yk|xk = −1, θ̂i)

= p(x/k|y/k, θ̂i)

exp

(
Âiykxk

v̂i

)

2 cosh

(
Âiyk
v̂i

) (9-21)
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where x/k denotes the vector x excluding the component xk, and y/k denotes
the vector y excluding the component yk. Therefore,∑

x:{xl=±1}
(yk −Axk)

2p(x|y, θ̂i)

=
∑

xk=±1

(yk −Axk)
2

exp

(
Âiykxk

v̂i

)

2 cosh

(
Âiyk
v̂i

)

=

(yk −A)2 exp

(
Âiyk
v̂i

)
+ (yk +A)2 exp

(
− Âiyk

v̂i

)

2 cosh

(
Âiyk
v̂i

)

= A2 + y2k − 2Ayk tanh

(
Âiyk
v̂i

)
. (9-22)

The substitution of this equation into (9-20) gives

χ(θ, θ̂i) = C − n

2
ln v − nA2

2v
− 1

2v

n∑
k=1

[
y2k − 2Ayk tanh

(
Âiyk
v̂i

)]
(9-23)

which completes the E-step.
The estimates that maximize χ(θ, θ̂i) are obtained by solving

∂χ(θ, θ̂i)

∂A
|θ=θ̂i+1

= 0,
∂χ(θ, θ̂i)

∂v
|θ=θ̂i+1

= 0. (9-24)

Combining the solutions, we obtain the M-step:

Âi+1 =
1

n

n∑
k=1

yk tanh

(
Âiyk
v̂i

)
(9-25)

v̂i+1 =
1

n

n∑
k=1

y2k − Â2
i+1. (9-26)

A suitable set of initial values are

Â0 =
1

n

n∑
k=1

|yk| , v̂0 =
1

n

n∑
k=1

y2k − Â2
0 (9-27)

which completes the algorithm specification. �

Fixed-Point Iteration

In the maximization step of the expectation–maximization method, derivatives
are calculated and set equal to zero. After algebraic transformations, we can



9.1. EXPECTATION–MAXIMIZATION ALGORITHM 555

often obtain one or more equations of the form f(x) = 0 that must be solved.
The solution is the value xs, such that f(xs) = 0 when x = xs. If f(x) is a
polynomial of degree 3 or higher or if f(x) includes transcendental functions,
then a closed-form solution or formula for xs may not exist, and an approximate
calculation of xs may be necessary.

The fixed-point iteration method [44] is a method that does not require the
calculation of the derivative of f(x), which may be difficult. To use the method,
f(x) = 0 is algebraically transformed into an equation of the form

x = g(x). (9-28)

Then the solution xs such that

xs = g(xs) (9-29)

which implies that f(xs) = 0, is computed iteratively. After an initial estimate
x0 of the solution, the fixed-point iteration is

xn+1 = g(xn), n ≥ 0 (9-30)

which converges to the solution xs under certain conditions. This solution is
called the fixed point of g(x) because g(xs) = xs.

Sufficient convergence conditions for the fixed-point iteration are established
by the following theorem. Let g′(x) denote the derivative of g(x) with respect
to x.

Theorem 2. Suppose that g(x) has a continuous derivative such that
|g′(x)| ≤ K < 1 in an interval I0. If xs ∈ I0 and xs = g(xs), then the
fixed-point iteration converges so that xn → xs as n → ∞ for any x0 ∈ I0.

Proof. According to the mean value theorem of calculus, there is a point
u ∈ (xs, xn) such that

g(xn)− g(xs) = g′(u)(xn − xs), n ≥ 1. (9-31)

Since by hypothesis |g′(u)| ≤ K for (xs, xn) ∈ I0 ,

|g(xn)− g(xs)| ≤ K|xn − xs|. (9-32)

Equations (9-29), (9-30), and (9-32) yield

|xn − xs| = |g(xn−1)− g(xs)| ≤ K|xn−1 − xs|. (9-33)

Repeated application of this inequality implies that

|xn − xs| ≤ Kn|x0 − xs|. (9-34)

Since K < 1, Kn → 0 and |xn − xs| → 0 as n → ∞ . Therefore, xn → xs as
n → ∞. �

The algebraic transformation from the equation f(x) = 0 to the equation
x = g(x) can usually be performed in more than one way. The value of K
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such that |g′(x)| < K for x ∈ I0 is generally different for each transformation.
Among those transformations for which K < 1, thereby ensuring convergence of
the fixed-point iteration, choosing the specific transformation with the smallest
value of K maximizes the speed of convergence.

Example 2. Suppose that f(x) = x2 + ax+ b = 0 where x �= 0 and a �= 0.
Then one algebraic transformation gives x = −(x2 + b)/a. For this transforma-
tion, g′(x) = −2x/a and convergence occurs if |x| < |a|/2. A second algebraic
transformation gives x = −a − bx−1. Then g′(x) = b/x2 and convergence oc-
curs if |x| >

√
|b|. The two intervals in which convergence of the fixed-point

iteration is ensured do not intersect if a2 < 4|b|. �

9.2 Direct-Sequence Systems

The accuracy of channel-state information (CSI) at the receiver is critical for co-
herent demodulation and efficient soft-decision decoding (Chapter 1). Cellular
protocols, such as WCDMA and LTE, specify the use of pilot-assisted channel
estimation (PACE). Pilot symbols are known symbols either multiplexed with
or superimposed onto the transmitted data in the time or frequency domain.
Pilot symbols have the associated disadvantages of a loss in spectral or energy
efficiency and an unsuitability for fast-fading channels with a coherence time
shorter than the duration of the pilot symbols. Although their primary role in
cellular standards is channel estimation, pilot symbols often play a secondary
role in cell, frame, or symbol synchronization, but alternative methods of syn-
chronization may be used [7, 72]. Blind channel-estimation methods, which
typically use second-order statistics of the received symbols for channel esti-
mation, avoid the implementation cost of pilot symbols but entail performance
losses.

Improved performance is achieved by using channel estimation based on the
EM algorithm. In this section, a direct-sequence system featuring both iterative
EM channel estimation and iterative detection and decoding without any pilot
symbols is described [109]. The channel estimation includes an estimation of
the received interference power spectral density (PSD), which is due to both the
thermal noise and the time-varying interference. An accurate estimate enables
improved interference suppression by the decoder.

Encoding, Modulation, and Channel Estimation

Each 1 × K message vector m = [m(1) . . .m(K)] is encoded into a 1 × N
codeword using a systematic, extended, irregular repeat-accumulate (IRA) code
(Section 1.9). IRA codes offer a combination of the linear complexity of turbo
encoding and the lower complexity of LDPC decoding without compromising
on performance. A rate-1/2 IRA code is constructed using density evolution
[83] with maximum node degrees dv = 8 and dc = 7 in (1-239) and (1-240). We
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Figure 9.1: DS-CDMA transmitter with QPSK modulation. S/P = serial-
to-parallel converter. SSG = spreading sequence generator. CWM = chip-
waveform modulator

obtain a strong IRA code with degree distributions

v(x) = 0.00008 + 0.31522x+ 0.34085x2 + 0.0.06126x6 + 0.28258x7

χ (x) = 0.62302x5 + 0.37698x6. (9-35)

The IRA systematic parity-check matrix and the generator matrix are defined
by (1-241) and (1-243), respectively.

Figure 9.1 shows the block diagram of a dual quaternary DS-CDMA trans-
mitter (Section 2.5) comprising a QPSK modulator and a direct-sequence
spreading generator that multiplies orthogonal chip sequences with the in-phase
and quadrature modulator inputs. Gray-labeled QPSK is used with 2 encoded
bits mapped into a modulation symbol di ∈ {±1,±j} , i = 1, . . . , N/2, j =√
−1. Although QPSK is assumed, the subsequent analysis and simulation is

easily extended to q-ary QAM. Parallel streams of code bits, which represent
the real and imaginary components of di, are each spread using Gold sequences
before rectangular pulse shaping by the chip-waveform modulator. In practice,
an intermediate frequency is used prior to the carrier-frequency upconversion,
but the upconversion from baseband to the intermediate frequency is omitted
for clarity in Figure 9.1.

No channel interleaving is applied to the IRA code because of the inherent
interleaving characteristics of the IRA encoder, which can be represented as
a repetition code concatenated with an interleaver and an accumulator. The
interleaver is essentially embedded within the matrix H1 that is part of the
generator matrix defined by (1-243).

Each codeword or frame comprises N/2 QPSK code symbols. There are G
spreading-sequence chips for the in-phase and quadrature components of each
QPSK symbol, where G is the component spreading factor. Each of these frames
has two different types of subframes or blocks. A fading block comprises Nb

code bits or Nb/2 QPSK symbols over which the fading amplitude is assumed
to be constant. An interference block comprises Nib code bits or Nib/2 QPSK
symbols over which the interference level is assumed to be constant.
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Figure 9.2: Iterative DS-CDMA receiver with channel estimator. CMF = chip-
matched filter. ADC = analog-to-digital converter. SSG = spreading sequence
generator. P/S = parallel-to-serial

Iterative Receiver Structure

Figure 9.2 shows a block diagram of the dual quaternary iterative receiver.
The received signal is downconverted, passed through chip-matched filters, and
despread by a synchronized spreading sequence in each branch. The synchro-
nization system is omitted in the figure for clarity. Accurate synchronization in
the receiver is assumed to prevent self-interference between the two spreading
sequences of the desired signal.

Consider a scenario with flat fading and multiple-access interference. The
complex fading amplitude associated with both spreading sequences during a
fading block is

B =
√

Esαejθ (9-36)

where Es is the average energy per QPSK symbol, α is the magnitude of the
fading amplitude with E

[
α2
]
= 1, and θ is the unknown fading-induced channel

phase. Let N0/2 denote the two-sided PSD of the white Gaussian noise. During
a fading block, the complex envelope of the received signal at the ith symbol
time, which appears as two successive outputs of the parallel-to-serial converter,
may be expressed as

yi = Bdi + Ji + ni, 1 ≤ i ≤ Nb

2
(9-37)

where di is the complex transmitted code symbol of the desired signal, ni

is a complex zero-mean, circularly symmetric, Gaussian noise sample with

E
[
|ni|2

]
= N0 (Section 1.1), and Ji is the interference after the demodula-

tion. If pilot symbols are received, they are removed and applied to the channel
estimator. The time-varying multiple-access interference is assumed to be gen-
erated by interfering signals with a structure identical to the desired signal,
albeit the spreading sequences differ and the complex fading amplitudes are
independent.

A major benefit of the direct-sequence spread spectrum is that the despread-
ing in the receiver tends to whiten the interference PSD over the code-symbol
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passband, and the subsequent filtering tends to produce a residual interference
with an approximate Gaussian distribution (Section 2.5). Thus, the combined
interference and thermal noise is assumed to have a two-sided PSD A/2 that is
constant over each block of Nib code bits but varies from block to block. This
model leads to the derivation of an EM estimator for A that is used in the
demodulator metrics and leads to the suppression of the interference.

A receiver iteration is defined as a decoder iteration followed by internal EM
iterations in the channel estimator of Figure 9.2 and then a single demodulator
metric generation. Let r denote the index for the internal EM iteration, r =
1, . . . , rmax; let l denote the index for the closed-loop receiver iteration, l =
1, . . . , lmax.

Let θ
(l)
(r) =

(
B̂

(l)
(r), Â

(l)
(r)

)
represent the estimates of the complex fading am-

plitude and interference PSD parameters at the rth EM iteration during the
lth overall receiver iteration. EM iterations commence after the initial channel
estimation and decoding, which is obtained, while the switch in Figure 9.2 is
set to position 1. The subsequent receiver iterations are performed, while the
switch is set to position 2 in order to refine the initial channel estimate with
the aid of soft feedback from the channel decoder.

Application of EM Algorithm

The direct calculation of the maximum-likelihood channel-vector estimator θ
from a received data vector Y = [Y (1) . . . Y (Nd)] of Nd code symbols is not
feasible because the computational complexity increases exponentially with Nd.
Instead, the EM algorithm is used with the complete received data vector defined
as Z = (Y,D), where the missing data vectorD is the transmitted signal vector.

Since D is independent of the parameter vector θ,

ln f(z|θ) = ln f(y|d,θ) + ln f (d) . (9-38)

Assuming independent symbols and zero-mean, white Gaussian interference and
noise, we obtain

f(y|d,θ) = 1

(πA)Nd
exp

(
−

Nd∑
i=1

(
|yi −Bdi|2

)
A

)
. (9-39)

Therefore, since |di|2 = 1,

ln f(y|d,θ) = −Nd ln (A)−
1

A

Nd∑
i=1

[
|yi|2 + |B|2 − 2Re (y∗i Bdi)

]
(9-40)

where an irrelevant constant has been dropped.
E-step: The E-step requires the calculation of the conditional expectation

of the conditional log-likelihood of Z = (Y,D):

χ
(
θ,θ

(l)
(r)

)
= E

z|y,θ(l)

(r)

[ln f(Z|θ)] (9-41)
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where θ
(l)
(r) is the previous estimate. Using (9-38) and (9-40) and observing that

ln f (d) in (9-38) is independent of θ, and hence irrelevant to the subsequent
maximization, we obtain

χ
(
θ,θ

(l)
(r)

)
= −Nd ln (A)−

1

A

Nd∑
i=1

[
|yi|2 + |B|2 − 2Re

(
y∗iBd

(l)

(r)(i)
)]

(9-42)

where
d
(l)

(r)(i) = E
z|y,θ(l)

(r)

[D(i)] = E
d|y,θ(l)

(r)

[D(i)] . (9-43)

We assume the independence of each transmitted symbol D(i) and the in-

dependence of D(i) and θ
(l)
(r). Using Bayes’ rule and the fact that (9-39) can be

expressed as a product of Nd factors, we obtain

d
(l)

(r)(i) = E
di|yi,θ

(l)

(r)

[D(i)] (9-44)

h
(
di|yi,θ(l)

(r)

)
=

g
(
yi | di,θ(l)

(r)

)

g
(
yi | θ(l)

(r)

) P (Di = di) (9-45)

g
(
yi|di,θ(l)

(r)

)
=

1

πÂ
(l)
(r)

exp

⎛
⎝−

|yi − B̂
(l)
(r)di|2

Â
(l)
(r)

⎞
⎠ (9-46)

where h (di|·) is a conditional probability of D(i), and g (yi|·) is a conditional
density of Y (i).

M-step: Taking the derivative of (9-42) with respect to the real and imag-
inary parts of the complex-valued B and then setting the results equal to zero,
we obtain the estimate of the complex fading amplitude at iteration r + 1 as

Re
(
B̂

(l)
(r+1)

)
=

1

Nd

Nd∑
i=1

Re
(
y∗i d

(l)

(r)(i)
)

(9-47)

Im
(
B̂

(l)
(r+1)

)
= − 1

Nd

Nd∑
i=1

Im
(
y∗i d

(l)

(r)(i)
)
. (9-48)

Similarly, maximizing (9-42) with respect to A leads to

Â
(l)
(r+1) =

1

Nd

Nd∑
i=1

∣∣∣yi − B̂
(l)
(r+1)d

(l)

(r)(i)
∣∣∣2 . (9-49)

These equations indicate that the unknown parameters can be estimated once

d
(l)

(r)(i) has been estimated.
The decoder estimates the probabilities

s1 = P [Di = +1], s2 = P [Di = +j]

s3 = P [Di = −1], s4 = P [Di = −j] (9-50)



9.2. DIRECT-SEQUENCE SYSTEMS 561

by using the code-symbol probabilities s
(l)
β , β = 1, 2, 3, 4, obtained from the soft

outputs of the channel decoder after receiver iteration l. Using these estimated
probabilities, (9-44), and (9-45), we obtain

d
(l)

(r)(i) �
[
g
(
yi | θ(l)

(r)

)]−1

[s
(l)
1 g
(
yi | 1,θ(l)

(r)

)
+ js

(l)
2 g
(
yi | j,θ(l)

(r)

)

− s
(l)
3 g
(
yi | −1,θ

(l)
(r)

)
− js

(l)
4 g
(
yi | −j,θ

(l)
(r)

)
] (9-51)

where
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(r)

)
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(l)
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(
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(
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(
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+ s
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4 g
(
yi | −j,θ

(l)
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)
. (9-52)

Substituting (9-46) into (9-51) and (9-52), we find that the expectation of D(i)
at the rth EM and lth receiver iteration is calculated as

d
(l)

(r)(i) �
s
(l)
1 R

(l)
1,(r) + js

(l)
2 R

(l)
2,(r) − s

(l)
3 R

(l)
3,(r) − js

(l)
4 R

(l)
4,(r)

4∑
β=1

s
(l)
β R

(l)
β,(r)

(9-53)

where likelihood ratio R
(l)
β,(r) depends on the current channel estimates as

R
(l)
1,(r) = exp
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⎣ 2
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and
B̂

(l)
(0) = B̂

(l−1)
(rmax)

, 1 ≤ l ≤ lmax. (9-55)

Methods for obtaining the initial estimates
(
B̂

(0)
(rmax)

,Â
(0)
(rmax)

)
of each fading

block are described subsequently.

For a given receiver iteration, d
(l)

(r)(i) and R
(l)
β,(r) are updated rmax times

using decoder feedback s
(l)
β . In the next receiver iteration, after channel-code

re-estimation, the fading-amplitude and interference PSD estimates are updated

and then used by the demodulator and channel decoder to recompute d
(l+1)

(r) (i)

and R
(l+1)
β,(r) . This process is repeated again for rmax EM iterations, and the

aforementioned cycles continue similarly for subsequent receiver iterations.
In estimating the fading parameters, we set Nd = Nb/2; in estimating A, we

choose Nib ≤ Nb and set Nd = Nib/2. The EM estimator first finds the value

of B̂
(l)
(r) for a fading block of size Nb by using (9-47), (9-48), and (9-53)–(9-55),
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none of which require Â
(l)
(r). Then it finds the value of Â

(l)
(r) for each smaller or

equal interference block of size Nib using (9-49) with the value of B̂
(l)
(r) found for

the larger or equal fading block.

When pilot symbols are used, d
(l)

(r)(i) = di for each known pilot symbol,
and there are no EM iterations if only known pilot symbols are processed in
calculating the channel estimates. The number of EM iterations and the receiver

latency are reduced by applying a stopping criterion. Iterations stop once B̂
(l)
(r)

is within a specified fraction of its value at the end of the previous iteration or
a specified maximum number of iterations is reached.

The estimates Â
(l)
(rmax)

and B̂
(l)
(rmax)

and decoder log-likelihood ratios for each

of the QPSK bits are fed back to the demodulator as part of the iterative
demodulation and decoding (Section 1.7). The demodulator then computes
extrinsic log-likelihood ratios given by (1-217) that are applied to the channel
decoder. The constellation labeling of a QPSK symbol di ∈ {±1,±j} by bits
b1(i) and b2(i) is the following. The symbol di = +1 is labeled 00; the symbol
di = +j is labeled 01; the symbol di = −1 is labeled 11; the symbol di = −j is
labeled 10. Let b1(i) and b2(i) denote the bits of symbol di, and v1, v2 denote
the corresponding log-likelihood ratios that are fed back by the channel decoder
after receiver iteration l. Partition the set of possible symbols of di into two
disjoint sets D (i, 1) and D (i, 0), where D (i, b) contains all symbols labeled
with b1(i) = b. Substituting (9-46) into (1-217), accounting for the different
notations in (1-217) by setting l → i, q̃ → di, k = 1, and m = 2 in (1-217), and
canceling common factors, we obtain the extrinsic log-likelihood ratio for b1(i):

z
(l)
1 (i) = ln .

⎡
⎢⎢⎢⎢⎣

∑
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2
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exp

{
2
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Re
[
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+ b2 (i) v2

}

⎤
⎥⎥⎥⎥⎦ (9-56)

where both sums are over two symbols.
Let

F (l)(i) =
2

Â
(l)
(rmax)

Re
[
B̂

(l)
(rmax)

y∗i

]
(9-57)

G(l)(i) =
2

Â
(l)
(rmax)

Im
[
B̂

(l)
(rmax)

y∗i

]
. (9-58)

In the sum in the numerator of (9-56), b1(i) = 1 implies that di = −j or −1.
If di = −j, then the argument of the exponential function is equal to G(l)(i);
if di = −1, then the argument is equal to −F (l)(i) + v2. In the sum in the
denominator, b1(i) = 0 implies that di = +j or +1. If di = +j, then the
argument of the exponential function is equal to −G(l)(i) + v2; if di = +1,
then the argument is equal to F (l)(i). Similar calculations provide the extrinsic
log-likelihood ratio for b2(i). Therefore, the demodulation metrics (extrinsic
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log-likelihood ratios) z
(l)
ν (i), ν = 1, 2, for bits 1, 2 of symbol i that are applied

to the channel decoder are

z
(l)
1 (i) = ln

{
exp
[
G(l)(i)

]
+ exp

[
−F (l)(i) + v2

]
exp
[
F (l)(i)

]
+ exp
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}

(9-59)

z
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2 (i) = ln

{
exp
[
−G(l)(i)

]
+ exp

[
−F (l)(i) + v1

]
exp
[
F (l)(i)

]
+ exp

[
G(l)(i) + v1

]
}
. (9-60)

Perfect Phase Information at Receiver

The carrier synchronization provided by a phase-locked loop in several cellular
standards, such as CDMA2000, can be exploited to obviate the need to estimate
the channel phase. Assuming perfect phase information at the receiver, the
fading amplitude is real-valued and nonnegative, and (9-48) does not have to be
computed. The EM algorithm generates updated channel estimates according
to (9-47) and (9-49) after the initial coherent demodulation and decoding that
precedes the first receiver iteration. Blind initial estimates for each fading block
can be obtained from the received symbols as

B̂
(0)
(rmax)

=
2

Nb

Nb/2∑
i=1

|yi| (9-61)

Â
(0)
(rmax)

= max

[
Ps −

(
B̂

(0)
(rmax)

)2
, C
(
B̂

(0)
(rmax)

)2]
(9-62)

where

Ps =
2

Nb

Nb/2∑
i=1

|yi|2 (9-63)

represents the average power of the received symbols, and Ps −
(
B̂

(0)
(rmax)

)2
is

the difference between that power and the average power of a desired symbol.
Equation (9-61) would provide a perfect estimate in the absence of interference

and noise. The parameter C > 0 is chosen such that
(
B̂

(0)
(rmax)

)2
/Â

(0)
(rmax)

does

not exceed some maximum value, and here a constant C = 0.1 is always used
for simplicity. This approach for the initial channel estimates is called blind
method I in the sequel.

Although the EM estimation is a relatively low-complexity iterative ap-
proach to maximum-likelihood estimation, it consumes a much larger number
of floating-point operations than pilot-assisted schemes do. To evaluate the
complexity of the EM estimator in terms of required real additions and multi-
plications per block of Nd code symbols, each complex addition is equated to 2
real additions, each complex multiplication is equated to 4 real multiplications,
and divisions are equated with multiplications. Equations (9-47)–(9-49) require
6Nd+4 real additions and 12Nd+4 real multiplications per EM iteration. Equa-
tions (9-59) and (9-60) require 6 real additions, 30 real multiplications, and the
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computation of 4 exponentials per EM iteration. Each of these calculations is
repeated for each of lmaxrmax total EM iterations. The initial estimates calcu-
lated using (9-61)–(9-63), which only need to be computed once prior to the
first EM iterations, require 2Nd real additions, 8Nd + 7 real multiplications,
and the computation of the maximum of two real numbers. A PACE receiver
that uses only pilot symbols for channel estimation requires 6Nd+4 real multi-
plications and 12Nd+4 real multiplications to compute (9-47)–(9-49) once and
does not need to compute the other equations. Thus, EM estimation increases
the amount of computation for channel estimation by a factor of more than
lmaxrmax relative to PACE.

No Phase Information at Receiver

The initial channel estimates in (9-61) and (9-62) for blind method I are ex-
pected to be degraded significantly when the phase information is unknown,
since an arbitrary initial phase value (e.g., 0 radians) must be assumed. To
circumvent this problem, the initial receiver iteration consists of hard-decision
demodulation and channel decoding, after which each decoded bit is used as

d
(0)

(rmax)(i) in (9-47)–(9-49). This step is followed by the regular EM estimation
process in subsequent receiver iterations. This approach for the initial channel
estimates, which is referred to as blind method II in the sequel, results in in-
creased receiver latency relative to the previous method when phase information
is available.

Options for Blind Methods

When the frame duration of a system with PACE is fixed but the pilot symbols
are not transmitted, the following options are available for blind methods I and
II:

• (Case A) An increase in the number of transmitted information symbols

• (Case B) An increase in the duration of transmitted symbols

• (Case C) An increase in the number of transmitted parity bits (lowered
IRA code rate)

These options offset the loss in system performance due to the degraded
channel estimation obtained from blind methods I and II with respect to PACE.
Assuming that the cases A, B, and C without pilots have the same transmitted
frame duration as the frame with pilot symbols, cases A, B, and C provide
the most favorable throughput, spectral efficiency, and bit error probability,
respectively.

To compare the options, simulations were conducted. In all the simulations,
the codeword blocks have 2200 bits, and the bit rate is 100 kbs. The iterative
PACE system considered for comparison uses a rate-1/2 IRA code with K =
1000 information bits, N = 2000 code bits, and 200 pilot symbols, which implies
a 9.1% pilot-symbol overhead. In most of the simulations, except where stated,



9.2. DIRECT-SEQUENCE SYSTEMS 565

the fading blocks have Nb = 40 bits. Increasing the fading-block sizes increases
the accuracy of the EM estimators, but decreasing the fading-block sizes allows
closer tracking of the channel parameters and includes more diversity in the
receiver computations.

The number of closed-loop receiver iterations is set to lmax = 9, as there is
insignificant performance improvement for lmax > 9. The number of internal
EM iterations is rmax = 10. The IRA code does not use channel interleaving
and is decoded by the sum–product algorithm (Section 1.9). The component
spreading factor is G = 31, and the mobile velocity is 120 km/hr unless other-
wise stated. For each of the representative scenarios tested, 5000 Monte Carlo
simulation trials were conducted.

Flat fading is assumed in most of the simulations, whereas a frequency-
selective channel is examined in the final simulation. The fading in a block is
correlated with the fading in the other blocks. The correlated fading model
uses the autocorrelation of the channel response for two-dimensional isotropic
scattering given by (6-43). The complex fading amplitude during block n is
computed as

Bn =
√

J0(2πfd Tf )Bn−1 +
√

1− J0(2πfd Tf )Bdn, B1 = Bd1 (9-64)

where fd is the Doppler shift defined by (6-5), Tf is the duration of a fading
block, and Bdn is a complex fading amplitude selected for block n from the
complex zero-mean, Gaussian distribution. For this distribution, the magnitude
of the amplitude has a Rayleigh distribution, and the phase has a uniform
distribution.

The bit error rate (BER), which is equal to the information-bit error prob-
ability (Section 1.1), is calculated as a function of the energy-to-noise-density
ratio Eb/N0, where Eb is the energy per information bit in the PACE system.
The information throughput is a vital performance criterion in addition to the
BER. One of the primary motivations in removing pilot symbols is the expec-
tation of achieving greater information throughput, even though the BER may
be degraded marginally. The information throughput is defined as

T =
information bits in a codeword

codeword duration
× (1−BER) bps. (9-65)

Single-User Environment, Perfect Phase Knowledge

Example 3. Figures 9.3 and 9.4 illustrate the performance when there is
a single IRA-coded signal received with perfect phase knowledge. Figure 9.3
displays the BER versus Eb/N0 for an iterative receiver operating with perfect
CSI, PACE, blind method I with cases A, B, and C, and blind method II with
cases A and C. The key observation is that blind method II is worse than
method I by 2 dB at BER = 10−3 for both case A and case C, which illustrates
the sensitivity of the EM algorithm to the accuracy of the initial estimates.

The addition of extra parity bits to blind method I (case C, rate-1000/2200)
offers the greatest improvement in BER, surpassing even the rate-1/2 code with
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Figure 9.3: BER versus Eb/N0 for IRA-coded iterative receiver in single-user
environment with a perfectly estimated phase [109]

perfect CSI at high Eb/N0. The increase in the number of information symbols
(case A) results in the worst BER performance with a separation of 1 dB and
0.5 dB from PACE and case B at BER = 10−3, respectively. The various
scenarios featured in the figure were also tested under a slow-fading channel
with a mobile velocity of 10 km/hr, which implies a reduction in the maximum
Doppler shift by a factor of 12. It was observed that all the BER curves were
shifted toward the right by as much as 7 dB at BER = 10−3 because of the loss
of diversity among the fading blocks, but the overall trends among the different
cases remained the same.

Figure 9.4 exhibits information throughput T versus Eb/N0 for the IRA-
coded iterative receiver with the scenarios of Figure 9.3. The throughput ad-
vantage of case A is achieved even though no pilot symbols are used at all; i.e.,
the initial estimation is blind. It is evident that increasing the symbol dura-
tion or adding additional parity information does not give the blind methods
any significant advantage in throughput over PACE. Both blind methods with
cases B,C and PACE provide about 20% less throughput than the receiver with
perfect CSI. �
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Figure 9.4: Information throughput versus Eb/N0 for IRA-coded iterative re-
ceiver in single-user environment with a perfectly estimated phase [109]

Multiuser Environment, Unknown Phase

A 4-signal interference environment with equal mean bit energies for all signals
at the receiver, Eb/N0 = 20dB, and no phase information at the receiver is
examined next. We assume that both the interference levels and the unknown
phase are constant during each subframe. Each interference signal experiences
independent correlated fading and uses independent data and Gold sequences
with respect to the desired signal. The simulation uses chip-synchronous in-
terference signals, which is a worst-case assumption. Two variations of chan-
nel estimation are examined here: partially adaptive with only complex fad-

ing amplitude B̂
(l)
(i) estimated using (9-47) and (9-48), and Â

(l)
(r) set equal to

N0 for all subframes; and fully adaptive estimation of both B̂
(l)
(r) and Â

(l)
(r) us-

ing (9-47), (9-48), and (9-49).
Example 4. Figure 9.5 displays IRA-coded BER versus Eb/N0 for partially

and fully adaptive channel estimation per fading block and case C for both
blind methods. The mismatch of Â and the true value of A at the demodulator
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Figure 9.5: BER versus Eb/N0 for IRA-coded iterative receiver affected by
multiple-access interference from 4 mobiles, fully and partially adaptive esti-
mation, and unknown phase [109]

and decoder results in a high error floor for the partially adaptive cases. The
intuition behind the error floor is that the partially adaptive estimator overesti-
mates the true signal-to-interference-and-noise ratio (SINR) by disregarding the
multiple-access interference with the degree of overestimation increasing with
SINR. The fully adaptive estimation offers a more accurate SINR estimate and
hence suppresses interference and reduces the error floor significantly. This
interference suppression is achieved without using the far more elaborate mul-
tiuser and interference-cancelation methods (Sections 7.7 and 7.8) that could
be implemented in a DS-CDMA receiver. For both partially and fully adap-
tive estimation, it is observed that blind method II now outperforms method
I because of better phase estimation, whereas both blind methods outperform
PACE at BER = 10−3 because of the added parity information. �

Example 5. Figure 9.6 demonstrates the IRA-coded receiver throughput
offered by the blind methods with case A compared with PACE under multiple-
access interference. The blind methods always provide a better throughput
compared with PACE; for example, method I with case A is superior by 9% to
both PACE scenarios when Eb/N0 > 5 dB. It is observed that both partial and
fully adaptive estimation methods offer a similar asymptotic throughput, which
indicates that partial channel estimation may be sufficient for applications with
a non-stringent BER criterion. On the other hand, error-critical applications
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Figure 9.6: Information throughput versus Eb/N0 for IRA-coded iterative re-
ceiver affected by multiple-access interference from 4 mobiles, fully and partially
adaptive estimation, and unknown phase [109]

requiring less than BER = 10−3 must use the fully adaptive channel estimation,
as seen from Figure 9.5. �

Varying Fading-Block Size, Unknown Phase

In urban mobile environments, the phase can be expected to change significantly
after approximately 0.01/fd–0.04/fd seconds, where fd is the maximum Doppler
shift. For the assumed mobile velocity of 120 km/hr, this time range corresponds
to roughly 10–40 code bits at 100 kbs. The fading and interference block sizes
Nb = Nib are therefore varied accordingly, and no phase information is assumed
to be available at the receiver for the next set of results.

Example 6. Figure 9.7 displays fully adaptive IRA-coded BER versus
Eb/N0 for blind methods I and II with case C, 9.1% PACE, and perfect CSI
decoding for Nb = 10 and 40 in a single-user environment. An improvement of
1–2 dB is observed for all methods for the smaller fading-block size of Nb = 10
because of the increased fading diversity. The throughput with case A is shown
in Figure 9.8. It is observed that the throughput gains of the blind methods
over PACE (roughly 9% at medium to high Eb/N0) are preserved even when
the phase is initially unknown at the receiver. �
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Figure 9.7: BER versus Eb/N0 for IRA-coded iterative receiver in single-user
environment, varying Nb, unknown phase [109]

Varying Multiple-Access Interference, Unknown Phase

Example 7. Figure 9.9 displays IRA-coded iterative receiver performance for
blind method II, case C with three and six multiple-access interference signals
and equal mean bit energies for all signals. The partially adaptive estimation is
unable to cope with the interference caused by six multiple-access interference
signals regardless of the spreading factor, whereas the fully adaptive estimation
offers a substantial improvement in BER. The benefit of an increased component
spreading factor (G = 127 versus G = 31) is more apparent at low bit error rates
for fully adaptive estimation. For example, the fully adaptive estimation with
three multiple-access interference signals improves by a factor of approximately
5 dB at BER = 10−5, despite nonorthogonal spreading sequences and imperfect
CSI. �

Multipath Channel

A DS-CDMA system can exploit a frequency-selective fading channel by using
a rake receiver (Section 6.12). As an example, we assume a channel with three
resolvable multipath components (with known delays) of the desired signal and
a rake receiver with three corresponding fingers. The multipath components
undergo independent fading across the fingers but follow the correlated fading
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Figure 9.8: Information throughput versus Eb/N0 for IRA-coded iterative re-
ceiver in single-user environment, varying Nb, unknown phase [109]

model of (9-64) over time. The magnitudes of the fading amplitudes of the
components follow an exponentially decaying power profile across the fingers:

E
[
α2
l

]
= e−(l−1), l = 1, 2, 3. (9-66)

Each interference signal has the same power level in each finger and un-
dergoes independent correlated fading. Because of the independent multipath
fading amplitudes for the desired signal, the EM-based channel estimation is
performed separately in each finger. The rake receiver performs maximal-ratio
combining (Section 6.5) of the received symbol copies based on channel es-
timates computed at all fingers. The symbol metric obtained from the rake
receiver is then passed to the QPSK demodulator metric generator, which gen-
erates soft inputs for the common decoder. The soft outputs of the decoder are
fed back to the three channel estimator blocks, which then recompute updated
fading amplitudes.

Example 8. Figure 9.10 displays the rake receiver performance for three
multiple-access interference signals with Method II under case C, where all
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Figure 9.9: BER versus Eb/N0 for IRA-coded iterative receiver affected by
an unknown phase and various component spreading factors, the number of
multiple-access interference (MAI) signals, and degrees of adaptation [109]

signals are spread by length-127 Gold sequences. It is observed that the ad-
ditional diversity due to rake combining improves performance as expected,
but the performance disparity between partially and fully adaptive estimation
remains large. �

Comparison of Options

The simulation results indicate that pilot symbols are not essential to the ef-
fectiveness of DS-CDMA receivers with coding, coherent detection, and chan-
nel estimation. If the pilot symbols are replaced by information symbols, the
throughput increases relative to PACE whether or not interference is present. If
the BER is the primary performance criterion, then replacing the pilot symbols
by parity symbols gives a lower BER than PACE. If the spectral efficiency is of
primary importance, then extending the symbol duration after the removal of
the pilot symbols offers an improvement relative to PACE, albeit at the cost of
a slight increase in the BER.

The simulation results indicate that the despreading and the subsequent
estimation of the interference PSD enable the significant suppression of inter-
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Figure 9.10: BER versus Eb/N0 for IRA-coded iterative rake receiver with
three resolvable multipaths, three fingers, and three multiple-access interfer-
ence (MAI) signals [109]

ference. This suppression is achieved without using the far more elaborate
multiuser and interference-cancelation methods that could be implemented in
a DS-CDMA receiver.

9.3 Guidance from Information Theory

Information theory (cf. Section 7.1) is renowned for establishing fundamental
limits on what can be achieved by a communication system. The theory also
provides insight into favorable choices of code rates and signal characteristics.
The guidance provided by information theory is used in the next section to
design robust frequency-hopping systems.

Let X and Y denote continuously distributed random vectors, which are
vectors with components that are continuously distributed random variables.
Let f(x,y) denote the joint density of X and Y, and let f(x) and f(y) denote
the associated marginal densities. If X is transmitted and Y is received, the
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average mutual information betweenX andY, in bits per channel use, is defined
as [21, 72]

I(X;Y) =

∫
R(y)

∫
R(x)

f(x,y) log2
f(x,y)

f(x)f(y)
dxdy (9-67)

where R(y) and R(x) are the domains or regions of integration for y and x,
respectively. The channel capacity is defined as the maximum value of I(X;Y)
over all possible choices of the density f(x).

Digital communication systems transmit discrete-valued symbols and receive
continuous-valued outputs. Let X denote a discrete random variable that is
drawn from an input alphabet of q symbols and is applied to the input of
a modulator. Let the continuously distributed random vector Y denote the
channel outputs or matched-filter outputs in a receiver. The average mutual
information between X and Y is defined as

I(X,Y) =

q∑
i=1

P [X = xi]

∫
R(y)

f(y|xi) log2
f(y|xi)

f(y)
dy (9-68)

where P [X = xi] is the probability that X = xi, i = 1, 2, . . . , q, and f(y|xi) is
the conditional density of Y given that X = xi. This equation can be obtained
from (9-67) by making the replacements f(x) → P [X = xi] and f(x,y) →
f(y | xi)P [X = xi] and replacing one of the integrals by a summation. The
density f(y) may be expressed as

f(y) =

q∑
i=1

P [X = xi] f(y|xi). (9-69)

If (9-68) is maximized with respect to P [X = xi] , the average mutual infor-
mation is called the channel capacity of the discrete-input, continuous-output
channel.

Suppose that the channel symbols are selected to have equal probability so
that P [X = xi] = 1/q, i = 1, 2, . . . , q, in (9-68) and (9-69). Then the symmetric
channel capacity is defined to be the average mutual information for equally
likely symbols:

C = log2 q +
1

q

q∑
i=1

∫
R(y)

f(y|xi) log2
f(y|xi)∑q
i=1 f(y|xi)

dy. (9-70)

Consider a fading channel and a complex fading amplitude A during each
symbol interval. The ergodic channel capacity is the channel capacity averaged
over all possible channel states. If the channel symbols are equally likely, the
ergodic symmetric channel capacity is

C = log2 q +
1

q

q∑
i=1

∫
R(a)

∫
R(y)

g(a)f(y|xi, a) log2
f(y|xi, a)∑q
i=1 f(y|xi, a)

dyda (9-71)

where g(a) is the two-dimensional density of the real and imaginary components
of the complex fading amplitude, R(a) is the region of integration of the complex
amplitude, and f(y | xi, a) is the conditional density of Y given that X = xi

and the complex amplitude is A = a.
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9.4 Robust Frequency-Hopping Systems

This section describes and analyzes a robust frequency-hopping system with
noncoherent detection, iterative turbo decoding and demodulation, and channel
estimation [108]. The system is designed to be effective not only when operating
over the AWGN and fading channels but also in environments with multiple-
access interference and multitone jamming.

Noncoherent or differentially coherent demodulation has practical advan-
tages and is often necessary because of the difficulty of phase estimation af-
ter every frequency hop. A plausible choice of data modulation is orthogonal
CPFSK (Section 3.4). With orthogonal CPFSK, the energy efficiency can be
improved by increasing the alphabet size q, which is equal to the number of pos-
sible transmit frequencies in the signal set during each hop dwell interval. The
problem is that a large bandwidth Bu of each frequency channel, although nec-
essary to support a large number of transmit frequencies, reduces the number
of frequency channels available when the hopping is over a spectral region with
fixed bandwidth W . This reduction makes the system more vulnerable to both
multiple-access frequency-hopping signals and multitone jamming. A reduction
in Bu is obtained by using nonorthogonal CPFSK with a small modulation
index.

Robust system performance is provided by using nonorthogonal CPFSK,
a turbo code, BICM-ID (Section 6.11), iterative decoding and demodulation,
and channel estimation. The bandwidth of q-ary CPFSK decreases with re-
ductions in the modulation index h. Although the lack of orthogonality when
h < 1 causes a performance loss for the AWGN and fading channels, the turbo
decoder makes this loss minor compared with the gain against multiple-access
interference and multitone jamming.

A frequency-hopping system with noncoherent, nonorthogonal CPFSK has
the following primary advantages relative to other systems with differential
detection, coherent detection, or orthogonal modulation:

1. No extra reference symbol and no estimation of the phase offset in each
dwell interval are required.

2. It is not necessary to assume that the phase offset is constant throughout
a dwell interval.

3. The channel estimators are much more accurate and can estimate an
arbitrary number of interference and noise PSD levels.

4. The compact spectrum during each dwell interval allows more frequency
channels and hence enhances performance against multiple-access inter-
ference and multitone jamming.

5. Because noncoherent detection is used, system complexity is independent
of the choice of h, and thus there is much more design flexibility than is
possible in coherent CPFSK systems.
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Figure 9.11: Architecture of receiver for frequency-hopping system with turbo
code. I = interleaver. D = deinterleaver

System Model

In the transmitter of the system, encoded message bits are interleaved (BICM)
and then placed into a 1×Nd vector d with elements di ∈ {1, 2, . . . , q}, each of
which represents m = log2 q bits. The vector d generates the sequence of tones
that are frequency-translated by the carrier frequency of the frequency-hopping
waveform. After the modulated signal passes through an AWGN or fading
channel with partial-band or multiple-access interference, the receiver front-end
dehops the signal, as shown in Figure 9.11. The dehopped signal passes through
a bank of q matched filters, each of which is implemented as a quadrature pair.
The output of each matched filter is sampled at the symbol rate to produce a
sequence of complex numbers. Assuming that symbol synchronization exists,
the complex samples are then placed into a q × Nd matrix Y with an ith
column that represents the outputs of the matched filters corresponding to the
ith received symbol. The matrix Y is applied to the channel estimator and is
used to produce an m×Nd matrix Z of demodulator bit metrics.

The demodulator exchanges information with both the turbo decoder and
the channel estimators. After deinterleaving, the demodulator bit metrics are
applied to the decoder. The decoder feeds a priori information (in the form of an
m×Nd matrix V of decoder bit metrics) back to the demodulator and channel
estimator, in accordance with the turbo principle. Frequency-selective fading
changes the amplitude from hop to hop, and the partial-band and multiple-
access interference change the interference and noise during some hop dwell
intervals. Consequently, estimates of the fading amplitude and the PSD of the
interference and noise are computed for a block size Nb that is smaller than
or equal to the number of symbols in the hop dwell interval. If there are Nb

symbols per block, then there are �Nd/Nb blocks per codeword.
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Demodulator Metrics

The complex envelope of a unit-energy q-ary CPFSK symbol waveform with
zero initial phase offset is

sl(t) =
1√
Ts

ej2πlht/Ts , 0 ≤ t ≤ Ts , l = 1, 2, . . . , q (9-72)

where Ts is the symbol duration, h is the modulation index, and j =
√
−1.

Because of the continuous-phase constraint, the initial phase of CPFSK symbol
i is φi = φi−1 + 2πlh. The phase continuity ensures the compact spectrum of
the CPFSK waveform. Suppose that symbol i of a codeword uses unit-energy
waveform sdi

(t). If this codeword is transmitted over an AWGN channel with
fading, the received signal for symbol i can be expressed in complex notation
as

ri(t) = Re
[
αi

√
2Essdi

(t)ej(2πfct+θi)
]
+ ni(t), 0 ≤ t ≤ Ts

i = 1, 2, . . . , Nd (9-73)

where ni(t) is independent, zero-mean, white Gaussian noise with two-sided
PSD N0i/2, fc is the carrier frequency, Es is the signal energy, and αi is the
magnitude of the complex fading amplitude. Without loss of generality, we
assume E[α2

i ] = 1 so that Es is the average received symbol energy. The phase
θi is the phase due to the contributions of the CPFSK constraint, the fading,
and the frequency offset of the receiver.

One might consider exploiting the inherent memory in the CPFSK when
computing the metric transferred from the demodulator to a decoder as in Sec-
tion 3.7, but phase stability over several symbols is necessary, and the demodu-
lator functions as a rate-one inner decoder. Furthermore, a trellis demodulator
requires a rational h and the number of states depends on the denominator of
h. More design flexibility exists if the demodulator metrics are computed on a
symbol-by-symbol basis, and the memory in the turbo code is exploited rather
than the memory in the modulation.

Matched filter k, which is matched to sk(t), produces the output samples

yk,i =
√
2

∫ Ts

0

ri(t)e
−j2πfcts∗k(t)dt , i = 1, 2, . . . , Nd, k = 1, 2, . . . , q (9-74)

where the
√
2 is inserted for mathematical convenience. The substitution

of (9-72) and (9-73) into (9-74) and the approximation that each of the {sk(t)}
has a spectrum confined to |f | < fc yields

yk,i = αi

√
Esejθiρdi−k + nk,i (9-75)

where

nk,i =
√
2

∫ Ts

0

ni(t)e
−j2πfcts∗k(t)dt (9-76)
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and

ρl =
sin(πhl)

πhl
ejπhl. (9-77)

As shown in Section 1.1, since ni(t) is zero-mean white noise and the spectra
of the {sk(t)} are confined, it follows that each nk,i is zero-mean,

E[nk,in
∗
l,i] = N0iρl−k (9-78)

and the {nk,i} have circular symmetry:

E[nk,inl,i] = 0. (9-79)

Since ni(t) is a Gaussian process, the real and imaginary components of nk,i are
jointly Gaussian, and the set {nk,i} comprises complex-valued jointly Gaussian
random variables.

Let yi = [y1,i . . . yq,i]
T denote the column vector of the matched-filter out-

puts corresponding to symbol i, and let n = [n1,i . . . nq,i]
T . Then given that

the transmitted symbol is di, the symbol energy is Es in the absence of fad-
ing, the fading amplitude is αi, the noise PSD is N0i/2, and the phase is
θi, we have yi = yi + n, where

yi = E[yi|di, αi

√
Es, N0i, θi]. (9-80)

Equation (9-75) indicates that the kth component of yi is

yk,i = αi

√
Esejθiρdi−k. (9-81)

The covariance matrix of yi is

Ri = E[(yi − yi)(yi − yi)
H | di, αi

√
Es, N0i, θi]

= E[nnH ], (9-82)

and its elements are given by (9-78).
It is convenient to define the matrix K = Ri/N0i with components

Kk,l = ρl−k. (9-83)

We can represent the conditional density of yi given that the transmitted sym-
bol is di, the amplitude is αi

√
Es, the noise PSD is N0i/2, and the phase is θi

as

g(yi|ψ) =
1

πqNq
0i detK

exp

[
− 1

N0i
(yi − yi)

HK−1(yi − yi)

]
(9-84)

where
ψ = (di, αi

√
Es, N0i, θi) (9-85)

and K is independent of ψ.
An expansion of the quadratic in (9-84) yields

Qi = (yi − yi)
HK−1(yi − yi)

= yi
HK−1yi + yi

HK−1yi − 2Re(yi
HK−1yi). (9-86)
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Equations (9-81) and (9-83) indicate that yi is proportional to the dith column
of K :

yi = αi

√
EsejθiK:,di

. (9-87)

Since K−1K = I, only the dith component of the column vector K−1yi is
nonzero, and

Qi = yi
HK−1yi + α2

i Es − 2αi

√
Es Re(ydi,ie

−jθi). (9-88)

For noncoherent signals, we assume that each θi is uniformly distributed
over [0, 2π). Substituting (9-88) into (9-84), expressing ydi,i in polar form, and
using (H-16) of Appendix H.3 to integrate over θi, we obtain the density

g(yi|ψ) =
exp
(
−yi

HK−1yi+α2
iEs

N0i

)

πqNq
0i detK

I0

(
2αi

√
Es |ydi,i|
N0i

)
(9-89)

where I0(·) is the modified Bessel function of the first kind and order zero.
Since the white noise ni(t) is independent from symbol to symbol, yi with the
density given by (9-89) is independent of yl, i �= l.

Let Â and B̂ denote the estimates of A = N0 and B = 2α
√
Es, respectively,

for a dwell interval of Nb symbols during which αi = α and N0i = N0 are
constants. Let bl (i) denote bit l of symbol i. Let Z denote the m×Nd matrix
with element zl,i equal to the log-likelihood ratio for bl (i) computed by the
demodulator. The matrix Z is reshaped into a row vector and deinterleaved, and
the resulting vector z′ is fed into the turbo decoder. The extrinsic information
v′ at the output of the decoder is interleaved and reshaped into an m × Nd

matrix V containing the a priori information:

vl,i = ln
P [bl (i) = 1|Z\zl,i]
P [bl (i) = 0|Z\zl,i]

(9-90)

where conditioning on Z\zl,i means that the extrinsic information for bit bl,i is
produced without using zl,i.

Since V is fed back to the demodulator,

zl,i = ln

⎧⎨
⎩

P
[
bl (i) = 1|yi, γ

′
�i/Nb�,vi\vl,i

]

P
[
bl (i) = 0|yi, γ′

�i/Nb�,vi\vl,i
]
⎫⎬
⎭ (9-91)

where γ′ = {Â, B̂}, and �x denotes the smallest integer greater than or equal to
x. Partition the set of symbols D = {1, . . . , q} into two disjoint sets D (l, 1) and
D (l, 0), where D (l, b) contains all symbols labeled with bl = b. As indicated
by (1-217), the extrinsic information can then be expressed as

zl = ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
d∈D(l.1)

g(yi|d, γ′
�i/Nb�)

m∏
k=1,k �=l

exp [bk(d)vk,i]

∑
d∈D(l.0)

g(yi|d, γ′
�i/Nb�)

m∏
k=1,k �=l

exp [bk(d)vk,i]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9-92)
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where bl(d) is the value of the lth bit in the labeling of symbol d. Substitut-
ing (9-89) into (9-92) and canceling common factors, we obtain

zl = ln

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
d∈D(l.1)

I0
(
γ�i/Nb�|ydi,i|

) m∏
k=1,k �=l

exp [bk(d)vk,i]

∑
d∈D(l.0)

I0
(
γ�i/Nb�|ydi,i|

) m∏
k=1,k �=l

exp [bk(d)vk,i]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9-93)

where only the ratio γ = B̂/Â is needed rather than the individual estimates.

Channel Estimators

Since the preceding and subsequent equations in this section refer to a spe-
cific receiver iteration, the superscript denoting the receiver-iteration number
is omitted to simplify the notation.

Since under block fading and time-varying interference, A and B can change
on a block-by-block basis, each block is processed separately and in an identical
fashion. To maintain robustness, the estimators make no assumptions regard-
ing the distribution of the quantities to be estimated, nor do they make any
assumptions regarding the correlation from block to block. The estimators di-
rectly use the channel observation for a single block, while the observations of
the other blocks are used indirectly through feedback of extrinsic information
from the decoder. In this section, the matrix Y is a generic q × Nb received
block, yi is the ith column vector of Y, the vector D = [D1, . . . , DNb

] is the

corresponding set of transmitted symbols, and {Â,B̂} is the corresponding set
of channel estimators.

Rather than attempting to directly evaluate the maximum-likelihood esti-
mates, the expectation–maximization (EM) algorithm can be used as an itera-
tive approach to estimation. Let {Y,D} denote the complete data set. Since
lnh(d) is independent of A and B and hence does not affect the maximization,
the log-likelihood of the complete data set is

ln f(z|A,B) = ln g(y|d, A,B) + lnh(d) ∼ ln g(y|d, A,B). (9-94)

Since yi and yl are independent for i �= l, (9-89) implies that

g(y|d, A,B) =

exp

[
−H

A − NbB
2

4A +
∑Nb

i=1 ln I0
(B|ydi,i|

A

)]

(πqAq detK)Nb
(9-95)

where

H =

Nb∑
i=1

yi
HK−1yi. (9-96)

After dropping irrelevant constants, we obtain

ln f(z|A,B) ∼ −qNb logA− H

A
− NbB

2

4A
+

Nb∑
i=1

ln I0

(
B |ydi,i|

A

)
. (9-97)
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The form of this equation indicates that the parameters A and B must both be
estimated rather than just the ratio B/A.

Let r denote the EM iteration number, and Â(r), B̂(r) the estimates of A,B
during the rth iteration. The expectation step (E-step) requires the calculation
of

Q(A,B) = Ed|y,Â(r−1),B̂(r−1) [ln f(Z|A,B)] (9-98)

where the expectation is taken with respect to the unknown symbols d condi-
tioned on y and the estimates Â(r−1), B̂(r−1) from the previous EM iteration.
Substituting (9-97) into (9-98), it is found that

Q(A,B) = −qNb lnA− H

A
− NbB

2

4A
+

Nb∑
i=1

q∑
k=1

p
(r−1)
k,i ln I0

(
B |yk,i|

A

)
(9-99)

where the fact that Di is independent of Â
(r−1) and B̂(r−1) indicates that

p
(r−1)
k,i = P (Di = k|yi, Â

(r−1), B̂(r−1))

=
g(yi|Di = k, Â(r−1), B̂(r−1))P (Di = k)

g(yi|Â(r−1), B̂(r−1))
(9-100)

and P (Di = k) is the probability that Di = k, which is estimated by the
decoder. Applying (9-89), we obtain

p
(r−1)
k,i = α

(r−1)
i I0

(
B̂(r−1)|yk,i|

Â(r−1)

)
P (Di = k) (9-101)

where α
(r−1)
i is the normalization factor forcing

∑q
k=1 p

(r−1)
k,i = 1; i.e.,

α
(r−1)
i =

1∑q
k=1 I0

(B̂(r−1)|yk,i|
Â(r−1)

)
P (Di = k)

. (9-102)

The maximization step (M-step) is the joint maximization

(
Â(r), B̂(r)

)
= argmax

A,B
Q(A,B) (9-103)

which can be found by setting the derivatives of the function Q(A,B) with
respect to A and B to zero. The solution to the corresponding system of
equations is

Â(r) =
1

qNb

(
H − Nb(B̂

(r))2

4

)
(9-104)

B̂(r) =
2

Nb

Nb∑
i=1

q∑
k=1

p
(r−1)
k,i |yk,i|F

(
4qNbB̂

(r)|yk,i|
4H −Nb(B̂(r))2

)
(9-105)
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where F (x) = I1(x)/I0(x), and I1(·) is the modified Bessel function of the first
kind and order one defined by (H-13).

Although a closed-form solution to (9-105) is difficult to obtain, it can be
found recursively by using the fixed-point iteration method of Section 9.1. The
recursion involves initially replacing B̂(r) on the right-hand side of (9-105) with
B̂(r−1) from the previous EM iteration. To select an initial estimate for B,
consider what happens in the absence of noise. Without noise, (9-75) implies
that either |yk,i| = a

√
Es (when k = di) or |yk,i| = 0 (otherwise). Thus, an

estimate for a
√
Es = B/2 can be achieved by taking the maximum |yk,i| over

any column of Y. To compensate for the noise, the average can be taken across
all columns in the block, resulting in

B̂(0) =
2

Nb

Nb∑
i=1

max
k

|yk,i| . (9-106)

The initial estimate of A is found from B̂(0) by evaluating (9-104) for r = 0. Af-

ter the initial values Â(0) and B̂(0) are calculated, the initial probabilities {p(0)k,i}
are calculated from (9-101) and (9-102). The EM algorithm terminates when
B̂(r) converges to some fixed value, typically in fewer than 10 EM iterations.

The complexity of the channel estimation for each receiver iteration is as fol-
lows. The initial estimate of B̂ calculated using (9-106) requires Nb maximiza-
tions over q values, Nb − 1 additions, and a single multiplication by 2/Nb. The
calculation of H in (9-96), which only needs to be computed once prior to the
first EM iteration, requires Nbq(q + 1) multiplications and Nbq

2 − 1 additions.
For each EM iteration, the calculation Â(r) using (9-104) requires only two

multiplications and an addition. Calculating p
(r−1)
k,i using (9-101) and (9-102)

requires 3Nbq + 1 multiplications, Nb(q − 1) additions, and Nbq lookups of the
I0(·) function. Calculation of B̂(r) by solving (9-105) is recursive, and complex-
ity depends on the number of recursions for each value of r. Suppose that there
are ξ recursions, and then the calculation requires Nbq + ξ(2Nbq + 4) multi-
plications, ξNbq additions, and ξNbq lookups of the F (·) function. A stopping
criterion is used for the calculation of B̂ such that the recursions stop once B̂
is within 10% of its value during the previous recursion or a maximum number
of 10 recursions is reached. With such a stopping criterion, an average of only
2 or 3 recursions are required.

Selection of Modulation Index

Let Bmax denote the maximum bandwidth of the CPFSK modulation such that
the hopping band accommodates enough frequency channels to ensure adequate
performance against multiple-access interference and multitone jamming. We
seek to determine the values of h, q, and code rate R of the turbo code that
provide a good performance over the fading and AWGN channels in the presence
of partial-band interference. For specific values of the modulation parameters
h and q, the code rate is limited by the bandwidth requirement. Let BuTb

denote the normalized, 99-percent power bandwidth of the uncoded CPFSK
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modulation. This value can be found for nonorthogonal CPFSK by numerically
integrating the power-spectrum equations of Section 3.5 or using (3-74) when
the number of symbols per hop is large. When a code of rate R is used, the
bandwidth becomes Bc = Bu/R. Since Bc ≤ Bmax is required, the minimum
code rate that achieves the bandwidth constraint is Rmin = Bu/Bmax.

Guidance in the selection of the best values of h, q, and R ≥ Rmin is provided
by information theory. For specific values of h and q, we evaluate the symmetric
capacity C(γ) as a function of γ = Es/N0 under a bandwidth constraint for
both the Rayleigh and AWGN channels. Perfect channel-state information is
assumed, and symbols are drawn from the signal set with equal probabilities.
With these assumptions, a change of variables with u = yi/

√
Es, (9-89), and

(9-71), the ergodic symmetric capacity for the fading channel may be expressed
as

C(γ) = log2 q −
1

q

q∑
ν=1

∫ ∫
g(α)f(u|ν, α) log2

[∑q
k=1 I0 (2αγ |uk|)
I0 (2αγ |uν |)

]
dudα

(9-107)

where g(α) is the density of the magnitude of the fading amplitude, the (2q+1)-
fold integration is over all values of α and the 2q real and imaginary components
of u, and

f(u|ν, α) = γq exp[−γ(uHK−1u+ α2)]

πq detK
I0 (2αγ |uν |) . (9-108)

Equation (9-107) is numerically integrated by the Monte Carlo method.
To determine the minimum Eb/N0 necessary to maintain C(γ) above the

code rate R for specific values of q and h, we substitute Es = REb log2 q and
solve the equation

R = C(REb log2 q/N0) (9-109)

for all code rates such that Rmin ≤ R ≤ 1. For noncoherent systems under
severe bandwidth constraints, the R that minimizes Eb/N0 is typically R =
Rmin, but under loose bandwidth constraints the R that minimizes Eb/N0 could
possibly be larger than Rmin (in which case the actual bandwidth is less than
Bmax).

Figures 9.12 and 9.13 show plots of the minimum Eb/N0 versus h for 2 ≤
q ≤ 32, BmaxTb = 2, and BmaxTb = ∞. Figure 9.12 is for the AWGN channel,
and Figure 9.13 is for the Rayleigh fading channel. When BmaxTb = 2, the
curves are truncated because there is a maximum value of h beyond which no
code exists that satisfies the bandwidth constraint. For each value of q, in
each figure, there is an optimal value of h that gives the smallest value of the
minimum Eb/N0. This smallest value decreases with q, but there are diminishing
returns and the implementation complexity increases rapidly for q > 8.

Let fe denote the offset in the estimated carrier frequency at the receiver due
to the Doppler shift and the frequency-synthesizer inaccuracy. The separation
between adjacent frequencies in a CPFSK symbol is hfb/R log2 q, where fb
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Figure 9.12: Minimum Eb/N0 versus h for the AWGN channel, 2 ≤ q ≤ 32,
BmaxTb = 2, and BmaxTb = ∞ [108]

denotes the information-bit rate. Since this separation must be much larger
than fe if the latter is to be negligible as assumed in (9-74),

fe �
hfb

R log2 q
(9-110)

is required. Since the optimal h decreases while R log2 q increases with q, (9-110)
is another reason to choose q ≤ 8.

For q = 4 in Figure 9.13, h = 0.46 is the approximate optimal value when
BmaxTb = 2, and the corresponding code rate is approximately R = 16/27.
For q = 8, h = 0.32 is the approximate optimal value when BmaxTb = 2, and
the corresponding code rate is approximately R = 8/15. For both q = 8 and
q = 4, (9-110) is satisfied if fe � 0.2fb. At the optimal values of h, the plots
indicate that the loss is less than 1 dB for the AWGN channel and less than
2 dB for the Rayleigh channel relative to what could be attained with the same
value of q, h = 1 (orthogonal CPFSK), and an unlimited bandwidth.

Partial-Band Interference

Simulation experiments were conducted to assess the benefits and tradeoffs of
using the nonorthogonal CPFSK coded modulation and accompanying channel
estimator in a frequency-hopping system that suppresses partial-band inter-
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Figure 9.13: Minimum Eb/N0 versus h for the Rayleigh channel, 2 ≤ q ≤
32,BmaxTb = 2, and BmaxTb = ∞[108]

ference. Interference is modeled as additional white Gaussian noise within a
fraction μ of the hopping band. The PSD of the interference (i.e., additional
noise PSD) is It0/μ, where It0 is the PSD over the receiver passband when
μ = 1, and the total interference power is conserved as μ varies. The parame-
ter A represents the PSD due to the noise and the interference during a dwell
interval. The bandwidth is assumed to be sufficiently small that the fading is
flat within each frequency channel, and hence, the symbols of a dwell interval
undergo the same fading amplitude. The fading amplitudes are independent
from hop to hop, which models the frequency-selective fading that varies after
each hop. A fading block coincides with a dwell interval and, hence, is suit-
able for the estimation of a single fading amplitude. Three alphabet sizes are
considered: binary (q = 2), quaternary (q = 4), and octal (q = 8).

The simulated system uses the widely deployed turbo code from the Uni-
versal Mobile Telecommunications System (UMTS) specification, which has a
constraint length of 4, a specified code-rate matching algorithm, and an opti-
mized variable-length interleaver that is set to 2048 [26]. If the dwell time is
fixed, but the codeword length is extended beyond the specified 2048 bits, then
the number of hops per codeword increases. As a result, the diversity order
increases, but the benefit of increased diversity order obeys a law of diminish-
ing returns, and the benefit is minor at bit error rates of approximately 10−3

or less. The values of modulation index h and code rate R are selected to be
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Figure 9.14: Bit error rates of FH-CPFSK systems with various estimators in
Rayleigh block fading with partial-band interference, μ = 0.6, Eb/It0 = 13dB,
turbo-coded octal CPFSK, h = 0.32, code rate 2048/3840, and 32 hops per
codeword [108]

close to the information-theoretic optimal values given previously for Rayleigh
fading under the bandwidth constraint BmaxTb = 2. In particular, a system
with q = 2 uses h = 0.6 and R = 2048/3200, one with q = 4 uses h = 0.46 and
R = 2048/3456, and one with q = 8 uses h = 0.32 and R = 2048/3840.

A receiver iteration comprises the steps of channel estimation, demapping
and demodulation, and one full turbo-decoder iteration. Up to 20 receiver
iterations are executed. An early halting routine stops the iterations once the
data is correctly decoded (which can be determined, for instance, by using the
cyclic redundancy check specified in the UMTS standard). The number of hops
per codeword may vary, and results below show the impact of changing this
value.

Example 9. Figure 9.14 illustrates the influence of channel estimation on
the bit error rate (BER) of the system. For this figure, μ = 0.6, Eb/It0 = 13dB,
the channel undergoes block-by-block Rayleigh fading, and octal CPFSK is
used with 32 hops per codeword. The uppermost curve in the figure shows
the performance of a simple system that does not attempt to estimate A or
B. Instead, the system sets these values to their statistical averages: A =
(N0+ It0)/2, and B = 2E[α]

√
Es =

√
πEs, as indicated by (E-30) and (E-31) of

Appendix E.4. It can be seen that the performance of such a system is rather
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Figure 9.15: Required Eb/N0 to achieve BER = 10−3 as a function of μ for
binary, quaternary, and octal turbo-coded FH-CPFSK systems in both AWGN
and Rayleigh fading channels with Eb/It0 = 13dB and BmaxTb = 2 [108]

poor, as it has no knowledge of which hops have experienced interference and
which have not. The system can be improved by estimating A and/or B on a
block-by-block basis using the EM estimator. The second curve from the top
shows the performance when only B is estimated on a block-by-block basis (and
A = N0 + It0/2), whereas the next curve down shows the performance when
only A is estimated on a block-by-block basis (and B =

√
πEs). The second

lowest curve shows the performance when both A and B are estimated on a
block-by-block basis with the EM estimator, whereas the lowest curve shows
the performance with perfect CSI, i.e., when A and B are known perfectly. As
can be seen, there is a large gap between perfect CSI and simply using the
average values of A and B. This gap can be partially closed by estimating
either A and B independently on a block-by-block basis, and the gap closes
almost completely by estimating them jointly. �

Example 10. Figure 9.15 illustrates the robustness of the estimator as a
function of the alphabet size, channel type, and fraction of partial-band interfer-
ence μ. The figure shows the value of Eb/N0 required to achieve a bit error rate
of 10−3 as a function of μ for several systems with Eb/It0 = 13dB. For each of
the three alphabet sizes, both AWGN and block Rayleigh fading (again, 32 hops
per codeword) are considered. For each of these six cases, the performance using
perfect CSI and the performance with the EM estimator are shown. Across the
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Figure 9.16: Required Eb/N0 to achieve BER = 10−3 as a function of μ for
quaternary and octal FH-CPFSK systems in Rayleigh block fading with partial-
band interference, EM estimation, Eb/It0 = 13dB, and various hops per code-
word [108]

entire range of tested parameters, the estimator’s performance nearly matches
that of perfect CSI. The benefit of increasing the alphabet size is apparent. For
instance, in AWGN, increasing q from 2 to 4 improves performance by about
4 dB, whereas increasing it again from 4 to 8 yields another 1.2 dB gain. The
gains in Rayleigh fading are even more dramatic. Although the performance in
AWGN is relatively insensitive to the value of μ, the performance in Rayleigh
fading degrades as μ increases, and when q = 2, this degradation is quite severe.
�

If the hop rate increases, the increase in the number of independently fading
dwell intervals per codeword implies that more diversity is available in the pro-
cessing of a codeword. However, the shortening of the dwell interval makes the
channel estimation less reliable by providing the estimator with fewer samples
per block.

Example 11. The influence of the number of hops per codeword is shown
in Figure 9.16 as a function of μ for quaternary and octal CPFSK using the EM
estimator, Rayleigh block fading, and partial-band interference with Eb/It0 =
13dB. Since the codeword length is fixed for each q, increasing the number of
hops per codeword results in shorter blocks. For q = 4, there are 108, 54, or 27
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symbols per hop when there are 16, 32, or 64 hops per codeword, respectively.
For q = 8, there are 80, 40, or 20 symbols per hop when there are 16, 32, or
64 hops per codeword, respectively. Despite the slow decline in the accuracy of
the EM channel estimates, the diversity improvement is sufficient to produce
an improved performance as the number of code symbols per hop decreases.
However, decreasing to fewer than 20 code symbols per hop begins to broaden
the spectrum significantly, as indicated in Section 3.5, unless the parameter
values are changed. �

Frequency-hopping systems, such as GSM, Bluetooth, and combat net ra-
dios, use binary minimum-shift keying (MSK) with h = 0.5 or binary Gaussian
FSK and do not have fading-amplitude estimators. Figures 9.15 and 9.14 illus-
trate the substantial performance penalties resulting from the use of a binary
modulation and the absence of fading-amplitude estimation, respectively. The
cost of the superior performance of the robust system is primarily the increased
computational requirements. Other nonbinary frequency-hopping systems use
channel estimators to achieve an excellent performance against partial-band
interference and AWGN. However, they are not resistant to multiple-access in-
terference because the transmitted symbols are not spectrally compact, and
the channel estimators are not designed to estimate multiple interference and
noise PSD levels. As described subsequently, the robust system accommodates
substantial multiple-access interference.

Asynchronous Multiple-Access Interference

Multiple-access interference may occur when two or more frequency-hopping
signals share the same physical medium or network, but the hopping patterns
are not coordinated. A collision occurs when two or more signals using the
same frequency channel are received simultaneously. Since the probability of
a collision in a network is decreased by increasing the number of frequency
channels in the hopset, a spectrally compact modulation is highly desirable
when the hopping band is fixed.

Simulation experiments were conducted to compare the effect of the number
of mobiles of a MANET (Section 8.2) on systems with different values of q and
h. All network mobiles have asynchronous, statistically independent, randomly
generated hopping patterns with negligible switching times between dwell inter-
vals. Let Ti denote the random variable representing the relative transition time
of frequency-hopping interference signal i or the start of its new dwell interval
relative to that of the desired signal. The ratio Ti/Ts is uniformly distributed
over the integers in [0, Nh − 1], where Nh is the number of symbols per dwell
interval.

Let M denote the number of frequency channels in the hopset shared by all
mobiles. Since the interference and desired signal are not synchronized, parts of
two dwell intervals of the interference signal coincide with a single dwell interval
of the desired signal. Thus, two carrier frequencies are randomly generated
by each interference signal during each dwell interval of the desired signal.
Therefore, the probability is 1/M that the interference signal collides with the
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desired signal before Ti, and the probability is 1/M that the interference signal
collides with the desired signal after Ti. Each interference signal transmits a
particular symbol with probability 1/q (common values of q and h are used
throughout the network). The response of each matched filter to an interference
symbol is given by the same equations used for the desired signal. The soft-
decision metrics sent to the decoder are generated in the usual manner but are
degraded by the multiple-access interference.

The transmitted powers of the interference and the desired signals are the
same. All the interference sources are randomly located at a distance from the
receiver within 4 times the distance of the desired-signal source. All signals
experience a path loss with an attenuation power law equal to 4 and inde-
pendent Rayleigh fading. The interference signals also experience independent
shadowing (Section 6.1) with a shadow factor equal to 8 dB.

The simulations consider CPFSK alphabet sizes from the set q = {2, 4, 8}.
The hopping band has the normalized bandwidth WTb = 2000. Both orthog-
onal and nonorthogonal modulations are considered. For the orthogonal case,
the code rate is chosen to be 2048/6144, which is close to the information-
theoretic optimal value in Rayleigh fading when h = 1. Taking into account
the 99% power bandwidth of the resulting signal, there are M = 312, 315, and
244 frequency channels for binary, quaternary, and octal orthogonal CPFSK,
respectively. For the nonorthogonal case, a bandwidth constraint BmaxTb = 2
is assumed so that there are M = 1000 frequency channels. As in the pre-
vious examples, values of h and R that are close to the information-theoretic
optimal values for this bandwidth constraint are selected (i.e., h = 0.6 and
R = 2048/3200 for q = 2, h = 0.46 and R = 2048/3456 for q = 4, and h = 0.32
and R = 2048/3840 for q = 8). In all cases, there are 32 hops per codeword.

Unlike the partial-band interference case, where the interference power is
constant for the entire duration of the hop, the interference power in the pres-
ence of multiple-access interference is not generally constant due to the asyn-
chronous hopping. This fact suggests that performance can be improved by
partitioning the block into multiple sub-blocks and obtaining a separate es-
timate of A for each sub-block. Such estimates can be found from a simple
modification of the EM-based estimator. The estimator first finds the value of
B for the entire block from (9-105) as before. Next, it finds the value of A for
each sub-block from (9-104) using the value of B found for the entire block and
the value of D for just that sub-block (with Nb set to the size of the sub-block).

Example 12. The impact of the channel-estimation technique is illustrated
in Figure 9.17 for a system with 30 mobiles all transmitting nonorthogonal octal
CPFSK. The uppermost curve shows what happens when the receiver ignores
the presence of interference. In this case, B is set to its actual value (perfect
CSI for B), whereas A is set to N0, its value without interference. Performance
can be improved by using the EM-based estimators for jointly estimating A
and B on a block-by-block basis, as illustrated by the second curve from the
top. The bottom three curves in Figure 9.17 show the performance when 4,
8, or 10 sub-blocks are used to estimate A. Although it is beneficial to use
more sub-blocks at low Eb/N0, at higher Eb/N0 even using only 4 sub-blocks is
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Figure 9.17: Bit error rates of FH-CPFSK systems with various estimators in
Rayleigh block fading with multiple-access interference created by 30 mobiles.
Turbo-coded octal CPFSK is used with h = 0.32, code rate 2048/3840, and 32
hops per codeword [108]

sufficient to give significantly improved performance. This method of sub-block
estimation entails essentially no additional complexity. �

Example 13. In Figure 9.18, the performance using the block EM estima-
tor (no sub-block estimation) is shown. In particular, the minimum required
value of Eb/N0 to achieve a bit error rate equal to 10−4 is given as a func-
tion of the number of mobiles. The performance is shown for both orthogo-
nal and nonorthogonal modulations and the three values of q. For a lightly
loaded system (fewer than five mobiles), the orthogonal systems outperform
the nonorthogonal ones because orthogonal modulation is more energy efficient
in the absence of interference. However, as the number of mobiles increases
beyond about five, the nonorthogonal systems offer superior performance. The
reason is that the improved spectral efficiency of a nonorthogonal modulation
allows more frequency channels, thereby decreasing the probability of a colli-
sion. With orthogonal modulation, performance as a function of the number
of mobiles degrades more rapidly as q increases because larger values of q re-
quire larger bandwidths. In contrast, with nonorthogonal modulation, the best
performance is achieved with the largest value of q, although performance with
q = 2 or q = 4 is only about 1−2 dB worse than with q = 8. When there are 50
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Figure 9.18: Required Eb/N0 to achieve BER = 10−4 as a function of the num-
ber of mobiles for turbo-coded FH-CPFSK systems in Rayleigh block fading.
BmaxTb = 2 for nonorthogonal signals [108]

mobiles, nonorthogonal CPFSK with q = 8 is about 3 dB more energy efficient
than the more conventional orthogonal CPFSK with q = 2. �

Example 14. Figure 9.19 shows the performance with nonorthogonal
CPFSK when sub-block estimation is used instead of block estimation, but
the system parameters remain the same. For q = 8 there are 10 sub-blocks of
40/10 = 4 symbols, for q = 4 there are 9 sub-blocks of 54/9 = 6 symbols, and
for q = 2 there are 10 sub-blocks of 100/10 = 10 symbols. A comparison with
Figure 9.18 indicates that for q = 8 and 50 mobiles, there is a 4 dB gain in
energy efficiency relative to the block estimator. It is also observed that when
using the sub-block estimator, the performance is less sensitive to the number
of mobiles and that in a very lightly loaded system, the block estimator offers
better performance (since then A is likely to be constant for the entire hop). �

The noncoherent frequency-hopping system with nonorthogonal CPFSK is
highly robust in environments including frequency-selective fading, partial-band
interference, multitone jamming, and multiple-access interference. The robust-
ness is due to the iterative turbo decoding and demodulation, the channel es-
timator based on the expectation–maximization algorithm, and the spectrally
compact modulation.
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Figure 9.19: Required Eb/N0 to achieve BER = 10−4 as a function of the num-
ber of mobiles for improved EM estimation and nonorthogonal binary, qua-
ternary, and octal turbo-coded FH-CPFSK systems in Rayleigh block fading
[108]

9.5 Problems

1. Consider a complete data vector that has a conditional density of the form

f(z|θ) = α (z) exp
[
g (θ) + θTβ (z)

]

where α (z) and g (θ) are scalar-valued functions, and β (z) is a vector-
valued function. If y is an incomplete data vector, show that the EM
estimators are solutions of the vector equation that has the form

∇θg (θ)θ=θ̂i+1
= h

(
θ̂i,y

)
.

Determine the function h
(
θ̂i,y

)
.

2. Let X1i and X2i denote independent, zero-mean, Gaussian random vari-
ables with variances λ1 and λ2, respectively, for i = 1, . . . , N . The received
random vector is Y = [Y1 . . . YN ]T , where Yi = aX1i + bX2i, and a and
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b are known constants. It is desired to derive maximum-likelihood esti-
mates of the variances. (a) Evaluate the likelihood equations and show
that they provide a single equation that does not have a unique solution
even when N → ∞. Interpret this result in terms of the variances. (b) De-
fine a complete data vector. Apply the EM algorithm to obtain estimates
of the variances.

3. Consider two modifications of Example 1. (a) Assume that v is known
and derive the EM estimator of A. (b) Assume that A is known and
derive the EM estimator of v.

4. Let Z denote a complete data vector. Each component Zi is an inde-
pendent, identically distributed Gaussian random variable with a mean μ
and variance v. The observed data vector is Y, where each component
is Yi = |Zi| . Apply the EM algorithm to obtain estimates of θ = [μ, v]

T
.

Let f(z|θ) denote the Gaussian density with parameters equal to θ. Show
that the estimates are

μ̂k+1 =
1

n

n∑
i=1

yif(yi|θ̂k)− yif(−yi|θ̂k)

f(yi|θ̂k) + f(−yi|θ̂k)

v̂k+1 =
1

n

n∑
i=1

y2i − μ̂2
k+1.

5. Consider the equation f(x) = x2−3x+1 = 0. Find two different represen-
tations of this equation that have the form x = g(x), and find sufficient
conditions for convergence of the fixed-point iterations for both repre-
sentations. Show that the initial value x0 = 2 does not satisfy one of
these conditions for an interval that includes it. Show by numerical com-
putation of a few iterations that convergence to the smaller solution of
f(x) = 0 occurs nevertheless.

6. Consider the equation f(x) = x3 + x − 1 = 0, which has a solution near
x = 0.68. Find a representation of this equation having the form x = g(x)
and satisfying the sufficient condition for convergence of the fixed-point
iteration for any initial x0. Show that x = 1 − x3 is not the required
representation.

7. Derive (9-47) to (9-49) from (9-42).

8. Use calculations similar to those in the text to derive (9-60).

9. Show how the spectrum confinement leads to (9-75).

10. Derive (9-104) and (9-105) from (9-99).



Chapter 10

Detection of
Spread-Spectrum Signals

The ability to detect the presence of spread-spectrum signals is often required
by cognitive radio, ultra-wideband, and military systems. This chapter presents
an analysis of the detection of spread-spectrum signals when the spreading se-
quence or the frequency-hopping pattern is unknown and cannot be accurately
estimated by the detector. Thus, the detector cannot mimic the intended re-
ceiver, and alternative procedures are required. The goal is limited in that only
detection is sought, not demodulation or decoding. Nevertheless, detection the-
ory leads to impractical devices for the detection of spread-spectrum signals.
An alternative procedure is to use a radiometer or energy detector, which relies
solely on energy measurements to determine the presence of unknown signals.
The radiometer has applications not only as a detector of spread-spectrum sig-
nals but also as a general sensing method in cognitive radio and ultra-wideband
systems.

10.1 Detection of Direct-Sequence Signals

A spectrum analyzer usually cannot detect a signal with a PSD below that of
the background noise. Therefore, as the spreading factor increases, it becomes
increasingly unlikely that a direct-sequence signal can be detected by a spectrum
analyzer. Nevertheless, detection may still be probable by other means. If not,
the direct-sequence signal is said to have a low probability of interception.

Detection of a Known Signal in AWGN

Consider the detection problem of deciding on the presence or absence of a
known signal s (t,θ) over an observation interval in the presence of AWGN,
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where θ denotes a vector of parameters. Based on the observation of the re-
ceived signal r(t), classical detection theory [36, 49] requires that one choose
between the hypothesis H1 that the signal is present and the hypothesis H0

that the signal is absent. For the observation interval [0, T ], the hypotheses are

H1 : r(t) = s (t,θ) + n(t)
H0 : r(t) = n(t)

(10-1)

where n(t) is zero-mean, white Gaussian noise. The real-valued signal s(t,θ)
belongs to the signal space L2 [0, T ] of complex-valued functions f such that

|f |2is integrable over [0, T ] . As explained in Appendix F.1, the inner product
of functions f (t) and g (t) in L2 [0, T ] is

〈f (t) , g (t)〉 =
∫ T

0

f(t)g∗(t)dt. (10-2)

Since both s (t,θ) and n(t) are real valued, we establish a suitable set of real-
valued orthonormal basis functions (Appendix F.1) that simplify the detection
problem. We first choose a complete set of real-valued orthonormal basis func-
tions {φ′

i(t)} for L2 [0, T ] . A new complete set of real-valued orthonormal basis
functions {φi(t)} for L2 [0, T ] is generated by selecting the first basis function
as

φ1(t) =
s (t,θ)√

E
(10-3)

where the signal energy is

E = ‖s (t,θ)‖2 = 〈s (t,θ) , s (t,θ)〉

=

∫ T

0

|s (t,θ)|2 dt (10-4)

and is assumed to be the same for all θ. The remaining basis functions are
constructed by the Gram–Schmidt orthonormalization process (Appendix F.1)
using the functions φ1(t) and the {φ′

i(t)} .
In terms of the {φi(t)} and (10-3), we have the orthonormal expansions

r(t) =

∞∑
i=1

riφi(t), ri = 〈r(t), φi (t)〉 (10-5)

n(t) =

∞∑
i=1

niφi(t), ni = 〈n (t) , φi (t)〉 (10-6)

and

r1 =
1√
E

∫ T

0

r(t)s (t,θ) dt (10-7)

n1 =
1√
E

∫ T

0

n(t)s (t,θ) dt. (10-8)
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Since an orthonormal expansion contains the same information that resides
in r(t), it follows that detection can be based on the coefficients of r(t) with re-
spect to the orthonormal expansion. Therefore, the detection problem becomes
the decision between the hypotheses

H1 : r1 =
√
E + n1, ri = ni, i ≥ 2

H0 : ri = ni, i ≥ 1.
(10-9)

As shown in Appendix F.2, since n(t) is white Gaussian noise, coefficients ni

with i ≥ 2 are statistically independent of n1 and hence contain no information
about r1. Therefore, the detection problem reduces to a decision between the
hypotheses

H1 : r1 =
√
E + n1

H0 : r1 = n1
(10-10)

which indicates that r1 is a sufficient statistic that retains all the information in
r(t) relevant to the detection. This sufficient statistic is the correlation metric
that is obtained by projecting r(t) onto the one-dimensional subspace spanned
by s(t,θ). If s(t,θ) is known and the sufficient statistic r1 exceeds or equals a
threshold, then the detector decides in favor of hypothesis H1; if the sufficient
statistic is less than the threshold, then the detector decides in favor of H0. The
threshold may be set to ensure a tolerable false-alarm probability when s(t,θ)
is absent.

An equivalent procedure when s(t,θ) is known is to compare the likelihood
ratio of the sufficient statistic with a threshold. Let f(r1|H1,θ) denote the
conditional density or likelihood function of the sufficient statistic r1 of (10-7),
given hypothesis H1 and the value of θ. Let f(r1|H0,θ) denote the conditional
density or likelihood function of r1, given hypothesis H0. The likelihood ratio
is defined as f(r1|H1,θ)/f(r1|H0,θ). If θ is known and the likelihood ratio is
larger than or equal to a threshold, then H1 is accepted; if the likelihood ratio
is less than the threshold, then H0 is accepted.

If the parameters are modeled as random variables with known probability
distribution functions, then we compute an average likelihood ratio by averaging
over the distribution functions. The average likelihood ratio of the received
signal r(t), which is compared with a threshold for a detection decision, is

Λ[r(t)] = Eθ

[
f(r1|H1,θ)

f(r1|H0,θ)

]
(10-11)

where Eθ[·] is the average over the distribution functions of the parameter
components of θ.

Since n(t) is zero-mean white noise, n1 is a zero-mean Gaussian random
variable. The expected values of n1 under the two hypotheses are

E [n1 | H1] = E [n1 | H0] = 0. (10-12)

The autocorrelation of n(t) is (Appendix D.2)

Rn (τ) =
N0

2
δ (τ) (10-13)
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where δ (τ) is the Dirac delta function. Therefore, (10-8) yields

E
[
n2
1

]
=

N0

2
. (10-14)

The conditional densities of r1 under the two hypotheses are

f(r1|H1,θ) =
1√
πN0

exp

[
− (r1 −

√
E)2

N0

]
(10-15)

f(r1|H0,θ) =
1√
πN0

exp

(
− r21
N0

)
. (10-16)

Substituting these equations into (10-11), we obtain

Λ[r(t)] = Eθ

[
exp

(
2
√
Er1 − E
N0

)]
. (10-17)

Direct-Sequence Signals

Detection theory leads to various detection receivers depending on precisely
what is assumed to be known about the direct-sequence signal to be detected.
To account for uncertainty in the chip timing, one might use several parallel de-
tectors, each of which implements a different chip timing. Assuming that this
procedure ultimately provides accurate chip-timing information, we consider
the design of a single detector with perfect chip-timing information. Another
assumption, which greatly simplifies the mathematical analysis, is that when-
ever the signal is present, it is present during the entire observation interval.
Even with the latter assumptions, we find that the application of detection
theory leads to a very complicated receiver.

Consider the detection of a DS-BPSK signal:

s(t,θ) =
√

2Esp(t) cos (2πfct+ θ) , 0 ≤ t ≤ T (10-18)

where Es is the energy per symbol, fc is the known carrier frequency, and θ is the
carrier phase assumed to be constant over the observation interval 0 ≤ t ≤ T .
The spreading waveform p(t), which subsumes the random data modulation
and has unit energy over a symbol interval of duration Ts, is modeled as

p(t) =

∞∑
i=0

piψ(t− iTc) (10-19)

where pi = ±1 is a data-modulated chip, and ψ(t) is the chip waveform of
known duration Tc. The energy of s(t,θ) over the observation interval is

E =
EsT
Ts

. (10-20)
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We wish to detect the direct-sequence signal with unknown random parameters
θ = (Es, θ,p) , where the vector p denotes the spreading sequence. The known
chip timing allows the boundary of the observation interval of the received signal
r(t) to coincide with a chip transition.

By substituting (10-7), (10-18), and (10-20) into (10-17), the average likeli-
hood ratio is expressed in terms of the signal waveforms as

Λ[r(t)] ≡ EE,θ,p

{
exp

[
2E
√

2Ts/T

N0

∫ T

0

r(t)p(t) cos (2πfct+ θ) dt− E
N0

]}

(10-21)
where EE,θ,p{·} is the average over the distribution functions of E , θ, and p.

For coherent detection, we make the assumption that θ is somehow accu-
rately estimated so that it can be removed from consideration. Mathematically,
we set θ = 0 in (10-21). There are 2Nc equally likely patterns of the spreading
sequence of Nc chips when T = NcTc. Thus, the average likelihood ratio for
the ideal coherent detector is

Λ[r(t)] ≡ EE

⎧⎨
⎩

2Nc∑
j=1

exp

[
2E
√

2Ts/T

N0

Nc−1∑
i=0

p
(j)
i rci −

E
N0

]⎫⎬
⎭ (coherent)

(10-22)

where p
(j)
i is chip i of pattern j and

rci =

∫ (i+1)Tc

iTc

r(t)ψ (t− iTc) cos (2πfct) dt. (10-23)

For the far more realistic noncoherent detection of a direct-sequence signal,
the received carrier phase is assumed to be uniformly distributed over [0, 2π).
Using a trigonometric expansion and then evaluating the expectation over the
random spreading sequence, we obtain the average likelihood ratio:

Λ(r(t)) = EE,θ

⎧⎨
⎩

2Nc∑
j=1

exp

[
2E
√

2Ts/T

N0

Nc−1∑
i=0

p
(j)
i (rci cos θ − rsi sin θ)−

E
N0

]⎫⎬
⎭

(10-24)
where rci is defined by (10-23), and

rsi =

∫ (i+1)Tc

iTc

r(t)ψ (t− iTc) sin (2πfct) dt. (10-25)

Using (H-15) of Appendix H.3, the uniform distribution of θ, and trigonometry
and dropping an irrelevant factor, we obtain the average likelihood ratio:

Λ[r(t)] = EE

⎡
⎣2Nc∑
j=1

I0

(
2E
√

2RjTs/T

N0

)
exp

(
− E
N0

)⎤
⎦ (noncoherent) (10-26)
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where I0(·) is the modified Bessel function of the first kind and order zero, and

Rj =

[
Nc−1∑
i=0

p
(j)
i rci

]2
+

[
Nc−1∑
i=0

p
(j)
i rsi

]2
. (10-27)

These equations define the theoretically optimal noncoherent detector for a
direct-sequence signal when the signal parameters have known probability dis-
tribution functions. The presence of the desired signal is declared if (10-26)
exceeds a threshold level.

Even if the signal energy is assumed to be known so that the expectations
in (10-22) and (10-26) do not need to be evaluated, the implementation of either
the coherent or noncoherent optimal detector would be very complicated. The
computational complexity would grow exponentially with Nc, the number of
chips in the observation interval. Additional complexity would be required
because of the parallel processors necessary to account for the unknown chip
timing. Calculations [70] indicate that the ideal coherent and noncoherent
detectors typically provide 3 dB and 1.5 dB advantages, respectively, over the
far more practical wideband radiometer, which is analyzed in the next section.
The use of several wideband radiometers can compensate for these advantages.
Furthermore, implementation losses and imperfections in the optimal detectors
are likely to be significant.

10.2 Radiometer

A radiometer or energy detector is a device that uses energy measurements to
determine the presence of unknown signals [104]. The radiometer is notable for
its extreme simplicity and its meager requirement of virtually no information
about a target signal other than its rough spectral location.

Suppose that the signal to be detected is approximated by a zero-mean,
white Gaussian process. Consider two hypotheses that both assume the pres-
ence of a zero-mean, bandlimited white Gaussian process over an observation
interval 0 ≤ t ≤ T . Under H0, only noise is present, and the two-sided PSD over
the signal band is N0/2, whereas under H1, both signal and noise are present,
and the PSD is N1/2 over this band. Using orthonormal basis functions, the
hypotheses are

H1 : ri = ni, var (ni) = N1/2 , i ≥ 1
H0 : ri = ni, var (ni) = N0/2, i ≥ 1.

(10-28)

and the conditional densities are

f(r|Hi) =

∞∏
k=1

1√
πNi

exp

(
− r2k
Ni

)
, i = 0, 1. (10-29)
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Figure 10.1: Ideal radiometer

Taking the logarithm of the likelihood ratio and merging constants with the
threshold, we find that the decision rule is to compare

V =

∞∑
k=1

r2k (10-30)

to a threshold. Using the properties of orthonormal basis functions, we find
that the test statistic is

V =

∫ T

0

r2(t)dt (10-31)

where the assumption of bandlimited processes is necessary to ensure the finite-
ness of the statistic. A device that implements this test statistic is called an
energy detector or radiometer.

Although it was derived for a bandlimited white Gaussian signal, the ra-
diometer is a flexible configuration that can determine the presence of deter-
ministic signals. Theoretically superior devices require much more information
about the target signals than does the radiometer. These devices have greatly
increased computational complexity compared with the radiometer, and they
provide an improved performance primarily when the noise-estimation errors of
the radiometer are substantial. Asdiscussed subsequently, appropriate methods
keep these errors and their impact small. Although a single radiometer is inca-
pable of determining whether one or more than one signal has been detected,
narrowband interference can be rejected by the methods of Section 5.3.

An ideal radiometer has the form shown in Fig. 10.1. The input signal r(t)
is filtered, squared, and integrated to produce an output that is compared with
a threshold. The receiver decides that the target signal has been detected if and
only if the threshold is exceeded. Since accurate analog integrators are difficult
to implement and very power consuming, much more practical radiometers use
either baseband sampling, as illustrated in Fig. 10.2, or bandpass sampling, as
illustrated in Fig. 10.3. The mathematical analyses of all three forms of the
radiometer lead to the same performance equations, but the analyses of the
two practical radiometers entail significantly fewer approximations and hence
provide more reliable results. The analysis of the radiometer with bandpass
sampling is provided subsequently.

The bandpass filter in Fig. 10.3 is assumed to approximate an ideal rect-
angular filter that passes the target signal s(t) with negligible distortion while
eliminating interference and limiting the noise. If the target signal has an un-
known arrival time, the observation interval during which samples are taken is
a sliding window with the oldest sample discarded as soon as a new sample is
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Figure 10.2: Radiometer with baseband sampling
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Figure 10.3: Radiometer with bandpass sampling

taken. The filter has center frequency fc and bandwidth W and produces the
output

y(t) = s(t) + n(t) (10-32)

where n(t) is bandlimited white Gaussian noise with a two-sided PSD equal to
N0/2.

As indicated by (D-13) of Appendix D.1, a bandlimited deterministic signal
can be represented as

s(t) = sc(t) cos 2πfct− ss(t) sin 2πfct. (10-33)

Since the spectrum of s(t) is confined within the filter passband, sc(t) and
ss(t) have frequency components confined to the band |f | ≤ W/2. As indi-
cated by (D-29) and (D-44) of Appendix D.2, the bandlimited Gaussian noise
emerging from the bandpass filter can be represented in terms of quadrature
components as

n(t) = nc(t) cos 2πfct− ns(t) sin 2πfct (10-34)

where the PSDs of nc(t) and ns(t) are

Sc(f) = Ss(f) =

{
N0, |f | ≤ W/2
0, |f | > W/2.

(10-35)

The inverse Fourier transforms of the PSDs indicate that the autocorrelation
functions are

Rc(τ) = Rs(τ) = σ2 sinπWτ

πWτ
(10-36)

where noise power is

σ2 = N0W. (10-37)

Let ν denote the number of samples collected by the radiometer of Fig. 10.3.
At sampling rate W , the duration of the observation interval of the target
signal is T = ν/W . Substituting (10-33) and (10-34) into (10-32), squaring,
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and sampling at rate W , we obtain the output

V =
1

2

ν∑
i=1

{
[sc (i/W ) + nc (i/W )]2 + [ss (i/W ) + ns (i/W )]

2
}

+
1

2

ν∑
i=1

{
[sc (i/W ) + nc (i/W )]

2
c[i] + [ss (i/W ) + ns (i/W )]

2
s [i]
}

−
ν∑

i=1

{
[sc (i/W ) + nc (i/W )] [ss (i/W ) + ns (i/W )] s [i]

}
(10-38)

where c[i] = cos(4πfci/W ) and s[i] = sin(4πfci/W ). This output provides a
test statistic that is compared with a threshold.

If ν � 1 and fc � W , the fluctuations of c[i] and s[i] cause the final
two summations in (10-38) to be negligible compared with the first summa-
tion. Equation (10-36) indicates that the zero-mean Gaussian random variables
nc(i/W ) and nc(k/W ) each have variance σ2 and are statistically independent
if i �= k. Similarly, the zero-mean Gaussian random variables ns(i/W ) and
ns(k/W ) each have variance σ2 and are statistically independent if i �= k.
Since n(t) is a zero-mean Gaussian process and has a PSD that is symmetri-
cal about fc, nc(t) and ns(t) are zero-mean, independent Gaussian processes
(Appendix D.2), and hence nc(i/W ) is statistically independent of ns(i/W ).
Therefore, for the AWGN channel in which sc(i/W ) and ss(i/W ) are determin-
istic, the test statistic may be expressed as

V =
σ2

2

ν∑
i=1

(A2
i +B2

i ) (10-39)

where the {Ai} and the {Bi} are statistically independent Gaussian random
variables with unit variances and means

m1i = E[Ai] =
sc(i/W )

σ
(10-40)

m2i = E[Bi] =
ss(i/W )

σ
. (10-41)

The random variable 2V/σ2 has a noncentral chi-squared distribution (Ap-
pendix E.1) with 2ν degrees of freedom and noncentral parameter

λ =
ν∑

i=1

(m2
1i +m2

2i) =
1

σ2

ν∑
i=1

[
s2c(i/W ) + s2s(i/W )

]

≈ 1

N0

∫ T

0

[
s2c(t) + s2s(t)

]
dt ≈ 2

N0

∫ T

0

s2(t)dt (10-42)

where the first approximation is obtained by dividing the integration interval
into ν parts, each of duration 1/W , and the second approximation uses (10-33)
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and fc � W . Let E denote the energy of the target signal and define γ =E/N0.
Assuming that the approximations in (10-42) cause a negligible error,

λ = 2γ (10-43)

and the statistics of Gaussian random variables indicates that

E[V ] = σ2(ν + γ). (10-44)

Applying (10-42), (10-43), and the statistics of Gaussian variables to (10-39)
and using (A-7) of Appendix A.1, we obtain

var(V ) = σ4(ν + 2γ). (10-45)

From the noncentral chi-squared distribution, the density of V is determined:

fV (x) =
1

σ2

(
x

σ2γ

)(ν−1)/2

exp
(
− x

σ2
− γ
)
Iν−1

(
2
√
xγ

σ

)
u(x) (10-46)

where u(x) is the unit step function defined by (1-69), and In(·) is the modi-
fied Bessel function of the first kind and order n (Appendix H.3). Substitut-
ing (H-13) into (10-46) and then setting γ = 0, we obtain the density in the
absence of a signal:

fV (x) =
1

σ2(ν − 1)!

(
x

σ2

)ν−1

exp
(
− x

σ2

)
u(x), γ = 0. (10-47)

Let Vt denote the threshold such that if V > Vt, the receiver decides that
the target signal is present. Therefore, a false alarm occurs if V > Vt when the
target signal is absent. Integration of (10-47) over (Vt,∞), a change of variables,
and the application of (H-5) and (H-8) of Appendix H.1 give the false-alarm
probability

PF =
Γ(ν, Vt/σ

2)

(ν − 1)!
= exp

(
− Vt

σ2

) ν−1∑
i=0

1

i!

(
Vt

σ2

)i

(10-48)

where Γ(a, x) is the incomplete gamma function, and Γ(a) = Γ(a, 0) is the
gamma function.

The threshold Vt is usually set to a value that ensures a specified PF . Thus,
if the estimate of σ2 is σ2

e , then

Vt = σ2
eG

−1
ν (PF ) (10-49)

where G−1
ν (·) is the inverse function of PF

(
Vt/σ

2
)
. Since the series in (10-48) is

finite, this inverse can be numerically computed by applying Newton’s method.
If the exact value of the noise power is known, then σ2

e = σ2 in (10-49).
The target signal is detected if V > Vt when the target signal is present dur-

ing the observation interval. For the AWGN channel, the integration of (10-46)
and a change of variables yield the detection probability

PD = Qν(
√
2γ,
√

2Vt/σ2) (10-50)
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where Qm(α, β) is the generalized Marcum Q-function defined by (H-26) of
Appendix H.4.

For ν > 100, the generalized Marcum Q-function in (10-50) is difficult to
compute and to invert, so we seek an approximation. As indicated by (10-39),
the test statistic V is the sum of independent random variables with finite
means. Since the {Ai} and the {Bi} are Gaussian random variables, the {A2

i }
and the {B2

i } have bounded fourth central moments. Equation (10-45) indicates

that [var(V )]
3/2

/ν → ∞ as ν → ∞. Therefore, if ν � 1, the central limit
theorem (Corollary 3, Appendix A.2) is applicable. The theorem indicates
that the distribution of V is approximately Gaussian if ν � 1. Using (10-44)
and (10-45) and the Gaussian distribution, we obtain

PD � Q

[
Vt/σ

2 − ν − γ√
ν + 2γ

]
, ν � 1 (10-51)

where the Q[◦] is the Gaussian Q-function defined by (1-43). The error in the
approximation (10-51) has been shown [40] to be less than 0.02 when ν > 100.

Setting γ = 0 in (10-51) gives

PF � Q

[
Vt/σ

2 − ν√
ν + 2γ

]
, ν � 1. (10-52)

The approximations provided by (10-51) and (10-52) are very accurate if ν ≥
100. Inverting (10-52), we obtain an approximate equation for Vt in terms of
PF , σ

2, and ν. Accordingly, if a required PF is specified and the estimate of σ2

is σ2
e , then the threshold setting is

Vt � σ2
e [
√
νQ−1(PF ) + ν], ν � 1 (10-53)

where Q−1(·) denotes the inverse of the Gaussian Q-function, and ideally σ2
e =

σ2. In most applications, there is a required false-alarm rate F , which is the
expected number of false alarms per unit time. If successive observation inter-
vals do not overlap each other except possibly at end points, then the required
probability of false alarm is PF = FT .

Example 1. Figure 10.4 depicts PD versus the energy-to-noise-density
ratio γ for a radiometer operating over the AWGN channel with σ2

e = σ2 and
PF = 10−3. Equation (10-49) is used to calculate Vt. Equation (10-50) is used to
calculate PD for ν = 10 and ν = 100. For ν ≥ 1000, (10-51) is used to calculate
PD. The figure illustrates that the signal energy required to achieve a desired
PD increases as ν increases because additional energy is needed to overcome
the noise in each additional sample. However, since the average signal power is
equal to γσ2/ν, the average signal power required decreases as ν increases. �

Rayleigh Fading

If the coherence time of Rayleigh fading exceeds the observation interval, then
the energy of a target signal in Rayleigh fading, which is the sum of the squares
of two zero-mean identically distributed Gaussian random variables, is a random
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Figure 10.4: Probability of detection for the AWGN channel, σ2
e = σ2, and

PF = 10−3. Plots are labeled with ν

variable with an exponential distribution (Appendix E.5) and average value
E[E ] = Ē . Thus, the average probability of detection is

P̄D =

∫ ∞

0

1

γ̄
exp

(
−γ

γ̄

)
PD(γ)dγ (10-54)

where γ̄ = Ē/N0 and PD(γ) is given by (10-50).
The substitution of (H-26) and (H-13) of Appendix H into (10-50), the

interchange of the summation and integration, a change of variables, and the
evaluation of the integral using (H-5) give

PD(γ) =

∞∑
i=0

Γ(i+ ν, Vt/σ
2)γie−γ

i!(i+ ν − 1)!
. (10-55)

The interchange of the summation and integration is justified by the monotone
convergence theorem.

The substitution of (10-55) into (10-54), the application of the monotone
convergence theorem to justify the interchange of the summation and integra-
tion, a change of variables, the evaluation of the integral using (H-3), and the
substitution of (H-8) yield
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P̄D =

∞∑
i=0

(
γ̄

γ̄ + 1

)i exp
(
− Vt

σ2

)
γ̄ + 1

ν−1+i∑
k=0

(
Vt/σ

2
)k

k!
. (10-56)

Dividing the inner series into two series, using (10-48), evaluating a geomet-
ric series, and then rearranging a double series, we obtain

P̄D =

∞∑
i=0

(
γ̄

γ̄ + 1

)i exp

(
− Vt

σ2

)

γ̄ + 1

[
ν−1∑
k=0

(
Vt/σ

2
)k

k!
+

ν−1+i∑
k=ν

(
Vt/σ

2
)k

k!

]

= PF +
∞∑
i=0

ν−1+i∑
k=ν

(
γ̄

γ̄ + 1

)i exp

(
− Vt

σ2

)(
Vt/σ

2
)k

(γ̄ + 1) k!

= PF +

∞∑
k=ν

exp

(
− Vt

σ2

)(
Vt/σ

2
)k

(γ̄ + 1) k!

∞∑
i=k−ν+1

(
γ̄

γ̄ + 1

)i

. (10-57)

Evaluation of the inner geometric series, use of the series for the exponential
function to express the remaining infinite series for P̄D as an exponential minus
a finite series, and the application of (H-8) yield

P̄D = PF + exp

(
− Vt

σ2

) ∞∑
k=ν

(
Vt/σ

2
)k

k!

(
γ̄

γ̄ + 1

)k−ν+1

= PF +

(
γ̄ + 1

γ̄

)ν−1

exp

(
− Vt

σ2

)[
exp

(
γ̄Vt/σ

2

γ̄ + 1

)
−

ν−1∑
k=0

(
γ̄Vt/σ

2

γ̄ + 1

)k
]

= PF +

(
γ̄ + 1

γ̄

)ν−1

exp

(
−Vt/σ

2

γ̄ + 1

)
⎡
⎢⎢⎣1−

Γ

(
ν,

γ̄Vt/σ
2

γ̄ + 1

)

(ν − 1)!

⎤
⎥⎥⎦ (10-58)

for γ̄ > 0. This equation expresses P̄D in a closed form that is easily computed.
Equations for P̄D in the presence of Nakagami and Ricean fading may be found
in [39] and [22].

The outputs of L radiometers, each processing ν samples, can be combined
to provide diversity reception for fading channels. In a selection-combining
diversity scheme, the largest radiometer output is compared with the threshold
Vt to determine the presence of the target signal. Thus, if each radiometer
processes independent noise, the probability of false alarm is

PF = 1−
L∏

i=1

[
1− PF0(σ

2
i )
]

(10-59)

where σ2
i is the noise power of radiometer i and PF0(σ

2
i ) is given by the right-

hand side of (10-48) with σ2 = σ2
i . Let σ2

e denote an estimated noise power
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Figure 10.5: Average probability of detection for Rayleigh fading, σ2
i = σ2

e =
σ2,γ̄i = γ̄, PF = 10−3, and L = 1 and L = 2

that is known to exceed σ2
i , i = 1, 2, . . . , L, with high probability. Using this

estimate for each σ2
i and solving (10-59) for Vt, we ensure that a specified PF

is almost always achieved. We obtain

Vt � σ2
eG

−1
ν (1− (1− PF )

1/L) (10-60)

which indicates that Vt must be increased with increases in L, the amount of
diversity, if a specified PF is to be achieved. If each radiometer receives a
target signal that experiences independent Rayleigh fading, then the average
probability of detection is

P̄D = 1−
L∏

i=1

[
1− P̄D0(γ̄i, σ

2
i )
]

(10-61)

where γ̄i is the expected value of γ in radiometer i and P̄D0(γ̄i, σ
2
i ) is given by

the right-hand side of (10-58) with σ2 = σ2
i and γ̄ = γ̄i.

Example 2. Figure 10.5 shows P̄D versus the average energy-to-noise-
density ratio γ̄ for σ2

i = σ2
e = σ2, γ̄i = γ̄, PF = 10−3, and L = 1 and L = 2. A

comparison of this figure with the preceding one indicates that the impact of the
fading is pronounced at high values of P̄D. When L = 1, the required signal en-
ergy to achieve a specified P̄D over the Rayleigh channel is increased by roughly
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8 dB or more relative to the required signal energy over the AWGN channel.
When selection diversity with L = 2 is used, this increase is reduced to roughly
3 dB. However, further increases in L produce only minor and diminishing gains.
An alternative diversity scheme is square-law combining, which is analyzed in
[22] and provides a performance similar to that of selection combining. �

Estimation of Noise Power

The greatest obstacle to the implementation and efficient operation of the ra-
diometer is its extreme sensitivity to imperfect knowledge of the noise power.
The sensitivity is due to the typical extensive overlapping of the densities under
the two hypotheses of presence or absence of the target signal. This overlap
causes a small change in the threshold because of the imperfect estimation of
the noise power to have a large impact on the probabilities of false alarm and
detection.

To ensure that the threshold is large enough that the required PF is achieved
regardless of true value of noise power σ2, the estimate of the power must be
set to the upper end of the measurement uncertainty interval. If measurements
indicate that the noise power is between a lower bound σ2

l and an upper bound
σ2
u, then the threshold should be calculated using σ2

u as the power estimate σ2
e .

The noise power is nonstationary primarily because of temperature varia-
tions, vibrations, aging, and nonstationary environmental noise. Laboratory
measurements indicate that the noise power can change by 0.1% in a few min-
utes [37]. Thus, if measurements made shortly before the radiometer is used to
detect a target signal indicate that the noise power σ2 is upper-bounded by σ2

u,
and the noise power can change by no more than 0.1%, then using σ2

e = 1.001σ2
u

to calculate the threshold ensures a specified PF with high probability and limits
the degradation to PD or P̄D caused by the fact that σ2

e > σ2.
The noise power can be estimated by measuring the output V of a radiometer

over νe samples when no target or interfering signals are received. An estimate
of the noise power is Ne = V/νe, and (10-44) and (10-45) indicate that its
mean is σ2 and its standard deviation is σ2/

√
νe. Since Chebyshev’s inequality

(Appendix A.2) implies that it is highly unlikely that the measurement error
exceeds five standard deviations, Ne is highly likely to lie between σ2

l = σ2(1−
5/
√
ν) and σ2

u = σ2(1 + 5/
√
ν). Thus, setting σ2

e = Ne(1 + 5.1/
√
νe) makes it

highly likely that σ2
e > σ2 and the specified PF is achieved. The error factor

h =
σ2
e

σ2
=

Ne(1 + 5.1/
√
νe)

σ2
(10-62)

can be made arbitrarily close to unity by using a sufficiently large νe. For
example, if Te = 1 s is the duration of the observation interval for the noise-
power estimation and W = 1 MHz , then νe = 106 and h ∈ (1, 1.01) .

An auxiliary radiometer simultaneously operating over an adjacent spec-
tral region potentially can be used to estimate the noise power in parallel with
a radiometer detecting a target signal. An advantage of this method is that
time-dependent fluctuations in the noise power are generally negligible over a
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Figure 10.6: Probability of detection for the AWGN channel, PF = 10−3, and
various values of h

practical observation interval. The main requirements are that there is negli-
gible target-signal power in the auxiliary radiometer and that the ratio of the
two noise powers is an approximately known constant during the observation
interval.

Example 3. The impact of the imperfect estimation of the noise power
is illustrated in Figures 10.6, 10.7, and 10.8 for PF = 10−3 and various values
of the error factor. Figure 10.6 depicts PD versus γ for a radiometer and
the AWGN channel. As observed in this figure, the required signal energy for a
specified PD and ν increases with h. If ν ≤ 104 and h ≤ 1.01, the increase is less
than 0.90 dB. The increase in required signal energy when h > 1.0 is partially
offset by the decrease in the actual PF below the specified PF because the
threshold is increased by approximately the factor h, as observed from (10-53).
Figures 10.7 and 10.8 depict P̄D versus γ̄ for a radiometer and the Rayleigh
fading channel. In Fig. 10.7, L = 1; in Fig. 10.8, L = 2, σ2

i = σ2
e = hσ2, and

γ̄i = γ̄. The effects of h and ν are fairly similar in Figures 10.6, 10.7, and 10.8.
As ν increases, the frequency and accuracy of the noise-power estimates must
increase if the performance degradation is to be kept small. �
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Figure 10.7: Average probability of detection for Rayleigh fading, PF =
10−3,L = 1, and several values of h

Other Implementation Issues

To avoid processing noise outside the spectral region occupied by the target
signal, the bandpass filter should have as small a bandwidth as possible. If it is
known that a target signal occupies a small band somewhere within the larger
passband of the bandpass filter, then one can isolate the target signal in its
subband by inserting a fast Fourier transformer after the sampler in Fig. 10.2.
Parallel outputs of the transformer can be applied to separate radiometers,
each one processing a distinct subband defined by the transformer. With this
architecture, multiple signals can be simultaneously detected over a number of
subbands.

Wideband signals, such as direct-sequence and ultra-wideband signals, can
be detected by a radiometer, but both the sampling rate and the noise power
increase with the bandwidth of the radiometer. The radiometer can serve as
a basic component of a channelized radiometer for the detection of frequency-
hopping signals (Section 10.4).

It is desirable for the observation interval to be large enough to collect the
energy of not only the main target signal but also its significant multipath
components. Thus, the extent of the observation interval or, equivalently, the
number of samples is largely determined by the delay power spectrum or inten-
sity profile of the multipath (Section 6.3) to the degree that it is known.
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Figure 10.8: Average probability of detection for Rayleigh fading, PF =
10−3, L = 2, and several values of h

Let
β = Q−1(PF ), ξ = Q−1(PD). (10-63)

In practical applications, PF < 1/2 < PD is required. For this requirement to
be met, (10-51), (10-52), and Q (0) = 1/2 imply that

β > 0, ξ < 0, γ > βh
√
ν + (h− 1)ν > 0 (10-64)

are required. The required value of γ to achieve specified values of PF and
PD over the AWGN channel may be obtained by inverting (10-50), which is
computationally difficult but can be closely approximated by inverting (10-51)
if ν � 1. The inversion of (10-51) entails the solution of a quadratic equation.
The use of ξ < 0 in choosing the root and the substitution of (10-53) and (10-62)
yield the required value:

γr (ν) � βh
√
ν + (h− 1)ν + ψ(β, ξ, ν, h), ν � 1 (10-65)

where

ψ(β, ξ, ν, h) = ξ2 − ξ

√
ξ2 + 2βh

√
ν + (2h− 1)ν. (10-66)
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Figure 10.9: Required energy-to-noise-density ratio for the AWGN channel,
PD = 0.999, PF = 10−3, and various values of h

Example 4. Figure 10.9 shows the required energy-to-noise-density ratio
γr (ν) versus ν for PD = 0.999, PF = 10−3, and various values of h. �

To increase the probability of detection, it is desirable to continue collecting
additional samples if the increase in γr(ν), which is proportional to the required
signal energy, is less than the increase in γ(ν), which is proportional to the signal
energy that is processed by the radiometer. If we approximate the integer ν by
treating it as a continuous variable, then collecting additional samples beyond
ν0 samples already collected is potentially useful if

∂γr(ν0)

∂ν
<

∂γ(ν0)

∂ν
. (10-67)

The derivative ∂γr(ν0)/∂ν can be determined from the curves of Fig. 10.9 or
by using (10-65). The derivative ∂γ(ν0)/∂ν can be calculated from knowledge
of the waveform of the target signal or from the intensity profile of the target
signal’s multipath if the latter is known.

Example 5. Suppose that PD = 0.999 and PF = 10−3 are required when
the radiometer operates over the AWGN channel, h = 1.05, and ν0 = 800.
Then Fig. 10.9 indicates that γr(ν0) � 24 dB and ∂ log10 γr(ν0)/∂ log10 ν ≈
0.6. Therefore, ∂γr(ν0)/∂ν ≈ 0.6γr(ν0)/ν0. Suppose that the target signal has
constant power over a time interval exceeding the observation interval of the
radiometer so that ∂γ(ν0)/∂ν ≈ γ(ν0)/ν0. Then collecting more samples is
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Figure 10.10: Required SNR for the AWGN channel, PD = 0.999, PF = 10−3,
and various values of h

useful if γ(ν0) > 0.6γr(ν0) or γ(ν0) > 21.8 dB. If γ(ν0) > 24 dB, then PD

already exceeds its required value if PF = 10−3, and collecting more samples
increases PD further. If 21.8 dB < γ(ν0) < 24 dB, then collecting sufficiently
more samples potentially allows PD = 0.999 and PF = 10−3 to be achieved. �

A different perspective is gained by examining the required value of the
signal-to-noise ratio (SNR) to achieve specified values of PF and PD over the
AWGN channel. The required SNR, defined as

Sr (ν) =
γr (ν)

ν
(10-68)

may be computed using (10-65) and is shown in Fig. 10.10 for the AWGN chan-
nel, PD = 0.999, PF = 10−3, and various values of h. It is observed that for
Sr (ν) = −14 dB, roughly twice as many samples are needed when h = 1.01 as
are needed when h = 1.0.

Equations (10-68) and (10-65) indicate that if h is a constant, then

lim
ν→∞

Sr (ν) = h− 1. (10-69)

The significance of this limit is that if the SNR of the target signal is below
h − 1, then specified values of PF and PD cannot be achieved no matter how
many samples are collected.
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Example 6. Suppose that the SNR of the target signal is approximately
−12 dB over a long observation interval when it is present and that PD = 0.999
and PF = 10−3 are desired when the radiometer operates over the AWGN
channel. Figure 10.10 indicates that the desired PD and PF cannot be achieved
if h ≥ 1.10. However, if the noise-power estimation is timely and accurate
enough that h ≤ 1.05, then the desired PD and PF can be achieved with the
collection of ν ≈ 3 · 105 or fewer samples; only ν ≈ 2 · 104 or fewer are needed
if h ≤ 1.01. �

When the limit in (10-69) exceeds 0, it is called the SNR wall. Its existence
is due to the assumption that h is a constant as the number of samples ν used
to detect a signal increases. As shown previously, if h is estimated by using an
energy detector, then it is highly probable that

1− 5√
νe

< h < 1 +
5√
νe

(10-70)

where νe is the number of samples used to determine σ2
e . If νe → ∞ as ν → ∞,

then h → 1 and there is no SNR wall. Thus, the SNR wall exists only when the
detection interval has a much longer duration than that of the interval used in
the estimation of the noise power. An alternative analysis [54] that models σ2

e

as a random variable generated by an energy detector confirms this result.
Because of its large bandwidth and low PSD, a direct-sequence signal is

difficult to detect by any device that cannot despread it. The effectiveness of
a radiometer in detecting a direct-sequence signal depends on the collection of
enough samples and sufficient received signal energy.

10.3 Detection of Frequency-Hopping Signals

An interception receiver intended for the detection of frequency-hopping signals
may be designed according to the principles of classical detection theory or
according to more intuitive ideas. The former approach is useful in setting
limits on what is possible, but the latter approach is more practical and flexible
and less dependent on knowledge of the characteristics of the frequency-hopping
signals.

To enable a tractable analysis according to classical detection theory, the
idealized assumptions are made that the hopset and the hop epoch timing are
known. The hop epoch timing comprises the hop duration Th, the number
of hops Nh, and the hop-transition times. We further assume that the noise
PSD is known and that whenever the frequency-hopping signal is present, it
occupies the entire observation interval. Even with these assumptions, the
derived detector is very complex.

Consider slow frequency-hopping signals with CPM (FH-CPM) or CPFSK
(FH-CPFSK) that have negligible switching times. The frequency-hopping sig-
nal over the ith hop interval or dwell time is

s(t,θ) =
√
2S cos [2πfcit+ φ(dn, t) + φi] , (i− 1)Th ≤ t < iTh (10-71)
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where S is the average signal power, fci is the carrier frequency associated with
the ith hop, φ(dn, t) is the CPM component that depends on the data sequence
dn, and φi is the phase associated with the ith hop. The vector θ denotes the
parameters S, {fci} , {φi}, i ∈ [1, Nh] , and the components of dn, which are
modeled as random variables. For the AWGN channel and observation interval
[0, NhTh] , (10-17) and (10-71) indicate that the average likelihood ratio is

Λ[r(t)] = EΘ

{
exp

[
2
√
2S

N0

∫ NhTh

0
r(t) cos [2πfcit+ φ(dn, t) + φi] dt−

SNhTh
N0

]}
.

(10-72)

The average likelihood ratio Λ[r(t)] is compared with a threshold to determine
whether a signal is present. The threshold may be set to ensure a tolerable
false-alarm probability when the signal is absent.

The M carrier frequencies {fj} in the hopset are assumed to be equally
likely over a given hop and statistically independent from hop to hop. Each of
the Nd data sequences that can occur during a hop is assumed to be equally
likely. Dividing the integration interval in (10-72) into Nh parts, averaging over
the M frequencies, averaging over the Nd data sequences, and dropping factors
that can be merged with the threshold, we obtain

Λ[r(t)] = ES

⎧⎨
⎩exp

(
−SNhTh

N0

) Nh∏
i=1

M∑
j=1

Λi,j [r(t)|fj ]

⎫⎬
⎭ (10-73)

Λi,j [r(t)|fj ] = Eφi

{
Nd∑
n=1

exp

[
2
√
2S

N0

∫ iTh

(i−1)Th

r(t) cos [χj,n(t) + φi]

]}
(10-74)

where the expectations are over the distribution functions of the remaining
random parameters S and φi, and

χj,n(t) = 2πfjt+ φ(dn, t). (10-75)

These equations indicate the general structure of the theoretically optimal de-
tector when the signal parameters are modeled as random variables with known
probability distribution functions. When S is known, the optimal detector has
the form illustrated in Fig. 10.11.

For coherent detection of FH-CPM [8], we assume that the {φi} are somehow
accurately estimated. Thus, we set φi = 0 in (10-74) to obtain

Λi,j [r(t)|fj ] =
Nd∑
n=1

exp

{
2
√
2S

N0

∫ iTh

(i−1)Th

r(t) cos [χj,n(t)]

}
(coherent).

(10-76)
This equation indicates how Λi,j in Fig. 10.11 is to be calculated for each hop
i and each frequency channel j corresponding to carrier frequency fj . Equa-
tions (10-73) and (10-76) define the optimal coherent detector for any slow
frequency-hopping signal with CPM.
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Figure 10.11: General structure of optimal detector for frequency-hopping sig-
nal with Nh hops and M frequency channels

For noncoherent detection of FH-CPM [50], the received carrier phase φi

is assumed to be uniformly distributed over [0, 2π) during a given hop and
statistically independent from hop to hop. Averaging over the random phase
and dropping factors that can be merged with the threshold yield

Λi,j [r(t)|fj ] =
Nd∑
n=1

I0

(
2
√

2SRi,j,n

N0

)
(noncoherent) (10-77)

where

Ri,j,n =

{∫ iTh

(i−1)Th

r(t) cos [χj,n(t)] dt

}2

+

{∫ iTh

(i−1)Th

r(t) sin [χj,n(t)] dt

}2

.

(10-78)
Equations (10-73), (10-77), (10-78), and (10-75) define the optimal noncoherent
detector for any slow frequency-hopping signal with CPM. When S is known,
the means of producing (10-77) is diagrammed in Fig. 10.12.

A major contributor to the huge computational complexity of the optimal
detectors is the fact that with Ns data symbols per hop and an alphabet size
q, there may be Nd = qNs data sequences per hop. Consequently, the compu-
tational burden grows exponentially with Ns. However, if it is known that the
data modulation is CPFSK with a modulation index h = 1/n, where n is a
positive integer, the computational burden has a linear dependence on Ns [50].
Even then, the optimal detectors are extremely complex when the number of
frequency channels is large.

Consider fast frequency hopping with one hop per orthogonal FSK channel
symbol. Since the information is embedded in the sequence of carrier frequen-
cies, the optimal coherent and noncoherent detectors are defined by (10-75),
(10-76), and (10-77) with Nd = 1 and φ(dn, t) = 0. Although the optimal
detectors are simplified relative to those required for slow frequency hopping,
they are still very complex when M is large.

Instead of basing detector design on the average likelihood ratio, one might
apply a composite hypothesis test in which the presence of the signal is detected
while simultaneously one or more of the unknown parameters under hypothesis
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Figure 10.12: Optimal noncoherent detector for FH-CPM: (a) basic structure
of frequency channel j for hop i and (b) cell for data sequence n

H1 are estimated. If we view a parameter as unknown but nonrandom, then
maximum-likelihood estimation is applicable. A maximum-likelihood estimate
of fj is

f̂j = argmax
fj

Λij [r(t)|fj ]. (10-79)

To simultaneously detect the signal while determining the frequency-hopping
pattern, (10-73) is replaced by the generalized likelihood ratio:

Λ [r(t)] = ES

{
exp

(
−SNhTh

N0

) Nh∏
i=1

max
i≤j≤M

{
Λi,j

[
r(t)|f̂j

]}}
. (10-80)

Although the detection performance is suboptimal when the generalized likeli-
hood ratio is used to design a detector, this detector is slightly easier to imple-
ment and analyze than the optimal one [8], [50]. However, the implementation
complexity is still formidable.

10.4 Channelized Radiometer

Among the many alternatives to the optimal detector, two of the most useful
are the wideband radiometer and the channelized radiometer. The wideband
radiometer is notable in that it requires virtually no detailed information about
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Figure 10.13: Channelized radiometer

the parameters of the frequency-hopping signals to be detected other than their
rough spectral location. The price paid for this robustness is much worse per-
formance than that of more sophisticated detectors that exploit additional in-
formation about the signal [50]. The channelized radiometer is designed to
explicitly exploit the spectral characteristics of frequency-hopping signals. In
its optimal form, the channelized radiometer gives a performance nearly as good
as that of the ideal detector. In its suboptimal form, the channelized radiome-
ter trades performance for practicality and the easing of the required a priori
information about the signal to be detected.

A channelized radiometer comprises K parallel radiometers, each of which
has the form of Fig. 10.1 and monitors a disjoint portion of the hopping band of
a frequency-hopping signal, as depicted in Fig. 10.13. The largest of the sampled
radiometer outputs is compared with a threshold Vt stored in a comparator. If
the threshold is exceeded, the comparator sends a 1 to the summer; otherwise,
it sends a 0. If the hop dwell epochs are at least approximately known, the
channelized radiometer may improve its detection reliability by adding the 1’s
produced by N consecutive comparator outputs corresponding to multiple fre-
quency hops of the signal to be detected. A signal is declared to be present if the
sum V equals or exceeds the integer r, which serves as a second threshold. The
two thresholds Vt and r are jointly optimized for the best system performance.

Ideally, K = M , the number of frequency channels in a hopset, but many
fewer radiometers may be a practical or economic necessity; if so, each ra-
diometer may monitor Mr frequency channels, where 1 ≤ Mr ≤ M . Because
of insertion losses and the degradation caused by a power divider, it is unlikely
that many more than 30 parallel radiometers are practical. An advantage of
each radiometer covering many frequency channels is the reduced sensitivity to
imprecise knowledge of the spectral boundaries of frequency channels. Since it
is highly desirable to implement the parallel radiometers with similar circuitry,
their bandwidths are assumed to be identical henceforth.

To prevent steady interference in a single radiometer from causing false
alarms, the channelized radiometer must be able to recognize when one of its
constituent radiometers produces an output above the threshold for too many
consecutive samples. The channelized system may then delete that constituent
radiometer’s output from the detection algorithm or it may reassign the ra-
diometer to another spectral location.
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In the subsequent analysis of the channelized radiometer of Fig. 10.13, the
observation interval of the parallel radiometers, which is equal to the sampling
interval, is assumed to have a duration equal to the hop duration Th. The effec-
tive observation time of the channelized radiometer, T = NTh, should be less
than the minimum expected message duration to avoid processing extraneous
noise. Let B denote the bandwidth of each of theMr frequency channels encom-
passed by a radiometer passband. As indicated by (10-36), the sampling rate is
MrB to ensure statistically independent samples. The number of samples per
hop dwell time is ν = 	ThMrB
 .

Let PF1 denote the probability that a particular radiometer output at the
end of a hop dwell time exceeds the comparator threshold Vt when no signal is
present. For the AWGN channel, it follows in analogy with (10-48) that

PF1 =
Γ(ν, Vt/σ

2)

Γ(ν)
= exp

(
− Vt

σ2

) ν−1∑
i=0

1

i!

(
Vt

σ2

)i

(10-81)

where the noise power is
σ2 = N0MrB. (10-82)

Thus, in analogy with (10-53),

Vt = σ2
eG

−1
ν (PF1)

� σ2
e [
√
νQ−1(PF1) + ν], ν � 1 (10-83)

where G−1
ν (·) is the inverse function of PF1

(
Vt/σ

2
)
, and σ2

e is an estimate σ2

that can be obtained in the same manner as in Section 10.2. The probability
that at least one of the K parallel radiometer outputs exceeds Vt is

PF2 = 1− (1− PF1)
K (10-84)

assuming that the channel noises are statistically independent because the ra-
diometer passbands are disjoint.

It is convenient to define the function

F (x, r,N) =
N∑
i=r

(
N

i

)
xi(1− x)N−i. (10-85)

If y = F (x, r,N), then the inverse function is denoted by x = F−1(y, r,N),
which may be easily computed by Newton’s method. The probability of a false
alarm of the channelized radiometer is the probability that the output V equals
or exceeds a threshold r:

PF = F (PF2, r,N). (10-86)

Therefore, if ν � 1, (10-83), (10-84), and (10-86) may be combined to determine
the approximate threshold necessary to achieve a specified PF :

Vt � σ2
e [
√
νQ−1

{
1−
[
1− F−1 (PF , r,N)

]1/K}
+ ν], ν � 1 (10-87)
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where we assume that σ2 does not vary across the hopping band, and hence
there is one σ2

e and one Vt for all the parallel radiometers.
We assume that at most a single radiometer receives significant signal energy

during each hop dwell time. Let PD1 denote the probability that a particular
radiometer output exceeds the threshold when a signal is present in that ra-
diometer. By analogy with (10-50) and (10-51),

PD1 = Qν

(√
2Eh/N0 ,

√
2Vt/σ2

)

� Q

[
Vt/σ

2 − ν − Eh/N0√
ν + 2Eh/N0

]
, ν � 1 (10-88)

where Eh is the energy per hop dwell time. Let PD2 denote the probability that
the threshold is exceeded by the sampled maximum of the parallel radiometer
outputs. We assume that when a signal is present it occupies any one of M
frequency channels with equal probability and that all radiometer passbands
are within the hopping band. Consequently, the signal has probability Mr/M
of being in the passband of a particular radiometer, and the monitored fraction

μ = KMr/M (10-89)

is the probability that the signal is in the passband of some radiometer. Since
a detection may be declared in response to a radiometer that does not receive
the signal,

PD2 = μ
[
1− (1− PD1) (1− PF1)

K−1
]
+ (1− μ)PF2. (10-90)

The number of hop dwell times during which the signal is actually present is
N1 ≤ N . The second threshold is exceeded if the comparator produces j 1’s in
response to these N1 dwell times, i− j 1’s in response to the remaining N −N1

dwell times that are observed, and i ≥ r. Thus, the probability of detection
when the signal is actually present during N1 ≤ N of the observed hop dwell
times is

PD =
N∑
i=r

i∑
j=0

(
N1

j

)(
N −N1

i− j

)
P j
D2 (1− PD2)

N1−j
P i−j
F2 (1− PF2)

N−N1−i+j
.

(10-91)
If at least the minimum duration of a frequency-hopping signal is known, the
overestimation of N might be avoided so that N1 = N . The detection proba-
bility then becomes

PD =

N∑
i=r

(
N

i

)
P i
D2 (1− PD2)

N−i

= F (PD2, r,N). (10-92)

A reasonably good, but not optimal, choice for the second threshold is
r = 	N/2
 when the full hopping band is monitored by the channelized ra-
diometer, where 	x
 denotes the largest integer less than or equal to x. In
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general, numerical results indicate that

r =

⌊
μ
N

2

⌋
(10-93)

is a good choice for partial-band monitoring.
If a detection decision is made by summing N comparator outputs derived

from a block of N hop dwell intervals of duration T = NTh, and successive
detection decisions are derived from successive blocks that do not overlap except
possibly at end points, then the false-alarm rate F in units of false alarms per
second is an appropriate design parameter. This type of detection is called block
detection, and

PF = FNTh. (10-94)

To prevent the risk of major timing misalignment of the observation inter-
val with the time the signal is being transmitted, either block detection must
be supplemented with hardware for arrival-time estimation or the duration of
successive block observation intervals should be less than roughly half the an-
ticipated signal duration.

A different approach to mitigating the effect of a misalignment, called binary
moving-window detection, is for a new block to comprise the preceding block
with the oldest hop dwell interval discarded and the most recent hop dwell
interval added. A false alarm is considered to be a new detection declaration at
the end of a block when no signal is actually present. Thus, a false alarm occurs
only if the comparator input for an added hop dwell time exceeds the threshold,
the comparator input for the discarded hop dwell time did not, and the count
for the intermediate hop dwell times was r − 1. Therefore, the probability of a
false alarm is

PF0 = C(0, 1)C(r − 1, N − 1)C(1, 1) (10-95)

where

C(i,N) =

(
N

i

)
P i
F2 (1− PF2)

N−i
, i ≤ N. (10-96)

Since a false alarm may occur after every hop dwell interval, the false-alarm
rate is

F0 =
PF0

Th
=

r

NTh

(
N

r

)
P r
F2 (1− PF2)

N+1−r
. (10-97)

To compare the block and binary moving-window detectors, assume that
PF2 is the same for both detectors. Since the right-hand side of (10-97) is
proportional to the first term of the series representation of (10-86) and F =
PF /NTh for the block detector, the false-alarm rate F0 of the binary moving-
window detector has the upper bound given by

F0 ≤ rF. (10-98)

If PF2 � 1/N , the upper bound is tight, which implies that the false-alarm
rate is nearly r times as large for moving-window detection as it is for block
detection. Thus, moving-window detection usually requires a higher comparator
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Figure 10.14: Probability of detection versus Eh/N0 for channelized and wide-
band radiometers with full coverage, N1 = N , h = 1, M = 2400, F = 10−7/Th,
and B = 250/Th

threshold for the same false-alarm rate and hence more signal power to detect a
frequency-hopping signal. However, moving-window detection with N ≈ N1 �
1 inherently limits the misalignment between the occurrence of the intercepted
signal and some observation interval.

Example 7. Assume that there are M = 2400 frequency channels, block
detection is used, F = 10−5/Th, B = 250/Th, and ν = ThμMB/K = 6 ·
105μ/K � 1. The signal duration is known and there is no misalignment so that
N1 = N . In Figure 10.14, the full hopping band is monitored so that μ = 1, h =
σ2
e/σ

2 = 1, and PD versus Eh/N0 is plotted for several values of K and N . The
figure also shows the results for a wideband radiometer with ν = NThMB =
6 · 105 ·N and N = 150 or 750. The substantial advantage of the channelized
radiometer with K = M and Mr = 1 is apparent. The channelized radiometer
with K = 30 is much better than the wideband radiometer when N = 150,
but K = 150 is needed for the advantage of the channelized radiometer to
be preserved when N = 750. As N increases, the channelized radiometer can
retain its advantage over the wideband radiometer by increasing K accordingly.
�

Example 8. In Figure 10.15, N = 150 and K = 30, but Mr and h = σ2
e/σ

2

are variable. It is observed that when h > 1, the performance loss depends
on the value of μ, which directly affects ν. The figure illustrates the tradeoff
when K and M are fixed and the monitored fraction μ decreases. Since Mr =



624 CHAPTER 10. DETECTION OF SPREAD-SPECTRUM SIGNALS

21 22 23 24 25 26 27
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Hop energy−to−noise−density ratio, dB

____
_ _ _ h = 1

h > 1

1.00.1 1.0� = 0.05 0.2

h=1.05

� =

h=1.01

Figure 10.15: Probability of detection for channelized radiometer with different
monitored fractions, N1 = N = 150, K = 30, M = 2400, F = 10−7/Th, B =
250/Th, and h = 1.0, 1.01, and 1.05

μM/K = 80μ decreases, fewer frequency channels are monitored, ν decreases,
the sensitivity to h > 1 decreases, and less noise enters a radiometer. The
net result is beneficial when μ = 0.2. However, the figure indicates that for
μ = 0.1 or 0.05, the hopping-band coverage becomes inadequate to enable a PD

greater than 0.998 and 0.968, respectively, regardless of Eh/N0. Thus, there is a
minimum fraction μmin of the hopping band that must be monitored to ensure
a specified PD. �

As Eh/N0 → ∞, (10-88) indicates that PD1 → 1. Therefore, (10-90) implies
that PD2 → μ + (1 − μ)PF2. Suppose that μ = μmin for a specified PD. The
threshold Vt is raised to a sufficiently high level that PF2 � μmin, and hence
PD2 ≈ μmin. If detection is to be accomplished for the minimum monitored
fraction, then r = 1 is the best choice for the second threshold. For r = 1 and
N1 = N , (10-92) yields

PD = 1− (1− PD2)
N . (10-99)

Since PD2 ≈ μmin, (10-99) implies that even if Eh/N0 → ∞, the realization of
a specified PD requires the minimum monitored fraction

μmin ≈ 1− (1− PD)1/N . (10-100)

Thus, if PD = 0.99 and N = N1 = 150, then μmin ≈ 0.03.
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The channelized radiometer requires estimation of the arrival time of the
frequency-hopping signal, the hop duration, and the minimum duration of the
entire frequency-hopping signal. The channelized radiometer has a performance
degradation due to inaccurate estimates or any timing misalignment. However,
when the SNR is very high, the opportunity to intercept two partial pulses
in one observation period due to a timing misalignment actually improves the
detection probability of the channelized radiometer [58].

10.5 Problems

1. If the parameters of a signal s(t) to be detected are known, then the
sufficient statistic r1 is compared with a threshold Vt to determine whether
the target signal is present. Suppose that it is present and coincides with
the observation interval. Assume that the AWGN n(t) has two-sided
power spectral density N0/2 and that the signal energy is E . (a) What
is the probability of detection PD? What is the probability of false alarm
PF ? (b) Express PD in terms of a required PF . (c) What is the value of
E/N0 necessary to ensure specified values of PF and PD?

2. Use (A-6) and (A-7) of Appendix A.1 for a standard Gaussian random
variable to derive (10-45).

3. The receiver operating characteristic (ROC) is a traditional plot depicting
PD versus PF for various values of ν or E/N0 . For the AWGN channel,
the ROC may be calculated from (10-51) and (10-48). Plot the ROC for
the wideband radiometer with E/N0 = 20 dB and no noise-measurement
error. Let ν = 104 and 105 .

4. Compare the known-signal detector of problem 1 with the radiometer
when the two detectors have the same false-alarm probability and de-
tection probability over the AWGN channel. Show that the radiometer
requires more than 6 dB in additional energy to achieve the same perfor-
mance as the known-signal detector.

5. (a) Derive (10-55) using the method described in the text. (b) De-
rive (10-56) using the method described in the text.

6. Derive (10-65).

7. Find conditions under which (10-65) indicates that a negative energy is
required. What is the physical implication of this result?

8. Consider a channelized radiometer that is to detect a single hop of a
frequency-hopping signal. Assume that N1 = N = 1 and r = 1 . (a) Find
Vt in terms of PF that does not require F−1(·). (b) Derive PD assuming
that KMr = M and PF � 1.



Appendix A

Gaussian Random Variables

A.1 General Characteristics

Let X denote a random variable. Then X is a standard Gaussian or normal
random variable if it has mean E [X] = 0, variance σ2 = E

[
X2
]
> 0, and

density

f(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. (A-1)

To verify that fX(x) is a legitimate density, we prove that

∫ ∞

−∞
f(x) dx =

1√
π

∫ ∞

−∞
exp(−x2) dx = 1. (A-2)

The first equality follows from the substitution of (A-1) and a change of vari-
able. Squaring the second integral, applying Fubini’s theorem (SectionC.1) to
equate the result to a double integral, changing variables, and applying Fubini’s
theorem to do successive integrations, we obtain

[∫ ∞

−∞
exp(−x2) dx

]2
=

∫ ∞

−∞

∫ ∞

−∞
exp
[
−(x2 + y2)

]
dxdy

=

∫ 2π

0

∫ ∞

0

exp(−ρ2)ρdρdθ

= π (A-3)

which proves the second equality of (A-2). The standard Gaussian distribution
function is

F (x) =
1√
2πσ

∫ x

−∞
exp

(
−y2

2

)
dy. (A-4)
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x

y

(-x0,0) (x0,0)

(-x0,u) (x0,u)..

Figure A.1: Contour for evaluation of characteristic function

Finite moments of the standard Gaussian density exist for any nonnegative
integer k. An integration by parts indicates that

E
[
Xk
]
=

1√
2π

∫ ∞

−∞
xk exp

(
−x2

2

)
dx

= − 1√
2π

∫ ∞

−∞
xk−1 d

dx
exp

(
−x2

2

)
dx

=
k − 1√

2π

∫ ∞

−∞
xk−2 exp

(
−x2

2

)
dx

= (k − 1)E
[
Xk−2

]
, k ≥ 2. (A-5)

Since E [X] = 0 and E
[
X2
]
= 1, it follows by induction that

E
[
X2k+1

]
= 0, k ≥ 0. (A-6)

E
[
X2k

]
= (2k − 1) (2k − 3) . . . 1, k ≥ 1. (A-7)

The characteristic function (Appendix C.2) of a random variable X is de-
fined as E

[
ejuX

]
, where j =

√
−1 and −∞ < u < ∞. Therefore, the charac-

teristic function of the standard Gaussian random variable is

hs(u) =
1√
2π

∫ ∞

−∞
exp

(
−x2

2

)
exp (jux) dx. (A-8)

To evaluate this integral, we apply Cauchy’s integral theorem to a contour in-
tegral in the complex plane over the rectangle with vertices (−x0, 0) , (x0, 0),
(x0, x0 + ju) , and (−x0,−x0 + ju) , as illustrated in Fig. A.1. The complex in-
tegration variable is z = x + jy, and the contour is traversed in the counter-
clockwise direction. The integrals over the vertical sides of the rectangle become
negligible as x0 → ∞. The integral from (−x0, 0) to (x0, 0) approaches hs(u)
as x0 → ∞. Since there are no singularities within the transformed rectangle,
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0 = lim
x0→∞

∮
1√
2π

exp

(
−z2

2

)
exp (juz) dz

= hs(u)−
1√
2π

exp

(
−u2

2

)∫ ∞

−∞
exp

(
−x2

2

)
dx

= hs(u)− exp

(
−u2

2

)
(A-9)

where the final equality is obtained by applying (A-2).Thus, the characteristic
function of the standard Gaussian random variable is

hs (u) = exp

(
−u2

2

)
. (A-10)

If X is a standard Gaussian random variable, then Y = μ+ σX is a Gaus-
sian or normal random variable with mean μ and variance σ2. By including
the constant random variable as a standard Gaussian random variable with
σ = 0, we have σ2 ≥ 0. The characteristic function of Y is h(u) = E

[
ejuY

]
=

E
[
eju(μ+σX)

]
. Using (A-10), we obtain the characteristic function of a Gaus-

sian random variable:

h(u) = exp

(
juμ− σ2u2

2

)
. (A-11)

Since the distribution function of a random variable is uniquely determined by
the characteristic function (Appendix C.2), a necessary and sufficient condition
that a random variable is Gaussian is that its characteristic function has the
form of (A-11).

An n× 1 random column vector X = [X1 . . . Xn]
T
has components that are

random variables. The joint characteristic function of X is defined as

h(u) = E
[
exp
(
juTX

)]
= E

[
exp

(
j

n∑
k=1

ukXk

)]
(A-12)

where u =[u1u2 . . . un]
T
. If the random variables are independent Gaussian

random variables with mean μk and var (Xk) = σ2
k, and D is an n×n diagonal

matrix with its kth element equal to σ2
k, then

h(u) =
n∏

k=1

E [exp (jukXk)]

=
n∏

k=1

exp (jukμk) exp

(
−u2

kσ
2
k

2

)

=exp

(
juTμ− 1

2
uTDu

)
. (A-13)
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A Gaussian random vector X is defined as one with a characteristic function
of the form

h(u) = E
[
exp
(
juTX

)]
= exp

(
juTμ− 1

2
uTKu

)
(A-14)

where the n× 1 mean vector μ and n× n covariance matrix K are

μ = E [X] , K = E
[
(X− μ) (X− μ)

T
]
. (A-15)

Let x denote an arbitrary n× 1 vector. Since

0 ≤ E

[{
(X− μ)

T
x
}2
]
= E

[
x (X− μ) (X− μ)

T
x
]

= xTKx (A-16)

the symmetric matrix K is positive semidefinite. The components of a Gaussian
random vector X1, . . . , Xn are called jointly Gaussian random variables.

Theorem 1. The random vector X = AY + μ is a Gaussian random
vector if Y has components that are independent zero-mean Gaussian random
variables.

Proof. If Y is an n× 1 Gaussian random vector with mean 0 and an n×n
diagonal covariance matrix D, then (A-13) indicates that X = AY+μ has the
characteristic function

E
[
exp
(
juTX

)]
= exp

(
juTμ

)
E
[
exp
(
juTAY

)]

= exp

(
juTμ− 1

2
uTKu

)
, K = ADAT . (A-17)

Since the characteristic function of X has the form of (A-14), X is a Gaussian
random vector. �

Theorem 2. An n×1 Gaussian random vectorX with an n×1 mean vector
μ and an n× n covariance matrix K can be expressed as X = AY + μ, where
the components of Y are independent zero-mean Gaussian random variables,
and A is an n× n orthogonal matrix.

Proof. Since the n× n matrix K is symmetric positive-semidefinite, it can
be diagonalized by an orthogonal matrix (Appendix G). Let A denote an n×n
orthogonal matrix such that ATKA = D where D is an n×n diagonal matrix
with diagonal elements equal to the {λk} , which are the eigenvalues of K .
Define Y = AT (X − μ). Then Y has mean 0, covariance ATKA = D, and
characteristic function

E
[
exp
(
juTY

)]
= exp

(
−1

2
uTDu

)
= exp

(
−1

2

n∑
k=1

λku
2
k

)

=

n∏
k=1

exp

(
−1

2
λku

2
k

)
. (A-18)
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By the uniqueness of the characteristic function (Theorem 5, Appendix C), (A-18),
and (A-13), the {Yk} are independent, and Yk is a zero-mean Gaussian random
variable with variance λk. The orthogonality of A implies that AT = A−1 ,
and hence, X = AY + μ. �

Theorem 3. If K is invertible, an n × 1 Gaussian random vector X with
an n× 1 mean vector μ and an n× n covariance matrix K has density

fX (x) = (2π)
−n/2

(detK)
−1/2

exp

[
−1

2
(X− μ)TK−1(X− μ)

]
. (A-19)

Proof. If the symmetric positive-semidefinite matrix K is invertible, it is
positive definite, and every eigenvalue λk of K is positive (Appendix G). Let
A denote an n × n orthogonal matrix such that ATKA = D, where D is an
n×n diagonal matrix with positive diagonal elements equal to the {λk} . Then
Theorem 2, (A-1), and (A-13) imply that Y = AT (X− μ) has density

fY (y) =

n∏
k=1

(2πλk)
−1/2

exp

(
− y2k
2λk

)

= (2π)
−n/2

(detD)
−1/2

exp

(
−yTD−1y

2

)
. (A-20)

The Jacobian of the transformation X = AY + μ is detAT = detA. Since A
is orthogonal, detAT = detA−1. Using these equations and the fact that 1 =
detAA−1 = (detA)

(
detA−1

)
, we obtain

∣∣detAT
∣∣ = 1. Since ATKA = D

implies that AD−1AT = K−1 and detD = detK, the density of X is given
by (A-19). �

If K is singular, then X does not have a density.
Theorem 4. If X is a Gaussian random vector, B is an arbitrary n × n

matrix, and Z = BX, then Z is a Gaussian random vector. Thus, the linear
transformation of a Gaussian random vector is itself a Gaussian random vector.

Proof. According to Theorem 2, X can be expressed as X = AY + μ,
where Y is a vector with components that are independent zero-mean Gaussian
random variables. Then Z = BAY +Bμ, which is a Gaussian random vector
by Theorem 1. �

Even if X has Gaussian components, X may not be a Gaussian random
vector. Thus, Z = BX may not be a Gaussian random vector if X has Gaussian
components but is not a Gaussian random vector.

Theorem 5. The components of a Gaussian random vector X are inde-
pendent random variables if and only if they are uncorrelated and have positive
variances.

Proof. If the component random variables of a Gaussian random vector
X are uncorrelated, then K is diagonal. If all variances are positive, then the
diagonal elements of K and hence K−1 are positive. Theorem 3 indicates that
the density of X is the product of the densities of its components, and hence,
the components are independent. Conversely, if the components of a Gaussian
random vector X are independent random variables, then (A-13) implies that
K is diagonal, and hence, the components are uncorrelated. �
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A complex n × 1 random vector has the form X = X1 + jX2, where X1

and X2 are real-valued random vectors with means μ1 and μ2, respectively.
Thus, E [X] = μ = μ1 + jμ2. Let Ki denote the n × n covariance matrix of
Xi, i = 1, 2. We define the n× n cross-covariance matrices of X1 and X2 as

K12 = E
[
(X1 − μ1) (X2 − μ2)

T
]

(A-21)

K21 = E
[
(X2 − μ2) (X1 − μ1)

T
]
. (A-22)

The n× n covariance matrix of X is

K = E
[
(X− μ) (X− μ)

H
]

= K1 +K2 + j (K21 −K12) . (A-23)

A complex n× 1 random vector X is a complex Gaussian random vector if the
2n × 1 real-valued vector Xc = [X1X2]

T is a Gaussian random vector. The
2n× 2n covariance matrix of Xc is

Kc =

[
K1 K12

K21 K2

]
. (A-24)

A complex n× 1 random vector X is circularly symmetric if

E
[
(X− μ) (X− μ)

T
]
= 0. (A-25)

Expanding this equation in terms of its real and imaginary parts, we find that
circular symmetry implies that

K1 = K2, K21 = −K12. (A-26)

If a complex Gaussian random vector X has independent real and imaginary
components, then its covariance matrix is a real-valued diagonal matrix D with
positive elements, and

D = K1 +K2, K21 = K12 = 0. (A-27)

If X is also circularly symmetric, then (A-24), (A-26), and (A-27) imply that

Kc =

[
1
2D 0
0 1

2D

]
. (A-28)

A.2 Central Limit Theorem

The central limit theorem establishes conditions under which the sum of many
random variables has an approximately normal or Gaussian distribution. The
proof exploits the following fundamental theorem. Let Fn (x) and F (x) de-
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note distribution functions with characteristic functions hn (u) and h (u), re-
spectively. A necessary and sufficient condition for Fn (x) → F (x) is that
hn (u) → h (u) for each u [6, 9].

In the proof of the central limit theorem and its corollaries, Chebyshev’s
inequality, the Cauchy–Schwarz inequality for random variables, and Taylor’s
theorems for complex-valued and analytic functions are needed.

Chebyshev’s Inequality

Consider a random variable X with distribution F (x). Let m = E[X] denote
the expected value of X, and P [A] denote the probability of event A. From
elementary probability, it follows that

E[|X −m|k] =
∫ ∞

−∞
|x−m|kdF (x)

≥
∫ ∞

|x−m|≥α

|x−m|kdF (x)

≥ αk

∫ ∞

|x−m|≥α

dF (x)

= αkP [|X −m| ≥ α] (A-29)

which implies Markov’s inequality :

P [|X −m| ≥ α] ≤ 1

αk
E[|X −m|k]. (A-30)

Let σ2 = E[(X − m)2] denote the variance of X. If k = 2, then (A-30)
becomes Chebyshev’s inequality :

P [|X −m| ≥ α] ≤ σ2

α2
. (A-31)

Cauchy–Schwarz Inequality for Random Variables

Let X and Y denote random variables. When Y �= 0, an expansion of the
inequality

E

[(
X − E [XY ]

E [Y 2]
Y

)2
]
≥ 0 (A-32)

yields the Cauchy–Schwarz inequality :

E [XY ] ≤
√
E [X2]E [Y 2] (A-33)

which is valid for Y = 0.

Taylor’s Theorem for Complex-Valued Functions Let f (x) denote a
complex-valued function of a real variable x with n + 1 continuous derivatives
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on an open interval including the origin. Let f (n) (x) denote the nth derivative
of f (x) . Then for all x in the interval,

f (x) =
n∑

k=0

f (k) (0)xk

k!
+Rn (x) (A-34)

where the remainder is

Rn (x) =
xn+1

n!

∫ 1

0

f (n+1) (xy) (1− y)
n
dy. (A-35)

If
∣∣f (n+1) (u)

∣∣ ≤ c for all u on the open interval, then

|Rn (x)| ≤
c |x|n+1

(n+ 1)!
. (A-36)

Proof. Integrating by parts the integral in (A-35), we obtain

Rn (x) = −f (n) (0)xn

n!
+Rn−1 (x) .

Repeated substitutions into the right-hand side of this equation and the final
substitution of R0 (x) = f (x)−f (0) proves (A-34). Substituting

∣∣f (n+1) (u)
∣∣ ≤

c and ∫ 1

0

(1− y)
n
dy =

1

n+ 1

into (A-35) proves (A-36). �
Applying Taylor’s theorem to a series expansion of exp(jx) about the origin

x = 0, we obtain

exp(jx) =

n∑
k=0

(jx)
k

k!
+

θ |x|n+1

(n+ 1)!
, |θ| ≤ 1 (A-37)

where j =
√
−1 and x is real-valued.

Taylor’s Theorem for Analytic Functions Let f (z) denote an analytic
function over an open disk D including the origin in the complex plane. Then
for every z ∈ D, we have the Taylor series

f (z) =

∞∑
k=1

f (k) (0) zk

k!
. (A-38)

Proof. Let C denote a circle centered at the origin and within D. By
Cauchy’s integral formula,

f (z) =
1

2πj

∮
C

f (z1)

z1 − z
dz1
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where z lies within C, z1 is the integration variable, and the integration path
is counterclockwise around C. Since f (z) is analytic in D, it has derivatives of
all orders in D, and the kth derivative is

f (k) (z) =
k!

2πj

∮
C

f (z1)

(z1 − z)k+1
dz1. (A-39)

From the formula for a finite geometric sum, we obtain

1

1− z
=

∞∑
k=0

zk, |z| < 1

and the convergence is uniform in any closed disk |z| ≤ r < 1. Since |z/z1| <
1, (A-39) and the geometric sum imply that

f (z) =
1

2πj

∮
C

f (z1)

z1

∞∑
k=0

(
z

z1

)k

dz1

=
1

2πj

∞∑
k=0

zk
∮
C

f (z1)

zk+1
1

dz1

where the interchange of the order of integration and summation is valid because
of the uniform convergence. Substitution of (A-39) with z = 0 into this equation
yields (A-38). �

A Taylor series for the principal branch of ln (1 + z) is

ln (1 + z) =

∞∑
k=1

(−1)
k+1

zk

k

= z + z2
∞∑
k=2

(−1)
k+1

zk−2

k
, |z| < 1. (A-40)

We define

ζ =
z2

|z|2
∞∑
k=2

(−1)
k+1

zk−2

k
. (A-41)

If |z| ≤ 1/2, then

|ζ| ≤
∞∑
k=2

|z|k−2

k
≤ 1

2

∞∑
k=2

|z|k−2 ≤ 1, |z| ≤ 1/2. (A-42)

Therefore,

ln (1 + z) = z + ζ |z|2 , |z| ≤ 1/2, |ζ| ≤ 1. (A-43)

Central Limit Theorem Suppose that for each n, the sequence X1, X2, . . . , Xn

is independent and that each Xk has finite mean mk, finite variance σ2
k,
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and distribution function Fk (x) . Let Sn =X1 + X2 + . . . + Xn and Tn =
(Sn − E [Sn]) /sn, where s2n = var (Sn) =

∑n
k=1 σ

2
k. If for every positive ε,

n∑
k=1

1

s2n

∫
|x−mk|≥εsn

(x−mk)
2
dFk (x) → 0 as n → ∞

then Tn converges in distribution to a standard Gaussian random variable with
distribution given by (A-4).

Proof : We assume in the proof that mk = 0 with no loss of generality
because Sn − E [Sn] =

∑∞
k=1 (Xk −mk) , and E [Xk −mk] = 0.

Let hk and φn denote the characteristic functions of Xk and Tn, respectively.
The independence of each Xk implies that

φn (u) = E
[
ejuTn

]
=

n∏
k=1

E
[
ejuXk/sn

]
=

n∏
k=1

hk

(
u

sn

)
.

Since the convergence of the characteristic functions determines the convergence
of the distribution functions, the theorem is proved if it is shown that φn (u) →
exp
(
−u2/2

)
, which is equivalent to showing that

ln (φn (u)) =
n∑

k=1

ln

(
hk

(
u

sn

))
→ −u2/2 as n → ∞. (A-44)

The partitioning of the defining integral gives

hk

(
u

sn

)
=

∫
|x|<εsn

ejux/sndFk (x) +

∫
|x|≥εsn

ejux/sndFk (x)

for each positive ε. Substituting (A-37) with n = 2 and n = 1 into the first and
second integrals, respectively, and using mk = E [Xk] = 0, we obtain

hk

(
u

sn

)
= 1 +

u2

2
θ1αnk − u2

2
βnk +

|u|3

6s3n
θ2

∫
|x|<εsn

|x|3 dFk (x) (A-45)

where |θ1| , |θ2| ≤ 1 and

αnk =
1

s2n

∫
|x|≥εsn

x2dFk (x) (A-46)

βnk =
1

s2n

∫
|x|<εsn

x2dFk (x) . (A-47)

Since |x|3 < εsnx
2 when |x| < εsn, (A-45) may be expressed as

hk

(
u

sn

)
= 1 + γnk (A-48)

where

γnk =
u2

2
θ1αnk − u2

2
βnk +

|u|3

6
εθ2βnk. (A-49)
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If |γnk| ≤ 1/2 , the application of (A-43) yields

n∑
k=1

ln

(
hk

(
u

sn

))
=

n∑
k=1

γnk + ζ

n∑
k=1

|γnk|2 (A-50)

where |ζ| ≤ 1.
From the hypothesis of the theorem, as n → ∞,

n∑
k=1

αnk → 0 . (A-51)

It follows from (A-46) and (A-47) that

∞∑
k=1

(αnk + βnk) =
1

s2n

∞∑
k=1

σ2
k = 1.

This equation and (A-51) imply that, as n → ∞,

n∑
k=1

βnk → 1, (A-52)

and hence,
n∑

k=1

γnk → −u2/2 +
|u|3

6
θ2ε . (A-53)

Equations (A-49), (A-51), and (A-52) indicate that, as n → ∞,

n∑
k=1

|γnk| → u2/2 +
|u|3

6
|θ2| ε . (A-54)

Since (A-47) indicates that 0 ≤ βnk < ε2, we obtain

max
k

|γnk| <
u2

2
ε2 +

|u|3

6
ε3 (A-55)

for sufficiently large n. Thus, |γnk| ≤ 1/2 for all k and u if n is sufficiently large
and ε is sufficiently small. Using (A-54) and (A-55), we obtain

n∑
k=1

|γnk|2 ≤ max
k

|γnk|
n∑

k=1

|γnk|

<

(
u2

2
ε2 +

|u|3

6
ε3

)(
u2

2
+

|u|3

6
ε

)
(A-56)

for sufficiently large n. Thus, for any positive δ, (A-50), (A-53), and (A-56)
imply that ∣∣∣∣∣

n∑
k=1

ln

(
hk

(
u

sn

))
+ u2/2

∣∣∣∣∣ < δ
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if ε is chosen sufficiently small and n is sufficiently large, which proves (A-44).
�

Corollary 1. Suppose that the sequence X1, X2, . . . , Xn is independent
for each n and identically distributed so that each Xk has finite mean m, finite
variance σ2 > 0, and distribution function F (x) . Let Sn = X1+X2+ . . .+Xn

and Tn = (Sn − nm) /σ
√
n. Then Tn converges in distribution to a standard

Gaussian random variable.
Proof : Since s2n = nσ2, mk = m, and Fk (x) = F (x) ,

n∑
k=1

1

s2n

∫
|x−mk|≥εsn

(x−mk)
2
dFk (x) =

1

σ2

∫
|x−m|≥εσ

√
n

(x−m)
2
dF (x)

which converges to zero by the Lebesgue dominated convergence theorem since
σ2 is finite and positive, and {|x−m| ≥ εσ

√
n} converges to the empty set as

n → ∞. �
Corollary 2. Suppose that the sequence X1, X2, . . . , Xn is independent for

each nand that each Xk has finite mean mk, has distribution function Fk (x) ,
and is uniformly bounded with |Xk −mk| < M for all k. Let Sn = X1 +
X2 + . . . + Xn and Tn = (Sn − E [Sn]) /sn, where s2n = var (Sn) =

∑n
k=1 σ

2
k.

If sn → ∞, then Tn converges in distribution to a standard Gaussian random
variable.

Proof : Using |Xk −mk| < M for all k and Chebyshev’s inequality, we
obtain

n∑
k=1

1

s2n

∫
|x−mk|≥εsn

(x−mk)
2
dFk (x) ≤

n∑
k=1

4M2

s2n
P {|x−mk| ≥ εsn}

≤
n∑

k=1

4M2σ2
k

s4nε
2

=
4M2

s2nε
2
→ 0. �

The indicator function IA of a set A is the function on the sample space Ω
that assumes the value 1 on A and 0 on the complement of A.

Corollary 3. Suppose that the sequence X1, X2, . . . , Xn is independent for
each nand that each Xk has finite mean mk, finite variance σ2

k, and distribution
function Fk (x) . Let Sn = X1 + X2 + . . . + Xn and Tn = (Sn − E [Sn]) /sn,
where s2n = var (Sn) =

∑n
k=1 σ

2
k. If s3n/n → ∞ and the fourth central moment

is uniformly bounded so that E
[
(Xk −mk)

4
]
< M2 for all k, then Tn converges

in distribution to a standard Gaussian random variable.
Proof : Applying successively the Cauchy–Schwarz inequality and the

bound on the fourth central moment, we obtain

n∑
k=1

1

s2n

∫
|x−mk|≥εsn

(x−mk)
2
dFk (x) =

n∑
k=1

1

s2n
E
[
(Xk −mk)

2
I{|x−mk|≥εsn}

]

≤
n∑

k=1

M

s2n

√
P [|x−mk| ≥ εsn].
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Since the fourth central moment is bounded by M2, the Cauchy–Schwarz in-
equality indicates that the second central moment is bounded by M . This
bound and Chebyshev’s inequality give

P [|x−mk| ≥ εsn] ≤
√
M

εsn
. (A-57)

The substitution of this inequality into the preceding one and the application
of the hypothesis that s3n/n → ∞ yield

n∑
k=1

1

s2n

∫
|x−mk|≥εsnc

(x−mk)
2
dFk (x) ≤

n∑
k=1

M3/2

s3nε

=
M3/2/ε

s3n/n
→ 0.

�



Appendix B

Moment-Generating
Function and Laplace
Transform

B.1 Moment-Generating Function

The moment-generating function of the random variable X with distribution
function F (x) is defined as

M(s) = E
[
esX
]
=

∫ ∞

−∞
esxdF (x) (B-1)

for all real-valued s for which the integral is finite. Thus, the moment-generating
function is the two-sided Laplace transform restricted to real values of s. If
s0 > 0 and M(s) is defined throughout (−s0, s0) , then E[exp(|sx|)] exists for

|s| < s0. Since its series expansion indicates that exp(|sx|) ≥ |sx|k /k!, k ≥ 0, X
has finite moments of all orders.

If s0 > 0 and M(s) is defined throughout (−s0, s0) , the difference quotient

M(s+Δs)−M(s)

Δs
=

∫ ∞

−∞

e(s+Δs)x − esx

Δs
dF (x), s ∈ (−s0, s0) (B-2)

is finite when s+Δs ∈ (−s0, s0). Taking the limit of both sides of this equation
as Δs → 0 and applying the Lebesgue dominated convergence theorem, we find
that the derivative of M(s) is

M ′(s) =

∫ ∞

−∞
xesxdF (x), s ∈ (−s0, s0) . (B-3)
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Since finite moments of all orders exist, the preceding derivation can be extended
successively to higher order derivatives of M(s). The kth derivative is

M (k)(s) =

∫ ∞

−∞
xkesxdF (x), s ∈ (−s0, s0) . (B-4)

Thus, if M(s) exists in some neighborhood of 0, then the kth moment of X is

E
[
Xk
]
= M (k)(0), k ≥ 0 (B-5)

which indicates that the moment-generating function is aptly named. Equa-
tion (B-4) implies that M (2)(s) ≥ 0. Consequently, M(s) is a convex function
over its interval of definition.

B.2 Chernoff Bound

The Chernoff bound is an upper bound on the probability that a random vari-
able equals or exceeds a constant. The usefulness of the Chernoff bound stems
from the fact that it is often much more easily evaluated than the probability it
bounds. Let [0, s0) denote the nonnegative interval of values of s for which the
moment-generating function M (s) is defined. For all nonnegative s ∈ [0, s0)
and a real-valued b, the probability that X ≥ b is

P [X ≥ b] =

∫ ∞

b

dF (x) ≤ exp(−sb)

∫ ∞

b

exp(sx)dF (x)

≤ exp(−sb)M(s), 0 ≤ s < s0. (B-6)

To make this bound as tight as possible, we choose the value of s that minimizes
M(s). Therefore,

P [X ≥ b] ≤ exp (−sb) min
0≤s<s0

M(s) exp (−sb) (B-7)

where the upper bound is called the Chernoff bound.
Consider a random variable such that

E(X) < 0 , P [X > 0] > 0. (B-8)

The first inequality and (B-3) imply that M ′(0) < 0, and the second inequality
implies that M(s) → ∞ as s → ∞. Thus, since M(0) = 1, the convex function
M(s) has a minimum value that is less than unity at some positive s = sm. We
conclude that (B-8) is sufficient to ensure that the Chernoff bound is less than
unity, as required if this bound is to be useful.
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B.3 Laplace Transform

The Laplace transform of a nonnegative random variable X with a distribution
function F (x) concentrated on [0,∞) is defined as

L (s) =E
[
e−sX

]

=

∫ ∞

0

e−sxdF (x), s ≥ 0. (B-9)

The moment-generating function of a nonnegative random variable is obtained
from its Laplace transform by replacing the real variable s with the real variable
−s. In some applications, it is useful to let s be complex and change s ≥ 0 to
Re (s) ≥ 0 , but that is not done in this exposition.

Theorem 1. If F (x) is the distribution of a nonnegative random variable
X, then the kth derivative of its Laplace transform L (s) is

L(k) (s) = (−1)
k
∫ ∞

0

xke−sxdF (x), k ≥ 0, s > 0. (B-10)

If X has a kth moment, then

E
(
Xk
)
= (−1)

k L(k)
(
0+
)
. (B-11)

Proof: The proof is by mathematical induction. Equation (B-10) is true
for k = 0 by definition (B-9). Assuming that it is true for k = n and applying
Taylor’s theorem (Appendix A.2) to e−hx, we find that for s+ h > 0,

L(n) (s+ h)− L(n) (s)

h
= (−1)

n
∫ ∞

0

xne−sx e
−hx − 1

h
dF (x)

= (−1)
n+1
∫ ∞

0

xn+1e−sxdF (x) +R (B-12)

where

|R| ≤ h

2

∫ ∞

0

xn+2e−sxdF (x). (B-13)

The right-hand side of (B-13) is finite if s > 0. Therefore, taking the limit as
h → 0 in (B-12), we verify (B-10) for k = n+ 1. If X has a kth moment, then
taking the limit of (B-10) as s → 0 from the right and applying the dominated
convergence theorem, we obtain (B-11). �

Theorem 2. The Laplace transform L (s) of a random variable X uniquely
determines its distribution function F (x).

Proof: For positive y, (B-10) implies that


sy�∑
k=0

(−1)
k

k!
skL(k) (s) =

∫ ∞

0

H (s, y, x) dF (x), s > 0

where

H (s, y, x) =


sy�∑
k=0

e−sx (sx)
k

k!
, s > 0
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which has the same form as the distribution for a Poisson random variable with
mean and variance equal to sx.

Let Z denote a discrete random variable with mean λ > 0, variance λ, and
Poisson distribution

P [Z = k] = e−λλ
k

k!
, k = 0, 1.. . .

If t > 0,

P [Z ≤ λt] =


λt�∑
k=0

e−λλ
k

k!
. (B-14)

Chebyshev’s inequality (Appendix A.2) yields

P [|Z − λ| ≥ λε] ≤ 1

λε2
,

and hence,
lim
λ→∞

P [|Z − λε| ≥ λε] = 0. (B-15)

Therefore, Z has a value concentrated in the interval [λ −ε , λ +ε ] for ε > 0 as
λ → ∞. If t < 1, then 	λt
 lies increasingly below the interval of concentration
as λ → ∞, and hence,

lim
λ→∞


λt�∑
k=0

e−λλ
k

k!
= 0, t < 1. (B-16)

If t > 1, then 	λt
 lies increasingly above the interval of concentration as λ →
∞, and hence,

lim
λ→∞


λt�∑
k=0

e−λλ
k

k!
= 1, t > 1. (B-17)

An application of (B-17) and (B-16) indicates that if y > x ≥ 0, then
H (s, y, x) → 1 as s → ∞; if 0 ≤ y < x, then H (s, y, x) → 0 as s → ∞.
Therefore, the dominated convergence theorem indicates that at all continuity
points of F (y), we have

lim
s→∞


sy�∑
k=0

(−1)
k

k!
skL(k) (s) =

∫ y

0

dF (x) = F (y) . (B-18)

Since F (y) is right continuous, (B-18) determines F (y) as a function of L (s) . If
the Laplace transform is the same for distributions F1 (y) and F2 (y) , then (B-18)
indicates that F1 (y) = F2 (y) . �

Theorem 3. The Laplace transform Lt (s)of a sum of independent nonneg-
ative random variables X1 and X2 with Laplace transforms L1 (s) and L2 (s) ,
respectively, is

Lt (s) = L1 (s)L2 (s) . (B-19)

Proof: Independence of the random variables implies that

Lt (s) = E
[
e−s(X1+X2)

]
= E

[
e−sX1

]
E
[
e−sX2

]
= L1 (s)L2 (s) . �



Appendix C

Fourier Transform and
Characteristic Function

C.1 Fourier Transform

The Fourier transform of a complex-valued, integrable function g (x) is defined
as

F (g) =

∫ ∞

−∞
e−j2πfxg (x) dx (C-1)

where j =
√
−1 and −∞ < f < ∞. Since integration is a linear operation,

F (ag + bh) = aF (g) + bF (h) (C-2)

for integrable functions g (x) and h (x) and constants a and b. The following
theorem is the most commonly used of the inversion theorems.

Theorem 1. If g (x) is a bounded, continuous, and integrable function,
and its Fourier transform F (g) = ĝ (f) is an integrable function, then

g (x) =

∫ ∞

−∞
ej2πfxĝ (f) df. (C-3)
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Proof. The substitution of the identity limσ→∞(e−2π2f2/σ2

) = 1 and (C-1)
into the right-hand side of (C-3) and further evaluation yield

∫ ∞

−∞
ej2πfxĝ (f) df = lim

σ→∞

∫ ∞

−∞
ej2πfxe−2π2f2/σ2

∫ ∞

−∞
e−j2πfzg (z) dzdf

= lim
σ→∞

∫ ∞

−∞
g (z)

[∫ ∞

−∞
ej2πf(x−z)e−2π2f2/σ2

df

]
dz

=
1√
2π

lim
σ→∞

∫ ∞

−∞
g (z)σ exp

[
−σ2 (z − x)

2

2

]
dz

=
1√
2π

∫ ∞

−∞
lim
σ→∞

[g
(
x+

u

σ

)
] exp

(
−u2

2

)
du

= g (x) .

In the first equality, the integrability of ĝ (f) and the dominated convergence
theorem justify taking the limit outside the outer integral. In the second equal-
ity, the integrability of g (x) and Fubini’s theorem (see below) justify the inter-
change of the order of integration. The third equality follows from a change of
integration variable and (A-10) of Appendix A.1. The fourth equality results
from a change of the integration variable and then application of the dominated
convergence theorem to justify taking the limit inside the integral. The final
equality is obtained by taking the limit and then applying (A-2). �

The convolution of functions g and h is the function g � h defined by

(g � h) (x) =

∫ ∞

−∞
g (x− y)h (y) dy. (C-4)

Convolution Theorem (a) If g and h are bounded and integrable with Fourier
transforms F (g) and F (h), respectively, then

F (g ∗ h) = F (g)F (h) .

(b) If F (g) and F (h) are bounded and integrable, then

F (gh) = F (g) ∗ F (h) .

Proof. (a) Since g and h are bounded and integrable, g ∗ h is integrable.
Therefore, Fubini’s theorem justifies the following interchange of the order of
integration, and we obtain

F (g ∗ h) =
∫ ∞

−∞

[∫ ∞

−∞
g (x− y)h (y) dy

]
e−j2πfxdx

=

∫ ∞

−∞
e−j2πfyh (y)

[∫ ∞

−∞
e−j2πf(x−y)g (x− y) dx

]
dy

= F (g)F (h)

where the final equality results from a change of integration variable.
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(b) If F (g) and F (h) are bounded and integrable, then F (g) ∗ F (h) is
integrable. Let F−1(·) denote the inverse Fourier transform. A derivation
almost identical to the preceding one yields

F−1 [F (g) ∗ F (h)] = F−1 [F (g)]F−1 [F (h)]

= gh.

Taking the Fourier transform of both sides of this equation completes the proof.
�
Parseval’s Identity If g, ĝ (f), h, and ĥ (f) are bounded and integrable, then∫ ∞

−∞
g (x)h∗ (x) dx =

∫ ∞

−∞
ĝ (f) ĥ∗ (f) df

and ∫ ∞

−∞
|g (x)|2 dx =

∫ ∞

−∞
|ĝ (f)|2 df .

Proof. Since g (x) and ĥ (f) are bounded and integrable,∫ ∞

−∞

∣∣∣e−j2πfxĥ∗ (f) g (x)
∣∣∣ df = |g (x)|

∫ ∞

−∞

∣∣∣ĥ (f)
∣∣∣ df < ∞.

Therefore, Fubini’s theorem justifies the following interchange of the order of
integration, and we obtain∫ ∞

−∞
g (x)h∗ (x) dx =

∫ ∞

−∞
g (x)

[∫ ∞

−∞
e−j2πfxĥ∗ (f) df

]
dx

=

∫ ∞

−∞
ĥ∗ (f)

[∫ ∞

−∞
e−j2πfxg (x) dx

]
df

=

∫ ∞

−∞
ĝ (f) ĥ∗ (f) df .

The second identity of the theorem follows by setting g = h. �

Fubini’s Theorem

Fubini’s theorem is applied several times in this section and elsewhere in this
book. This theorem, which is proved using measure theory [6, 9, 117], states
that under certain conditions, a double integral may be evaluated as either of
two iterated integrals:∫ ∞

−∞

∫ ∞

−∞
f (x, y) dxdy =

∫ ∞

−∞

[∫ ∞

−∞
f (x, y) dx

]
dy

=

∫ ∞

−∞

[∫ ∞

−∞
f (x, y) dy

]
dx. (C-5)

To apply the theorem, we compute or bound one of the iterated integrals with
|f (x, y)| in place of f (x, y) . If the result is finite, then the double integral
of |f (x, y)| is finite, which implies that the double integral of f (x, y) may be
computed as either of the two iterated integrals.
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C.2 Characteristic Function

The characteristic function of the random variable X with distribution function
F (x) is

h (u) = E
[
ejuX

]
=

∫ ∞

−∞
ejuxdF (x) (C-6)

where −∞ < u < ∞. Since |exp(jux)| ≤ 1, the characteristic function always
exists, and |h (u)| ≤ h (0) = 1. Since

|h (u+ h)− h (u)| ≤
∫ ∞

−∞

∣∣ejuh − 1
∣∣ dF (x), (C-7)

application of the bounded convergence theorem indicates that h (u) is con-
tinuous. The principal advantage of the characteristic function relative to the
Laplace transform is that the characteristic function is applicable to a random
variable that may take negative values.

The usefulness of the characteristic function depends on the fact that it
uniquely determines the distribution function from which it is derived. To
prove this fact, we need to evaluate the integral

I1 = P

∫ ∞

−∞

ejx

x
dy = lim

ε→0

(∫ −ε

−∞

ejx

x
dy +

∫ ∞

+ε

ejx

x
dy

)
(C-8)

where P denotes the Cauchy principal value, which is defined to avoid the
singularity at the origin when the integral is a Riemann integral. However, if
the integral is considered a Lebesgue integral, then the singularity has measure
0, and does not have to be avoided. Since cos (x) /x is an odd function and
sin (x) /x is an even function, I1 reduces to

I1 =

∫ ∞

−∞

ejx

x
dx

= 2j

∫ ∞

0

sin (x)

x
dx. (C-9)

The integrand is uniformly bounded, and the Lebesgue integral exists because

∫ nπ

(n−1)π

sin (x)

x
dx (C-10)

alternates in sign for each positive integer n, and its absolute value decreases
monotonically to zero.

Theorem 2.

P

∫ ∞

−∞

ejx

x
dx = 2j

∫ ∞

0

sin (x)

x
dx = jπ. (C-11)

Proof: We apply Cauchy’s integral theorem to a contour integral of
exp(−jz)/z, where z is a complex variable. As illustrated in Fig. C.1, the
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y

x

C1

C2

Figure C.1: Contour for integral evaluation

contour includes a large semicircle C1 with radius c in the upper complex plane
and a small semicircle C2 with radius ε traversed clockwise around the pole at
the origin. Since there are no singularities within the contour,

∫ −ε

−c

ejx

x
dx+

∫ c

ε

ejx

x
dx+

∫
C1

ejz

z
dz +

∫
C2

ejz

z
dz = 0. (C-12)

After changing the integration variable in the third integral by substituting
z = cejθ and then applying the dominated convergence theorem, we obtain

lim
c→∞

∫
C1

ejz

z
dz = lim

c→∞

∫ −π

0

jejc cos θ−c sin θdθ

= 0.

After changing the integration variable in the fourth integral by substituting
z = εejθ and then applying the dominated convergence theorem, we obtain

lim
ε→0

∫
C2

ejz

z
dz = lim

ε→0

∫ 0

−π

jejε cos θ−ε sin θdθ

= −jπ.

Using these results and taking the limit of (C-12) as c → ∞ and ε → 0, we
obtain (C-11). �

Theorem 3. If the distribution function F (x) has the characteristic func-
tion h (u) , then

F (b)− F (a) = lim
L→∞

∫ L

−L

e−jua − e−jub

j2πu
h (u) du (C-13)

for all points a and b > a at which F (x) is continuous, and the distribution
function is uniquely determined. If the characteristic function is integrable,
then the distribution function has a continuous density given by

f (x) =
1

2π

∫ ∞

−∞
e−juxh (u) du. (C-14)
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Proof: Let

IL =

∫ L

−L

e−jua − e−jub

j2πu
h (u) du. (C-15)

Substituting (C-6) into this integral gives

IL =

∫ L

−L

e−jua − e−jub

j2πu

[∫ ∞

−∞
ejuxdF (x)

]
du. (C-16)

To interchange the order of integration on the right-hand side of (C-16), we
first observe that

∣∣∣∣e
−jua − e−jub

j2πu
e−jux

∣∣∣∣ =
∣∣∣∣e

−jua − e−jub

j2πu

∣∣∣∣ =
∣∣∣∣∣
∫ b

a

e−juy

2π
dy

∣∣∣∣∣
≤ b− a

2π
(C-17)

and ∫ L

−L

[∫ ∞

−∞

b− a

2π
dF (x)

]
du =

L (b− a)

π
< ∞

which indicates that Fubini’s theorem is applicable to (C-16). Interchanging the
order of integration and then changing integration variables, we obtain

IL =

∫ ∞

−∞
GL (x) dF (x)

where

GL (x) =

∫ L(x−a)

−L(x−a)

ejy

j2πy
dy −

∫ L(x−b)

−L(x−b)

ejy

j2πy
dy

=

∫ L(x−a)

−L(x−a)

sin y

2πy
dy −

∫ L(x−b)

−L(x−b)

sin y

2πy
dy. (C-18)

Each of these integrals is bounded. Therefore, the bounded convergence
theorem implies that

lim
L→∞

IL =

∫ ∞

−∞
lim

L→∞
GL (x) dF (x). (C-19)

Applying Theorem 2, we find that for a < b,

lim
L→∞

GL (x) =

⎧⎨
⎩

0 x < a or x > b
1/2 x = a or x = b
1 a < x < b.

Substituting this equation into (C-19), and evaluating the integral, we ob-
tain (C-13) for all points a and b > a at which F (x) is continuous. Since F (x)
is right continuous, h (u) determines F (x) everywhere. Thus, the characteristic
function uniquely determines the distribution function.
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If h (u) is integrable, then (C-13) and (C-17) indicate that

F (b)− F (a) ≤ (b− a)

2π

∫ ∞

−∞
|h (u)| du

and hence, F (x) is continuous. If f (x) is defined by (C-14), an application of
the dominated convergence theorem proves that f (x) is continuous.

Applying Fubini’s theorem to interchange the order of integration, we find
that ∫ x

a

f (y) dy =
1

2π

∫ ∞

−∞

[∫ x

a

e−juydy

]
h (u) du

= lim
L→∞

∫ L

−L

e−jua − e−jux

j2πu
h (u) du

= F (x)− F (a) .

By the continuity of f (x), this equation implies that the derivative of F (x) is
f (x). Since F (x) is monotonically increasing, f (x) is everywhere nonnegative,
and hence, f (x) is the density for F (x). �

Let h(k) (u) denote the kth derivative of h (u) with respect to u. The fol-
lowing theorem enables the calculation of the kth moment of a random variable
without the restrictive condition in Theorem 1 of Appendix B.2.

Theorem 4. If the random variable X has distribution function F (x) and

characteristic function h (u) , and if E
[
|X|k

]
< ∞ for a positive integer k, then

h(k) (u) =

∫ ∞

−∞
(jx)

k
ejuxdF (x) (C-20)

and
E
[
Xk
]
= j−kh(k) (0) . (C-21)

Proof: Since
∣∣∣(jx)k ejux

∣∣∣ = |x|k and E
[
|X|k

]
< ∞, taking the lim-

its in (C-20) as u → 0 and applying the dominated convergence theorem
prove (C-21). To prove (C-20), we calculate

h(1) (u) = lim
δ→0

E
[
ej(u+δ)X

]
− E

[
ejuX

]
δ

= lim
δ→0

E

[
ej(u+δ)X − ejuX

δ

]
. (C-22)

The mean value theorem indicates that∣∣∣∣e
j(u+δ)X − ejuX

δ

∣∣∣∣ ≤
∣∣∣∣ ddsejsX

∣∣∣∣ =
∣∣jXejsX

∣∣ = |X|

for some s between u and u+ δ. Since E [|X|] < ∞, the dominated convergence
theorem can be applied to (C-22), and we obtain

h(1) (u) = E

[
d

dt
ejuX

]

=

∫ ∞

−∞
jxejuxdF (x) .
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Continuing in this manner, we can differentiate the characteristic function (C-6)
k times under the integral sign, which proves (C-20). �

An n× 1 random column vector X = [X1 . . . Xn]
T
has components that are

random variables. The joint characteristic function of X is defined as

h(u) = E
[
exp
(
juTX

)]
= E

[
exp

(
j

n∑
k=1

ukXk

)]
(C-23)

where u =[u1u2 . . . un]
T
. The joint characteristic function provides a means of

calculating products of powers of random variables.
The joint characteristic function uniquely determines the joint distribution

function of a random vector. The derivation of the inversion equation is analo-
gous to the one-dimensional proof of theorem 3.

Theorem 5. If the n-dimensional joint distribution function FX(x) has the
n-dimensional joint characteristic function h (u) , then

FX (b)− FX (a) = lim
L→∞

∫

RL

n∏
i=1

[
e−juiai − e−juibi

j2πui

]
h (u) du

RL = [u ∈ Rn : |ui| ≤ L, 1 ≤ i ≤ n] (C-24)

for all points a and b > a at which FX(x) is continuous, and the distribution
function is uniquely determined.

Proof. Let IL denote the integral in (C-24). After the substitution of (C-23)
into (C-24), we find, as in the proof of Theorem 3, that Fubini’s theorem is ap-
plicable. Interchanging the order of integration, evaluating integrals, we obtain

IL =

∫

RL

n∏
i=1

GL (xi, ai, bi) dF (x) (C-25)

GL (xi, ai, bi) =

∫ L

−L

sinui (xi − ai)− sinui (xi − bi)

2πui
dui (C-26)

lim
L→∞

GL(xi, ai, bi) =

⎧⎨
⎩

0 xi < ai or xi > bi
1/2 xi = ai or xi = bi
1 ai < xi < bi.

(C-27)

Taking the limit of (C-25), applying the bounded convergence theorem, and
substituting (C-27), we obtain (C-24). Since FX(x) is right continuous, h (u)
determines FX(x) everywhere. Thus, the joint characteristic function uniquely
determines the joint distribution function. �

Let k1, k2, . . . , kn denote positive integers such that

n∑
i=1

ki = k. (C-28)
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If E
[
|Xi|ki

]
< ∞, i = 1, 2, . . . , n, then the repeated differentiation and calcu-

lations similar to those in the proof of Theorem 4 lead to

E
[
Xk1

1 Xk2
2 . . . Xkn

n

]
= j−k ∂k

(∂u1)k1(∂u2)k2 . . . (∂un)kn
h(u) |u=0 . (C-29)

From definition (C-6) and an evaluation similar to that in Theorem 3 of
Appendix B.2, it follows that the characteristic function ht (u) of the sum
of independent random variables X1, X2,. . . , Xn with characteristic functions
h1 (u) , h2 (u) , . . . , hn (u) is

ht (u) =
n∏

i=1

hi (u) . (C-30)



Appendix D

Signal Characteristics

D.1 Bandpass Signals

A bandpass signal has its power spectrum in a spectral band surrounding a
carrier frequency, which is usually at the center of the band. The Hilbert trans-
form provides the basis for signal representations that facilitate the analysis of
bandpass signals and systems. Let P denote the Cauchy principal value of an
integral. The Hilbert transform of a function g(t) is defined as

H[g(t)] = ĝ(t) =
1

π
P

∫ ∞

−∞

g(u)

t− u
du

=
1

π
lim
ε→0

[∫ t−ε

−∞

g(u)

t− u
du+

∫ ∞

t+ε

g(u)

t− u
du

]
(D-1)

provided that the integral exists as a principal value.
Since (D-1) has the form of the convolution of g(t) with 1/πt, ĝ(t) results

from passing g(t) through a linear filter with an impulse response equal to 1/πt.
The transfer function of the filter is given by the Fourier transform of 1/πt. For
this function, the Fourier transform is

F
[
1

πt

]
= P

∫ ∞

−∞

e−j2πft

πt
dt, f �= 0 (D-2)

where j =
√
−1. Changing variables and applying Theorem 2 of Appendix C.2,

we obtain

F
[
1

πt

]
=

−sgn(f)

π
P

∫ ∞

−∞

ejx

x
dx

= −j sgn(f) (D-3)
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where sgn(f) is the signum function defined by

sgn (f) =

{
1, f ≥ 0
−1 f < 0.

(D-4)

Let G(f) = F [g(t)] and Ĝ(f) = F [ĝ(t)]. Applying the convolution theorem
of Fourier analysis (Appendix C.1) to (D-1) and then substituting (D-3), we
obtain

Ĝ(f) = −j sgn(f)G(f). (D-5)

To evaluate H[ĝ(t)], we calculate

F{H[ĝ(t)]} = −j sgn(f)Ĝ(f)

= −G(f) = −F [g(t)]. (D-6)

Taking the inverse Fourier transform of both sides of the final equation, we find
that

H[ĝ(t)] = −g(t) (D-7)

provided that G(0) = 0.
A bandpass signal is one with a Fourier transform G(f) that is negligible

except for fc −W/2 ≤ |f | ≤ fc +W/2, where 0 ≤ W < 2fc and fc is the center
frequency. If W � fc, the bandpass signal is often called a narrowband signal.
The analytic signal ga(t) associated with g(t) is defined to be the signal with
Fourier transform

Ga(f) = [1 + sgn(f)]G(f) (D-8)

which is zero for f ≤ 0 and is confined to the band |f − fc| ≤ W/2 when f > 0.
The inverse Fourier transform of Ga(f) and (D-5) imply that

ga(t) = g(t) + jĝ(t). (D-9)

The complex envelope of the bandpass signal g(t) is defined by

gl(t) = ga(t)e
−j2πfct (D-10)

where fc is the center frequency. Since the Fourier transform of gl(t) is Ga(f +
fc), which occupies the band |f | ≤ W/2, the complex envelope is a baseband
signal that may be regarded as an equivalent lowpass representation of g(t).
Equations (D-9) and (D-10) imply that g(t) can be expressed in terms of its
complex envelope as

g(t) = Re[gl(t)e
j2πfct]. (D-11)

The complex envelope of a bandpass signal g (t) can be decomposed as

gl(t) = gc(t) + jgs(t) (D-12)

where gc(t) and gs(t) are real-valued functions. Substituting (D-11) yields

g(t) = gc(t) cos(2πfct)− gs(t) sin(2πfct). (D-13)

The functions gc(t) and gs(t) are called the in-phase and quadrature components
of g(t), respectively. These components are lowpass signals confined to |f | ≤
W/2.
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D.2 Stationary Stochastic Processes

A stochastic process is called wide-sense stationary if its mean is independent
of the sampling time, and its autocorrelation depends only on the time differ-
ence between samples. In this section, we consider a real-valued, wide-sense
stationary stochastic process n(t) that is a zero-mean with autocorrelation

Rn(τ) = E[n(t)n(t+ τ)] (D-14)

where E[x] denotes the expected value of x. The Hilbert transform of this
process is the real-valued stochastic process defined by

n̂(t) =
1

π

∫ ∞

−∞

n(u)

t− u
du (D-15)

where we assume that the Cauchy principal value of the integral exists for
almost every sample function of n(t). This equation indicates that n̂(t) is a
zero-mean stochastic process.

An application of (D-15) and (D-14) gives the cross-correlation of n(t) and
n̂(t) :

Rnn̂(τ) = E[n(t)n̂(t+ τ)] =
1

π

∫ ∞

−∞

Rn(u)

τ − u
du

= R̂n(τ). (D-16)

Similarly,

Rn̂n(τ) = E[n̂(t)n(t+ τ)]

= −R̂n(τ). (D-17)

An application of this result and (D-7) yields the autocorrelation

Rn̂(τ) = E[n̂(t)n̂(t+ τ)]

=
1

π

∫ ∞

−∞

R̂n(t+ τ − u)

t− u
du = − 1

π

∫ ∞

−∞

R̂n(x)

τ − x
dx

= Rn(τ). (D-18)

Equations (D-14), (D-16), and (D-18) indicate that n(t) and n̂(t) are jointly
wide-sense stationary. Since n(t) is wide-sense stationary, Rn(τ) is an even
function. It then follows from (D-18) that Rn̂(τ) is an even function. Equation

(D-16) and a change of the integration variable indicate that R̂n(τ) and Rnn̂(τ)
are odd functions. Thus,

Rn(−τ) = Rn(τ), Rn̂(−τ) = Rn̂(τ) (D-19)

R̂n(−τ) = −R̂n(τ), Rnn̂(−τ) = −Rnn̂(τ). (D-20)
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Analytic Signal

The analytic signal associated with n(t) is the complex-valued zero-mean pro-
cess defined by

na(t) = n(t) + jn̂(t). (D-21)

The autocorrelation of the analytic signal is defined as

Ra(τ) = E[n∗
a(t)na(t+ τ)] (D-22)

where the asterisk denotes the complex conjugate. Using (D-14) and (D-16)–
(D-22), we obtain

Ra(τ) = 2Rn(τ) + 2jR̂n(τ) (D-23)

which establishes the wide-sense stationarity of the analytic signal.
From (D-16) and (D-20), we obtain

Rnn̂(0) = R̂n(0) = 0 (D-24)

which indicates that n(t) and n̂(t) are uncorrelated. Equations (D-23) and
(D-19) yield

Rn̂(0) = Rn(0) = 1/2Ra(0). (D-25)

Complex Envelope

The complex envelopeof n(t) or the equivalent lowpass representation of n(t) is
the zero-mean stochastic process defined by

nl(t) = na(t)e
−j2πfct (D-26)

where fc is an arbitrary frequency usually chosen as the center or carrier fre-
quency of n(t). The complex envelope can be decomposed as

nl(t) = nc(t) + jns(t) (D-27)

where nc(t) and ns(t) are real-valued, zero-mean stochastic processes.
Equations (D-21) and (D-26) imply that

n(t) = Re[nl(t)e
j2πfct)]. (D-28)

The substitution of (D-27) into (D-28) gives an in-phase and quadrature repre-
sentation:

n(t) = nc(t) cos(2πfct)− ns(t) sin(2πfct). (D-29)

Substituting (D-21) and (D-27) into (D-26), we find that

nc(t) = n(t) cos(2πfct) + n̂(t) sin(2πfct) (D-30)

ns(t) = n̂(t) cos(2πfct)− n(t) sin(2πfct). (D-31)

Using (D-14), (D-16), (D-17), (D-18), and trigonometric identities, we ob-
tain the autocorrelations of nc(t) and ns(t), which are

Rc(τ) = E[nc(t)nc(t+ τ)] = Rn(τ) cos(2πfcτ) + R̂n(τ) sin(2πfcτ) (D-32)
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Rs(τ) = E[ns(t)ns(t+ τ)] = Rc(τ) (D-33)

and the cross-correlations

Rcs(τ) = E[nc(t)ns(t+ τ)] = R̂n(τ) cos(2πfcτ)−Rn(τ) sin(2πfcτ) (D-34)

Rsc(τ) = E[ns(t)nc(t+ τ)] = −Rcs(τ). (D-35)

These equations show explicitly that if n(t) is wide-sense stationary, then nc(t)
and ns(t) are jointly wide-sense stationary with identical autocorrelation func-
tions. From (D-20), we obtain

Rc(−τ) = Rc(τ), Rs(−τ) = Rs(τ) (D-36)

Rcs(−τ) = −Rcs(τ), Rsc(−τ) = −Rsc(τ). (D-37)

Since
Rc(0) = Rs(0) = Rn(0), Rcs(0) = 0 (D-38)

the variances of n(t), nc(t), and ns(t) are all equal, and nc(t) and ns(t) are
uncorrelated.

Equations (D-27) D-33 and (D-37) imply that

E[nl(t)nl(t+ τ)] = 0. (D-39)

A complex-valued, zero-mean stochastic process that satisfies this equation is
called a circularly symmetric process. Thus, the complex envelope of a zero-
mean, wide-sense stationary process is a circularly symmetric process. The
autocorrelation of a complex envelope is defined as

Rl(τ) = E[n∗
l (t)nl(t+ τ)]. (D-40)

Substituting (D-26) and (D-23) into (D-40), we obtain

Rl(τ) = 2e−j2πfcτ
[
Rn(τ) + jR̂n(τ)

]
(D-41)

which shows that nl(t) is a zero-mean, wide-sense stationary process. Since
Rn(τ) and R̂n(τ) are real-valued,

Rn(τ) =
1

2
Re
[
Rl(τ)e

j2πfcτ
]
. (D-42)

Power Spectral Density

The power spectral density (PSD) of a signal is the Fourier transform of its
autocorrelation. If signal x (t) has autocorrelation Rx (τ) , then its PSD is

Sx (f) =

∫ ∞

−∞
Rx(τ)e

−j2πfτdτ. (D-43)

Let Sn(f) , Sc(f), and Ss(f) denote the PSDs of n(t) , nc(t) , and ns(t),
respectively. We assume that Sn(f) occupies the band fc − W/2 ≤ |f | ≤
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fc + W/2 and that fc > W/2 ≥ 0 . Taking the Fourier transform of (D-32),
using (D-5), and simplifying, we obtain

Sc(f) = Ss(f) =

{
Sn (f − fc) + Sn (f + fc) , |f | ≤ W/2

0, |f | > W/2.
(D-44)

Similarly, the cross-spectral density of nc(t) and ns(t) can be derived by taking
the Fourier transform of (D-34) and using (D-5). After simplification, the result
is

Scs(f) =

{
j[Sn (f − fc)− Sn (f + fc)], |f | ≤ W/2

0, |f | > W/2.
(D-45)

Since Rn(τ) is an even function, Sn(f) is a real-valued, even function. If
Sn(f) is locally symmetric about fc so that

Sn(fc + f) = Sn(fc − f),

= Sn(f − fc), |f | ≤ W/2, (D-46)

then (D-45) indicates that Scs(f) = 0, which implies that

Rcs(τ) = 0 (D-47)

for all τ . Thus, nc(t) and ns(t + τ) are uncorrelated for all τ when Sn(f) is
locally symmetric.

The PSD of nl(t), which we denote by Sl(f), can be derived by calculating
the Fourier transform of (D-41), and using (D-5). If Sn(f) occupies the band
fc −W/2 ≤ |f | ≤ fc +W/2 and fc > W/2 ≥ 0, then

Sl(f) =

{
4Sn (f + fc) , |f | ≤ W/2

0, |f | > W/2
(D-48)

which indicates Sl(f) is a real-valued function. Therefore, expanding the right-
hand side of (D-42) by using Re[z] = (z + z∗)/2 and then taking the Fourier
transform yield

Sn(f) =
1

4
Sl(f − fc) +

1

4
Sl(−f − fc). (D-49)

White Gaussian Noise

A stochastic process X (t) = {Xt, t ∈ T} is called a Gaussian process if every
finite linear combination of the form

Y =

N∑
i=1

aiX(ti) (D-50)

is a Gaussian random variable.
A zero-mean stochastic process n (t) is called white noise if its autocorrela-

tion is

Rn(τ) = E[n(t)n(t+ τ)] =
N0

2
δ(τ) (D-51)
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where δ(τ) is the Dirac delta function (Appendix F.3), and the two-sided noise
PSD is

Sn(f) =
N0

2
. (D-52)

White noise is an idealization of a physical process because it requires an infinite
bandwidth and power and zero correlation time. However, consider noise that
has a flat spectrum across the passband of a bandlimiting filter in a receiver.
Since the filter blocks the noise spectrum beyond the filter passband, the hypo-
thetical existence of the blocked spectrum does not affect the noise in the filter
output. Consequently, white noise provides the standard mathematical model
for thermal, shot, and environmental noise. The communication channel is of-
ten modeled as an additive white Gaussian noise (AWGN) channel for which
the noise in the receiver is a zero-mean, white Gaussian process.

The Hilbert transform n̂(t) is the limit of Riemann sums that are linear
combinations of n(t). Therefore, Theorem 1 of Appendix A.1 implies that if
n(t) is a zero-mean, white Gaussian process, then n̂(t) and n(t) are zero-mean
jointly Gaussian processes. Equations (D-30) and (D-31) and Theorem 4 of
Appendix A.1 then imply that nc(t) and ns(t) are zero-mean jointly Gaussian
processes. Since (D-38) shows that they are uncorrelated for a specific value
of t, nc(t) and ns(t) are statistically independent, zero-mean Gaussian random
variables with equal variances.

Consider the integral

z =

∫ T

0

n (t)φ (t) dt (D-53)

where φ (t) is a complex-valued square-integrable function. If n (t) is a zero-
mean white Gaussian process, the approximating Lebesgue or Riemann sums
of the real and imaginary parts of this integral are sums of independent, zero-
mean Gaussian random variables. Therefore, the real and imaginary compo-
nents of z are zero-mean jointly Gaussian random variables (Theorem 4, Ap-
pendix A.1). Interchanging the order of expectation and integration and then
applying (D-51), we find that

E
[
|z|2
]
= E

[∫ T

0

n (t)φ∗ (t) dt

∫ T

0

n (u)φ (u) dt

]
.

=

∫ T

0

φ∗ (t) dt

∫ T

0

E [n (t)n (u)]φ (u) dt

=
N0

2

∫ T

0

|φ (t)|2 dt. (D-54)

D.3 Linear Filtering and the PSD

Consider a linear filter with impulse response h (t) . The input is a wide-sense
stationary process with autocorrelation function Rx (τ) . The filter output is
the convolution of x (τ) and h (τ) :
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y (t) =

∫ ∞

−∞
x (τ)h (t− τ) dτ = x (τ) ∗ h (τ) (D-55)

where the asterisk denotes a convolution. The cross-correlation function of y (t)
and x (t) is

Ryx (τ) =E [y (t)x (t+ τ)]

=E

[
x (t+ τ)

∫ ∞

−∞
x (τ1)h (t− τ1) dτ1

]

=

∫ ∞

−∞
Rx (t+ τ − τ1)h (t− τ1) dτ1

=Rx (τ) ∗ h (−τ) (D-56)

where the final equality follows after a change of the integration variable. The
autocorrelation function of y (t) is

Ry (τ) =E [y (t) y (t+ τ)]

=E

[
y (t+ τ)

∫ ∞

−∞
x (τ1)h (t− τ1) dτ1

]

=

∫ ∞

−∞
Ryx (τ1 − t− τ)h (t− τ1) dτ1

=Ryx (−τ) ∗ h (−τ) . (D-57)

Since Rx (τ) is an even function, the substitution of (D-56) into (D-57) yields

Ry (τ) = Rx (τ) ∗ h (τ) ∗ h (−τ) . (D-58)

Taking the Fourier transform of (D-58) and evaluating three successive integrals,
we obtain the power spectral density of y (t) :

Sy (f) = Sx (f) |H (f)|2 (D-59)

where H (f) is the Fourier transform of h (t) .

D.4 Sampling Theorem

The Fourier transform and the inverse Fourier transform of a bounded, complex-
valued, continuous-time signal x(t) are

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt (D-60)

x(t) =

∫ ∞

−∞
X(f)ej2πftdf. (D-61)
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A sample of this signal is xn = x(nT ), where 1/T is the sampling rate and n is
an integer. The discrete-time Fourier transform (DTFT) is defined as

X̃(θ) =

∞∑
n=−∞

xne
−jnθ (D-62)

if the infinite sum converges to a finite value for all values of θ. A sufficient
condition for convergence is

∞∑
n=−∞

|xn| < ∞ (D-63)

which implies that X̃(θ) is uniformly convergent over [−π, π]. Equation (D-62)

indicates that X̃(θ) is a periodic function of θ with period 2π.
Let Z denote the set of all integers. The inverse DTFT of X(ejθ) is

xn =
1

2π

∫ π

−π

X̃(θ)ejnθdθ, n ∈ Z (D-64)

which is verified by direct substitution of (D-62) into the integrand and an
evaluation. Since the complex exponentials constitute a complete set of or-
thonormal basis functions over [−π, π] , a uniqueness property can be shown

[6]: if X̃1 (θ) and X̃2 (θ) have the same inverse DTFT, then X̃1 (θ) = X̃2 (θ) for
almost all θ.

The sampling theorem relates x(t) and xn in the frequency domain, indicat-

ing that X̃(2πfT ) is the sum of shifted versions of X(f).

Sampling Theorem The discrete-time and continuous-time Fourier trans-
forms of a bounded continuous-time signal x(t) are related by

X̃(2πfT ) =
1

T

∞∑
i=−∞

X

(
f − i

T

)
(D-65)

if the series converges uniformly over the interval f ∈ [−1/2T,+1/2T ] .
Proof. Consider a bounded continuous-time signal x(t) with Fourier trans-

form X(f) and xn = x(nT ). By the uniqueness property, the theorem can be
proved by showing that the inverse DTFT of the right side of (D-65) for all
n ∈ Z is xn. Let In denote this inverse DTFT for n ∈ Z. Using the uniform
convergence to interchange the summation and integration, we obtain

In =

∫ 1/2T

−1/2T

[ ∞∑
i=−∞

X

(
f − i

T

)]
ej2πnfT df

=
∞∑

i=−∞

∫ 1/2T

−1/2T

X

(
f − i

T

)
ej2πnfT df, n ∈ Z. (D-66)
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Changing the integration variable in this equation and using ej2πni = 1 when
n and i are integers, we obtain

In =

∞∑
i=−∞

∫ (2i+1)/2T

(2i−1)/2T

X(f)ej2πnfT df (D-67)

=

∫ ∞

−∞
X(f)ej2πnfT df (D-68)

= x(nT ) = xn, n ∈ Z (D-69)

which completes the proof. �
If the sampling rate is not high enough that X(f) = 0 for |f | > 1/2T ,

then the terms in the sum in (D-65) overlap, which is called aliasing, and the
samples may not specify a unique continuous-time signal. The problem with
aliasing is that the DTFT has contributions from high-frequency components
mixed with low-frequency components. Consequently, in the samples derived
from the inverse DTFT, high-frequency information is lost and low-frequency
information is curtailed, degraded, or lost.

Corollary. If a continuous-time signal x (t) with Fourier transform X(f)
is bandlimited so that

X(f) = 0, |f | > 1/2T (D-70)

then it can be reconstructed from its samples x(nT ) = xn, and

x(t) =

∞∑
n=∞

xnsinc

(
t− nT

T

)
(D-71)

where sinc(·) is defined by (2-13).
Proof. If X(t) is bandlimited, then (D-65) indicates that

X̃(2πfT ) =
1

T
X(f), − 1

2T
≤ f ≤ 1

2T
. (D-72)

Substitution of this equation into (D-61) and the use of (D-62) yield

x(t) =

∫ 1/2T

−1/2T

X(f)ej2πftdf = T

∫ 1/2T

−1/2T

X̃(2πfT )ej2πftdf

= T

∫ 1/2T

−1/2T

∞∑
n=−∞

xne
−j2πfnT ej2πftdf

= T
∞∑

n=−∞
xn

∫ 1/2T

−1/2T

ej2πf(t−nT )df . (D-73)

Evaluating the final integral, we obtain the reconstruction formula of the theo-
rem. �

The theorem implies that a signal with a one-sided bandwidth W that is
sampled at the Nyquist rate 1/T > 2W is uniquely defined by its samples.



D.4. SAMPLING THEOREM 665

However, (D-71) requires all the past and future sample values to reconstruct
x (t) at time t. Thus, this equation cannot be implemented in practice by a
causal system but would have to be approximated with a truncation of the
sum.

Consider a signal x (t) that is sampled at the symbol rate 1/T . There is no
intersymbol interference if

x (iT ) = δi (D-74)

where i is an integer, and δi is the Kronecker delta function, which is equal to
1 when i = 0 and equal to 0 otherwise. Taking the DTFT of both sides of this
equation and applying the sampling theorem, we obtain the Nyquist criterion
for no intersymbol interference:

1

T

∞∑
n=−∞

X
(
f − n

T

)
= 1. (D-75)

This criterion indicates that W = 1/2T is the minimum signal bandwidth for
no intersymbol interference.



Appendix E

Probability Distributions

E.1 Chi-Squared Distribution

Consider the random variable

Z =

N∑
i=1

X2
i (E-1)

where the {Xi} are independent Gaussian random variables with means {mi}
and common variance σ2. The random variable Z is said to have a noncen-
tral chi-squared (also chi-square) distribution with N degrees of freedom and a
noncentral parameter

λ =
N∑
i=1

m2
i . (E-2)

To derive the density of Z, we first note that each Xi has the density

fXi
(x) =

1√
2πσ

exp

[
− (x−mi)

2

2σ2

]
. (E-3)

From elementary probability, the density of Yi = X2
i is

fYi
(x) =

1

2
√
x
[fXi

(
√
x) + fXi

(−
√
x)] u(x) (E-4)

where u(x) is the unit step function:

u(x) =

{
1, x ≥ 0
0, x < 0.

(E-5)
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Substituting (E-3) into (E-4), expanding the exponentials, and simplifying, we
obtain the density

fYi
(x) =

1√
2πxσ

exp

(
−x+m2

i

2σ2

)
cosh

(
mi

√
x

σ2

)
u(x). (E-6)

Characteristic functions, moment-generating functions, and Laplace trans-
forms all uniquely determine distribution functions. Since Yi assumes only
nonnegative values, it is convenient to use the Laplace transform. The Laplace
transform of a continuous nonnegative random variable Y is defined as (Ap-
pendix B.2)

L(s) = E[e−sY ] =

∫ ∞

0

fY (x)e
−sxdx (E-7)

where fY (x) is the density of Y . To evaluate the Laplace transform of Yi = X2
i ,

we substitute (E-6) into (E-7), change the integration variable by setting y =√
(1 + 2σ2s)x/2σ2, expand the range of integration because cosh(·) is an even

function, and obtain

Li(s) =
1√

(1 + 2σ2s)π

∫ ∞

−∞
exp

(
−m2

i

2σ2
− y2

)
cosh

(
ymi

√
2

σ
√
1 + 2σ2s

)
dy. (E-8)

Using cosh (z) = (ez + e−z) /2, separating the integral into two integrals, com-
pleting the squares in the arguments of the exponentials, and then observing
that a Gaussian density must integrate to unity, we obtain the Laplace trans-
form of Yi :

Li(s) =
exp
( −sm2

i

1+2σ2s

)
(1 + 2σ2s)1/2

, Re(s) > − 1

2σ2
. (E-9)

The Laplace transform of a sum of independent random variables is equal
to the product of the individual Laplace transforms. Because Z is the sum of
the {Yi}, the Laplace transform of Z is

LZ(s) =
exp
( −sλ
1+2σ2s

)
(1 + 2σ2s)N/2

, Re(s) > − 1

2σ2
(E-10)

where we have used (E-2).
The noncentral chi-squared density with N degrees of freedom and noncen-

tral parameter λ is the unique density (cf. SectionB.2) with Laplace transform
given by (E-10). As shown subsequently, this density is

fZ(x) =
1

2σ2

(
x

λ

)(N−2)/4

exp

[
−
(
x+ λ

2σ2

)]
IN/2−1

(√
xλ

σ2

)
u(x) (E-11)

where In(·) is the modified Bessel function of the first kind and order n (Ap-
pendix H.3). Thus, the noncentral chi-squared distribution is

FZ(x) =

∫ x

0

1

2σ2

(
y

λ

)(N−2)/4

exp

(
−y + λ

2σ2

)
IN/2−1

(√
yλ

σ2

)
dy , x ≥ 0.

(E-12)
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To prove that FZ(∞) = 1, and hence that FZ(x) is a legitimate distribution
function, we first need to establish an integral identity:∫ ∞

0

x(N−2)/4 exp (−x) IN/2−1

(√
4xa
)
dx = a(N−2)/4 exp (a) , a ≥ 0. (E-13)

To prove (E-13), we substitute (H-13) of Appendix H.3 into the integral, which
is denoted by I, and apply the monotone convergence theorem to interchange
the integral and infinite summation, which gives

I =

∞∑
i=0

a(N−2)/4+i

i!Γ (N/2 + i)

∫ ∞

0

x.N/2+i−1. exp (−x) dx. (E-14)

We apply (H-1) to evaluate the integral and then recognize the power series
expansion of exp (a) . A change of variables in (E-12) then proves that FZ(∞) =
1.

To prove that fZ(x) is given by (E-11), we substitute (E-11) into (E-7),
change variables, and use (E-13) to obtain (E-10).

If N is even so that N/2 is an integer, then a change of variables in (E-12)
yields

FZ(x) = 1−QN/2

(√
λ

σ
,

√
x

σ

)
, x ≥ 0 (E-15)

where Qm(α, β) is the generalized Marcum Q-function (Appendix H.4). The
moments of Z can be obtained by using (E-1) and the properties of independent
Gaussian random variables. The mean and variance of Z are

E[Z] = Nσ2 + λ, σ2
z = 2Nσ4 + 4λσ2 (E-16)

where σ2 is the common variance of the {Xi}. Alternatively, the moments of
Z can be obtained by applying Theorem 1 of Appendix B.2 and (E-10).

From (E-10), it follows that the sum of two independent noncentral chi-
squared random variables with N1 and N2 degrees of freedom, noncentral pa-
rameters λ1 and λ2, respectively, and the same parameter σ2 is a noncentral
chi-squared random variable with N1 + N2 degrees of freedom and noncentral
parameter λ1 + λ2.

E.2 Central Chi-Squared Distribution

To determine the density of Z when the {Xi} have zero-means, we substi-
tute (H-13) of Appendix H.3 into (E-11) and then take the limit as λ → 0. We
obtain the central chi-squared density with N degrees of freedom:

fZ(x) =
1

(2σ2)N/2Γ(N/2)
xN/2−1 exp

(
− x

2σ2

)
u(x). (E-17)

The central chi-squared distribution with N degrees of freedom, which is con-
centrated on the positive x-axis, is

FZ(x) =
1

(2σ2)N/2Γ(N/2)

∫ x

0

yN/2−1 exp
(
− y

2σ2

)
dy, x ≥ 0. (E-18)
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In terms of the incomplete gamma function γ (a, b) defined by (H-6), we have

FZ(x) =
γ
(
N
2 ,

x
2σ2

)
Γ(N/2)

u(x). (E-19)

The moments of Z may be obtained by direct integration using (E-17) and (H-1)
of Appendix H.1. The mean and variance of Z are

E[Z] = Nσ2, σ2
z = 2Nσ4. (E-20)

If N is even so that N/2 is an integer, then integrating (E-18) by parts
N/2− 1 times yields

FZ(x) = 1− exp
(
− x

2σ2

)N/2−1∑
i=0

1

i!

(
x

2σ2

)i

, x ≥ 0. (E-21)

If N = 1, then changing the integration variable to z =
√
y in (E-18) and

using (H-20) give

FZ(x) =

[
1− 2Q

(√
x

σ

)]
u (x) , N = 1. (E-22)

E.3 Rice Distribution

Consider the random variable

R =
√

X2
1 +X2

2 (E-23)

where X1 and X2 are independent Gaussian random variables with means m1

and m2, respectively, and a common variance σ2. The distribution function
of R must satisfy FR(r) = FZ(r

2), where Z = X2
1 + X2

2 has a chi-squared
distribution with two degrees of freedom. Therefore, (E-15) with N = 2 implies
that R has a Rice distribution:

FR(r) = 1−Q1

(√
λ

σ
,
r

σ

)
, r ≥ 0 (E-24)

where λ = m2
1+m2

2. The Rice density, which may be obtained by differentiation
of (E-24), is

fR(r) =
r

σ2
exp

(
−r2 + λ

2σ2

)
I0

(
r
√
λ

σ2

)
u(r). (E-25)

The moments of even order can be derived from (E-23) and the moments of
the independent Gaussian random variables. The second moment is

E[R2] = 2σ2 + λ. (E-26)

In general, moments of the Rice distribution are given by an integration over
the density in (E-25). Substituting (H-13) of Appendix H.3 into the integrand,
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interchanging the summation and integration, changing the integration variable,
and using (H-1) of Appendix H.1, we obtain a series that is recognized as a
special case of the confluent hypergeometric function. Thus,

E[Rn] = (2σ2)n/2 exp

(
− λ

2σ2

)
Γ
(
1 +

n

2

)
1F1

(
1 +

n

2
, 1;

λ

2σ2

)
, n ≥ 0

(E-27)

where 1F1(α, β;x) is the confluent hypergeometric function defined by (H-27)
of Appendix H.5.

E.4 Rayleigh Distribution

A Rayleigh random variable is defined by (E-23) when X1 and X2 are indepen-
dent Gaussian random variables with zero-means and a common variance σ2.
Since FR(r) = FZ(r

2), where Z has a central chi-squared distribution with two
degrees of freedom, (E-21) with N = 2 implies that the Rayleigh distribution is

FR(r) = 1− exp

(
− r2

2σ2

)
, r ≥ 0. (E-28)

The Rayleigh density, which may be obtained by differentiation of (E-28), is

fR(r) =
r

σ2
exp

(
− r2

2σ2

)
u(r). (E-29)

By a change of the variable in the defining integral, any moment of R can be
expressed in terms of the gamma function:

E[Rn] = (2σ2)n/2Γ
(
1 +

n

2

)
. (E-30)

Using the properties of the gamma function (Appendix H.1), we obtain the
mean and variance of a Rayleigh-distributed random variable:

E[R] =

√
π

2
σ, σ2

R =
(
2− π

2

)
σ2. (E-31)

Since X1 and X2 have zero-means, the joint density of the random variables
R =

√
X2

1 +X2
2 and Θ = tan−1(X2/X1) is given by

fR,Θ(r, θ) =
r

2πσ2
exp

(
− r2

2σ2

)
, r ≥ 0, |θ| ≤ π. (E-32)

Integration over θ yields (E-29), and integration over r yields the uniform den-
sity:

fΘ(θ) =
1

2π
, |θ| ≤ π. (E-33)

Since (E-32) equals the product of (E-29) and (E-33), the random variables R
and Θ are independent.
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E.5 Exponential Distribution

A random variable X has the exponential distribution with parameter α > 0 if
it has the density

fX(x) = αe−αxu(x). (E-34)

The corresponding distribution function is

FX (x) = 1− e−αx, x ≥ 0. (E-35)

Integrations using (H-3) and (H-2) yield

E[X] =
1

α
, var (X) =

1

α2
. (E-36)

Since the square of a Rayleigh random variable may be expressed as R2 =
X2

1 + X2
2 , where X1 and X2 are zero-mean, independent, Gaussian random

variables with common variance σ2, R2 has a central chi-squared distribution
with 2 degrees of freedom. Therefore, (E-17) with N = 2 indicates that the
square of a Rayleigh random variable has an exponential density with mean
2σ2.

E.6 Gamma Distribution

A random variable X has the gamma distribution with parameters α, β > 0 if
it has the density

f (x;α, β) =
αβ

Γ (β)
xβ−1e−αxu(x). (E-37)

Successive integrations by parts yield the corresponding distribution:

F (x;α, β) = [1− Γ(β, αx)]u (x) (E-38)

where the incomplete gamma function is defined by (H-5). Integrations of (E-37)
using (H-3) and (H-2) determine the moments of X. The mean and variance
are

E[X] =
β

α
, var (X) =

β

α2
. (E-39)

Let {f (x;α, β) , β > 0} denote the family of gamma densities with the same
parameter α > 0 but different values of β > 0. Let Z = X1+X2 denote the sum
of two independent random variables with densities f (x;α, β1) and f (x;α, β2),
respectively. From elementary probability theory, it follows that the density of
Z is determined by the convolution of these two densities:

[f (·;α, β1) ∗ f (·;α, β2)] (x) =

∫ x

0

f (y;α, β1) f (x− y;α, β2) dy

=
αβ1+β2e−αx

Γ (β1) Γ (β2)

∫ x

0

yβ1−1 (x− y)
β2−1

dy

=
αβ1+β2xβ1+β2−1e−αx

Γ (β1) Γ (β2)
B (β1, β2) (E-40)
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where the star � denotes the convolution operation, and the beta function B (·, ·)
is defined by (H-10) of Appendix H.2. Substituting (H-11) into (E-40) and
using (E-37), we obtain

[f (·;α, β1) ∗ f (·;α, β2)] (x) = f (x;α, β1 + β2) (E-41)

which indicates that the family of gamma densities {f (x;α, β) , β > 0} is closed
under convolutions. By mathematical induction, if

Z =

N∑
i=1

Xi (E-42)

is the sum of N independent random variables, and Xi has a gamma density
with parameters α and βi, then Z has a gamma density with parameters α and∑N

i=1 βi.
Let Z in (E-42) denote the sum of N independent exponentially distributed

random variables with the same parameter α > 0. Since the exponential density
is equal to f(x;α, 1), (E-41) implies that the density of Z is the gamma density
f(x;α,N).

Equations (E-6) and (E-37) indicate that a central chi-squared density with
1 degree of freedom is equal to f

(
x; 1/2σ2, 1/2

)
. Therefore, if Z in (E-42)

denotes the sum of N independent central chi-squared random variables with
the same parameter σ2, then the application of (E-41) provides another proof
that the density of Z is the gamma density f

(
x; 1/2σ2, N/2

)
, as indicated

by (E-17).



Appendix F

Orthonormal Functions and
Parameter Estimation

F.1 Inner Product Spaces

An inner product on a vector space L is a function from L × L to the set
of complex numbers C. For all f, g, h ∈ L and a, b ∈ C, the inner product
(f, g) → 〈f, g〉 has the following properties. (1) 〈f, g〉 = 〈g, f〉∗, , where the
asterisk denotes the complex conjugate. (2) 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉. (3)
〈af, g〉 = a 〈f, g〉 . (4) 〈f, f〉 ≥ 0 with equality if and only if f = 0 almost
everywhere.

We define the norm as ‖f‖ =
√
〈f, f〉, f ∈ L. Then the Cauchy–Schwarz

inequality is
|〈f, g〉| ≤ ‖f‖ ‖g‖ (F-1)

with equality if and only if f = ag for some a ∈ C. This inequality is valid if
g = 0. If g �= 0, set

a = −〈f, g〉
‖g‖2

. (F-2)

Using the properties of inner products, we obtain

0 ≤ ‖f + ag‖2 = ‖f‖2 + a 〈g, f〉+ a∗ 〈f, g〉+ |a|2 ‖g‖2

= ‖f‖2 − |〈f, g〉|
‖g‖2

(F-3)

which proves the inequality. Equality occurs if and only if f + ag = 0.
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In the space of n complex numbers, the inner product is defined as

〈x, y〉 =
n∑

i=1

x∗
i yi. (F-4)

Therefore, the Cauchy–Schwarz inequality

∣∣∣∣∣
n∑

i=1

x∗
i yi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

(F-5)

where equality is achieved if and only if xi = kyi, i = 1, 2, . . . , n.
Let x and y denote N × 1 vectors with complex components. The inner

product is defined as
〈x, y〉 = xHy. (F-6)

Therefore, the Cauchy–Schwarz inequality for vectors is
∣∣xHy

∣∣ ≤ ||x|| · ||y|| , (F-7)

which is valid when x = 0 or y = 0. Equality is achieved if and only if x = ky
for some complex scalar k.

F.2 Signal Space

A complete normed vector space is one in which every Cauchy sequence con-
verges to a member of the vector space. A Hilbert space is a complete vector
space with an inner product and a norm defined by the inner product. The
signal space L2 [0, T ] is the Hilbert space of complex-valued functions f (t) such

that |f (t)|2 is integrable over [0, T ]. The inner product of functions f (t) and
g (t) in L2 [0, T ] is

〈f (t) , g (t)〉 =
∫ T

0

f(t)g∗(t)dt (F-8)

where the asterisk denotes the complex conjugate. The norm of f (t) ∈ L2 [0, T ]
is denoted by ‖f (t)‖ ,, and its square is

‖f (t)‖2 = 〈f (t) , f (t)〉 =
∫ T

0

|f (t)|2 dt < ∞. (F-9)

These definitions satisfy the requirements of an inner product space. They
indicate that the norm is nonnegative,

〈f (t) , g (t)〉 = 〈g (t) , f (t)〉∗ (F-10)

and
〈f (t) + h (t) , g (t)〉 = 〈f (t) , g (t)〉+ 〈h (t) , g (t)〉. (F-11)

Functions that are equal almost everywhere are considered equivalent, and
‖f (t)‖ = 0 implies that f (t) = 0.
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The Cauchy–Schwarz inequality for signal space is

|〈f (t) , g (t)〉| ≤ ‖f (t)‖ ‖g (t)‖ (F-12)

with equality if and only if f (t) = λg (t) .
Let {φi(t)} denote a countable set of functions φi(t), φi(t), . . . in L2 [0, T ] .

The set {φi(t)} is orthonormal if

〈φi(t), φk(t)〉 = δik, i �= k (F-13)

where δii = 1, and δik = 0, k �= i. An orthonormal subset B of L2 [0, T ] is a
basis for L2 [0, T ] if B is not a proper subset of any other orthonormal subset of
L2 [0, T ] . The subspace S (B) spanned by B is the smallest closed subspace of
L2 [0, T ] containing all the orthonormal basis functions of B. An orthonormal
basis B is complete if S (B) = L2 [0, T ] .

Using functional analysis [63], many specific complete orthonormal bases can
be constructed. An example of an orthonormal basis in L2 [0, T ] comprises the
complex exponential functions in a Fourier series representation of a function;
that is, the basis is {√

1/T exp (j2πkt/T ) , k ≥ 1
}
.

An example of a real-valued orthonormal basis in L2 [0, T ] comprises the sine
and cosine functions in a Fourier series representation of a function; that is, the
basis is {√

2/T sin (2πkt/T ) ,
√

2/T cos (2πkt/T ) , k ≥ 1
}
.

A countable sequence of functions {fn (t) , n ≥ 1} in L2 [0, T ] converges to
a function f (t) in L2 [0, T ] if ‖fn (t)− f (t)‖ → 0 as n → ∞. Consider a com-
plete set of orthonormal basis functions{φi(t)} for L2 [0, T ] . We define the finite
expansion of f (t) ∈ L2 [0, T ] in terms of the first N basis functions as

S (f,N) =

N∑
i=1

fiφi(t) (F-14)

where the expansion coefficients are defined as

fi = 〈f (t) , φi (t)〉, i ≥ 1. (F-15)

It can be shown [6, 63] that ‖f (t)− S (f,N)‖ → 0 as N → ∞, and hence,

f (t) = lim
N→∞

N∑
i=1

fiφi(t) =

∞∑
i=1

fiφi(t). (F-16)

Suppose that f (t) , g (t) ∈ L2 [0, T ] , ‖f (t)− S (f,N)‖ → 0 as N → ∞,
and ‖g (t)− S (g,N)‖ → 0 as N → ∞. The linearity of the inner product gives

〈f (t) , g (t)〉 = 〈f (t)− S (f,N) , g (t)〉+ 〈f (t) , g (t)− S (g,N)〉
+ 〈f (t)− S (f,N) , g (t)− S (g,N)〉+ 〈S (f,N) , S (g,N)〉.

(F-17)
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Applying the Cauchy–Schwarz inequality successively to the first three terms
on the right and using ‖f (t)− S (f,N)‖ → 0 and ‖g (t)− S (g,N)‖ → 0 as
N → ∞, it follows that each of these terms approaches zero as N → ∞.
Therefore, taking N → ∞ and using (F-13), we obtain

〈f (t) , g (t)〉 = lim
N→∞

〈
N∑
i=1

fiφi(t),
N∑
i=1

giφi(t)

〉

= lim
N→∞

N∑
i=1

fig
∗
i

=
∞∑
i=1

fig
∗
i , (F-18)

and hence,

‖f (t)‖2 =

∞∑
i=1

|fi|2 . (F-19)

The Gram–Schmidt orthonormalization procedure starts with a countable
set of linearly independent functions {gi(t)} and then uses them in the con-
struction of a complete set of orthonormal basis functions {φi(t)}, i = 1, 2, . . . ,
in L2 [0, T ]. In the procedure, each new function φi(t) is a linear combination of
gi (t) and the previously constructed {φk(t)}, k ≤ i−1. The linear combinations
are selected to ensure orthonormality. The defining equations of the procedure
are

φi(t) = αi

[
gi(t)−

i−1∑
k=1

〈gi (t) , φk (t)〉φk(t)

]
(F-20)

where

αi =

[
‖gi (t)‖2 −

i−1∑
k=1

[〈gi (t) , φk (t)〉]2
]−1/2

. (F-21)

F.3 Dirac Delta Function and White Noise

The Dirac delta function δ (t) is defined as the nonstandard function such that
for any continuous and integrable function h (s)and t, s ∈ [0, T ], we have

∫ T

0

h (s) δ (t− s) ds = h (t) . (F-22)

The delta function is nonstandard because no function exists that satisfies (F-22).
The delta function may be approximated by a variety of functions including

δn (t) =

{
n, − 1

2n ≤ t ≤ 1
2n

0, |t| > 1
2n

(F-23)
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and

δn (t) =
1

2π

∫ n

−n

ejtxdx =
sin(nt)

πt
(F-24)

for large values of n. However, neither of these approximate functions has a
limit as n → ∞. Therefore, the integral in (F-22) is defined as

∫ T

0

h (s) δ (t− s) ds = lim
n→∞

∫ T

0

h (s) δn (t− s) ds. (F-25)

For each t, s ∈ [0, T ] , we expand δ (t− s) in terms of a complete set of
orthonormal basis functions as

δ (t− s) =

∞∑
i=1

δi (t)φi(s). (F-26)

Since

δi (t) = 〈δ (t− s) , φi(s)〉 =
∫ T

0

δ (t− s)φ∗
i (s)ds

= φ∗
i (t) (F-27)

we obtain the representation

δ (t− s) =
∞∑
i=1

φ∗
i (t)φi(s). (F-28)

White noise n (t) is defined as a stochastic process over [0, T ]with E [n (t)] =
0 and autocorrelation function

E[n(t)n(s)] =
N0

2
δ (t− s) . (F-29)

Given a complete set of orthonormal basis functions {φi(t)} in L2 [0, T ], we
define the projection of n (t) onto the subspace spanned by the first N basis
functions as

ñ (t,N) =

N∑
i=1

niφi(t) (F-30)

where

ni = 〈n (t) , φi (t)〉 =
∫ T

0

n(t)φ∗
i (t)dt, i ≥ 1. (F-31)

Using E [n (t)] = 0, (F-22), (F-29), and (F-13) in (F-31), we obtain

E [ni] = 0, E
[
|ni|2

]
=

N0

2
, i ≥ 1 (F-32)

E [nin
∗
k] = 0, i �= k. (F-33)
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The white noise may be represented by the expansion

n(t) =
∞∑
i=1

niφi(t) (F-34)

in the sense that E[ñ (t,N) ñ∗ (s,N)] → δ (t− s) as N → ∞. To prove this
result, we calculate

lim
N→∞

E [ñ (t,N) ñ∗ (s,N)] = lim
N→∞

E

[
N∑
i=1

n∗
iφ

∗
i (t)

N∑
i=1

nkφk(s)

]

=
N0

2

∞∑
i=1

φ∗
i (t)φi(s)

=
N0

2
δ (t− s) (F-35)

where (F-33) and (F-32) are used in the second equality, and (F-28) is used in
the third equality.

F.4 Estimation of Waveform Parameters

Consider the estimation of waveform parameters that are components of the
vector θ. The observed signal is

r(t) = s (t,θ) + n (t) , 0 ≤ t ≤ T (F-36)

where the real-valued signal s (t,θ) has a known waveform except for θ, and
n (t) is zero-mean, white Gaussian noise with autocorrelation function given
by (F-29). For all values of the waveform parameters, s(t,θ) belongs to the
signal space L2 [0, T ] .

Let {φi(t)} denote a complete set of real-valued orthonormal basis functions
in L2 [0, T ] . The orthonormal expansions of the functions in (F-36) are

r (t) =
∞∑
i=1

riφi(t) (F-37)

s (t,θ) =

∞∑
i=1

si (θ)φi(t) (F-38)

n (t) =

∞∑
i=1

niφi(t) (F-39)

with coefficients

ri = 〈r (t) , φi (t)〉 =
∫ T

0

r(t)φi(t)dt = si (θ) + ni (F-40)

si (θ) = 〈s (t,θ) , φi (t)〉 =
∫ T

0

s (t,θ)φi(t)dt (F-41)
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ni = 〈n (t) , φi (t)〉 =
∫ T

0

n(t)φi(t)dt. (F-42)

Each ni is a statistically independent, real-valued, Gaussian random variable,
and (F-32) indicates that the conditional density of ri is

f(ri|θ) =
1√
πN0

exp

[
− (ri − si (θ))

2

N0

]
. (F-43)

To avoid convergence problems arising from the assumption of white noise,
we initially consider the N × 1 vector r = [r1r2 . . . rN ]

T
. Applying (F-43), we

obtain the log-likelihood function

ln f (r|θ,N) = − ln
√

πN0−
1

N0

N∑
i=1

r2i+
2

N0

N∑
i=1

risi (θ)−
1

N0

N∑
i=1

s2i (θ) . (F-44)

The first sum may not converge, but it is irrelevant to the maximum-likelihood
estimation and may be dropped along with the first term. The factor N0 then
becomes irrelevant and may be dropped. Taking N → ∞, and applying (F-18),
we obtain the sufficient statistic for maximum-likelihood estimation of θ:

Λs [r(t)] = 2

∫ T

0

r(t)s(t,θ)dt−
∫ T

0

s2(t,θ)dt. (F-45)

If s (t,θ) depends on a random vector φ, we base the maximum-likelihood
estimation on the average log-likelihood ratio defined as Eφ [ln f (r|θ,N)] , where
Eφ[·] denotes the expected value with respect to φ. Therefore, the sufficient
statistic becomes

Λa [r(t)] = Eφ

[
2

∫ T

0

r(t)s(t,θ)dt−
∫ T

0

s2(t,θ)dt

]
(F-46)

and the maximum-likelihood estimator is

θ̂ = argmax
θ

Λa [r(t)] . (F-47)

F.5 Cramer–Rao Inequality

The Cramer–Rao inequality provides a lower bound on the variance of an unbi-
ased estimator. Consider a random vector X and a single unknown parameter
θ. The conditional density of X is f (x|θ) , and the partial derivative f (1) (x|θ)
with respect to θ exists for all (x, θ) . Assume that there is an integrable function

g (x) such that
∣∣∣θ̂ (x) f (1) (x|θ)

∣∣∣ ≤ g (x) for all (x, θ) and that
∫∞
−∞ g (x) dx < ∞.

Let θ̂ (X) denote an estimator of θ. This estimator is unbiased if

E
[
θ̂ (X)

]
= θ =

∫ ∞

−∞
θ̂ (x) f (x|θ) dx. (F-48)
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Differentiating both sides of the second equality with respect to θ, we obtain

1 =

∫ ∞

−∞
θ̂ (x)

∂

∂θ
f (x|θ) dx =

∫ ∞

−∞
θ̂ (x)

∂ ln f (x|θ)
∂θ

f (x|θ) dx (F-49)

where the interchange of the derivative and integration is justified by the dom-
inated convergence theorem, which is applicable because of the assumption
about g (x). Since f (x|θ) integrates to unity,

0 =
∂

∂θ

∫ ∞

−∞
f (x|θ) dx

=

∫ ∞

−∞

∂

∂θ
f (x|θ) dx

=

∫ ∞

−∞

∂ ln f (x|θ)
∂θ

f (x|θ) dx. (F-50)

Combining (F-49) and (F-50) and using the Cauchy–Schwarz inequality for
random variables (Appendix A.2) yield

1 =

∫ ∞

−∞

[
θ̂ (x)− θ

] ∂ ln f (x|θ)
∂θ

f (x|θ) dx

= E

{[
θ̂ (X)− θ

] ∂ ln f (X|θ)
∂θ

}

≤
[
var
(
θ̂
)]1/2

E

{[
∂ ln f (X|θ)

∂θ

]2}1/2

(F-51)

which implies the Cramer–Rao inequality for the variance of an unbiased esti-
mator :

var
(
θ̂
)
≥
(
E

{[
∂ ln f (X|θ)

∂θ

]2})−1

. (F-52)

We assume that the second partial derivative f (2) (x|θ) with respect to
θ exists for all (x, θ) , and there is an integrable function h (x) such that∣∣f (2) (x|θ)

∣∣ ≤ h (x) for all (x, θ) , and
∫∞
−∞ h (x) dx < ∞. Then differentiating

the final integral in (F-50) and applying the dominated convergence theorem
give

0 =

∫ ∞

−∞

{
∂2 ln f (x|θ)

∂θ2
+

[
∂ ln f (x|θ)

∂θ

]2}
f (x|θ) dx. (F-53)

Combining this equation with the lower bound in (F-52), we obtain an alterna-
tive version of the Cramer–Rao inequality:

var
(
θ̂
)
≥ −

(
E

[
∂2 ln f (X|θ)

∂θ2

])−1

. (F-54)
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We calculate the Cramer–Rao inequality for the observed signal of (F-36),
assuming that ∂s(t, θ)/∂θ is in L2 [0, T ] and that each coefficient si (θ) of s(t, θ)
is differentiable for all θ. Differentiating (F-44), we obtain

∂ ln f (r|θ,N)

∂θ
=

2

N0

[
N∑
i=1

ri
∂si (θ)

∂θ
−

N∑
i=1

si (θ)
∂si (θ)

∂θ

]
. (F-55)

Let S (s,N, θ) denote the finite expansion of s (t, θ) in terms of the first N basis
functions. Then

∂S (s,N, θ)

∂θ
=

N∑
i=1

∂si (θ)

∂θ
φi(t) (F-56)

Therefore, the assumed existence of the derivative implies that

∂s(t, θ)

∂θ
= lim

N→∞

∂S (s,N, θ)

∂θ
=

∞∑
i=1

∂si (θ)

∂θ
φi(t), (F-57)

and hence,
∂si (θ)

∂θ
=

〈
∂s(t, θ)

∂θ
, φi (t)

〉
. (F-58)

Taking the limit of (F-55) as N → ∞ and applying (F-38), (F-58), and (F-18)
give

∂ ln f(r|θ)
∂θ

= lim
N→∞

∂ ln f (r|θ,N)

∂θ

=
2

N0

[∫ T

0

r(t)
∂s(t, θ)

∂θ
dt−

∫ T

0

s(t, θ)
∂s(t, θ)

∂θ
dt

]

=
2

N0

∫ T

0

n(t)
∂s(t, θ)

∂θ
dt. (F-59)

Applying (F-52) and (F-29), we find that the Cramer–Rao inequality for a
waveform parameter θ in the presence of white Gaussian noise is

var
(
θ̂
)
≥ N0

2

{∫ T

0

[
∂s(t, θ)

∂θ

]2
dt

}−1

. (F-60)



Appendix G

Hermitian Matrices

An n × n matrix A has an eigenvector u and an eigenvalue λ if Au = λu. A
set of vectors u1, . . . ,un are orthonormal if

uH
i uk = 0, i �= k, and ‖ui‖2 = uH

i ui = 1 (G-1)

where ‖ · ‖ denotes the Euclidean norm of a vector, and the superscript H
denotes the conjugate transpose. A unitary matrix U is an n× n matrix with
orthonormal column vectors. Therefore, U has rank n, UHU = I, and

U−1 = IU−1 = UHUU−1 = UH (G-2)

where I denotes the identity matrix. A unitary matrix with real-valued elements
is called an orthogonal matrix .

The n × n matrix A has a complete set of n orthonormal eigenvectors
u1, . . . ,un with corresponding eigenvalues λ1, . . . , λn if there are n orthonormal
eigenvectors satisfying

Aui = λiui, 1 ≤ i ≤ n. (G-3)

If an n× n matrix A has a complete set of n orthonormal eigenvectors, and U
is a unitary matrix with column vectors equal to u1, . . . ,un, then UHAui =
λiU

Hui, 1 ≤ i ≤ n, and hence, the diagonal matrix of eigenvalues is

Λ = UHAU. (G-4)

Conversely, if an n × n matrix A and an n × n unitary matrix U sat-
isfy (G-4) for a diagonal matrix Λ with diagonal elements λ1, . . . , λn, then an
application of (G-2) proves that A has a complete set of n orthonormal eigen-
vectors u1, . . . ,un with corresponding eigenvalues λ1, . . . , λn. Applying (G-2)
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to (G-4) twice, we obtain the spectral decomposition

A = UΛUH = UΛU−1 (G-5)

=
n∑

i=1

λiuiu
H
i . (G-6)

An n × n matrix A is diagonalizable if B−1AB = D for some nonsingular
matrix B and diagonal matrix D. Thus, if an n × n matrix A and an n × n
unitary matrix U satisfy (G-5) for a diagonal matrix Λ with diagonal elements
λ1, . . . , λn, then A is diagonalizable.

An n×n Hermitian matrix A is a matrix satisfying AH = A. A Hermitian
matrix with real-valued elements is called a symmetric matrix.

Theorem 1. An n × n Hermitian matrix A (a) has a complete set
of orthonormal eigenvectors and can be diagonalized and (b) has real-valued
eigenvalues.

Proof. (a) The proof is by mathematical induction. The result is true if
n = 1. Assume that the hypothesis is true for n × n Hermitian matrices, and
let A denote a (n + 1) × (n + 1) Hermitian matrix. This matrix has at least
one eigenvector u1 with a unit norm. Let λ1 denote the corresponding eigen-
value. Using the Gram–Schmidt process, we determine orthonormal vectors
u1, . . . ,un+1 that constitute a basis for a complex (n + 1)-dimensional vector
space. Let Z denote the (n+1)×(n+1) unitary matrix with these orthonormal
vectors as its columns. The (n+ 1)× (n+ 1) matrix ZHAZ is Hermitian, and
its first column is

ZHAu1 = λ1Z
Hu1 = λ1e1 (G-7)

where e1 = [10 . . . 0]
H
. Therefore, since ZHAZ is a Hermitian matrix, it must

have the form

ZHAZ =

[
λ1 0
0 Y

]
(G-8)

where Y is a n × n Hermitian matrix. By the induction hypothesis, there
exists a n× n unitary matrix V1 such that VH

1 YV1 = D, where D is a n× n
diagonal matrix with its ith diagonal component equal to λi+1. Let V denote
the (n+ 1)× (n+ 1) unitary matrix

V =

[
1 0
0 V1

]
. (G-9)

The (n+1)×(n+1) matrixU = ZV is unitary becauseUHU = VHZHZV = I,
and

UHAU = VHZHAZV =

[
λ1 0
0 VH

1 YV1

]

=

[
λ1 0
0 D

]
= Λ (G-10)
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where Λ is a (n+1)× (n+1) diagonal matrix with its ith diagonal component
equal to λi. Therefore, the columns ofU comprise a complete set of orthonormal
eigenvectors, and A is diagonalizable.

(b) For an n× n Hermitian matrix A, (G-3) implies that

uH
i Aui = λi‖ui‖2, 1 ≤ i ≤ n. (G-11)

The left-hand side of this equation is real since it is identical to its conjugate
transpose, and hence, each λi is real. Therefore, the eigenvalues of a Hermitian
matrix are real. �

An n × n Hermitian matrix is positive-semidefinite if for all n × 1 column
vectors x,

xHAx ≥ 0, (G-12)

and it is positive definite if

xHAx > 0, x �= 0. (G-13)

Theorem 2. An n×n Hermitian positive-definite matrix A (a) has positive
eigenvalues and (b) is invertible. (c) If B is an n × n invertible matrix, then
BHAB is an n× n Hermitian positive-definite matrix.

Proof. (a) Equation (G-11) indicates that a Hermitian positive-semidefinite
matrix has nonnegative eigenvalues and that a Hermitian positive-definite ma-
trix has positive eigenvalues. (b) If a Hermitian positive-definite matrix were
singular, then λ = 0 would be one or more of its eigenvalues. Therefore, since
all its eigenvalues are positive, it is invertible. (c) Since A is positive definite,
(Bx)HABx > 0 unless Bx = 0. Since B is invertible, Bx �= 0 unless x = 0.
Therefore, xH(AHBA)x > 0,x �= 0. �.

The trace of a matrix is equal to the sum of its diagonal elements. From the
definitions of matrix multiplication and the trace, we obtain the trace identity

tr (AB) = tr (BA) (G-14)

for compatible matrices A and B. If A is a Hermitian positive-definite matrix,
then its spectral decomposition and positive eigenvalues imply that

tr (A) = tr
(
UΛUH

)
= tr

(
ΛUHU

)
= tr (Λ) > 0. (G-15)

Therefore, if A is a Hermitian positive-definite matrix, then tr (A) > 0. Simi-
larly, if A is a Hermitian positive-semidefinite matrix, then tr (A) ≥ 0.



Appendix H

Special Functions

H.1 Gamma Functions

The gamma function is defined as

Γ(x) =

∫ ∞

0

yx−1e−ydy, x > 0. (H-1)

An integration by parts indicates that

Γ(1 + x) = xΓ(x). (H-2)

A direct integration yields Γ(1) = 1. Therefore, when n is a positive integer,

Γ(n) =

∫ ∞

0

yn−1e−ydy = (n− 1)!. (H-3)

Changing the integration variable by substituting y = z2 in (H-1), observing
that the integrand is an even function, and using (A-2), it is found that

Γ(1/2) =
√
π. (H-4)

The incomplete gamma functions are defined as

Γ(a, x) =

∫ ∞

x

ya−1e−ydy , a > 0 (H-5)

and

γ(a, x) =

∫ x

a

ya−1e−ydy, a > 0. (H-6)

Therefore,
Γ(a) = Γ(a, x) + γ(a, x). (H-7)
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When a = n is a positive integer, the integration of Γ(n, x) by parts n − 1
times yields

Γ(n, x) = (n− 1)!e−x
n−1∑
i=0

xi

i!
, (H-8)

and hence,

γ(n, x) = (n− 1)!

(
1− e−x

n−1∑
i=0

xi

i!

)
. (H-9)

H.2 Beta Function

The beta function is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, x > 0, y > 0. (H-10)

The identity

B(x, y) = B(y, x) =
Γ(x)Γ(y)

Γ(x+ y)
(H-11)

is proved by substituting y = z2 in the integrand of (H-1), expressing the prod-
uct Γ(a)Γ(b) as a double integral, changing to polar coordinates, integrating
over the radius to obtain a result proportional to Γ(a + b), and then changing
the variable in the remaining integral to obtain B(a, b)Γ(a+ b).

In (H-10), set x = (k + 1)/2 and y = 1/2, and then apply (H-11) . The
change of variable t = cos2θ, 0 ≤ θ ≤ π/2, in the integrand of (H-10) and
similarly the change of variable t = sin2 θ, 0 ≤ θ ≤ π/2, yield

∫ π/2

0

cosk θdθ =

∫ π/2

0

sink θdθ =

√
πΓ
(
k+1
2

)
2Γ
(
k+2
2

) , k ≥ 0. (H-12)

H.3 Bessel Functions of the First Kind

The modified Bessel function of the first kind and order ν is defined as

Iν(x) =
∞∑
i=0

(x/2)ν+2i

i!Γ(ν + i+ 1)
(H-13)

where the gamma function may be replaced by a factorial if ν = n is an integer.
Therefore, the modified Bessel function of the first kind and order zero is defined
as

I0(x) =

∞∑
i=0

1

i!i!

(
x

2

)2i

. (H-14)

A substitution of the series expansion of the exponential function and a term-
by-term integration using (H-12) verify the representation
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I0(x) =
1

2π

∫ 2π

0

ex cosudu. (H-15)

Since the cosine is a periodic function and the integration is over the same
period, we may replace cosu with cos(u+θ) for any θ in (H-15). A trigonometric
expansion with x1 = |x| cos θ and x2 = |x| sin θ then yields

I0(|x|) =
1

2π

∫ 2π

0

exp{Re[|x| ej cos(u+θ)]}du

=
1

2π

∫ 2π

0

exp (x1 cosu− x2 sinu) du, |x| =
√

x2
1 + x2

2. (H-16)

A term-by-term differentiation of (H-14) yields

I1(x) =
d

dx
I0(x). (H-17)

The Bessel function of the first kind and order ν is defined as

Jν(x) =

∞∑
i=0

(−1)
i
(x/2)ν+2i

i! Γ(ν + i+ 1)
(H-18)

where the gamma function may be replaced by a factorial if ν = n is an integer.
A substitution of the series expansion of the exponential function and a term-
by-term integration using (H-12) verify the representation

J0(x) =
1

2π

∫ 2π

0

ejx cosudu. (H-19)

H.4 Q-functions

The Gaussian Q-functionis defined as

Q(x) =
1√
2π

∫ ∞

x

exp

(
−y2

2

)
dy =

1

2
erfc

(
x√
2

)
(H-20)

where erfc(·) is the complementary error function. The results in Appendix A.1
imply that Q(−∞) = 1, Q(0) = 1/2, and Q(∞) = 0.

The Gaussian Q-function can be recast into a form in which the limits of
the integral are not only finite but also independent of the argument of the
function. This form facilitates computation and enables simplified analyses. To
derive this form, we begin with the identity Q (x) = Q (x)Q(−∞). For x ≥ 0,

Q(x) =
1√
2π

∫ ∞

x

exp

(
−y2

2

)
dy

[
1√
2π

∫ ∞

−∞
exp

(
−z2

2

)
dz

]

=
1

2π

∫∫
y≥x≥0,z>−∞

exp

(
−y2 + z2

2

)
dydz

=
1

2π

∫ π

0

∫ ∞

x/ sin θ

exp

(
−r2

2

)
rdrdθ. (H-21)
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In the second equality, Fubini’s theorem justifies expressing the successive in-
tegrations as a double integral over a region in the plane. The third equality is
the result of changing the Cartesian coordinates to polar coordinates by using
y = r cos θ and z = r sin θ. After integrating over the radius in (H-21) and
using the periodic character of sin θ, we obtain the desired form:

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ, x ≥ 0. (H-22)

If x, y ≥ 0, then

Q(x+ y) =
1

π

∫ π/2

0

exp

(
−x2 + y2 + 2xy

2 sin2 θ

)
dθ. (H-23)

Since
(
y2 + 2xy

)
/ sin2 θ ≥ y2 when θ ∈ [0, π/2] ,

Q(x+ y) ≤ exp

(
−y2

2

)
Q(x), (x, y) ≥ 0. (H-24)

This inequality provides a generalization of the Chernoff bound on the standard
Gaussian Q-function. Similarly,

Q(
√
x+ y) ≤ exp

(
−y

2

)
Q(

√
x), (x, y) ≥ 0. (H-25)

The generalized Marcum Q-function is defined for a positive integer m as

Qm(α, β) =

∫ ∞

β

x

(
x

α

)m−1

exp

(
−x2 + α2

2

)
Im−1(αx) dx (H-26)

where α > 0 if m ≥ 2, and α ≥ 1 if m = 1.

H.5 Hypergeometric Function

The confluent hypergeometric function is defined as

1F1(α, β;x) =

∞∑
i=0

Γ(α+ i)Γ(β)xi

Γ(α)Γ(β + i)i!
, β �= 0,−1,−2, . . . (H-27)

and the series converges for all finite x.
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ACM filter, 289–292
Acquisition, 209, 239, 251–262

consecutive-count strategy, 215,
261

lock mode, 215
matched-filter, 220, 251
multicarrier, 393
search control system, 261
sequential, 238
serial search, 213, 259
up-down strategy, 215, 261
verification mode, 215

Acquisition correlator, 229–234
Acquisition time, 216
Activity probability, 491
Adaptive filters

ACM, 291
anticipative, 318
time-domain, 280
transform-domain, 283

Adaptive modulation, 514
Adaptive rate control, 514
Ad hoc network, 498
Aliasing, 180, 664
Analog-to-digital converter (ADC), 9
Analytic function, 268
Area-mean power, 326
Area spectral efficiency, 505

average, 526
Asynchronous CDMA, 435
Attenuation power law, 326
Autocorrelation, 85

aperiodic, 436
average, 87
direct-sequence signal, 99
maximal-sequence waveform, 98
periodic, 97, 425
random binary sequence, 86
of stationary process, 657

Autoregressive process, 289
Average likelihood ratio, 597
Average log-likelihood ratio, 681
AWGN channel, 661

time-varying, 6

B
Basis functions, 677
BCH code, 21
Beamforming, 483–484
Bessel function, 691
Beta function, 690
BICM-ID, 378
Binary phase-shift keying (BPSK),

8–9
Bit-interleaved coded modulation

(BICM), 376–378
Block codes, 18, 32
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Cauchy-Schwarz inequality (cont.)
for random variables, 633
for vectors, 676

CDMA2000, 68, 367, 368, 473, 509,
515, 563

Cell, 213
Cell search for downlinks, 511
Central limit theorem, 632–638
Channel

frequency response, 340
Channel capacity, 422, 539, 574

ergodic symmetric, 574
symmetric, 574

Channelization code, 511
Channelized radiometer, 618–625
Channel-state estimator, 386, 407, 416
Channel LLR, 59, 73
Channel-state information (CSI), 163,

165, 482–483
Channel symbols, 20
Chaotic spread-spectrum systems,

442
Characteristic function, 648

joint, 629, 652
Characteristic polynomial, 92–97, 429
Chase algorithm, 30
Chebyshev’s inequality, 633
Chernoff bound, 44, 642
Chip function, 449
Chip waveform, 82

rectangular, 106, 441
sinusoidal, 106, 441

Chirp, 192
Circulant matrix, 400
Circular state diagram, 226
Circular symmetry, 6, 659
Classical concatenated codes, 48–50
Clipping function, 158
Code-division multiple access

(CDMA)
definition, 421

Code rate, 8
Code-shift keying (CSK), 136–140
Coding gain, 30
Coherence bandwidth, 338

Coherence time, 332
Combat net radio, 536, 589
Comparator, 8
Complementary aperiodic correlation

function, 437
Complementary codes, 436
Complementary error function, 9
Complete data vector, 550
Complex binary spreading sequence,

123–125
Complex envelope, 656, 658
Complex gradients, 268–271
Complex random vector, 632

Gaussian, 632
Confluent hypergeometric function,

692
Constellation function, 467
Constellation labeling, 10
Constraint length, 33
Continuous-phase frequency-shift

keying (CPFSK), 170
Continuous-phase modulation, 169
Conventional detector, 424
Convex function, 445
Convolution, 646
Convolutional code, 32–44

recursive systematic, 35
Correlation matrix, 440, 466
Cramer-Rao inequality, 681
Cross-correlation

aperiodic, 436
continuous-time partial, 441
partial Hamming, 458
periodic, 425
periodic Hamming, 459

Cryptanalysis, 102
CSMA guard zone, 504
Cyclic prefix, 398
Cyclostationary process, 85

D
Decimation, 431
Decision-directed demodulator, 148
Decoder

bounded-distance, 20
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Degree distribution
check nodes, 74
variable nodes, 74

Dehopping, 152
Delay-locked loop, 239–246
Delta-sigma converter, 202
Denial policy, 519
Despreading, 84
Deviation ratio, 170
Differential phase-shift keying

(DPSK), 15–18
Digital-to-analog converter (DAC),

193
Dirac delta function, 678
Dirichlet function, 175
Discrete-time Fourier transform

(DTFT), 663
Discrete Fourier transform, 397
Discriminator characteristic, 242, 264
Distribution

central chi-squared, 669
exponential, 672
gamma, 672
lognormal, 326
noncentral chi-squared, 667
Rayleigh, 671
Rice, 670

Diversity
frequency, 341
order, 350
path, 379
polarization, 341
receive, 367
selection combining, 362
spatial, 341, 367
time, 341
transmit, 367

Divider, 198
dual-modulus, 198

Doppler
shift, 327
spectrum, 333, 340
spread, 332, 516

Double-dwell system, 218–219, 222
Downconversion, 2–4, 8

Downconverter
quadrature, 117

DS-CDMA, 424
asynchronous network, 474
cellular downliks, 528
cellular uplinks, 514

DS-CDMA-FDE systems, 411–418
Duplexing, 515
Duty factor of mobile, 537
Dwell interval, 154

E
Early–late system, 264
Effective spreading factor, 491
Energy detector, see Radiometer
Envelope detector, 157
Equal-gain combining, 353–355
Equalizer

linear, 401
maximal-ratio combiner (MRC),

403, 413
minimum mean-square error

(MMSE), 404, 414
zero-forcing, 402, 413

Error-floor region, 68
Error rate, 25
Euclidean distance, 8
Euler function, 97
Exclusion zone, 496
Expectation Maximization (EM),

517, 554
algorithm, 552

F
Fading

block, 557
fast, 332
flat, 338
frequency-selective, 338
Nakagami, 331
Rayleigh, 330
Ricean, 331
slow, 332
time-selective, 332

Fading rate, 335–337
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Fast frequency hopping, 155, 617
Feedback shift register, 87
FH-CDMA, 424

network, 536
FH-CPFSK

power spectral density, 175
Fourier transform, 645
Fractional in-band power, 176
Frequency-hopping pattern, 151

uniform, 463
Frequency-selective fading, 338–341,

379
Frequency-shift keying (FSK), 15
Frequency channel, 151
Frequency estimator, 250
Frequency-hopping diversity, 391–392
Frequency synchronization, 206–208,

249–251
Frequency synthesizer, 193–202

direct digital, 193
fractional-N, 201
indirect, 196
multiple-loop, 199

Frost algorithm, 295–298, 474

G
Gamma function, 689
Gaussian interference, 114–115
Gaussian MSK (GMSK), 178
Gaussian process, 660
Gaussian Q-function, 9
Gaussian random vector, 630
Generalized Marcum Q-function, 692
Generating function

Gold sequence, 433
of acquisition time, 227
of convolutional code, 42
of sequence, 93

Global System for Mobile (GSM),
179, 589

Gold sequence, 432–433
Gradient, 267
Gradient vector, 550
Gram-Schmidt orthonormalization,

678
Grating lobe, 312

Grating null, 312
Gray labeling, 10
Guard interval, 398

H
Hadamard matrix, 101
Hamming bound, 21
Hamming distance, 19
Hard-decision decoders, 23–28
Hermitian matrix, 685–687
Hilbert transform, 655
Hop duration, 152
Hop epoch timing, 615
Hop interval, 152
Hopping band, 151
Hop rate, 151
Hopset, 151
Hybrid systems, 193

I
IEEE 802.11 standard, 503, 514
Incomplete data vector, 550
Incomplete gamma function, 689
Information-weight spectrum, 38
Information theory, 422–425, 573–574
Inner product, 675
Intercell interference, 523, 544
Interchip interference, 85
Interference canceler

multistage, 476
parallel, 477
successive, 475

Interleavers, 46–48
Intersymbol interference, 108, 398,

665
Intracell interference, 522, 543
Isotropic scattering, 333
Iterative demodulation and decoding,

64–67

J
Jensen’s inequality, 447

K
Kalman filter, 288

extension, 285
Kasami sequence, 433



Index 707

Key
spread-spectrum, 153

Kronecker delta function, 495

L
Lagrange multipliers, 293–294
Laplace transform, 643–668
Least-mean-square (LMS) algorithm,

273–277
Likelihood equation, 550
Likelihood function, 5
Linear equivalent, 103
Linearly constrained minimum-

variance algorithm, 295
Linear span, 103, 153
Local-mean power, 326
Lock detector, 222
Log-likelihood function, 5
Log-MAP algorithm, 55–56
Long-Term Evolution (LTE), 545, 556
Low-density parity-check (LDPC)

codes, 69–77
Low probability of interception, 595

M
Markovs inequality, 633
Matched filter, 1–2, 149

acquisition, 220
bandpass, 141
SAW convolver, 143
SAW transversal filter, 143

Maximal-ratio combining, 344–353,
385, 393

Maximal sequence, 91–92
preferred pair, 432

Maximin algorithm, 302–322
Max-star function, 55
Message privacy, 83
Metric

AGC, 132
BPSK symbol, 347
branch, 36
codeword, 4
coherent BCSK symbol, 352
erasures, 135
maximum-likelihood, 13

square-law, 158
white-noise, 134

Minimum-shift keying (MSK), 171
Minimum distance of code, 19
Minimum free distance, 38
Missing data vector, 552
Mobile ad hoc network (MANET),

498
Modified Bessel function, 690
Modulation-constrained area spectral

density, 539
Moment generating function, 641
Mother code, 426
Moving-window detection, 622
Multicarrier systems, 392–393
Multicode

MIMO, 482
system, 428

Multinomial expansion, 492
Multipath, 327

diffuse components, 331
intensity profile, 340
intensity vector, 389
resolvable components, 331, 338
specular components, 331

Multiple-input multiple-output
(MIMO), 478–484

Multiple access, 421
Multirate sequences, 426
Multisymbol noncoherent demodula-

tion, 182–191
Multitone jamming, 171
Multiuser detector, 423, 463–474

adaptive, 473
blind, 474
decorrelating, 466
for frequency hopping, 474
minimum-mean-square-error, 469

Mutual information, 574

N
Nakagami density, 331
Nakagami fading, 331
Narrowband interference, 280, 292
Near–far problem, 503
Near-far resistant, 467
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Noncoherent combining, 356–362
Nonlinear filters, 290–292
Nonlinear sequence generators,

102–104
Norm, 675
Normalized bandwidth, 176
Normalized LMS algorithm, 277–280,

291
Normalized mean acquisition time

(NMAT), 235
Normal random variable, 627
Norm, Euclidean, 685
Nyquist criterion, 665
Nyquist rate, 664

O
Optimal array, 298–301
Orthogonal frequency-division multi-

plexing (OFDM), 396, 411,
418, 545

Orthogonality condition, 369
Orthogonal matrix, 685
Orthogonal modulation, 11–15
Orthogonal sequences, 425
Orthogonal-shift keying (OSK), 15,

156
Orthogonal variable-spreading-factor

sequences, 426
Outage probability

conditional, 490
spatially averaged, 499

Output threshold test, 166

P
Packing density, 27
Partial-band interference, 161–169
Partial Hamming cross-correlation,

458
Peak-to-average-power ratio (PAPR),

409–411
Peer-to-peer network, see Ad hoc

network
Penalty time, 216
Peng-Fan bounds, 459
Periodic Hamming cross-correlation,

459
Phase accumulator, 193

Phase detector, 196
Pilot-assisted channel estimation

(PACE), 556
Pilot symbols, 163, 556
Polynomial

characteristic, 92, 429
irreducible, 94
primitive, 95

Polyphase sequences, 428
Power control, 503, 514–517, 522,

533–536
downlink, 533
fractional, 522
uplink, 514

Power spectral density (PSD),
125–127, 172–179, 659

average, 87
CPFSK, 176
CPM, 172
direct-sequence signal, 99
MSK, 177
QPSK and BPSK, 127
random binary sequence, 86

Prefix factor, 398
Processing gain, 84
Product code, 50–52
Pseudonoise sequence, 99
Pulse amplitude modulation (PAM),

5
Pulsed interference, 128–135

Q
Q-function, 691
Quadrature downconverter, 117
Quadrature phase-shift keying

(QPSK), 10–11
Quaternary system, 116–127

balanced, 121
dual, 118

R
Radiometer, 134, 600–615, 618–625
Rake receiver, 378–391
Random binary sequence, 85–86, 87
Rate control, 523–528, 532–533
Ratio threshold test, 166
Rayleigh fading, 330
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Rayleigh quotient, 277, 300
Recirculation loop, 146
Reed–Solomon code, 162–168

comma-free, 512
Reselection policy, 519
Rewinding time, 216
Ricean fading, 331

S
Sampling theorem, 663
SAW convolver, 143–146
SC-DS-CDMA systems, 395–411
Scrambling sequence, 482, 511
Search control system, 261
Search strategy

broken-center Z, 215
equiexpanding, 223
expanding-window, 223
nonuniform alternating, 224
uniform, 215
uniform alternating, 224
Z, 222

Sector antenna, 510
Sectorization, 484, 509
Selection combining, 362–367

postdetection selection, 366
switched combining, 366

Selection diversity
generalized, 391

Sequential estimator, 212
Sequential probability-ratio test, 238
Shadowing, 326, 499

factor, 326
Shift-register sequence, 87–100

linear, 87
maximal, 91

Signal space, 206, 676, 680
Signature sequences, 438
Signum function, 60, 656
Sinc function, 87
Singleton bound, 22
Slow frequency hopping, 155
Small-misalignment technique, 259
SNR wall, 615
Soft-decision decoders, 28–30
Soft handoff, 509

Soft-in soft-out (SISO) algorithm, 55
Space-time codes, 368
Spatial diversity, 341–343
Spatial multiplexing, 479
Spectral decomposition, 686
Spectral efficiency, 539
Spectral notching, 153
Spectral splatter, 176
Spreading factor, 84
Spreading sequence, 82, 85–100,

425–436
complex binary, 123
Gold, 432
Kasami, 433
linear complexity, 103
long , 101
maximal, 91
multirate, 426
short, 101
Walsh, 100

Spreading waveform, 82
Square-law metric, 360
Steepest descent, 272–273
Step size, 214
Stochastic-gradient algorithm, 273
Successive interference cancelation,

423
Switching time, 154, 544
Symbol erasures, 28
Symbol metric, 106
Symmetric matrix, 686
Synchronization-channel technique,

260
Synchronous CDMA, 439
Synchronous communications, 464

T
Tanner graph, 70
Tau-dither loop, 246–249
Throughput, 565
Time-hopping system, 192
Time of day (TOD), 153, 259
Tone interference, 110–114
Trace identity, 687
Trace of matrix, 687
Tracking, 239–249, 264
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Transmission security, 153
Transmit diversity, 367–371
Trellis-coded modulation, 45–46, 62
Trellis diagram, 35
Triangular function, 86
Turbo codes, 52–69

convolutional, 57
error floor, 68
extrinsic information, 58, 59
parallel block, 61
product code, 63
serially concatenated, 62
system latency, 57
trellis-coded modulation, 62

U
Ultra-wideband systems, 443
Uncorrelated scattering, 339
Uniform clustering, 496
Union bound, 28
Unitary matrix, 685

Unit step function, 14
Universal Mobile Telecommunications

System (UMTS), 187, 585,
586

V
Viterbi decoder, 37–44

W
Wait technique, 259
Walsh sequence, 100–101
Waterfall region, 68
WCDMA, 473, 509, 511, 515, 556
Weight

Hamming, 19
total information, 129

Welch bound, 430
White noise, 660, 679
Wide-sense stationary, 657
Wiener-Hopf equation, 272
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