

Narrative SQL
Crafting Data Analysis Queries

That Tell Stories

Hamed Tabrizchi

Narrative SQL: Crafting Data Analysis Queries That Tell Stories

ISBN-13 (pbk): 979-8-8688-1559-1		 ISBN-13 (electronic): 979-8-8688-1560-7
https://doi.org/10.1007/979-8-8688-1560-7

Copyright © 2025 by Hamed Tabrizchi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shaul Elson
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler
Copy Editor: Kezia Endsley

Cover image by Christian Horz from stock.adobe.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on the Github repository. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

If disposing of this product, please recycle the paper

Hamed Tabrizchi
University of Tabriz
Tabriz, Iran

https://doi.org/10.1007/979-8-8688-1560-7
https://orcid.org/0000-0001-9250-2232

To my adorable father, Hamid, my kind-hearted mother, Soheyla,
and my wonderful brother, Mohammad—each of whom helped

me understand the true value of life.

To Shaul and Gryffin, who believed in me and stood by me
every step of the way.

v

Table of �Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Chapter Overviews��xxi

Chapter 1: �The Storyteller’s Database��� 1

Introduction to Data��� 1

Data Analysis��� 2

Databases��� 3

Relational Databases vs Non-Relational Databases��� 4

Exploring Relational Database Management Systems (RDBMS)�� 5

Databases in Data Analysis and Storytelling�� 5

Diving into SQL��� 6

SQL Command Types: The Five Principles of Database Interaction�� 6

Transaction Statements vs Query Statements in Data Analysis��� 10

Integrating Transaction and Query Statements in Data Analysis�� 11

Setting Up a Storytelling Environment with PostgreSQL�� 11

Step 1: Installation�� 11

Step 2: Create Your First Database��� 11

Step 3: Define Data Structures��� 12

Data Types in SQL�� 13

Crafting the Narrative��� 19

Summary��� 19

https://doi.org/10.1007/979-8-8688-1560-7_1
https://doi.org/10.1007/979-8-8688-1560-7_1
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec13
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec18
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec19

vi

Key Points�� 20

Key Takeaways��� 21

Looking Ahead��� 21

Chapter 2: �Starting with SELECT�� 23

Introduction to SELECT�� 23

The Importance of SELECT in Storytelling with Data�� 23

The Anatomy of a SELECT Statement��� 24

The First Story: The Bookstore Anniversary��� 25

Selecting Columns from a Table��� 27

Introducing Aliases for Columns��� 27

Introducing the CONCAT Function�� 28

SQL Mathematical Operations with SELECT�� 30

The Second Story: The Bakery Sales Data��� 31

The CASE statement��� 34

String Patterns��� 35

The Art of Distinct Selection��� 37

The Third Story: The Candy Store Sales Data��� 37

Aggregating with SELECT�� 38

Differences Between Regular Arithmetic Functions and Aggregate Functions in SQL����������� 39

The Fourth Story: Analysis of Social Media Hashtags�� 43

Summary��� 46

Key Points�� 46

Key Takeaways��� 47

Looking Ahead��� 48

Test Your Skills��� 48

Chapter 3: �Filtering Facts with WHERE�� 51

Introduction to WHERE��� 51

The Importance of WHERE in Storytelling with Data�� 51

The Anatomy of a WHERE clause�� 52

The First Story: The Online Shop�� 53

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_1#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_1#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_2
https://doi.org/10.1007/979-8-8688-1560-7_2
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec13
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec18
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_2#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_3
https://doi.org/10.1007/979-8-8688-1560-7_3
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec4

vii

Advanced Filtering��� 58

Using WHERE with Dates�� 58

Beyond Exact Matching�� 60

Subquery Filtering�� 61

The Second Story: A Football Academy�� 61

Common Mistakes When Using WHERE in SQL and How to Avoid Them������������������������������������� 66

Data Type Issues��� 66

Logical Mistakes in Conditions��� 67

NULL Handling�� 69

Case Sensitivity�� 70

Summary��� 71

Key Points�� 71

Key Takeaways��� 72

Looking Ahead��� 72

Test Your Skills��� 73

Chapter 4: �Complex Characters with JOINs��� 75

Introduction to JOINs��� 75

Importance of JOINs in Storytelling with Data��� 75

The Anatomy of a JOIN Clause��� 76

Types of JOINs�� 77

The First Story: A Football Academy�� 82

Keys in Relational Databases��� 88

The Second Story: A Technology Company�� 91

Handling NULL Values in JOINs�� 101

NULL Behavior in SQL JOIN�� 101

The Third Story: Hospital Management�� 102

NULL-Safe Equal Operator��� 106

Summary��� 107

Key Points�� 108

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_3#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec13
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec18
https://doi.org/10.1007/979-8-8688-1560-7_3#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_4
https://doi.org/10.1007/979-8-8688-1560-7_4
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec13

viii

Key Takeaways��� 108

Looking Ahead��� 109

Test Your Skills��� 109

Chapter 5: �Aggregating Acts��� 111

Introduction to GROUP BY�� 111

Essential Aggregation Functions�� 112

The First Story: A Busy Gym in a Bustling City��� 114

Advanced Aggregation Techniques: Multi-step Calculations��� 121

Multi-step Calculations: The Basics��� 121

Using Window Functions for Aggregation��� 123

The Second Story: Speedy Motors Company��� 124

Window Functions vs. Traditional Aggregation��� 132

Combining Multiple Aggregation Techniques��� 134

Essential Window Functions for Data Analysis��� 142

Summary��� 144

Key Points�� 145

Key Takeaways��� 145

Looking Ahead��� 146

Test Your Skills��� 146

Chapter 6: �Ordering the Plot with ORDER BY and LIMIT�� 147

Introduction to ORDER BY�� 147

Ordering Data in Real-World Scenarios��� 148

Introduction to LIMIT�� 151

Pagination with OFFSET and LIMIT�� 151

The First Story: Highway Construction and a Traffic Situation��� 154

Customizing Your Sorting: Advanced Use Cases of ORDER BY��� 163

Case Sensitivity and Sorting Strings�� 163

What Is COLLATE?��� 163

Collation in PostgreSQL�� 164

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_4#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_4#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec23
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec24
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec25
https://doi.org/10.1007/979-8-8688-1560-7_5#Sec26
https://doi.org/10.1007/979-8-8688-1560-7_6
https://doi.org/10.1007/979-8-8688-1560-7_6
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec9

ix

Using COLLATE��� 164

Sorting NULL Values��� 167

Common Pitfalls and Best Practices�� 170

Avoiding Ambiguous Ordering: Always Clarify Column Names��� 170

Plot Efficiency with ORDER BY and LIMIT�� 173

Summary��� 174

Key Points�� 174

Key Takeaways��� 175

Looking Ahead��� 175

Test Your Skills��� 176

Chapter 7: �Dynamic Dialogues with Subqueries��� 179

Introduction to Subqueries��� 179

The First Story: A Bustling Office��� 179

Dynamic Dialogues with Subqueries��� 182

The Role of Subqueries in Dynamic Dialogues��� 182

Introduction to Subqueries as Conversational Elements��� 184

Single-Row Subqueries�� 186

Multi-Row Subqueries�� 187

Multi-Column Subqueries��� 188

Correlated Subqueries�� 189

Uncorrelated Subqueries�� 191

Subqueries in the FROM Clause��� 192

Complex Conversations: Nested and Multi-Level Subqueries�� 193

General Syntax of Two-Level Subqueries��� 193

Complex Multi-Level Subqueries�� 194

The Second Story: A Food Delivery Platform�� 194

Common Pitfalls��� 201

Poor Readability��� 201

Repeated Subquery Execution��� 201

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_6#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec25
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec26
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec27
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec28
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec29
https://doi.org/10.1007/979-8-8688-1560-7_6#Sec30
https://doi.org/10.1007/979-8-8688-1560-7_7
https://doi.org/10.1007/979-8-8688-1560-7_7
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec13
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec18

x

Too Many Subqueries Instead of Joins��� 202

Returning Too Much Data��� 202

Forgetting to Use Aliases�� 202

Summary��� 203

Key Points�� 203

Key Takeaways��� 204

Looking Ahead��� 204

Test Your Skills��� 205

Chapter 8: �Conditional Logic in Data Plotting�� 207

Introduction�� 207

Understanding Conditional Logic in SQL�� 212

The CASE Statement�� 213

NULLIF�� 216

COALESCE��� 222

The First Story: The Hospital’s Analytical Story�� 225

Summary��� 234

Key Points�� 235

Key Takeaways��� 235

Looking Ahead��� 236

Test Your Skills��� 236

Chapter 9: �Optimizing Your Script with Indexes and Views���������������������������������� 239

Introduction�� 239

Understanding Indexes�� 240

Basic Syntax for Creating an Index��� 241

Types of Indexes in PostgreSQL��� 241

Dropping an Index�� 245

Checking Index Usage with EXPLAIN�� 245

When to Use and When to Avoid Indexes��� 245

The Role of Indexes in Data Analysis Tasks��� 246

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_7#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec23
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec24
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec25
https://doi.org/10.1007/979-8-8688-1560-7_7#Sec26
https://doi.org/10.1007/979-8-8688-1560-7_8
https://doi.org/10.1007/979-8-8688-1560-7_8
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec10
https://doi.org/10.1007/979-8-8688-1560-7_8#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_9
https://doi.org/10.1007/979-8-8688-1560-7_9
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec13
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec14
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec15

xi

Using EXPLAIN to Review Query Execution�� 247

Using EXPLAIN ANALYZE for Performance Measurement�� 248

The First Story: Golf Performance Data Analysis��� 249

Understanding SQL Views�� 257

Basic Syntax for SQL Views�� 258

Types of Views in PostgreSQL�� 258

The Role of Views in Data Analysis Tasks��� 259

The Second Story: Car Race Data Analysis�� 259

Managing Views��� 267

Updating and Modifying Views (ALTER VIEW)��� 267

Dropping Views (DROP VIEW)�� 268

The Role of ALTER VIEW and DROP VIEW in Data Analysis�� 268

The Role of Views in Optimizing SQL Queries�� 269

Using Both Views and Indexes in PostgreSQL�� 269

The Third Story: Online Retail Data Analyst�� 269

Summary��� 272

Key Points�� 273

Key Takeaways��� 273

Looking Ahead��� 273

Test Your Skills��� 274

Chapter 10: �Analytics Alchemy: Turning Data into Gold�� 277

Functions��� 277

Aggregate Functions�� 277

Statistical and Mathematical Functions��� 279

Window Functions�� 284

Ranking Functions�� 286

String Functions��� 287

Date and Time Functions�� 289

JSON Functions�� 292

Control Functions��� 293

System Functions��� 294

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_9#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec18
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec23
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec24
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec25
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec26
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec27
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec28
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec29
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec30
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec31
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec32
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec33
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec34
https://doi.org/10.1007/979-8-8688-1560-7_9#Sec35
https://doi.org/10.1007/979-8-8688-1560-7_10
https://doi.org/10.1007/979-8-8688-1560-7_10
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec3
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec4
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec5
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec6
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec7
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec10

xii

Creating Your Own Functions in PostgreSQL�� 296

Error Handling�� 298

The First Story: Online Clothing Market��� 302

Breaking Down Complex Problems with Analytical Tools��� 309

The Second Story: An Analysis of a Family Tree for the Civil Registration Office����������������������� 313

Summary��� 318

Key Points�� 319

Key Takeaways��� 319

Looking Ahead��� 320

Test Your Skills��� 320

Chapter 11: �The Grand Finale: Presenting Your Data Story����������������������������������� 323

The Art of Data Storytelling�� 323

The Importance of Query Writing for Storytelling in Data Analysis��������������������������������������� 324

PostgreSQL Query Execution�� 335

Beyond the Query��� 337

Beyond the Presentation: How to Guide Your Audience�� 341

Encouraging Further Explorationt��� 342

Final Thoughts: The Data Storyteller’s Legacy in the Age of Artificial Intelligence (AI)�������������� 342

Summary��� 344

Key Points�� 344

Key Takeaways��� 344

�Appendix A: SQL Syntax Reference Guide��� 347

�Appendix B: Glossary of Terms�� 377

�Appendix C: PostgreSQL Elements Reference�� 385

�Index�� 397

Table of Contents

https://doi.org/10.1007/979-8-8688-1560-7_10#Sec11
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec12
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec16
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec18
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_10#Sec22
https://doi.org/10.1007/979-8-8688-1560-7_11
https://doi.org/10.1007/979-8-8688-1560-7_11
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec1
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec2
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec8
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec9
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec15
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec17
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec19
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec20
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec21
https://doi.org/10.1007/979-8-8688-1560-7_11#Sec22

xiii

About the Author

Hamed Tabrizchi is an experienced data analyst and

engaging storyteller who has more than five years of

experience turning complex data into compelling narratives.

Passionate about educating others, Hamed lectures at

universities, leads workshops, and contributes to leading

scientific journals. As a result of his observations in the

professional community, he decided to write this book to

fill a void he observed—the need for a resource that weaves

SQL technicalities with narratives to empower analysts in

delivering insights that resonate and drive action. 

xv

About the Technical Reviewer

Alexander Arvidsson is the chief technology officer at

Analytics Masterminds, where he spends his days helping

clients of all shapes and sizes take better care of—and make

more sense of—their data.

He has spent the last 25 years poking around with

data, databases, and related infrastructure services such

as storage, networking, and virtualization, occasionally

emerging from the technical darkness to attend a Star Wars

convention somewhere in the world.

He is a long-time data platform MVP, frequent international speaker, podcaster,

Pluralsight author, blogger, and a Microsoft Certified Trainer, focusing on the Microsoft

data platform stack.

xvii

Acknowledgments

Writing a book is often seen as a solitary endeavor, but this one would not exist without

the support, encouragement, and generosity of so many people.

My deepest thanks go to Apress for placing their trust in me as a first-time author

and for accepting my proposal to write this book. I would like to thank Shaul Elson for

his time, guidance, and belief in me. I’m also sincerely grateful to Gryffin Winkler for his

dedication and support throughout this process. Special thanks to Alexander Arvidsson,

whose valuable feedback, sharp eye, and honest critique—shared chapter by chapter—

have shaped this work more than words can express.

This journey would not have been possible without the patience, love, and

unwavering belief of my family.

Finally, to the readers—thank you for making space in your analytical and curious

minds for these words.

xix

Introduction

In the past decade, data analysis and SQL have played a central role in my professional

career. My passion for query writing began during my bachelor’s studies, where I

completed a database course with full marks. As a result of this achievement, I was given

the opportunity to become a teaching assistant the following semester, where I gained

experience writing queries and explaining them to students. Despite speaking with a

trembling voice at first, this role helped me gain confidence in technical communication

and public speaking, and enhanced my advanced query-writing skills. These early

experiences laid the foundation for my current expertise in SQL and data analysis,

fundamental to my next career accomplishment.

After a year, I started working for a technology company, where I encountered more

complex challenges. As a data analysis intern, two of the challenges I encountered

included the lack of neatly organized data and the difficulty of collaborating. It was

difficult and very different from teaching or solving textbook exercises to coordinate

projects among programmers, query writers, UI/UX designers, and the other members

of the team. Despite all the challenges, I was motivated day by day to gain experience

and skills from my colleagues and improve my analytical skills to become a data analyst

who has an insightful perspective.

Throughout the years, I have dealt with a number of projects and gained deeper

insights and better analytical skills from the past. One day I decided that I had an insight

that I could share with those who are interested in data analysis and query writing. So, I

decided to write this book to teach what formed this perspective within me, in as much

detail as I could. The core concept of this book is SQL query writing, which is at the core

of my day-to-day activities, whether as a data analyst, a university lecturer, or a data

team leader.

I believe that at the present time, people who are able to shape information into

compelling stories hold an advantage in the ever-increasing world of data. Due to this

belief, narrative SQL emerged, which is the idea that learning SQL should not be like

learning a machine’s language, but should instead feel like mastering a language of

communication.

xx

This book is for the curious analyst, the thoughtful developer, and the future

storyteller of data. This book is designed to provide you with clear and creative guidance

regardless of whether you are just beginning your journey into databases or want to

improve your proficiency in SQL.

Using a narrative structure, this book begins with the basics—simple SELECT

statements, filters, and JOINs. In the subsequent chapters, this book explores queries that

transform raw data into rich insights, including aggregations, subqueries, conditional

logic, and more. With the SQL queries and stories provided, this book is not just a

reference guide; it’s a companion for your data journey, helping you think narratively,

write clearly, and analyze clearly.

Each chapter explores stories that introduce concepts and skills toward mastery

of powerful SQL tools, including window functions, subqueries for dynamic data

manipulation, conditional logic with complex queries, and even optimization strategies

based on indexes and views. Upon completion of this book, you should be able to tackle

a wide range of data analysis challenges by writing SQL queries. The last few chapters

of this book cover advanced topics such as tuning performance, optimizing scripts,

and analytical storytelling with window functions, giving your narratives depth and

precision. In this book, you will find both inspiration and practical skills—and when you

close the last chapter, you will be prepared to tell your own powerful data stories.

Finally, it should be noted that all queries presented in this book have been

developed and thoroughly tested on PostgreSQL 14.17, the enterprise-grade open-source

relational database system known for its robustness, extensibility, and SQL compliance.

Although the fundamental concepts of PostgreSQL should apply to all PostgreSQL

versions, specific syntax, performance characteristics, or feature availability might be

different.

The complete collection of queries, including stories and examples, can be accessed

via the publisher’s GitHub repository at https://github.com/Apress/Narrative-SQL.

Throughout this repository, all queries are conveniently organized and categorized

by chapter, allowing you to find and execute examples relevant to specific sections

conveniently.

Introduction

https://github.com/Apress/Narrative-SQL

xxi

Chapter Overviews

�Chapter 1: The Storyteller’s Database
The purpose of this chapter is to provide a foundation for your journey into the world of

data and narrative. This chapter introduces databases as storytelling tools, illustrating

how narrative structures and relational models can aid in making data meaningful.

As you go through this chapter, you are provided with all the information you need

to get started on this journey by setting the foundation for the art and science of data

storytelling. You will learn that SQL is not only capable of querying data, but it can also

tell compelling stories. In the next step, you will begin to explore SQL’s complexities in

greater detail after setting up the storytelling environment.

�Chapter 2: Starting with SELECT
In this chapter, you learn how to extract and explore basic data from tables using the

SELECT statement. Using SQL’s most commonly used command, you can retrieve and

manipulate data effectively. This requires you to learn how to write precise SELECT

statements in order to retrieve information that is needed for your narratives. This will

set the stage for more advanced data manipulation and analysis techniques.

�Chapter 3: Filtering Facts with WHERE
In this chapter, you discover another SQL command that is frequently used to refine data

retrieval by using WHERE conditions, comparisons, and logical operators. This requires

creating precise WHERE statements that filter data based on specific criteria. This will

enable you to refine your datasets and extract even deeper insights, which in turn helps

you tell richer stories with your data.

https://doi.org/10.1007/979-8-8688-1560-7_1
https://doi.org/10.1007/979-8-8688-1560-7_2
https://doi.org/10.1007/979-8-8688-1560-7_3

xxii

�Chapter 4: Complex Characters with JOINs
The purpose of this chapter is to explore how to connect multiple tables using JOINs,

creating richer data narratives based on different sources of data. JOIN operations, which

are fundamental to combining data from multiple tables, are discussed. As you become

proficient in this operation, you will be able to create complex queries that provide

deeper insights and more comprehensive analyses of your records.

�Chapter 5: Aggregating Acts
The purpose of this chapter is to introduce aggregate functions such as COUNT, SUM, AVG,

MIN, and MAX, which can be used to summarize and analyze grouped data. In SQL, an

aggregate act is the application of aggregate functions to grouped data subsets. These

actions enable SQL to extract useful summary and statistical information from data for

analysis and decision-making.

�Chapter 6: Ordering the Plot with ORDER BY
and LIMIT
In this chapter, you learn how to sort query results and limit output in order to improve

readability and performance. The focus is on sorting and filtering query results

efficiently. Once you have mastered this operation, it will be possible to organize

data meaningfully. To focus on the most relevant data points, you can prioritize key

information and limit the results to the most relevant data points.

�Chapter 7: Dynamic Dialogues with Subqueries
The purpose of this chapter is to present subqueries as powerful tools for nesting logic

and constructing complex, layered data requests. This chapter explores the art of writing

subqueries in order to add depth and dimension to data analysis. This chapter provides

an overview of subqueries, their types, and narrative examples of their use in dynamic

dialogues.

Chapter Overviews

https://doi.org/10.1007/979-8-8688-1560-7_4
https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_6
https://doi.org/10.1007/979-8-8688-1560-7_7

xxiii

�Chapter 8: Conditional Logic in Data Plotting
This chapter explains how SQL’s conditional logic can be used to transform data analysis

and visualization workflows to enable logic-based data visualization and transformation.

You learn about conditional logic in SQL, categorize data, apply dynamic filtering

to improve plot relevance for enhanced visualizations, create color-coded data for

visualizations, aggregate data using conditional expressions, and handle missing data in

visualizations. The focus of this chapter is not on how to visualize or plot data, but on the

crucial process of preparing data. In this chapter, SQL is used to manipulate, clean, and

structure data before it is visualized.

�Chapter 9: Optimizing Your Script with Indexes
and Views
This chapter sheds light on how indexes can be used to improve query performance

and how views can be used to simplify logic. Optimizing SQL queries can significantly

improve performance when dealing with large data volumes. Indexes and views are both

powerful tools for achieving this type of optimization. An index enables the database

engine to locate rows more efficiently, thereby reducing the need to scan entire tables in

order to retrieve data. Alternatively, views simplify complex queries by storing reusable

SQL logic, improving readability and maintenance.

�Chapter 10: Analytics Alchemy: Turning Data
into Gold
Turning data into gold with SQL requires mastering advanced analytical functions that

help you extract deeper insights from raw data and transform them into compelling

narratives. The SQL language provides powerful functions that can be used to transform

raw data into compelling narratives. The chapter also discusses how raw data can be

transformed into a compelling story and how recursive queries can be used to structure

query logic effectively.

Chapter Overviews

https://doi.org/10.1007/979-8-8688-1560-7_8
https://doi.org/10.1007/979-8-8688-1560-7_9
https://doi.org/10.1007/979-8-8688-1560-7_10

xxiv

�Chapter 11: The Grand Finale: Presenting Your
Data Story
In this chapter, your journey is nearing its end. Through chapter-by-chapter learning,

you learned how to extract deep insights and information from raw data to address

complex and advanced analytical questions using raw data. This chapter summarizes

the previous chapters and provides insight into presenting a narrative for data analysis.

�Appendix A: SQL Syntax Reference Guide
This appendix provides a quick-access syntax guide for common SQL statements and

clauses.

�Appendix B: Glossary of Terms
This appendix defines key terms used throughout the book for quick reference and

deeper understanding.

�Appendix C: PostgreSQL Elements Reference
This appendix highlights PostgreSQL-specific features by providing a comprehensive

alphabetical list of SQL statements, clauses, operations, and functions available in

PostgreSQL.

Chapter Overviews

https://doi.org/10.1007/979-8-8688-1560-7_11

1
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_1

CHAPTER 1

The Storyteller’s Database
This chapter provides the basis of your journey into the world of data and narratives.

Beginning with the basics of data, databases, and data analysis, this chapter explores

Database Management Systems (DBMS) and SQL’s pivotal role in navigating these

repositories. Through an exploration of SQL commands and the use of data types, you

can tell powerful stories. This chapter provides you with the essentials you need to get

started on this journey. It covers the art and science of data storytelling.

�Introduction to Data
In today’s society, data is the foundation upon which everything is built, and it impacts

every aspect of our lives. There are countless sources of data available to us, from

weather patterns tracked by satellites to the number of steps you take each day. The term

data refers to the qualitative or quantitative attributes of a variable. A great deal of data

is collected, observed, or created for the purpose of analyzing it and making decisions

based on it. It is possible to store structured or unstructured data, ranging from numbers,

text, and multimedia to complex datasets used in computing and research.

In a nutshell, data is the raw material of information, the basis for understanding

the world and making informed decisions. Data on its own is like a pile of unrefined

oil. In spite of the fact that data has value, it’s useless until it’s processed and analyzed.

There is a great deal of value in data because it is capable of revealing hidden patterns,

trends, and insights. The ability to analyze data allows people to make better decisions,

solve complex problems, and drive innovation in business. It is widely accepted that

data has become a part of every aspect of our lives in the digital age, and that it is

the basis of all decision-making across sectors such as the healthcare, finance, and

technology industries. Table 1-1 provides five fundamental questions and answers when

exploring data.

https://doi.org/10.1007/979-8-8688-1560-7_1#DOI

2

Table 1-1.  Five Fundamental Questions and Answers for Exploring Data

Question Answer

1 Why is data

so valuable?

The use of data leads to decisions, innovation, and progress. Data contains the

fundamental insights and evidence required to make informed decisions, resolve

complex problems, and predict future trends in an era in which information is

power.

2 Who relies on

data?

All of us. Data is used in a wide range of things, from businesses using

customer data to modify their products, to governments using data to plan

policies, to scientists using research data to make discoveries. Many sectors

and societies rely on data.

3 Where does

data come

from?

The world over. This includes countless devices and sensors in the vast expanse

of the Internet and the billions of devices and sensors making up the Internet of

Things (IoT). From the depths of the oceans using climate monitoring equipment,

to the far reaches of space with satellites collecting data about our universe.

Each source of data provides unique insights that contribute to our collective

understanding.

4 When is data

used?

Every day, continuously. Data is used constantly throughout our lives and is

not limited to specific moments. Data is used to guide emergency responses

and to facilitate financial transactions, and it is used to influence long-term

policy decisions and scientific research. Data has relevance that extends across

timescales, from the immediate to the generational.

5 What does

data do?

In data, transformation occurs. Data has the power to change the world

in many ways. These include informing policy, driving economic growth,

advancing science and healthcare, improving education, and enriching cultural

understanding. By analyzing data, we can uncover patterns, predict outcomes,

personalize experiences, and foster innovation.

�Data Analysis
Similar to oil in the 20th century—which powered economies, revolutionized

transportation, and played a fundamental role in industrial advancement—data is the

fundamental resource driving societal progress, economic growth, and innovation in

Chapter 1 The Storyteller’s Database

3

the 21st century. In the same way that oil must be extracted, refined, and distributed

to use its energy, data must be collected, organized, and analyzed to unlock its full

potential. Thus, the importance of controlling the extraction, refinement, and analysis

of data in this era cannot be understated. The purpose of data analysis is to find useful

information, provide insight into conclusions, and support decision-making through

inspection, cleansing, transforming, and modeling the data.

�Databases
Databases are structured collections of data that are stored electronically and accessed

by a computer system. This system facilitates the efficient organization, management,

and retrieval of data. A database is designed to handle large amounts of data, allowing

users to add, modify, and query data quickly and securely. Databases support a variety of

data types, including text, numbers, multimedia files, and more, organized in a manner

that facilitates the analysis of business operations, the management of transactions, and

decision making. Thousands of applications rely on databases, from the websites people

visit daily to the financial systems that operate on a global scale.

There is more to databases than just storing data; they are intricately designed to

organize information in a way that makes it easily accessible and useful. Organization is

of considerable importance, as the value of data lies not only in its existence, but in the

ability to retrieve and interpret it. In every sector of society—be it healthcare, education,

business, or technology—databases help manage patient records, student information,

financial transactions, and more.

In general, there are several types of databases, including structured, semi-

structured, and unstructured. As a result of the need to optimize storage, retrieval,

and analysis of data based on its nature, there is a relationship between data types and

database types. Structured, semi-structured, and unstructured data all require different

database features. For analysis, it is crucial to be aware of the distinctions between each,

since each requires different tools and approaches in order to extract its insights.

In structured data, each piece of information is organized and formatted in a way

that is easily searchable in databases and spreadsheets, and it is stored in predefined

models or schemas. In this way, computers can perform efficient processing and

analysis. Structured data can be easily accessed and analyzed through relational

databases.

Chapter 1 The Storyteller’s Database

4

In the real world, data is not always stored in a structured form and may be

unstructured or semi-structured. Unstructured data consists of everything from emails

to videos to social media posts, often stored in non-relational (NoSQL) databases

that handle diverse and dynamic datasets. Semi-structured data straddles the line,

combining elements of both. Examples of semi-structured data are JSON and XML

documents, which, although not fitting into traditional table schemas, have inherent

structure that can be queried and analyzed.

�Relational Databases vs Non-Relational Databases
There is a major distinction between relational and non-relational databases, each with

its own characteristics, advantages, and applications. A relational database is based on the

relational model of data. A table (relation), which consists of rows and columns, is used to

organize data in this model. A row represents a unique record, and a column represents

a field. The power of relational databases lies in their use of SQL (Structured Query

Language) for data manipulation and retrieval, which allows high levels of flexibility

and precision in querying the data. The most popular relational database management

systems (RDBMS) are PostgreSQL, MySQL, Oracle Database, and Microsoft SQL Server.

Alternatively, non-relational databases, known as NoSQL databases, emerged as a

response to the limitations of relational models, especially in handling large volumes

of unstructured or semi-structured data. As opposed to having fixed schemas, these

databases are often capable of storing a variety of data types, such as documents,

key-values, wide columns, and graphs. NoSQL databases are particularly well suited to

applications that require rapid development, scalability, and the ability to handle a

variety of data types. Among the most popular are MongoDB (document-based), Redis

(key-value store), Cassandra (wide-column database), and Neo4j (graph database).

Transferring between structured, semi-structured, and unstructured data types is

often driven by a variety of needs and challenges in data management and analysis. Each

has its unique characteristics and optimal use cases. Thus, a variety of databases and

database types exist, ranging from relational databases, which can handle structured data

effectively through well-defined schemas and relationships, to NoSQL databases such as

document, key-value, wide-column, and graph databases. They are each tailored to meet

the specific requirements of unstructured or semi-structured data. As the title of the book

indicates, the following chapters focus on structured data, exploring the expansive world

of relational databases and the use of the SQL language to interact with them.

Chapter 1 The Storyteller’s Database

5

�Exploring Relational Database Management
Systems (RDBMS)
Relational databases are crucial throughout the entire process. As relational databases

are structured, they ensure the integrity and consistency of data, which is crucial for data

analysis. The powerful querying capability of SQL allows analysts to retrieve specific

subsets of data quickly and efficiently from large databases. SQL’s querying ability

enables analysts to perform complex aggregations, joins, and filtering operations with

ease, which are essential tasks in the data preprocessing and exploration phases. The

purpose of this book is to teach you how to extract and analyze data stored in databases

using SQL. Throughout the remainder of this chapter, you learn more and more about

data analysis, databases, and other concepts, but you first need a better understanding of

the data in order to be able to analyze it.

In most relational databases, SQL is used to query and manage the data. Due to SQL’s

powerful and flexible capabilities, it has become the standard language for relational

database management systems (RDBMS). There are a number of popular relational

database systems that use SQL, including MySQL, PostgreSQL, Oracle Database,

Microsoft SQL Server, and SQLite. Due to the standard way in which SQL interacts with

structured data, these systems can perform complex queries, update data, create and

modify schemas, and manage database access more easily.

This book uses PostgreSQL as the basis for its SQL examples, which offers numerous

advantages for readers who are eager to gain a deeper understanding of data analysis

through the lens of relational databases. The PostgreSQL database system is well known

for its robustness, open-source nature, and compliance with SQL standards, making it

one of the most advanced and reliable relational database systems. Through its open-

source model, users are not only able to access a high-quality database system without

licensing fees, but also benefit from a vibrant developer community that is constantly

enhancing its capabilities. In addition to complex SQL queries, foreign keys, triggers,

views, and stored procedures, PostgreSQL supports a wide range of SQL functionality.

�Databases in Data Analysis and Storytelling
Databases provide more than just a means of storing data; they are also instrumental

in analyzing data and telling stories based on that data. In data analysis, data is

examined, cleaned, transformed, and modeled in order to find useful information,

Chapter 1 The Storyteller’s Database

6

draw conclusions, and support decision-making. By structuring and organizing data,

databases facilitate this process; they enable analysts to query and manipulate data

effectively. On the other hand, storytelling involves using narratives to communicate

information in an engaging and understandable manner. Data storytelling involves

crafting narratives around insights in data in order to make complex information

accessible and understandable. The definition of databases in the context of data

storytelling could be expressed as a source of truth from which narratives are

constructed in data storytelling. As a result of enabling the extraction of meaningful

patterns and trends, databases make it easy for storytellers to tell narratives that are in

tune with their audiences. In a nutshell, databases, by providing the raw material for

these stories, lie at the heart of this process.

�Diving into SQL
In the 1970s, the creation of SQL marked a pivotal moment in the evolution of data

storage and retrieval. Over the decades, SQL evolved from a simple query language to

a tool for professionals working with data. The journey of SQL began in the early 1970s

at IBM, where researchers Donald D. Chamberlin and Raymond F. Boyce developed

a prototype called SEQUEL (Structured English Query Language). This prototype was

designed to manipulate and retrieve data stored in IBM’s early relational database

management system. The language was late renamed SQL to avoid brand-name issues.

By the late 1970s and early 1980s, SQL had been adopted as the standard language for

RDBMSs. Since then, SQL has undergone several revisions to include updated features

and capabilities. These features include support for XML data, window functions, and

expanding its utility and efficiency in managing diverse data types and complex queries.

SQL allows users to interact with databases to perform operations such as querying,

updating, inserting, and deleting data.

�SQL Command Types: The Five Principles
of Database Interaction
There are five distinct types of commands in SQL, each of which performs a specific

function when it comes to managing and manipulating data. These categories are Data

Definition Language (DDL), Data Manipulation Language (DML), Data Control Language

(DCL), Transaction Control Language (TCL), and Data Query Language (DQL).

Chapter 1 The Storyteller’s Database

7

•	 Data Definition Language (DDL): DDL commands are used to

define, alter, and manage the schema and structure of database

objects like tables, indexes, and views. These commands do not

manipulate the data itself but instead shape the “containers” that

hold the data, allowing for the creation and modification of database

structures.

•	 Data Manipulation Language (DML): DML commands are likely

to be the most frequently used, as they deal directly with data

manipulation within existing database structures. They enable users

to insert, update, delete, and manage the database data.

•	 Data Control Language (DCL): DCL commands are focused on

permissions and access control for database objects. For security and

confidentiality, these commands are crucial in multi-user databases.

•	 Transaction Control Language (TCL): TCL commands manage

the changes made by DML operations as transactions, which are

either completely processed or not processed at all, ensuring data

consistency and integrity. These commands allow users to commit or

roll back changes to the database.

•	 Data Query Language (DQL): DQL deals with retrieving data and is

primarily represented by the SELECT command, which queries data

from tables within a database. DQL allows users to specify exactly

which data should be returned from the query, making it a powerful

tool for extracting and analyzing information stored in the database.

Figure 1-1 illustrates an overview of the SQL command types, indicating each

category along with its respective commands. This illustration serves as a guide,

mapping out the distinct SQL command types. This visualization not only aids in

understanding the functional divisions within SQL but also highlights the specific

operations that can be performed within each category.

Chapter 1 The Storyteller’s Database

8

Figure 1-1.  SQL command types

When it comes to data analysis, you will mainly be working with Data Manipulation

Language (DML) and Data Query Language (DQL) commands. These two types of SQL

commands are especially useful:

•	 Data Manipulation Language (DML):

	1.	 Insight extraction: DML commands are used to insert, update,

delete, and manage data within database tables. The primary

goal of data analysis is to extract insights from data rather than

modify it.

	2.	 Data preparation: Before analyzing data, it often needs to

be cleaned and preprocessed. DML commands like UPDATE

can correct data errors, and DELETE can remove irrelevant or

duplicate records. Data preparation is crucial for accurate

analysis.

Chapter 1 The Storyteller’s Database

9

	3.	 Inserting data: The INSERT command is useful for adding new

data to the database, which might be needed for analysis. This

could include new data points, calculated metrics, or results from

previous analyses that you want to store for future use.

•	 Data Query Language (DQL):

	1.	 Data retrieval: The essence of data analysis in SQL environments

is to query the database for specific datasets. SELECT allows you

to specify exactly which data to retrieve, including which tables to

source from and under what conditions.

	2.	 Data aggregation and filtering: SELECT queries can be

augmented with clauses like WHERE, GROUP BY, and HAVING. They

filter data, aggregate it (e.g., finding averages, sums, counts), and

select data that meets certain conditions. These operations are

fundamental to data analysis, enabling analysts to explore trends,

patterns, and outliers in the data.

	3.	 Joining tables: Data analysis often requires combining data

from multiple tables to get a complete picture. The SELECT

command can join tables based on specific criteria, enabling

comprehensive analysis across diverse datasets.

•	 Both DML and DQL:

	1.	 Flexibility in data handling: DML provides the flexibility to

manipulate data as needed for analysis, ensuring the dataset is

accurate and relevant. DQL offers the tools to dig into that data,

pulling out the insights and information critical to informed

decision-making.

	2.	 Basis for advanced analysis: While other SQL commands

focus on database structure and access control, DML and DQL

are directly concerned with the data itself. Mastery of these

commands allows analysts to extract and manipulate data.

	3.	 Data integrity: While DML helps maintain the quality and relevance

of the dataset, DQL ensures that the integrity of the data is preserved

during analysis. By using DQL, analysts can perform read-only

operations that don’t risk altering or damaging the underlying data.

Chapter 1 The Storyteller’s Database

10

DML and DQL are essential for data analysis. DML prepares the data landscape for

analysis, ensuring that it is clean and current, whereas DQL enables analysts to query,

aggregate, and interpret the data to derive actionable insights from it. Together, they

form the backbone of data analysis in SQL databases.

�Transaction Statements vs Query Statements
in Data Analysis
The distinction between transaction statements and query statements in SQL refers to

two fundamental aspects of data analysis: managing the integrity of data operations and

gaining insights.

�Transaction Statements in Data Analysis

Transaction statements, which manage how data changes are applied or reverted,

play a crucial role in ensuring the integrity and consistency of the data throughout the

analysis process. When multiple operations are performed, transaction statements allow

analysts to maintain consistent data states. For instance, updating a database to correct

errors or reflect new information in a transaction ensures that all updates are applied

successfully, or none are applied at all. This prevents partial updates that could cause

data inconsistencies. Data analysts often need to experiment with data transformations

or corrections. Transactions provide safety (using BEGIN, COMMIT, and ROLLBACK), which

allows analysts to test changes without permanently altering the data until they are

certain of the results.

�Query Statements in Data Analysis

Query statements, focused on data retrieval, are the foundation of data analysis.

They enable analysts to explore, aggregate, and visualize data, extracting meaningful

insights. It is the process of exploring datasets in order to gain a better understanding of

underlying patterns, trends, and anomalies that constitutes the heart of data analysis.

Query statements (SELECT) allow analysts to sift through large volumes of data, filter

specific subsets, and perform complex joins across tables to gather comprehensive

insights.

Chapter 1 The Storyteller’s Database

11

�Integrating Transaction and Query Statements
in Data Analysis
While transaction statements provide a safe means of manipulating data, query

statements provide a means of extracting insights. In an organized data analysis

workflow, analysts may use transaction statements to prepare data for analysis (e.g.,

correcting, updating, or cleaning data), and query statements to extract insights from

the data once it has reached a reliable state. It should be noted that transactions can also

play a role in ensuring that the data manipulation steps are reproducible and reversible,

which is critical for verifying and validating the analysis results.

�Setting Up a Storytelling Environment
with PostgreSQL
Creating a storytelling environment with PostgreSQL involves setting up a database

system where data can be stored, manipulated, and queried to uncover and narrate

compelling stories hidden within data. PostgreSQL offers an ideal platform for data

analysis and storytelling. This section guides you through the initial steps to establish

such an environment, emphasizing the simplicity and power of PostgreSQL.

�Step 1: Installation
Download and install PostgreSQL. Download the PostgreSQL installer for your

operating system from the official PostgreSQL website. The installation process

is straightforward. Follow the on-screen instructions and make sure to note the

administrator password you set during installation as well as the default port on which

PostgreSQL will run (usually 5432).

�Step 2: Create Your First Database
Access PostgreSQL. After installation, access PostgreSQL through its command-line

interface (CLI) known as psql, or use a graphical user interface (GUI) tool. Both provide

comprehensive database management capabilities, with pgAdmin being more beginner-

friendly due to its visual nature.

Chapter 1 The Storyteller’s Database

https://www.postgresql.org/download/

12

Create a database. To create your first database, use the psql command-line

interface or pgAdmin. In PostgreSQL, you can create a database named storytelling_db

by executing this command:

CREATE DATABASE storytelling_db;

�Step 3: Define Data Structures
Create the tables. With your database in place, the next step is to define the structure

of your data by creating tables. For example, if you’re telling stories about customer

interactions, you might create a table called customers with fields for customer ID,

name, email, and interaction dates.

CREATE TABLE customers (
 customer_id SERIAL PRIMARY KEY,
 name VARCHAR(100),
 email VARCHAR(100),
 interaction_date DATE
);

Insert the data. Fill your table with initial data to start your analysis. INSERT

statements add records to your tables, laying the groundwork for your storytelling.

INSERT INTO customers (name, email, interaction_date) VALUES
('Jane Doe', 'jane.doe@email.com', '2022-01-01'),
('John Smith', 'john.smith@email.com', '2022-01-02');

The database, named storytelling_db, contains a table called customers. Table 1-2

illustrates the customers table, which was created to hold customer interaction

data. This table is structured to capture essential details about customers and their

interactions. The fields within the customers table are as follows:

•	 name: The customer’s name, stored as a variable character string

(VARCHAR) with a maximum length of 100 characters.

•	 email: The customer’s email address, also stored as a VARCHAR with a

maximum length of 100 characters.

•	 interaction_date: The date of the interaction with the customer,

stored as a DATE.

Chapter 1 The Storyteller’s Database

13

This structure allows you to store and query customer interaction data effectively.

The next section discusses the different data types of variables in SQL.

Table 1-2.  The Customer Table

customer_id Name Email interaction_date

1 Jane Doe jane.doe@email.com 2022-01-01

2 John Smith john.smith@email.com 2022-01-02

Setting up an environment using PostgreSQL is a crucial step. The initial steps in

creating a robust analysis and storytelling platform are installation, database creation,

data structuring, and querying. In the forthcoming chapters of this book, you are taken

on a detailed, step-by-step journey into the art of query writing. Through the examples

provided in the next chapters, you will develop SQL skills, from the basics to advanced

querying techniques.

�Data Types in SQL
Data types in SQL are an essential concept, defining the nature of data that can be stored

in a database column. Each data type in SQL ensures that data fits into predefined

formats, facilitating accurate data storage, retrieval, and analysis. To design and

manipulate databases effectively, it is crucial to be familiar with these data types. The

following are common data types available in SQL:

•	 Numeric data types:

	 INTEGER: A whole number, either positive or negative. Depending

on the database system, variations like INT, SMALLINT, TINYINT, and

BIGINT represent integers of different sizes.

	 DECIMAL and NUMERIC: These data types are designed to store exact

numeric data values. Defining DECIMAL or NUMERIC columns in SQL

allows analysts to specify precision and scale so that the database

handles numeric data precisely. Precision refers to the amount of

significant digits in a number, to both left and right of the decimal

point. It’s the total count of digits in the number. The scale specifies

the number of digits after the decimal point. It represents the fraction

part of the number and is a subset of the precision.

Chapter 1 The Storyteller’s Database

14

	 FLOAT, REAL, and DOUBLE PRECISION: Represent floating-point

numbers with varying levels of precision. Ideal for scientific

calculations where exact precision is not critical.

•	 String data types:

	 CHAR and CHARACTER: A fixed-length string. If the entered string is

shorter than the specified length, it will be right-padded with spaces.

	 VARCHAR and CHARACTER VARYING: Variable-length strings. Allows for

storing strings up to a specified maximum length.

	 TEXT: For large text data where the length might exceed the limits of

VARCHAR.

•	 Date and time data types:

	 DATE: Stores date values, including year, month, and day.

	 TIME: Stores time of day values.

	 TIMESTAMP: Combines date and time, capturing a specific moment

in time.

	 INTERVAL: Represents a span of time, useful for calculating

differences between dates or times.

•	 Boolean data type:

	 BOOLEAN: Represents logical Boolean values, typically as TRUE or FALSE.

•	 Binary data types:

	 BINARY and VARBINARY: Stores binary data, such as images or files, in

fixed-length or variable-length formats, respectively.

	 BLOB (Binary Large Object): For storing large binary data, like images,

videos, or documents.

•	 Specialized data types:

	 ENUM: A string object that can have only one value chosen from a list

of values defined at the table creation time.

	 ARRAY: Supports storing an array, which is an ordered collection of

elements, of a specified data type.

Chapter 1 The Storyteller’s Database

15

	 JSON and XML: For storing JSON or XML data, allowing for complex

data structures within a single database column.

	 UUID: Stores Universally Unique Identifiers.

•	 Geospatial data types:

	 POINT, LINESTRING, and POLYGON: Specific to databases that support

geospatial data for representing geographic shapes and locations.

It is important to choose the appropriate data type to optimize database storage,

performance, and data integrity. Consider your data characteristics and performance

requirements when designing your database schema.

The following are examples of each of the mentioned SQL data types, and they

illustrate how these data types can be used when creating a table.

•	 Numeric data types:

CREATE TABLE numeric_examples (
 id INT,
 small_number SMALLINT,
 big_number BIGINT,
 exact_amount DECIMAL(10, 2),
 approx_net_worth FLOAT
);

	 This query creates a table named numeric_examples with five

columns, each designated to hold numeric data of various types

and scales. The columns include an integer called id, a small

integer called small_number, a large integer called big_number,

a precise decimal called exact_amount suitable for financial

data, and a floating-point number called approx_net_worth for

approximate values.

•	 String data types:

CREATE TABLE string_examples (
 fixed_char CHAR(10),
 variable_char VARCHAR(100),
 long_text TEXT
);

Chapter 1 The Storyteller’s Database

16

	 This query creates a table named string_examples composed of

three columns designed to store string data in distinct formats. The

fixed_char column stores fixed-length strings of ten characters;

variable_char accommodates variable-length strings up to 100

characters; and long_text stores large text entries without a specified

maximum length.

•	 Date and time data types:

CREATE TABLE datetime_examples (
 birth_date DATE,
 appointment_time TIME,
 event_timestamp TIMESTAMP,
 duration INTERVAL
);

	 This query creates a table called datetime_examples, which is

designed to store various types of date and time information across

four columns. The table includes a birth_date column for dates, an

appointment_time column for times of the day, an event_timestamp

for date and time combinations, and a duration column to represent

time intervals.

•	 Boolean data type:

CREATE TABLE boolean_example (
 is_active BOOLEAN
);

	 This query generates a table named boolean_example that consists

of a single column, called is_active. The is_active column is

designed to store Boolean values, indicating a true or false state.

•	 Binary data types:

CREATE TABLE binary_examples (
 fixed_binary BYTEA,
 variable_binary BYTEA,
 large_object OID
);

Chapter 1 The Storyteller’s Database

17

	 This query constructs a table named binary_examples with three

columns designed to store binary data in various formats. It includes

a fixed_binary column for storing binary data using the BYTEA type,

which handles variable-length binary data. The variable_binary

column is also of type BYTEA, allowing flexible storage of binary data

without a predefined size limit. Finally, the large_object column is

used to store large binary objects (BLOBs) using the OID type, which

refers to large objects stored separately in PostgreSQL. With this

setup, different types of binary data can be managed efficiently in a

robust way.

•	 Specialized data types:

CREATE TYPE status_enum AS ENUM ('New', 'In Progress',
'Completed');

CREATE TABLE specialized_examples (
 status status_enum,
 number_series INTEGER[],
 user_profile JSON,
 unique_id UUID
);

	 In PostgreSQL, to define the ENUM type, you have to use CREATE
TYPE. In this query, the CREATE TYPE statement defines an ENUM type,

called status_enum, which can then be used in table definitions.

	 This query establishes a table called specialized_examples,

incorporating columns with specialized data types: status as an

ENUM to restrict values to specific states, number_series as an ARRAY

to store sequences of integers, user_profile for storing structured

JSON data, and unique_id to hold universally unique identifiers

(UUIDs).

Chapter 1 The Storyteller’s Database

18

Note  The -- symbol in SQL signifies the start of a single-line comment,
indicating that the text following it on the same line is not executed as part of the
SQL command and is used for annotations or explanations within the script.

In SQL, the semicolon (;) is a syntax element that serves several purposes,
including like statement terminator, batch processing, compatibility, and clarity.
In PostgreSQL, the use of semicolons is more strict compared to some other
database management systems like MySQL. In PostgreSQL’s interactive terminal
(psql), semicolons are generally required to terminate SQL statements. Without a
semicolon, the terminal waits for further input, assuming the statement is not yet
complete. In PostgreSQL, semicolons are required in interactive sessions (psql)
to execute statements, mandatory to separate multiple statements, necessary in
scripts to ensure each statement is processed correctly, and used in PL/pgSQL
code blocks to terminate individual statements.

Note  Geospatial types are specific to databases that support them, like
PostgreSQL with PostGIS.

•	 Geospatial data types:

CREATE TABLE geospatial_examples (
 location_point POINT,
 route LINESTRING,
 boundary POLYGON
);

	 This query creates a table named geospatial_examples in a database

system that supports geospatial data types, such as PostgreSQL

with the PostGIS extension, designed to store various types of

geographical data. The table includes three columns: location_
point for storing a single geographical point, route for a series of

connected points forming a line, and boundary for defining a closed

shape or area.

Chapter 1 The Storyteller’s Database

19

�Crafting the Narrative
Throughout the remainder of this book, each chapter will examine SQL operators

using a unique teaching methodology that combines data analysis and storytelling.

By exploring various SQL operators and their applications, each chapter will uncover

insights and create compelling narratives from data. By enhancing your technical skills

as well as your analytical thinking, you will be able to communicate complex data-driven

stories effectively.

As the name of this book indicates, narrative SQL refers to the process of

translating natural language queries into SQL commands. A natural language query

refers to a question or command expressed in everyday language that humans use

to communicate, rather than in a specialized programming or query language. This

enables users to interact with systems, databases, and computers by using human-like

sentences. In this book, you are invited on a journey through the world of data querying

and manipulation, where the complexities of SQL are unraveled in a narrative manner.

Following the adventures of a detective solving mysteries using SQL queries based

on data provided from a database. Each chapter is structured as a series of narratives,

making technical content approachable and memorable. Through the use of compelling

stories, this book will not only educate, but also inspire readers from all backgrounds to

learn SQL concepts and use them with confidence in their data-driven endeavors.

�Summary
This chapter began with the fundamentals of data and its storage in databases to

provide the foundations for mastering SQL through data storytelling. It explored the

distinctions between relational and non-relational databases and discussed why

PostgreSQL is particularly suited to learning SQL, with its robust features and strong

community support. Each section builds on the last, from understanding the various

SQL commands—categorized into DDL, DML, DCL, TCL, and DQL—to setting up a

PostgreSQL environment conducive to storytelling.

Chapter 1 The Storyteller’s Database

20

�Key Points

•	 Data: Data consists of a wide range of information types that can be

digitally stored, processed, and analyzed, serving as the foundation

for insights and decision-making.

•	 Databases: Databases can play a fundamental role in storing,

organizing, and managing data, setting the stage for effective data

analysis and storytelling.

•	 Relational vs. non-relational databases: Relational databases

organize data into tables linked by relationships, whereas non-

relational databases store data in a non-tabular form, in response to

diverse data storage needs.

•	 Choosing PostgreSQL: PostgreSQL offers robustness, a wide range

of features, as well as strong community support, making it a suitable

choice for learning and using SQL in data storytelling.

•	 Understanding SQL: SQL is an essential language for database

interaction, covering its significance in querying, updating, and

managing data.

•	 SQL command categories: SQL commands are categorized

into DDL, DML, DCL, TCL, and DQL, providing a foundational

understanding of their roles in database operations.

•	 Setting up a storytelling environment: Setting up a PostgreSQL

environment, from installation to creating their first database and

tables, enables data-driven storytelling.

•	 SQL data types: SQL data types (numeric, string, date and time,

Boolean, binary, and specialized types) enable accurate storing and

manipulating of data.

•	 Getting started with data analysis and storytelling: Through SQL

queries, a journey of uncovering patterns, trends, and insights begins

to lay the foundation for narratives.

Chapter 1 The Storyteller’s Database

21

�Key Takeaways

•	 Data and databases: Essential for storing and analyzing information,

which serves as the backbone for decision-making.

•	 PostgreSQL: Chosen for its robustness and suitability for educational

purposes in SQL and data storytelling.

•	 SQL basics: Covered the importance of SQL in database operations

and introduced the basic commands and data types.

As you’ve explored SQL, you’ve learned that it can be used not just to query data.

SQL can also tell compelling stories. After setting up the storytelling environment, you

are now ready to dive deeper into SQL’s complexities.

�Looking Ahead
As you move into the next chapter, “Starting with SELECT,” you will delve into how to

retrieve and manipulate data effectively using SQL’s most frequently used command.

This involves learning to craft precise SELECT statements to extract just the right data

needed for your narratives. This will set the stage for more advanced data manipulation

and analysis techniques.

Chapter 1 The Storyteller’s Database

23
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_2

CHAPTER 2

Starting with SELECT
In this chapter, you learn about the SQL command that is fundamental for retrieving

data from databases. This chapter demonstrates the versatility of the SELECT statement

by using narratives and practical examples to demonstrate how it is used in both simple

and complex data retrieval scenarios.

�Introduction to SELECT
The SELECT statement is one of the most fundamental and frequently used SQL

commands, standing at the heart of almost every query operation. For any SQL user, it

is an essential tool for retrieving data from databases. At its core, the SELECT statement

allows you to specify exactly what data you want to retrieve from which tables, and it can

be fine-tuned with various clauses to meet precise data retrieval needs. SELECT is not

just about pulling data from a database; it is about choosing the right pieces of data that

answer specific questions or fulfill particular informational needs. As a result, the SELECT

statement can transform raw data into meaningful information.

�The Importance of SELECT in Storytelling with Data
When it comes to data storytelling, SELECT goes beyond data retrieval to become a

tool that assists in narrative construction. Data storytelling is about weaving data

into a narrative that makes sense to the audience, helping them understand complex

information through real-world stories.

For instance, to extract the data points that form the basis of these stories, SELECT can

be used to extract a wide variety of data points. Consider a dataset that contains years

of sales data that was collected over a period of time. The SELECT command could be

used by a storyteller to retrieve total sales during major events or holidays and analyze

them. Careful selection of data can reveal more about consumer behavior during certain

https://doi.org/10.1007/979-8-8688-1560-7_2#DOI

24

periods. As a result of selecting specific data, storytellers can emphasize information that

illustrates trends, supports a hypothesis, or explains phenomena in a way that is visually

and contextually compelling.

�The Anatomy of a SELECT Statement
A SELECT statement’s structure and syntax are crucial to maximizing SQL’s power in data

retrieval and storytelling. This subsection breaks down the fundamental components of

the SELECT statement, including how to select columns and use aliases to make queries

more readable.

�Basic Structure and Syntax

The SELECT statement is used to query the database and retrieve specified data. At its

most basic, a SELECT statement must specify two key pieces of information: what you

want to select and from where. The syntax is easy to understand:

SELECT column1, column2, ...
FROM tableName;

In this structure:

•	 SELECT indicates that you are about to specify a list of columns or

expressions you want to retrieve.

•	 column1, column2, ... are the specific columns you want to select

from the database table. You can also use * character to select all

columns from a table.

•	 FROM tableName specifies the table from which to retrieve the data.

This simple syntax is the starting point for building more complex queries, including

those that filter, group, or sort data.

Chapter 2 Starting with SELECT

25

�The First Story: The Bookstore Anniversary
This story is based on a database named Customers. Each of the characters has a unique

background and story to tell. John Doe, Jane Smith, and Alice Johnson are regular clients

of a bookstore. The bookstore is celebrating its anniversary next month. This event

will be a success if its valued customers attend. This requires a personalized invitation

for each of registered customers, and the key information needed for these invitations

includes each customer’s full name and email address. Table 2-1 shows the table named

Customers.

Chapter 2 Starting with SELECT

26

Ta
bl

e
2-

1.
 T

he
 C

u
st

om
er

s
Ta

bl
e

Cu
st

om
er

ID
Fi

rs
tN

am
e

La
st

Na
m

e
Em

ai
l

Da
te

Of
Bi

rt
h

Ne
ig

hb
or

ho
od

Ad
dr

es
s

ZI
P

Co
de

Ph
on

e
Nu

m
be

r

1
Jo

hn
Do

e
jo
hn
do
e@
ex
am
pl
e.

co
m

19
80

-0
5-

15
Do

w
nt

ow
n

12
3

El
m

 S
t.

90
21

0
(5

55
) 3

21
-9

87
6

2
Ja

ne
Sm

ith
ja
ne
sm
it
h@
ex
am
pl
e.

co
m

19
75

-0
7-

20
M

id
to

w
n

45
6

Oa
k

Av
e.

90
21

2
(5

55
) 6

54
-1

23
4

3
Al

ic
e

Jo
hn

so
n

al
ic
ej
@e
xa
mp
le
.c
om

19
90

-1
1-

12
Ea

st
si

de
78

9
Pi

ne
 R

d.
90

21
3

(5
55

) 7
89

-2
34

2

Chapter 2 Starting with SELECT

27

�Selecting Columns from a Table
When constructing a narrative or conducting an analysis, you often need specific

pieces of data from one or more tables. Selecting specific columns allows you to focus

on the data relevant to your story or analysis. For instance, if you have a database table

named Customers that includes CustomerID, FirstName, LastName, Email, DateOfBirth,

Neighborhood, Address, Zip Code, and Phone Number, and your story or analysis only

needs to know about customer names and emails, the proper SELECT statement would

look something like this:

SELECT FirstName, LastName, Email
FROM Customers;

Table 2-2 shows the result of executing the query to select only the FirstName,

LastName, and Email columns.

Table 2-2.  The Result of the SELECT Query Execution

FirstName LastName Email

John Doe johndoe@example.com

Jane Smith janesmith@example.com

Alice Johnson alicej@example.com

�Introducing Aliases for Columns
Aliases in SQL are used to rename a column or table in the output of your SQL query.

They are particularly useful for making query results more readable. For example, using

Contact Email instead of just Email can significantly enhance clarity. The same applies

when joining multiple tables, which is covered in Chapter 4. It is also helpful to use

aliases when joining multiple tables with columns with the same name but with different

meanings. The AS keyword is used after the column name to define an alias. However,

the AS keyword is optional.

SELECT FirstName AS First, LastName AS Last, Email AS ContactEmail
FROM Customers;

Chapter 2 Starting with SELECT

https://doi.org/10.1007/979-8-8688-1560-7_4

28

In this query, FirstName, LastName, and Email are renamed to First, Last, and

ContactEmail, respectively, in the output. Aliases are especially useful in reports and

exported data, making them essential tools in data presentation and storytelling. See

Table 2-3.

Table 2-3.  The Result of the SELECT Along with

AS Query Execution

First Last ContactEmail

John Doe johndoe@example.com

Jane Smith janesmith@example.com

Alice Johnson alicej@example.com

�Introducing the CONCAT Function
To complete the process, the final step is to construct the following SQL query, which

concatenates the first and last names to retrieve the full name and email address.

SELECT CONCAT(FirstName, ' ', LastName) AS FullName, Email
FROM Customers;

This SQL statement utilizes the CONCAT() function to merge the FirstName

and LastName into a single FullName column, simplifying the presentation and

personalization of each invitation. By selecting only the FullName and Email columns,

this query efficiently pulls the essential information, ensuring that the process of creating

and sending invitations is streamlined and targeted. See Table 2-4.

Table 2-4.  The Result of the Query Execution of the

SELECT, AS, and CONCAT Functions

FullName Email

John Doe johndoe@example.com

Jane Smith janesmith@example.com

Alice Johnson alicej@example.com

Chapter 2 Starting with SELECT

29

This table efficiently presents the necessary information for sending the bookstore

anniversary invitations, presenting only the combined full names and email addresses of

each customer.

Note  CONCAT is a function in SQL, not an operation. It’s used to concatenate, or
join together, two or more strings into a single string. The CONCAT function is an
essential tool for combining data from different columns or for creating a formatted
output from multiple string fields in a database. The basic syntax of the CONCAT
function is as follows:

CONCAT(string_column_1, string_column_2, ..., string_
cloumn_N)

It should be noted that the CONCAT function in PostgreSQL can be used in a variety
of scenarios. However, there are specific cases where it may not be applicable or
where alternative methods might be more appropriate. The || operator is a standard
way to concatenate strings in PostgreSQL and can serve as an alternative to the
CONCAT function. For instance, consider the following example using the CONCAT
function:

SELECT CONCAT(string_column_1, string_column_2, ..., string_
column_N) AS concatenated_string

FROMyour_table;

Alternatively, it is possible to achieve the same result using the || operator, which is
a standard SQL method for string concatenation:

SELECT string_column_1 || string_column_2 || ... || string_
column_N AS concatenated_string

FROM your_table;

The || operator is widely supported across various SQL databases, making it a
more portable option compared to some proprietary functions like CONCAT. Both
approaches effectively concatenate strings, and the choice between them is
influenced by factors such as readability, performance considerations, and specific
database requirements.

Chapter 2 Starting with SELECT

30

�SQL Mathematical Operations with SELECT
In SQL, mathematical operations are crucial to transforming and analyzing data. These

operations enable you to perform calculations across your data columns, enhancing

the ability to communicate meaningful stories through numbers. This section explores

the basic mathematical operations available in SQL, illustrates these operations with a

summary table, and shows how these techniques can be applied to storytelling.

SQL supports a variety of mathematical operations that can be applied directly in the

SELECT statement. These include addition (+), subtraction (-), multiplication (*), and

division (/). Data manipulation can be performed directly within the database query

using these operations to compute new values from existing data. This query provides a

basic example of using mathematical operations to calculate a simple product:

SELECT column1, column1 * column2 as Product
FROM Table;

In this query, column1 and column2 are existing columns in Table, and Product is a

new column created in the output that contains the product of column1 and column2.

Table 2-5 summarizes some of the most commonly used SQL mathematical

operations.

Table 2-5.  An Illustration of the Most Useful SQL Mathematical Operations

Operation SQL Symbol Example Use Description

Addition + column1 + column2 Adds two columns together.

Subtraction - column1 - column2 Subtracts one column from another.

Multiplication * column1 * column2 Multiplies two columns.

Division / column1 / column2 Divides one column by another.

Modulus % column1 % column2 Divides one column by another and

returns the remainder.

These operations can be used to create derived columns and provide greater insight

into your data.

Chapter 2 Starting with SELECT

31

�The Second Story: The Bakery Sales Data
There is a small bakery that wants to analyze the sales data it has collected. They have a

table named Sales with columns like CustomerID, ProductName, Price, RegularPrice,

Discount, and Quantity. They raise the following questions in their analysis:

•	 Which flavor of donut is most popular?

•	 Who are our most frequent customers?

•	 How much revenue does each product generate?

Before answering each question, consider the Sales table, shown in Table 2-6.

Table 2-6.  The Sales Table

CustomerID ProductName Price Quantity RegularPrice Discount

743663 Glazed Donut 2.5 2 3.0 0.5

743663 Chocolate Muffin 3.0 1 3.0 0.0

223424 Blueberry Muffin 3.0 2 3.0 0.0

323423 Chocolate Chip Cookie 1.5 3 2.0 0.5

432424 Sugar Cookie 1.0 4 1.0 0.0

The first question can be answered with the following query. They can use a simple

SELECT statement in order to determine the most popular donut flavor.

SELECT ProductName, SUM(Quantity) AS TotalSold
FROM Sales
GROUP BY ProductName;

This query selects ProductName and calculates the total quantity sold using

SUM(Quantity) with an alias TotalSold. SUM() is a function in SQL used to calculate

the total of a numeric column in a table. It should be noted that this function calculates

the sum of all values in a specified numeric column and ignores NULL values by default.

In this query, GROUP BY ProductName groups all sales records by product name, so the

SUM(Quantity) calculates the total quantity sold for each unique product. This helps

summarize data per product instead of across the entire table. See Table 2-7.

Chapter 2 Starting with SELECT

32

Table 2-7.  The Result of First Question Query Execution

ProductName TotalSold

Chocolate Chip Cookie 3

Glazed Donut 2

Blueberry Muffin 2

Chocolate Muffin 1

Sugar Cookie 4

Note I n SQL, the GROUP BY clause is used to group rows that have the
same values in specified columns into summary rows. It’s commonly used
with aggregate functions like SUM(), AVG(), COUNT(), and MAX() to perform
calculations on each group of data. Chapter 5 covers the GROUP BY clause
in detail, while Chapters 5 and 10 cover a much broader range of aggregate
functions.

To answer the second question (most frequent customers), you could use the

following query:

SELECT CustomerID, COUNT(*) AS PurchaseCount
FROM Sales

This query selects Customer ID and counts the number of purchases using COUNT(*)

with an alias PurchaseCount. COUNT(*) in SQL is a function used to get the total number

of rows in a table. It should be noted that this function counts all rows in a table,

including duplicates and rows with NULL values.

Note  COUNT(*) is distinct from COUNT(column_name), which counts only
non-NULL values in a specific column. In SQL, the asterisk (*) is used to select all
columns. The asterisk represents all columns from a table. Using * in SELECT can
be inefficient for large tables, as it retrieves all the data. Consider selecting specific
columns for better performance.

Chapter 2 Starting with SELECT

https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_10

33

Table 2-8 shows the result of executing the query to select only the CustomerID and

PurchaseCount columns.

Table 2-8.  The Result of the Second Question Query Execution

CustomerID PurchaseCount

743663 2

223424 1

323423 1

432424 1

To answer the third question (how much revenue does each product generate), the

following query can be used:

SELECT
 CASE
 WHEN ProductName LIKE '%Donut%' THEN 'Donuts'
 WHEN ProductName LIKE '%Muffin%' THEN 'Muffins'
 ELSE 'Cookies'
 END AS Category,
 SUM(Price * Quantity) AS TotalRevenue
FROM Sales
GROUP BY
 CASE
 WHEN ProductName LIKE '%Donut%' THEN 'Donuts'
 WHEN ProductName LIKE '%Muffin%' THEN 'Muffins'
 ELSE 'Cookies'
 END;

This query is a bit more complex. It uses a CASE statement to categorize products

based on their names. It calculates total revenue using SUM(Price * Quantity). In order

to find the answer, the query analyzes product names and categorizes them into Donuts,

Muffins, or Cookies. Then, it multiplies the price of each item by the quantity sold and

adds them to get the total revenue generated by each category. In this way, the revenue

generated by each product category can be calculated.

Chapter 2 Starting with SELECT

34

It should be noted that the % symbol is a special character used to perform pattern

matching within strings. % represents any sequence of characters, zero or more

characters, within a pattern. For instance, %Donut% is a matching pattern. In this specific

case, the query is looking for any product name that contains the substring "Donut"

anywhere within it. So, it would match product names like "Glazed Donut" and

"Chocolate Donut with Sprinkles".

Finally, the GROUP BY clause is used with the same CASE expression to group the

records by their assigned category (Donuts, Muffins, or Cookies) before applying the SUM

function. This ensures correct revenue aggregates for each product category. Table 2-9

shows the result.

Table 2-9.  The Result of Third Question Query Execution

Category TotalRevenue

Donuts 5

Muffins 9

Cookies 8.5

As shown in Table 2-9, the CASE statement categorized the products. Products with

"Donut" in their name became Donuts, "Muffin" became Muffins, and everything

else became Cookies. SUM(Price * Quantity) calculated the total revenue for each

category.

�The CASE statement
The CASE statement in SQL acts like if-then-else logic for queries. It evaluates a series

of conditions and returns a corresponding value based on the first matching condition.

CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 ...
 ELSE result_else
END

Chapter 2 Starting with SELECT

35

•	 The WHEN statement specifies a condition to be evaluated. It can be

any valid SQL expression that returns a Boolean value (true/false).

•	 If the corresponding WHEN condition evaluates to true, this value is

returned by THEN.

•	 ELSE is an optional clause that provides a default result if none of

the WHEN conditions are met. If omitted and no condition is true, it

usually returns NULL.

For more complex queries, it is possible to nest CASE statements. You learn more

about CASE and nested CASEs in Chapter 8 in particular.

�String Patterns
A string pattern in SQL allows you to search and filter data based on specific patterns

within text columns. There are two common wildcards used in string patterns in SQL:

the % symbol, which represents any number of characters, and the _ symbol, which

represents a single character. These wildcards provide flexibility in searching and

filtering data based on varying patterns. Chapter 3 explores more complex examples of

string matching after you learn about the WHERE and LIKE statements.

Following the answers to the three questions, Sarah is in the process of preparing

for a promotional event. Her goal is to offer discounts on some items, but she is unsure

which ones would have the greatest impact on her customers. Ideally, she wants to target

items that are:

•	 Popular: Items with a high number of sales.

•	 Not already discounted: She does not want to discount already

discounted items.

To identify these ideal candidates for promotion, Sarah decides to analyze her sales

data. Using these two CASE statements, the following query can achieve this.

SELECT ProductName, Quantity,
 CASE
 WHEN Quantity >= (SELECT AVG(Quantity) FROM Sales) THEN 'Popular'
 ELSE 'Less Popular'

Chapter 2 Starting with SELECT

https://doi.org/10.1007/979-8-8688-1560-7_8
https://doi.org/10.1007/979-8-8688-1560-7_3

36

 END AS Popularity,
 �CASE WHEN RegularPrice > Price THEN 'Discounted' ELSE 'Regular Price' END
AS Price_Status

FROM Sales

In the first CASE, the average quantity is calculated using a subquery, and the item

is categorized based on whether it exceeds or equals the average quantity. The second

CASE statement checks the price status. This ensures that Sarah focuses on discounts

on popular items. If the item is Popular (based on the outer CASE) and the regular price

(RegularPrice) is greater than the current price (Price), it means the item is discounted.

If the item is Popular but doesn’t have a discount (regular price equals current price), it’s

categorized as Regular Price.

Note  Subqueries, or inner queries or nested queries, are powerful SQL tools for
embedding SELECT statements within each other. They are used to retrieve data
for the outer query. This type of queries are discussed in more detail in the next
chapters, as you become more aware of their importance.

Table 2-10 is the result of executing the query to select only the ProductName,

Quantity, calculated Popularity and PriceStatus columns.

Table 2-10.  The Result of Promotional Event Query Execution

ProductName Quantity Popularity PriceStatus

Glazed Donut 2 Less Popular Discounted

Chocolate Muffin 1 Less Popular Regular Price

Blueberry Muffin 2 Less Popular Regular Price

Chocolate Chip Cookie 3 Popular Discounted

Sugar Cookie 4 Popular Regular Price

Chapter 2 Starting with SELECT

37

�The Art of Distinct Selection
To create compelling narratives through data, it is essential to utilize the DISTINCT

keyword effectively. In SQL, the DISTINCT keyword refines data retrieval by ensuring that

query results contain unique values. It acts like a filter, eliminating duplicate rows that

might skew your analysis or storytelling. Here’s the basic syntax:

SELECT DISTINCT column
FROM table

This retrieves only unique values in the specified column from the table.

DISTINCT removes rows where all selected columns have identical values. For

example, if a table has CustomerID and OrderDate, DISTINCT CustomerID will return

each unique customer, even if they placed multiple orders.

The DISTINCT statement can ensure uniqueness across multiple columns when used

with a combination of columns. For instance, SELECT DISTINCT CustomerID, ProductID

will return only rows where the customer and product combinations are both distinct.

You can also combine DISTINCT with aggregation functions such as SUM to uncover

trends within your data.

�The Third Story: The Candy Store Sales Data
Phoebe is eager to extend her vibrant candy store overflowing with colorful treats.

Her sales report includes today’s purchases, and she is curious about her customers’

favorites. Table 2-11 shows the sales log.

Table 2-11.  The Sales Log

OrderID Candy Quantity

1 Gummy Bears 2

2 Lollipops 1

3 Gummy Bears 3

4 Chocolate Bars 2

5 Lollipops 2

6 Gummy Bears 1

Chapter 2 Starting with SELECT

38

The log shows every sale, but not the unique candies her customers crave. The

magnifying glass she needs is DISTINCT:

SELECT DISTINCT Candy
FROM sales_log

This query uncovers the data in Table 2-12.

Table 2-12.  Unique Candies from

the Sales Log Table

Candy

Gummy Bears

Lollipops

Chocolate Bars

Note  Using DISTINCT on large datasets can impact performance. It is
important to consider whether you really need all possible combinations or if
filtering beforehand is sufficient. The upcoming chapters discuss data filtering in
more detail.

�Aggregating with SELECT
In SQL, aggregate functions are essential for calculating characteristics of a dataset

and producing a single value that summarizes their characteristics. These functions

allow analysts to extract more meaning from the data, transforming raw data into useful

insights that support decision-making and storytelling. Data analysis in SQL depends

heavily on aggregate functions, which allow computations across large volumes of data

in order to create efficient summaries and high-level overviews.

Chapter 2 Starting with SELECT

39

�Differences Between Regular Arithmetic Functions
and Aggregate Functions in SQL
Regular arithmetic functions in SQL are useful for manipulating data within individual

rows. They perform calculations like addition, subtraction, multiplication, and more,

transforming or combining values on a row-by-row basis. Aggregate functions, on the

other hand, take a broader view. Summarizing entire groups of data is one of their

strengths. The COUNT, SUM, AVG, MIN, and MAX functions combine multiple rows into a

single, meaningful value, revealing total quantities, averages, and high and low values

within a specific column. In contrast to regular arithmetic functions, aggregate functions

help you identify trends and patterns across your data.

The following lists describe some of the key differences between regular arithmetic

functions and aggregate functions in SQL.

Regular arithmetic functions:

•	 Purpose: Perform calculations on a row-by-row basis. They

manipulate data within a single row or combine values from multiple

columns within a row.

•	 Examples: +, -, *, /, MOD (modulo), ROUND, SQRT, ABS (absolute value),

and so on.

•	 Output: They return a single value for each row processed in

the query.

•	 Focus on individual values: They operate on individual values

within a row, transforming or combining them as needed.

Aggregate functions:

•	 Purpose: Summarize data by performing calculations on entire

groups of values. They condense multiple rows into a single,

meaningful value.

•	 Examples: SUM, COUNT, AVG, MIN, and MAX.

•	 Output: They return a single value that represents the overall result of

the calculation across a group of rows.

Chapter 2 Starting with SELECT

40

•	 Focus on summarization: They focus on providing a summary

statistic (total, average, minimum, maximum, etc.) for the data in a

specific column or set of columns.

Table 2-13 summarizes the differences between regular arithmetic functions and

aggregate functions.

Table 2-13.  Differences Between Regular Arithmetic Functions and

Aggregate Functions

Feature Regular Arithmetic Functions Aggregate Functions

Purpose Row-by-row calculations Summarize data groups

Input Values within a row Groups of rows

Output Single value per row Single value

Focus Individual values manipulation Summarization

As an example, to illustrate the difference between these two, consider the Orders

table shown in Table 2-14, with the OrderID, CustomerID, and Amount columns.

Table 2-14.  The Orders Table

OrderID CustomerID Amount

1 101 100

2 102 50

3 103 75

4 101 275

This query calculates a 10 percent discount for each order row-by-row

multiplication, as shown in Table 2-15:

SELECT OrderID, CustomerID, Amount, Amount * 0.1 AS Discount
FROM Orders;

Chapter 2 Starting with SELECT

41

Table 2-15.  Discount Added to the Orders Table

OrderID CustomerID Amount Discount

1 101 100 10

2 102 50 5

3 103 75 7.5

4 101 275 27.500

This query calculates a 10 percent discount for each order by multiplying the Amount

by 0.1 and adds a new column named Discount to the result set.

The following query uses aggregate functions to get the total number of orders

(COUNT(*)) and the total sales amount (SUM(Amount)) for all orders.

SELECT
 CustomerID,
 COUNT(*) AS TotalOrders,
 SUM(Amount) AS TotalSales
FROM Orders
GROUP BY CustomerID;

As shown in Table 2-16, this query uses aggregate functions to get the total number

of orders and the total sales amount for all orders.

Table 2-16.  The Total Number of Orders and

Total Sales Amount for All Orders

Customerid TotalOrders TotalSales

101 2 375.00

102 1 50.00

103 1 75.00

Chapter 2 Starting with SELECT

42

Table 2-17 illustrates a number of primary aggregate functions that play pivotal roles

in data analysis in SQL.

Table 2-17.  A Number of Primary Aggregate Functions

 Aggregate Function Description

COUNT Used to count the number of items in a particular column or dataset,

helping determine the size, extent, or frequency of various categories

within the data. For example, COUNT can tell how many books are in

each category of a bookstore’s inventory, providing a quantitative base

for inventory management decisions.

AVG Used to calculate the average value of a numeric column, which is

crucial for understanding typical values when dealing with variables

such as prices, ages, or any measurable quantities where averages

can provide insights into normal behavior or expected outcomes. For

instance, determining the average number of pages in their books can

help publishers understand typical publication lengths within genres.

MAX Finds the highest value in a column. This is particularly useful when you

need to identify peaks or maximum levels in datasets, such as finding

the most expensive item sold in a store or the highest score achieved

by an individual. MAX can highlight outliers or exceptional cases in data

analysis.

MIN Conversely, the MIN function determines the lowest value in a column. It

can be crucial for identifying the least extreme cases, such as the least

costly product, which could be useful for businesses looking to market

entry-level options to customers.

STDDEV Computes the standard deviation of a specified numeric column, which

measures the amount of variation or dispersion of a set of values. Useful

in quality control, finance, and any field where variability is key to the

analysis.

VAR Calculates the variance of a specified numeric column, similar to

STDDEV, but gives the square of the dispersion. This is critical in

financial and scientific calculations where understanding variability is

essential.

Chapter 2 Starting with SELECT

43

�The Fourth Story: Analysis of Social Media Hashtags
Jacob is a data analyst at a social media company who is responsible for analyzing the

hashtag usage in user posts over the past year. A table called HashtagUsage (shown in

Table 2-18) logs every hashtag used, the number of likes each post received, and the

number of comments each post received.

Table 2-18.  The HashtagUsage Table

Hashtag Likes Comments

#adventure 150 30

#adventure 200 45

#foodie 300 60

#travel 250 50

#foodie 180 20

#staycation 190 40

Jacob aims to answer these four questions using this data:

•	 How many hashtag entries have been recorded so far?

•	 For a general idea of how much engagement is going on, how many

likes and comments are generated per hashtag?

•	 What is the maximum engagement rate to the popular likes and

comments?

•	 What is the minimum engagement to identify less popular or

ineffective hashtags?

The following query can generate a baseline understanding of how hashtags are

utilized:

SELECT COUNT(*) AS TotalHashtags
FROM HashtagUsage;

Chapter 2 Starting with SELECT

44

This result tells Jacob that there are six entries in the HashtagUsage table. See

Table 2-19.

Table 2-19.  Total Hashtags

TotalHashtags

6

Note W hen counting total hashtag entries using the COUNT function, it’s
important to consider the uniqueness of the values in the Hashtag column. If the
Hashtag values are not unique, and you are interested in knowing the number of
distinct hashtags used rather than the total number of hashtag occurrences, you
should use the DISTINCT keyword within the COUNT() function. For example,
COUNT(DISTINCT Hashtag) will count only unique hashtag entries, ensuring
that each hashtag is counted only once regardless of how many times it appears in
the dataset. This approach is crucial when analyzing data for diversity in hashtag
usage, as it provides a more accurate reflection of the range of distinct tags used
across posts, rather than merely quantifying their total use.

SELECT COUNT(DISTINCT Hashtag) AS DistinctHashtags

FROM HashtagUsage;

As a result of this query, the number of unique hashtags will be returned,
regardless of how many times each appears in the table.

The following query calculates the average number of likes and comments per

hashtag to determine the general level of engagement with each hashtag.

SELECT AVG(Likes) AS AverageLikes, AVG(Comments) AS AverageComments
FROM HashtagUsage;

Table 2-20 shows that on average, hashtags got about 211.67 likes and 40.83

comments.

Chapter 2 Starting with SELECT

45

Table 2-20.  Average Likes and Comments

AverageLikes AverageComments

211.67 40.83

To see peak engagement and the maximum likes and comments any hashtag has

received, you can view the highest points of user interaction with this query.

SELECT MAX(Likes) AS MaxLikes, MAX(Comments) AS MaxComments
FROM HashtagUsage;

Table 2-21 indicates that the maximum likes and comments any single hashtag

received are 300 and 60, respectively.

Table 2-21.  Maximum Likes and Comments

MaxLikes MaxComments

300 60

To understand the least interaction some hashtags receive and the minimum

engagement, the following query can identify the less popular or ineffective tags:

SELECT MIN(Likes) AS MinLikes, MIN(Comments) AS MinComments
FROM HashtagUsage;

Table 2-22 shows that the minimum likes and comments recorded are 150 and 20,

respectively.

Table 2-22.  Minimum Likes and Comments

MinLikes MinComments

150 20

By using the total hashtag usage data and the queries, Jacob discovers likes

(AverageLikes) and comments (AverageComments), as well as the peak of user

engagement in posts with likes (MaxLikes), comments (MaxComments), likes (MinLikes)

and comments (MinComments).

Chapter 2 Starting with SELECT

46

Data analysts and business intelligence professionals rely on these aggregate

functions in SQL. They enable the preparation of reports and analytics that

communicate the most relevant statistical highlights of large datasets. As these

functions are integrated into data storytelling, they help to create a narrative that is both

compelling and based on quantitative evidence, thereby enhancing the informational

value of the story. These aggregate functions—as well as other aggregate functions

introduced in following chapters—will be used to create narratives in the following

chapters.

�Summary
The purpose of this chapter was to uncover the profound capabilities of SQL in data

storytelling by exploring the SELECT statement and its extensions. This chapter explained

how to enhance queries with aliases, combine data creatively using CONCAT, and apply

mathematical logic directly within SQL. As a result of the introduction of the CASE

and DISTINCT selections, you are now equipped with additional tools for efficiently

segmenting and analyzing your data.

�Key Points

•	 SELECT: A SQL command used to retrieve rows selected from one or

more tables in a database.

•	 Aliases: Alternative names given to a table or a column in an SQL

statement to simplify query readability or to resolve naming conflicts.

•	 The CONCAT function: A function in SQL that merges two or more

strings into one, allowing for dynamic string construction within

queries.

•	 SQL mathematical operations: Operations that perform regular

arithmetic calculations like addition, subtraction, multiplication, and

division directly on database columns to manipulate numeric data.

•	 CASE: A conditional expression in SQL that allows for different

outputs in a query, based on specified conditions, similar to if-then

logic in programming.

Chapter 2 Starting with SELECT

47

•	 DISTINCT: A keyword in SQL used to return only distinct (different)

values within a column, eliminating duplicate entries in query

results.

•	 Aggregate functions: Functions in SQL that perform a calculation on

a set of values and return a single value, commonly used for statistical

analysis over data groups, such as SUM(), AVG(), MIN(), MAX(), and

COUNT().

During this SQL journey, I encourage you to experiment with these tools as you

develop your data projects.

�Key Takeaways

•	 Versatility of SELECT: The SELECT statement is the cornerstone of

SQL querying, allowing you to retrieve precisely the data you need

from a database.

•	 Using aliases: Aliases simplify queries and improve the readability of

the results. They are especially useful in reports and complex queries

involving multiple tables or when column names are lengthy or not

understandable.

•	 The power of CONCAT: The CONCAT function is a powerful tool for

merging columns and text within SQL queries, enabling the creation

of new, meaningful strings that can enhance data interpretation and

storytelling.

•	 Mathematical operations: SQL allows for direct mathematical

manipulations within the SELECT statement, facilitating immediate

calculations.

•	 Conditional logic with CASE: The CASE statement enriches SQL

queries by introducing conditional logic directly into SELECT

statements.

Chapter 2 Starting with SELECT

48

•	 Importance of distinct selection: Using DISTINCT helps ensure

that query results contain unique data points, which is crucial for

accurate reporting and analysis, avoiding data redundancy and

skewing.

•	 Aggregate functions: Functions like COUNT, AVG, MAX, MIN, and others

provide statistical insights directly from the database and are crucial

for summarizing data and drawing meaningful conclusions for

strategic decision-making.

You will learn advanced SQL topics as you progress through the chapters. This will

enable you to develop insights that help you make decisions.

�Looking Ahead
As you move to the next chapter, “Filtering Facts with WHERE,” you will learn about

another of SQL’s most frequently used commands. This chapter explains how to craft

precise WHERE statements to filter data based on specific conditions. It will allow you to

refine your datasets and extract even more targeted insights, which will enable you to tell

deeper stories with your data.

�Test Your Skills

	 1.	 A popular video rental store wants to create a report displaying

movie titles, release years, and rental categories. The classification

of some movies has not yet been completed. Write a query that

retrieves the Title and ReleaseYear and adds a column named

Category. Using CASE, it is possible to assign categories according

to release year. Movies released before 1990 are Classic; movies

released from 1991 to 1999 are the 90s; and movies released after

2000 are labeled Twenty-first century.

	 2.	 A fitness instructor wants to analyze workout data using a table

that stores UserID, DistanceWalked, and TimeSpentWalking.

For each user, they want to calculate the average walking speed,

distance divided by time. Write a query that retrieves the UserID,

Chapter 2 Starting with SELECT

49

DistanceWalked, and TimeSpentWalking, and adds a column

named AverageSpeed, calculated by dividing DistanceWalked by

TimeSpentWalking.

	 3.	 An online clothing store manager uses a database to track the

OrderID, CustomerID, and OrderValue. The manager wants to

know the total number of orders, the average order amount,

and the order with the highest total. Write a query to satisfy this

request.

Chapter 2 Starting with SELECT

51
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_3

CHAPTER 3

Filtering Facts with
WHERE
The WHERE clause is a crucial feature of SQL. It specifies the conditions under which

rows should be selected, updated, or deleted. As a result of this statement, the records

returned from a query are filtered based on whether certain conditions are true. This

allows you to refine your searches to a subset of data within a larger dataset, so that

operations are only performed on data entries that meet specific criteria.

�Introduction to WHERE
As mentioned earlier, a SQL statement is the first step in building a query. The process

of asking SQL to perform a specific task begins with the creation of a statement. As

mentioned earlier, the four basic statements in SQL are SELECT, UPDATE, DELETE, and

INSERT. A clause is a component of a SQL statement that specifies conditions or modifies

the statement’s action. Data can be filtered, sorted, or grouped using clauses. Clauses

specify what data is retrieved or manipulated and how it should be processed. One of

the commonly used clauses, WHERE, is discussed in this chapter. The WHERE clause acts

like a filter, allowing you to select only specific records from a table that meet certain

conditions. This is incredibly useful for narrowing down large datasets to find the

information you need.

�The Importance of WHERE in Storytelling with Data
In the process of effective data storytelling, the WHERE clause plays a fundamental part

in crafting narratives that are based on specific parts of the data. The clause enables

storytellers to zoom in on data that reveals patterns and create targeted narratives that

are more engaging and informative.

https://doi.org/10.1007/979-8-8688-1560-7_3#DOI

52

�The Anatomy of a WHERE clause
The WHERE clause typically follows the FROM clause in a SQL statement. It can include

multiple conditions combined with logical operators such as AND, OR, and NOT. Each

condition in the WHERE clause can also use functions and subqueries to further refine the

filtering criteria. This allows for complex and dynamic data retrieval strategies tailored to

specific storytelling needs. Basically, it has the following syntax:

SELECT column1, column2, ...
FROM table_name
WHERE condition

Where column1, column2, ... are columns or fields that you want to retrieve,

table_name is the name of the table from which the data is retrieved, and condition

is the criteria for a row to be included in the result set. This condition can include

comparisons like equals (=), not equals (<> or !=), greater than (>), less than (<), and

many others. Table 3-1 summarizes the most commonly used comparison operators

in the WHERE clause. They are essential for filtering data based on specific criteria by

comparing column values and constants or between columns themselves.

Table 3-1.  SQL Comparison Operators for the WHERE Clause

Operator Description Example Use

= Equal to WHERE age = 30

!= Not equal to WHERE age != 30

Not equal to WHERE age <> 30

> Greater than WHERE age > 30

< Less than WHERE age < 30

>= Greater than or equal to WHERE age >= 30

<= Less than or equal to WHERE age <= 30

BETWEEN Between an inclusive range WHERE age BETWEEN 25 AND 35

LIKE Search for a pattern WHERE name LIKE 'J%'

IN Match any of a list of values WHERE age IN (20, 30, 40)

IS NULL Matches if the column is NULL WHERE name IS NULL

Chapter 3 Filtering Facts with WHERE

53

�The First Story: The Online Shop
Alex manages an online shop that has experienced rapid growth over the past year. As

the business expands, Alex finds it increasingly important to make data-driven decisions

to enhance customer satisfaction. He needs to analyze various aspects of the shop’s

performance, from understanding customer behavior to monitoring order statuses. The

online shop has a database that contains a table called Orders. Table 3-2 illustrates the

Orders table.

Table 3-2.  The Orders Table

OrderID CustomerID OrderDate TotalAmount Status

1 10 2023-05-01 120.00 Delivered

2 20 2023-05-02 75.00 Shipped

3 10 2023-05-03 200.00 Pending

4 30 2023-05-04 150.00 Canceled

5 20 2023-05-05 500.00 Delivered

6 30 2023-05-01 60.00 Pending

To analyze various aspects of the shop’s performance, Alex is seeking answers to the

following questions:

•	 Alex wants to find all orders with a total amount greater than $100.

•	 He wants to select all orders with a status of Shipped.

•	 He needs to find all orders placed on a specific date, 2023-05-01.

•	 He needs to find all orders with a total amount greater than $200 and

with the Delivered status.

•	 He wants to select all orders that are either in Pending status or have

a total amount greater than $500.

•	 He wants to find all orders placed on 2023-05-01 with a total amount

between $50 and $150.

Chapter 3 Filtering Facts with WHERE

54

The following SQL queries will be used to answer each of these questions.

First, the following query retrieves all orders with a total amount greater than $100.

A query such as this may be useful in identifying high-value transactions, which might

indicate significant purchases or significant customers:

SELECT *
FROM Orders
WHERE TotalAmount > 100;

Table 3-3 shows the resulting table, which provides all orders with a total amount

greater than $100.

Table 3-3.  All Orders with a Total Amount Greater Than $100

OrderID CustomerID OrderDate TotalAmount Status

1 10 2023-05-01 120.00 Delivered

3 10 2023-05-03 200.00 Pending

4 30 2023-05-04 150.00 Canceled

5 20 2023-05-05 500.00 Delivered

The following query can be used to filter orders that are currently in the Shipped

status. By using this query, it is possible to track orders that are on their way to customers

but have not yet been delivered:

SELECT *
FROM Orders
WHERE Status = 'Shipped';

Table 3-4 illustrates orders that have been loaded.

Table 3-4.  Orders That Have Been Loaded

OrderID CustomerID OrderDate TotalAmount Status

2 20 2023-05-02 75.00 Shipped

Chapter 3 Filtering Facts with WHERE

55

The following query retrieves all orders placed on May 1, 2023. For the purpose of

analyzing sales activity on a particular day, it is useful.

SELECT *
FROM Orders
WHERE OrderDate = '2023-05-01';

Table 3-5 shows all the orders placed on May 1, 2023.

Table 3-5.  Orders Placed on May 1, 2023

OrderID CustomerID OrderDate TotalAmount Status

1 10 2023-05-01 120.00 Delivered

6 30 2023-05-01 60.00 Pending

Dates play a crucial role in data analysis with SQL, providing insight into trends,

patterns, and behaviors over time. The results presented in Table 3-5 provide Alex with

an opportunity to analyze date-based data for his next analytical task.

Note  Dates are crucial in SQL for filtering, sorting, and aggregating time-based
data. An accurate and meaningful query result depends on the proper handling of
dates. It should be noted that SQL provides various functions to manipulate dates,
including NOW(), CURDATE(), DATEADD(), DATEDIFF(), and DATE_FORMAT().
These functions help perform operations like getting the current date, adding or
subtracting dates, calculating differences, and formatting dates. Also, SQL mostly
stores dates in a standard format, such as YYYY-MM-DD, to avoid inconsistencies
and ensure compatibility across different systems. However, it is possible to use
date functions to extract parts of dates for comparison. For example, you can use
YEAR(OrderDate) = 2023 to filter records by year.

There are a number of common mistakes when dealing with dates in SQL. It is
possible to have format inconsistencies when storing dates as strings. Thus, it is
highly recommended to use proper date data types like DATE, DATETIME, and
TIMESTAMP. Additionally, you must be careful when dealing with timezones and
using either a TIMESTAMP or a DATETIME. In order to avoid discrepancies, it
is critical that the database and application are aligned on the same time zone.

Chapter 3 Filtering Facts with WHERE

56

Another common error when dealing with dates in SQL is comparing dates. It
is possible to obtain unexpected results if the time component is ignored. For
instance, WHERE OrderDate = '2023-05-01' might miss records with
timestamps. It is recommended to use DATE(OrderDate) = '2023-05-01' to
ignore the time part.

The following query considers multiple conditions to retrieve all orders with a total

amount greater than $200 that were received by customers. This query identifies orders

with a total amount greater than $200 placed by customers who received their order. This

allows Alex to segment his high-value customers.

SELECT *
FROM Orders
WHERE TotalAmount > 200 AND Status = ‘Delivered’;

Table 3-6 shows all received orders with a total amount greater than $200.

Table 3-6.  Received Orders with a Total Amount Greater Than $200

OrderID CustomerID OrderDate TotalAmount Status

5 20 2023-05-05 500.00 Delivered

The following query finds all orders that are either in Pending status or have a total

amount greater than $500, thus highlighting ongoing or exceptionally large transactions.

SELECT *
FROM Orders
WHERE Status = 'Pending' OR TotalAmount > 500;

Table 3-7 indicates all orders that are either in Pending status or have a total amount

greater than $500.

Chapter 3 Filtering Facts with WHERE

57

Table 3-7.  Orders That Are in Pending Status or Have a Total Amount Greater

Than $500

OrderID CustomerID OrderDate TotalAmount Status

3 10 2023-05-03 200.00 Pending

6 30 2023-05-01 60.00 Pending

The following query filters orders made on May 1, 2023, where the total amount is

between $50 and $150. This query is useful in analyzing moderate transactions on a

particular date:

SELECT *
FROM Orders
WHERE OrderDate = '2023-05-01' AND TotalAmount BETWEEN 50 AND 150;

In SQL, the BETWEEN operator is used to filter the result set based on a specified range

of values. Depending on the context, this range may include numeric, date, or even text

values. As the BETWEEN operator is inclusive, it includes both the start and end values.

For instance, here, TotalAmount is the column we are filtering, and 50 and 150 define the

range. The result will include rows where TotalAmount has values between 50 and 150,

inclusive.

Note  Using BETWEEN makes queries easier to read and understand than when
using multiple conditions (e.g., >= and <=). BETWEEN includes boundary values.
To create an exclusive range, you must use < and >. Additionally, it is necessary to
ensure that the data types of the column and the values are the same. It is possible
to encounter unexpected results or errors when data types are out of alignment.

It is important to point out some common mistakes associated with the use of
BETWEEN. When dealing with ranges in a large dataset, forgetting that BETWEEN
includes both endpoints can lead to off-by-one errors. Also, using incorrect date
formats can lead to wrong results or errors. Always use the proper date format
supported by your SQL database system.

Chapter 3 Filtering Facts with WHERE

58

Table 3-8 shows moderate transactions (between $50 and $150) as of May 1, 2023.

Table 3-8.  Transactions Between $50 and $150 on May 1, 2023

OrderID CustomerID OrderDate TotalAmount Status

1 10 2023-05-01 120.00 Delivered

6 30 2023-05-01 60.00 Pending

In the process of executing the queries, Alex gained valuable insight into the

operation and behavior of the online shop. He identified high-value transactions by

filtering orders, highlighting significant purchases that contributed substantially to

revenue. Through the examination of orders placed on specific dates, he was able

to identify potential promotional success dates, such as May 1, 2023, which was a

significant shopping day.

The analysis of order statuses revealed the efficiency of the shipping process

and areas needing improvement, with insights into pending and delivered orders.

Combining multiple conditions in queries allowed Alex to determine specific customer

segments, such as high-value customers, and understand their purchasing patterns.

These insights empowered Alex to make data-driven decisions, optimize inventory

management, enhance customer satisfaction, and tailor marketing strategies to boost

overall sales and operational efficiency.

�Advanced Filtering
It is often difficult to interpret data, regardless of how vast it is. Fortunately, SQL offers

powerful tools that enable you to unlock its mysteries. In this section, you learn about

advanced filtering techniques.

�Using WHERE with Dates
Filtering records based on date conditions is a fundamental skill in SQL, especially

crucial for handling time-series data. Dates are often used in reporting, trend analysis,

and forecasting. The WHERE clause enables precise filtering by specific dates or ranges,

allowing meaningful insights from temporal data. Table 3-9 outlines the key aspects of

working with dates in SQL, including the most common functions and operations.

Chapter 3 Filtering Facts with WHERE

59

Ta
bl

e
3-

9.
 S

Q
L

D
at

e
H

an
dl

in
g

Op
er

at
io

n
De

sc
rip

tio
n

Ex
am

pl
e

Us
e

CU
RR
EN
T_
DA
TE

Re
tu

rn
s

th
e

cu
rr

en
t d

at
e.

SE
LE
CT
 C
UR
RE
NT
_D
AT
E;

CU
RR
EN
T_
TI
ME
ST
AM
P

Re
tu

rn
s

th
e

cu
rr

en
t d

at
e

an
d

tim
e.

SE
LE
CT
 C
UR
RE
NT
_T
IM
ES
TA
MP
;

DA
TE
()

Ex
tra

ct
s

th
e

da
te

 p
ar

t o
f a

 d
at

e/
tim

e
ex

pr
es

si
on

.
SE
LE
CT
 D
AT
E(
Or
de
rD
at
e)
 F
RO
M
Or
de
rs
;

YE
AR
()

Ex
tra

ct
s

th
e

ye
ar

 p
ar

t o
f a

 d
at

e.
SE
LE
CT
 Y
EA
R(
Or
de
rD
at
e)
 F
RO
M
Or
de
rs
;

MO
NT
H(
)

Ex
tra

ct
s

th
e

m
on

th
 p

ar
t o

f a
 d

at
e.

SE
LE
CT
 M
ON
TH
(O
rd
er
Da
te
)
FR
OM
 O
rd
er
s;

DA
Y(
)

Ex
tra

ct
s

th
e

da
y

pa
rt

of
 a

 d
at

e.
SE
LE
CT
 D
AY
(O
rd
er
Da
te
)
FR
OM
 O
rd
er
s;

DA
TE
DI
FF
()

Ca
lc

ul
at

es
 th

e
di

ffe
re

nc
e

be
tw

ee
n

tw
o

da
te

s.
SE
LE
CT
 D
AT
ED
IF
F(
'2
02
3-
05
-1
0'
,
'2
02
3-
05
-0
1'
);

DA
TE
_A
DD
()

Ad
ds

 a
 s

pe
ci

fie
d

tim
e

in
te

rv
al

 to
 a

 d
at

e.
SE
LE
CT
 D
AT
E_
AD
D(
'2
02
3-
05
-0
1'
,
IN
TE
RV
AL
 7
 D
AY
);

DA
TE
_S
UB
()

Su
bt

ra
ct

s
a

sp
ec

ifi
ed

 ti
m

e
in

te
rv

al
 fr

om
 a

 d
at

e.
SE
LE
CT
 D
AT
E_
SU
B(
'2
02
3-
05
-0
1'
,
IN
TE
RV
AL
 7
 D
AY
);

ST
R_
TO
_D
AT
E(
)

Co
nv

er
ts

 a
 s

tri
ng

 to
 a

 d
at

e.
SE
LE
CT
 S
TR
_T
O_
DA
TE
('
01
,0
5,
20
23
',
 '
%d
,%
m,
%Y
')
;

DA
TE
_F
OR
MA
T(
)

Fo
rm

at
s

a
da

te
 b

as
ed

 o
n

a
sp

ec
ifi

ed
 fo

rm
at

.
SE
LE
CT
 D
AT
E_
FO
RM
AT
(O
rd
er
Da
te
,
'%
W
%M
 %
Y'
)
FR
OM

Or
de
rs
;

BE
TW
EE
N

Ch
ec

ks
 if

 a
 d

at
e

fa
lls

 w
ith

in
 a

 s
pe

ci
fie

d
ra

ng
e.

SE
LE
CT
 *
 F
RO
M
Or
de
rs
 W
HE
RE
 O
rd
er
Da
te
 B
ET
WE
EN

'2
02
3-
01
-0
1'
 A
ND
 '
20
23
-1
2-
31
';

TI
ME
ST
AM
PD
IF
F(
)

Ca
lc

ul
at

es
 th

e
di

ffe
re

nc
e

be
tw

ee
n

tw
o

da
te

s

or
 d

at
e/

tim
e

va
lu

es
 in

 th
e

sp
ec

ifi
ed

 u
ni

t.
Fo

r

in
st

an
ce

, s
ec

on
ds

, m
in

ut
es

, h
ou

rs
, d

ay
s,

 w
ee

ks
,

m
on

th
s,

 a
nd

 y
ea

rs
.

SE
LE
CT
 T
IM
ES
TA
MP
DI
FF
(D
AY
,
'2
02
3-
01
-0
1'
,
'2
02
3-

12
-3
1'
);

Chapter 3 Filtering Facts with WHERE

60

�Beyond Exact Matching
Suppose you are searching for a book title but can only recall a fragment of it. You can

use the LIKE operator in SQL to match patterns by using wildcards to capture partial

matches within text data. In this way, you can uncover relevant information even when

your search terms are less than precise, making text searches easier. An overview of

pattern matching in SQL is provided in Table 3-10, with a focus on wildcards and the

LIKE operator.

Table 3-10.  SQL Pattern Matching Summary

Pattern
Matching
Technique

Description Example Result

% (percent) Matches any sequence of

characters (including zero

characters).

WHERE Name LIKE
'J%'

Names starting with

'J', like 'John',

'Jane', and 'Jack'.

_ (underscore) Matches exactly one

character.

WHERE Name LIKE
'J_n'

Names like 'Jon',

'Jan', but not 'John'.

[charlist] Matches any single character

within the specified range or

set.

WHERE Name LIKE
'J[aeiou]n'

Names like 'Jan',

'Jen', 'Jin',

'Jon',and 'Jun'.

[^charlist]

or

[!charlist]

Matches any single character

not within the specified range

or set.

WHERE Name LIKE
'J[^aeiou]n' or
WHERE Name LIKE
'J[!aeiou]n'

Names like 'Jyn',

'Jhn',and 'Jzn'.

%...% Matches any sequence of

characters, both before and

after the specified pattern.

WHERE Name LIKE
'%son%'

Names containing

'son', e.g.,

'Johnson',

'Jackson'.

%_ Combines % and _ to match

any sequence followed by

exactly one character.

WHERE Name LIKE
'%_n'

Names ending with 'n'

and having at least one

preceding character.

Chapter 3 Filtering Facts with WHERE

61

�Subquery Filtering
Subqueries allow you to create highly specific filtering criteria. A subquery can handle

complex filtering by dynamically generating the filter condition based on the subquery’s

results. Subqueries empower you to explore data from multiple angles. In order to keep

your main query clean and easy to understand, you can encapsulate complex filtering

logic within a subquery.—in the case of finding products with a higher sales volume than

the previous year, for example. The average can be calculated by a subquery and then

filtered using that value.

SELECT product_id, sales_volume, year
FROM sales_data
WHERE sales_volume > (
 SELECT AVG(sales_volume)
 FROM sales_data
 WHERE year = 2023
) AND year = 2024

In essence, this query first calculates the average sales volume for the previous year

and then filters the current year’s sales data to show only products that have exceeded

that average. By assuming that the sales_data table has columns like product_id (a

unique identifier for each product), sales_volume (the number of units sold for each

product in a specific year), and year (the year of the sales data), this nested query can

find all the products sold this year with a higher sales volume than last year’s average.

�The Second Story: A Football Academy
A new batch of young football players joined the club. However, with this number of

players on hand, how can the coaches identify the most promising players? Maria, the

club’s data analyst, wants to analyze the data obtained by football club talent scouts.

This includes Player_id, name, age, position (the playing position, such as Defender,

Midfielder, Striker, or Goalkeeper), goals_or_saves (the number of goals scored in

practice matches or saves made by the goalkeeper), assists, and games_played (the

total number of practice matches played). Table 3-11 shows the data obtained by football

club talent scouts.

Chapter 3 Filtering Facts with WHERE

62

Table 3-11.  Players Table: Young Football Players Data

player_id Name Age Position goals_scored Assists games_played

1 Alex Jones 16 Midfielder 8 3 12

2 Ben Miller 18 Defender 1 2 10

3 Charlie Brown 17 Forward 12 1 15

4 David Lee 15 Midfielder 5 4 8

5 Emily Garcia 16 Defender 0 1 7

6 Faye Williams 17 Forward 7 2 11

7 George Smith 18 Midfielder 4 5 9

8 Hannah Davis 15 Defender 2 0 5

9 Isabella Moore 16 Forward 9 3 14

10 Jack Robinson 18 Defender 3 1 12

11 Kevin Thomas 17 Midfielder 6 4 10

12 Lily Johnson 15 Forward 4 2 8

The questions Maria is looking to answer are as follows:

	 1.	 How many U17 players (players under 17 years of age) have

scored more than five goals?

	 2.	 Are there any players who consistently play (games_played >=
10) and have a high goal scoring average (goals_scored / games_
played > 0.5)?

	 3.	 Which players have scored more goals than the average number of

goals scored by all players?

	 4.	 Which players are younger than 17 and have more assists than the

average assists of players aged 18?

To answer the question “How many U17 players have scored more than five goals?”,

Maria needs to filter the Players table to include only those players who are under

17 and have scored more than five goals. Afterward, she can count how many players

there are.

Chapter 3 Filtering Facts with WHERE

63

SELECT COUNT(*)
FROM Players
WHERE age < 17 AND goals_scored > 5;

WHERE age < 17 is a condition that filters players who are under 17 years of age, and

goals_scored > 5 is a condition that further filters players who have scored more than

five goals. SELECT COUNT(*) counts the number of players who meet these conditions.

Running the query on the given table will yield the number of U17 players who have

scored more than five goals. Based on the provided data, the players who meet these

criteria are Alex Jones (16 years old, 8 goals scored) and Isabella Moore (16 years old,

9 goals scored). Therefore, the number of U17 players who have scored more than five

goals is two.

To find players who have played at least ten games and have a goal scoring average

greater than 0.5, Maria would use this query:

SELECT name, goals_scored, games_played, (goals_scored / games_played) AS
goal_scoring_average
FROM Players
WHERE games_played >= 10 AND (goals_scored / games_played) > 0.5;

Based on the games_played >= 10 and (goals_scored / games_played) > 0.5

conditions, the players who meet these criteria are shown in Table 3-12. This table

provides the names, goals scored, games played, and calculated goal-scoring averages

for the players who satisfy the query’s conditions.

Table 3-12.  Players Who Have Played at Least Ten Games and Have a Goal

Scoring Average Greater Than 0.5

Name goals_scored games_played goal_scoring_average

Alex Jones 8 12 0.66

Charlie Brown 12 15 0.80

Faye Williams 7 11 0.63

Isabella Moore 9 14 0.64

Kevin Thomas 6 10 0.60

Chapter 3 Filtering Facts with WHERE

64

During this time, a player named Jack Robinson asked Maria why he was not

included on the list. Maria explains the reason for not choosing him. This result is

obtained by applying the conditions to Jack Robinson’s data. Condition 1 is games_
played >= 10. Jack Robinson played 12 games, so this condition is satisfied. Condition

2 is (goals_scored / games_played) > 0.5. Jack Robinson scored three goals in 12

games. His goal-scoring average is 3/12=0.25. Since the goal-scoring average of 0.25

is not greater than 0.5, Jack Robinson does not meet the second condition. Therefore,

he is not included in the query resulting table. This illustrates the importance of both

conditions being met for a player to be included in the query results.

The following nested queries can be used to identify players who have scored more

goals than the average number of goals scored by each player:

SELECT name, goals_scored
FROM Players
WHERE goals_scored > (SELECT AVG(goals_scored) FROM Players);

The main query selects the players’ names and goals scored. The subquery, SELECT
AVG(goals_scored) FROM Players, calculates the average number of goals scored

by all players in the Players table. The WHERE clause in the main query checks if the

goals_scored by each player is greater than the average goals scored calculated by the

subquery. See Table 3-13.

Table 3-13.  Players Who Have Scored More Goals Than the

Average Number of Goals Scored by All Players in the Academy

Name goals_scored

Alex Jones 8

Charlie Brown 12

Faye Williams 7

Isabella Moore 9

Kevin Thomas 6

As shown in Table 3-13, the result of this query shows players who have scored more

goals than the average number of goals scored by all players in the academy.

Chapter 3 Filtering Facts with WHERE

65

Note  By using nested SQL queries, it is possible to execute subqueries within
the WHERE clause. Data can be filtered based on complex conditions derived from
other parts of the same table in this manner. A powerful and insightful query can
be created by using subqueries to calculate dynamic values (such as averages).

The following query can be used to identify players who are younger than 17 and

have more assists than average compared to players aged 18 and older:

SELECT name, age, assists
FROM Players
WHERE age < 17 AND assists > (SELECT AVG(assists) FROM Players WHERE
age = 18);

In the main query, names, age, and assists are selected. The subquery, SELECT
AVG(assists) FROM Players WHERE age = 18, determines the average number of

assists provided by players aged 18. In the main query, the WHERE clause ensures that

only players who younger than 17 and who have more assists than the average assists

for 18-year-olds are selected. Table 3-14 shows the result of this query, identifying the

players.

Table 3-14.  Players Who Are Younger Than 17 and Have More

Assists Than the Average Number of Assists Recorded by Players

Aged Exactly 18

Name Age Assists

Alex Jones 16 3

David Lee 15 4

Isabella Moore 16 3

Chapter 3 Filtering Facts with WHERE

66

�Common Mistakes When Using WHERE in SQL
and How to Avoid Them
This section introduces common errors associated with the use of the WHERE clause.

Querying using WHERE clauses requires careful attention to data type, null values, and

case sensitivities.

�Data Type Issues
In SQL, filtering data based on different data types is a common task. The WHERE clause

can result in errors or unexpected results if data types are handled incorrectly.

For instance, imagine a scenario where a company wants to filter employees based on

their start date. The employee data is stored in a table named Employees, with the StartDate

column as a string instead of a date type. Here is the wrong query that caused the mistake.

SELECT * FROM Employees WHERE StartDate = '2023-05-01'

Comparing string representations of dates can be problematic, especially if the

format of the dates varies. For instance, '2023-5-1' and '2023-05-01' will be treated as

different, leading to missed results.

The solution is to convert the StartDate column to a proper date type before filtering:

SELECT * FROM Employees WHERE CAST(StartDate AS DATE) = '2023-05-01'

Casting StartDate to a date type ensures that the comparison is accurate and

consistent, preventing potential mismatches from occurring.

Note T he CAST() function in SQL is used to convert a value from one data type
to another. This is particularly useful when dealing with data that may be stored in
one format but needs to be processed or compared in another. The CAST() function
helps ensure that data types match appropriately in operations, preventing errors and
ensuring accurate results. The basic syntax of the CAST() function is as follows:

CAST(expression AS target_data_type)

The expression is the value or column you want to convert, and the target_
data_type is the data type to which you want to convert the expression.

Chapter 3 Filtering Facts with WHERE

67

There is also a problem with numerical comparisons. Assume that the Salary

column is stored as a string.

SELECT * FROM Employees WHERE Salary > '50000'

As string comparison does not work the same way as numeric comparison, this

query may not return the correct results. A solution is to convert the Salary column to a

numeric type before filtering it.

SELECT * FROM Employees WHERE CAST(Salary AS DECIMAL) > 50000

Data type conversion ensures that numeric comparisons are performed correctly,

producing the expected results.

Note  DECIMAL is a data type used in SQL to store fixed-point numbers with
a guaranteed level of precision and scale. Unlike floating-point numbers (e.g.,
FLOAT), which can lose accuracy due to internal representation, DECIMAL offers
an exact representation of decimal values. The decimal data type is ideal for
storing financial data, measurements, or any scenario where precise decimal
values are crucial. DECIMAL is often defined with two parameters in parentheses:
precision (p) and scale (s).

•	 Precision (p) represents the total number of digits the number can
hold, including digits before and after the decimal point.

•	 Scale (s) represents the number of digits allowed to the right of the
decimal point.

As an example, DECIMAL(5,2) specifies a precision of five digits, allowing for
numbers such as 123.45 and -98.76, which have two digits following the
decimal point.

�Logical Mistakes in Conditions
In the WHERE clause, logical errors can significantly affect the performance of the query.

Common logical mistakes include incorrect use of AND and OR, and misunderstanding

operator precedence. The AND and OR operators combine conditions to simplify data

filtering.

Chapter 3 Filtering Facts with WHERE

68

Consider a table named Members that contains the following columns: MemberID,

FirstName, LastName, MembershipType (e.g., Standard, Premium), MonthlyFee, JoinDate,

and Active (indicating whether the membership is currently active).

The manager of a gym wants to identify members who either have a premium

membership or pay more than $40 monthly, but they only want to see members who

currently have an active membership.

SELECT *
FROM Members
WHERE MembershipType = 'Premium' OR MonthlyFee > 40 AND Active = TRUE

There is a logical error here due to a misunderstanding of operator precedence. SQL

evaluates AND before OR. Thus, the query is interpreted as follows:

SELECT *
FROM Members
WHERE (MembershipType = 'Premium') OR (MonthlyFee > 40 AND Active = TRUE)

This returns all premium members, regardless of whether they are active, as well as

any members with a monthly fee over $40 who are active. Due to the inclusion of inactive

premium members, this result is not as expected.

SELECT *
FROM Members
WHERE (MembershipType = 'Premium' OR MonthlyFee > 40) AND Active = TRUE

The addition of parentheses ensures that the intended logic is followed. The query

now filters members who are either premium members or pay more than $40 per month,

and it also checks that they are active. As a result of this approach, accurate and expected

results are obtained, while inactive members are filtered out.

Note T here are two types of errors that can occur when writing SQL queries:
syntax errors and semantic errors.

•	 Syntax errors: These are errors in the SQL statement form or
structure. They are easy to detect because the SQL engine throws
an error message indicating the problem. For example, missing a
comma, incorrect keyword use, or unmatched parentheses.

Chapter 3 Filtering Facts with WHERE

69

•	 Semantic errors: These are logical errors where the query is
syntactically correct but does not produce the intended result.
Semantic errors are difficult to detect because the SQL engine
executes the query without any error messages, but the data
returned is incorrect or misleading.

In particular, semantic errors can be particularly problematic since they can go
unnoticed, resulting in incorrect data analysis and incorrect decision-making.
Syntax errors result in the query not being run, whereas semantic errors result in
valid SQL queries producing incorrect or unexpected results.

�NULL Handling
Handling NULL values in a WHERE statement is another common source of errors. NULL

represents unknown or missing data, and comparisons involving NULL can yield

unexpected results.

In SQL, NULL is not equal to anything, not even another NULL. Therefore, special

handling is required to correctly filter NULL values.

Consider an Employees table that contains these columns: EmployeeID, FirstName,

LastName, Department, and PhoneNumber (which may contain NULL values). An analysis

of the data is intended to filter Employees without phone numbers, which refers to those

employees who have not indicated their phone number on their application. However,

this query contains a logical error.

SELECT *
FROM Employees
WHERE PhoneNumber = NULL

This query returns no results because NULL is not equal to anything, including

another NULL. The comparison PhoneNumber = NULL is always false. The following query

contains the correct logic.

SELECT *
FROM Employees
WHERE PhoneNumber IS NULL

Chapter 3 Filtering Facts with WHERE

70

Using IS NULL correctly identifies rows where the PhoneNumber column is NULL. This

query returns all employees who have not specified their phone number.

Note T he NULL value in SQL represents data that is missing, unknown, or
inapplicable. It is a blank field indicating that a value does not exist in a particular
field. NULL is not equivalent to zero or an empty string. It is a distinct marker that
indicates the absence of value. NULL cannot be compared directly using standard
comparison operators (e.g., = and !=). Instead, specialized operators like IS NULL
and IS NOT NULL are used. Any arithmetic operation or concatenation involving
NULL results in NULL. SQL provides specific syntax for checking for NULL values:

Checking for NULL:

SELECT * FROM Employees WHERE PhoneNumber IS NULL

Checking for Non-NULL:

SELECT * FROM Employees WHERE PhoneNumber IS NOT NULL

�Case Sensitivity
The assumption that case insensitivity applies to string comparisons is another common

mistake. It is possible for SQL to behave differently depending on the database in terms

of case sensitivity. PostgreSQL is case-sensitive by default. Identifiers, such as table

names, column names, and data values, are treated according to their case. For instance,

SELECT * FROM Users will not return results for a table named users.

Assume you need to find a user with the last name smith. The following query would

miss entries like 'Smith' or 'SMITH', depending on the database’s tagging settings.

SELECT * FROM Employees WHERE LastName = 'smith'

The solution is to use functions or adjust collation settings to ensure case-insensitive

comparisons:

SELECT * FROM Employees WHERE LOWER(LastName) = 'smith'

By converting LastName to lowercase, the query correctly identifies all variations of

'smith'.

Chapter 3 Filtering Facts with WHERE

71

Note  Both UPPER and LOWER follow similar syntax. It is important to keep in
mind that the order in which your results are sorted might be affected by the use of
UPPER or LOWER. Due to the fact that uppercase letters are usually sorted before
lowercase letters, the sorted order may differ from the original case-
sensitive order.

�Summary
As part of an effort to improve data querying skills, this chapter explored the use of the

WHERE clause. By understanding the WHERE clause and its related functions, you can write

more efficient and accurate SQL queries.

�Key Points

•	 WHERE: Filters records based on specified conditions.

•	 Dates in SQL: Handles date and time data types, allowing accurate

date-based queries.

•	 BETWEEN: Selects values within a given range, including endpoints.

•	 SQL pattern matching: Uses LIKE to search for patterns within

text fields.

•	 CAST: Converts a value from one data type to another to ensure

proper comparison and manipulation.

•	 Common Mistakes When Using WHERE in SQL:

•	 Data types: Ensure compatibility between data types to

avoid errors.

•	 NULL values: Properly handle NULL values as they represent

unknown or missing data, which can affect query results.

Chapter 3 Filtering Facts with WHERE

72

•	 Logical mistakes: Avoid errors in combining conditions with

AND and OR by understanding operator precedence and using

parentheses.

•	 Case sensitivity: SQL may be case-sensitive, which may affect

text-based conditions and comparisons.

�Key Takeaways

•	 WHERE clause: Essential for filtering records based on specified

conditions and enabling precise data retrieval.

•	 Dates in SQL: Proper handling of date and time data types is crucial

for accurate date-based queries and comparisons.

•	 BETWEEN operator: Useful for selecting values within a specific range,

including the endpoints, simplifying range queries.

•	 SQL pattern matching: The LIKE operator allows for searching text

fields using patterns, making it easier to find records that match

specific criteria.

•	 CAST function: Converts values from one data type to another,

ensuring proper comparison and manipulation in SQL queries.

�Looking Ahead
The next chapter, “Complex Characters with JOINs,” explores the various types of JOIN

operations, which are fundamental for combining data from multiple tables. Mastery of

this operation will enable you to create complex queries that provide deeper insights and

more comprehensive analyses of your datasets.

Chapter 3 Filtering Facts with WHERE

73

�Test Your Skills

	 1.	 A library manager wants to create a report displaying the titles

and publication years of books published between 2000 and 2010,

inclusive. Additionally, she would like to filter out any titles that

contain the word Guide. Write a query that retrieves the title and

publicationyear for these books.

	 2.	 An online marketplace manager wants to analyze the prices of

items listed in the Electronics category that are priced between

$50 and $500. The prices are stored as strings. Write a query that

retrieves the ItemID, ItemName, and Price (cast to a decimal) for

items in this category and price range.

	 3.	 The owner of a fitness app wants to generate a report on users who

have walked more than five kilometers in any single session. The

DistanceWalked is stored in meters. Retrieve UserID, SessionID,

and DistanceWalked (converted to kilometers) for these sessions.

	 4.	 A music streaming service wants to identify all the songs that

were released prior to the year 2000 and contain the word Love in

the title. Write a query that retrieves the SongID, SongTitle, and

ReleaseYear for these songs.

Chapter 3 Filtering Facts with WHERE

75
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_4

CHAPTER 4

Complex Characters
with JOINs
JOINs in SQL are operations that allow you to combine the rows of two or more

tables based on a related column between them. In most real-world applications,

analyzing data comprehensively requires more than just considering a single table.

For a comprehensive analysis, it is very important and necessary to consider different

dimensions, thus, using the JOINs operation allows you to reach a comprehensive

analysis. In a relational database, data is often normalized and spread across different

tables to reduce redundancy and ensure data integrity. JOINs enable you to bring this

scattered data together and provide a unified view that can be used for better analysis

and reporting.

�Introduction to JOINs
JOINs in SQL are operations that are essential for querying relational databases because

they enable you to extract meaningful information from multiple tables by linking

their data.

�Importance of JOINs in Storytelling with Data
JOINs are critical to data storytelling because they allow analysts to create a narrative by

combining related pieces of information scattered across multiple tables. For example, to

analyze customer orders, you might need data from three tables: Customers, Orders, and

Products. JOINs enables you to join these tables together and extract a coherent dataset

https://doi.org/10.1007/979-8-8688-1560-7_4#DOI

76

that provides insights into customer buying behaviors, product popularity, and sales

performance. By using the JOINs operator in your queries, you can achieve the following

advantages.

•	 Combine data from multiple sources

•	 Perform in-depth analysis with access to all relevant data points

•	 Create complex queries that can answer more complex questions

�The Anatomy of a JOIN Clause
A JOIN clause can be described as a bridge between two or more tables. As mentioned,

a relational database will contain several tables, and the possibility of merging the

data of these tables based on a specific criterion allows you to retrieve and analyze the

information that is in separate tables. This is important because real-world databases

often store data in separate tables to improve organization and efficiency. A JOIN clause

fundamentally contains the following parts:

	 1.	 JOIN types: This specifies the type of connection performed.

Common types are INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER
JOIN, FULL OUTER JOIN, and CROSS JOIN. Each type determines

how matching and non-matching rows are handled in the result set.

	 2.	 FROM clause: This clause specifies the tables being attached. The

order of the tables in the FROM clause can sometimes affect query

performance, especially with certain JOIN types.

Note  Most modern database systems use a query optimizer that analyzes the
JOIN clause and chooses the most efficient way to perform the JOINs. Today’s
modern database optimizers are intelligent. They consider various factors such
as table size, indexes, and JOIN conditions when choosing a JOIN strategy. In
many cases, the optimizer can perform JOINs efficiently regardless of the order
you specify in the FROM clause. If you suspect that a JOIN clause is causing
performance problems, it is recommended that you use the tools provided by your
database system to examine the actual execution plan. This reveals the JOIN
strategy chosen by the optimizer and highlights any bottlenecks.

Chapter 4 Complex Characters with JOINs

77

	 3.	 ON clause: This clause specifies the condition that determines

which rows of each table match. The ON statement usually

compares the columns of both tables using comparison operators

such as =, <, or >.

The basic syntax of an INNER JOIN, which is the most common type of JOIN, is

shown here:

SELECT Customers.Name, Orders.OrderID, Orders.OrderDate
FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

This query is an INNER JOIN that joins the Customers and Orders tables. The ON

clause specifies that rows of Customers match rows of Orders only when Customer ID

values are equal. This query returns a result set containing columns from both tables,

but only for the rows in which the same customer ordered (i.e., matching CustomerID

values).

It should be noted that in SQL, the dot (.) is used to refer to a specific column in a

specific table. When there are columns with the same name in different tables, a dot is

used to determine which table a column belongs to, in order to avoid confusion about

column names.

�Types of JOINs
Despite the specific needs of each query, there are different types of SQL JOINs. Each

type of SQL JOIN provides different methods of combining data from multiple tables. The

purpose of each type of JOIN is explained next.

INNER JOIN: This is a tool for retrieving data when there is an explicit relationship

between tables. This ensures that you only get rows with matches in both tables, which is

ideal for tasks like finding customers who have placed an order.

•	 Purpose: Retrieves only the rows that have matching values in

both tables.

•	 Use case: When you want to get only the records that have related

data in both tables.

Chapter 4 Complex Characters with JOINs

78

LEFT/RIGHT OUTER JOIN: These JOINs are important for including all rows from

a particular table, the one listed first in the FROM clause, even if there is no match in

another table. They are typically used to maintain data from one table while retrieving

related information from another table.

LEFT OUTER JOIN:

•	 Purpose: Retrieves all rows from the left table and the matched rows

from the right table. If there is no match, the result is NULL on the

right side.

•	 Use case: When you want to get all records from the left table, with

the related data from the right table, if available.

RIGHT OUTER JOIN:

•	 Purpose: Retrieves all rows from the right table and the matched

rows from the left table. If there is no match, the result is NULL on the

left side.

•	 Use case: When you want to get all records from the right table, with

the related data from the left table, if available.

FULL OUTER JOIN: This JOIN combines the left and right outer join functionality. It

returns all rows from both tables and fills unmatched columns. This is useful when you

need a complete picture of data from both tables, regardless of relationships.

•	 Purpose: Retrieves all rows when there is a match in either the left or

right table. Rows without a match in one of the tables will have NULLs.

•	 Use case: When you want to get all records from both tables,

matching where possible.

CROSS JOIN: This JOIN creates a Cartesian product, which basically multiplies all

the rows in one table by all the rows in the other table. While often used for visualization

purposes, it can be computationally expensive for large datasets. Typically used

sparingly or when you specifically need all possible combinations of rows.

•	 Purpose: Returns the Cartesian product of the two tables. Each row

from the first table is combined with all rows from the second table.

•	 Use case: When you need all possible combinations of rows from the

tables. This is rarely used unless for specific purposes like generating

all combinations for testing.

Chapter 4 Complex Characters with JOINs

79

SELF JOIN: This JOIN allows you to join a table to itself based on a certain condition.

It is powerful for finding relationships in a table.

•	 Purpose: JOINs a table with itself.

•	 Use case: When you need to compare rows within the same table.

Using different types of JOINs provides flexibility in structuring the data. They allow

you to retrieve data based on specific match criteria, include all rows from a specific

table, or even examine all possible combinations. JOINs are a useful tool for creating

efficient analytical queries on real-world relational databases. Table 4-1 briefly explains

the reason for using each type of JOIN.

Table 4-1.  The Different Types of JOINs

JOIN Type Description Query Result Sample Query

INNER JOIN Returns only rows where there’s a

match in both tables based on the

JOIN condition.

Matching rows from

both tables

SELECT *
FROM Table1
INNER JOIN table2
ON Table1.key =
Table2.key

LEFT OUTER
JOIN

Includes all rows from the left table,

specified first in the FROM clause,

and matching rows from the right

table. If there’s no match in the

right table, NULL values are filled

for columns from the right table.

All rows from the

left table, matching

rows from the right

table, or NULLs for

non-matching rows.

SELECT *
FROM Table1
LEFT JOIN table2
ON Table1.key =
Table2.key

RIGHT OUTER
JOIN

Similar to LEFT JOIN, but includes

all rows from the right table,

specified first in the FROM clause,

and matching rows from the left

table. NULLs are filled for non-

matching rows in the left table.

All rows from

the right table,

matching rows from

the left table, or

NULLs for non-

matching rows.

SELECT *
FROM Table1
RIGHT JOIN table2
ON Table1.key =
Table2.key

(continued)

Chapter 4 Complex Characters with JOINs

80

JOIN Type Description Query Result Sample Query

FULL OUTER
JOIN

Combines the LEFT and RIGHT
OUTER JOINs. Includes all rows

from both tables, regardless of

whether there’s a match in the

other table. NULLs are filled for

non-matching columns.

All rows from both

tables with NULLs

for non-matching

rows.

SELECT *
FROM Table1
FULL OUTER JOIN
table2
ON Table1.key =
Table2.key

CROSS JOIN Creates a Cartesian product,

resulting in all possible

combinations of rows from both

tables, regardless of any matching

criteria. Can generate a large

number of rows.

All possible

combinations of

rows from both

tables.

SELECT * FROM
Table1 CROSS JOIN
Table2

SELF JOIN Joins a table to itself based on a

specified condition. Often used to

find relationships within the same

table.

Rows from the

same table that

meet the JOIN

condition.

SELECT copy1.
column1 AS
first_column,
copy2.column2 As
second_column
FROM Table1 copy1
INNER JOIN Table1
copy2
ON copy1.key =
copy2.key

LEFT OUTER
JOIN with

NULL check

Like a LEFT JOIN, but explicitly

checks for NULLs to filter results.

Rows from the

left table with no

matching rows in

the right table.

SELECT *
FROM Table1
LEFT JOIN Table2
ON Table1.key =
Table2.key WHERE
Table2.key IS
NULL

Table 4-1.  (continued)

(continued)

Chapter 4 Complex Characters with JOINs

81

JOIN Type Description Query Result Sample Query

RIGHT OUTER
JOIN with

NULL check

Like a RIGHT JOIN, but explicitly

checks for NULLs to filter results.

Rows from the

right table with no

matching rows in

the left table.

SELECT *
FROM Table1
RIGHT JOIN Table2
ON Table1.key =
Table2.key WHERE
Table1.key IS
NULL

FULL OUTER
JOIN with

NULL check

Like a FULL JOIN, but explicitly

checks for NULLs to filter results.

Rows with no

matching rows in

the other table.

SELECT *
FROM Table1
FULL OUTER JOIN
Table2
ON Table1.key =
Table2.key WHERE
Table1.key IS
NULL OR Table2.
key IS NULL

Table 4-1.  (continued)

Table 4-1 briefly introduced the different types of SQL JOINs. It should be noted that

it is necessary to combine rows from two or more tables based on a related column,

known as a key. In the rest of this chapter, all types of keys are fully explained.

As stated in the table, in summary, an INNER JOIN returns only matching rows from

both tables, while a LEFT JOIN includes all rows from the left table and matching rows

from the right, filling the right table columns with NULL. Conversely, RIGHT JOIN includes

all rows in the right table with NULL for unmatched left table rows. A FULL OUTER JOIN

returns all rows from both tables, using NULL for no match. A CROSS JOIN creates a

Cartesian product of all rows. A SELF JOIN joins a table to itself to find related data in the

same table. The LEFT, RIGHT, and FULL OUTER JOIN special cases with NULL check the

results to show unmatched rows. Understanding these JOIN types and keys helps you

optimize database queries and data analysis. To achieve a more intuitive understanding,

these JOINs are illustrated in Figure 4-1.

Chapter 4 Complex Characters with JOINs

82

Figure 4-1.  An illustration of JOIN types

�The First Story: A Football Academy
In a football academy, academy data analyst William is under pressure from the

club’s management staff to find the next young star. Having a database of last season’s

information, William plans to find the club’s next young star by determining the

following information:

	 1.	 List all the matches along with the names of players who

participated.

	 2.	 List the players and the total number of goals they scored across

all matches.

Chapter 4 Complex Characters with JOINs

83

William’s goal is to analyze the data that is stored in the database, including the

tables called Player, Matches, and MatchDetails. These tables store each player’s

statistics and their performance in each match. The Player, Matches, and MatchDetails

tables are shown in Tables 4-2, 4-3, and 4-4, respectively.

Table 4-2.  The Player Table

PlayerID Name Age Position

1 Alex Jones 17 Midfielder

2 Mia Garcia 16 Defender

3 David Lee 18 Forward

4 Sarah Miller 15 Midfielder

5 Chris Brown 17 Defender

6 Emily Sanchez 16 Goalkeeper

7 Ben Johnson 18 Midfielder (Winger)

Table 4-3.  The Matches Table

MatchID AgeGroup MinutesPlayed

101 U18 90

102 U16 45

103 U18 90

104 U16 90

105 U18 90

106 U16 90

107 U18 70

Chapter 4 Complex Characters with JOINs

84

Table 4-4.  The MatchDetails Table

MatchDetailID MatchID PlayerID GoalsScored

1 101 1 2

2 101 2 2

3 102 2 0

4 103 3 1

5 103 4 2

6 104 4 1

7 105 1 1

8 105 5 0

9 106 6 1

10 107 3 2

11 107 7 1

It should be noted that the Players, Matches, and MatchDetails tables use primary

and foreign keys to ensure data integrity and create relationships between tables. The

Players table has a primary key called PlayerID, which uniquely identifies each player

and ensures that there are no duplicate records for players. The Matches table has a

primary key called MatchID, which uniquely identifies each match and ensures that each

match record is unique. The MatchDetails table, which links players and matches, has a

composite primary key called MatchDetailID, which uniquely identifies each record in

the MatchDetails table. Additionally, the MatchDetails table contains two foreign keys:

MatchID and PlayerID. The MatchID foreign key references the MatchID in the Matches

table, establishing a relationship between the match details and the corresponding

matches. The same goes for the Players table. These primary and foreign key constraints

guarantee integrity, meaning that each match detail must match valid entries in both the

Players and Matches tables.

Chapter 4 Complex Characters with JOINs

85

Note  In a relational database table, a key is a column or set of columns that
uniquely identifies a row in the table. In other words, this column or columns
act like a fingerprint, ensuring that no two rows have the same value for that
key. Defining a key in a table is very important to maintaining data integrity and
efficiently retrieving specific records. The rest of this chapter explains the keys in
the database in more detail.

To find all matches along with the names of players who participated in them,

including their positions, an INNER JOIN can be used to match players with their recent

performances:

SELECT m.MatchID, p.Name, p.Position
FROM Matches m
INNER JOIN MatchDetails md ON m.MatchID = md.MatchID
INNER JOIN Players p ON p.PlayerID = md.PlayerID;

This query retrieves a list of matches, along with the names and positions of the

players who participated in each match, using two INNER JOIN operations to combine

data from the three tables: Matches, MatchDetails, and Players. First, the Matches table

(aliased as m) is linked to the MatchDetails table (aliased as md) on the MatchID column,

ensuring that each detail is associated with a corresponding match. The resulting

dataset is then further linked to the Players table (aliased as p) on the PlayerID column,

associating each match detail to the corresponding player. The SELECT statement

specifies that the query returns the MatchID from the Matches table and the Name and

Position from the Players table. It effectively provides a list of matches, detailing the

players who participated in each match and their respective positions, providing a clear

view of the players’ participation in the various matches.

Note A s mentioned in previous chapters, in SQL, an alias is a temporary name
given to a table or column for the duration of a query. Aliases are often used to
make complex queries more readable and shorten long table names, making
SQL code easier to write and understand. To create an alias for a table, you use
the AS keyword followed by the alias. For example, in the FROM Players AS p
statement, Players is the main table name and p is the alias. It should be noted

Chapter 4 Complex Characters with JOINs

86

that the AS keyword is optional, so you can also write FROM Players p. Once an
alias is assigned, you can use it to refer to the table in the rest of the query. This
is especially useful when dealing with multiple tables or when doing JOINs, as it
helps to clearly distinguish between different tables and their columns.

The result of the first query is illustrated in Table 4-5.

Table 4-5.  The First Query Result

MatchID Name Position

101 Alex Jones Midfielder

101 Mia Garcia Defender

102 Mia Garcia Defender

103 David Lee Forward

103 Sarah Miller Midfielder

104 Sarah Miller Midfielder

105 Alex Jones Midfielder

105 Chris Brown Defender

106 Emily Sanchez Goalkeeper

107 David Lee Forward

107 Ben Johnson Midfielder (Winger)

To retrieve a list of all players and the total number of goals they scored across all

matches, use this query:

SELECT p.Name, SUM(md.GoalsScored) AS TotalGoals
FROM Players p
INNER JOIN MatchDetails md ON p.PlayerID = md.PlayerID
GROUP BY p.Name;

To return a list of players along with the total number of goals scored by each

player, this query performs an INNER JOIN with the MatchDetails table on the

PlayerID column to ensure that each player’s match details are included. The SUM(md.
GoalsScored) function is used to calculate the total goals scored by each player in all

Chapter 4 Complex Characters with JOINs

87

their matches. The GROUP BY p.Name statement groups the results by each player’s

name, so that the sum function (SUM) can be applied to each group. The query returns a

set of results containing each player’s name and the corresponding total goals they have

scored, effectively summarizing each player’s scoring performance across all recorded

matches.

Note  GROUP BY is a clause used within a SELECT statement in SQL. The GROUP
BY clause in SQL arranges identical data into groups. It is often used in conjunction
with aggregate functions such as COUNT(), SUM(), AVG(), MAX(), and MIN()
to perform calculations on any group of data. The next chapter focuses on this
statement in more detail along with several narratives.

The result of the second query is illustrated in Table 4-6.

Table 4-6.  The Second Query Result

Name TotalGoals

Alex Jones 3

Mia Garcia 2

David Lee 3

Sarah Miller 3

Chris Brown 0

Emily Sanchez 1

Ben Johnson 1

William was able to get the data he needed by joining the tables together. The

questions that William aimed to answer were well-suited for an INNER JOIN, as it only

returns rows where there’s a match in both tables. This means there wouldn’t be any NULL

values appearing in the result table. If William wanted to find all players, even players who

have not scored a goal yet, and INNER JOIN would not be sufficient, and he would have to

use another type of JOIN in his query. He would likely need a LEFT JOIN or a RIGHT JOIN,

which would include rows from one table even if there’s no corresponding data in the other

table. This would inevitably lead to NULL values in certain columns for those unmatched

rows. In the next story of this chapter, you learn more about these types of JOINs.

Chapter 4 Complex Characters with JOINs

88

�Keys in Relational Databases
Joining tables in SQL opens up powerful data-retrieval capabilities, but careful planning

is critical. Choosing the appropriate join type (INNER, LEFT, RIGHT, or FULL) depends on

whether you want to match all rows from one or both tables, with or without matches.

JOIN conditions, preferably based on primary and foreign keys, ensure accurate results.

For this purpose, this section expands your horizons with various keys in relational

databases. In relational databases, keys are used to uniquely identify rows within a table

and to establish relationships between tables (see Table 4-7).

Table 4-7.  Keys in Relational Databases

Relational
Database Key

Description Example

Primary Key A column that uniquely identifies each row in a

table.

PRIMARY KEY (column_
name)

Foreign Key A column or a set of columns in one table

that uniquely identifies rows in another table.

Establishes a link between the data in the two

tables.

FOREIGN KEY (column_
name) REFERENCES
other_table(other_
column)

Unique Key A column or a set of columns that uniquely

identifies each row in a table, but unlike primary

keys, a table can have multiple unique keys.

UNIQUE (column_name

Composite

Key

A primary key composed of multiple columns. PRIMARY KEY (column1,
column2)

Candidate Key A column or a set of columns that can uniquely

identify any database record without referring to

any other data.

Usually any column or

combination of columns that

can act as a primary key.

Super Key A set of one or more columns that can be used

to uniquely identify a row in a table. A super

key includes the primary key and any additional

columns that make it unique.

Usually any primary key or

combination of columns that

uniquely identifies a row.

Chapter 4 Complex Characters with JOINs

89

To get more familiar with keys, you’ll see how to create tables from the previous

story by using SQL. In the previous story, there were three tables: Player, Matches, and

MatchDetails. These queries can create the Player, Matches, and MatchDetails tables

in the database.

CREATE TABLE Players (
 PlayerID INT PRIMARY KEY,
 Name VARCHAR(100),
 Age INT,
 Position VARCHAR(50)
);

This query creates a table named Players in the database. The CREATE TABLE

statement is used to define the structure of the table, specifying the columns and their

data types. The PlayerID column is defined as an INT (integer) and is designated as the

PRIMARY KEY, which means it will uniquely identify each row in the table. This ensures

that no two players can have the same PlayerID. The Name column is defined as a

VARCHAR(100), allowing it to store variable-length character strings up to 100 characters

in length, suitable for storing player names. The Age column is defined as an INT, which

will store the player’s age as an integer value. The Position column is defined as a

VARCHAR(50), allowing it to store variable-length character strings up to 50 characters in

length, which is suitable for storing the player’s position on the field.

CREATE TABLE Matches (
 MatchID INT PRIMARY KEY,
 AgeGroup VARCHAR(10),
 MinutesPlayed INT
);

This query creates a table called Matches in the database. The CREATE TABLE

statement defines the structure of the table and its columns and data types. The MatchID

column is defined as INT (integer) and set as the PRIMARY KEY to ensure that no two

matches have the same MatchID. The AgeGroup column is defined as VARCHAR(10),

which allows it to store variable-length character strings of up to ten characters, which

is suitable for sorting items by age group. The minutes played column is defined as INT,

which stores the total number of minutes played in the match as an integer value.

Chapter 4 Complex Characters with JOINs

90

CREATE TABLE MatchDetails (
 MatchDetailID INT PRIMARY KEY,
 MatchID INT,
 PlayerID INT,
 GoalsScored INT,
 FOREIGN KEY (MatchID) REFERENCES Matches(MatchID),
 FOREIGN KEY (PlayerID) REFERENCES Players(PlayerID)
);

This query creates a table called MatchDetails in the database. The CREATE
TABLE statement defines the structure of the table, the columns, their data types,

and the relationships between this table and the Matches and Players tables. The

MatchDetailID column is defined as INT (integer) and is set as the PRIMARY KEY, which

uniquely identifies each row in the table. This ensures that no two match details have

the same MatchDetailID. The MatchID column is defined as INT, which stores the match

ID. This column is a foreign key that refers to the MatchID column in the Matches table.

This relationship ensures that each entry in MatchDetails is a valid match. The PlayerID

column is defined as INT, which stores the player ID. This column is a foreign key that

references the PlayerID column in the Players table. This relationship ensures that

each entry in MatchDetails is valid for a player. The GoalsScored column is defined as

INT, which stores the number of goals scored by the player in the match.

Note  FOREIGN KEY (column) REFERENCES other_table(other_
column) defines a foreign key constraint in the relational database schema.

•	 FOREIGN KEY (column): This specifies a column or set of
columns within the current table that will act as the foreign key. A
foreign key references data in another table.

•	 REFERENCES other_table(other column): This part defines
the relationship between the foreign key and another table.

•	 other_table: This refers to the name of the referenced table that
holds the data the foreign key is linked to.

Chapter 4 Complex Characters with JOINs

91

Foreign key constraints ensure referential integrity, meaning that every MatchID

in MatchDetails must exist in the Match table, and every PlayerID in MatchDetails

must exist in the Player table. This table structure allows accurate tracking of player

performance in specific matches, including the number of goals scored by each player in

each match. In the rest of the book, you will come across narratives and examples where

data is stored by defining composite, candidate, and super keys.

�The Second Story: A Technology Company
Piper works for a growing technology company with a dynamic organizational structure

consisting of multiple departments, employees, and projects. Piper intends to find the

answers of questions about the company using the company data. Piper’s company data

has been collected and stored in four tables: Employees (see Table 4-8), Departments

(see Table 4-9), Projects (see Table 4-10), and Employees_Projects (see Table 4-11).

Table 4-8.  The Employees Table

EmployeeID Name Age Position DepartmentID ManagerID

1 John Smith 45 CEO NULL NULL

2 Jane Dylan 38 CTO 1 1

3 Mary Johnson 28 Developer 1 2

4 Mike Brown 35 Developer 1 2

5 Emily Davis 30 HR Manager 2 1

6 Laura Wilson 25 HR Associate 2 5

7 David White 50 CFO 3 1

8 Steve Black 40 Accountant 3 7

Chapter 4 Complex Characters with JOINs

92

Table 4-9.  The Departments Table

DepartmentID DepartmentName

1 Engineering

2 Human Resources

3 Finance

Table 4-10.  The Projects Table

ProjectID ProjectName DepartmentID

101 Project Alpha 1

102 Project Beta 1

201 Recruitment Drive 2

301 Financial Audit 3

Table 4-11.  The Employees_Projects Table

EmployeeID ProjectID

3 101

4 101

3 102

4 102

6 201

8 301

Piper’s purpose for analyzing the data table is to find the answer to the following

questions:

•	 Who are the managers and their direct reports?

•	 Which departments have employees, and what are their names? List

all departments and their employees, including departments without

employees.

Chapter 4 Complex Characters with JOINs

93

•	 Which employees are assigned to which projects, including those

not assigned to any project? List all employees and their projects,

including employees not assigned to any project.

•	 What are the projects and the departments they are assigned to,

including departments without projects? List all projects and their

assigned departments, including departments without projects.

•	 What are all possible combinations of employees and projects?

Create a Cartesian product of all employees and projects.

•	 Which employees are not assigned to any project? Find employees

who are not assigned to any project.

To list the managers and their direct reports, you can use a SELF JOIN on the

Employees table:

SELECT e1.Name AS EmployeeName, e2.Name AS ManagerName
FROM Employees e1
LEFT JOIN Employees e2 ON e1.ManagerID = e2.EmployeeID;

It should be noted that when you use a LEFT JOIN or RIGHT JOIN (or any type of

JOIN) on the same table, it is called a self-join. A self-join is simply joining a table with

itself. This is useful for hierarchical or recursive data structures, such as organizational

charts or family trees. Using a LEFT JOIN ensures that all employees are included in

the result set, even those without a manager (the ManagerID is NULL). This way, you can

identify employees who do not report to anyone. See Table 4-12.

Chapter 4 Complex Characters with JOINs

94

Table 4-12.  The First Query Result

EmployeeName ManagerName

John Smith NULL

Jane Dylan John Smith

Mary Johnson Jane Dylan

Mike Brown Jane Dylan

Emily Davis John Smith

Laura Wilson Emily Davis

David White John Smith

Steve Black David White

To list all departments and their employees, including departments without

employees, you use a LEFT JOIN:

SELECT d.DepartmentName, e.Name AS EmployeeName
FROM Departments d
LEFT JOIN Employees e ON d.DepartmentID = e.DepartmentID;

The query retrieves each department along with the names of employees working in those

departments. By using the LEFT JOIN, you can ensure that all departments are included in

the result, even if no employees are assigned to some departments. See Table 4-13.

Table 4-13.  The Second Query Result

DepartmentName EmployeeName

Engineering Jane Dylan

Engineering Mary Johnson

Engineering Mike Brown

Human Resources Emily Davis

Human Resources Laura Wilson

Finance David White

Finance Steve Black

Chapter 4 Complex Characters with JOINs

95

To list all employees and their projects, including employees not assigned to any

project, you need to use a RIGHT JOIN:

SELECT e.Name AS EmployeeName, p.ProjectName
FROM Employees e
RIGHT JOIN Employees_Projects ep ON e.EmployeeID = ep.EmployeeID
RIGHT JOIN Projects p ON ep.ProjectID = p.ProjectID;

This query retrieves a list of all projects along with the names of employees assigned

to each project. It uses a RIGHT JOIN to ensure that all projects are included in the result

set, even if no employees are assigned to them. The first RIGHT JOIN matches employees

to their projects through the Employees_Projects table. The second RIGHT JOIN ensures

that all projects from the Projects table are included, even if they have no associated

employees. The result set will display the EmployeeName and ProjectName, with

EmployeeName being NULL for projects without assigned employees. See Table 4-14.

Table 4-14.  The Third Query Result

EmployeeName ProjectName

Mary Johnson Project Alpha

Mike Brown Project Alpha

Mary Johnson Project Beta

Mike Brown Project Beta

Laura Wilson Recruitment Drive

Steve Black Financial Audit

NULL Project Alpha

NULL Project Beta

NULL Recruitment Drive

NULL Financial Audit

Chapter 4 Complex Characters with JOINs

96

In the context of answering the third question, the presence of NULL rows can be

problematic, depending on how you interpret the results. Using a RIGHT JOIN with a

NULL check can help address the problem of identifying employees not assigned to any

project and projects without assigned employees. This approach allows you to filter out

unwanted NULL rows and provide a clearer result. Let’s go through how this can be done

for the relevant questions:

SELECT e.Name AS EmployeeName, p.ProjectName
FROM Employees e
RIGHT JOIN Employees_Projects ep ON e.EmployeeID = ep.EmployeeID
RIGHT JOIN Projects p ON ep.ProjectID = p.ProjectID
WHERE e.EmployeeID IS NOT NULL;

This query ensures that you only include rows when there is a valid EmployeeID

from the Employees table, thus excluding the NULL rows for unassigned projects. See

Table 4-15.

Table 4-15.  The Result of Rewriting the Third Query

(Unwanted NULL Rows Were Filtered)

EmployeeName ProjectName

Mary Johnson Project Alpha

Mike Brown Project Alpha

Mary Johnson Project Beta

Mike Brown Project Beta

Laura Wilson Recruitment Drive

Steve Black Financial Audit

It should be noted that NULL rows usually appear in SQL JOINs when there are

unmatched rows between joined tables. Different types of JOINs handle mismatched

rows differently, resulting in NULL values for table columns that do not have a

corresponding match. In this analysis, you learned about one of the reasons for the

emergence of NULL.

Chapter 4 Complex Characters with JOINs

97

Note  The main reason for the occurrence of NULL rows in SQL JOINs is the
corresponding mismatch between the connected tables. The different types
of JOIN used (LEFT, RIGHT, FULL, or OUTER) lead to different results, so
understanding this behavior helps design queries that appropriately handle or
avoid NULL values depending on the analytical needs.

•	 INNER JOIN: No NULLs as only matched rows are included.

•	 LEFT JOIN: NULLs appear for right table columns when there’s no
match in the right table.

•	 RIGHT JOIN: NULLs appear for left table columns when there’s no
match in the left table.

•	 FULL OUTER JOIN: NULLs appear for both table columns when
there’s no match in either table.

•	 CROSS JOIN: No NULLs inherently, as all combinations are included.

•	 SELF JOIN: NULLs appear when a row has no match in the same table.

•	 LEFT JOIN with NULL check: Filters out rows with NULLs in the
JOIN condition, focusing on non-matching rows.

•	 RIGHT JOIN with NULL check: Filters out rows with NULLs in the
JOIN condition, focusing on non-matching rows.

•	 FULL OUTER JOIN with NULL check: Specifically handles NULLs
to highlight unmatched rows from both tables.

It should be noted that there are other reasons for the occurrence of NULL rows,
including missed matches and data integrity.

•	 Missed matches: When there are no corresponding entries in the linked
table, SQL fills the missing values with NULL to indicate the absence of data.

•	 Data integrity: Incomplete data, such as employees without
projects or projects without employees, will result in NULLs in the
result set when performing certain JOINs.

The last part of this chapter discusses the emergence of NULL in more detail.

Chapter 4 Complex Characters with JOINs

98

To find all projects and their assigned departments, including departments without

projects, with the experience you have now, you can write a query that ensures that you

only include rows for which there is a valid ProjectID in the Projects table, so NULL

rows are removed for departments without projects.

SELECT p.ProjectName, d.DepartmentName
FROM Projects p
RIGHT JOIN Departments d ON p.DepartmentID = d.DepartmentID
WHERE p.ProjectID IS NOT NULL;

This query ensures that you only include rows where there is a valid ProjectID in

the Projects table, thus excluding the NULL rows for departments without projects.

See Table 4-16.

Table 4-16.  The Result of the Fourth Query

ProjectName DepartmentName

Project Alpha Engineering

Project Beta Engineering

Recruitment Drive Human Resources

Financial Audit Finance

By applying the NULL check in the WHERE clause, you can filter out the rows where

there are no valid matches, leading to more meaningful and interpretable results.

To create a Cartesian product of all employees and projects, you can use a CROSS
JOIN to create a Cartesian product, which generates all possible combinations of

employees and projects:

SELECT e.Name AS EmployeeName, p.ProjectName
FROM Employees e
CROSS JOIN Projects p;

This query generates a Cartesian product of the Employees and Projects tables,

pairing every employee with every project. The CROSS JOIN operation ensures that all

possible combinations of employees and projects are included in the result set (see

Table 4-17).

Chapter 4 Complex Characters with JOINs

99

Table 4-17.  The Result of the Fifth Query

EmployeeName ProjectName

John Smith Project Alpha

Jane Dylan Project Alpha

Mary Johnson Project Alpha

Mike Brown Project Alpha

Emily Davis Project Alpha

Laura Wilson Project Alpha

David White Project Alpha

Steve Black Project Alpha

John Smith Project Beta

Jane Dylan Project Beta

Mary Johnson Project Beta

Mike Brown Project Beta

Emily Davis Project Beta

Laura Wilson Project Beta

David White Project Beta

Steve Black Project Beta

John Smith Recruitment Drive

Jane Dylan Recruitment Drive

Mary Johnson Recruitment Drive

Mike Brown Recruitment Drive

Emily Davis Recruitment Drive

Laura Wilson Recruitment Drive

David White Recruitment Drive

Steve Black Recruitment Drive

John Smith Financial Audit

(continued)

Chapter 4 Complex Characters with JOINs

100

EmployeeName ProjectName

Jane Dylan Financial Audit

Mary Johnson Financial Audit

Mike Brown Financial Audit

Emily Davis Financial Audit

Laura Wilson Financial Audit

David White Financial Audit

Steve Black Financial Audit

Table 4-17.  (continued)

To find employees who are not assigned to any project, you use a LEFT JOIN and

then check for NULLs to find employees who are not assigned to any project:

SELECT e.Name AS EmployeeName
FROM Employees e
LEFT JOIN Employees_Projects ep ON e.EmployeeID = ep.EmployeeID
WHERE ep.ProjectID IS NULL;

This query retrieves the names of employees who are not assigned to any projects. It

uses a LEFT JOIN to combine the Employees table with the Employees_Projects table on

the EmployeeID column. The WHERE ep.ProjectID IS NULL condition filters the results

to include only those employees who do not have a corresponding ProjectID in the

Employees_Projects table. See Table 4-18.

Table 4-18.  The Result of the Sixth Query

EmployeeName

John Smith

Jane Dylan

Emily Davis

David White

Chapter 4 Complex Characters with JOINs

101

By using these different types of SQL JOINs, Piper answered a variety of questions

about the company, such as manager-report relationships, department-employee

associations, project assignments, and identifying non-project employees. Considering

the vastness of the data and the many dimensions that existed in the company’s data, it

would be impossible to answer these questions without using these JOINs.

�Handling NULL Values in JOINs
Handling NULL values in SQL joins can be very important to maintain the integrity and

accuracy of query results. When dealing with NULL values, it is essential to understand

how the different JOIN types behave and the appropriate strategies to apply. This section

examines the behavior of various JOINs with NULL values and the way that you can

handle them effectively.

�NULL Behavior in SQL JOIN
In SQL, NULL indicates the absence of a known value in a database field. It’s distinct from

empty strings, zeros, or other variables. NULL values often signify missing data or data

that is not applicable. However, NULL can behave differently depending on the context:

•	 Comparisons: Comparing a column with NULL usually results in NULL

itself, as the exact relationship, for instance equal to, is unknown.

•	 Operations: Mathematical operations involving NULL typically

return NULL, as the calculation cannot be performed without a

definite value.

•	 Aggregate functions: Some functions like SUM or AVG ignore NULL

values during calculation, while COUNT(*) counts all rows, including

those with NULL.

•	 JOINs: Different join types generate NULL values differently, affecting

which rows appear in the final result set.

Understanding these behaviors is crucial for writing accurate and efficient SQL

queries that effectively deal with missing information. The third story goes into more

detail about how to handle NULLs when using different types of JOINs.

Chapter 4 Complex Characters with JOINs

102

�The Third Story: Hospital Management
Aletta intends to analyze the management data of the hospital where she works. The

hospital management system has a database with tables containing data related to

doctors, patients, appointments, and departments. These tables contain the data to

effectively manage relationships and programs and ensure that every patient receives

the care they need. Table 4-19 lists the doctors; Table 4-20 lists the patients; Table 4-21

lists the appointments; and Table 4-22 lists the departments.

Table 4-19.  The Doctors

doctor_id Name department_id

1 Dr. Alice Smith 1

2 Dr. Bob Johnson 2

3 Dr. Charlie Lee 1

4 Dr. Dana White 3

5 Dr. Eve Black 2

Table 4-20.  The Patients

patient_id Name primary_doctor_id

101 John Doe 1

102 Jane Roe 2

103 Jim Beam NULL

104 Jack Daniels 4

105 Jill Hill 1

Chapter 4 Complex Characters with JOINs

103

Table 4-21.  The Appointments

appointment_id patient_id doctor_id appointment_date

1001 101 1 2024-07-01

1002 102 2 2024-07-02

1003 103 3 2024-07-03

1004 105 5 2024-07-04

1005 101 4 2024-07-05

Table 4-22.  The Departments

department_id name

1 Cardiology

2 Neurology

3 Orthopedics

4 Pediatrics

5 Dermatology

Aletta would like to:

	 1.	 Generate a report that lists all appointments with details about the

doctor and patient for each appointment.

	 2.	 Create a list of all patients and their primary doctor, if any.

	 3.	 Identify all doctors and list their patients (primary care

only), if any.

Aletta intends to find a list of all appointments along with the details of the doctor

and patient for each appointment, but the problem is that she has to exclude any

appointments that do not have a matching doctor or patient. The following query can do

this for Aletta:

SELECT a.appointment_id, p.name AS patient_name, d.name AS doctor_name,
a.appointment_date
FROM Appointments a

Chapter 4 Complex Characters with JOINs

104

INNER JOIN Patients p ON a.patient_id = p.patient_id
INNER JOIN Doctors d ON a.doctor_id = d.doctor_id;

As mentioned, INNER JOIN removes rows that have no matching values in the

joined tables. If patient_id in the Appointments table does not match any patient_id

in the Patients table or doctor_id in the Appointments matches doctor_id in the

Doctors, those rows will not appear in the result. Since NULLs in JOIN columns result in

non-matching rows, they are effectively removed from the result set. There is no need

to handle extra NULLs in this query because the INNER JOIN naturally filters them out.

Table 4-23 shows all appointments along with the details of the doctor and patient for

each appointment.

Table 4-23.  A List of All Appointments

appointment_id patient_name doctor_name appointment_date

1001 John Doe Dr. Alice Smith 2024-07-01

1002 Jane Roe Dr. Bob Johnson 2024-07-02

1003 Jim Beam Dr. Charlie Lee 2024-07-03

1004 Jill Hill Dr. Eve Black 2024-07-04

1005 John Doe Dr. Dana White 2024-07-05

Aletta wants to get a list of all patients along with their primary doctor, if any. To

do this, she needs to consider a LEFT JOIN, which includes all rows in the Patients

table and matches the rows in the Doctors table. If they do not match, the columns of

the doctors table will contain NULL. To handle these NULLs, Aletta can use the COALESCE

function replace the NULL values in the Doctors.name column with 'No Primary Doctor
Assigned'. This ensures that the result set provides meaningful information even when

no primary doctor is assigned to the patient.

SELECT p.name AS patient_name, COALESCE(d.name, 'No Primary Doctor
Assigned') AS doctor_name
FROM Patients p
LEFT JOIN Doctors d ON p.primary_doctor_id = d.doctor_id;

Chapter 4 Complex Characters with JOINs

105

COALESCE is useful for handling NULL values. For example, when you want to display

a default value instead of NULL when a particular column has missing data, COALESCE

allows you to do this directly in your SQL query.

Note  COALESCE is a function in SQL that helps you deal with NULL values.
It evaluates a list of expressions you provide, one by one, and returns the first
expression that is not NULL. COALESCE works by considering a list of values or
expressions separated by commas. COALESCE starts checking the expressions
from left to right. If the first expression is not NULL, COALESCE returns that value
immediately. If the first expression is NULL, COALESCE moves on to the second
expression and checks if it’s NULL. This process continues until it finds a non-
NULL value or reaches the end of the list. If all the expressions in the list are NULL,
COALESCE itself returns NULL. COALESCE can take any number of expressions
as arguments (more than two). It should be noted that the data types of the
expressions in the list need to be compatible. COALESCE will return the data type
of the first non-NULL expression.

Table 4-24 shows each patient with their primary doctor’s name. For patients without

an assigned primary doctor, the query substitutes "No Primary Doctor Assigned".

Table 4-24.  A List of All Patients and Their Primary Doctor

patient_name doctor_name

John Doe Dr. Alice Smith

Jane Roe Dr. Bob Johnson

Jim Beam No Primary Doctor Assigned

Jack Daniels Dr. Dana White

Jill Hill Dr. Alice Smith

To get a list of all doctors along with the patients they are primary doctors for, Aletta

uses RIGHT JOIN to include all rows from the Doctors table and matches rows from the

Patients table.

Chapter 4 Complex Characters with JOINs

106

SELECT COALESCE(p.name, 'No Patients Assigned') AS patient_name, d.name AS
doctor_name
FROM Patients p
RIGHT JOIN Doctors d ON p.primary_doctor_id = d.doctor_id;

In this query, the RIGHT JOIN includes all rows from the Doctors table and matches

rows from the Patients table. If there is no match, the columns from the Patients

table will contain NULL. To Handle NULLs, the COALESCE function is used to replace NULL

values in the Patients.name column with 'No Patients Assigned'. This ensures that

the result set shows all doctors, including those who are not the primary doctor for any

patient, and provides a meaningful placeholder for the NULL values. Table 4-25 shows

each doctor with the names of their primary patients. For doctors without an assigned

primary patient, the query substitutes 'No Patients Assigned'.

Table 4-25.  Doctors with the Names of Their Primary Patients

patient_name doctor_name

John Doe Dr. Alice Smith

Jane Roe Dr. Bob Johnson

Jack Daniels Dr. Dana White

Jill Hill Dr. Alice Smith

No Patients Assigned Dr. Eve Black

No Patients Assigned Dr. Charlie Lee

�NULL-Safe Equal Operator
It should be noted that some databases, like in MySQL, offer a NULL-safe equal operator.

This operator <=> behaves like the standard =, but with special handling for NULL values.

If both operands are NULL, it returns 1 (true). If only one operand is NULL, it returns 0

(false). This simplifies comparisons involving NULLs, avoiding the need for complex logic

or additional checks for missing data. It improves code readability and ensures your

queries function as expected when encountering NULL values.

Chapter 4 Complex Characters with JOINs

107

PostgreSQL doesn’t have a NULL-safe equal operator like <=>. However, PostgreSQL

offers alternative ways to achieve NULL-safe comparisons:

•	 IS NULL and IS NOT NULL: These operators explicitly check for

the presence or absence of NULL values. You can use them in your

comparisons, like so:

SELECT *
FROM table
WHERE column1 IS NULL OR column2 = value

•	 The = operator: While the standard = operator might return NULL

when comparing with NULL, you can use PostgreSQL’s NULL-safe

comparison behavior with the IS DISTINCT FROM operator.

SELECT *
FROM table
WHERE column1 IS DISTINCT FROM column2

This acts like = for non-NULL values, but returns true when both operands are NULL

and false when only one is NULL.

Both approaches effectively handle NULL-safe comparisons in PostgreSQL. While

PostgreSQL doesn’t have a dedicated NULL-safe operator, its NULL-safe comparison

behavior with IS DISTINCT FROM offers similar benefits for writing cleaner and more

readable JOIN conditions when dealing with NULL values. Code using NULL-safe operators

is easier to understand. Without these operators, you might need nested checks (IS
NULL or COALESCE) within your JOIN conditions to handle NULL values. This can make the

query logic convoluted and harder to maintain.

�Summary
This chapter described an essential tool for combining data from multiple tables, called

SQL JOIN, which can enable complex and meaningful data analysis. Understanding the

different types of JOINs and their applications is crucial for performing advanced data

queries effectively.

Chapter 4 Complex Characters with JOINs

108

�Key Points

•	 INNER JOIN: Combines rows from two or more tables based on a

related column, returning only matching rows.

•	 LEFT OUTER JOIN: Retrieves all rows from the left table and

the matched rows from the right table, filling in NULLs for

unmatched rows.

•	 RIGHT OUTER JOIN: Retrieves all rows from the right table and the

matched rows from the left table, filling in NULLs for unmatched rows.

•	 FULL OUTER JOIN: Returns all rows when there is a match in either

left or right table, filling in NULLs where there are no matches.

•	 SELF JOIN: A table is joined with itself to compare rows within the

same table.

•	 CROSS JOIN: Produces a Cartesian product, pairing each row from

one table with all rows in another table, used rarely for specific

purposes.

•	 Handling NULL values: Properly handle NULL values, resulting from

outer joins to avoid misleading data.

�Key Takeaways

•	 Types of JOINs: Explore INNER, LEFT, RIGHT, and FULL JOINs to

combine data from multiple tables based on matching criteria.

•	 JOIN conditions: Define the rules for matching rows between tables

using the ON clause and comparison operators.

•	 Handling NULLs: Understand how different JOIN types handle

missing data (NULL values) in the results.

Chapter 4 Complex Characters with JOINs

109

�Looking Ahead
The next chapter, “Aggregating Acts,” explores aggregation functions and GROUP BY,

which are fundamental for summarizing and analyzing large datasets. Mastery of this

operation will enable you to extract meaningful insights from your data, uncovering

trends, patterns, and overall statistics.

�Test Your Skills
A database has three tables: customers (CustomerID, Name, City), orders (OrderID,

CustomerID, ProductID, OrderDate), and products (ProductID, Name, Description,

Price, Color).

	 1.	 Write an SQL query using an appropriate JOIN to retrieve the

names and cities of all customers who placed an order in July.

	 2.	 The products table has a column called Color that might contain

NULL values. Write a query that retrieves all products along with

their color information. However, for products with a NULL color

value, display "Unknown" instead.

	 3.	 Write a query to find all pairs of customers who live in the same

city. Ensure that each pair is listed only once.

Chapter 4 Complex Characters with JOINs

111
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_5

CHAPTER 5

Aggregating Acts
An aggregate act in SQL is the process of applying aggregate functions to grouped data

subsets from a data table. To accomplish this, aggregate functions, such as COUNT, SUM,

AVG, MIN, and MAX, are combined with the GROUP BY clause to calculate specific groups

of data. As a result of these actions, SQL provides valuable insights for data analysis and

decision-making by extracting meaningful summaries and statistical information.

�Introduction to GROUP BY
In SQL, GROUP BY allows identical data to be grouped together. GROUP BY clauses in SQL

allow us to group rows according to one or more columns. Once grouped, aggregate

functions can be applied to calculate summary statistics for each group. The GROUP BY

clause syntax is as follows:

SELECT first_column, aggregate_function(second_column)
FROM table_name
WHERE condition
GROUP BY first_column;

Here, the first_column is the column used to group the data, an aggregate_
function is a function that calculates a single value from a set of values like COUNT, SUM,

AVG, MIN, and MAX, the second_column is the column on which the aggregate function is

applied, the table_name refers to the table you are querying, and the WHERE condition

filters the data before grouping it.

The GROUP BY clause can be used to divide the result set into subgroups based

on the column(s) specified in the clause. There are multiple groups formed by each

unique value in the grouping column. Each group is given a single value by applying

an aggregate function. The final result contains a row for each group along with the

aggregate values.

https://doi.org/10.1007/979-8-8688-1560-7_5#DOI

112

The GROUP BY clause is essential for data aggregation, as it allows you to summarize

data, analyze trends, create reports, and improve performance. GROUP BY can summarize

data by computing totals, averages, minimums, and maximums. Within different

categories of data, GROUP BY can be used to identify patterns and trends. A report can

be created by GROUP BY using summarized information for various groups. It is often

possible to improve the performance of queries using GROUP BY by reducing the amount

of data returned. This chapter elaborates on each of these aspects in more detail. It

explores how to compute totals, averages, minimums, and maximums using GROUP
BY. Additionally, it explains how to combine aggregations and window functions, use

nested GROUP BY for more granular analysis, and simplify complex queries with common

table expressions.

�Essential Aggregation Functions
In SQL, aggregate functions are powerful tools for calculating data. These functions

allow you to calculate meaningful statistics from large datasets, which is essential for

the analysis and reporting of data. Table 5-1 lists the most commonly used aggregation

functions in SQL.

Table 5-1.  Commonly Used Aggregation Functions

Function Purpose Syntax

COUNT() Counts rows or non-NULL values COUNT(column_name) or
COUNT(*)

SUM() Calculates the sum of a numeric column SUM(column_name)

AVG() Computes the average of a numeric

column

AVG(column_name)

MIN() Finds the smallest value in a column MIN(column_name)

MAX() Finds the largest value in a column MAX(column_name)

STDDEV() Calculates the standard deviation of a

numeric column

STDDEV(column_name)

(continued)

Chapter 5 Aggregating Acts

113

Function Purpose Syntax

VARIANCE() Computes the variance of a numeric

column

VARIANCE(column_name)

MEDIAN() Returns the median value of a numeric

column

MEDIAN(column_name)

PERCENTILE_
CONT()

Calculates a percentile using continuous

distribution

PERCENTILE_CONT(percentile)
WITHIN GROUP (ORDER BY
column_name)

PERCENTILE_
DISC()

Calculates a percentile using discrete

distribution

PERCENTILE_DISC(percentile)
WITHIN GROUP (ORDER BY
column_name)

STRING_AGG() Concatenates values into a single string STRING_AGG(column_name,
delimiter)

ARRAY_AGG() Aggregates values into an array ARRAY_AGG(column_name)

MODE() Finds the most frequent value in a

column

MODE()

BIT_AND() Computes the bitwise AND of all non-

NULL input values

BIT_AND(column_name)

BIT_OR() Computes the bitwise OR of all non-

NULL input values

BIT_OR(column_name)

Table 5-1.  (continued)

A wide range of data summarization tasks can be accomplished with these

aggregation functions. In addition to covering the most common statistical analysis,

data reporting, and aggregation needs, they are also fundamental tools for anyone using

PostgreSQL. To begin the journey of effective data grouping, meaningful summaries, and

valuable insight extraction, you use these functions along with GROUP BY.

Chapter 5 Aggregating Acts

114

�The First Story: A Busy Gym in a Bustling City
This story revolves around a busy gym in a bustling city that has been operating

successfully for many years. Jack, the gym data analyst, helps the management team

make data-driven decisions to optimize management policies, improve customer

satisfaction, and boost profitability. The gym collects a variety of data points daily,

including information on memberships, classes, personal training sessions, and overall

customer activity.

The gym has several types of memberships, including Basic, Standard, and Premium.

It offers various fitness classes such as Yoga, Pilates, and Spinning, and it also has a team

of personal trainers who conduct one-on-one sessions. The gym tracks all this data in a

relational database. Jack is required to work with the following data tables.

The first table is the Members table and it contains information about gym

members, including their membership type. An illustration of this table can be found in

Table 5-2.

Table 5-2.  The Members Table

Member_ID First_
Name

Last_
Name

Membership_
Type

Join_Date Date_of_Birth Phone_
Number

1 John Doe Premium 2023-01-10 1985-02-20 555-1234

2 Jane Smith Standard 2022-08-15 1990-05-15 555-5678

3 Emily Johnson Basic 2023-03-20 1992-09-05 555-8765

4 Michael Brown Premium 2021-12-10 1988-11-23 555-4321

5 Sarah Davis Standard 2023-06-01 1987-07-30 555-6543

The second table is the Classes table, which contains data about the different

classes offered at the gym. The table values can be found in Table 5-3.

Chapter 5 Aggregating Acts

115

Table 5-3.  The Classes Table

Class_ID Class_Name Instructor Class_Type Schedule Max_Capacity

1 Yoga Alice Green Fitness Mon 9:00 AM 20

2 Pilates Bob White Fitness Wed 7:00 PM 15

3 Spinning Carol Black Cardio Fri 6:00 PM 25

4 Zumba Dave Brown Cardio Sat 10:00 AM 30

5 HIIT Eve Silver Strength Tue 8:00 AM 20

As shown in Table 5-4, the Attendance table keeps track of which classes members

attended and on what dates.

Table 5-4.  The Attendance Table

Attendance_ID Member_ID Class_ID Attendance_Date

1 1 3 2023-08-18

2 2 1 2023-08-19

3 1 4 2023-08-20

4 3 2 2023-08-20

5 4 5 2023-08-21

The Personal_Training_Sessions table records details of personal training

sessions, including the trainer, member, session date, and duration, as shown in

Table 5-5.

Table 5-5.  The Personal_Training_Sessions Table

Session_ID Trainer_Name Member_ID Session_Date Duration_mins

1 Tom Harris 1 2023-08-17 60

2 Nina Jordan 2 2023-08-18 45

3 Mike Scott 3 2023-08-19 30

4 Lisa White 4 2023-08-19 60

5 Tom Harris 5 2023-08-20 45

Chapter 5 Aggregating Acts

116

The last table (see Table 5-6) is Payments, which logs all payments made by

members, including membership fees, class fees, and personal training fees.

Table 5-6.  The Payments Table

Payment_ID Member_ID Payment_Date Amount Payment_Type

1 1 2023-08-01 50 Membership Fee

2 2 2023-08-01 40 Membership Fee

3 1 2023-08-18 20 Class Fee (Spinning)

4 3 2023-08-19 60 Personal Training Fee

5 4 2023-08-20 50 Class Fee (HIIT)

Jack wants answers to the following questions.

	 1.	 For each membership type, what is the average age of the

members?

	 2.	 How many personal training sessions were conducted by each

trainer, and what was the total duration of those sessions?

	 3.	 What is the total revenue generated by each type of payment? A

membership fee, a class fee, and a personal training fee are all

types of payments.

	 4.	 How many members attended each type of class, and what is the

total number of attendance for each class?

	 5.	 For each membership type, how many members have attended

at least one class, and what is the average number of classes

attended per member?

The following query can be used to calculate the average age of members in different

membership types:

SELECT Membership_Type, CAST(AVG(DATE_PART('year', AGE(CURRENT_DATE, Date_
of_Birth))) AS INTEGER) AS Avg_Age
FROM Members
GROUP BY Membership_Type;

Chapter 5 Aggregating Acts

117

In this query, the AGE(CURRENT_DATE, Date_of_Birth) function calculates the

difference between the current date (CURRENT_DATE) and a person’s date of birth (Date_
of_Birth). The result is a time interval representing a person’s age in years, months,

and days. Using DATE_PART('year', AGE(...)), you can access the number of years

from the interval returned by AGE() while ignoring months and days. This provides

the person’s age in complete years. AVG(DATE_PART(...)) is an aggregate function

that calculates the average age in years across all rows. CAST(... AS INTEGER) is used

because the result of AVG() could have decimal places, so the CAST(... AS INTEGER)

converts the result to an integer. This discards any decimal part and provides a whole

number for ease of reading. By understanding the typical age profile of members in each

age bracket, the gym can offer customized services and marketing. It should be noted

that the DATE_PART and AGE functions are standard PostgreSQL functions for working

with dates. The use of CURRENT_DATE and CAST are also standard.

Note T he AGE(timestamp1, timestamp2) function calculates the difference
between two dates or timestamps and returns the result as an interval(years,
months, days, etc.). It should be noted that if only one argument is given
in AGE(timestamp2), PostgreSQL assumes CURRENT_DATE as the recent date.
For instance, SELECT AGE('2024-01-01', '1990-01-01') returns the time
interval from January 1, 1990 to January 1, 2024, showing the age as something
like 34 years 0 months 0 days. Also, the DATE_PART() function extracts a
specific part (like a year, month, or day) from a date or interval, part is part of
the date or interval you want to extract, such as the year, month, or day. date is
the date or interval from which you want to extract the value.For instance, SELECT
DATE_PART('year', '2024-09-22') returns 2024 as it extracts the year
from the date.

Table 5-7 illustrates the calculation of average age based on the membership type.

Chapter 5 Aggregating Acts

118

Table 5-7.  The Average Age Based on Membership Type

Membership_Type Avg_Age

Premium 38

Standard 36

Basic 32

Through the following query, you can discover how many sessions a personal trainer

has and how much time they spend on each session, which are important metrics to

evaluate a trainer’s workload and performance.

SELECT Trainer_Name, COUNT(Session_ID) AS Total_Sessions, SUM(Duration_
mins) AS Total_Duration
FROM Personal_Training_Sessions
GROUP BY Trainer_Name;

The query provides insight into the performance of each personal trainer by

calculating the total number of training sessions they have conducted and their

cumulative duration. By using the COUNT and SUM functions, you can count the number of

sessions held by each trainer and calculate the total minutes spent in training sessions.

When Trainer_Name is grouped, each trainer’s calculations are separate. As a result of

this information, trainer workloads can be managed and trainer contributions assessed

in the gym. Table 5-8 shows the number and duration of personal training sessions for

each trainer.

Table 5-8.  Training Sessions Per Trainer and Their Duration

Trainer_Name Total_Sessions Total_Duration

Tom Harris 2 105

Nina Jordan 1 45

Mike Scott 1 30

Lisa White 1 60

The following query can help identify which services contribute most to its income

by understanding its revenue breakdown by payment type:

Chapter 5 Aggregating Acts

119

SELECT Payment_Type, SUM(Amount) AS Total_Revenue
FROM Payments
GROUP BY Payment_Type;

Each type of payment is calculated separately in this query. The SUM function

aggregates the payment amounts, grouped by Payment_Type, including membership

fees, class fees, and personal training fees. As a result of this analysis, as shown in

Table 5-9, the gym’s management can make informed decisions about pricing strategies,

promotions, and resource allocation based on its major sources of income.

Table 5-9.  The Gym's Major Sources of Income

Payment_Type Total_Revenue

Membership Fee 90.00

Class Fee (Spinning) 20.00

Personal Training Fee 60.00

Class Fee (HIIT) 50.00

To determine how many members attend each class at the gym, the following query

can be used:

SELECT C.Class_Name, COUNT(DISTINCT A.Member_ID) AS Number_of_Members,
COUNT(A.Attendance_ID) AS Total_Attendances
FROM Attendance A
JOIN Classes C ON A.Class_ID = C.Class_ID
GROUP BY C.Class_Name;

This query provides two key metrics for each class offered at the gym. These are

the number of distinct members who attended at least one session, which is calculated

by using COUNT(DISTINCT A.Member_ID)) and the total number of attendances,

which is calculated by using COUNT(A.Attendance_ID). To match attendance records

with class names, it joins the Attendance table with the Classes table. The analysis is

performed separately for each class when classes are grouped by Class_Name. As shown

in Table 5-10, gym managers can take advantage of these insights to optimize class

schedules, allocate resources more efficiently, and even introduce new classes based on

member preferences.

Chapter 5 Aggregating Acts

120

Table 5-10.  Attendance Totals and Membership Numbers for Each Class

Class_Name Number_of_Members Total_Attendances

Spinning 1 1

Yoga 1 1

Zumba 1 1

Pilates 1 1

HIIT 1 1

The following nested query can be used to find, for each membership type, the

number of members who attended at least one class, as well as the average number of

classes attended per member.

SELECT M.Membership_Type, COUNT(DISTINCT M.Member_ID) AS Members_Attended,
CAST(AVG(Sub.Class_Attended) AS DECIMAL(10, 2)) AS Avg_Classes_Per_Member
FROM Members M
JOIN
 (SELECT Member_ID, COUNT(Attendance_ID) AS Class_Attended
 FROM Attendance
 GROUP BY Member_ID) Sub
ON M.Member_ID = Sub.Member_ID
GROUP BY M.Membership_Type;

This nested query aims to analyze class attendance to determine membership

engagement levels. As a first step, a subquery finds the number of classes each member

attended. In the main query, the result is then joined to the Members table, and the data is

grouped by Membership_Type. This calculates the average number of classes attended by

members of each membership type.

As mentioned earlier, nested queries are queries embedded within other queries.

In this query, the subquery calculates how many classes each member has attended by

selecting Member_ID and counting the occurrences of Attendance_ID in the Attendance

table. After that, the results are grouped by Member_ID, giving a list of members and their

respective class counts. This subquery is then given an alias Sub and used in the main

query to join the Members table. As a result, the main query can access membership data

and aggregate it to derive insights, such as how many members of each membership

Chapter 5 Aggregating Acts

121

type attended at least one class and how many classes they attended on average.

Table 5-11 shows member engagement, which is useful for understanding how active

each membership type is. These insights can be used to customize the gym’s offerings or

create membership promotion offers.

Table 5-11.  Analysis of Class Attendance Based on Type of Membership

Membership_Type Members_Attended Avg_Classes_Per_Member

Premium 2 1.5

Standard 1 1

Basic 1 1

By using SQL’s GROUP BY and aggregation capabilities, these queries reveal crucial

information about the gym statistics, participation, and revenue. The next section

discusses a more advanced topic.

�Advanced Aggregation Techniques:
Multi-step Calculations
This section discusses a more advanced topic, called multi-step calculations.

�Multi-step Calculations: The Basics
For complex data analysis tasks requiring multiple calculation steps, subqueries and

nested aggregations can be applied together. Subqueries can be used in various places

within the main query, such as in a SELECT, FROM, or WHERE clause. Subqueries typically

return temporary results that the main query can reference. In essence, you can break

complex operations down into smaller, more manageable queries, which can be used

to perform specific calculations for the main query. To achieve nested aggregation,

subqueries are commonly used. Performing multiple levels of aggregation, namely

processing or aggregating the result of one aggregation by another, is called nested

aggregation. Subqueries are generally aggregated, and then another layer of aggregation

is applied. The primary reason for using nested aggregations is to calculate metrics

Chapter 5 Aggregating Acts

122

that require multi-step computations, such as group averages, rankings, or aggregated

summaries. As a result, you can perform complex aggregations on datasets by making

intermediate calculations.

Assuming the previous story scenario, a busy gym in a bustling city, if you want to

calculate the average number of classes attended by members, grouped by membership

type, you need to break this down into two steps. First, you count the number of classes

each member has attended, and then you calculate the average of those counts. The first

aggregation is performed with a subquery, counting attendance per member, and the

second aggregation, averaging counts across membership types, is performed with the

outer query.

SELECT M.Membership_Type, AVG(Sub.Class_Attended) AS Avg_Classes_Per_Member
FROM Members M
JOIN (SELECT Member_ID, COUNT(Attendance_ID) AS Class_Attended FROM
Attendance GROUP BY Member_ID) AS Sub
ON M.Member_ID = Sub.Member_ID
GROUP BY M.Membership_Type;

Here, the subquery (SELECT Member_ID, COUNT(Attendance_ID) AS Class_
Attended FROM Attendance GROUP BY Member_ID) calculates the total number of

classes each member has attended, and the outer query then performs a second

aggregation, calculating the average (AVG(Sub.Class_Attended)) number of

classes attended by members within each membership type, grouping the data by

Membership_Type.

The advantages of combining subqueries and nested aggregation are that you get

better modularity, flexibility, and complex analysis. Subqueries allow for modular code,

where intermediate calculations can be separated from the main logic, making the

query more readable and easier to debug. Also, using subqueries for nested aggregation

offers flexibility to perform multiple levels of aggregation that are otherwise difficult to

achieve in a single pass. Additionally, this leads to the creation of complex analyses like

ranking, cumulative sums, and multi-step calculations, where one aggregation depends

on another’s result.

Chapter 5 Aggregating Acts

123

�Using Window Functions for Aggregation
The window function is a powerful SQL tool that allows you to perform calculations

across sets of rows related to the current query row. Unlike traditional aggregation

functions, such as SUM(), COUNT(), or AVG(), used with GROUP BY, window functions

do not collapse rows into a single result. Instead, they provide a calculated value while

maintaining the row structure.

�Window Function Definition

Window functions operate on a set of rows called a “window,” which is defined by the

OVER() clause. The OVER() clause specifies how rows should be grouped or partitioned

and evaluated. By applying the window function to each row within the window, the

result set is not collapsed. Window functions involve several key concepts that should

be noted. Partitioning is the first concept. It is possible to divide the data into groups

or “partitions” based on one or more columns by using the PARTITION BY clause. The

second concept is ordering. With the ORDER BY clause, you can specify the order of rows

within each partition. The last concept is framing. If you want to control which rows

appear in the window, you can use the ROWS or RANGE options, but this is less commonly

required for simple aggregations.

A window function has the following basic syntax:

<window_function> OVER ([PARTITION BY <column>] [ORDER BY <column>])

Here, <window_function>() can be any SQL aggregate or ranking function, such as

SUM(), AVG(), COUNT(), ROW_NUMBER(), RANK(), and so on. The OVER() clause specifies the

“window” or the set of rows that the function should operate over. PARTITION BY divides

the result set into partitions, similar to GROUP BY, and ORDER BY defines the order of rows

within each partition.

Also, the basic structure of a window function using the ROWS or RANGE options is as

follows:

<window_function> OVER (
 [PARTITION BY <column_name>]
 ORDER BY <column_name>
 {ROWS | RANGE} BETWEEN <frame_start> AND <frame_end>
)

Chapter 5 Aggregating Acts

124

Here, ROWS defines the window in terms of physical rows, and RANGE defines the

window in terms of logical values (ranges of values). It is important to note that ROWS

operates on a specific number of rows relative to the current row, and RANGE operates on

a range of values (not necessarily consecutive rows).

Note T he ORDER BY clause in SQL is used to sort the result set of a query by
one or more columns. This clause allows you to display the data alphabetically,
numerically, or by date. This clause is introduced in the next chapter with more
examples and stories. Briefly, it can be said that the basic syntax of ORDER BY is
as follows:

SELECT column_1, column_2
FROM table_name
ORDER BY column1 [ASC];

ORDER BY column1 specifies the column you want to sort by, and ASC means
ascending the data from smallest to largest. In the absence of a specification, ASC
order is the default. As well, DESC means sorting the data in descending order,
from largest to smallest.

�The Second Story: Speedy Motors Company
At a fast-growing automobile manufacturer, management is excited to gather insights

from a data table that contains information about sales, customers, and vehicles. Their

company hired Anna, a data analyst, to help them make sense of the data and provide

meaningful insights to drive business decisions. The company collects data on car sales,

customer demographics, pricing, and production. Anna needs to perform the following

advanced data analysis in order to answer their key business questions. Anna is working

with the Car Sales table, shown in Table 5-12, which contains records of car sales,

including the region, model name, sale date, and sales amount.

Chapter 5 Aggregating Acts

125

Table 5-12.  The Car Sales Table

Sale_ID Model_Name Region Sale_Date Sales_Amount

1 Speedster North 2024-01-01 25000

2 Cruiser South 2024-01-03 20000

3 Speedster North 2024-01-05 27000

4 Zoomer East 2024-01-07 30000

5 Speedster West 2024-01-10 28000

6 Cruiser South 2024-01-12 22000

7 Zoomer North 2024-01-15 26000

8 Speedster South 2024-01-17 29000

Anna needs answers to the following questions.

	 1.	 How can they identify the order in which cars were sold in

each region?

	 2.	 How can they rank car models by their total sales in each region?

	 3.	 How can they rank car models without skipping ranks when sales

tie? (A sales tie occurs when two or more car models have the

same number of sales within a specific region.)

	 4.	 How can they calculate the cumulative sales for each car model

over time?

	 5.	 How can they calculate the moving average of sales over the last

three sales for each model?

	 6.	 How can they calculate the total sales per region and rank the car

models within each region?

To find the answer to the first question, Anna uses ROW_NUMBER() to assign a unique

rank to each sale in every region, ordered by sale date, to understand the sequence

of sales.

Chapter 5 Aggregating Acts

126

SELECT Sale_ID, Region, Model_Name,
 �ROW_NUMBER() OVER (PARTITION BY Region ORDER BY Sale_Date) AS

Sale_Rank
FROM Car_Sales;

The query is used to rank each sale of cars within a region, according to the sale

date. The query retrieves four columns from the Car_Sales table: Sale_ID, Region,

Model_Name, and a newly computed column called Sale_Rank, which is created using

the ROW_NUMBER() window function. As the first step, SELECT Sale_ID, Region, Model_
Name retrieves the unique sale identifier (Sale_ID), the region in which the car was sold

(Region), and the model of the car (Model_Name) from the Car_Sales table. Then, ROW_
NUMBER() OVER (PARTITION BY Region ORDER BY Sale_Date) uses the ROW_NUMBER()

window function to assign a sequential row number (starting from 1) to each row within

a specific partition. Anna uses ROW_NUMBER() to assign a unique rank to each sale in

every region, ordered by sale date, to understand the sequence of sales. The partitioning

is done by the Region column, meaning row numbers will be generated separately for

each region. Within each region, the rows are ordered by Sale_Date in ascending order.

This means the earliest sale will have row number 1, the second earliest sale will have 2,

and so on. The calculated row number is given the alias Sale_Rank in the result set, AS
Sale_Rank, representing the rank or sequence of each sale in its respective region.

Note  PARTITION BY is a clause used in window functions in SQL to divide a
result set into smaller groups or partitions. A key difference between PARTITION
BY and GROUP BY is that PARTITION BY doesn't collapse the rows; it allows
calculations to be performed within each partition while keeping all rows visible.
PARTITION BY allows window functions to be applied separately to each
partition.

Results will include a list of sales ranked by their order of occurrence within the

same region. For tracking sales sequences or identifying the first, second, and so on,

sale within each region over time, this is particularly useful. Table 5-13 shows the rank of

each sale within its region.

Chapter 5 Aggregating Acts

127

Table 5-13.  The Sales Sequence

Sale_ID Region Model_Name Sale_Rank

1 North Speedster 1

3 North Speedster 2

7 North Zoomer 3

2 South Cruiser 1

6 South Cruiser 2

8 South Speedster 3

4 East Zoomer 1

5 West Speedster 1

This query can be used to rank car models in each region based on their total sales:

SELECT Model_Name, Region,
 RANK() OVER (PARTITION BY Region ORDER BY SUM(Sales_Amount) DESC) AS
Sales_Rank
FROM Car_Sales
GROUP BY Model_Name, Region;

This query ranks car models based on their total sales within each region using

a window function with RANK() and PARTITION BY. The query selects two columns,

Model_Name and Region. Then, RANK() OVER (PARTITION BY Region ORDER BY
SUM(Sales_Amount) DESC) AS Sales_Rank uses the RANK() function to assign a rank

to each car model within its region based on total sales. In this query, Anna uses RANK()

to rank car models in each region based on their total sales. Here, the models with the

same total sales will receive the same rank. PARTITION BY Region splits the data into

partitions by region, so that the ranking calculation is applied separately to each region.

By using ORDER BY SUM(Sales_Amount) DESC, Anna ranks the car models in each

region based on their total sales SUM(Sales_Amount), sorted in descending order. The

highest sales get the highest rank. It should be noted that the rank is reset for each region

due to partitioning. GROUP BY Model_Name, Region is used because Anna is applying

SUM(Sales_Amount). Thus, the query groups the data by Model_Name and Region to

Chapter 5 Aggregating Acts

128

compute the total sales for each model in each region. Finally, each car model is ranked

within its region based on total sales, with the model having the highest sales ranking

first. Table 5-14 shows the rank of car models by total sales in each region.

Table 5-14.  Ranking Car Models by Sales in Each Region

Model_Name Region Sales_Rank

Speedster North 1

Zoomer North 2

Cruiser South 1

Speedster South 2

Zoomer East 1

Speedster West 1

In order to rank car models in order of sales without skipping ranks when there is

a tie in sales, the next query is ranked sequentially without gaps. To answer the third

question, models should be ranked without gaps when sales figures are tied. In order to

avoid gaps when two models have the same sales amount, this query uses DENSE_RANK():

SELECT Model_Name, Region,
 �DENSE_RANK() OVER (PARTITION BY Region ORDER BY SUM(Sales_Amount)

DESC) AS Dense_Rank
FROM Car_Sales
GROUP BY Model_Name, Region;

This query ranks car models by their total sales within each region using the DENSE_
RANK() window function. The query selects two columns: Model_Name and Region.

DENSE_RANK() OVER (PARTITION BY Region ORDER BY SUM(Sales_Amount) DESC) AS
Dense_Rank, DENSE_RANK() is a window function that assigns a rank to each car model

based on its sales amount within a region. DENSE_RANK() ranks models without gaps

when sales figures are tied. PARTITION BY Region partitions data by Region, meaning

the ranking is calculated separately for each region. ORDER BY SUM(Sales_Amount) DESC

ranks the car models based on their total sales (SUM(Sales_Amount)), with the models

having the highest sales ranked first.

Chapter 5 Aggregating Acts

129

Note  Unlike RANK(), which skips ranks if ties occur, DENSE_RANK() does not
skip numbers. If two models have the same sales, they will share the same rank,
and the next model will be ranked right after (without gaps). A final step is to use
GROUP BY Model_Name, Region to calculate the total sales for each model
based on SUM(Sales_Amount).

As a result of the query, the ranking of car models is dense in each region based on

their total sales, ensuring that no gaps exist in the rank numbers, even when there are

ties among models. Table 5-15 ranks car models without skipping ranks, even when

there are ties in total sales.

Table 5-15.  Dense Ranking of Car Models by Sales

Model_Name Region Dense_Rank

Speedster North 1

Zoomer North 2

Cruiser South 1

Speedster South 2

Zoomer East 1

Speedster West 1

The following query calculates the cumulative sales over time for each car model:

SELECT Sale_ID, Model_Name, Sale_Date,
 �SUM(Sales_Amount) OVER (PARTITION BY Model_Name ORDER BY Sale_Date)

AS Cumulative_Sales
FROM Car_Sales;

Anna uses the SUM() function with the OVER() clause to calculate a running total of

sales for each car model, ordered by sale date. A cumulative sales calculation for each

car model is performed from the Car_Sales table using this query. SUM(Sales_Amount)
OVER (PARTITION BY Model_Name ORDER BY Sale_Date) computes a running total

of sales for each Model_Name, ordered by Sale_Date. The method returns the Sale_ID,

Model_Name, Sale_Date, and the cumulative sales amount up until that sale. Table 5-16

shows the cumulative total of sales for each car model over time.

Chapter 5 Aggregating Acts

130

Table 5-16.  Cumulative Sales by Car Model

Sale_ID Model_Name Sale_Date Cumulative_Sales

1 Speedster 2024-01-01 25000

3 Speedster 2024-01-05 52000

5 Speedster 2024-01-10 80000

8 Speedster 2024-01-17 109000

2 Cruiser 2024-01-03 20000

6 Cruiser 2024-01-12 42000

4 Zoomer 2024-01-07 30000

7 Zoomer 2024-01-15 56000

In order to calculate the moving average of sales for each model over the last three

sales, you can use the following query.

SELECT Sale_ID, Model_Name, Sale_Date,
 �AVG(Sales_Amount) OVER (PARTITION BY Model_Name ORDER BY Sale_Date

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS Moving_Avg
FROM Car_Sales;

Anna uses the AVG() window function to calculate a moving average of the sales

amount over the last three sales for each model. With this query, a moving average

is calculated for every car model in the Car_Sales table based on its Sales_Amount.

To compute the average, the query uses the AVG() window function. PARTITION BY
Model_Name groups the data by car model. ORDER BY Sale_Date orders the sales

chronologically. ROWS BETWEEN 2 PRECEDING AND CURRENT ROW limits the window to

include the current sale and the previous two sales. Moving_Avg is a moving average of

sales amounts over time for each model. The window frame determines which rows

should be included in the calculation for each row in the result set. Thus, ROWS specifies

that the window frame is defined by a specific number of rows relative to the current

row (as opposed to a range of values with RANGE). The "BETWEEN 2 PRECEDING AND
CURRENT ROW", "2 PRECEDING” includes the current row and the two rows before it in

the calculation, and CURRENT ROW refers to the current row itself. Due to this, each row in

Chapter 5 Aggregating Acts

131

the result set will be averaged over the two previous rows (based on the ORDER BY Sale_
Date). When there are fewer than two preceding rows (e.g., for the first or second row), it

will just calculate the average. Table 5-17 shows the moving average of sales amounts for

the last three sales of each car model.

Table 5-17.  Moving Averages of Sales by Car Model

Sale_ID Model_Name Sale_Date Moving_Avg

1 Speedster 2024-01-01 25000

3 Speedster 2024-01-05 26000

5 Speedster 2024-01-10 26666

8 Speedster 2024-01-17 28000

2 Cruiser 2024-01-03 20000

6 Cruiser 2024-01-12 21000

4 Zoomer 2024-01-07 30000

7 Zoomer 2024-01-15 28000

The following query calculates the total sales per car model within each region, ranks

the models based on their sales within the same region, and provides the total sales for

each region. The inner query first aggregates the total sales for each car model in each

region by summing Sales_Amount from the Car_Sales table. The results are grouped by

Model_Name and Region, which means it calculates the total sales for each model in every

region. The outer query then adds two additional computations: it calculates the total

sales for each region and ranks the models within each region based on their sales.

SELECT Model_Name, Region, Total_Sales,
 SUM(Total_Sales) OVER (PARTITION BY Region) AS Total_Sales_Region,
 �RANK() OVER (PARTITION BY Region ORDER BY Total_Sales DESC) AS

Sales_Rank
FROM (
SELECT Model_Name, Region,
 SUM(Sales_Amount) AS Total_Sales
FROM Car_Sales
GROUP BY Model_Name, Region
) AS AggregatedSales;

Chapter 5 Aggregating Acts

132

The query starts by aggregating sales in the inner subquery, which calculates the

total sales, Total_Sales, for each car model, the Model_Name in each region, and the

Region by summing the Sales_Amount and grouping the results by model and region. In

the outer query, SUM(Total_Sales) OVER (PARTITION BY Region) is used to calculate

the total sales across all models within each region. This provides the total sales for

each region, regardless of the model. The RANK() OVER (PARTITION BY Region ORDER
BY Total_Sales DESC) then assigns a rank to each model within the region based on

its total sales, with the highest sales being ranked first. The query thus provides a view

of the total sales for each model, its rank within each region, and the total sales for the

region itself. This approach is useful for analyzing car sales performance both by model

and region. Table 5-18 shows total sales in each region and ranks the car models based

on sales.

Table 5-18.  Total Sales and Ranking by Region

model_name Region total_sales total_sales_region sales_rank

Zoomer East 30000 30000 1

Speedster North 52000 78000 1

Zoomer North 26000 78000 2

Cruiser South 42000 71000 1

Speedster South 29000 71000 2

Speedster West 28000 28000 1

To summarize, Anna analyzes Speedy Motors Company’s car sales using window

functions like ROW_NUMBER(), RANK(), SUM(), and AVG(). The analysis consists of

identifying sales sequences, ranking car models by region, calculating cumulative sales,

and calculating moving averages for each model. She helps the company make data-

driven decisions by combining multiple window functions.

�Window Functions vs. Traditional Aggregation
Window functions and traditional aggregation serve different purposes in SQL. As

mentioned earlier, traditional aggregation—using GROUP BY with functions like SUM(),

COUNT(), AVG(), and so on—combines rows into grouped summaries. A GROUP BY clause,

Chapter 5 Aggregating Acts

133

for example, will group data by region and return one row per group if you want the total

sales per region. Consequently, row-level data cannot be retained during aggregation.

On the other hand, a window function uses OVER() to aggregate rows within a window

without collapsing the result set. Each row of data is preserved while running totals,

ranks, or moving averages are calculated. For example, SUM(Sales) OVER (PARTITION
BY Region ORDER BY Date) calculates cumulative sales per region, but all original rows

remain in the output.

The key difference between using window functions and traditional aggregation

is that aggregation provides summary data, whereas window functions allow for

calculations at the row level based on aggregates. In cases where row-level detail

is of importance, window functions are ideal for performing tasks such as ranking,

summation, and comparing individual data points against averages across groups, in

which the row-level details need to be preserved. See Figure 5-1.

Figure 5-1.  A comparison of window functions and traditional aggregation

Figure 5-1 illustrates aggregation on the left using GROUP BY, which combines

and then hides individual rows. Alternatively, the window function, on the left, can

access individual rows and add attributes from those rows. To summarize, traditional

aggregation can be used for overall summaries, whereas window functions can be used

for more complex, row-aware analysis.

Chapter 5 Aggregating Acts

134

�Combining Multiple Aggregation Techniques
The combination of window functions and standard aggregation can lead to more

powerful and flexible SQL queries. By combining row-level detail analysis with summary

analysis, you can gain more insights than would be possible through either approach

alone. To perform complex analyses, you can use window functions, such as ROW_
NUMBER() and RANK(), alongside standard aggregate functions.

�Combining Window Functions with Standard Aggregation

The following examples demonstrate how to combine window functions and standard

aggregation.

The Sales table, shown in Table 5-19, is used for all the queries in this section. It

contains data on individual sales, including Customer_ID, Product_ID, Sale_Amount,

Sale_Date, and Region.

Table 5-19.  The Sales Table

Sale_ID Customer_ID Product_ID Sale_Amount Sale_Date Region

1 101 P001 500 2024-01-05 North

2 102 P002 300 2024-01-08 South

3 101 P003 200 2024-01-12 North

4 103 P001 900 2024-01-15 East

5 104 P002 600 2024-01-18 West

6 102 P003 150 2024-01-22 South

7 101 P002 700 2024-01-25 North

8 105 P003 250 2024-01-30 West

9 103 P001 400 2024-02-01 East

10 104 P003 1000 2024-02-05 West

Chapter 5 Aggregating Acts

135

�Example: Customer Segmentation Based on Purchase Totals

Customers should be ranked based on their total purchases within a specific time frame

while still seeing individual sales.

SELECT Customer_ID,
 COUNT(*) OVER (PARTITION BY Customer_ID) AS Total_Sales,
 SUM(Sale_Amount) OVER (PARTITION BY Customer_ID) AS Total_Purchases,
 �ROW_NUMBER() OVER (PARTITION BY Customer_ID ORDER BY Sale_Date) AS

Sale_Rank
FROM Sales;

COUNT(*) OVER (PARTITION BY Customer_ID) AS Total_Sales, COUNT(*)

is an aggregate function that counts the number of rows. The OVER (PARTITION BY
Customer_ID) window function partitions the data by Customer_ID, meaning the

count is calculated separately for each customer. The total number of sales made by

a customer is shown in this column for each row of sales. The rows are not collapsed,

so every row for a customer has the same total sales amount. SUM(Sale_Amount) OVER
(PARTITION BY Customer_ID) is a window function that calculates the total purchases

for each customer without collapsing the rows, and ROW_NUMBER() OVER (PARTITION
BY Customer_ID ORDER BY Sale_Date) assigns a row number to each sale for each

customer based on the sale date. In this way, you can see each sale, the total purchase

amount for each customer, and the order in which the sales took place.

Table 5-20 shows the number of sales and the total purchase amount for each

customer while ranking individual sales by date. The Total_Sales column shows how

many sales each customer has made. Total_Purchases displays the total amount the

customer has spent. Sale_Rank assigns a number to each sale for a customer, ordered by

sale date.

Chapter 5 Aggregating Acts

136

Table 5-20.  Ranking Sales and Calculating Totals per Customer

Customer_ID Total_Sales Total_Purchases Sale_Rank

101 3 400 1

101 3 1400 2

101 3 1400 3

102 2 450 1

102 2 450 2

103 2 1300 1

103 2 1300 2

104 2 1600 1

104 2 1600 2

105 1 250 1

�Nested GROUP BY with Window Functions

For deeper analysis, you can use window functions in conjunction with nested GROUP BY.

�Example: Top-N Analysis Within Partitions

The goal here is to determine the three highest-paying customers in each region based

on the three most profitable customers.

WITH CustomerTotals AS (
 SELECT Customer_ID, Region, SUM(Sale_Amount) AS Total_Purchase
 FROM Sales
 GROUP BY Customer_ID, Region
)

SELECT
 Customer_ID,
 Region,
 Total_Purchase,

Chapter 5 Aggregating Acts

137

 �RANK() OVER (PARTITION BY Region ORDER BY Total_Purchase DESC) AS
Region_Rank

FROM CustomerTotals
WHERE Customer_ID IN (
 SELECT Customer_ID
FROM (
SELECT
 Customer_ID,
 Region,
 Total_Purchase,
 �RANK() OVER (PARTITION BY Region ORDER BY Total_Purchase DESC) AS

Region_Rank
FROM CustomerTotals) AS RankedCustomers
WHERE Region_Rank <= 3);

This SQL query uses a common table expression (CTE) named CustomerTotals to

calculate and organize customer purchase data in a structured manner. The CTE first

aggregates the total purchase amount, Total_Purchase, for each customer, Customer_ID,

in every region, Region, by totaling Sale_Amount from the Sales table and grouping by

both customer and region. This step isolates the aggregation logic, producing a concise

result set that contains one row per customer per region, summarizing their total

spending.

In the main query, these aggregated data are further processed using the RANK()

window function. The function partitions the data by Region and orders the results in

descending order of Total_Purchase, assigning a rank to each customer within their

respective region. To identify the top performers, the query applies a filter. Only customers

whose regional rank is less than or equal to three are selected, effectively limiting the

output to the top three spenders in each region. This filtering is done by nesting another

query in the ranking results and using a WHERE Region_Rank <= 3 clause. The final SELECT

returns Customer_ID, Region, Total_Purchase, and their rank in that region.

The use of a CTE improves the readability and maintainability of the query by clearly

separating the total purchase aggregation from the ranking and filtering logic. This

approach avoids redundancy by calculating totals once and referencing them multiple

times without repeating computations, much like using a temporary, named result set.

In complex analytical queries, CTEs simplify debugging, enhance performance through

reuse, and make SQL easier to extend or modify in the future.

Chapter 5 Aggregating Acts

138

Note  Common table expressions are temporary result sets that you can
reference within SELECT, INSERT, UPDATE, or DELETE queries. They are defined
using the WITH keyword and provide a way to write cleaner, more readable
queries, especially for complex multi-step operations. The concept of CTEs is
similar to that of subqueries, but they are much easier to read and reuse. The basic
syntax of CTEs can be summed up as follows:

WITH cte_name AS (
 SELECT columns
 FROM table
 WHERE conditions
)
SELECT * FROM cte_name;

Table 5-21 shows the top two customers from each region based on their total

purchases.

Table 5-21.  Customers in Each Region by Total Purchases

Customer_ID Region Total_Purchase Region_Rank

101 North 1400 1

102 South 450 1

103 East 1300 1

104 West 1600 1

105 West 250 2

�Using Aggregation Functions and ROW_NUMBER() Together

In addition to calculating aggregated metrics like SUM() or COUNT() across partitions, you

can also calculate details and ranks at a row-level.

Chapter 5 Aggregating Acts

139

�Example: Count Orders Per Customer and Rank Sales

To calculate the total number of sales for each client, rank each sale, and determine the

total amount purchased for each client, you need to calculate the total number of sales.

SELECT
 Customer_ID,
 COUNT(*) OVER (PARTITION BY Customer_ID) AS Total_Sales,
 SUM(Sale_Amount) OVER (PARTITION BY Customer_ID) AS Total_Purchases,
 �ROW_NUMBER() OVER (PARTITION BY Customer_ID ORDER BY Sale_Date) AS

Sale_Rank
FROM Sales;

COUNT(*) OVER (PARTITION BY Customer_ID) gives the total number of sales for

each customer. SUM(Sale_Amount) OVER (PARTITION BY Customer_ID) calculates the

total sales amount for each customer. ROW_NUMBER() ranks the sales in order of sale date.

Table 5-22 shows the total number of sales and the rank of each sale by customer.

Table 5-22.  Total Sales and Ranking for Each Customer

Customer_ID Total_Sales Total_Purchases Sale_Rank

101 3 1,400 1

101 3 1,400 2

101 3 1,400 3

102 2 450 1

102 2 450 2

103 2 1,300 1

103 2 1300 2

104 2 1600 1

104 2 1600 2

105 1 250 1

Chapter 5 Aggregating Acts

140

�Advanced Query Structures Using Common Table
Expressions (CTEs)

In SQL, a common table expression (CTE) represents a temporary result set that can

be referred to within a query. CTEs are defined using the WITH keyword. In a nutshell,

CTEs create virtual tables that exist only while a query is executed. CTE makes complex

queries more readable; it decomposes them into logical, manageable steps. It provides

reusable logic that avoids duplication by defining a result set once and reusing it

throughout the query. Also, by using CTEs, recursive queries can handle hierarchical and

recursive structures. CTEs can also simplify complex multi-step aggregations by breaking

them into manageable steps. A CTE allows you to create a temporary result set that can

be referenced in the main query. The basic syntax for a CTE is provided here:

WITH cte_name AS (
 SELECT column1, column2
 FROM table_name
 WHERE conditions
)
SELECT *
FROM cte_name;

In the query, a CTE is defined (cte_name) by using the WITH clause to create a

temporary result set from a SELECT statement to be used later. It is possible to refer to

this result in the main query (SELECT * FROM cte_name). It simplifies and improves the

readability of queries.

�Example: Customer Segmentation with Advanced Metrics

Suppose you want to segment customers based on their total purchases into high,

medium, and low spenders. The total amount they spent can be calculated first, and

then they can be assigned to segments accordingly.

WITH CustomerPurchases AS (
 SELECT Customer_ID, SUM(Sale_Amount) AS Total_Purchase
 FROM Sales
 GROUP BY Customer_ID
),

Chapter 5 Aggregating Acts

141

CustomerSegments AS (
 SELECT Customer_ID, Total_Purchase,
 CASE
 WHEN Total_Purchase >= 1000 THEN 'High Spender'
 �WHEN Total_Purchase BETWEEN 500 AND 999 THEN 'Medium

Spender'
 ELSE 'Low Spender'
 END AS Segment
 FROM CustomerPurchases
)
SELECT * FROM CustomerSegments;

The first CTE, CustomerPurchases, calculate the total purchase amount for each

customer. The second CTE, CustomerSegments, assign customers into segments (High,

Medium, and Low) based on their total purchase. This method makes it easier to break

complex queries into manageable steps and improves readability. Table 5-23 shows the

customer segmentation based on total purchases.

Table 5-23.  Customer Segments Based on Total Purchases

Customer_ID Total_Purchase Segment

101 1400 High Spender

102 450 Low Spender

103 1300 High Spender

104 1600 High Spender

105 250 Low Spender

�Top-N Analysis with CTEs and ROW_NUMBER()

The top-N analysis can be made more complex by combining CTEs and window

functions.

Chapter 5 Aggregating Acts

142

�Example: Finding the Top Two Highest-Paying Customers Overall

WITH RankedCustomers AS (
 SELECT Customer_ID, SUM(Sale_Amount) AS Total_Purchase,
 ROW_NUMBER() OVER (ORDER BY SUM(Sale_Amount) DESC) AS
Purchase_Rank
 FROM Sales
 GROUP BY Customer_ID
)
SELECT * FROM RankedCustomers
WHERE Purchase_Rank < 3;

ROW_NUMBER() assigns a rank to each customer based on their total purchases. CTE is

used to calculate the total purchase for each customer, rank them, and then filter out the

top three. Table 5-24 shows the top two customers with the highest total purchases.

Table 5-24.  Top Two Customers Overall Based on Total Purchases

Customer_ID Total_Purchase Purchase_Rank

104 1600 1

101 1400 2

�Essential Window Functions for Data Analysis
Table 5-25 summarizes the most useful window functions in PostgreSQL, along with a

brief description and an example of how they are used.

Chapter 5 Aggregating Acts

143

Table 5-25.  The Summarization of the Most Useful Window Functions

Window
Function

Description Example

ROW_
NUMBER()

Assigns a unique sequential

number to each row within a

partition, starting from 1.

SELECT ROW_NUMBER() OVER (PARTITION
BY Region ORDER BY Sale_Date) AS
Row_Num FROM Car_Sales;

RANK() Ranks each row within a partition,

skipping the next rank if there are

ties.

SELECT RANK() OVER (PARTITION BY
Region ORDER BY Sales_Amount DESC)
AS Sales_Rank FROM Car_Sales;

DENSE_
RANK()

Similar to RANK(), but no gaps are

left in the ranking numbers after

ties.

SELECT DENSE_RANK() OVER (PARTITION
BY Region ORDER BY Sales_Amount
DESC) AS Dense_Sales_Rank FROM Car_
Sales;

NTILE(N) Divides the result set into N roughly

equal groups and assigns a group

number to each row.

SELECT NTILE(4) OVER (ORDER BY
Sales_Amount DESC) AS Quartile FROM
Car_Sales;

SUM() Calculates the cumulative or

running sum of a column over a

specified window.

SELECT SUM(Sales_Amount) OVER
(PARTITION BY Model_Name ORDER BY
Sale_Date) AS Running_Total FROM
Car_Sales;

AVG() Calculates the average of a column

over a specified window.

SELECT AVG(Sales_Amount) OVER
(PARTITION BY Region ORDER BY Sale_
Date) AS Avg_Sales FROM Car_Sales;

MAX() Returns the maximum value

within a partition or over the entire

window.

SELECT MAX(Sales_Amount) OVER
(PARTITION BY Region) AS Max_Sale
FROM Car_Sales;

MIN() Returns the minimum value within

a partition or over the entire

window.

SELECT MIN(Sales_Amount) OVER
(PARTITION BY Region) AS Min_Sale
FROM Car_Sales;

(continued)

Chapter 5 Aggregating Acts

144

Window
Function

Description Example

COUNT() Returns the count of rows within a

partition or over the entire window.

SELECT COUNT(*) OVER (PARTITION BY
Model_Name) AS Sale_Count FROM Car_
Sales;

FIRST_
VALUE()

Returns the first value within the

window frame for each row.

SELECT FIRST_VALUE(Sales_Amount)
OVER (PARTITION BY Region ORDER BY
Sale_Date) AS First_Sale FROM Car_
Sales;

LAST_
VALUE()

Returns the last value within the

window frame for each row.

SELECT LAST_VALUE(Sales_Amount) OVER
(PARTITION BY Region ORDER BY Sale_
Date) AS Last_Sale FROM Car_Sales;

LAG() Returns the value from the

previous row in the window frame.

Useful for comparing a current row

with a previous row.

SELECT LAG(Sales_Amount, 1) OVER
(PARTITION BY Model_Name ORDER BY
Sale_Date) AS Previous_Sale FROM
Car_Sales;

LEAD() Returns the value from the next

row in the window frame. Useful

for comparing a current row with

the next row.

SELECT LEAD(Sales_Amount, 1) OVER
(PARTITION BY Model_Name ORDER BY
Sale_Date) AS Next_Sale FROM Car_
Sales;

Table 5-25.  (continued)

�Summary
This chapter explores the process of aggregating data in SQL, which is crucial for

summarizing and analyzing data. By understanding how to use aggregate functions with

the GROUP BY clause, you can efficiently compute totals, averages, and other statistical

values for specific data groups. The advanced topics discussed in this chapter include

combining aggregation with window functions, using nested GROUP BY for deeper

analysis, and simplifying complex queries with common table expressions.

Chapter 5 Aggregating Acts

145

�Key Points

•	 Aggregate functions and the GROUP BY clause: Use them to

efficiently compute statistics for specific groups of data.

•	 Combining aggregations and window functions: Use SUM(),

COUNT(), and ROW_NUMBER(), or RANK() together to calculate both

detailed row-level metrics and aggregated summaries.

•	 Nested GROUP BY and window functions: Use GROUP BY to

aggregate data first and then apply window functions for deeper

analysis, like top-N analysis within partitions.

•	 CTEs (common table expressions): Simplify multi-step aggregation

queries by breaking them into separate logical steps, making your

queries easier to read and maintain.

�Key Takeaways

•	 Aggregate functions: The COUNT, SUM, AVG, MIN, and MAX functions are

useful when working with grouped data.

•	 GROUP BY clause: Organize data effectively for aggregation and

summarize results in a variety of ways.

•	 Window functions: Combine aggregate functions with window

functions for advanced analysis over partitioned data.

•	 Nested GROUP BY: Explore nested GROUP BY clauses to conduct

more in-depth and granular data analysis.

•	 Common table expressions (CTEs): Make complex queries easier

to read and maintain by reducing the number of CTEs in your

SQL code.

Chapter 5 Aggregating Acts

146

�Looking Ahead
The next chapter, “Ordering the Plot with ORDER BY and LIMIT,” explores how to sort

and filter query results efficiently. You will be able to organize data in a meaningful way

once you have mastered this operation. You can prioritize key information and limit

results to focus on the most relevant data points.

�Test Your Skills
A database has three tables—gym_memberships (Member_ID, Name, Membership_Type,

Join_Date, and City), classes (Class_ID, Class_Name, Category, Class_Date, and

Trainer_Name), and attendance (Attendance_ID, Member_ID, Class_ID, Attendance_
Date, and Class_Fee).

	 1.	 Write an SQL query using window functions to calculate the

total class fees and rank for each member based on their class

attendance. Class name, member ID, total class fees, and rank

must all be shown.

	 2.	 Write a query using ROWS to calculate a moving average of

class fees over the last three classes attended by each member,

including the current one. Provide the member ID, class name,

attendance date, and an average of class fees.

	 3.	 Write a query using CTEs to find members who have spent more

than $500 on classes. The member’s name, amount of class fees,

and city must be shown.

	 4.	 Write a query using a nested GROUP BY to find the top two

members who spent the most on classes within each membership

type. Show the member ID, membership type, and total class fees.

	 5.	 Write a query to calculate the cumulative class fees for each

member, ordered by class date, using a window function. Provide

a table that shows the member ID, class name, class date, class

fee, and cumulative fees.

Chapter 5 Aggregating Acts

147
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_6

CHAPTER 6

Ordering the Plot with
ORDER BY and LIMIT
Data analysis requires that analysts order the data to provide clarity, insight, and

effective communication. ORDER BY clauses in SQL make patterns and trends more

visible, helping analysts prioritize findings and detect outliers. When you sort data

appropriately, patterns and relationships within the data become clearer, allowing you

to make better decisions and take action. For example, consider a list of product sales

without any order. The task of identifying top-performing products, tracking trends, or

even spotting anomalies would be very challenging. Data sorting provides clarity and

enables you to identify patterns and make informed decisions quickly. LIMIT clauses

complement this by focusing on the most relevant data points, such as top performers or

recent entries, so it is easier to focus on what is most important.

�Introduction to ORDER BY
ORDER BY clauses in SQL are used to sort results according to a column or columns.

By controlling the order in which the data is displayed, you can identify trends, top

performers, or specific patterns more easily. The basic syntax of the ORDER BY clause is as

follows:

SELECT column1, column2, ...
FROM table_name
ORDER BY column1 [ASC | DESC], column2 [ASC | DESC];

https://doi.org/10.1007/979-8-8688-1560-7_6#DOI

148

Here, column1 and column2 are the columns you want to sort. You can choose ASC for

ascending order (the default) or DESC for descending order. Sorting by multiple columns

is also possible. It should be noted that if two rows have the same value in column1, SQL

will use column2 as the secondary sorting criteria. This flexible ordering helps present

data more effectively. With ORDER BY, you can quickly create well-structured outputs,

whether you want a list of top-selling items or employees arranged by date of hire.

�Ordering Data in Real-World Scenarios
ORDER BY clauses are essential to organizing data effectively in SQL queries in various

real-world scenarios. Table 6-1 illustrates how to use the ORDER BY clause to identify

top-selling products, prioritize orders, highlight top-scoring students, or organize

customer feedback. These scenarios demonstrate the flexibility of ORDER BY for sorting

by multiple columns to achieve specific goals, such as ranking items, identifying trends,

or prioritizing urgent items. For each scenario, an example SQL query is included,

showing you how to construct ORDER BY clauses. Table 6-1 also explains how each query

is structured and what kind of output it produces.

Table 6-1.  ORDER BY Clauses

Real-World
Scenario

Role of ORDER BY
Clause

SQL Query Example Description

Top-selling

products in an

e-commerce

store

Identify the best-selling

products.

SELECT product_name,
total_sales FROM
products
ORDER BY total_sales
DESC;

Retrieves the top

best-selling products

by descending

total_sales.

Employee

salaries in a

company

Display salaries in

descending order.

SELECT employee_name,
salary
FROM employees
ORDER BY salary DESC;

Lists all employees,

sorted by salary from

highest to lowest.

(continued)

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

149

Real-World
Scenario

Role of ORDER BY
Clause

SQL Query Example Description

Customer

feedback sorted

by date

Show the most recent

feedback first; useful

for addressing current

customer concerns or

issues.

SELECT customer_id,
feedback, feedback_
date
FROM feedbacks
ORDER BY feedback_
date DESC;

Displays all customer

feedback, showing the

latest entries first.

Order fulfillment

priority

Prioritize orders based

on urgency (order date or

delivery deadline).

SELECT order_id,
customer_name, order_
date
FROM orders
ORDER BY delivery_
date ASC;

Lists orders sorted by

delivery_date to

prioritize the earliest

deadlines.

Top scoring

students in an

exam

Highlight students with the

highest scores.

SELECT student_name,
score
FROM exam_results
ORDER BY score DESC;

Retrieves the top

students based

on exam scores in

descending order.

Most recent

articles on a blog

Display articles based

on their publication date,

ensuring that the newest

content is shown to users

first.

SELECT title,
publication_date
FROM articles
ORDER BY publication_
date DESC;

Lists all blog articles,

starting with the most

recently published

ones.

Financial

transactions

sorted by amount

Identify large transactions;

useful for fraud detection.

SELECT transaction_
id, transaction_
amount
FROM transactions
ORDER BY transaction_
amount DESC;

Displays all

transactions, sorted by

amount from highest

to lowest.

Table 6-1.  (continued)

(continued)

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

150

Real-World
Scenario

Role of ORDER BY
Clause

SQL Query Example Description

Customers with

the highest

lifetime value

Identify valuable

customers based on the

total revenue generated.

SELECT customer_id,
lifetime_value FROM
customers ORDER BY
lifetime_value DESC
LIMIT 10;

Retrieves the top ten

customers by lifetime

value, in descending

order.

Movies sorted by

rating

Show the highest-rated

movies first; useful for

recommendation systems

or reviews.

SELECT movie_name,
rating
FROM movies
ORDER BY rating DESC;

Lists all movies,

starting from the

highest to the lowest

rating.

Latest updates

on social media

posts

Prioritize the newest

posts, comments, or

reactions to keep the feed

relevant and current.

SELECT post_id,
content, post_date
FROM posts
ORDER BY post_date
DESC;

Shows all social

media posts, starting

with the latest ones.

Top trending

hashtags

Identify current trends and

most-used hashtags in

real time.

SELECT hashtag,
usage_count
FROM hashtags ORDER
BY usage_count DESC;

Retrieves the top

hashtags sorted by

the number of times

they’ve been used.

Table 6-1.  (continued)

Table 6-1 illustrates how data ordering can provide insights into a variety of realistic

scenarios. When records are ordered by date, time-series data can reveal trends over

time, such as seasonal peaks. Sales managers can identify growth trends and declining

periods by analyzing monthly sales figures ordered chronologically, enabling them to

take proactive measures. Sorting financial transactions according to transaction amount

helps identify anomalies, such as unusually high transactions. The top performers

can be identified by sorting employee performance based on metrics such as project

completion time. In this way, analysts can focus on critical areas, gain insights, and make

informed decisions based on visible patterns and trends.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

151

�Introduction to LIMIT
The LIMIT clause specifies how many rows should be returned by an SQL query. It’s

especially useful when you only need a subset of data, such as the top results or a sample

of entries, without retrieving the entire dataset. LIMIT allows you to control how much

data is displayed, so you can focus on the most relevant records. It should be noted that

the LIMIT clause is standard in PostgreSQL, MySQL, and SQLite, but other databases

may require alternative syntax. Here is a basic explanation of how the LIMIT clause is

structured:

SELECT column1, column2, ...
FROM table_name
ORDER BY column_name [ASC | DESC]
LIMIT number_of_rows;

SELECT column1, column2, ... specifies which columns you want to retrieve from

the table, FROM table_name indicates the table from which you are querying data, and

ORDER BY column_name [ASC | DESC] specifies the column(s) used to sort the rows

before applying the LIMIT. Analysts often combine ORDER BY with LIMIT to ensure the

most relevant data is selected, and LIMIT number_of_rows restricts the result set to a

specified number of rows. For example, if you use LIMIT 5, only the top five rows will be

returned.

�Pagination with OFFSET and LIMIT
For user interfaces like web applications, pagination is essential to efficiently display

data by dividing large datasets into smaller chunks. Consider browsing through a catalog

of thousands of products—it’s easier to view 10 or 20 items per page rather than loading

the entire list at once. OFFSET and LIMIT clauses in SQL are used to paginate. OFFSET

specifies the starting point for the retrieval, while LIMIT specifies how many rows are

retrieved. This means that before the LIMIT clause takes effect, users can skip a specified

number of rows. Generally, OFFSET is supported in PostgreSQL, MySQL, and SQLite.

Other databases like SQL Server and Oracle use different approaches, including TOP,

ROWNUM, or OFFSET-FETCH.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

152

Note W hen the OFFSET clause is used, the result set is skipped a specified
number of rows before returning anything. In addition to pagination, this lets you
jump to any position within the dataset, starting at a given index.

The following is a brief explanation of how OFFSET and LIMIT work.

SELECT column1, column2, ...
FROM table_name
ORDER BY column_name [ASC | DESC]
LIMIT number_of_rows OFFSET start_position;

As mentioned, the LIMIT clause determines the number of rows to display. OFFSET

specifies how many rows should be skipped before LIMIT is applied. In most cases,

start_position is calculated based on the current page number and number of rows.

Table 6-2 illustrates how OFFSET and LIMIT are used in PostgreSQL for pagination.

Table 6-2.  OFFSET and LIMIT for Pagination

Scenario Common
Use

OFFSET LIMIT Query Description

E-commerce

product listing

Paginating

products

for a user

browsing

Varies by

page number

Typically

10-50

SELECT * FROM
products ORDER
BY product_id
LIMIT 20
OFFSET (page_
number - 1) *
20;

Here, the expression

(page_number -
1) * 20 calculates

the starting point

(OFFSET) for each

page in pagination.

By subtracting 1 from

page_number, the

formula ensures that

the first page starts

with an offset of 0,

while each subsequent

page starts 20 records

farther.
(continued)

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

153

Scenario Common
Use

OFFSET LIMIT Query Description

Social media

feed

Loading

posts in a

user’s feed

Based on

scroll count

10-20 SELECT * FROM
posts
WHERE user_id =
user_id ORDER
BY post_date
DESC LIMIT 10
OFFSET (scroll_
count - 1) *
10;

Loads a specific

number of recent

posts for the user’s

feed. The query

paginates by setting

an offset based on the

scroll count.

News website Displaying

paginated

news

articles

Calculated

per page

5-15 SELECT * FROM
articles ORDER
BY publish_date
DESC LIMIT 10
OFFSET (page_
number - 1) *
10;

Fetches a page of

articles ordered by the

most recent publish

date, adjusting for

the specified page_
number.

Admin

dashboard

logs

Viewing

logs or

reports

By requested

page

Configurable,

20-100

SELECT * FROM
logs
ORDER BY
timestamp
DESC LIMIT 50
OFFSET (page_
number - 1) *
50;

Loads log entries

in descending

timestamp order for

an admin view, with

each page containing

50 records, paginated

by page number.

File or data

exports

Exporting

data with

pagination

limits

Continuously

updated

User-

specified or

1,000

SELECT * FROM
data ORDER
BY record_id
LIMIT 1000
OFFSET (batch_
number - 1) *
1000;

Exports data in

batches of 1,000

records; useful for

large datasets. Adjusts

the offset based on

batch to maintain

memory efficiency.

Table 6-2.  (continued)

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

154

As shown in Table 6-2, each query is designed to handle large datasets efficiently

by using LIMIT and OFFSET to control data retrieval. This is done to ensure smooth user

experiences across various applications.

Note  Expressions like (page_number - 1) * page_size are commonly
used to calculate the starting point, or the offset, for paginated data. In general,
page_number - 1 adjusts for the fact that pages typically start at 1 (e.g., Page
1, Page 2, etc.), but data offsets start at 0. By subtracting 1, you align the page
number with the data index. Also, page_size multiplies the adjusted page
number by the number of records desired per page (page_size). This shifts
each page forward by exactly one page's worth of records. For example, if page_
size is 10:

•	 Page 1’s offset is (1 - 1) * 10 = 0 (starts at the first record).

•	 Page 2’s offset is (2 - 1) * 10 = 10 (starts at the 11th record).

In database queries, this approach is widely used to navigate data in manageable
portions.

OFFSET can generally impact performance for large datasets, as it skims rows

internally. For large offsets, it is better to consider indexed pagination, which is

introduced in Chapter 9.

�The First Story: Highway Construction
and a Traffic Situation
When a new highway was constructed in a bustling city, a talented data analyst named

Pedro was called to investigate the impact on traffic. City council members were eager

to determine whether the highway had reduced traffic issues as planned. Pedro uses a

dataset containing vehicle counts, travel times, and congestion levels on the main routes.

With this data, Pedro planned to identify trends, compare changes, and determine if

the highway had brought the relief the city so badly needed. His journey began with

defining queries that would reveal hidden patterns and insights to inform council future

decisions. These are the questions Pedro seeks answers to:

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

https://doi.org/10.1007/979-8-8688-1560-7_9

155

	 1.	 What were the top five most congested routes before and after the

highway’s construction?

	 2.	 How did the average travel time change for routes before and after

the highway was built?

	 3.	 What routes show significant traffic flow improvements based on

the data time provided on the dataset?

	 4.	 How has the highway impacted routes that were previously highly

congested? Are they still among the top congested routes post-

construction?

Pedro uses two tables to compare traffic conditions before and after the highway

was constructed. These tables include fields that can help answer the analysis questions

provided earlier.

Table 6-3 contains traffic data before the highway was constructed. It includes

information on specific routes, vehicle counts, average travel times, and congestion

levels, allowing Pedro to assess baseline conditions.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

156

Table 6-3.  The TrafficData_Before Table

Route_ID Route_Name Vehicle_Count Avg_Travel_Time Congestion_Level Data_Date

1 Valley Road 2500 45 min High 2022-06-

01

2 Riverside Ave 1800 38 min Moderate 2022-06-

01

3 Main Street 3000 50 min High 2022-06-

01

4 5th Avenue 2200 40 min High 2022-06-

01

5 Oakwood Blvd 1600 35 min Moderate 2022-06-

01

6 Park Lane 1300 30 min Low 2022-06-

01

7 Maple Drive 1700 32 min Low 2022-06-

01

8 Birch Street 1900 42 min Moderate 2022-06-

01

9 Sunset Blvd 2800 48 min High 2022-06-

01

10 Cedar Road 2100 37 min Moderate 2022-06-

01

Table 6-4 records traffic data for the same routes after the highway’s construction. It

includes updated vehicle counts, average travel times, and congestion levels. Pedro will

use this data to determine the improvement in traffic flow.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

157

Table 6-4.  The TrafficData_After Table

Route_ID Route_Name Vehicle_Count Avg_Travel_Time Congestion_Level Data_Date

1 Valley Road 2000 30 min Moderate 2023-06-

01

2 Riverside Ave 1500 28 min Low 2023-06-

01

3 Main Street 2500 40 min Moderate 2023-06-

01

4 5th Avenue 1800 35 min Moderate 2023-06-

01

5 Oakwood Blvd 1400 25 min Low 2023-06-

01

6 Park Lane 1200 27 min Low 2023-06-

01

7 Maple Drive 1600 29 min Low 2023-06-

01

8 Birch Street 1700 31 min Moderate 2023-06-

01

9 Sunset Blvd 2300 37 min Moderate 2023-06-

01

10 Cedar Road 1900 32 min Moderate 2023-06-

01

In order to get insight into of traffic conditions before and after the construction of

the highway, Pedro analyzed this data.

The following query aims to find the top five most congested routes before and after

the highway was built. Pedro crafted two SQL queries: one for the TrafficData_Before

table and another for the TrafficData_After table. These tables held data from different

time periods, but Pedro ensured that both queries shared the exact same structure,

allowing him to directly compare the results:

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

158

-- Top 5 most congested routes before the highway construction
SELECT Route_Name, Vehicle_Count, Avg_Travel_Time, Congestion_Level
FROM TrafficData_Before
ORDER BY Congestion_Level DESC, Vehicle_Count DESC
LIMIT 5;

-- Top 5 most congested routes after the highway construction
SELECT Route_Name, Vehicle_Count, Avg_Travel_Time, Congestion_Level
FROM TrafficData_After
ORDER BY Congestion_Level DESC, Vehicle_Count DESC
LIMIT 5;

Both queries order the data by Congestion_Level, where High is more congested

than Moderate or Low. He then ordered the data by Vehicle_Count in descending order

to find the most heavily trafficked routes. It is possible to restrict the results to only the

top five congested routes by specifying LIMIT 5.

It should be noted that, when using the ORDER BY clause in SQL, certain values have

a particular order if they are recognized. Here, due to the alphabetical order of H, M,

and L, High will come before Moderate, and Moderate will come before Low. For this

reason, the upper query works properly. But where it is necessary to define a specific

order, queries must be written differently. The CASE statement can be used to explicitly

specify the order. To define congestion levels from High to Moderate to Low, consider the

following query:

SELECT Route_Name, Vehicle_Count, Avg_Travel_Time, Congestion_Level
FROM TrafficData_After
ORDER BY
 CASE
 WHEN Congestion_Level = 'High' THEN 1
 WHEN Congestion_Level = 'Moderate' THEN 2
 WHEN Congestion_Level = 'Low' THEN 3
 END,
 Vehicle_Count DESC
LIMIT 5;

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

159

As a result, each congestion level has a numerical value. High has the highest priority

(1), followed by Moderate (2), and then Low (3). This method ensures that the desired

order is achieved regardless of the sorting method.

Note  In most comparative analyses, using the same query structure on different
datasets is a common and effective method because it allows direct comparison
of results across different time periods or conditions. By maintaining a similar
query structure, analysts ensure that data variations are due to data itself, rather
than logical differences in the query. As a result of this method, findings are more
reliable and valid, since this method reduces the potential for unintentional bias.

Table 6-5 shows the top five most congested routes before the highway was built,

with Main Street having the highest traffic volume and congestion.

Table 6-5.  Congested Routes Before Construction

Route_Name Vehicle_Count Avg_Travel_Time Congestion_Level

Main Street 3000 50 min High

Valley Road 2500 45 min High

Sunset Blvd 2800 48 min High

5th Avenue 2200 40 min High

Riverside Ave 1800 38 min Moderate

Table 6-6 shows the top five most congested routes after the highway construction,

indicating a reduction in congestion and travel times.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

160

Table 6-6.  Congested Routes After Construction

Route_Name Vehicle_Count Avg_Travel_Time Congestion_Level

Main Street 2500 40 min Moderate

Sunset Blvd 2300 37 min Moderate

Valley Road 2000 30 min Moderate

5th Avenue 1800 35 min Moderate

Cedar Road 1900 32 min Moderate

The following query finds the average travel time change before and after the

highway was built. By performing these queries, Pedro can calculate the average travel

time for all paths before and after the highway was constructed, which will help him

determine if there has been a noticeable improvement in the travel time throughout

the city.

-- Average travel time before construction
SELECT AVG(CAST(SUBSTRING(Avg_Travel_Time FROM '^[0-9]+') AS INT)) AS Avg_
Travel_Time_Before FROM TrafficData_Before;

-- Average travel time after construction
SELECT AVG(CAST(SUBSTRING(Avg_Travel_Time FROM '^[0-9]+') AS INT)) AS Avg_
Travel_Time_After FROM TrafficData_After;

The queries use casting to convert Avg_Travel_Time values from strings style like

'30 min' to integers. This conversion is essential because the AVG function requires

numerical input to compute the average. By extracting the numeric portion of the travel

time and converting it to an integer, Pedro can effectively analyze the data and draw

meaningful conclusions about the impact of the highway on travel times.

Tables 6-7 and 6-8 show the average travel times across all routes before and after the

highway construction, showing a significant reduction in travel time post-construction.

Table 6-7.  The Average Travel Times

Across All Routes (Before)

Avg_Travel_Time_Before

39.7

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

161

Table 6-8.  The Average

Travel Times Across All

Routes (After)

Avg_Travel_Time_After

31.4

This query is provided to find traffic flow improvements based on the data time

provided in the dataset:

SELECT Route_Name, Vehicle_Count, Avg_Travel_Time, Congestion_Level
FROM TrafficData_After
WHERE Data_Date BETWEEN '2023-05-01' AND '2023-06-01'
ORDER BY Avg_Travel_Time ASC
LIMIT 5;

This query filters data from the specific range of '2023-05-01' to '2023-06-01' and

sorts by Avg_Travel_Time in ascending order to find routes with shorter travel times,

indicating improved traffic flow. LIMIT 5 restricts the output to the top five routes with

the best improvements.

Table 6-9 shows routes with the most improved travel times over the mentioned

30 days, with routes like Oakwood Blvd and Park Lane experiencing the shortest travel

times and lowest congestion levels.

Table 6-9.  Routes with the Most Improved Travel Times

Route_Name Vehicle_Count Avg_Travel_Time Congestion_Level

Oakwood Blvd 1400 25 min Low

Park Lane 1200 27 min Low

Riverside Ave 1500 28 min Low

Maple Drive 1600 29 min Low

Valley Road 2000 30 min Moderate

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

162

To find the impacted routes that were previously highly congested and see if they are

still among the top congested routes post-construction, Pedro used the following query:

SELECT Route_Name, Congestion_Level
FROM TrafficData_Before
WHERE Congestion_Level = 'High'
UNION
SELECT Route_Name, Congestion_Level
FROM TrafficData_After
WHERE Congestion_Level = 'High';

This query combines routes with a High congestion level from before and after the

highway construction. The UNION operator displays routes that were previously very busy

and indicates if they remain busy.

Note  The UNION operator is used to combine the results of two or more SELECT
queries into a single result set. Each SELECT statement within a UNION must
have the same number of columns in the same order and with compatible data
types. When using UNION, only unique rows are returned, so any duplicate rows
between the queries will be removed automatically. To retain duplicates, you can
use UNION ALL. Other set operators in PostgreSQL, including UNION, UNION ALL,
INTERSECT, INTERSECT ALL, EXCEPT, and EXCEPT ALL, are discussed in the
next chapters.

Table 6-10 shows routes with a high congestion level before the highway was built

and indicates if any remain highly congested after construction; none remain High post-

construction, indicating an improvement.

Table 6-10.  Remain Highly Congested

Routes After Construction

Route_Name Congestion_Level

Main Street High

Valley Road High

Sunset Blvd High

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

163

Pedro used SQL to analyze traffic data before and after highway construction.

Through careful sorting, filtering, and pagination of large datasets, Pedro produced

insights that demonstrated an improvement in overall traffic conditions. His analysis

provided city officials with clear evidence that the highway had achieved its goal

of alleviating congestion. This validated the city’s investment and set a data-driven

standard for future infrastructure projects.

�Customizing Your Sorting: Advanced Use Cases
of ORDER BY
�Case Sensitivity and Sorting Strings
In SQL, case sensitivity affects the order of results, especially when comparing uppercase

and lowercase characters. If uppercase letters are not handled properly, SQL databases

may sort uppercase letters lowercase, which may lead to unexpected results. Using the

COLLATE clause, analysts can perform case-insensitive or case-sensitive sorting. Most

databases allow defining how text should be compared and sorted.

�What Is COLLATE?
In SQL, you can apply rules to compare strings and sort them by using the COLLATE

clause, such as case sensitivity (for example, distinguishing A from a), accent sensitivity

(for multilingual datasets), and language or regional conventions for sorting.

Note A collation in SQL is a set of rules that determines how text strings are
compared, ordered, and sorted. Collations are particularly important when dealing
with languages, as different languages have unique rules for alphabetical ordering
and character comparison. For instance, a collation controls:

	1.	 Case sensitivity: Determines if uppercase and lowercase letters
are treated as equal (case-insensitive) or different (case-sensitive).

	2.	 Accent sensitivity: Specifies if accents or diacritical marks on
characters (like é vs. e) are considered unique.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

164

	3.	 Locale-specific sorting rules: Defines sorting orders based
on language or regional rules, which might differ. For instance,
in some languages, special characters like ø might be sorted
differently.

�Collation in PostgreSQL
In PostgreSQL, collations can be applied at various levels, including:

•	 Database level: Defines the default collation for all string columns

within a database.

•	 Column level: Sets a specific collation for a particular column in a

table, overriding the database’s default.

•	 Query level: Allows using COLLATE in a query to temporarily change

the sorting behavior for that specific operation.

PostgreSQL provides many predefined collations based on locale settings, allowing

developers to select collations suited for particular languages and case-sensitivity needs.

�Using COLLATE
In PostgreSQL, COLLATE is a clause allowing you to specify collation order for a query or

operation. This determines how text strings are sorted and compared. Collation affects

character ordering and case sensitivity. COLLATE is used for sorting and comparing

strings, especially suited for locale-specific ordering. For example, in German, ä and a

might be sorted differently than in English. COLLATE can be used with CREATE TABLE,

SELECT, or any text-manipulation operation. PostgreSQL comes with several built-in

collations. You can list all available collations by using the following options.

�COLLATE with CREATE TABLE

CREATE TABLE employees (
 name TEXT COLLATE "en_US",
 department TEXT COLLATE "de_DE"
);

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

165

Here, the name column will be sorted using U.S. English rules, and the department

column will be sorted using German rules.

�COLLATE in SELECT Query

SELECT * FROM employees ORDER BY name COLLATE "fr_FR";

This query orders the results by name using French collation rules, regardless of the

default collation.

�Example: Case Sensitivity with Different Collations

As a first step, you’ll create a users table with a column for usernames. You will compare

and order usernames with different case types to see how they work. The following data

is stored in the users table, with a username column:

CREATE TABLE users (
 username TEXT
);

INSERT INTO users (username) VALUES
('Alice'),
('alice'),
('Bob'),
('bob');

This table now has mixed-case entries: Alice, alice, Bob, bob, Charlie, and charlie.

Using COLLATE, you can compare results when you query the table with a case-sensitive

collation versus a case-insensitive collation.

�Case-Sensitive Ordering

To see how case-sensitive ordering works, you’ll use the C collation, which is usually

case-sensitive and orders uppercase letters before lowercase letters.

SELECT * FROM users
ORDER BY username COLLATE "C";

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

166

Table 6-11 shows the results of this query.

Table 6-11.  Case-Sensitive Ordering Output

Username

Alice

Bob

Charlie

Alice

Bob

Charlie

In this case, uppercase names (Alice, Bob, Charlie) are listed before lowercase names

(alice, bob, charlie). This ordering is due to C collation treating uppercase letters as

distinct from lowercase letters and sorting them first.

�Case-Insensitive Ordering

The case-insensitive collation en_US.utf8 treats uppercase and lowercase characters

equally for sorting.

SELECT * FROM users
ORDER BY username
COLLATE "en_US.utf8";

In this case, as shown in Table 6-12, Alice and alice are grouped together, as are Bob

with bob, and Charlie with charlie. This shows that the en_US.utf8 collation ignores case

differences when ordering, resulting in more “human-friendly” sorting.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

167

Table 6-12.  Case-Insensitive Ordering Output

username

Alice

alice

Bob

bob

Charlie

charlie

�Sorting NULL Values
In PostgreSQL, handling NULL values during sorting can be crucial, especially when

organizing data that might have missing entries. By default, NULL values are considered

lower than any other value in ascending order and higher in descending order. However,

PostgreSQL provides explicit options for sorting NULL values either first or last, allowing

you to control their placement within ordered results.

�Strategies for Ordering NULL Values: NULLS FIRST
and NULLS LAST

There are two strategies for sorting NULL values. The first one is NULLS FIRST and the

second one is NULLS LAST.

NULLS FIRST: Place all NULL values at the beginning of the result set. This is often

useful when you want missing values to appear prominently, for example, to prioritize

records that need attention.

ORDER BY column_name NULLS FIRST;

NULLS LAST: Place all NULL values at the end of the result set. This is useful when NULL

values are less relevant, and you want actual data values to appear first.

ORDER BY column_name NULLS LAST;

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

168

�Example: Customer Data with NULLs in the Purchase History

Take the example of a table customer containing customer information, shown in

Table 6-13, including a last_purchase_date column. In some cases, last_purchase_
date may be NULL, indicating that the customer hasn’t purchased anything yet.

Table 6-13.  The Customers Table

customer_id customer_name last_purchase_date

1 Alice 2023-06-15

2 Bob

3 Charlie 2023-07-20

4 Diana

5 Eve 2023-05-10

�Sorting with NULLS FIRST

To list customers with the most recent purchases first and those who haven’t made a

purchase appearing at the top, use this query:

SELECT * FROM customers
ORDER BY last_purchase_date
DESC NULLS FIRST;

Table 6-14 shows that NULLs are sorted first in the sorting process.

Table 6-14.  Customer Sorting with NULLS FIRST

customer_id customer_name last_purchase_date

2 Bob NULL

4 Diana NULL

3 Charlie 2023-07-20

1 Alice 2023-06-15

5 Eve 2023-05-10

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

169

In this case, NULL values appear at the top due to NULLS FIRST, followed by recent

purchase dates in descending order.

�Example 2: Sorting with NULLS LAST

You can use NULLS LAST to display customers who haven’t bought anything yet:

SELECT * FROM customers
ORDER BY last_purchase_date
DESC NULLS LAST;

Table 6-15 shows that the NULLs are sorted last in the sorting process.

Table 6-15.  Customer Sorting with NULLS LAST

customer_id customer_name last_purchase_date

3 Charlie 2023-07-20

1 Alice 2023-06-15

5 Eve 2023-05-10

2 Bob NULL

4 Diana NULL

First, non-NULL dates appear in descending order, with NULL values at the bottom

because of NULLs LAST.

The purpose of NULLS FIRST is to prioritize NULL values at the top, whereas NULLS
LAST moves NULL values to the bottom of the ordered results. You can control how NULL

values appear in your results, which makes the data presentation more meaningful

based on context.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

170

�Common Pitfalls and Best Practices
�Avoiding Ambiguous Ordering: Always Clarify
Column Names
When sorting data, ambiguity in column names can lead to unexpected results or even

query errors. This commonly occurs in queries involving multiple tables (like joins) or

complex subqueries, where columns might share similar names.

In PostgreSQL, when you query multiple tables with overlapping column names, like

customer_id in both customers and orders, the database engine cannot immediately

determine which table’s column you’re referring to if the column name is used without

an alias or table name prefix. This is especially problematic in sorting (ORDER BY) and

filtering (WHERE) clauses. There are three common reasons why ambiguity occurs.

	 1.	 Column name overlap: When multiple tables are joined, they

may have columns with the same name, such as customer_id.

Without specifying a table name or alias, PostgreSQL can’t

determine which column you mean.

	 2.	 ORDER BY clause requirements: PostgreSQL expects

unambiguous references for sorting because it relies on table

column values. If it encounters a column name that exists in

multiple tables without an explicit table reference, it doesn’t know

which one to sort by, causing ambiguity.

	 3.	 Lack of context for aggregation and sorting: In queries where

columns aren’t explicitly associated with a table, PostgreSQL lacks

the context to identify which data source to pull from, leading to

errors or unexpected behavior.

�Avoiding Ambiguity

Whenever you query or sort on columns that are part of multiple tables, use table names

or aliases to identify which table each column belongs to. As a result, PostgreSQL uses

the correct data and eliminates ambiguity.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

171

�An Example of Ambiguity in Column Names When Sorting Data

The Customers table stores information about each customer, including a unique

customer_id and name. The Orders table records purchase transactions, including

order_id, the customer_id linking orders to specific customers, and the order_date of

each transaction. Tables 6-16 and 6-17 enable tracking customer purchases over time,

associating each order with a particular customer.

Table 6-16.  The Customers Table

customer_id name

1 Alice

2 Bob

3 Charlie

4 Diana

5 Eve

Table 6-17.  The Orders Table

order_id customer_id order_date

1 1 2023-06-15

2 1 2023-07-20

3 2 2023-05-10

4 3 2023-08-01

5 3 2023-07-22

6 4 2023-04-18

7 5 2023-05-25

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

172

The purpose of this query is to retrieve customer_id and order_date, sorted by

order_date. If the table names or aliases are not used explicitly in the query, PostgreSQL

can become confused due to ambiguous column names, particularly when the same

column name exists in both tables:

SELECT customer_id, order_date
FROM customers
JOIN orders ON customers.customer_id = orders.customer_id
ORDER BY order_date DESC;

The order_date column exists only in the Orders table, but the customer_id column

is present in both Customers and Orders. Without explicit clarification, PostgreSQL may

not reliably determine the intended source of order_date or even confuse customer_id.

As a result, this error is thrown when this query is executed.

psql:commands.sql:36: ERROR: column reference "customer_id" is ambiguous
LINE 1: SELECT customer_id, order_date

By specifying the table name or alias, you remove any potential for ambiguity. Here’s

the revised query:

SELECT customers.customer_id, orders.order_date
FROM customers
JOIN orders ON customers.customer_id = orders.customer_id
ORDER BY orders.order_date DESC;

This version explicitly references the orders.order_date column in the ORDER BY

clause, ensuring PostgreSQL knows which table to use for sorting.

This result displays the order_date column from the Orders table in descending

order, as shown in Table 6-18.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

173

Table 6-18.  Descending Order Given the order_date

customer_id order_date

3 2023-08-01

3 2023-07-22

1 2023-07-20

1 2023-06-15

5 2023-05-25

2 2023-05-10

4 2023-04-18

�Plot Efficiency with ORDER BY and LIMIT
ORDER BY and LIMIT are particularly useful when plotting because they allow you to:

•	 Focus on relevant data: The plot should focus on key insights rather

than all data points when analyzing large datasets.

•	 Improve plot clarity: The plot becomes easier to understand by

limiting the data to a manageable subset, such as the most relevant or

impactful rows.

•	 Enhance performance: Large datasets with thousands of rows can

slow down plotting processes and overwhelm visual tools, resulting

in longer load times and reduced responsiveness. Using LIMIT

with ORDER BY avoids overloading the plot by fetching only a select

number of rows. This makes the visualization process faster and

more efficient.

•	 Highlight trends and outliers: When plotting specific data points,

ordered and limited data makes identifying trends, outliers, and

comparisons easier.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

174

In this chapter, a plot generally refers to arranging or presenting data in a structured,

meaningful way, often as preparation for visualization. Using ORDER BY and LIMIT

clauses helps achieve this by sorting and narrowing down data into the most relevant

entries. Despite the power of data storage and querying, third-party visualization tools

are available, which make it possible to create visualizations after you have prepared and

ordered the data. ORDER BY organizes the result set based on specified columns, either in

ascending (ASC) or descending (DESC) order, allowing you to prioritize data. Meanwhile,

LIMIT constrains the number of rows returned, making it easier to focus on a subset,

such as the top results. Together, these queries refine data for clearer, more insightful

analysis and presentation.

�Summary
This chapter explained the importance of using the ORDER BY and LIMIT clauses in

SQL queries to organize and manage datasets effectively. It highlighted how these

clauses help narrow down query results by sorting data in a specific order and limiting

the number of rows returned. By limiting and selecting data selectively, analysts can

enhance the clarity and performance of data analysis and visualization tasks. These SQL

features are demonstrated in the chapter in terms of filtering data for targeted insights,

improving visual plot effectiveness, and optimizing query performance.

�Key Points

•	 ORDER BY and LIMIT help focus on the most relevant entries within

large datasets. This allows analysts to prioritize data that directly

impacts insights, such as the highest or lowest values in specific

columns.

•	 By limiting the number of rows returned, ORDER BY and LIMIT make

plots more readable, presenting only the most relevant data and

reducing visual complexity in graphs or tables.

•	 ORDER BY and LIMIT help stakeholders make intelligent decisions

without sifting through unnecessary details by returning only the

most critical data points.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

175

•	 Using OFFSET and LIMIT helps maintain an orderly structure for

viewing large datasets, as each page displays a consistent number

of entries, improving data accessibility and clarity. By reducing

the computational load on databases, LIMIT also speeds up query

performance and reduces resource consumption.

�Key Takeaways

•	 ORDER BY: Use ORDER BY to sort data by specific columns, prioritizing

key insights like the highest or lowest values. This makes it easier to

identify trends and patterns in large datasets.

•	 LIMIT: By applying LIMIT, analysts can restrict the number of rows

returned, so that the most relevant data points are returned. This

is especially useful in visualizations where only the top or bottom

records are needed, reducing clutter and enhancing clarity.

•	 OFFSET: Combining OFFSET with LIMIT for pagination allows you

to retrieve data in manageable chunks and navigate large datasets

page-by-page, rather than all at once. By using OFFSET and LIMIT

together, pagination becomes possible. This technique supports

a more user-friendly presentation of data and ensures efficient

performance by loading data incrementally rather than processing it

all simultaneously.

�Looking Ahead
The next chapter, “Dynamic Dialogues with Subqueries,” explores the art of writing

subqueries to add depth and dimension to data analysis. By employing nested queries,

you can achieve meaningful insights and tackle complex analytical challenges.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

176

�Test Your Skills
Jack is a data analyst for the Silverstone City Library, which has an extensive book

collection and a large patronage. Library administration is interested in improving the

user experience by understanding borrowing patterns, popular titles, and member

activity. Using SQL techniques like ORDER BY, LIMIT, and OFFSET, help him to make

decisions based on library data. The library database contains a table called BookLoans

with the columns shown in Table 6-19.

Table 6-19.  The BookLoans Table

Column Description

loan_id Unique identifier for each book loan

member_id Unique identifier for each member

book_title Title of the borrowed book

borrow_date Date when the book was borrowed

return_date Date when the book was returned

loan_duration Duration in days of the loan (calculated as return_date - borrow_date)

borrow_count Number of times the book has been borrowed

	 1.	 Identify the top five most frequently borrowed books in the library

collection. Order the results by borrow_count in descending order

so that the most borrowed books appear at the top.

	 2.	 To help staff monitor recent activity, retrieve a list of books

borrowed in the past month, ordered by borrow_date from the

most recent to the least. Show only five results per page and use

OFFSET to navigate between pages.

	 3.	 Determine the top five longest loan durations by members. Order

results by loan_duration in descending order to show the longest

durations first.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

177

	 4.	 Find the books with the fewest borrows and display them on the

second page (rows 6-10). Order by borrow_count in ascending

order and use OFFSET to skip the first five records.

	 5.	 Identify the ten books that were borrowed the most in the last

year. Order by borrow_count in descending order and filter results

by borrow_date within the past year.

Chapter 6 Ordering the Plot with ORDER BY and LIMIT

179
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_7

CHAPTER 7

Dynamic Dialogues
with Subqueries
This chapter explores the concept of dynamic dialogues in SQL, specifically focusing on

subqueries in SQL. As mentioned earlier, subqueries are powerful tools that allow you to

nest queries inside one another to perform complex queries. The purpose of this chapter

is to provide an overview of subqueries, their types, and narrative examples of their use

in dynamic dialogues.

�Introduction to Subqueries
In SQL, a subquery is a query nested inside another query. There are many ways to use

subqueries, including within the SELECT, FROM, WHERE, and HAVING clauses. Depending

on their structure, subqueries can return single values, multiple values, or even entire

tables. Thus, subqueries can be divided into three general types: single-row subqueries,

which return a single row and are suitable for use with comparison operators; multiple-

row subqueries, which provide multiple rows and work with operators such as IN, ANY,

and ALL; and correlated subqueries, which execute once for each row in the outer query

based on column references in the subquery.

�The First Story: A Bustling Office
In a busy office, Sarah, a junior data analyst, is assigned the task of investigating the

employee and department databases. Sarah’s manager needed answers to complex

questions about employee salaries, departments, and performance. Sarah wants to write

nested SQL subqueries to meet these requirements.

https://doi.org/10.1007/979-8-8688-1560-7_7#DOI

180

Sarah uses Tables 7-1 and 7-2 to extract insights related to her assigned task.

Table 7-1.  The Employees Table

ID Name Salary department_id

1 John 70,000 1

2 Alice 80,000 2

3 Bob 60,000 1

4 Emma 90,000 3

5 Michael 55,000 2

Table 7-2.  The Departments Table

ID Name

1 IT

2 Sales

3 Marketing

The first question is who has the highest salary. A person who is the highest-paid

employee at the company is what Sarah is seeking. To find the answer, she used the

following single-row subquery:

SELECT name
FROM employees
WHERE salary = (SELECT MAX(salary) FROM employees);

In this query, the subquery (SELECT MAX(salary) FROM employees) calculates

the highest salary in the table, and the outer query retrieves the name of the employee

with that salary. A single row, shown in Table 7-3, is returned by this query, as you

might expect.

Chapter 7 Dynamic Dialogues with Subqueries

181

Table 7-3.  The Highest Salary

Name

Emma

The second question is who works in the Sales department. The list Sarah is seeking

contains all employees in the Sales department. Sarah used a multiple-row subquery to

match department IDs to find the answer:

SELECT name
FROM employees
WHERE department_id IN (SELECT id FROM departments WHERE name = 'Sales');

The subquery (SELECT id FROM departments WHERE name = 'Sales') retrieves the

ID of the Sales department, and the outer query matches this with department_id in the

Employees table. Table 7-4 shows the results.

Table 7-4.  Who Works in the Sales Department

Name

Alice

Michael

The third question is who earns above the average salary in their department. The

list Sarah is seeking contains all employees who earn more than the average salary for

their department. This challenge was addressed by Sarah using a correlated subquery:

SELECT emp.name
FROM employees AS emp
WHERE emp.salary > (
 SELECT AVG(sub_emp.salary)
 FROM employees AS sub_emp
 WHERE sub_emp.department_id = emp.department_id
);

Chapter 7 Dynamic Dialogues with Subqueries

182

The subquery (SELECT AVG(sub_emp.salary) FROM employees AS sub_emp WHERE
sub_emp.department_id = emp.department_id)) calculates the average salary for each

department, dynamically adjusted based on the department_id of each employee in

the outer query. The emp alias represents the Employees table in the outer query, and

the sub_emp alias represents the same table in the subquery. There is a clear indication

of their respective roles in the query by these aliases. Table 7-5 shows which employees

earn above the average salary in their department.

Table 7-5.  Employees Earning Above the

Average Salary in Their Department

Name

Alice

John

�Dynamic Dialogues with Subqueries
In SQL, dynamic dialogues are used to create interactive and responsive queries that can

be modified based on the inputs of the user as well as other conditions. As a result of this

dynamic behavior, subqueries play an important role. SQL queries can be created using

dynamic dialogues that adapt based on parameters or conditions. As a result, the same

query can be executed differently depending on the user’s input or the database’s state.

Adaptability is essential for building robust applications that manipulate and retrieve

data in real time.

�The Role of Subqueries in Dynamic Dialogues
The term subqueries or nested queries refers to queries embedded within another SQL

query. They provide powerful mechanisms for conditional logic and adaptability to

dynamically filter, aggregate, or transform data. A subquery integrated into a dynamic

dialogue allows conditional logic, real-time adaptation, and enhanced modularity.

Table 7-6 provides a brief description of conditional logic, real-time adaptation, and

enhanced modularity in subqueries.

Chapter 7 Dynamic Dialogues with Subqueries

183

Table 7-6.  Conditional Logic, Real-Time Adaptation, and Enhanced Modularity

in subqueries

Aspect Description Example

Conditional

logic

Adjust results dynamically

based on thresholds or

specific scenarios, such as

user preferences.

Retrieve records where a subquery calculates a

threshold:

SELECT name
FROM employees
WHERE salary > (SELECT AVG(salary) FROM
employees);

Real-time

adaptation

Use parameters or

application inputs with

subqueries to provide

context-aware results.

SELECT name
FROM employees
WHERE salary > (SELECT MIN(salary) FROM
employees WHERE department_id = 2);

Enhanced

modularity

Break complex operations

into smaller, reusable

subqueries for clarity and

maintainability.

WITH DeptAvg AS (SELECT department_id,
AVG(salary) AS avg_salary FROM employees
GROUP BY department_id) SELECT e.name
FROM employees e JOIN DeptAvg d ON
e.department_id = d.department_id WHERE
e.salary > d.avg_salary;

As shown in Table 7-6, conditional logic allows dynamic changes to query results

based on thresholds, for example, comparing employee pay to the average. Real-time

adaptation, on the other hand, incorporates user input and parameters, ensuring

outcomes that are customized to the situation. For instance, you can apply a minimum

wage filter to workers in a particular department. In addition, it is possible to use a

common table expression (CTE) to divide large queries into parts that can be reused

separately; this method simplifies large queries. A departmental average salary can be

calculated, for example. In this section, these subqueries are illustrated with examples to

demonstrate their flexibility, efficiency, and maintainability.

Chapter 7 Dynamic Dialogues with Subqueries

184

�Introduction to Subqueries
as Conversational Elements
As mentioned, subqueries are SQL queries embedded inside another query. As such,

they can be referred to as “conversational elements” since they permit queries to interact

in a dynamic manner, thus enabling a flow of information between queries. Follow-

up questions are often asked in a conversation to obtain more specific information.

Subqueries allow SQL queries to build upon each other, enabling more complex data

retrieval by refining or modifying the main query based on the results of another query.

Subqueries in SQL allow queries to interact and share information dynamically.

There are various types of subqueries, each playing a different role in enhancing data

retrieval flow. Single-row subqueries provide direct, one-time answers to questions,

while multi-row subqueries return a list of possible responses to broader queries. A

multi-column subquery returns multiple columns and rows, typically when comparing

tuples, pairs, and groups. Correlated subqueries engage in a continuous back-and-forth

conversation with the outer query, as they depend on each row’s context for execution.

Uncorrelated subqueries are executed only once, and their results are used by the outer

query. Lastly, the subqueries in the FROM clause act as a foundational context, preparing

summarized data that the main query can further analyze.

By breaking down tasks into smaller, more manageable steps, SQL can build

complex, refined queries. The following sections include a more detailed explanation of

the types of subqueries, using query examples based on the data provided in Tables 7-7

and 7-8.

Chapter 7 Dynamic Dialogues with Subqueries

185

Table 7-7.  The Employees Table

employee_id name department_id job_id Salary

101 Alice Johnson 1 J001 55000

102 Bob Smith 2 J002 48000

103 Charlie Davis 1 J003 60000

104 David Brown 3 J004 72000

105 Emma Wilson 2 J001 45000

106 Fiona Clark 4 J005 80000

107 George Miller 1 J003 61000

108 Hannah White 4 J006 85000

109 Ian Thompson 3 J002 70000

110 Julia Lewis 2 J004 52000

Table 7-8.  The Departments Table

department_id department_name Location

1 Sales New York

2 Marketing Chicago

3 IT San Francisco

4 HR Boston

5 Operations Los Angeles

6 Finance New York

7 Logistics Chicago

8 R&D San Francisco

9 Legal Boston

10 Customer Support Los Angeles

Chapter 7 Dynamic Dialogues with Subqueries

186

�Single-Row Subqueries
In a single-row subquery, only one row and one column of data are returned. It is often

used when the outer query expects a single value to compare against, such as when

using comparison operators like =, <, >, or !=. If the subquery returns more than one

row, an error will occur. For instance, the following nested query considers a single-row

subquery to find the names of all employees in the Sales department.

SELECT name
FROM employees
WHERE department_id = (SELECT department_id FROM departments WHERE
department_name = 'Sales');

The inner query finds the department_id of the 'Sales' department, and the outer

query retrieves the names of employees in that department.

As shown in Tables 7-9 and 7-10, the inner query returns the department_id for

the Sales department, and the outer query retrieves the names of employees with

department_id = 1.

Table 7-9.  The Output of Inner Query

department_id

1

Table 7-10.  The Output of the Outer Query

name

Alice Johnson

Charlie Davis

George Miller

Chapter 7 Dynamic Dialogues with Subqueries

187

�Multi-Row Subqueries
A multi-row subquery returns multiple rows but usually a single column. These

subqueries are used with operators like IN, ANY, or ALL to match one or more values from

the subquery’s results. To find the names of all employees who work in any department

located in New York, the following nested query considers a multi-row subquery.

SELECT name
FROM employees
WHERE department_id IN (SELECT department_id FROM departments WHERE
location = 'New York');

The subquery retrieves the IDs of all departments located in 'New York', and the

outer query finds employees working in those departments.

Tables 7-11 and 7-12 demonstrate, in the inner query, the IDs of the New York

departments are returned. In the outer query, the names of employees in departments

with IDs 1 or 6 are returned.

Table 7-11.  The Output of Inner Query

department_id

1

6

Table 7-12.  The Output of Outer Query

name

Alice Johnson

Charlie Davis

George Miller

Chapter 7 Dynamic Dialogues with Subqueries

188

�Multi-Column Subqueries
A multi-column subquery returns multiple columns and rows. It is typically used with

composite comparisons involving tuples, pairs, or groups of values, often combined with

operators like IN or in JOIN conditions. For instance, the following nested query aims

to find the names of employees who have both the same department_id and job_id as

current open positions in the company.

SELECT name
FROM employees
WHERE (department_id, job_id) IN (SELECT department_id, job_id FROM job_
openings WHERE status = 'Open');

The subquery retrieves pairs of department_id and job_id where jobs are open, and

the outer query finds employees who match those pairs.

Table 7-13 shows the data in the table called job_openings.

Table 7-13.  The job_openings Table

department_id job_id Status

1 J003 Open

4 J006 Open

Subqueries retrieve open jobs, and the outer queries match employees with

department-job pairs. See Tables 7-14 and 7-15.

Table 7-14.  The Inner Query Output

department_id job_id

1 J003

4 J006

Chapter 7 Dynamic Dialogues with Subqueries

189

Table 7-15.  The Outer Query Output

name

Charlie Davis

George Miller

Hannah White

�Correlated Subqueries
A correlated subquery depends on the outer query for its execution. It is evaluated

once for each row processed by the outer query. Correlated subqueries are more like

back-and-forth conversations, where the inner query continuously references columns

from the outer query. As an example, the following query compares the salary of each

employee with the average salary within their own department, not the average salary

throughout the entire organization, in order to identify employees who earn more than

the average salary within their own department.

SELECT e.name
FROM employees e
WHERE e.salary > (SELECT AVG(salary) FROM employees WHERE department_id =
e.department_id);

For each employee in the outer query, the inner query calculates the average salary

for that employee’s department and compares it to the employee’s salary. To assist you

in better understanding, Table 7-16 provides an illustration of the average salary for each

employee’s department.

In the inner query, the average salary for each employee’s department is calculated,

and in the outer query, as shown Table 7-17, the employee’s salary is compared to that

average.

Chapter 7 Dynamic Dialogues with Subqueries

190

Table 7-16.  Illustration of Average Salary for Each Employee's Department

Name department_id salary avg_department_salary salary_comparison

Alice Johnson 1 55000 58667 Below Average

Charlie Davis 1 60000 58667 Above Average

George Miller 1 61000 58667 Above Average

Emma Wilson 2 45000 48333 Below Average

Bob Smith 2 48000 48333 Below Average

Julia Lewis 2 52000 48333 Above Average

Table 7-17.  Output of the Correlated Subquery

Name

Charlie Davis

George Miller

Julia Lewis

Note  This table has been adjusted for better understanding. To write a query to
access this table in PostgreSQL, you can write the following query:

SELECT
 e.name,
 e.department_id,
 e.salary,
 dept_avg.avg_department_salary,
 CASE
 �WHEN e.salary > dept_avg.avg_department_salary THEN 'Above

Average'

Chapter 7 Dynamic Dialogues with Subqueries

191

 ELSE 'Below Average'
 END AS salary_comparison
FROM employees e
JOIN (
 SELECT department_id, AVG(salary) AS avg_department_salary
 FROM employees
 GROUP BY department_id
) dept_avg ON e.department_id = dept_avg.department_id;

�Uncorrelated Subqueries
An uncorrelated subquery is independent of the outer query. It is executed only once,

and its result is used by the outer query. These are more straightforward and they do

not reference columns from the outer query. The following query, for instance, first

calculates the overall company-wide average salary before showing employees who earn

more than it.

SELECT name
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

The subquery calculates the average salary across all employees once, and the outer

query finds employees with a salary above that average.

As Tables 7-18 and 7-19 demonstrate, the inner query calculates average salary

across all employees, and the outer query retrieves employees with salaries above

$62,800.

Table 7-18.  Average Salary Across All Employees

avg_salary

62800

Chapter 7 Dynamic Dialogues with Subqueries

192

Table 7-19.  Employees with Salaries Above $62,800

name

David Brown

Fiona Clark

Hannah White

Ian Thompson

�Subqueries in the FROM Clause
A subquery in a FROM clause is often called a derived table. It acts as a temporary table

that the outer query can use to retrieve more meaningful insights. This type of subquery

is useful for pre-aggregating data before using it in the main query. For example, the

following nested query calculates the average salary for each department and provides

their names along with their average salaries.

SELECT department_name, avg_salary
FROM (SELECT department_id, AVG(salary) AS avg_salary
 FROM employees
 GROUP BY department_id) AS dept_avg
JOIN departments d ON dept_avg.department_id = d.department_id;

The subquery calculates the average salary for each department, and the outer query

retrieves department names and their corresponding average salaries.

In the inner query, the average salary per department is calculated. A JOIN operation

is then performed to join the Departments table. See Tables 7-20 and 7-21.

Table 7-20.  The Average Salary per Department

department_id avg_salary

1 58667

2 48333

3 71000

4 82500

Chapter 7 Dynamic Dialogues with Subqueries

193

Table 7-21.  Department Names and Their

Corresponding Average Salaries

department_name avg_salary

Sales 58667

Marketing 48333

IT 71000

HR 82500

�Complex Conversations: Nested
and Multi-Level Subqueries
In SQL, nested subqueries and multi-level subqueries allow you to solve complex data-

retrieval problems from multiple queries by writing multiple layers of queries. Each layer

refines the data further, making it more targeted and relevant. This can be seen as similar

to a dialogue that involves asking follow-up questions to previous answers, where each

layer is dependent on the results of the previous layer.

As mentioned, a nested subquery is a subquery placed inside another subquery

or query. In more complex scenarios, multiple subqueries may be nested within one

another, resulting in a multi-level subqueries.

Note  A subquery can be nested in a SELECT, FROM, or WHERE clause. Multi-level
subqueries require SQL to evaluate the innermost query first and then pass the
result to the next query. The outermost query uses the final result to produce the
desired output.

�General Syntax of Two-Level Subqueries
A two-level subquery is a query where the outer query depends on the result of a

subquery, and that subquery itself has another inner subquery.

Chapter 7 Dynamic Dialogues with Subqueries

194

SELECT column1
FROM table1
WHERE column2 = (
 SELECT column3
 FROM table2
 WHERE column4 = (
 SELECT column5
 FROM table3
 WHERE condition
)
);

First, the innermost subquery runs and returns a result, then the middle subquery

filters its own data, and finally the outer query filters the main table using the final result.

�Complex Multi-Level Subqueries
To write complex nested SQL queries, it’s essential to work from the inside out, progressively

building and testing each layer to ensure correctness. It is recommended to begin by

writing and testing the innermost query, then gradually adding outer layers once you have

confirmed the inner portions work properly. Using meaningful table aliases enhances

code readability and makes complex queries easier to understand and maintain. The best

recommendation is to use descriptive aliases to represent data rather than generic names

such as t1 or t2. However, it’s crucial to consider performance implications, as nested

subqueries can consume significant computational resources. To optimize performance,

you need to use appropriate database indexes, which are introduced in Chapter 9.

The following story illustrates how to write complex multi-level subqueries using a

food delivery platform data model. This practical business scenario shows how multi-

level subqueries work.

�The Second Story: A Food Delivery Platform
Ginnifer, a data analyst at a food delivery platform, faced a challenging task when the

marketing team wanted to identify high-value customers for a loyalty program. She

needed to find customers who spent above average in their respective cities, but only

those who showed consistent ordering behavior.

Chapter 7 Dynamic Dialogues with Subqueries

https://doi.org/10.1007/979-8-8688-1560-7_9

195

Using Tables 7-22, 7-23, and 7-24, she wants to determine the average total amount

spent by customers in each city, find customers who have spent more than that average

in their respective city, and filter out customers who have placed fewer than two orders.

Table 7-22.  The Customers Table

customer_id Name City

1 Alice Johnson New York

2 Bob Smith Chicago

3 Charlie Davis Boston

4 David Brown New York

5 Eva White Chicago

6 Frank Green Boston

7 Grace Black New York

8 Hannah Blue Chicago

9 Ivy Red New York

10 Jack Gray Chicago

11 Liam Yellow Boston

12 Mia Purple New York

13 Noah Orange Chicago

14 Olivia Pink Boston

15 Paul Silver New York

16 Quinn Gold Chicago

Chapter 7 Dynamic Dialogues with Subqueries

196

Table 7-23.  The Orders Table

order_id customer_id restaurant_id total_amount order_date

1001 1 101 50 2025-01-01

1002 1 102 20 2025-01-02

1003 2 101 45 2025-01-03

1004 3 103 35 2025-01-04

1005 3 102 55 2025-01-05

1006 4 101 70 2025-01-06

1007 5 102 30 2025-01-07

1008 5 101 60 2025-01-08

1009 5 102 40 2025-01-09

1010 6 103 25 2025-01-10

1011 6 102 45 2025-01-11

1012 7 101 90 2025-01-12

1013 7 102 50 2025-01-13

1014 8 101 80 2025-01-14

1015 8 102 20 2025-01-15

1016 9 101 100 2025-01-16

1017 9 102 60 2025-01-17

1018 10 101 90 2025-01-18

1019 10 102 70 2025-01-19

1020 11 103 55 2025-01-20

1021 11 102 45 2025-01-21

1022 11 101 120 2025-01-22

1023 11 102 80 2025-01-23

Chapter 7 Dynamic Dialogues with Subqueries

197

Table 7-24.  The Restaurants Table

restaurant_id Name City

101 Pizza Palace New York

102 Sushi Spot Chicago

103 Burger Barn Boston

Sarah’s business question is to identify customers who have spent more than the

average amount in their city, but only if they have placed more than two orders.

As a first step, she breaks down the problem into the following subquestions:

•	 Find the average total amount spent by customers in each city.

•	 Find customers who have spent more than the average in the city

where they live.

•	 Filter out customers who have placed fewer than two orders.

Multiple subqueries will be run in order to resolve each of these questions:

•	 The innermost subquery will calculate the average total amount

spent by customers in each city.

•	 The middle subquery will identify customers who meet the

condition.

•	 The outer query will filter customers based on their order count.

The following is a step-by-step breakdown of the innermost subquery:

SELECT c.city, AVG(o.total_amount) AS avg_city_spending
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.city;

The innermost subquery calculates the average total amount spent by customers in

each city. This involves joining the Customers and Orders tables and grouping by the

city. As shown in Table 7-25, this query calculates the average total amount spent by

customers in each city.

Chapter 7 Dynamic Dialogues with Subqueries

198

Table 7-25.  The Average Total Amount Spent

by Customers in Each City

City total_amount

New York 70

Chicago 45

Boston 90

The middle subquery uses the innermost query result to filter customers who have

spent more than the average in their respective cities. The middle subquery is written as

follows:

SELECT c.customer_id, c.name, c.city, SUM(o.total_amount) AS total_spent
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name, c.city
HAVING SUM(o.total_amount) > (
SELECT AVG(o2.total_amount)
FROM customers c2
JOIN orders o2 ON c2.customer_id = o2.customer_id
WHERE c2.city = c.city GROUP BY c2.city);

This query identifies customers who have spent more than the average amount in

their respective cities. It works by joining the Customers and Orders tables to calculate

each customer’s total spending. It groups results by customer details. The subquery

calculates the average spending per city by joining the same tables but grouping by city

only. The HAVING clause filters the customers whose total spending exceeds their city’s

average spending.

Note  The HAVING clause is a powerful SQL feature used to filter the results
of GROUP BY operations based on aggregate conditions. While the WHERE
clause filters individual rows before they're grouped, HAVING filters groups after
aggregation has occurred. When you need conditions based on calculations such
as SUM(), COUNT(), AVG(), MAX(), or MIN(), HAVING is essential.

Chapter 7 Dynamic Dialogues with Subqueries

199

The correlation between the main query and subquery is established by the c2.city
= c.city condition, which ensures that each customer is compared only against the

average from their own city. This makes the query a correlated subquery that executes

once for each customer group in the outer query.

This query calculates the average total amount for each city. Lastly, the outer query is

as follows:

SELECT c.customer_id, c.name, c.city, SUM(o.total_amount) AS total_spent,
COUNT(o.order_id) AS order_count
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name, c.city
HAVING COUNT(o.order_id) > 2 AND SUM(o.total_amount) > (
SELECT AVG(o2.total_amount)
FROM customers c2
JOIN orders o2 ON c2.customer_id = o2.customer_id
WHERE c2.city = c.city
GROUP BY c2.city);

This query ensures that only customers who have placed more than two orders—

COUNT(o.order_id) > 2—and spent more than the average in their city are included in

the result. The outer query retrieves customers who have spent more than the average in

their city and have placed more than two orders.

When the levels are combined, a multi-level query is written in a way that provides

the final answer to Sarah’s question:

SELECT c.customer_id, c.name, c.city, SUM(o.total_amount) AS total_spent,
COUNT(o.order_id) AS order_count
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name, c.city
HAVING COUNT(o.order_id) > 2 AND SUM(o.total_amount) > (
SELECT AVG(o2.total_amount)
FROM customers c2
JOIN orders o2 ON c2.customer_id = o2.customer_id
WHERE c2.city = c.city
GROUP BY c2.city);

Chapter 7 Dynamic Dialogues with Subqueries

200

This SQL query identifies high-value customers in a food delivery platform. Total

spending per customer is calculated by joining the Customers and Orders tables. In the

nested subquery, orders are grouped by city to calculate the average total spending.

Using the HAVING clause, the main query compares each customer’s total spending with

the average for their city, but only includes customers with more than two orders. In the

final output, the customer’s name, city, and their total spending amount are displayed

for those who spent more than twice in their city. See Table 7-26.

Table 7-26.  Sarah's Business Question Final Answer

customer_id Name City total_spent order_count

11 Liam Yellow Boston 300 4

5 Eva White Chicago 130 3

To improve the readability of the multi-level nested query, Sarah uses CTEs. A CTE

is a temporary result set defined by the WITH clauses that can be referenced within the

main query. By dividing complex logic into smaller, named blocks, SQL statements

can be read, debugged, and maintained more easily. Using CTEs, Sarah can separate

intermediate steps, clarify query flow, and avoid deeply nested subqueries.

WITH city_spending AS (
SELECT city, AVG(total_customer_spent) AS avg_city_spending
FROM (
SELECT c.customer_id, c.city, SUM(o.total_amount) AS total_customer_spent
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.city) AS customer_totals
GROUP BY city
),
customer_spending AS (
SELECT c.customer_id, c.name, c.city, SUM(o.total_amount) AS total_spent,
COUNT(o.order_id) AS order_count
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name, c.city
HAVING COUNT(o.order_id) > 2)

Chapter 7 Dynamic Dialogues with Subqueries

201

SELECT cs.customer_id, cs.name, cs.city, cs.total_spent, cs.order_count
FROM customer_spending cs
JOIN city_spending csp ON cs.city = csp.city
WHERE cs.total_spent > csp.avg_city_spending;

This query uses CTEs to find high-value customers in a food delivery platform. It

breaks down the analysis into two clear steps: First, city_spending calculates the total

spending for each city. Second, customer_spending computes individual customer

spending while filtering for those with more than two orders. Finally, it joins these

temporary tables to identify customers whose spending exceeds their city’s total. It

displays their name, city, and total spent amount. This query uses CTEs for better

readability and maintainability, while the previous query used nested subqueries,

making it more complex.

�Common Pitfalls
When working with complex nested queries and multi-level queries in SQL, developers

often encounter a variety of challenges that affect performance, readability, and

maintainability. This section contains a detailed overview of common pitfalls and

solutions.

�Poor Readability
One of the most common issues with complex nested queries is poor readability. When

queries are deeply nested or overly complex, they become difficult to understand and

maintain. These queries can also be challenging to debug or modify. The use of CTEs

to break complex queries into smaller, more manageable parts might be one possible

solution to this problem. CTEs improve readability and make it easier to isolate and

troubleshoot different parts of the query.

�Repeated Subquery Execution
Repeated execution of subqueries can cause performance issues, as the same

computation is done multiple times during query execution.

Chapter 7 Dynamic Dialogues with Subqueries

202

The problem of running subqueries multiple times slows down query performance.

To solve this problem, the subquery can be computed once and referenced multiple

times within the query using derived tables or CTEs.

Derived tables are temporary, virtual tables that are created as a result of a subquery

in a SQL query’s FROM clause. These tables do not exist in the database schema but are

dynamically generated at query runtime. They simplify complex queries by breaking

them down into smaller, more manageable components.

The general syntax of derived tables is provided here:

SELECT derived_table.col1, derived_table.col2
FROM (
 SELECT col1, col2
 FROM original_table
 WHERE col3 > 100
) AS derived_table;

�Too Many Subqueries Instead of Joins
Using too many nested subqueries instead of JOINs can make queries unnecessarily

complex and inefficient. Using several nested subqueries instead of JOINs can result in

slower and more complicated queries. In order to improve performance and simplify the

query structure, it is best to replace subqueries with JOINs where possible.

�Returning Too Much Data
Subqueries that return large result sets can negatively impact query performance

because it slows down query execution. It is possible to add filters and SQL WHERE clauses

to subqueries to limit the amount of data retrieved.

�Forgetting to Use Aliases
Forgetting to use aliases in nested queries can result in ambiguous column references,

making queries more difficult to read and maintain. Ambiguous column references in

nested queries can also cause confusion and errors. To prevent this problem, use table

aliases to clarify which table each column belongs to.

Chapter 7 Dynamic Dialogues with Subqueries

203

Table 7-27 summarizes these common pitfalls and their solutions.

Table 7-27.  Common Pitfalls and Solutions When Writing Complex Nested

Queries and Multi-Level Queries

Pitfall Problem Solution

Poor readability Queries become hard to read and

maintain

Use CTEs for better

readability

Repeated subquery

execution

Subqueries run multiple times, slowing

performance

Use derived tables or CTEs

Too many subqueries

instead of joins

Nested subqueries when a JOIN would

suffice

Replace subqueries with

JOINs

Returning too much data Subqueries return large result sets Add filters to subqueries

Forgetting to use aliases Ambiguous column references in nested

queries

Use table aliases to clarify

�Summary
This chapter explored the concept of dynamic dialogues with subqueries, focusing on

nested and multi-level queries. It highlighted how these queries can enhance SQL’s

flexibility by allowing complex data manipulations within a single statement. However,

the chapter also discussed common pitfalls, such as poor readability, performance issues

from repeated subquery executions, and challenges with large result sets. By applying

best practices like CTEs and table aliases, analysts can optimize query performance and

maintainability. These techniques contribute to writing more efficient, readable, and

maintainable SQL code, ensuring better data analysis and decision-making outcomes.

�Key Points

•	 Dynamic dialogues in SQL involve using subqueries to create more

flexible and adaptive queries that respond to varying data inputs.

These dialogues allow SQL queries to be constructed in a modular

fashion, adding flexibility to SQL queries by enabling complex data

manipulations within a single query.

Chapter 7 Dynamic Dialogues with Subqueries

204

•	 Multi-level nested queries provide powerful ways to solve complex

problems by breaking queries into hierarchical structures. These

queries enable SQL users to handle multi-step data transformations

within a single statement, reducing the need for multiple queries.

•	 Using CTEs can improve the readability and maintainability

of complex queries by breaking them into smaller, more

manageable parts.

•	 Simplifying queries by replacing unnecessary nested subqueries with

JOINs enhances both performance and clarity.

•	 Applying filters within subqueries reduces the amount of data

processed, improving query efficiency and focusing on relevant data.

�Key Takeaways

•	 Dynamic dialogues with subqueries: Use subqueries to create

adaptive queries that respond dynamically to varying data inputs.

This approach enhances modularity, making queries more flexible

and reusable in different scenarios.

•	 Multi-level nested queries: The use of multi-level nested queries

can be employed in order to handle complex data transformations

within a single query. This method enables the execution of step-

by-step processes without needing separate queries, improving both

performance and maintainability.

�Looking Ahead
The next chapter, “Conditional Logic in Data Plotting,” looks at CASE statements for

dynamic data outputs and explains how to customize data stories based on complex

analysis of complex datasets.

Chapter 7 Dynamic Dialogues with Subqueries

205

�Test Your Skills
A public library in a city with an extensive book collection and a large number of users

employs Jack as a data analyst. Library administration is interested in improving user

experience by understanding borrowing patterns, popular titles, and member activity.

Jack aims to use dynamic dialogues with subqueries, nested queries, and multi-level

queries to extract insights from the library database. Table 7-28 shows the BookLoans

table; Table 7-29 shows the Borrowers table; and Table 7-30 shows the Books table.

Table 7-28.  The BookLoans Table

Column Description

loan_id Unique identifier for each book loan

member_id Unique identifier for each member

book_title Title of the borrowed book

borrow_date Date when the book was borrowed

return_date Date when the book was returned

loan_duration Duration in days of the loan (return_date -

borrow_date)

borrow_count Number of times the book has been borrowed

Table 7-29.  The Members Table

Column Description

member_id Unique identifier for each member (primary key)

name Full name of the member

membership_type Type of membership (e.g., Regular, Premium)

signup_date Date the member joined the library

Chapter 7 Dynamic Dialogues with Subqueries

206

Table 7-30.  The Books Table

Column Description

book_id Unique identifier for each book (primary key)

book_title Title of the book

author Author of the book

genre Genre of the book

published_year Year the book was published

	 1.	 Determine which books are most frequently borrowed. Try writing

a query using a subquery to find the top five most borrowed books

from the BookLoans table.

	 2.	 Determine which members have the longest average loan

duration. Try using a multi-level query to calculate the average

loan duration for each member and identify the top three

members with the longest average loan duration.

	 3.	 Analyze the borrowing patterns of recent times. Try writing a

query using a subquery to list the ten most recent loans, including

member_id and book_title, sorted by borrow_date.

	 4.	 Conduct an analysis of borrowing frequency. Try to use a CTE to

identify members who have borrowed more than 20 books and

calculate their average loan duration.

	 5.	 Compare the borrower’s behavior over two time periods. Try to

use a nested query to compare the number of books borrowed in

the first half of the year with the second half.

Chapter 7 Dynamic Dialogues with Subqueries

207
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_8

CHAPTER 8

Conditional Logic in
Data Plotting
In this chapter, you learn how SQL's conditional logic can transform data analysis and

visualization workflows. You learn about conditional logic in SQL, categorize data, apply

dynamic filtering to improve plot relevance for enhanced visualization, create color-

coding data for visualizations, aggregate data using conditional expressions, and handle

missing data in visualizations.

The focus in this chapter is not on how you visualize or plot data, but rather on

the crucial process of preparing data before visualization using SQL. The primary

contribution of this chapter is to explain how SQL can be used to manipulate, clean, and

structure data before it reaches the visualization stage. SQL itself does not generate plots

or graphical representations; instead, it serves as a powerful tool for transforming raw

data into a structured format suitable for analysis. While other programming languages

and tools handle data visualization, SQL ensures that the underlying data is properly

processed, making it ready for effective and meaningful representation. However,

some database management systems, such as pgAdmin for PostgreSQL, offer limited

visualization tools for displaying query results graphically. But these are not part of

standard SQL itself—they are features of the database's user interface. In order to plot

data, SQL can be combined with external tools or programming languages, such as

Python (Matplotlib, Seaborn, Plotly, Pandas), R (ggplot2, tidyverse), or BI tools (Tableau,

Power BI, Looker, Metabase).

�Introduction
SQL conditional logic can be implemented using expressions such as CASE, IF, and

conditional operators like <, >, =, and so on. Using these constructs, developers can

dynamically transform or filter data based on specific criteria. This makes SQL queries

https://doi.org/10.1007/979-8-8688-1560-7_8#DOI

208

more flexible and tailored to the needs of complex analytical tasks by allowing them to

manipulate datasets to meet particular requirements. For instance, conditional logic can

categorize data into groups, create dynamic columns based on conditions, and perform

context-sensitive calculations within the query itself.

By using SQL conditional expressions for dynamic plotting, you can enhance your

data analysis because they allow dynamic and context-aware plotting of datasets. As

part of data preparation, it is possible to use CASE statements to create conditional labels

for categorical axes in plots, such as grouping age ranges or income levels. To perform

context-aware filtering, one option is to use conditional filtering to include or exclude

data points based on analysis-specific thresholds or trends, ensuring that the plots reflect

meaningful insights. Also, for derived metrics, it is possible to calculate new metrics

directly in the query to highlight specific trends, such as defining high- or low-

performance thresholds dynamically.

Table 8-1 summarizes the common visualization plot types and the PostgreSQL

queries used to prepare the data. The table includes the plot type, its use case, and an

example query that prepares data in PostgreSQL. Each example query in this table uses

the sales_data table as its base and has an explanation column to explain its purpose.

The sales_data table contains the following columns: `date` (DATE), which represents

the transaction date; `region` (VARCHAR), indicating the sales region; `product`
(VARCHAR), specifying the product name; `category` (VARCHAR), defining the product

category; `sales` (NUMERIC), denoting the sales amount; and `profit` (NUMERIC),

representing the profit amount.

Chapter 8 Conditional Logic in Data Plotting

209

Table 8-1.  Common Visualization Plot Types and the PostgreSQL Queries Used to

Prepare the Data

Plot Type Plot Use Case Example PostgreSQL Query Explanation

Bar chart Compare categorical

data, for instance, sales

by region

SELECT region,
SUM(sales) AS total_
sales FROM sales_data
GROUP BY region;

Groups sales by region to

show total sales per region.

Line chart Show trends over time,

for instance, stock

prices

SELECT date, SUM(sales)
AS daily_sales FROM
sales_data GROUP BY
date ORDER BY date;

Aggregates daily sales to

show trends over time.

Scatterplot Visualize relationships

between two numeric

variables, for instance,

height vs. weight

SELECT sales, profit
FROM sales_data;

Extracts sales and profit

values to visualize their

relationship.

Pie chart Show proportions

or percentages

of categories, for

instance, market share

SELECT category,
SUM(sales) AS total_
sales FROM sales_data
GROUP BY category;

Groups sales by category

to show proportions of total

sales.

Histogram Show frequency

distributions, for

instance, age

distribution

SELECT FLOOR(sales
/ 100) * 100 AS
sales_range, COUNT(*)
AS frequency FROM
sales_data GROUP BY
sales_range ORDER BY
sales_range;

Buckets sales into ranges,

for instance 0–100,

100–200, and counts

transactions in each range

for a distribution.

(continued)

Chapter 8 Conditional Logic in Data Plotting

210

Plot Type Plot Use Case Example PostgreSQL Query Explanation

Box plot Display data

distribution and

outliers, for example,

test scores by class

SELECT region, sales
FROM sales_data;

Retrieves sales per region

to analyze distribution and

identify outliers.

Heatmap Show patterns across

two variables, for

instance, sales by day

and time

SELECT date, region,
SUM(sales) AS total_
sales FROM sales_data
GROUP BY date, region;

Groups sales by date and

region to visualize patterns

in a heatmap.

Stacked

bar chart

Compare proportions

across categories,

for example, sales by

product and region

SELECT region,
category, SUM(sales) AS
total_sales FROM sales_
data GROUP BY region,
category;

Groups sales by region and

category to show category-

wise contributions in each

region.

Area chart Show cumulative

trends over time, for

instance, cumulative

sales

SELECT date, SUM(sales)
OVER (ORDER BY date) AS
cumulative_sales FROM
sales_data;

Calculates cumulative sales

over time to show trends in

total sales growth.

Bubble

chart

Represent three

dimensions, for

example, profit, sales,

and region

SELECT region,
SUM(sales) AS total_
sales, SUM(profit)
AS total_profit FROM
sales_data GROUP BY
region;

Summarizes sales and profit

by region to represent three

dimensions, for example,

bubble size = sales volume.

Radar chart Compare multiple

variables for

categories, for

instance, performance

metrics

SELECT category,
AVG(sales) AS avg_
sales, AVG(profit) AS
avg_profit FROM sales_
data GROUP BY category;

Aggregates average sales

and profit by category

for multi-dimensional

comparisons.

(continued)

Table 8-1.  (continued)

Chapter 8 Conditional Logic in Data Plotting

211

Plot Type Plot Use Case Example PostgreSQL Query Explanation

Waterfall

chart

Visualize changes

over time or between

categories, for

instance, profit margins

SELECT product,
SUM(sales) AS total_
sales FROM sales_data
GROUP BY product ORDER
BY total_sales DESC;

Ranks products by sales

for visualizing incremental

changes between top-

selling products.

Gantt chart Track project

schedules, for instance,

start and end dates for

tasks

SELECT product,
MIN(date) AS start_
date, MAX(date) AS end_
date FROM sales_data
GROUP BY product;

Calculates start and end

dates of sales for each

product for timeline-based

visualization.

Treemap Show hierarchical data,

for instance, sales by

product category and

subcategory

SELECT category,
product, SUM(sales) AS
total_sales FROM sales_
data GROUP BY category,
product;

Groups sales by category

and product to represent

hierarchical data.

Donut chart Similar to a pie chart

but with a central cut-

out, for example, profit

share

SELECT category,
SUM(profit) AS total_
profit FROM sales_data
GROUP BY category;

Groups profit by category

to show proportions, similar

to a pie chart but with a

central cut-out.

Pareto

chart

Highlight the most

significant factors in

data, for instance, sales

by product

SELECT product,
SUM(sales) AS total_
sales FROM sales_data
GROUP BY product ORDER
BY total_sales DESC;

Ranks products by sales to

identify the most significant

contributors, for example,

the 80/20 rule.

Violin plot Show distribution and

density, for instance,

salary ranges

SELECT category, sales
FROM sales_data;

Extracts sales data for

each category to show

distribution density and

variability.

(continued)

Table 8-1.  (continued)

Chapter 8 Conditional Logic in Data Plotting

212

Plot Type Plot Use Case Example PostgreSQL Query Explanation

Chord

diagram

Visualize relationships

between entities, for

instance, trade flows

SELECT region AS
source, category AS
target, SUM(sales) AS
value FROM sales_data
GROUP BY region,
category;

Maps relationships between

regions (source) and

categories (target) based on

sales.

Network

graph

Show connections

between nodes,

for example, social

networks

SELECT region AS
source, product AS
target FROM sales_
data GROUP BY region,
product;

Highlights connections

between regions and

products for relationship

analysis.

Funnel

chart

Represent stages in a

process, for instance,

sales pipeline

SELECT category,
COUNT(*) AS total_
transactions FROM
sales_data GROUP BY
category ORDER BY
total_transactions
DESC;

Tracks the number of

transactions for each

category to represent

stages in a process, for

example, sales funnel.

Table 8-1.  (continued)

�Understanding Conditional Logic in SQL
SQL conditional logic allows you to control query output based on specific conditions.

As a result, it is crucial for categorizing data, handling missing values, avoiding errors

such as division by zero, and returning different results depending on the conditions.

CASE, NULLIF, and COALESCE are three of the most commonly used conditional

expressions in PostgreSQL. In the form of an if-else statement, CASE expression is the

most powerful conditional expression. The NULLIF function returns NULL if two values

are equal, otherwise it returns the first value. From a list, the COALESCE function returns

the first value that is not null.

Chapter 8 Conditional Logic in Data Plotting

213

�The CASE Statement
A CASE statement allows a query to be processed in a way similar to an if-else

statement. Consider an example that categorizes sales amounts. In Table 8-2, the order_
id and amount are listed.

Table 8-2.  The Orders Table

order_id Amount

101 1200

102 700

103 300

The following query retrieves order_id and amount from an Orders table and adds

a new column called category using a CASE statement, which is shown in Table 8-3.

The category column classifies order amounts into High (≥ $1000), Medium (≥ $500),

and Low (< $500), based on their monetary value. This allows for quick visualization and

analysis of order values by creating a simple categorical breakdown without modifying

the original table structure.

SELECT order_id, amount,
 CASE
 WHEN amount >= 1000 THEN 'High'
 WHEN amount >= 500 THEN 'Medium'
 ELSE 'Low'
 END AS category
FROM orders;

The results of this query are shown in Table 8-3.

Chapter 8 Conditional Logic in Data Plotting

214

Table 8-3.  Categorizing order_id and

Amount from an Orders Table

order_id Amount Category

101 1200 High

102 700 Medium

103 300 Low

This next query example provides a solution to a more complicated business

intelligence question. The query aims to show how to categorize and understand

product categories based on their sales performance.

This query must answer the following sub-questions:

•	 How many product categories are there?

•	 What is the sales volume for each product category?

•	 How can you classify product categories into meaningful

performance tiers?

•	 What are the averages and total sales for each category?

Here, the role of the CASE statement is crucial because it creates a meaningful

categorization of sales volumes, transforms raw numerical data into actionable

insights, and allows for quick visual and analytical understanding of product category

performance.

Given the data in Table 8-4, the sales_data table, it is possible to identify top-

performing product categories, understand the distribution of sales across different

product lines, and make informed decisions about inventory, marketing, and strategic

planning.

Chapter 8 Conditional Logic in Data Plotting

215

Table 8-4.  The sales_data Table

product_category sale_amount sale_date

Electronics 1500 2024-01-15

Clothing 450 2024-01-16

Electronics 2300 2024-01-17

Books 750 2024-01-18

Clothing 1100 2024-01-19

Electronics 3200 2024-01-20

Books 250 2024-01-21

Clothing 600 2024-01-22

Electronics 4500 2024-01-23

Books 890 2024-01-24

Clothing 1750 2024-01-25

Electronics 5600 2024-01-26

Books 330 2024-01-27

Clothing 880 2024-01-28

Electronics 6700 2024-01-29

The following query demonstrates a structured approach to preparing sales data. It

uses a subquery to calculate total sales per product category, providing a broad overview

of sales distribution. A CASE statement categorizes these totals into sales volume tiers

based on predefined thresholds, allowing flexible classification. Aggregate functions

compute key metrics such as the number of sales, the average sales per category,

and total sales. This makes the resulting dataset suitable for visualization and further

analysis. By combining dynamic categorization and ordering by total sales, the query

presents insights in a clear and meaningful format:

SELECT
 product_category,
 CASE
 WHEN SUM(sale_amount) >= 10000 THEN 'High Volume'

Chapter 8 Conditional Logic in Data Plotting

216

 WHEN SUM(sale_amount) >= 5000 THEN 'Medium Volume'
 ELSE 'Low Volume'
 END AS sales_volume_category,
 COUNT(*) AS number_of_sales,
 AVG(sale_amount) AS average_sale,
 SUM(sale_amount) AS total_sales
FROM sales_data
GROUP BY product_category
ORDER BY total_sales DESC;

The results of this query are shown in Table 8-5.

Table 8-5.  The Structured Data Table (After Query Execution)

product_category sales_volume_category number_of_sales average_sale total_sales

Electronics High Volume 6 3966.66 23800.00

Clothing Low Volume 5 956.00 4780.00

Books Low Volume 4 555.00 2220.00

This query efficiently prepares structured data that can be used for meaningful

insights. The computed fields—such as sales_volume_category, number_of_sales,

average_sale, and total_sales—are key elements for data visualization. In the next

stage, this data can be illustrated using various chart types: a bar chart can compare

absolute values between categories; a pie chart shows the proportion of total sales per

category, and a scatterplot can extend the data to explore relationships, such as between

sales volume and frequency.

�NULLIF
The NULLIF function prevents errors by returning NULL if two values are equal. NULLIF

is a powerful SQL function that prevents division by zero errors and handles null values

during data analysis. In essence, it allows you to replace a specific value with NULL, which

is crucial when performing calculations like percentages or ratios where zero could

cause computational issues. Using NULLIF, data analysts and database professionals

Chapter 8 Conditional Logic in Data Plotting

217

can create reliable, error-resistant queries for reporting, plotting, and statistical analysis

by converting potentially problematic zero values to NULL. In data transformation, this

provides a clean, robust way to deal with edge cases.

Note I n SQL, certain common scenarios can lead to errors or unexpected
behavior if they aren't handled carefully. These include division by zero,
distinguishing between empty strings and NULL values, date range boundaries,
case sensitivity in string comparisons, numerical precision loss, and aggregation
over empty datasets. These are not rare edge cases; they are critical
considerations in writing robust SQL queries and should be explicitly handled
during data processing.

In the case of zero targets or missing data, for instance, NULLIF can be used to

analyze the following employee performance metrics data. Table 8-6 shows employee

performance metrics, including sales figures, targets, training hours, and completed

projects. This gives a structured view of every employee's sales achievements in relation

to their targets.

Table 8-6.  The performance_metrics Data Table (Employee Performance Metrics)

emp_id Name Sales Target training_hours projects_completed

101 Alice 50000 45000 20 5

102 Bob 30000 0 15 3

103 Charlie 75000 60000 0 8

104 Diana 45000 40000 25 0

105 Eve 0 35000 30 4

106 Frank 85000 80000 10 7

107 Grace 25000 30000 0 2

108 Henry 55000 0 40 6

109 Ivy 65000 50000 35 0

110 Jack 40000 45000 0 5

Chapter 8 Conditional Logic in Data Plotting

218

The following query evaluates employee performance by calculating key metrics

such as target achievement, productivity ratio, and performance variance. Using a CTE,

it first computes target achievement as a percentage while handling division by zero with

NULLIF(target, 0). The productivity ratio is derived from completed projects relative

to training hours, and performance variance measures deviation from sales targets. The

main query categorizes employees into performance statuses and efficiency ratings

based on predefined thresholds. NULL values are handled effectively, ensuring robust

data analysis. In this query, the results are sorted by target achievement, placing high-

performing employees at the top.

WITH performance_metrics AS (
 SELECT
 emp_id,
 name,
 ROUND(
 sales::numeric / NULLIF(target, 0) * 100,
 2
) AS target_achievement,
 ROUND(
 projects_completed::numeric / NULLIF(training_hours, 0) * 100,
 2
) AS productivity_ratio,
 CASE
 WHEN sales = 0 THEN NULL
 WHEN target = 0 THEN NULL
 ELSE ROUND((sales - target)::numeric / target * 100, 2)
 END AS performance_variance
 FROM employee_metrics
)
SELECT
 pm.*,
 CASE
 WHEN target_achievement IS NULL THEN 'Invalid Target'
 WHEN target_achievement >= 100 THEN 'Exceeded'
 WHEN target_achievement >= 80 THEN 'On Track'
 ELSE 'Below Target'

Chapter 8 Conditional Logic in Data Plotting

219

 END AS performance_status,
 CASE
 WHEN productivity_ratio IS NULL THEN 'No Training Data'
 WHEN productivity_ratio > 20 THEN 'High Efficiency'
 WHEN productivity_ratio > 10 THEN 'Moderate Efficiency'
 ELSE 'Needs Improvement'
 END AS efficiency_rating
FROM performance_metrics pm
ORDER BY target_achievement DESC NULLS LAST;

This query uses the NULLIF function to handle potential division errors and ensure

accurate calculations, which makes it a good example of how NULLIF plays an important

role. By applying NULLIF(target, 0), the query prevents division by zero when

computing target achievement. NULLIF(training_hours, 0) ensures productivity

calculations remain valid even without training hours. Additionally, NULLIF is combined

with CASE statements to create meaningful categorizations. This allows the query to

manage various zero and NULL scenarios in a single analysis.

In this query, ::numeric casting is used to ensure decimal division and precise

rounding, especially in cases where the original data type might be integers. For

example, without casting, dividing two integers could result in integer division, for

instance 1/2 = 0 instead of 0.5. If the columns involved are already of a NUMERIC or

DECIMAL type, the castings can be safely removed. However, if the schema uses INTEGER

or TEXT, the explicit cast guarantees consistent behavior during division and rounding

operations.

In this query, a WITH clause is used to create a CTE named performance_metrics.

This CTE calculates several performance-related metrics for employees based on the

employee_metrics table. After defining the CTE, the main query selects from it and

adds columns (performance_status and efficiency_rating) based on the calculated

metrics.

Note A s mentioned in earlier chapters, a WITH clause, also known as a CTE
(common table expression), allows you to define a temporary result set that you
can reference within a SELECT, INSERT, UPDATE, or DELETE statement. It is often
used to simplify complex queries by breaking them into smaller, more manageable
parts. The basic syntax of the WITH clause is as follows:

Chapter 8 Conditional Logic in Data Plotting

220

WITH cte_name AS (
 -- Subquery that defines the CTE
 SELECT ...
 FROM ...
 WHERE ...
)
-- Main query that references the CTE
SELECT ...
FROM cte_name
WHERE ...

The transformation of raw metrics into actionable insights is achieved by safely

calculating target achievement percentages. This is done by computing productivity

ratios without errors, determining performance variance, and categorizing both

performance and efficiency levels. Moreover, the query accounts for edge cases where

targets or training hours are zero, ensuring the analysis remains robust. This example

highlights how NULLIF plays a crucial role in data analysis, particularly when working

with real-world datasets that often include missing values or zero entries. See Table 8-7.

Chapter 8 Conditional Logic in Data Plotting

221

Ta
bl

e
8-

7.
 T

he
 R

es
u

lt
 o

f S
af

el
y

C
al

cu
la

ti
n

g
Ta

rg
et

 A
ch

ie
ve

m
en

t P
er

ce
n

ta
ge

s

em
p_

id
na

m
e

ta
rg

et
_a

ch
ie

ve
m

en
t

pr
od

uc
tiv

ity
_r

at
io

pe
rf

or
m

an
ce

_v
ar

ia
nc

e
pe

rf
or

m
an

ce
_s

ta
tu

s
ef

fic
ie

nc
y_

ra
tin

g

10
6

Fr
an

k
10

6.
25

70
6.

25
Ex

ce
ed

ed
Hi

gh
 E

ffi
ci

en
cy

10
3

Ch
ar

lie
12

5
NU
LL

25
Ex

ce
ed

ed
No

 T
ra

in
in

g
Da

ta

10
9

Iv
y

13
0

0
30

Ex
ce

ed
ed

Ne
ed

s
Im

pr
ov

em
en

t

10
1

Al
ic

e
11

1.
11

25
11

.1
1

Ex
ce

ed
ed

Hi
gh

 E
ffi

ci
en

cy

10
4

Di
an

a
11

2.
5

0
12

.5
Ex

ce
ed

ed
Ne

ed
s

Im
pr

ov
em

en
t

11
0

Ja
ck

88
.8

9
NU
LL

-1
1.

11
On

 T
ra

ck
No

 T
ra

in
in

g
Da

ta

10
7

Gr
ac

e
83

.3
3

NU
LL

-1
6.

67
On

 T
ra

ck
No

 T
ra

in
in

g
Da

ta

10
5

Ev
e

0
13

.3
3

-1
00

Be
lo

w
 T

ar
ge

t
M

od
er

at
e

Ef
fic

ie
nc

y

10
2

Bo
b

NU
LL

20
NU
LL

In
va

lid
 T

ar
ge

t
M

od
er

at
e

Ef
fic

ie
nc

y

10
8

He
nr

y
NU
LL

15
NU
LL

In
va

lid
 T

ar
ge

t
M

od
er

at
e

Ef
fic

ie
nc

y

Chapter 8 Conditional Logic in Data Plotting

222

Now, since NULL handling is included, this dataset is valuable for in-depth

performance assessments and decision-making. Table 8-7 shows how the performance

evaluation is extended by adding calculated metrics such as targets achieved,

productivity ratios, performance variances, performance status, and efficiency ratings.

Target achievement is measured as a percentage, ensuring that employees exceeding

their goals are recognized. The productivity ratio assesses efficiency based on training

hours, while performance variance captures deviations from expected performance.

Employees are categorized into different performance statuses, such as Exceeded or On

Track, with efficiency ratings indicating their effectiveness.

�COALESCE
COALESCE in PostgreSQL is a function that returns the first non-NULL value from a list

of expressions. Therefore, it is an essential component for handling NULL values and

providing default values. In the case of a table that contains potentially missing data

(NULLS) in columns, COALESCE allows you to substitute these NULLs with meaningful

default values. The basic syntax of COALESCE in PostgreSQL is as follows:

COALESCE(value1, value2, ..., value_n)

COALESCE returns the first non-NULL value from the provided arguments list. If all

values are NULL, it returns NULL. It is commonly used to handle NULL values in queries by

providing a default or fallback value.

Table 8-8 shows a membership data table that must be filled in with missing

expiration dates by assuming a default expiration period.

Chapter 8 Conditional Logic in Data Plotting

223

Table 8-8.  The Memberships Data Table

member_id member_name membership_type expiration_date

1 John Doe Gold 2025-06-15

2 Jane Smith Silver NULL

3 Mike Johnson Gold 2025-08-10

4 Sarah Williams Bronze NULL

5 David Brown Gold 2025-07-01

6 Emily Davis Silver NULL

7 James Wilson Bronze 2025-05-20

8 Laura Martinez Gold NULL

9 Robert Taylor Silver 2025-09-25

10 Sophia Anderson Bronze NULL

The following query aims to use COALESCE to fill in missing expiration dates by

assuming the default expiration period for missing values is: Gold: 2025-12-31, Silver:

2025-11-30, and Bronze: 2025-10-31.

SELECT
 member_id,
 member_name,
 membership_type,
 COALESCE(expiration_date,
 CASE
 WHEN membership_type = 'Gold' THEN DATE '2025-12-31'
 WHEN membership_type = 'Silver' THEN DATE '2025-11-30'
 WHEN membership_type = 'Bronze' THEN DATE '2025-10-31'
 END
) AS adjusted_expiration_date
FROM memberships;

Chapter 8 Conditional Logic in Data Plotting

224

In this case, these values were assumed, but in real-world scenarios, best strategies

for missing value treatment have been mostly followed using this process:

	 1.	 Analyze patterns in missing data.

	 2.	 Considering the business context, document assumptions and

methods.

	 3.	 Validate imputed values against known patterns and statistical

methods with domain expertise to ensure that the imputed values

make business sense and maintain data integrity.

By using COALESCE with a CASE statement, you can ensure that members with missing

expiration dates receive a default date based on their membership type. This helps

maintain data consistency and avoids NULL values in reports. This query ensures that

members with missing expiration dates will be provided a default date. This is based on

their membership type. As shown in Table 8-9, this helps maintain data consistency and

avoids NULL values in reports.

Table 8-9.  Dates of Expiration That Were Missing Have Been Filled In

member_id member_name membership_type adjusted_expiration_date

1 John Doe Gold 2025-06-15

2 Jane Smith Silver 2025-11-30

3 Mike Johnson Gold 2025-08-10

4 Sarah Williams Bronze 2025-10-31

5 David Brown Gold 2025-07-01

6 Emily Davis Silver 2025-11-30

7 James Wilson Bronze 2025-05-20

8 Laura Martinez Gold 2025-12-31

9 Robert Taylor Silver 2025-09-25

10 Sophia Anderson Bronze 2025-10-31

Chapter 8 Conditional Logic in Data Plotting

225

�The First Story: The Hospital’s Analytical Story
Sofia, a data analyst at a large metropolitan hospital, has been tasked with preparing

visualizations for a key meeting. The raw hospital data is messy, with missing values,

outliers, and complex relationships between variables. As illustrated in Table 8-10, a

hospital_admissions table has 20 rows and several NULL values. Despite this, Sofia

continues to make clean, insightful plots with SQL and her analytical mind.

Table 8-10.  The hospital_admissions Table

patient_id Age diagnosis_code admission_date discharge_date

1 12 150 2024-03-01 2024-03-03

2 45 120 2024-03-02 2024-03-05

3 67 180 2024-03-03 2024-03-10

4 8 90 2024-03-04 2024-03-06

5 32 110 2024-03-05 2024-03-08

6 55 130 2024-03-06 2024-03-12

7 70 140 2024-03-07 NULL

8 25 160 2024-03-08 2024-03-11

9 40 170 2024-03-09 2024-03-16

10 60 190 2024-03-10 2024-03-20

11 15 NULL 2024-03-11 2024-03-13

12 50 200 2024-03-12 NULL

13 28 105 2024-03-13 2024-03-15

14 72 NULL 2024-03-14 2024-03-21

15 10 115 2024-03-15 NULL

16 35 125 2024-03-16 2024-03-18

17 65 135 2024-03-17 2024-03-24

18 22 145 2024-03-18 2024-03-20

19 48 155 2024-03-19 NULL

20 58 165 2024-03-20 2024-03-27

Chapter 8 Conditional Logic in Data Plotting

226

She encounters six major challenges during the data-preparation process:

•	 How can she categorize hospital patients into age groups such as

Child, Adult, and Senior, to make visualizations of admissions by age

group easier to interpret?

•	 How can she dynamically filter the hospital data to show only

patients admitted for cardiac-related issues—for instance, diagnosis

codes between 100 and 199 during the year 2024?

•	 What is the average length of stay for patients grouped by diagnosis_
code ranges (100–125, 126–150, 151–175, and 176–199) for cardiac-

related issues?

•	 How can she preprocess hospital data to create a stay_category

column, using conditional logic to classify patient stays as Short Stay,

Moderate Stay, or Long Stay, based on the number of days stayed?

•	 How can she calculate the total number of patients and the average

length of stay for each age group (Child, Adult, Senior) to identify

trends and resource needs for different demographics?

•	 How can she clean the hospital data for visualization by handling

missing discharge dates (filling them with admission_date + 2 days)

and excluding outliers where the length of the stay exceeds 365 days?

As part of the first challenge, the aim is to categorize hospital patients by age,

including their age data values in a hospital_admissions data table. Sofia needs to

categorize patients into age groups (Child, Adult, Senior) to better visualize admissions

by age category.

SELECT
 patient_id,
 age,
 CASE
 WHEN age < 18 THEN 'Child'
 WHEN age BETWEEN 18 AND 64 THEN 'Adult'
 WHEN age >= 65 THEN 'Senior'
 ELSE 'Unknown'
 END AS age_group

Chapter 8 Conditional Logic in Data Plotting

227

FROM hospital_admissions
ORDER BY age_group;

This query creates an age_group column using conditional logic. Categorizing data

like this improves clarity in visualizations by grouping similar data points together. In

this query, the CASE statement evaluates the age column and assigns a category based on

the value. It categorizes individuals as Child if the age is less than 18, Adult if their age

is between 18 and 64, and Senior if their age is 65 or older. For any unexpected values,

such as NULL, the Unknown category is assigned.

In this query, the CASE statement classifies patients into age groups based on their

age. The BETWEEN operator is used to define the Adult category. It's important to note

that BETWEEN is inclusive, meaning that the boundary values, 18 and 64, are included. So,

a patient who is exactly 18 or exactly 64 years old will fall into the Adult category. This

ensures a clear, non-overlapping classification across all age ranges.

As shown in Table 8-11, the results are sorted by the age_group column using the

ORDER BY clause, ensuring easier readability.

Table 8-11.  Data Categorization by age_group

patient_id Age age_group

1 12 Child

4 8 Child

11 15 Child

15 10 Child

2 45 Adult

5 32 Adult

6 55 Adult

8 25 Adult

9 40 Adult

10 60 Adult

13 28 Adult

(continued)

Chapter 8 Conditional Logic in Data Plotting

228

patient_id Age age_group

16 35 Adult

18 22 Adult

19 48 Adult

20 58 Adult

3 67 Senior

7 70 Senior

14 72 Senior

17 65 Senior

Table 8-11.  (continued)

In the next challenge, decision makers want a dynamic view of admitted patients

according to their diagnosis code. Sofia needs to filter data so that only cardiac-related

patients with diagnosis_codes of 100 to 199 are displayed.

SELECT
 patient_id,
 diagnosis_code,
 admission_date,
 discharge_date
FROM hospital_admissions
WHERE diagnosis_code BETWEEN 100 AND 199
 AND admission_date >= '2024-01-01'
 AND admission_date <= '2024-12-31';

In this query, the WHERE clause allows dynamic filtering. Here, data is narrowed to

show only cardiac-related admissions in a specific year, reducing clutter and focusing

the plot on the requested subset of data. The WHERE clause filters rows by selecting only

those where the diagnosis_code is between 100 and 199, representing cardiac-related

issues, and the admission_date falls within the year 2024. As shown in Table 8-12, the

dynamic filtering ensures that only relevant data is included for analysis.

Chapter 8 Conditional Logic in Data Plotting

229

Table 8-12.  Dynamic Filtering (Cardiac-Related Issues)

patient_id diagnosis_code admission_date discharge_date

1 150 2024-03-01 2024-03-03

2 120 2024-03-02 2024-03-05

3 180 2024-03-03 2024-03-10

5 110 2024-03-05 2024-03-08

6 130 2024-03-06 2024-03-12

7 140 2024-03-07 NULL

8 160 2024-03-08 2024-03-11

9 170 2024-03-09 2024-03-16

10 190 2024-03-10 2024-03-20

13 105 2024-03-13 2024-03-15

15 115 2024-03-15 NULL

16 125 2024-03-16 2024-03-18

17 135 2024-03-17 2024-03-24

18 145 2024-03-18 2024-03-20

19 155 2024-03-19 NULL

20 165 2024-03-20 2024-03-27

In healthcare and hospital records, a diagnosis code is a standardized code used to

represent a specific medical condition, diagnosis, or reason for a patient’s admission

to the hospital. These codes are typically part of a coding system like the International

Classification of Diseases. This system is widely used in healthcare for statistical, billing,

and research purposes. For example, diagnosis codes in the range 100 to 199 might

correspond to cardiac-related conditions like heart disease, arrhythmia, or hypertension.

The following query calculates the average length of stay for cardiac-related issues

grouped by diagnosis_code ranges (100–125, 126–150, 151–175, and 176–199).

Chapter 8 Conditional Logic in Data Plotting

230

SELECT
 CASE
 WHEN diagnosis_code BETWEEN 100 AND 125 THEN '100-125'
 WHEN diagnosis_code BETWEEN 126 AND 150 THEN '126-150'
 WHEN diagnosis_code BETWEEN 151 AND 175 THEN '151-175'
 WHEN diagnosis_code BETWEEN 176 AND 199 THEN '176-199'
 ELSE 'Unknown'
 END AS diagnosis_code_range,
 COUNT(patient_id) AS patient_count,
 �AVG(COALESCE(discharge_date, admission_date + INTERVAL '2 days') -

admission_date) AS avg_length_of_stay
FROM hospital_admissions
WHERE diagnosis_code BETWEEN 100 AND 199
 AND admission_date >= '2024-01-01'
 AND admission_date <= '2024-12-31'
GROUP BY diagnosis_code_range
ORDER BY diagnosis_code_range;

The query uses a CASE statement to group the diagnosis_code into defined ranges.

The COALESCE function replaces NULL discharge_date values with admission_date plus

two days to calculate the length of stay for all patients. The AVG function calculates the

average length of stay for each diagnosis_code range. The COUNT function determines

the number of patients in each range, providing better insights into patient distribution.

The WHERE clause filters the data to include only cardiac-related admissions in 2024. The

query provides valuable insights into average lengths of stay across diagnosis_code

ranges, assisting decision-makers in optimizing resources and understanding trends.

Next, to create a scatterplot of patient ages against length of stay, Sofia wants to

assign colors based on whether the stay was short (< 3 days), moderate (3-7 days), or

long (> 7 days).

SELECT
 patient_id,
 age,
 (discharge_date - admission_date) AS length_of_stay,
 CASE
 WHEN (discharge_date - admission_date) < 3 THEN 'Short Stay'

Chapter 8 Conditional Logic in Data Plotting

231

 �WHEN (discharge_date - admission_date) BETWEEN 3 AND 7 THEN
'Moderate Stay'

 WHEN (discharge_date - admission_date) > 7 THEN 'Long Stay'
 ELSE 'Unknown'
 END AS stay_category
FROM hospital_admissions;

Conditional logic in CASE creates a stay_category column, which can be used to

assign colors to plot points in visualization software (for instance, Short Stay = Blue,

Moderate Stay = Green, Long Stay = Red).

In this query, the length_of_stay calculation determines the difference between

the discharge_date and admission_date. A CASE statement then categorizes the length

of stay as a Short Stay for stays less than three days, a Moderate Stay for stays between

three and seven days, and a Long Stay for stays exceeding seven days. As shown in

Table 8-13, for missing or invalid values, the Unknown category is assigned.

Table 8-13.  Results of the Length of Stay Calculation

patient_id Age length_of_stay stay_category

1 12 2 Short Stay

2 45 3 Moderate Stay

3 67 7 Moderate Stay

4 8 2 Short Stay

5 32 3 Moderate Stay

6 55 6 Moderate Stay

7 70 NULL Unknown

8 25 3 Moderate Stay

9 40 7 Moderate Stay

10 60 10 Long Stay

11 15 2 Short Stay

12 50 NULL Unknown

(continued)

Chapter 8 Conditional Logic in Data Plotting

232

patient_id Age length_of_stay stay_category

13 28 2 Short Stay

14 72 7 Moderate Stay

15 10 NULL Unknown

16 35 2 Short Stay

17 65 7 Moderate Stay

18 22 2 Short Stay

19 48 NULL Unknown

20 58 7 Moderate Stay

Table 8-13.  (continued)

Next, the hospital administrators want to know the average length of stay for each

age group (Child, Adult, Senior) to plan resources more effectively.

SELECT
 CASE
 WHEN age < 18 THEN 'Child'
 WHEN age BETWEEN 18 AND 64 THEN 'Adult'
 WHEN age >= 65 THEN 'Senior'
 ELSE 'Unknown'
 END AS age_group,
 COUNT(patient_id) AS total_patients,
 AVG(discharge_date - admission_date) AS avg_length_of_stay
FROM hospital_admissions
GROUP BY age_group
ORDER BY age_group;

In this query, using conditional logic within the aggregation provides meaningful

insights, such as the average length of stay by age group. This type of summarization is

key for creating bar charts or line plots showing trends. Here, the CASE statement groups

patients into categories of Child, Adult, and Senior. Aggregation functions are then

applied, with COUNT(patient_id) used to count the number of patients in each group

Chapter 8 Conditional Logic in Data Plotting

233

and AVG(discharge_date - admission_date) calculating the average length of stay

for each group. As shown in Table 8-14, the results are grouped by age_group using the

GROUP BY clause.

Table 8-14.  The Average Length of Stay Categorized by Age Group

age_group total_patients avg_length_of_stay

Child 4 2

Adult 12 4.5

Senior 4 7

The next challenge is that some patients’ discharge dates are missing, while others

have extremely long lengths of stay (e.g., outliers caused by data entry errors). Sofia

needs to clean this data for plotting. Missing values should be filled with a default

value of admission_date plus two days, and any length of stay over 365 days should be

excluded.

SELECT
 patient_id,
 age,
 admission_date,
 �COALESCE(discharge_date, admission_date + INTERVAL '2 days') AS clean_

discharge_date,
 �GREATEST(0, EXTRACT(DAY FROM COALESCE(discharge_date, admission_date +

INTERVAL '2 days') - admission_date)) AS clean_length_of_stay
FROM hospital_admissions
WHERE EXTRACT(DAY FROM COALESCE(discharge_date, admission_date + INTERVAL
'2 days') - admission_date) <= 365;

This query uses COALESCE to handle missing values and ensures only clean, valid

data is used in visualizations, as shown in Table 8-15. Outliers are excluded by applying

a filter on length_of_stay. The COALESCE function replaces NULL discharge dates with

admission_date plus two days. The GREATEST function ensures that the length of stay

is at least 0 days. Additionally, the WHERE clause excludes rows where the length of stay

exceeds 365 days, filtering out outliers.

Chapter 8 Conditional Logic in Data Plotting

234

Table 8-15.  Cleaning the Data for Plotting and Handling Missing Values Filled

with a Default Value

patient_id Age admission_date clean_discharge_date clean_length_of_stay

1 12 2024-03-01 2024-03-03 2

2 45 2024-03-02 2024-03-05 3

3 67 2024-03-03 2024-03-10 7

4 8 2024-03-04 2024-03-06 2

5 32 2024-03-05 2024-03-08 3

6 55 2024-03-06 2024-03-12 6

7 70 2024-03-07 2024-03-09 2

8 25 2024-03-08 2024-03-11 3

9 40 2024-03-09 2024-03-16 7

10 60 2024-03-10 2024-03-20 10

11 15 2024-03-11 2024-03-13 2

12 50 2024-03-12 2024-03-14 2

13 28 2024-03-13 2024-03-15 2

14 72 2024-03-14 2024-03-21 7

15 10 2024-03-15 2024-03-17 2

16 35 2024-03-16 2024-03-18 2

17 65 2024-03-17 2024-03-24 7

18 22 2024-03-18 2024-03-20 2

19 48 2024-03-19 2024-03-21 2

20 58 2024-03-20 2024-03-27 7

�Summary
This chapter highlighted the power of SQL's conditional logic in enhancing data

analysis and visualization workflows. You explored techniques to categorize data, apply

dynamic filtering, and handle missing or outlier values for more relevant visualizations.

Chapter 8 Conditional Logic in Data Plotting

235

Conditional logic enables context-aware plotting by dynamically including or excluding

data points based on specific thresholds or trends. CASE statements allow conditional

labels for plots, such as grouping age ranges or income levels. SQL also simplifies the

calculation of derived metrics, making it easier to identify high- or low-performance

trends. These techniques collectively improve the accuracy, clarity, and insight of data

visualizations.

�Key Points

•	 Conditional logic in SQL enhances data analysis by allowing dynamic

and context-aware plotting, enabling more meaningful visualizations.

•	 Using CASE statements, data can be categorized or conditionally

labeled. For example, grouping age ranges or income levels for a

clearer representation.

•	 Dynamic filtering ensures plots focus on relevant data points by

including or excluding data based on thresholds or trends.

•	 SQL's flexibility handles missing and outlier data, improving

visualization accuracy and insights.

•	 By using SQL conditional logic, workflows become more adaptive,

ensuring that visualizations reflect valuable and actionable insights.

�Key Takeaways

•	 Dynamic data categorization: Use CASE statements to group or label

data dynamically for clearer and more meaningful visualizations.

•	 Context-aware filtering: Apply conditional filtering to include or

exclude data points based on specific thresholds or trends, ensuring

that plots focus on relevant insights.

•	 Derived metrics for insights: Use conditional expressions to

calculate relevant metrics directly within queries, enabling the

identification of patterns like high- or low-performance thresholds.

Chapter 8 Conditional Logic in Data Plotting

236

•	 Improved visualization accuracy: Handle missing or outlier data

effectively through SQL conditional logic, ensuring cleaner and more

reliable visualizations.

•	 Dynamic plot preparation: Enhance plotting workflows with

context-aware SQL techniques, allowing adaptable and insightful

data visualizations.

�Looking Ahead
The next chapter, "Optimizing Your Script with Indexes and Views," explores

techniques for improving the performance and efficiency of SQL queries. This includes

understanding how indexes can speed up data retrieval by optimizing how the database

accesses and organizes data, and the role that views play in simplifying complex queries

by creating reusable, virtual tables that streamline workflows. By combining indexes

and views, you can enhance query execution time while maintaining clarity and

maintainability.

�Test Your Skills
John is a data analyst at an international university tasked with analyzing students'

overall performance across various courses. The university administration wants

answers to questions, such as:

	 1.	 How do students’ grades compare across different study

programs, categorized into performance levels (e.g., High: 85+,

Medium: 70–84, Low: <70)?

	 2.	 What percentage of students in each study program excel (grade ≥

90) or struggle (grade ≤ 60) in their courses?

	 3.	 Which age groups tend to perform better on different courses?

	 4.	 How does student performance in core courses (e.g., Data

Structures for CS, Economics for Business) vary across semesters?

	 5.	 What proportion of students improved their grades in the same

course across semesters?

Chapter 8 Conditional Logic in Data Plotting

237

John realizes that static reports are insufficient. He needs dynamic, context-sensitive

data visualizations that can adapt based on specific analysis criteria. John decides to use

SQL for data preparation before the visualizations process. Use the data in Tables 8-16,

8-17, and 8-18 to answer these questions.

Table 8-16.  The Students Data Table

student_id student_name Age study_program

1 Alice Johnson 18 Computer Science

2 Bob Smith 22 Business Administration

3 Charlie Davis 19 Engineering

4 Diana King 21 Computer Science

5 Ethan White 20 Engineering

6 Fiona Brown 23 Business Administration

7 George Hall 18 Engineering

8 Hannah Scott 22 Computer Science

9 Ian Mitchell 19 Business Administration

10 Julia Lopez 21 Engineering

11 Kevin Turner 20 Computer Science

12 Laura Hughes 23 Business Administration

13 Mason Cox 19 Engineering

14 Nina Patel 22 Business Administration

15 Oliver Stone 18 Computer Science

Chapter 8 Conditional Logic in Data Plotting

238

Table 8-17.  The Courses Data Table

course_id course_name study_program

1 Data Structures Computer Science

2 Marketing 101 Business Administration

3 Physics Engineering

4 Databases Computer Science

5 Economics Business Administration

6 Thermodynamics Engineering

7 Machine Learning Computer Science

Table 8-18.  The Grades Table

grade_id student_id course_id grade semester

1 14 1 77 Spring 2024

2 4 6 83 Fall 2023

3 12 4 93 Spring 2024

4 12 6 55 Fall 2023

5 2 2 96 Fall 2023

6 4 6 88 Spring 2024

7 7 3 66 Spring 2024

8 6 1 89 Spring 2024

9 8 2 81 Fall 2023

10 6 2 62 Spring 2024

11 1 6 92 Spring 2024

12 11 7 52 Spring 2024

13 15 4 74 Spring 2024

14 7 4 89 Fall 2023

15 7 7 92 Spring 2024

Chapter 8 Conditional Logic in Data Plotting

239
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_9

CHAPTER 9

Optimizing Your Script
with Indexes and Views
When working with large data volumes, optimizing SQL queries can significantly

improve performance. This type of optimization can be achieved through indexes and

views, which are both powerful tools. Indexes speed up data retrieval by allowing the

database engine to locate rows more efficiently, reducing the need to scan entire tables.

Views, on the other hand, simplify complex queries by storing reusable SQL logic,

enhancing readability and maintainability. Additionally, materialized views reduce the

need to recalculate data by storing precomputed results. Together, indexes and views

help minimize query execution time, lower system resource consumption, and enhance

the overall responsiveness of applications, making them vital for maintaining efficient

and scalable database systems. This chapter examines how to utilize these capabilities in

order to optimize the data analysis process.

�Introduction
Indexes are database structures that improve data retrieval speed. They work like a book

index, allowing the database to quickly locate rows without scanning the entire table.

Indexes are a critical tool for optimizing SQL queries, and they offer several key benefits

that make them essential for data analysts and database administrators. Faster query

execution is one of the primary reasons for using indexes. Indexes significantly speed up

operations like SELECT, WHERE, JOIN, and ORDER BY by allowing the database to quickly

locate the relevant rows without scanning the entire table. This is particularly helpful

for complex queries or those involving large datasets, as it reduces the time needed to

retrieve results. Another advantage is efficient data retrieval. Instead of performing a

full table scan, which can be resource-intensive and slow, the database can utilize the

index to directly access the required rows, making queries more efficient. This efficiency

https://doi.org/10.1007/979-8-8688-1560-7_9#DOI

240

is especially valuable when working with large tables containing millions of rows. The

performance difference between using an index and scanning the entire table can

be substantial. By using indexes, data analysts can ensure queries run smoothly and

quickly, even when dealing with massive amounts of data.

Views are virtual tables that display SQL query results. While it does not store data

itself, it simplifies complex queries and abstracts the underlying data structures. Views

are an essential tool in SQL that simplify and optimize data analysis workflows. One of

the primary advantages of views is their ability to simplify complex queries. By breaking

intricate queries into reusable components, views make it easier to write, read, and

maintain SQL code. This saves time and reduces errors. Additionally, views provide data

abstraction, allowing analysts to hide the complexity of the underlying database schema

from end users. Through this abstraction, users can interact with the data without

knowing the database structure. Another key benefit is security. Views can restrict

access to specific columns or rows, ensuring sensitive information is only accessible

to authorized users. Finally, views promote consistency by providing a standardized

interface for frequently used queries. This consistency ensures that all users work with

the same data definitions, reducing discrepancies and improving analysis reliability.

�Understanding Indexes
An index in SQL is a data structure that improves a table’s retrieval speed. It works like

an index in a book—it helps you quickly find specific information without scanning

the entire content. SQL indexes offer performance benefits, including faster search

queries, improved sorting and filtering, and efficient joins between tables. However,

they also consume additional disk space and can slow down INSERT, UPDATE, and DELETE

operations due to the need to update the index.

In data analysis, while indexes improve query performance, they also have trade-offs

that can impact data storage and write operations. They can affect disk space and slow

down INSERT, UPDATE, and DELETE operations, which are used relatively less often in the

data analysis process than SELECT is.

Indexes consume additional disk space as they store separate data structures

referencing table rows. Especially for large datasets and multiple indexes, this can

significantly increase storage costs and slow down database backups. Furthermore,

indexes impact INSERT, UPDATE, and DELETE operations. Each time a row is modified,

all associated indexes must also be updated, adding overhead and slowing down write

Chapter 9 Optimizing Your Script with Indexes and Views

241

operations. For example, inserting a large number of rows requires updating all indexes,

significantly increasing insertion time. Therefore, a balance must be struck. In data

analysis, where reads are frequent but writes are less so, indexes are highly beneficial.

However, for tables with frequent writes, excessive indexing can degrade performance.

Optimizations like partial indexes, which index only specific data subsets, as well as

temporarily disabling indexes during bulk imports can mitigate these performance

drawbacks.

Note T here are some database systems that handle indexing in a different way.
For example, clustered indexes in SQL Server and index-organized tables in Oracle
store the actual table data within the index itself. In these cases, the distinction
between index and table data blurs, and storage or performance implications may
differ slightly.

�Basic Syntax for Creating an Index
The basic syntax for creating an index is provided here:

CREATE INDEX index_name ON table_name (column_name);

Here, CREATE INDEX is the command to create an index. Index_name is the name of

the index. It is best to use a descriptive name. ON table_name specifies the table where

the index is created, and column_name is the column or columns the index is based on.

�Types of Indexes in PostgreSQL
Index types in PostgreSQL are divided into seven types—B-tree index, unique index,

hash index, generalized inverted index, generalized search tree (GiST) index, partial

index, and composite index. Each is discussed in more detail in this section.

�B-tree Index

The B-tree index is the most common and default index type in PostgreSQL. It is

particularly effective for equality comparisons using the = operator, as well as range

queries involving operators like <, >, <=, and >=. Additionally, B-tree indexes significantly

Chapter 9 Optimizing Your Script with Indexes and Views

242

speed up sorting operations performed with the ORDER BY clause. By organizing data in

a balanced tree structure, they allow quick traversal from root to leaf nodes, ensuring

consistent performance even as the dataset grows. This makes B-tree indexes ideal for

large tables that require frequent searches and ordered data retrieval.

CREATE INDEX idx_salary ON employees (salary);

�Unique Index

A unique index ensures that all values in a specific column or combination of columns

are distinct, preventing duplicate entries in the table. PostgreSQL automatically creates

unique indexes when defining columns with PRIMARY KEY or UNIQUE constraints. For

example, a primary key column uses an index to maintain data integrity by ensuring

each value is unique and non-NULL. Similarly, a unique constraint enforces distinct

values while allowing NULLs. Unique indexes are essential for maintaining data accuracy,

supporting efficient lookups, and optimizing query performance. Particularly when

validating user input or maintaining referential integrity.

CREATE UNIQUE INDEX idx_unique_name ON employees (name);

�Hash Index

A hash index in PostgreSQL is optimized for simple equality comparisons using the =

operator. Unlike B-tree indexes, which support both equality and range queries, hash

indexes are specifically designed for exact matches, making them faster for such queries.

This efficiency stems from hashing algorithms that map data values to fixed locations,

enabling quick lookups. However, hash indexes are not suitable for range queries or

ordering because they do not maintain data order. While they offer faster performance

for exact matches, they require more careful use since they do not support advanced

query types like <, >, or ORDER BY.

CREATE INDEX idx_hash_department ON employees USING HASH (department);

Chapter 9 Optimizing Your Script with Indexes and Views

243

�Generalized Inverted Index (GIN)

A generalized inverted index (GIN) is designed for indexing complex data structures

such as arrays, JSON fields, and full-text search in PostgreSQL. Unlike traditional B-tree

indexes, GIN efficiently handles multiple values stored within a single column by

mapping each distinct element to the corresponding row entries.

CREATE INDEX idx_gin_name ON employees USING GIN (to_
tsvector('english', name));

This index enables fast lookup of words within the name column, significantly

improving search performance in large datasets.

�Generalized Search Tree (GiST) Index

A generalized search tree (GiST) index is a flexible, balanced-tree indexing mechanism

used for complex data types such as geometric shapes, network addresses, and full-

text search. Unlike B-trees, GiST indexes allow custom search strategies, making them

essential for spatial queries and full-text indexing.

CREATE INDEX idx_gist_salary ON employees USING GiST (salary);

This allows PostgreSQL to quickly locate employees within specific salary bands,

improving performance for range-based queries. Additionally, GiST indexes support

nearest-neighbor searches, making them valuable in geospatial applications where

distance-based queries are common.

�Partial Index

A partial index is an optimized index that stores only a subset of table rows, reducing

storage overhead and improving query performance. PostgreSQL avoids maintaining

unnecessary index entries by indexing only records that meet a predefined condition,

leading to faster lookups for queries that frequently filter on the indexed condition.

CREATE INDEX idx_high_salary ON employees (salary) WHERE salary > 50000;

This index is useful for queries frequently retrieving employees earning more than

$50,000, making them significantly faster than scanning the entire table. Partial indexes

are particularly effective in large datasets where a full index would be wasteful and

unnecessary.

Chapter 9 Optimizing Your Script with Indexes and Views

244

�Composite Index

A composite index indexes multiple columns together, making it ideal for queries filtering

or sorting by multiple attributes. Instead of creating separate indexes for each column,

PostgreSQL uses a composite index to speed up queries that involve a combination of

indexed columns in their filtering conditions.

CREATE INDEX idx_name_department ON employees (name, department);

This index improves performance when searching for employees by name within

specific departments, as it allows PostgreSQL to efficiently navigate the data based on

both columns simultaneously. Composite indexes are especially useful in multi-column

filtering, sorting, and JOIN operations.

Note  For data analysis tasks, the most applicable PostgreSQL indexes are B-tree,
GIN, and GiST due to their efficiency in handling large datasets, complex queries,
and specific data types.

	 1.	 B-tree index: Ideal for equality comparisons (=), range queries
(<, >, <=, >=), and sorting (ORDER BY). Its balanced structure
ensures consistent performance, making it essential for filtering
and aggregating large datasets.

	 2.	 GIN index: Efficient for indexing composite data types such as
arrays, JSON, and full-text search. It's particularly useful for
advanced data analysis tasks involving semi-structured data
and quick lookups within nested structures.

	 3.	 GiST index: Best for multidimensional data and spatial analysis.
It supports geometric data types, text search, and similarity
searches, making it valuable for geographic information
systems (GIS) and similarity-based data analysis.

	 4.	 BRIN index: Optimized for very large datasets, especially
those with natural ordering, such as time-series data. By
storing minimal information for each data block, BRIN reduces
storage space and accelerates queries that scan large,
sequential ranges.

Chapter 9 Optimizing Your Script with Indexes and Views

245

Other index types, like Hash, are more specialized and less commonly used in
general data-analysis scenarios. Unique indexes are essential for data integrity but
do not directly impact analytical performance.

�Dropping an Index
If you no longer need an index, you can remove it using the DROP INDEX command:

DROP INDEX idx_department;

�Checking Index Usage with EXPLAIN
When you query PostgreSQL, you can use the EXPLAIN keyword to see if an index is

being used:

EXPLAIN SELECT * FROM employees WHERE department = 'IT';

Look for the Index Scan in the output, which indicates that the index is being used.

If you see Seq Scan, PostgreSQL scans the entire table (which is slower).

�When to Use and When to Avoid Indexes
Database indexes are powerful tools for optimizing query performance, but their use

should be strategic. Indexes are highly beneficial when dealing with large, frequently

querying tables, especially when searching, filtering, sorting, or joining on specific

columns. Indexing can, however, be detrimental if it is excessive. Because indexes

consume additional disk space and slow down INSERT, UPDATE, and DELETE operations,

it’s crucial to avoid over-indexing. A balanced approach is key, carefully selecting

which columns to index based on query patterns and data modification frequency. An

overview explanation of when to use and when to avoid indexes is provided in Table 9-1.

Chapter 9 Optimizing Your Script with Indexes and Views

246

Table 9-1.  When to Use and When to Avoid Indexes

Use Indexes When Avoid Excessive Indexing Because

The table is large and frequently queried Indexes consume disk space (excessive

indexing increases storage costs)

Specific columns are often searched, filtered, or sorted Indexes slow down INSERT, UPDATE, and

DELETE operations

Queries involve joins between large tables Maintaining multiple indexes adds

overhead during data modifications

Queries frequently use WHERE, ORDER BY, or GROUP
BY

Indexes need to be updated each time data

is modified, slowing down writes

Full-text search is performed on large text fields (It is

recommended to use GIN)

Too many indexes can confuse the query

planner, leading to suboptimal execution

The table has foreign keys or needs to enforce

uniqueness

Indexes may not provide benefits for small

tables or low-selectivity columns

Queries filter by JSON fields or array elements (It is

recommended to use GIN or GiST)

Indexes can degrade performance if

queries rarely use the indexed columns

Time-series or sequential data requires efficient range

queries (It is recommended to use BRIN)

Partial indexes or composite indexes might

be more efficient in some scenarios

�The Role of Indexes in Data Analysis Tasks
An index acts as a guide within a database for data retrieval, helping to speed up data

analysis. This allows the database to skip full table scans and quickly locate specific data

points. Especially with large datasets, exhaustive searches would be prohibitively slow.

By optimizing filtering and sorting operations, indexes enable analysts to rapidly narrow

down data based on specific criteria or arrange it meaningfully. This is essential for tasks

like identifying trends, outliers, or patterns in the data.

Indexes also boost data warehousing and analytical performance by facilitating

joins between multiple tables. The index facilitates faster joins for a holistic view of

data from disparate sources. As well as supporting range queries, they also accelerate

Chapter 9 Optimizing Your Script with Indexes and Views

247

the calculation of sums, averages, and counts, which are vital to summarizing and

understanding data distributions. Indexes enable data analysts to perform complex

investigations, extract valuable insights, and make data-driven decisions more quickly.

Although there is a tradeoff in terms of storage space and writing performance, the

benefits outweigh the disadvantages for workloads that involve a substantial amount of

reading and writing.

�Using EXPLAIN to Review Query Execution
EXPLAIN helps analyze how PostgreSQL plans to execute a query, which is essential when

optimizing analytical queries on large datasets.

EXPLAIN query_statement;

Here, query_statement is the SQL query to analyze and provides insights into how

the database engine intends to execute the SQL statement. In a nutshell, PostgreSQL

analyzes and parses the SQL statement provided by EXPLAIN query_statement. Instead

of actually executing the query and returning the results, it generates an execution

plan. This plan outlines the steps to execute the query. As output, this plan shows the

estimated cost and sequence of operations.

Note I n relation to scan types, EXPLAIN can reveal whether the database
performs a sequential scan, reading every row of a table, or if it uses an index
for efficient retrieval via an index scan, index only scan using only index data, or
bitmap scan using bitmap indexes. When queries involve JOINs, EXPLAIN details
the JOIN method employed, such as NestedLoop, iterative matching, MERGE
JOIN, merging sorted rows, or Hash Join, hash table probing. Furthermore,
the output clearly displays the filtering conditions applied to the data, so you can
understand how the database narrows down the results.

Chapter 9 Optimizing Your Script with Indexes and Views

248

�Using EXPLAIN ANALYZE for Performance
Measurement
EXPLAIN ANALYZE executes the query and provides actual runtime statistics. It is best to

use this for testing performance improvements after adding indexes.

EXPLAIN ANALYZE query_statement;

Here, query_statement is the SQL query to analyze with real-time metrics. EXPLAIN
ANALYZE is a tool for database performance analysis in PostgreSQL. It goes beyond

the estimated costs provided by a simple EXPLAIN by actually executing the query and

collecting real-time metrics. Table 9-2 indicates the key differences of EXPLAIN and

EXPLAIN ANALYZE.

Table 9-2.  Key Differences Between EXPLAIN and EXPLAIN ANALYZE

Feature EXPLAIN EXPLAIN ANALYZE

Actual execution Generates an execution plan (no

execution)

Executes the query; gathers runtime

stats

Real-time

metrics

Provides estimated costs Provides actual execution times, row

counts

In addition to estimating costs and providing a plan structure, EXPLAIN ANALYZE

provides runtime metrics that enhance the analysis. In PostgreSQL, the planner’s cost

estimates are expressed as two numbers: a startup cost and a total cost. These are

unitless values based on estimated I/O, CPU usage, and row counts, and are used to

compare alternative execution plans rather than reflect actual time. EXPLAIN ANALYZE

reveals the actual execution time for each node, measured in milliseconds, which

directly highlights performance bottlenecks. The actual row counts allow for a precise

comparison of the planner’s estimates, revealing their accuracy. In nested loop joins,

loop counts specify the frequency of inner loop executions. Additionally, other runtime

statistics may also be included, depending on the specific query and PostgreSQL version.

This can provide an overview of the query’s real-world execution.

Chapter 9 Optimizing Your Script with Indexes and Views

249

�The First Story: Golf Performance Data Analysis
Martina is a data analyst at a golf club, responsible for evaluating player performance

and optimizing tournament operations. She manages a database that tracks players’

scores, course details, and tournament results. The data tables shown in Tables 9-3,

9-4, and 9-5 are growing as more tournaments take place, and she wants to ensure that

the queries run efficiently. With indexes and performance analysis tools like EXPLAIN
ANALYZE, Martina aims to speed up data retrieval and facilitate better decision-making.

Table 9-3.  The Players Table

player_id Name Age Nationality

1 Tiger Woods 48 USA

2 Rory McIlroy 34 Northern Ireland

3 Jon Rahm 29 Spain

4 Brooks Koepka 33 USA

5 Dustin Johnson 40 USA

6 Collin Morikawa 27 USA

7 Justin Thomas 31 USA

8 Phil Mickelson 53 USA

9 Jordan Spieth 31 USA

10 Viktor Hovland 26 Norway

Table 9-4.  The Tournaments Table

tournament_id Name Location Year

1 Masters Tournament Augusta National Golf Club 2023

2 US Open Pebble Beach 2023

3 The Open Championship St Andrews 2023

4 PGA Championship Oak Hill 2023

5 Ryder Cup Marco Simone 2023

Chapter 9 Optimizing Your Script with Indexes and Views

250

Table 9-5.  The Scores Table

score_id player_id tournament_id round_number Strokes

1 1 1 1 70

2 1 1 2 72

3 2 1 1 68

4 2 1 2 70

5 3 2 1 71

6 3 2 2 69

7 4 2 1 70

8 4 2 2 68

9 5 3 1 73

10 5 3 2 72

Martina creates indexes on columns frequently used for filtering and joining to

improve query performance.

CREATE INDEX idx_player_id ON scores(player_id);
CREATE INDEX idx_tournament_id ON scores(tournament_id);
CREATE INDEX idx_name ON players(name);

The columns Martina chose for indexing are frequently used for filtering, joining,

and sorting. These are the primary use cases where indexes improve data analysis

efficiency. For instance, an index on the scores(player_id) column can speed up

queries that filter or join by player ID, which is common when retrieving a specific

player’s scores. Since player_id is a foreign key in the Scores table, indexing it

improves join performance with the Players table. To filter scores by tournament,

the scores(tournament_id) column is essential for analyzing player performance at

a specific event. Indexing tournament_id speeds up queries that group, filter, or join

scores from the Tournaments table. For the players(name)column, an index on name

supports direct lookups of players by name, which is common when analyzing an

individual player’s performance. Although names are not unique, indexing this column

still enhances search efficiency.

Chapter 9 Optimizing Your Script with Indexes and Views

251

These indexes were selected to balance performance improvements for frequent

data analysis tasks while minimizing overhead associated with excessive indexing.

To get answers to the following questions, Martina intends to use this data and SQL

queries:

•	 Who scored below 70 strokes in any round of the Masters

Tournament?

•	 Calculate the average strokes for each player in the U.S. Open.

•	 Find the top three players with the lowest combined scores in the

Open Championship.

•	 Retrieve all scores of Tiger Woods for performance analysis.

Martina wrote the following query to find players who scored below 70 strokes in

any round of the Masters Tournament. Martina uses EXPLAIN to show whether indexes

are used for JOINs and filtering. An index scan should replace seq scan for better

performance. This query benefits from an index on player_id and tournament_id since

it filters by both.

EXPLAIN SELECT p.name, s.strokes
FROM scores s
JOIN players p ON s.player_id = p.player_id
JOIN tournaments t ON s.tournament_id = t.tournament_id
WHERE t.name = 'Masters Tournament' AND s.strokes < 70;

The query retrieves player names and strokes for scores under 70 in the Masters

Tournament. It joins three tables: Scores, Players, and Tournaments. The JOIN

condition links scores.player_id with players.player_id and scores.tournament_id

with tournaments.tournament_id. The WHERE clause filters the results to include only

scores less than 70 and tournaments named Masters Tournament.

Due to the EXPLAIN command, executing this query will show these results:

 QUERY PLAN

 Nested Loop (cost=13.92..47.53 rows=4 width=122)
 -> Hash Join (cost=13.78..46.54 rows=4 width=8)
 Hash Cond: (s.tournament_id = t.tournament_id)

Chapter 9 Optimizing Your Script with Indexes and Views

252

 -> Seq Scan on scores s (cost=0.00..31.25 rows=567 width=12)
 Filter: (strokes < 70)
 -> Hash (cost=13.75..13.75 rows=2 width=4)
 -> �Seq Scan on tournaments t (cost=0.00..13.75 rows=2

width=4)
 Filter: ((name)::text = 'Masters Tournament'::text)
 -> �Index Scan using players_pkey on players p (cost=0.15..0.25 rows=1

width=122)
 Index Cond: (player_id = s.player_id)
(10 rows)

Here, the EXPLAIN output shows how PostgreSQL executes the query. It starts with

a sequential scan on the scores table, filtering rows where strokes < 70, costing 31.25.

Then, a hash scan on the tournaments table filters for “Masters Tournament,” costing

13.75. A hash join connects scores and tournaments, costing 46.54. Finally, a nested loop

joins this result with the Players table using an index scan on the primary key, which

costs 0.25. Indexing on players.player_id improves performance, but sequential scans

on scores and tournaments suggest more optimization strategies.

In order to calculate the average strokes for each player in the U.S. Open, Martina

wrote the following query:

EXPLAIN ANALYZE SELECT p.name, AVG(s.strokes) AS avg_strokes
FROM scores s
JOIN players p ON s.player_id = p.player_id
JOIN tournaments t ON s.tournament_id = t.tournament_id
WHERE t.name = 'US Open'
GROUP BY p.name;

The query calculates the average strokes of players who participated in the U.S. Open

tournament. It joins the scores, players, and tournaments tables using player_id and

tournament_id. The WHERE clause filters scores by the U.S. Open tournament, and the

GROUP BY clause groups results by player names. The AVG() function computes the

average strokes for each player. This query is common in data analysis and business

intelligence to assess player performance in specific tournaments. Proper indexing

improves joining efficiency and reduces query execution time, especially when working

with large datasets containing multiple tournaments and players.

Chapter 9 Optimizing Your Script with Indexes and Views

253

 QUERY PLAN

 GroupAggregate (cost=47.62..47.84 rows=11 width=150) (actual
time=0.137..0.156 rows=2 loops=1)
 Group Key: p.name
 -> �Sort (cost=47.62..47.65 rows=11 width=122) (actual

time=0.124..0.138 rows=4 loops=1)
 Sort Key: p.name
 Sort Method: quicksort Memory: 25kB
 -> �Nested Loop (cost=13.92..47.43 rows=11 width=122) (actual

time=0.057..0.095 rows=4 loops=1)
 -> �Hash Join (cost=13.78..45.30 rows=11 width=8) (actual

time=0.041..0.061 rows=4 loops=1)
 Hash Cond: (s.tournament_id = t.tournament_id)
 -> �Seq Scan on scores s (cost=0.00..27.00 rows=1700

width=12) (actual time=0.004..0.013 rows=10
loops=1)

 -> �Hash (cost=13.75..13.75 rows=2 width=4) (actual
time=0.013..0.015 rows=1 loops=1)

 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> �Seq Scan on tournaments t (cost=0.00..13.75

rows=2 width=4) (actual time=0.004..0.007
rows=1 loops=1)

 Filter: ((name)::text = 'US Open'::text)
 Rows Removed by Filter: 4
 -> �Index Scan using players_pkey on players

p (cost=0.15..0.19 rows=1 width=122) (actual
time=0.004..0.004 rows=1 loops=4)

 Index Cond: (player_id = s.player_id)
 Planning Time: 0.179 ms
 Execution Time: 0.227 ms
(18 rows)

Chapter 9 Optimizing Your Script with Indexes and Views

254

The EXPLAIN ANALYZE output shows the query’s execution plan with actual execution

times. The process begins with a sequential scan on the Scores table, retrieving ten rows

in 0.013 ms. A sequential scan on the Tournaments table filters for “US Open,” retrieving

one row in 0.007 ms. A hash join connects scores and tournaments in 0.061 ms, followed

by an index scan using players_pkey for each matched row, which is efficient, cost: 0.19.

The results are sorted using quicksort, Memory: 25kB, and a GroupAggregate calculates

the average strokes. The total execution time is 0.227 ms, which is considered efficient

given the query’s simplicity, the small number of rows processed, and minimal I/O—

especially when compared to more complex queries or poorly optimized joins.

To find the top three players with the lowest combined scores in the Open

Championship, the following query calculates the total strokes of players who

participated in “The Open Championship” tournament. It joins the Scores, Players, and

Tournaments tables using player_id and tournament_id. The WHERE clause filters scores

for “The Open Championship,” and the GROUP BY clause groups results by player names.

The SUM() function calculates each player’s total strokes. The ORDER BY total_strokes
ASC arranges results in ascending order, and LIMIT 3 returns the three players with the

fewest total strokes.

EXPLAIN SELECT p.name, SUM(s.strokes) AS total_strokes
FROM scores s
JOIN players p ON s.player_id = p.player_id
JOIN tournaments t ON s.tournament_id = t.tournament_id
WHERE t.name = 'The Open Championship'
GROUP BY p.name
ORDER BY total_strokes ASC
LIMIT 3;

The EXPLAIN output reveals the query’s execution plan. The process starts with a

sequential scan on the Scores table, retrieving 1,700 rows, followed by a sequential scan

on the Tournaments table, filtering for “The Open Championship.” A hash join merges

these tables. Next, an index scan uses players_pkey to retrieve player names efficiently.

The results are sorted twice, first by player names using Sort, then by total strokes using

another Sort with cost=47.96. The Limit step returns the top three players. As shown

here, the query plan indicates efficient performance due to proper indexing and sorting

techniques:

Chapter 9 Optimizing Your Script with Indexes and Views

255

 QUERY PLAN

 Limit (cost=47.96..47.96 rows=3 width=126)
 -> Sort (cost=47.96..47.98 rows=11 width=126)
 Sort Key: (sum(s.strokes))
 -> GroupAggregate (cost=47.62..47.81 rows=11 width=126)
 Group Key: p.name
 -> Sort (cost=47.62..47.65 rows=11 width=122)
 Sort Key: p.name
 -> Nested Loop (cost=13.92..47.43 rows=11 width=122)
 -> �Hash Join (cost=13.78..45.30 rows=11

width=8)
 �Hash Cond: (s.tournament_id =

t.tournament_id)
 -> �Seq Scan on scores

s (cost=0.00..27.00 rows=1700
width=12)

 -> �Hash (cost=13.75..13.75 rows=2
width=4)

 -> �Seq Scan on tournaments
t (cost=0.00..13.75 rows=2
width=4)

 �Filter: ((name)::text = 'The
Open Championship'::text)

 -> �Index Scan using players_pkey on players
p (cost=0.15..0.19 rows=1 width=122)

 Index Cond: (player_id = s.player_id)
(16 rows)

To retrieve all scores of Tiger Woods for performance analysis, the following query

retrieves tournament names, round numbers, and strokes for Tiger Woods. It joins the

Scores, Players, and Tournaments tables using player_id and tournament_id. The

WHERE clause filters the Players table to include only rows where the name matches

Chapter 9 Optimizing Your Script with Indexes and Views

256

“Tiger Woods.” The query outputs relevant scores and round numbers from the Scores

table along with tournament names from the Tournaments table. This query is useful

for analyzing a player’s performance across different tournaments, helping coaches,

analysts, and fans evaluate consistency and identify trends in performance across

multiple rounds.

EXPLAIN ANALYZE SELECT t.name, s.round_number, s.strokes
FROM scores s
JOIN players p ON s.player_id = p.player_id
JOIN tournaments t ON s.tournament_id = t.tournament_id
WHERE p.name = 'Tiger Woods';

The EXPLAIN ANALYZE output shows the query’s execution steps. First, a sequential

scan of the Scores table retrieves 1,700 rows. A sequential scan of the Players table

finds the player “Tiger Woods” by filtering nine rows. A hash join merges both tables,

matching player_id values. Next, an index scan using tournaments_pkey retrieves

tournament names based on tournament_id, executed twice. The total query execution

took 0.107 ms, indicating fast performance due to indexing and the limited number of

matching rows.

 QUERY PLAN

 Nested Loop (cost=14.55..47.85 rows=10 width=126) (actual
time=0.041..0.082 rows=2 loops=1)
 -> �Hash Join (cost=14.40..45.92 rows=10 width=12) (actual

time=0.027..0.059 rows=2 loops=1)
 Hash Cond: (s.player_id = p.player_id)
 -> �Seq Scan on scores s (cost=0.00..27.00 rows=1700 width=16)

(actual time=0.005..0.014 rows=10 loops=1)
 -> �Hash (cost=14.38..14.38 rows=2 width=4) (actual

time=0.016..0.018 rows=1 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 9kB
 -> �Seq Scan on players p (cost=0.00..14.38 rows=2 width=4)

(actual time=0.004..0.007 rows=1 loops=1)
 Filter: ((name)::text = 'Tiger Woods'::text)
 Rows Removed by Filter: 9

Chapter 9 Optimizing Your Script with Indexes and Views

257

 -> �Index Scan using tournaments_pkey on tournaments t (cost=0.15..0.19
rows=1 width=122) (actual time=0.006..0.006 rows=1 loops=2)

 Index Cond: (tournament_id = s.tournament_id)
 Planning Time: 0.101 ms
 Execution Time: 0.107 ms
(13 rows)

Data analysis tasks like filtering by player names, joining large tables, and

aggregating scores are significantly faster with indexes. Using EXPLAIN and EXPLAIN
ANALYZE helps confirm that PostgreSQL utilizes indexes for better performance. This

optimization is crucial for business intelligence, enabling faster decision-making based

on player performance and tournament outcomes.

Martina wants to delete an index at this stage for a number of reasons. First, if the

index is no longer used by queries, it unnecessarily consumes storage and slows down

write operations like INSERT, UPDATE, and DELETE, in future queries. Second, an index

can become inefficient if data distribution changes over time, requiring re-creation.

Lastly, removing redundant indexes improves overall database performance, especially

when maintaining multiple indexes for overlapping purposes. To delete an index in

PostgreSQL, use the DROP INDEX statement. When Martina wants to delete the index

called players_pkey, she can do so as follows:

DROP INDEX players_pkey;

In this story, the emphasis was on how to optimize query execution, and how to

evaluate this optimization. As mentioned, indexes have a positive effect when dealing

with large data tables and massive amounts of data, but such tables do not easily fit

within the pages of this book! Therefore, the purpose of this story is limited to proving

insight into the process of optimizing using INDEX and evaluating its effectiveness using

EXPLAIN or EXPLAIN ANALYZE.

�Understanding SQL Views
In PostgreSQL, a view is essentially a virtual table derived from the result of a stored

query. It doesn’t store data itself; instead, it provides a customized, simplified view of the

underlying data from one or more tables.

Chapter 9 Optimizing Your Script with Indexes and Views

258

SQL views in PostgreSQL offer a powerful way to streamline database interactions.

The concept of a view can be described as a virtual table created as a result of a stored

query. A key advantage of views is that they simplify complex queries by encapsulating

them, allowing them to be reused; instead of repeatedly writing elaborate queries, you

can use views as standard tables. The use of views enhances the security of data by

restricting access to specific columns or rows, allowing users to see only the information

they require. In addition, views provide data abstraction, protecting applications from

schema changes even when table structure alterations are made. Views also improve

readability by simplifying complex queries into smaller, more manageable components.

�Basic Syntax for SQL Views
The basic syntax of an SQL view is provided here:

CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table1
WHERE condition;

Here, CREATE VIEW creates a virtual table, called a view. It stores an SQL query that

dynamically generates data when called, without storing the data itself. The syntax

begins with CREATE VIEW followed by the desired view name. The AS keyword introduces

the query that defines the view. The SELECT statement specifies the columns to include,

the source table using FROM, and optional filtering conditions using WHERE.

�Types of Views in PostgreSQL
There are two ways to implement views in PostgreSQL—through the use of standard

views and materialized views. Standard views, created with CREATE VIEW, act as virtual

tables, presenting the results of stored queries without physically storing the data. This

makes them perpetually up-to-date, reflecting any changes to the underlying tables. In

contrast, materialized views, created with CREATE MATERIALIZED VIEW, store the query’s

result as a physical table. This creates a snapshot of the data at the time of creation or

refresh.

Chapter 9 Optimizing Your Script with Indexes and Views

259

This storage mechanism significantly enhances performance for frequently

accessed, complex queries, but requires manual or scheduled data refreshes. A trade-off

between real-time data accuracy and query performance optimization determines the

choice between standard and materialized views (see Table 9-6).

Table 9-6.  Key Differences Between Standard Views and Materialized Views

Feature Standard Views Materialized Views

Data storage Virtual; no physical data stored Physical table; data is stored

Data currency Always up-to-date Snapshot; requires manual refresh

Performance Query performance depends on

underlying tables

Improved performance for complex

queries

Use case Simplification, security, abstraction Performance optimization, reporting

�The Role of Views in Data Analysis Tasks
Views can play a crucial role in SQL data analysis, serving as a layer of abstraction that

significantly enhances the analytical process’ efficiency. They simplify complex data

models by presenting focused, pre-aggregated, and filtered representations, reducing

query complexity and increasing readability. By encapsulating intricate logic, views act

as reusable analysis building blocks, ensuring consistency and accelerating analysis

through pre-computed summaries and segmented data subsets. In addition to speeding

up data processing, this improves accuracy and productivity, allowing analysts to

concentrate on extracting insights rather than retrieving data. In addition, views serve

to enhance data security by restricting access to sensitive information, making them

essential for streamlined and secure analytics.

�The Second Story: Car Race Data Analysis
Nathalie, a data analyst for Speed Track Racing, needs to analyze race performance data

from recent competitions. As shown in Tables 9-7, 9-8, and 9-9, the database contains

three main tables: Drivers, Races, and Results. By creating SQL views and using the

data in these tables, Nathalie wants to optimize repetitive queries and improve analysis

efficiency.

Chapter 9 Optimizing Your Script with Indexes and Views

260

Table 9-7.  The Drivers Table

driver_id Name Team

1 Lewis Hamilton Mercedes

2 Max Verstappen Red Bull

3 Charles Leclerc Ferrari

4 Sergio Perez Red Bull

5 Carlos Sainz Ferrari

6 George Russell Mercedes

7 Lando Norris McLaren

8 Fernando Alonso Aston Martin

9 Pierre Gasly Alpine

10 Esteban Ocon Alpine

Table 9-8.  The Races Table

race_id Location Date

101 Silverstone 2023-07-09

102 Monza 2023-09-03

103 Spa-Francorch. 2023-07-30

104 Suzuka 2023-09-24

105 Monaco 2023-05-28

106 Austin 2023-10-22

107 Singapore 2023-09-17

108 Interlagos 2023-11-05

109 Budapest 2023-07-23

110 Melbourne 2023-04-02

Chapter 9 Optimizing Your Script with Indexes and Views

261

Table 9-9.  The Results Table

result_id driver_id race_id position lap_time_sec

1 1 101 1 90.23

2 2 101 2 90.45

3 3 101 3 91.12

4 4 102 1 87.32

5 5 102 2 87.78

6 6 103 1 89.01

7 7 103 2 89.23

8 8 104 1 88.45

9 9 104 3 89.67

10 10 105 1 92.89

Nathalie aims to answer the following questions based on race performance data

collected from recent races.

•	 Who are the top performers who finished first in each race?

•	 What is the average lap time for each driver across all races?

•	 How many first-place finishes does each team have?

•	 Who were the winners of each race, along with race location

and date?

•	 Who recorded the fastest lap in each race?

Nathalie wrote the following query to identify drivers who consistently performed

well across tracks. This task can be made easier with views, which store logic for joining

the Drivers, Races, and Results tables. Instead of rewriting complex JOINs every time,

analysts can query the top_performers view directly. This improves readability, reduces

errors, and ensures consistency.

CREATE VIEW top_performers AS
SELECT d.name, r.location, res.position
FROM results res

Chapter 9 Optimizing Your Script with Indexes and Views

262

JOIN drivers d ON res.driver_id = d.driver_id
JOIN races r ON res.race_id = r.race_id
WHERE res.position = 1;

This SQL query creates a view called top_performers, which displays the race

winners. This query selects driver names, race locations, and finishing positions, and

joins these three tables: Results, Drivers, and Races. It then connects these tables using

driver_id and race_id as keys, and filters to only include first-place finishes (position
= 1). Based on the filter, the view will display the name of each winning driver, the

location where they won, and their position. Table 9-10 illustrates what is happening in

this query as a result of the SELECT statement.

Table 9-10.  The Race Winners

Name Location Position

Lewis Hamilton Silverstone 1

Sergio Perez Monza 1

George Russell Spa-Francorch. 1

Fernando Alonso Suzuka 1

Esteban Ocon Monaco 1

The following query was written by Nathalie to find the average lap time for each

driver across all races, and to answer the question of driver consistency. This simplifies

reporting, especially if this metric is needed in multiple dashboards or reports. Views

also ensure that there is only one source of truth, keeping calculations consistent across

all analyses.

CREATE VIEW avg_lap_time AS
SELECT d.name, AVG(res.lap_time_sec) AS avg_time
FROM results res
JOIN drivers d ON res.driver_id = d.driver_id
GROUP BY d.name;

This SQL query creates a view called avg_lap_time, which calculates the average lap

time for each driver. It selects driver names from the Drivers table and computes the

average lap times, in seconds, from the Results table. The query joins these tables using

Chapter 9 Optimizing Your Script with Indexes and Views

263

driver_id as the common key, allowing it to match lap times with the corresponding

drivers. Results are grouped by driver name, meaning the view displays each driver’s

name alongside their average lap time across all recorded races. Using this view, it is

possible to quickly compare the overall performance of drivers when it comes to their

speed. The driver names are illustrated in Table 9-11, along with the average lap time, in

seconds, calculated for each driver.

Table 9-11.  The Average Lap Time for Each Driver

Name avg_time

Sergio Perez 87.31999969

Lando Norris 89.2300034

Pierre Gasly 89.66999817

Lewis Hamilton 90.2300034

Fernando Alonso 88.44999695

Max Verstappen 90.44999695

Esteban Ocon 92.88999939

George Russell 89.01000214

Charles Leclerc 91.12000275

Carlos Sainz 87.77999878

In order to determine how many first-place finishes each team has, Nathalie wrote

the following query for a question that evaluates team performance by summing the

victories of each team’s drivers.

CREATE VIEW team_wins AS
SELECT d.team, COUNT(*) AS wins
FROM results res
JOIN drivers d ON res.driver_id = d.driver_id
WHERE res.position = 1
GROUP BY d.team;

Chapter 9 Optimizing Your Script with Indexes and Views

264

This SQL query creates a view named team_wins, which tracks the number of race

victories for each racing team. It joins the Results and Drivers tables to connect race

performance with team information. The query counts only first-place finishes, where

position is equal to 1, and groups the results by team name. This means the view

will display each team’s total wins across all races. By using COUNT(*), it counts the

number of races where a team’s driver finished first, providing a clear overview of team

performance and success in racing competitions.

Here, a view named team_wins simplifies data analysis by creating a predefined,

easy-to-access summary of racing performance. Views allow quick retrieval of complex

information—in this case, team victories—without repeatedly writing complicated SQL

joins. Views also provide a convenient, performance-efficient way to track and analyze

team success across multiple races. Table 9-12 illustrates the SELECT output of the

previous query, which is the number of race victories for each racing team.

Table 9-12.  The Number of Race Victories

for Each Racing Team

Team Wins

Alpine 1

Aston Martin 1

Mercedes 2

Red Bull 1

The following query aims to find race winners in each race along with the race

location and date. This question highlights race winners while connecting them to the

location and date for easy event tracking.

CREATE VIEW race_winners AS
SELECT d.name, r.location, r.date
FROM results res
JOIN drivers d ON res.driver_id = d.driver_id
JOIN races r ON res.race_id = r.race_id
WHERE res.position = 1;

Chapter 9 Optimizing Your Script with Indexes and Views

265

This SQL query creates a view named race_winners. It selects the winner’s name,

race location, and date by joining the Results, Drivers, and Races tables. The JOIN

clauses link the driver and race information to race results. The WHERE clause filters

for only results where position equals 1, identifying the race winners. As a result of

creating a view, future queries will be simplified. Rather than repeatedly writing this

complex JOIN, analysts can query race_winners for a concise list of race champions.

This improves readability and efficiency. Table 9-13 illustrates the winner’s name, race

location, and date.

Table 9-13.  The Winner's Name, Race Location, and Date

Name Location Date

Lewis Hamilton Silverstone 2023-07-09

Sergio Perez Monza 2023-09-03

George Russell Spa-Francorch. 2023-07-30

Fernando Alonso Suzuka 2023-09-24

Esteban Ocon Monaco 2023-05-28

This query identifies who recorded the fastest lap in each race and highlights

standout lap performances regardless of race position.

CREATE VIEW fastest_laps AS
SELECT d.name, r.location, MIN(res.lap_time_sec) AS fastest_time
FROM results res
JOIN drivers d ON res.driver_id = d.driver_id
JOIN races r ON res.race_id = r.race_id
GROUP BY r.location, d.name;

This query creates a view called fastest_laps. It aims to identify the fastest lap time

achieved by each driver at each race location. The query joins the Results, Drivers,

and Races tables to link driver names and race locations with lap times. The MIN(res.
lap_time_sec) function determines the shortest lap time for each driver at each

location. The GROUP BY r.location, d.name clause organizes the results, ensuring that

the minimum lap time is calculated separately for each driver at every race location. This

view simplifies accessing and analyzing fastest lap data.

Chapter 9 Optimizing Your Script with Indexes and Views

266

Note I n PostgreSQL, the MIN() function is an aggregate function that returns
the smallest value within a specified set of values. It's commonly used to find the
minimum value of a column in a table. As soon as MIN() is applied, it analyzes
the selected column and returns the lowest value. For example, it can be applied
to identify the earliest date, the lowest price, or the fastest lap time. To find the
minimum value within specific groups, it's often combined with GROUP BY.

Table 9-14 provides the fastest lap time achieved by each driver at each race location.

Table 9-14.  The Fastest Lap Time Achieved by Each

Driver at Each Race Location

Name Location fastest_time

Carlos Sainz Monza 87.78

Sergio Perez Monza 87.32

Pierre Gasly Suzuka 89.67

Charles Leclerc Silverstone 91.12

Max Verstappen Silverstone 90.45

Fernando Alonso Suzuka 88.45

Lando Norris Spa-Francorch. 89.23

George Russell Spa-Francorch. 89.01

Esteban Ocon Monaco 92.89

Lewis Hamilton Silverstone 90.23

Views simplify data access by storing predefined queries, reducing code repetition,

and improving readability. By optimizing complex joins and aggregations, views

make analysis faster and more efficient. With these views, Nathalie has quick access to

essential race performance insights without having to repeatedly write complex SQL

queries.

Chapter 9 Optimizing Your Script with Indexes and Views

267

�Managing Views
As mentioned, the CREATE VIEW statement in PostgreSQL defines a virtual table based

on the result set of an SQL statement. The syntax for CREATE VIEW is straightforward,

allowing for the creation of a named query that can be used as a table, thus simplifying

complex queries and enhancing data security.

�Updating and Modifying Views (ALTER VIEW)
While PostgreSQL doesn’t have a direct ALTER VIEW statement to modify the query

definition of a view, it is possible to modify a view with CREATE OR REPLACE VIEW. This

command allows you to redefine the view’s query without dropping and re-creating

it, preserving any dependent objects. The syntax is similar to CREATE VIEW, but using

CREATE OR REPLACE VIEW ensures that if the view already exists, its definition is

replaced. Maintaining consistency and avoiding disruptions is crucial.

PostgreSQL provides an ALTER VIEW statement for modifying view properties, such

as renaming the view or changing its column names and default values. The basic syntax

includes the following.

Renaming a view:

ALTER VIEW view_name RENAME TO new_view_name;

Changing column names within a view:

ALTER VIEW view_name RENAME COLUMN old_column_name TO new_column_name;

Setting or removing default values for view columns:

ALTER VIEW view_name ALTER COLUMN column_name SET DEFAULT default_value;
ALTER VIEW view_name ALTER COLUMN column_name DROP DEFAULT;

As a result, these commands can maintain view consistency without requiring

complete redefinition. This makes updates more efficient and minimizes interruptions

to dependent objects.

Chapter 9 Optimizing Your Script with Indexes and Views

268

�Dropping Views (DROP VIEW)
The DROP VIEW statement is used to remove a view from the database. The syntax

is simple:

DROP VIEW view_name;

This command permanently deletes the view definition. Whenever a view is

dropped, any queries or applications that rely on it will fail. To enhance flexibility,

PostgreSQL provides a number of additional options that can be used.

Avoiding errors if the view does not exist:

DROP VIEW IF EXISTS view_name;

This prevents errors in scripts and automated processes where the existence of a

view cannot be guaranteed.

Dropping multiple views at once:

DROP VIEW view_name1, view_name2, ...;

Using RESTRICT to prevent accidental deletions:

DROP VIEW view_name RESTRICT;

This ensures that the view will be dropped only if no other objects are dependent on

it. In addition to managing database integrity, these options allow for controlled cleanup

of unused views, preventing unintended disruptions.

�The Role of ALTER VIEW and DROP VIEW in Data Analysis
In data analysis, views play a critical role in structuring and simplifying complex queries,

making data retrieval more efficient. The ability to update a view using CREATE OR
REPLACE VIEW ensures that analysts can modify data representations without disrupting

workflows. This is particularly beneficial in cases where data models evolve, and existing

views need to be adjusted without affecting dependent reports or applications. On the

other hand, DROP VIEW is essential for maintaining a clean and optimized database by

removing outdated or unnecessary views. The IF EXISTS option, however, is particularly

useful in dynamic and automated environments, where analysts must exercise caution

when dropping views in order to prevent breaking dependent queries.

Chapter 9 Optimizing Your Script with Indexes and Views

269

�The Role of Views in Optimizing SQL Queries
When views are used correctly, they reduce redundancy by encapsulating complex

logic, thus avoiding the repetition of lengthy SQL code across multiple scripts. In

this way, maintainability is enhanced, and inconsistencies are reduced. A view

effectively balances storage, speed, and query complexity. As a result of abstracting

complex queries, views offer simplified interfaces that reduce the need for intricate

SQL in everyday analysis. Especially materialized views provide speed advantages by

precompiling and storing results, although at the expense of storage. While standard

views do not physically store data, they streamline query complexity, resulting in a more

manageable and cleaner script. As a result of the strategic implementation of views,

data access is optimized, ensuring that queries are both efficient and readable, thus

optimizing overall performance and maintainability.

�Using Both Views and Indexes in PostgreSQL
Views and indexes are complementary but serve different purposes in SQL. Views

are virtual tables that store a query’s result definition, making complex queries more

readable and reusable. They simplify data access, maintain consistency, and improve

security by restricting access to specific columns. Indexes speed up data retrieval by

allowing the database to locate rows more efficiently instead of scanning entire tables.

They are essential for performance optimization, especially when dealing with large

datasets.

Since views do not store data, they do not automatically benefit from indexes unless

they are materialized or used with indexed queries. The purpose of this section is to

explore how to use both effectively.

�The Third Story: Online Retail Data Analyst
Kris is a data analyst at an online retail company. The company’s sales team frequently

asks Kris for reports on product performance. However, querying the raw sales table

every time is slow, especially as the database grows. To solve this, Kris decides to use

views for structured queries and indexes for better performance.

Chapter 9 Optimizing Your Script with Indexes and Views

270

Note T here is no doubt that, in real-world scenarios, datasets are significantly
larger and more complex than the sample presented in Table 9-15. Due to space
constraints in presenting stories in the book, the table is limited to ten rows. As
long as the same methods are applied to large datasets, this limitation does not
impact query effectiveness.

Table 9-15.  The Sales Table

sale_id product_id amount sale_date

1 101 120.5 2024-03-01

2 102 85.75 2024-03-02

3 101 99.99 2024-03-02

4 103 150 2024-03-03

5 101 110 2024-03-04

6 104 200 2024-03-05

7 102 80.5 2024-03-06

8 103 175.25 2024-03-07

9 101 125 2024-03-08

10 105 300 2024-03-09

Kris examines the Sales table, which tracks customer purchases including the sale_
id, product_id, amount (sales value), and sale_date.

Kris notices that most reports filter data by sale_date, meaning that the database

has to scan the entire table to find relevant records. To improve this, Kris creates an index

on the sale_date column:

CREATE INDEX idx_sale_date ON sales(sale_date);

Now, whenever a query filters by sale_date, PostgreSQL uses the index, significantly

speeding up performance.

Chapter 9 Optimizing Your Script with Indexes and Views

271

As a next step, Kris uses a view to calculate total sales per product instead of

manually aggregating sales data:

CREATE VIEW sales_summary AS
SELECT product_id, SUM(amount) AS total_sales
FROM sales
GROUP BY product_id;

With this view, she can quickly retrieve total sales without rewriting complex queries.

Now, in order to eliminate the need for each query to recalculate the data, Kris

creates a materialized view that stores the computed results:

CREATE MATERIALIZED VIEW sales_summary_mat AS
SELECT product_id, SUM(amount) AS total_sales
FROM sales
GROUP BY product_id;

To speed up lookups, Kris adds an index on product_id:

CREATE INDEX idx_sales_summary ON sales_summary_mat(product_id);

Instead of reprocessing the entire dataset whenever the sales team requests a report,

Kris queries the materialized view:

SELECT * FROM sales_summary_mat;

Table 9-16 illustrates the total sales of each product separately.

Table 9-16.  The Total Sales of Each Product

product_id total_sales

104 200

105 300

103 325.25

101 455.49

102 166.25

Chapter 9 Optimizing Your Script with Indexes and Views

272

Since new sales are recorded daily, Kris refreshes the materialized view periodically:

REFRESH MATERIALIZED VIEW sales_summary_mat;

As mentioned earlier, materialized views store query results physically instead of

recalculating them every time. The REFRESH MATERIALIZED VIEW sales_summary_
mat; command must be used to keep the data current, as a materialized view does

not automatically update when the underlying table changes. Without running this

command, the materialized view continues to display outdated data. This is even if

updated sales records are added, updated, or deleted from the Sales table. This can

lead to discrepancies in reports and inaccurate business decisions. By refreshing the

materialized view, the latest sales data can be reflected in the summary, allowing the

sales team to work with accurate and current information. While refreshing materialized

views can be resource-intensive, it is essential for maintaining data integrity, especially

in environments where reports and analytics rely on fresh data.

The sales team now gets their reports instantly, and Kris no longer has to run slow,

repetitive queries manually

The use of both views and indexes in SQL has several advantages. The optimization

of performance is one of the key benefits of views, since they simplify queries by

structuring complex data retrieval, while indexes enhance query execution by reducing

the need for full table scans. In addition to improving security and access control, views

can restrict access to specific columns or join multiple tables to present only relevant

data, while indexes ensure that access to this data is as efficient as possible. Furthermore,

materialized views with indexing offer significant performance improvements by storing

query results physically, enabling indexes to be applied directly to the results. This can

reduce computation time and increase query efficiency, particularly for data that is

frequently accessed.

�Summary
This chapter highlighted the power of SQL’s index and view in optimizing data analysis.

In this chapter, you learned how to improve query performance and data management.

SQL index enables faster data retrieval by reducing the need for full table scans. Views

allow structured and simplified query execution by encapsulating complex logic. Also,

using both of them can significantly improve efficiency, maintainability, and security in

database operations.

Chapter 9 Optimizing Your Script with Indexes and Views

273

�Key Points

•	 Indexes enhance query performance by reducing the need for full

table scans, enabling faster data retrieval from large datasets.

•	 Views simplify complex queries by encapsulating logic into reusable

structures, making data analysis more efficient and maintainable.

•	 Materialized views store query results physically, allowing indexing

optimizations for faster reporting and analytical processing.

•	 The combination of indexes and views enhances efficiency, ensuring

that frequently accessed data is both structured and retrievable

rapidly.

�Key Takeaways

•	 Optimized query performance: Indexes reduce query execution

time by minimizing full table scans, improving data retrieval

efficiency.

•	 Simplified data access: Views transform complex queries into

reusable structures, enhancing readability and maintainability.

•	 Faster analytical processing: Materialized views store precomputed

results, allowing indexed optimization to be performed for faster

insight.

•	 Efficient data management: Combining views with indexes ensures

structured access to frequently queried data with minimal overhead.

�Looking Ahead
The next chapter, “Analytics Alchemy: Turning Data into Gold, explores powerful

techniques that transform raw data into meaningful insights. It investigates advanced

analytical functions that enable deeper data exploration and window functions for data

Chapter 9 Optimizing Your Script with Indexes and Views

274

comparison, which allow you to analyze trends and relationships across rows, as well

as strategies for turning raw data into compelling stories through insightful structured

reporting.

�Test Your Skills
Angela is a database administrator at a large e-commerce company responsible for

optimizing data retrieval and reporting. The company’s business intelligence team needs

fast and efficient access to sales data to answer key performance questions, such as:

•	 What are the top-selling products in each category over the past

six months?

•	 How does revenue growth compare across different regions and time

periods?

•	 Which customers make frequent high-value purchases, and what

products do they prefer?

•	 How do seasonal trends impact product demand across different

categories?

•	 What percentage of orders are returned, and how does this affect

overall revenue?

Angela realizes that executing complex queries repeatedly on massive sales datasets

slows down reporting and analytics. To address this, she decides to use indexes to speed

up searches on frequently queried columns, such as order_date, customer_id, and

product_category. Additionally, she creates views to simplify data retrieval for analysts

by predefining commonly used queries, such as total revenue per region or top-selling

products. See Tables 9-17, 9-18, and 9-19.

Chapter 9 Optimizing Your Script with Indexes and Views

275

Table 9-18.  The Products Table

product_id product_name category unit_price stock_quantity

2001 Notebook Stationery 25 500

2002 Laptop Electronics 40 100

2003 Smartphone Electronics 120 50

2004 Office Chair Furniture 300 30

2005 Headphones Electronics 45 200

Table 9-17.  The Orders Table

order_id customer_id product_id order_date quantity total_price Region

1001 501 2001 2024-01-05 2 50 East

1002 502 2003 2024-02-12 1 120 West

1003 503 2002 2024-02-15 5 200 South

1004 504 2001 2024-03-01 3 75 East

1005 501 2004 2024-03-10 1 300 North

1006 505 2002 2024-03-18 4 160 South

1007 506 2005 2024-04-02 2 90 West

1008 507 2003 2024-04-08 3 360 North

1009 508 2004 2024-04-15 2 600 East

1010 509 2001 2024-04-20 1 25 South

Chapter 9 Optimizing Your Script with Indexes and Views

276

Table 9-19.  The Customers Table

customer_id Name Age Region total_spent

501 Alice 32 East 375

502 Bob 45 West 120

503 Charlie 28 South 200

504 David 40 East 75

505 Eva 35 South 160

506 Frank 50 West 90

507 Grace 27 North 360

508 Henry 41 East 600

509 Irene 30 South 25

Chapter 9 Optimizing Your Script with Indexes and Views

277
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_10

CHAPTER 10

Analytics Alchemy:
Turning Data into Gold
Turning data into gold with SQL requires mastering advanced analytical functions that

help you extract deeper insights from raw data and transform them into compelling

narratives. PostgreSQL provides powerful functions that can be used to transform raw

data into a compelling story. Additionally, this chapter explains how you can transform

raw data into a compelling story, and how recursive queries can be used to structure

query logic effectively.

�Functions
Functions can be categorized based on their functionality and purpose. PostgreSQL

provides a wide range of functions, and while aggregate, statistical and mathematical,

and window functions are common categories, there are also other types, including

ranking functions, string functions, date and time functions, JSON functions, control

functions and system functions. SQL functions help you perform operations that

would otherwise require several queries and round trips within the database. By using

functions, it is possible to reuse your database since other applications can interact

directly with your stored procedures without the need for middle-tier or duplicate code.

This is valuable for most data analysis tasks.

�Aggregate Functions
Aggregate functions operate on multiple rows and return a single summarized value.

They are commonly used with GROUP BY to perform calculations across subsets of

data. For instance, PostgreSQL aggregate functions are used to find the total revenue

per product category. Aggregate functions operate on multiple rows and return a

https://doi.org/10.1007/979-8-8688-1560-7_10#DOI

278

single summarized value for each group of data. Common aggregate functions include

SUM(column_name), which calculates the total sum of a column, and AVG(column_name),

which determines the average value. Additionally, COUNT(column_name) is used to count

the number of rows, while MIN(column_name) and MAX(column_name) help identify

the smallest and largest values in a dataset. In a nutshell, the key feature of aggregate

functions is that they collapse multiple rows into a single result per group. This makes

them ideal for summarizing large datasets efficiently. Table 10-1 summarizes most of the

well-known aggregate functions in PostgreSQL.

Table 10-1.  The Commonly Used Aggregate Functions in PostgreSQL

Function Description Example

AVG(column_
name)

Returns the average (arithmetic mean)

of the input values.

SELECT AVG(salary) FROM
employees;

COUNT(column_
name)

Returns the number of input rows for

which the value of expression is not null.

SELECT COUNT(department)
FROM employees;

COUNT(*) Returns the number of input rows. SELECT COUNT(*) FROM
employees;

MAX(column_
name)

Returns the maximum value of the input

values.

SELECT MAX(salary) FROM
employees;

MIN(column_
name)

Returns the minimum value of the input

values.

SELECT MIN(salary) FROM
employees;

SUM(column_
name)

Returns the sum of the input values. SELECT SUM(salary) FROM
employees;

BOOL_
AND(column_
name)

Returns TRUE if all input values are true,

otherwise FALSE.

SELECT BOOL_AND(active)
FROM users;

BOOL_OR(column_
name)

Returns TRUE if any input value is true,

otherwise FALSE.

SELECT BOOL_OR(active)
FROM users;

EVERY(column_
name)

Equivalent to BOOL_AND. SELECT EVERY(active) FROM
users;

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

279

Function Description Example

MODE(column_
name)

Returns the most frequent input value

(or any if multiple are equally frequent).

SELECT MODE() WITHIN GROUP
(ORDER BY department) FROM
employees;

PERCENTILE_
CONT(fraction)

Returns a percentile, interpolating

between adjacent input items if needed.

SELECT PERCENTILE_CONT(0.5)
WITHIN GROUP (ORDER BY
salary) FROM employees;

PERCENTILE_
DISC(fraction)

Returns a percentile; the result is an

actual input element.

SELECT PERCENTILE_DISC(0.9)
WITHIN GROUP (ORDER BY
salary) FROM employees;

Table 10-1.  (continued)

�Statistical and Mathematical Functions
Statistical and mathematical functions perform advanced numerical computations

and are often used for predictive modeling and trend analysis. A practical use case

for statistical and mathematical functions in PostgreSQL is calculating the correlation

between advertising spend and sales.

Note  Correlation in statistics measures the strength and direction of a
relationship between two variables. It quantifies how changes in one variable relate
to changes in another. The correlation coefficient (r) ranges from -1 to 1:

•	 r = 1 → Perfect positive correlation (both increase together).

•	 r = -1 → Perfect negative correlation (one increases, the other
decreases).

•	 r = 0 → No correlation (no relationship).

The most common correlation method is Pearson’s correlation, which assumes a
linear relationship. Other types include Spearman’s, for ranked data, and Kendall’s,
for ordinal data.

Chapter 10 Analytics Alchemy: Turning Data into Gold

280

As a result of statistical and mathematical functions, it is possible to go beyond

simple aggregates in order to provide statistical insights and numerical modeling. For

instance, REGR_SLOPE(y, x) and REGR_INTERCEPT(y, x) perform linear regression

analysis, helping to identify trends between two variables.

Note L inear regression analysis is a statistical method used to model the
relationship between two variables by fitting a straight line. It predicts how
a dependent variable (Y) changes based on an independent variable (X). The
equation is:

Y=mX+b

Where m is the slope (rate of change), and b is the intercept (Y’s value when X = 0).
Linear regression analysis helps us in trend analysis, forecasting, and decision-
making. Assumptions include linearity, independence, homoscedasticity, and
normality of residuals for accurate predictions.

To measure data dispersion, functions like STDDEV(column_name) and

VARIANCE(column_name) quantify variability in datasets.

Note  Data dispersion, or variability, refers to how spread out or scattered the
values in a dataset are. It helps to understand the degree of variation within the data.
Common measures of dispersion include range, variance, and standard deviation.
The range is the difference between the maximum and minimum values. Variance
is the average squared deviation of each data point from the mean, showing how
data points differ from the average. Standard deviation is the square root of variance,
providing a measure of how much individual data points deviate from the mean.

Higher dispersion indicates more variability, while lower dispersion means the data
points are closer to the mean.

Mathematical transformations, such as POWER(x, y), LOG(x), and SQRT(x) further

assist in adjusting and normalizing data for analysis. The key advantage of these

functions is their ability to extract patterns, relationships, and insights that are critical for

data-driven decision-making. Table 10-2 summarizes most of the well-known statistical

and mathematical functions in PostgreSQL.

Chapter 10 Analytics Alchemy: Turning Data into Gold

281

Table 10-2.  Commonly Used Statistical and Mathematical Functions

Category Function Description Example

Mathematical ABS(x) Returns the absolute value

of x.

SELECT ABS(-5);

Mathematical CBRT(x) Returns the cube root of x. SELECT CBRT(27);

Mathematical CEIL(x) or
CEILING(x)

Returns the smallest

integer greater than or

equal to x.

SELECT CEIL(4.2);

Mathematical EXP(x) Returns e raised to the

power of x.

SELECT EXP(1);

Mathematical FLOOR(x) Returns the largest integer

less than or equal to x.

SELECT FLOOR(4.8);

Mathematical LN(x) or LOG(x) Returns the natural

logarithm of x.

SELECT LN(10);

Mathematical LOG(b, x) Returns the logarithm of x

to base b.

SELECT LOG(10, 100);

Mathematical MOD(y, x) Returns the remainder of y

divided by x.

SELECT MOD(11, 3);

Mathematical PI() Returns the value of pi. SELECT PI();

Mathematical POWER(x, y) or
POW(x, y)

Returns x raised to the

power of y.

SELECT POWER(2, 3);

Mathematical ROUND(x) Rounds x to the nearest

integer.

SELECT ROUND(4.5);

Mathematical ROUND(x, s) Rounds x to s decimal

places.

SELECT ROUND(4.567,
2);

Mathematical SIGN(x) Returns the sign of x (-1, 0,

or 1).

SELECT SIGN(-10);

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

282

Category Function Description Example

Mathematical SQRT(x) Returns the square root of

x.

SELECT SQRT(16);

Mathematical TRUNC(x) Truncates x toward 0. SELECT TRUNC(4.8);

Mathematical TRUNC(x, s) Truncates x to s decimal

places.

SELECT TRUNC(4.567,
2);

Mathematical RANDOM() Returns a pseudo-random

number between 0 and 1.

SELECT RANDOM();

Statistical AVG(expression) Returns the average

(arithmetic mean) of the

input values.

SELECT AVG(salary)
FROM employees;

Statistical CORR(y, x) Returns the correlation

coefficient.

SELECT CORR(sales,
advertising) FROM
marketing;

Statistical COVAR_POP(y, x) Returns the population

covariance.

SELECT COVAR_
POP(sales,
advertising) FROM
marketing;

Statistical COVAR_SAMP(y, x) Returns the sample

covariance.

SELECT COVAR_
SAMP(sales,
advertising) FROM
marketing;

Statistical STDDEV_
POP(expression)

Returns the population

standard deviation.

SELECT STDDEV_
POP(salary) FROM
employees;

Statistical STDDEV_
SAMP(expression)

Returns the sample

standard deviation.

SELECT STDDEV_
SAMP(salary) FROM
employees;

Table 10-2.  (continued)

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

283

Category Function Description Example

Statistical VARIANCE
(expression)

Returns the sample

variance.

SELECT
VARIANCE(salary) FROM
employees;

Statistical VAR_
POP(expression)

Returns the population

variance.

SELECT VAR_
POP(salary) FROM
employees;

Statistical VAR_
SAMP(expression)

Returns the sample

variance.

SELECT VAR_
SAMP(salary) FROM
employees;

Statistical REGR_AVGX(y, x) Returns the average of the

independent variable (x).

SELECT REGR_AVGX(y,
x) FROM table;

Statistical REGR_AVGY(y, x) Returns the average of the

dependent variable (y).

SELECT REGR_AVGY(y,
x) FROM table;

Statistical REGR_INTERCEPT
(y, x)

Returns the y-intercept of

the least-

squares regression line.

SELECT REGR_
INTERCEPT(y, x) FROM
table;

Statistical REGR_R2(y, x) Returns the square of the

correlation coefficient.

SELECT REGR_R2(y, x)
FROM table;

Statistical REGR_SLOPE(y, x) Returns the slope of the

least-

squares regression line.

SELECT REGR_SLOPE(y,
x) FROM table;

Statistical REGR_COUNT(y, x) Returns the number of

input rows where both

expressions are not null.

SELECT REGR_COUNT(y,
x) FROM table;

Table 10-2.  (continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

284

�Window Functions
Unlike aggregate functions, window functions do not collapse rows but instead return

a computed value for each row while maintaining access to the full dataset. The key

advantage of window functions is that they allow row-wise comparisons and trend

analysis, unlike aggregate functions. This allows analysts to maintain granular data while

uncovering insights. Table 10-3 summarizes most of the well-known window functions

in PostgreSQL.

Table 10-3.  The Commonly Used Window Functions

Function Description Example

ROW_NUMBER() Assigns a unique

sequential integer to

each row within the

partition.

SELECT ROW_NUMBER() OVER (PARTITION
BY department ORDER BY salary DESC)
FROM employees;

CUME_DIST() Calculates the

cumulative distribution

of a value within the

partition.

SELECT CUME_DIST() OVER (PARTITION
BY department ORDER BY salary DESC)
FROM employees;

NTILE(n) Divides the partition into

n approximately equal

groups and assigns a

group number to each

row.

SELECT NTILE(4) OVER (PARTITION BY
department ORDER BY salary DESC)
FROM employees;

LAG(expression
[, offset [,
default]])

Accesses data from

a previous row in the

partition.

SELECT LAG(salary, 1, 0) OVER
(PARTITION BY department ORDER BY
hire_date) FROM employees;

LEAD(expression
[, offset [,
default]])

Accesses data from a

subsequent row in the

partition.

SELECT LEAD(salary, 1, 0) OVER
(PARTITION BY department ORDER BY
hire_date) FROM employees;

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

285

Function Description Example

FIRST_
VALUE(expression)

Returns the value of the

expression from the first

row in the partition.

SELECT FIRST_VALUE(salary) OVER
(PARTITION BY department ORDER BY
hire_date) FROM employees;

LAST_
VALUE(expression)

Returns the value of the

expression from the last

row in the partition.

SELECT LAST_VALUE(salary) OVER
(PARTITION BY department ORDER BY
hire_date RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING)
FROM employees;

NTH_
VALUE(expression,
n)

Returns the value of the

expression from the nth

row in the partition.

SELECT NTH_VALUE(salary, 3) OVER
(PARTITION BY department ORDER BY
hire_date) FROM employees;

COALESCE(value1,
value2, ...)

Returns the first non-

NULL value in the list.

SELECT COALESCE(NULL, 'default',
'other');` (returns 'default')

NULLIF(value1,
value2)

Returns NULL if value1

equals value2;

otherwise returns

value1.

SELECT NULLIF(10, 10);` (returns
NULL) `SELECT NULLIF(10, 5);`
(returns 10)

GREATEST(value1,
value2, ...)

Returns the largest value

from the list.

SELECT GREATEST(10, 5, 15); (returns
15)

LEAST(value1,
value2, ...)

Returns the smallest

value from the list.

SELECT LEAST(10, 5, 15); (returns 5)

ARRAY[value1,
value2, ...]

Constructs an array from

the given values.

SELECT ARRAY[1, 2, 3];
(returns {1, 2, 3})

GENERATE_
SERIES(start,
stop [, step])

Generates a series of

values.

SELECT GENERATE_SERIES(1, 5);
(returns 1, 2, 3, 4, 5)

GENERATE_
SUBSCRIPTS(array,
dimension)

Generates the set of

valid subscripts for the

specified dimension of

the given array.

SELECT GENERATE_
SUBSCRIPTS(ARRAY['a','b','c'], 1);
(returns 1, 2, 3)

Table 10-3.  (continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

286

As shown in Table 10-3, a special type of window functions are value functions. Using

value functions, you can manipulate individual data values, including type conversion,

NULL handling, and data formatting. These functions operate on single values within a

column or expression, enabling precise data manipulation.

�Ranking Functions
Ranking functions are essential for assigning order to rows within a query’s result. They

provide a way to rank data based on specified criteria, facilitating analysis and reporting.

RANK() assigns a rank to each row, skipping ranks when equal ranks occur. DENSE_
RANK() also assigns ranks, but doesn’t skip ranks for ties, ensuring sequential ranking.

ROW_NUMBER() assigns a unique sequential integer to each row, regardless of equality.

These functions use the OVER() clause to define the result set ordering and partitioning.

They are invaluable for tasks like identifying top performers, analyzing sales data, and

generating leaderboards, providing clear and structured insights from ordered data.

Table 10-4 summarizes most of the well-known ranking functions in PostgreSQL.

Table 10-4.  Commonly Used Ranking Functions

Function Description Example

RANK() Assigns a rank to each row within the

partition, with gaps for tied values.

SELECT RANK() OVER (PARTITION BY
department ORDER BY salary DESC)
FROM employees;

DENSE_
RANK()

Assigns a rank to each row within the

partition, without gaps for tied values.

SELECT DENSE_RANK() OVER
(PARTITION BY department ORDER
BY salary DESC) FROM employees;

ROW_
NUMBER()

Assigns a unique sequential integer to

each row within the partition.

SELECT ROW_NUMBER() OVER
(PARTITION BY department ORDER
BY salary DESC) FROM employees;

NTILE(n) Divides the partition into n

approximately equal groups and assigns

a group number to each row.

SELECT NTILE(4) OVER (PARTITION
BY department ORDER BY salary
DESC) FROM employees;

PERCENT_
RANK()

Calculates the relative rank of each row

within the partition (0 to 1).

SELECT PERCENT_RANK() OVER
(PARTITION BY department ORDER
BY salary DESC) FROM employees;

Chapter 10 Analytics Alchemy: Turning Data into Gold

287

�String Functions
String functions are essential for text manipulation, enabling tasks like joining,

extracting, and formatting text data. For instance, CONCAT() joins multiple strings into

one, simplifying string composition. LOWER() and UPPER() convert strings to lowercase

or uppercase, ensuring case consistency. TRIM() removes leading and trailing spaces,

cleaning up text data. LENGTH() returns the character count of a string. REPLACE()

substitutes specified substrings, which is useful for data correction. These functions

are indispensable for data cleaning, formatting, and analysis, making text data more

manageable and consistent within databases. Table 10-5 summarizes most of the well-

known string functions in PostgreSQL.

Table 10-5.  Commonly Used String Functions

Function Description Example

CONCAT(string1,
string2, ...) or
string1 || string2 ||
...

Concatenates strings. SELECT CONCAT('Post',
'greSQL'); (returns
'PostgreSQL')

LEFT(string, n) Returns the first n characters

of a string.

SELECT LEFT('PostgreSQL', 4);
(returns 'Post')

RIGHT(string, n) Returns the last n characters

of a string.

SELECT RIGHT('PostgreSQL',
4);` (returns 'SQL')

TRIM([LEADING |
TRAILING | BOTH]
[characters] FROM
string)

Removes leading, trailing, or

both occurrences of characters

from a string.

SELECT TRIM(' PostgreSQL ');
(returns 'PostgreSQL')

LTRIM(string [,
characters])

Removes leading characters

from a string.

SELECT LTRIM(' PostgreSQL');
(returns 'PostgreSQL')

RTRIM(string [,
characters])

Removes trailing characters

from a string.

SELECT RTRIM('PostgreSQL ');
(returns 'PostgreSQL')

UPPER(string) Converts a string to uppercase. SELECT UPPER('PostgreSQL');
(returns 'POSTGRESQL')

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

288

Function Description Example

LOWER(string) Converts a string to lowercase. SELECT LOWER('PostgreSQL');
(returns 'postgresql')

LENGTH(string) Returns the length of a string. SELECT LENGTH('PostgreSQL');
(returns 10)

POSITION(substring
IN string)

Returns the position of the

first occurrence of a substring

in a string. When you use

the POSITION function, the

position returned starts at

1, not 0. This is unlike many

programming languages, like

C and Python, where indexing

starts at 0.

`SELECT POSITION('gres' IN
'PostgreSQL'); (returns 6)

STRPOS(string,
substring)

Returns the position of the first

occurrence of a substring in a

string.

SELECT STRPOS('PostgreSQL',
'gres'); (returns 6)

REPLACE(string,
from, to)

Replaces all occurrences

of a substring with another

substring.

SELECT REPLACE('PostgreSQL',
'Post', 'New'); (returns
'NewgreSQL')

INITCAP(string) Converts the first letter of each

word to uppercase and the rest

to lowercase.

SELECT INITCAP('postgreSQL
database'); (returns
'PostgreSQL Database')

REPEAT(string,
count)

Repeats a string a specified

number of times.

SELECT REPEAT('Post', 3);
(returns 'PostPostPost')

SPLIT_PART(string,
delimiter, field)

Splits a string into parts using

a delimiter and returns the

specified field.

SELECT SPLIT_
PART('PostgreSQL,Database',
',', 2); (returns 'Database')

Table 10-5.  (continued)

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

289

Table 10-5.  (continued)

�Date and Time Functions
Date and time functions are crucial for handling temporal data, enabling precise

timestamp manipulation. NOW() returns the current date and time, capturing the present

moment. AGE() calculates the interval between two timestamps, useful for determining

how time much has elapsed. EXTRACT() retrieves specific date or time components, like

a year, month, or hour, for detailed analysis. DATE_TRUNC() truncates timestamps to a

specified precision, such as a day or minute, for data aggregation. TO_CHAR() formats

timestamps into custom string representations, facilitating report generation. These

functions are essential for tasks involving time-series analysis, and data reporting,

ensuring accurate and efficient temporal data management. Table 10-6 summarizes

most of the well-known date and time functions in PostgreSQL.

Function Description Example

TO_CHAR(value,
format)

Converts a value to a string

using a format.

SELECT TO_CHAR(NOW(), 'YYYY-
MM-DD'); (returns '2023-10-
27' for example)

MD5(string) Calculates the MD5 hash of a

string.

SELECT MD5('PostgreSQL');

SHA256(string) Calculates the SHA256 hash of

a string.

SELECT SHA256('PostgreSQL');

TRANSLATE(string,
from, to)

Replaces characters in a string

with other characters.

SELECT TRANSLATE('12345',
'13', 'ax'); (returns
'a2x45')

Chapter 10 Analytics Alchemy: Turning Data into Gold

290

Table 10-6.  The Commonly Used Date and Time Functions

Function Description Example

NOW() or CURRENT_
TIMESTAMP

Returns the current date

and time with the time

zone.

SELECT NOW();

CURRENT_DATE Returns the current date. SELECT CURRENT_DATE;

CURRENT_TIME Returns the current time

with the time zone.

SELECT CURRENT_TIME;

DATE(timestamp) Extracts the date part from

a timestamp.

SELECT DATE('2023-10-27
10:30:00'); (returns '2023-10-
27')

EXTRACT(field FROM
timestamp)

Extracts a specific field

(e.g., year, month, day, hour,

minute, second) from a

timestamp.

SELECT EXTRACT(YEAR FROM
'2023-10-27 10:30:00');
(returns 2023)

AGE(timestamp1,
timestamp2) or
AGE(timestamp)

Calculates the difference

between two timestamps

or the age of a timestamp

relative to now.

SELECT AGE('2023-10-27',
'2023-10-20'); (returns '7
days')

DATE_TRUNC(field,
timestamp)

Truncates a timestamp to

a specified field (e.g., day,

month, year).

SELECT DATE_TRUNC('month',
'2023-10-27 10:30:00');
(returns '2023-10-01
00:00:00')

TO_CHAR(timestamp,
format)

Formats a timestamp as a

string according to a format

string.

SELECT TO_CHAR('2023-10-27
10:30:00', 'YYYY-MM-DD
HH24:MI:SS'); (returns '2023-
10-27 10:30:00')

TO_TIMESTAMP(string,
format)

Converts a string to a

timestamp according to a

format string.

SELECT TO_
TIMESTAMP('2023-10-27
10:30:00', 'YYYY-MM-DD
HH24:MI:SS');

(continued)

Chapter 10 Analytics Alchemy: Turning Data into Gold

291

Table 10-6.  (continued)

Function Description Example

MAKE_DATE(year,
month, day)

Constructs a date from year,

month, and day.

SELECT MAKE_DATE(2023, 10,
27); (returns '2023-10-27')

MAKE_TIME(hour,
minute, second)

Constructs a time from

hour, minute, and second.

SELECT MAKE_TIME(10, 30, 0);
(returns '10:30:00')

MAKE_TIMESTAMP(year,
month, day, hour,
minute, second)

Constructs a timestamp

from year, month, day, hour,

minute, and second.

SELECT MAKE_TIMESTAMP(2023,
10, 27, 10, 30, 0);

ISFINITE(timestamp) Checks if a timestamp

is finite (not infinity

or -infinity).

SELECT ISFINITE('2023-10-27');
(returns true)

INTERVAL 'value
unit'`

Constructs an interval value. SELECT INTERVAL '1 day';

DATE_PART(text,
timestamp)

Equivalent to extract, but

returns a double precision

number.

SELECT DATE_PART('day',
timestamp '2023-10-27
12:00:00');

JUSTIFY_
DAYS(interval)

Adjusts an interval so that

30-day time spans are

represented as months.

SELECT JUSTIFY_DAYS(INTERVAL
'30 days');

JUSTIFY_
HOURS(interval)

Adjusts an interval so that

24-hour time spans are

represented as days.

SELECT JUSTIFY_HOURS(INTERVAL
'24 hours');

JUSTIFY_
INTERVAL(interval)

Adjusts an interval using

both JUSTIFY_DAYS and

JUSTIFY_HOURS.

SELECT JUSTIFY_
INTERVAL(INTERVAL '54 hours 31
days');

Chapter 10 Analytics Alchemy: Turning Data into Gold

292

�JSON Functions
JSON functions are designed to handle JSON data types, which are crucial for working

with semi-structured data.

Note  JSON (JavaScript Object Notation) is a lightweight data-interchange format,
ideal for representing structured data as key-value pairs. It's human-readable and
easily parsed by machines. In SQL databases like PostgreSQL, JSON integration
allows storing and querying semi-structured data alongside relational data. The
ability to handle flexible data models, such as configuration settings or document-
style data, that do not fit neatly into traditional tables, is crucial.

Using JSON functions in SQL, you can query and manipulate JSON data directly,

bridging the gap between structured and semi-structured data. These functions

empower analysts to query, modify, and aggregate JSON data directly within

PostgreSQL, enhancing flexibility in data management. Table 10-7 summarizes most of

the well-known JSON functions in PostgreSQL.

Table 10-7.  The Commonly Used JSON Functions

Function Description Example

to_
json(anyelement)

Converts a PostgreSQL

value to JSON.

SELECT to_json(ARRAY[1, 2, 3]);
(returns "[1,2,3]")

to_
jsonb(anyelement)

Converts a PostgreSQL

value to JSONB.

SELECT to_jsonb(ROW(1,
'foo')); (returns
"{\"f1\":1,\"f2\":\"foo\"}")

json_build_
array(VARIADIC
"any")

Builds a JSON array from

a variadic parameter list.

SELECT json_build_array(1,
'two', null); (returns
"[1,\"two\",null]")

json_build_
object(VARIADIC
"any")

Builds a JSON object from

a variadic parameter list.

SELECT json_build_object('foo',
1, 'bar', 'baz'); (returns
"{\"foo\":1,\"bar\":\"baz\"}")

Chapter 10 Analytics Alchemy: Turning Data into Gold

293

�Control Functions
Control functions enable procedural logic within database functions and triggers. IF-
ELSE structures enable conditional execution, which enables branching logic based on

data values. LOOP constructs provide iterative capabilities, facilitating repetitive tasks.

EXCEPTION handling captures and manages errors, ensuring robust code execution.

These control structures empower developers to create complex, dynamic database

operations, such as data validation, conditional updates, and custom error handling.

They are essential for building sophisticated database applications that require

procedural logic beyond simple SQL queries. Table 10-8 summarizes most of the well-

known control functions in PostgreSQL.

Table 10-8.  Commonly Used Control Functions

Function Description Example

COALESCE(value1, value2,
...)

Returns the first non-NULL

value in the list.

SELECT COALESCE(NULL,
'default', 'other');
(returns 'default')

NULLIF(value1, value2) Returns NULL if value1

equals value2; otherwise

returns value1.

SELECT NULLIF(10, 10);
(returns NULL)

GREATEST(value1, value2,
...)`

Returns the largest value

from the list.

SELECT GREATEST(10, 5,
15); (returns 15)

LEAST(value1, value2, ...)` Returns the smallest value

from the list.

SELECT LEAST(10, 5,
15); (returns 5)

CASE WHEN condition1 THEN
result1 [WHEN condition2
THEN result2 ...] [ELSE
resultN] END

Conditional expression,

similar to if-then-else

logic.

SELECT CASE WHEN age >=
18 THEN 'Adult' ELSE
'Minor' END FROM users;

ASSERT(condition, message) Checks a condition and

raises an error if it's false.

(Primarily for debugging.)

SELECT ASSERT(age > 0,
'Age must be positive')
FROM users;

Chapter 10 Analytics Alchemy: Turning Data into Gold

294

�System Functions
System functions provide access to database metadata and system-level operations.

CURRENT_USER reveals the current user’s name, aiding in security and auditing.

VERSION() displays the PostgreSQL server’s version, crucial for compatibility checks.

pg_sleep() pauses execution for a specified duration, useful for testing and scheduling.

These functions allow developers to interact with the database environment, retrieve

system information, and control execution flow. Table 10-9 summarizes most of the well-

known system functions in PostgreSQL.

Table 10-9.  Commonly Used System Functions

Function Description Example

CURRENT_USER Returns the current user name. SELECT CURRENT_
USER;

SESSION_USER Returns the session user name. SELECT SESSION_
USER;

USER Equivalent to CURRENT_USER. SELECT USER;

CURRENT_DATABASE() Returns the name of the current database. SELECT CURRENT_
DATABASE();

CURRENT_SCHEMA Returns the name of the current schema. SELECT CURRENT_
SCHEMA;

CURRENT_
SCHEMAS(boolean)

Returns the names of schemas in the search

path. If the Boolean parameter is true,

implicitly included system schemas are

included in the result.

SELECT CURRENT_
SCHEMAS(false);

VERSION() Returns a string describing the PostgreSQL

server version.

SELECT
VERSION();

Chapter 10 Analytics Alchemy: Turning Data into Gold

295

A summary of the differences between the types of functions is provided in

Table 10-10.

Table 10-10.  Differences Between the Types of Functions

Function Type Purpose Returns

Aggregate functions Summarize multiple rows into one result. Single value per group

Statistical and

mathematical functions

Perform numerical or statistical

calculations.

Single or multi-row values

Window functions Compute values across rows without

collapsing them.

One value per row

Value functions Handle individual data values, often for type

conversion or NULL handling.

Single value

Ranking functions Rank rows within a result set based on

specified criteria.

One value per row

String functions Manipulate string data. Single value

Date and time functions Perform calculations or transformations on

dates and times.

Single value or multi-row

values

JSON functions Manipulate or extract data from JSON/

JSONB data types.

Single or multi-row values

Control functions Control program flow in PostgreSQL. Depends on the function

(e.g., Boolean, Integer)

System functions Interact with the database system or

metadata.

Single value

Chapter 10 Analytics Alchemy: Turning Data into Gold

296

Each function type serves a different analytical need; these are summarized and

compared in Table 10-11.

Table 10-11.  Different Analytical Needs for Each Function

Function Type Description

Aggregate functions Operate on multiple rows and return a single result.

Statistical and mathematical

functions

For calculations like regression, dispersion, and other numerical

analysis.

Window functions Perform calculations across rows related to the current row,

allowing comparisons.

Value functions Return or manipulate values, often for type casting or handling

NULL values.

Ranking functions Rank rows based on specified ordering criteria.

String functions For string manipulation tasks, such as concatenation and case

conversion.

Date and time functions Work with date and time types for calculations and

transformations.

JSON functions Manipulate and extract data from JSON/JSONB columns.

Control functions Control program flow in PostgreSQL.

System functions Deal with system-level information or database metadata.

�Creating Your Own Functions in PostgreSQL
Creating your own functions in PostgreSQL is a powerful way to encapsulate reusable

logic and extend your database’s functionality. Here is the basic syntax for creating your

own PostgreSQL functions:

CREATE FUNCTION function_name (parameters)
RETURNS return_type AS $$
DECLARE
 -- variable declarations (optional)

Chapter 10 Analytics Alchemy: Turning Data into Gold

297

BEGIN
 -- function logic
 RETURN result;
END;
$$ LANGUAGE plpgsql;

Where CREATE FUNCTION function_name defines the function name, parameters are

the input parameters the function takes (which is optional), and RETURNS return_type

specifies the return type of the function (for instance, INTEGER, TEXT, or VOID for no

return). DECLARE is optional and it declares any local variables used within the function.

BEGIN and END mark the start and end of the function logic, and RETURN specifies the

value the function returns.

For example, it might be useful to create a function that calculates the area of a

rectangle. The following function takes two parameters, width and height, and returns

the area as an INTEGER.

CREATE FUNCTION calculate_area(width INTEGER, height INTEGER)
RETURNS INTEGER AS $$
BEGIN
 RETURN width * height;
END;
$$ LANGUAGE plpgsql;

The CREATE FUNCTION calculate_area(width INTEGER, height INTEGER) statement

creates a new function named calculate_area that accepts two integer parameters: width

and height. The function returns an integer value, as specified by the RETURNS INTEGER

clause. The function body is enclosed within AS $$... $$, which is a dollar-quoted string

literal, allowing for easier readability without needing to escape special characters.

Note A dollar-quoted string literal in PostgreSQL is a way to define string constants
without needing to escape special characters like quotes. It is enclosed within double
dollar signs ($$) or custom tags (tag). This is especially useful in functions, stored
procedures, and dynamic SQL to improve readability and avoid escaping issues.

Dollar quoting ensures that embedded single quotes don't interfere with SQL
syntax, making it easier to write complex queries and function bodies.

Chapter 10 Analytics Alchemy: Turning Data into Gold

298

The function logic is placed between BEGIN and END, marking the start and end of

the executable code block. Inside this block, RETURN width * height; performs the

multiplication of the provided width and height values, returning the computed area.

The LANGUAGE plpgsql; statement specifies that the function is written in PL/pgSQL,

PostgreSQL’s procedural language. Once created, the function can be used as follows:

SELECT calculate_area(5, 10);

This query will return 50, as the area is calculated as 5 * 10.

The following two queries are provided to illustrate the basic syntax of function

modification or deletion.

You can update a function by deleting the old version and creating a new one:

DROP FUNCTION IF EXISTS function_name;

To drop a function, use this statement:

DROP FUNCTION function_name;

Creating your own functions in PostgreSQL using PL/pgSQL allows you to define

complex logic, improve code reusability, and customize your database behavior to fit

specific needs. You can handle input/output parameters, error handling, and return

values to suit the business logic you are implementing.

�Error Handling
Error handling in PostgreSQL is essential for query, function, and transaction reliability.

When an error occurs, PostgreSQL aborts the transaction unless it is handled explicitly.

Note A transaction in PostgreSQL is a sequence of SQL statements executed as
a single unit of work. It ensures atomicity, meaning all operations either complete
successfully or are entirely rolled back if an error occurs. Transactions start with
BEGIN, and changes are saved using COMMIT. If an error occurs, ROLLBACK
undoes all the changes, maintaining database integrity. In general, transactions in
PostgreSQL are typically used for data integrity and consistency in write operations
like INSERT, UPDATE, and DELETE, but they can also be used in data analysis
tasks when necessary. While pure data analysis usually involves SELECT queries,

Chapter 10 Analytics Alchemy: Turning Data into Gold

299

aggregations, and reporting without requiring transactions, certain situations may
benefit from them. PostgreSQL is distinct from many other database engines due
to its write-ahead log (WAL) mechanism, which enables rollback of even DDL (Data
Definition Language) statements such as CREATE, ALTER, and DROP. This behavior
further strengthens its transactional consistency and reliability.

There are several causes of errors, including invalid input, constraints violations, and

system failures. PostgreSQL provides exception handling mechanisms to manage such

situations, particularly within functions and stored procedures. The RAISE EXCEPTION

statement allows developers to generate custom error messages, while the EXCEPTION

block enables structured error handling. Proper error management helps prevent

unexpected failures, rolls back transactions safely, and provides meaningful feedback to

users and applications.

�Basic Exception Handling

A function can use the EXCEPTION block to catch and respond to errors. Here is an

example that prevents division by zero errors:

CREATE FUNCTION safe_divide(numerator INTEGER, denominator INTEGER)
RETURNS FLOAT AS $$
BEGIN
 IF denominator = 0 THEN
 RAISE EXCEPTION 'Error: Division by zero is not allowed';
 ELSE
 RETURN numerator::FLOAT / denominator;
 END IF;
END;
$$ LANGUAGE plpgsql;

This function named safe_divide is designed to perform division operations while

preventing the common error of dividing by zero. The function accepts two integer

parameters: numerator and denominator. When called, it first checks if the denominator

equals 0 using an IF statement.

Chapter 10 Analytics Alchemy: Turning Data into Gold

300

Note G enerally, IF ELSE is a conditional statement that allows a program to
execute different blocks of code based on whether a condition is true or false. In
PostgreSQL, IF ELSE is used inside functions, procedures, and DO blocks. For
instance, the basic syntax is as follows:
DO $$
BEGIN
 IF 10 > 5 THEN
 RAISE NOTICE 'Condition is True';
 ELSE
 RAISE NOTICE 'Condition is False';
 END IF;
END $$ LANGUAGE plpgsql;

In PostgreSQL, a DO block is an anonymous code block that allows executing
procedural logic without creating a function. It is useful for running temporary
scripts, testing logic, or performing one-time operations.

If the denominator is zero, the function raises an exception with a descriptive error

message stating "Error: Division by zero is not allowed", which prevents the

operation from proceeding and alerts the user about the issue. If the denominator is

not zero, the function proceeds to perform the division operation by first converting

the numerator to a floating-point number (using the ::FLOAT cast notation) and then

dividing it by the denominator, returning the result as a floating-point number.

Note I n PostgreSQL functions, the :: type cast operator is used to explicitly
specify the return type of a value before it is returned. This ensures that the
function always returns the correct data type and prevents implicit type conversion
issues. Recall that in PostgreSQL, :: is the type cast operator, used to explicitly
convert one data type into another. It is an alternative to the CAST() function. But
you should use :: in function returns for the following reasons:

Chapter 10 Analytics Alchemy: Turning Data into Gold

301

	1.	T o ensure that the function returns the correct type.

	2.	T o prevent implicit casting errors when dealing with mixed
data types.

	3.	T o clarify the type of expected output by explicitly stating it.

Using this method ensures more precise results than dividing by integers. The

function is written in PostgreSQL’s procedural language (PL/pgSQL), which extends

standard SQL by supporting control structures and error-handling features not available

in regular SQL.

�Using the EXCEPTION Block for Error Handling

The EXCEPTION WHEN clause catches specific errors and defines alternative actions.

CREATE FUNCTION insert_employee(name TEXT, age INTEGER)
RETURNS VOID AS $$
BEGIN
 INSERT INTO employees (employee_name, employee_age) VALUES (name, age);
EXCEPTION
 WHEN unique_violation THEN
 RAISE NOTICE 'Employee with the same name already exists.';
 WHEN check_violation THEN
 RAISE NOTICE 'Age must be a positive number.';
 WHEN others THEN
 RAISE NOTICE 'An unknown error occurred.';
END;
$$ LANGUAGE plpgsql;

The insert_employee function creates a record for an employee and handles

common errors. The function takes two parameters: name, a text string representing the

employee’s name, and age, an integer value for the employee’s age. When executed,

it attempts to insert these values into the Employees table, specifically into the

employee_name and employee_age columns. This function is particularly robust due to

its comprehensive handling of exceptions. If the insertion violates a unique constraint,

likely indicating that an employee with the same name already exists in the database,

Chapter 10 Analytics Alchemy: Turning Data into Gold

302

it captures the unique_violation error and displays a notice to the user. Similarly, if

the age parameter fails a check constraint (probably requiring that age be positive),

it catches the check_violation error and informs the user that age must be positive.

Finally, it includes a fallback exception handler for any other unexpected errors that

might occur during the insertion process. This function returns VOID, meaning it doesn’t

return any value but simply performs the insertion operation with appropriate error

handling. Table 10-12 summarizes the different error types and use cases for handling

exceptions.

Table 10-12.  Error types and Use Cases for Handling Exceptions

Error Type Description Use Case

unique_
violation

Catches errors related to inserting duplicate

values in columns with a UNIQUE constraint.

Prevents inserting duplicate primary

keys or unique values.

check_
violation

Handles errors when CHECK constraints, for

instance negative values are violated.

Ensures that values follow predefined

rules for instance, age must be positive.

others Catches any unhandled errors that don’t

match specific types.

Prevents crashes by handling

unexpected errors gracefully.

�The First Story: Online Clothing Market
Mary is a data analyst at Fashion Flow, an online clothing marketplace. Her job is to

analyze sales, customer behavior, and inventory using SQL. As shown in Tables 10-13,

10-14, and 10-15, the company’s database contains tables for orders, customers, and

products. Mary needs to answer several business questions and perform a few tasks:

•	 What is the total revenue generated and the average order value?

•	 How many sales occurred each month?

•	 Which product has been ordered the most?

•	 Who are the top customers by spending?

•	 What are the email domains of customers?

•	 What are the colors of the available products?

•	 Ensure that if stock data is missing, it shows “Out of Stock.”

Chapter 10 Analytics Alchemy: Turning Data into Gold

303

•	 Can Mary create a function that assigns a “loyalty score” based on the

total amount a customer has spent?

•	 What PostgreSQL version is running, and who is the current user?

Table 10-13.  The Customers Table

customer_id Name Email signup_date total_spent

1 Alice alice@mail.com 2022-03-15 300.5

2 Bob bob@mail.com 2021-07-10 150

3 Carol carol123@mail.com 2023-01-20 450.75

4 David dave99@mail.com 2021-12-05 1200

5 Eve eve_wonder@mail.com 2022-08-25 550.25

Table 10-14.  The Products Table

product_id Name Category Price Stock Attributes (JSON)

101 T-Shirt Clothing 20 100 {"color": "red", "size":
"M"}

102 Jeans Clothing 50 50 {"color": "blue", "size":
"L"}

103 Jacket Clothing 100 30 {"color": "black",
"size": "XL"}

104 Sneakers Footwear 80 40 {"color": "white",
"size": "10"}

105 Hoodie Clothing 60 25 {"color": "gray", "size":
"L"}

Chapter 10 Analytics Alchemy: Turning Data into Gold

304

Table 10-15.  The Orders Table

order_id customer_id product_id Quantity order_date total_price

1 1 101 2 2023-02-05 40

2 2 102 1 2023-02-10 50

3 3 103 1 2023-02-15 100

4 4 104 2 2023-02-20 160

5 5 105 1 2023-02-25 60

6 1 102 1 2023-03-01 50

7 3 101 3 2023-03-05 60

8 4 105 2 2023-03-10 120

The following query uses aggregate functions to calculate the total revenue

generated and the average order value:

SELECT
 SUM(total_price) AS total_revenue,
 AVG(total_price) AS avg_order_value
FROM orders;

Table 10-16 illustrates the total revenue generated and the average order value.

Table 10-16.  The Total Revenue Generated and the

Average Order Value

total_revenue avg_order_value

640 80.00000

The following query calculates sales trends per month:

SELECT
 DATE_TRUNC('month', order_date) AS month,
 COUNT(order_id) AS total_orders
FROM orders
GROUP BY month
ORDER BY month;

Chapter 10 Analytics Alchemy: Turning Data into Gold

305

Table 10-17 illustrates sales trends per month.

Table 10-17.  Sales Trends Per Month

Month total_orders

2023-02-01 5

2023-03-01 3

The following query finds the best-selling products.

SELECT
 product_id,
 SUM(quantity) AS total_sold,
 RANK() OVER (ORDER BY SUM(quantity) DESC) AS rank
FROM orders
GROUP BY product_id;

Table 10-18 illustrates the best-selling products.

Table 10-18.  Best-Selling Products

product_id total_sold Rank

101 5 1

105 3 2

104 2 3

102 2 3

103 1 5

The following query uses SUM() and RANK() functions to identify top spending

customers.

SELECT
 customer_id,
 SUM(total_price) AS total_spent,
 RANK() OVER (ORDER BY SUM(total_price) DESC) AS rank
FROM orders
GROUP BY customer_id;

Chapter 10 Analytics Alchemy: Turning Data into Gold

306

Table 10-19 illustrates the top spending customers.

Table 10-19.  Top Spending Customers

customer_id total_spent Rank

4 280 1

3 160 2

1 90 3

5 60 4

2 50 5

To extract the email domains of customers, the following query uses the SPLIT_
PART() function:

SELECT
 name,
 email,
 SPLIT_PART(email, '@', 2) AS domain
FROM customers;

Table 10-20 illustrates the extracted email domains of customers.

Table 10-20.  The Extracted Email Domains of Customers

Name Email Domain

Alice alice@mail.com mail.com

Bob bob@mail.com mail.com

Carol carol123@mail.com mail.com

David dave99@mail.com mail.com

Eve eve_wonder@mail.com mail.com

Chapter 10 Analytics Alchemy: Turning Data into Gold

307

To extract product colors, the following query uses the JSON function.

SELECT
 name,
 attributes->>'color' AS color
FROM products;

Table 10-21 illustrates the extracted product colors.

Table 10-21.  The Extracted Product Colors

Name Color

T-Shirt red

Jeans blue

Jacket black

Sneakers white

Hoodie gray

To handle missing stock data with default values, the following query uses the

control functions to ensure that “Out of Stock” is displayed when stock data is missing:

SELECT
 name,
 COALESCE(CAST(stock AS TEXT), 'Out of Stock') AS stock_status
FROM products;

Table 10-22 illustrates the stock data values.

Table 10-22.  Stock Data Values

Name stock_status

T-Shirt 100

Jeans 50

Jacket 30

Sneakers 40

Hoodie 25

Chapter 10 Analytics Alchemy: Turning Data into Gold

308

To calculate customer loyalty scores with specific defined functions, the following

query creates a function that assigns a “loyalty score” based on the total amount a

customer has spent.

First, Mary defines a calculate_loyalty_score function that categorizes customers

based on their total spending.

CREATE FUNCTION calculate_loyalty_score(total_spent NUMERIC)
RETURNS TEXT AS $$
BEGIN
 IF total_spent >= 1000 THEN
 RETURN 'Platinum';
 ELSIF total_spent >= 500 THEN
 RETURN 'Gold';
 ELSIF total_spent >= 200 THEN
 RETURN 'Silver';
 ELSE
 RETURN 'Bronze';
 END IF;
END;
$$ LANGUAGE plpgsql;

Then, she uses it in a query to classify the customers:

SELECT
 name,
 total_spent,
 calculate_loyalty_score(total_spent) AS loyalty_level
FROM customers;

This function automates customer classification, helping the business offer

personalized promotions based on spending levels, as illustrated in Table 10-23.

Chapter 10 Analytics Alchemy: Turning Data into Gold

309

Table 10-23.  Customer Classification

Name total_spent loyalty_level

Alice 300.5 Silver

Bob 150 Bronze

Carol 450.75 Silver

David 1200 Platinum

Eve 550.25 Gold

Lastly, to get the database version and the current user, the following query uses

system functions. The results are shown in Table 10-24.

SELECT version(), current_user;

Table 10-24.  The Database Version and Current User

Version current_user

PostgreSQL 14.17 (Debian 14.17-1.pgdg120+1) on x86_64-pc-linux-

gnu, compiled by gcc (Debian 12.2.0-14) 12.2.0, 64-bit

user_43c2bv266_43c9rcy88

�Breaking Down Complex Problems with Analytical Tools
To turn data into gold with SQL, mastering an advanced set of analytical tools called

recursive queries is essential. Recursive queries allow you to break down complex

problems into smaller, more manageable steps. Recursive common table expressions

(RCTEs) are especially useful for hierarchical data, such as analyzing organizational

structures or network flows. These functions enable analysts to construct a coherent

story line around their data, uncovering insights that help them make informed

decisions.

The combination of CTEs and recursive queries enables you to structure queries

modularly and readably. The use of CTEs allows you to break down complex problems

into smaller, more manageable steps, improving query clarity and efficiency. Rather than

writing nested subqueries, you can define intermediate results using CTEs and reference

Chapter 10 Analytics Alchemy: Turning Data into Gold

310

them in the main query, making SQL queries more understandable and maintainable.

This modular approach allows each step to be reviewed independently, improving

debugging and optimization.

It has been mentioned in earlier chapters that a CTE is a temporary result set that

can be referenced within a query. As a result, queries are more readable and structured,

and large queries can be broken into smaller steps.

WITH cte_name AS (
 SELECT column1, column2
 FROM table_name
 WHERE condition
)
SELECT * FROM cte_name;

Here, a CTE named cte_name creates a temporary result set. The CTE selects column1

and column2 from table_name where a specific condition is met. The main query then

selects all columns from this temporary result set. Accordingly, as an example, the

following query finds the total sales per product category from a sales table. By using

CTE, it makes it easier to read and maintain.

WITH category_sales AS (
 SELECT category, SUM(sales) AS total_sales
 FROM sales_data
 GROUP BY category
)
SELECT * FROM category_sales;

Here, the CTE category_sales calculates the total sales per category. To make

the SQL easier to read and maintain, the main query simply retrieves the results from

category_sales.

A recursive CTE is a special type of CTE that refers to itself. This allows it to process

hierarchical or sequential data, such as organizational structures, paths in networks,

or parent-child relationships. It consists of two key parts: a base query and a recursive

query. The base query is the initial dataset, and the recursive query calls the CTE itself,

repeatedly fetching the next level of data.

Chapter 10 Analytics Alchemy: Turning Data into Gold

311

WITH RECURSIVE cte_name AS (
 -- Base query: Selects the starting point
 SELECT column1, column2
 FROM table_name
 WHERE condition

 UNION ALL

 -- Recursive query: Calls itself to fetch related data
 SELECT t.column1, t.column2
 FROM table_name t
 JOIN cte_name c ON t.related_column = c.column1
)

This query employs a RECURSIVE CTE with two main parts. The base query establishes

the starting point by selecting column1 and column2 from table_name where a specific

condition is met. As a result, this forms the first level of results. The recursive part

recursively joins the table back to the previous results, which are stored in the CTE itself.

It uses the relationship between t.related_column and c.column1, gradually building up

multiple levels of connected data. Each iteration adds new rows until no matching rows are

found. This technique is particularly useful for traversing tree structures like organizational

hierarchies, parts explosions, or network paths without knowing their depth in advance.

The recursion continues until it reaches a natural termination point, where no new rows

are added. As an example, the following query wants to find all employees under a specific

manager from an employee’s table with id, name, and manager_id.

WITH RECURSIVE employee_hierarchy AS (
 -- Base case: Select top-level manager (CEO)
 SELECT id, name, manager_id, 1 AS level
 FROM employees
 WHERE manager_id IS NULL

 UNION ALL

 -- Recursive case: Find employees reporting to the previous level
 SELECT e.id, e.name, e.manager_id, eh.level + 1
 FROM employees e
 JOIN employee_hierarchy eh ON e.manager_id = eh.id
)

Chapter 10 Analytics Alchemy: Turning Data into Gold

312

This query starts with the CEO and recursively finds all employees under them,

assigning hierarchical levels dynamically. This query uses a recursive CTE called

employee_hierarchy to generate a hierarchical view of an organization’s reporting

structure. The query consists of two main components that work together to build the

complete organizational hierarchy. The base case establishes the starting point by

selecting the top-level manager, typically the CEO, from the Employees table, identified

by having a NULL value in the manager_id column. This query selects the manager’s id,

name, and manager_id, while also assigning a level value of 1 to indicate the top position

in the hierarchy. This is the first row of the result set and serves as the basis for recursion.

The recursive part then joins the Employees table with the previously generated

results, stored in the employee_hierarchy CTE. It finds all employees whose manager_id

matches the ID of someone in the current result set, essentially identifying all direct

reports. For each of these employees, it increases the level value by 1, indicating they are

one level lower in the hierarchy than their manager. This recursive process continues

automatically, with each iteration finding employees who report to managers discovered

in the previous iteration. This continues until no more matching employees are found.

This query efficiently traverses the entire organizational structure regardless of its

depth using this recursive approach. This results in a complete picture of the reporting

relationships with appropriate level indicators. This makes it possible to visualize

complex organizational hierarchies without having to know in advance how many levels

there are.

CTEs and recursive CTEs are powerful tools that make SQL queries more structured,

readable, and efficient. Table 10-25 illustrates the key differences between CTEs

and RCTEs.

Table 10-25.  Key Differences between CTEs and RCTEs

Feature Standard CTE Recursive CTE

Purpose Organizes complex queries Works with hierarchical or sequential data

Calls itself No Yes

Use case Filtering, grouping, aggregations Organizational hierarchies, graph traversal

Query execution Runs once Runs iteratively until no more rows match

Chapter 10 Analytics Alchemy: Turning Data into Gold

313

�The Second Story: An Analysis of a Family Tree
for the Civil Registration Office
The civil registration process is where records of life events—such as births, marriages,

and deaths—are kept for the citizens and residents of a city. Jane intends to work in the

ancestry research department, where she will be analyzing data collected from these

records. Jane’s task is to analyze a family tree dataset. The dataset includes information

about individuals and their direct parents. Using RCTEs, she will solve various

challenges related to family lineage. For Jane’s analytic journey, Table 10-26 contains

data associated with citizens and residents.

Table 10-26.  The family_tree Table

ID Name parent_id birth_year

1 Alice NULL 1950

2 Bob 1 1975

3 Carol 1 1978

4 Dave 2 2000

5 Eve 3 2003

6 Frank 2 2005

7 Grace 5 2028

Given this data, Jane wants to accomplish the following:

•	 Retrieve all descendants of Alice along with their generational depth.

•	 List all ancestors of Grace, tracing back through generations.

•	 Identify the longest ancestral chain in the family tree.

•	 Find the age difference between the oldest ancestor and youngest

descendant for each lineage.

Chapter 10 Analytics Alchemy: Turning Data into Gold

314

The following query will retrieve all descendants of Alice together with their

generational depth:

WITH RECURSIVE descendants AS (
 -- Base case: Start with Alice
 SELECT id, name, parent_id, birth_year, 1 AS generation
 FROM family_tree
 WHERE name = 'Alice'

 UNION ALL

 -- Recursive case: Find children of previous generation
 SELECT f.id, f.name, f.parent_id, f.birth_year, d.generation + 1
 FROM family_tree f
 JOIN descendants d ON f.parent_id = d.id
)
SELECT * FROM descendants;

To find all descendants of Alice within a family tree, this SQL query constructs a

recursive query using the WITH RECURSIVE clause. This query starts by selecting all data

from the family_tree table, including information about the current ancestor of Alice,

and then iteratively calls itself, the descendants CTE, to find all children of that ancestor.

This CTE will join each row from the family_tree table to the Descendants table based

on the parent_id, progressively exploring the family tree and ultimately returning a list

of all descendants of Alice, including their IDs, names, parent IDs, and birth years.

Note P art of the WITH RECURSIVE clause defines a new column called
generation within the descendants CTE. It plays a crucial role in tracking the
“level” or “depth” of each individual’s ancestry within the family tree. In the
previous query, the 1 AS generation part declares and names a column called
generation that will be added to every row produced by the recursive CTE. The
value 1 initially assigned to this column for the base case (Alice) establishes the
starting point for counting generational depth. As the query recurs, moving down
through the family tree, the generation value increases by one for each generation.

Chapter 10 Analytics Alchemy: Turning Data into Gold

315

Alice is in generation one, so she's the starting point. Bob’s children will be in
generation two, because they’re one generation removed from Alice. Generation 3
refers to Alice's grandchildren. The generation column allows you to organize and
visualize the family tree. Using parental lineage, it builds a numerical hierarchy of
ancestry relationships.

Table 10-27 illustrates all descendants of Alice along with their generational depth.

Table 10-27.  Descendants of Alice and Their Generational Depth

ID Name parent_id birth_year generation

1 Alice NULL 1950 1

2 Bob 1 1975 2

3 Carol 1 1978 2

4 Dave 2 2000 3

5 Eve 3 2003 3

6 Frank 2 2005 3

7 Grace 5 2028 4

The following query provides a list of all the ancestors of Grace, tracing back through

the generations:

WITH RECURSIVE ancestors AS (
 -- Base case: Start with Grace
 SELECT id, name, parent_id, 1 AS generation
 FROM family_tree
 WHERE name = 'Grace'

 UNION ALL

 -- Recursive case: Find parents of previous generation
 SELECT f.id, f.name, f.parent_id, a.generation + 1
 FROM family_tree f
 JOIN ancestors a ON f.id = a.parent_id
)
SELECT * FROM ancestors;

Chapter 10 Analytics Alchemy: Turning Data into Gold

316

This query generates a recursive table named Ancestors. It begins with a base case

selecting all records from the family_tree table representing the starting point, Grace,

with her ID, name, parent ID, and a generation of 1. Then, this query iteratively calls

itself, the ancestors CTE, to find all the parents of the previous generations, starting

from Grace. It uses the parent ID from each row in the current generation to find the

parents of the current generation. Finally, the query selects all rows returned by the

recursive call, effectively creating a table of all the parents within the family tree. This

shows a complete view of the ancestors, as shown in Table 10-28.

Table 10-28.  All Ancestors of Grace

ID Name parent_id Generation

7 Grace 5 1

5 Eve 3 2

3 Carol 1 3

1 Alice NULL 4

The following query identifies the longest ancestral chain in the family tree to

determine the longest lineage:

WITH RECURSIVE lineage AS (
 -- Base case: Start with individuals who have no parents
 SELECT id, name, parent_id, 1 AS depth
 FROM family_tree
 WHERE parent_id IS NULL

 UNION ALL

 -- Recursive case: Count generations for each descendant
 SELECT f.id, f.name, f.parent_id, l.depth + 1
 FROM family_tree f
 JOIN lineage l ON f.parent_id = l.id
)
SELECT * FROM lineage ORDER BY depth DESC LIMIT 1;

Chapter 10 Analytics Alchemy: Turning Data into Gold

317

This SQL query uses an RCTE named lineage to traverse a family tree structure

stored in a table called family_tree. It starts with the base case of finding individuals

who have no parents, where parent_id is NULL, and assigns them a depth of 1. The

recursive part then joins these results to the family_tree table to find their children,

adding one to the depth counter for each generation. This process continues building

the lineage hierarchy until all descendants are found. The final SELECT statement

sorts the results by depth in descending order and limits the output to just one row.

Essentially, this identifies the youngest descendant in terms of generational depth in the

family tree with the greatest distance from the original ancestors. Table 10-29 identifies

the longest ancestral chain in the family tree.

Table 10-29.  The Longest Ancestral Chain in the Family Tree

ID Name parent_id Depth

7 Grace 5 4

The following query aims to find the age gap between the oldest and youngest in

each lineage:

WITH RECURSIVE family_age AS (
 -- Base case: Start with individuals who have no parents
 SELECT id, name, parent_id, birth_year, birth_year AS oldest_birth_year
 FROM family_tree
 WHERE parent_id IS NULL

 UNION ALL

 -- Recursive case: Compare birth years through generations
 SELECT f.id, f.name, f.parent_id, f.birth_year, fa.oldest_birth_year
 FROM family_tree f
 JOIN family_age fa ON f.parent_id = fa.id
)
SELECT
 name,
 birth_year,

Chapter 10 Analytics Alchemy: Turning Data into Gold

318

 oldest_birth_year,
 birth_year - oldest_birth_year AS age_gap
FROM family_age
ORDER BY age_gap DESC;

This SQL query uses a RCTE named family_age to analyze age relationships within

a family tree. Starting with individuals who have no parents, root ancestors, as the base

case, it captures their ID, name, parent ID, birth year. It establishes their birth year as

the oldest_birth_year reference point. The recursive part then joins these results to

the family_tree table to add descendants. It maintains the original ancestor’s birth

year as it traverses through generations. After building this complete family structure

with preserved ancestral birth years, the final SELECT statement calculates the age_gap

by subtracting the oldest ancestor’s birth year from each family member’s birth year,

effectively measuring the time span between generations. The results are sorted by

age gap in descending order. As a result, family members with the largest generational

age differences are highlighted first, providing insight into how the age spans of the

generations have changed over time. Table 10-30 shows the age difference between the

oldest ancestor and youngest descendant for each lineage.

Table 10-30.  The Age Difference Between the Oldest Ancestor and Youngest

Descendant for Each Lineage

Name birth_year oldest_birth_year age_gap

Grace 2028 1950 78

Eve 2003 1950 53

Frank 2005 1950 55

�Summary
This chapter highlighted SQL’s functions in enhancing data analysis and insight

extraction. It explored techniques for manipulating and analyzing data using aggregate

functions for summarization, statistical and mathematical functions for numerical

insights, and window functions for trend analysis. Additionally, value, ranking, string,

Chapter 10 Analytics Alchemy: Turning Data into Gold

319

date and time, JSON, control, and system functions allow for deeper data exploration

and transformation. Moreover, SQL simplifies insightful summaries and hierarchical

data analysis. These techniques collectively improve overall data understanding, making

complex datasets more accessible and actionable.

�Key Points

•	 SQL functions enhance data analysis by enabling powerful

calculations, filtering, and transformations for deeper insights.

•	 The combination of recursive queries and CTEs breaks down

complex problems into manageable steps, enabling hierarchical data

analysis.

•	 Custom SQL functions allow users to extend SQL’s capabilities by

defining reusable logic for specialized calculations.

•	 With these SQL functions, data workflows become more efficient,

enabling better decision-making and actionable insights.

�Key Takeaways

•	 A variety of data processing: SQL functions provide powerful tools

for aggregating, filtering, and transforming data to uncover deeper

insights.

•	 Advanced analytical capabilities: Utilize statistical, mathematical,

and window functions to perform complex calculations.

•	 Efficient hierarchical analysis: Recursive common table expressions

(RCTEs) help break down complex relationships.

•	 Data structure processing: Take advantage of JSON, string, and date

functions to manage and manipulate structured and semi-structured

data effectively.

Chapter 10 Analytics Alchemy: Turning Data into Gold

320

•	 Custom functionality expansion: Define reusable SQL functions

to encapsulate logic and streamline repetitive calculations for more

efficient workflows.

�Looking Ahead
The next chapter, “The Grand Finale: Presenting Your Data Story,” examines how to

present your data story in the best way possible. Some closing thoughts are also shared.

This includes effective techniques for data story presentation, and tips that can enhance

data interpretation by creating reusable, efficient analytical workflows.

�Test Your Skills
Emma is a data analyst at Scholars Academy, where students from different grades

participate in an annual competition called the Excellence Competition. The school

administration needs insights into student performance across different subjects and

categories. They ask Emma to answer these questions based on the data in Table 10-31:

	 1.	 Which students performed best in each subject, ranking them

within their grade levels?

	 2.	 What is the average score per subject, and how does it compare

across different grades?

	 3.	 What percentage of students scored above 90 percent (Excellent)

and below 50 percent (Needs Improvement)?

	 4.	 How do students’ scores in core subjects (Mathematics, Science)

vary across different competitions?

	 5.	 What proportion of students improved their scores in the same

subject compared to last year’s competition?

	 6.	 Which students achieved the highest total scores across all

subjects?

	 7.	 How many students participated in each grade, and what was the

median score per grade?

Chapter 10 Analytics Alchemy: Turning Data into Gold

321

	 8.	 What is the highest, lowest, and average score per subject?

	 9.	 Is it possible to create a function that categorizes students in

accordance with their performance level (Excellent, Good,

Average, Needs Improvement)?

Table 10-31.  The competition_results Table

student_id Name Grade Subject Score competition_year

101 Alice 9 Mathematics 92 2024

102 Bob 10 Science 78 2024

103 Charlie 9 Mathematics 85 2024

104 David 11 Literature 65 2024

105 Emma 10 Science 88 2024

Chapter 10 Analytics Alchemy: Turning Data into Gold

323
© Hamed Tabrizchi 2025
H. Tabrizchi, Narrative SQL, https://doi.org/10.1007/979-8-8688-1560-7_11

CHAPTER 11

The Grand Finale:
Presenting Your
Data Story
Your journey is nearing its end. The journey continued throughout each chapter with

stories involving data analysis using SQL queries. Through chapter-by-chapter stories,

you have learned how to extract deeper insights and information from raw data to

address complex and advanced analytical questions. This chapter aims to summarize

the previous chapters and provide insight into presenting a narrative for data analysis.

Up until this chapter, the chapters contributed to teaching data analysis and SQL query

writing through narratives. However, this chapter focuses more on providing a mindset

for readers who have acquired sufficient query writing skills in data analysis.

�The Art of Data Storytelling
Storytelling in data analysis is the practice of presenting data-driven insights in a

compelling and understandable way. Instead of just showing raw numbers, tables,

or charts, storytelling helps communicate what the data means and why it matters. It

turns complex findings into a narrative that people can relate to, making it easier to

understand trends, patterns, and conclusions. Data storytelling consists of four essential

components: data, narrative, visuals, and actionable insights. Data consists of facts,

numbers, and statistical results, which provide the foundation for storytelling. Narrative

is a structured explanation that gives context to the data, making it meaningful. Visuals

like graphs, charts, and dashboards support and enhance the story. Lastly, actionable

insights are conclusions that guide decision-making or strategic planning.

https://doi.org/10.1007/979-8-8688-1560-7_11#DOI

324

�The Importance of Query Writing for Storytelling
in Data Analysis
In data storytelling, SQL plays a crucial role in extracting, transforming, and analyzing

data to create meaningful narratives. Well-written SQL queries allow analysts to retrieve

relevant data efficiently, uncover insights, and present findings in a structured manner.

Without strong query-writing skills, data storytelling lacks accuracy, depth, and clarity.

�Extracting the Right Data for a Story

The foundation of storytelling in data analysis starts with retrieving relevant and

accurate data. SQL enables analysts to filter and organize data, ensuring that only the

necessary information is included in the analysis. Table 11-1 provides a structured table

summarizing SQL statements, clauses, operations, and functions used to extract the right

data for storytelling.

Table 11-1.  SQL Statements, Clauses, Operations, and Functions Used to Extract

the Right Data for Storytelling

Category SQL Components Purpose

SQL statements SELECT Retrieves specific data from tables

FROM Specifies the table(s) to query

WHERE Filters data based on conditions

GROUP BY Aggregates data by specific columns

ORDER BY Sorts results in ascending or descending

order

JOIN Combines data from multiple tables

LIMIT Restricts the number of returned rows

HAVING Filters aggregated results

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

325

Category SQL Components Purpose

SQL clauses DISTINCT Removes duplicate values

AS Renames columns for better readability

IN / NOT IN Matches values in a specified list

BETWEEN Filters data within a range

LIKE Searches for patterns in text

SQL operations Arithmetic (+, -, *, /) Performs mathematical calculations

Comparison (=, >, <, >=, <=,

<>)

Compares values

Logical (AND, OR, NOT) Combines multiple conditions for filtering

Aggregate

functions

COUNT() Counts the number of rows

SUM() Calculates the total sum of values

AVG() Computes the average of a column

MIN() / MAX() Finds smallest or largest values

String functions UPPER() / LOWER() Converts text to uppercase or lowercase

SUBSTRING() Extracts part of a string

TRIM() Removes extra spaces from text

Date functions NOW() Returns the current timestamp

DATE_TRUNC() Rounds date/time values to a specified level

EXTRACT() Retrieves year, month, or day from a date

Table 11-1.  (continued)

Data storytelling relies on SQL to extract and shape precise data from databases.

As explained in Chapters 2-6, SQL statements like SELECT and FROM identify the desired

data columns and their source tables, respectively. Filtering is achieved using WHERE for

row-level conditions and HAVING for conditions on aggregated results produced by GROUP
BY. Data arrangement is handled by ORDER BY for sorting, while JOIN integrates data from

multiple tables. LIMIT controls output volume.

Chapter 11 The Grand Finale: Presenting Your Data Story

https://doi.org/10.1007/979-8-8688-1560-7_2
https://doi.org/10.1007/979-8-8688-1560-7_6

326

Further refinement comes from SQL clauses. DISTINCT ensures uniqueness in

results, AS renames columns for clarity, and clauses like IN, NOT IN, BETWEEN, and LIKE

offer powerful pattern-matching and range-filtering capabilities. SQL operations,

including arithmetic (+, -, *, /), comparison (=, >, <), and logical (AND, OR, NOT), allow

for calculations and complex conditional logic within queries. As discussed in detail in

Chapters 5 and 10, aggregate functions such as COUNT(), SUM(), AVG(), MIN(), and MAX()

are critical for summarizing data insights. Additionally, string functions like UPPER(),

SUBSTRING(), and TRIM() and date functions like NOW(), DATE_TRUNC(), and EXTRACT()

facilitate text manipulation and temporal analysis, ensuring the retrieved data effectively

supports the narrative.

�Structuring Data for Better Insights

Raw datasets are often complex and difficult to interpret. SQL helps structure data by

using JOINs, aggregations, and filtering, making insights easier. See Table 11-2.

Table 11-2.  SQL Statements, Clauses, Operations, and Functions Used to

Structure Data for Better Insights

Category SQL Components Purpose

SQL statements SELECT Extracts specific columns from a table

FROM Defines the table(s) to retrieve data from

WHERE Filters data based on conditions

GROUP BY Groups data to perform aggregations

ORDER BY Sorts the data in ascending or descending

order

JOIN Merges data from multiple tables

LIMIT Restricts the number of rows returned

HAVING Filters aggregated data

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

https://doi.org/10.1007/979-8-8688-1560-7_5
https://doi.org/10.1007/979-8-8688-1560-7_10

327

Category SQL Components Purpose

SQL clauses DISTINCT Removes duplicate values

AS Renames columns for better readability

IN / NOT IN Filters values based on a predefined list

BETWEEN Filters values within a specified range

LIKE Finds text patterns using wildcards

SQL operations Arithmetic (+, -, *, /) Performs mathematical calculations

Comparison (=, >, <, >=, <=, <>) Compares values

Logical (AND, OR, NOT) Combines multiple filter conditions

Aggregate

functions

COUNT() Counts the number of rows

SUM() Calculates the total sum of values

AVG() Computes the average of a column

MIN() / MAX() Finds the smallest or largest values

String functions CONCAT() Combines multiple string values

UPPER() / LOWER() Changes text to uppercase or lowercase

SUBSTRING() Extracts a portion of a string

TRIM() Removes extra spaces from text

Date functions NOW() Returns the current timestamp

DATE_TRUNC() Rounds date/time values

EXTRACT() Retrieves specific parts of a date

Window functions ROW_NUMBER() Assigns a unique row number

RANK() / DENSE_RANK() Assigns ranking to rows based on criteria

LAG() / LEAD() Accesses previous or next row values

NTILE(n) Divides data into n equal parts

Common table

expressions (CTEs)

CASE WHEN Performs conditional calculations

WITH (Common Table Expressions) Creates temporary result sets for better

readability

Table 11-2.  (continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

328

As shown in Table 11-2, SQL provides essential components to structure data for

better insights. Statements like SELECT, FROM, WHERE, JOIN, and GROUP BY retrieve, filter,

combine, and aggregate information. Clauses such as AS, LIKE, and BETWEEN refine

queries. Operations enable calculations and logic, while the aggregate, string, and date

functions summarize and format data. As discussed in Chapter 10, advanced features

such as RANK and LAG perform calculations across related rows. Also, CASE WHEN and

CTEs, discussed in Chapter 8, provide conditional logic and improve query organization,

resulting in more insightful and structured results.

�Supporting Visualizations of Query Results

SQL queries provide clean and structured data for dashboards, charts, and reports. Well-

written queries ensure accurate, relevant, and insightful visualizations. Table 11-3 lists

the SQL elements that can help you prepare query results for dashboards, reports, and

visual storytelling.

Table 11-3.  SQL Statements, Clauses, Operations, and Functions Used to Support

Visualizations of Query Results

Category SQL Components Purpose

SQL statements SELECT Retrieves specific data for visualization

FROM Specifies the table(s) to query

WHERE Filters data before visualization

GROUP BY Aggregates data for charts (e.g., bar, pie)

ORDER BY Sorts data for trend analysis

JOIN Merges data from multiple sources

LIMIT Restricts data size for better visualization

HAVING Filters aggregated data for clarity

SQL clauses DISTINCT Removes duplicate values to avoid redundancy

AS Renames columns for clearer labels

IN / NOT IN Selects specific values for focused analysis

BETWEEN Filters data within a defined range

LIKE Searches for pattern-matching text
(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

https://doi.org/10.1007/979-8-8688-1560-7_10
https://doi.org/10.1007/979-8-8688-1560-7_8

329

Category SQL Components Purpose

SQL operations Arithmetic (+, -, *, /) Computes numerical values for visual analysis

Comparison (=, >, <,

>=, <=, <>)

Filters data for meaningful visualization

Logical (AND, OR, NOT) Combines multiple conditions for segmentation

Aggregate functions COUNT() Counts data points for histograms or KPIs

SUM() Computes totals for bar and pie charts

AVG() Calculates averages for trend analysis

MIN() / MAX() Identifies range for visual scales

String functions CONCAT() Combines values for label formatting

UPPER() / LOWER() Standardized text case for consistency

SUBSTRING() Extracts key text parts for visualization

TRIM() Cleans data for better presentation

Date functions NOW() Fetches the current timestamp for timelines

DATE_TRUNC() Aggregates time data for trends (e.g., monthly

sales)

EXTRACT() Retrieves year, month, or day for charts

Window functions ROW_NUMBER() Assigns unique row numbers for ranking

RANK() / DENSE_
RANK()

Helps create leaderboards and sorted lists

LAG() / LEAD() Compares current vs. previous data points

NTILE(n) Splits data into quantiles for distribution analysis

Common Table

Expressions (CTEs)

CASE WHEN Enables conditional categorization in charts

WITH (CTEs) Prepares structured data for visualization tools

Table 11-3.  (continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

330

Chapter 8 explains how SQL prepares results for clear visualization. Statements like

SELECT, FROM, WHERE, GROUP BY, and ORDER BY extract, filter, aggregate, and sort data

specifically for charts and trend analysis. Clauses such as AS provide clear labels, while

operations and aggregate functions compute values essential for visual representation.

String and date functions format text and group time-based data. The use of advanced

tools such as window functions and CTE provides a variety of visual comparisons,

rankings, and categorizations for complex data.

�Ensuring Data Accuracy and Reliability

Poorly written queries can lead to incorrect insights, misleading decision-making, and

flawed storytelling. As shown in Table 11-4, SQL abilities such as data validation, error

handling, and consistency checks ensure trustworthy data in a story.

Table 11-4.  SQL Statements, Clauses, Operations, and Functions Used to Ensure

Data Accuracy and Reliability

Category SQL Components Purpose

SQL statements SELECT Retrieves data to verify accuracy

INSERT Ensures correct data entry

UPDATE Modifies existing data while maintaining

integrity

DELETE Removes incorrect or duplicate records safely

MERGE Prevents duplication by inserting or updating

data

TRANSACTION Ensures atomicity, consistency, and rollback if

needed

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

https://doi.org/10.1007/979-8-8688-1560-7_8

331

Table 11-4.  (continued)

Category SQL Components Purpose

SQL clauses WHERE Filters out incorrect or unwanted data

HAVING Ensures aggregated data meets conditions

ORDER BY Organizes data to identify inconsistencies

DISTINCT Eliminates duplicate records

CHECK Defines constraints to maintain data validity

FOREIGN KEY Maintains referential integrity

PRIMARY KEY Ensures uniqueness of records

UNIQUE Prevents duplicate values in specified columns

NOT NULL Ensures mandatory fields are not left empty

SQL operations Arithmetic (+, -, *,
/)

Ensures mathematical correctness in

calculations

Comparison (=, >, <,
>=, <=, <>)

Validates correct relationships between values

Logical (AND, OR,
NOT)

Combines multiple conditions for accurate

filtering

Aggregate functions COUNT() Detects missing or duplicate records

SUM() Verifies numerical totals

AVG() Checks for outliers in average calculations

MIN() / MAX() Identifies unexpected values or errors

String functions TRIM() Removes unwanted spaces that may cause

mismatches

UPPER() / LOWER() Standardizes text case to ensure consistency

LENGTH() Detects unusually short or long values

REPLACE() Fixes incorrect text entries

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

332

Category SQL Components Purpose

Date functions NOW() Captures accurate timestamps

EXTRACT() Validates specific date components (year,

month, day)

DATE_TRUNC() Standardizes date/time for consistency

AGE() Checks logical date differences (e.g., age

calculation)

Validation functions IS NULL / IS NOT
NULL

Detects missing or incomplete data

COALESCE() Replaces NULL values with defaults

CASE WHEN Applies conditional corrections to data

REGEXP_MATCH() Ensures valid data format using regex

Window functions ROW_NUMBER() Identifies duplicate records

RANK() Detects inconsistencies in ranked datasets

LAG() / LEAD() Compares data to previous or next row

Data integrity tools CHECKSUM() Verifies data integrity across tables

FOREIGN KEY CASCADE Maintains consistency in relational data

Table 11-4.  (continued)

As discussed in the first chapter, a variety of options can be used to ensure the

accuracy and reliability of data. Statements like INSERT, UPDATE, and DELETE, governed

by the TRANSACTION control, manage data safely. Constraints like PRIMARY KEY, FOREIGN
KEY, CHECK, and NOT NULL enforce data validity and integrity rules. Clauses like WHERE

filter out inaccuracies, while DISTINCT removes duplicates. Operations and specialized

functions like Aggregate, string, date, and validation verify calculations, standardize

formats, detect errors, handle NULLs like COALESCE, and validate data.

Chapter 11 The Grand Finale: Presenting Your Data Story

333

�Automating Storytelling with Dynamic Queries

SQL can automate reports and storytelling by generating dynamic insights that update

over time. Stored procedures, views, and scheduled queries enable ongoing analysis,

ensuring that decision-makers receive fresh insights regularly, as briefly summarized in

Table 11-5.

Table 11-5.  SQL Statements, Clauses, Operations, and Functions Used to

Automate Storytelling with Dynamic Queries

Category SQL Components Purpose

SQL statements SELECT Retrieves dynamic data for storytelling

INSERT Stores generated insights into reporting tables

UPDATE Updates dynamic reports based on new data

DELETE Removes outdated or irrelevant insights

WITH (CTE) Simplifies complex queries for dynamic analysis

EXECUTE Runs dynamic queries stored as prepared

statements

PREPARE Prepares a query with placeholders for dynamic

execution

SQL clauses WHERE Filters data dynamically based on conditions

HAVING Filters aggregated insights dynamically

ORDER BY Sorts data dynamically for readability

GROUP BY Aggregates data dynamically for summaries

CASE WHEN Applies conditional logic for dynamic insights

LIMIT Controls result size dynamically

OFFSET Supports pagination in automated reports

SQL operations LIKE / ILIKE Enables pattern-based dynamic searches

IN Filters multiple values dynamically

BETWEEN Handles dynamic date and range filters

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

334

Category SQL Components Purpose

String functions CONCAT() Dynamically combines text for reports

STRING_AGG() Aggregates multiple values dynamically

REPLACE() Adjusts text dynamically

Date functions NOW() Uses current timestamps dynamically

EXTRACT() Retrieves dynamic date components

DATE_TRUNC() Aggregates time-based storytelling insights

AGE() Calculates differences for dynamic timelines

Validation functions COALESCE() Handles NULL values dynamically

NULLIF() Avoids unnecessary errors in dynamic queries

GREATEST() /
LEAST()

Selects dynamic min/max values

Window functions ROW_NUMBER() Enables ranking for dynamic comparisons

RANK() Generates dynamic rankings

LAG() / LEAD() Compares previous and next rows dynamically

Stored procedures CREATE PROCEDURE Automates repetitive storytelling queries

CALL Executes stored storytelling logic, only supported

from PG 11+

Views and materialized

views

CREATE VIEW Stores reusable dynamic queries for reports

REFRESH
MATERIALIZED
VIEW

Updates dynamic precomputed insights

Dynamic query

execution

FORMAT() Constructs dynamic SQL queries as strings

EXECUTE Runs dynamic SQL queries

Table 11-5.  (continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

335

SQL facilitates automated storytelling by enabling dynamic queries, as discussed

in Chapter 7. Key statements like SELECT and clauses such as WHERE, HAVING, and ORDER
BY use nested queries, parameters, and functions like NOW(), EXTRACT(), or CASE WHEN

for flexible data retrieval and conditional logic. CTEs and window functions structure

complex, context-aware insights. Automation relies on reusable stored procedures and

views, as discussed in Chapter 9. Dynamic SQL execution allows queries to generate up-

to-date narratives automatically based on changing data or inputs.

Overall, SQL query writing is an essential skill for storytelling in data analysis and

it enables analysts to extract meaningful data, structure information for better insights,

support visual storytelling with accurate results, ensure reliability and accuracy of data,

and automate dynamic reports for continuous storytelling.

�PostgreSQL Query Execution
During the execution of a query, PostgreSQL first checks whether it is valid in terms of

syntax and structure. This step includes lexical analysis, syntax analysis, and semantic

analysis. Lexical analysis breaks the query down into individual tokens like keywords,

column names, and table names. Syntax analysis checks whether the query follows

SQL grammar rules. Semantic analysis ensures referenced tables or columns exist and

verifies data types. Once the query is parsed, PostgreSQL creates an execution plan by

considering multiple strategies. PostgreSQL’s key actions in these steps include table

scanning methods, join strategy selection and sorting and aggregation optimization. In

table scanning methods, PostgreSQL decides between a sequential scan that scans the

full table, an index scan that uses indexes, and a bitmap heap scan that optimizes scans

with multiple indexes. In the join strategy selection, a nested loop join is good for small

tables, a hash join is efficient for large datasets, and a merge join is good for sorted data.

In sorting and aggregation optimization, PostgreSQL optimizes sorting and aggregation

using indexes, hashing, parallel processing, and memory-efficient algorithms to reduce

disk I/O and computation time.

Figure 11-1 illustrates the execution order of SQL statements and clauses. In

PostgreSQL, the execution order of SQL statements and clauses follows a specific

sequence that differs from the order in which they are written in the query. Generally, it

begins with the FROM clause, where PostgreSQL identifies the source of the data, which

could involve multiple tables or views, and applies any JOIN operations to combine these

sources. Next, the WHERE clause filters the rows based on the conditions specified. After

Chapter 11 The Grand Finale: Presenting Your Data Story

https://doi.org/10.1007/979-8-8688-1560-7_7
https://doi.org/10.1007/979-8-8688-1560-7_9

336

filtering, the GROUP BY clause groups the rows into aggregates. If there are any conditions

on the aggregated groups, the HAVING clause is then applied. Once the rows are grouped

and filtered by HAVING, if applicable, the SELECT clause is used to choose the columns

and expressions that will appear in the result. The data is then sorted using the ORDER BY

clause, determining the order in which the rows are returned. Finally, LIMIT and OFFSET

are applied to restrict the number of rows returned and, in the case of OFFSET, to skip a

specified number of rows.

Data from
mul�ple tables

Merged

FRO
M

 and JO
IN

Filtered

W
HE

RE

G
RO

U
P

BY

Grouped

HAVING

Filtered

SELECT

Selected

O
RD

ER
 B

Y

Ordered

LI
M

IT
 a

nd

O
FF

SE
T

Limited

Figure 11-1.  The flow of query execution in PostgreSQL.

Chapter 11 The Grand Finale: Presenting Your Data Story

337

It is essential to understand this execution flow. By understanding this flow of

execution in PostgreSQL, you can optimize queries and ensure that they return the right

results.

�Beyond the Query
The journey of data analysis doesn’t end with the execution of a SQL query. While

querying serves as the foundation for gathering insights, the ultimate goal is to

communicate these insights effectively. Often abstract and complex, raw data requires

transformation into a meaningful story. This is where data storytelling comes into play.

It acts as the bridge that connects the data’s raw form to meaningful understanding.

Data analysts can connect trends, data points, and patterns in interesting, engaging, and

impactful ways through storytelling.

In order to increase analytical effectiveness, it is essential to present your findings

effectively. To get your audience to understand and act on the data, it is not sufficient

to simply display the data; the key is to explain the data in a way they can easily

understand. A well-crafted presentation can transform raw numbers into a powerful

narrative that guides decision-making. By organizing data clearly, using visual aids

effectively, and focusing on the insights, it is possible to ensure that your findings are not

just seen, but understood. The presentation should not only convey information but also

tell a story that highlights the significance of the data. It should also highlight the impact

of the conclusions drawn from them.

The previous chapters explored the steps of data analysis, from understanding the

problem and preparing the data to analyzing and interpreting it. Now, it’s time to shift

focus and discuss how to bring the findings to life.

�Structuring Your Data Narrative for Presentation

Structuring your data narrative for presentation is crucial to presenting complex

information effectively. A well-constructed data presentation most often has a classic

storytelling structure, beginning with the presentation.

The classic narrative structure—exposition, rising action, climax, and resolution—

can be a strong foundation for data storytelling. This structure helps you make data-

driven insights more engaging and memorable by framing them in a meaningful way.

In a nutshell, data storytelling involves a structured narrative that inspires action, going

beyond mere statistics to convey a compelling message. The classic narrative structure

Chapter 11 The Grand Finale: Presenting Your Data Story

338

begins with exposition, which sets the stage, where the context, problem, or question at

hand is introduced. Providing relevant background information and data is crucial to

establish the significance of the topic and help the audience understand why it matters.

Following this is rising action, which builds the case, presenting key findings and

insights. Data visualizations, trend analyses, and comparisons are employed to build

expectation and guide the audience toward the core message. The narrative then reaches

its climax, where the most impactful insight or unexpected discovery is revealed. This is

the pivotal moment, designed to inspire a significant realization in the audience. Finally,

the resolution, which calls to action or next steps, explains the implications of the

findings. It suggests possible actions, decisions, or future directions based on the data.

This concluding phase ensures that the data story not only informs but also inspires

action, transforming raw data into a basis for informed decision-making.

�Understanding the Audience

The importance of knowing your audience cannot be underestimated. Customizing

your presentation to the audience’s proficiency is essential. For data scientists,

detailed methodology and technical terminology may be appropriate, while business

executives or general stakeholders require a high-level overview that focuses on strategic

implications. Further, recognizing your audience’s objectives—whether they seek

strategic business insights, operational improvements, or technical solutions—will

enable you to align your content with their needs. By aligning your narrative with their

concerns, you ensure that your narrative addresses the audience’s concerns directly and

provides them with useful information.

�The Key Elements of a Data Story Presentation

The key elements of a data story presentation begin with a powerful intro, designed

to immediately capture attention. This could be a thought-provoking question, a

startling statistic, or a relatable real-world scenario. Following the opening line, provide

context and background, outlining the dataset’s origin and the business problem

or research question being investigated. A concise description of the methodology,

including any SQL queries and analytical techniques used, adds credibility to your

findings. The key findings should be presented clearly and concisely, ideally supported

by visualizations for enhanced comprehension. Transitioning from findings to

practical recommendations is essential. This can translate insights into practical steps

Chapter 11 The Grand Finale: Presenting Your Data Story

339

stakeholders can implement. This ensures that the presentation concludes with a clear

purpose and impact by directing the audience to take action, whether making a business

decision, adopting a new strategy, or pursuing further research.

�Visualization: Insights from Visuals

Data in its raw form can be dense and difficult to interpret. Visualizations transform raw

data into digestible insights, enhancing understanding and engagement. Because the

human brain processes visual information more efficiently than textual information,

visualizations can be a powerful communication tool. An effective visualization depends,

however, on the selection of the right chart type. For example, bar charts are ideal for

comparing categories, whereas line charts are excellent for displaying trends over time. A

properly chosen chart ensures that the data’s story is conveyed accurately and effectively,

preventing misinterpretations and enhancing understanding. Table 11-6 and Figure 11-2

illustrate commonly used chart types that are useful for effective visualization.

Table 11-6.  A Summary of Commonly Used Chart Types

Chart Type Description

Bar chart Displays categorical data with rectangular bars; useful for comparing quantities.

Column chart Similar to a bar chart but with vertical bars; used to compare different

categories.

Line chart Shows trends over time by connecting data points with a line.

Scatterplot Displays relationships between two numerical variables using dots.

Pie chart Represents proportions of a whole using slices; best for showing percentage

distributions.

Doughnut chart A variation of the pie chart with a hole in the center, improving readability.

Histogram Similar to a bar chart but used for frequency distribution of continuous data.

Box plot (box-and-

whisker plot)

Summarizes data distribution with quartiles and outliers.

(continued)

Chapter 11 The Grand Finale: Presenting Your Data Story

340

Chart Type Description

Bubble chart Similar to a scatterplot but includes a third variable represented by bubble size.

Heatmap Uses color gradients to show relationships between variables in a matrix format.

Area chart Similar to a line chart but with shaded areas under the lines to emphasize

volume.

Stacked bar chart Segments bars into different categories to show part-to-whole relationships.

Waterfall chart Shows how an initial value is affected by a series of positive or negative

changes.

Radar chart

(spider chart)

Compares multiple variables across different categories in a radial layout.

Treemap Uses nested rectangles to represent hierarchical data with size and color.

Table 11-6.  (continued)

Figure 11-2.  An illustration of commonly used chart types

Chapter 11 The Grand Finale: Presenting Your Data Story

341

As shown in Figure 11-2, visualization techniques serve distinct purposes in data

storytelling. Bar charts are effective for comparing categorical data, such as sales figures

across different product lines. Line charts are invaluable for illustrating trends over time,

like website traffic fluctuations throughout the year. Scatterplots reveal relationships

between two numerical variables, showcasing correlations or patterns. Histograms

display the distribution of a single numerical variable, highlighting frequency and

range. Maps are essential for geographical data, allowing spatial analysis and pattern

recognition. Lastly, dashboards can combine multiple visualizations into a unified

interface, providing a comprehensive overview of key performance indicators.

�Visualization Tools Recommended for PostgreSQL

PostgreSQL, a robust relational database, can be seamlessly integrated with various

visualization tools to bring data to life. Tableau and Power BI offer user-friendly

interfaces for creating interactive dashboards, while Grafana is excellent for time-series

data visualization, often used for monitoring. Python libraries such as Matplotlib and

Seaborn provide a more programmatic approach, offering a wide range of customization

options, as illustrated in Figure 11-2. To export data from PostgreSQL to these tools, you

can perform standard SQL queries to extract the desired data and then export it as a CSV

file, or use direct database connectors provided by the visualization tools. For example,

Tableau and Power BI allow direct connections to PostgreSQL databases via ODBC or

JDBC drivers. As a result, the visualizations can reflect the most current information,

whether they are updated live or on a schedule.

�Beyond the Presentation: How to Guide Your Audience
Effective data presentations do not end with the last slide. Ensure that audience

members understand, retain, and act on insights by guiding them beyond the

presentation. This involves providing supporting materials, encouraging further

exploration, and fostering a data-driven culture.

�Supporting Materials

To enhance understanding and credibility, it’s essential to share resources that support

the analysis. Transparency in data sourcing allows audiences to verify information and

understand reliability. There are limitations in every dataset, as well as data challenges

Chapter 11 The Grand Finale: Presenting Your Data Story

342

such as missing values or biases. Furthermore, creating a structured list of key terms,

metrics, and definitions ensures consistency in interpretation, especially when working

with complex datasets or technical terminology.

�Encouraging Further Explorationt
A data presentation should inspire a sense of curiosity in the audience. Rather than

simply delivering conclusions, presenters should engage the audience in a discussion of

new questions. Discussing the questions behind SQL queries can lead to better insights

or more insightful questions that can uncover better data findings. Also, providing

interactive tools like shared dashboards or datasets enables hands-on exploration,

empowering the audience to uncover insights independently.

�Creating a Data-Driven Culture

Beyond a single presentation, the goal is to create an environment where data is at

the core of decision-making. By using data to inform strategies, presenters can help

audiences shift mindsets from intuition-based to evidence-based decision-making. By

incorporating this strategy, presenters can move beyond just sharing insights—they can

equip their audience with the tools, mindset, and motivation to use data effectively long

after the presentation ends.

�Final Thoughts: The Data Storyteller’s Legacy
in the Age of Artificial Intelligence (AI)
As you’ve learned, data storytelling is the ability to transform complex data into

engaging, meaningful narratives. Data storytellers need clarity, context, and

engagement. By clearly presenting data with context and relevance, storytellers can

connect with their audience on an emotional level. This makes the data not just

informative but also interesting by understanding the audience’s needs. It also selects

the right visualizations and emphasizes the story’s core message.

Data storytelling is evolving as technology advances. Tools and techniques will

evolve, but the core need to communicate data effectively will remain. This encourages

analysts to continue refining their data storytelling skills, which is crucial. The future

of data storytelling will be dynamic, but its goal will always be to make data accessible,

relatable, and actionable for all.

Chapter 11 The Grand Finale: Presenting Your Data Story

343

Undoubtedly, the emergence of phenomena such as large language models (LLMs)

and advanced language models has raised many concerns for those involved in this

field or planning to enter it in the future. Generative AI and LLMs have revolutionized

query writing and data analysis in recent years. These technologies enable automated

SQL query generation, natural language processing for extracting insights, and even

predictive analytics. By reducing technical expertise, they empower a broader audience

to interact with data more simply. As these AI tools continue to advance, they will further

enhance the speed, efficiency, and accuracy of data analysis. This will make it easier to

uncover insights and create compelling narratives from large datasets.

Despite all the advantages that come with the emergence of AI for writing queries, a

great question has also arisen. While LLMs can indeed generate SQL queries and help

automate data analysis tasks, are there still logical reasons to learn SQL?

The answer that I give to this question as the author of this book when writing

the current chapter in April 2025 is “most definitely yes,” analysts still need to learn

programming languages, query writing, and many of the skills that AI can do. In fact,

I think that knowing SQL allows analysts to understand the logic behind queries. This

helps them not only understand what a model generates but also modify and optimize

queries according to specific needs. Without understanding SQL, they may struggle to

adapt queries when they encounter complex data structures or specific requirements

that the LLM doesn’t automatically handle well. LLMs can generate queries based on

patterns they’ve been trained on, but they might not always generate the most efficient

or contextually appropriate query for each particular situation. Through the study of

SQL, analysts learn how to customize queries to suit their exact needs, refine query

performance, and ensure they follow best practices. LLM queries that don’t return the

expected results or perform poorly can be diagnosed with SQL knowledge. It is possible

to interpret error messages, identify performance issues, and optimize queries.

In summary, while LLMs can assist in generating queries, SQL remains a

fundamental skill that allows analysts to manage, understand, and troubleshoot their

database systems.

Anyway, I hope your time and effort spent reading and practicing this book will

help you learn data analysis, query writing, and the ability to tell stories in the world of

data. In conclusion, I must say that reading just one book is not sufficient to become an

expert data analyst. I suggest that you always update your knowledge and skills. As a data

analyst, I recommend gaining a solid understanding of the basics and keeping yourself

Chapter 11 The Grand Finale: Presenting Your Data Story

344

motivated to learn more. As you continue on your data storytelling journey, remember

that every dataset has a story waiting to be told. The world of data storytelling is vast and

ever-changing, but your role in making data meaningful remains valuable.

�Summary
This chapter explored the art of effectively presenting a data story, ensuring insights are

clear, compelling, and actionable. You learned how to structure your narrative, select

impactful visualizations, and engage your audience with storytelling principles. A data-

driven culture was also discussed, as well as strategies to guide audience interpretation,

encourage further exploration, and do further research. Using these strategies, raw data

can be transformed into meaningful insights that facilitate informed decisions.

�Key Points

•	 Data stories need to be structured with clear narratives and

compelling visualizations to ensure they are both accessible and

engaging.

•	 Adapting presentations to different audiences enhances

comprehension and encourages decision-making based on data.

•	 While AI and language models can assist in generating queries,

SQL remains a fundamental skill which allows analysts to manage,

understand, and troubleshoot their databases.

�Key Takeaways

•	 Effective data narratives: The ability to present a data story that is

clearly structured with a clear beginning, middle, and end increases

audience engagement and comprehension.

Chapter 11 The Grand Finale: Presenting Your Data Story

345

•	 Strategic visualization selection: Choosing the right chart and

visual elements will ensure that your data is communicated clearly

and convincingly.

•	 Audience-centered communication: Making presentations relevant

to different audiences promotes better understanding and facilitates

data-driven decision-making.

Chapter 11 The Grand Finale: Presenting Your Data Story

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter Overviews
	Chapter 1: The Storyteller’s Database
	Introduction to Data
	Data Analysis
	Databases
	Relational Databases vs Non-Relational Databases
	Exploring Relational Database Management Systems (RDBMS)
	Databases in Data Analysis and Storytelling

	Diving into SQL
	SQL Command Types: The Five Principles of Database Interaction
	Transaction Statements vs Query Statements in Data Analysis
	Transaction Statements in Data Analysis
	Query Statements in Data Analysis

	Integrating Transaction and Query Statements in Data Analysis

	Setting Up a Storytelling Environment with PostgreSQL
	Step 1: Installation
	Step 2: Create Your First Database
	Step 3: Define Data Structures

	Data Types in SQL
	Crafting the Narrative
	Summary
	Key Points
	Key Takeaways
	Looking Ahead

	Chapter 2: Starting with SELECT
	Introduction to SELECT
	The Importance of SELECT in Storytelling with Data
	The Anatomy of a SELECT Statement
	Basic Structure and Syntax

	The First Story: The Bookstore Anniversary
	Selecting Columns from a Table
	Introducing Aliases for Columns
	Introducing the CONCAT Function

	SQL Mathematical Operations with SELECT
	The Second Story: The Bakery Sales Data
	The CASE statement
	String Patterns

	The Art of Distinct Selection
	The Third Story: The Candy Store Sales Data
	Aggregating with SELECT
	Differences Between Regular Arithmetic Functions and Aggregate Functions in SQL
	The Fourth Story: Analysis of Social Media Hashtags

	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 3: Filtering Facts with WHERE
	Introduction to WHERE
	The Importance of WHERE in Storytelling with Data
	The Anatomy of a WHERE clause

	The First Story: The Online Shop
	Advanced Filtering
	Using WHERE with Dates
	Beyond Exact Matching

	Subquery Filtering
	The Second Story: A Football Academy
	Common Mistakes When Using WHERE in SQL and How to Avoid Them
	Data Type Issues
	Logical Mistakes in Conditions
	NULL Handling
	Case Sensitivity

	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 4: Complex Characters with JOINs
	Introduction to JOINs
	Importance of JOINs in Storytelling with Data
	The Anatomy of a JOIN Clause
	Types of JOINs

	The First Story: A Football Academy
	Keys in Relational Databases
	The Second Story: A Technology Company
	Handling NULL Values in JOINs
	NULL Behavior in SQL JOIN

	The Third Story: Hospital Management
	NULL-Safe Equal Operator
	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 5: Aggregating Acts
	Introduction to GROUP BY
	Essential Aggregation Functions
	The First Story: A Busy Gym in a Bustling City
	Advanced Aggregation Techniques: Multi-step Calculations
	Multi-step Calculations: The Basics
	Using Window Functions for Aggregation
	Window Function Definition

	The Second Story: Speedy Motors Company
	Window Functions vs. Traditional Aggregation
	Combining Multiple Aggregation Techniques
	Combining Window Functions with Standard Aggregation
	Example: Customer Segmentation Based on Purchase Totals

	Nested GROUP BY with Window Functions
	Example: Top-N Analysis Within Partitions

	Using Aggregation Functions and ROW_NUMBER() Together
	Example: Count Orders Per Customer and Rank Sales

	Advanced Query Structures Using Common Table Expressions (CTEs)
	Example: Customer Segmentation with Advanced Metrics

	Top-N Analysis with CTEs and ROW_NUMBER()
	Example: Finding the Top Two Highest-Paying Customers Overall

	Essential Window Functions for Data Analysis

	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 6: Ordering the Plot with ORDER BY and LIMIT
	Introduction to ORDER BY
	Ordering Data in Real-World Scenarios
	Introduction to LIMIT
	Pagination with OFFSET and LIMIT
	The First Story: Highway Construction and a Traffic Situation
	Customizing Your Sorting: Advanced Use Cases of ORDER BY
	Case Sensitivity and Sorting Strings
	What Is COLLATE?
	Collation in PostgreSQL
	Using COLLATE
	COLLATE with CREATE TABLE
	COLLATE in SELECT Query
	Example: Case Sensitivity with Different Collations
	Case-Sensitive Ordering
	Case-Insensitive Ordering

	Sorting NULL Values
	Strategies for Ordering NULL Values: NULLS FIRST and NULLS LAST
	Example: Customer Data with NULLs in the Purchase History
	Sorting with NULLS FIRST
	Example 2: Sorting with NULLS LAST

	Common Pitfalls and Best Practices
	Avoiding Ambiguous Ordering: Always Clarify Column Names
	Avoiding Ambiguity
	An Example of Ambiguity in Column Names When Sorting Data

	Plot Efficiency with ORDER BY and LIMIT
	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 7: Dynamic Dialogues with Subqueries
	Introduction to Subqueries
	The First Story: A Bustling Office
	Dynamic Dialogues with Subqueries
	The Role of Subqueries in Dynamic Dialogues

	Introduction to Subqueries as Conversational Elements
	Single-Row Subqueries
	Multi-Row Subqueries
	Multi-Column Subqueries
	Correlated Subqueries
	Uncorrelated Subqueries
	Subqueries in the FROM Clause

	Complex Conversations: Nested and Multi-Level Subqueries
	General Syntax of Two-Level Subqueries
	Complex Multi-Level Subqueries

	The Second Story: A Food Delivery Platform
	Common Pitfalls
	Poor Readability
	Repeated Subquery Execution
	Too Many Subqueries Instead of Joins
	Returning Too Much Data
	Forgetting to Use Aliases

	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 8: Conditional Logic in Data Plotting
	Introduction
	Understanding Conditional Logic in SQL
	The CASE Statement
	NULLIF
	COALESCE

	The First Story: The Hospital’s Analytical Story
	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 9: Optimizing Your Script with Indexes and Views
	Introduction
	Understanding Indexes
	Basic Syntax for Creating an Index
	Types of Indexes in PostgreSQL
	B-tree Index
	Unique Index
	Hash Index
	Generalized Inverted Index (GIN)
	Generalized Search Tree (GiST) Index
	Partial Index
	Composite Index

	Dropping an Index
	Checking Index Usage with EXPLAIN

	When to Use and When to Avoid Indexes
	The Role of Indexes in Data Analysis Tasks
	Using EXPLAIN to Review Query Execution
	Using EXPLAIN ANALYZE for Performance Measurement
	The First Story: Golf Performance Data Analysis
	Understanding SQL Views
	Basic Syntax for SQL Views
	Types of Views in PostgreSQL
	The Role of Views in Data Analysis Tasks

	The Second Story: Car Race Data Analysis
	Managing Views
	Updating and Modifying Views (ALTER VIEW)
	Dropping Views (DROP VIEW)
	The Role of ALTER VIEW and DROP VIEW in Data Analysis

	The Role of Views in Optimizing SQL Queries
	Using Both Views and Indexes in PostgreSQL
	The Third Story: Online Retail Data Analyst
	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 10: Analytics Alchemy: Turning Data into Gold
	Functions
	Aggregate Functions
	Statistical and Mathematical Functions
	Window Functions
	Ranking Functions
	String Functions
	Date and Time Functions
	JSON Functions
	Control Functions
	System Functions
	Creating Your Own Functions in PostgreSQL
	Error Handling
	Basic Exception Handling
	Using the EXCEPTION Block for Error Handling

	The First Story: Online Clothing Market
	Breaking Down Complex Problems with Analytical Tools

	The Second Story: An Analysis of a Family Tree for the Civil Registration Office
	Summary
	Key Points
	Key Takeaways
	Looking Ahead
	Test Your Skills

	Chapter 11: The Grand Finale: Presenting Your Data Story
	The Art of Data Storytelling
	The Importance of Query Writing for Storytelling in Data Analysis
	Extracting the Right Data for a Story
	Structuring Data for Better Insights
	Supporting Visualizations of Query Results
	Ensuring Data Accuracy and Reliability
	Automating Storytelling with Dynamic Queries

	PostgreSQL Query Execution
	Beyond the Query
	Structuring Your Data Narrative for Presentation
	Understanding the Audience
	The Key Elements of a Data Story Presentation
	Visualization: Insights from Visuals
	Visualization Tools Recommended for PostgreSQL

	Beyond the Presentation: How to Guide Your Audience
	Supporting Materials

	Encouraging Further Explorationt
	Creating a Data-Driven Culture

	Final Thoughts: The Data Storyteller’s Legacy in the Age of Artificial Intelligence (AI)
	Summary
	Key Points
	Key Takeaways

