£
O
=
©
o
c
<

INSO DAYS

The Complete Beginner’s Guide

SOL

SQL in 30 Days: The Complete

Beginner’s Guide
By Aniket Jain

Copyright © 2025 by Aniket Jain

All rights reserved. No part of this book may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical reviews
and certain other non-commercial uses permitted by copyright law.

For permission requests, please contact the author at
aniketjain8441@gmail.com

Disclaimer

The views and opinions expressed in this book are solely those of
the author and do not necessarily reflect the official policy or
position of any organization, institution, or entity. The information
provided in this book is for general informational purposes only
and should not be construed as professional advice.

Publisher
Aniket Jain

TABLE OF CONTENTS

Introduction
Why Learn SQL?
Setting Up Your SQL Environment
Understanding SQL's Popularity and Use Cases
Your 30-Day Learning Roadmap

Day 1: Introduction to SQL
What is SQL?
Understanding Databases and SQL Engines
Running Your First SQL Query

Day 2: Understanding Databases and Tables

What is a Database?
Creating and Managing Tables
Primary Keys and Foreign Keys

Day 3: SQL Data Types and Constraints
Common SQL Data Types
Applying Constraints (NOT NULL, UNIQUE, CHECK)
Understanding DEFAULT and AUTO_INCREMENT

Day 4: Inserting and Retrieving Data
Using INSERT to Add Data
Retrieving Data with SELECT
Using WHERE for Filtering

Day 5: SQL Operators and Expressions

- Comparison, Logical, and Arithmetic Operators
. Pattern Matching with LIKE
. Using BETWEEN, IN, and NULL Operators

Day 6: Sorting and Filtering Data
« Ordering Data with ORDER BY
. Filtering with LIMIT and OFFSET
. Sorting Data in Ascending and Descending Order

Day 7: Updating and Deleting Data
. Modifying Data with UPDATE
. Removing Data with DELETE

. Handling Transactions with coMmMIT and ROLLBACK

Day 8: SQL Joins — Combining Tables

. Understanding Different Types of Joins (INNER, LEFT, RIGHT,
FULL)
« Joining Multiple Tables

« Using ON vs. USING in Joins

Day 9: Advanced Filtering with Subqueries
- What are Subqueries?
- Using Subqueries in SELECT, FROM, and WHERE

. Common Use Cases for Subqueries

Day 10: Grouping and Aggregating Data
« Using GROUP BY to Summarize Data
. Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
. Filtering Groups with HAVING

Day 11:
Day 12:
Day 13:
Day 14:
Day 15:

Day 16:
(UDFy5s)

Understanding SQL Indexes
What are Indexes and Why Use Them?

Creating and Managing Indexes

How Indexes Improve Performance

Views and Virtual Tables
Creating and Using SQL Views

Benefits of Views in Database Management
Updating Data through Views

SQL Transactions and ACID Properties

What are Transactions?
Ensuring Data Integrity with ACID

Implementing Transactions in SQL

Working with Stored Procedures

What are Stored Procedures?
Creating and Executing Stored Procedures

Using Parameters in Procedures

Triggers — Automating SQL Tasks
Introduction to SQL Triggers
Creating and Managing Triggers

Common Use Cases for Triggers

Working with User-Defined Functions

What are SQL Functions?

Creating Scalar and Table-Valued Functions

Day 17:

Day 18:

Using Functions in Queries

Advanced SQL Joins and Set Operations

Self Joins and Cross Joins
Using UNION, INTERSECT, and EXCEPT

Recursive Queries with Common Table Expressions (CTEs)

Understanding Normalization and

Denormalization

Day 19:

Day 20:

Day 21:

Day 22:

What is Normalization?
Normal Forms Explained (1NF, 2NF, 3NF, BCNF)

When to Use Denormalization

Database Design and Relationships

Understanding One-to-One, One-to-Many, and Many-to-Many
Relationships

Designing Efficient Databases

Implementing Foreign Key Constraints

SQL Performance Optimization

Identifying and Avoiding Common Performance Issues
Using Execution Plans for Query Optimization

Best Practices for Writing Efficient Queries

Working with NoSQL vs SQL

Key Differences Between SQL and NoSQL Databases
When to Choose SQL or NoSQL
Integrating SQL with NoSQL Databases

Handling Big Data with SQL

Day 23:

Day 24:

Day 26:

Day 27:
Errors

SQL for Large-Scale Data Processing
Partitioning and Sharding in Databases
Optimizing SQL Queries for Big Data

Database Security and Access Control
Implementing User Roles and Permissions

Preventing SQL Injection Attacks

Using Encryption for Data Protection

Introduction to SQL for Data Analysis
Using SQL for Business Intelligence

Running Analytical Queries

Common SQL Techniques for Data Analysis

SQL in Web Applications
Using SQL with Python, JavaScript, and PHP

Connecting Databases to Web Applications
Performing CRUD Operations in Web Apps

Building a Small SQL Project
Choosing a Real-World Use Case

Designing the Database Schema
Implementing and Querying the Database

Debugging SQL Queries and Common

Identifying SQL Errors and Debugging Techniques
Understanding Common SQL Error Messages
Best Practices for Writing Bug-Free SQL Code

Day 28:

Day 29:

Day 30:

Writing and Running SQL Tests

Importance of Testing in SQL
Using Test Databases for Queries
Automating SQL Testing

Deploying SQL Databases
Choosing a Database Hosting Solution

Deploying SQL on Cloud Platforms (AWS, Google Cloud,
Azure)

Maintaining and Monitoring SQL Databases

Wrapping Up & Next Steps
Reviewing What You’ve Learned

Next Steps for Advancing Your SQL Skills
Recommended Books and Resources

SQL Cheat Sheet
Common SQL Errors and Fixes
Interview Questions for Beginners

Online Resources for Further Learning

INTRODUCTION
Why Learn SQL?

SQL (Structured Query Language) is the foundation of managing and
manipulating data in relational databases. It is a powerful tool used
worldwide for data storage, retrieval, and analysis. SQL is essential for
database administrators, software developers, data analysts, and business
intelligence professionals. Learning SQL empowers individuals to
efficiently query databases, extract meaningful insights, and automate
repetitive tasks.

Mastering SQL

Universal
Applicability

Empowerment
in Data

SQU's use across
diverse industries
QﬂhC\HEQS career
opportunities.

Mastering SQL
enables efficient data
management and
insight extraction.

Ease of
Learning

SQl's declarative
syntax simplifies the
learning process for

beginners.

One of the key reasons to learn SQL is its universal applicability across
various industries. From finance to healthcare, e-commerce to social media,
databases power almost every digital interaction. Mastering SQL opens up

opportunities in data management, analytics, and even machine learning,
making it a crucial skill in today’s data-driven world.

Another advantage of SQL is its ease of learning. Unlike other
programming languages, SQL follows a declarative syntax, meaning users
simply specify what they want, and the database engine determines how to
retrieve the data. This simplicity allows beginners to quickly grasp its
fundamentals and start working with real-world datasets in a short period.

Setting Up Your SQL Environment

Before diving into SQL queries, it's important to set up a proper
environment to practice and experiment with databases. The choice of tools
and platforms depends on the use case, but some common options include:

1. SQL Database Management Systems (DBMS): Popular
choices include MySQL, PostgreSQL, Microsoft SQL Server,
and SQLite. These systems allow users to create and manage
databases locally or on a server.

2. Cloud-Based Solutions: Platforms such as Amazon RDS,
Google BigQuery, and Microsoft Azure SQL Database provide
cloud-hosted database environments that offer scalability and
remote access.

3. SQL Editors and IDEs: Tools like MySQL Workbench,
pgAdmin, SQL Server Management Studio (SSMS), and
DBeaver provide intuitive graphical interfaces for writing and
executing SQL queries.

4. Command Line Interface (CLI): For users who prefer
working with databases in a more lightweight environment, the
CLI provides direct interaction with the SQL engine.

To set up a basic SQL environment, follow these steps:

. Download and install a DBMS such as MySQL or
PostgreSQL.

. Create a new database and tables to experiment with queries.

. Use a graphical SQL editor or CLI to interact with the
database.

- Load sample datasets for hands-on practice.

Understanding SQL’s Popularity and Use Cases

SQL has remained a dominant language in data management for decades.
Its structured nature, reliability, and efficiency in handling large datasets
make it indispensable. Several factors contribute to its popularity:

1. Widespread Industry Adoption: Companies across sectors
rely on SQL for managing structured data. From startups to
multinational corporations, SQL databases store customer
records, sales transactions, financial data, and much more.

2. Integration with Other Technologies: SQL seamlessly
integrates with programming languages like Python, Java, and
PHP, allowing developers to build powerful applications with
database support.

3. Data Analysis and Business Intelligence: SQL is widely used
in data analytics to extract valuable insights. Tools like
Tableau, Power BI, and Google Data Studio use SQL to pull
data from databases for visualization.

4. Big Data and Cloud Computing: Modern data warehouses
such as Snowflake, Amazon Redshift, and Google BigQuery
leverage SQL for querying vast datasets efficiently.

5. Automation and Reporting: SQL queries can be scheduled to
run automatically, generating reports and alerts for business
operations.

Your 30-Day Learning Roadmap

Embarking on a 30-day SQL learning journey ensures a structured approach
to mastering the language. The roadmap includes:
. Week 1 (Days 1-7): Fundamentals
o Understanding relational databases

o Basic SQL commands (SELECT, INSERT,
UPDATE, DELETE)

o Filtering and sorting data with WHERE and
ORDER BY

o Using JOINs to combine multiple tables
- Week 2 (Days 8-14): Intermediate Concepts
o Aggregate functions and GROUP BY
o Subqueries and nested queries
o Indexing for performance optimization
o SQL constraints and relationships
- Week 3 (Days 15-21): Advanced Topics
o Stored procedures and functions
o Triggers and automation
o Transaction management and ACID properties
o Security and access control
- Week 4 (Days 22-30): Real-World Applications
o SQL for data analysis and reporting
o Integrating SQL with Python and web applications
o Optimizing complex queries for performance
o Building a full-fledged SQL project

By following this roadmap, learners will gain hands-on experience and the
confidence to use SQL professionally. The journey begins with simple
queries and gradually progresses to complex operations, ensuring a solid
foundation in database management and analysis.

DAY 1: INTRODUCTION TO SQL

What is SQL?

Structured Query Language (SQL) is a powerful and widely used
programming language designed for managing and manipulating relational
databases. SQL provides users with a standardized way to interact with data
stored in databases, enabling efficient data retrieval, modification, and
management. SQL is essential for developers, database administrators, data
analysts, and anyone working with structured data.

SQL and Its Ecosystem

Users
DBMS

Relational Databases

/ sQlL

SQL operates on relational databases, which store data in tables consisting
of rows and columns. Each table represents an entity, with rows
corresponding to individual records and columns defining specific attributes
of those records. The structured nature of SQL allows users to query, filter,
sort, and analyze vast amounts of data with ease.

SQL is a declarative language, meaning that instead of instructing the
database on how to perform a task step by step, users define what they want
to achieve, and the database management system (DBMS) determines the
best way to execute the query. This makes SQL both intuitive and highly
efficient.

Understanding Databases and SQL Engines

Databases are systems used to store, organize, and retrieve structured
information. They play a crucial role in modern computing, supporting
applications ranging from small websites to large-scale enterprise solutions.
SQL databases follow the relational model, where data is stored in tables
and relationships between them are defined using keys.

There are several popular database management systems (DBMS) that
support SQL, including:

1. MySQL: An open-source and widely used relational database
system known for its speed and reliability. Commonly used in
web applications and enterprise solutions.

2. PostgreSQL: A powerful and feature-rich open-source
database known for its extensibility and compliance with SQL
standards.

3. Microsoft SQL Server: A robust database system used
primarily in enterprise settings and applications built on
Microsoft technologies.

4. Oracle Database: A high-performance database system
widely used in large-scale applications and businesses.

5. SQLite: A lightweight database engine often used in mobile
applications and small-scale projects due to its simplicity and
portability.

Each of these database engines has unique features, but they all use SQL as
their primary query language. Understanding the differences between these
database management systems helps users select the best tool for their
specific needs.

Running Your First SQL Query

Executing SQL queries is the fundamental way of interacting with a
database. Before running your first query, you need to set up a database and
a table to store data. Let’s go through the basic steps to execute a simple
SQL query.

Step 1: Setting Up a Database

Most SQL-based database systems allow you to create a new database using
the CREATE DATABASE statement. Here’s an example:
CREATE DATABASE MygFirstDatabase;

This command creates a new database named MyFirstDatabase in the DBMS.
Step 2: Creating a Table

Once the database is created, the next step is to define a table where data
will be stored. Tables are created using the CREATE TABLE statement. Here’s
an example:

CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),

Age INT,
Department VARCHAR(100)

);

This command creates a table called Employees with columns for EmployeelD,
FirstName, LastName, Age, and Department.

Step 3: Inserting Data

To add data to the table, use the INSERT INTO statement:

INSERT INTO Employees (EmployeelD, FirstName, LastName, Age, Department)
VALUES (1, 'John', 'Doe', 30, 'Engineering');

This query inserts a new employee record into the Employees table.
Step 4: Retrieving Data with SELECT

The SELECT statement is used to fetch data from a database. To retrieve all
employees from the Employees table, use:

SELECT * FROM Employees;
This query fetches all records and displays them in tabular format.
Step 5: Filtering Data

To retrieve only employees in the Engineering department, use the WHERE
clause:

SELECT * FROM Employees WHERE Department = 'Engineering’;
This query returns only those employees whose department is 'Engineering'.

Step 6: Updating Data

To update an employee’s information, use the UPDATE statement:
UPDATE Employees SET Age = 31 WHERE EmployeelD = 1;

This modifies the Age field of the employee with EmployeelD 1.
Step 7: Deleting Data

To remove an employee from the table, use the DELETE statement:
DELETE FROM Employees WHERE EmployeelD = 1;

This deletes the record of the employee with ID 1 from the table.

Conclusion

SQL is an essential language for anyone working with structured data.
Understanding its basics, including databases, SQL engines, and executing
queries, is the first step toward mastering database management. Running
simple SQL queries allows you to interact with databases effectively,
perform CRUD (Create, Read, Update, Delete) operations, and lay the
foundation for more advanced SQL concepts. In the coming days, we will
delve deeper into SQL’s powerful features, including advanced filtering,
joins, transactions, and optimizations.

DAY 2: UNDERSTANDING DATABASES AND
TABLES

What is a Database?

A database is a structured collection of data that allows users to efficiently
store, retrieve, update, and manage information. Databases play a
fundamental role in software applications, websites, and business
operations, ensuring that data is organized, accessible, and secure.

The Role of Databases

Minimizing

Redundancy Data Storage
Data Integrity Data Retrieval
Data Data Update
Management

At its core, a database is designed to store information in an organized
manner, allowing users to retrieve relevant data quickly and efficiently.
Unlike traditional file storage systems, databases use a structured approach
with predefined relationships, ensuring data integrity and minimizing
redundancy. This makes them an essential tool in almost every industry,
from finance and healthcare to e-commerce and social media.

Databases can be categorized into different types based on their structure
and purpose:

- Relational Databases (RDBMS): These databases store data
in tables with rows and columns, maintaining relationships
between them. SQL (Structured Query Language) is used to
query and manipulate data. Examples include MySQL,
PostgreSQL, and Microsoft SQL Server.

- NoSQL Databases: Designed for handling unstructured or
semi-structured data, NoSQL databases include key-value
stores, document-based databases, and graph databases.
Examples include MongoDB, Cassandra, and Redis.

- Hierarchical Databases: Data is organized in a tree-like
structure, with parent-child relationships. IBM’s Information
Management System (IMS) is an example.

. Network Databases: These allow more complex relationships
between data entities using a graph-like structure, where
records can have multiple parent and child nodes.

Creating and Managing Tables

A table is the fundamental structure in a relational database. It consists of
rows (records) and columns (fields), where each row represents a unique
entry, and each column defines specific attributes of the data.

Creating a Table in SQL

Tables are created using the CREATE TABLE statement. The syntax for
defining a table includes specifying column names, data types, and
constraints. Here’s an example of how to create a table named Employees:
CREATE TABLE Employees (

EmployeelD INT PRIMARY KEY,

FirstName VARCHAR(50),

LastName VARCHAR(50),

Age INT,
Department VARCHAR(100)

)
In this table:

. EmployeelD is an integer and serves as the primary key.

« FirstName and LastName are text fields with a maximum length of
50 characters.

« Age is stored as an integer.

« Department i a text field with a 100-character limit.

Managing Tables
Once a table is created, various operations can be performed on it:

1. Inserting Data:

INSERT INTO Employees (EmployeelD, FirstName, LastName, Age, Department)
VALUES (1, 'John', 'Doe’, 30, 'Engineering');

2. Retrieving Data:
SELECT * FROM Employees;

3. Updating Data:
UPDATE Employees SET Age = 31 WHERE EmployeelD = 1;

4. Deleting Data:
DELETE FROM Employees WHERE EmployeelD = 1;

5. Modifying Table Structure:

o Add a column:
ALTER TABLE Employees ADD Email VARCHAR(100);

o Remove a column:
ALTER TABLE Employees DROP COLUMN Age;

o Rename a column:
ALTER TABLE Employees RENAME COLUMN Department TO Dept;

Primary Keys and Foreign Keys
Primary Keys

A primary key uniquely identifies each record in a table. It ensures that
each row is distinct and helps establish relationships between tables. In the
Employees table, EmployeeID is the primary key.

A primary key has the following characteristics:

. Uniqueness: No two rows can have the same primary key
value.

« Non-null: A primary key must always contain a value.

- Immutability: Once assigned, primary keys should not be
modified.

Defining a primary key while creating a table:

CREATE TABLE Departments (
DepartmentID INT PRIMARY KEY,
DepartmentName VARCHAR(100)

);
Foreign Keys

A foreign key establishes a relationship between two tables. It references a
primary key in another table, ensuring referential integrity.

Example of a foreign key relationship between Employees and Departments
tables:

CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
Age INT,
DepartmentID INT,
FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)

);
Here:
+ DepartmentID IN Employees references DepartmentID 1N Departments.

« This ensures that DepartmentID values in Employees must exist in

Departments.

Foreign keys maintain data consistency and prevent orphan records. For
example, an employee cannot be assigned to a non-existent department.

Conclusion

Understanding databases and tables is fundamental to working with SQL.
Databases store structured data, while tables organize data in rows and
columns, making retrieval and management efficient. Primary keys ensure
uniqueness, while foreign keys enforce relationships between tables.
Learning how to create, modify, and manage tables will lay a strong
foundation for more advanced SQL concepts in the coming days.

DAY 3: SQL DATA TYPES AND
CONSTRAINTS

Common SQL Data Types

SQL databases store data in structured formats, ensuring efficient retrieval
and management. Different types of data require different storage formats,
and SQL provides a variety of data types to accommodate various use
cases. Choosing the correct data type is crucial for database optimization,
storage efficiency, and data integrity.

Understanding SQL Database Structure

Dato Types

Different
formats for
various data

Data Integrity

Ensuring
accurate data

representation (5 @

Storage
Efficiency Optimization
Minimizing Enhancing
storage space database
usage performance

1. Numeric Data Types

Numeric data types are used to store numbers, which can be either integers
or floating-point values.

. INT (Integer): Used for whole numbers. Example: 10, 200, -45.

- BIGINT: Stores very large integers, useful for handling large
datasets.

DECIMAL (NUMERIC): Stores fixed-point numbers,

ensuring precision. Example: DECIMAL(10,2) stores values with

up to ten digits and two decimal places.

FLOAT & DOUBLE: Used for floating-point numbers,
allowing for approximate precision. Example: 3.14159.

2. String Data Types

String data types store textual data, such as names, descriptions, and other

alphanumeric characters.

CHAR(n): Stores fixed-length strings. Example: CHAR(10)
stores exactly 10 characters.

VARCHAR(n): Stores variable-length strings, allowing
efficient memory usage. Example: VARCHAR(50).

TEXT: Used for large text fields, such as descriptions or
paragraphs.

3. Date and Time Data Types

These data types store date and time values, essential for time-stamped
records and scheduling applications.

DATE: Stores a date in YYYY-MM-DD format.
TIME: Stores time in HH:MM:SS format.

DATETIME: Stores both date and time, YYYY-MM-DD
HH:MM:SS.

TIMESTAMP: Automatically records time when data is
inserted or updated.

Applying Constraints (NOT NULL, UNIQUE,
CHECK)

Constraints in SQL ensure data accuracy, integrity, and reliability. They
define rules for data storage and prevent inconsistencies in the database.

1. NOT NULL Constraint

The NOT NULL constraint ensures that a column cannot have null (empty)
values. This is useful when certain fields require mandatory input.

CREATE TABLE Employees (
EmployeeID INT PRIMARY KEY,
FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Age INT NOT NULL

. In this example, FirstName, LastName, and Age fields must contain
values.

. Prevents accidental omission of required data.

2. UNIQUE Constraint

The UNIQUE constraint ensures that all values in a column are distinct,
preventing duplicate entries.

CREATE TABLE Users (
UserID INT PRIMARY KEY,
Email VARCHAR(100) UNIQUE

);
. In this case, each Email must be unique.

. Prevents multiple users from using the same email.

3. CHECK Constraint

The CHECK constraint restricts values based on a specific condition.

CREATE TABLE Students (
StudentID INT PRIMARY KEY,
Age INT CHECK (Age >= 18)
);
« This ensures that Age is always 18 or above.

. Prevents invalid data entry.

Understanding DEFAULT and
AUTO_INCREMENT

1. DEFAULT Constraint

The DEFAULT constraint assigns a default value to a column if no value is
specified during insertion.

CREATE TABLE Orders (
OrderID INT PRIMARY KEY,
OrderDate DATE DEFAULT CURRENT_DATE

);
« If an OrderDate is not provided, the system automatically assigns
the current date.

- Reduces the need for manual data entry.

2. AUTO_INCREMENT

The AUTO_INCREMENT attribute automatically generates unique values for a
column, typically used for primary keys.

CREATE TABLE Customers (
CustomerID INT AUTO_INCREMENT PRIMARY KEY,
Name VARCHAR(100) NOT NULL

);
 Ensures that each CustomerID is unique and sequential.

- Eliminates the need to manually assign primary key values.

Conclusion

SQL data types and constraints are foundational for designing efficient and
reliable databases. Selecting the appropriate data type optimizes
performance and storage efficiency. Constraints such as NOT NULL, UNIQUE,
and CHECK maintain data integrity, while DEFAULT and AUTO_INCREMENT
streamline data entry. Understanding these concepts ensures a well-
structured, error-free database design.

DAY 4: INSERTING AND RETRIEVING DATA
Using INSERT to Add Data

The INSERT statement in SQL is used to add new records into a database
table. This is a fundamental operation in any database system, as it allows
users to populate tables with meaningful data. The structure of an INSERT
statement follows a specific syntax to ensure data integrity and efficiency.

SQL INSERT Statement Process

&)

Identify Construct Execute Verify Data
Data to INSERT INSERT Integrity
Insert Statement Statement Chack thakitha
Determine the new Formulate the <QL Run the command data ha.s been
records to be command with to add data to the correctly inserted
added correct syntax table
—— e e ———— e e ——— e e — e e E— — — — —

Basic Syntax of INSERT Statement

The general structure of an INSERT statement is as follows:

INSERT INTO table_name (column1, column2, column3, ...)
VALUES (valuel, value2, value3, ...);

This command specifies the table where the data should be inserted,
followed by the column names and the corresponding values to be stored in

those columns.

Example: Inserting Data into a Table

Consider a table named Employees that stores employee details such as
EmployeelD, FirstName, LastName, Age, and Department. The fOHOWng SQL
statement inserts a new employee into the table:

INSERT INTO Employees (EmployeelD, FirstName, LastName, Age, Department)
VALUES (1, 'John', 'Doe’, 30, 'Engineering');

In this example:
« The EmployeeID is assigned a unique identifier.
« FirstName and LastName store the employee’s name.
« Age records the employee’s age.

« Department indicates which department the employee belongs to.

Inserting Multiple Rows

SQL allows inserting multiple records in a single statement, making data
entry more efficient.

INSERT INTO Employees (EmployeelD, FirstName, LastName, Age, Department)

VALUES

(2, 'Jane', 'Smith', 28, 'Marketing'),

(3, 'Robert', 'Brown', 35, 'Finance"),

(4, 'Emily’, 'Clark’, 40, 'HR");

This command inserts multiple records at once, reducing the number of
individual queries needed.

Inserting Data with Default Values

If a column has a default value, you can exclude it in the INSERT statement:

INSERT INTO Employees (EmployeelD, FirstName, LastName)
VALUES (5, 'Michael', 'Johnson');

If Age and Department have default values, they will be automatically assigned.

Retrieving Data with SELECT

The SELECT statement is used to fetch data from a database. It is one of the
most commonly used SQL commands, as it allows users to view and
analyze stored data.

Basic Syntax of SELECT Statement
SELECT columnl, column2 FROM table_name;

To retrieve all columns, use *:

SELECT * FROM table_name;

Example: Retrieving All Employee Records

To fetch all details from the Employees table:
SELECT * FROM Employees;

This query retrieves all records and displays them in a tabular format.
Retrieving Specific Columns

To fetch only specific columns:
SELECT FirstName, LastName FROM Employees;

This retrieves only the FirstName and LastName columns.
Sorting Retrieved Data

To sort results in ascending or descending order, use ORDER BY:
SELECT * FROM Employees ORDER BY Age ASC;

This arranges employees in ascending order by age.
Limiting the Number of Records

To retrieve only a certain number of rows, use LIMIT:
SELECT * FROM Employees LIMIT 3;

This returns the first three records from the table.

Using WHERE for Filtering

The wHERE clause filters data based on specified conditions, allowing for
more precise data retrieval.

Basic Syntax of WHERE Clause
SELECT columnl, column2 FROM table_name WHERE condition;

Example: Filtering by Department

To fetch employees only from the Engineering department:
SELECT * FROM Employees WHERE Department = 'Engineering';

This retrieves only employees whose Department is 'Engineering'.
Using Comparison Operators in WHERE
SQL supports various operators to refine searches:

« =(equal to)

. 1= or <> (not equal to)

« > (greater than)

« < (less than)

. >=(greater than or equal to)

« <= (less than or equal to)

Example:
SELECT * FROM Employees WHERE Age > 30;

This retrieves employees older than 30.
Combining Multiple Conditions with AND and OR

To apply multiple conditions, use AND or OR:
SELECT * FROM Employees WHERE Age > 30 AND Department = 'Finance’;

This returns employees who are older than 30 and work in Finance.

Example using OR:
SELECT * FROM Employees WHERE Department = '"HR' OR Department = 'Marketing';

This retrieves employees in either HR or Marketing.

Using BETWEEN for Ranges

To filter data within a range:
SELECT * FROM Employees WHERE Age BETWEEN 25 AND 40;

This returns employees aged between 25 and 40.

Using LIKE for Pattern Matching

The LIKE operator searches for specific patterns in text columns:
SELECT * FROM Employees WHERE FirstName LIKE 'J%;

This retrieves employees whose first name starts with 'J'.
Using IN for Multiple Values

To filter using a list of values:
SELECT * FROM Employees WHERE Department IN ('"Engineering', 'Marketing");

This fetches employees working in either Engineering or Marketing.

Conclusion

Understanding how to insert and retrieve data is fundamental for working
with SQL databases. The INSERT statement allows data entry, while SELECT
retrieves stored information. The WHERE clause refines queries by filtering
data based on specific conditions. Mastering these concepts ensures
efficient data handling, making SQL a powerful tool for database
management and analytics.

DAY 5: SQL OPERATORS AND
EXPRESSIONS

SQL provides a variety of operators and expressions that allow users to
manipulate and retrieve data efficiently. Operators in SQL help in
performing calculations, making comparisons, and filtering records based
on specific conditions. Understanding these operators is crucial for writing
complex queries and performing meaningful data analysis.

Understanding SQL Operators and
Expressions

? Filtering Operators for selecting data
Records based on conditions
— . Operators for evaluatin
' C P 9
== LOMPArISONns equality and inequality

? Calculations Operators for mathematical
Z ot operations

-

Comparison, Logical, and Arithmetic Operators

Comparison Operators

Comparison operators are used to compare values within an SQL query.
They help in filtering records by defining conditions in the WHERE clause.
Below are some commonly used comparison operators:
« =(Equal to): Used to match exact values.
SELECT * FROM Employees WHERE Age = 30;
. <> or != (Not equal to): Retrieves records that do not match the
given value.

SELECT * FROM Employees WHERE Age <> 30;

. > (Greater than): Fetches values greater than a specific number.
SELECT * FROM Employees WHERE Salary > 50000;
. < (Less than): Retrieves values less than the specified number.
SELECT * FROM Employees WHERE Salary < 50000;
. >=(Greater than or equal to): Fetches values that meet or
exceed a threshold.
SELECT * FROM Employees WHERE Age >= 25;
« <=(Less than or equal to): Retrieves values that are equal to or
less than a given number.
SELECT * FROM Employees WHERE Age <= 25;

Logical Operators

Logical operators are used to combine multiple conditions in SQL queries.
These operators refine search criteria and allow more flexible filtering.

. AND: Returns records where both conditions are true.
SELECT * FROM Employees WHERE Age > 25 AND Department = 'IT’;

. OR: Returns records where at least one condition is true.
SELECT * FROM Employees WHERE Age > 30 OR Department = 'HR;

- NOT: Negates a condition, fetching records where the condition
is false.
SELECT * FROM Employees WHERE NOT Age = 30;
Arithmetic Operators
Arithmetic operators are used to perform mathematical calculations within
SQL queries.
.+ (Addition): Adds numeric values.
SELECT EmployeelD, Salary + 5000 AS IncreasedSalary FROM Employees;

- (Subtraction): Subtracts one value from another.
SELECT EmployeelD, Salary - 2000 AS ReducedSalary FROM Employees;

« * (Multiplication): Multiplies numeric values.
SELECT EmployeelD, Salary * 1.10 AS BonusSalary FROM Employees;

. /(Division): Divides one number by another.

SELECT EmployeelD, Salary / 2 AS HalfSalary FROM Employees;

« % (Modulo): Returns the remainder of a division operation.
SELECT EmployeelD, Salary % 3 AS Remainder FROM Employees;

Pattern Matching with LIKE

The LIKE operator is used for pattern matching in SQL. It helps in retrieving
records that match a specific pattern, making it useful for filtering text-
based data.

Using Wildcards in LIKE
« % (Percent sign): Represents zero, one, or multiple characters.
SELECT * FROM Employees WHERE FirstName LIKE 'J%;
o Finds employees whose first name starts with 'J'.

« _(Underscore): Represents a single character.
SELECT * FROM Employees WHERE FirstName LIKE 'J_n';

o Retrieves names like 'Jon' or 'Jan'.

« [1(Square brackets): Defines a range or set of characters.
SELECT * FROM Employees WHERE LastName LIKE TA-C]%';

o Fetches last names that start with A, B, or C.

« [#] (Caret inside square brackets): Excludes characters within
the brackets.
SELECT * FROM Employees WHERE LastName LIKE '[AX-Z]%';

o Excludes last names starting with X, Y, or Z.

Using BETWEEN, IN, and NULL Operators
BETWEEN Operator

The BETWEEN operator is used to filter records within a specified range. It is
inclusive, meaning it includes the boundary values.

SELECT * FROM Employees WHERE Salary BETWEEN 40000 AND 70000;
- Retrieves employees earning between 40,000 and 70,000.

IN Operator
The IN operator is used to match records against a list of values.
SELECT * FROM Employees WHERE Department IN (IT', 'HR', 'Finance');

. Fetches employees working in IT, HR, or Finance.

NULL Operator

The NULL operator is used to check for missing values in a column.

« Checking for NULL values:
SELECT * FROM Employees WHERE Email IS NULL,;

. Checking for non-NULL values:
SELECT * FROM Employees WHERE Email IS NOT NULL;

Conclusion

Understanding SQL operators and expressions is essential for writing
powerful and efficient queries. Comparison operators allow precise
filtering, logical operators enable complex conditions, and arithmetic
operators assist in calculations. The LIKE operator helps with pattern
matching, while BETWEEN, IN, and NULL provide flexible filtering options.
Mastering these concepts enables efficient data manipulation and retrieval,
paving the way for advanced SQL applications.

DAY 6: SORTING AND FILTERING DATA

In SQL, sorting and filtering data are essential operations that allow users to
retrieve specific records in a structured and meaningful manner. Sorting
helps organize query results in a logical order, while filtering ensures that
only relevant records are displayed. These functionalities are critical when
working with large datasets, improving both readability and efficiency in
data retrieval.

Data Refinement in SQL

@{g Sorting Data

Organizing data in a logical order

?ﬁ? Filtering Data

Displaying only relevant records

Ordering Data with ORDER BY

The ORDER BY clause is used to sort data in either ascending or descending
order. This is particularly useful when organizing records by specific
columns such as names, dates, or numerical values.

Basic Syntax of ORDER BY

SELECT column1, column2 FROM table_name ORDER BY columnl ASC|DESC;

. ASC (Ascending) - Sorts the results in ascending order (default
behavior).

. DESC (Descending) - Sorts the results in descending order.

Example: Sorting Employees by L.ast Name
SELECT FirstName, LastName, Age FROM Employees ORDER BY LastName ASC;

This query retrieves employee names and ages while arranging them in
alphabetical order by last name.

Sorting by Multiple Columns

SQL allows sorting by multiple columns to create more refined data orders.
SELECT FirstName, LastName, Age FROM Employees ORDER BY Age ASC, LastName DESC;

Here, employees are sorted by age in ascending order first, and if multiple
employees share the same age, they are further sorted by last name in
descending order.

Sorting Date Fields

Dates can also be sorted to arrange records chronologically.

SELECT OrderID, CustomerID, OrderDate FROM Orders ORDER BY OrderDate DESC;
This displays orders from the most recent to the oldest.

Filtering with LIMIT and OFFSET

Filtering results with LiMIT and OFFSET is particularly useful when working
with large datasets. These clauses help in pagination, optimizing data
retrieval by displaying a manageable subset of records.

Using LIMIT to Restrict Results

The LiMIT clause specifies the number of rows to return in a query.
SELECT * FROM Employees LIMIT 5;

This query retrieves only the first five records from the Employees table.

Using OFFSET to Skip Records

The OFFSET clause skips a specified number of rows before returning the
results.

SELECT * FROM Employees ORDER BY EmployeelD ASC LIMIT 5 OFFSET 10;
This skips the first 10 records and retrieves the next 5.

Using LIMIT with ORDER BY for Efficient Pagination

Pagination is essential when working with Ul-driven applications, where
users navigate through multiple pages of results.

SELECT * FROM Customers ORDER BY CustomerName ASC LIMIT 10 OFFSET 20;

This query fetches 10 customers starting from the 21st record, allowing
effective page-based navigation.

Sorting Data in Ascending and Descending Order

Sorting results correctly is critical when analyzing trends, ranking records,
or identifying top-performing entries. SQL provides a flexible way to sort
data using the Asc and DESC keywords.

Sorting Numerical Data in Ascending Order
SELECT EmployeelD, FirstName, Salary FROM Employees ORDER BY Salary ASC;

This retrieves all employees with their salaries arranged from the lowest to
the highest.

Sorting Numerical Data in Descending Order
SELECT EmployeelD, FirstName, Salary FROM Employees ORDER BY Salary DESC;

Here, salaries are displayed from the highest to the lowest, which is useful
when identifying top earners.

Sorting Text Data in Alphabetical Order

Sorting text-based data helps in structured presentation.

SELECT ProductName, Category FROM Products ORDER BY ProductName ASC;
This retrieves product names arranged alphabetically.

Sorting Boolean Values

Boolean values (TRUE/FALSE or 1/0) can also be sorted.
SELECT TaskID, TaskName, Completed FROM Tasks ORDER BY Completed DESC;

This sorts tasks, displaying completed ones first.

Conclusion

Sorting and filtering data in SQL is fundamental for structuring query
results. The ORDER BY clause ensures meaningful organization, while LiMIT
and OFFSET optimize data retrieval by displaying subsets of records.
Understanding these techniques enhances query performance, making SQL
databases more efficient and user-friendly.

DAY 7: UPDATING AND DELETING DATA

In any database system, data is dynamic—records change over time as new
information is added, updated, or removed. SQL provides powerful
commands to modify and delete records efficiently. The UPDATE statement
allows modifications to existing records, while the DELETE statement
removes records that are no longer needed. Additionally, SQL transactions
ensure data integrity by using coMMIT and ROLLBACK operations, enabling
users to execute queries safely and reverse changes when necessary.
Mastering these operations is crucial for database management and
maintaining accurate records.

SQL Data Management Cycle

Rollback
Changes
Update Records

RPeverse modifications if
needed to maintain
accuracy

Modify existing data
with new information

Commit Changes Delete Records

Save modifications to
ensure data integrity

Remove unnecessary or
outdated data

Modifying Data with UPDATE

The UPDATE statement is used to modify existing records in a database table.
This operation is critical when changes to stored information are required,

such as updating employee details, modifying product prices, or correcting
user information.

Basic Syntax of UPDATE

UPDATE table _name
SET columnl = valuel, column?2 = value2
WHERE condition;

. table_name: Specifies the table where data should be updated.
.« SET: Assigns new values to specific columns.

- WHERE: Identifies the rows to be modified (important to avoid
updating all rows unintentionally).

Example: Updating Employee Salaries

Suppose we have an Employees table, and we want to increase the salary of all
employees in the IT department by 10%:

UPDATE Employees
SET Salary = Salary * 1.10
WHERE Department = TT";

This ensures that only employees in the I'T department receive the salary
increase, preventing unintended changes to other records.

Updating a Single Record

To modify a specific employee's last name:

UPDATE Employees
SET LastName = 'Smith'
WHERE EmployeelD = 3;

Here, only the employee with EmployeeID = 3 will have their last name
changed.

Updating Multiple Columns at Once

UPDATE Employees
SET Age = 30, Department = 'Marketing'
WHERE EmployeelD = 5;

This query updates both the Age and Department for EmployeelD 5.
Best Practices for Using UPDATE:

- Always use the WHERE clause to prevent unintended updates.

. Backup important data before performing updates on critical
tables.

. Test update queries on a subset of data before applying them to
the entire table.

Removing Data with DELETE

The DELETE statement removes records from a table permanently. This
operation is used when data is no longer needed, such as deleting inactive
users, removing outdated transactions, or cleaning up temporary records.

Basic Syntax of DELETE

DELETE FROM table name
WHERE condition;

. table_name: Specifies the table from which records will be
deleted.

- WHERE: Defines which rows to remove. Omitting WHERE
deletes all records.

Example: Deleting a Specific Record

If an employee leaves the company and needs to be removed from the
database:

DELETE FROM Employees
WHERE EmployeelD = 7;

This deletes only the record associated with EmployeelD 7.
Deleting Multiple Records Based on a Condition

To remove all employees from the HR department:

DELETE FROM Employees
WHERE Department = 'HR;

This removes all employees in the HR department but keeps others intact.

Deleting All Records from a Table
If you need to remove all records from a table but retain its structure:
DELETE FROM Employees;

Caution: Omitting WHERE results in a complete wipe of all data from the
table.

Best Practices for Using DELETE:
- Always use WHERE to specify which records should be deleted.

. Consider using TRUNCATE TABLE if you need to delete all rows
quickly without logging each deletion.

. Create backups before performing delete operations on critical
data.

Handling Transactions with COMMIT and
ROLLBACK

SQL transactions are essential for maintaining database integrity. A
transaction groups multiple SQL statements into a single unit of work,
ensuring that either all changes are applied (coMMIT) or none of them are
(ROLLBACK).

Using COMMIT

The comMIT statement saves all changes made during the current
transaction. Once committed, changes become permanent and cannot be
undone.

START TRANSACTION;
UPDATE Employees SET Salary = Salary * 1.10 WHERE Department = 'Finance';
COMMIT;

This increases salaries in the Finance department and permanently saves the
changes.

Using ROLLBACK

The ROLLBACK statement undoes all changes made during a transaction if an
error occurs or if conditions require a reversal.

START TRANSACTION;
UPDATE Employees SET Salary = Salary * 1.10 WHERE Department = 'Finance';
ROLLBACK;

If an issue arises, the salary updates will not take effect.
Using SAVEPOINT for Partial Rollbacks

Savepoints allow rolling back specific parts of a transaction without
affecting the entire transaction.

START TRANSACTION;

UPDATE Employees SET Salary = Salary * 1.10 WHERE Department = 'Finance';

SAVEPOINT BeforeMarketingUpdate;

UPDATE Employees SET Salary = Salary * 1.20 WHERE Department = 'Marketing';
ROLLBACK TO BeforeMarketingUpdate;

COMMIT;

Here, the Finance department salary update is retained, but the Marketing

department update is undone.
Best Practices for Transactions:

. Always use transactions for operations that modify multiple
rows.

. Use comMmIT only when you are certain about the changes.

. Use ROLLBACK to ensure data integrity when errors occur.

Conclusion

Updating and deleting data in SQL are crucial operations for maintaining
and modifying records efficiently. The UPDATE statement ensures data
accuracy by modifying existing records, while the DELETE statement allows
for proper data cleanup. Additionally, transactions with commiT and
ROLLBACK provide a safety mechanism to maintain data integrity. By
following best practices and understanding these commands, you can
effectively manage your database while avoiding common pitfalls.

DAY 8: SQL JOINS — COMBINING TABLES

In relational databases, data is often spread across multiple tables, requiring
methods to retrieve meaningful insights by linking related records. SQL
Joins are fundamental operations that allow combining data from different
tables based on related columns. Understanding SQL joins is crucial for
database querying, reporting, and efficient data retrieval. This chapter
explores different types of joins, how to join multiple tables, and the
difference between ON and USING in join operations.

Understanding SQL Joins

ON and USING SQL Joins
Clauses that define Operations that
how tables are joined combine data from

multiple tables

Related
Tables Records

Structured data @ “ Data entries linked by

storage units in a common fields
database

Understanding Different Types of Joins (INNER,
LEFT, RIGHT, FULL)

INNER JOIN

The INNER JOIN retrieves records that have matching values in both tables. If
a row in one table does not have a corresponding row in the other, it will be
excluded from the results.

Syntax:

SELECT a.columnl, b.column2
FROM tableA a
INNER JOIN tableB b ON a.common_column = b.common_column;

Example:

Consider two tables, Employees and Departments:

SELECT Employees.EmployeelD, Employees.Name, Departments.DepartmentName

FROM Employees

INNER JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;

This query fetches only employees that belong to a department (i.e., there is
a match in both tables).

LEFT JOIN (LEFT OUTER JOIN)

The LEFT JOIN returns all records from the left table and matching records
from the right table. If no match is found, NULL values are returned for
columns from the right table.

Syntax:

SELECT a.columnl, b.column2
FROM tableA a
LEFT JOIN tableB b ON a.common_column = b.common_column;

Example:

SELECT Employees.EmployeelD, Employees.Name, Departments.DepartmentName
FROM Employees

LEFT JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;
This query returns all employees, even those without an assigned
department. For such employees, DepartmentName will display NULL.

RIGHT JOIN (RIGHT OUTER JOIN)

The RIGHT JOIN is the reverse of LEFT JOIN: it returns all records from the
right table and matching rows from the left table. If no match exists, NULL
values appear in columns from the left table.

Syntax:

SELECT a.columnl, b.column2

FROM tableA a

RIGHT JOIN tableB b ON a.common_column = b.common_column;

Example:

SELECT Employees.EmployeelD, Employees.Name, Departments.DepartmentName
FROM Employees

RIGHT JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;

This ensures that all departments are displayed, even if they have no
employees assigned.

FULL JOIN (FULL OUTER JOIN)

The FULL JOIN returns all records from both tables. If no match is found,
NULL values appear where data is missing.

Syntax:

SELECT a.columnl, b.column2
FROM tableA a
FULL JOIN tableB b ON a.common_column = b.common_column;

Example:

SELECT Employees.EmployeelD, Employees.Name, Departments.DepartmentName
FROM Employees
FULL JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;

This query ensures that all employees and all departments appear, even if
some do not have matches.

Joining Multiple Tables

Complex queries often require combining multiple tables in a single query.
SQL allows multiple joins to be used together.
Example:

Suppose we have three tables: Employees, Departments, and Salaries.

SELECT Employees.Name, Departments.DepartmentName, Salaries.Salary Amount
FROM Employees

INNER JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID
INNER JOIN Salaries ON Employees.EmployeelD = Salaries.EmployeelD;

This query retrieves employee names, their department names, and their
salary details by joining three tables.

Best Practices for Joining Multiple Tables:

- Ensure that indexes exist on common columns to optimize
performance.

. Use table aliases (e, d, s) to improve readability.

. Filter results efficiently using wWHERE clauses instead of post-
processing large result sets.

Using ON vs. USING in Joins

The oN and USING clauses are used to define join conditions, but they have
subtle differences.

Using ON

The oN clause explicitly specifies which columns should be used for joining
tables. It allows flexibility by enabling conditions beyond simple column
equality.

SELECT Employees.Name, Departments.DepartmentName

FROM Employees
INNER JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;

Using USING

The USING clause is a shorthand notation used when both tables have the
same column name for the join key. It simplifies syntax but is limited to
equality conditions.

SELECT Employees.Name, Departments.DepartmentName
FROM Employees
INNER JOIN Departments USING (DepartmentID);

This achieves the same result but is only valid if both tables have a
DepartmentID column.

Key Differences:
Feature ON Clause USING Clause
Flexibility | Allows custom Only works with identical column
conditions names
Readability | Slightly more verbose | More concise
Compatibili | Works in all SQL May not be supported in all
ty databases databases
Conclusion

SQL joins are powerful tools for retrieving related data from multiple
tables. The different types of joins—INNER JOIN, LEFT JOIN, RIGHT JOIN, and
FULL JOIN—serve specific purposes depending on the dataset requirements.
Understanding how to join multiple tables efficiently and the difference
between ON and USING clauses enhances query performance and readability.

Mastering joins enables complex data retrieval, making SQL a crucial skill
for database professionals and analysts.

DAY 9: ADVANCED FILTERING WITH
SUBQUERIES

In SQL, subqueries provide a powerful mechanism for filtering, analyzing,
and manipulating data. A subquery, also known as a nested query or inner
query, is a query embedded within another query. Subqueries are commonly
used in SELECT, FROM, and WHERE clauses to retrieve data dynamically. By
mastering subqueries, SQL users can write more efficient and complex
queries to extract meaningful insights from databases.

Mastering Subqueries for Insights

SELECT Clause - ‘ﬂv {

x Efficient Data
i Q Retrieval

FROM Clause /:@\

r._
\

WHERE Clause QQ

What are Subqueries?

A subquery is a query that is executed inside another SQL query. The inner
query runs first, and its result is then used by the outer query. Subqueries
are particularly useful when dealing with comparisons, aggregations, and
data extraction that require multi-step processing.

Characteristics of Subqueries:

. Enclosed within parentheses.

 Can return single or multiple values.

. Can be used in SELECT, FROM, or WHERE clauses.

. Can be correlated (dependent on the outer query) or non-
correlated (independent of the outer query).

Basic Syntax:

SELECT columnl, column2
FROM table_name
WHERE column_name operator (SELECT column_name FROM another_table WHERE condition);

Using Subqueries in SELECT, FROM, and
WHERE

1. Subqueries in SELECT Clause

A subquery in the SELECT clause allows retrieving additional computed or
aggregated data.

Example: Finding the highest salary in each department:
SELECT EmployeelD, Name, (SELECT MAX(Salary) FROM Employees) AS HighestSalary
FROM Employees;

This query returns each employee’s details along with the highest salary in
the entire table.

2. Subqueries in FROM Clause

A subquery in the FROM clause creates a temporary table-like dataset that
can be queried further.

Example: Finding the average salary of employees per department:
SELECT DepartmentID, AvgSalary

FROM (SELECT DepartmentID, AVG(Salary) AS AvgSalary FROM Employees GROUP BY
DepartmentID) AS DeptSalaries;

This query calculates the average salary per department and makes it
available as a virtual table.

3. Subqueries in WHERE Clause

Subqueries in the wHERE clause help filter records dynamically based on
conditions derived from another query.

Example: Finding employees who earn more than the average

salary:
SELECT EmployeelD, Name, Salary

FROM Employees
WHERE Salary > (SELECT AVG(Salary) FROM Employees);

This query filters employees whose salaries are above the company-wide
average.

Common Use Cases for Subqueries
1. Filtering Data Based on Another Table

Subqueries allow filtering results dynamically using data from another
table.

SELECT Name FROM Customers
WHERE CustomerID IN (SELECT CustomerID FROM Orders WHERE OrderTotal > 500);

This query finds customers who have placed orders worth more than $500.

2. Finding Duplicate Records

Subqueries help identify duplicate values in a table.

SELECT Name FROM Employees
WHERE EmployeelD IN (SELECT EmployeeID FROM Employees GROUP BY EmployeelD
HAVING COUNT(*) > 1);

This query retrieves employees who have duplicate records.

3. Retrieving the Most Recent Entry

Subqueries can be used to fetch the latest record based on a timestamp.

SELECT * FROM Orders
WHERE OrderDate = (SELECT MAX(OrderDate) FROM Orders);

This query finds the most recent order placed in the system.

4. Checking for Existence of Records
Using ExisTs with subqueries helps determine if specific data exists in a
table.

SELECT EmployeelD, Name FROM Employees
WHERE EXISTS (SELECT 1 FROM Departments WHERE Departments.DepartmentID =
Employees.DepartmentID);

This query returns employees who belong to at least one department.
5. Correlated Subqueries

A correlated subquery depends on the outer query, executing once for each
row processed by the outer query.

SELECT Name, Salary

FROM Employees el

WHERE Salary > (SELECT AVG(Salary) FROM Employees e2 WHERE el.DepartmentID =
e2.DepartmentID);

This query retrieves employees who earn more than the average salary

within their department.

Conclusion

Subqueries are an essential tool in SQL, enabling advanced filtering,
aggregation, and data retrieval. They enhance query flexibility by allowing
dynamic conditions and computations within SELECT, FROM, and WHERE
clauses. Mastering subqueries will significantly improve SQL efficiency
and enable the extraction of complex insights from relational databases.

DAY 10: GROUPING AND AGGREGATING
DATA

In SQL, analyzing and summarizing data is an essential operation that helps
in generating reports, identifying trends, and extracting meaningful insights.
The GROUP BY clause and aggregate functions allow users to structure and
summarize large datasets efficiently. This chapter explores how to use
GROUP BY to organize data, apply aggregate functions like COUNT, SuM, AVG,
MIN, and MAX, and filter grouped data using the HAVING clause.

Data Summavrizaation Process in SQL

Apply
_“ ? Aggregate
Organize Data E 2> Functions
Structuring data with Calculating metrics
GROUP BY like COUNT, SUM

Filter Results j

Refining data using
HAVING

Using GROUP BY to Summarize Data

The GROUP BY clause is used to group records that have the same values in
specified columns. It is typically used in combination with aggregate
functions to perform calculations on each group.

Basic Syntax:

SELECT column_name, aggregate_function(column_name)
FROM table_name

GROUP BY column_name;

. column_name: Specifies the column to group by.

. aggregate_function: Performs calculations on the grouped data.

Example: Counting the Number of Employees in Each

Department

SELECT Department, COUNT(EmployeelD) AS TotalEmployees
FROM Employees
GROUP BY Department;

This query groups employees by department and counts how many
employees belong to each.
Grouping by Multiple Columns

SQL allows grouping by multiple columns for more refined categorization.

SELECT Department, JobTitle, COUNT(EmployeeID) AS TotalEmployees
FROM Employees
GROUP BY Department, JobTitle;

This query groups employees first by department, then by job title,
providing a more detailed breakdown.

Aggregate Functions (COUNT, SUM, AVG, MIN,
MAX)

Aggregate functions perform calculations on grouped data, providing
summarized information.

1. COUNT() - Counting Records

The counT() function returns the number of rows in a group.
SELECT COUNT(*) AS TotalOrders FROM Orders;

This query counts all records in the Orders table.

2. SUM() - Calculating Total

The sum() function adds up numerical values in a column.

SELECT Department, SUM(Salary) AS TotalSalary
FROM Employees
GROUP BY Department;

This query calculates the total salary paid to employees in each department.

3. AVG() - Calculating Average

The AvG() function computes the average of numeric values.

SELECT Department, AVG(Salary) AS AverageSalary
FROM Employees
GROUP BY Department;

This query finds the average salary per department.

4. MIN() and MAX() - Finding Minimum and Maximum
Values

The MIN() and MAX() functions retrieve the smallest and largest values in a
column.

SELECT MIN(Salary) AS LowestSalary, MAX(Salary) AS HighestSalary

FROM Employees;

This query identifies the lowest and highest salaries in the company.

Filtering Groups with HAVING

The HAVING clause is used to filter grouped results based on aggregate
function conditions. Unlike wHERE, which filters individual records, HAVING
filters groups of records after aggregation.

Basic Syntax:

SELECT column_name, aggregate_function(column_name)
FROM table_name

GROUP BY column_name

HAVING condition;

« HAVING condition; Specifies the filtering criteria based on
aggregate function values.

Example: Filtering Departments with More Than 10

Employees

SELECT Department, COUNT(EmployeeID) AS TotalEmployees
FROM Employees

GROUP BY Department

HAVING COUNT(EmployeelD) > 10;

This query retrieves only departments with more than 10 employees.

Example: Filtering High Revenue Products
SELECT ProductCategory, SUM(Sales) AS TotalSales

FROM SalesData

GROUP BY ProductCategory

HAVING SUM(Sales) > 50000;

This query retrieves product categories where total sales exceed 50,000.

Combining HAVING with ORDER BY

Sorting filtered results enhances readability and analysis.

SELECT Department, AVG(Salary) AS AverageSalary

FROM Employees

GROUP BY Department

HAVING AVG(Salary) > 60000

ORDER BY AverageSalary DESC;

This query retrieves departments where the average salary is above 60,000

and sorts them in descending order.

Conclusion

Grouping and aggregating data is a crucial aspect of SQL that enables
efficient data analysis and reporting. The GROUP BY clause helps organize
data into meaningful categories, while aggregate functions like COUNT, SuM,
AVG, MIN, and MAX provide statistical insights. The HAVING clause refines
results by filtering groups based on aggregate conditions. Mastering these
techniques is essential for working with large datasets and generating useful
business insights.

DAY 11: UNDERSTANDING SQL INDEXES

SQL indexes are one of the most crucial components of database
optimization, significantly improving query performance. Indexes allow
faster data retrieval by reducing the number of rows that need to be scanned
when executing queries. Without indexes, databases would have to perform
full table scans, which can be time-consuming, especially for large datasets.
This chapter explores what indexes are, why they are essential, how to
create and manage them, and how they enhance query performance.

Understanding SQL Indexes

Improved Query Faster Data
Performance Retrieval
Indexes Indexes speed
enhance the up data access
speed and by minimizing
efficiency of Yow scans.
queries.

Reduced Table
Scans
Indexes
decrease the
need for full
table scans.

What are Indexes and Why Use Them?

An index is a database object that functions like the index of a book,
allowing the database engine to locate records quickly without scanning the

entire table. Indexes are built on one or more columns and provide an
efficient way to access rows that match a given search condition.

Why Use Indexes?

1. Faster Data Retrieval: Indexes significantly reduce the time

required to find records, improving query performance.

Optimized Search Operations: Indexes allow the database to
quickly locate data, even in massive datasets.

. Efficient Sorting and Filtering: Queries using ORDER BY and

WHERE conditions perform better with indexes.

. Improved Join Performance: When joining large tables,

indexes help speed up the process by quickly identifying
matching records.

. Reduces Disk I/0: Instead of scanning every row, the database

only reads the indexed portion, reducing disk access time.

Types of Indexes in SQL

SQL supports multiple types of indexes, each serving a different purpose:

Primary Index: Automatically created on the primary key
column.

Unique Index: Ensures all values in a column are unique.

Clustered Index: Determines the physical order of data in a
table.

Non-clustered Index: Stores index entries separately from
table rows.

Composite Index: Created on multiple columns for improved
multi-condition searches.

Full-text Index: Optimized for searching textual data
efficiently.

Creating and Managing Indexes

Indexes are created using the CREATE INDEX statement, and managing them
efficiently is crucial for database performance.

Creating an Index

To create an index on a single column:
CREATE INDEX idx_lastname ON Employees(LastName);
This index improves searches based on the LastName column.

To create a unique index:
CREATE UNIQUE INDEX idx_employeeid ON Employees(EmployeelD);

This ensures that EmployeelD values remain unique.

Creating a Composite Index

A composite index involves multiple columns and enhances queries that
filter on multiple conditions.

CREATE INDEX idx_department_salary ON Employees(Department, Salary);
This index improves queries searching by Department and sorting by Salary.

Dropping an Index

To remove an unnecessary index:
DROP INDEX idx_lastname;

Deleting indexes can improve write operations if indexing is unnecessary
for certain queries.

Viewing Existing Indexes

To check the indexes on a table:
SHOW INDEX FROM Employees;
This command retrieves all indexes defined on the Employees table.

How Indexes Improve Performance

Indexes dramatically enhance SQL performance by reducing query
execution time. Here’s how:

1. Reducing Full Table Scans

Without an index:
SELECT * FROM Employees WHERE LastName = 'Smith’;

. The database must scan every row to find matches.

With an index on LastName:

CREATE INDEX idx_lastname ON Employees(LastName);

« The database quickly locates smith entries in a sorted index,
skipping unnecessary records.

2. Faster Sorting and Filtering

Sorting large tables can be slow, but an index speeds up sorting.

SELECT * FROM Employees ORDER BY LastName;

With an index on LastName, sorting occurs within the index structure rather
than scanning the full table.

3. Optimizing Joins

Indexes improve performance when joining tables.

SELECT Employees.Name, Departments.DepartmentName
FROM Employees
JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID;

An index on Employees.DepartmentID allows the database engine to find
matching rows quickly, speeding up the join process.

4. Reducing Disk 1/0

Indexes store only relevant pointers, minimizing the number of disk reads
required to find matching data. This reduces the overall processing
overhead.

5. Balancing Read vs. Write Performance

While indexes improve read performance, they can slow down INSERT,
UPDATE, and DELETE operations since indexes must be updated along with
the table.

When NOT to Use Indexes
- When the table is small and queries return most rows.
- When frequent INSERT and UPDATE operations occur.

- When columns contain highly repetitive data (e.g., Boolean
fields).

Conclusion

Indexes are essential for optimizing SQL queries and improving database
efficiency. They enable fast lookups, reduce disk I/0, and enhance sorting
and joining operations. However, while indexes speed up data retrieval,
they can also slow down write operations. Understanding when and how to
use indexes effectively is crucial for database performance tuning. By
implementing the right indexing strategies, SQL developers can ensure
smooth and efficient query execution, even on large datasets.

DAY 12: VIEWS AND VIRTUAL TABLES

In SQL, views provide a way to simplify complex queries, enhance
security, and improve database management. A view is a virtual table that
represents the result of a stored query. Unlike physical tables, views do not
store data themselves but dynamically generate results whenever accessed.
This chapter explores how to create and use SQL views, their benefits in
database management, and how data can be updated through views.

Understanding SQL Views

Simplifuing Sg? s ¢ Enhancing
Complex Queries 5@2- @él Secvurity

Improving e
Database 8{8 —>
Management

Creating and Using SQL Views

A view is essentially a saved SQL query that acts like a table. It allows
users to structure data retrieval efficiently while hiding underlying
complexity.

Creating a Basic View

A view is created using the CREATE VIEW statement.

CREATE VIEW EmployeeView AS

SELECT EmployeelD, FirstName, LastName, Department
FROM Employees

WHERE Status = 'Active';

This creates a virtual table EmployeeView that contains only active employees
from the Employees table.

Querying Data from a View

Once created, a view can be queried just like a regular table.

SELECT * FROM EmployeeView;

This retrieves all records from EmployeeView, dynamically reflecting any
changes made to the Employees table.

Creating a View with Joins

Views can combine data from multiple tables using joins.

CREATE VIEW EmployeeDepartmentView AS

SELECT e.EmployeelD, e.FirstName, e.LastName, d.DepartmentName
FROM Employees e

JOIN Departments d ON e.DepartmentID = d.DepartmentID;

This view simplifies querying employee details along with their department
names.

Modifying an Existing View

Views can be updated using the ALTER VIEW statement.

ALTER VIEW EmployeeView AS

SELECT EmployeelD, FirstName, LastName, Salary
FROM Employees

WHERE Status = "Active’;

This modification includes the Salary column in EmployeeView.
Dropping a View

If a view is no longer needed, it can be deleted using;:

DROP VIEW EmployeeView;

Benefits of Views in Database Management

SQL views offer several advantages that improve database management,
security, and efficiency.

1. Simplification of Complex Queries

. Views encapsulate complex SQL logic, making queries easier
to read and maintain.

. Instead of writing lengthy queries repeatedly, users can retrieve
data using a simple SELECT statement on the view.

2. Enhanced Security

- Views allow controlled access to sensitive data by restricting
visibility to specific columns.

. Users can be granted permissions on views instead of
underlying tables.

. Example:

CREATE VIEW PublicEmployeeView AS
SELECT EmployeelD, FirstName, LastName
FROM Employees;

o This hides salary and personal details from
unauthorized users.

3. Improved Maintainability

. If a database structure changes, only the view definition needs
to be updated instead of modifying multiple queries in
application code.

4. Data Abstraction

- Views allow developers to work with a simplified dataset,
abstracting unnecessary details and ensuring consistency.

5. Performance Optimization

. Views can store frequently executed queries, improving
performance in some database engines that optimize execution
plans for views.

. Indexed views (in some databases) allow precomputed results
to be stored for faster access.

Updating Data Through Views

While views typically represent read-only datasets, some views allow
updates, inserts, and deletions if certain conditions are met.

Updating Data Using a View

If a view includes a single table without complex joins, updates can be
performed directly.

UPDATE EmployeeView
SET Department = 'Marketing'
WHERE EmployeelD = 5;

This updates the Department of EmployeelD 5 in the underlying Employees
table.

Inserting Data Through a View

New records can be inserted into base tables via views if all required
columns are included.

INSERT INTO EmployeeView (EmployeelD, FirstName, LastName, Department)
VALUES (101, 'Alice', 'Brown', 'Finance');

This inserts a new employee into the Employees table.
Deleting Records Using a View

DELETE FROM EmployeeView WHERE EmployeelD = 101;

This deletes EmployeelD 101 from the Employees table.

Limitations on Updating Views
Some views cannot be updated directly:
. Views that include aggregate functions (e.g., SUM(), COUNT())
. Views with joins on multiple tables
« Views that use DISTINCT or GROUP BY
. Read-only views created with WITH CHECK OPTION

If updates are necessary for such views, INSTEAD OF triggers can be used to
control modifications.

Example: Using an INSTEAD OF Trigger for Updates

CREATE TRIGGER InsteadOfUpdate ON EmployeeView
INSTEAD OF UPDATE
AS
BEGIN

UPDATE Employees

SET Department = inserted.Department

FROM Employees e

INNER JOIN inserted ON e.EmployeelD = inserted. EmployeelD;
END;

This trigger ensures updates made to EmployeeView are correctly reflected in
the Employees table.

Conclusion

Views are a powerful feature in SQL that simplify data access, enhance
security, and improve query efficiency. They provide a virtual layer that
abstracts complex queries and restricts access to sensitive data. While views
can sometimes be updated, restrictions apply when dealing with joins,
aggregates, and derived calculations. By leveraging views effectively,
database administrators and developers can build efficient and secure
database applications.

DAY 13: SQL TRANSACTIONS AND ACID
PROPERTIES

A transaction in SQL is a sequence of operations performed on a database
that must be executed as a single, cohesive unit. Transactions ensure data
consistency and integrity, preventing errors that could arise from
incomplete operations. SQL transactions are widely used in financial
systems, e-commerce applications, and other domains where multiple
operations need to be executed reliably.

To achieve reliability, SQL follows ACID properties, which define the key
characteristics of a transaction: Atomicity, Consistency, Isolation, and
Durability. These properties ensure that data remains accurate and
consistent even in the event of system crashes, power failures, or
unexpected interruptions.

ACID Transaction Hierarchy

Durability

Tsolation

Cownsistency

Atomicity

This chapter covers what transactions are, how ACID properties maintain
data integrity, and how transactions are implemented in SQL using COMMIT,
ROLLBACK, and SAVEPOINT.

What are Transactions?

A transaction is a unit of work in SQL that consists of one or more SQL
statements. Transactions are used to ensure data integrity and prevent data
corruption by ensuring that either all operations complete successfully or
none of them take effect.

Example of a Simple Transaction

Consider a banking system where a user transfers money from one account
to another. The transaction consists of two main operations:

1. Deducting money from the sender’s account.

2. Adding the deducted amount to the receiver’s account.

START TRANSACTION;

UPDATE Accounts SET Balance = Balance - 500 WHERE AccountID = 101;
UPDATE Accounts SET Balance = Balance + 500 WHERE AccountID = 102;
COMMIT;

If both updates execute successfully, the comMIT statement saves the
changes permanently. If an error occurs, the transaction should be rolled
back to prevent partial updates.

Key SQL Commands for Transactions
« START TRANSACTION: Begins a transaction.
. coMmMIT: Saves all changes permanently.
- ROLLBACK: Reverts all changes made during the transaction.

- SAVEPOINT: Creates a save state within a transaction, allowing
partial rollbacks.

Ensuring Data Integrity with ACID

ACID properties ensure that SQL transactions execute reliably and maintain
database integrity. Let's explore each of these properties in detail.

1. Atomicity

Atomicity ensures that a transaction is treated as a single, indivisible unit. If
any part of the transaction fails, the entire transaction is rolled back,
preventing partial updates.

Example:

START TRANSACTION;

UPDATE Orders SET Status = 'Shipped' WHERE OrderID = 5001;
UPDATE Payments SET Status = 'Completed WHERE PaymentID = 3001;
COMMIT;

If the second statement fails, the RoLLBACK command will ensure the order
status is not updated without a successful payment.

2. Consistency

Consistency ensures that the database remains in a valid state before and
after the transaction. Transactions should not leave the database with
invalid or incomplete data.

Example:

A user cannot transfer more money than they have in their account.

START TRANSACTION;

UPDATE Accounts SET Balance = Balance - 1000 WHERE AccountID = 2001 AND Balance >=
1000;

UPDATE Accounts SET Balance = Balance + 1000 WHERE AccountID = 2002;

COMMIT;

If the first update fails due to insufficient balance, the second update is
never executed.

3. Isolation

Isolation ensures that concurrent transactions do not interfere with each
other. SQL supports different isolation levels to control how transactions
interact.

Isolation Levels:

. Read Uncommitted: Transactions can see uncommitted
changes (risk of dirty reads).

- Read Committed: Transactions only see committed changes.

- Repeatable Read: Ensures rows queried multiple times remain
unchanged.

. Serializable: Strictest isolation, preventing concurrent
modifications.

Example:

Preventing simultaneous updates to the same account balance:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

START TRANSACTION;

UPDATE Accounts SET Balance = Balance - 500 WHERE AccountID = 3001;
UPDATE Accounts SET Balance = Balance + 500 WHERE AccountID = 3002;
COMMIT;

The Serializable level ensures that no other transaction can modify the same
account balance until the transaction is complete.

4. Durability

Durability guarantees that once a transaction is committed, it remains
permanently stored even if the system crashes.

Example:

After executing;:

COMMIT;

The transaction changes are saved to disk and remain intact after a power
failure or crash.

Implementing Transactions in SQL

SQL provides various techniques for handling transactions effectively.

1. Using COMMIT and ROLLBACK

A transaction starts with START TRANSACTION and ends with coMMIT (to save
changes) or ROLLBACK (to revert changes).

Example: Safe Money Transfer

START TRANSACTION;

UPDATE Accounts SET Balance = Balance - 1000 WHERE AccountID = 101;
UPDATE Accounts SET Balance = Balance + 1000 WHERE AccountID = 102;
IF @@ERROR !'= 0 THEN ROLLBACK;

ELSE COMMIT,;

If an error occurs, ROLLBACK ensures that no money is deducted from the
sender without being credited to the recipient.

2. Using SAVEPOINT for Partial Rollbacks

SAVEPOINT allows rolling back specific parts of a transaction without
canceling the entire process.

Example: Using SAVEPOINT in a Multi-Step Transaction

START TRANSACTION;

UPDATE Orders SET Status = 'Processing' WHERE OrderID = 5001;
SAVEPOINT OrderProcessing;

UPDATE Payments SET Status = 'Pending' WHERE PaymentID = 6001;
ROLLBACK TO OrderProcessing;

COMMIT;

If the payment update fails, the order status remains unchanged.

3. Implementing Error Handling in Transactions

Using TRY...CATCH blocks can prevent transaction failures from causing
inconsistency.

Example:

BEGIN TRY
BEGIN TRANSACTION;
UPDATE Accounts SET Balance = Balance - 500 WHERE AccountID = 401;
UPDATE Accounts SET Balance = Balance + 500 WHERE AccountID = 402;
COMMIT;

END TRY

BEGIN CATCH
ROLLBACK,;
PRINT 'Transaction failed!';

END CATCH;

If an error occurs, the ROLLBACK statement is executed, preventing data

corruption.

Conclusion

SQL transactions are essential for ensuring data integrity and consistency in
multi-step operations. The ACID properties—Atomicity, Consistency,
Isolation, and Durability—form the foundation of reliable database
transactions. Implementing COMMIT, ROLLBACK, and SAVEPOINT helps
prevent errors, ensuring that all SQL operations are executed safely.
Mastering transactions enhances database reliability and prevents data
anomalies in high-volume environments.

DAY 14: WORKING WITH STORED
PROCEDURES

Stored procedures are one of the most powerful features of SQL that enable
efficient database management and execution of repetitive tasks. A stored
procedure is a precompiled collection of one or more SQL statements that
can be executed with a single command. They help in improving
performance, enhancing security, and maintaining consistency in database
operations.

Understanding Stored Procedures in SQL
Definition [— — R g;zi‘iig;‘n"‘“d
.@
Parameters @I — «— % Benefits
This chapter will cover what stored procedures are, how they are created

and executed, and how parameters can be used in stored procedures to
enhance flexibility and reusability.

What are Stored Procedures?

A stored procedure is a block of SQL code that is stored in the database and
can be executed as needed. Instead of writing the same SQL queries
repeatedly, a stored procedure allows users to encapsulate logic into a
reusable function that can be called anytime.

Benefits of Stored Procedures

. Improved Performance: Since stored procedures are

precompiled, they execute faster compared to dynamically
written SQL queries.

Code Reusability: SQL logic can be written once and
executed multiple times without rewriting the code.

Security Enhancement: Permissions can be assigned to stored
procedures to restrict unauthorized data access.

Reduced Network Traffic: Instead of sending multiple SQL
statements, an application can call a single stored procedure,
reducing network load.

. Maintainability: Changes to database logic can be made in

one place without modifying multiple scripts.

Example Use Case

A stored procedure can be used for:

Inserting, updating, and deleting records
Complex data processing and calculations
Automating scheduled tasks

Validating and enforcing business rules

Creating and Executing Stored Procedures

Basic Syntax for Creating a Stored Procedure
CREATE PROCEDURE ProcedureName

AS
BEGIN

SQL_Statements;

END;

Example:

CREATE PROCEDURE: Defines a new stored procedure.
ProcedureName: The name given to the procedure.

AS BEGIN ... END: Contains the SQL statements that define the
procedure logic.

Creating a Simple Stored Procedure

CREATE PROCEDURE GetAllEmployees

AS
BEGIN

SELECT * FROM Employees;
END;

This procedure retrieves all records from the Employees table.

Executing a Stored Procedure

A stored procedure is executed using the EXEC or CALL command.
EXEC GetAllEmployees;

This retrieves the entire employee list without writing the SELECT statement
repeatedly.

Modifying an Existing Stored Procedure

If a stored procedure needs modification, the ALTER PROCEDURE command is
used.

ALTER PROCEDURE GetAllEmployees
AS
BEGIN
SELECT EmployeelD, FirstName, LastName, Department FROM Employees;
END;

This modified procedure now retrieves only specific columns.
Deleting a Stored Procedure

To remove a stored procedure from the database:
DROP PROCEDURE GetAllEmployees;

This permanently deletes the GetAllEmployees procedure.

Using Parameters in Procedures

Stored procedures can accept parameters, making them dynamic and
reusable for different scenarios.

Syntax for a Stored Procedure with Parameters

CREATE PROCEDURE ProcedureName (@Parameterl DataType, @Parameter2 DataType)
AS
BEGIN
SQL_Statements;
END;

« @Parameterl, @Parameter2: Placeholder values used inside the
procedure.

- DataType: Specifies the type of the parameter (e.g., INT, VARCHAR,
DATE).

Example: Procedure with an Input Parameter
CREATE PROCEDURE GetEmployeesByDepartment @DeptName VARCHAR(50)
AS
BEGIN
SELECT * FROM Employees WHERE Department = @DeptName;
END;
This procedure filters employees based on the department name passed as a
parameter.

Executing a Procedure with Parameters
EXEC GetEmployeesByDepartment 'Marketing';

This retrieves all employees from the Marketing department.

Procedure with Multiple Parameters
CREATE PROCEDURE GetEmployeeDetails @EmpID INT, @DeptName VARCHAR(50)
AS
BEGIN
SELECT * FROM Employees WHERE EmployeelD = @EmpID AND Department =
@DeptName;
END;
This procedure retrieves employee details based on both Employee ID and

Department.

Executing a Procedure with Multiple Parameters
EXEC GetEmployeeDetails 101, 'Finance';

This fetches details for Employee ID 101 in the Finance department.

Stored Procedure with Default Parameter Values

Stored procedures can have default values for parameters, allowing
execution without providing all parameters.
CREATE PROCEDURE GetEmployeesByDepartment @DeptName VARCHAR(50) = 'IT"
AS
BEGIN
SELECT * FROM Employees WHERE Department = @DeptName;
END;
Now, executing EXEC GetEmployeesByDepartment; retrieves employees in the 1T
department by default.

Procedure with Output Parameter

An output parameter returns a value from the procedure to the calling
environment.

CREATE PROCEDURE GetEmployeeCount @DeptName VARCHAR(50), @TotalEmployees INT
OUTPUT
AS
BEGIN

SELECT @TotalEmployees = COUNT(*) FROM Employees WHERE Department =
@DeptName;
END;

Executing this procedure:

DECLARE @Count INT;

EXEC GetEmployeeCount 'HR', @Count OUTPUT;

PRINT @Count;

This retrieves and prints the total number of employees in the HR
department.

Conclusion

Stored procedures in SQL offer an efficient way to execute complex queries
while maintaining security and performance. They allow repeated execution
of predefined SQL statements, reducing redundancy and optimizing query
processing. Using parameters enhances their flexibility, making them
dynamic and adaptable to various scenarios. Understanding how to create,
modify, and use stored procedures effectively is essential for database
developers and administrators who aim to build scalable, secure, and high-
performing SQL applications.

DAY 15: TRIGGERS - AUTOMATING SQL
TASKS

Introduction to SQL Triggers

SQL triggers are special procedures that automatically execute when
specific events occur in a database. These events can include INSERT,
UPDATE, Or DELETE operations on a table. Triggers help enforce business
rules, maintain data integrity, and automate tasks that otherwise require
manual intervention.

Unlike stored procedures, which require explicit execution, triggers activate
automatically whenever their associated conditions are met. They are
particularly useful in scenarios where consistency and automation are
critical, such as logging changes, enforcing constraints, and updating
related tables.

SQL Triggers and Their Functions

SQL Triggers

g X[Database Operations

17\:'

2

& ' Use Cases

Triggers can be categorized into different types based on their timing and
function:

1. Before Triggers: Execute before the specified event occurs.

2. After Triggers: Execute after the specified event has
completed.

3. Instead Of Triggers: Replace the execution of an event with
custom logic.

By leveraging triggers effectively, database administrators can ensure that
data remains consistent and accurate without additional application logic.

Creating and Managing Triggers

SQL provides flexibility in defining triggers to automate database
operations. Creating triggers involves specifying the table, the event that
activates the trigger, and the logic that should be executed.

Syntax for Creating a Trigger
CREATE TRIGGER trigger_name
BEFORE|AFTER|INSTEAD OF event
ON table_name
FOR EACH ROW
BEGIN
-- SQL statements to be executed
END;

. trigger_name: A unique name for the trigger.

- BEFORE, AFTER, or INSTEAD OF: Defines when the trigger should
execute.

- event: The type of operation (INSERT, UPDATE, DELETE) that
activates the trigger.

. table_name: The table associated with the trigger.

- FOREACH ROW: Ensures the trigger executes for each row
affected.

Example: Creating an Audit Log Trigger

To automatically log changes to the Employees table:
CREATE TRIGGER LogEmployeeChanges

AFTER UPDATE
ON Employees
FOR EACH ROW
BEGIN
INSERT INTO EmployeeAudit (EmployeelD, OldSalary, NewSalary, ChangeDate)
VALUES (OLD.EmployeelD, OLD.Salary, NEW.Salary, NOW());
END;
This trigger logs salary changes in an audit table whenever an employee’s

salary is updated.

Creating a Trigger to Prevent Deletions

To prevent accidental deletion of records from the Orders table:

CREATE TRIGGER PreventOrderDeletion
BEFORE DELETE
ON Orders
FOR EACH ROW
BEGIN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'Deleting orders is not allowed’;
END;

This trigger raises an error if a user tries to delete an order.
Modifying an Existing Trigger

To change the logic of a trigger, first drop the existing trigger, then recreate
it with the new logic:

DROP TRIGGER IF EXISTS LogEmployeeChanges;

Deleting a Trigger

To remove a trigger permanently:
DROP TRIGGER LogEmployeeChanges;

Common Use Cases for Triggers

Triggers offer numerous applications across different industries and use
cases. Below are some of the most common ways triggers can be leveraged
to improve database efficiency and security.

1. Automating Audit Trails

Keeping track of changes made to critical tables is essential for compliance
and debugging. A trigger can automatically insert records into an audit table
whenever a change occurs.

Example: Logging Changes to a Customer Table

CREATE TRIGGER CustomerChangeLog

AFTER UPDATE

ON Customers

FOR EACH ROW

BEGIN
INSERT INTO CustomerAudit (CustomerID, OldEmail, NewEmail, ChangeTimestamp)
VALUES (OLD.CustomerID, OLD.Email, NEW.Email, NOW());

END;

This trigger records email changes for customers.

2. Enforcing Business Rules

Triggers help maintain consistency and enforce specific business rules
without requiring application logic.

Example: Preventing Negative Account Balances

CREATE TRIGGER PreventNegativeBalance
BEFORE UPDATE
ON Accounts
FOR EACH ROW
BEGIN
IF NEW.Balance < 0 THEN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'Account balance cannot be negative',
END IF;
END;

This ensures that no transaction results in a negative balance.

3. Automatic Data Synchronization

Triggers can synchronize data between tables to keep related records
consistent.

Example: Updating Stock Levels After an Order

CREATE TRIGGER UpdateStockAfterOrder

AFTER INSERT

ON Orders

FOR EACH ROW

BEGIN
UPDATE Products
SET StockQuantity = StockQuantity - NEW.Quantity
WHERE ProductID = NEW.ProductID;

END;

This trigger reduces product stock automatically when an order is placed.

4. Preventing Unauthorized Deletions or Changes
Some records should remain untouched to maintain historical data integrity.

Example: Prevent Deleting Customer Records with Orders

CREATE TRIGGER PreventCustomerDeletion
BEFORE DELETE
ON Customers
FOR EACH ROW
BEGIN
IF EXISTS (SELECT 1 FROM Orders WHERE Orders.CustomerID = OLD.CustomerID) THEN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'Cannot delete customer with existing orders’;
END IF;
END;

This trigger ensures that customers with existing orders cannot be deleted.

5. Generating Automatic Notifications

Triggers can be used to generate notifications or alerts when certain
conditions are met.

Example: Notifying When Inventory Falls Below Threshold

CREATE TRIGGER NotifyLowStock
AFTER UPDATE
ON Products
FOR EACH ROW
BEGIN
IF NEW.StockQuantity < 10 THEN
INSERT INTO Notifications (Message, CreatedAt)
VALUES ('Stock for ' || NEW.ProductName || ' is running low!", NOW());
END IF;
END;

This trigger adds a notification if product stock drops below 10 units.

Conclusion

SQL triggers are a powerful mechanism for automating database tasks and
ensuring data consistency. By defining rules that execute automatically in
response to specific events, triggers help improve database reliability,
enforce business logic, and reduce manual errors. From logging changes to
enforcing constraints and synchronizing data, triggers play a vital role in
database management. Understanding how to create, modify, and use

triggers effectively enables developers and database administrators to build
smarter, more efficient database systems.

DAY 16: WORKING WITH USER-DEFINED
FUNCTIONS (UDFS)

SQL functions play a crucial role in enhancing database performance and
query efficiency by encapsulating reusable logic. While SQL provides built-
in functions like counT(), AVG(), and sum(), users can define their own
functions, known as User-Defined Functions (UDFs), to perform custom
computations. UDFs help modularize complex queries, improve code
readability, and enforce business logic at the database level.

Enhancing Database Performance with SQL
Functions and UDFs

Business Logic
Built-in Functions Query Efficiency Enforcement

NS

User-Defined Code Readability
Functions

User-defined functions in SQL can be broadly categorized into two types:
1. Scalar Functions: Return a single value.
2. Table-Valued Functions (TVFs): Return a table.

This chapter explores how to create, use, and optimize UDFs effectively.

What are SQL Functions?

SQL functions are reusable blocks of SQL statements that perform a
specific task and return a value. Unlike stored procedures, functions must

return a value and cannot modify database state (e.g., inserting, updating, or
deleting records). Functions are particularly useful for calculations,
formatting, and data manipulation.

Benefits of SQL Functions

1. Code Reusability: Functions eliminate redundancy by
encapsulating logic that can be reused across multiple queries.

2. Improved Performance: Functions allow computations to be
performed within the database engine, reducing the need for
application-side processing.

3. Enhanced Readability: Queries become more readable by
abstracting complex logic into named functions.

4. Consistency: Using functions ensures that the same logic is
applied consistently across queries.

5. Security: Functions can enforce data validation and
calculations without exposing sensitive database logic.

Creating Scalar and Table-Valued Functions

1. Creating Scalar Functions

A scalar function returns a single value. It is useful for calculations, string
manipulations, and formatting.

Syntax for Creating a Scalar Function
CREATE FUNCTION FunctionName (@Parameter DataType)
RETURNS ReturnDataType
AS
BEGIN

RETURN (expression or computed value);
END;

Example: Creating a Function to Calculate Employee Bonuses
CREATE FUNCTION CalculateBonus (@Salary DECIMAL(10,2))
RETURNS DECIMAL(10,2)
AS
BEGIN
RETURN (@Salary * 0.10);
END;

This function takes an employee’s salary and returns a 10% bonus.

Using the Function in a Query

SELECT EmployeelD, Salary, dbo.CalculateBonus(Salary) AS Bonus
FROM Employees;

This query retrieves employee salaries and calculates their bonuses
dynamically.

2. Creating Table-Valued Functions (T'VFs)

A table-valued function returns a table and can be used like a regular table
in SELECT Statements.

Syntax for Creating a Table-Valued Function
CREATE FUNCTION FunctionName (@Parameter DataType)
RETURNS TABLE

AS

RETURN

(
)

Example: Creating a Function to Retrieve Employees by

Department
CREATE FUNCTION GetEmployeesByDepartment (@DeptName VARCHAR(50))
RETURNS TABLE
AS
RETURN (
SELECT EmployeelD, FirstName, LastName, Salary
FROM Employees
WHERE Department = @DeptName

);

Using the Table-Valued Function in a Query
SELECT * FROM dbo.GetEmployeesByDepartment('Marketing");

SELECT columns FROM table WHERE condition;

This query returns all employees working in the Marketing department.

Using Functions in Queries

User-defined functions can be integrated into various SQL queries to
enhance data processing capabilities.

1. Using Scalar Functions in Queries

SELECT EmployeelD, FirstName, Salary, dbo.CalculateBonus(Salary) AS Bonus
FROM Employees;

This query applies the CalculateBonus function to compute bonuses for all
employees.

2. Using Table-Valued Functions in Joins

Table-valued functions can be joined with other tables for more complex
queries.

SELECT e.EmployeelD, e.FirstName, d.DepartmentName

FROM Employees e

JOIN dbo.GetEmployeesByDepartment('IT") d

ON e.EmployeelD = d.EmployeelD;

This retrieves employees from the IT department while joining with the

original Employees table.

3. Nesting Functions in Queries

SQL functions can be nested inside other functions or queries for advanced
operations.

SELECT EmployeelD, FirstName, Salary,
dbo.CalculateBonus(Salary) AS Bonus,
dbo.GetTaxAmount(Salary) AS Tax

FROM Employees;

This query calculates both the bonus and tax amount dynamically for each
employee.

Performance Considerations for SQL Functions

While user-defined functions improve code structure, they can impact
performance if not optimized properly. Here are some best practices:

1. Avoid Excessive Scalar Functions in Queries: Scalar
functions execute row-by-row, potentially slowing down large
queries.

2. Use Table-Valued Functions Instead of Views: TVFs provide
dynamic filtering and modularity compared to static views.

3. Leverage Indexing: Ensure that columns referenced in
functions are indexed to speed up retrieval.

4. Avoid Using Functions in WHERE Clauses: Using functions
in WHERE conditions can prevent SQL from utilizing indexes
effectively.

SELECT * FROM Employees WHERE dbo.CalculateBonus(Salary) > 5000;

Instead, compute the value beforehand and use direct comparisons.

5. Minimize Dependencies on External Tables: Functions that
query multiple tables can introduce performance bottlenecks.

Conclusion

User-defined functions in SQL provide a powerful mechanism for
encapsulating reusable logic and enhancing query efficiency. Scalar
functions return single values for calculations, while table-valued functions
return structured datasets that can be used in queries. By using UDFs
effectively, database developers can improve code maintainability, optimize
performance, and ensure consistency in data processing. However, careful
consideration must be given to performance implications, particularly when
using functions in large datasets. Mastering UDFs will significantly
enhance the ability to write efficient, modular, and reusable SQL code.

DAY 17: ADVANCED SQL JOINS AND SET
OPERATIONS

In SQL, joins and set operations play a crucial role in combining and
processing data from multiple tables efficiently. While basic joins like
INNER JOIN and LEFT JOIN are commonly used, advanced joins such as Self
Joins and Cross Joins provide additional flexibility in data retrieval.
Similarly, Set Operations such as UNION, INTERSECT, and EXCEPT allow
combining results from multiple queries. Another powerful feature,
Common Table Expressions (CTEs), helps in writing recursive queries for
hierarchical or iterative data processing.

SQL Joins and Set Operations

Basic Joins Set j
Advanced Overations Common
Commonly used Joins P Table
joins for data Combi 1t H
retrieval. Flexible joins like ?,rr;n,.:nriuﬁis;ies Expressuons
Self cm_d Cross queries effectively, Useful for recursive
Joins. queries in SQL.

Self Joins and Cross Joins
Self Join

A Self Join is a join where a table is joined with itself. This is useful when
dealing with hierarchical data, employee-manager relationships, and data
comparison within the same table.

Example: Finding Employee-Manager Relationships
SELECT el.EmployeelD, el.Name AS Employee, e2.Name AS Manager

FROM Employees el
LEFT JOIN Employees e2 ON el.ManagerID = e2.EmployeelD;

This query retrieves employees along with their respective managers from
the Employees table.

Use Cases for Self Join:

. Finding hierarchical relationships (e.g., managers and
subordinates).

. Comparing rows within the same table (e.g., finding duplicate
records).

- Analyzing linked entities (e.g., finding customers who referred
other customers).

Cross Join
A Cross Join returns the Cartesian product of two tables, meaning every
row from the first table is combined with every row from the second table.

Example: Generating All Possible Product and Store Combinations

SELECT Products.ProductName, Stores.StoreName
FROM Products
CROSS JOIN Stores;

This query generates a combination of all products and all stores.

Use Cases for Cross Join:
. Generating test datasets with all possible combinations.

 Creating matrix-like comparisons between two independent
datasets.

« Assigning all users to all available roles or permissions.

Using UNION, INTERSECT, and EXCEPT

Set operations allow combining query results in different ways. These
operators work on union-compatible result sets, meaning the number of
columns and their data types must match.

1. UNION (Combining Results Without Duplicates)

The UNION operator merges the results of two queries while eliminating
duplicate records.

Example: Merging Two Customer Lists
SELECT CustomerName FROM Customers_Online
UNION

SELECT CustomerName FROM Customers_Offline;

This query retrieves a unified customer list from both online and offline
sources, removing duplicates.

2. UNION ALL (Combining Results With Duplicates)

Unlike UNION, the UNION ALL operator retains duplicates in the result set.

Example:

SELECT CustomerName FROM Customers_Online
UNION ALL

SELECT CustomerName FROM Customers_Offline;

This query keeps duplicate customers if they exist in both tables.

3. INTERSECT (Finding Common Records)
The INTERSECT operator returns only the rows that exist in both result sets.

Example: Finding Customers in Both Online and Offline Databases

SELECT CustomerName FROM Customers_Online
INTERSECT
SELECT CustomerName FROM Customers_Offline;

This query retrieves customers who have shopped both online and offline.
4. EXCEPT (Finding Differences Between Two Datasets)

The EXCEPT operator returns records from the first query that do not exist in
the second query.

Example: Finding Online-Only Customers

SELECT CustomerName FROM Customers_Online
EXCEPT
SELECT CustomerName FROM Customers_Offline;

This query retrieves customers who have only shopped online.

Use Cases for Set Operations:
. Consolidating datasets from different sources (UNION).
« Identifying overlapping data (INTERSECT).
. Finding unique records (EXCEPT).

Recursive Queries with Common Table
Expressions (CTEs)

Common Table Expressions (CTESs) provide a way to create temporary
result sets that can be referenced multiple times within a query. Recursive
CTEs extend this functionality by enabling hierarchical or iterative data
retrieval.

Basic CTE Syntax

WITH CTE_Name (Columnl, Column2) AS (
SELECT Column1, Column2 FROM TableName WHERE Condition

)
SELECT * FROM CTE_Name;

Example: Using a Simple CTE to Organize Data
WITH DepartmentEmployees AS (

SELECT EmployeelD, Name, Department

FROM Employees

WHERE Department = 'IT"

)
SELECT * FROM DepartmentEmployees;

This query creates a temporary dataset DepartmentEmployees that filters IT
employees.

Recursive CTE for Hierarchical Data (Employee Hierarchy
Example)

A recursive CTE is useful for retrieving hierarchical data such as
organizational structures, category trees, and path-based relationships.

Example: Finding All Employees Under a Manager

WITH EmployeeHierarchy AS (
SELECT EmployeelD, Name, ManagerID
FROM Employees
WHERE ManagerID IS NULL -- Start from the top-level manager

UNION ALL

SELECT e.EmployeelD, e.Name, e.ManagerID
FROM Employees e
INNER JOIN EmployeeHierarchy eh ON e.ManagerID = eh.EmployeelD

)
SELECT * FROM EmployeeHierarchy;

This query retrieves an entire hierarchy of employees reporting to a
manager.

Use Cases for Recursive CTEs:

- Employee hierarchy: Finding reporting relationships in an
organization.

. Category hierarchy: Organizing nested categories (e.g.,
product categories, forum threads).

. Bill of materials: Listing dependencies between components
in manufacturing.

« Graph traversal: Finding connected nodes in a network or
social graph.

Conclusion

Advanced SQL joins and set operations provide powerful tools for
combining and processing data across multiple tables. Self joins are useful
for analyzing hierarchical relationships, while cross joins generate all
possible combinations of two tables. Set operations like UNION, INTERSECT,
and EXCEPT help in consolidating, comparing, and filtering datasets. Finally,
recursive CTEs enable working with hierarchical data efficiently. Mastering
these concepts allows for efficient querying and robust data analysis,
enhancing database management capabilities.

DAY 18: UNDERSTANDING
NORMALIZATION AND
DENORMALIZATION

Database design is a crucial aspect of SQL and relational databases.
Efficiently structured databases ensure data consistency, avoid redundancy,
and optimize performance. Two fundamental techniques that impact
database structure are Normalization and Denormalization.

Normalization is the process of structuring a relational database to
minimize redundancy and improve integrity, while Denormalization
involves optimizing read-heavy operations by selectively introducing
redundancy for performance benefits.

Database Design Strategies

~

Denormalization

Normalization

c) B

Database Design

2

What is Normalization?

Normalization is the process of organizing a database into well-structured
tables by eliminating redundancy and ensuring data integrity. It involves

breaking a larger table into smaller, related tables and defining relationships
using primary keys and foreign keys.

Objectives of Normalization:

1. Reduce Data Redundancy: Avoid storing the same data in
multiple places.

2. Improve Data Integrity: Ensure accurate and consistent data
across tables.

3. Enhance Query Performance: Optimize queries by reducing
data duplication.

4. Facilitate Easier Maintenance: Minimize anomalies during
insertion, updating, and deletion.

Example of an Unnormalized Table (Redundant Data)

Order] |CustomerNa |Produ |Quanti | Suppli
D me ct ty er
101 John Doe Laptop |1 Dell
102 Jane Smith Laptop |2 Dell
103 John Doe Phone |1 Apple
Issues:

- Redundant customer data (e.g., “John Doe” appears twice).
. Redundant supplier data (e.g., “Dell” is repeated).
. Difficult to update if supplier details change.

Normal Forms Explained (1NF, 2NF, 3NF, BCNF)

Normalization is performed through normal forms (NF), which define
progressive levels of database refinement.

1st Normal Form (1NF) — Eliminating Duplicates
A table is in 1NF if:
. Each column contains atomic (indivisible) values.
. Each row has a unique identifier (Primary Key).

- Repeating groups are removed.

Example: Converting to 1NF
Splitting data into separate tables:

Customers Table:

Customerl [CustomerNam

D e

1 John Doe

2 Jane Smith

Orders Table:

OrderI | Customerl |Produ | Quanti | Supplier]
D D ct ty D
101 1 Laptop |1 1
102 2 Laptop |2 1
103 1 Phone |1 2
Suppliers Table:

Supplierl [SupplierNam

D e

1 Dell

2 Apple

2nd Normal Form (2NF) — Removing Partial Dependencies
A table is in 2NF if:

« Itis already in 1NF.

. All non-key attributes fully depend on the primary key.

If a table has a composite primary key, then non-key columns must depend
on the whole key, not just a part of it.

Example: Converting to 2NF

Previously, Supplier depended only on the product, not the order. We split
suppliers into a separate table:

Products Table:
Productl |[Produc|Supplierl
D t D

1 Laptop |1

2 Phone |2

Orders Table (Updated):

Orderl |Customerl |Productl | Quantit
D D D y

101 1 1 1

102 2 1 2

103 1 2 1

Now, Products are in a separate table, eliminating partial dependencies.
3rd Normal Form (3NF) — Removing Transitive
Dependencies
A table is in 3NF if:

« Itis already in 2NF.

- No transitive dependency exists (i.e., non-key attributes must
not depend on other non-key attributes).

Example: Converting to 3NF

If a table contains Supplier Name in the Products table, that means the
Supplier’s Name depends on Supplier ID, not Product ID. To follow 3NF,
the Supplier Name should be stored in the Suppliers table.

Products Table (Final):
Productl [Produc

D t

1 Laptop

2 Phone
Suppliers Table:
Supplierl [SupplierNam
D e

1 Dell

2 Apple

By separating Suppliers, we ensure no non-key column depends on another
non-key column, making the database fully normalized.

Boyce-Codd Normal Form (BCNF) — The Highest Level of
Normalization
A table is in BCNF if:

. Itis already in 3NF.

. Every determinant (i.e., any attribute that uniquely determines
another attribute) is a candidate key.

BCNF is a stricter version of 3NF and ensures that even composite keys do
not create hidden dependencies.

When to Use Denormalization

While normalization minimizes redundancy and improves consistency;, it
can sometimes lead to performance bottlenecks due to multiple joins.
Denormalization selectively introduces redundancy to optimize read-heavy
operations.

Advantages of Denormalization:

. Faster Query Performance: Reduces the number of joins
needed.

. Optimized Read Operations: Useful for reporting and
analytics.

. Simplified Queries: Reduces query complexity by
consolidating data.

When to Consider Denormalization:
- When dealing with complex queries requiring multiple joins.

- When reading performance is prioritized over writing
efficiency.

- When working with data warehousing and analytical
workloads.

Example of Denormalization

Instead of multiple joins, a single table storing product and supplier details
might be useful:

Productl |Produc|Supplie
D t r

1 Laptop |Dell

2 Phone |Apple

This avoids joins but introduces redundancy.

Conclusion

Normalization ensures data consistency, eliminates redundancy, and
improves integrity by breaking tables into smaller, related components.
Understanding 1NF, 2NF, 3NF, and BCNF helps in designing robust
databases. However, in performance-intensive scenarios, denormalization
can be selectively applied to optimize read-heavy queries. Striking the right
balance between normalization and denormalization is key to effective
database design.

DAY 19: DATABASE DESIGN AND
RELATIONSHIPS

Database design is a fundamental aspect of SQL that determines how data
is stored, related, and managed efficiently. Well-structured databases ensure
data consistency, integrity, and scalability. One of the most important
concepts in database design is defining relationships between tables. These
relationships ensure that data is properly linked and prevent duplication or
anomalies.

In this chapter, we will explore different types of database relationships,
best practices for designing efficient databases, and the role of foreign key
constraints in enforcing referential integrity.

Database Design Concepts

K _ A
Types of g
Relationships 5@2. N\ / @ Best Practices
Exploring various Guidelines for
ways tables can creating efficient and
relate to each other effective databases

Foreign Key
Constraints

O
Rules for maintaining
referentiol integrity in
o Q

Understanding One-to-One, One-to-Many, and
Many-to-Many Relationships

In relational databases, relationships define how tables are connected. These
relationships ensure data integrity and reduce redundancy.

1. One-to-One (1:1) Relationship

A one-to-one relationship exists when a single record in one table is
associated with only one record in another table.

Example: A users table and a UserProfiles table

Userl (Nam |Email

D e

1 John |john@email.co
m

2 Jane |jane@email.co
m

Profilel |Userl |Bio

D D
1 1 Developer at XYZ
2 2 Marketing

Manager

Use Cases:

. Storing sensitive data separately (e.g., passwords, medical
records).

. Splitting large tables to improve performance.

. Separating frequently updated columns from rarely updated
ones.

Implementation:

CREATE TABLE Users (
UserID INT PRIMARY KEY,
Name VARCHAR(100),
Email VARCHAR(100) UNIQUE

)

CREATE TABLE UserProfiles (
ProfileID INT PRIMARY KEY,
UserID INT UNIQUE,
Bio TEXT,
FOREIGN KEY (UserID) REFERENCES Users(UserID)

);
2. One-to-Many (1:Many) Relationship

mailto:john@email.com
mailto:jane@email.com

A one-to-many relationship exists when one record in a table is related to
multiple records in another table.

Example: A customers table and an orders table

CustomerI [Nam

D e

1 Alice

2 Bob

Orderl |Customerl |OrderDat

D D e

101 1 2023-06-
10

102 1 2023-07-
05

103 2 2023-07-
12

Use Cases:

.« A customer placing multiple orders.
- An employee managing multiple projects.

« A department having multiple employees.

Implementation:

CREATE TABLE Customers (
CustomerID INT PRIMARY KEY,
Name VARCHAR(100)

)

CREATE TABLE Orders (
OrderID INT PRIMARY KEY,
CustomerID INT,

OrderDate DATE,

FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);

3. Many-to-Many (Many:Many) Relationship

A many-to-many relationship exists when multiple records in one table
relate to multiple records in another table. This requires a junction table to
break the many-to-many relationship into two one-to-many relationships.

Example: A Students table and a courses table connected by an Enroliments
table

Student]l [Nam

D e

1 Alice

2 Bob

Coursel |CourseNam

D e

101 Math

102 Science
Enrollment]l |Studentl |Coursel
D D D

1 1 101
2 1 102
3 2 102

Use Cases:
« A student enrolling in multiple courses.

« An author writing multiple books, and each book having
multiple authors.

- Employees working on multiple projects.

Implementation:

CREATE TABLE Students (
StudentID INT PRIMARY KEY,
Name VARCHAR(100)

);

CREATE TABLE Courses (
CourseID INT PRIMARY KEY,
CourseName VARCHAR(100)

);

CREATE TABLE Enrollments (
EnrollmentID INT PRIMARY KEY,
StudentID INT,
CourselD INT,
FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

FOREIGN KEY (CourseID) REFERENCES Courses(CourselD)
);

Designing Efficient Databases

A well-designed database ensures scalability, performance, and data
integrity. Below are best practices for efficient database design:

1. Use Normalization

. Follow 1NF, 2NF, and 3NF to minimize redundancy and
improve data integrity.
. Use BCNEF for strict data integrity.

2. Choose Appropriate Data Types

. Use INTEGER for IDs, VARCHAR for names, and DATE for
date fields.

« Avoid TEXT and BLOB unless necessary.

3. Optimize Indexing

« Index primary keys and foreign keys to improve join
performance.

. Use composite indexes when filtering by multiple columns.

4. Establish Referential Integrity

- Use FOREIGN KEYS to maintain consistency between related
tables.

. Use CASCADE DELETE/UPDATE only when necessary.

5. Implement Proper Constraints
« NOT NULL to ensure mandatory values.
« UNIQUE to prevent duplicate records.

. CHECK to enforce valid data.

Implementing Foreign Key Constraints

A foreign key enforces a link between tables, ensuring that records in one
table reference valid records in another.

Example: Foreign Key with ON DELETE CASCADE

CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
Name VARCHAR(100)

)

CREATE TABLE Salaries (

SalaryID INT PRIMARY KEY,

EmployeelD INT,

SalaryAmount DECIMAL(10,2),

FOREIGN KEY (EmployeelD) REFERENCES Employees(EmployeelD) ON DELETE
CASCADE

);
Here, if an employee is deleted from Employees, their corresponding salary
record in Salaries is also deleted.

Conclusion

Database relationships play a crucial role in structuring relational databases
efficiently. One-to-One, One-to-Many, and Many-to-Many relationships
ensure proper data modeling and organization. Foreign keys help maintain
referential integrity, preventing orphaned records. By following best
practices in database design, developers can ensure optimized performance,
consistency, and scalability, making databases robust and reliable.

DAY 20: SQL PERFORMANCE
OPTIMIZATION

SQL performance optimization is crucial for ensuring that databases run
efficiently and queries execute quickly. Poorly optimized queries can lead
to excessive CPU usage, slow response times, and even system crashes
when dealing with large datasets. Understanding and addressing common
performance issues, using execution plans to analyze query efficiency, and
following best practices for writing optimized queries are essential skills for
any database administrator or developer.

This chapter focuses on identifying and avoiding common performance
issues, using execution plans for query optimization, and best practices for
writing efficient queries.

SQL Performance Optimi2ation Process

Analyzing
Execution @ a Implementing
Plans 7Y Best Practices
Examining query Pcpptgifng' techniq-ues
execution paths for to optimize queries
efficiency

Identifying and Avoiding Common Performance
Issues

Many performance issues in SQL arise due to inefficient query writing,
improper indexing, and poor database schema design. Below are some of
the most common problems and how to avoid them:

1. Full Table Scans

A full table scan occurs when a query searches every row in a table instead
of using an index. This can slow down query execution significantly.

Example of a Full Table Scan:
SELECT * FROM Employees WHERE LastName = 'Smith’;

If the LastName column is not indexed, SQL will scan the entire table.
Solution:

Create an index on LastName to speed up lookups:
CREATE INDEX idx_lastname ON Employees(LastName);

2. Using SELECT *

Selecting all columns (SELECT *) when only a few columns are needed
increases memory usage and slows down query execution.

Bad Practice:
SELECT * FROM Orders;

Optimized Query:

SELECT OrderID, CustomerName, OrderDate FROM Orders;

3. Missing or Unused Indexes

Indexes speed up query performance, but missing or unused indexes can
result in slow searches.

Solution:

Use indexing on frequently queried columns:

CREATE INDEX idx_order_date ON Orders(OrderDate);

However, avoid excessive indexing as it slows down INSERT, UPDATE, and
DELETE operations.

4. Poorly Designed Joins

Joins that involve large tables without proper indexing can be extremely
slow.

Bad Example:

SELECT * FROM Employees e
JOIN Departments d ON e.DepartmentID = d.DepartmentID;

Optimized Query with Indexing:
CREATE INDEX idx_department ON Employees(DepartmentID);

SELECT e.EmployeelD, e.Name, d.DepartmentName
FROM Employees e
JOIN Departments d ON e.DepartmentID = d.DepartmentID;

5. Inefficient WHERE Clauses

Using functions on indexed columns in the wHERE clause prevents the
database from using the index.

Bad Example:

SELECT * FROM Employees WHERE UPPER(LastName) = 'SMITH;

Optimized Query:

SELECT * FROM Employees WHERE LastName = 'Smith’;

Using Execution Plans for Query Optimization

Execution plans provide insights into how SQL queries are executed and
help identify bottlenecks in query performance. Understanding execution
plans is essential for tuning queries.

1. Generating an Execution Plan

Most SQL databases allow users to view execution plans using the
following commands:
EXPLAIN ANALYZE SELECT * FROM Employees WHERE LastName = 'Smith';

This command provides a detailed breakdown of how the query is executed.
2. Key Elements of an Execution Plan

- Seq Scan (Sequential Scan): Indicates a full table scan, which
should be avoided.

. Index Scan: Indicates an index is being used for faster lookup.

. Nested Loop Join: Efficient for small datasets but can be slow
for large datasets.

- Hash Join: Better for large datasets when indexed properly.

3. Example: Optimizing a Query Using Execution Plans

Initial Query (Slow Performance)
SELECT * FROM Orders WHERE OrderDate > '2023-01-01';

Execution Plan Output (Showing Sequential Scan)
Seq Scan on Orders (cost=0.00..1000.00 rows=500 width=50)

Optimized Query (Using Indexing for Faster Lookup)

CREATE INDEX idx_order_date ON Orders(OrderDate);
SELECT * FROM Orders WHERE OrderDate > '2023-01-01";

Execution Plan Output (Using Index Scan)
Index Scan using idx_order_date on Orders (cost=10.00..200.00 rows=500 width=50)

The optimized query now runs faster by utilizing an index instead of
scanning the entire table.

Best Practices for Writing Efficient Queries

Following best practices when writing SQL queries ensures optimal
database performance and scalability.

1. Use Proper Indexing
 Index columns that are frequently used in WHERE, JOIN, and
ORDER BY clauses.

« Avoid over-indexing, as it slows down insert/update
operations.

2. Limit the Number of Retrieved Rows

Use LIMIT or TOP to retrieve only necessary records.

SELECT * FROM Orders LIMIT 10;

3. Optimize Joins and Avoid Cartesian Products

Ensure joins use indexed columns and avoid unnecessary cross joins.

SELECT e.EmployeelD, e.Name, d.DepartmentName
FROM Employees e
JOIN Departments d ON e.DepartmentID = d.DepartmentID;

4. Avoid Using Functions on Indexed Columns in WHERE
Clause

Instead of:
SELECT * FROM Orders WHERE YEAR(OrderDate) = 2023;

Use:
SELECT * FROM Orders WHERE OrderDate >= '2023-01-01' AND OrderDate < '2024-01-01";

5. Use UNION ALL Instead of UNION When Possible

UNION removes duplicates, which adds overhead. If duplicates are not a
concern, use UNION ALL.

SELECT CustomerID FROM Customers_Online
UNION ALL
SELECT CustomerID FROM Customers_Offline;

6. Use EXISTS Instead of IN for Subqueries

SELECT * FROM Orders WHERE EXISTS (
SELECT 1 FROM Customers WHERE Customers.CustomerID = Orders.CustomerID

);
EXISTS is often more efficient than IN when dealing with large datasets.

Conclusion

SQL performance optimization is essential for ensuring fast, scalable, and
efficient queries. By identifying and avoiding common performance pitfalls,
using execution plans to analyze queries, and following best practices,
database administrators and developers can significantly improve SQL
query execution time. A well-optimized database not only enhances
performance but also reduces system load, ensuring a smooth user
experience.

DAY 21: WORKING WITH NOSQL VS SQL

Databases play a crucial role in modern applications, and choosing the right
database model—SQL (relational) or NoSQL (non-relational)—can
significantly impact performance, scalability, and data consistency. SQL
databases provide structured, schema-based storage optimized for
transactional consistency, while NoSQL databases offer flexibility,
scalability, and schema-less storage for handling large volumes of
unstructured or semi-structured data.

Understanding the key differences between SQL and NoSQL databases,
knowing when to choose one over the other, and exploring how they can be
integrated in hybrid applications is essential for developers and database
administrators.

Which database model

to choose?
K_ A
SQL Database % S@a NoSQL Database
Provides structured, Offers flexibility and
schema-based storage scalability for handling
optimized for large volumes of
transactional consistency. unstructured or semi-

structured data.

Key Differences Between SQL and NoSQL
Databases

1. Data Structure and Schema

- SQL Databases: Follow a structured schema with predefined
tables, columns, and data types. They enforce data consistency
and relationships using constraints like primary keys and
foreign keys.

. NoSQL Databases: Are schema-less, meaning they can store
flexible and dynamic data structures such as key-value pairs,
documents, graphs, or column-based data.

Example: SQL vs NoSQL Data Storage

SQL Table (Relational Data Example):

CREATE TABLE Users (
UserID INT PRIMARY KEY,
Name VARCHAR(100),
Email VARCHAR(255) UNIQUE

);
NoSQL Document (MongoDB Example):

{
"UserID": 1,
"Name": "John Doe",
"Email": "john@example.com",
"Preferences": {
"Theme": "Dark Mode",
"Notifications": true

}
}

2. Scalability

- SQL Databases: Scale vertically, meaning performance
improvements require upgrading server hardware (CPU, RAM,
storage).

. NoSQL Databases: Scale horizontally using distributed
architectures across multiple nodes, making them ideal for
handling massive data loads.

Example:

« SQL Scaling: Increase RAM and CPU power of a single
database server.

« NoSQL Scaling: Distribute data across multiple servers using
sharding.

3. Data Consistency and Transactions

« SQL Databases: Follow ACID (Atomicity, Consistency,
Isolation, Durability) properties, ensuring reliable and
consistent transactions.

- NoSQL Databases: Often follow BASE (Basically Available,
Soft state, Eventually consistent) principles, prioritizing
availability over strict consistency.

Example: SQL Transaction for Bank Transfers

START TRANSACTION;

UPDATE Accounts SET Balance = Balance - 100 WHERE AccountID = 1;
UPDATE Accounts SET Balance = Balance + 100 WHERE AccountID = 2;
COMMIT;

In NoSQL, immediate consistency may not be guaranteed across distributed
nodes.
4. Query Language
- SQL Databases: Use Structured Query Language (SQL) for
data manipulation and retrieval.

. NoSQL Databases: Use database-specific query languages
such as MongoDB’s BSON queries or Apache Cassandra’s
CQL.

Example: Retrieving Data

SQL Query:

SELECT Name, Email FROM Users WHERE UserID = 1;
MongoDB NoSQL Query:

{
"UserID": 1

}
When to Choose SQL or NoSQL

Choosing the right database depends on the type of application, data
structure, scalability needs, and consistency requirements.

Use SQL Databases When:

e The application requires structured data with well-defined
relationships (e.g., financial systems, inventory management).

e ACID transactions are critical for data integrity (e.g., banking
transactions, e-commerce orders).

The system performs complex analytical queries with JOIN,
GROUP BY, and ORDER BY.

The database is moderate in size, and vertical scaling is
feasible.

Examples of SQL Database Use Cases:

Banking and financial applications
E-commerce platforms
ERP (Enterprise Resource Planning) systems

Healthcare records management

Use NoSQL Databases When:

The application requires high scalability and fast performance
(e.g., social media feeds, recommendation engines).

The system deals with unstructured or semi-structured data
(e.g., JSON, XML).

The database must support large-scale distributed data storage
with minimal latency.

Schema flexibility is needed for rapid development and
iteration.

Examples of NoSQL Database Use Cases:

Social networks (Facebook, Instagram, Twitter)
Real-time analytics (IoT, logs, event processing)
Recommendation engines (Netflix, Spotify)

Big data applications (Google Bigtable, Cassandra,
DynamoDB)

Integrating SQL with NoSQL Databases

Many modern applications use hybrid database architectures that combine
the benefits of both SQL and NoSQL databases.

1. Storing Structured and Unstructured Data Together

- SQL stores structured customer information (e.g., Customers
table).

. NoSQL stores dynamic data such as user preferences, logs, or
real-time activity feeds.

Example: Hybrid E-Commerce System

SQL Database (Relational NoSQL Database (Flexible
Data) Data)

Orders, Payments, Transactions | Customer Preferences, Reviews
Users, Addresses, Shipping Info | Product Recommendations, Logs

2. Using NoSQL for Caching and Performance Enhancement

NoSQL databases like Redis or MongoDB can be used alongside SQL
databases to cache frequently accessed data and reduce database load.

Example: Caching in Redis
SET user:123 "John Doe";
GET user:123;

This reduces the need for repeated SQL queries, improving performance.
3. Data Synchronization Between SQL and NoSQL

Many companies use ETL (Extract, Transform, Load) pipelines to
synchronize data between SQL and NoSQL databases.

Example: Synchronizing SQL Orders to MongoDB for Analytics
SELECT * FROM Orders WHERE OrderDate > '2023-01-01";

This data can then be transformed and loaded into a NoSQL database like
MongoDB for real-time analytics.

Conclusion

SQL and NoSQL databases serve different purposes, and choosing the right
one depends on data structure, scalability, and consistency requirements.
SQL databases offer structured storage, strict consistency, and powerful
queries, making them ideal for transactional applications. NoSQL databases
provide flexible, scalable storage, making them suitable for real-time, high-
volume applications.

In modern applications, hybrid database architectures that combine both
SQL and NoSQL are becoming increasingly popular. Understanding when
to use SQL, NoSQL, or both together can help developers build highly
scalable, efficient, and data-driven applications.

DAY 22: HANDLING BIG DATA WITH SQL

As data continues to grow exponentially, handling big data efficiently with
SQL has become a crucial skill for database administrators and data
engineers. Traditional SQL databases were not originally designed for
large-scale data processing, but with the right techniques such as
partitioning, sharding, indexing, and distributed query execution, SQL can
be effectively used for managing vast amounts of data.

Optimizing SQL for Big Data Management

Partitionin . .
oning Indexing Strategies
Techniques

\ Load balancing strategies \ \ B-tree indexing \
\ Data distribution methods \ ‘ Hash indexing

|

Inefficient SQL handling of big data

I
l Vertical sharding ’ ? Execution plan tuning
/ Horizontal sharding / / Query rewriting 7

/ Sharding Mel:hods/ / Query Optimization/

This chapter explores SQL for large-scale data processing, partitioning and
sharding in databases, and optimizing SQL queries for big data to ensure
high performance and efficiency.

SQL for Large-Scale Data Processing

Big data refers to datasets that are too large and complex to be handled by
traditional relational databases using standard SQL queries. To efficiently
process big data using SQL, specialized techniques and tools are used.

1. Distributed SQL Databases

Distributed SQL databases spread data across multiple nodes, enabling
parallel processing. Some widely used distributed SQL databases include:
. Google BigQuery — Designed for fast SQL-based analytics
over large datasets.
- Apache Hive — A SQL-like querying tool built on Hadoop for
processing big data.
- Amazon Redshift — A cloud-based data warehouse for handling
large-scale analytics.

- Snowflake — A scalable cloud-based SQL analytics platform.

Example: Running Queries on a Distributed Database
SELECT customer_id, COUNT(order_id) AS total_orders

FROM orders

GROUP BY customer_id

ORDER BY total_orders DESC

LIMIT 10;

In a distributed SQL database, such queries are executed across multiple
nodes, ensuring efficient parallel processing.
2. Parallel Query Execution

Modern SQL engines use parallel query execution to divide workloads
across multiple processors. By leveraging parallelism, SQL queries can
process vast amounts of data more efficiently.

Techniques for Parallel Processing:
« Columnar Storage — Storing data in columns instead of rows
improves read performance.

« MapReduce in SQL — SQL engines like Apache Hive and
Google BigQuery use MapReduce to process large queries in
parallel.

« Query Caching — Storing query results in memory speeds up
repeated queries.

Partitioning and Sharding in Databases

Handling large-scale data efficiently requires partitioning and sharding,
which distribute data across multiple storage units to improve query
performance.

1. Partitioning in SQL Databases

Partitioning is the process of dividing large tables into smaller, more
manageable pieces, called partitions. This technique speeds up query
execution by allowing the database engine to scan only relevant partitions
instead of the entire table.

Types of Partitioning:

- Range Partitioning — Data is split based on a value range (e.g.,
date-based partitioning).

. List Partitioning — Data is divided into partitions based on
predefined categories.

- Hash Partitioning — Data is distributed using a hash function
for load balancing.

. Composite Partitioning — A combination of two or more
partitioning strategies.

Example: Creating a Partitioned Table
CREATE TABLE orders (

order_id INT,

order_date DATE,

customer_id INT,

total_amount DECIMAL(10,2)

)
PARTITION BY RANGE (order_date) (

PARTITION p1 VALUES LESS THAN ('2023-01-01"),
PARTITION p2 VALUES LESS THAN (2024-01-01"),
PARTITION p3 VALUES LESS THAN MAXVALUE

);
This ensures queries filter data only from relevant partitions, reducing scan
time.

2. Sharding in Distributed SQL Databases

Sharding is the process of horizontally scaling a database by dividing data
across multiple servers. Unlike partitioning, which is typically done within

a single database instance, sharding distributes data across multiple
databases or nodes.

Example: Implementing Sharding
-- Shard 1: Customers with IDs 1-5000
CREATE TABLE customers_1 (

customer_id INT PRIMARY KEY,

name VARCHAR(100),

email VARCHAR(255)

);

-- Shard 2: Customers with IDs 5001-10000
CREATE TABLE customers_2 (
customer_id INT PRIMARY KEY,
name VARCHAR(100),
email VARCHAR(255)

);
Each shard contains a subset of the data, improving read and write
performance in large-scale systems.

When to Use Sharding:

When data size exceeds the capacity of a single database. When high
availability is needed (shards can be distributed across multiple locations).
When workloads are read-heavy or write-heavy, improving performance by
balancing loads across shards.

Optimizing SQL Queries for Big Data

To ensure optimal performance while querying large datasets, it’s essential
to use SQL efficiently. Below are some of the best practices:

1. Indexing for Faster Query Execution

Indexing improves search performance by creating a reference structure for
quick lookups.

Example: Creating an Index on Customer Orders
CREATE INDEX idx_customer_orders ON orders(customer_id);

This speeds up queries searching for orders by customer ID.
2. Using Approximate Aggregations for Faster Results

Some SQL databases provide approximate aggregation functions to reduce
processing time.

Example: Approximate Count in BigQuery
SELECT APPROX_COUNT_DISTINCT(customer_id) FROM orders;

Instead of scanning all rows, it provides an estimated count much faster.

3. Avoiding SELECT *

Instead of:
SELECT * FROM orders;

Use:
SELECT order_id, customer_id, order_date FROM orders;

Retrieving only necessary columns minimizes data transfer and processing
time.

4. Using Query Partitioning and Filtering

Filtering large queries using WHERE or PARTITION reduces the number of
scanned rows.

Example: Querying Only Recent Orders
SELECT * FROM orders WHERE order_date >='2023-01-01";

Instead of scanning the entire table, this query retrieves only relevant rows.
5. Using Parallel Execution and Batch Processing

SQL engines optimize performance using parallel execution for large
queries.

Example: Enabling Parallel Processing in PostgreSQL

SET max_parallel_workers_per_gather = 4;
This allows PostgreSQL to use multiple cores for query execution.

6. Leveraging Caching for Frequently Used Queries

Repeated queries can be cached to avoid reprocessing the same data.

Example: Caching in MySQL
SET GLOBAL query_cache_size = 1000000;

This reduces execution time for recurring queries.

Conclusion

Handling big data with SQL requires scalability, partitioning, indexing, and
query optimization techniques. Distributed SQL databases and tools like

Google BigQuery, Amazon Redshift, and Apache Hive allow SQL to
handle large-scale datasets efficiently. Partitioning and sharding are
essential for managing massive data volumes, while query optimization
techniques help reduce execution time and improve performance.

By leveraging these strategies, developers and data engineers can build
scalable, high-performance SQL-based solutions capable of processing
massive datasets with ease.

DAY 23: DATABASE SECURITY AND
ACCESS CONTROL

Database security is a critical aspect of database management, ensuring that
sensitive data is protected from unauthorized access, data breaches, and
cyber threats. SQL databases store vast amounts of information, making
them prime targets for attackers. Implementing user roles and permissions,
preventing SQL injection attacks, and using encryption for data protection
are key strategies to secure a database.

Database Security Hierarchy

- |

S5

Data Encryption

Secure data with cryptographic
protection methods

(S
<
S
voreates 2 (7N

= -
Control access through permissions
management

Implementing User Roles and Permissions

SQL databases support role-based access control (RBAC) to ensure users
only have the necessary privileges for their tasks. Granting the least
privilege necessary minimizes security risks and prevents accidental data
modifications.

Protect against malicious SQL code
attacks

SQL Injection Prevention I SQLl
QQ

1. Creating User Accounts

Each database user should have a dedicated account with appropriate
permissions.

Example: Creating a New User in MySQL
CREATE USER 'john_doe'@'localhost' IDENTIFIED BY 'StrongPassword123';

Example: Creating a User in PostgreSQL
CREATE ROLE analyst WITH LOGIN PASSWORD 'SecurePass!';

2. Assigning Roles and Permissions
Rather than granting permissions directly, assign roles with predefined
privileges.

Example: Creating and Assigning Roles in MySQL

CREATE ROLE read_only;
GRANT SELECT ON database_name.* TO read_only;
GRANT read_only TO 'john_doe'@'localhost';

Example: Assigning Read-Only and Write Access in PostgreSQL

GRANT SELECT ON ALL TABLES IN SCHEMA public TO analyst;
GRANT INSERT, UPDATE ON table_name TO data_entry;

3. Revoking Unnecessary Permissions

Regularly review user access and revoke unnecessary privileges to enhance
security.

REVOKE INSERT, UPDATE ON table_name FROM analyst;
DROP ROLE IF EXISTS temp_user;

4. Implementing Multi-Factor Authentication (MFA)
. Use MFA with database logins for additional security.

- Enable SSH key authentication for remote database
connections.

Preventing SQL Injection Attacks

SQL injection is one of the most dangerous vulnerabilities, allowing
attackers to execute malicious queries and access or modify data.

1. Using Prepared Statements and Parameterized Queries

Instead of concatenating user input directly into SQL queries, use prepared
statements to prevent SQL injection.

Example: Safe Query in MySQL with Prepared Statements
(Python)

import mysql.connector

connection = mysql.connector.connect(user='admin’, password="password', host="localhost',
database="employees')

cursor = connection.cursor(prepared=True)

query = "SELECT * FROM users WHERE username = %s AND password = %s"
cursor.execute(query, (‘admin’, 'securepass’))

Example: Parameterized Query in PostgreSQL (PHP)

$db = new PDO("pgsql:host=localhost;dbname=employees", "user", "password");

$stmt = $db->prepare("SELECT * FROM users WHERE email = :email");
$stmt->execute(['email' => $email]);

2. Escaping User Input

If prepared statements are not possible, escape special characters to
neutralize SQL injection attempts.

Example: USiDg MYSQL’S mysqli_real_escape_string() in PHP
$unsafe_input =" OR '1'="1";

$safe_input = mysqli_real_escape_string($conn, $unsafe_input);

$query = "SELECT * FROM users WHERE username = '$safe_input"";

3. Restricting Database Privileges for Applications
- Do not grant full database access to web applications.

. Use read-only accounts for applications that only fetch data.

Example: Creating a Read-Only Account for Applications

CREATE USER 'webapp_user'@'%' IDENTIFIED BY 'SecureAppPass!";
GRANT SELECT ON database_name.* TO 'webapp_user'@'%';

4. Using Web Application Firewalls (WAF)

A WAF helps detect and block SQL injection attempts by filtering
malicious requests before they reach the database.

Using Encryption for Data Protection

Encryption ensures that even if an attacker gains access to the database, the
data remains unreadable.

1. Encrypting Data at Rest

Encrypt sensitive fields such as passwords, credit card details, and social
security numbers.

Example: Encrypting Data in MySQL
ALTER TABLE users ADD COLUMN encrypted_email VARBINARY(255);
UPDATE users SET encrypted_email = AES_ENCRYPT(‘'user@example.com’, 'encryption_key');

Example: Decrypting Data in MySQL

SELECT AES_DECRYPT(encrypted_email, 'encryption_key') FROM users;

2. Encrypting Data in Transit

Use SSL/TLS encryption to secure data between applications and
databases.

Example: Enforcing SSL in MySQL
ALTER USER 'admin'@'localhost' REQUIRE SSL;

Example: Connecting Securely in PostgreSQL

psql "sslmode=require host=mydb.com user=admin password=SecurePass"

3. Hashing Passwords Securely
Instead of storing raw passwords, use bcrypt, SHA-256, or Argon2 hashing.

Example: Hashing Passwords with Bcrypt in Python
import berypt
password = "UserSecurePass"

hashed = berypt.hashpw(password.encode(), bcrypt.gensalt())
print(hashed)

4. Implementing Role-Based Encryption (Column-Level
Security)

Restrict decryption of sensitive fields to only authorized users.

Example: Granting Decryption Access in SQL Server
GRANT VIEW DEFINITION ON users TO security_officer;

Conclusion

Database security is essential for protecting sensitive information from
unauthorized access and cyber threats. Implementing user roles and
permissions ensures that users have the necessary privileges while
minimizing risks. Preventing SQL injection attacks through prepared
statements and parameterized queries protects against malicious exploits.

Encrypting data at rest and in transit safeguards information from
unauthorized access, even in case of a data breach.

By following these security best practices, organizations can ensure their
databases remain secure, compliant, and resilient against modern
cybersecurity threats.

DAY 24: INTRODUCTION TO SQL FOR
DATA ANALYSIS

Introduction

SQL (Structured Query Language) is a foundational tool for data analysis,
enabling professionals to retrieve, process, and manipulate large datasets
efficiently. Businesses leverage SQL to derive insights, monitor
performance metrics, and support decision-making through structured
queries and aggregations.

Unveiling SQUs Role in Business Intelligence

ll Business Intelligence
Applications

SQL in Data Analysis @ finalysical Query

Execution

Key SQL Techniques

This chapter explores the use of SQL in business intelligence (BI), how to
execute analytical queries, and key SQL techniques for data analysis that
enhance efficiency and precision in extracting insights from datasets.

Using SQL for Business Intelligence

Business Intelligence (BI) involves collecting, analyzing, and visualizing
business data to support strategic decision-making. SQL is a critical tool in
BI, allowing analysts to filter, summarize, and aggregate large datasets
effectively.

1. Importance of SQL in Business Intelligence

. Efficiently manages structured data within relational databases.

- Enables complex data transformations and aggregations for
comprehensive reporting.

. Facilitates key performance indicator (KPI) analysis with
robust querying capabilities.

- Seamlessly integrates with leading BI tools such as Tableau,
Power BI, and Looker.

. Supports automated workflows and scheduled reports to
streamline data-driven decision-making.

2. Example: Analyzing Sales Performance

To determine the best-selling products:

SELECT ProductName, SUM(SalesAmount) AS TotalSales
FROM Sales

GROUP BY ProductName

ORDER BY TotalSales DESC;

This query ranks products based on total revenue, helping businesses
understand demand trends.

3. SQL for KPI Tracking

Organizations rely on SQL for tracking key performance indicators (KPIs)
such as:

. Customer Retention Rate

- Revenue Growth

« Average Order Value (AOV)
« Churn Rate

Example: Computing Monthly Revenue Growth
SELECT EXTRACT(MONTH FROM OrderDate) AS Month,

SUM(SalesAmount) AS MonthlyRevenue,

LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(MONTH FROM OrderDate)) AS
PreviousMonthRevenue,

((SUM(SalesAmount) - LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(MONTH
FROM OrderDate)))

/ LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(MONTH FROM OrderDate))) *
100 AS GrowthRate
FROM Sales
GROUP BY Month;

This query calculates month-over-month revenue growth, helping analysts
track business trends.

Running Analytical Queries
SQL enables analysts to perform aggregations, trend analysis, and advanced
filtering using powerful query functions.
1. Using Aggregate Functions for Summary Statistics
SQL provides aggregation functions like:
. suM() — Computes total values.
« AVG() — Finds the mean value.
« COUNT() — Counts the number of records.
. MAX() / MIN() — Finds the highest and lowest values.

Example: Calculating Average Sales per Customer

SELECT CustomerID, AVG(SalesAmount) AS AvgSales
FROM Sales
GROUP BY CustomerID;

This query helps identify customer spending behavior.
2. Utilizing Window Functions for Advanced Analysis

Window functions allow calculations across a dataset without aggregating
TOWS.

Example: Running Total of Sales Over Time

SELECT OrderDate, SUM(SalesAmount) OVER (ORDER BY OrderDate) AS RunningTotal
FROM Sales;

This query tracks cumulative sales over time.

3. Using CTEs for Simplified Complex Queries

Common Table Expressions (CTEs) enhance readability by breaking
queries into modular steps.

Example: Identifying High-Value Customers
WITH CustomerSpending AS (
SELECT CustomerID, SUM(SalesAmount) AS TotalSpent
FROM Sales
GROUP BY CustomerID

)

SELECT CustomerID, TotalSpent,
NTILE(4) OVER (ORDER BY TotalSpent DESC) AS SpendingTier
FROM CustomerSpending;

This query classifies customers into quartiles based on their total spending.

4. Time-Series Analysis for Trends

SQL supports trend analysis by comparing values across time periods.

Example: Year-over-Year Sales Comparison

SELECT EXTRACT(YEAR FROM OrderDate) AS Year,

SUM(SalesAmount) AS AnnualSales,

LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(YEAR FROM OrderDate)) AS
PreviousYearSales,

((SUM(SalesAmount) - LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(YEAR
FROM OrderDate)))

/ LAG(SUM(SalesAmount)) OVER (ORDER BY EXTRACT(YEAR FROM OrderDate))) *
100 AS YoYGrowth
FROM Sales
GROUP BY Year;

This query calculates year-over-year revenue growth, useful for financial
analysis.

Common SQL Techniques for Data Analysis

SQL techniques help analysts optimize queries, improve performance, and
extract deeper insights.

1. Using Joins to Merge Data

Joins combine tables for comprehensive analysis.
Example: Analyzing Sales by Region

SELECT Customers.Region, SUM(Sales.SalesAmount) AS TotalSales
FROM Sales

JOIN Customers ON Sales.CustomerID = Customers.CustomerID
GROUP BY Customers.Region;

This query breaks down sales revenue by region.

2. CASE Statements for Conditional Analysis
CASE statements apply logic-based categorization.

Example: Customer Segmentation by Spend
SELECT CustomerID, TotalSpent,
CASE.
WHEN TotalSpent > 10000 THEN 'High Value'

WHEN TotalSpent BETWEEN 5000 AND 10000 THEN 'Medium Value'
ELSE 'Low Value'
END AS CustomerSegment
FROM (
SELECT CustomerID, SUM(SalesAmount) AS TotalSpent
FROM Sales
GROUP BY CustomerID
) AS SpendingData;

This query segments customers into spending categories.

3. Pivoting Data for Reporting

Pivoting transforms row-based data into column-based summaries.

Example: Monthly Sales Pivot Table
SELECT ProductName,

SUM(CASE WHEN EXTRACT(MONTH FROM OrderDate) = 1 THEN SalesAmount ELSE
0 END) AS January,

SUM(CASE WHEN EXTRACT(MONTH FROM OrderDate) = 2 THEN SalesAmount ELSE
0 END) AS February
FROM Sales
GROUP BY ProductName;

This query generates a pivot table summarizing sales per product by month.

Conclusion

SQL is an indispensable tool for data analysis and business intelligence. By
leveraging aggregations, joins, window functions, and time-series analysis,
analysts can extract valuable insights from structured data. BI professionals
can use SQL to track KPIs, automate reports, and visualize business trends.

Mastering these SQL analysis techniques empowers professionals to
transform raw data into meaningful insights, driving better business
decisions and strategic planning.

DAY 25: SQL IN WEB APPLICATIONS

SQL plays a crucial role in modern web applications, allowing dynamic
interaction between web pages and databases. Whether it’s user
authentication, product listings, or transaction processing, SQL enables web
applications to retrieve, update, and manage structured data efficiently.

SQL Integration in Web Applications

<AL Role é
Identification User
Authentication Product /l
Listings Transaction
Recognizing Processing Python
SQls role in Using SQL for Integration JavaScript
web apps user login Retrieving Integration
processes and Managing
displaying transactions Connecting
product data with SQL SQL with Using SQL
Python with
JawvaScript

In this chapter, we explore how to use SQL with Python, JavaScript, and
PHP, how to connect databases to web applications, and how to perform
CRUD operations (Create, Read, Update, Delete) in web apps.

Using SQL with Python, JavaScript, and PHP

Most web applications use backend programming languages to interact with
SQL databases. Three of the most commonly used languages are:

1. SQL with Python

Python is widely used in web development due to its simplicity and robust
frameworks like Flask and Django.

Example: Connecting to a MySQL Database in Python

import mysql.connector

Establish a connection

conn = mysql.connector.connect(
host="localhost",
user="root",

password="password",
database="webapp_db"

cursor = conn.cursor()

Execute a query
cursor.execute("SELECT * FROM users")
results = cursor.fetchall()
for row in results:

print(row)

Close connection
conn.close()

This example retrieves all users from the users table in a MySQL database.

2. SQL with JavaScript (Node.js & Express.js)

JavaScript, through Node.js, is commonly used to interact with SQL
databases in web apps.

Example: Connecting Node.js to a PostgreSQL Database

const { Client } = require('pg');

const client = new Client({
user: 'admin’,
host: 'localhost’,
database: 'webapp_db',
password: 'password’,
port: 5432,

b

client.connect();

client.query('SELECT * FROM users/, (err, res) => {
if (err) throw err;
console.log(res.rows);
client.end();

D;
This script fetches all users from a PostgreSQL database.

3. SQL with PHP

PHP is a server-side language frequently used for dynamic websites and
MySQL-based applications.

Example: Connecting PHP to a MySQL Database
<?php

$servername = "localhost";

$username = "root";

$password = "password";

$dbname = "webapp_db";

// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection
if ($conn->connect_error) {
die("Connection failed: " . $conn->connect_error);

}

$sql = "SELECT * FROM users";
$result = $conn->query($sql);

while($row = $result->fetch_assoc()) {
echo "User: " . $row["username"] . "
";

}

$conn->close();
>

This PHP script retrieves all users from a MySQL database and displays
them on a webpage.

Connecting Databases to Web Applications

A database connection is required for web applications to interact with SQL
databases. This connection is established through database drivers or ORMs
(Object-Relational Mappers).

1. Database Connection Strategies

« Direct SQL Queries: Using mysql, pg, or sqlite3 drivers for raw
SQL queries.

- ORMs (Object-Relational Mappers): Using tools like
SQLAIchemy (Python), Sequelize (Node.js), or Eloquent
(Laravel PHP) to simplify database interactions.

. API-Based Queries: Using RESTful APIs to fetch data from an
SQL-powered backend.

2. Secure Database Connections

. Use parameterized queries to prevent SQL injection.

. Restrict database user permissions (e.g., read-only roles for
frontend queries).

- Encrypt database connections using SSL/TLS.

Example: Secure Parameterized Query in Python
cursor.execute("SELECT * FROM users WHERE username = %s", (username,))

This prevents SQL injection by avoiding direct string concatenation.

Performing CRUD Operations in Web Apps

Web applications perform four fundamental operations on databases:
Create, Read, Update, and Delete (CRUD).

1. Creating (INSERT) Data

Users register or submit forms that insert data into the database.

Example: Insert User Data (Python + MySQL)

cursor.execute("INSERT INTO users (username, email) VALUES (%s, %s)", (‘john_doe',
'john@example.com"))
conn.commit()

This inserts a new user into the database.

2. Reading (SELECT) Data
Fetching data to display on web pages.

Example: Fetching Products (PHP + MySQL)
$sql = "SELECT * FROM products";
$result = $conn->query($sql);
while($row = $result->fetch_assoc()) {
echo "<p>Product: " . $row["name"] . " - Price: $" . $row["price"] . "</p>";

}
This retrieves and displays product information dynamically.

3. Updating (UPDATE) Data

Updating user profiles, orders, or other records.

Example: Updating User Email (Node.js + PostgreSQL)
client.query("UPDATE users SET email = $1 WHERE username = $2", ['new_email@example.com',
'john_doe']);

This query updates a user’s email in a PostgreSQL database.
4. Deleting (DELETE) Data

Removing unwanted records, such as user accounts or old orders.

Example: Deleting a User (Python + SQLite)
cursor.execute("DELETE FROM users WHERE username = ?", ('john_doe',))

conn.commit()

This query removes a user from the database.

Conclusion

SQL is a core component of web applications, enabling efficient data
storage and retrieval. Web applications connect to databases using Python,
JavaScript, or PHP, and perform CRUD operations to manage user data,
products, and transactions.

By following best practices like secure connections, parameterized queries,
and role-based access control, developers can ensure secure and efficient
SQL interactions in their web applications. Mastering SQL in web
development allows for the creation of dynamic, data-driven applications
that scale with business needs.

DAY 26: BUILDING A SMALL SQL PROJECT

One of the best ways to reinforce SQL skills is by building a real-world
project. A small SQL project helps in understanding how databases function
in practical scenarios, from designing schemas to executing queries for data
retrieval and management.

SQL Project Mastery

Execute Queries
Perform operations to
retrievefmanage dato

Implement

Database
Set up and canfigure
database syste m

Design Schemoa
Create structured dotobose
blueprint

Choose Use Case
Selac tpmtalsearl
for database applicatio

In this chapter, we will go through the process of choosing a real-world use
case, designing a structured database schema, and implementing and
querying the database effectively.

Choosing a Real-World Use Case

Before designing a database, it is essential to identify a real-world problem
that can be solved with structured data. A well-defined use case ensures that
the database meets functional requirements and supports meaningful
queries.

1. Selecting a Use Case

Common SQL project ideas include:

« Library Management System — Managing books, users, and
loans.

. E-Commerce Database — Storing products, orders, and
customer details.

- Employee Payroll System — Keeping track of employees,
salaries, and tax records.

. Student Course Enrollment System — Managing students,
courses, and instructors.

Example Use Case: Library Management System

For this project, we will build a Library Management System that allows
users to borrow books, track due dates, and manage their accounts. The
system will store data related to books, members, and transactions.

Designing the Database Schema

A database schema defines how data is structured and stored in tables.
Proper schema design ensures efficiency, reduces redundancy, and
maintains data integrity.

1. Identifying Entities and Relationships
For a Library Management System, the main entities include:
- Books: Stores book details (title, author, ISBN, availability).
« Members: Stores user details (name, email, membership status).

« Loans: Tracks book borrowings (book ID, member ID, issue
date, due date).

2. Creating the Database Schema

The database will have the following three main tables:

Books Table

CREATE TABLE Books (
BookID INT PRIMARY KEY AUTO_INCREMENT,
Title VARCHAR(255) NOT NULL,
Author VARCHAR(255) NOT NULL,
ISBN VARCHAR(20) UNIQUE NOT NULL,

Available BOOLEAN DEFAULT TRUE
);
This table stores book details, ensuring each book has a unique ISBN.

Members Table

CREATE TABLE Members (
MemberID INT PRIMARY KEY AUTO_INCREMENT,
Name VARCHAR(100) NOT NULL,
Email VARCHAR(150) UNIQUE NOT NULL,
MembershipDate DATE DEFAULT CURRENT_DATE

);
This table records members who borrow books, ensuring unique email
addresses.

Loans Table

CREATE TABLE Loans (
LoanID INT PRIMARY KEY AUTO_INCREMENT,
BookID INT,
MemberID INT,
IssueDate DATE DEFAULT CURRENT_DATE,
DueDate DATE,
FOREIGN KEY (BookID) REFERENCES Books(BookID),
FOREIGN KEY (MemberID) REFERENCES Members(MemberID)

);
This table tracks book loans, linking Books and Members through foreign keys.

Implementing and Querying the Database

Once the schema is defined, the next step is to populate tables with sample
data and execute queries to retrieve useful insights.

1. Inserting Sample Data
Adding Books

INSERT INTO Books (Title, Author, ISBN, Available) VALUES
('The Great Gatsby', 'F. Scott Fitzgerald', '9780743273565', TRUE),
('1984', 'George Orwell', '9780451524935', TRUE),

(‘'To Kill a Mockingbird', 'Harper Lee', '9780061120084', TRUE);

Adding Members

INSERT INTO Members (Name, Email) VALUES
(‘Alice Johnson', 'alice@example.com'),

(‘Bob Smith', 'bob@example.com’);

Issuing a Loan
INSERT INTO Loans (BookID, MemberID, DueDate) VALUES

(1, 1, '2024-03-15";

This records that Alice borrowed "The Great Gatsby" with a due date of
March 15, 2024.

2. Running SQL Queries

a) Fetching All Available Books

SELECT * FROM Books WHERE Available = TRUE;

This query retrieves all books currently available for borrowing.

b) Listing All Loans with Due Dates

SELECT m.Name AS Member, b.Title AS Book, l.IssueDate, . DueDate
FROM Loans 1

JOIN Books b ON 1.BookID = b.BookID

JOIN Members m ON 1.MemberID = m.MemberID;

This query lists all books that have been borrowed, along with due dates.

c¢) Finding Overdue Books

SELECT m.Name, b.Title, 1. DueDate

FROM Loans 1

JOIN Books b ON 1.BookID = b.BookID

JOIN Members m ON 1.MemberID = m.MemberID
WHERE l.DueDate < CURRENT_DATE;

This query identifies overdue books, helping librarians manage returns.
Expanding the Project
Once the core system is in place, consider adding advanced features:

- User Authentication — Implement login functionality for
members.

. Late Fees Calculation — Charge fees for overdue books.

. Book Reservations — Allow members to reserve books in
advance.

« Admin Dashboard — Provide a librarian interface for managing
books and members.

Example: Adding a Column for Late Fees
ALTER TABLE Loans ADD COLUMN LateFee DECIMAL(5,2) DEFAULT 0;

This feature enables the calculation of late return penalties.

Conclusion

Building a small SQL project reinforces database design principles and
helps in understanding practical applications of SQL. By choosing a real-
world use case, designing a structured schema, and implementing queries,
developers can build efficient and scalable database-driven applications.

This project can serve as a foundation for more complex systems, offering
insights into data relationships, indexing strategies, and SQL optimization
techniques. Mastering these fundamentals prepares you for working on
larger, production-grade databases in real-world applications.

DAY 27: DEBUGGING SQL QUERIES AND

COMMON ERRORS

SQL is a powerful language for managing and querying databases, but even
experienced developers encounter errors when writing SQL queries.
Debugging SQL effectively is crucial to maintaining database integrity,
optimizing performance, and preventing disruptions in applications that rely

on structured data.

SQL Debugging Process

Identify
Ervors

Understand
Error
Messages

Recognizing and
categorizing SQL
errors

Interpreting

common SQL error
messages

Apply
Debugging

Techniques Follow Best

Practices

Implementing
methods to fix SQL
errors

Adopting practices
to prevent future
errors

In this chapter, we explore identifying SQL errors and debugging
techniques, understanding common SQL error messages, and best practices
for writing bug-free SQL code to enhance efficiency and reduce debugging

time.

Identifying SQL Errors and Debugging
Techniques

Writing SQL queries may seem straightforward, but errors often arise due
to syntax mistakes, logical flaws, or data inconsistencies. The key to
efficient debugging is understanding where errors originate and
systematically resolving them.

1. Debugging SQL Queries Step by Step
Step 1: Check the Syntax

SQL follows a strict syntax, and even a minor mistake (like a missing
comma or incorrect keyword placement) can cause a query to fail.

Example of a Syntax Error:
SELECT name age FROM customers;

Error: Missing a comma between name and age.
Fixed Query:
SELECT name, age FROM customers;

Step 2: Verify Table and Column Names

Misspelled table or column names are a frequent cause of errors.

Example:
SELECT customer_name FROM clients;

Error: If the table is actually named customers, the query will fail.
Fixed Query:

SELECT customer_name FROM customers;

Step 3: Use the Livit Clause for Debugging

Running a query on an entire database can be slow. Instead, limit the output
to check for issues without executing a full dataset query.

SELECT * FROM orders LIMIT 10;

This allows quick review and avoids unnecessary data retrieval.

Step 4: Break Down Complex Queries

If a query is long and complex, break it into smaller parts to identify issues.
Instead of this:

SELECT customers.name, SUM(orders.amount) FROM customers
JOIN orders ON customers.id = orders.customer_id

WHERE orders.date > '2023-01-01"

GROUP BY customers.name

HAVING SUM(orders.amount) > 1000

ORDER BY customers.name ASC;

Break it down step by step:
1. Select data from each table individually.
2. Test the JOIN separately.
3. Add wHERE and GROUP BY gradually.

Step 5: Use expLaIN for Performance Debugging

Most SQL databases offer an EXPLAIN command to analyze how a query
executes.

EXPLAIN SELECT * FROM orders WHERE amount > 100;

This command reveals indexing issues and inefficiencies in query
execution.

Understanding Common SQL Error Messages

SQL error messages help identify what went wrong. Below are some
common errors and how to fix them.

1. Syntax Errors

Example:

SELECT * FORM customers;

Error Message: Syntax error near 'FORM' (should be FROM)

Fix:

SELECT * FROM customers;

2. Duplicate Entry for Primary Key

Example:

INSERT INTO users (id, name) VALUES (1, 'Alice");
INSERT INTO users (id, name) VALUES (1, 'Bob");

Error Message: Duplicate entry '1' for key PRIMARY

Fix: Ensure the id is unique:
INSERT INTO users (id, name) VALUES (2, 'Bob');

Or use AUTO_INCREMENT for automatic ID assignment:
ALTER TABLE users MODIFY id INT AUTO_INCREMENT;

3. Foreign Key Constraint Fails

Example:

INSERT INTO orders (id, customer_id) VALUES (101, 999);

Error Message: Cannot add or update a child row: a foreign key constraint fails
Fix: Ensure the referenced customer exists:

SELECT * FROM customers WHERE id = 999;

4. Division by Zero Errors

Example:
SELECT revenue / sales FROM report;

Error Message: Division by zero

Fix: Use NULLIF() to prevent division by zero:
SELECT revenue / NULLIF(sales, 0) FROM report;

Best Practices for Writing Bug-Free SQL Code

Preventing errors is better than fixing them. Follow these best practices to
minimize mistakes and improve SQL efficiency.

1. Always Use Aliases for Clarity

Instead of:

SELECT customers.name, orders.amount FROM customers JOIN orders ON customers.id =
orders.customer_id;

Use:

SELECT c.name, o.amount
FROM customers AS c
JOIN orders AS o ON c.id = o.customer _id;

Aliases make queries cleaner and more readable.
2. Use Indexing to Optimize Queries

Indexes speed up searches and prevent performance issues.
CREATE INDEX idx_customer_id ON orders(customer_id);

3. Avoid Using seLecT * in Production

Instead of:

SELECT * FROM users;

Specify the necessary columns:
SELECT name, email FROM users;

4. Use Transactions for Critical Queries

Transactions ensure queries execute safely.

START TRANSACTION;

UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
COMMIT;

If something goes wrong, roll back:
ROLLBACK;

5. Validate User Input to Prevent SQL Injection

Bad practice:
SELECT * FROM users WHERE username = '$user_input';

Secure method:
SELECT * FROM users WHERE username = ?;
Using parameterized queries prevents malicious SQL injections.

Conclusion

SQL debugging is an essential skill for database administrators and
developers. By following structured debugging techniques, understanding
common error messages, and adhering to best practices, you can write
efficient, error-free SQL code.

Mastering SQL debugging not only improves query performance but also
enhances database security and data integrity. By proactively handling
errors and optimizing queries, you ensure your SQL code is robust,
scalable, and maintainable.

DAY 28: WRITING AND RUNNING SQL
TESTS

Testing SQL queries is an essential practice for ensuring data accuracy,
query performance, and system reliability. Without proper SQL testing,
errors may lead to data corruption, security vulnerabilities, and inefficient
database performance. Writing and running tests help developers identify
syntax errors, logical inconsistencies, and performance bottlenecks before
queries are deployed in production environments.

Comprehensive SQL Testing Overview

Data Accuracy ?C)\

Ensures correct data
retrieval and storage

System Reliability @

Maintains stable system
operations

Query
Performance

Optimizes query execution

speed

01(_{0)(_{0

E@ Test Datobases

Provides safe environments

Automating SQL <> P for testing

Testing é

Streamlines and avtomates
validation processes

This chapter covers the importance of SQL testing, how to use test
databases for queries, and methods for automating SQL testing to
streamline database validation.

Importance of Testing in SQL

SQL testing plays a crucial role in data integrity, query optimization, and
security enforcement. Proper testing ensures that database operations return

accurate results, prevent data anomalies, and maintain high-performance
execution.

1. Why SQL Testing Matters
« Prevents Data Corruption: Ensures INSERT, UPDATE, and
DELETE operations do not lead to unintended data loss.

. Optimizes Performance: Identifies slow queries and suggests
indexing strategies.

- Enhances Security: Detects SQL injection vulnerabilities and
improper access control.

- Ensures Business Logic Accuracy: Validates calculations,
aggregations, and data relationships.

. Facilitates Database Migrations: Verifies schema updates and
data transformation during database upgrades.

Example: Testing a Query for Correctness

Instead of running a DELETE query directly, testing allows us to verify the
affected rows first:

SELECT * FROM users WHERE last_login < '2023-01-01";

Once verified, execute the actual deletion:

DELETE FROM users WHERE last_login < '2023-01-01";

Testing prevents accidental mass deletions and ensures the query behaves as
expected.

Using Test Databases for Queries

A test database is a separate environment where queries can be executed
safely without affecting live data. It allows developers to simulate
production scenarios and validate SQL operations before deployment.

1. Setting Up a Test Database

A test database is a replica of the production database but contains mock
data. This setup enables testing CRUD operations without modifying real
records.

Creating a Test Database in MySQL

CREATE DATABASE test_db;
USE test_db;

Now, we can create tables and insert test data.
Example: Creating and Populating a Test Table
CREATE TABLE employees (

EmployeeID INT PRIMARY KEY AUTO_INCREMENT,

Name VARCHAR(100),

Department VARCHAR(50),
Salary DECIMAL(10,2)

)

INSERT INTO employees (Name, Department, Salary) VALUES
(‘Alice Johnson', 'IT", 75000.00),
('Bob Smith', 'Finance', 80000.00);

This test dataset can be used for validating queries and performance checks.

2. Running Queries in a Test Environment

Before deploying a query to production, test it in the test database:
Example: Verifying an UPDATE Query Before Execution
Instead of directly running:

UPDATE employees SET Salary = Salary * 1.10 WHERE Department = 'IT’;

Run a SELECT statement first to check affected records:
SELECT * FROM employees WHERE Department = 'IT";

Once validated, apply the update safely.

3. Using Transactions to Revert Changes in Tests

Transactions allow rolling back changes if an operation fails.

Example: Using TRANSACTION in SQL Testing

START TRANSACTION;
UPDATE employees SET Salary = Salary * 1.10 WHERE Department = 'IT";
ROLLBACK;

This ensures that any unintentional changes can be undone.

Automating SQL Testing

Automating SQL tests ensures continuous validation of database integrity
and query performance. Test automation can be integrated into CI/CD
pipelines to maintain data consistency across deployments.

1. Writing SQL Unit Tests

Unit testing SQL queries helps verify expected results for known inputs.
Frameworks like pgTAP (PostgreSQL) and tSQLt (SQL Server) allow
structured SQL testing.

Example: Using pgTAP for PostgreSQL Tests

SELECT plan(2);

SELECT results_eq(
'SELECT COUNT(*) FROM employees WHERE Department = "IT",
ARRAY[1],
'Check that there is 1 IT employee'

);
SELECT finish();

This test checks if exactly one employee exists in the IT department.

2. Automating Query Validation in Python

Using Python’s pytest framework with sqlite3, developers can validate SQL
queries automatically.

Example: Automated SQL Testing with Python
import sqlite3
import pytest
def test_employee_count():
conn = sqlite3.connect(:memory:') # In-memory database
cursor = conn.cursor()
cursor.execute("CREATE TABLE employees (ID INTEGER, Name TEXT)")
cursor.execute("INSERT INTO employees VALUES (1, 'Alice")")
cursor.execute("SELECT COUNT(*) FROM employees")
count = cursor.fetchone()[0]
assert count == 1 # Check if employee count is correct

This test automatically verifies data insertion correctness in a test database.
3. Performance Testing with EXPLAIN ANALYZE

Performance testing ensures queries execute efficiently without delays.

Example: Checking Query Execution Plan
EXPLAIN ANALYZE SELECT * FROM employees WHERE Department = 'Finance;

The execution plan reveals whether an index is used and how fast the query
executes.

4. Using CI/CD for SQL Test Automation

Integrate SQL testing into CI/CD pipelines with tools like Flyway,
Liquibase, or Jenkins:

- Run automated SQL tests before deploying schema changes.
- Rollback changes automatically if tests fail.

. Ensure database consistency in multiple environments.

Example: Running SQL Tests in a GitHub Actions Workflow
jobs:
test-database:
runs-on: ubuntu-latest
steps:
- name: Setup MySQL
uses: mirromutth/mysql-action@v1.1
with:
mysql database: 'test_db'
- name: Run SQL Tests
run: mysql --host=localhost --user=root --password=root test_db < test_queries.sql

This workflow automatically runs SQL tests before deployment.

Conclusion

SQL testing is a fundamental practice for ensuring database accuracy,
security, and performance. By using test databases, transaction rollbacks,
and automated testing frameworks, developers can catch errors early and
optimize SQL queries efficiently.

Implementing automated SQL testing in CI/CD pipelines further enhances
reliability, prevents regressions, and ensures smooth database migrations.
By mastering these testing techniques, SQL developers can build scalable,
error-free, and high-performance database solutions for real-world
applications.

DAY 29: DEPLOYING SQL DATABASES

Deploying SQL databases is a critical step in making applications
accessible, scalable, and secure. Whether setting up a small personal project
or a high-availability enterprise database, careful planning is required to
choose the right hosting solution, configure cloud deployments, and ensure
ongoing maintenance and monitoring for performance and reliability.

SQL Database Deployment Hierarchy

—_ e
Maintenance &
Monitoring

Hosting Solution

This chapter explores choosing a database hosting solution, deploying SQL
databases on cloud platforms, and best practices for maintaining and
monitoring SQL databases.

Choosing a Database Hosting Solution

When deploying an SQL database, selecting the right hosting environment
is crucial. The choice depends on scalability, security, cost, and availability.

1. On-Premise vs. Cloud Hosting

Hosting Type Pros Cons

On-Premise Full control, data privacy, High setup cost,

customizable hardware maintenance overhead
Cloud Hosting Scalability, automated Monthly costs,
maintenance, high potential security
availability concerns
Hybrid (Both On- | Balances security and Complex setup and
Premise & Cloud) | scalability management

2. Popular Database Hosting Options

. Self-Managed Servers: Install and manage MySQL,
PostgreSQL, or SQL Server on physical servers.

- Managed Cloud Databases: Services like Amazon RDS,
Google Cloud SQL, and Azure SQL automate backups,
scaling, and maintenance.

. Database-as-a-Service (DBaaS): Fully managed solutions like
Firebase, Supabase, and PlanetScale handle everything from
provisioning to security.

Example: Setting Up a MySQL Database on an On-Premise Server

sudo apt update && sudo apt install mysql-server
sudo mysql_secure_installation
mysql -u root -p -e "CREATE DATABASE mydatabase;"

This setup gives full control but requires manual backup, monitoring, and
scaling.

Deploying SQL on Cloud Platforms (AWS, Google

Cloud, Azure)

Cloud platforms simplify SQL database deployment by handling
infrastructure management, security, backups, and scaling. Below, we
explore deployment options for AWS, Google Cloud, and Azure.

1. Deploying SQL Databases on AWS (Amazon Web
Services)

AWS offers Amazon RDS (Relational Database Service) and Amazon
Aurora for managed SQL databases.

Steps to Deploy MySQL on AWS RDS

Log in to AWS Console — Navigate to Amazon RDS.
Click Create Database — Choose MySQL.

Select Instance Type (e.g., db.t3.micro for small workloads).
Set Username & Password for authentication.

Enable Automated Backups for recovery.

ok whh =

Click Create Database and wait for provisioning.

Connecting to AWS RDS via MySQL CLI

mysql -h your-rds-endpoint.rds.amazonaws.com -u admin -p

Once connected, execute queries as usual.

2. Deploying SQL Databases on Google Cloud (Cloud SQL)
Google Cloud offers Cloud SQL, a managed SQL database service for
MySQL, PostgreSQL, and SQL Server.
Steps to Deploy a Cloud SQL Instance

1. Open Google Cloud Console — Navigate to Cloud SQL.

2. Click Create Instance — Select PostgreSQL/MySQL/SQL
Server.

3. Configure Machine Type, Storage Size, and Automatic
Backups.

4. Set Root Password & User Authentication.

5. Click Create and wait for the database to provision.

Connecting to Google Cloud SQL via gcloud CLI

gcloud sql connect my-instance --user=root

Use standard SQL queries once connected.

3. Deploying SQL Databases on Microsoft Azure (Azure SQL
Database)

Azure provides Azure SQL Database, a managed cloud database service.

Steps to Deploy SQL Server on Azure
1. Log in to Azure Portal — Search for Azure SQL Database.
2. Click Create Database — Choose SQL Server Version.

3. Select Pricing Tier & Storage Options.
4. Configure Firewall Rules for external access.

5. Click Deploy and wait for provisioning.

Connecting to Azure SQL Database via SSMS

sqlcemd -S your-sqlserver.database.windows.net -U admin -P password

Once connected, execute queries normally.

Maintaining and Monitoring SQL Databases

Ensuring a database runs efficiently requires proactive maintenance,
monitoring, and security measures.

1. Implementing Regular Backups

Backups prevent data loss due to hardware failures, cyberattacks, or
accidental deletions.

Example: Automating Daily MySQL Backups
mysqldump -u root -p mydatabase > backup_$(date +%F).sql

Use cloud-based backup solutions like AWS S3, Google Cloud Storage, or
Azure Blob Storage for disaster recovery.

2. Monitoring Database Performance

Monitoring tools help detect slow queries, resource bottlenecks, and
security issues.

SQL Performance Monitoring Tools

Tool Features

AWS Tracks database performance and latency
CloudWatch

Google Monitors SQL logs and query execution
Stackdriver times

Azure Monitor Provides real-time database insights
Percona Helps analyze slow queries and indexing
Monitoring issues

Example: Identifying Slow Queries in MySQL
SHOW GLOBAL STATUS LIKE 'Slow_queries';

Enable slow query logging to detect inefficiencies:
SET GLOBAL slow_query_log = 'ON’;

3. Scaling Databases for High Performance

As applications grow, databases must scale to handle increased traffic.
Scaling Options
« Vertical Scaling: Increase CPU, RAM, or storage capacity.

- Horizontal Scaling: Distribute load across multiple database
instances.

- Replication: Use Read Replicas for query offloading.

. Sharding: Split large tables across multiple databases.

Example: Creating a Read Replica in MySQL

CHANGE MASTER TO MASTER_HOST="primary-db', MASTER_USER="replica’,
MASTER_PASSWORD="password’;

START SLAVE;

This offloads read traffic from the primary database.

Conclusion

Deploying SQL databases requires careful planning, from choosing a
hosting solution to configuring cloud deployments and maintaining
database health. Cloud platforms like AWS RDS, Google Cloud SQL, and
Azure SQL simplify deployments by automating scaling, backups, and
security.

To ensure long-term stability, organizations must monitor performance,
implement robust security measures, and optimize queries. By following
best practices in database deployment and maintenance, developers can
build highly available, scalable, and secure SQL database solutions for
modern applications.

DAY 30: WRAPPING UP & NEXT STEPS

Congratulations on reaching the final day of your SQL learning journey!
Over the past 30 days, you have acquired a strong foundation in SQL,
covering everything from basic queries to advanced database deployment
and optimization. This final chapter will review the key topics covered,
explore ways to further advance your SQL skills, and provide
recommended books and resources to continue your learning.

Reviewing What You’ve Learned

Let’s take a moment to reflect on the key concepts, techniques, and skills
you have gained throughout this journey:

1. SQL Fundamentals

Understanding databases, tables, and schemas
Writing SELECT queries to retrieve data
Filtering data using WHERE, LIKE, IN, BETWEEN

Sorting results with ORDER BY and limiting output using
LIMIT

Using aggregate functions (SUM, AVG, COUNT, MAX, MIN)

2. Data Manipulation (CRUD Operations)

INSERT: Adding new records

UPDATE: Modifying existing records

DELETE: Removing records safely

TRUNCATE vs. DELETE for performance optimization

3. Data Relationships and Joins

INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN
Using ON vs. USING in joins

Self-joins and cross joins for complex queries

4. Advanced Querying and Optimization

Using subqueries for filtering and transformation

Implementing CTEs (Common Table Expressions) for
readability

Window functions (ROW_NUMBER, RANK, LEAD, LAG)

Understanding and using INDEXING for performance
improvement

5. Database Design and Management

Normalization and reducing data redundancy
Primary keys, foreign keys, and constraints
Partitioning and sharding for scaling databases

Working with stored procedures and triggers

6. SQL in Real-World Applications

Connecting SQL to Python, JavaScript, and PHP

Deploying SQL databases to AWS, Google Cloud, and Azure

Implementing data security, role-based access, and encryption

Monitoring and maintaining SQL databases effectively

Through hands-on practice, real-world projects, and performance

optimization techniques, you have built a solid SQL skill set that will serve

as a foundation for advanced database management and analytics.

Next Steps for Advancing Your SQL Skills

While this book has provided you with a comprehensive introduction to

SQL, there are still many ways to continue improving and exploring
advanced concepts.

1. Mastering Advanced SQL Techniques

Recursive Queries: Learn how to traverse hierarchical data

(e.g., employee reporting structures).

Full-Text Search: Optimize search functionality for large-scale

applications.

« Query Performance Optimization: Use query execution plans
(EXPLAIN ANALYZE) to fine-tune queries.

. Materialized Views: Improve query performance with
precomputed datasets.

2. Learning NoSQL and Hybrid Databases

While SQL is dominant in structured data storage, NoSQL databases offer
scalability and flexibility. Consider learning:

. MongoDB (Document-based storage)

. Redis (Key-value storage)

. Cassandra (Column-based storage)

- GraphQL for APIs that interact with relational databases

3. Gaining Practical Experience with Real-World Projects
To solidify your SQL expertise, work on real-world projects such as:

 Building an E-Commerce Database (Products, Orders,
Payments, Customers)

- Developing a Library Management System
« Creating a Social Media Analytics Dashboard
. Automating Business Reports with SQL & Python

4. Preparing for SQL Certification Exams

Certifications validate your SQL proficiency and help in career
advancement. Consider:

« Microsoft Certified: Azure Database Administrator Associate
. Oracle Database SQL Certified Associate
. Google Cloud Professional Data Engineer

. PostgreSQL Professional Certification

5. Joining SQL Communities and Online Challenges

To stay up to date with the latest trends and best practices, join communities
such as:

. Stack Overflow (Discuss SQL problems & solutions)
- Reddit’s /SQL (Networking & learning new SQL tricks)

. LeetCode & HackerRank SQL Challenges (Improve problem-
solving skills)

- SQLServerCentral & PostgreSQL Forums (Deep dives into
database administration)

Recommended Books and Resources
- SQL for Data Analysis: A Beginner's Guide to Querying and
Database Mastery

- SQL for Absolute Beginners: A Step-by-Step Approach for
Beginners

- Learn SQL in 24 Hours: The Complete Beginner’s Guide
- SQL for Data Analytics: Unleash the Power of Your Data

Conclusion

Your SQL journey doesn’t end here—this is just the beginning! By
continuously practicing, working on real-world applications, and exploring
advanced topics, you can become an SQL expert in database management,
data analytics, and backend development.

Whether you aim to advance your career as a database administrator,
become a data analyst, or build scalable applications, SQL will remain an
essential skill in your tech arsenal.

Keep learning, stay curious, and happy querying!

APPENDIX
SQL Cheat Sheet

A quick reference guide to essential SQL. commands and functions.
Basic SQL Commands

SELECT * FROM table_name; — Retrieve all records from a table.

SELECT column1, column2 FROM table_name; — Retrieve SpECifiC
columns.

INSERT INTO table_name (columnl, column2) VALUES ('valuel', 'value2"); —
Insert data.

UPDATE table_name SET columnl = 'new_value' WHERE condition; — Update
records.

DELETE FROM table_name WHERE condition; — Delete specific records.

Filtering and Sorting Data

Joins

WHERE — Filter results based on conditions.
ORDER BY column_name ASC|DESC; — Sort results.
GROUP BY column_name; — Group rows based on values.

HAVING — Filter aggregated results.

INNER JOIN — Returns matching records from both tables.

LEFT JOIN — Returns all records from the left table and matching
records from the right table.

RIGHT JOIN — Returns all records from the right table and
matching records from the left table.

Aggregate Functions

COUNT(column_name) — Counts the number of records.

SUM(column_name) — Returns the sum of values in a column.

« AVG(column_name) — Returns the average of values.
+ MAX(column_name) — Returns the maximum value.

+ MIN(column_name) — Returns the minimum value.

Advanced SQL Concepts

« CASE WHEN condition THEN result ELSE result END — Conditional logic
in queries.

- UNION — Combines results from two queries.

.« ExisTS — Checks if a subquery returns results.

. INDEX — Improves query performance.

« TRANSACTION — Ensures ACID compliance for data consistency.

Common SQL Errors and Fixes

1. Syntax Errors
« Issue: SELECT name age FROM users;

. Fix: Use commas to separate columns.
 SELECT name, age FROM users;

2. Incorrect Table or Column Names
« Issue: SELECT customer_name FROM clients; (when table is customers)

. Fix: Verify the table and column names.

e SELECT customer_name FROM customers;

3. Foreign Key Constraint Failures
. Issue: Cannot add or update a child row: a foreign key constraint fails

. Fix: Ensure referenced records exist before inserting data.
« INSERT INTO orders (customer_id) VALUES (1);

4. NULL Errors

. Issue: INSERT INTO users (name, email) VALUES (‘John', NULL); (if email
iS NOT NULL)

. Fix: Provide valid values or allow NULL.
« ALTER TABLE users MODIFY email VARCHAR(255) NULL;

5. Performance Issues
. Issue: Query running too slowly.

 Fix: Use INDEX to optimize performance.
e« CREATE INDEX idx_user_email ON users(email);

Interview Questions for Beginners
Basic SQL Questions

1. What is the difference between DELETE and TRUNCATE?
2. What are the different types of joins in SQL?

3. Explain the difference between WHERE and HAVING.

4. How do you find duplicate records in a table?

5. What is the purpose of an index in SQL?

Intermediate SQL Questions
1. What is a PRIMARY KEY and FOREIGN KEY?
2. Explain the difference between UNION and UNION ALL.
3. How do you optimize a slow SQL query?
4. What is the difference between INNER JOIN and LEFT JOIN?

5. How does ACID compliance ensure database reliability?

Advanced SQL Questions

1. What are window functions in SQL?

2. How would you design a database schema for an e-commerce
application?

3. Explain database normalization and denormalization.
4. What is a stored procedure, and how do you use it?
5. What is partitioning in SQL, and when should it be used?

Online Resources for Further Learning

SQL Documentation and Tutorials
« W23Schools SQL Tutorial
- SQL Tutorial - Mode Analytics
« PostgreSQL Documentation
. MySQL Official Documentation
« SQL Server Docs

SQL Coding Platforms
« LeetCode SQL Problems
. HackerRank SQL Challenges
. SQLZoo Interactive Tutorials

SQL Books

- SQL for Data Analysis: A Beginner's Guide to Querying and
Database Mastery

- SQL for Absolute Beginners: A Step-by-Step Approach for
Beginners

. Learn SQL in 24 Hours: The Complete Beginner’s Guide
- SQL for Data Analytics: Unleash the Power of Your Data

By leveraging these resources, practicing SQL queries regularly, and
solving real-world problems, you can continue to advance your SQL
knowledge and become proficient in database management and data
analysis.

	Introduction
	Day 1: Introduction to SQL
	Day 2: Understanding Databases and Tables
	Day 3: SQL Data Types and Constraints
	Day 4: Inserting and Retrieving Data
	Day 5: SQL Operators and Expressions
	Day 6: Sorting and Filtering Data
	Day 7: Updating and Deleting Data
	Day 8: SQL Joins – Combining Tables
	Day 9: Advanced Filtering with Subqueries
	Day 10: Grouping and Aggregating Data
	Day 11: Understanding SQL Indexes
	Day 12: Views and Virtual Tables
	Day 13: SQL Transactions and ACID Properties
	Day 14: Working with Stored Procedures
	Day 15: Triggers – Automating SQL Tasks
	Day 16: Working with User-Defined Functions (UDFs)
	Day 17: Advanced SQL Joins and Set Operations
	Day 18: Understanding Normalization and Denormalization
	Day 19: Database Design and Relationships
	Day 20: SQL Performance Optimization
	Day 21: Working with NoSQL vs SQL
	Day 22: Handling Big Data with SQL
	Day 23: Database Security and Access Control
	Day 24: Introduction to SQL for Data Analysis
	Day 25: SQL in Web Applications
	Day 26: Building a Small SQL Project
	Day 27: Debugging SQL Queries and Common Errors
	Day 28: Writing and Running SQL Tests
	Day 29: Deploying SQL Databases
	Day 30: Wrapping Up & Next Steps
	Appendix

