
SQL
in a Nutshell
A Desktop Quick Reference

Fourth

Edition

Kevin Kline,
Regina O. Obe

& Leo S. Hsu

DATA

SQL in a Nutshell
Written for developers, analysts, and database
administrators, this Nutshell guide is the essential
reference for the SQL language used in today’s
most popular database products. The updated
fourth edition clearly documents SQL commands
according to the latest ANSI/ISO standard and
details how those commands are implemented in
various relational databases.

You’ll also get a concise overview of the relational
database management system (RDBMS) model
and a clear-cut explanation of foundational
RDBMS concepts —all packed into a succinct,
comprehensive, and easy-to-use format.

Sections include:

• Background on the relational database
model, including current and previous SQL
standards

• Fundamental concepts for understanding
relational databases and SQL commands

• A comprehensive command reference of
SQL statements according to the SQL 2019
standard

• Implementation of each command using
MariaDB 10.5, MySQL 8, Oracle 19c,
PostgreSQL 14, SQL Server 2019

• Platform-specific functions unique to each
implementation

Kevin Kline is a renowned database
expert and software industry
veteran. He was a founder and
former president of the Professional
Association for SQL Server.

Regina O. Obe is on the
development team of PostGIS, a
spatial extension for PostgreSQL,
and is a coauthor of several
PostgreSQL-related books.

Leo S. Hsu has 20 years of
professional experience developing
databases for organizations large
and small. He coauthored PostGIS in
Action, PostgreSQL: Up and Running,
and pgRouting: A Practical Guide.

“Developers who
have to write queries
for several different
relational systems
will find this book
very useful.”

—Bruce Momjian
cofounder and core team member

of the PostgreSQL Global
Development Group

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

US $69.99 CAN $87.99
ISBN: 978-1-492-08886-8

SQL IN A
NUTSHELL

A DESKTOP QUICK REFERENCE

Kevin Kline, Regine O. Obe, and Leo S. Hsu

978-1-492-08886-8

[LSI]

SQL in a Nutshell
by Kevin Kline, Regina O. Obe, and Leo S. Hsu

Copyright © 2022 Kevin Kline, Regina O. Obe, and Leo S. Hsu. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Andy Kwan
Development Editor: Rita Fernando
Production Editor: Beth Kelly
Copyeditor: Rachel Head
Proofreader: Tom Sullivan

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2022: Fourth Edition

Revision History for the Fourth Edition
2022-06-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492088868 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SQL in a Nutshell, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s
views. While the publisher and the authors have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492088868

Table of Contents

Preface. v

1. SQL History and Implementations. 1
The Relational Model and ANSI SQL 2
History of the SQL Standard 11
SQL Dialects 16
NoSQL 17

2. Foundational Concepts. 19
Database Platforms Described in This Book 19
Categories of Syntax 20
SQL and Platform-Specific Data Types 35
Constraints 60

3. Structuring Your Data. 69
How to Use This Chapter 69
SQL Platform Support 70
SQL Command Reference 72

4. Reading Your Data. 249
How to Use This Chapter 249
SQL Platform Support 250
SQL Command Reference 251

5. Manipulating Your Data. 359
How to Use This Chapter 359

iii

SQL Platform Support 360
SQL Command Reference 361

6. Securing Your Data. 439
How to Use This Chapter 439
SQL Platform Support 440
SQL Command Reference 441

7. SQL Built-in Functions. 503
How to Use This Chapter 504
Types of Functions 504
SQL Functions 505
Platform-Specific Extensions 538

8. SQL Built-in Aggregate and Window Functions. 593
How to Use This Chapter 593
SQL Aggregate Functions 594
Complementary Functions 623
SQL Window Functions 625
Platform-Specific Extensions 640

9. Storing Logic in the Database. 647
How to Use This Chapter 647
SQL Platform Support 648
SQL Command Reference 650

10. Flexible and Schemaless. 745
Why JSON? 747
JSON Support 749
Why XML? 777

Appendix. Shared and Platform-Specific Keywords. 791

Index. 799

iv | Table of Contents

Preface

Since its first incarnation in the 1970s, the Structured Query Language (SQL) has
evolved hand-in-hand with the information boom. As a result, it is the most widely
used language to administer and query relational databases. Many software compa‐
nies and developers, including those in the open source and NoSQL movements,
have developed their own SQL dialects in response to specific needs. All the while,
standards bodies have codified a growing list of features.

SQL in a Nutshell, 4th edition, describes the latest SQL standard—SQL:2016—ver‐
sion of many SQL commands, then details how different platforms implement that
particular command. (Although the standards bodies have released SQL:2019, the
new specifications mostly lie in the area of multidimensional arrays, which have
not been implemented by the major vendors. You can read more about how SQL
can be used in conjunction with these arrays on the ISO website). In this book,
you will find a brief overview of the relational database model, which undergirds
all relational database management systems (RDBMSs), followed by a more thor‐
ough treatment of frequently used SQL syntax and commands. New in the fourth
edition are expanded explanations of programming concepts used in each vendor’s
offerings, such as stored procedures and user-defined functions. And, of course, we
have added popular commands that have arrived since the publication of the third
edition.

SQL in a Nutshell, 4th edition, provides a concise guide to the two most commonly
installed commercial database packages on the market, Oracle and Microsoft SQL
Server, and to the three most commonly installed open source databases: MySQL,
PostgreSQL, and MariaDB (a fork of MySQL).

The language and database versions covered in this book include:

• SQL:2016 standard syntax•
• MySQL 8 and MariaDB 10.5•

v

https://oreil.ly/IuD7a

• Oracle Database 19c•
• PostgreSQL 14•
• Microsoft SQL Server 2019•

Why This Book?
The primary and definitive source of information for any given relational database
package is the official documentation, along with help files, tutorials, advisories,
and other tidbits provided by the vendors themselves. But while each vendor’s
documentation should be the resource that developers and database administrators
turn to first, official documentation has a number of limitations:

• It describes the vendor’s implementation of SQL without providing an indica‐•
tion of how well that implementation meets the SQL standard.

• It covers only the vendor’s specific product, without discussing potential trans‐•
lation, migration, or integration issues across different vendors.

• It covers individual commands in often unrelenting detail, thereby obscuring•
the most common use cases.

• It typically describes programming methods in an overwhelming number of•
disconnected articles or help files.

A vendor’s official documentation can be expected to provide an exhaustive explan‐
ation of every aspect of their offering. It will describe every command, including
each obscure variant, along with some implementation guidance. Subjective com‐
mentaries are off-limits. However, if you move between data platforms and need
to be productive quickly, you will rarely need this level of detail on all the obscure
command variations. Instead, you’re looking for the most applicable usage found in
real-life situations.

This book begins where the vendor documentation ends by distilling the experien‐
ces of professional database administrators and developers who have used these
SQL products to support complex enterprise applications. It offers you the benefit of
their decades of experience in a compact and easily usable format. Whether you’re
new to SQL or you have been using SQL since its earliest days, there are always
new tips and techniques to learn. And when you’re moving between different data
platforms, it’s always important to uncover compatibility issues before they bite you.

Who Should Read This Book?
SQL in a Nutshell, 4th edition, targets several groups of users. It will be useful for
developers who require a concise and handy SQL reference tool; for developers
who need to migrate from one SQL dialect to another; and for database administra‐
tors (DBAs) who need to both execute a myriad of SQL statements to keep their

vi | Preface

enterprise databases up and running, and to create and manage objects such as
tables, indexes, and views.

This book is a reference work, not a tutorial. The writing is not expository. For
example, we won’t explain the concept of an elementary nested loop algorithm.
Instead, we will explain the workings of the cursor as implemented in the standards,
then special capabilities of cursors on each database platform. We include advice,
based on experience, on how to avoid and circumvent pitfalls when using cursors.

While we don’t intend this book to serve as a tutorial on SQL or a handbook for
the database architect, we do provide some coverage of introductory design topics.
Chapters 1 and 2 provide a concise introduction to the language itself, covering
essential structures, basic usage, and some history. If you’re new to SQL, these two
chapters will help you get going.

How This Book Is Organized
The book is divided into 10 chapters and an appendix:

Chapter 1, “SQL History and Implementations”
Discusses the relational database model, describes the current and previous
SQL standards, and introduces the SQL implementations covered in this book.

Chapter 2, “Foundational Concepts”
Describes the fundamental concepts necessary for understanding relational
databases and SQL commands, including different syntax elements, data types,
and constraints.

Chapter 3, “Structuring Your Data”
Provides the command reference for SQL statements that CREATE, ALTER, and
DROP the various objects you might find in a relational database, such as tables,
views, and schemas. The commands described here for defining data structures
are collectively referred to as Data Definition Language (DDL) statements.

Chapter 4, “Reading Your Data”
Discusses the glorious SELECT statement and all of the optional clauses and
keywords relevant to reading data. From subqueries and joins to cursors and
common table expressions (CTEs), this chapter goes deep into the single most
frequently used SQL statement.

Chapter 5, “Manipulating Your Data”
Provides details on SQL statements used to manipulate data within a given
database. These are collectively referred to as Data Manipulation Language
(DML) statements; they include INSERT, UPDATE, DELETE, MERGE, and TRUNCATE
as well as SELECT (discussed in Chapter 4).

Preface | vii

Chapter 6, “Securing Your Data”
Details the ways to control access to and provide security for data using the
Data Control Language (DCL) statements of the SQL standard: GRANT, REVOKE,
SET, and a few others.

Chapter 7, “SQL Built-in Functions”
Covers the full scope of built-in functions, both those detailed in the SQL
standard and those provided by the database platforms covered in the book.
From data-handling functions to data type conversion functions to string
manipulation functions, they’re all here.

Chapter 8, “SQL Built-in Aggregate and Window Functions”
Details the use and handling of two of the most important and powerful
components of SQL code. Aggregate functions provide the capability to sum,
average, find minimum and maximum values, and more. Window functions
are functions that use values from one or more records, returning a value for
each row, and are characterized by the use of the OVER clause. This is in contrast
to aggregate functions, which return a single value for multiple rows.

Chapter 9, “Storing Logic in the Database”
Gives an overview of important aspects of SQL code used to write stored
procedures, triggers, and user-defined functions. In this chapter you will
find details on conditional control, variable handling, subroutines, and other
aspects of developing database-dependent code.

Chapter 10, “Flexible and Schemaless”
Offers a quick introduction to handling JSON and XML data in relational
databases.

Appendix
Provides a comprehensive list of keywords declared by the SQL standard and
by the various database platforms covered in this book. You can use this as
a reference to look for words that you should not use for object or variable
names.

How to Use This Book
SQL in a Nutshell, 4th edition, is primarily a command reference. As a consequence,
you’ll probably use it to look up a variety of SQL commands and functions. How‐
ever, with documentation for the SQL standard itself plus four database platforms,
the description for each command has the potential to get very large.

In an attempt to reduce redundant verbiage describing each command and its
variants across the various database platforms, the book compares each platform’s
implementation to the SQL standard that is current at the time of writing. If the
platform supports a clause as described in the SQL discussion, we won’t repeat that
clause again in the section(s) describing the vendor implementations of the SQL
standard.

viii | Preface

Generic and transportable examples are provided for each SQL statement. Platform-
specific examples are given only in the event that at least one RDBMS discussed in
the book supports the command, which is not always the case as the SQL standard
usually precedes implementation by database platforms. Examples that highlight
unique extensions and enhancements of the different platforms, of which there are
many, are provided.

We recognize that our approach may necessitate jumping from a description of a
platform’s implementation of a command back to the description of the SQL stan‐
dard syntax and implementation details. However, we felt that this was preferable to
bulking up the book with hundreds of pages of redundant content.

Resources
This book strives to deliver an up-to-date and comprehensive discussion of the
SQL standard and its implementation by the leading database platforms. This,
however, is a big task, and it’s a lot like shooting at a moving target. While the
book contains decades’ worth of useful information, you may wish to check with
a specific database platform vendor for the latest details. The following websites
provide additional information about the various platforms covered in this book:

MySQL and MariaDB
The MySQL website and MySQL 8.0 Reference Manual are both good
resources, as is the MariaDB documentation.

PostgreSQL
The PostgreSQL website makes a great deal of useful information available
for download, and also maintains mailing lists for PostgreSQL users. The
documentation for the latest major stable release of PostgreSQL and the docu‐
mentation for the upcoming release are both good resources.

Oracle
Oracle’s website has a great resource for hardcore Oracle users, as well as all the
Oracle documentation.

SQL Server
The official Microsoft SQL Server website and the SQL Server documentation
includes full documentation for SQL Server and its cloud counterpart, Azure
SQL.

Changes in the Fourth Edition
One of the biggest reasons to release a new edition of a technology book is because
the technology has progressed. Since the third edition of this book was published,
three new versions of the ANSI/ISO standard have been published, and the database
platforms it covers have each delivered at least two major releases. Consequently,
our readers want fresh content on the latest versions of SQL in the marketplace
today.

Preface | ix

https://oreil.ly/HH2TV
https://oreil.ly/B5FhB
https://oreil.ly/m22xQ
https://oreil.ly/Hqvo3
https://oreil.ly/ZJkA8
https://oreil.ly/ZkHAM
https://oreil.ly/ZkHAM
http://www.oracle.com
https://oreil.ly/tmz02
https://oreil.ly/fCqvb
https://oreil.ly/bUd34
https://oreil.ly/19uq1

Here are some additional details about changes in this fourth edition:

Improved navigation
Previous editions of this book grouped all SQL commands into a single chap‐
ter. As the book grew over the years, the chapter covering SQL commands
became difficult to navigate. As a result, this latest edition now features multi‐
ple chapters broken out by traditional categories of the SQL standard to make
navigation easier.

Programming basics
While previous editions showed you how to program a stored procedure,
trigger, or other SQL module, the fourth edition includes a full chapter dedi‐
cated to writing structured procedural code on Oracle, SQL Server, MySQL,
MariaDB, and PostgreSQL. The syntax for keywords like IF statements and
WHILE loops is not actually part of the SQL standard, but these are part of the
everyday life of DBAs and developers. Therefore, it made sense to give readers
a good overview of how to perform this aspect of SQL coding.

Greater breadth
SQL is the lingua franca of data and databases. In some ways, it is analogous to
the way in which the English language is the most popular second language in
the world. Across the globe, English is often the first language a person learns
after their native tongue. In the same way, there are a multitude of popular
programming languages that allow developers to do great work, yet they all
embed SQL code within to communicate with the database backend.

More examples
It’s impossible to have too many examples. We’ve added to our already large
set of basic examples, including more sample code that highlights the unique
and powerful capabilities of the SQL standard and the extensions offered by
each database platform. In addition, this version includes examples that show‐
case the functionality introduced in the newer SQL standards, such as JSON
support.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used to introduce new terms, for emphasis, for filenames and file extensions,
and for user/group/role names; used to indicate programming elements such as
commands, functions, data types, variables, and values; and used to display the
names of database objects such as tables, columns, and schemas.

UPPERCASE CONSTANT WIDTH

Used to indicate SQL keywords when they appear in the text.

Constant width

Used to indicate programming syntax, code fragments, and examples.

x | Preface

Constant width italic

Used to indicate variables in code that should be replaced with user-supplied
values.

Constant width bold

Used in code sections to highlight portions of the code and in examples to
distinguish input from results.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xi

http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/sql-nutshell-4e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
We’d like to take a moment to thank a few special individuals at O’Reilly Media.
First, we owe a huge debt of gratitude to Rita Fernando, the editor of this fourth
edition, and to Gary O’Brien, who helped us as our initial editor. All of the people at
O’Reilly are extraordinary, but Rita is exceptional. She helped keep our noses to the
grindstone, provided encouragement and advice, and ensured that we finished what
we started. With her helpful, collaborative, and relaxed work style, Rita is a pleasure
to work with. Thank you for all you’ve done for us!

We also owe a debt to our fine technical reviewers and helpers. We owe a hearty
thank you to our stellar technical reviewers: Robert de Graaf, Keith Hare, Evelyn
Nunez, Caitlin O’Nan, and Bert Scalzo. Your contributions have greatly improved
the accuracy, readability, and value of this book. Without your assistance, we would
have had many more issues of accuracy and quality to remedy. In addition, we’d like
to tip our hats to Daniel Mainle, Faisal Azeem, and Stella Zhou, who helped conduct
important research groundwork for us.

Kevin E. Kline’s Acknowledgments
Many people helped deliver the big, thick book you hold in your hands. This note
expresses my appreciation to those who helped make this book a reality.

First of all, a big thanks to my two awesome coauthors, Regina and Leo. It has been
such a pleasure to work with you on this massive project. Your expertise, tenacity,

xii | Preface

https://oreil.ly/sql-nutshell-4e
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

and professionalism have made this entire endeavor possible. I am grateful for you
and appreciate you so much!

Here’s a dedication to my beloved—Rachel. From a small seed planted so many
years ago, our tree of love and joy has grown taller and broader than I could have
ever expected. More precious than jewels and more valuable than rubies, your love
restores my heart and my faith daily.

Regina Obe and Leo Hsu’s Acknowledgments
We thank our two development editors: Gary O’Brien, who carried us through the
worst of the pandemic, and Rita Fernando, for having brought our manuscript to
completion. They were our guiding angels, but devilish when necessary.

A tremendous thanks to Evelyn Nunez, who painstakingly reviewed some of
the new chapters, correcting our numerous mistakes and adding in missing
information.

We thank our own Caitlin O’Nan, who has been our employee for countless years.
She reviewed the manuscript, bringing her SQL and programming expertise to the
book. If anyone can catch our flaws, Caitlin is the one.

Finally, we thank Kevin for inviting us to coauthor with him. The quote “We stood
on the shoulders of a giant” comes to mind. Needless to say, this fourth edition
would not have been possible without his work on the prior three editions.

Preface | xiii

1
SQL History and

Implementations

In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to
the development of a relational data model product called SEQUEL, or Structured
English Query Language. SEQUEL ultimately became SQL, the Structured Query
Language. Ironically, the SQL standard treats “SQL” as the name of this language
and not as an acronym. Jim Melton, longtime editor of the SQL standard, claims
that if SQL is an acronym, it stands for “SQL Query Language.”

IBM, along with other relational database vendors, wanted a standardized method
for accessing and manipulating data in a relational database. Although IBM was the
first to develop relational database theory, Oracle was first to market the technology.
Over time, SQL proved popular enough in the marketplace to attract the attention
of the American National Standards Institute (ANSI) in cooperation with the Inter‐
national Standards Organization (ISO), which released standards for SQL in 1986,
1989, 1992, 1999, 2003, 2008, 2011, 2016, and 2019.

Since 1986, various competing languages have allowed developers to access and
manipulate relational data. However, few were as easy to learn or as universally
accepted as SQL. Developers and administrators now have the benefit of being able
to learn a single language that, with minor adjustments, is applicable to a wide
variety of database platforms, applications, and products.

SQL in a Nutshell, 4th edition, provides the syntax for five common implementa‐
tions of SQL:

• The ANSI/ISO SQL standard (SQL:2016)•
• MySQL 8 and MariaDB 10.5•
• Oracle Database 19c•

1

• PostgreSQL 14•
• Microsoft SQL Server 2019•

The Relational Model and ANSI SQL
Relational database management systems (RDBMSs) such as those covered in this
book are the primary engines of information systems worldwide, and particularly
of web applications and distributed client/server computing systems. They enable
a multitude of users to quickly and simultaneously access, create, edit, and manipu‐
late data without impacting other users. They also allow developers to write useful
applications to access their resources and provide administrators with the capabili‐
ties they need to maintain, secure, and optimize organizational data resources.

An RDBMS is defined as a system whose users view data as a collection of tables
related to each other through common data values. Data is stored in tables, which
are composed of rows and columns. Tables of independent data can be linked (or
related) to one another if they each have unique, identifying columns of data (called
keys) that represent data values held in common. E. F. Codd first described rela‐
tional database theory in his landmark paper “A Relational Model of Data for Large
Shared Data Banks,” published in the Communications of the ACM (Association
for Computing Machinery) in June 1970. Under Codd’s new relational data model,
data was structured (into tables of rows and columns); manageable using operations
such as selections, projections, and joins; and consistent as the result of integrity
rules such as keys and referential integrity. These terms and their definitions were
based upon earlier mathematical concepts—in particular, relational algebra—and as
such are fully provable theorems. Codd also articulated rules that governed how a
relational database should be designed. The process for applying these rules is now
known as normalization.

Codd’s Rules for Relational Database Systems
Codd applied rigorous mathematical theories (primarily relational algebra and set
theory) to the management of data, from which he compiled a list of criteria a
database must meet to be considered relational. Cobb, at least in part, set forth
his 12 principles to constrain the overenthusiastic marketing verbiage of the many
vendors of every remotely DBMS-like product who wanted to claim to be “rela‐
tional.” In fact, Cobb was so emphatic about these principles of relational databases
as a mechanism of anti-hype that he further laid out an important foundational
principle he called Rule 0:

Rule 0: For any system that is advertised as, or claimed to be, a relational
database management system, that system must be able to manage databases
entirely through its relational capabilities.

2 | Chapter 1: SQL History and Implementations

At its core, the relational database concept centers around storing data in tables.
This concept is now so common as to seem trivial; however, it’s only since the 1980s
that the idea of designing a system capable of sustaining the relational model has
not been considered a long shot with limited usefulness.

Following are Codd’s Twelve Principles of Relational Databases:

1. Information is represented logically in tables.1.
2. Data must be logically accessible by table, primary key, and column.2.
3. Null values must be uniformly treated as “missing information,” not as empty3.

strings, blanks, or zeros.
4. Metadata (data about the database) must be stored in the database just as4.

regular data is.
5. A single language must be able to define data, views, integrity constraints,5.

authorization, transactions, and data manipulation.
6. Views must show the updates of their base tables and vice versa.6.
7. A single operation must be available to do each of the following operations:7.

retrieve data, insert data, update data, or delete data.
8. Batch and end-user operations are logically separate from physical storage and8.

access methods.
9. Batch and end-user operations can change the database schema without having9.

to re-create it or the applications built upon it.
10. Integrity constraints must be available and stored in the metadata, not in an10.

application program.
11. The data manipulation language of the relational system should not care where11.

or how the physical data is distributed and should not require alteration if the
physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity rules and12.
constraints that set-processing operations do.

While these rules do not apply to application development, they continue to be the
litmus test used to validate the “relational” characteristics of a database platform; a
database that does not meet all of these rules is not fully relational. Currently, most
commercial RDBMS products pass Codd’s test, and all the platforms discussed in
the reference material of SQL in a Nutshell, 4th edition, satisfy these requirements.
The standard also specifies support for handling non-relational formats like JSON
and XML; we’ll discuss this in Chapter 10.

Understanding Codd’s principles assists developers in the proper development and
design of relational databases (RDBs). The following sections detail how some of
these requirements are met within SQL using RDBs.

The Relational Model and ANSI SQL | 3

SQ
L H

isto
ry

Data structures (rules 1, 2, 8, and 9)
Codd’s rules 1 and 2 state that “information is represented logically in tables”
and that “data must be logically accessible by table, primary key, and column.”
So, the process of defining a table for a relational database does not require that
programs instruct the database how to interact with the underlying physical data
structures. Furthermore, SQL logically isolates the processes of accessing data and
physically maintaining that data, as required by rules 8 and 9, which state that batch
and end-user operations “are logically separate from physical storage and access
methods” and “can change the database schema without having to re-create it or the
applications built upon it.”

In the relational model, data is shown logically as a two-dimensional table that
describes a single entity (for example, business expenses). Academics refer to tables
as entities and to columns as attributes. Tables are composed of rows, or records
(academics call them tuples), and columns (called attributes, since each column of
a table describes a specific attribute of the entity). The intersection of a record
and a column provides a single value. However, it is quite common to hear this
referred to as a field, from spreadsheet parlance. The column or columns whose
values uniquely identify each record can act as a primary key. These days this
representation seems elementary, but it was actually quite innovative when it was
first proposed.

The SQL standard defines a whole data structure hierarchy beyond simple tables,
though tables are the core data structure. Relational design handles data on a table-
by-table basis, not on a record-by-record basis. This table-centric orientation is the
heart of set programming. Consequently, almost all SQL commands operate much
more efficiently against sets of data within or across tables than against individual
records. Said another way, effective SQL programming requires that you think in
terms of sets of data, rather than of individual rows.

Figure 1-1 is a description of SQL’s terminology used to describe the hierarchical
data structures used by a relational database: catalogs contain sets of schemas;
schemas contain sets of objects, such as tables and views; and tables are composed of
sets of columns and records.

For example, in a Business_Expense table, a column called Expense_Date might
show when an expense was incurred. Each record in the table describes a specific
entity; in this case, everything that makes up a business expense (when it happened,
how much it cost, who incurred the expense, what it was for, and so on).

Each attribute of an expense—in other words, each column—is supposed to be
atomic; that is, each column is supposed to contain one, and only one, value. If
a table is constructed in which the intersection of a row and column can contain
more than one distinct value, one of SQL’s primary design guidelines has been
violated. (That said, some of the database platforms discussed in this book do allow
you to place more than one value into a column, via the VARRAY or TABLE data types
or, more commonly in the last several years, XML or JSON data types.)

4 | Chapter 1: SQL History and Implementations

Figure 1-1. SQL dataset hierarchy

Rules of behavior are specified for column values. Foremost is that column values
must share a common domain, better known as a data type. For example, if the
Expense_Date field is defined as having a DATE data type, the value ELMER cannot
be placed into that field because it is a string, not a date, and the Expense_Date
field can contain only dates. In addition, the SQL standard allows further control
of column values through the application of constraints (discussed in detail in
Chapter 2) and assertions. A SQL constraint might, for instance, check to ensure
when inserting a new expense record that its Expense_Date value is no more than 90
days old, matching the company policy for expense reporting.

Additionally, data access for all individuals and computer processes is controlled at
the schema level by an AuthorizationID or user. Permissions to access or modify
specific sets of data may be granted or restricted on a per-user basis.

SQL databases also employ character sets and collations. Character sets are the
“symbols” or “alphabets” used by the “language” of the data. For example, the

The Relational Model and ANSI SQL | 5

SQ
L H

isto
ry

American English character set does not contain the special character for ñ in
the Spanish character set. Collations are sets of sorting rules that operate on a
character set. A collation defines how a given data manipulation operation sorts
data. For example, an American English character set might be sorted either by
character-order, case-insensitive, or by character-order, case-sensitive.

The SQL standard does not say how data should be sorted,
only that platforms must provide common collations found in
a given language.

It is important to know what collation you are using when writing SQL code
against a database platform, as it can have a direct impact on how queries behave,
and particularly on the behavior of the clauses of a SELECT statement, such as
WHERE, ORDER BY, GROUP BY, and PARTITION BY. For example, a query that sorts
data using a binary collation will return data in a very different order than one
that sorts data using, say, a Swedish collation. This is also very important when
migrating SQL code between database platforms since their default sorting behavior
may vary widely. For example, Oracle is normally case-sensitive, while Microsoft
SQL Server is not. Moving an unmodified query from Oracle to SQL Server might
therefore produce a wildly different result set because Oracle will evaluate values
like “Halloween” and “HALLOWEEN” as unequal, whereas SQL Server will see
them as equal by default.

NULLs (rule 3)
Most databases allow any of their supported data types to store NULL values.
Inexperienced SQL developers tend to think of NULL values as zero-length strings,
but in SQL NULL literally means that the value is unknown or indeterminate. (This
question alone—whether NULL should be considered unknown or indeterminate—
is the subject of much academic debate.) This differentiation enables a database
designer to distinguish between those entries that represent a deliberately placed
zero, for example, and those where either the data is not recorded in the system or
a NULL has been explicitly entered. As an illustration of this semantic difference,
consider a system that tracks payments. If a product has a NULL price, that does
not mean the product is free; instead, a NULL price indicates that the amount is not
known or perhaps has not yet been determined.

There is a good deal of differentiation between the database
platforms in terms of how they handle NULL values. This
leads to some major porting issues relating to these values. For
example, an empty string (i.e., a NULL string) is inserted as a
NULL value on Oracle. All the other databases covered in this
book permit the insertion of an empty string into VARCHAR and
CHAR columns.

6 | Chapter 1: SQL History and Implementations

One side effect of the indeterminate nature of a NULL value is that it cannot be used
in a calculation or a comparison. Here are a few brief but very important rules, from
the ANSI/ISO standard, to remember about the behavior of NULL values when
dealing with NULLs in SQL statements:

• A NULL value cannot be inserted into a column defined with the NOT NULL•
constraint.

• NULL values are not equal to each other. It is a frequent mistake to compare•
two columns that contain NULL and expect the NULL values to match. (The
proper way to identify a NULL value in a WHERE clause or in a Boolean expres‐
sion is to use phrases such as “value IS NULL” and “value IS NOT NULL”.)

• A column containing a NULL value is ignored in the calculation of aggregate•
values such as AVG, SUM, or MAX COUNT.

• When columns that contain NULL values are listed in the GROUP BY clause of a•
query, the query output contains a single row for NULL values. In essence, the
ANSI/ISO standard considers all NULLs found to be in a single group.

• DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values as indis‐•
tinguishable from each other. With the ORDER BY clause, the vendor is free to
choose whether NULL values sort high (first in the result set) or sort low (last
in the result set) by default. Some database vendors allow you to define how
NULL values are sorted on a per-query basis using the NULL FIRST or NULL
LAST keywords.

Metadata (rules 4 and 10)
Codd’s fourth rule for relational databases states that data about the database must
be stored in standard tables, just as all other data is. Data that describes the database
itself is called metadata. For example, every time you create a new table or view in
a database, records are created and stored that describe the new table. Additional
records are needed to store any columns, keys, or constraints on the table. This
technique is implemented in most commercial and open source SQL database
products. For example, SQL Server uses what it calls “system tables” to track all the
information about the databases, tables, and database objects in any given database.
It also has “system databases” that keep track of information about the server on
which the database is installed and configured.

In addition to system tables, the SQL standard defines a set of basic metadata
available through a widely adopted set of views stored in a special schema called
INFORMATION_SCHEMA. Notably, Oracle (since 2015) and IBM DB2 do not support
this schema. Operationally, this should not pose a problem for you since there
are open source scripts to map Oracle database catalog views to the SQL standard
INFORMATION_SCHEMA format.

The Relational Model and ANSI SQL | 7

SQ
L H

isto
ry

The Language (Rules 5 and 11)
Codd’s rules do not require SQL to be used with a relational database. His rules,
particularly rules 5 and 11, only specify how the language should behave when
coupled with a relational database. At one time SQL competed with other languages
(such as Digital’s RDO and Fox/PRO) that might have fit the relational bill, but SQL
won out for three reasons. First, SQL is a relatively simple, intuitive, English-like
language that handles most aspects of data manipulation. If you can read and
speak English, SQL simply makes sense. Second, SQL is satisfyingly high-level. A
developer or database administrator (DBA) does not have to spend time ensuring
that data is stored in the proper memory registers or that data is cached from disk to
memory; the database management system (DBMS) handles that task automatically.
Finally, because no single vendor owns SQL it was adopted across a number of
platforms, ensuring broad support and wide popularity.

Views (rule 6)
A view is a virtual table that does not exist as a physical repository of data, but
is instead constructed on the fly from a SELECT statement whenever that view is
queried. Views enable you to construct different representations of the same source
data for a variety of audiences without having to alter the way in which the data is
stored.

Some vendors support database objects called materialized
views, also known as indexed views. Don’t let the similarity of
these terms confuse you; materialized views are not governed
by the same rules as SQL standard views.

Set operations (rules 7 and 12)
Other database manipulation languages, such as Ruby on Rails, Django, and LINQ
for .NET, perform their data operations quite differently from SQL. These languages
require you to tell the program exactly how to treat the data, one record at a time.
Since the program iterates down through a list of records, performing its logic
on one record after another, this style of programming is frequently called row
processing or procedural programming.

In contrast, SQL programs operate on logical sets of data. Set theory is applied
in almost all SQL statements, including SELECT, INSERT, UPDATE, and DELETE
statements. In effect, data is selected from a set called a “table.” Unlike the row-
processing style, set processing allows a programmer to tell the database simply what
is required, not how each individual piece of data should be handled. Sometimes
set processing is referred to as declarative processing since a developer declares only
what data is wanted (as in the declaration, “Return all employees in the southern
region who earn more than $70,000 per year”) rather than describing the exact steps
used to retrieve or manipulate the data.

8 | Chapter 1: SQL History and Implementations

Set theory was the brainchild of mathematician Georg Cantor,
who developed it at the end of the 19th century. At the time,
set theory (and Cantor’s theory of the infinite) was quite con‐
troversial. Today, set theory is such a common part of life that
it is learned in elementary school. Things like the selection
catalogs for your favorite movie streaming service, online con‐
sole gaming services, and popular music applications are all
simple and common examples of applied set theory.
Relational databases use relational algebra and tuple relational
calculus to mathematically model the data in a given database
and queries acting upon that data. These theories were also
introduced by E. F. Codd, along with his 12 rules for relational
databases.

Examples of set theory in conjunction with relational databases are detailed in the
following section.

Codd’s Rules in Action: Simple SELECT Examples
Up to this point, this chapter has focused on the individual aspects of a relational
database platform as defined by Codd and implemented under the SQL standard.
This section presents a high-level overview of the most important SQL statement,
SELECT, and some of its most salient points—namely, the following three relational
operations:

Projections
Retrieve specific columns of data.

Selections
Retrieve specific rows of data.

Joins
Return columns and rows from two or more tables in a single result set.

Although at first glance it might appear as though the SELECT statement deals only
with the relational selection operation, in actuality, SELECT deals with all three
operations.

The following statement embodies the projection operation by selecting the first
and last names of an author, plus their home state, from the authors table:

SELECT au_fname, au_lname, state
FROM authors;

The results from any such SELECT statement are presented as another table of data:

au_fname au_lname state
---------------- ---------------------------- ----------------
Johnson White CA
Marjorie Green CA
Cheryl Carson CA

The Relational Model and ANSI SQL | 9

SQ
L H

isto
ry

Michael O’Leary CA
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or derived table,
differentiating it from the base table in the database that is the target of the SELECT
statement.

It is important to note that the relational operation of projection, not selection, is
specified using the SELECT clause (that is, the keyword SELECT followed by a list
of expressions to be retrieved) of a SELECT statement. Selection—the operation of
retrieving specific rows of data—is specified using the WHERE clause in a SELECT
statement. WHERE filters out unwanted rows of data and retrieves only the reques‐
ted rows. Continuing with the previous example, the following statement selects
authors from states other than California:

SELECT au_fname, au_lname, state
FROM authors
WHERE state <> 'CA';

Whereas the first query retrieved all authors, the result of this second query is a
much smaller set of records:

au_fname au_lname state
---------------- ----------------------------------- -------------
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI

Different vendors allow you to join varying numbers of tables
in a single query. Whereas older database platforms allowed
no more than 256 joins within a given query, today most data‐
base platforms are limited only by available system resources.
However, keep in mind that your database engine will con‐
sume more system resources and incur more latency the
more tables you join in a single query. For example, a single
SELECT statement joining 12 tables will have to consider up to
28,158,588,057,600 possible join orders.
Today’s database query optimizers are very sophisticated and
employ cost-based optimizations and heuristics to make per‐
forming queries involving a dozen or more joins a manageable
task. However, many experienced SQL developers try to limit
their SELECT statements to 16 or fewer joins in order to keep
the query’s logic easy to understand. In other situations, expe‐
rienced SQL developers might use alternative coding practi‐
ces, such as common table expressions (CTEs), temporary
tables, or subqueries, to achieve good performance.

10 | Chapter 1: SQL History and Implementations

By combining the capabilities of projection and selection in a single query, you can
use SQL to retrieve only the columns and records that you need at any given time.

Joins are the next, and last, relational operation covered in this section. A join
relates one table to another in order to return a result set consisting of related data
from both tables.

The ANSI/ISO standard method of performing joins is to use the JOIN clause
in a SELECT statement. An older method, sometimes called a theta join, analyzes
the join search argument in the WHERE clause. The following example shows both
approaches. Each statement retrieves employee information from the employee base
table as well as job descriptions from the jobs base table. The first SELECT uses the
newer ANSI/ISO SQL JOIN clause, while the second SELECT uses a theta join:

-- ANSI/ISO style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a
JOIN titleauthor AS t ON a.au_id = t.au_id
WHERE a.state <> 'CA';

-- Theta style
SELECT a.au_fname, a.au_lname, t.title_id
FROM authors AS a,
 titleauthor AS t
WHERE a.au_id = t.au_id
 AND a.state <> 'CA';

Although theta joins are universally supported across the various platforms and
incur no performance penalty, this is considered an inferior coding pattern because
anyone reading or maintaining the query cannot immediately discern the argu‐
ments used to define the join condition from those used as filtering conditions.

There are more issues with theta joins than ease of readability.
For example, Oracle allows only one outer join comparison
using (+), which can be quite a problem when logically con‐
structing an outer join on a multicolumn key. In a situation
like this, it can be difficult to avoid syntax errors or even
retrieving the wrong result set.

For more information about joins, see the “JOIN Subclause” on page 278.

History of the SQL Standard
In response to the proliferation of SQL dialects, ANSI published its first SQL stan‐
dard in 1986 to bring about greater conformity among vendors. This was approved
by the ISO in 1987 and followed by a second, widely adopted standard in 1989 (also
approved by the ISO). ANSI/ISO released their first joint update in 1992, known
as SQL2, SQL-92, or SQL:1992, and a second in 1999, termed SQL3, SQL-99, or
SQL:1999. The next update, made in 2003, is referred to as SQL:2003 and so on.

History of the SQL Standard | 11

SQ
L H

isto
ry

Between the release of SQL:1992 and the development of
SQL:1999, the SQL draft specifications were divided into
SQL3 and SQL4. However, the SQL4 draft was pruned, and
the SQL3 draft was adopted as SQL:1999. After this point, the
names of the SQL standards transitioned permanently to the
SQL:yyyy designation.

Each revision of the SQL standard, officially known as ISO/IEC 9075 Database
Language SQL, adds new features and incorporates new commands and capabilities
into the language. Here is a brief list of the releases and some of their major
contributions (features or specifications):

SQL-87
Standard first formalized by ANSI; support for transactions and CREATE, READ,
UPDATE, and DELETE operations

SQL-89
Minor revision, added referential integrity constraints

SQL-92
Major revision (ISO 9075), added support for internationalization, etc.

SQL:1999
Added support for user-defined types, regular expression mapping, triggers,
procedural and control-flow statements, and more

SQL:2003
Added support for XML and OLAP (window functions), sampling, and
enhanced numeric functions

SQL:2006
Clarified how SQL and SML interact and added support for XQuery

SQL:2008
Incorporated various improvements and enhancements that had been made
in several of the most prominent RDBMS platforms (INSTEAD OF triggers,
TRUNCATE statement, FETCH clause, etc.) and expanded the XML specification

SQL:2011
Introduced new features for managing temporal data

SQL:2016
Described how SQL interacts with JavaScript Object Notation (JSON) and
added support for polymorphic table functions and row pattern matching

SQL:2019
Described how SQL interacts with multidimensional arrays (MDAs)

12 | Chapter 1: SQL History and Implementations

The capabilities added in SQL:2019 and the planned SQL/PGQ (Graph Query Lan‐
guage) extension are not yet supported in the products considered in this edition of
SQL in a Nutshell, so our coverage in this book extends only to SQL:2016. SQL:2019
coverage will come in future editions.

Levels of Conformance
SQL-92 introduced three levels of conformance indicating degrees of compliance
with the standard: Entry, Intermediate, and Full (the U.S. National Institute of
Standards and Technology later added a Transitional level between the first two).
Vendors had to achieve at least Entry-level conformance to claim ANSI/ISO SQL
compliance. Each higher level of the standard was a superset of the subordinate
level, meaning that each higher level included all the features of the lower levels of
conformance.

Later, SQL:1999 altered the base levels of conformance, doing away with the original
three categories. Instead, it required vendors to implement a minimum set of
mandatory features collectively called “Core SQL” in order to claim (and advertise)
that they are SQL:1999 compliant. This included the old Entry Level SQL-92 feature
set, features from other SQL-92 levels, and some new features. Vendors could also
opt to implement additional parts of the standard, described in the next section.

Parts of the SQL Standard
Since SQL:1999, the SQL standard has been divided into a set of parts, numbered
1 to 14 (as of SQL:2016). Not all of these were publicly released, and not all
achieved widespread adoption. The following list describes the different parts of the
standard:

Part 1, SQL/Framework
Includes common definitions and concepts used throughout the standard.
Defines the way the standard is structured and how the various parts relate
to one another, and describes the conformance requirements set out by the
standards committee.

Part 2, SQL/Foundation
Includes the Core, the central elements of the language, including both manda‐
tory and optional features. This is the largest and most important part of the
standard.

Part 3, SQL/CLI (Call-Level Interface)
Defines the call-level interface for dynamically invoking SQL statements from
external application programs. Also includes more than 60 routine specifica‐
tions to facilitate the development of truly portable shrinkwrapped software.

Part 4, SQL/PSM (Persistent Stored Modules)
Standardizes procedural language constructs similar to those found in
platform-specific SQL dialects such as PL/SQL and Transact-SQL.

History of the SQL Standard | 13

SQ
L H

isto
ry

Part 9, SQL/MED (Management of External Data)
Defines the management of data located outside of the database platform using
datalinks and a wrapper interface.

Part 10, SQL/OLB (Object Language Binding)
Describes how to embed SQL statements in Java programs. It is closely related
to JDBC, but offers a few advantages. It is also very different from the tradi‐
tional host language binding possible in early versions of the standard.

Part 11, SQL/Schemata
Defines over 85 views used to describe the metadata of each database and
stored in a special schema called INFORMATION_SCHEMA.

Part 13, SQL/JRT (Java Routines and Types)
Defines a number of SQL routines and types using the Java programming
language. Several features of Java, such as Java static methods and classes, are
supported.

Part 14, SQL/XML
Adds a new type called XML, four new operators (XMLPARSE, XMLSERIALIZE,
XMLROOT, and XMLCONCAT), several new functions (described in Chapter 7), and
the new IS DOCUMENT predicate. Also includes rules for mapping SQL-related
elements (like identifiers, schemas, and objects) to XML-related elements.

There is also a Part 15, SQL/MDA, which, as mentioned earlier, first appeared in
2019 and is’nt included in the SQL:2016 standard. Note that Parts 5–8 and Part 12
were not released to the public by design. Parts 5 and 8 were originally defined
within Part 2, SQL/Foundation, then split out, but were later merged back into
the same part. Parts 7 and 12 were canceled due to lack of progress, and the
key requirement for Part 7, temporal support, was ultimately added to Part 2 in
SQL:2011.

The SQL standard, which covers retrieval, manipulation, and management of data,
formalizes many SQL behaviors and syntax structures across a variety of platforms.
This standard has become even more important as open source database products,
such as MySQL and PostgreSQL, have grown in popularity and begun being devel‐
oped by virtual teams rather than large corporations.

Be aware that an RDBMS platform may claim SQL compli‐
ance by meeting the basic Core SQL:1999 standards, so read
the vendor’s fine print for a full description of its ANSI/ISO
conformity. An understanding of the various parts of the stan‐
dard will help you get a clearer idea of the capabilities of a
particular RDBMS and of how different features might behave
when SQL code is transported to other database products.

This book details the SQL implementations of four popular RDBMSs. These ven‐
dors do not fully support everything defined in the SQL standard; all RDBMS

14 | Chapter 1: SQL History and Implementations

platforms play a constant game of tag with the standards bodies, which often
update, refine, or otherwise change the benchmark as soon as vendors start to close
in on the standard. Conversely, the vendors often implement new features that are
not yet a part of the standard but that boost the effectiveness of their users.

SQL Statement Classes
SQL-92 grouped statements into three broad categories:

Data Manipulation Language (DML)
Provides specific data-manipulation commands such as SELECT, INSERT,
UPDATE, and DELETE

Data Definition Language (DDL)
Includes commands that handle the accessibility and manipulation of database
objects, such as CREATE and DROP

Data Control Language (DCL)
Includes permission-related commands such as GRANT and REVOKE

In contrast, SQL:1999 and later define seven core categories, or classes, that provide
a general framework for the types of commands available in SQL. This new frame‐
work attempts to identify the statements within each class more accurately and
logically, and provides for the development of new features and statement classes.
It also allowed some “orphaned” statements that did not fit well into any of the old
categories to be properly classified.

Table 1-1 identifies the SQL statement classes and lists some of the commands
in each class, each of which is fully discussed later. At this point, the key is to
remember the statement class titles.

Table 1-1. SQL statement classes

Class Description Example commands

Connection
statements

Start and end a client connection. CONNECT, DISCONNECT

Control statements Control the execution of a set of SQL statements. CALL, RETURN

Data statements May have a persistent and enduring effect upon data. SELECT, INSERT,
UPDATE, DELETE

Diagnostic
statements

Provide diagnostic information and raise exceptions and
errors.

GET DIAGNOSTICS

Schema statements May have a persistent and enduring effect on a database
schema and objects within that schema.

ALTER, CREATE, DROP

Session statements Control default behavior and other parameters for a
session.

SET statements like SET
CONSTRAINT

Transaction
statements

Set the starting and ending points of a transaction. COMMIT, ROLLBACK

History of the SQL Standard | 15

SQ
L H

isto
ry

Those who work with SQL regularly should become familiar with both the old
(SQL-92) and the new (SQL:1999 and later) statement classes since both nomencla‐
tures are still used to refer to SQL features and statements.

SQL Dialects
The constantly evolving nature of the SQL standard has given rise to a number of
SQL dialects among the various vendors and platforms. These dialects commonly
evolved because a given database vendor’s users requested that new capabilities
be added to the database before (sometimes many years before) the ANSI/ISO
committees drafted the applicable standards. Occasionally, the academic or research
communities also introduced new features in response to pressures from competing
technologies. For example, many database vendors have augmented their current
programmatic offerings with JSON and XML, or found other ways to offer features
found in non-relational database platforms (Chapter 10 discusses how to use XML
and JSON to store and query non-relational data in a relational database).

Many of these dialects include conditional processing capabilities (such as those
that control processing through IF ... THEN statements), control-of-flow func‐
tions (such as WHILE loops), variables, and error-handling capabilities. Because
the ANSI/ISO committees had not yet developed standards for these important
features at the time users began to demand them, RDBMS vendors created their
own commands and syntax. In fact, some of the earliest vendors from the 1980s
have variances in the most elementary commands, such as SELECT, because their
implementations predate the standards. When attempting to create SQL code that is
interoperable across database platforms, keep in mind that your mileage may vary.

Part 4 of the standard provides many features associated with
programming stored procedures and incorporates many of
the extensions offered by these dialects.

Some popular dialects of SQL include:

PL/pgSQL
The SQL dialect and extensions implemented in PostgreSQL. The acronym
stands for Procedural Language/PostgreSQL.

PL/SQL
Oracle’s procedural extension to SQL. PL/SQL stands for Procedural Lan‐
guage/SQL; this dialect bears many similarities to the language Ada.

SQL/PSM
An extension of SQL with a procedural language for use in stored procedures.
MySQL, MariaDB, and PostgreSQL implement the SQL/Persistent Stored Mod‐
ule of the Core SQL standard. MariaDB also supports PL/SQL.

16 | Chapter 1: SQL History and Implementations

Transact-SQL
Used by both Microsoft SQL Server and Sybase Adaptive Server, now owned
by SAP. As Microsoft and SAP/Sybase have moved away from the common
platform they shared in the early 1990s, their implementations of Transact-SQL
have also diverged widely, but the most basic commands are still very similar.

Users who plan to work extensively with a single database system should learn the
intricacies of their preferred SQL dialect or platform.

NoSQL
There are many non-relational database platforms that have eschewed SQL, com‐
monly known as NoSQL databases. These are non-tabular databases designed to
satisfy very different requirements than relational databases; they use different
data structures, such as key/value pairs, graphs, and documents, facilitating certain
kinds of operations. Ironically (given the name), many of the most popular NoSQL
offerings do provide some level of support for SQL. For example, users of Apache
Hadoop typically solve their query language challenges by using Apache Hive,
developed by Facebook, or Apache Pig, developed by Yahoo; Hive supports a signif‐
icant subset of the SQL standard, and Pig’s query language uses SQL-like syntax.
Similarly, Cassandra Query Language (CQL), used by the Cassandra NoSQL plat‐
form, includes familiar syntax for queries, data manipulation, and data definition.

It may seem counterintuitive, but the reality is that both open source and commer‐
cial NoSQL database implementations quickly came to appreciate the market value
of SQL. Those who wanted the most rapid path to widespread adoption and the
least friction for users getting started with the database learned that adopting SQL
gave them access to a wide world of data professionals. So, while NoSQL first
entered the lexicon meaning “a non-relational database platform that does not use
SQL,” today it’s understood as “a non-relational database platform that uses not only
SQL, but other programming languages as well.” SQL has impressive staying power,
and the skills you learn with this book are likely to outlast your career.

How Do You Say It?
Veterans of the various database platforms covered in this book are known from
time to time to argue over whether SQL is best pronounced acronymically, as in
“S-Q-L,” or phonetically, as in “Sequel.” Based on broad experience, the most preva‐
lent usage is to refer to the language and its implementations by the acronym: for
example, most Oracle users refer to PL/SQL as “P-L-S-Q-L” and most SQL Server
users refer to Transact-SQL as “T-S-Q-L.” However, when referring to proper names
containing “SQL,” it typically takes on its phonetic form: for example, Microsoft
users will say “Azure Sequel” and “Sequel Server” when speaking of Azure SQL
Database and SQL Server, and MySQL is usually pronounced “MySequel.” If you
ever want to start a lively conversation (or a heated argument), just tell a database
person that they say SQL the wrong way—then watch the sparks fly.

NoSQL | 17

SQ
L H

isto
ry

2
Foundational Concepts

SQL provides an easy, intuitive way to interact with a database. While the SQL
standard does not define the concept of a “database,” it does define all the functions
and concepts needed for a user to create, retrieve, update, and delete data. It is
important to know the types of syntax in the ANSI/ISO SQL standard and the
particular platform-specific syntax guidelines. This chapter will provide you with a
grounding in those areas. For brevity, we will refer to the ANSI/ISO standard as
simply “SQL” or “the SQL standard” in the remainder of this chapter.

Database Platforms Described in This Book
In this book, we will describe the SQL standard and the platform-specific imple‐
mentations of several leading RDBMSs:

MySQL/MariaDB
MySQL is a popular open source DBMS that is known for its ease of use and
good performance. It runs on numerous operating systems, including most
Linux variants. To improve performance, it has a slimmer feature set than
many other DBMSs. Since the purchase of Sun Microsystems by Oracle, the
MySQL user base has been split into two factions: users of MySQL (maintained
by Oracle) and MariaDB (from the MariaDB Foundation, whose head, Monty
Widenius, was the original creator of MySQL). This book covers MySQL 8,
now owned by Oracle, and the most popular MySQL fork, MariaDB 10.5.
Their functionality is largely equivalent and compatible. Where they deviate
most is in the storage engines they support, their compression and encryption
features, their release cycles, their geographic information system (GIS) and
JSON support, the plug-ins they support, and the speed at which they adopt
SQL standards. MariaDB tends to adopt SQL standards faster than MySQL,
but this may change in the future. This book highlights key areas where they
deviate.

19

Oracle
Oracle is a leading RDBMS in the commercial sector. It was the first com‐
mercially available SQL database platform, released in the summer of 1979,
running on VAX computers as Oracle v2. Since that time, Oracle has grown to
run on a multitude of operating systems and hardware platforms. Its scalable,
reliable architecture has made it the platform of choice for many users. In this
edition we cover Oracle Database 19c, which is the latest long-term support
(LTS) release available at the time of writing. The latest feature release (with
a limited lifetime for support) is Oracle Database 21c. Note that the way
Oracle releases software is a bit different from other databases, with newer
features often backported to an LTS version. For example, Oracle has already
backported a number of features from Oracle 21c to Oracle 19c.

PostgreSQL
PostgreSQL is the most feature-rich open source database platform available,
and it has seen a strong upward trend in popularity over the last several years.
PostgreSQL is best known for its excellent support for ANSI/ISO standards
and robust transaction processing capabilities, as well as its rich data type and
database object support. In addition to its full set of features, PostgreSQL runs
on a wide variety of operating systems and hardware platforms. This book
covers PostgreSQL 14.

SQL Server
Microsoft SQL Server is a popular RDBMS that runs on the Windows and
Linux operating systems. Its attractive features include ease of use, an all-
inclusive feature set covering Online Transaction Processing (OLTP) and ana‐
lytic workloads, low cost, and high performance. This book covers Microsoft
SQL Server 2019.

Categories of Syntax
To begin to use SQL, readers should understand how statements are written. SQL
syntax falls into four main categories, introduced in the following list and then
explained in further detail in the sections that follow:

Identifiers
User- or system-supplied names for database objects, such as databases, tables,
constraints on tables, columns in tables, views, etc.

Literals
User- or system-supplied strings or values that are not identifiers or keywords.
Literals may be strings like 'hello', numbers like 1234, dates like 'Jan 01,
2022', or Boolean values like TRUE.

Operators
Symbols specifying an action to be performed on one or more expressions,
most often in DELETE, INSERT, SELECT, or UPDATE statements. Operators are also
used frequently in the creation of database objects.

20 | Chapter 2: Foundational Concepts

https://oreil.ly/Vw5gr

Reserved words and keywords
Words with special meaning to the database SQL parser. Reserved words (such
as words used in commands and SQL statements) are words that cannot be
used as identifiers because they are either currently used or planned to be
used directly within syntax structures, and their use as user-defined names
would make parsing ambiguous. The term keywords is often used to refer to
non-reserved words that only have a special meaning in particular contexts and
can be used as identifiers in other contexts (though this is still generally best
avoided). Elsewhere in the book, we use the term keyword to encompass both
reserved and non-reserved words.

Note that you can circumvent the restriction on using
reserved words as identifiers by using delimited identifiers, the
most common delimiters being quote marks (“”) or brackets
([]). Non-quote delimiters are unlikely to be incorporated
into the SQL standard, but are under consideration for the
proposed Graph Query Language (GQL) standard.

Identifiers
In its simplest terms, an identifier is the name of an object you create on your
database platform. However, you can create identifiers at a variety of levels within
a database. Let’s start at the top. In the terms used in the SQL standard, catalogs
contain sets of schemas, schemas contain sets of objects, and so on. Most database
platforms use corollary terms: instances contain one or more databases; databases
contain one or more schemas; and schemas contain zero or more tables, views, or
stored procedures, and the privileges associated with each object. At each level of
this structure, items require unique names (that is, identifiers) so that they can
be referenced by applications and system processes. This means that each object
(whether a database, table, view, column, index, key, trigger, stored procedure, or
constraint) in an RDBMS must be identified. When issuing the command that
creates a database object, you must therefore specify an identifier (i.e., a name) for
that new object.

There are two important categories of rules that experienced developers keep in
mind when choosing an identifier for a given item:

Naming conventions
Logical rules of thumb that govern how database designers name objects.
Consistently following these rules ultimately creates better database structures
and enables improved data tracking. These are not so much SQL requirements
as the distilled experience of practiced programmers.

Identifier rules
Naming rules set by the SQL standard and implemented by the platforms.
These rules govern characteristics such as how long a name may be. These
identifier conventions are covered for each vendor later in this chapter.

Categories of Syntax | 21

Fo
und

atio
nal

C
o

ncep
ts

Naming conventions
Naming conventions establish a standard baseline for choosing object identifiers.
In this section, we present a list of naming conventions (rules for picking your
identifiers) that are based on long years of experience. The SQL standard has no
comment on naming conventions outside of the uniqueness of an identifier, its
length, and the characters that are valid within the identifier. However, here are
some conventions that you should follow:

Select a name that is meaningful, relevant, and descriptive
Avoid names that are encoded, such as a table named XP21, and instead use
human-readable names like Expenses_2022, so that others can immediately
know that the table stores expenses for the year 2022. Remember that other
developers and DBAs may be maintaining the database objects you create,
perhaps long after you have gone, so the names you use should make sense
at a glance. Each database vendor has limits on object name size, but names
generally can be long enough to make sense to anyone reading them.

Choose and apply the same case throughout
Use either all uppercase or all lowercase names for all objects throughout
the database. Some database servers are case-sensitive, so using mixed-case
identifiers might cause problems later. Many object–relational mapping (ORM)
products, such as Entity Framework, default to CamelCase notation, but this
can cause problems down the road if you need to port your application to
a database platform that is case-sensitive. For Oracle you should use all upper‐
case, and for PostgreSQL use all lowercase.

Use abbreviations and spellings consistently
Once you’ve chosen an abbreviation or spelling, use it consistently throughout
the database. For example, if you use EMP as an abbreviation for EMPLOYEE, you
should use EMP throughout the database; do not use EMP in some places and
EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading clarity
A column name like UPPERCASEWITHUNDERSCORES is not as easy to read as
UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names
Companies get acquired, and products’ names change. These elements are too
transitory to be included in database object names.

Do not use overly obvious prefixes or suffixes
For example, don’t use DB_ as a prefix for a database, and don’t prefix every
view with V_. Simple queries to the system table of the database can tell the
DBA or database programmer what type of object an identifier represents.

22 | Chapter 2: Foundational Concepts

Do not fill up all available space for the object name
If the database platform allows a 64-character table name, try to leave at least
a few free characters at the end. Some database platforms append prefixes or
suffixes to table names when manipulating temporary copies of the tables.

Do not use quoted identifiers
Quoted identifiers are object names stored within double quotation marks.
(The SQL standard calls these delimited identifiers, since the delimiter could
be something other than a double quote; SQL Server, for instance, frequently
uses square brackets.) These identifiers are always case-sensitive. Furthermore,
encapsulating an identifier within double quotes allows the creation of names
that may be difficult to use and may cause problems later. For example, users
could embed spaces, special characters, or even escape sequences within a
quoted identifier, but some third-party tools (and even vendor-supplied tools)
cannot handle special characters in names.

There are several benefits to following a consistent set of naming conventions.
First, your SQL code becomes, in a sense, self-documenting, because the chosen
names are meaningful and understandable to other users. Second, your SQL code
and database objects are easier to maintain—especially for other users who come
later—because the objects are consistently named. Finally, consistent and descrip‐
tive naming will save time and energy if the database ever has to be transferred or
migrated to another RDBMS platform. Giving a few minutes of thought to naming
SQL objects at the beginning of a project can prevent problems later.

Identifier rules
Identifier rules are rules for identifying objects within the database that are rigidly
enforced by the database platforms. These rules apply to normal identifiers, not
quoted identifiers. Rules specified by the SQL standard generally differ somewhat
from those of specific database vendors. Table 2-1 contrasts the SQL rules with
those of the RDBMS platforms covered in this book.

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers)

Characteristic Platform Specification

Identifier size SQL 128 characters.

 MySQL 64 characters; aliases may be 255 characters.

 Oracle 128 bytes (the number of characters depends on the character set).

 PostgreSQL 63 characters (NAMEDATALEN property minus 1).

 SQL Server 128 characters; temp tables are limited to 116 characters.

Identifier may
contain

SQL Any number or character, and the underscore (_) symbol.

 MySQL Any number, character, or symbol. Cannot be composed entirely of
numbers.

Categories of Syntax | 23

Fo
und

atio
nal

C
o

ncep
ts

Characteristic Platform Specification

 Oracle Any number or character, and the underscore (_), pound sign (#), and
dollar sign ($) symbols (though the last two are discouraged). Database
links may also contain a period (.).

 PostgreSQL Any number or character, and the underscore (_) symbol. Unquoted
uppercase characters are equivalent to lowercase.

 SQL Server Any number or character, and the underscore (_), at sign (@), pound sign
(#), and dollar sign ($) symbols.

Identifier must
begin with

SQL A letter.

 MySQL A letter or number. Cannot be composed entirely of numbers.

 Oracle A letter.

 PostgreSQL A letter or underscore (_).

 SQL Server A letter, underscore (_), at sign (@), or pound sign (#).

Identifier cannot
contain

SQL Spaces or special characters.

 MySQL A period (.), slash (/), or ASCII 0 (null) or 255 (non-breaking space)
character. Single quotes ('') and double quotes ("") are allowed only in
quoted identifiers. Identifiers should not end with space characters.

 Oracle Spaces, double quotes (""), or special characters.

 PostgreSQL Double quotes ("").

 SQL Server Spaces or special characters.

Allows quoted
identifiers

SQL Yes.

 MySQL Yes.

 Oracle Yes.

 PostgreSQL Yes.

 SQL Server Yes.

Quoted identifier
symbol

SQL Double quotes ("").

 MySQL Single quotes ('') or double quotes ("") in ANSI compatibility mode.

 Oracle Double quotes ("").

 PostgreSQL Double quotes ("").

 SQL Server Double quotes ("") or brackets ([]); brackets are preferred.

Identifier may be
reserved

SQL No, unless as a quoted identifier.

 MySQL No, unless as a quoted identifier.

 Oracle No, unless as a quoted identifier.

 PostgreSQL No, unless as a quoted identifier.

24 | Chapter 2: Foundational Concepts

Characteristic Platform Specification

 SQL Server No, unless as a quoted identifier.

Schema
addressing

SQL <catalog>.<schema>.<object>.

 MySQL <database>.<object>.

 Oracle <schema>.<object>.

 PostgreSQL <database>.<schema>.<object>.

 SQL Server <server>.<database>.<schema>.<object>.

Identifier must be
unique

SQL Yes.

 MySQL Yes.

 Oracle Yes.

 PostgreSQL Yes.

 SQL Server Yes.

Case sensitive SQL No.

 MySQL Only if the underlying filesystem is case-sensitive (e.g., macOS or Unix).
Triggers, logfile groups, and tablespaces are always case-sensitive.

 Oracle No by default, but can be changed.

 PostgreSQL No.

 SQL Server No by default, but can be changed.

Other rules SQL None.

 MySQL May not contain only numbers.

 Oracle Database links are limited to 128 bytes and may not be quoted identifiers.

 PostgreSQL None.

 SQL Server Microsoft commonly uses brackets rather than double quotes for quoted
identifiers.

Identifiers must be unique within their scope. Thus, given our earlier discussion of
the hierarchy of database objects, database names must be unique on a particular
instance of a database server, while the names of tables, views, functions, triggers,
and stored procedures must be unique within a particular schema. On the other
hand, a table and a stored procedure can have the same name since they are
different types of objects. Two tables can also have the same name if they are located
in different schemas. The names of columns, keys, and indexes must be unique in
a single table or view, and so forth. Check your database platform’s documentation
for more information—some platforms require unique identifiers where others may
not. For example, Oracle requires that all index identifiers be unique throughout the
database, while PostgreSQL requires index identifiers to be unique across a schema
but only requires CHECK constraint names to be unique within a table, and other

Categories of Syntax | 25

Fo
und

atio
nal

C
o

ncep
ts

platforms (such as SQL Server) require that an index identifier be unique only for
the table on which it depends.

Remember, quoted identifiers (object names encapsulated within a special delimiter,
usually double quotes or brackets [LikeThis]) may be used to break some of
the identifier rules specified here. One example is that delimited identifiers are
case-sensitive—that is, "foo" does not equal "FOO" or "Foo". Furthermore, quoted
identifiers may be used to bestow a reserved word as a name, or to allow normally
unusable characters and symbols within a name. For instance, you normally can’t
use the percent sign (%) in a table name. However, you can, if you must, use that
symbol in a table name, so long as you always enclose that table name within double
quotes. That is, to name a table expense%%ratios, you would specify the name as
“expense%%ratios” or [expense%%ratios].

Once you have created an object name as a quoted identifier, we recommend that
users always reference it using its delimiters. Inconsistency often leads to problem‐
atic or poorly performing code.

Literals
SQL defines a literal value as any explicit numeric value, character string, temporal
value (e.g., date or time), or Boolean value that is not an identifier or a keyword.
SQL databases allow a variety of literal values in a SQL program. Literal values
are allowed for most of the numeric, character, Boolean, and date data types. For
example, SQL Server’s numeric data types include (among others) INTEGER, REAL,
and MONEY. Thus, numeric literals can look like:

30
−117
+883.3338
−6.66
$70000
2E5
7E-3

As these examples illustrate, SQL Server allows signed and unsigned numerals in
scientific or normal notation, and since it has a MONEY data type, a currency symbol
(the dollar sign, under the default regional collation for US settings) can even be
included. SQL Server does not allow other symbols in numeric literals (besides 0 1
2 3 4 5 6 7 8 9 + – $. E e), including commas, which can be problematic
because in most European countries a comma is used in place of a period in decimal
or monetary values. Most databases interpret a comma in a numeric literal as a
list item separator. Thus, the literal value 3,000 would likely be interpreted as two
values: 3 and, separately, 000.

Boolean, character string, and date literals look like this:

TRUE
'Hello world!'
'OCT-28-1966 22:14:30.00'

26 | Chapter 2: Foundational Concepts

Character string literals should always be enclosed in single quotation marks ('')—
the standard delimiter—but are not restricted just to the letters of the alphabet. In
fact, any character in the character set can be represented as a string literal. All of
the following are string literals:

'1998'
'70,000 + 14000'
'There once was a man from Nantucket,'
'Oct 28, 1966'

and are compatible with the CHARACTER data type. Remember not to confuse the
string literal '1998' with the numeric literal 1998. It’s poor practice to use such a
string literal in arithmetic operations without explicitly converting it to a numeric
data type. Some database products will perform automatic conversion of string
literals containing numbers when comparing them against any DATE or NUMBER data
type values, but not all. On some database platforms, performance declines when
you do not explicitly convert such data types.

By doubling the delimiter, you can effectively represent a single quotation mark in
a literal string, if necessary. That is, you can use two quotation marks each time a
single quotation mark is part of the value. This example, taken from SQL Server,
illustrates the idea:

SELECT 'So he said ''Who''s Le Petomaine?'''

This statement gives the following result:

So he said 'Who's Le Petomaine?'

Operators
An operator is a symbol specifying an action to be performed on one or more
expressions. Operators are used most often in DELETE, INSERT, SELECT, and UPDATE
statements, but they are also used frequently in the creation of database objects such
as stored procedures, functions, triggers, and views.

Operators typically fall into these categories:

Arithmetic operators
Supported by all databases

Assignment operators
Supported by all databases

Bitwise operators
Supported by all databases

Comparison operators
Supported by all databases

Categories of Syntax | 27

Fo
und

atio
nal

C
o

ncep
ts

Logical operators
Supported by all databases

Set operators
Supported by all databases

Unary operators
Supported by MySQL, Oracle, and SQL Server

Arithmetic operators
Arithmetic operators perform mathematical operations on two expressions of any
data type in the numeric data type category. See Table 2-2 for a listing of the
arithmetic operators.

Table 2-2. Arithmetic operators

Arithmetic operator Meaning

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulo or MOD(); returns the remainder of a division operation as an integer value

In Oracle and PostgreSQL, the + and − operators can be used
to add and subtract days in date values. The various other
platforms also offer their own unique methods for performing
arithmetic operations on date values.

Assignment operators
Except in Oracle, which uses :=, the assignment operator (=) assigns a value to a
variable or the alias of a column heading. In all of the database platforms covered
in this text, the keyword AS may serve as an operator for assigning table- or
column-heading aliases.

Bitwise operators
All databases support bitwise operators (see Table 2-3) as a shortcut to perform bit
manipulations between two-integer expressions. Valid data types that are accessible
to bitwise operators include BINARY, BIT, INT, SMALLINT, TINYINT, and VARBINARY.
PostgreSQL supports the INT, BIT, and BIT VARYING data types; it also supports
the bitwise operators AND, OR, XOR, concatenation, NOT, and shifts left and right. For
PostgreSQL, use the # rather than ^ because ^ is used to indicate exponents.

28 | Chapter 2: Foundational Concepts

Table 2-3. Bitwise operators

Bitwise operator Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ (PostgreSQL #) Bitwise exclusive OR (two operands)

Comparison operators
Comparison operators test whether two expressions are equal or unequal. The result
of a comparison operation is a Boolean value: TRUE, FALSE, or UNKNOWN. Also, note
that the SQL standard behavior for a comparison operation where one or more of
the expressions is NULL is to return NULL. For example, the expression 23 + NULL
returns NULL, as does the expression Feb 23, 2022 + NULL. See Table 2-4 for a list
of the comparison operators.

Table 2-4. Comparison operators

Comparison operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not SQL standard)

!< Not less than (not SQL standard)

!> Not greater than (not SQL standard)

Boolean comparison operators are used most frequently in a WHERE clause to filter
the rows that qualify for the search conditions. The following example uses the
greater than or equal to comparison operator:

SELECT *
 FROM Products
 WHERE ProductID >= 347

Logical operators
Logical operators are commonly used in a WHERE clause to test for the truth of some
condition. They return a Boolean value of either TRUE or FALSE. Table 2-5 shows a
list of logical operators. Note that not all database systems support all operators.

Categories of Syntax | 29

Fo
und

atio
nal

C
o

ncep
ts

Table 2-5. Logical operators

Logical
operator

Meaning

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both Boolean expressions are TRUE

ANY TRUE if any one of a set of comparisons is TRUE

BETWEEN TRUE if the operand is within a range inclusive of lower and upper bounds (e.g., 2
BETWEEN 2 AND 5 and 5 BETWEEN 2 AND 5 both result in TRUE)

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions or one or more rows returned by a
subquery

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other Boolean operator

OR TRUE if either Boolean expression is TRUE

SOME TRUE if some of a set of comparisons are TRUE

Set operators
Set operators manipulate the results of two or more SELECT statements and return a
single result set based on the function of the set operator itself. Some set operators
act in much the same way as inner joins or outer joins. To use a set operator, place
it after the first query and before the second query. Each SELECT statement must
have the same number of columns in the SELECT item list and the columns in each
query must be of the same or a compatible data type (refer to Chapter 4 for detailed
explanations and examples of set operators in action).

While you can have more than two SELECT statements in a query using set opera‐
tors, the logic can become confusing after the second SELECT statement. Therefore,
we recommend that you limit your queries to two SELECT statements with a single
set operator until you become very experienced with their behavior. The explana‐
tions in Table 2-6, which lists the available set operators, are based on using only
two SELECT statements in your query.

Table 2-6. Set operators

Set operator Meaning

UNION Returns all distinct rows selected by either SELECT statement in the query, returning
only one record if there are any duplicates within the result set

UNION ALL Returns all rows selected by either SELECT statement in the query, including duplicates

INTERSECT Returns all distinct rows that are in common between the first and second SELECT
statements in the query, returning only one record if there are any duplicates within the
result set

30 | Chapter 2: Foundational Concepts

Set operator Meaning

INTERSECT ALL Returns all rows selected by the first and second SELECT statements within the query
that are in common between them, including duplicates

MINUS Returns all distinct rows retrieved by the first SELECT statement in the query, removing
from the record set any records retrieved by the second query

MINUS ALL Returns all rows retrieved by the first SELECT statement in the query, removing from the
record set any records retrieved by the second query, including duplicates

EXCEPT A synonym for MINUS

EXCEPT ALL A synonym for MINUS ALL

Unary operators
Unary operators perform an operation on only one expression of any of the data
types in the numeric data type category. In general the unary operators (listed in
Table 2-7) may be used on any numeric data type, though the bitwise operator (~)
can be used only on integer data types.

Table 2-7. Unary operators

Unary operator Meaning

+ Numeric value is positive

− Numeric value is negative

~ A bitwise NOT; returns the complement of the number (not supported in Oracle)

Operator precedence
Sometimes operator expressions become rather complex, with multiple levels of
nesting. When an expression has multiple operators, operator precedence determines
the sequence in which the operations are performed. The order of execution can
significantly affect the resulting value.

Operators have different precedence levels. An operator on a higher level is evalu‐
ated before an operator on a lower level. The following listing shows the operators’
precedence levels, from highest to lowest:

• () (parenthetical expressions)•

• +, −, ~ (unary operators)•

• *, /, % (mathematical operators)•

• +, − (arithmetic operators)•

• =, >, <, >=, <=, <>, !=, !>, !< (comparison operators)•

• ^ (bitwise exclusive OR), & (bitwise AND), | (bitwise OR)•

• NOT•

Categories of Syntax | 31

Fo
und

atio
nal

C
o

ncep
ts

• AND•

• ALL, ANY, BETWEEN, IN, LIKE, OR, SOME•

• = (variable assignment)•

Operators are evaluated from left to right when they are of equal precedence. How‐
ever, parentheses can be used to override the default precedence of the operators
in an expression. Expressions within a set of parentheses are evaluated first, while
operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very different
results:

SELECT 2 * 4 + 5 FROM DUAL
-- Evaluates to 8 + 5, which yields an expression result of 13

SELECT 2 * (4 + 5) FROM DUAL
-- Evaluates to 2 * 9, which yields an expression result of 18

In expressions with nested parentheses, the most deeply nested expression is evalu‐
ated first.

This next example contains nested parentheses, with the expression 5 – 3 appear‐
ing in the most deeply nested set of parentheses. This expression yields a value of
2. The addition operator (+) then adds this result to 4, which yields a value of 6.
Finally, the 6 is multiplied by 2 to yield an expression result of 12:

SELECT 2 * (4 + (5 - 3)) FROM DUAL
-- Evaluates to 2 * (4 + 2), which further evaluates to 2 * 6,
-- and yields an expression result of 12
RETURN

We recommend using parentheses to clarify precedence in all
complex queries.

System delimiters and operators
String delimiters mark the boundaries of a string of alphanumeric characters. System
delimiters are symbols within the character set that have special significance to your
database server. Delimiters are symbols that are used to judge the order or hierarchy
of processes and list items. Operators are those delimiters used to judge values
in comparison operations, including symbols commonly used for arithmetic or
mathematical operations. Table 2-8 lists the system delimiters and operators allowed
by SQL.

32 | Chapter 2: Foundational Concepts

Table 2-8. SQL delimiters and operators

Symbol Usage Example

+ Addition operator; in SQL
Server, also serves as a
concatenation operator

On all database platforms:
SELECT MAX(emp_id) + 1 FROM employee

– Subtraction operator; on some
database platforms it also
serves as a range indicator in
string pattern matching, but is
not a part of the SQL standard

As a subtraction operator:
SELECT MIN(emp_id) - 1 FROM employee-

 As a range operator, in a CHECK constraint:
ALTER TABLE authors ADD CONSTRAINT

authors_zip_num CHECK (zip LIKE %[0-9]%)

* Multiplication operator SELECT salary * 0.05 AS bonus FROM employee

/ Division operator SELECT salary / 12 AS monthly FROM employee

= Equality operator SELECT * FROM employee WHERE lname = 'Fudd'

< > Inequality operators (!= is
a nonstandard equivalent on
several platforms)

On all platforms:
SELECT * FROM employee WHERE lname <> 'Fudd'

<
<=

Less than operator
Less than or equal to operator

SELECT lname, emp_id, (salary * 0.05) AS

bonus FROM employee WHERE (salary * 0.05)

<= 10000 AND exempt_status < 3

>
>=

Greater than operator

Greater than or equal to
operator

SELECT lname, emp_id, (salary * 0.025) AS

bonus FROM employee WHERE (salary * 0.025)

> 10000 AND exempt_status >= 4

() Used in expressions and
function calls, to specify order
of operations, and as a
subquery delimiter

Expression:
SELECT (salary / 12) AS monthly FROM

employee WHERE exempt_status >= 4

Function call:
SELECT SUM(travel_expenses) FROM "expense%

%ratios"

Order of operations:
SELECT (salary / 12) AS monthly, ((salary

/ 12) / 2) AS biweekly FROM employee WHERE

exempt_status >= 4

Subquery:
SELECT * FROM stores WHERE stor_id IN

(SELECT stor_id FROM sales WHERE ord_date

> '01-JAN-2014')

Categories of Syntax | 33

Fo
und

atio
nal

C
o

ncep
ts

Symbol Usage Example

% Wildcard attribute indicator SELECT * FROM employee WHERE lname LIKE

'Fud%'

, List item separator SELECT lname, fname, ssn, hire_date FROM

employee WHERE lname = 'Fudd'

. Identifier qualifier separator SELECT * FROM scott.employee WHERE lname

LIKE 'Fud%'

'' Character string indicators SELECT * FROM employee WHERE lname LIKE

'FUD%' OR fname = 'ELMER'

“” Quoted identifier indicators SELECT expense_date, SUM(travel_expense)

FROM "expense%%ratios" WHERE expense_date

BETWEEN '01-JAN-2014' AND '01-APR-2014'

-- Single-line comment delimiter
(two dashes followed by a
space)

-- Finds all employees like Fudd, Fudge, and Fudston: SELECT *
FROM employee WHERE lname LIKE 'Fud%'

/* Beginning multiline comment
delimiter

/* Finds all employees like Fudd, Fudge, and Fudston: SELECT
* FROM employee WHERE lname LIKE 'Fud%' */

*/ Ending multiline comment
indicator

Keywords and Reserved Words
Just as certain symbols have special meaning and functionality within SQL, certain
words and phrases, commonly known as keywords, have special significance. As
mentioned earlier, keywords can be either reserved or non-reserved words. Reserved
words are words whose meanings are so closely tied to the operation of the RDBMS
that they should not be used for any other purpose. These include words used in
SQL statements; for example, “select” is a reserved word and should not be used
as a table name. It’s strongly recommended that reserved words never be used as
user-defined names, although many database platforms do technically allow this
through the use of delimited identifiers. Non-reserved keywords, such as the names
of built-in tables and functions, have special meanings only in certain contexts;
however, to avoid confusion it’s best to avoid using them as identifiers too.

Reserved words and keywords are not always words used in SQL statements; they
may also be words commonly associated with database technology. For example,
CASCADE is used to describe data manipulations that allow their actions, such as a
delete or update operation, to “flow down,” or cascade, to any subordinate tables.
Lists of reserved words and keywords are widely published so that developers will
not use them as identifiers that might, either now or in some later revision, cause a
problem.

SQL specifies its own set of reserved words and keywords, as do the database
platforms, because they each have their own extensions to the SQL command set.

34 | Chapter 2: Foundational Concepts

You’ll find lists of SQL standard keywords and keywords used in the different
vendor implementations discussed in the Appendix.

It is generally a good idea to avoid naming columns or tables
after a keyword that occurs in any major platform because
database applications are frequently migrated from one plat‐
form to another.

SQL and Platform-Specific Data Types
A table can contain one or many columns. Each column must be defined with a
data type that provides a general classification of the data stored in the column.
In real-world applications, data types improve efficiency and provide some control
over how tables are defined and how the data is stored within a table. Using
specific data types enables better, more understandable queries and helps control
the integrity of the data.

Data types are also used when declaring variables and parame‐
ters within stored procedures and user-defined functions.

The tricky thing about SQL data types is that they do not always map directly to
identical data types on different database platforms. Although the various platforms
specify types that correspond to the SQL data types, these are not always true SQL
data types implemented in the exact same way. For example, MySQL’s implementa‐
tion of a BIT data type is actually identical to a CHAR(1) data type value in the SQL
standard. That said, the platform-specific data types are typically close enough to
the standard to be both easily understandable and job-ready.

The official SQL data types (as opposed to platform-specific data types) fall into the
general categories described in Table 2-9. Note that the SQL standard contains a few
rarely used data types (such as ARRAY, MULTISET, REF, and ROW) that are shown only
in this table and not discussed elsewhere in the book.

Table 2-9. SQL data type categories

Category Example data types
and abbreviations

Description

BINARY BINARY LARGE

OBJECT (BLOB)

Stores binary string values in hexadecimal format. Binary string
values are stored without reference to any character set and
without any length limit.

BOOLEAN BOOLEAN Stores truth values (either TRUE or FALSE).

SQL and Platform-Specific Data Types | 35

Fo
und

atio
nal

C
o

ncep
ts

Category Example data types
and abbreviations

Description

CHARACTER

string types
CHAR

CHARACTER

VARYING

(VARCHAR)

Can store any combination of characters from the applicable
character set. The varying data types allow variable lengths, while
the other data types allow only fixed lengths. Also, the variable-
length data types automatically trim trailing spaces, while the
other data types pad any unused space with spaces.

 CHARACTER

LARGE OBJECT

(CLOB)

Used to store a large amount of textual data (up to 2,147,483,647
characters).

 NATIONAL

CHARACTER

(NCHAR)

NATIONAL

CHARACTER VARY

ING (NCHAR VARY

ING)

Designed to support a particular implementation-defined
character set.

 NATIONAL

CHARACTER

LARGE OBJECT

(NCLOB)

Same as CHARACTER LARGE OBJECT, but supports a
particular implementation-defined character set.

DATALINK DATALINK Defines a reference to a file or other external data source that is
not part of the SQL environment.

INTERVAL INTERVAL Specifies a duration or span of time.

COLLECTION ARRAY

MULTISET

Store collections of elements of a predefined data type. An
ARRAY is a set-length, ordered collection of elements, and
a MULTISET is a variable-length, unordered collection of
elements.

NUMERIC INTEGER (INT)

BIGINT

SMALLINT

NUMERIC(p,s)

DEC[IMAL](p,s)

FLOAT(p,s)

REAL

DOUBLE

PRECISION

Store exact numeric values (integers or decimals) or approximate
(floating-point) values. INT, BIGINT, and SMALLINT store
exact numeric values with a predefined precision and a scale
of zero. NUMERIC and DEC store exact numeric values with
a definable precision and a definable scale. FLOAT stores
approximate numeric values with a definable precision, while
REAL and DOUBLE PRECISION have predefined precisions.
You may define a precision (p) and scale (s) for a DECIMAL,
FLOAT, or NUMERIC data type to indicate the total number of
allowed digits and the number of decimal places, respectively.
INT, SMALLINT, and DEC are sometimes referred to as
exact numeric types, while FLOAT, REAL, and DOUBLE
PRECISION are sometimes called approximate numeric
types.

36 | Chapter 2: Foundational Concepts

Category Example data types
and abbreviations

Description

TEMPORAL DATE

TIME

TIME WITH TIME

ZONE

TIMESTAMP

TIMESTAMP WITH

TIME ZONE

Handle values related to time. DATE and TIME are self-
explanatory. Data types with the WITH TIME ZONE suffix
also include a time zone offset. The TIMESTAMP data types are
used to store a value that represents a precise moment in time.
Temporal types are also known as datetime types.

XML XML Introduced in SQL:2003 (Part 14), this data type stores XML data
and can be used wherever a SQL data type is allowed (e.g., for a
column of a table, a field in a row, etc.). Operations on the values
of an XML type assume a tree-based internal data structure.
The internal data structure is based on the XML Information Set
(Infoset) recommendation , using a new document information
item called the XML root information item.

Not every database platform supports every SQL data type. Table 2-10 lists the data
types implemented by the platforms discussed in this book, giving the SQL standard
equivalent where applicable.

Be careful to look for footnotes when reading this table because some platforms
support a data type of a given name but implement it in a different way than the
SQL standard and/or other vendors.

While the different platforms may support data types of the
same name, the details of their implementations may vary.
The sections that follow this table list the specific require‐
ments of each platform’s data types.

Table 2-10. Comparison of platform-specific data types

Vendor data type MySQL/
MariaDB

Oracle PostgreSQL SQL Server SQL data type

BFILE Y None

BIGINT Y Y Y BIGINT

BINARY Y Y BLOB

BINARY_DOUBLE Y DOUBLE PRECISION

BINARY_FLOAT Y FLOAT

BIT Y Y Y None

BIT VARYING, VARBIT Y None

BLOB Y Y BLOB

BOOL, BOOLEAN Y Y BOOLEAN

SQL and Platform-Specific Data Types | 37

Fo
und

atio
nal

C
o

ncep
ts

Vendor data type MySQL/
MariaDB

Oracle PostgreSQL SQL Server SQL data type

BOX Y None

BYTEA Y BLOB

CHAR, CHARACTER Y Y Y Y CHARACTER

CIDR Y None

CIRCLE Y None

CLOB Y CLOB

CURSOR Y None

DATE Y Y Y Y DATE

DATETIME Y Y TIMESTAMP

DATETIMEOFFSET Y TIMESTAMP

DATETIME2 Y TIMESTAMP WITH

TIME ZONE

DEC, DECIMAL Y Y Y Y DECIMAL

DOUBLE, DOUBLE
PRECISION

Y Y Ya Y FLOAT

ENUM Y Y None

FLOAT Y Y Y Y DOUBLE

PRECISION

FLOAT4 Yb FLOAT(p)

FLOAT8 Yc FLOAT(p)

GEOGRAPHY Y None

GEOMETRY Y None

HIERARCHYID Y None

IMAGE Y None

INET Y None

INT, INTEGER Y Y Y Y INTEGER

INT2 Y SMALLINT

INT4d Y INT, INTEGER

INTERVAL Y INTERVAL

INTERVAL DAY TO

SECOND

 Y Y INTERVAL DAY

TO SECOND

INTERVAL YEAR TO

MONTH

 Y Y INTERVAL YEAR

TO MONTH

JSON Y Y BLOB

JSONB Y BLOB

38 | Chapter 2: Foundational Concepts

Vendor data type MySQL/
MariaDB

Oracle PostgreSQL SQL Server SQL data type

LINE Y None

LONG Y None

LONGBLOB Y BLOB

LONG RAW Y BLOB

LONGTEXT Y None

LSEG Y None

MACADDR Y None

MEDIUMBLOB Y None

MEDIUMINT Y INT

MEDIUMTEXT Y None

MONEY Ye Y None

NATIONAL CHARACTER

VARYING, NATIONAL
CHAR VARYING, NCHAR
VARYING, NVARCHAR

Y Y Y Y NATIONAL

CHARACTER

VARYING

NCHAR, NATIONAL CHAR,
NATIONAL CHARACTER

Y Y Y Y NATIONAL

CHARACTER

NCLOB Y NCLOB

NTEXT, NATIONAL TEXT Y NCLOB

NVARCHAR2(n) Y None

NUMBER Y Y Yf Y None

NUMERIC Y NUMERIC

OID Y None

PATH Y None

POINT Y None

POLYGON Y None

RAW Y None

REAL Y Y Y Y REAL

ROWID Y None

ROWVERSION Y None

SERIAL, SERIAL4 Yg Y None

SERIAL8, BIGSERIAL Y None

SET Y None

SMALLDATETIME Y None

SMALLINT Y Y Y Y SMALLINT

SQL and Platform-Specific Data Types | 39

Fo
und

atio
nal

C
o

ncep
ts

Vendor data type MySQL/
MariaDB

Oracle PostgreSQL SQL Server SQL data type

SMALLMONEY Y None

SQL_VARIANT Y None

TABLE Y None

TEXT Y Y Y None

TIME Y Y Y TIME

TIMESPAN INTERVAL

TIMESTAMP Y Y Y Yh TIMESTAMP

TIMESTAMP WITH

TIME ZONE, TIME
STAMPTZ

 Y TIMESTAMP WITH

TIME ZONE

TIMETZ Y TIME WITH TIME

ZONE

TINYBLOB Y Y None

TINYINT Y Y None

TINYTEXT Y None

UNIQUEIDENTIFIER Y None

UROWID Y None

VARBINARY Y Y BLOB

VARCHAR,
CHAR VARYING, CHARAC
TER VARYING

Y Yi Y Y CHARACTER

VARYING(n)

VARCHAR2 Y CHARACTER

VARYING

YEAR Y TINYINT

XML Y Y XML

XMLTYPE Y XML

a Synonym for FLOAT.
b Synonym for REAL.
c Synonym for DOUBLE PRECISION.
d Available on MariaDB but not MySQL.
e Synonym for DECIMAL(9,2).
f Synonym for DECIMAL.
g Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.
h Implemented as a non-date data type.
i Oracle vastly prefers VARCHAR2.

40 | Chapter 2: Foundational Concepts

The following sections list platform-specific data types, their SQL data type cate‐
gories (if any), and pertinent details.

MySQL Data Types
Both MySQL 8 and MariaDB 10.5 have support for spatial data. It’s handled in a
variety of classes provided in the OpenGIS Geometry Model, which is supported
by the MyISAM, InnoDB, Aria, anNDB, and ARCHIVE database engines. Only the
MyISAM, InnoDB, and Aria storage engines support both spatial and non-spatial
indexes; the other database engines only support non-spatial indexes.

MySQL’s numeric data types support the following optional attributes:

UNSIGNED

The numeric value is assumed to be non-negative (positive or zero). For fixed-
point data types such as DECIMAL and NUMERIC, the space normally used to show
a positive or negative condition of the numeric value can be used as part of
the value, providing a little extra numeric range in the column for these types.
(There is no SIGNED optional attribute.)

ZEROFILL

Used for display formatting, this attribute tells MySQL that the numeric value
is padded to its full size with zeros rather than spaces. ZEROFILL automatically
forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255 characters.
Columns longer than 255 characters are stored properly, but only 255 characters are
shown. Floating-point numeric data types may have a maximum of 30 digits after
the decimal point.

The following list enumerates the data types MySQL supports. These include most
of the SQL standard data types, plus several additional data types used to contain
lists of values, as well as data types used for binary large objects (BLOBs). Data types
that extend the SQL standard include TEXT, ENUM, SET, and MEDIUMINT. Special data
type attributes that go beyond the ANSI/ISO standard include AUTO_INCREMENT,
BINARY, FIXED, NULL, UNSIGNED, and ZEROFILL. The data types supported by
MySQL are:

BIGINT[(n)] [UNSIGNED] [ZEROFILL] (SQL standard data type: BIGINT)
This stores signed or unsigned integers. The signed range is
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. The unsigned range
is 0 to 18,446,744,073,709,551,615. BIGINT may perform imprecise calculations
with very large numbers (63 bits), due to rounding issues.

BINARY[(n)] (SQL standard data type: BLOB)
Stores binary byte strings of optional length n. Otherwise, similar to the BLOB
data type.

SQL and Platform-Specific Data Types | 41

Fo
und

atio
nal

C
o

ncep
ts

BIT[(n)], BOOL, BOOLEAN (SQL standard data type: BOOLEAN)
Synonyms for TINYINT, usually used to store only 0s or 1s. n specifies the
number of bits, from 1 to 64. If n is omitted, the default is 1 bit.

BLOB (SQL standard data type: BLOB)
Stores up to 65,535 characters of data. Support for indexing BLOB columns is
found only in MySQL 3.23.2 and greater (this feature is not found in any other
platform covered in this book). In MySQL, BLOBs are functionally equivalent to
the MySQL data type VARCHAR BINARY (discussed later) with the default upper
limit. BLOBs always require case-sensitive comparisons. BLOB columns differ
from MySQL VARCHAR BINARY columns by not allowing DEFAULT values. You
cannot perform a GROUP BY or ORDER BY on BLOB columns. Depending on the
storage engine being used, BLOBs also are sometimes stored separately from
their tables, whereas all other data types in MySQL (with the exception of TEXT)
are stored in the table file structure itself.

CHAR(n) [BINARY], CHARACTER(n) [BINARY] (SQL standard data type:
CHARACTER(n))

Contains a fixed-length character string of 1 to 255 characters. CHAR pads with
blank spaces when it stores values but trims spaces upon retrieval, just as the
SQL standard VARCHAR does. The BINARY option allows binary searches rather
than dictionary-order, case-insensitive searches.

DATE (SQL standard data type: DATE)
Stores a date within the range of 1000-01-01 to 9999-12-31 (delimited by
quotes). MySQL displays these values by default in the format YYYY-MM-DD,
though the user may specify some other display format.

DATETIME (SQL standard data type: TIMESTAMP)
Stores date and time values within the range of 1000-01-01 00:00:00 to
9999-12-31 23:59:59.

DECIMAL[(p[,s])] [UNSIGNED] [ZEROFILL], DEC[(p[,s])] [UNSIGNED]
[ZEROFILL], FIXED [(p[,s])] [UNSIGNED] [ZEROFILL] (SQL standard data type:
DECIMAL(PRECISION, SCALE))

Stores exact numeric values as if they were strings, using a single character for
each digit, up to 65 digits in length. Precision is 10 if omitted, and scale is 0 if
omitted. FIXED is a synonym for DECIMAL provided for backward compatibility
with other database platforms.

DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL] (SQL stan‐
dard data type: DOUBLE PRECISION)

Holds double-precision numeric values and is otherwise identical to the
double-precision FLOAT data type, except for the fact that its allowable
range is −1.7976931348623157E+308 to −2.2250738585072014E–308, 0, and
2.2250738585072014E–308 to 1.7976931348623157E+308.

42 | Chapter 2: Foundational Concepts

ENUM("val1", "val2", ... n) [CHARACTER SET cs_name] [COLLATE colla

tion_name] (SQL standard data type: none)
Holds a list of allowable values (expressed as strings but stored as integers).
Other possible values for the data type are NULL, or an empty string ("") as an
error value. Up to 65,535 distinct values are allowed.

FLOAT[(p[,s])] [ZEROFILL] (SQL standard data type: FLOAT(P))
Stores floating-point numbers in the range −3.402823466E+38 to
−1.175494351E–38 and 1.175494351E–38 to 3.402823466E+38. FLOAT without
a precision, or with a precision of <= 24, is single-precision. Otherwise, FLOAT
is double-precision. When specified alone, the precision can range from 0 to
53. When you specify both precision and scale, the precision may be as high as
255 and the scale may be as high as 253. All FLOAT calculations in MySQL are
done with double precision and may, since FLOAT is an approximate data type,
encounter rounding errors. This differs quite a bit with MariaDB, where you
cannot specify precision and FLOAT is only single-precision.

INT[EGER][(n)] [UNSIGNED] [ZEROFILL] [AUTO_INCREMENT] (SQL standard data
type: INTEGER)

Stores signed or unsigned integers. For ISAM tables, the signed range is
from −2,147,483,648 to 2,147,483,647 and the unsigned range is from 0 to
4,294,967,295. The range of values varies slightly for other types of tables.
AUTO_INCREMENT is available to all of the INT variants; it creates a unique
row identity for all new rows added to the table. (Refer to the section “CRE‐
ATE/ALTER DATABASE Statement” on page 72 for more information on
AUTO_INCREMENT.)

JSON (SQL standard data type: none)
Stores JSON data and validates it is valid JSON. In addition, allows for in-place
partial updates of the subelements of the JSON data.

LONGBLOB (SQL standard data type: BLOB)
Stores BLOB data up to 4,294,967,295 characters in length. Note that this might
be too much information for some client/server protocols to support.

LONGTEXT [CHARACTER SET cs_name] [COLLATE collation_name] (SQL standard
data type: CLOB)

Stores TEXT data up to 4,294,967,295 characters in length (less if the characters
are multibyte). Note that this might be too much data for some client/server
protocols to support.

MEDIUMBLOB (SQL standard data type: none)
Stores BLOB data up to 16,777,215 bytes in length. The first three bytes are
consumed by a prefix indicating the total number of bytes in the value.

MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (SQL standard data type: none)
Stores signed or unsigned integers. The signed range is from 8,388,608 to
−8,388,608, and the unsigned range is 0 to 16,777,215.

SQL and Platform-Specific Data Types | 43

Fo
und

atio
nal

C
o

ncep
ts

MEDIUMTEXT [CHARACTER SET cs_name] [COLLATE collation_name] (SQL stan‐
dard data type: none)

Stores TEXT data up to 16,777,215 characters in length (less if the characters are
multibyte). The first three bytes are consumed by a prefix indicating the total
number of bytes in the value.

NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (SQL standard data type:
NCHAR(n))

Synonyms for CHAR. The NCHAR data types provide Unicode support beginning
in MySQL 4.1.

NUMERIC(p,s) (SQL standard data type: DECIMAL(p,s))
Synonym for DECIMAL.

NVARCHAR(n) [BINARY], [NATIONAL] VARCHAR(n) [BINARY], NATIONAL

CHARACTER VARYING(n) [BINARY] (SQL standard data type: NCHAR VARYING)
Synonyms for VARYING [BINARY]. Hold variable-length character strings up to
255 characters in length. Values are stored and compared in a case-insensitive
fashion unless the BINARY keyword is used.

REAL(p,s) (SQL standard data type: REAL)
Synonym for DOUBLE PRECISION.

SERIAL (SQL standard data type: none)
Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE. SERIAL is
useful as an auto-incrementing primary key.

SET("val1", "val2", ... n) [CHARACTER SET cs_name] [COLLATE

collation_name] (SQL standard data type: none)
A CHAR data type whose value must be equal to zero or more values specified in
the list of values. Up to 64 items are allowed in the list.

SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (SQL standard data type: SMALLINT)
Stores signed or unsigned integers. The signed range is from −32,768 to 32,767,
and the unsigned range is from 0 to 65,535.

TEXT (SQL standard data type: none)
Stores up to 65,535 characters of data. TEXT data types are sometimes stored
separately from their tables, depending on the storage engine used, whereas
all other data types (with the exception of BLOB) are stored in their respective
table file structures. TEXT is functionally equivalent to VARCHAR with no specific
upper limit (besides the maximum size of the column), and it requires case-
insensitive comparisons. TEXT differs from a standard VARCHAR column by not
allowing DEFAULT values. TEXT columns cannot be used in GROUP BY or ORDER
BY clauses. In addition, support for indexing TEXT columns is provided only in
MySQL 3.23.2 and greater.

44 | Chapter 2: Foundational Concepts

TIME (SQL standard data type: none)
Stores time values in the range of −838:59:59 to 838:59:59 in the format
HH:MM:SS. The values may be assigned as strings or numbers.

TIMESTAMP (SQL standard data type: TIMESTAMP)
Stores date values in the range of 1970-01-01 00:00:01 to partway through the
year 2038. The values are expressed as the number of seconds since 1970-01-01
00:00:01. Timestamp values are always displayed in the format YYYY-MM-DD
HH:MM:SS.

TINYBLOB (SQL standard data type: BLOB)
Stores BLOB values of up to 255 bytes, the first byte being consumed by a prefix
indicating the total number of bytes in the value.

TINYINT[(n)] [UNSIGNED] [ZEROFILL] (SQL standard data type: INTEGER)
Stores very small signed or unsigned integers ranging from −128 to 127 if
signed, and from 0 to 255 if unsigned.

TINYTEXT (SQL standard data type: none)
Stores TEXT values of up to 255 characters (less if they are multibyte charac‐
ters). The first byte is consumed by a prefix indicating the total number of
bytes in the value.

VARBINARY(n) (SQL standard data type: BLOB)
Stores variable-length binary byte strings of length n. Otherwise, similar to the
VARCHAR data type.

YEAR (SQL standard data type: none)
Stores the year in a two- or four-digit (the default) format. Two-digit years
allow values of 70 to 69, meaning 1970 to 2069, while four-digit years allow
values of 1901 to 2155, plus 0000. YEAR values are always displayed in YYYY
format but may be assigned as strings or numbers.

Oracle Data Types
As you’ll see in this section, Oracle supports a rich variety of data types, including
most of the SQL data types, some special data types, and more besides. The special
data types, however, often require optional components to be installed. For exam‐
ple, Oracle supports spatial data types, but only if you have installed the Oracle
Spatial add-on. The Oracle Spatial data types, including SDO_GEOMETRY, SDO_TOPO
_GEOMETRY, and SDO_GEORASTER, are beyond the scope of this book. Refer to the
Oracle Spatial documentation for further details on these types.

Oracle Multimedia data types use object types, similar to Java or C++
classes for multimedia data. Oracle Multimedia data types include ORDAudio,
ORDImage, ORDVideo, ORDDoc, ORDDicom, SI_Stillimage, SI_Color, SI_Average
Color, SI_ColorHistogram, SI_PositionalColor, SI_Texture, SI_FeatureList,
and ORDImageSignature.

SQL and Platform-Specific Data Types | 45

Fo
und

atio
nal

C
o

ncep
ts

Oracle also supports “Any Types” data types. These highly flexible data types are
intended for use as procedure parameters and for table columns where the actual
type is unknown. The Any Type data types are ANYTYPE, ANYDATA, and ANYDATASET.

A complete listing of the Oracle data types follows:

BFILE (SQL standard data type: DATALINK)
Holds a pointer to a BLOB stored outside the database, but present on the local
server, of up to 4 GB in size. The database streams input (but not output)
access to the external BLOB. If you delete a row containing a BFILE value, only
the pointer value is deleted; the actual file structure is not affected.

BINARY_DOUBLE (SQL standard data type: FLOAT)
Holds a 64-bit floating-point number.

BINARY_FLOAT (SQL standard data type: FLOAT)
Holds a 32-bit floating-point number.

BLOB (SQL standard data type: BLOB)
Holds a BLOB value of between 8 and 128 TB in size, depending on the database
block size. In Oracle, large binary objects (BLOBs, CLOBs, and NCLOBs) have the
following restrictions:

• They cannot be selected remotely.•
• They cannot be stored in clusters.•

• They cannot compose a VARRAY.•

• They cannot be a component of an ORDER BY or GROUP BY clause in a•
query.

• They cannot be used by an aggregate function in a query.•

• They cannot be referenced in queries using DISTINCT, UNIQUE, or joins.•

• They cannot be referenced in ANALYZE ... COMPUTE or ANALYZE ...•
ESTIMATE statements.

• They cannot be part of a primary key or index key.•

• They cannot be used in the UPDATE OF clause in an UPDATE trigger.•

CHAR(n) [BYTE | CHAR], CHARACTER(n) [BYTE | CHAR] (SQL standard data type:
CHARACTER(n))

Holds fixed-length character data of up to 2,000 bytes in length. BYTE tells Ora‐
cle to use bytes for the size measurement. CHAR tells Oracle to use characters for
the size measurement.

46 | Chapter 2: Foundational Concepts

CLOB (SQL standard data type: CLOB)
Stores a character large object (CLOB) value of between 8 and 128 TB in size,
depending on the database block size. See the description of the BLOB data type
for a list of restrictions on the use of the CLOB type.

DATE (SQL standard data type: DATE)
Stores a valid date and time within the range of 4712BC-01-01 00:00:00 to
9999AD-12-31 23:59:59.

DECIMAL(p,s) (SQL standard data type: DECIMAL(p,s))
A synonym for NUMBER that accepts precision and scale arguments.

DOUBLE PRECISION (SQL standard data type: DOUBLE PRECISION)
Stores floating-point values with double precision, the same as FLOAT(126).

FLOAT(n) (SQL standard data type: FLOAT(n))
Stores floating-point numeric values with a binary precision of up to 126.

INTEGER(n) (SQL standard data type: INTEGER)
Stores signed and unsigned integer values with a precision of up to 38. INTEGER
is treated as a synonym for NUMBER.

INTERVAL DAY(n) TO SECOND(x) (SQL standard data type: INTERVAL)
Stores a time span in days, hours, minutes, and seconds, where n is the number
of digits in the day field (values from 0 to 9 are acceptable, and 2 is the default)
and x is the number of digits used for fractional seconds in the seconds field
(values from 0 to 9 are acceptable, and 6 is the default).

INTERVAL YEAR(n) TO MONTH (SQL standard data type: INTERVAL)
Stores a time span in years and months, where n is the number of digits in the
year field. The value of n can range from 0 to 9, with a default of 2.

LONG (SQL standard data type: none)
Stores variable-length character data of up to 2 GB in size. Note, however, that
LONG is not scheduled for long-term support by Oracle. Use another data type,
such as CLOB, instead of LONG whenever possible.

LONG RAW (SQL standard data type: none)
Stores raw variable-length binary data of up to 2 GB in size. LONG RAW and RAW
are typically used to store graphics, sounds, documents, and other large data
structures. BLOB is preferred over LONG RAW in Oracle because there are fewer
restrictions on its use. LONG RAW is deprecated.

NATIONAL CHARACTER VARYING(n), NATIONAL CHAR VARYING(n), NCHAR VARY

ING(n) (SQL standard data type: NCHAR VARYING (n))
Synonyms for NVARCHAR2.

SQL and Platform-Specific Data Types | 47

Fo
und

atio
nal

C
o

ncep
ts

NCHAR(n), NATIONAL CHARACTER(n), NATIONAL CHAR(n) (SQL standard data type:
NATIONAL CHARACTER)

Holds Unicode character data of 1 to 2,000 bytes in length. Default size is 1
byte.

NCLOB (SQL standard data type: NCLOB)
Represents a CLOB that supports multibyte and Unicode values of between 8
and 128 TB in size, depending on the database block size. See the description of
the BLOB data type for a list of restrictions on the use of the NCLOB type.

NUMBER(p,s), NUMERIC(p,s) (SQL standard data type: NUMERIC(p,s))
Stores a number with a precision of 1 to 38 and a scale of −84 to 127.

NVARCHAR2(n) (SQL standard data type: none)
Represents Oracle’s preferred Unicode variable-length character data type. Can
hold data of 1 to 4,000 bytes in size.

RAW(n) (SQL standard data type: none)
Stores raw, variable-length binary data of up to 2,000 bytes in size. The value n
is the specified size of the data type. RAW is deprecated. (See also LONG RAW.)

REAL (SQL standard data type: REAL)
Stores floating-point values with single precision. Same as FLOAT(63).

ROWID (SQL standard data type: none)
Represents a unique, base-64 identifier for each row in a table, often used in
conjunction with the ROWID pseudocolumn.

SMALLINT (SQL standard data type: SMALLINT)
Synonym for INTEGER.

TIMESTAMP(n) {[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]} (SQL standard
data type: TIMESTAMP [WITH TIME ZONE])

Stores a full date and time value, where n is the number of digits (values from
0 to 9 are acceptable, and 6 is the default) in the fractional part of the seconds
field. WITH TIME ZONE stores whatever time zone you pass to it (the default
is your session time zone) and returns a time value in that same time zone.
WITH LOCAL TIME ZONE stores data in the time zone of the current session and
returns data in the time zone of the user’s session.

URITYPE (SQL standard data type: XML)
Stores a uniform resource identifier (URI), operating much like a standard
URL that references a document or even a specific point within a document.
This data type is a supertype containing three subtypes, existing in an inher‐
itance hierarchy: DBURITYPE, XDBURITYPE, and HTTPURITYPE. You would typi‐
cally create a table using the URITYPE, then store DBURITYPE (for DBURIREF
values using an XPath nomenclature to reference data stored elsewhere in the
database or in another database), HTTPURITYPE (for HTTP web pages and files),

48 | Chapter 2: Foundational Concepts

or XDBURITYPE (for exposing documents in the XML database hierarchy) in the
column. You will typically manipulate this type of data using the URIFactory
package. Refer to the vendor documentation for more information on the
URIFactory package.

UROWID[(n)] (SQL standard data type: none)
Stores a base-64 value showing the logical address of the row in its table.
Defaults to 4,000 bytes in size, but you may optionally specify a size of any‐
where up to 4,000 bytes.

VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n) (SQL standard data type:
CHARACTER VARYING(n))

Holds variable-length character data of 1 to 4,000 bytes in size.

Oracle does not recommend using VARCHAR and has for
many years instead encouraged the use of VARCHAR2.

VARCHAR2(n [BYTE | CHAR]) (SQL standard data type: CHARACTER VARYING(n))
Holds variable-length character data of up to 4,000 bytes in length, as defined
by n. BYTE tells Oracle to use bytes for the size measurement. CHAR tells Oracle
to use characters for the size measurement. If you use CHAR, Oracle internally
must still transform that into some number of bytes, which is then subject to
the 4,000-byte upper limit.

XMLTYPE (SQL standard data type: XML)
Stores XML data within the Oracle database. The XML data is accessed using
XPath expressions as well as a number of built-in XPath functions, SQL func‐
tions, and PL/SQL packages. The XMLTYPE data type is a system-defined type,
so it is usable as an argument in functions, or as the data type of a column in a
table or view. When used in a table, the data can be stored in a CLOB column or
object-relationally.

PostgreSQL Data Types
The PostgreSQL database supports most SQL standard data types, plus an extremely
rich set of data types that store spatial and geometric data. PostgreSQL also pro‐
vides a wealth of operators and functions especially for the geometric data types,
including capabilities such as rotation, finding intersections, and scaling. These
have existed for a while but are not widely used, since they predate standards for
managing spatial data.

Compliance with Open Geospatial Consortium (OGC) standards is provided via
an open source extension called PostGIS, which is more commonly used than the
built-in PostgreSQL geometric support. PostGIS provides geometry (flat-earth) and
geography (round-earth) data types, as well as support for transforming between

SQL and Platform-Specific Data Types | 49

Fo
und

atio
nal

C
o

ncep
ts

https://postgis.net

spatial projections. There are also numerous subtypes that can be used as type mod‐
ifiers; for example, geometry(POLYGON,4326) describes a polygon column storing
WGS84-style longitude and latitude values. Additionally, PostGIS implements the
SQL/MM standard, which includes support for three-dimensional types such as
triangular irregular networks (TINs) and polyhedral surfaces.

PostgreSQL also provides additional versions of existing data types that are smaller
and take up less disk space than their corresponding primary data types. For exam‐
ple, it offers several variations on INTEGER to accommodate small or large numbers
and thereby consume proportionally less or more space. Here’s a list of the data
types PostgreSQL supports:

BIGINT, INT8 (SQL standard data type: none)
Stores signed or unsigned 8-byte integers within the range of
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

BIGSERIAL (SQL standard data type: none)
See SERIAL.

BIT (SQL standard data type: BIT)
Stores a fixed-length bit string.

BIT VARYING(n), VARBIT(n) (SQL standard data type: BIT VARYING)
Stores a variable-length bit string whose maximum length is denoted by n.

BOOL, BOOLEAN (SQL standard data type: BOOLEAN)
Stores a logical Boolean (true/false) value. The keywords TRUE and FALSE are
preferred, but PostgreSQL supports the following valid literal values for the
“true” state: TRUE, t, true, y, yes, and 1. Valid “false” values are: FALSE, f, false,
n, no, and 0.

BOX((x1, y1), (x2, y2)) (SQL standard data type: none)
Stores the values of a rectangular box in a 2D plane. Values are stored in 32
bytes and are represented as ((x1, y1), (x2, y2)), signifying the opposite
corners of the box (the upper-right and lower-left corners, respectively). The
outer parentheses are optional.

BYTEA (SQL standard data type: BINARY LARGE OBJECT)
Holds raw, binary data; typically used to store graphics, sounds, or documents.
For storage, this data type requires 4 bytes plus the actual size of the binary
string.

CHAR(n), CHARACTER(n) (SQL standard data type: CHARACTER(n))
Contains a fixed-length character string padded with spaces up to a length of n.
Attempting to insert a value longer than n results in an error (unless the extra
length is composed of spaces, which are then truncated such that the result fits
in n characters).

50 | Chapter 2: Foundational Concepts

https://oreil.ly/hjlNb

CIDR(x.x.x.x/y) (SQL standard data type: none)
Describes an IP version 4 (IPv4) network or host address in a 12-byte storage
space. The range is any valid IPv4 network address. Data in CIDR data types is
represented as x.x.x.x/y, where the xs are the IP address and y is the number
of bits in the netmask. CIDR does not accept non-zero bits to the right of a zero
bit in the netmask.

CIRCLE(x, y, r) (SQL standard data type: none)
Describes a circle in a 2D plane. Values are stored in 24 bytes of storage space
and are represented as (x, y, r). The x, y value represents the coordinates of
the center of the circle, while r represents the length of the radius. Parentheses
or arrow brackets may optionally delimit the values for x, y, and r.

DATE (SQL standard data type: DATE)
Holds a calendar date (year, day, and month) without the time of day in a
4-byte storage space. Dates must be between 4713 BC and 32767 AD. DATE’s
lowest resolution, naturally, is to the day.

DATERANGE (SQL standard data type: none)
Holds two calendar dates (year, day, and month) without the time of day, each
in a 4-byte storage space. Dates must be between 4713 BC and 32767 AD. The
DATERANGE type is used to store a specific period of time, with the first date
being the start of the range and last date being the end. As such, the first date
must be smaller than the second date. This data type also stores information
determining whether the dates are inclusive or exclusive. The lowest resolution
is to the day.

DECIMAL[(p,s)], NUMERIC[(p,s)] (SQL standard data type: DECIMAL(p,s),
NUMERIC(p,s))

Stores exact numeric values with a precision (p) in the range of 0 to 9 and a
scale (s) of 0, with no upper limit.

FLOAT4, REAL (SQL standard data type: FLOAT(p))
Stores floating-point numbers with a precision of 0 to 8 and 6 decimal places.

FLOAT8, DOUBLE PRECISION (SQL standard data type: FLOAT(p), 7 <= p < 16)
Stores floating-point numbers with a precision of 0 to 16 and 15 decimal
places.

INET(x.x.x.x/y) (SQL standard data type: none)
Stores an IPv4 network or host address in a 12-byte storage space. The range
is any valid IPv4 network address. The xs represent the IP address, and y is the
number of bits in the netmask. The netmask defaults to 32. Unlike CIDR, INET
accepts non-zero bits to the right of the netmask.

INTEGER, INT, INT4 (SQL standard data type: INTEGER)
Stores signed or unsigned 4-byte integers within the range of −2,147,483,648 to
2,147,483,647.

SQL and Platform-Specific Data Types | 51

Fo
und

atio
nal

C
o

ncep
ts

INTERVAL(p) (SQL standard data type: none)
Holds general-use time span values within the range of −178,000,000 to
178,000,000 years in a 12-byte storage space. INTERVAL’s lowest resolution is
to the microsecond. This is a different data type than that provided by the
SQL standard, which requires an interval qualifier such as INTERVAL YEAR TO
MONTH.

JSON (SQL standard data type: BLOB)
Stores JSON data as plain text. It maintains the fidelity of the data put in it and
adds on JSON validation checking to prevent invalid JSON data being stored.
The size cannot exceed 1 GB.

JSONB (SQL standard data type: BLOB)
Stores JSON data as binary. JSONB has richer support for indexing than JSON
and is more compact; it also enables subelements of the data to be pulled out
faster. This is the preferred data type for storing JSON data. Unlike with the
JSON type, data added to it is restored for more efficient query handling, and it
does not allow duplication of keys. In case of duplicates, the last value wins. As
such, you will find it may not match exactly what you inserted into it, so it’s not
suitable if you need to maintain the exactness of what was inserted. The size
cannot exceed 1 GB.

PostgreSQL also includes a JSONPATH type that is not
normally used as a column data type but can be used if
you want to store JSON path queries. You’ll find much
more on the different platforms’ support for JSON in
Chapter 10.

LINE((x1, y1), (x2, y2)) (SQL standard data type: none)
Holds line data, without endpoints, in 2D plane values. Values are stored in 32
bytes and are represented as ((x1, y1), (x2, y2)), indicating the start and
end points of a line. The enclosing parentheses are optional for line syntax.

LSEG((x1, y1), (x2, y2)) (SQL standard data type: none)
Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values are
stored in 32 bytes and are represented as ((x1, y1), (x2, y2)). The outer
parentheses are optional for LSEG syntax. For those who are interested, the “line
segment” is what most people traditionally think of as a line. For example, the
lines on a playing field are actually line segments.

In true geometric nomenclature, a line stretches to infin‐
ity, having no terminus at either end, while a line segment
has endpoints. PostgreSQL has data types for both, but
they are functionally equivalent.

52 | Chapter 2: Foundational Concepts

MACADDR (SQL standard data type: none)
Holds a value for the MAC address of a computer’s network interface card
in a 6-byte storage space. MACADDR accepts a number of industry standard
representations, such as:

• 08002B:010203•
• 08002B-010203•
• 0800.2B01.0203•
• 08-00-2B-01-02-03•
• 08:00:2B:01:02:03•

MONEY, DECIMAL(9,2) (SQL standard data type: none)
Stores US-style currency values in the range of −21,474,836.48 to
21,474,836.47.

NUMERIC[(p,s)], DECIMAL[(p,s)] (SQL standard data type: none)
Stores exact numeric values with a precision (p) and scale (s).

OID (SQL standard data type: none)
Stores unique object identifiers.

PATH((x1, y1), ... n), PATH[(x1, y1), ... n] (SQL standard data type: none)
Describes an open and closed geometric path in a 2D plane. Values are repre‐
sented as [(x1, y1), ... n] and consume 4 + 32n bytes of storage space.
Each (x, y) value represents a point on the path. Paths are either open, where
the first and last points do not intersect, or closed, where the first and last
points do intersect. Parentheses are used to encapsulate closed paths, while
brackets encapsulate open paths.

POINT(x, y) (SQL standard data type: none)
Stores values for a geometric point in a 2D plane in a 16-byte storage
space. Values are represented as (x, y). The point is the basis for all other
two-dimensional spatial data types supported in PostgreSQL. Parentheses are
optional for point syntax.

POLYGON((x1, y1), ... n) (SQL standard data type: none)
Stores values for a closed geometric path in a 2D plane using 4 + 32n bytes of
storage. Values are represented as ((x1,y1), ... n); the enclosing paren‐
theses are optional. POLYGON is essentially a closed-path data type.

SERIAL, SERIAL4 (SQL standard data type: none)
Stores an auto-incrementing, unique integer ID for indexing and cross-
referencing referred to as a SEQUENCE. Can contain up to 4 bytes of data (a
range of numbers from 1 to 2,147,483,647). Dropping the table containing this
data type also drops the SEQUENCE.

SQL and Platform-Specific Data Types | 53

Fo
und

atio
nal

C
o

ncep
ts

SERIAL8, BIGSERIAL (SQL standard data type: none)
Stores an auto-incrementing, unique integer ID for indexing and cross-
referencing. Can contain up to 8 bytes of data (a range of numbers from 1
to 9,223,372,036,854,775,807), but otherwise functions in the same way as the
SERIAL (and SERIAL4) data type.

SMALLINT, INT2 (SQL standard data type: SMALLINT)
Stores signed or unsigned 2-byte integers within the range of −32,768 to
32,767.

TEXT (SQL standard data type: CLOB)
Stores large, variable-length character string data of up to 1 GB in size. Post‐
greSQL automatically compresses TEXT strings, so the disk size may be less than
the string size.

TIME[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL standard data type:
TIME)

Holds the time of day and stores either no time zone (using 8 bytes of storage
space) or the time zone of the database server (using 12 bytes of storage space).
The allowable range is from 00:00:00.00 to 23:59:59.99. The lowest granularity
is 1 microsecond. Note that time zone information on most Unix systems is
available only for the years 1902 through 2038.

TIMESTAMP[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL standard data
type: TIMESTAMP [WITH TIME ZONE | WITHOUT TIMEZONE])

Holds the date and time and stores either no time zone or the time zone of the
database server (TIMESTAMPTZ is shorthand for TIMESTAMP WITH TIME ZONE).
The range of values is from 4713 BC to 1465001 AD. TIMESTAMP uses 8 bytes
of storage space per value. The lowest granularity is 1 microsecond. Note that
time zone information on most Unix systems is available only for the years
1902 through 2038.

TIMETZ (SQL standard data type: TIME WITH TIME ZONE)
Holds the time of day, including the time zone.

TSQUERY (SQL standard data type: none)
Used for full text search. This is a textual way of defining a full text query that is
then applied to a TSVECTOR.

TSVECTOR (SQL standard data type: none)
Used for full text search. This is a binary format consisting of lexemes and
frequency.

TZRANGE (SQL standard data type: none)
Holds two TIMESTAMP WITH TIME ZONE values that denote the start and end of
a period of time.

54 | Chapter 2: Foundational Concepts

VARCHAR(n), CHARACTER VARYING(n) (SQL standard data type: CHARACTER VARY
ING(n))

Stores variable-length character strings of up to a length of n. Trailing spaces
are not stored.

XML (SQL standard data type: XML)
Stores XML data in a column or a variable of variable size in storage space up
to but not exceeding 1 GB in size.

SQL Server Data Types
Microsoft SQL Server supports most SQL data types, as well as some additional
data types used to uniquely identify rows of data within a table and across multiple
servers, such as UNIQUEIDENTIFIER. These data types are included in support of
Microsoft’s hardware philosophy of “scaling out” (that is, deploying on many Intel-
based servers) rather than “scaling up” (deploying on a single huge, high-end Unix
server or a Windows Data Center Server).

Like PostgreSQL, SQL Server has OGC support. It’s similar to PostGIS in how it
implements spatial data types, with a dedicated geometry type for flat-earth (planar,
Euclidean) data and a geography type for round-earth (ellipsoidal) data, such as
latitude and longitude coordinates. It has the richest support for curved geometries
and round-earth data of all the databases discussed in this book, but lacks the spatial
reprojection support provided by both PostGIS and Oracle, which is commonly
needed for GIS work.

The data types SQL Server supports are:

BIGINT (SQL standard data type: BIGINT)
Stores signed and unsigned integers in the range of −9,223,372,036,854,775,808
to 9,223,372,036,854,775,807, using 8 bytes of storage space. See INT for
IDENTITY property rules that also apply to BIGINT.

BINARY[(n)] (SQL standard data type: BLOB)
Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY data types
consume n + 4 bytes of storage space.

BIT (SQL standard data type: BOOLEAN)
Stores a value of 1, 0, or NULL (to indicate “unknown”). Up to eight BIT
columns in a single table will be stored in a single byte. An additional eight
BIT columns consume one more byte of storage space. BIT columns cannot be
indexed.

CHAR[(n)], CHARACTER[(n)] (SQL standard data type: CHARACTER(n))
Holds fixed-length character data of 1 to 8,000 characters in length. Any
unused space is, by default, padded with spaces. (You can disable the automatic
padding.) The storage size is n bytes.

SQL and Platform-Specific Data Types | 55

Fo
und

atio
nal

C
o

ncep
ts

CURSOR (SQL standard data type: none)
A special data type used to describe a cursor as a variable or stored procedure
OUTPUT parameter. It cannot be used in a CREATE TABLE statement. The CURSOR
data type is always nullable.

DATE (SQL standard data type: DATE)
Holds a date in the range of January 1, 0001 AD, to December 31, 9999 AD.
Values are stored in a 3-byte storage space.

DATETIME (SQL standard data type: TIMESTAMP)
Holds a date and time within the range of 1753-01-01 00:00:00 to 9999-12-31
23:59:59. Values are stored in an 8-byte storage space.

Why can’t you store dates prior to January 1, 1753, using
SQL Server’s DATETIME data type? The rationale (from
the database’s Sybase roots) is that the English-speaking
world switched from the Julian to the Gregorian calen‐
dar in September 1752, and the transition resulted in
several days being “lost.” Converting dates prior to 1753
from the Julian to the Gregorian calendar can thus be
quite challenging. This constraint does not apply to the
date-related data types added in SQL Server 2008 (DATE,
DATETIME2, and DATETIMEOFFSET).

DATETIME2 (SQL standard data type: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD, to December 31,
9999 AD, to an accuracy of 100 nanoseconds. Values are stored in a 6- to 8-byte
storage space, depending on the precision.

DATETIMEOFFSET (SQL standard data type: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD, to December
31, 9999 AD, to an accuracy of 100 nanoseconds. Also includes time zone
information. Values are stored in a 10-byte storage space.

DECIMAL(p,s), DEC(p,s), NUMERIC(p,s) (SQL standard data type: DECIMAL(p,s),
NUMERIC(p,s))

Stores decimal values up to 38 digits long. The values p and s define the preci‐
sion and scale, respectively. The default value for the scale is 0. The precision of
the data type determines how much storage space it will consume:

• Precision 1–9 uses 5 bytes•
• Precision 10–19 uses 9 bytes•
• Precision 20–28 uses 13 bytes•
• Precision 29–39 uses 17 bytes•

See INT for IDENTITY property rules that also apply to DECIMAL.

56 | Chapter 2: Foundational Concepts

DOUBLE PRECISION (SQL standard data type: none)
Synonym for FLOAT(53).

FLOAT[(n)] (SQL standard data type: FLOAT, FLOAT(n))
Holds floating-point numbers in the range of −1.79E+308 through 1.79E+308.
The precision, represented by n, may be in the range of 1 to 53. The storage
size is 4 bytes for 7 digits, where n is in the range of 1 to 24. Anything larger
requires 8 bytes of storage.

HIERARCHYID (SQL standard data type: none)
Represents a hierarchy or tree structure within the relational data. Although it
may consume more space, HIERARCHYID will usually consume 5 bytes or less.
Refer to the vendor documentation for more information on this special data
type.

IMAGE (SQL standard data type: BLOB)
Stores a variable-length binary value of up to 2,147,483,647 bytes in length.
Consider this data type to be deprecated, and use VARBINARY(MAX) instead.
This data type is commonly used to store graphics, sounds, and files such
as MS-Word documents and MS-Excel spreadsheets. IMAGE cannot be freely
manipulated; both IMAGE and TEXT columns have a lot of constraints on how
they can be used. See TEXT for a list of the commands and functions that work
on an IMAGE data type.

INT [IDENTITY [(seed, increment)]] (SQL standard data type: INTEGER)
Stores signed or unsigned integers within the range of −2,147,483,648 to
2,147,483,647 in 4 bytes of storage space. All integer data types, as well as the
decimal type, support the IDENTITY property. An identity is an automatically
incrementing row identifier. Refer to the section “CREATE/ALTER DATA‐
BASE Statement” on page 72 for more information.

MONEY (SQL standard data type: none)
Stores monetary values within the range of −922,337,203,685,477.5808 to
922,337,203,685,477.5807 in an 8-byte storage space.

NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n) (SQL standard data type:
NATIONAL CHARACTER(n))

Holds fixed-length Unicode data of up to 4,000 characters in length. The
storage space consumed is double the character length inserted into the field
(2 * n).

NTEXT, NATIONAL TEXT (SQL standard data type: NCLOB)
Holds Unicode text passages of up to 1,073,741,823 characters in length. See
TEXT for rules about the commands and functions available for NTEXT.

NUMERIC(p,s) (SQL standard data type: DECIMAL(p,s))
Synonym for DECIMAL. See INT for rules about the IDENTITY property that also
apply to this type.

SQL and Platform-Specific Data Types | 57

Fo
und

atio
nal

C
o

ncep
ts

NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL CHARACTER VARYING(n)

(SQL standard data type: NATIONAL CHARACTER VARYING(n))
Holds variable-length Unicode data of up to 4,000 characters in length. The
storage space consumed is double the character length inserted into the field
(2 * n). The system setting SET ANSI_PADDING is always enabled (ON) for
NCHAR and NVARCHAR fields in SQL Server. You may instead define this as
NVARCHAR(MAX) for text fields exceeding 8,000 bytes in size with no upper limit.
Use as a replacement for the IMAGE data type.

REAL, FLOAT(24) (SQL standard data type: REAL)
Holds floating-point numbers in the range of −3.40E+38 through 3.40E+38 in a
4-byte storage space. REAL is functionally equivalent to FLOAT(24).

ROWVERSION (SQL standard data type: none)
Stores a number that is unique within the database whenever a row in the table
is updated. Called TIMESTAMP in earlier versions.

SMALLDATETIME (SQL standard data type: none)
Holds a date and time within the range of 1900-01-01 00:00 through
2079-06-06 23:59, accurate to the nearest minute. (Minutes are rounded down
when seconds are 29.998 or less; otherwise, they are rounded up.) Values are
stored in 4 bytes.

SMALLINT (SQL standard data type: SMALLINT)
Stores signed or unsigned integers in the range of −32,768 to 32,767, in 2 bytes
of storage space. See INT for rules about the IDENTITY property that also apply
to this type.

SMALLMONEY (SQL standard data type: none)
Stores monetary values within the range of −214,748.3648 to 214,748.3647, in 4
bytes of storage space.

SQL_VARIANT (SQL standard data type: none)
Stores values of other SQL Server–supported data types, except TEXT, NTEXT,
ROWVERSION, and other SQL_VARIANT commands. Can store up to 8,016 bytes
of data and supports NULL and DEFAULT values. SQL_VARIANT is used in
columns, parameters, variables, and return values of functions and stored
procedures.

TABLE (SQL standard data type: none)
Special data type that stores a result set for a later process. Used solely in
procedural processing, and cannot be used in a CREATE TABLE statement. This
data type alleviates the need for temporary tables in many applications. It can
reduce the need for stored procedure recompiles, thus speeding execution of
stored procedures and user-defined functions.

58 | Chapter 2: Foundational Concepts

TEXT (SQL standard data type: CLOB)
Stores very large passages of text (up to 2,147,483,647 characters in
length). Consider this data type to be deprecated, and use VARCHAR(MAX) or
NVARCHAR(MAX) instead. This is because TEXT and IMAGE values are often more
difficult to manipulate than, say, VARCHAR values. For example, you cannot
place an index on a TEXT or IMAGE column. TEXT values can can be manip‐
ulated using the functions DATALENGTH, PATINDEX, SUBSTRING, TEXTPTR, and
TEXTVALID as well as the commands READTEXT, SET TEXTSIZE, UPDATETEXT, and
WRITETEXT.

TIME (SQL standard data type: TIME)
Stores an automatically generated binary number that guarantees uniqueness
in the current database and is therefore different from the SQL standard TIME
STAMP data type. Values are stored in 8 bytes of storage space. ROWVERSION is
now preferred over TIME to uniquely track each row.

TIMESTAMP (SQL standard data type: TIMESTAMP)
Stores the time of day based on a 24-hour clock without time zone awareness,
to an accuracy of 100 nanoseconds, in a 5-byte storage space.

TINYINT (SQL standard data type: none)
Stores unsigned integers within the range 0 to 255 in 1 byte of storage space.
See INT for rules about the IDENTITY property that also apply to this type.

UNIQUEIDENTIFIER (SQL standard data type: none)
Represents a value that is globally unique across all databases and all servers.
Values are represented as xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx, where
each x is a hexadecimal digit in the range 0 to 9 or a to f. The only operations
allowed against UNIQUEIDENTIFIERs are comparisons and NULL checks. Col‐
umn constraints and properties are allowed on UNIQUEIDENTIFIER columns,
with the exception of the IDENTITY property.

VARBINARY[(n)] (SQL standard data type: BLOB)
Describes a variable-length binary value of up to 8,000 bytes in size. The
storage space consumed is equivalent to the size of the data inserted, plus 4
bytes. You may define this as VARBINARY(MAX) for binary fields exceeding 8,000
bytes in size with no upper limit. Use as a replacement for the IMAGE data type.

VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING[(n)] (SQL standard
data type: CHARACTER VARYING(n))

Holds variable-length character data of 1 to 8,000 characters in length. The
amount of storage space required is determined by the actual size of the value
entered in bytes, not the value of n. You may define this as VARCHAR(MAX)
for text fields exceeding 8,000 bytes in size with no upper limit. Use as a
replacement for the IMAGE data type.

SQL and Platform-Specific Data Types | 59

Fo
und

atio
nal

C
o

ncep
ts

XML (SQL standard data type: XML)
Stores XML data in a column or a variable of variable size in storage space up
to but not exceeding 2 GB in size.

Constraints
Constraints allow you to automatically enforce the rules of data integrity and to
filter the data that is placed in a database. In a sense, constraints are rules that define
which data values are valid during INSERT, UPDATE, and DELETE operations. When
a data-modification transaction breaks the rules of a constraint, the statement is
rejected or the effect of the statement is undone.

In the SQL standard, there are four constraint types: CHECK, PRIMARY KEY, UNIQUE,
and FOREIGN KEY. (The RDBMS platforms may allow more; refer to Chapter 3 for
details.)

Scope
Constraints may be applied at the column level or the table level:

Column-level constraints
Are declared as part of a column definition and apply only to that column.

Table-level constraints
Are declared independently from any column definitions (traditionally, at the
end of a CREATE TABLE statement) and may apply to one or more columns in
the table, or even one or more columns in other tables. A table constraint is
required when you wish to define a constraint that applies to more than one
column.

Syntax
Constraints are defined when you create or alter a table. The general syntax for
constraints is shown here:

CONSTRAINT [constraint_name] constraint_type [(column[, ...])]
[predicate] [constraint_deferment] [deferment_timing]

The syntax elements are as follows:

CONSTRAINT [constraint_name]

Begins a constraint definition and, optionally, provides a name for the con‐
straint. When you omit constraint_name, the system will create a name for
you automatically. On some platforms, you may omit the CONSTRAINT keyword
as well.

60 | Chapter 2: Foundational Concepts

System-generated names are often incomprehensible. It
is good practice to specify human-readable, sensible
names for constraints.

constraint_type

Declares the constraint as one of the allowable types: CHECK, PRIMARY KEY,
UNIQUE, or FOREIGN KEY. More information about each type of constraint
appears later in this section.

(column[, ...])

Associates one or more columns with the constraint. Specify the columns
in a comma-delimited list, enclosed in parentheses. The column list should
be omitted for column-level constraints. Columns are not used in every con‐
straint. For example, CHECK constraints do not generally use column references.

predicate

Defines a predicate for CHECK constraints.

constraint_deferment

Declares a constraint is DEFERRABLE or NOT DEFERRABLE. When a constraint is
deferrable, you can specify that it be checked for a rules violation at the end
of a transaction. When a constraint is not deferrable, it is checked for a rules
violation at the conclusion of every SQL statement.

deferment_timing

Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY

IMMEDIATE. When set to INITIALLY DEFERRED, the constraint check time will
be deferred until the end of a transaction, even if the transaction is composed
of many SQL statements. In this case, the constraint must also be DEFERRABLE.
When set to INITIALLY IMMEDIATE, the constraint is checked at the end of
every SQL statement. In this case, the constraint may be either DEFERRABLE or
NOT DEFERRABLE. The default is INITIALLY IMMEDIATE.

Note that this syntax may vary among the different vendor platforms. Check the
individual platform sections in Chapter 3 for more details.

PRIMARY KEY Constraints
A PRIMARY KEY constraint declares one or more columns whose value(s) uniquely
identify each record in the table. It is considered a special case of the UNIQUE
constraint. Here are some rules about primary keys:

• Only one primary key may exist on a table at a time.•

• Columns in the primary key cannot have data types of BLOB, CLOB, NCLOB, or•
ARRAY.

Constraints | 61

Fo
und

atio
nal

C
o

ncep
ts

• Primary keys may be defined at the column level for a single column key or at•
the table level if multiple columns make up the primary key.

• Values in the primary key column(s) must be unique and not NULL.•
• In a multicolumn primary key, the combination of values in all of the key•

columns must be unique and not NULL. Multicolumn primary keys are also
known as concatenated keys or natural keys.

• Foreign keys can be declared that reference the primary key of a table to•
establish direct relationships between tables (or possibly, though rarely, within
a single table).

The following SQL standard code includes the options for creating both a table- and
column-level primary key constraint on a table called distributors. The first example
shows a column-level primary key constraint, while the second shows a table-level
constraint:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT);

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));

In the example showing a table-level primary key, we could easily have created a
concatenated key by listing several columns separated by commas.

FOREIGN KEY Constraints
A FOREIGN KEY constraint defines one or more columns in a table as referencing
columns in a unique or primary key in another table. (A foreign key can reference
a unique or primary key in the same table as the foreign key itself, but such foreign
keys are rare). Foreign keys can then prevent the entry of data into a table when

62 | Chapter 2: Foundational Concepts

there is no matching value in the related table. They are the primary means of
identifying the relationships between tables in a relational database. Here are some
rules about foreign keys:

• Many foreign keys may exist on a table at a time.•
• A foreign key must be declared to reference either the primary key or a unique•

key of another table to establish a direct relationship between the two tables.
• When a parent table has a multicolumn primary key or unique key, then any•

foreign keys that reference them must also be multicolumn in the same way.
Further, each column in such a multicolumn foreign key must possess a value
or possess only NULL values throughout.

The full SQL syntax for foreign keys is more elaborate than the general syntax
for constraints shown earlier, and it’s dependent on whether you are making a
table-level or column-level declaration. However, it is important to note that in
either case shown in the following example, the foreign key declaration is a part
of the CREATE TABLE statement. The only true syntactical difference is where in
the foreign key declaration appears. (Also keep in mind that SQL offers distinct
statements to CREATE, ALTER, and DROP foreign keys independently of the CREATE
TABLE statement, as you will see in Chapter 3.) Here is the syntax for table-level and
column-level foreign key declarations:

-- Table-level foreign key
table_definition
[CONSTRAINT [constraint_name]]
FOREIGN KEY (local_column[, ...])
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]

-- Column-level foreign key
[CONSTRAINT [constraint_name]]
REFERENCES referenced_table [(referenced_column[, ...])]
[MATCH {FULL | PARTIAL | SIMPLE}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
[constraint_deferment] [deferment_timing]

The keywords common to a standard constraint declaration were described in
the “Syntax” on page 60. Keywords specific to foreign keys are described in the
following list:

Constraints | 63

Fo
und

atio
nal

C
o

ncep
ts

FOREIGN KEY (local_column[, ...])
Declares one or more columns of the table being created or altered that
are subject to the foreign key constraint. This syntax is used only in table-
level declarations and is excluded from column-level declarations. We recom‐
mend that the ordinal positions and data types of the columns in the local
_column list match the ordinal positions and data types of the columns in the
referenced_column list.

REFERENCES referenced_table [(referenced_column [, ...])]
Names the table and, where appropriate, the column or columns that hold
the valid list of values for the foreign key. A referenced_column must already
be named in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE UNIQUE
KEY statement. The table types must also match; for example, if one is a local
temporary table, both must be local temporary tables.

MATCH {FULL | PARTIAL | SIMPLE}

Defines the degree of matching required between the local and referenced
columns in foreign key constraints when NULLs are present:

FULL

Declares that a match is acceptable when either all the values in the
referencing columns are NULL, or none of them are NULL and there is
a row in the referenced table that matches all the values. In general, you
should either use MATCH FULL or ensure that all columns involved have NOT
NULL constraints.

PARTIAL

Declares that a match is acceptable when one or more of the referenced
columns contains NULL and the other referenced columns have a match
in the referenced table.

SIMPLE

Declares that a match is acceptable when any of the values of the referenc‐
ing column is NULL or a match. This is the default.

ON UPDATE

Specifies that, when an UPDATE operation affects one or more referenced col‐
umns of the primary or unique key on the referenced table, a corresponding
action should be taken to ensure that the foreign key does not lose data
integrity. ON UPDATE may be declared independently of or together with the ON
DELETE clause. When omitted, the default for the SQL standard is ON UPDATE
NO ACTION.

ON DELETE

Specifies that, when a DELETE operation affects one or more referenced col‐
umns of the primary or unique key on the referenced table, a corresponding
action should be taken to ensure that the foreign key does not lose data
integrity. ON DELETE may be declared independently of or together with the ON

64 | Chapter 2: Foundational Concepts

UPDATE clause. When omitted, the default for the SQL standard is ON DELETE
NO ACTION.

NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT

Defines the action the database takes to maintain the data integrity of the for‐
eign key when a referenced primary or unique key constraint value is changed
or deleted:

NO ACTION

Tells the database to do nothing when a primary key or unique key value
referenced by a foreign key is changed or deleted.

CASCADE

Tells the database to perform the same action (i.e., DELETE or UPDATE)
on the matching foreign key when a primary key or unique key value is
changed or deleted.

RESTRICT

Tells the database to prevent changes to the primary key or unique key
value referenced by the foreign key.

SET NULL

Tells the database to set the value in the foreign key to NULL when a
primary key or unique key value is changed or deleted.

SET DEFAULT

Tells the database to set the value in the foreign key to the default (using
default values you specify for each column) when a primary key or unique
key value is changed or deleted.

As with the code for primary keys, you can adapt this generic syntax to both
column-level and table-level foreign key constraints. Note that column-level and
table-level constraints perform their function in exactly the same way; they are
merely defined at different levels of the CREATE TABLE command. In the following
example, we create a single-column foreign key on the salesrep column referencing
the empid column of the employee table. We create the foreign key two different
ways, first at the column level and then at the table level:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT NOT NULL
 REFERENCES employee(empid));

Constraints | 65

Fo
und

atio
nal

C
o

ncep
ts

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_empid
 FOREIGN KEY (sales_rep)
 REFERENCES employee(empid));

UNIQUE Constraints
A UNIQUE constraint, sometimes called a candidate key or an alternate key, declares
that the values in one column, or the combination of values in more than one
column, must be unique. Rules concerning unique constraints include:

• Columns in a unique key cannot have data types of BLOB, CLOB, NCLOB, or•
ARRAY.

• The column or columns in a unique key may not be identical to those in any•
other unique keys, or to any columns in the primary key of the table.

• A single NULL value, if the unique key allows NULL values, is allowed.•
• The SQL standard allows you to substitute the column list shown in the gen‐•

eral syntax diagram for constraints with the keyword VALUE. UNIQUE (VALUE)
indicates that all columns in the table are part of the unique key. The VALUE
keyword also disallows any other unique or primary keys on the table.

In the following example, we limit the number of distributors we do business with
to only one distributor per zip code. We also allow one (and only one) “catch-all”
distributor with a NULL zip code. This functionality can be implemented easily
using a UNIQUE constraint, either at the column or the table level:

-- Creating a column-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) UNIQUE,
 phone CHAR(12) ,
 sales_rep INT NOT NULL

66 | Chapter 2: Foundational Concepts

 REFERENCES employee(empid));

-- Creating a table-level constraint
CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)
 REFERENCES employee(empid),
CONSTRAINT unq_zip UNIQUE (zip));

CHECK Constraints
CHECK constraints allow you to perform comparison operations to ensure that values
match specific conditions that you set out. The syntax for a check constraint is very
similar to the general syntax for constraints:

[CONSTRAINT] [constraint_name] CHECK (search_conditions)
[constraint_deferment] [deferment_timing]

Most of the elements of the check constraint were introduced in the “Syntax” on
page 60. The following element is unique to this constraint:

search_conditions

Specifies one or more search conditions that constrain the values inserted into
the column or table, using one or more expressions and a predicate. Multiple
search conditions may be applied to a column in a single check constraint
using the AND and OR operators (think of a WHERE clause).

A check constraint is considered matched when the search conditions evaluate
to TRUE or NULL. Check constraints are limited to Boolean operations (e.g., =, >=,
<=, or <>), though they may include any standard SQL predicate, such as IN or
LIKE. Check constraints may be appended to one another (when checking a single
column) using the AND and OR operators. Here are some other rules about check
constraints:

• A column or table may have one or more check constraints.•
• A search condition cannot contain aggregate functions, except in a subquery.•
• A search condition cannot use nondeterministic functions or subqueries.•
• A check constraint must be referenced like an object. That is, if a check•

constraint is declared on a global temporary table, it cannot then reference a
permanent table as part of its definition.

Constraints | 67

Fo
und

atio
nal

C
o

ncep
ts

• A search condition cannot reference these functions from the SQL stan‐•
dard: CURRENT_USER, SYSTEM_USER, USER, CURRENT_PATH, CURRENT_DATE, CUR
RENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip columns. (This
example uses generic code run on SQL Server.) The zip code must fall into the
normal ranges for postal zip codes, while the dist_id values are allowed to contain
either four alphabetic characters or two alphabetic and two numeric characters:

-- Creating column-level CHECK constraints
CREATE TABLE distributors
 (dist_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY
 CONSTRAINT ck_dist_id CHECK
 (dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]' OR
 dist_id LIKE '[A-Z][A-Z][0-9][0-9]'),
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2),
 zip CHAR(5)
 CONSTRAINT unq_dist_zip UNIQUE
 CONSTRAINT ck_dist_zip CHECK
 (zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12),
 sales_rep INT
 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

68 | Chapter 2: Foundational Concepts

3
Structuring Your Data

Newcomers to SQL usually take one of two learning paths when learning to pro‐
gram in the language. Developers and analysts often start with the SELECT statement
and the other DML statements, INSERT, UPDATE, DELETE, and MERGE. That’s because
they are frequently tasked with helping either to write the frontend applications
that access the database, in the case of developers, or to write reports and retrieve
information for better business decisions, in the case of business analysts. The
second learning path, that of DBAs and database architects, is to start with the SQL
statements needed to create a database from whole cloth.

In this chapter, we will explore the various statements you will need to create a data‐
base from scratch, by populating it with tables, views, and many other important
database objects. We will also detail the statements needed to alter existing objects
and to remove those objects when required.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support” on page 70.1.
2. Check Table 3-1.2.
3. Look up the specific SQL statement, check the syntax, and read the “Keywords,”3.

“Rules at a glance,” and “Programming tips and gotchas” sections. Do this even
if you are looking for a specific platform implementation.

4. Finally, read the platform-specific implementation information, which notes4.
the differences between the standard and the vendor’s implementation of the
standard.

69

You will note that the entry for a given platform implementation does not duplicate
information on any clauses that do not differ from the standard. So, it is possible
that you will need to flip between the descriptions for a vendor variation and the
SQL standard to cover all possible details of that command.

In our discussions of MySQL, we will also include MariaDB, a fork of MySQL.
For the most part, MySQL and MariaDB provide fully code-compatible syntax. In
these cases we will refer to them collectively as MySQL. We will explicitly mention
MariaDB only in situations where it deviates from MySQL in an important way.

Finally, keep in mind that the descriptions of the various SQL statements through‐
out this book are organized alphabetically, as you would expect with a command
reference. However, a more typical workflow sequence for the commands in this
chapter would look like:

• CREATE DATABASE•

• CREATE SCHEMA•

• CREATE DOMAIN•

• CREATE TYPE•

• CREATE TABLE•

• CREATE INDEX•

• CREATE VIEW•

• ALTER commands•

• DROP commands•

SQL Platform Support
Table 3-1 provides a listing of the SQL statements covered in this chapter, the
platforms that support them, and the degrees to which they support them. The
following list offers useful tips for reading Table 3-1, as well as an explanation of
what each abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.1.
2. The SQL statement class for each command is indicated in the second column.2.
3. The subsequent columns list the level of support for each vendor:3.

Supported (S)
The platform supports the SQL standard for the particular command.

Supported, with variations (SWV)
The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

70 | Chapter 3: Structuring Your Data

Supported, with limitations (SWL)
The platform supports some but not all of the features specified by the
SQL standard for the particular command.

Not supported (NS)
The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail. Related CREATE
and ALTER commands (e.g., CREATE DATABASE and ALTER DATABASE) are discussed
together in “CREATE/ALTER DATABASE Statement” on page 72.

Remember that even if a specific SQL command is listed in the table as “Not
supported,” the platform usually has alternative coding or syntax to enact the same
command or function. Therefore, be sure to read the discussion and examples
for each command later in this chapter. Likewise, a few of the commands in
Table 3-1 are not found in the SQL standard; these are indicated with the term
“Non-standard” in the “SQL class” column of the table.

Since this book focuses on the implementation of the SQL language, statements
from the SQL standard that are unsupported by any of the database vendors we
consider are not included in these tables or discussed in the text.

Table 3-1. Alphabetical quick SQL command reference

SQL command SQL class MySQL/ MariaDB Oracle PostgreSQL SQL Server

ALTER DATABASE SQL-schema SWV SWV SWV SWV

ALTER INDEX Non-standard NS SWV SWV SWV

ALTER SCHEMA Non-standard SWV NS SWV SWV

ALTER TABLE SQL-schema SWV SWV SWV SWV

ALTER TYPE SQL-schema NS SWV SWV NS

ALTER VIEW Non-standard SWV SWV SWV SWV

CREATE DATABASE Non-standard SWV SWV SWV SWV

CREATE DOMAIN SQL-schema NS NS S NS

CREATE INDEX Non-standard SWV SWV SWV SWV

CREATE SCHEMA SQL-schema SWL SWV SWL SWL

CREATE TABLE SQL-schema SWV SWV SWV SWV

CREATE TYPE SQL-schema NS SWL SWV SWV

CREATE VIEW SQL-schema SWV SWV SWV SWV

DROP DATABASE Non-standard SWV S SWV SWV

DROP DOMAIN SQL-schema NS NS S NS

DROP INDEX Non-standard SWV SWV SWV SWV

DROP ROLE SQL-schema SVW SWV SWV SWV

SQL Platform Support | 71

Structuring
Yo

ur D
ata

SQL command SQL class MySQL/ MariaDB Oracle PostgreSQL SQL Server

DROP SCHEMA SQL-schema SWV SWV SWV SWV

DROP TABLE SQL-schema SWV SWV SWV SWV

DROP TYPE SQL-schema NS S S S

DROP VIEW SQL-schema SWV S S S

SQL Command Reference
CREATE/ALTER DATABASE Statement
The SQL standard does not address creating a database or physical constructs
such as mapping paths. However, most database platforms do provide a CREATE
DATABASE and an ALTER DATABASE statement for this purpose. Since it is nearly
impossible to operate a SQL database without this command, we’ve included it here.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
CREATE DATABASE [IF NOT EXISTS] database_name [vendor_specific_options]

ALTER DATABASE database_name [vendor_specific_options]

Keywords

CREATE DATABASE database_name
Creates a new database named database_name on the current server.

IF NOT EXISTS

Only creates the database if it doesn’t already exist. This is mostly to prevent
raising errors.

database_name

Declares the name of the new database.

vendor_specific_options

Includes additional options, which vary by vendor. Refer to the vendor sections
for vendor-specific details.

ALTER DATABASE database_name
Allows changing the settings of an already created database.

72 | Chapter 3: Structuring Your Data

Rules at a glance
This command creates a new, empty database with a specific name. Most DBMS
platforms require the user to possess administrator privileges in order to create a
new database. Once the new database is created, you can populate it with database
objects (such as tables, views, triggers, and so on) and populate the tables with data.

Depending on the platform, CREATE/ALTER DATABASE may also create correspond‐
ing files on the filesystem that contain the data and metadata of the database.

Programming tips and gotchas
Since CREATE/ALTER DATABASE is not an official SQL statement, it is prone to rather
extreme variation in syntax and functionality between platforms.

MySQL and MariaDB
In MySQL and MariaDB, the SCHEMA keyword is synonymous with DATABASE.
CREATE DATABASE essentially creates a new directory that holds the database objects:

CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] database_name
 [[DEFAULT] CHARACTER SET [=] character_set]
 [[DEFAULT] COLLATE [=] collation]
 [[DEFAULT] ENCRYPTION [=] {'Y' | 'N'}]

MariaDB (from version 10.5) also offers a CREATE OR REPLACE DATABASE statement.
The MariaDB syntax is as follows:

CREATE [OR REPLACE]{ DATABASE | SCHEMA } [IF NOT EXISTS] database_name
 [[DEFAULT] CHARACTER SET [=] character_set]
 [[DEFAULT] COLLATE [=] collation]
 [[DEFAULT] ENCRYPTION [=] {'Y' | 'N'}]
 [COMMENT [=] comment]

The following is the syntax for MySQL’s implementation of the ALTER DATABASE
statement:

ALTER { DATABASE | SCHEMA } database_name
{ [[DEFAULT] CHARACTER SET [=] character_set]
 [[DEFAULT] COLLATE [=] collation]
 [[DEFAULT] ENCRYPTION [=] {'Y' | 'N'}]
 [READ ONLY [=] {DEFAULT | 0 | 1}]
 }

MariaDB’s ALTER DATABASE is a superset of MySQL’s ALTER DATABASE. The follow‐
ing is the syntax for MariaDB’s implementation of the ALTER DATABASE statement:

ALTER { DATABASE | SCHEMA } database_name
{ [[DEFAULT] CHARACTER SET [=] character_set]
 [[DEFAULT] COLLATE [=] collation]
 [[DEFAULT] ENCRYPTION [=] {'Y' | 'N'}]
 [READ ONLY [=] {DEFAULT | 0 | 1}]
 [COMMENT [=] comment]

SQL Command Reference | 73

Structuring
Yo

ur D
ata

}
and
ALTER DATABASE database_name
 UPGRADE DATA DIRECTORY NAME

where:

{CREATE | ALTER} { DATABASE | SCHEMA } database_name
Creates a database and directory called database_name. The database directory
appears under the MySQL data directory. Tables in MySQL then appear as files
in the database directory.

OR REPLACE

Is shorthand for DROP DATABASE ... IF EXISTS; CREATE DATABASE.

IF NOT EXISTS

Avoids an error if the database already exists.

[DEFAULT] CHARACTER SET [=] character_set
Optionally defines the default character set used by the database. Refer to the
MySQL documentation for a full listing of the available character sets.

[DEFAULT] COLLATE [=] collation
Optionally defines the default database collation used by the database. Refer to
the MySQL documentation for a full listing of the available collations.

[DEFAULT] ENCRYPTION [=] {'Y' | 'N'}

Optionally defines whether the database and all tables within it are encrypted
by default. This setting was introduced in MySQL 8.0.16 and can also be
specified in the default_table_encryption system variable.

READ ONLY [=] {DEFAULT | 0 | 1}

Optionally defines whether the database and objects within it should only allow
read access (1 indicates that the database should be read only, and DEFAULT or
0 indicates that it should not be). This setting was introduced in MySQL 8.0.22
and is only available with the ALTER DATABASE command.

COMMENT [=] comment
Allows you to add a comment of up to 1,024 bytes in length, which is included
in the db.opt file and the information_schema.schemata table (MariaDB only).

Oracle
Oracle provides an extraordinary level of control over database file structures, far
beyond merely naming the database and specifying a path for the database files.
CREATE and ALTER DATABASE are very powerful commands in Oracle, and some
of the more sophisticated clauses are best used only by experienced DBAs. These
commands can be very large and complex—the description of ALTER DATABASE
alone takes up over 50 pages in the Oracle vendor documentation!

74 | Chapter 3: Structuring Your Data

https://oreil.ly/NpLFM

Oracle introduced a new multitenant architecture, pluggable
databases, in release 12c. This essentially allows an instance of
Oracle to support multiple distinct databases simultaneously.
Implementing pluggable databases is a complex task. In fact,
it is complex enough for the vendor to encourage you to
use tools such as the Oracle Database Configuration Assistant
(DBCA), rather than using hand-scripted SQL. We encourage
you to read Oracle’s documentation. Consequently, we are
limiting our coverage to standard non-multitenant databases.

Novices should be aware that CREATE DATABASE, when run, erases all data that
is already in existence in the specified datafiles. The Oracle installer generally
performs the CREATE DATABASE step for you, so most users don’t need to do it. It
is also highly recommended that you use DBCA when creating new databases and
only resort to the CREATE DATABASE command directly if you need to script creation
of a database.

Following is a subset of the syntax to create a new database in Oracle:

CREATE DATABASE [database_name]
{[USER SYS IDENTIFIED BY password |
USER SYSTEM IDENTIFIED BY password]}
[CONTROLFILE REUSE]
[MAXDATAFILES int]
[MAXINSTANCES int]
[CHARACTER SET charset]
[NATIONAL CHARACTER SET charset]
[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]
{[LOGFILE definition[, ...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]
 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]
 [SET STANDBY NOLOGGING FOR {DATA AVAILABILITY | LOAD PERFORMANCE}] }
[EXTENT MANAGEMENT {DICTIONARY | LOCAL
 [{AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}]}]
[DATAFILE definition[, ...]]
[SYSAUX DATAFILE definition[, ...]]
[DEFAULT TABLESPACE tablespace_name
 [DATAFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] DEFAULT TEMPORARY TABLESPACE tablespace_name
 [TEMPFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name
 [DATAFILE temp_datafile_definition]]
[SET TIME_ZONE = '{ {+ | -} hh:mi| time_zone_region }']

SQL Command Reference | 75

Structuring
Yo

ur D
ata

https://oreil.ly/JsQa7

Following is a subset of the syntax to alter an existing database:

ALTER DATABASE [database_name]
[ARCHIVELOG | NOARCHIVELOG] |
 {MOUNT [{STANDBY | CLONE} DATABASE] | OPEN [READ ONLY | READ WRITE]
 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE]} |
 {ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY]
 [SKIP [STANDBY LOGFILE]] |
 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |
 PERFORMANCE} |
 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
 [FOR logminer_session_name] |
 {COMMIT | PREPARE} TO SWITCHOVER TO
 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]
 SESSION SHUTDOWN] [WAIT | NOWAIT]} |
 CANCEL} |
 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]
 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |
 SKIP FAILED TRANSACTION}}] |
 {STOP | ABORT} LOGICAL STANDBY APPLY |
 [CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY] |
{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |
 CHARACTER SET character_set |
 NATIONAL CHARACTER SET character_set |
 DEFAULT TABLESPACE tablespace_name |
 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |
 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING
 FILE 'file'] [REUSE]} |
 FLASHBACK {ON | OFF} |
 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region }' |
 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE} |
{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |
{GUARD {ALL | STANDBY | NONE}} |
{CREATE DATAFILE 'file'[, ...] [AS {NEW | file_definition[, ...]}] |
 {DATAFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M]] |
 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE
 [UNLIMITED | int [K | M]]] |
 {TEMPFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |
 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
 [MAXSIZE [UNLIMITED | int [K | M]]] |
 RENAME FILE 'file'[, ...] TO 'new_file_name'[, ...]} |
{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |
 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |
 FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, ...]] COLUMNS |
 [ADD | DROP] [STANDBY] LOGFILE
 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |
 logfile_name[, ...]]} [SIZE int [K | M]] | [REUSE] |
 [MEMBER] 'file' [REUSE][, ...] TO logfile_name[, ...]} |
 ADD LOGFILE MEMBER 'file' [REUSE][, ...] TO {[GROUP int |
 logfile_name[, ...]]} |

76 | Chapter 3: Structuring Your Data

 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int |logfile_name
 [, ...]]}}
 CLEAR [UNARCHIVED] LOGFILE {[GROUP int |
 logfile_name[, ...]]}[, ...]
 [UNRECOVERABLE DATAFILE]} |
{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |
 BACKUP CONTROLFILE TO
 {'file' [REUSE] | TRACE [AS 'file' [REUSE]]} [{RESETLOGS |
 NORESETLOGS}]} |
{RECOVER
 {[AUTOMATIC [FROM 'location']] |
 {[STANDBY] DATABASE
 {[UNTIL {CANCEL | TIME date | CHANGE int}] |
 USING BACKUP CONTROLFILE} |
 {{[STANDBY] {TABLESPACE tablespace_name[, ...] | DATAFILE
 'file'[, ...]} [UNTIL [CONSISTENT WITH] CONTROLFILE]} |
 TABLESPACE tablespace_name[, ...] |
 DATAFILE 'file'[, ...]} |
 LOGFILE filename[, ...]} [{TEST | ALLOW int CORRUPTION |
 [NO]PARALLEL int}]} |
 CONTINUE [DEFAULT] |
 CANCEL}
 {MANAGED STANDBY DATABASE
 {[USING CURRENT LOGFILE]
 [DISCONNECT [FROM SESSION]]
 [NODELAY]
 [UNTIL CHANGE int]
 [FINISH]
 [CANCEL]} |
 TO LOGICAL STANDBY {database_name | KEEP IDENTITY}}
{{BEGIN | END} BACKUP}

The syntax elements in Oracle are as follows. First, for CREATE DATABASE:

{CREATE | ALTER} DATABASE [database_name]

Creates or alters a database with the name database_name. The database name
can be up to 8 bytes in length and may not contain European or Asian charac‐
ters. You can omit the database name and allow Oracle to create the name for
you, but beware that the names Oracle creates can be counterintuitive.

USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password

Specifies passwords for the SYS and SYSTEM users. You may specify neither or
both of these clauses, but not just one of them.

CONTROLFILE REUSE

Causes existing control files to be reused, enabling you to specify existing
files in the CONTROL_FILES parameter in init.ora. Oracle will then overwrite
any information those files may contain. This clause is normally used when re-
creating a database. Consequently, you probably don’t want to use this clause in
conjunction with MAXLOGFILES, MAXLOGMEMBER, MAXLOGHISTORY, MAXDATAFILES,
or MAXINSTANCES.

SQL Command Reference | 77

Structuring
Yo

ur D
ata

MAXDATAFILES int

Sets the initial number of datafiles, int, available to the database being created.
Note that the init.ora setting DB_FILES also limits the number of datafiles
accessible to the database instance.

MAXINSTANCES int

Sets the maximum number of instances, int, that may mount and open the
database being created. The minimum value is 1, while the maximum and
default values for this clause are OS-dependent.

CHARACTER SET charset

Controls the language character set in which the data is stored. The value for
charset cannot be AL16UTF16. The default value is OS-dependent.

NATIONAL CHARACTER SET charset

Controls the national language character set for data stored in NCHAR, NCLOB,
and NVARCHAR2 columns. The value for charset must be either AL16UTF16 (the
default) or UTF8.

SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE

Sets all tablespaces created by the current CREATE DATABASE or ALTER DATABASE
statement as either BIGFILE or SMALLFILE. When creating databases, this clause
also applies to the SYSTEM and SYSAUX tablespaces.

LOGFILE definition

Specifies one or more logfiles for the database. You may define multiple files
all with the same size and characteristics, using the 'file' parameter, or you
may define multiple files each with its own size and characteristics. The entire
logfile definition syntax is rather ponderous, but it offers a great deal of control:

LOGFILE { ('file'[, ...]) [SIZE int [K | M]]
[GROUP int] [REUSE] }[, ...]

LOGFILE ('file'[, ...])

Defines one or more files that will act as redo logfiles; file is both the file‐
name and the path. Any files defined in the CREATE DATABASE statement
are assigned to redo log thread number 1. When specifying multiple redo
logfiles, each filename should be enclosed in single quotes and separated
from the other names by commas. The entire list should be enclosed in
parentheses.

SIZE int [K | M]

Specifies the size of the redo logfile in bytes as an integer value, int.
Alternatively, you may define the redo logfile in larger units than bytes by
appending a K (for kilobytes) or an M (for megabytes).

GROUP int

Defines the integer ID, int, of the redo logfile group. The value may be
from 1 to the value of the MAXLOGFILES clause. An Oracle database must

78 | Chapter 3: Structuring Your Data

have at least two redo logfile groups. Oracle will create a redo logfile group
for you, with a default size of 100 MB, if you omit this group ID.

REUSE

Reuses an existing redo logfile.

MAXLOGFILES int

Sets the maximum number of logfiles, int, available to the database being
created. The minimum, maximum, and default values for this clause are OS-
dependent.

MAXLOGMEMBERS int

Sets the maximum number of members (i.e., copies) for a redo logfile group.
The minimum value is 1, while the maximum and default values for this clause
are OS-dependent.

MAXLOGHISTORY int

Sets the maximum number of archived redo logfiles available to a Real Applica‐
tion Cluster (RAC). You can use the MAXLOGHISTORY clause only when Oracle is
in ARCHIVELOG mode on a RAC. The minimum value is 0, while the maximum
and default values for this clause are OS-dependent.

ARCHIVELOG | NOARCHIVELOG

Defines how redo logs operate. When used with ALTER DATABASE, specifying
one of these allows the current setting to be changed. ARCHIVELOG saves data
stored in the redo log(s) to an archiving file, providing for media recoverability.
Conversely, NOARCHIVELOG allows a redo log to be reused without archiving
the contents. Both options provide recoverability, although NOARCHIVELOG (the
default) does not provide media recovery.

FORCE LOGGING

Places all instances of the database into FORCE LOGGING mode, in which all
changes to the database are logged, except for changes to temporary table‐
spaces and segments. This setting takes precedence over any tablespace- or
object-level settings.

EXTENT MANAGEMENT {DICTIONARY | LOCAL}

Creates a locally managed SYSTEM tablespace (otherwise, the SYSTEM tablespace
will be dictionary-managed). This clause requires a default temporary table‐
space. If you omit the DATAFILE clause, you can also omit the default temporary
tablespace because Oracle will create them both for you.

DATAFILE definition

Specifies one or more datafiles for the database. (All these datafiles become part
of the SYSTEM tablespace.) You may repeat filenames to define multiple files
with the same size and characteristics. Alternatively, you may repeat the entire
DATAFILE clause, with each occurrence defining one or more files with the same

SQL Command Reference | 79

Structuring
Yo

ur D
ata

size and characteristics. The entire datafile definition syntax is rather large, but
it offers a great deal of control:

DATAFILE { ('file'[, ...]) [GROUP int] [SIZE int [K | M]] [REUSE]
[AUTOEXTEND {OFF | ON [NEXT int [K | M]]}]
[MAXSIZE [UNLIMITED | int [K | M]]] } [,...]

DATAFILE ('file'[, ...])

Defines one or more files that will act as the datafile(s), where file is
both the filename and the path. For multiple files, each filename should be
enclosed in single quotes and separated from the others by a comma. The
entire list should be enclosed in parentheses.

GROUP int

Defines the integer ID, int, of the datafile group. The value may be from
1 to the value of the MAXLOGFILES clause. An Oracle database must have
at least two datafile groups. Oracle will create them for you, with a default
size of 100 MB each, if you omit this clause.

SIZE int [K | M]

Specifies the size of the datafile in bytes as an integer value, int. Alterna‐
tively, you may define the datafile in larger units by appending a K (for
kilobytes) or an M (for megabytes).

REUSE

Reuses an existing datafile.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]}

Enables (ON) the automatic extension of new or existing datafiles or temp‐
files (but does not redo logfiles). NEXT specifies the next increment of space
allocated to the file in bytes, kilobytes (K), or megabytes (M) when more
space is needed.

MAXSIZE [UNLIMITED | int [K | M]]

Specifies the maximum disk space allowed for automatic extension of the
file. UNLIMITED allows the file to grow without an upper limit (except, of
course, the total capacity of the drive). Otherwise, you may define the
maximum size limit as an integer, int, in bytes (the default), kilobytes (K),
or megabytes (M).

SYSAUX DATAFILE definition

Specifies one or more datafiles for the SYSAUX tablespace. By default, Oracle
creates and manages the SYSTEM and SYSAUX tablespaces automatically. You
must use this clause if you have specified a datafile for the SYSTEM tablespace. If
you omit the SYSAUX clause when using Oracle-managed files, Oracle will cre‐
ate the SYSAUX tablespace as an online, permanent, locally managed tablespace
with a single datafile of 100 MB, using automatic segment space management
and logging.

80 | Chapter 3: Structuring Your Data

DEFAULT TABLESPACE tablespace_name

Specifies a default permanent tablespace for the database for all non-SYSTEM
users. When this clause is omitted, the SYSTEM tablespace is the default perma‐
nent tablespace for non-SYSTEM users.

BIGFILE | SMALLFILE

Specifies the default file type of a subsequently created tablespace. BIGFILE
indicates that the tablespace will contain a single datafile or tempfile of up to 8
exabytes (8 million terabytes) in size, while SMALLFILE indicates the tablespace
is a traditional Oracle tablespace. The default, when omitted, is SMALLFILE.

DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE file_def

inition]

Defines the name and location of the default temporary tablespace for the
database. Users who are not explicitly assigned to a temporary tablespace will
operate in this one. If you don’t create a default temporary tablespace, Oracle
uses the SYSTEM tablespace. Under ALTER DATABASE, this clause allows you to
change the default temporary tablespace.

TEMPFILE file_definition

The tempfile definition is optional when the DB_CREATE_FILE_DEST init.ora
parameter is set. Otherwise, you’ll have to define the tempfile yourself. The
TEMPFILE definition syntax is identical to the DATAFILE definition syntax
described earlier in this section.

EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE | UNIFORM [SIZE

int [K | M]]}}

Defines the way in which the SYSTEM tablespace is managed. When this
clause is omitted, the SYSTEM tablespace is dictionary-managed. Once created
as a locally managed tablespace, it cannot be converted back to a dictionary-
managed tablespace, nor can any new dictionary-managed tablespaces be cre‐
ated in the database.

DICTIONARY

Specifies that the Oracle data dictionary manages the tablespace. This is
the default. The AUTOALLOCATE and UNIFORM subclauses are not used with
this clause.

LOCAL

Declares that the tablespace is locally managed. This clause is optional
since all temporary tablespaces have locally managed extents by default.
Use of this clause requires a default temporary tablespace. If you do not
manually create one, Oracle will automatically create one called TEMP, of
size 10 MB, with AUTOEXTEND disabled.

AUTOALLOCATE

Specifies that new extents will be allocated as needed by the locally man‐
aged tablespace.

SQL Command Reference | 81

Structuring
Yo

ur D
ata

UNIFORM [SIZE int [K | M]]

Specifies that all extents of the tablespace are the same size. The SIZE clause
allows you to configure the size of the extents to your liking as an integer,
int, in bytes (the default), kilobytes (K), or megabytes (M). The default is
1M.

UNDO TABLESPACE tablespace_name [DATAFILE temp_datafile_definition]

Defines the name and location for undo data, creating a tablespace named
tablespace_name, but only if you have set the UNDO_MANAGEMENT init.ora
parameter to AUTO. If you don’t use this clause, Oracle manages undo space
via rollback segments. (You may also set the init.ora parameter UNDO_TABLE
SPACE. If you do so, the value of the parameter and the tablespace_name used
here must be identical.)

DATAFILE temp_datafile_definition

Creates and assigns the datafile, as you have defined it, to the undo tablespace.
Refer to the earlier description of DATAFILE for the full syntax of this clause.
This clause is required if you have not specified a value for the init.ora
parameter DB_CREATE_FILE_DEST.

SET TIME_ZONE = ' {{+ | -} hh:mi | time_zone_region }'

Sets the time zone for the database, either by specifying a delta from Greenwich
Mean Time (now called Coordinated Universal Time, or UTC) or by specifying
a time zone region. (For a list of time zone regions, query the tzname column
of the V$TIMEZONE_NAMES view.) If you do not use this clause, Oracle defaults to
the operating system time zone.

And for ALTER DATABASE:

MOUNT [{STANDBY | CLONE}] DATABASE]

Mounts a database for users to access. The STANDBY keyword mounts a physical
standby database, enabling it to receive archived redo logs from the primary
instance. The CLONE keyword mounts a clone database. This clause cannot be
used with OPEN.

OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS] [UPGRADE |

DOWNGRADE]

Opens the database separately from the mounting process. (Mount the data‐
base first.) READ WRITE opens the database in read/write mode, allowing users
to generate redo logs. READ ONLY allows reads of but disallows changes to
redo logs. RESETLOGS discards all redo information not applied during recovery
and sets the log sequence number to 1. NORESETLOGS retains the logs in their
present condition. The optional UPGRADE and DOWNGRADE clauses tell Oracle to
dynamically modify the system parameters as required for database upgrade or
downgrade, respectively. The default is OPEN READ WRITE NORESETLOGS.

82 | Chapter 3: Structuring Your Data

ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY] [SKIP

[STANDBY LOGFILE]]

Promotes a standby database to the primary database. You can optionally
specify a PHYSICAL standby, the default, or a LOGICAL standby. FINISH APPLY
initiates the application of the remaining redo log, bringing the logical standby
database to the same state as the primary database. When it’s finished, the
database completes the switchover from the logical standby to the primary
database. Use the SKIP clause to immediately promote a physical standby and
discard any data still unapplied by the RECOVER MANAGED STANDBY DATABASE
FINISH statement. The clause STANDBY LOGFILE is noise.

SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |

PERFORMANCE}

Sets the level of protection for data in the primary database. The old terms
PROTECTED and UNPROTECTED equate to MAXIMIZE PROTECTION and MAXIMIZE
PERFORMANCE, respectively:

PROTECTION

Provides the highest level of data protection, but has the greatest overhead
and negatively impacts availability. This setting commits transactions only
after all data necessary for recovery has been physically written in at least
one physical standby database that uses the SYNC log transport mode.

AVAILABILITY

Provides the second highest level of data protection, but the highest level
of availability. This setting commits transactions only after all data neces‐
sary for recovery has been physically written in at least one physical or
logical standby database that uses the SYNC log transport mode.

PERFORMANCE

Provides the highest level of performance, but compromises on data pro‐
tection and availability. This setting commits transactions before all data
necessary for recovery has been physically written to a standby database.

REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']

Manually registers redo logfiles from a failed primary server when issued
from a standby server. The logfile may optionally be declared as PHYSICAL or
LOGICAL. The OR REPLACE clause allows updates to details of an existing archive
log entry.

FOR logminer_session_name

Registers the logfile with a single, specific LogMiner session in an Oracle
Streams environment.

{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL | LOGICAL] PRIMARY |

STANDBY}

Performs a graceful switchover, moving the current primary database to
standby status and promoting a standby database to primary. (In a RAC

SQL Command Reference | 83

Structuring
Yo

ur D
ata

environment, all instances other than the current instance have to be shut
down.) To gracefully switch over, you should issue the command twice (the
first time to prepare the primary and standby databases to begin exchanging
logfiles in advance of the switchover) using PREPARE TO SWITCHOVER. To
demote the primary database and switch over to the standby, use COMMIT
TO SWITCHOVER. The PHYSICAL clause puts the primary database into physical
standby mode. The LOGICAL clause puts the primary database into logical
standby mode. However, you must then issue an ALTER DATABASE START

LOGICAL STANDBY APPLY statement.

[WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

WITH SESSION SHUTDOWN closes any open application sessions and rolls back
any uncommitted transactions during a switchover of physical databases (but
not logical ones). WITHOUT SESSION SHUTDOWN, the default, causes the COMMIT
TO SWITCHOVER statement to fail if it encounters any open application sessions.
WAIT returns control to the console after completion of the SWITCHOVER com‐
mand, while NOWAIT returns control before the command completes.

START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY] [{INITIAL int | NEW

PRIMARY dblink_name} | {FINISH | SKIP FAILED TRANSACTION}]

Starts to apply redo logs to the logical standby database. IMMEDIATE tells the
Oracle LogMiner to read the redo data in the standby redo logfiles. NODELAY
tells Oracle to ignore a delay for the apply, such as when the primary database
is unavailable or disabled. INITIAL is used the first time you apply logs to the
standby database. NEW PRIMARY is required after a switchover has completed or
after a standby database has processed all redo logs and another standby is pro‐
moted to primary. Use SKIP FAILED TRANSACTION to skip the last transaction
and to restart the APPLY. Use FINISH to apply the data in the redo logs if the
primary database is disabled.

[STOP | ABORT] LOGICAL STANDBY APPLY

Stops the application of redo logs to a logical standby server. STOP performs an
orderly stop, while ABORT performs an immediate stop.

CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY

Converts a primary database or snapshot standby database into a physical
standby database (for PHYSICAL), or converts a physical standby database into a
snapshot standby database (for SNAPSHOT).

RENAME GLOBAL_NAME TO database[.domain[.domain ...]]

Changes the global name of the database, where database is the new name
of up to 8 bytes in length. The optional domain specifications identify the
database’s location in the network. This does not propagate database name
changes to any dependent objects like synonyms, stored procedures, etc.

84 | Chapter 3: Structuring Your Data

{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE 'file'] [REUSE]

Tells Oracle to stop or start tracking the physical locations of all database
updates, respectively, and maintain the information in a special file called the
block change tracking file. Oracle will automatically create the file as defined by
the DB_CREATE_FILE_DEST parameter, unless you add the USING FILE 'file'
clause, where 'file' is the path and name of the file. REUSE tells Oracle to
overwrite an existing block change tracking file of the same name as 'file'.
The USING and REUSE subclauses are allowed only with the ENABLE BLOCK
clause.

FLASHBACK {ON | OFF}

Places the database into or out of FLASHBACK mode, respectively. When in flash‐
back mode, an Oracle database automatically creates and maintains flashback
database logs in the flash recovery area. When OFF, the flashback database logs
are deleted and unavailable.

SET TIME ZONE

Specifies the time zone for the server. Refer to the description of the SET TIME
ZONE statement in the discussion of the CREATE DATABASE syntax for more
information.

{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name'}

In RAC environments, you can ENABLE or DISABLE a redo log thread by num‐
ber (int). You may optionally specify an instance_name to enable or disable a
thread mapped to a specific database instance in an Oracle RAC environment.
The instance_name may be up to 80 characters long. The PUBLIC keyword
makes the thread available to any instance. When omitted, the thread is avail‐
able only when explicitly requested. To enable a thread, the thread must have
at least two redo logfile groups. To disable a thread, the database must be open
but not mounted by an instance using the thread.

GUARD {ALL | STANDBY | NONE}

Protects the data in a database from changes. ALL prevents users other than
SYS from making any changes. STANDBY prevents all users other than SYS from
making changes in a logical standby. NONE provides normal security for the
database.

CREATE DATAFILEn'file'[, ...] [AS {NEW | file_definition}]

Creates a new, empty datafile, replacing an existing one. The value 'file'
identifies a file (either by filename or file number) that was lost or damaged
without a backup. AS NEW creates a new file in the default filesystem using an
Oracle-supplied name. AS file_definition allows you to specify a filename
and sizing details, as described in the discussion of TEMPFILE file_definition
in the preceding list.

SQL Command Reference | 85

Structuring
Yo

ur D
ata

DATAFILE 'file' | TEMPFILE 'file'}[, ...] {ONLINE | OFFLINE [FOR

DROP] | RESIZE int [K | M]] | END BACKUP | AUTOEXTEND {OFF | ON [NEXT

int [K | M]]} [MAXSIZE [UNLIMITED | int [K | M]]]

Changes the attributes, such as the size, of one or more existing datafiles or
tempfiles. You may alter one or more files in a comma-delimited list, identified
in the value 'file' by filename or file number. Do not mix datafile and
tempfile declarations; only one or the other should appear in this clause at a
time:

ONLINE

Sets the file online.

OFFLINE [FOR DROP]

Sets the file offline, allowing media recovery. FOR DROP is required to take
a file offline in NOARCHIVELOG mode, but it does not actually destroy the
file. It is ignored in ARCHIVELOG mode.

RESIZE int [K | M]

Sets a new size for an existing datafile or tempfile.

END BACKUP

Described later in the main list, under END BACKUP. Used only with the
DATAFILE clause.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE [UNLIMITED | int

[K | M]]]

Described in the preceding list, under DATAFILE definition.

DROP [INCLUDING DATAFILES]

Drops not only the tempfile, but all datafiles on the filesystem associated with
the tempfile. Oracle also adds an entry to the alert log for each file that is
erased. Used only with the TEMPFILE clause.

RENAME FILE 'file'[, ...] TO 'new_file_name'[, ...]

Renames a datafile, tempfile, or redo logfile member from the old name, file,
to the new_file_name. You can rename multiple files at once by specifying
multiple old and new filenames, separated by commas. This command does
not rename files at the operating system level. Rather, it specifies new names
that Oracle will use to open the files. You need to rename at the operating
system level yourself.

[NO] FORCE LOGGING

Puts the database into force logging mode (FORCE LOGGING) or takes it out
of force logging mode (NO FORCE LOGGING). In the former, Oracle logs all
changes to the database except in temporary tablespaces or segments. This
database-level FORCE LOGGING setting supersedes all tablespace-level declara‐
tions regarding force logging mode.

86 | Chapter 3: Structuring Your Data

[NO]ARCHIVELOG [MANUAL]

Tells Oracle to create redo logfiles, but that the user will handle the archiving
of the redo logfiles explicitly. This is used only with the ALTER DATABASE

statement and only for backward compatibility for users with older tape backup
systems. When this clause is omitted, Oracle defaults the redo logfile destina‐
tion to the LOG_ARCHIVE_DEST_n initialization parameter.

[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |

FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, ...] COLUMNS

ADD places additional column data into the log stream whenever an update
is executed. It also enables minimal supplemental logging, which ensures that
LogMiner can support chained rows and special storage arrangements such
as clustered tables. Supplemental logging is disabled by default. You can
add the clauses PRIMARY KEY COLUMNS, UNIQUE KEY COLUMNS, FOREIGN KEY
COLUMNS, or ALL (to get all three options) if you need to enable full referential
integrity via foreign keys in another database, such as a logical standby, or
FOR PROCEDURAL REPLICATION for logging PL/SQL calls. In either case, Oracle
places either the primary key columns, the unique key columns (or, if none
exist, a combination of columns that uniquely identify each row), the foreign
key columns, or all three into the log. DROP tells Oracle to suspend supplemen‐
tal logging.

[ADD | DROP] [STANDBY] LOGFILE {{[THREAD int | INSTANCE

'instance_name']} {[GROUPint | logfile_name[, ...]]} [SIZE int [K |

M]] | [REUSE] | [MEMBER] 'file' [REUSE][, ...]

ADD includes one or more primary or standby redo logfile groups to the speci‐
fied instance. THREAD assigns the added files to a specific thread number (int)
on a RAC. When omitted, the default is the thread assigned to the current
instance. GROUP assigns the redo logfile groups to a specific group within the
thread. MEMBER adds the specified 'file' (or files in a comma-delimited list)
to an existing redo logfile group. REUSE is needed if the file already exists. DROP
LOGFILE MEMBER drops one or more redo logfile members, after issuing an
ALTER SYSTEM SWITCH LOGFILE statement.

CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, ...]]}

[, ...] [UNRECOVERABLE DATAFILE]

Reinitializes one or more (in a comma-delimited list) specified online redo
logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the
database is in ARCHIVELOG mode.

CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS 'file' [REUSE]}

Creates a control file that maintains a logical or physical standby database.
REUSE is needed if the file already exists.

SQL Command Reference | 87

Structuring
Yo

ur D
ata

BACKUP CONTROLFILE TO {'file' [REUSE] | TRACE [AS 'file' [REUSE]]

[{RESETLOGS | NORESETLOGS}]

Backs up the current control file of an open or mounted database. TO 'file'
identifies a full path and filename for the control file. TO TRACE writes SQL
statements to re-create the control file to a trace file. TO TRACE AS 'file'
writes all the SQL statements to a standard file rather than a trace file. REUSE
is needed if the file already exists. RESETLOGS initializes the trace file with the
statement ALTER DATABASE OPEN RESETLOGS and is valid only when online logs
are unavailable. NORESETLOGS initializes the trace file with the statement ALTER
DATABASE OPEN NORESETLOGS and is valid only when online logs are available.

RECOVER

Controls media recovery for the database, standby database, tablespace, or file.
In Oracle, the ALTER DATABASE command is one of the primary means of
recovering a damaged or disabled database, file, or tablespace. Use RECOVER
when the database is mounted (in exclusive mode), the files and tablespaces
involved are not in use (offline), and the database is in either an open or closed
state. The entire database can be recovered only when it is closed, but specific
files or tablespaces can be recovered in a database that is open.

AUTOMATIC [FROM 'location']
Tells Oracle to automatically generate the name of the next archived redo
logfile necessary for continued operation during recovery. Oracle will prompt
you if it cannot find the next file. The FROM 'location' clause tells Oracle
where to find the archived redo logfile group. The following subclauses may be
applied to an automatically recovered database:

STANDBY

Specifies that the database or tablespace to recover is a standby type.

DATABASE {[UNTIL {CANCEL | TIME date | CHANGE int}] | USING BACKUP

CONTROLFILE}

Tells Oracle to recover the entire database. The UNTIL keyword tells Oracle
to continue recovery until ALTER DATABASE ... RECOVER CANCEL (CANCEL)
is issued, until a specified time in the format YYYY-MMDD:HH24:MI:SS
is reached (TIME), or until a specific system change number is reached
(CHANGE int, where int is the number). The clause USING BACKUP

CONTROLFILE enables use of the backup, rather than current, control file.

[STANDBY] [TABLESPACE tablespace_name[, ...] | DATAFILE

'file'[, ...]]

Recovers one or more specific tablespaces or datafiles, respectively.
You may specify more than one tablespace or datafile using a comma-
delimited list. You may also recover a datafile by datafile number, rather
than by name. The tablespace may be in normal or standby mode. The
standby tablespace or datafile is reconstructed using archived redo logfiles
copied from the primary database and a control file.

88 | Chapter 3: Structuring Your Data

UNTIL [CONSISTENT WITH] CONTROLFILE

Tells Oracle to recover an older standby tablespace or datafile by using the
current standby control file. CONSISTENT WITH are noise words.

LOGFILE filename[, ...]

Continues media recovery by applying one or more redo logfiles that you
specify in a comma-delimited list.

TEST | ALLOW int CORRUPTION | [NO]PARALLEL int

TEST performs a trial recovery, allowing you to foresee any problems.
ALLOW int CORRUPTION tells how many corrupt blocks (int) to tolerate
before causing recovery to abort. int must be 1 for a real recovery, but
may be any number you choose when paired with TEST. [NO]PARALLEL
determines whether parallel recovery of media is used. NOPARALLEL is the
default and enforces serial reading of the media. PARALLEL with no int
value tells Oracle to choose the degree of parallelism to apply. Specifying
int declares the degree of parallelism to apply.

CONTINUE [DEFAULT]

Determines whether multi-instance recovery continues after interruption.
CONTINUE DEFAULT is the same as RECOVER AUTOMATIC, but it does not
result in a prompt for a filename.

CANCEL

Cancels a managed recovery operation at the next archived log boundary,
if it was started with the USING CANCEL clause.

MANAGED STANDBY DATABASE

Specifies managed physical standby recovery mode on an active component of
a standby database. This command is used for media recovery only and not to
construct a new database, using the following parameters:

USING CURRENT LOGFILE

Invokes real time apply, which allows recovery of redos from standby
online logs as they are being filled, without first requiring that they be
archived by the standby database.

DISCONNECT [FROM SESSION]

Causes the managed redo process to occur in the background, leaving the
current process available for other tasks. FROM SESSION are noise words.
DISCONNECT is incompatible with TIMEOUT.

NODELAY

Overrides the DELAY attribute of the LOG_ARCHIVE_DEST_n parameter on
the primary database. When omitted, Oracle delays the application of the
archived redo log according to that attribute’s value.

SQL Command Reference | 89

Structuring
Yo

ur D
ata

UNTIL CHANGE int
Conducts a managed recovery up to (but not including) the specified
system change number int.

FINISH

Recovers all available online redo logfiles immediately in preparation of
the standby assuming the primary database role. The FINISH clause is
known as a terminal recovery and should be used only in the event of a
failure of the primary database.

CANCEL

Stops application of redo applies immediately and returns control as soon
as the redo apply stops.

TO LOGICAL STANDBY {database_name | KEEP IDENTITY}
Converts the physical standby database into a logical standby database.
The database_name identifies the new logical standby database. The KEEP
IDENTITY subclause tells Oracle that the logical standby is used for a
rolling upgrade and is not usable as a general-purpose logical standby
database.

{BEGIN | END} BACKUP
Controls the online backup mode for any datafiles. BEGIN places all datafiles
into online backup mode. The database must be mounted and open, in archi‐
velog mode with media recovery enabled. (Note that while the database is
in online backup mode the instance cannot be shut down and individual
tablespaces cannot be backed up, taken offline, or made read-only.) END takes
all datafiles currently in online backup mode out of that mode. The database
must be mounted but need not be open.

After that long discussion of specific syntax, it’s important to establish some Oracle
basics.

Oracle allows the use of primary and standby databases. A primary database is a
mounted and open database accessible to users. The primary database regularly and
frequently ships its redo logs to a standby database where they are recovered, thus
making the standby database a very up-to-date copy of the primary.

Unique to the Oracle environment is the server parameter file (spfile) that is often
called init.ora, which specifies the database name and a variety of other options that
you can use when creating and starting up a database. When a group of logfiles is
listed, they are usually shown in parentheses. The parentheses aren’t needed when
creating a group with only one member, but this is seldom done. Here’s an example
using a parenthetical list of logfiles:

CREATE DATABASE publications
LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M
DATAFILE;

90 | Chapter 3: Structuring Your Data

That example creates a database called publications with an explicitly defined logfile
clause and an automatically created datafile. The following example of an Oracle
CREATE DATABASE command is much more sophisticated:

CREATE DATABASE sales_reporting
CONTROLFILE REUSE
LOGFILE
 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,
 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M
MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE
 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,
 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_tblspc
UNDO TABLESPACE undo_tblspc
SET TIME_ZONE = '-08:00';

This example defines logfiles and datafiles, as well as all appropriate character sets.
We also define a few characteristics for the database, such as the use of ARCHIVELOG
mode and CONTROLFILE REUSE mode, the time zone, the maximum number of
instances and datafiles, etc. The example assumes that the DB_CREATE_FILE_DEST
parameter in init.ora has already been set, so we don’t have to provide file defini‐
tions for the DEFAULT TEMPORARY TABLESPACE and UNDO TABLESPACE clauses.

When issued by a user with SYSDBA privileges, this statement creates a database and
makes it available to users in either exclusive or parallel mode, as defined by the
value of the CLUSTER_DATABASE initialization parameter. Any data that exists in pre‐
defined datafiles is erased. You will usually want to create tablespaces and rollback
segments for the database. (Refer to the vendor documentation for details on the
platform-specific commands CREATE TABLESPACE and CREATE ROLLBACK SEGMENT.)
You’ll also need to manually unlock and assign a new password to all locked and
expired accounts (which includes most of the predefined database administrative
user accounts), as well as assigning passwords to the SYS and SYSTEM accounts,
during the initial installation.

In the next example, we add more logfiles to the current database, and then add a
datafile:

ALTER DATABASE ADD LOGFILE GROUP 3
 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')
SIZE 50M;
ALTER DATABASE sales_archive
CREATE DATAFILE 'diskF:sales_rpt4.dbf'
AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;

SQL Command Reference | 91

Structuring
Yo

ur D
ata

We can set a new default temporary tablespace as shown here:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;

Next, we’ll perform a simple full database recovery:

ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;

And here we perform a more elaborate partial database recovery:

ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'
UNTIL CONTROLFILE;

Now, we’ll perform a simple recovery of a standby database in managed standby
recovery mode:

ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;

In the following example, we gracefully switch over from a primary database to a
logical standby, and promote the logical standby to primary:

-- Demotes the current primary to the logical standby database.
ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;
-- Applies changes to the new standby.
ALTER DATABASE START LOGICAL STANDBY APPLY;
-- Promotes the current standby to the primary database.
ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL
PostgreSQL’s implementation of the CREATE DATABASE command creates a database
and a file location for the datafiles:

CREATE DATABASE database_name [WITH]
 [OWNER [=] database_owner]
 [TEMPLATE [=] tmp_name]
 [ENCODING [=] enc_value]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [LOCALE [=] locale]
 [TABLESPACE [=] tablespace_name]
 [CONNECTION LIMIT [=] int]
 [ALLOW_CONNECTIONS [=] boolean]
 [IS_TEMPLATE [=] boolean]

PostgreSQL’s syntax for ALTER DATABASE is:

ALTER DATABASE database_name [WITH]
 [ALLOW_CONNECTIONS boolean]
 [CONNECTION LIMIT int]
 [IS_TEMPLATE boolean]
 | [OWNER TO new_database_owner]
 | [RENAME TO new_database_name]
 | [SET TABLESPACE new_tablespace]

92 | Chapter 3: Structuring Your Data

 | [RESET {parameter | ALL}]
 | [SET parameter [{TO | =} {value | DEFAULT} | FROM CURRENT]

where:

WITH

Is an optional keyword to further define the details of the database. All options
that follow WITH are optional.

OWNER [=] database_owner
Specifies the name of the database owner if it is different from the name of the
user executing the statement.

TEMPLATE [=] tmp_name
Names a template to use for creating the new database. You can omit this
clause to accept the default template (or use the clause TEMPLATE = DEFAULT).
The default is to copy the database template1. You can get a pristine database
(one that contains only required database objects) with no predefined collation
by specifying TEMPLATE = template0. If you use template1 you cannot set LC
_COLLATE, as the collation has to be the same as that used by template1. If you
need a different collation from what template1 has, you should use template0.

ENCODING [=] enc_value
Specifies the multibyte encoding method to use in the new database, using
either a string literal (such as 'UTF8'), an integer encoding number, or DEFAULT
for the default encoding.

LC_COLLATE [=] lc_collate
Specifies the collation order for the database. This affects sort order using SQL’s
ORDER BY and index sort. Collation options include C, POSIX, and additional
platform-specific choices. More details can be found in the documentation.

LC_CTYPE [=] lc_ctype
Specifies the character classification rules for the database. This affects cate‐
gorization of characters (uppercase, lowercase, digits, etc.). Defaults to the
template database setting when neither LC_CTYPE nor LOCALE is specified.

LOCALE [=] locale
Shorthand for setting both LC_CTYPE and LC_COLLATE. If this is specified, then
the other two cannot be specified. The locale defaults to that of the template
database when not specified.

TABLESPACE [=] tablespace_name
Specifies the name of the tablespace associated with the database. This corre‐
sponds to a physical location on disk; PostgreSQL provides a CREATE TABLE
SPACE command for creating these. In CREATE DATABASE only the name of the
tablespace is used, not the actual path.

SQL Command Reference | 93

Structuring
Yo

ur D
ata

https://oreil.ly/4nN1x

CONNECTION LIMIT int
Specifies how many concurrent connections to the database are allowed. A
value of –1 means no limit.

ALLOW_CONNECTIONS boolean
Defaults to true. If false, then no one can connect to this database.

IS_TEMPLATE boolean
Indicates whether this database can be used as a template for new databases.
Although superusers can use any database as a template, only databases marked
as IS_TEMPLATE = true can be used by non-superusers with CREATE DATABASE
permissions.

OWNER TO new_database_owner

Assigns a new owner to the database.

RENAME TO new_database_name

Assigns a new name to the database.

SET TABLESPACE new_tablespace

Defines a new default tablespace for the database.

RESET {parameter | ALL}

Resets the database-specific setting for the named parameter or all parameters
to the system-wide default. This change takes effect from the next session (not
immediately).

SET parameter [{TO | =} {value | DEFAULT} | FROM CURRENT]

Specifies a default value for the named configuration parameter for the current
database session. FROM CURRENT uses the session’s current value for the parame‐
ter as the database-specific value.

PostgreSQL has many variables that control the query planner, how much memory
can be used, etc. These are called Grand Unified Configuration variables (GUCs).
Many GUCs can be set at the server, database, user, or session level using the
SET command. To set a GUC at the database level, you’d use the ALTER DATABASE
command as follows:

ALTER DATABASE nutshell
SET work_mem='100MB';

To reset it back to default for the server, you’d do:

ALTER DATABASE nutshell RESET work_mem;

SQL Server
SQL Server offers a lot of control over the OS filesystem structures that hold the
database and its objects. The syntax of its CREATE DATABASE statement is as follows:

CREATE DATABASE database_name
 [CONTAINMENT = {NONE | PARTIAL}]

94 | Chapter 3: Structuring Your Data

 [ON file_definition[, ...]]
 [, FILEGROUP filegroup_name [[CONTAINS FILESTREAM] [DEFAULT] |
 CONTAINS MEMORY_OPTIMIZED_DATA] file_definition[, ...]]
 [LOG ON file_definition[, ...]]]
 [COLLATE collation_name]
 [WITH
 [FILESTREAM (filestream_option[, ...])]
 [DEFAULT_FULLTEXT_LANGUAGE = {lcid | language_name |
 language_alias}]
 [DEFAULT_LANGUAGE = {lcid | language_name | language_alias}]
 [NESTED_TRIGGERS {ON | OFF}]
 [TRANSFORM_NOISE_WORDS {ON | OFF}]
 [TWO_DIGIT_YEAR_CUTOFF two_digit_year_cutoff]
 [DB_CHAINING {ON | OFF}]
 [TRUSTWORTHY {ON | OFF]]
 [PERSISTENT_LOG_BUFFER = ON (DIRECTORY_NAME = 'filepath')]]
 | [FOR { { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER |
 ERROR_BROKER_CONVERSATIONS | RESTRICTED USER |
 FILESTREAM (DIRECTORY_NAME = {'directory_name' | NULL})}] } |
 ATTACH_REBUILD_LOG }]
 | [AS SNAPSHOT OF source]

where:

CREATE DATABASE database_name

Creates a database with the name database_name. The name cannot be longer
than 128 characters. You should limit the database name to 123 characters
when no logical filename is supplied, since SQL Server will create a logical
filename by appending a suffix to the database name.

[CONTAINMENT = {NONE | PARTIAL}]

Specifies either a non-contained database (NONE) or a partially contained data‐
base (PARTIAL).

ON file_definition[, ...]

Defines the disk file(s) that store(s) the data components of the database. This
clause is required for CREATE DATABASE only if you wish to provide one or
more file definitions. The syntax for file_definition is:

{[PRIMARY] ([NEW][NAME = filename]
[, FILENAME = {'os_filename' | 'filestream_name'}]
[, SIZE = int [KB | MB | GB | TB]]
[, MAXSIZE = { int [KB | MB | GB | TB] | UNLIMITED }]
[, FILEGROWTH = int [KB | MB | GB | TB | %]

where:

PRIMARY

Defines the file_definition as the primary file. Only one primary file
is allowed per database. (If you don’t define a primary file, SQL Server
defaults primary status to the file that it autocreates, in the absence of
any user-defined file, or to the first file that you define.) The primary file

SQL Command Reference | 95

Structuring
Yo

ur D
ata

or group of files (also called a filegroup) contains the logical start of the
database, all the database system tables, and all other objects not contained
in user filegroups.

NAME = filename

Provides the logical name of the file defined by the file_definition. The
name must be unique within the database. This clause is optional when
using FOR ATTACH.

FILENAME = {'os_filename' | 'filestream_name'}

Specifies the operating system path and filename for the file defined by
the file_definition. The file must be in a noncompressed directory on
the filesystem. For raw partitions, specify only the drive letter of the raw
partition.

SIZE = int [KB | MB | GB | TB]

Sets the size of the file defined by the file_definition. This clause is
optional, but it defaults to the file size for the primary file of the model
database, which is usually very small. Logfiles and secondary datafiles
default to a size of 1 MB. The value of int defaults to megabytes; however,
you can explicitly define the size of the file using the suffixes for kilobyte
(KB), megabyte (MB), gigabyte (GB), and terabyte (TB). The size cannot be
smaller than 512 KB or the size of the primary file of the model database.

MAXSIZE = { int [KB | MB | GB | TB] | UNLIMITED }

Defines the maximum size to which the file may grow. Suffixes, as
described under the entry for SIZE, are allowed. The default, UNLIMITED,
allows the file to grow until all available disk space is consumed. Not
required for files on raw partitions.

FILEGROWTH = int [KB | MB | GB | TB | %]

Defines the growth increment for the file each time it grows. Suffixes, as
described under the entry for SIZE, are allowed. You may also use the
percentage (%) suffix to indicate that the file should grow by a percentage
of the total disk space currently consumed. If you omit the FILEGROWTH
clause, the file will grow in 10% increments, but never by less than 64 KB.
Not required for files on raw partitions.

FILEGROUP filegroup_name [CONTAINS FILESTREAM] [DEFAULT] [CONTAINS

MEMORY_OPTIMIZED_DATA] file_definition[, ...]

Defines any user filegroups used by the database, and their file definitions. All
databases have at least one primary filegroup (though many databases only
use the primary filegroup that comes with SQL Server by default). Adding
filegroups and then moving files to those filegroups allows greater control over
disk I/O. (However, we recommend that you do not add filegroups without
careful analysis and testing).

96 | Chapter 3: Structuring Your Data

CONTAINS FILESTREAM

Indicates that the filegroup stores FILESTREAM BLOBs in the filesystem.

DEFAULT

Defines the specified filegroup as the default filegroup for the database.

CONTAINS MEMORY_OPTIMIZED_DATA

Indicates that the filegroup stores memory-optimized tables in the filesys‐
tem. Only one MEMORY_OPTIMIZED_DATA filegroup is allowed per database.

LOG ON file_definition

Defines the disk file or files that store the log component of the database.
You can provide one or more file_definitions for the transaction logs in
a comma-delimited list. Refer to the preceding sublist for the full syntax of
file_definition.

COLLATE collation_name

Defines the default collation used by the database. collation_name can be
either a SQL Server collation name or a Windows collation name. By default,
all new databases receive the collation of the SQL Server instance. (You can
execute the query SELECT * FROM ::fn_helpcollations() to see all the colla‐
tion names available.) To change the collation of a database, you must be the
only user in the database, no schema-bound objects that depend on the current
collation may exist in the database, and the collation change must not result in
the duplication of any object names in the database.

FILESTREAM (filestream_option[, ...])
FILESTREAM is used for storing unstructured data such as documents and
images. You can specify the level of non-transactional FILESTREAM access to
the database with NON_TRANSACTED_ACCESS = { OFF> | READ_ONLY | FULL },
or the name of a Windows-compatible directory with DIRECTORY_NAME =

'directory_name'. Attaching a database that contains a FILESTREAM option
of DIRECTORY_NAME into a SQL Server instance will prompt SQL Server to
verify that the Database_Directory name is unique. If it is not, the attach oper‐
ation fails with the error “FILESTREAM Database_Directory name <name>
is not unique in this SQL Server instance.” To avoid this error, the optional
DIRECTORY_NAME parameter should be passed into this operation.

DEFAULT_FULLTEXT_LANGUAGE = lcid | language_name | language_alias

Specifies the default language option used in a full-text index when no
language is otherwise specified by the CREATE or ALTER FULLTEXT INDEX

statement.

DEFAULT_LANGUAGE = lcid | language_name | language_alias

Specifies the default language for the server when using SQL Server Manage‐
ment Studio or Transact-SQL, applying that option to all newly created logins.
This setting applies for logins associated with the database unless overridden by
CREATE/ALTER LOGIN.

SQL Command Reference | 97

Structuring
Yo

ur D
ata

NESTED_TRIGGERS = {OFF | ON}

Specifies the nested trigger configuration opttion when using SQL Server Man‐
agement Studio or Transact-SQL. In particular, this setting controls whether
AFTER triggers can cascade. OFF indicates no cascading triggers, while ON indi‐
cates that triggers can cascade up to 32 levels deep. INSTEAD OF triggers can
always cascade regardless of this setting.

TRANSFORM_NOISE_WORDS = { OFF | ON}

When set to ON, this option transforms noise words (for example, “the” in the
string “the product”) and suppresses error messages if noise words cause a
Boolean operation on a full-text query to return zero rows. Most useful with
full-text queries that use the CONTAINS predicate of the NEAR operation.

TWO_DIGIT_YEAR_CUTOFF two_digit_year_cutoff

Specifies the default interpretation by SQL Server when handling two-digit
years. Normally, SQL Server accepts a default time span of 1950 through 2049.
In this case, the two-digit year 51 would be interpreted by SQL Server as 1951,
but 41 would be interpreted as 2041. You can instead manually specify any
year between 1753 through 9999 as your two-digit year cutoff, if needed. The
default value is backward compatible.

DB_CHAINING {OFF | ON }

Specifies that the database can be involved in a cross-database ownership
chain (DB_CHAINING ON). When omitted, the default is OFF, which disallows
cross-database ownership chains. Not allowed on master, model, and tempdb
databases.

TRUSTWORTHY {ON | OFF}]
Setting TRUSTWORTHY ON specifies that database routines (such as views, func‐
tions, or procedures) that use an impersonation context can access resources
outside of the database. When omitted, the default is OFF, which disallows
accessing external resources from within a routine running in an impersona‐
tion context. TRUSTWORTHY is set to OFF whenever a database is attached. Not
allowed on master, model, and tempdb databases.

PERSISTENT_LOG_BUFFER=ON (DIRECTORY_NAME = 'filepath')
Creates the transaction log buffer on a high-speed volume backed by a disk
device using storage class memory, such as NVDIMM-N nonvolatile storage.
Due to the performance requirements of a persistent log buffer, make sure to
follow the documented specifications closely.

CONTAINS MEMORY_OPTIMIZED_DATA

This specifies that the filegroup of the CREATE/ALTER statement stores
memory-optimized tables on the filesystem. SQL Server allows only one
memory-optimized data filegroup per database. Refer to the vendor documen‐
tation for details on memory-optimized databases and workloads.

98 | Chapter 3: Structuring Your Data

FOR { { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_
CONVERSATIONS | RESTRICTED_USER | FILESTREAM (DIRECTORY_NAME =

{'directory_name' | NULL})}] } | ATTACH_REBUILD_LOG }
Places the database in special startup mode. FOR ATTACH creates the database
from a set of preexisting operating system files (almost always database files
created previously). Because of this, the new database must have the same
code page and sort order as the previous database. You only need the file_
definition of the first primary file or those files that have a different path
from the last time the database was attached. The FOR ATTACH_REBUILD_LOG
clause specifies that the database is created by attaching an existing set of
OS files, rebuilding the log in the process in case any logfiles are missing. In
general, you should use the sp_attach_db system stored procedure instead of
the CREATE DATABASE FOR ATTACH statement unless you need to specify more
than 16 file_definitions.

Service Broker options may be specified when using the FOR ATTACH clause:

ENABLE_BROKER

Specifies that Service Broker is enabled for the database.

NEW_BROKER

Creates a new service_broker_guid and ends all conversation endpoints
with a cleanup.

ERROR_BROKER_CONVERSATIONS

Terminates all Service Broker conversations with an error indicating that a
database has been attached or restored. The broker is disabled during the
operation and then reenabled afterward.

RESTRICTED_USER

Allows only members of the db_owner database role and the dbcreator and
sysadmin server roles to connect to the database.

AS SNAPSHOT OF source
Declares that the database being created is a snapshot of the source database.
The source and snapshot must exist on the same instance of SQL Server.

Following is the syntax for ALTER DATABASE:

ALTER DATABASE {database_name | CURRENT}
{ MODIFY NAME = new_database_name
| COLLATE collation_name
| file_and_filegroup_options
| SET {option_spec}[, ...] [WITH termination_option]
file_and_filegroup_options ::=
{ { ADD FILE file_definition[, ...] [TO FILEGROUP filegroup_name]
 | ADD LOG FILE file_definition[, ...]
 | REMOVE FILE filename
 | MODIFY FILE file_definition } |
 { ADD FILEGROUP filegroup_name [CONTAINS FILESTREAM |

SQL Command Reference | 99

Structuring
Yo

ur D
ata

 CONTAINS MEMORY_OPTIMIZED_DATA]
 | REMOVE FILEGROUP filegroup_name
 | MODIFY NAME = new_database_name
 | MODIFY FILEGROUP filegroup_name
 { NAME = new_filegroup_name | filegroup_property |
 {AUTOGROW_SINGLE_FILE | AUTOGROW_ALL_FILES} }

where:

ALTER DATABASE {database_name | CURRENT}
Specifies the name of the database to be modified. CURRENT designates the
database currently in use.

MODIFY NAME = new_database_name
Changes the database’s name from its current name to new_database_name.

ADD FILE file_definition[, ...] [TO FILEGROUP filegroup_name]

Adds a file to the database, in the designated filegroup. See the previous list for
a description of file_definition.

ADD LOG FILE file_definition

Adds a log file to the database.

REMOVE FILE filename

Removes a file from the database and deletes the physical file. The file must be
emptied of all content first.

MODIFY FILE file_definition

Changes the definition of a file. For example: MODIFY FILE (NAME =

file_name, NEWNAME = new_file_name, SIZE = int ...).

ADD FILEGROUP filegroup_name [CONTAINS FILESTREAM] [CONTAINS MEM

ORY_OPTIMIZED_DATA]

Adds a filegroup to the database. You can specify that the filegroup stores
FILESTREAM BLOBs or memory-optimized data in the filesystem. Only one
MEMORY_OPTIMIZED_DATA filegroup is allowed per database.

REMOVE FILEGROUP filegroup_name

Removes a filegroup from the database and deletes all the files in the filegroup.
The files and the filegroup must be empty first.

MODIFY FILEGROUP filegroup_name {NAME = new_filegroup_name | filegroup

_property | {AUTOGROW_SINGLE_FILE | AUTOGROW_ALL_FILES}}

Allows you to change a filegroup’s name (with NAME = new_filegroup_name)
or to specify a filegroup_property for the filegroup, which must be one of the
following:

READONLY

Sets the filegroup to read-only and disallows updates to all objects within
the filegroup. READONLY can only be enabled by users with exclusive

100 | Chapter 3: Structuring Your Data

database access and cannot be applied to the primary filegroup. You may
also use READ_ONLY.

READWRITE

Disables the READONLY property and allows updates to objects within the
filegroup. READWRITE can only be enabled by users with exclusive database
access. You may also use READ_WRITE.

DEFAULT

Sets the filegroup as the default filegroup for the database. All new tables
and indexes are assigned to the default filegroup unless explicitly assigned
elsewhere. Only one default filegroup is allowed per database. (By default,
the CREATE DATABASE statement sets the primary filegroup as the default
filegroup.)

In SQL Server 2016 and later, you can specify AUTOGROW_SINGLE_FILE or
AUTOGROW_ALL_FILES to indicate that when a file in the filegroup meets the
autogrow threshold only that file grows (the default), or all files grow.

SET option_spec[, ...]

Controls a wide variety of behaviors for the database. These are discussed in
the rules and information later in this section; for complete details, see the
documentation.

WITH termination_option

Used after the SET clause, WITH sets the rollback behavior for incomplete trans‐
actions whenever the database is in transition. When this clause is omitted,
transactions must commit or roll back on their own with the database state
changes. There are two termination_option settings:

ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE

Causes the database to roll back in int number of seconds, or immedi‐
ately. SECONDS is a noise word and does not change the behavior of the
ROLLBACK AFTER clause.

NO_WAIT

Causes database state or option changes to fail if a change cannot be
completed immediately, without waiting for the current transaction to
independently commit or roll back.

The CREATE DATABASE command should be issued from the master system database.
You can, in fact, issue the command CREATE DATABASE database_name, with no
other clauses, to get a very small default database.

SQL Server uses files, formerly called devices, to act as a repository for databases.
Files are grouped into one or more filegroups, with at least a PRIMARY filegroup
assigned to each database. A file is a predefined block of space created on the disk
structure. A database may be stored on one or more files or filegroups. SQL Server
also allows the transaction log to be placed in a separate location from the database

SQL Command Reference | 101

Structuring
Yo

ur D
ata

https://oreil.ly/b5NbL

using the LOG ON clause. These functions allow sophisticated file planning for opti‐
mal control of disk I/O. For example, we can create a database called sales_report
with a data and transaction logfile as follows:

USE master
GO
CREATE DATABASE sales_report
ON
(NAME = sales_rpt_data, FILENAME =
 'c:\mssql\data\salerptdata.mdf',
 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)
LOG ON
(NAME = 'sales_rpt_log',
 FILENAME = 'c:\mssql\log\salesrptlog.ldf',
 SIZE = 25MB, MAXSIZE = 50MB,
 FILEGROWTH = 5MB)
GO

When a database is created, all objects in the model database are copied into the
new database. All of the empty space within the file or files defined for the database
is then initialized (i.e., emptied out), which means that creating a new database
that’s very large can take a while, especially on a slow disk.

A database always has at least a primary datafile and a transaction logfile, but it
may also have secondary files for both the data and log components of the database.
SQL Server uses default filename extensions: .mdf for primary datafiles, .ndf for
secondary files, and .ldf for transaction logfiles. The following example creates a
database called sales_archive with several very large files that are grouped into a
couple of filegroups:

USE master
GO
CREATE DATABASE sales_archive
ON
PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch2,
 FILENAME = 'c:\mssql\data\archdata2.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch3,
 FILENAME = 'c:\mssql\data\archdat3.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)
FILEGROUP sale_rpt_grp1
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi1dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi2dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
FILEGROUP sale_rpt_grp2
 (NAME = sale_rpt_grp2_1_data, FILENAME = 'c:\mssql\data\SRG21dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

102 | Chapter 3: Structuring Your Data

 (NAME = sale_rpt_grp2_2_data, FILENAME = 'c:\mssql\data\SRG22dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
LOG ON
 (NAME = sales_archlog1,
 FILENAME = 'd:\mssql\log\archlog1.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),
 (NAME = sales_archlog2,
 FILENAME = 'd:\ mssql\log\archlog2.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)
GO

The FOR ATTACH clause is commonly used for situations like a salesperson traveling
with a database on a thumbdrive. This clause tells SQL Server that the database is
attached from an existing operating system file structure, such as a file downloaded
from the web. When using FOR ATTACH, the new database inherits all the objects and
data of the parent database, not the model database.

The following examples show how to change the name of a database, file, or
filegroup:

-- Rename a database
ALTER DATABASE sales_archive MODIFY NAME = sales_history
GO
-- Rename a file
ALTER DATABASE sales_archive MODIFY FILE
NAME = sales_arch1,
NEWNAME = sales_hist1
GO
-- Rename a filegroup
ALTER DATABASE sales_archive MODIFY FILEGROUP
sale_rpt_grp1
NAME = sales_hist_grp1
GO

There may be times when you want to add new free space to a database, especially if
you have not enabled it to auto-grow:

USE master
GO
ALTER DATABASE sales_report ADD FILE
(NAME = sales_rpt_added01,
FILENAME = 'c:\mssql\data\salerptadded01.mdf',
 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)
GO

When you alter a database, you can set many behavior options on the database.
State options (shown as state_option in the earlier syntax diagram) control how
users access the database. Following is a list of valid state options:

SINGLE_USER | RESTRICTED_USER | MULTI_USER

Sets the number and type of users with access to the database. SINGLE_USER
mode allows only one user to access the database at a time. RESTRICTED_USER

SQL Command Reference | 103

Structuring
Yo

ur D
ata

mode allows access only to members of the system roles db_owner, dbcreator,
or sysadmin. MULTI_USER, the default, allows concurrent database access from
all users who have permission.

OFFLINE | ONLINE

Sets the database to offline (unavailable) or online (available).

READ_ONLY | READ_WRITE

Sets the database to READ_ONLY mode, where no modifications are allowed,
or to READ_WRITE mode, where data modifications are allowed. READ_ONLY data‐
bases can be very fast for query-intensive operations, since almost no locking is
needed.

Cursor options control default behavior for cursors in the database. In the ALTER
DATABASE syntax shown earlier, you can replace cursor_option with any of the
following:

CURSOR_CLOSE_ON_COMMIT { ON | OFF }

When set to ON, any open cursors are closed when a transaction commits or
rolls back. When set to OFF, any open cursors remain open when transactions
are committed and close when a transaction rolls back, unless the cursor is
INSENSITIVE or STATIC.

CURSOR_DEFAULT { LOCAL | GLOBAL }

Sets the default scope of all cursors in the database to either LOCAL or GLOBAL.
(See “DECLARE CURSOR Statement” on page 711 for more on this.)

In the SET clause, auto_option controls the automatic file handling behaviors of the
database. The following are valid replacements for auto_option:

AUTO_CLOSE { ON | OFF }

When set to ON, the database automatically shuts down cleanly and frees all
resources when the last user exits. When set to OFF, the database remains open
when the last user exits. The default is OFF.

AUTO_CREATE_STATISTICS { ON | OFF }

When set to ON, statistics are automatically created when SQL Server notices
they are missing during query optimization. When set to OFF, statistics are not
created during optimization. The default is ON.

AUTO_SHRINK { ON | OFF }

When set to ON, the database files may automatically shrink (the database
periodically looks for an opportunity to shrink files, though the time is not
always predictable). When set to OFF, files will shrink only when you explicitly
and manually shrink them. The default is OFF.

AUTO_UPDATE_STATISTICS { ON | OFF }

When set to ON, out-of-date statistics are reassessed during query optimization.
When set to OFF, statistics are reassessed only by explicitly and manually

104 | Chapter 3: Structuring Your Data

recompiling them using the SQL Server command UPDATE STATISTICS. The
default is ON.

The sql_option clause controls the SQL compatibility of the database. You can
replace sql_option with any of the following:

ANSI_NULL_DEFAULT { ON | OFF }

When set to ON, the CREATE TABLE statement causes columns with no nullabil‐
ity setting to default to NULL. When set to OFF, the nullability of a column
defaults to NOT NULL. The default is OFF.

You can use the standalone SQL Server command SET

ANSI_DEFAULTS ON to enable all the ANSI_ behaviors at once,
rather than using individual statements.

ANSI_NULLS { ON | OFF }

When set to ON, comparisons to NULL yield UNKNOWN. When set to OFF, com‐
parisons to NULL yield NULL if both non-Unicode values are NULL. The
default is OFF.

ANSI_PADDING { ON | OFF }

When set to ON, strings are padded to the same length for insertion or compari‐
son operations on VARCHAR and VARBINARY columns. When set to OFF, strings
are not padded. The default is ON. (We recommend that you do not change
this!)

ANSI_WARNINGS { ON | OFF }

When set to ON, the database warns when problems like “divide by zero” or
“NULL in aggregates” occur. When set to OFF, these warnings are not raised.
The default is OFF.

ARITHABORT { ON | OFF }

When set to ON, divide-by-zero and overflow errors cause a query or Transact-
SQL batch to terminate and roll back any open transactions. When set to OFF, a
warning is raised but processing continues. The default is ON. (We recommend
that you do not change this!)

CONCAT_NULL_YIELDS_NULL { ON | OFF }

When set to ON, returns a NULL when a NULL is concatenated to a string.
When set to OFF, NULLs are treated as empty strings when concatenated to a
string. The default is OFF.

NUMERIC_ROUNDABORT { ON | OFF }

When set to ON, an error is raised when a numeric expression loses precision.
When set to OFF, losses of precision result in rounding of the result from the
numeric expression. The default is OFF.

SQL Command Reference | 105

Structuring
Yo

ur D
ata

QUOTED_IDENTIFIER { ON | OFF }

When set to ON, double quotation marks identify an object identifier that
contains special characters or is a reserved word (e.g., a table named SELECT).
When set to OFF, identifiers may not contain special characters or reserved
words, and all occurrences of double quotation marks signify a literal string
value. The default is OFF.

RECURSIVE_TRIGGERS { ON | OFF }

When set to ON, triggers can fire recursively. That is, the actions taken by one
trigger may cause another trigger to fire, and so on. When set to OFF, triggers
cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any of the
following in place of recovery_option in the ALTER DATABASE syntax:

RECOVERY { FULL | BULK_LOGGED | SIMPLE }

When set to FULL, database backups and transaction logs provide full recovera‐
bility even for bulk operations like SELECT ... INTO, CREATE INDEX, etc. FULL
provides the most recoverability, even from a catastrophic media failure, but
uses more space. When set to BULK_LOGGED, logging for bulk operations is
minimized. Space is saved and fewer I/O operations are incurred, but risk of
data loss is greater than under FULL. When set to SIMPLE, the database can only
be recovered to the last full or differential backup.

TORN_PAGE_DETECTION { ON | OFF }

When set to ON, SQL Server can detect incomplete I/O operations at the disk
level by checking each 512-byte sector per 8 KB database page. (Torn pages are
usually detected in recovery.) The default is ON.

For example, we can change some behavior settings for the sales_report database
without actually changing the underlying file structure as follows:

ALTER DATABASE sales_report SET ONLINE, READ_ONLY,
AUTO_CREATE_STATISTICS ON
GO

This statement puts the database online and in read-only mode. It also sets the
AUTO_CREATE_STATISTICS behavior to ON.

See also

• CREATE/ALTER SCHEMA • DROP

CREATE DOMAIN Statement
The SQL standard defines a CREATE DOMAIN statement for defining a new data
type that constrains an existing data type. However, in our set of databases, only
PostgreSQL supports this construct. For Oracle and SQL Server, the CREATE TYPE

106 | Chapter 3: Structuring Your Data

statement can be used instead to produce the same result. There is no counterpart to
this statement in MySQL that can achieve the same goal.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
CREATE DOMAIN domain_name AS data_type
(constraint[, ...])

Keywords

CREATE DOMAIN domain_name
Creates a new domain with name domain_name in the current database and
schema context.

data_type

The data type that this domain is based on. This often includes a qualifier
where the base data_type supports it, such as varchar(20) instead of just
varchar.

constraint

A domain can have one or more constraints that restrict the values of the
domain. The constraint can take one of the following forms:

 NOT NULL
 CHECK (expression)

Rules at a glance
This command creates a data type that can be used as a table column type. It is often
used to create aliases for existing data types or to constrain a type with a length or
denote whether it should be NOT NULL.

Programming tips and gotchas
Since CREATE DOMAIN is not supported by most databases, please refer to CREATE/
ALTER TYPE.

PostgreSQL
PostgreSQL follows the standard. A simple domain creation statement would look
like this:

CREATE DOMAIN empid AS char(9) NOT NULL;

SQL Command Reference | 107

Structuring
Yo

ur D
ata

A statement to create a domain with checks would look like this:

CREATE DOMAIN email AS varchar(75)
 CHECK (value ~ '^[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+[.][A-Za-z]+$');

For more complex checks, you can employ the use of functions that return a
Boolean.

See also

• CREATE/ALTER TYPE

CREATE/ALTER INDEX Statement
Indexes are special objects built on top of tables that speed many data manipulation
operations (such as SELECT, UPDATE, and DELETE statements) by providing very fast
lookup using pointers to individual records within a table. Improving the speed
of WHERE and/or JOIN clauses are two common reasons to build indexes. Each
database vendor provides a cost-based optimizer to determine the least expensive
means of answering a query by building execution plans, usually based upon the
quality of the indexes that have been placed on the table in a given database.
To reemphasize, proper indexing is your first and best step for high-performance
database applications.

The CREATE INDEX command was not a part of the early SQL standard, and thus its
syntax varies greatly among vendors. ALTER INDEX is not part of the SQL standard
but is implemented (with variations) by most of the database platforms discussed
here.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
CREATE [UNIQUE] INDEX index_name ON table_name
(column_name[, ...])

Keywords

CREATE [UNIQUE] INDEX index_name

Creates a new index named index_name in the current database and schema
context. The UNIQUE keyword defines the index as a unique constraint for the
table and disallows any duplicate values in the indexed column or columns of
the table. (Refer to “Constraints” on page 60 for details.)

108 | Chapter 3: Structuring Your Data

table_name

Declares the preexisting table with which the index is associated. The index is
dependent upon the table: if the table is dropped, so is the index.

column_name[, ...])
Defines one or more columns in the table that are indexed. The pointers
derived from the indexed column or columns enable the database query opti‐
mizer to greatly speed up data manipulation operations such as SELECT and
DELETE statements. All major vendors support composite indexes, also known
as concatenated indexes, which are used when two or more columns are best
searched as a unit (for example, last_name and first_name columns).

Rules at a glance
Indexes are created upon a specified column or columns in a table to speed up
data manipulation operations against those tables, such as those in a WHERE or JOIN
clause. Indexes may also speed up other operations, including:

• Identifying a MIN() or MAX() value in an indexed column.•
• Sorting or grouping columns of a table.•

• Searching based on IS NULL or IS NOT NULL.•

• Fetching data quickly when the indexed data is all that is requested. A SELECT•
statement that retrieves data from an index and not directly from the table
itself is called a covering query. An index that answers a query in this way is a
covering index.

After creating a table, you can create indexes on columns within the table. It is a
good idea to create indexes on columns that are frequently part of the WHERE clauses
or JOIN clauses of the queries made against a table. For example, the following
statement creates an index on a column in the sales table that is frequently used in
the WHERE clauses of queries against that table:

CREATE INDEX ndx_ord_date ON sales(ord_date);

In another case, we may want to set up the pub_name and country as a unique index
on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);

Since the index declares that the combined value of the two columns must be
unique, any new record entered into the publishers table must have a unique combi‐
nation of publisher name and country.

Some vendor platforms allow you to create indexes on views
as well as tables.

SQL Command Reference | 109

Structuring
Yo

ur D
ata

Programming tips and gotchas
Concatenated indexes are most useful when queries address the columns of the
index starting from the left and moving to the right in ordinal position. If you
omit left-side columns in a query against a concatenated index, the query may
not perform as well because all or part of the index may be ignored by the query
optimizer. For example, assume that we have a concatenated index on (last_name,
first_name). If we query only by first_name, the concatenated index that starts with
last_name and includes first_name may not be any good to us. That said, some of
the vendor platforms have now advanced their query engines to the point where
this is much less of a problem than it used to be.

You should be aware that there are situations in which too many indexes can
actually slow down system performance. In general, indexes greatly speed lookup
operations against a table or view, especially in SELECT statements. However, every
index you create adds overhead whenever you perform an UPDATE, DELETE, or
INSERT operation because the database must update all dependent indexes with the
values that have changed in the table. As a rule of thumb, 6 to 12 indexes are about
the most you’ll want to create on a single table.

In addition, indexes take up extra space within the database. The more columns
there are in an index, the more space it consumes. This is not usually a problem, but
it sometimes catches the novices off guard when they’re developing a new database.

Creating an index on a table may cause that table to take up as
much as 1.2 to 1.5 times more space than the table currently
occupies. Make sure you have enough room! Most of that
space is released after the index has been created.

Most databases use indexes to create statistical samplings (usually just called statis‐
tics), so the query engine can quickly determine which, if any, index or combination
of indexes will be most useful for a query. These indexes are always fresh and useful
when first created, but they may become stale and less useful over time as records
in the table are deleted, updated, and inserted. Consequently, indexes, like day-old
bread, are not guaranteed to be useful as they age. You need to be sure to refresh,
rebuild, and maintain your databases regularly to keep index statistics fresh.

MySQL and MariaDB
MySQL supports a form of the CREATE INDEX statement, but not the ALTER INDEX
statement. (To accomplish the equivalent behavior of the ALTER INDEX statement,
first DROP the old index then CREATE the new index.) The types of indexes you
can create in MySQL are determined by the engine type, and the indexes are not
necessarily stored in B-tree structures on the filesystem. Strings within an index are
automatically prefix- and end space–compressed. MySQL’s CREATE INDEX syntax is:

110 | Chapter 3: Structuring Your Data

CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
[USING {BTREE | HASH}]
ON table_name (column_name(length) (expr) [ASC | DESC][, ...])
[KEY_BLOCK_SIZE [=] int
 | [USING {BTREE | HASH}]
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
 | ENGINE_ATTRIBUTE [=] 'string'
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
]
[ALGORITHM [=] {DEFAULT | INPLACE | COPY}
 | LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}]

MariaDB supports more or less the same features as MySQL, with the addition of IF
NOT EXISTS, CREATE OR REPLACE, IGNORED, and WAIT. Although KEY_BLOCK_SIZE is
accepted, it is ignored. The syntax is as follows:

CREATE [OR REPLACE] [UNIQUE | FULLTEXT | SPATIAL] INDEX
[IF NOT EXISTS] index_name
USING {BTREE | HASH}
ON table_name (column_name [(length)] [ASC | DESC][, ...])
[WAIT n | NOWAIT]
[KEY_BLOCK_SIZE [=] int
 | USING {BTREE | HASH}
 | WITH PARSER parser_name
 | COMMENT 'string'
 | CLUSTERING [=] {YES| NO}]
 | [IGNORED | NOT IGNORED]
[ALGORITHM [=] {DEFAULT | INPLACE | COPY | NOCOPY | INSTANT}
[ON ALL SERVER] | LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}]

where:

OR REPLACE

Only supported by MariaDB. If an index already exists, then the OR REPLACE
clause will drop the index and re-create it with the new definition.

FULLTEXT

Creates a full-text search index against a column. Full-text indexes are only
supported on MyISAM and InnoDB table types and CHAR, VARCHAR, or TEXT
data types. Refer to the MySQL vendor documentation for details.

SPATIAL

Creates an R-tree index for storage engines that support these. For storage
engines that don’t support R-tree indexes, it creates a B-tree index, which can
only be used for exact matches, not range matches. The InnoDB and MyISAM
storage engines on MySQL and MariaDB support R-tree indexes, as does
the Aria engine on MariaDB. Refer to the vendor documentation for further
details.

SQL Command Reference | 111

Structuring
Yo

ur D
ata

USING {BTREE | HASH}

Specifies a particular type of index to use. Use this hint sparingly, since differ‐
ent storage engines allow different index types. Hash indexes are generally
reserved for key/value stores since they can only be used for exact match
queries, but they’re much better at those than B-tree indexes. NDB allows only
HASH (and allows the USING clause only for unique keys and primary keys), and
MEMORY/HEAP allows HASH and BTREE. RTREE can also be specified, but only for
SPATIAL indexes.

WAIT n

A MariaDB extension allows you to specify how long to wait to get a lock on
the table before the CREATE INDEX cancels.

KEY BLOCK SIZE [=] int

Provides a hint to the storage engine about the size to use for index key blocks,
where int is the value in kilobytes to use. A value of 0 means that the default
for the storage engine should be used. Ignored by MariaDB in all cases.

WITH PARSER parser_name
Used only with FULLTEXT indexes, this clause associates a parser plug-in with
the index. Plug-ins are fully documented in the MySQL documentation.

COMMENT 'string'
Used to provide a description that gets displayed in various database user
interfaces and is also stored in the system catalogs.

VISIBLE | INVISIBLE
Indicates whether the index is visible to the query planner (MySQL only). An
invisible index is one that exists but can never be used by the planner. Indexes
are visible unless explicitly marked INVISIBLE.

ENGINE_ATTRIBUTE [=] 'string' >| SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
Used to specify index attributes for primary and secondary storage engines
(MySQL only). See the vendor documentation for details.

CLUSTERING [=] {YES | NO}

Forces data to be physically sorted in the same order as the index (MariaDB
only). There can only be one clustered index. By default when not specified
both MariaDB and MySQL use the primary key as the clustered index.

IGNORED | NOT IGNORED
Indicates whether or not an index should be ignored by the query planner
(MariaDB only). NOT IGNORED is the default when not specified. This is equiva‐
lent to the MySQL VISIBLE | INVISIBLE clause.

ALGORITHM [=] {DEFAULT | INPLACE | COPY | NOCOPY | INSTANT}

Controls how online data definition changes are handled. When not specified,
the default behavior for the storage engine for index creation is used. Only

112 | Chapter 3: Structuring Your Data

MariaDB supports the NOCOPY and INSTANT options for index creation. Refer to
the MariaDB and MySQL documentation for details.

LOCK [=] {DEFAULT | NONE | SHARED | EXCLUSIVE}

Used to specify what kind of locking action should be performed when creating
the index. DEFAULT acquires the least restrictive lock on the table allowed to
perform the operation. SHARED allows read-only queries to continue while the
index is being created. EXCLUSIVE blocks from both reads and writes.

MySQL and MariaDB support the basic industry standard syntax for the CREATE
INDEX statement. Interestingly, MySQL (but not MariaDB) also lets you build an
index on the first length characters of a CHAR or VARCHAR column. MySQL requires
the length clause for BLOB and TEXT columns. Specifying a length can be useful
when selectivity is sufficient in the first, say, 10 characters of a column, and in those
situations where saving disk space is very important. This example indexes only the
first 25 characters of the pub_name column and the first 10 characters of the country
column:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),
 country(10));

As a general rule, MySQL allows at least 16 keys per table, with a total maximum
length of at least 256 bytes. This can vary by storage engine, however.

MySQL 8.0.13 supports functional key parts, often referred to as functional indexes
in other databases. Functional key parts cannot use columns with length specifiers;
however, you can use functions like SUBSTRING() to work around that. Functional
key parts can only reference columns, not records in other rows, and they cannot be
used in indexes used for foreign key or primary key constraints. The following is an
example of a functional key part index:

CREATE INDEX ix_sales_abs_qty ON sales(ABS(qty));

For an index with a functional key part to be useful, the functional expression
should be in the WHERE clause of a SELECT statement, as in:

SELECT * FROM sales WHERE ABS(qty) > 50;

Oracle
Oracle allows the creation of indexes on tables, partitioned tables, clusters, and
index-organized tables, as well as on scalar type object attributes of a typed table or
cluster and on nested table columns, using the CREATE INDEX statement. Oracle also
allows several types of indexes, including normal B-tree indexes, bitmap indexes
(useful for columns that have each value repeated 100 or more times), partitioned
indexes, function-based indexes (based on an expression rather than a column
value), and domain indexes.

SQL Command Reference | 113

Structuring
Yo

ur D
ata

https://oreil.ly/TfGvd
https://oreil.ly/5s4WU

Oracle index names must be unique within a schema, not just
to the table to which they are assigned.

Oracle also supports the ALTER INDEX statement, which is used to change or rebuild
an existing index without forcing the user to drop and re-create the index. Oracle’s
CREATE INDEX syntax is:

CREATE [UNIQUE | BITMAP] INDEX index_name
{ON
 {table_name ({column | expression} [ASC | DESC][, ...])
 [{INDEXTYPE IS index_type [PARALLEL [int] | NOPARALLEL]
 [PARAMETERS ('values')] }] |
 CLUSTER cluster_name |
 FROM table_name WHERE condition [LOCAL partitioning]}
[{LOCAL partitioning | GLOBAL partitioning}]
[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]
[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]
[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]
[{VISIBLE | INVISIBLE}] [{PARALLEL [int] | NOPARALLEL}] }

and the syntax for ALTER INDEX is:

ALTER INDEX index_name
{ {ENABLE | DISABLE} | UNUSABLE | {VISIBLE | INVISIBLE} |
 RENAME TO new_index_name | COALESCE |
 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |
 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |
 rebuild_clause |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]]
 [DATAFILE 'filename']
 [INSTANCE int])]
 [SHRINK SPACE [COMPACT] [CASCADE]]
 [{PARALLEL [int] | NOPARALLEL}]
 [{LOGGING | NOLOGGING}]
 [physical_attributes_clause] }

where the non-SQL-standard clauses are:

BITMAP

Creates an index bitmap for each index value, rather than indexing each indi‐
vidual row. Bitmaps are best for low-concurrency tables (e.g., read-intensive
tables). Bitmap indexes are incompatible with global partitioned indexes,
the INDEXTYPE clause, and index-organized tables without a mapping table
association.

ASC | DESC
Specifies that the values in the index be stored in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used by default.

114 | Chapter 3: Structuring Your Data

However, be aware that Oracle treats DESC indexes as function-based indexes,
so there is some difference in functionality between the two. You may not use
ASC or DESC when you are using the INDEXTYPE clause. DESC is ignored on
bitmap indexes.

INDEXTYPE IS index_type [PARAMETERS ('values')]
Creates an index on a user-defined type of index_type. Domain indexes
require that the user-defined type already exists. If the user-defined type
requires arguments, pass them in using the optional PARAMETERS clause.
You may also optionally parallelize the creation of the type index using the
PARALLEL clause (explained in more detail later in this list).

CLUSTER cluster_name
Declares a clustering index based on the specified preexisting cluster_name.
On Oracle, a clustering index physically colocates two tables that are frequently
queried on the same columns, usually a primary key and a foreign key. (Clus‐
ters are created with the Oracle-specific command CREATE CLUSTER.) You do
not declare a table or columns on a CLUSTER index, since both the tables
involved and the columns indexed are already declared with the previously
issued CREATE CLUSTER statement.

GLOBAL partitioning

Includes the full syntax:

GLOBAL PARTITION BY
 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN
 (value_list) [physical_attributes_clause]
 [TABLESPACE tablespace_name] [LOGGING | NOLOGGING][, ...])} |
 {HASH (column_list) (PARTITION [partition_name])
 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE
 tablespace_name] [VARRAY varray_name STORE AS LOB
 lob_segment_name] [LOB (lob_name) STORE AS
 [lob_segment_name]]
 [TABLESPACE tablespace_name]} |
 [STORE IN (tablespace_name[, ...])] [OVERFLOW STORE IN
 (tablespace_name[,...])]}[, ...]

The GLOBAL PARTITION clause declares that the global index is manually
partitioned via either range or hash partitioning onto partition_name. (The
default is to partition the index equally in the same way the underlying table is
partitioned, if at all.) You can specify a maximum of 32 columns, though none
may be ROWID. You may also apply the [NO]LOGGING clause, the TABLESPACE
clause, and the physical_attributes_clause (defined earlier) to a specific
partition. You cannot partition on ROWID. You may include one or more parti‐
tions, along with any attributes, in a comma-delimited list, according to the
following:

RANGE

Creates a range-partitioned global index based on the range of values from
the table columns listed in the column_list.

SQL Command Reference | 115

Structuring
Yo

ur D
ata

VALUE LESS THAN (value_list)

Sets an upper bound for the current partition of the global index. The
values in the value_list correspond to the columns in the column_list,
both of which are comma-delimited lists of columns. Both lists are prefix-
dependent, meaning that for a table with columns a, b, and c, you could
define partitioning on (a, b) or (a, b, c), but not (b, c). The last value in the
list should always be the keyword MAXVALUE.

HASH

Creates a hash-partitioned global index, assigning rows in the index to
each partition based on a hash function of the values of the columns in
the column_list. You may specify the exact tablespace to store special
database objects such as VARRAYs and LOBs, and for any OVERFLOW of the
specified (or default) tablespaces.

LOCAL partitioning

Supports local index partitioning on range-partitioned indexes, list-partitioned
indexes, hash-partitioned indexes, and composite-partitioned indexes. You
may include zero or more partitions, along with any attributes, in a comma-
delimited list. When this clause is omitted, Oracle generates one or more
partitions consistent with those of the table partition. Index partitioning is
done in one of three ways:

Range- and list-partitioned indexes
Applied to regular or equipartitioned tables. Range- and list-partitioned
indexes (synonyms for the same concept) follow the syntax:

LOCAL [(PARTITION [partition_name]
 { [physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS] }[, ...])]

All of the options are the same as for GLOBAL PARTITION (see earlier),
except that the scope is for a local index.

Hash-partitioned indexes
Applied to hash-partitioned tables. Hash-partitioned indexes allow you to
choose between the earlier syntax and the following optional syntax:

LOCAL {STORE IN (tablespace_name[, ...]) |
 (PARTITION [partition_name] [TABLESPACE tablespace_name])}

to store the index partition on a specific tablespace. When you supply
more tablespace names than index partitions, Oracle will cycle through
the tablespaces when it partitions the data.

Composite-partitioned indexes
Applied to composite-partitioned tables, using the following syntax:

LOCAL [STORE IN (tablespace_name[, ...])]
PARTITION [partition_name]
 {[physical_attributes_clause] [TABLESPACE tablespace_name]

116 | Chapter 3: Structuring Your Data

 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS]}
 [{STORE IN (tablespace_name[, ...]) |
 (SUBPARTITION [subpartition_name]
 [TABLESPACE tablespace_name])}]

You may use the LOCAL STORE clause shown under the hash-partitioned
indexes entry, or the LOCAL clause shown under the range- and list-
partitioned indexes entry. (When using the LOCAL clause, substitute the
keyword SUBPARTITION for PARTITION.)

physical_attributes_clause

Establishes values for one or more of the following settings: PCTFREE int,
PCTUSED int, and INITRANS int. When this clause is omitted, Oracle defaults to
PCTFREE 10, PCTUSED 40, and INITRANS 2.

PCTFREE int

Designates the percentage of free space to leave in each block of the index
as it is created. This speeds up new entries and updates on the table.
However, PCTFREE is applied only when the index is created, and is not
maintained. Therefore, the amount of free space can erode over time as
records are inserted, updated, and deleted from the index. This clause is
not allowed on index-organized tables.

PCTUSED int

Designates the minimum percentage of used space to be maintained in
each data block. A block becomes available to row insertions when its used
space falls below the value specified for PCTUSED. The default is 40. The
sum of PCTFREE and PCTUSED must be equal to or less than 100.

INITRANS int

Designates the initial number of concurrent transactions allocated to each
data block of the database. The value may range from 1 to 255.

In versions prior to 11g the MAXTRANS parameter was used to
define the maximum allowed number of concurrent transac‐
tions on a data block, but this parameter has now been depre‐
cated. Oracle 11g and later automatically set MAXTRANS to 255,
silently overriding any other value that you specify for this
parameter (although existing objects retain their established
MAXTRANS settings).

LOGGING | NOLOGGING

Tells Oracle to log the creation of the index in the redo logfile (LOGGING),
or not to log it (NOLOGGING). This clause also sets the default behavior for
subsequent bulk loads using Oracle SQL*Loader. For partitioned indexes, it
establishes the default value for all partitions and segments associated with the
partitions, and the default used on any partitions or subpartitions added later

SQL Command Reference | 117

Structuring
Yo

ur D
ata

with an ALTER TABLE ... ADD PARTITION statement. (When using NOLOGGING,
we recommend that you take a full backup after the index has been loaded in
case the index has to be rebuilt due to a failure.)

ONLINE

Allows data manipulation on the table while the index is being created. Even
with ONLINE, there is a very small window at the end of the index creation
operation where the table will be locked while the operation completes. Any
changes made to the base table at that time will then be reflected in the newly
created index. ONLINE is incompatible with BITMAP, CLUSTER, and PARALLEL
clauses. It also cannot be used on indexes on a UROWID column or on index-
organized tables with more than 32 columns in their primary keys.

COMPUTE STATISTICS

Collects statistics while the index is being created, when it can be done with
relatively little cost. Otherwise, you will have to collect statistics after the index
is created.

TABLESPACE {tablespace_name | DEFAULT}

Assigns the index to a specific tablespace. When omitted, the index is placed in
the default tablespace. You can also use the DEFAULT keyword to explicitly place
an index into the default tablespace. When local partitioned indexes are placed
in TABLESPACE DEFAULT, the index partition (or subpartition) is placed in the
corresponding tablespace of the base table partition (or subpartition).

COMPRESS [int] | NOCOMPRESS

Enables or disables key compression, respectively. Compression eliminates
repeated occurrences of key column values, yielding substantial space savings
at the cost of speed. The integer value int defines the number of prefix keys to
compress. The value can range from 1 to the number of columns in the index
for nonunique indexes, and from 1 to n−1 columns for unique indexes. The
default is NOCOMPRESS, but if you specify COMPRESS without an int value, the
default is COMPRESS n (for nonunique indexes) or COMPRESS n−1 (for unique
indexes), where n is the number of columns in the index. COMPRESS can only be
used on nonpartitioned and nonbitmapped indexes.

NOSORT | REVERSE

NOSORT allows an index to be created quickly for a column that is already
sorted in ascending order. If the values of the column are not in perfect
ascending order, the operation aborts, allowing a retry without the NOSORT
option. REVERSE, by contrast, places the index blocks in storage in reverse order
(excluding ROWID). REVERSE is mutually exclusive of NOSORT and cannot be
used on a bitmap index or an index-organized table. NOSORT is most useful for
creating indexes immediately after a base table is loaded with data in presorted
order.

118 | Chapter 3: Structuring Your Data

VISIBLE | INVISIBLE

Declares whether the index is visible or invisible to the optimizer. Invisible
indexes are maintained by DML operations but are not normally used by the
optimizer for query performance. This is very useful when you cannot alter an
index to disable it, but you really need Oracle to ignore the index.

PARALLEL [int] | NOPARALLEL

Allows the parallel creation of the index using multiple server processes, each
operating on a distinct subset of the index, to speed up the operation. An
optional integer value, int, may be supplied to define the exact number of
parallel threads used in the operation. When omitted, Oracle calculates the
number of parallel threads to use. NOPARALLEL, the default, causes the index to
be created serially.

ENABLE | DISABLE

Enables or disables a preexisting function-based index, respectively. You can‐
not specify any other clauses of the ALTER INDEX statement with ENABLE or
DISABLE.

UNUSABLE

Marks the index (or index partition or subpartition) as unusable. When
UNUSABLE, an index (or index partition or subpartition) may only be rebuilt
or dropped and re-created before it can be used.

RENAME TO new_index_name

Renames the index from index_name to new_index_name.

COALESCE

Merges the contents of index blocks used to maintain the index-organized
table so that the blocks can be reused. COALESCE is similar to SHRINK, though
COALESCE compacts the segments less densely than SHRINK and does not release
unused space.

[NO]MONITORING USAGE

Declares that Oracle should clear existing information on index usage and
monitor the index, posting information in the V$OBJECT_USAGE dynamic per‐
formance view, until ALTER INDEX ... NOMONITORING USAGE is executed. The
NOMONITORING USAGE clause explicitly disables this behavior.

UPDATE BLOCK REFERENCES

Updates all stale guess data block addresses stored as part of the index row on
normal or domain indexes of an index-organized table. The guess data blocks
contain the correct database addresses for the corresponding blocks identified
by the primary key. This clause cannot be used with other clauses of the ALTER
INDEX statement.

SQL Command Reference | 119

Structuring
Yo

ur D
ata

PARAMETERS ('ODCI_params')

Specifies a parameter string passed, without interpretation, to the Oracle Data
Cartridge Interface (ODCI) indextype routine of a domain index. The parame‐
ter string, called 'ODCI_params', may be up to 1,000 characters long. Refer to
the vendor documentation for more information on ODCI parameter strings.

alter_index_partitioning_clause

Modifies the index partitions. Refer to the vendor documentation for more
details.

rebuild_clause

Rebuilds the index, or a specific partition (or subpartition) of the index. A
successful rebuild marks an UNUSABLE index as USABLE. The syntax for the
rebuild_clause is:

REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}
 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]
 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]
 [physical_attributes_clause]

where:

[NO]REVERSE

Stores the bytes of the index blocks in reverse order and excludes rows when
the index is rebuilt (REVERSE), or stores the bytes of the index blocks in regular
order (NOREVERSE).

DEALLOCATE UNUSED [KEEP >int [K | M | G | T]]

Deallocates unused space at the end of the index (or at the end of each range or
hash partition of a partitioned index) and frees the space for other segments in
the tablespace. The optional KEEP keyword defines how many bytes (int) above
the high-water mark the index will keep after deallocation. You can append a
suffix to the int value to indicate that the value is expressed in kilobytes (K),
megabytes (M), gigabytes (G), or terabytes (T). When the KEEP clause is omitted,
all unused space is freed.

ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']

[INSTANCE int])

Explicitly allocates a new extent for the index using the specified parameters.
You may mix and match any of the parameters. SIZE specifies the size of the
next extent, in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes (G), or
terabytes (T). DATAFILE allocates an entirely new datafile to the index extent.
INSTANCE, used only on Oracle RACs, makes a new extent available to a freelist
group associated with the specified instance.

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the index segments, though only segments in tablespaces with auto‐
matic segment management may be shrunk. Shrinking a segment moves rows

120 | Chapter 3: Structuring Your Data

https://oreil.ly/BsW39

in the table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER
TABLE ... SHRINK statement. Oracle compacts the segment, releases the emp‐
tied space, and adjusts the high-water mark, unless the optional keywords
COMPACT and/or CASCADE are applied. The COMPACT keyword only defragments
the segment space and compacts the index; it does not readjust the high-water
mark or empty the space immediately. The CASCADE keyword performs the
same shrinking operation (with some restrictions and exceptions) on all depen‐
dent objects of the index. The statement ALTER INDEX ... SHRINK SPACE
COMPACT is functionally equivalent to ALTER INDEX ... COALESCE.

By default, Oracle indexes are nonunique. It is also important to know that Oracle’s
regular B-tree indexes do not include records that have a NULL key value.

Oracle does not support indexes on columns with the following data types: LONG,
LONG RAW, REF (with the SCOPE attribute), or any user-defined data type. You may
create indexes on functions and expressions, but they cannot allow NULL values
or aggregate functions. When you create an index on a function, if it has no
parameters the function should show an empty set (for example, function_name()).
If the function is a user-defined function (UDF), it must be DETERMINISTIC.

Oracle supports a special index structure called an index-organized table (IOT) that
combines the table data and primary key index in a single physical structure, instead
of having separate structures for the table and the index. IOTs are created using
the CREATE TABLE ... ORGANIZATION INDEX statement. Refer to “CREATE/ALTER
TABLE Statement” on page 140 for more information on making an IOT.

Oracle automatically creates any additional indexes on an IOT as secondary
indexes. Secondary indexes do not support the REVERSE clause.

Oracle allows the creation of partitioned indexes and tables with the PARTITION
clause. Consequently, Oracle’s indexes also support partitioned tables. The LOCAL
clause tells Oracle to create separate indexes for each partition of a table. The
GLOBAL clause tells Oracle to create a common index for all the partitions.

Note that any time an object name is referenced in the syntax diagram, you may
optionally supply the schema. This applies to indexes, tables, etc., but not to
tablespaces. You must have the explicitly declared privilege to create an index in
a schema other than the current one.

As an example, you can use a statement such as the following to create an Ora‐
cle index that is compressed and created in parallel, with compiled statistics, but
without logging the creation:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;

As with other Oracle object creation statements, you can control how much space
the index consumes and in what increments it grows. The following example con‐
structs an index in Oracle on a specific tablespace with specific instructions for how
the data is to be stored:

SQL Command Reference | 121

Structuring
Yo

ur D
ata

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)
TABLESPACE publishers;

For example, when you create the housing_construction table as a partitioned table
on an Oracle server, you should also create a partitioned index with its own index
partitions:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GLOBAL PARTITION BY RANGE (project_id)
 (PARTITION part1 VALUES LESS THAN ('H')
 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 VALUES LESS THAN ('P')
 TABLESPACE construction_part2_ndx_ts,
 PARTITION part3 VALUES LESS THAN (MAXVALUE)
 TABLESPACE construction_part3_ndx_ts);

If in fact the housing_construction table used a composite partition, we could
accommodate that here:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)
LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 TABLESPACE construction_part2_ndx_ts
 (SUBPARTITION subpart10, SUBPARTITION subpart20,
 SUBPARTITION subpart30, SUBPARTITION subpart40,
 SUBPARTITION subpart50, SUBPARTITION subpart60),
 PARTITION part3 TABLESPACE construction_part3_ndx_ts);

In the following example, we rebuild the project_id_ind index that was created
earlier by using parallel execution processes to scan the old index and build the new
index in reverse order:

ALTER INDEX project_id_ind
REBUILD REVERSE PARALLEL;

Similarly, we can split out an additional partition on project_id_ind:

ALTER INDEX project_id_ind
SPLIT PARTITION part3 AT ('S')
INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,
 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL
PostgreSQL allows the creation of ascending and descending indexes, as well as
UNIQUE indexes. Its implementation also includes a performance enhancement
under the USING clause.

Unlike in most other databases, in PostgreSQL index, unique key, and primary key
names have to be unique across a schema, not just the table. PostgreSQL’s CREATE
INDEX syntax is:

122 | Chapter 3: Structuring Your Data

CREATE [UNIQUE] INDEX [CONCURRENTLY] [IF NOT EXISTS] index_name
ON [ONLY] table_name
[USING method]
({column_name | expression} [COLLATE collation]
 [opclass [(opclass_parameter = value[, ...])]]
 [ASC | DESC] [NULLS {FIRST | LAST}][, ...])
[INCLUDE (column_name[, ...])]
[WITH parameter [= value][, ...]]
[TABLESPACE tablespace_name]
[WHERE predicate]

and the syntax for ALTER INDEX is:

ALTER INDEX
[[IF EXISTS] index_name
 { RENAME TO new_index_name |
 SET TABLESPACE new_tablespace_name |
 SET parameter [= value][, ...] |
 RESET parameter[, ...] |
 ALTER [COLUMN] column_number SET STATISTICS int }]
| index_name ATTACH PARTITION index_to_attach
| index_name [NO] DEPENDS ON EXTENSION extension
| ALL IN TABLESPACE index_name [OWNED BY role[, ...]]
 SET TABLESPACE tablespace_name [NOWAIT]

where:

CONCURRENTLY

Builds the index without acquiring any locks that would prevent concurrent
inserts, updates, or deletes on the table. Normally, PostgreSQL locks the table to
writes (but not reads) until the operation completes.

IF NOT EXISTS

Causes a notice to be issued instead of an error if a relation with the specified
name already exists.

ONLY

Avoids recursion when creating indexes on partitions. The default is to recurse.

USING method

Specifies one of several dynamic access methods to optimize performance.
When no method is specified, it defaults to BTREE. The method options are as
follows:

BRIN

Block Range INdexes (BRINs) are used for indexing a block of pages in
a B-tree-like format. BRIN is a lossy format typically used for indexing
large-scale data, such as instrumentation data, that is usually queried in
contiguous blocks. It takes up much less space than a B-tree index, but
performs worse for most queries and supports fewer operators.

SQL Command Reference | 123

Structuring
Yo

ur D
ata

BTREE

Uses Lehman and Yao’s high-concurrency B-tree structures to optimize
the index. This is the default method when no other is specified. B-tree
indexes can be invoked for comparisons using =, <, <=, >, and >=. B-tree
indexes can be multi-column.

GIST

Generalized Index Search Tree (GiST) is an index type used for geospatial,
JSON, hierarchical tree (ltree type), full text search, and HStore (a key/
value store) indexes. It is lossy and as such generally requires a recheck
step against the real data to throw out false positives from the index check.

GIN

Generalized INverted (GIN) indexes are used for JSON, full text search,
and fuzzy text or regular expression search. A GIN index is lossless, which
means the data in the index is the same as the actual data, and thus can be
used as a covering index.

HASH

Uses Litwin’s linear hashing algorithm to optimize the index. Hash indexes
can be invoked for comparisons using =. Hash indexes must be single-
column indexes.

SPGIST

Space-Partitioned Generalized Index Search Tree (SP-GiSTs) is an index
type generally used for geospatial and textural data.

column_name | expression

Defines one or more columns in the table or a function call involving one or
more columns of a table, rather than just a column from the base table, as the
basis of the index values. The function used in a function-based index must
be immutable. If you use a user-defined function and change its underlying
definition in a way that results in value changes, you should reindex your table
to prevent erroneous query results. You can optionally specify the collation and
sort order, and the name of an operator class with optional parameters for each
column.

INCLUDE = column_name[, ...]

Defines an additional list of columns to include data for. These columns are
almost never part of the index. You use INCLUDE mostly to ensure that you’ll be
able to use the index as a covering index. For example, you might create a pri‐
mary key or unique index on au_id, then INCLUDE(au_lname, au_fname). You
can’t include these in the primary key definition because you need au_id to be
treated as unique; however, if many of your queries involve au_id, au_lname,
and au_fname, they can then use this index as a covering index and not have to
check the table.

124 | Chapter 3: Structuring Your Data

WITH parameter [= value][, ...]

Specifies default storage parameters for the index. B-tree, hash, GiST, and
SP-GiST indexes accept the fillfactor parameter, which defines a percentage
for PostgreSQL to fill each index page during the creation process. For B-tree
indexes, this applies during the initial index creation process and when extend‐
ing the index. The default is 90. PostgreSQL does not maintain the fill factor
over time, so it is advisable to rebuild the index at regular intervals to avoid
excessive fragmentation and page splits. B-tree indexes additionally accept the
Boolean deduplicate_items parameter.

TABLESPACE tablespace_name

Defines the tablespace where the index is created.

WHERE predicate

Defines a WHERE clause search condition, which is then used to generate a
partial index. A partial index contains entries for a select set of records in the
table, not all records. You can get some interesting effects from this clause. For
example, you can pair UNIQUE and WHERE to enforce uniqueness for a subset of
the table rather than for the whole table. The WHERE clause must:

• Reference columns in the base table (though they need not be columns of•
the index itself)

• Reference expressions that involve immutable functions and columns in•
the base table

• Not make use of aggregate functions•
• Not use subqueries•

RENAME TO new_index_name

Changes the name of the index.

SET TABLESPACE new_tablespace_name | ALL IN TABLESPACE index_name

[OWNED BY role [, ...]] SET TABLESPACE tablespace_name [NOWAIT]

Sets the index’s tablespace to the specified tablespace and moves any data
files associated with it to the new tablespace. The ALL IN TABLESPACE form
allows you to move all indexes in the specified tablespace, or (with OWNED BY)
only those indexes owned by the named roles. The indexes are locked before
moving; NOWAIT causes the operation to fail if all of the required locks cannot
be acquired.

[SET parameter[= value][, ...] | RESET parameter[, ...]

Allows you to alter the storage parameters of an existing index or, with RESET,
reset them to their defaults. The available parameters are dependent on the
indexing method. We recommend that you rebuild the index with the REINDEX
command after issuing either of these commands because changes do not
immediately take effect.

SQL Command Reference | 125

Structuring
Yo

ur D
ata

ALTER [COLUMN] column_number SET STATISTICS int

Defines the per-column statistics-gathering target for subsequent ANALYZE
operations. This form can be used only on index columns that are defined
as an expression.

ATTACH PARTITION

Attaches the named index to the index being altered.

[NO] DEPENDS ON EXTENSION

Indicates that the index is dependent on (or no longer dependent on, with NO)
the named extension. An index that’s marked as dependent on an extension is
automatically dropped when the extension is dropped.

ALL IN TABLESPACE index_name [OWNED BY role[, ...]] SET TABLESPACE

tablespace_name [NOWAIT]

Sets the index’s tablespace to the specified tablespace and moves any data files
associated with it to the new tablespace.

Operator classes. In PostgreSQL, a column may have an associated operator class
(opclass) based on the type of index and data type of the column. An operator class
specifies the allowed operators for a particular index. Although users are free to
define any valid operator class for a given column, there is a default opclass defined
for each column type and index which is used when no opclass is specified.

In the following example, we create an index using the BTREE index type on the
pub_name column, lowercased, and make sure that uniqueness is enforced only for
publishers outside the US:

CREATE UNIQUE INDEX unq_pub_id
 ON publishers(lower(pub_name), lower(country))
USING BTREE
WHERE country <> 'USA';

The default BTREE index opclass does not support LIKE operations. To support LIKE,
you’d use the varchar_pattern_ops operator class as follows:

CREATE INDEX ix_authors_name_bpat
 ON authors USING btree
 (au_lname varchar_pattern_ops, au_fname varchar_pattern_ops);

The ix_authors_name_bpat index we just created will take care of expressions like:

 au_lname LIKE 'John%' AND au_fname LIKE 'Rich%'

However, it won’t work for ILIKE or for LIKE phrases where there is a wildcard at
the beginning, such as the following:

au_lname LIKE '%John%' AND au_fname LIKE '%Rich%'

The index to use to speed up these queries is known as a trigram GIN index.
Using a trigram index requires first installing an extension (generally shipped with
PostgreSQL) in your database, as follows:

126 | Chapter 3: Structuring Your Data

CREATE EXTENSION pg_trgm;

pg_trgm is an extension for fuzzy text matching that includes many functions we
will not be covering here. It also includes the operator class gin_trgm_ops, which is
an opclass for the GIN index type. Once you have this extension installed, you can
create an index as follows:

CREATE INDEX ix_authors_name_gin_trgm
 ON authors USING gin
 (au_lname gin_trgm_ops, au_fname gin_trgm_ops);

This new index will then be used to speed up ILIKE searches, regex searches, and
LIKE searches where the wildcard is at the front.

Here is an example that uses INCLUDE to include commonly used columns with the
primary key:

CREATE UNIQUE INDEX ux_author_id
 ON authors USING btree
 (au_id) INCLUDE(au_lname, au_fname);

PostgreSQL index and table statistics are kept up to date by a daemon process
called autovacuum that analyzes and cleans up deleted data. After creating an index
or adding a bulk load of data, you can force updating of table statistics using the
ANALYZE command, as follows:

ANALYZE authors;

In addition, PostgreSQL has a CREATE STATISTICS statement that’s useful for creat‐
ing compound column statistics for columns where you know the data is correlated.
For example, you might create a statistic on state and city, since these columns are
highly correlated. Refer to the documentation for details.

SQL Server
For much of SQL Server’s existence it has supported a single architecture for
indexes, the rowstore index, using a B-tree algorithm. (Technically, the algorithm is
called B-tree K+). In more recent versions, the platform added a new architecture
for indexes made popular in big data applications called a columnstore index, for
tables containing many millions or billions of records. All officially supported
versions of SQL Server also support two additional types of indexes, XML indexes
and spatial indexes, which we will discuss later in this section.

SQL Server’s CREATE INDEX syntax is:

CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name
ON {table_name | view_name} (column [ASC | DESC][, ...])
[INCLUDE (column [ASC | DESC][, ...])]
[WHERE index_filter_predicate]
[WITH [PAD_INDEX = {ON | OFF}] [FILLFACTOR = int]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}]
 [STATISTICS_INCREMENTAL = {ON | OFF}]

SQL Command Reference | 127

Structuring
Yo

ur D
ata

https://oreil.ly/59faq

 [DROP_EXISTING = {ON | OFF}] [RESUMABLE = {ON | OFF}]
 [ONLINE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int] [MAX_DURATION = time [MINUTES]]
 [DATA_COMPRESSION = {NONE | ROW | PAGE}]
 [ON PARTITIONS ({partition_number | partition_range}]
 [, ...]]
[ON {filegroup | partition (column) | DEFAULT}]
[FILESTREAM_ON {filestream_filegroup_name | prtn | "NULL"}]
;

and the syntax for ALTER INDEX is:

ALTER INDEX {index_name | ALL} ON {object_name}
{ DISABLE |
 REBUILD [PARTITION = prtn_nbr]
 [WITH ([SORT_IN_TEMPDB = {ON | OFF}][MAXDOP = int][, ...])]
 [WITH [PAD_INDEX = {ON | OFF}][FILLFACTOR = int]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}]
 [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}]
 [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]] |
 REORGANIZE [PARTITION = prtn_nbr]
 [WITH (LOB_COMPACTION = {ON | OFF})] |
 SET [ALLOW_ROW_LOCKS = {ON | OFF}]
 [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}][, ...] }
;

where:

[NON]CLUSTERED

Controls the physical ordering of data for the table using either a CLUSTERED or
a NONCLUSTERED index. The columns of a clustered index determine the order
in which the records of the table are physically written. Thus, if you create an
ascending clustered index on column a of table foo, the records will be written
to disk in ascending alphabetical order. The NONCLUSTERED clause (the default
when a value is omitted) creates a secondary index containing only pointers
and has no impact on how the actual rows of the table are written to disk.

ASC | DESC
Specifies that the values in the index be kept in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used by default.

INCLUDE (column[, ...n])

Specifies one or more nonkey columns to add to the leaf level of a nonclus‐
tered index. This subclause is useful to improve performance by avoiding key
lookup execution plan operators. Although this technique initially appears to

128 | Chapter 3: Structuring Your Data

be a method of creating a covering index—that is, an index whose columns
retrieve all of the data requested by a query, thereby reducing I/O operations
and improving performance—it is not truly a covering index. This is because
included columns are not used to improve index cardinality or selectivity.

There are several restrictions on which nonkey columns may be added as
included columns. Refer to the vendor documentation for additional details.

WHERE index_filter_predicate
Allows the specification of one or more optional attributes for the index.

WITH

Allows the specification of one or more optional attributes for the index.

PAD_INDEX = {ON | OFF}
Specifies that space should be left open on each 8 KB index page, accord‐
ing to the value established by the FILLFACTOR setting.

FILLFACTOR = int

Declares a percentage value, int, from 1 to 100 that tells SQL Server how
much of each 8 KB data page should be filled at the time the index is
created. This is useful to reduce I/O contention and page splits when a
data page fills up. Creating a clustered index with an explicitly defined
fill factor can increase the size of the index, but it can also speed up
processing in certain circumstances.

IGNORE_DUP_KEY = {ON | OFF}

Controls what happens when a duplicate record is placed into a unique
index through an insert or update operation. If this value is set for a
column, only the duplicate row is excluded from the operation. If this
value is not set, all records in the operation (even nonduplicate records)
are rejected as duplicates.

DROP_EXISTING = {ON | OFF}

Drops any preexisting indexes on the table and rebuilds the specified
index.

STATISTICS_NORECOMPUTE = {ON | OFF}

Stops SQL Server from recomputing index statistics. This can speed up the
CREATE INDEX operation, but it may mean that the index is less effective.

ONLINE = {ON | OFF}

Specifies whether underlying tables and associated indexes are available
for queries and data manipulation statements during the index operation.
The default is OFF. When set to ON, long-term write locks are not held, only
shared locks.

SORT_IN_TEMPDB = {ON | OFF}
Stores any intermediate results used to build the index in the system
database tempdb. This increases the space needed to create the index, but it

SQL Command Reference | 129

Structuring
Yo

ur D
ata

can speed up processing if tempdb is on a different disk than the table and
index.

ALLOW_ROW_LOCKS = {ON | OFF}

Specifies whether row locks are allowed. When omitted, the default is ON.

ALLOW_PAGE_LOCKS = {ON | OFF}

Specifies whether page locks are allowed. When omitted, the default is ON.

MAXDOP = int

Specifies the maximum degrees of parallelism for the duration of the
indexing operation. A value of 1 suppresses parallelism, and a value
greater than 1 restricts the operation to the number of processors speci‐
fied. A value of 0, the default, allows SQL Server to choose up to the actual
number of processors on the system.

ON filegroup

Creates the index on a given preexisting filegroup. This enables the placing of
indexes on a specific hard disk or RAID device. Issuing a CREATE CLUSTERED
INDEX ... ON FILEGROUP statement effectively moves a table to the new file‐
group since the leaf level of the clustered index is the same as the actual data
pages of the table.

DISABLE

Disables the index, making it unavailable for use in query execution plans.
Disabled nonclustered indexes do not retain underlying data in the index
pages. Disabling a clustered index makes the underlying table unavailable to
user access. You can reenable an index with ALTER INDEX REBUILD or CREATE
INDEX WITH DROP_EXISTING.

REBUILD [PARTITION = prtn_nbr]

Rebuilds an index using the preexisting properties, including columns in the
index, index type, uniqueness attributes, and sort order. You may optionally
specify a new partition. This clause will not automatically rebuild associated
nonclustered indexes unless you include the keyword ALL. When using this
clause to rebuild an XML or spatial index, you may not also use the ONLINE =
ON or IGNORE_DUP_KEY = ON clauses. Equivalent to DBCC DBREINDEX.

REORGANIZE [PARTITION = prtn_nbr]

Performs an online reorganization of the leaf level of the index (i.e., no long-
term blocking table locks are held and queries and updates to the underlying
table can continue). You may optionally specify a new partition. Not allowed
with ALLOW_PAGE_LOCKS = OFF. Equivalent to DBCC INDEXDEFRAG.

WITH (LOB_COMPACTION = {ON | OFF})

Compacts all pages containing LOB data types, including IMAGE, TEXT, NTEXT,
VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX), and XML. When omitted, the

130 | Chapter 3: Structuring Your Data

default is ON. The clause is ignored if no LOB columns are present. When ALL is
specified, all indexes associated with the table or view are reorganized.

SET

Specifies index options without rebuilding or reorganizing the index. SET can‐
not be used on a disabled index.

SQL Server allows up to 249 nonclustered indexes (unique or nonunique) on a
table, as well as one primary key index. Index columns may not be of the data types
NTEXT, TEXT, or IMAGE.

SQL Server automatically parallelizes the creation of the index according to the
configuration option max degree of parallelism (MAXDOP).

It is often necessary to build indexes that span several columns—i.e., with a con‐
catenated key. Concatenated keys may contain up to 16 columns and/or a total of
900 bytes across all fixed-length columns. Here is an example:

CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
WITH PAD_INDEX, FILLFACTOR = 80
ON FILEGROUP housing_fg
GO;

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server to
leave the index and data pages 80% full, rather than 100% full. This example also
tells SQL Server to create the index on the housing_fg filegroup, rather than the
default filegroup.

Note that SQL Server allows the creation of a unique clustered index on a view,
effectively materializing the view. This can greatly speed up data retrieval operations
against the view. Once a view has a unique clustered index, nonclustered indexes
can be added to the view. Note that the view also must be created using the SCHEMA
BINDING option. Indexed views support data retrieval, but not data modification.

Columnstore indexes. SQL Server has supported columnstore indexes since the
2014 release, with subsequent releases further increasing their usability and man‐
ageability. Azure SQL Database supports all syntax for columnstore indexes, while
only certain versions of on-premises SQL Server do. Columnstore indexes, in com‐
parison to old-fashioned rowstore indexes, are much more effective for storing and
querying massive tables, such as those commonly found in large data warehouses.
Columnstore indexes feature their own form of data compression which, when
combined with specific optimizer improvements for large batch processing, can
yield 10x to 20x performance improvements over standard rowstore indexes. (Note
that you should not use columnstore indexes on tables with less than several million
rows.)

Columnstore indexes are complex, with many limitations, restrictions, prereq‐
uisites, and best practices for optimal usage and maintenance. Features and

SQL Command Reference | 131

Structuring
Yo

ur D
ata

requirements vary widely across versions that support these indexes, with support
for all features reaching maturity with SQL Server 2016. As an example of this
heightened complexity, you cannot change the structure of a columnstore index
using the ALTER INDEX statement or the CREATE OR ALTER syntax allowed for other
SQL Server DML statements. (However, you can use ALTER INDEX to change a
property of a columnstore index, such as to enable or disable the index.) Instead, to
effect a change in a columnstore index you must either DROP then re-create it, or use
the syntax CREATE … WITH (DROP_EXISTING = ON).

The syntax to create a columnstore index is rather simple:

-- Columnstore index syntax
CREATE [[NON]CLUSTERED] COLUMNSTORE INDEX index_name
ON table_name [(column[,...])]
[WHERE index_filter_predicate]
[WITH (option[,...n])]
[ORDER (column[, ...])]
[ON {filegroup | partition (column) | DEFAULT}]
;

You are strongly encouraged to refer to the vendor documentation for extensive
details on the underlying principles and concepts. Filtered indexes are only allowed
for nonclustered columnstore indexes. Columnstore indexes may be created on
heaps, on tables with rowstore indexes, and on In_Memory tables. The ORDER sub‐
clause is only used when creating clustered columnstore indexes on Azure Synapse
Analytics data warehouses.

The arguments allowed for a columnstore index are as follows:

ON table_name [(column[, ...])]

When specifying a clustered columnstore index, only the table_name is
needed. The table_name may use the one-, two-, or three-part naming
convention [<database_name>.[<schema_name>.]<table_name>. When speci‐
fying a nonclustered columnstore index, you may declare up to 1,024 columns
within it, assuming the columns are supportable data types.

WITH option

Allows one or more options of the same functionality as the options for a regu‐
lar index, but limited to DROP_EXISTING, ONLINE, MAXDOP, COMPRESSION_DELAY,
and DATA_COMPRESSION. Unless otherwise noted, the options are defined in the
same way as with rowstore indexes, with these exceptions:

COMPRESSION_DELAY = { 0 | delay | M[inutes] }

Specifies an integer value for the minimum number of minutes that newly
inserted or changed rows, also known as a delta rowgroup, must remain
in the CLOSED state before it will be compressed into a columnstore row‐
group. The default is 0 minutes.

132 | Chapter 3: Structuring Your Data

DATA_COMPRESSION = { COLUMNSTORE | COLUMNSTORE_ARCHIVE }

Specifies the compression option for the table, offering a trade-off between
speed and cost. The parameter accepts either a value of COLUMNSTORE (the
default option, most useful for data that is actively used to answer queries)
or COLUMNSTORE_ARCHIVE (offering maximal compression and thus requir‐
ing minimal storage, most useful for rarely used data that allows for slower
retrieval).

XML indexes. SQL Server supports the creation of XML indexes and spatial indexes
(discussed in the following section) on specified tables within a SQL Server data‐
base. These extended indexes are created on columns of the XML data type and
spatial data types (such as GEOMETRY and GEOGRAPHY), respectively. The syntax for
XML index creation is:

-- XML index syntax
CREATE [PRIMARY] XML INDEX index_name
ON table_name (xml_column_name)
[USING XML INDEX xml_index_name
 [FOR { VALUE | PATH | PROPERTY }]]
[WITH (option[,...n])]
;

XML indexes can only be created upon a single XML column in a user table, with a
maximum of one primary XML index and possibly many secondary XML indexes
based upon the primary XML index. The user table must also have a primary key
that acts as the clustered index, with no more than 15 columns. As for columnstore
indexes, the table_name may use the one-, two-, or three-part naming convention
[<database_name>.[<schema_name>.]<table_name>.

Here are a few notes on the arguments for CREATE XML INDEX:

PRIMARY

When specified, a clustered index is created based upon the user table’s clus‐
tered index plus an XML node identifier. Each table can have up to 249 XML
indexes.

USING XML INDEX

When specified, identifies the primary XML index used to create a secondary
XML index. The secondary index may be further categorized as:

FOR VALUE

Specifies a secondary XML index on columns where the key columns are,
ordinally, the node value and path of the primary XML index

FOR PATH

Specifies a secondary XML index on columns using, ordinally, the path
values and node values that are key columns to facilitate efficient seek
operations when searching for paths

SQL Command Reference | 133

Structuring
Yo

ur D
ata

FOR PROPERTY

Specifies a secondary XML index on columns using, ordinally, the primary
key of the user table, path value, and node value to facilitate efficient seek
operations when searching for paths

WITH option
Allows one or more options of the same functionality as the options
for a regular index, but limited to PAD_INDEX, FILLFACTOR, SORT

_IN_TEMPDB, IGNORE_DUP_KEY, DROP_EXISTING, ONLINE, ALLOW_ROW_LOCKS,
ALLOW_PAGE_LOCKS, and MAXDOP.

Spatial indexes. Spatial indexes are built using B-tree structures, so they can
effectively represent two-dimensional spatial data in a linear and ordered B-tree.
Consequently, SQL Server must hierarchically “decompose” the defined space into
a four-level grid hierarchy of increasing granularity, from level_1 (the top and least
granular level) through level_4 (the most granular level). Each level of the grid
hierarchy is composed of an equal number of cells of equal size along the x- and
y-axes (say, 4 × 4 or 8 × 8).

The number of cells per axis is called its density and is a measurement that is
independent of the actual unit of measurement applied to each cell. For example,
a spatial index containing four levels of a 4 × 4 grid hierarchy decomposes into a
space of 65,536 level_4 cells of equal measurement, but those cells might represent
feet, meters, hectares, or miles depending on the specification of the user.

The syntax for spatial indexes follows:

-- Spatial index syntax
CREATE SPATIAL INDEX index_name
ON table_name (spatial_column_name)
USING [{GEOMETRY_AUTO_GRID | GEOGRAPHY_AUTO_GRID |
 GEOMETRY_GRID | GEOGRAPHY_GRID}]
[WITH (
 [BOUNDING_BOX = ()],
 [GRIDS = ()],
 [CELLS_PER_OBJECT = int],
 [option[, ...n]])]
;

Spatial data types and spatial indexes upon those data types are rather complex. You
are encouraged to refer to the vendor documentation for extensive details on the
principles and concepts. The arguments allowed for a spatial index are as follows:

USING

Specifies the tessellation of the spatial index, enabling an object to be associated
with a specific cell or cells in the grid. Tessellation, in turn, allows the spatial
database to quickly locate other objects in space relative to any other object
of the GEOGRAPHY or GEOMETRY column stored in the index. When an object

134 | Chapter 3: Structuring Your Data

completely fills an entire cell, the cell is covered by the object, averting the need
to tessellate the cell.

GEOMETRY_GRID | GEOGRAPHY_GRID

Used on the GEOMETRY or GEOGRAPHY data type, respectively, to manually
specify the tessellation scheme to use in the spatial index.

GEOMETRY_AUTO_GRID | GEOGRAPHY_AUTO_GRID

This is the default for geometry and geography and so does not need to be
set.

WITH

When used with one of the grid tessellation schemes, allows you to manually
specify one or more parameters of the tessellation scheme. The WITH subclause
may further be used to specify commonly used options for creating the index
or specific properties of the index, such as data compression. The additional
syntax of the WITH subclause follows:

BOUNDING_BOX = (XMIN, YMIN, XMAX, YMAX)

Specifies the coordinates for the bounding box. Only applicable for the
USING GEOMETRY_GRID clause. Each value may be represented as a float
specifying the x and y coordinates as represented by their parameter
name; for example, XMIN represents the float value of the x-axis in the
lower-left corner of the bounding box while YMAX represents the float value
of the y-axis at the upper-right corner of the bounding box. Alternatively,
you may specify both the property name and the value of each corner of
the bounding box using the syntax (XMIN=a, YMIN=b, XMAX=c, YMAX=d).
Naturally, the max value in each min-max pair must be greater than the
min value. This property does not have default values.

GRIDS (level_n [= { LOW | MEDIUM | HIGH }[, ... n]])
Manually specifies the density of one or more levels of the grid. Only
usable with the GEOMETRY_GRID and GEOGRAPHY_GRID parameters. Using
the level names LEVEL_1, LEVEL_2, LEVEL_3, and/or LEVEL_4 allows you to
specify one or more of the levels in any order and to omit one or more
levels. When omitted, a level defaults to MEDIUM. Density may be set to LOW
(a 4 × 4 grid of 16 cells), MEDIUM (an 8 × 8 grid of 64 cells), or HIGH (a 16
× 16 grid of 256 cells). You may alternatively skip the explicit naming of
each level by specifying the density of all four levels, as in GRIDS = (LOW,
MEDIUM, HIGH), with the values applying in ordinal position of levels 1
through 4.

CELLS_PER_OBJECT = int

Specifies an integer value for the number of tessellation cells per
object (between 1 and 8,192, inclusive). When omitted, SQL Server
sets the default value of CELLS_PER_OBJECT to 16 for GEOMETRY_GRID

SQL Command Reference | 135

Structuring
Yo

ur D
ata

and GEOGRAPHY_GRID, to 12 for GEOGRAPHY_AUTO_GRID, and to 8 for
GEOMETRY_AUTO_GRID.

WITH option

Allows one or more options of the same functionality as the options for
a regular index, but limited to PAD_INDEX, FILLFACTOR, SORT_IN_TEMPDB,
IGNORE_DUP_KEY, STATISTICS_NORECOMPUTE, DROP_EXISTING, ONLINE, ALLOW_
ROW_LOCKS, ALLOW_PAGE_LOCKS, MAXDOP, and DATA_COMPRESSION.

See also

• CREATE/ALTER TABLE• • DROP•

CREATE/ALTER SCHEMA Statement
The CREATE SCHEMA statement creates a schema—i.e., a named group of related
objects contained within a database or instance of a database server. A schema is
a collection of tables, views, and permissions granted to specific users or roles.
According to the SQL standard, specific object permissions are not schema objects
in themselves and do not belong to a specific schema. However, roles are sets of
privileges that do belong to a schema. As an industry practice, it is common to see
database designers create all of the necessary objects of a schema along with roles
and permissions, such that the collection is a self-contained package.

ALTER SCHEMA is not part of the SQL standard but is imple‐
mented (with variations) by most of the database platforms
discussed here.

Platform Command

MySQL Supported, with variations (as CREATE DATABASE)

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL standard syntax
CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]
[DEFAULT CHARACTER SET char_set_name]
[PATH schema_name[, ...]]
 [CREATE statements [...]]
 [GRANT statements [...]]

136 | Chapter 3: Structuring Your Data

Keywords

CREATE SCHEMA [schema_name]

Creates a schema called schema_name. When omitted, the database will create a
schema name for you using the name of the user who owns the schema.

AUTHORIZATION owner_name

Specifies the user who will be the owner of the schema. When this clause is
omitted, the current user is set as the owner. The SQL standard allows you to
omit either the schema_name or the AUTHORIZATION clause, or to use them both
together.

DEFAULT CHARACTER SET char_set_name

Declares a default character set of char_set_name for all objects created within
the schema.

PATH schema_name[, ...]

Optionally declares a file path and filename for any unqualified routines
(i.e., stored procedures, user-defined functions, user-defined methods) in the
schema.

CREATE statements[...]

Contains one or more CREATE TABLE and CREATE VIEW statements. No commas
are used between the CREATE statements.

GRANT statements [...]

Contains one or more GRANT statements that apply to previously defined
objects. Usually, the objects were created earlier in the same CREATE SCHEMA
statement, but they may also be preexisting objects. No commas are used
between the GRANT statements.

Rules at a glance
The CREATE SCHEMA statement is a container that can hold many other CREATE and
GRANT statements. The most common way to think of a schema is as all of the
objects that a specific user owns. For example, the user jake may own several tables
and views in his own schema, including a table called publishers. Meanwhile, the
user sarah may own several other tables and views in her schema, but may also
own her own separate copy of the publishers table. Schemas are also used to group
logically related objects. For example, you can create an accounting schema to store
ledgers, accounts, and related stored procedures and functions to work with these.

The SQL standard requires that all CREATE statements are allowed in a CREATE
SCHEMA statement. In practice, however, most implementations of CREATE SCHEMA
allow only three subordinate statements: CREATE TABLE, CREATE VIEW, and GRANT.
The order of the commands is not important, meaning that (although it is not
recommended) you can grant privileges on tables or views whose CREATE statements
appear later in the CREATE SCHEMA statement.

SQL Command Reference | 137

Structuring
Yo

ur D
ata

Programming tips and gotchas
It is not required, but it is considered a best practice to arrange the objects and
grants within a CREATE SCHEMA statement in an order that will execute naturally
without errors. In other words, CREATE VIEW statements should follow the CREATE
TABLE statements that they depend on, and the GRANT statements should come last.

If your database system uses schemas, we recommend that you always reference
your objects by schema and then object name (as in jake.publishers). If you do not
include a schema qualifier, the database platform will typically assume the default
schema for the current user connection.

Some database platforms do not explicitly support the CREATE SCHEMA command.
However, they implicitly create a schema when a user creates database objects. For
example, Oracle creates a schema whenever a user is created. The CREATE SCHEMA
command is simply a single-step method of creating all the tables, views, and other
database objects along with their permissions.

MySQL
MySQL supports the CREATE SCHEMA and ALTER SCHEMA statements as syno‐
nyms for the CREATE DATABASE and ALTER DATABASE statements. Refer to “CRE‐
ATE/ALTER SCHEMA Statement” on page 136 for more information on MySQL’s
implementation.

Oracle
In Oracle, the CREATE SCHEMA statement does not actually create a schema; only
the CREATE USER statement does that. What CREATE SCHEMA does is allow a user to
perform multiple CREATEs and GRANTs in a previously created schema in one SQL
statement:

CREATE SCHEMA AUTHORIZATION schema_name
 [CREATE statements [...]]
 [GRANT statements [...]]

Note that Oracle only allows SQL standard CREATE TABLE, CREATE VIEW, and GRANT
statements within a CREATE SCHEMA statement. You should not use any of Oracle’s
extensions to these commands when using the CREATE SCHEMA statement.

The following Oracle example places the permissions before the objects within the
CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily
 GRANT SELECT, INSERT ON view_1 TO sarah
 GRANT ALL ON table_1 TO sarah
 CREATE VIEW view_1 AS
 SELECT column_1, column_2
 FROM table_1
 ORDER BY column_2
 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

138 | Chapter 3: Structuring Your Data

As this example shows, the order of the statements within the CREATE SCHEMA
statement is unimportant; Oracle commits the CREATE SCHEMA statement only if all
CREATE and GRANT statements in the statement complete successfully. Oracle does
not have an ALTER SCHEMA command.

PostgreSQL
PostgreSQL supports both ALTER and CREATE SCHEMA statements without support
for the PATH and DEFAULT CHARACTER SET clauses. The CREATE SCHEMA syntax
follows:

CREATE SCHEMA [IF NOT EXISTS]
{ schema_name [AUTHORIZATION user_name] | AUTHORIZATION user_name }
 [CREATE statements [...]]
 [GRANT statements [...]]

When the schema_name is omitted, the user_name is used to name the schema. Cur‐
rently, PostgreSQL supports only the following CREATE statements within a CREATE
SCHEMA statement: CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE,
and CREATE TRIGGER. Other CREATE statements must be handled separately from the
CREATE SCHEMA statement.

The ALTER SCHEMA syntax follows:

ALTER SCHEMA schema_name [RENAME TO new_schema_name]
[OWNER TO new_user_name]

The ALTER SCHEMA statement allows you to rename a schema or to specify a new
owner, who must be a preexisting user on the database.

SQL Server
SQL Server supports the basic CREATE SCHEMA statement, without support for the
PATH clause or the DEFAULT CHARACTER SET clause:

CREATE SCHEMA [schema_name] [AUTHORIZATION] [owner_name]
 [CREATE statements [...]]
 [GRANT statements [...]]
 [REVOKE statements [...]]
 [DENY statements [...]]
;

If any statement fails within the CREATE SCHEMA statement, the entire statement
fails. Not only may you GRANT permissions within a SQL Server CREATE SCHEMA
statement, but you may also revoke previously declared permissions or deny
permissions.

SQL Server does not require that the CREATE or GRANT statements be in any particu‐
lar order, except that nested views must be declared in their logical order. That is, if
view_100 references view_10, view_10 must appear in the CREATE SCHEMA statement
before view_100.

SQL Command Reference | 139

Structuring
Yo

ur D
ata

For example:

CREATE SCHEMA AUTHORIZATION katie
 GRANT SELECT ON view_10 TO public
 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo
 CREATE TABLE foo(col1 INT)
 CREATE TABLE foo
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo2(col1))
 CREATE TABLE foo2
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo(col1));

SQL Server supports the ALTER SCHEMA statement for transferring objects to the
schema from another schema.

ALTER SCHEMA [schema_name] TRANSFER [entity_type::] entity_name

entity_type

If left out defaults to OBJECT and otherwise should be one of the following:
OBJECT | TYPE | XML SCHEMA COLLECTION.

entity_name

Is the one-part or two-part name of a schema-scoped entity to be moved into
the schema.

For example:

ALTER SCHEMA katie TRANSFER johnny.authors;

See also

• CREATE/ALTER TABLE•

• CREATE/ALTER VIEW•

• GRANT in Chapter 6•

CREATE/ALTER TABLE Statement
Manipulating tables is one of the most common activities that database administra‐
tors and programmers perform when working with database objects. This section
details how to create and modify tables.

The SQL standard represents a sort of least common denominator among the
vendors. Although not all vendors offer every option of the SQL standard versions
of CREATE TABLE and ALTER TABLE, the standard does represent the basic form
that can be used across all of the platforms. Conversely, the vendor platforms offer
a variety of extensions and additions to the SQL standards for CREATE and ALTER
TABLE.

140 | Chapter 3: Structuring Your Data

Typically, a great deal of consideration goes into the design
and creation of a table. This discipline is known as database
design. The process of analyzing the relationship of a table
to its own data and to other tables within the database is
known as normalization. We recommend that database devel‐
opers and database administrators alike study both database
design and normalization principles thoroughly before issuing
CREATE TABLE commands.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
The SQL statement CREATE TABLE creates a permanent or temporary table within
the database where the command is issued. The syntax is as follows:

CREATE [{LOCAL TEMPORARY | GLOBAL TEMPORARY}] TABLE table_name
 (column_name data_type attributes[, ...]) |
 [column_name [data_type] GENERATED ALWAYS AS (expression)[,...]] |
 [column_name GENERATED {ALWAYS | BY DEFAULT}
 AS IDENTITY sequence_options] |
 [column_name WITH OPTIONS options] |
 [column_name_start data_type GENERATED ALWAYS AS ROW START] |
 [column_name_end data_type GENERATED ALWAYS AS ROW END] |
 [PERIOD FOR SYSTEM_TIME (column_name_start, column_name_end)] |
 [LIKE table_name] |
 [REF IS column_name
 {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [CONSTRAINT constraint_type [constraint_name]
 constraint_definition [, ...]]
[OF type_name [UNDER super_table] [table_definition]] |
[ON COMMIT {PRESERVE ROWS | DELETE ROWS}] |
[WITH SYSTEM_VERSIONING {ON|OFF}]

constraint_type ::= [UNIQUE | FOREIGN KEY | PRIMARY KEY | CHECK]

The SQL statement ALTER TABLE allows many useful modifications to be made to
an existing table without dropping any existing indexes, triggers, or permissions
assigned to it. Following is the ALTER TABLE syntax:

ALTER TABLE table_name
[ADD [COLUMN] column_name data_type attributes]
[ADD [COLUMN] column_name [data_type] GENERATED ALWAYS
 AS (expression)[,...]]
[ADD [COLUMN] column_name {GENERATED ALWAYS| BY DEFAULT}

SQL Command Reference | 141

Structuring
Yo

ur D
ata

 AS IDENTITY sequence_options]
| [ALTER [COLUMN] column_name SET DEFAULT default_value]
| [ALTER [COLUMN] column_name DROP DEFAULT]
| [ALTER [COLUMN] column_name ADD SCOPE table_name]
| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]
| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]
| [ADD table_constraint]
| [SET SYSTEM_VERSIONING {ON | OFF}]
| [SET PERIOD FOR SYSTEM_TIME (column_name_start, column_name_end)]
| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords

CREATE [{LOCAL TEMPORARY | GLOBAL TEMPORARY}] TABLE

Declares a permanent table or a temporary table of local or global
scope. Local temporary tables are accessible only to the session that cre‐
ated them and are automatically dropped when that session terminates.
Global temporary tables are accessible by all active sessions but are also
automatically dropped when the session that created them terminates.
Do not qualify a temporary table with a schema name. Depending on
the database platform, you may use two- or even three-part naming
conventions for permanent tables: <schema_name>.<table_name> or <data
base_name>.<schema_name>.<table_name>, respectively.

(column_name data_type attributes[, ...])

Defines a comma-delimited list of one or more columns, their data types, and
any additional attributes (such as nullability). Every table declaration must
contain at least one column, which may include:

column_name

Specifies a name for a column. The name must be a valid identifier accord‐
ing to the rules of the specific DBMS. Make sure the name makes sense!

data_type

Associates a specific data type with the column identified by column_name.
An optional length may be specified for data types that allow user-defined
lengths; for example, VARCHAR(255). The data type must be valid on the
specific DBMS in question. Refer to Chapter 2 for a full discussion of
acceptable data types and vendor variations.

attributes

Associates specific constraint attributes with the column_name. Many
attributes may be applied to a single column_name, no commas required.
Typical SQL attributes include:

NOT NULL

Tells the column to reject NULL values or, when omitted, to accept
them. Any INSERT or UPDATE statement that attempts to place a NULL
value in a NOT NULL column will fail and roll back.

142 | Chapter 3: Structuring Your Data

DEFAULT expression

Tells the column to use the value of expression when no
value is supplied by an INSERT or UPDATE statement. The
expression must be acceptable according to the data type of
the column; for example, no alphabetic characters may be
used in an INTEGER column. expression may be a string or
numeric literal, but you may also define a user-defined func‐
tion or system function. SQL allows these system functions in
a DEFAULT expression: NULL, USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, LOCAL
TIME, CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, and ARRAY[].

COLLATE collation_name

Defines a specific collation, or sort order, for the column to which it is
assigned. The name of the collation is platform-dependent. If you do
not define a collation, the columns of the table default to the collation
of the character set used for the column.

REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET NULL}]

Indicates whether references are to be checked on a REF column
defined with a scope clause. The optional ON DELETE clause tells
whether any values in records referenced by a deleted record should
be set to NULL, or whether the operation should be restricted.

CONSTRAINT constraint_type [constraint_name[, ...]]

Assigns a constraint and, optionally, a constraint name to the specific
column. Constraint types are discussed in Chapter 2. Because the
constraint is associated with a specific column, the constraint declara‐
tion assumes that the column is the only one in the constraint. After
the table is created, the constraint is treated as a table-level constraint.

column_name [data_type] GENERATED ALWAYS AS (expression)[, ...]

Denotes a virtual column with the expression being a function of other col‐
umns and functions. Per the standard, the data type is optional.

column_name GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY

sequence_options

Denotes an auto-incrementing integer. ALWAYS means the value generated
cannot be changed by a standard UPDATE/INSERT. BY DEFAULT means the
column is updatable but defaults to next identity value when not specified.
sequence_options are [START WITH int][, INCREMENT BY int].

column_name WITH OPTIONS options

Defines a column with special options, such as a scope clause, a default clause,
a column-level constraint, or a COLLATE clause. For many implementations, the
WITH OPTIONS clause is restricted to the creation of typed tables.

SQL Command Reference | 143

Structuring
Yo

ur D
ata

column_name_start data_type GENERATED ALWAYS AS ROW START

Defines a column that specifies the start of the period for which the row is
valid. Only applies to temporal tables (introduced in SQL:2011).

column_name_end data_type GENERATED ALWAYS AS ROW END

Defines a column that specifies the end of the period for which the row is valid.
Only applies to temporal tables.

PERIOD FOR SYSTEM_TIME (column_name_start, column_name_end)

Denotes that this is a temporal table and indicates which columns to use to
denote the start and end of the period that this row is valid for.

LIKE table_name

Creates a new table with the same column definitions as the preexisting table
named table_name.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the object identifier column (OID) for a typed table. An OID is nec‐
essary for the root table of a table hierarchy. Based on the option specified,
the REF might be automatically generated by the system (SYSTEM GENERATED),
manually provided by the user when inserting the row (USER GENERATED), or
derived from another REF (DERIVED). Requires the inclusion of a REFERENCES
column attribute for column_name.

CONSTRAINT constraint_type [constraint_name] constraint_

definition[, ...]

Assigns one or more constraints to the table. This option is noticeably differ‐
ent from the CONSTRAINT option at the column level because column-level
constraints are assumed to apply only to the columns with which they are
associated. Table-level constraints, however, give the option of associating mul‐
tiple columns with a constraint. For example, in a sales table you might wish
to declare a unique constraint on a concatenated key of store_id, order_id,
and order_date. This can only be done using a table-level constraint. For
unique and primary key constraints the constraint_definition consists of
the column names. Refer to Chapter 2 for a full discussion of constraints.

OF type_name [UNDER super_table] [table_definition]

Declares that the table is based upon a preexisting user-defined type. In this
situation, the table may have only a single column for each attribute of the
structured type, plus an additional column, as defined in the REF IS clause.
This clause is incompatible with the LIKE table_name clause.

[UNDER super_table] [table_definition]

Declares the direct supertable of the currently declared table within the same
schema, if any exists. The table being created is thus a direct subtable of the
supertable. You may optionally provide a complete table_definition of the
new subtable, with columns, constraints, etc.

144 | Chapter 3: Structuring Your Data

ON COMMIT {PRESERVE ROWS | DELETE ROWS}

ON COMMIT PRESERVE ROWS preserves data rows in a temporary table on issu‐
ance of a COMMIT statement. ON COMMIT DELETE ROWS deletes all data rows in a
temporary table on COMMIT.

WITH SYSTEM_VERSIONING {ON | OFF}

Indicates whether to enable or disable system-versioned tables. The default is
OFF, which leaves table behavior unchanged. When set ON, system-versioned
tables keep a history of all changes to their data at all points in time. This
functionality enables a user to query data “as of ” a specific date, even if the
data has been deleted or updated (or new data has been inserted) after the “as
of ” date. System-versioned tables are rather complex, thus we encourage you to
refer to the documentation of each of the vendor platforms to implement them
properly.

ADD [COLUMN] column_name data_type attributes

Adds a column to a table, along with the appropriate data type and attributes.

ADD [COLUMN] column_name [data_type] GENERATED ALWAYS AS (expression)

[, ...]

Adds a virtual column.

ADD [COLUMN] column_name {GENERATED ALWAYS | BY DEFAULT} AS IDENTITY

sequence_options

Adds an identity column.

ALTER [COLUMN] column_name SET DEFAULT default_value

Adds a default value to the column if none exists, and resets the default value if
a previous one exists.

ALTER [COLUMN] column_name DROP DEFAULT

Completely removes a default from the named column.

ALTER [COLUMN] column_name ADD SCOPE table_name

Adds a scope to the named column. A scope is a reference to a user-defined
data type.

ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}

Drops a scope from the named column. The RESTRICT and CASCADE clauses are
defined at the end of this list.

DROP [COLUMN] column_name {RESTRICT | CASCADE}

Drops the named column from the table.

ADD table_constraint

Adds a table constraint of the specified name and characteristics to the table.

DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}

Drops a previously defined constraint from the table.

SQL Command Reference | 145

Structuring
Yo

ur D
ata

RESTRICT

Tells the DBMS to abort the command if it finds any other objects in the
database that depend on the object.

CASCADE

Tells the DBMS to drop any other objects that depend on the object.

Rules at a glance
The typical CREATE TABLE statement is very simple, although the major database
vendors have added a dizzying array of variations. Generally, it names the table and
any columns (and attributes of those columns) contained in the table. Many table
definitions also include a nullability constraint for most of the columns, as in this
example:

CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATE NOT NULL,
 project_name VARCHAR(50) NOT NULL,
 construction_color VARCHAR(20) ,
 construction_height DECIMAL(4,1),
 construction_length DECIMAL(4,1),
 construction_width DECIMAL(4,1),
 construction_volume INT);
This example adds a table with a primary key:
CREATE TABLE category
(cat_name varchar(40) PRIMARY KEY);

This example adds a foreign key to the example table:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) ,
 subcategory VARCHAR(40) ,
 pub_date DATE NOT NULL,
 purchase_date DATE NOT NULL,
 CONSTRAINT fk_categories FOREIGN KEY (category)
 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in the
category table. All the vendors discussed in this book support this syntax.

Examples for creating a table with each constraint type are
shown in Chapter 2.

146 | Chapter 3: Structuring Your Data

Similarly, the foreign key could be added after the fact as a multicolumn key
including both the category and subcategory columns. However, all existing data
must be valid for the foreign key constraint:

ALTER TABLE favorite_books ADD CONSTRAINT fk_categories
 FOREIGN KEY (category, subcategory)
 REFERENCES category(cat_name, subcat_name);

Now, we can use an ALTER TABLE statement to drop the constraint altogether:

ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;

The following are more full examples from pubs, the sample database that ships with
early releases of SQL Server:

-- For a SQL Server database
CREATE TABLE jobs
 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',
 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),
 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))
-- For a MySQL database
CREATE TABLE employee
 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,
 fname VARCHAR(20) NOT NULL,
 minit CHAR(1) NULL,
 lname VARCHAR(30) NOT NULL,
 job_id SMALLINT NOT NULL DEFAULT 1
 REFERENCES jobs(job_id),
 job_lvl TINYINT DEFAULT 10,
 pub_id CHAR(4) NOT NULL DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());
CREATE TABLE publishers
 (pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL DEFAULT('USA'))

Once you get into the vendor extensions, the CREATE TABLE statement is no longer
portable between database platforms. The following is an example of an Oracle
CREATE TABLE statement with many storage properties that are not part of the SQL
standard:

CREATE TABLE classical_music_cds
 (music_id INT,
 composition VARCHAR2(50),
 composer VARCHAR2(50),
 performer VARCHAR2(50),

SQL Command Reference | 147

Structuring
Yo

ur D
ata

 performance_date DATE DEFAULT SYSDATE,
 duration INT,
 cd_name VARCHAR2(100),
CONSTRAINT pk_class_cds PRIMARY KEY (music_id)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K),
CONSTRAINT uq_class_cds UNIQUE
 (composition, performer, performance_date)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K))
TABLESPACE tabledata_ts;

When issuing a CREATE or ALTER statement, we recommend that it be the only
statement in your transaction. For example, do not attempt to create a table and
select from it in the same batch. Instead, first create the table, then verify the
operation, issue a COMMIT, and finally perform any subsequent operations against
the table.

table_name is the name of a new or existing table. New table names should start
with an alphabetic character and in general should contain no other special symbol
besides the underscore (_). Rules for the length of the name and its exact composi‐
tion differ according to the vendor.

When creating or altering a table, the list of column definitions is always encapsu‐
lated within parentheses, and the individual column definitions are separated by
commas.

Programming tips and gotchas
The user issuing the CREATE TABLE command must have the appropriate permis‐
sions. Similarly, any user wishing to ALTER or DROP a table should own the table or
have adequate permissions to alter or drop the table. Since the SQL standard does
not specify the privileges required, expect some variation between vendors.

You can encapsulate a CREATE TABLE or ALTER TABLE statement within a transaction
using a COMMIT or ROLLBACK statement to explicitly conclude the transaction. We
recommend that the CREATE/ALTER TABLE statement be the only command in the
transaction.

Extensions to the SQL standard can give you a great deal of control over the
way that the records of a table are physically written to the disk subsystem. SQL
Server uses a technique called clustered indexes to control the way that records
are written to disk. Oracle offers a technique that is functionally similar, called
an index-organized table, although it is not a requirement for good performance.
PostgreSQL offers a CLUSTER ON clause that allows sorting a table by an index,
similar to SQL Server’s clustered indexes. However, this sort is not maintained and
requires a CLUSTER <sometable> to physically re-sort a specific clustered table. Use
CLUSTER without a table name to physically re-sort all clustered tables.

148 | Chapter 3: Structuring Your Data

Some databases will lock a table that is being modified by an ALTER TABLE state‐
ment, possibly blocking one or many other users attempting to access the table.
It is therefore wise to issue this command only on tables that are not in use on
a production database, or during low-usage times. Furthermore, some databases
will lock the target and source tables when using the CREATE TABLE ... LIKE
statement. Use caution.

MySQL and MariaDB
The MySQL and MariaDB shared syntax for CREATE TABLE creates a permanent
or local temporary table within the database in which the command is issued.
Two notable augmentations exist for MariaDB that (at the time of writing) are
not supported by MySQL. First, MariaDB supports the CREATE OR REPLACE TABLE
syntax, enabling users to change the table definition without having to DROP an
existing table and then re-create it. Second, it supports a PERIOD FOR clause, similar
to the Oracle syntax discussed in the next section. There are numerous table_option
settings that are rarely set or are specific to certain storage engines. We will only
highlight the ones that are commonly changed. With these exceptions, the syntax
for MySQL and MariaDB’s CREATE TABLE statement follows:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
{(column_name data_type attributes
 constraint_type constraint_name[, ...])
 [CONSTRAINT constraint_type [constraint_name]
 constraint_definition[, ...]]
LIKE other_table_name}
 {[TABLESPACE tablespace_name STORAGE DISK] |
 [table_option [,...]
 }
[partition_definition[, ...]]
[[IGNORE | REPLACE] select_statement]

table_option ::=
 [AUTO_INCREMENT [=] int] |
 [COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}] |
 [CONNECTION [=] 'connection_string'] |
 [[DEFAULT] CHARACTER SET charset_name] |
 [CHECKSUM [=] {0 | 1}] |
 [[DEFAULT] COLLATE collation_name] |
 [COMMENT [=] 'string'] |
 [DATA DIRECTORY [=] 'path_to_directory'] |
 [DELAY_KEY_WRITE [=] {0 | 1}] |
 [ENGINE [=] engine_name] |
 [ENGINE_ATTRIBUTE [=] 'string'] |
 [INDEX DIRECTORY [=] 'path_to_directory'] |
 [INSERT_METHOD [=] {NO | FIRST | LAST}] |
 [KEY_BLOCK_SIZE [=] int] |
 [PACK_KEYS [=] {0 | 1}] |

 WITH SYSTEM VERSIONING

SQL Command Reference | 149

Structuring
Yo

ur D
ata

There are some variations between MySQL and MariaDB in what they support and
how they support it, primarily in the table_option clause. Refer to the respective
vendor documentation for the full set of properties supported.

The following are MySQL extensions not supported by MariaDB:

CREATE ... TABLE [IF NOT EXISTS] table_name
{(column_name data_type [INVISIBLE] attributes

MariaDB also supports some features that MySQL doesn’t, such as an IGNORED
clause that is equivalent to MySQL’s INVISIBLE clause for columns. It also supports a
CREATE OR REPLACE TABLE clause:

CREATE OR REPLACE ... TABLE ...
{(column_name data_type [IGNORED] attributes

When the ENGINE clause is specified in ALTER TABLE, MySQL always rebuilds the
table, even when the current ENGINE is the same as the one specified. This feature
is often used to defragment a table. The MySQL syntax for ALTER TABLE allows
modifications to a table or even renaming of a table. Notably, MySQL allows you
to rename columns and indexes while MariaDB does not. The shared ALTER TABLE
syntax is as follows (see the vendor documentation for full details):

ALTER [IGNORE] TABLE table_name
{ [ENGINE = engine_name]
| [ADD [COLUMN] (column_name data_type attributes)
 [FIRST | AFTER column_name][, ...]]
| [ADD {FULLTEXT | SPATIAL} [INDEX | KEY]
 [index_name](index_col_name[, ...])]
| [ADD CONSTRAINT constraint_type [constraint_name]
 constraint_definition]
 [INDEX | KEY] [index_name](index_col_name[, ...])]
| [ALTER [COLUMN] column_name
 {SET DEFAULT literal | DROP DEFAULT}]
| [CHANGE | MODIFY] [COLUMN] old_col_name new_col_name
 column_definition [FIRST | AFTER column_name]
| [DROP [COLUMN | FOREIGN KEY | PRIMARY KEY | INDEX | KEY]
 [object_name]]
| [{ENABLE | DISABLE} KEYS]
| [RENAME [TO | AS] new_tbl_name]
| [RENAME COLUMN old_col_name TO new_col_name]
| [RENAME {INDEX | KEY} old_index_name TO new_index_name]
| [ORDER BY column_name[, ...]]
| [CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]]
| [{DISCARD | IMPORT} TABLESPACE]
| [{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE |
 REBUILD | REPAIR} PARTITION]
| [REORGANIZE PARTITION prtn_name INTO (partition_definition)]
| [REMOVE PARTITIONING]
| [table_options] }[, ...]
| {WITHOUT | WITH} VALIDATION

150 | Chapter 3: Structuring Your Data

Keywords and parameters are as follows:

TEMPORARY

Creates a table that persists for the duration of the connection under which it
was created. Once that connection closes, the temporary table is automatically
deleted.

IF NOT EXISTS

Prevents an error if the table already exists. A schema specification is not
required.

FULLTEXT [{INDEX | KEY}]
Creates a full-text search index to facilitate rapid searches of large blocks of
text. Note that only MyISAM tables support FULLTEXT indexes, and that they
can only be made on CHAR, VARCHAR, and TEXT columns.

SPATIAL [{INDEX | KEY}]
Creates an R-tree spatial index or key on the column. Only MyISAM and
InnoDB engines support R-tree spatial indexes. If a spatial index is specified
for a storage engine that doesn’t support R-tree indexes, then a B-tree index is
created instead.

constraint_type

Allows standard SQL constraints to be assigned at the column or table level.
MySQL fully supports primary key and unique constraints. It provides syntax
support for check, foreign key, and references constraints, but they are not
functional except on InnoDB tables. Foreign keys cannot be used on parti‐
tioned tables. The primary key of a table is always called PRIMARY, which thus
cannot be used as the name for any other kind of index. The primary key is
used to cluster the data and is also included in every secondary index.

ENGINE

Describes how the data should be physically stored. You can convert tables
between types using the ALTER TABLE statement. MyISAM and many other
storage engines do not offer recoverability with the COMMIT or ROLLBACK state‐
ments. In absence of recoverability there will often be loss of data if the
database crashes. The default engine is InnoDB for MySQL 8 and MariaDB
10. The following is the list of MySQL/MariaDB engine types. The offerings of
engines vary a bit by installs, and additional ones are made available by third
parties. To find out which storage engines your database supports, use the SHOW
ENGINES command on the MySQL command line. Common engines you will
find installed are:

ARIA

A safer alternative to MyISAM, generally available only on MariaDB
installations. It provides a TRANSACTIONAL keyword that dictates whether
it should provide crash safety or not. ARIA currently doesn’t support

SQL Command Reference | 151

Structuring
Yo

ur D
ata

transactions, so commands such as BEGIN TRANSACTION or COMMIT have no
effect.

ARCHIVE

Good for storing large amounts of data without indexes in a small foot‐
print. The data is compressed. When creating an ARCHIVE table, the meta‐
data filename is the table’s name with an .FRM extension. Data tables
have the table name as the filename and extensions of .ARZ. A file with
an .ARN extension may appear occasionally during optimizations.

BLACKHOLE

Acts as a “black hole” that accepts data but throws it away and does not
store it. Retrievals always return an empty result. Useful for testing the
validity of commands.

CSV

Stores rows in comma-separated values (CSV) format. When creating a
CSV table, the filename is the table name with an .FRM extension. Data
is stored in a file with the table name as the filename and an extension
of .CSV. The data is stored in plain text, so be careful with security on
these tables.

CONNECTION

A MariaDB storage engine introduced in v10.0, but installed separately. It
allows for connecting to many kinds of remote data sources and loosely
follows the SQL/MED standard.

EXAMPLE

A stub engine that does nothing. No data can be stored in an EXAMPLE
table.

FEDERATED

Lets you access data from a remote MySQL database without using repli‐
cation or cluster technology. No data is stored in the local tables.

INNODB

Creates a transaction-safe table with row-level locking. It also provides
an independently managed tablespace, checkpoints, non-locking reads,
and fast reads from large datafiles for heightened concurrency and per‐
formance. Requires the innodb_data_file_path startup parameter. InnoDB
supports all SQL constraints, including CHECK and FOREIGN KEY. Well-
known developer websites such as Slashdot.org run on MySQL with
InnoDB because of its excellent performance. InnoDB tables and indexes
are stored together in their own tablespace (unlike other table formats,
such as MyISAM, which store tables in separate files).

MEMORY

Creates a memory-resident table that uses hashed indexes. Synony‐
mous with HEAP. Since they are memory-resident, the indexes are not

152 | Chapter 3: Structuring Your Data

http://slashdot.org

transaction-safe; any data they contain will be lost if the server crashes.
MEMORY tables can have up to 32 indexes per table and 16 columns per
index, for a maximum index length of 500 bytes. Think of MEMORY tables as
an alternative to temporary tables; like temporary tables, they are shared
by all clients. If you use MEMORY tables, always specify the MAX_ROWS option
so that you do not use all available memory. MEMORY tables do not support
BLOB or TEXT columns, ORDER BY clauses, or the variable-length record for‐
mat, and there are many additional rules concerning these tables. Be sure
to read the vendor documentation before implementing MEMORY tables.

MERGE

Collects several identically structured MyISAM tables for use as one table,
providing some of the performance benefits of a partitioned table. SELECT,
DELETE, and UPDATE statements operate against the collection of tables as
if they were one table. Think of a MERGE table as the collection, but not
as the table(s) containing the data. Dropping a MERGE table only removes
it from the collection; it does not erase the table or its data from the
database. Specify a MERGE table by using the statement UNION = (<table1>,
<table2>, ...). The two keywords MERGE and MRG_MyISAM are synonyms.

MyISAM

Stores data in .MYD files and indexes in .MYI files. MyISAM is based on
ISAM code, with several extensions. It’s a binary storage structure that is
more portable than ISAM. MyISAM supports AUTO_INCREMENT columns,
compressed tables (with the myisampack utility), and large table sizes.
Under MyISAM, BLOB and TEXT columns can be indexes, and up to 64
indexes are allowed per table, with up to 16 columns per index and a
maximum key length of 1,000 bytes.

NDBCLUSTER

Creates clustered, fault-tolerant, memory-based tables called NDBs. This
is MySQL’s special high-availability table format. Refer to the vendor
documentation for additional information on implementing NDBs. The
NDBCluster engine is only available in the NDBCluster version of
MySQL.

TABLESPACE ... STORAGE DISK

Assigns the table to a Cluster Disk Data tablespace when using NDB Cluster
tables. The tablespace named in the clause must already have been created
using CREATE TABLESPACE.

AUTO_INCREMENT [=] int

Sets the auto-increment value (int) for the table. This works for MyISAM,
Aria, InnoDB/XtraDB, MEMORY, and ARCHIVE tables.

[DEFAULT] CHARACTER SET

Specifies the CHARACTER SET (or CHARSET) for the table, or for specific columns.

SQL Command Reference | 153

Structuring
Yo

ur D
ata

CHECKSUM [=] {0 | 1}

When set to 1, maintains a checksum for all rows in the table (MyISAM only).
This makes processing slower but leaves your data less prone to corruption.

[DEFAULT] COLLATE

Specifies the collation set for the table, or for specific columns.

COMMENT [=] 'string'

Allows inclusion of a comment.

CONNECTION [=] 'connection_string'

Specifies the connection string required to connect to a FEDERATED table.
Otherwise, this is a noise word. Older versions of MySQL used the COMMENT
option for the connection string.

DATA DIRECTORY [=] 'path_to_directory'

Overrides the default path and directory that MySQL should use for MyISAM
table storage.

DELAY_KEY_WRITE = {0 | 1}

When set to 1, delays key table updates until the table is closed (MyISAM only).

INDEX DIRECTORY [=] 'path_to_directory'

Overrides the default path and directory that MySQL should use for MyISAM
index storage.

INSERT_METHOD [=] {NO | FIRST | LAST}

Required for MERGE tables. If no setting is specified for a MERGE table or the
value is NO, INSERTs are disallowed. FIRST inserts all records into the first table
in the collection, while LAST inserts them all into the last table in the collection.

KEY_BLOCK_SIZE [=] int

Allows the storage engine to change the value used for the size of the index key
block. A value of 0 tells MySQL to use the default.

PACK_KEYS [=] {0 | 1}

When set to 1, compacts the indexes of the table, making reads faster but
updates slower (MyISAM and ISAM only). With the DEFAULT value, only long
strings will be compacted. When set to 0 no compacting is done.

WITH SYSTEM VERSIONING

This setting is supported only by MariaDB and is required for system-
versioned tables. In addition, you can specify PERIOD FOR SYSTEM_TIME to
control which columns will be used to track the beginning and end of life
of a row. If you do not specify PERIOD FOR SYSTEM_TIME, ROW_START and
ROW_END pseudocolumns will be created to autorecord this information. These
pseudocolumns are not normally output with SELECT *, but can be explicitly
included with a query like SELECT * FROM ROW_START, ROW_END.

154 | Chapter 3: Structuring Your Data

partition_definition

Specifies a partition or subpartition for a MySQL table. Refer to “Partitioned
tables” on page 157 for more details on partitioning and subpartitioning
MySQL tables. Note that all of the definition options are usable for subparti‐
tions, with the exception of the VALUE subclause.

[IGNORE | REPLACE] select_statement

Creates a table with columns based upon the elements listed in the SELECT
statement. The new table will be populated with the results of the SELECT
statement if the statement returns a result set.

ALTER [IGNORE]

The altered table will include all duplicate records unless the IGNORE keyword
is used. If it is not used, the statement will fail if a duplicate row is encountered
and if the table has a unique index or primary key.

{ADD | COLUMN} [FIRST | AFTER column_name]

Adds or moves a column, index, or key to the table. When adding or moving
columns, the new column appears as the last column in the table unless it is
placed AFTER another named column.

ALTER COLUMN

Allows the definition or resetting of a default value for a column. If you reset a
default, MySQL will assign a new default value to the column.

CHANGE

Renames a column, or changes its data type.

MODIFY

Changes a column’s data type or attributes such as NOT NULL. Existing data in
the column is automatically converted to the new data type.

DROP

Drops the column, key, index, or tablespace. A dropped column is also
removed from any indexes in which it participated. When dropping a primary
key, MySQL will drop the first unique key if no primary key is present.

{ENABLE | DISABLE} KEYS

Enables or disables all nonunique keys on a MyISAM table simultaneously.
This can be useful for bulk loads where you want to temporarily disable
constraints until after the load is finished. It also speeds up performance by
finishing all index block flushing at the end of the operation.

RENAME COLUMN old_col_name TO new_col_name

Renames the column.

RENAME {INDEX | KEY} old_index_name TO new_index_name

Renames the index or key.

SQL Command Reference | 155

Structuring
Yo

ur D
ata

RENAME [TO | AS] new_tbl_name

Renames the table.

ORDER BY column_name[, ...]

Orders the rows in the specified order.

CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]

Converts the table to a character set (and optionally a collation) that you
specify.

DISCARD | IMPORT TABLESPACE

Deletes the current .IDB file (using DISCARD), or makes a tablespace available
after restoring from a backup (using IMPORT).

{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD |

REPAIR} PARTITION

Adds or drops a partition on a table. Other options perform preventative
maintenance behaviors analogous to those available for MySQL tables (i.e.,
CHECK TABLE and REPAIR TABLE). Only COALESCE PARTITION has a unique
behavior, in which MySQL reduces the number of KEY or HASH partitions to the
number specified by int.

REORGANIZE PARTITION prtn_name INTO (partition_definition)

Alters the definition of an existing partition according to the new
partition_definition specified.

REMOVE PARTITIONING

Removes a table’s partitioning without otherwise affecting the table or its data.

{WITHOUT | WITH} VALIDATION

Affects whether ALTER TABLE performs an in-place operation for a virtually
generated column or not. WITHOUT, the default, offers faster performance by not
checking data integrity. ALTER TABLE ... WITH VALIDATION first copies the
data and returns an error if any values are out of range. This clause is permitted
only with ADD COLUMN, CHANGE COLUMN, and MODIFY COLUMN operations.

For example, the following transaction creates a heap table with three columns,
column_a, column_b, and column_c:

CREATE TABLE test_example
 (column_a INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(column_a),
 INDEX(column_b))
 TYPE=HEAP
IGNORE
SELECT column_b,column_c FROM samples;

Later, we could change this table to the MyISAM type:

ALTER TABLE example TYPE=MyISAM;

156 | Chapter 3: Structuring Your Data

Three operating system files are created when MySQL creates a MyISAM table: a
table definition file with the extension .FRM, a datafile with the extension .MYD,
and an index file with the extension .MYI. The .FRM datafile is used for all other
tables.

The following example creates two base MyISAM tables and then creates a MERGE
table from them:

CREATE TABLE message1
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE message2
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE all_messages
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20))
 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;

Partitioned tables. MySQL allows partitioning of tables for greater control of
I/O and space management. The syntax for the partitioning clause (partition
_definition) is:

PARTITION BY function
[[SUB]PARTITION prtn_name
 [VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_path']
 [INDEX DIRECTORY [=] 'index_path']
 [MAX_ROWS [=] max_rows]
 [MIN_ROWS [=] min_rows]
 [TABLESPACE [=] (tablespace_name)]
 [NODEGROUP [=] node_group_id]
 [(subprtn[, subprtn] ...)][, ...]]

where (values not described below are redundant with the list of table options and
are presented in the earlier listing):

function

Specifies the function used to create the partition. Allowable values include:
HASH(expr), where expr is a hash of one or more columns in an allowable SQL
format (including function calls that return any single integer value); LINEAR
KEY(column_list), where MySQL’s hashing function more evenly distributes
data; and RANGE(expr) and LIST(expr), where expr is one or more columns in
an allowable SQL format with the VALUES clause telling exactly which partition
holds which values.

[SUB]PARTITION prtn_name

Names the partition or subpartition.

SQL Command Reference | 157

Structuring
Yo

ur D
ata

VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}

Specifies which values are assigned to which partitions.

NODEGROUP [=] node_group_id

Makes the partition or subpartition act as part of a node group identified by
node_group_id. Only applicable for NDB tables.

Note that partitions and subpartitions must all use the same storage engine.

The following example creates three tables, each with a different partitioning
function:

CREATE TABLE employee (emp_id INT, emp_fname VARCHAR(30),
 emp_lname VARCHAR(50))
PARTITION BY HASH(emp_id);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30),
 location_code CHAR(5))
PARTITION BY KEY(location_code)
PARTITIONS 4;

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30),
 location_code CHAR(5))
PARTITION BY LINEAR KEY(location_code)
PARTITIONS 5;

The following two examples show somewhat more elaborate examples of partition‐
ing using RANGE partitioning and LIST partitioning:

CREATE TABLE employee (emp_id INT, emp_fname VARCHAR(30),
 emp_lname VARCHAR(50), hire_date DATE)
PARTITION BY RANGE(hire_date)
 (PARTITION prtn1 VALUES LESS THAN ('01-JAN-2014'),
 PARTITION prtn2 VALUES LESS THAN ('01-JAN-2016'),
 PARTITION prtn3 VALUES LESS THAN ('01-JAN-2018'),
 PARTITION prtn4 VALUES LESS THAN MAXVALUE);

CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30),
 location_code CHAR(5))
PARTITION BY LIST(prod_id)
 (PARTITION prtn0 VALUES IN (10, 50, 90, 130, 170, 210),
 PARTITION prtn1 VALUES IN (20, 60, 100, 140, 180, 220),
 PARTITION prtn2 VALUES IN (30, 70, 110, 150, 190, 230),
 PARTITION prtn3 VALUES IN (40, 80, 120, 160, 200, 240));

The following example renames both a table and a column:

ALTER TABLE employee RENAME AS emp;
ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for example,
the first 10 characters), you can also build short indexes on very large columns.

158 | Chapter 3: Structuring Your Data

MySQL can redefine the data type of an existing column, but to avoid losing any
data, the values contained in the column must be compatible with the new data
type. For example, a date column could be redefined to a character data type, but a
character data type could not be redefined to an integer. Here’s an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL offers some additional flexibility in the ALTER TABLE statement by allow‐
ing users to include multiple ADD, ALTER, DROP, and CHANGE clauses in a comma-
delimited list in a single ALTER TABLE statement. However, be aware that the CHANGE
column_name and DROP INDEX clauses are MySQL extensions not found in SQL.
MySQL also supports the clause MODIFY column_name to mimic the same feature
found in Oracle.

Oracle
The Oracle syntax for CREATE TABLE creates a relational table either by declaring
the structure or by referencing an existing table. You can modify a table after it
is created using the ALTER TABLE statement. Oracle also allows the creation of a
relational table that uses user-defined types for column definitions, an object table
that is explicitly defined to hold a specific user-defined type (usually a VARRAY or
NESTED TABLE type), or an XMLType table. New in Oracle 21c is the BLOCKCHAIN
table type for use in building blockchain applications. We will not be covering this
type; for more details, refer to Oracle’s documentation.

The SQL standard CREATE TABLE statement is supported, but Oracle has added
many sophisticated extensions to the command that would take a whole book to
cover and are rarely used in practice. For example, Oracle allows significant control
over the storage and performance parameters of a table. In both the CREATE TABLE
and ALTER TABLE statements, you’ll see a great deal of nesting and reusable clauses.
To make this somewhat easier to read, we have broken Oracle’s CREATE TABLE
statement into three distinct variations (relational table, object table, XMLType
table) so that you can more easily follow the syntax.

The CREATE TABLE syntax for a standard relational table, which has no object or
XML properties, is as follows:

CREATE [GLOBAL | PRIVATE] [TEMPORARY]
[SHARDED | DUPLICATED] TABLE table_name
[({column | virtual_column | attribute}
 [SORT] [DEFAULT expression]
 [PERIOD FOR valid_time_column
 [(start_time_column, end_time_column)]]
 [{column_constraint | inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] |
 DATA (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[table_constraint_clause]
{ [physical_attributes_clause] [TABLESPACE tablespace_name]

SQL Command Reference | 159

Structuring
Yo

ur D
ata

https://oreil.ly/5ArgA

 [storage_clause] [[NO]LOGGING] |
 [CLUSTER (column[, ...])] |
 {[ORGANIZATION
 {HEAP [physical_attributes_clause][TABLESPACE tablespace_name]
 [storage_clause] [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |
 INDEX [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [PCTTHRESHOLD int]
 [COMPRESS [int] | NOCOMPRESS]
 [MAPPING TABLE | NOMAPPING] [...] [[NO]LOGGING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING]}] |
 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [REJECT LIMIT {int | UNLIMITED}]} }
[{ENABLE | DISABLE} ROW MOVEMENT]
[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES]
[[NO]FLASHBACK ARCHIVE]
[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]
[COMPRESS [int] | NOCOMPRESS]
[{ENABLE | DISABLE} [[NO]VALIDATE]
 {UNIQUE (column[, ...]) | PRIMARY KEY |
 CONSTRAINT constraint_name}]
 [USING INDEX {index_name | CREATE_INDEX_statement}]
 [EXCEPTIONS INTO] [CASCADE] [{KEEP | DROP} INDEX]] |
[partition_clause]
[AS subquery]

The relational table syntax contains a large number of optional clauses. However,
the table definition must contain, at a minimum, either column names and data
type specifications or the AS subquery clause.

The Oracle syntax for an object table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX [index_name] ([physical_attributes_clause]
 [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name]
[storage_clause]

Oracle also allows you to create, and later alter, XMLType tables. XMLType tables
may have regular columns or virtual columns. The Oracle syntax for an XMLType
table follows:

160 | Chapter 3: Structuring Your Data

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
OF XMLTYPE
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |
 [{SECUREFILE | BASICFILE}]
 [{CLOB | BINARY XML} [lob_segname] [lob_params]}]
 [xml_schema_spec] [ON COMMIT {DELETE | PRESERVE} ROWS]
 [OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
 [OIDINDEX index_name ([physical_attributes_clause]
 [storage_clause])]
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause]

The Oracle syntax for ALTER TABLE changes the table or column properties, storage
characteristics, LOB or VARRAY properties, partitioning characteristics, and integrity
constraints associated with a table and/or its columns. The statement can also do
other things, like move an existing table into a different tablespace, free recuperated
space, compact the table segment, and adjust the “high-water mark.”

The SQL standard uses the ALTER keyword to modify existing elements of a table,
while Oracle uses MODIFY for the same purpose. Since they are essentially the same
thing, please consider the behavior of otherwise identical clauses (for example, SQL’s
ALTER TABLE ... ALTER COLUMN and Oracle’s ALTER TABLE ... MODIFY COLUMN)
to be functionally equivalent.

Oracle’s ALTER TABLE syntax is:

ALTER TABLE table_name
-- Alter table characteristics
 [physical_attributes_clause] [storage_clause]
 [{READ ONLY | READ WRITE}]
 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]
 [[NO]FLASHBACK ARCHIVE] [SHRINK SPACE [COMPACT] [CASCADE]]
 [UPGRADE [[NOT] INCLUDING DATA] column_name data_type
 attributes]
 [[NO]MINIMIZE RECORDS_PER_BLOCK]
 [PARALLEL int | NOPARALLEL]
 [{ENABLE | DISABLE} ROW MOVEMENT]
 [{ADD | DROP} SUPPLEMENTAL LOG
 {GROUP log_group [(column_name [NO LOG][, ...]) [ALWAYS]] |
 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY}[, ...])
 COLUMNS}]
 [ALLOCATE EXTENT [([SIZE int [K | M | G | T]]
 [DATAFILE 'filename'] [INSTANCE int])]
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ORGANIZATION INDEX ...
 [COALESCE] [MAPPING TABLE | NOMAPPING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS]

SQL Command Reference | 161

Structuring
Yo

ur D
ata

 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]
 [physical_attributes_clause] } |
 OVERFLOW { [ALLOCATE EXTENT ([SIZE int [K | M | G | T]]
 [DATAFILE 'filename'] [INSTANCE int]) |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]] }]]]
 [RENAME TO new_table_name]
-- Alter column characteristics
 [ADD (column_name data_type attributes[, ...])]
 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |
 {COLUMN column_name | (column_name[, ...])} [CHECKPOINT int]
 [{CASCADE CONSTRAINTS | INVALIDATE}] }]
 [SET UNUSED {COLUMN column_name | (column_name[, ...])}
 [{CASCADE CONSTRAINTS | INVALIDATE}]]
 [MODIFY { (column_name data_type attributes[, ...]) |
 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS
 [FORCE] }]
 [RENAME COLUMN old_column_name TO new_column_name]
 [MODIFY {NESTED TABLE | VARRAY} collection_item
 [RETURN AS {LOCATOR | VALUE}]]
-- Alter constraint characteristics
 [ADD CONSTRAINT constraint_name table_constraint_clause]
 [MODIFY CONSTRAINT constraint_name constraint_state_clause]
 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]
 [DROP { { PRIMARY KEY | UNIQUE (column[, ...]) } [CASCADE]
 [{KEEP | DROP} INDEX] |
 CONSTRAINT constraint_name [CASCADE] }]
-- Alter table partition characteristics
 [alter partition clauses]
-- Alter external table characteristics
 DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [ADD (column_name ...)] [DROP column_name ...]
 [MODIFY (column_name ...)]
 [PARALLEL int | NOPARALLEL]
 [REJECT LIMIT {int | UNLIMITED}]
 [PROJECT COLUMN {ALL | REFERENCED}]
-- Move table clauses
 [MOVE [ONLINE] [physical_attributes_clause]
 [TABLESPACE tablespace_name] [[NO]LOGGING]
 [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [[NO]LOGGING]]
 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]
-- Enable/disable attributes and constraints
 [{ {ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, ...]) |
 PRIMARY KEY | CONSTRAINT constraint_name}
 [USING INDEX {index_name | CREATE_INDEX_statement |
 [TABLESPACE tablespace_name] [physical_attributes_clause]
 [storage_clause]

162 | Chapter 3: Structuring Your Data

 [NOSORT] [[NO]LOGGING] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS | NOCOMPRESS] [REVERSE]
 [{LOCAL | GLOBAL} partition_clause]
 [EXCEPTIONS INTO table_name] [CASCADE]
 [{KEEP | DROP} INDEX]]} |
 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]

The parameters are as follows:

virtual_column

Allows the creation or alteration of a virtual column (i.e., a column whose
value is derived from a calculation rather than directly from a physical storage
location). For example, a virtual column income might be derived by summing
the salary, bonus, and commission columns.

PERIOD FOR valid_time_column [(start_time_column, end_time_column)]

Supports temporal history, useful for flashback reporting.

column_constraint

Specifies a column constraint using the syntax described later.

GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA

(constraints[, ...]) COLUMNS

Specifies a log group rather than a single logfile for the table.

ON COMMIT {DELETE | PRESERVE} ROWS

Declares whether a declared temporary table should keep the data in the
table active for the entire session (PRESERVE) or only for the duration of the
transaction in which the temporary table is created (DELETE).

table_constraint_clause

Specifies a table constraint using the syntax described later.

physical_attributes_clause

Specifies the physical attributes of the table using the syntax described later.

TABLESPACE tablespace_name

Specifies the name of the tablespace where the table you are creating will be
stored. If omitted, the default tablespace for the schema owner will be used.

storage_clause

Specifies physical storage characteristics of the table using the syntax described
later.

[NO]LOGGING

Specifies whether redo log records will be written during object creation
(LOGGING) or not (NOLOGGING). LOGGING is the default. NOLOGGING can speed
up the creation of database objects; however, in case of database failure under
the NOLOGGING option, the operation cannot be recovered by applying logfiles

SQL Command Reference | 163

Structuring
Yo

ur D
ata

and the object must be re-created. The LOGGING clause replaces the older
RECOVERABLE clause, which is deprecated.

CLUSTER(column[, ...])

Declares that the table is part of a clustered index. The column list should corre‐
spond, one to one, with the columns in a previously declared clustered index.
Because it uses the clustered index’s space allocation, the CLUSTER clause is
compatible with the physical_attributes_clause, storage_clause, or TABLE
SPACE clause. Tables containing LOBs are incompatible with the CLUSTER clause.

ORGANIZATION HEAP

Declares how the data of the table should be recorded to disk. HEAP, the default
for an Oracle table, declares that no order should be associated with the storage
of rows of data (i.e., the physical order in which records are written to disk)
for this table. The ORGANIZATION HEAP clause allows several optional clauses,
described in detail elsewhere in this list, that control storage, logging, and
compression for the table.

ORGANIZATION INDEX

Declares how the data of the table should be recorded to disk. INDEX declares
that the records of the table should be physically written to disk in the sort
order defined by the primary key of the table. Oracle calls this an index-
organized table. A primary key is required. The physical_attributes_clause,
the TABLESPACE clause, the storage_clause, and the [NO]LOGGING keyword (all
described in greater detail elsewhere in this section) may all be associated with
the new INDEX segment as you create it, as can the following subclauses:

PCTTHRESHOLD int

Declares the percentage (int) of space in each index block to be preserved
for data. On a record-by-record basis, data that cannot fit in this space will
be placed in the overflow segment.

INCLUDING column

Declares the point at which a record will split between the index and
overflow portions. All columns that follow the specified column will be
stored in the overflow segment. The column cannot be a primary key
column.

MAPPING TABLE | NOMAPPING

Tells the database to create a mapping of local to physical ROWIDs. This
mapping is required to create a bitmap index on an IOT. Mappings are
also partitioned identically if the table is partitioned. NOMAPPING tells the
database not to create the ROWID map.

[INCLUDING column] OVERFLOW

Declares that a record that exceeds the PCTTHRESHOLD value be placed in a
segment described in this clause. The physical_attributes_clause, the
TABLESPACE clause, the storage_clause, and the [NO]LOGGING keyword

164 | Chapter 3: Structuring Your Data

may all be associated with a specific OVERFLOW segment when you create it.
The optional INCLUDING column clause defines a column at which to divide
an IOT row into index and overflow portions. Primary key columns are
always stored in the index. However, all non-primary key columns that
follow column are stored in the overflow data segment.

ORGANIZATION EXTERNAL

Declares how the data of the table should be recorded to disk. EXTERNAL
declares that the table stores its data outside of the database and is usually
read-only (its metadata is stored in the database, but its data is stored outside
of the database). There are some restrictions on external tables: they cannot be
temporary; they cannot have constraints; they can only have column, data type,
and attribute column descriptors; and LOB and LONG data types are disallowed.
No other ORGANIZATION clauses are allowed with EXTERNAL. The following
subclauses may be used with the ORGANIZATION EXTERNAL clause:

TYPE driver_type

Defines the access driver API for the external table. The default is
ORACLE_LOADER.

DEFAULT DIRECTORY directory_name

Defines the default directory on the filesystem where the external table
resides.

ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}

Assigns and passes specific parameters to the access driver. Oracle does
not interpret this information. USING CLOB subquery tells Oracle to derive
the parameters and their values from a subquery that returns a single
row with a single column of the data type CLOB. The subquery cannot
contain an ORDER BY, UNION, INTERSECT, or MINUS/EXCEPT clause. The
opaque_format clause allows you to list parameters and their values.

LOCATION (directory_name:'location_spec'[, ...])

Defines one or more external data sources, usually as files. Oracle does not
interpret this information.

REJECT LIMIT {int | UNLIMITED}

Defines the number of conversion errors (int) that are allowed during
the query to the external data source before Oracle aborts the query and
returns an error. UNLIMITED tells Oracle to continue with the query no
matter how many errors are encountered. The default is 0.

{ENABLE | DISABLE} ROW MOVEMENT

Specifies that a row may (ENABLE) or may not (DISABLE) be moved to a dif‐
ferent partition or subpartition if required due to an update of the key. The
DISABLE keyword also specifies that Oracle return an error if an update to a key
would require a move.

SQL Command Reference | 165

Structuring
Yo

ur D
ata

[NO]CACHE

Buffers a table for rapid reads (CACHE), or turns off this behavior (NOCACHE).
Index-organized tables offer CACHE behavior.

[NO]MONITORING

Specifies whether modification statistics can be collected for this table
(MONITORING) or not (NOMONITORING). NOMONITORING is the default.

[NO]ROWDEPENDENCIES

Specifies whether a table will use row-level dependency tracking, a feature that
applies a system change number (SCN) greater than or equal to the time of
the last transaction affecting the row. The SCN adds 6 extra bytes of space to
each record. Row-level dependency tracking is most useful in replicated envi‐
ronments with parallel data propagation. NOROWDEPENDENCIES is the default.

[NO]FLASHBACK ARCHIVE

Enables or disables historical tracking for the table, if a flashback archive for
the table already exists. NO FLASHBACK ARCHIVE is the default.

PARALLEL [int] | NOPARALLEL

The PARALLEL clause allows for the parallel creation of the table by distinct
CPUs to speed up the operation. It also enables parallelism for queries and
other data manipulation operations against the table after its creation. An
optional integer value may be supplied to define the exact number of parallel
threads used to create the table in parallel, as well as the number of parallel
threads allowed to service the table in the future. (Oracle calculates the best
number of threads to use in a given parallel operation, so the int argument
is optional.) NOPARALLEL, the default, creates the table serially and disallows
future parallel queries and data manipulation operations.

COMPRESS [int] | NOCOMPRESS

Specifies whether the table should be compressed or not. On index-organized
tables, only the key is compressed; on heap-organized tables, the entire table is
compressed. This can greatly reduce the amount of space that is consumed by
the table. NOCOMPRESS is the default. In index-organized tables, you can specify
the number of prefix columns (int) to compress. The default value for int is
the number of keys in the primary key minus one. You need not specify an int
value for other clauses, such as ORGANIZATION. When you omit the int value,
Oracle will apply compression to the entire table.

{ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, ...]) | PRIMARY

KEY | CONSTRAINT constraint_name}

Declares whether the named key or constraint applies to all of the data in the
new table or not. ENABLE specifies that the key or constraint applies to all new
data in the table while DISABLE specifies that the key or constraint is disabled
for the new table, with the following options:

166 | Chapter 3: Structuring Your Data

[NO]VALIDATE

VALIDATE verifies that all existing data in the table complies with the
key or constraint. When NOVALIDATE is specified with ENABLE, Oracle
does not verify that existing data in the table complies with the key or
constraint, but ensures that new data added to the table does comply with
the constraint.

UNIQUE (column[, ...]) | PRIMARY KEY | CONSTRAINT constraint_name

Declares the unique constraint, primary key, or constraint that is enabled
or disabled.

USING INDEX index_name | CREATE_INDEX_statement

Declares the name (index_name) of a preexisting index (and its charac‐
teristics) used to enforce the key or constraint, or creates a new index
(CREATE_INDEX_statement). If neither clause is declared, Oracle creates a
new index.

EXCEPTIONS INTO table_name

Specifies the name of a table into which Oracle places information about
rows violating the constraint. Run the utlexpt1.sql script before using this
keyword to explicitly create this table.

CASCADE

Cascades the disablement/enablement to any integrity constraints that
depend on the constraint named in the clause. Usable only with the
DISABLE clause.

{KEEP | DROP} INDEX

Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique or
primary key. You can drop the key only when disabling it.

partition_clause

Declares partitioning and subpartitioning of a table. Partitioning syntax can be
quite complex; refer to “Oracle partitioned and subpartitioned tables” on page
175 for the full syntax and examples.

AS subquery

Declares a subquery that inserts rows into the table upon creation. The column
names and data types used in the subquery can act as substitutes for column
name and attribute declarations for the table.

AS object_type

Declares that the table is based on a preexisting object type.

[NOT] SUBSTITUTABLE AT ALL LEVELS

Declares whether row objects corresponding to subtypes can be inserted into
the type table or not. When this clause is omitted, the default is SUBSTITUTABLE
AT ALL LEVELS.

SQL Command Reference | 167

Structuring
Yo

ur D
ata

inline_ref_constraint and table_ref_constraint

Declares a reference constraint used by an object-type table or XMLType table.
These clauses are described in greater detail in “Oracle XMLType and object-
type tables” on page 189.

OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}

Declares whether the object ID (OID) of the object-type table is SYSTEM
GENERATED or based on the PRIMARY KEY. When omitted, the default is SYSTEM
GENERATED.

OIDINDEX [index_name]

Declares an index, and possibly a name for the index, if the OID is system
generated. You may optionally apply a physical_attributes_clause and a
storage_clause to the OIDINDEX. If the OID is based on the primary key, this
clause is unnecessary.

OF XMLTYPE

Declares that the table is based on Oracle’s XMLTYPE data type.

XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | [{SECUREFILE |

BASICFILE}] [{CLOB | BINARY XML} [lob_segname] [lob_params]]

Declares how the underlying data of the XMLType table is stored: either in LOB,
object-relational, or binary XML format. OBJECT RELATIONAL stores the data
in object-relational columns and allows indexing for better performance. This
subclause requires an xml_schema_spec and a schema that has been preregis‐
tered using the DBMS_XMLSCHEMA package. CLOB specifies that the XMLTYPE data
will be stored in a LOB column for faster retrieval. You may optionally specify
the LOB segment name and/or the LOB storage parameters, but you cannot
specify LOB details and XML schema specifications in the same statement.
BINARY XML stores the data in a compact binary XML format, with any LOB
parameters applied to the underlying BLOB column.

xml_schema_spec

Allows you to specify the URLs of one or more registered XML schemas and
an XML element name. The element name is required, but the URL is optional.
Multiple schemas are allowed only when using the BINARY XML storage format.
You may further specify ALLOW ANYSCHEMA to store any schema-based docu‐
ment in the XMLType column, ALLOW NONSCHEMA to store non-schema-based
documents, or DISALLOW NONSCHEMA to prevent storage of non-schema-based
documents.

READ ONLY | READ WRITE

Places the table in read-only mode (READ ONLY), which disallows all DML
operations including SELECT ... FOR UPDATE. Regular SELECT statements are
allowed, as are operations on indexes associated with a read-only table. READ
WRITE reenables normal DML operations.

168 | Chapter 3: Structuring Your Data

ADD ...

Adds a new column, virtual column, constraint, overflow segment, or supple‐
mental log group to an existing table. You may also alter an XMLType table by
adding (or removing) one or more XML schemas.

MODIFY ...

Changes an existing column, constraint, or supplemental log group on an
existing table.

DROP ...

Drops an existing column, constraint, or supplemental log group from an
existing table. You can explicitly drop columns marked as unused from a
table with DROP UNUSED COLUMNS; however, Oracle will also drop all unused
columns when any other column is dropped. The INVALIDATE keyword causes
any object that depends on the dropped object, such as a view or stored proce‐
dure, to become invalid and unusable until the dependent object is recompiled
or reused. The COLUMNS CONTINUE clause is used only when a DROP COLUMN
statement fails with an error and you wish to continue where it left off.

RENAME ...

Renames an existing table, column, or constraint on an existing table.

SET UNUSED ...

Declares a column or columns to be unused. Those columns are no longer
accessible from SELECT statements, though they still count toward the maxi‐
mum number of columns allowed per table (1,000). SET UNUSED is the fastest
way to render a column unusable within a table, but it is not the best way. Only
use SET UNUSED as a shortcut until you can actually use ALTER TABLE ... DROP
to drop the column.

COALESCE

Merges the contents of index blocks used to maintain the index-organized
table so that the blocks can be reused. COALESCE is similar to SHRINK, though
COALESCE compacts the segments less densely than SHRINK and does not release
unused space.

ALLOCATE EXTENT

Explicitly allocates a new extent for the table using the SIZE, DATAFILE, and
INSTANCE parameters. You may mix and match any of these parameters. The
size of the extent may be specified in bytes (no suffix), kilobytes (K), megabytes
(M), gigabytes (G), or terabytes (T).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]]

Deallocates unused space at the end of the table, LOB segment, partition, or
subpartition. The deallocated space is then usable by other objects in the
database. The KEEP keyword indicates how much space you want to have left
over after deallocation is complete.

SQL Command Reference | 169

Structuring
Yo

ur D
ata

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the table, index-organized table, index, partition, subpartition, materi‐
alized view, or materialized log view, though only segments in tablespaces with
automatic segment management may be shrunk. Shrinking a segment moves
rows in the table, so make sure ENABLE ROW MOVEMENT is also used in the
ALTER TABLE ... SHRINK statement. Oracle compacts the segment, releases the
emptied space, and adjusts the high-water mark unless the optional keywords
COMPACT and/or CASCADE are applied. The COMPACT keyword only defragments
the segment space and compacts the table row for subsequent release; it does
not readjust the high-water mark or empty the space immediately. The CASCADE
keyword performs the same shrinking operation (with some restrictions and
exceptions) on all dependent objects of the table, including secondary indexes
on index-organized tables. Used only with ALTER TABLE.

UPGRADE [NOT] INCLUDING DATA

Converts the metadata of object tables and relational tables with object col‐
umns to the latest version for each referenced type. The INCLUDING DATA clause
will either convert the data to the latest type format (INCLUDING DATA) or leave
it unchanged (NOT INCLUDING DATA).

MOVE ...
Moves the tablespace, index-organized table, partition, or subpartition to a new
location on the filesystem.

[NO]MINIMIZE RECORDS_PER_BLOCK

Tells Oracle to restrict or leave open the number of records allowed per block.
The MINIMIZE keyword tells Oracle to calculate the maximum number of
records per block and set the limit at that number. (Best to do this when a
representative amount of data is already in the table.) This clause is incompati‐
ble with nested tables and index-organized tables. NOMINIMIZE is the default.

PROJECT COLUMN {REFERENCE | ALL}

Determines how the driver for the external data source validates the rows
of the external table in subsequent queries. REFERENCE processes only those
columns in the SELECT item list. ALL processes the values in all columns, even
those not in the SELECT item list, and validates rows with full and valid column
entries. Under ALL, rows are rejected when errors occur, even on columns
that are not selected. ALL returns consistent results, while REFERENCE returns
varying numbers of rows depending on the columns referenced.

{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}

Enables or disables table-level locks and all triggers on the table, respectively.
ENABLE TABLE LOCK is required if you wish to perform DDL operations on the
table.

A global temporary table is available to all user sessions, but the data stored within a
global temporary table is visible only to the session that inserted it. The ON COMMIT
clause, which is allowed only when creating temporary tables, tells Oracle either to

170 | Chapter 3: Structuring Your Data

truncate the table after each commit against the table (DELETE ROWS) or to truncate
the table when the session terminates (PRESERVE ROWS). For example, this CREATE
TABLE statement creates a global temporary table, shipping_schedule, which retains
inserted rows across multiple transactions:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule
 (ship_date DATE,
 receipt_date DATE,
 received_by VARCHAR2(30),
 amt NUMBER)
ON COMMIT PRESERVE ROWS;

The Oracle physical_attributes_clause. The physical_attributes_clause (shown
in the following code block) defines storage characteristics for an entire local table,
or, if the table is partitioned, for a specific partition (discussed later). To declare the
physical attributes of a new table or change the attributes of an existing table, simply
declare the new values:

-- physical_attributes_clause
[{PCTFREE int | PCTUSED int | INITRANS int |
 storage_clause}]

where:

PCTFREE int
Defines the percentage of free space reserved for each data block in the table.
For example, a value of 10 reserves 10% of the data space for new rows to be
inserted.

PCTUSED int
Defines the maximum percentage of space that can be used in a block in order
for it to be able to receive new rows. For example, a value of 90 means new
rows are inserted in the data block when the space used falls below 90%. The
sum of PCTFREE and PCTUSED cannot exceed 100.

INITRANS int
Rarely tinkered with; defines the allocation of from 1 to 255 initial transactions
to a data block.

In versions prior to 11g the MAXTRANS parameter was used to
define the maximum allowed number of concurrent transac‐
tions on a data block, but this parameter has now been depre‐
cated. Oracle 11g and later automatically set MAXTRANS to 255,
silently overriding any other value that you specify for this
parameter (although existing objects retain their established
MAXTRANS settings).

SQL Command Reference | 171

Structuring
Yo

ur D
ata

The Oracle storage_clause and LOBs. The storage_clause controls a number of
attributes governing the physical storage of data:

-- storage_clause
STORAGE ([{INITIAL int [K | M | G | T]
 | NEXT int [K | M]
 | MINEXTENTS int
 | MAXEXTENTS {int | UNLIMITED}
 | PCTINCREASE int
 | FREELISTS int
 | FREELIST GROUPS int
 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}}] [...])

When delineating the storage clause attributes, enclose them in parentheses and
separate them with spaces—for example, (INITIAL 32M NEXTBM). The attributes are
as follows:

INITIAL int [K | M | G | T]

Sets the initial extent size of the table in bytes, kilobytes (K), megabytes (M),
gigabytes (G), or terabytes (T).

NEXT int [K | M]

Specifies how much additional space to allocate after INITIAL is filled.

MINEXTENTS int

Tells Oracle to create a minimum number of extents. By default, only one is
created, but more can be created when the object is initialized.

MAXEXTENTS int | UNLIMITED

Tells Oracle the maximum number of extents allowed. This value may be set to
UNLIMITED, but this should be used with caution since a table could grow until
it consumes all free space on a disk.

PCTINCREASE int

Controls the growth rate of the object after the first growth. The initial extent
gets allocated as specified, the second extent is the size specified by NEXT, the
third extent is NEXT + (NEXT * PCTINCREASE), and so on. When PCTINCREASE
is set to 0, NEXT is always used. Otherwise, each added extent of storage space is
PCTINCREASE larger than the previous extent.

FREELISTS int

Establishes the number of freelists for each group, defaulting to 1.

FREELIST GROUPS int

Sets the number of groups of freelists, defaulting to 1.

BUFFER_POOL {KEEP | RECYCLE | DEFAULT}

Specifies a default buffer pool or cache for any non-clustered table where all
object blocks are stored. Index-organized tables may have a separate buffer
pool for the index and overflow segments. Partitioned tables inherit the buffer

172 | Chapter 3: Structuring Your Data

pool from the table definition unless they are specifically assigned a separate
buffer pool.

KEEP

Puts object blocks into the KEEP buffer pool; that is, directly into memory.
This enhances performance by reducing I/O operations on the table. KEEP
takes precedence over the NOCACHE clause.

RECYCLE

Puts object blocks into the RECYCLE buffer pool.

DEFAULT

Puts object blocks into the DEFAULT buffer pool. When this clause is
omitted, DEFAULT is the default buffer pool behavior.

In the following example, the table books_sales is defined on the sales tablespace as
consuming an initial 8 MB of space, to grow by no less than 8 MB when the first
extent is full. The table has no less than one and no more than eight extents, limiting
its maximum size to 64 MB:

CREATE TABLE book_sales
 (qty NUMBER,
 period_end_date DATE,
 period_nbr NUMBER)
TABLESPACE sales
STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

A LOB table called large_objects with special handling for text and image storage
might look like this:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING);

The exact syntax used to define a LOB, CLOB, or NCLOB column is defined by the
lob_parameter_clause. LOBs can appear at many different levels within an Oracle
table. For instance, separate LOB definitions could exist in a single table in a parti‐
tion definition, in a subpartition definition, and at the top table-level definition. The
syntax of the lob_parameter_clause follows:

{TABLESPACE tablespace_name] [{SECUREFILE | BASICFILE}]
 [{ENABLE | DISABLE} STORAGE IN ROW]
 [storage_clause] [CHUNK int] [PCTVERSION int]
 [RETENTION [{MAX | MIN int | AUTO | NONE}]]
 [{DEDUPLICATE | KEEP_DUPLICATES}]
 [{NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]}]

SQL Command Reference | 173

Structuring
Yo

ur D
ata

 [FREEPOOLS int]
[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}]}]

In the lob_parameter_clause, each parameter is identical to that at the wider
CREATE TABLE LOB object level. However, the following parameters are unique to
LOBs:

SECUREFILE | BASICFILE

Specifies use of either the high-performance LOB storage (SECUREFILE) or the
traditional LOB storage (BASICFILE, the default). When using SECUREFILE,
you get access to other features such as LOB compression, encryption, and
deduplication.

{ENABLE | DISABLE} STORAGE IN ROW

Defines whether the LOB value is stored inline with the other columns of the
row and the LOB locator (ENABLE), when it is smaller than approximately 4,000
bytes, or outside of the row (DISABLE). This setting cannot be changed once it
is set.

CHUNK int

Allocates int number of bytes for LOB manipulation. int should be a multiple
of the database block size; otherwise, Oracle will round up. int should also be
less than or equal to the value of NEXT, from the storage_clause, or an error
will be raised. When omitted, the default chunk size is one block. This setting
cannot be changed once it is set.

PCTVERSION int
Defines the maximum percentage (int) of the overall LOB storage dedicated to
maintaining old versions of the LOB. When omitted, the default is 10%.

RETENTION [{MAX | MIN int | AUTO | NONE}]

Used in place of PCTVERSION on databases in automatic undo mode. RETENTION
tells Oracle to retain old versions of the LOB. When using SECUREFILE, you may
specify additional options. MAX tells Oracle to allow the undo file to grow until
the LOB segment has reached its maximum size, as defined by the MAXSIZE value
of the storage_clause. MIN limits undo to int seconds if the database is in
flashback mode. AUTO, the default, maintains enough undo for consistent reads.
NONE specifies that the undo is not required.

DEDUPLICATE | KEEP_DUPLICATES

Specifies whether to keep duplicate LOB values within an entire LOB segment
(KEEP_DUPLICATES) or to eliminate duplicate copies (DEDUPLICATE, the default).
Only usable with SECUREFILE LOBs.

NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]
NOCOMPRESS, the default, disables server-side compression of LOBs in the SECURE
FILE format. Alternatively, you may tell Oracle to compress LOBs using either

174 | Chapter 3: Structuring Your Data

a MEDIUM (the default when a value is omitted) or HIGH degree of compression
(HIGH compression incurs more overhead).

The following example shows our large_objects LOB table with added parameters to
control inline storage and retention of old LOBs:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING
 ENABLE STORAGE IN ROW
 RETENTION);

The earlier example added parameter values for STORAGE IN ROW and RETENTION,
but since we did not set one for CHUNK, that value is set to the Oracle default for the
LOB.

Oracle nested tables. Oracle allows the declaration of a NESTED TABLE, in which
a table is virtually stored within a column of another table. The STORE AS clause
enables a proxy name for the table within a table, but the nested table must be
created initially as a user-defined data type. This capability is valuable for sparse
arrays of values, but we don’t recommend it for day-to-day tasks. This example
creates a table called proposal_types along with a nested table called props_nt, which
is stored as props_nt_table:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;
CREATE TABLE proposal_types
 (proposal_category VARCHAR2(50),
 proposals PROPS_NT)
NESTED TABLE props_nt STORE AS props_nt_table;

Oracle compressed tables. Oracle allows compression of both keys and entire
tables. Although compression adds a tiny bit of overhead, it significantly reduces
the amount of disk space consumed by a table. This is especially useful for databases
pushing the envelope in terms of size. Key compression is handled in the ORGANIZE
INDEX clause, while table compression is handled in the ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables. Oracle allows tables to be partitioned
and subpartitioned. You can also break out LOBs onto their own partition(s). A
partitioned table may be broken into distinct parts, possibly placed on separate disk
subsystems to improve I/O performance (based on four strategies: range, hash, list,
or a composite of the first three), or on a system partition. The partitioning syntax is
quite elaborate:

SQL Command Reference | 175

Structuring
Yo

ur D
ata

{ PARTITION BY RANGE (column[, ...])
 [INTERVAL (expression) [STORE IN (tablespace[, ...])]]
 (PARTITION [partition_name]
 VALUES LESS THAN ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY HASH (column[, ...])
 {(PARTITION [partition_name]
 [partitioning_storage_clause][, ...]) |
 PARTITIONS hash_partition_qty [STORE IN (tablespace[, ...])]
 [OVERFLOW STORE IN (tablespace[, ...])]} |
 PARTITION BY LIST (column[, ...]) (PARTITION [partition_name]
 VALUES ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY RANGE (column[, ...])
 {subpartition_by_list | subpartition_by_hash}
 (PARTITION [partition_name] VALUES LESS THAN
 ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY SYSTEM [int] |
 PARTITION BY REFERENCE (constraint)
 [(PARTITION [partition_name] [table_partition_description]
 [, ...])] }

The following example code shows the orders table partitioned by range:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2010 VALUES LESS THAN
 TO_DATE('01-JAN-2010', 'DD-MON-YYYY'),
 PARTITION pre_yr_2014 VALUES LESS THAN
 TO_DATE('01-JAN-2014', 'DD-MON-YYYY'
 PARTITION post_yr_2014 VALUES LESS THAN
 MAXVALUE));

This example creates three partitions on the orders table—one for the orders
taken before the year 2010 (pre_yr_2010), one for the orders taken before the
year 2014 (pre_yr_2014), and another for the orders taken after the year 2014
(post_yr_2014)—all based on the range of dates that appear in the order_date col‐
umn.

The INTERVAL clause further facilitates range partitioning on numeric or datetime
values by automatically creating new partitions when the current range boundaries
are exceeded. The interval expression defines a valid number for the range bound‐
ary. Use the STORE IN subclause to tell Oracle which tablespace(s) will store the
interval partition data. You cannot use interval partitioning on index-organized
tables, with domain indexes, or at a subpartition level.

176 | Chapter 3: Structuring Your Data

The next example creates the orders table based on a hash value in the cust_shp_id
column:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY HASH (cust_shp_id)
 (PARTITION shp_id1 TABLESPACE tblspc01,
 PARTITION shp_id2 TABLESPACE tblspc02,
 PARTITION shp_id3 TABLESPACE tblspc03)
ENABLE ROW MOVEMENT;

The big difference in how the records are divided among partitions between the
hash partition example and the range partition example is that the range partition
code explicitly defines where each record goes, while the hash partition code allows
Oracle to decide (by applying a hash algorithm) which partition to place the record
in. (Note that we also enabled row movement for the table).

In addition to breaking tables apart into partitions (for easier backup, recovery, or
performance reasons), you may further break them apart into subpartitions. The
subpartition_by_list clause syntax follows:

SUBPARTITION BY LIST (column)
[SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name
 [VALUES {DEFAULT | {val | NULL}[, ...]}]
 [partitioning_storage_clause]) |
 hash_subpartition_qty }]

As an example, we’ll re-create the orders table once again, this time using a range-
hash composite partition. In a range-hash composite partition, the partitions are
broken apart by range values, while the subpartitions are broken apart by hashed
values. List partitions and subpartitions are broken apart by a short list of specific
values. Because you must list out all the values by which the table is partitioned, the
partition value is best taken from a small list of values. In this example, we’ve added
a column (shp_region_id) that allows four possible regions:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20))
PARTITION BY RANGE(order_date)
SUBPARTITION BY LIST(shp_region)
 SUBPARTITION TEMPLATE(

SQL Command Reference | 177

Structuring
Yo

ur D
ata

 (SUBPARTITION shp_region_north
 VALUES ('north','northeast','northwest'),
 SUBPARTITION shp_region_south
 VALUES ('south','southeast','southwest'),
 SUBPARTITION shp_region_central
 VALUES ('midwest'),
 SUBPARTITION shp_region_other
 VALUES ('alaska','hawaii','canada')
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2014 VALUES LESS THAN
 TO_DATE('01-JAN-2014', 'DD-MON-YYYY'
 PARTITION post_yr_2014 VALUES LESS THAN
 MAXVALUE))
ENABLE ROW MOVEMENT;

This code example sends the records of the table to one of three partitions based
on the order_date, and further partitions the records into one of four subpartitions
based on the region where the order is being shipped and on the value of the
shp_region column. By using the SUBPARTITION TEMPLATE clause, you apply the
same set of subpartitions to each partition. You can manually override this behavior
by specifying subpartitions for each partition.

You may also subpartition using a hashing algorithm. The subpartition_by_hash
clause syntax follows:

SUBPARTITION BY HASH (column[, ...])
 {SUBPARTITIONS qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL)
 [, ...])] [partitioning_storage_clause]) |
 hash_subpartition_qty))

The table_partition_description clause referenced in the partitioning syntax is,
in itself, very flexible and supports precise handling of LOB and VARRAY data:

[segment_attr_clause] [[NO] COMPRESS [int]]
 [OVERFLOW segment_attr_clause]
[partition_level_subpartition_clause]
[{ LOB { (lob_item[, ...]) STORE AS lob_param_clause |
 (lob_item) STORE AS {lob_segname (log_param_clause) |
 log_segname | (log_param_clause)} } |
 VARRAY varray_item [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}]
 STORE AS LOB { log_segname |
 [log_segname] (log_param_clause) } |
 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] }]

The partition_level_subpartition_clause syntax follows:

{SUBPARTITIONS hash_subpartition_qty
 [STORE IN (tablespace_name[, ...])] |

178 | Chapter 3: Structuring Your Data

 SUBPARTITION subpartition_name
 [VALUES {DEFAULT | {val | NULL}[, ...]]
 [partitioning_storage_clause] }

The partitioning_storage_clause, like the table-level storage_clause defined
earlier, defines how elements of a partition (or subpartition) are stored. The syntax
follows:

[[TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |
 VARRAY varray_item STORE AS LOB log_segname |
 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |
 log_segname [(TABLESPACE tablespace_name)] }]

SYSTEM partitioning is simple because it does not require partitioning key columns
or range or list boundaries. Instead, SYSTEM partitions are equipartitioned subordi‐
nate tables, like nested tables or domain index storage tables, whose parent table
is partitioned. If you leave off the int variable, Oracle will create one partition
called SYS_Pint. Otherwise, it will create int number of partitions, up to a limit
of 1,024K – 1. System partitioned tables are similar to other partitioned or subpar‐
titioned tables, but they do not support the OVERFLOW clause within the table_
partition_description clause.

REFERENCE partitioning is allowable only when the table is created. It enables equi‐
partitioning of a table based on a referential integrity constraint found in an existing
partitioned parent table. All maintenance on the subordinate table with REFERENCE
partitioning occurs automatically,because operations on the parent partition auto‐
matically cascade to the subordinate table.

In this final partitioning example, we’ll again re-create the orders table using a
composite range-hash partition, this time with LOB (actually, an NCLOB column) and
storage elements:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB)
PARTITION BY RANGE(order_date)
SUBPARTITION BY HASH(cust_shp_id)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01
 STORAGE (INITIAL 10M NEXT 20M))
 SUBPARTITIONS subpartn_a,
 PARTITION pre_yr_2014 VALUES LESS THAN
 TO_DATE('01-JAN-2014', 'DD-MON-YYYY') TABLESPACE tblspc02
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02

SQL Command Reference | 179

Structuring
Yo

ur D
ata

 STORAGE (INITIAL 25M NEXT 50M))
 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,
 PARTITION post_yr_2014 VALUES LESS THAN
 MAXVALUE (SUBPARTITION subpartn_1,
 SUBPARTITION subpartn_2,
 SUBPARTITION subpartn_3
 SUBPARTITION subpartn_4))
ENABLE ROW MOVEMENT;

In this somewhat more complex example, we define the orders table with the
added NCLOB table called order_desc. In the pre_yr_2010 and pre_yr_2014 partitions,
we specify that all of the non-LOB data goes to tablespaces tblspc01 and tblspc02,
respectively. However, the NCLOB values of the order_desc column will be stored
in the tblespc_a01 and tblspc_a02 partitions, respectively, with their own unique
storage characteristics. Note that the subpartition subpartn_b under the partition
pre_yr_2014 is also stored in its own tablespace, tblspc_x07. Finally, the last partition
(post_yr_2014) and its subpartitions are stored in the default tablespace for the
orders table, because no partition- or subpartition-level TABLESPACE clause overrides
the default.

Altering partitioned and subpartitioned tables. Anything about partitions and sub‐
partitions that is explicitly set by the CREATE TABLE statement may be altered after
the table is created. Many of the clauses shown here (for example, the SUBPARTITION
TEMPLATE and MAPPING TABLE clauses) are merely repetitions of clauses that were
described earlier; descriptions of these clauses will not be repeated. Altering the
partitions and/or subpartitions of an Oracle table is governed by this syntax:

ALTER TABLE table_name
 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]
 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]
 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]
 [COMPRESS int | NOCOMPRESS]]
 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |
 (SUBPARTITION subpartn_name [partn_list] [storage_clause])}]
 [{ SET INTERVAL (expression) |
 SET SET STORE IN (tablespace[, ...]) }]
 [MODIFY PARTITION partn_name
 {[table_partition_description] |
 [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}]}
 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |
 list_subpartn_attributes}]
 [MOVE {PARTITION | SUBPARTITION} partn_name
 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
 [update_index_clause]]
 [ADD PARTITION [partn_name] [table_partition_description]

180 | Chapter 3: Structuring Your Data

 [[NO]PARALLEL] [update_index_clause]]
 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]
 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]
 [update_index_clause]]
 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name]
 [TRUNCATE {PARTITION | SUBPARTITION} partn_name
 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]
 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}
 (value[, ...])
 [INTO (PARTITION [partn_name1]
 [table_partition_description],
 PARTITION [partn_name2]
 [table_partition_description])]
 [[NO]PARALLEL] [update_index_clause]]
 [MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2
 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]
 [update_index_clause]]
 [EXCHANGE {PARTITION | SUBPARTITION} partn_name
 WITH TABLE table_name [{INCLUDING | EXCLUDING} INDEXES]
 [{WITH | WITHOUT} VALIDATION] [[NO]PARALLEL]
 [update_index_clause] [EXCEPTIONS INTO table_name]]

where:

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]

Modifies a wide variety of attributes for the current partition or a specific
partition identified by partn_name. Refer to the previous section for details on
partition attributes.

SET SUBPARTITION TEMPLATE {hash_subpartn_quantity | (SUBPARTITION
subpartn_name [partn_list] [storage_clause])}

Sets a new subpartition template for the table.

SET INTERVAL (expression | SET SET STORE IN (tablespace[, ...])
Converts a range-partitioned table to an interval-partitioned table or, using SET
STORE IN, changes the tablespace storage of an existing interval-partitioned
table. You can change an interval-partitioned table back to a range-partitioned
table using the syntax SET INTERVAL ().

MODIFY PARTITION partn_name

Changes a wide variety of physical and storage characteristics, including the
storage properties of LOB and VARRAY columns, of a preexisting partition or
subpartition called partn_name. Additional syntax may be appended to the
MODIFY PARTITION partn_name clause:

{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn_specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name (
 {index_partn | index_subpartn}))[, ...]] }] |

SQL Command Reference | 181

Structuring
Yo

ur D
ata

 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }

where:

table_partition_description

Can be used on any partitioned table; described in the previous section.

[REBUILD] UNUSABLE LOCAL INDEXES

Marks the local index partition as UNUSABLE. Adding the optional REBUILD
keyword tells Oracle to rebuild the unusable local index partition as part
of the operation performed by the MODIFY PARTITION statement. This
clause may not be used with any other subclause of the MODIFY PARTITION
statement, nor may it be used on tables with subpartitions. This clause
may be used on any partitioned table.

ADD [subpartn_specification]

Adds a hash or list subpartition specification, as described in the pre‐
vious section, to an existing range partition. This clause may be used
to define range-hash or range-list composite partitions only. Oracle
populates the new subpartition with rows from other subpartitions
using either the hash function or the list values you specify. We
recommend the total number of subpartitions be set to a power of
2 for optimal load balancing. You may add range-list subpartitions
only if the table does not already have a DEFAULT subpartition. When
adding range-list subpartitions, the list value clause is required, but
it cannot duplicate values found in any other subpartition of the cur‐
rent partition. The only storage or physical attribute you may couple
with this clause for both range-hash and range-list subpartitions is the
TABLESPACE clause. Adding the clause DEPENDENT TABLES (table_name
(partn_specification[, ...])[, ...]) [{UPDATE | INVALIDATE}

[GLOBAL] INDEXES (index_name (index_partn)[, ...]))] instructs
Oracle to cascade partition maintenance and alteration operations on a
table to any reference-partitioned child tables (and/or indexes) that may
exist.

COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]

Coalesces the subpartition of a range-hash composite partitioned table.
This clause tells Oracle to distribute the contents of the last hash
subpartition to one or more remaining subpartitions in the set, and
then drop the last hash subpartition. Oracle also drops local index sub‐
partitions corresponding to the subpartition you are coalescing. The
update_index_clause is described later in this list. Global indexes may be
updated or invalidated using the syntax {UPDATE | INVALIDATE} GLOBAL
INDEXES. In addition, local indexes, index partitions, or index subparti‐
tions may be updated using the syntax UPDATE INDEXES (index_name
({index_partn | index_subpartn})).

182 | Chapter 3: Structuring Your Data

{ADD | DROP} VALUES (partn_value[, ...])

Adds a new value (or values) or drops existing values on an existing list-
partitioned table, respectively. Local and global indexes are not affected
by this clause. Values cannot be added to or dropped from a DEFAULT list
partition.

MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ... }

Defines a mapping table for a partitioned table that is an IOT. The
ALLOCATE EXTENT and DEALLOCATE UNUSED clauses were described earlier,
in the syntax description list for the CREATE TABLE statement. This clause
may be used on any type of partitioned table, as long as the table is an
index-organized table.

MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |

list_subpartn_attributes}

Modifies a specific hash or list subpartition according to the subpartition
attributes described in the previous section.

MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE] [table_

partition_description] [[NO]PARALLEL] [update_index_clause]

Moves a specified partition (or subpartition) identified by partn_name

to another partition (or subpartition) described in the table_partition_
description clause. Moving a partition is I/O-intensive, so the optional
PARALLEL clause may be used to parallelize the operation. When it’s omitted,
NOPARALLEL is the default. In addition, you may optionally update or invalidate
the local and global index, as described in the update_index_clause discussed
later in this list.

ADD PARTITION [partn_name] [table_partition_description]

[[NO]PARALLEL] [update_index_clause]

Adds a new partition (or subpartition) called partn_name to the table. The ADD
PARTITION clause supports all aspects of creating a new partition or subparti‐
tion, via the table_partition_description clause. Adding a partition may be
I/O-intensive, so the optional PARALLEL clause may be used to parallelize the
operation. When it’s omitted, NOPARALLEL is the default. In addition, you may
optionally update or invalidate local and global indexes on the table using the
update_index_clause.

update_index_clause

Controls the status assigned to indexes once the partitions and/or subpartitions
of a table are altered. By default, Oracle invalidates the entire index(es) of a
table, not just those portions of the index on the partition and/or subpartition
being altered. You may update or invalidate global indexes on the table or
update one or more specific index(es) on the table, respectively, using this
syntax:

[{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name ({index_partn|index_subpartn}))[, ...]]

SQL Command Reference | 183

Structuring
Yo

ur D
ata

COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]

Takes the contents of the last partition of a set of hash partitions and rehashes
the contents to one or more of the other partitions in the set. The last partition
is then dropped. Obviously, this clause is only for use with hash partitions. The
update_index_clause may be applied to update or invalidate the local and/or
global indexes of the table being coalesced.

DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]

[update_index_clause]

Drops an existing range or list partition or subpartition identified by
partn_name from the table. The data within the partition is also dropped. If
you want to keep the data, use the MERGE PARTITION clause. If you want to
get rid of a hash partition or subpartition, use the COALESCE PARTITION clause.
Tables with only a single partition are not affected by the ALTER TABLE ...
DROP PARTITION statement; instead, use the DROP TABLE statement.

RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name

Renames an existing partition or subpartition from old_partn_name to
new_partn_name.

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STOR

AGE] [[NO]PARALLEL] [update_index_clause]

Removes all of the rows of a partition or subpartition identified by partn_name.
If you truncate a composite partition, all the rows of the subpartition(s) are
also dropped. On IOTs, mapping table partitions and overflow partitions are
also truncated. LOB data and index segments, if the table has any LOB columns,
are also truncated. Finally, disable any existing referential integrity constraints
on the data, or else delete the rows from the table first, then truncate the
partition or subpartition. The optional DROP and REUSE STORAGE subclauses
define whether the space freed by the truncated data is made available for
other objects in the tablespace or remains allocated to the original partition or
subpartition.

SPLIT {PARTITION | SUBPARTITION} partn_name {AT |

VALUES} (value[, ...]) [INTO (PARTITION [partn_name1]

[table_partition_description]), (PARTITION [partn_name2] [table

_partition_description])] [[NO]PARALLEL] [update_index_clause]

Creates from the current partition (or subpartition) identified by partn_name
two new partitions (or subpartitions) called partn_name1 and partn_name2.
These new partitions may have their own complete specification, as defined
by the table_partition_description clause. When such a specification is
omitted, the new partitions inherit all physical characteristics of the current
partition. When splitting a DEFAULT partition, all of the split values go to
partn_name1, while all of the default values go to partn_name2. For IOTs,
Oracle splits any mapping table partition in a manner corresponding to the
split. Oracle also splits LOB and OVERFLOW segments, but you may specify your

184 | Chapter 3: Structuring Your Data

own LOB and OVERFLOW storage characteristics, as described in “The Oracle
storage_clause and LOBs” on page 172.

{AT | VALUES} (value[, ...])

Splits range partitions (using AT) or list partitions (using VALUES) accord‐
ing to the value(s) you specify. The AT (value[, ...]) clause defines
the new noninclusive upper range for the first of the two new partitions.
The new value should be less than the partition boundary of the current
partition, but greater than the partition boundary of the next-lowest par‐
tition (if one exists). The VALUES (value1[, ...]) clause defines the
values to go into the first of the two new list partitions. The first new list
partition is built from value1, and the second is built from the remaining
partition values in the current partition identified by partn_name. The
value list must include values that already exist in the current partition,
but it cannot contain all of the values of the current partition.

INTO (PARTITION [partn_name1] [table_partition_description]),

(PARTITION [partn_name2] [table_partition_description])

Defines the two new partitions that result from the split. At a minimum,
the two PARTITION keywords, in parentheses, are required. Any character‐
istics not explicitly declared for the new partitions are inherited from the
current partition identified by partn_name, including any subpartitioning.
There are a few restrictions to note. When subpartitioning range-hash
composite partitioned tables, only the TABLESPACE value is allowed for
the subpartitions. Subpartitioning is not allowed at all when splitting
range-list composite partitioned tables. Any indexes on heap-organized
tables are invalidated by default when the table is split. You must use the
update_index_clause to update their status.

MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2

[INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]

[update_index_clause]

Merges the contents of two or more partitions or subpartitions of a table into
a single new partition. Oracle then drops the two original partitions. Merged
range partitions must be adjacent and are then bound by the higher boundary
of the original two partitions when merged. Merged list partitions need not
be adjacent and result in a single new partition with a union of the two sets
of partition values. If one of the list partitions was the DEFAULT partition,
the new partition will be the DEFAULT. Merged range-list composite partitions
are allowed but may not have a new subpartition template. Oracle creates a
subpartition template from the existing one(s) or, if none exist, creates a new
DEFAULT subpartition. Physical attributes not defined explicitly are inherited
from the table-level settings. By default, Oracle makes all local index parti‐
tions and global indexes UNUSABLE unless you override this behavior using the
update_index_clause. (The exception to this rule is with IOTs, which, being
index-based, will remain USABLE throughout the merge operation.) Merge

SQL Command Reference | 185

Structuring
Yo

ur D
ata

operations are not allowed on hash-partitioned tables; use the COALESCE PARTI
TION clause instead.

EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE

table_name[{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT}

VALIDATION] [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO

table_name]

Exchanges the data and index segments of a nonpartitioned table with those
of a partitioned table, or the data and index segments of a partitioned table
of one type with those of a partitioned table of another type. The structure of
the tables in the exchange must be identical, including the same primary key.
All segment attributes (e.g., tablespaces, logging, and statistics) of the current
partitioned table, called partn_name, and the table it is being exchanged with,
called table_name, are exchanged. Tables containing LOB columns will also
exchange LOB data and index segments. Additional syntax details that have not
previously been defined elsewhere in this list follow:

WITH TABLE table_name

Defines the table that will exchange segments with the current partition or
subpartition.

{INCLUDING | EXCLUDING} INDEXES

Exchanges local index partitions or subpartitions with the table index
(on nonpartitioned tables) or the local index (on hash-partitioned tables),
using the INCLUDING INDEXES clause. Alternatively, marks all index parti‐
tions and subpartitions as well as regular indexes and partitioned indexes
of the exchanged table with the UNUSABLE status, using the EXCLUDING
INDEXES clause.

{WITH | WITHOUT} VALIDATION

Returns errors when any rows in the current table fail to map into a parti‐
tion or subpartition of the exchanged table, using the WITH VALIDATION
clause. Alternatively, the WITHOUT VALIDATION clause may be included to
skip checking of row mapping between the tables.

EXCEPTIONS INTO table_name

Places the ROWIDs of all rows violating a UNIQUE constraint (in DISABLE
VALIDATE state) on the partitioned table. When this clause is omitted,
Oracle assumes there is a table in the current schema called EXCEPTIONS.
The EXCEPTIONS table is defined in the utlexcpt.sql and utlexpt1.sql scripts
that ship with Oracle. Refer to the Oracle documentation if you need these
scripts.

There are a couple of caveats to remember about altering a partitioned table. First,
altering a partition on a table that serves as the source for one or more materialized
views requires that the materialized views be refreshed. Second, bitmap join indexes
defined on the partitioned table being altered will be marked UNUSABLE. Third,
several restrictions apply if the partitions (or subpartitions) are ever spread across

186 | Chapter 3: Structuring Your Data

tablespaces that use different block sizes. Refer to the Oracle documentation when
attempting these sorts of alterations to a partitioned table.

In the next few examples, assume we are using the orders table, partitioned as shown
here:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2010 VALUES LESS THAN
 TO_DATE('01-JAN-2010', 'DD-MON-YYYY'),
 PARTITION pre_yr_2014 VALUES LESS THAN
 TO_DATE('01-JAN-2014', 'DD-MON-YYYY'
 PARTITION post_yr_2014 VALUES LESS THAN
 MAXVALUE));

The following statement will mark all of the local index partitions as UNUSABLE in
the orders table for the post_yr_2014 partition:

ALTER TABLE orders MODIFY PARTITION post_yr_2014
 UNUSABLE LOCAL INDEXES;

However, say we’ve decided to now split the orders table partition post_yr_2014
into two new partitions, pre_yr_2018 and post_yr_2018. Values that are now less
than MAXVALUE will be stored in the post_yr_2018 partition, while values less than
'01-JAN-2018' will be stored in pre_yr_2018:

ALTER TABLE orders SPLIT PARTITION post_yr_2014
 AT (TO_DATE('01-JAN-2018','DD-MON-YYYY'))
 INTO (PARTITION pre_yr_2018, PARTITION post_yr_2018);

Assuming that the orders table contained a LOB or a VARRAY column, we could fur‐
ther refine the alteration by including additional details for handling these columns,
while also updating the global indexes as the operation completes:

ALTER TABLE orders SPLIT PARTITION post_yr_2014
 AT (TO_DATE('01-JAN-2018','DD-MON-YYYY'))
 INTO
 (PARTITION pre_yr_2018
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),
 PARTITION post_yr_2018)
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))
 UPDATE GLOBAL INDEXES;

Now, assuming the orders table has been grown at the upper end, let’s merge
together the partitions at the lower end:

SQL Command Reference | 187

Structuring
Yo

ur D
ata

ALTER TABLE orders
 MERGE PARTITIONS pre_yr_2010, pre_yr_2014
 INTO PARTITION yrs_2014_and_earlier;

After a few more years have passed, we might want to get rid of the oldest partition,
or at least give it a better name:

ALTER TABLE orders DROP PARTITION yrs_2014_and_earlier;
ALTER TABLE orders
 RENAME PARTITION yrs_2014_and_earlier TO pre_yr_2014;

Finally, let’s truncate a table partition, delete all of its data, and return the empty
space for use by other objects in the tablespace:

ALTER TABLE orders
 TRUNCATE PARTITION pre_yr_2014
 DROP STORAGE;

As these examples illustrate, anything related to partitioning and subpartitioning
that can be created with the Oracle CREATE TABLE statement can later be changed,
augmented, or cut down using the Oracle ALTER TABLE statement.

Organized tables: Heaps, IOTs, and external tables. Oracle offers powerful means
of controlling the physical storage behavior of tables. The most useful aspect of the
ORGANIZATION HEAP clause is that you can now compress an entire table within
Oracle. This is extremely useful for reducing disk storage costs in database environ‐
ments with multiterabyte tables. The following example creates the orders table in
a compressed and logged heap, along with a primary key constraint and storage
details:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 COMPRESS LOGGING
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

To define the same table using an index-organized table based on the order_date
column, we would use this syntax:

188 | Chapter 3: Structuring Your Data

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 INCLUDING order_date
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

Finally, we’ll create an external table that stores our customer shipping information,
called cust_shipping_external:

CREATE TABLE cust_shipping_external
 (external_cust_nbr NUMBER(6),
 cust_shp_id NUMBER,
 shipping_company VARCHAR2(25))
ORGANIZATION EXTERNAL
 (TYPE oracle_loader
 DEFAULT DIRECTORY dataloader
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY newline
 BADFILE 'upload_shipping.bad'
 DISCARDFILE 'upload_shipping.dis'
 LOGFILE 'upload_shipping.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (client_id INTEGER EXTERNAL(6),
 shp_id CHAR(20),
 shipper CHAR(25)))
 LOCATION ('upload_shipping.ctl'))
REJECT LIMIT UNLIMITED;

In this example, the external table type is ORACLE_LOADER and the default directory
is DATALOADER. This example illustrates the fact that you define the metadata of the
table within Oracle and then describe how that metadata references a data source
outside of the Oracle database server itself.

Oracle XMLType and object-type tables. When an Oracle XMLType table is created,
Oracle automatically stores the data in a CLOB column, unless you create an XML
schema–based table. (For details on Oracle’s XML support, refer to the vendor
documentation.) The following code example first creates an XMLType table,

SQL Command Reference | 189

Structuring
Yo

ur D
ata

distributors, with the implicit CLOB data storage, then creates a second such table,
suppliers, with a more sophisticated XML schema definition:

CREATE TABLE distributors OF XMLTYPE;
CREATE TABLE suppliers OF XMLTYPE
XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
ELEMENT "vendors";

A key advantage of tables based on XML schemas is that you can create B-tree
indexes on them. In the following example, we create an index on suppliercity:

CREATE INDEX suppliercity-index
ON suppliers
(S."XMLDATA"."ADDRESS"."CITY");

You may similarly create tables using a mix of standard and XMLTYPE columns. In
this case, the XMLTYPE column may store its data as a CLOB, or it may store its data
in an object-relational column of a structure determined by your specification. For
example, here we re-create the distributors table (this time with some added storage
specifications) and the suppliers table with both standard and XMLTYPE columns:

CREATE TABLE distributors
 (distributor_id NUMBER,
 distributor_spec XMLTYPE)
XMLTYPE distributor_spec
STORE AS CLOB
 (TABLESPACE tblspc_dist
 STORAGE (INITIAL 10M NEXT 5M)
 CHUNK 4000
 NOCACHE
 LOGGING);
CREATE TABLE suppliers
 (supplier_id NUMBER,
 supplier_spec XMLTYPE)
XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
 ELEMENT "vendors"
OBJECT IDENTIFIER IS SYSTEM GENERATED
OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;

When creating XML and object tables, you may refer to inline_ref_constraint
and table_ref_constraint clauses. The syntax for an inline_ref_constraint
clause is:

{SCOPE IS scope_table |
 WITH ROWID |
 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

The only difference between an inline reference constraint and a table reference
constraint is that inline reference constraints operate at the column level and table
reference constraints operate at the table level. (This is essentially the same behavior

190 | Chapter 3: Structuring Your Data

and coding rule of standard relational constraints like PRIMARY KEY or FOREIGN
KEY.) The syntax for a table_ref_constraint follows:

{SCOPE FOR (ref_col | ref_attr) IS scope_table |
 REF (ref_col | ref_attr) WITH ROWID |
 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)
 REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

The constraint_state clause contains a number of options that were defined
earlier, in the discussion of the Oracle CREATE TABLE statement. However, these
options are applied only to the condition of the scope reference:

[NOT] DEFERRABLE
INITIALLY {IMMEDIATE | DEFERRED}
{ENABLE | DISABLE}
{VALIDATE | NOVALIDATE}
{RELY | NORELY}
EXCEPTIONS INTO table_name
USING INDEX {index_name | (create_index_statement) | index_attributes}

Object-type tables are useful for creating tables containing user-defined types. For
example, the following code creates the building_type type:

CREATE TYPE OR REPLACE building_type AS OBJECT
 (building_name VARCHAR2(100),
 building_address VARCHAR2(200));

We can then create a table called offices-object-table that contains the object and
defines some of its characteristics, such as OID information. In addition, we’ll create
two more tables, based upon building_type, that reference the object type as an
inline_ref_constraint and a table_ref_constraint, respectively:

CREATE TABLE offices_object_table
 OF building_type (building_name PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;
CREATE TABLE leased_offices
 (office_nbr NUMBER,
 rent DEC(9,3),
 office_ref REF building_type
 SCOPE IS offices_object_table);
CREATE TABLE owned_offices
 (office_nbr NUMBER,
 payment DEC(9,3),
 office_ref REF building_type
 CONSTRAINT offc_in_bld REFERENCES offices_object_table);

In these examples, the SCOPE IS clause defines the inline_ref_constraint, while
the CONSTRAINT clause defines the table_ref_constraint.

Oracle ALTER TABLE. When using the Oracle command ALTER TABLE, you are able
to ADD, DROP, or MODIFY every aspect of each element of the table. For example, the

SQL Command Reference | 191

Structuring
Yo

ur D
ata

syntax diagram shows that the method for adding or modifying an existing column
includes its attributes, but you need to explicitly state that the attributes include
any Oracle-specific extensions. So, while the SQL standard only lets you modify
attributes such as DEFAULT or NOT NULL (as well as column-level constraints assigned
to the column), Oracle also allows you to alter any special characteristics that
might exist, such as LOB, VARRAY, NESTED TABLE, index-organized table, CLUSTER, or
PARTITION settings.

For example, the following code adds a new column to a table in Oracle and adds a
new, unique constraint to that table:

ALTER TABLE titles
ADD subtitle VARCHAR2(32) NULL
CONSTRAINT unq_subtitle UNIQUE;

When a foreign key constraint is added to a table, the DBMS verifies that all existing
data in the table meets that constraint. If not, the ALTER TABLE fails.

Any queries that use SELECT * return the new columns,
even if this was not planned. Precompiled objects, such as
stored procedures, can return any new columns if they use the
%ROWTYPE attribute. Otherwise, a precompiled object may not
return any new columns.

Oracle also allows you to perform multiple actions, such as ADD or MODIFY, on
multiple columns by enclosing the actions within parentheses. For example, the
following command adds several columns to a table with a single statement:

ALTER TABLE titles
ADD (subtitles VARCHAR2(32) NULL,
 year_of_copyright INT,
 date_of_origin DATE);

PostgreSQL
PostgreSQL supports the SQL standards for CREATE and ALTER TABLE, with a couple
of extensions that enable you to quickly build a new table from existing table
definitions. Following is the syntax for CREATE TABLE:

CREATE [LOCAL | [TEMP]ORARY | FOREIGN][UNLOGGED] TABLE table_name
 (column_name data_type attributes[, ...])
| [column_name [data_type] GENERATED ALWAYS AS (expression)
 STORED][,...]]
| [column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY
 sequence_options]
[, ...]
CONSTRAINT constraint_name [{NULL | NOT NULL}]
{[UNIQUE] | [PRIMARY KEY (column_name[, ...])] |
 [CHECK (expression)] |
 REFERENCES reference_table (reference_column[, ...])

192 | Chapter 3: Structuring Your Data

 [MATCH {FULL | PARTIAL | default}]
 [ON {UPDATE | DELETE}
 {CASCADE | NO ACTION | RESTRICT | SET NULL |
 SET DEFAULT value}]
 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}]}[, ...] |
 [table_constraint][, ...]
[INHERITS (inherited_table[, ...])]
[PARTITION BY {RANGE | LIST | HASH}
 ({column_name | (expression)}
 [PARTITION OF partition_clause]
 [COLLATE collation] [opclass][, ...])]
[USING method]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[AS select_statement]

And the PostgreSQL syntax for ALTER TABLE is:

ALTER [FOREIGN] TABLE [ONLY] table_name [*]
[ADD [COLUMN] column_name data_type attributes [...]
[column_name data_type GENERATED ALWAYS AS (expression)
 [STORED][,...]]
[column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY
 sequence_options]
[, ...]
| [ALTER [COLUMN] column_name
 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]
| [RENAME [COLUMN] column_name TO new_column_name]
| [RENAME TO new_table_name]
| [ADD table_constraint]
| [DROP CONSTRAINT constraint_name RESTRICT]
| [SET { LOGGED | UNLOGGED }]
| [partition_clause]
| [OWNER TO new_owner]

The parameters are as follows:

LOCAL | [TEMP]ORARY | FOREIGN

There are three mutually exclusive kinds of tables you can create in Post‐
greSQL. When not specified, the table is LOCAL. A LOCAL table is one that
resides in the database and can be queried and updated based on the user
permissions set.

A TEMPORARY (often created using TEMP instead of fully spelled out) table is a
table that exists only for the life of a session and is automatically deleted after
the session is closed. It can, however, be deleted and re-created by the session.
TEMP tables are always stored in a pg_temp schema determined by PostgreSQL.
As such, they can never be qualified with a schema name. When naming a
TEMP table care must be taken to use a prefix to distinguish it from real tables;
otherwise, it is possible to accidentally delete a real table when deleting a
TEMP table. This is because the DROP TABLE command does not take TEMP as a
qualifier.

SQL Command Reference | 193

Structuring
Yo

ur D
ata

A FOREIGN table is a table that resides in another database, is a link to a file of
data, and/or exists on another server. You’ll see some examples of this later in
this chapter.

UNLOGGED

For LOCAL tables, you can qualify with the word UNLOGGED. LOGGED is assumed if
UNLOGGED is not specified. An unlogged table is one in which only the CREATION
DDL is logged, and not the loading or updating of it. This has a couple of
consequences, which may be good or bad for your use case. Loading data
into an unlogged table is much faster than loading into a logged one. Since
unlogged tables are not logged, data residing in the tables is never replicated
to database replicas; however, the creation of the unlogged table is replicated.
In the event of a database crash, an unlogged table is purged of its contents.
Therefore, you should never store data in an unlogged table that you cannot
replenish from other sources. An unlogged table can be easily converted to a
logged table using ALTER TABLE <> SET LOGGED.

table_constraint

Allows standard SQL constraints to be assigned at the column or table level.
PostgreSQL fully supports PRIMARY KEY, UNIQUE, NOT NULL, and DEFAULT con‐
straints and provides syntax support for CHECK, FOREIGN KEY, and REFERENCES
constraints. In addition, PostgreSQL provides an EXCLUDE constraint that is
an extension to the standard. Exclusion constraints are used to guarantee two
records don’t overlap, given a set of columns. For example, you might define
a table with schedules for each room and put in an exclusion constraint to
prevent the room from having overlapping bookings.

REFERENCES ... MATCH ... ON {UPDATE | DELETE} ...
Checks a value inserted into the column against the values of a column in
another table. This clause can also be used as part of a FOREIGN KEY declara‐
tion. The MATCH options are FULL, PARTIAL, and the default, where MATCH has
no other keyword. A FULL match forces all columns of a multicolumn foreign
key either to be NULL or to contain a valid value. The default allows mixed
NULLs and values. PARTIAL matching is a valid syntax, but is not supported.
The REFERENCES clause also allows several different behaviors to be declared for
ON DELETE and/or ON UPDATE referential integrity:

NO ACTION

Produces an error when the foreign key is violated (the default).

RESTRICT

Synonym for NO ACTION.

CASCADE

Sets the value of the referencing column to the value of the referenced
column.

194 | Chapter 3: Structuring Your Data

SET NULL

Sets the value of the referencing column to NULL.

SET DEFAULT value

Sets the referencing column to its declared default value or NULL, if no
default value exists.

[NOT] DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]

The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to defer
evaluation of all constraints until the end of a transaction. NOT DEFERRA
BLE is the default behavior for the REFERENCES clause. Similar to the DEFER
RABLE clause is the INITIALLY clause: specifying INITIALLY DEFERRED

checks constraints at the end of a transaction; INITIALLY IMMEDIATE

checks constraints after each statement (the default).

PARTITION BY

A table with a PARTITION BY clause is called a partitioned table. See “Post‐
greSQL partitioned tables” on page 197 for details.

PARTITION OF

A table with a PARTITION OF clause is a partition of a partitioned table. It can
be a LOCAL table or a FOREIGN table. See “PostgreSQL partitioned tables” on
page 197 for details.

FOREIGN KEY

Can be declared only as a table-level constraint, not as a column-level con‐
straint. All options for the REFERENCES clause are supported as part of the
FOREIGN KEY clause. The syntax follows:

[FOREIGN KEY (column_name[, ...]) REFERENCES...]

INHERITS inherited_table

Specifies a table or tables from which the table you are creating inherits all
columns. The newly created table also inherits columns attached to tables
higher in the hierarchy.

ON COMMIT {DELETE | PRESERVE} ROWS

Used only with temporary tables. This clause controls the behavior of the
temporary table after records are committed to the table. ON COMMIT DELETE
ROWS clears the temporary table of all rows after each commit. This is the
default if the ON COMMIT clause is omitted. ON COMMIT PRESERVE ROWS saves the
rows in the temporary table after the transaction has committed.

AS select_statement

Enables you to create and populate a table with data from a valid SELECT
statement. The column names and data types do not need to be defined, since
they are inherited from the query. The CREATE TABLE ... AS statement has
similar functionality to SELECT ... INTO, but is more readable.

SQL Command Reference | 195

Structuring
Yo

ur D
ata

ONLY

Specifies that only the named table is affected by the ALTER TABLE statement,
not any parent tables or subtables in the table hierarchy.

OWNER TO new_owner

Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you should
limit the number of columns to well below 1,600, for performance reasons. For
example:

CREATE TABLE distributors
 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',
 dist_id INTEGER GENERATED BY DEFAULT AS IDENTITY,
 modtime TIMESTAMP TZ DEFAULT CURRENT_TIMESTAMP,
 has_vowel boolean GENERATED ALWAYS AS (name ~* '[aeiou]') STORED
);

Unique to PostgreSQL is the ability to create column-level
constraints with multiple columns. Since PostgreSQL also
supports standard table-level constraints, the SQL standard
approach is still the recommended approach.

PostgreSQL’s implementation of ALTER TABLE allows the addition of extra columns
and generated columns using the ADD keyword. Existing columns may have new
default values assigned to them using ALTER COLUMN ... SET DEFAULT, while ALTER
COLUMN ... DROP DEFAULT allows the complete erasure of a column-based default.
In addition, new defaults may be added to columns using the ALTER clause, but only
newly inserted rows will be affected by such new default values. RENAME allows new
names for existing columns and tables.

PostgreSQL follows the SQL specification on how to define generated columns
using the GENERATED ALWAYS AS (expression) syntax; however, it must be fol‐
lowed by the keyword STORED, and the data type specification of the column is not
optional. PostgreSQL doesn’t currently support virtual columns that are computed
at query time, but this is planned to change in the future. Another restriction of
generated columns is that the expression can only use immutable functions and
other columns in the table. Expressions cannot use other generated columns or
aggregations of the table.

PostgreSQL tables as types. PostgreSQL automatically creates a pseudo-type defi‐
nition and a companion pseudo-array type definition for tables. One use case for
this is to allow a table definition to be used as a column type in another table,
similar to Oracle’s nested table feature, in which a table is virtually stored within
a column of another table. It is also useful as a return type for functions, and is
valuable for structured arrays of values in a table.

196 | Chapter 3: Structuring Your Data

This example creates a table called person and uses it in the definition of another
table, party, using both the array type definition and the basic type definition:

CREATE TABLE person(name varchar(50), phone varchar(20));
CREATE TABLE party
 (id bigint NOT NULL GENERATED ALWAYS AS IDENTITY,
 date_event date,
 party_planner person,
 invited_people person[]);

The [] in the definition denotes that we want to store an array where each element
has the structure of the person table. Specifying the table name person without the
brackets means we want the column to only store one person.

PostgreSQL typed tables. PostgreSQL tables can also be created from composite
types. Here is an example that creates a type and then uses it to define a table:

CREATE TYPE inventory_item AS
 (name varchar(50),
 weight_lb numeric(10,2),
 price numeric(10,2));

CREATE TABLE pens OF inventory_item;

A table whose definition is derived from a composite type can never have columns
added to or removed from it directly. This needs to be done on the type with
CASCADE to cascade to the related tables, columns, and any other objects that use it.
The following is an example of how you would add a new column to all tables that
are defined by the inventory_item type:

ALTER TYPE inventory_item
 ADD ATTRIBUTE upc_code varchar(100)
 CASCADE;

PostgreSQL partitioned tables. PostgreSQL allows tables to be partitioned and sub‐
partitioned. A partitioned table may be broken into distinct parts, possibly placed in
separate tablespaces or on separate servers to improve I/O performance (based on
three strategies: range, hash, or list). A partitioned table can be further partitioned
using the same strategies and need not use the same strategy as its parent. There
are two elements to partitioning: the partitioned table that defines the structure
but stores no data and the partitions that store the data. Both are detailed in the
vendor’s documentation.

The partitioned table has this clause:

{ PARTITION BY [RANGE | HASH | LIST] (column[, ...]) }

And the partition of a table has this clause:

{ PARTITION OF partitioned_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }

SQL Command Reference | 197

Structuring
Yo

ur D
ata

https://oreil.ly/E7zOX

 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
}

Each kind of partition takes a different partition_bound_spec:

RANGE

FOR VALUES FROM (somevalue_1) TO (somevalue_2)

LIST

FOR VALUES IN(somevalue_1, somevalue_2, ...)

HASH

VALUES WITH (modulus some_integer_1 , remainder some_integer_2)

Partitions can be added to and removed from a partitioned table using ALTER TABLE
as well.

The following example code shows the orders table partitioned by range:

CREATE TABLE orders
 (order_number bigint,
 order_date DATE,
 cust_nbr bigint,
 price numeric(12,2),
 qty integer,
 cust_shp_id bigint)
PARTITION BY RANGE(order_date);

CREATE TABLE pre_yr_2000
 PARTITION OF orders FOR VALUES
 FROM (minvalue) TO ('2000-01-01');

ALTER TABLE orders DETACH PARTITION pre_yr_2000;
ALTER TABLE orders ATTACH PARTITION pre_yr_2000
 FOR VALUES FROM (minvalue) TO ('2000-01-01');

Primary keys and indexes applied on a partitioned table are automatically applied
on all the partitions. One caveat is that primary keys must contain the partitioning
keys. This often means you’ll have to define a compound primary key in cases
where you only want one column.

PostgreSQL foreign tables. PostgreSQL offers another kind of table called a
FOREIGN table, which has a corresponding SERVER and users. A foreign table is a
table that lives on a different server, database, or filesystem. It uses a connecting
mechanism called a foreign data wrapper (FDW), installed via the PostgreSQL
CREATE EXTENSION command.

PostgreSQL’s foreign data support follows the SQL for Management of External
Data (SQL-MED) standard. For most cases, a foreign table can be queried like any
other table, but the performance is often worse than with a local table.

198 | Chapter 3: Structuring Your Data

https://oreil.ly/U3yXu
https://oreil.ly/U3yXu

Most PostgreSQL installs (except possibly for DBaaS ones) come packaged with two
foreign data wrappers: postgres_fdw and file_fdw. postgres_fdw allows connecting
to another Postgres database, which could be on the same PostgreSQL service,
another service running on the same server, or a PostgreSQL service running on
a different server. file_fdw allows for connecting to a delimited text file. These two
FDWs provide similar functionality to MySQL’s CSV and FEDERATED and MariaDB’s
CONNECT storage engines, and SQL Server’s linked servers.

There are many additional FDWs available, for connecting to web services, different
file formats, and different databases. For example, there’s an oracle_fdw wrapper
for connecting to Oracle databases and an ogr_fdw wrapper that supports numer‐
ous spatial and non-spatial data sources (relational, file, ODBC, and web service).
Many of these are provided by PostgreSQL package management systems. Once the
binaries are installed, any of these can be installed in a database using the CREATE
EXTENSION command. A specific FDW can only be installed once in a database but
can have many server definitions that use it.

Here is an example for connecting to a CSV file:

CREATE EXTENSION file_fdw;
CREATE SERVER svr_files FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE fdt_orders
 (order_number bigint,
 order_date DATE,
 cust_nbr bigint,
 price numeric(12,2),
 qty integer,
 cust_shp_id bigint)
SERVER svr_files
OPTIONS (
 format 'csv', header 'true',
 filename '/external_data/order.psv',
 delimiter '|', null ''
);

Some FDWs support a command called IMPORT FOREIGN SCHEMA that allows for
automatically creating a set of foreign tables without using the CREATE FOREIGN
TABLE command directly. Many servers also require that a user mapping must
exist for a user to connect. The user mapping can be for a particular user role or
group role, and a server can have multiple user mappings. Here is an example for
connecting to another PostgreSQL database and creating foreign tables for all tables
in the remote database’s public schema in the local remote_public schema:

CREATE EXTENSION postgres_fdw;
CREATE SERVER svr_pg_remote FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'ip_or_name', port '5432', dbname 'pagila');
CREATE USER MAPPING FOR trusted_users_group SERVER svr_pg_remote
OPTIONS (user 'role_on_foreign', password 'your_password');
CREATE SCHEMA IF NOT EXISTS remote_public;
IMPORT FOREIGN SCHEMA public FROM SERVER svr_pg_remote
INTO remote_public;

SQL Command Reference | 199

Structuring
Yo

ur D
ata

As mentioned earlier, partitions of a partitioned table can reside on other servers.
This is accomplished by making a foreign table with the same structure as the
partitioned table and attaching it as a partition. The foreign table need not be a
PostgreSQL table.

SQL Server
SQL Server offers a plethora of options when defining or altering a table, its col‐
umns, and its table-level constraints. In addition, SQL Server now supports several
kinds of tables beyond the standard relational table, including memory-optimized
tables, bitemporal tables, XML tables, and JSON tables.

SQL Server does not support the CREATE TABLE ... AS select_statement syntax.
Instead, use the SELECT ... INTO syntax.

Its CREATE TABLE syntax is:

CREATE TABLE table_name
[AS FILETABLE]
(
column_name data_type { [DEFAULT default_value]
 | [IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]
 [ROWGUIDCOL] [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE}
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]
 | [[FOREIGN KEY]
 REFERENCES reference_table [(reference_column[, ...])]
 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]
 [NOT FOR REPLICATION]]
 | [CHECK [NOT FOR REPLICATION] (expression)]
 | [COLLATE collation_name]
 | column_name AS computed_column_expression }
[, ...]
| [table_constraint][, ...]
| [table_index]
)
[ON {filegroup | DEFAULT | partition_details}]
[FILESTREAM_ON {filegroup | DEFAULT | partition_details}]
[TEXTIMAGE_ON {filegroup | DEFAULT}]
[WITH (table_option [, ...])]

And the SQL Server version of ALTER TABLE is:

ALTER TABLE table_name
[ALTER COLUMN column_name new_data type attributes {ADD | DROP}
 ROWGUIDCOL]
| [ADD [COLUMN] column_name data type attributes][, ...]]
| [WITH CHECK | WITH NOCHECK] ADD table_constraint][, ...]
| [DROP {[CONSTRAINT] constraint_name | COLUMN column_name}][, ...]
| [{CHECK | NOCHECK} CONSTRAINT {ALL | constraint_name[, ...]}]
| [{ENABLE | DISABLE} TRIGGER {ALL | trigger_name[, ...]}]

200 | Chapter 3: Structuring Your Data

The parameters are as follows:

table_name

Specifies the new table’s name using either a one-, two-, or three-part naming
convention of [<database_name>].[<schema_name>].<table_name>.

AS FILETABLE

Specifies an optional table type that supports the Windows file namespace
and offers compatibility with Windows applications and SQL Server simultane‐
ously. Commonly used in situations where an application needs direct access
to data on the Windows filesystem, but the application designers also want
the benefits of ACID transactions and point-in-time recovery offered by a
relational database. FILETABLE does not allow column definitions since it has
a fixed schema. Refer to the vendor documentation on filetables for more
information.

DEFAULT default_value

Applies to any column except those with a TIMESTAMP data type or an IDENTITY
property. The default_value must be a constant value such as a character
string or a number, a system function such as GETDATE(), or NULL.

IDENTITY [(seed, increment)]

Creates and populates the column with a monotonically increasing number,
when applied to an integer column. The IDENTITY starts counting at the value
of seed and increases by the value of increment. When either is omitted, the
default is 1.

NOT FOR REPLICATION

Specifies that the values of an IDENTITY or FOREIGN KEY are not replicated to
subscribing servers. This helps in situations in which different servers require
the same table structures, but not the exact same data.

ROWGUIDCOL

Identifies a column as a globally unique identifier (GUID), which ensures no
two values are ever repeated across any number of servers. Only one such
column may be identified per table. This clause does not, however, create the
unique values itself. They must be inserted using the NEWID() function.

{PRIMARY KEY | UNIQUE}
Defines a unique or primary key constraint for the table. The primary key dec‐
laration differs from the SQL standard by allowing you to assign the CLUSTERED
or NONCLUSTERED attributes on the primary key index, as well as a starting fill
factor. (Refer to the section “PRIMARY KEY Constraints” on page 61 for more
information.) The attributes of a unique or primary key include:

CLUSTERED | NONCLUSTERED

Declares that the column or columns of the primary key set the physical
sort order of the records in the table (CLUSTERED), or that the primary key

SQL Command Reference | 201

Structuring
Yo

ur D
ata

index maintains pointers to all of the records of the table (NONCLUSTERED).
CLUSTERED is the default when this clause is omitted.

WITH FILLFACTOR = int

Declares that a percentage of space (int) should remain free on each data
page when the table is created. SQL Server does not maintain the fill factor
over time, so you should rebuild the index on a regular basis.

ON {filegroup | DEFAULT}

Specifies that the primary key either is located on the preexisting named
filegroup or is assigned to the DEFAULT filegroup.

FOREIGN KEY

Checks values as they are inserted into the table against a column in another
table in order to maintain referential integrity. Foreign keys are described in
detail in Chapter 2. A foreign key can only reference columns that are defined
as a PRIMARY KEY or UNIQUE index on the referencing table. A referential action
may be specified to take place on the reference_table when the record is
deleted or updated, according to the following:

ON {DELETE | UPDATE}

Specifies that an action needs to happen in the local table when either (or
both) an UPDATE or DELETE occurs on the referenced table.

CASCADE

Specifies that any DELETE or UPDATE also takes place on the referring table
for any records dependent on the value of the FOREIGN KEY.

NO ACTION

Specifies that no action occurs in the referring table when a record in the
current table is deleted or updated.

NOT FOR REPLICATION

Specifies that an IDENTITY property should not be enforced when the
data is replicated from another database. This ensures that data from the
published server is not assigned new identity values.

CHECK

Ensures that a value inserted into the specified column of the table is a valid
value, based on the CHECK expression. For example, the following shows a table
with two column-level CHECK constraints:

CREATE TABLE people
 (people_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED
 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '
 [A-Z][A-Z][A-Z][A-Z]'),
 people_name VARCHAR(40) NULL,
 people_addr1 VARCHAR(40) NULL,
 people_addr2 VARCHAR(40) NULL,

202 | Chapter 3: Structuring Your Data

 city VARCHAR(20) NULL,
 state CHAR(2) NULL
 CONSTRAINT def_st DEFAULT ("CA")
 CONSTRAINT chk_st REFERENCES states(state_ID),
 zip CHAR(5) NULL
 CONSTRAINT ck_dist_zip
 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12) NULL,
 sales_rep empid NOT NULL DEFAULT USER)
GO

The CHECK constraint on people_id ensures an all-alphabetic ID, while the
one on zip ensures an all-numeric value. The REFERENCES constraint on state
performs a lookup on the states table. The REFERENCES constraint is essentially
the same as a CHECK constraint, except that it derives its list of acceptable
values from the values stored in another column. This example illustrates how
column-level constraints are named using the CONSTRAINT constraint_name
syntax.

COLLATE

Allows programmers to change, on a column-by-column basis, the sort order
and character set used by the column.

TEXTIMAGE_ON {filegroup | DEFAULT}

Controls the placement of text, ntext, and image columns, allowing you to place
LOB data on the preexisting filegroup of your choice. When omitted (or set to
DEFAULT), these columns are stored in the default filegroup with all other tables
and database objects.

WITH [NO]CHECK

Tells SQL Server whether the data in the table should be validated against
any newly added constraints or keys. When constraints are added using WITH
NOCHECK, the query optimizer ignores them until they are enabled via ALTER
TABLE table_name CHECK CONSTRAINT ALL. When constraints are added using
WITH CHECK, the constraints are checked immediately against all data already in
the table.

[NO]CHECK CONSTRAINT

Enables (CHECK CONSTRAINT) or disables (NOCHECK CONSTRAINT) an existing
constraint.

{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, ...] }

Enables or disables the specified trigger or triggers, respectively. You can spec‐
ify multiple triggers by placing each trigger_name in a comma-delimited list,
or you can enable or disable all triggers on the named table with the keyword
ALL, as in ALTER TABLE employee DISABLE TRIGGER ALL.

SQL Server allows any column-level constraint to be named by specifying
CONSTRAINT constraint_name ..., and then the text of the constraint. Several

SQL Command Reference | 203

Structuring
Yo

ur D
ata

constraints may be applied to a single column, as long as they are not mutually
exclusive (for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, using its own propriet‐
ary syntax. A local temporary table, which is stored in the tempdb database, requires
a prefix of a single pound sign (#) to the name of the table. The local temporary
table is usable by the person or process that created it and is deleted when the
person logs out or the process terminates. A global temporary table, which is usable
by all people and processes that are currently logged in/running, can be established
by prefixing two pound signs (##) to the name of the table. The global temporary
table is deleted when its process terminates or its creator logs out.

SQL Server also allows the creation of tables with columns that contain computed
values. Computed columns can offer a big performance increase in certain circum‐
stances. Such a column does not actually contain data; instead, it is a virtual column
containing an expression using other columns already in the table. For example, a
computed column could contain an expression such as order_cost AS (price *
qty). Computed columns also can contain constants, functions, variables, noncom‐
puted columns, or any of these combined with each other using operators.

Any column-level constraints shown earlier also may be declared at the table level.
That is, PRIMARY KEY constraints, FOREIGN KEY constraints, CHECK constraints, and
others may be declared after all the columns have been defined in the CREATE TABLE
statement. This is useful for constraints that cover more than one column. For
example, a column-level UNIQUE constraint can be applied only to that column.
However, declaring the constraint at the table level allows it to span several col‐
umns. Here is an example of both column- and table-level constraints:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL)
GO

-- Creating a table-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) NOT NULL,
 book_name VARCHAR(40) NOT NULL,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)
 WITH FILLFACTOR=70,
 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))
GO

204 | Chapter 3: Structuring Your Data

These two commands provide nearly the same results, except that the table-level
UNIQUE constraint has two columns, whereas only one column is included in the
column-level UNIQUE constraint.

The following example adds a new CHECK constraint to a table, but does not check to
ensure that the existing values in the table pass the constraint:

ALTER TABLE favorite_book WITH NOCHECK
ADD CONSTRAINT extra_check CHECK (ISBN > 1)
GO

In this example, we further add a new column with an assigned DEFAULT value that
is placed in each existing record in the table:

ALTER TABLE favorite_book ADD reprint_nbr INT NULL
CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES
GO
-- Now, disable the constraint
ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr
GO

See also

• CREATE/ALTER SCHEMA• • DROP•

CREATE/ALTER TYPE Statement
The CREATE TYPE statement allows you to create a user-defined type (UDT), that is,
a data type or “class” in object-oriented terms defined by the user. UDTs extend SQL
capabilities into the realm of object-oriented programming by allowing inheritance
and other object-oriented features. You can also create something called typed tables
with the CREATE TABLE statement using a previously created type made with the
CREATE TYPE statement. Typed tables are based on UDTs and are equivalent to
instantiated classes in object-oriented programming.

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

The ALTER TYPE statement is supported with variations by Oracle and PostgreSQL.

SQL standard syntax
CREATE TYPE type_name
[UNDER supertype_name]
[AS [new_udt_name] data_type [attribute][, ...]

SQL Command Reference | 205

Structuring
Yo

ur D
ata

 {[REFERENCES ARE [NOT] CHECKED [ON DELETE {NO ACTION |
 CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |
 [DEFAULT value] |
 [COLLATE collation_name]}]
 [[NOT] INSTANTIABLE]
 [[NOT] FINAL]
[REF IS SYSTEM GENERATED |
 REF USING data_type
 [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH identifier] |
 REF new_udt_name[, ...]]
[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]
[method_definition[, ...]]

The following syntax alters an existing user-defined data type:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |
 DROP ATTRIBUTE type_name}

Keywords

{CREATE | ALTER} TYPE type_name

Creates a new type or alters an existing type with the name type_name.

UNDER supertype_name

Creates a subtype that is dependent upon a single preexisting named supertype.
(A UDT can be a supertype if it is defined as NOT FINAL.)

AS [new_udt_name]data_type [attribute][, ...]

Defines attributes of the type as if they were column declarations in a CREATE
TABLE statement without constraints. You can define the UDT attribute on an
existing data type, such as VARCHAR(10), or on another previously created UDT,
or even on a user-defined domain. Defining a UDT using a predefined data
type (e.g., CREATE TYPE my_type AS INT) creates a distinct type, while a UDT
defined with an attribute definition is a structured type. The allowable attributes
for a structured type are:

ON DELETE NO ACTION

Produces an error when the foreign key is violated (the default).

ON DELETE RESTRICT

Synonym for NO ACTION.

ON DELETE CASCADE

Sets the value of the referencing column to the value of the referenced
column.

ON DELETE SET NULL

Sets the value of the referencing column to NULL.

206 | Chapter 3: Structuring Your Data

ON DELETE SET DEFAULT value
Defines a default value for the UDT for when the user does not supply a
value.

COLLATE collation_name
Assigns a collation—that is, a sort order—for the UDT. When omitted, the
collation of the database where the UDT was created applies.

[NOT] INSTANTIABLE

Defines the UDT such that it can (or cannot) be instantiated. INSTANTIABLE is
required for typed tables, but not for standard UDTs.

[NOT] FINAL

Required for all UDTs. FINAL means the UDT may have no subtypes. NOT
FINAL means the UDT may have subtypes.

REF

Defines either a system-generated or user-generated reference specification;
i.e., a sort of unique identifier that acts as a pointer that another type may
reference. By referencing a preexisting type using its reference specification,
you can have a new type inherit properties of a preexisting type. There are
three ways to tell the DBMS how the typed table’s reference column gets its
values (i.e., its reference specification):

new_udt_name[, ...]

Declares that the reference specification is provided by another preexisting
UDT called new_udt_name.

IS SYSTEM GENERATED

Declares that the reference specification is system generated (think of an
automatically incrementing column). This is the default when the REF
clause is omitted.

USING data_type [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH

identifier]

Declares that the user defines the reference specification. You do this by
using a predefined data type and optionally casting the value. You can
use CAST (SOURCE AS REF) WITH identifier to cast the value with
the specified data_type to the reference type of the structured type, or
use CAST (REF AS SOURCE) WITH identifier to cast the value for the
structured type to the data_type. The WITH clause allows you to declare an
additional identifier for the cast data type.

CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier

method_definition[, ...]

Defines one or more preexisting methods for the UDT. A method is merely
a specialized user-defined function and is created using the CREATE METHOD
statement (see Chapter 9). The method_definition clause is not needed for

SQL Command Reference | 207

Structuring
Yo

ur D
ata

structured types since their method(s) are implicitly created. The default
characteristics of a method are LANGUAGE SQL, PARAMETER STYLE SQL, NOT
DETERMINISTIC, CONTAINS SQL, and RETURN NULL ON NULL INPUT.

ADD ATTRIBUTE type_definition

Adds an additional attribute to an existing UDT, using the format described
earlier under the AS clause. Available via the ALTER TYPE statement.

DROP ATTRIBUTE type_name

Drops an attribute from an existing UDT. Available via the ALTER TYPE

statement.

Rules at a glance
You can create user-defined types as a way to further ensure data integrity in your
database and to ease the work involved in doing so. An important concept of UDTs
is that they allow you to easily create subtypes, which are UDTs built upon other
UDTs. The UDT that subtypes depend on is called a parent type or supertype.
Subtypes inherit the characteristics of their supertypes.

Assume, for example, that you want to define a general UDT for phone numbers
called phone_nbr. You could then easily build new subtypes of phone_nbr called
home_phone, work_phone, cell_phone, pager_phone, etc. Each of the subtypes could
inherit the general characteristics of the parent type but also have characteristics of
its own.

In this example, we create a general root UDT called money and then several
subtypes:

CREATE TYPE money (phone_number DECIMAL (10,2))
 NOT FINAL;
CREATE TYPE dollar UNDER money AS DECIMAL(10,2)
 (conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE euro UNDER money AS DECIMAL(10,2)
 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE pound UNDER euro
 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Programming tips and gotchas
The biggest programming gotcha for user-defined types is that they are seldom
used and not well understood by most database developers and database adminis‐
trators. Consequently, they can be problematic due to simple ignorance. They offer,
however, a consistent and labor-saving approach for representing commonly reused
conceptual elements in a database, such as an address (e.g., street1, street2, city, state,
postal code).

208 | Chapter 3: Structuring Your Data

MySQL
Not supported. To achieve similar functionality, you may use a JSON data type.
Although not identical to a user-defined data type, it can provide similar behavior
and has been supported by MySQL since version 5.7.8.

Oracle
Oracle has CREATE TYPE and ALTER TYPE statements, but they are nonstandard.
Instead of a single CREATE TYPE statement, Oracle uses CREATE TYPE BODY to
define the code that makes up the UDT, while CREATE TYPE defines the argument
specification for the type. The syntax for CREATE TYPE is:

CREATE [OR REPLACE] {[EDITIONABLE | NONEDITIONABLE]}
TYPE type_name
{ [OID 'object_identifier'] [AUTHID {DEFINER | CURRENT_USER}]
 { {AS | IS} OBJECT | [UNDER supertype_name] |
 {OBJECT | TABLE OF data_type | VARRAY (limit)
 OF data_type} }
 USING data_definition
 { [(attribute data_type[, ...]) |
 [[NOT] FINAL] [[NOT] INSTANTIABLE]
 [{ {MEMBER | STATIC}
 {function_based | procedure_based} |
 constructor_clause | map_clause } [...]]
 [pragma_clause]] } }

Once the type has been declared, you encapsulate all of the UDT logic in the type
body declaration. The type_name for both CREATE TYPE and CREATE TYPE BODY
should be identical. The syntax for CREATE TYPE BODY is shown here:

CREATE [OR REPLACE] TYPE BODY type_name
{AS | IS}
{{MEMBER | STATIC}
{function_based | procedure_based | constructor_clause}}[...]
[map_clause]

Oracle’s implementation of ALTER TYPE enables you to drop attributes and methods
from or add them to the type:

ALTER TYPE type_name
 { COMPILE [DEBUG] [{SPECIFICATION | BODY}]
 [compiler_directives] [REUSE SETTINGS] |
 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT
 (attribute data_type[, ...] [element_definition[, ...]]) |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name
 (parameter data_type[, ...]) } |
 { {MEMBER | STATIC} {function_based | procedure_based} |
 constructor_clause | map_clause [pragma_clause] } [...] |
 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [data_type][, ...]) |
 MODIFY {LIMIT int | ELEMENT TYPE data_type} }

SQL Command Reference | 209

Structuring
Yo

ur D
ata

 [{INVALIDATE |
 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE }]
 [FORCE] [EXCEPTIONS INTO table_name]}] }

Parameters for the three statements are as follows:

OR REPLACE

Re-creates the UDT if it already exists. Objects that depend on the type are
marked as DISABLED after you re-create the type.

EDITIONABLE | NONEDITIONABLE

Specifies whether the type is an editioned or noneditioned object if editioning
is enabled for the schema object TYPE in the declared schema. The default is
EDITIONABLE.

AUTHID {DEFINER | CURRENT_USER}

Determines what user permissions any member functions or procedures are
executed under and how external name references are resolved. (Note that
subtypes inherit the permission styles of their supertypes.) This clause can be
used only with an OBJECT type, not with a VARRAY type or a nested table type.

DEFINER

Executes functions or procedures under the privileges of the user who
created the UDT. Also specifies that unqualified object names (object
names without a schema definition) in SQL statements are resolved to the
schema where the member functions or procedures reside.

CURRENT_USER

Executes functions or procedures under the privileges of the user who
invoked the UDT. Also specifies that unqualified object names in SQL
statements are resolved to the schema of the user who invoked the UDT.

UNDER supertype_name

Declares that the UDT is a subtype of another preexisting UDT. The supertype
UDT must be created with the AS OBJECT clause. A subtype will inherit the
properties of the supertype, though you should override some of those or add
new properties to differentiate it from the supertype.

OID 'object_identifier'

Declares an equivalent identical object, of the name 'object_identifier', in
more than one database. This clause is most commonly used by those devel‐
oping Oracle Data Cartridges and is seldom used in standard SQL statement
development.

AS OBJECT

Creates the UDT as a root object type (the top-level object in a UDT hierarchy
of objects).

210 | Chapter 3: Structuring Your Data

AS TABLE OF data_type

Creates a named nested table type of a UDT called data_type. The data type
cannot be an NCLOB, but CLOB and BLOB are acceptable. If the data type is
an object type, the columns of the nested table must match the name and
attributes of the object type.

AS VARRAY (limit) OF data_type

Creates the UDT as an ordered set of elements, all of the same data type. The
limit is an integer of zero or more. The type name must be a built-in data
type, a REF, or an object type. The VARRAY cannot contain LOB or XMLType data
types. VARRAY may be substituted with VARYING ARRAY.

data_type

Declares the attributes and data types used by the UDT. Oracle does not allow
ROWID, LONG, LONG ROW, or UROWID. Nested tables and VARRAYs do not allow
attributes of AnyType, AnyData, or AnyDataSet.

MEMBER | STATIC

Describes the way in which subprograms are associated with the UDT as
attributes. MEMBER has an implicit first argument referenced as SELF, as
in object_expression.method(). STATIC has no implicit arguments, as in
type_name.method(). The following bases are allowed to call subprograms:

function_based

Declares a subprogram that is function-based using the syntax:

 FUNCTION function_name (parameter data_type[, ...])
 return_clause | java_object_clause

This clause allows you to define the PL/SQL function-based UDT
body without resorting to the CREATE TYPE BODY statement. The
function_name cannot be the name of any existing attribute,
including those inherited from supertypes. The return_clause and
java_object_clause are defined later in this list.

procedure_based

Declares a subprogram that is function-based using the syntax:

 PROCEDURE procedure_name (parameter data_type[, ...])
 {AS | IS} LANGUAGE {java_call_spec | c_call_spec}

This clause allows you to define the PL/SQL procedure-based UDT
body without resorting to the CREATE TYPE BODY statement. The
procedure_name cannot be the name of any existing attribute, including
those inherited from supertypes. Refer to the entries on java_call_spec
and c_call_spec later in this list for details on those clauses.

constructor_clause

Declares one or more constructor specifications, using the following syntax:

SQL Command Reference | 211

Structuring
Yo

ur D
ata

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION data_type
 [([SELF IN OUT data_type,] parameter data_type[, ...])]
 RETURN SELF AS RESULT

 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}]

A constructor specification is a function that returns an initialized instance
of a UDT. Constructor specifications are always FINAL, INSTANTIABLE, and
SELF IN OUT, so these keywords are not required. The java_call_spec and
c_call_spec subclauses may be replaced with a PL/SQL code block in the
CREATE TYPE BODY statement. (Refer to the entries on java_call_spec and
c_call_spec later in this list for details.)

map_clause

Declares the mapping or ordering of a supertype, using the following syntax:

{MAP | ORDER} MEMBER function_based

MAP uses more efficient algorithms for object comparison and is best in situa‐
tions where you’re performing extensive sorting or hash joins. MAP MEMBER
specifies the relative position of a given instance in the ordering of all instances
of the UDT. ORDER MEMBER specifies the explicit position of an instance and ref‐
erences a function_based subprogram that returns a NUMBER data type value.
Refer to the entry on function_based earlier in this list for details.

return_clause

Declares the data type return format of the SQL UDT using the syntax:

RETURN data_type [{AS | IS} LANGUAGE {java_call_spec |
 c_call_spec}]

java_object_clause

Declares the return format of the Java UDT using the syntax:

RETURN {data_type | SELF AS RESULT} EXTERNAL [VARIABLE] NAME
 'java_name'

If you use the EXTERNAL clause, the value of the public Java method must be
compatible with the SQL returned value.

pragma_clause

Declares a pragma restriction (that is, an Oracle precompiler directive) for the
type using the syntax:

PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name},
{RNDS | WNDS |RNPS | WNPS | TRUST}[, ...])

This feature is deprecated and should be avoided. It is
intended to control how UDTs read and write database
tables and variables.

212 | Chapter 3: Structuring Your Data

DEFAULT

Applies the pragma to all methods in the type that don’t have another
pragma in place.

method_name

Identifies the exact method to which to apply the pragma.

RNDS

Reads no database state—no database reads allowed.

WNDS

Writes no database state—no database writes allowed.

RNPS

Reads no package state—no package reads allowed.

WNPS

Writes no package state—no package writes allowed.

TRUST

States that the restrictions of the pragma are assumed but not enforced.

java_call_spec

Identifies the Java implementation of a method using the syntax JAVA NAME
'string'. This clause allows you to define the Java UDT body without resort‐
ing to the CREATE TYPE BODY statement.

c_call_spec

Declares a C language call specification using the syntax:

C [NAME name] LIBRARY lib_name [AGENT IN (argument)]
[WITH CONTEXT] [PARAMETERS (parameter[, ...])]

This clause allows you to define the C UDT body without resorting to the
CREATE TYPE BODY statement.

COMPILE

Compiles the object type specification and body. This is the default when
neither a SPECIFICATION clause nor a BODY clause is defined.

DEBUG

Generates and stores additional codes for the PL/SQL debugger. Do not specify
both DEBUG and the compiler_directive PLSQL_DEBUG.

SPECIFICATION | BODY
Indicates whether to recompile the SPECIFICATION of the object type (created
by the CREATE TYPE statement) or the BODY (created by the CREATE TYPE BODY
statement).

SQL Command Reference | 213

Structuring
Yo

ur D
ata

compiler_directives

Defines one or more special values for the PL/SQL compiler in the
format directive = 'value'. The directives are: PLSQL_OPTIMIZE_LEVEL,
PLSQL_CODE_TYPE, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. They may
each specify a value once in the statement. The directive is valid only for the
unit being compiled.

REUSE SETTINGS

Retains the original values for the compiler_directives.

REPLACE AS OBJECT

Adds new member subtypes to the specification. This clause is valid only for
object types.

[NOT] OVERRIDING

Indicates whether or not the method overrides a MEMBER method defined in
the supertype. This clause is valid only with MEMBER methods and is required
for methods that define (or redefine, using ALTER) a supertype method. NOT
OVERRIDING is the default if this clause is omitted.

ADD

Adds a new MEMBER function, function- or procedure-based subprogram, or
attribute to the UDT.

DROP

Drops an existing MEMBER function, function- or procedure-based subprogram,
or attribute from the UDT.

MODIFY

Alters the properties of an existing attribute of the UDT.

MODIFY LIMIT int
Increases the number of elements in a VARRAY collection type up to int, as long
as int is greater than the current number of elements in the VARRAY. Not valid
for nested tables.

MODIFY ELEMENT TYPE data_type
Increases the precision, size, or length of a scalar data type of a VARRAY or
nested table. This clause is valid for any nonobject collection type. If the
collection is a NUMBER, you may increase its precision or scale. If the collection
is a RAW, you may increase its maximum size. If the collection is a VARCHAR2 or
NVARCHAR2, you may increase its maximum length.

INVALIDATE

Invalidates all dependent objects without checks.

CASCADE

Cascades the change to all subtypes and tables. By default, the action will be
rolled back if any errors are encountered in the dependent types or tables.

214 | Chapter 3: Structuring Your Data

[NOT] INCLUDING TABLE DATA

Converts data stored in the UDT columns to the most recent version of the
column’s type (INCLUDING TABLE DATA, the default), or not (NOT INCLUDING
TABLE DATA). When NOT, Oracle checks the metadata but does not check or
update the dependent table data.

CONVERT TO SUBSTITUTABLE

Used when changing a type from FINAL to NOT FINAL. The altered type then
can be used in substitutable tables and columns, as well as in subtypes, instan‐
ces of dependent tables, and columns.

FORCE

Causes the CASCADE operation to go forward, ignoring any errors found in
dependent subtypes and tables. All errors are logged to a previously created
EXCEPTIONS table.

EXCEPTIONS INTO table_name
Logs all error data to a table previously created using the system package
DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called type:

CREATE TYPE address_type AS OBJECT
 EXTERNAL NAME 'scott.address' LANGUAGE JAVA
 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',
 street2 VARCHAR(30) EXTERNAL NAME 'str2',
 city VARCHAR(30) EXTERNAL NAME 'city',
 state CHAR(2) EXTERNAL NAME 'st',
 locality_code CHAR(15) EXTERNAL NAME 'lc',
 STATIC FUNCTION square_feet RETURN NUMBER
 EXTERNAL VARIABLE NAME 'square_feet',
 STATIC FUNCTION create_addr (str VARCHAR,
 City VARCHAR, state VARCHAR, zip NUMBER)
 RETURN address_type
 EXTERNAL NAME 'create (java.lang.String,
 java.lang.String, java.lang.String, int)
 return scott.address',
 MEMBER FUNCTION rtrims RETURN SELF AS RESULT
 EXTERNAL NAME 'rtrim_spaces () return scott.address')
NOT FINAL;

We could create a UDT using a VARRAY type with four elements:

CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);

In the following example, we alter the address_type that we created earlier by
adding a VARRAY called phone_varray:

ALTER TYPE address_type
 ADD ATTRIBUTE (phone phone_varray) CASCADE;

SQL Command Reference | 215

Structuring
Yo

ur D
ata

In this last example, we’ll create a supertype and a subtype called menu_item_type
and entry_type, respectively:

CREATE OR REPLACE TYPE menu_item_type AS OBJECT
(id INTEGER, title VARCHAR2(500),
 NOT INSTANTIABLE
 MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT INSTANTIABLE
NOT FINAL;

In the preceding example, we created a type specification (but not the type body)
that defines items that may appear on a menu at a café. Included with the type
specification is a subprogram method called fresh_today, a Boolean indicator that
tells whether the menu item is made fresh that day. The NOT FINAL clause that
appears at the end of the code tells Oracle that this type may serve as the supertype
(or base type) to other subtypes that we might derive from it. So now, let’s create the
entree_type:

CREATE OR REPLACE TYPE entree_type UNDER menu_item_type
(entree_id INTEGER, desc_of_entree VARCHAR2(500),
 OVERRIDING MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT FINAL;

PostgreSQL
PostgreSQL supports both an ALTER TYPE statement and a CREATE TYPE statement
used to create a new data type. PostgreSQL’s implementation of the CREATE TYPE
statement is nonstandard and can take on any of the following four forms:

For composite types, such as types that can be used to define a table:

CREATE TYPE name AS
 ([attribute_name data_type
 [COLLATE collation][, ...]])

For enum types the label is a list of named values allowed for this type.

CREATE TYPE name AS ENUM
 (['label'[, ...]])

For range types which define a start and end value:

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

216 | Chapter 3: Structuring Your Data

For base types that internally define their own storage characteristics and indexing
support. These often require programming in C to make and thus are the hardest to
create:

CREATE TYPE type_name
 (INPUT = input_function_name,
 OUTPUT = output_function_name
 [, INTERNALLENGTH = {int | VARIABLE}]
 [, DEFAULT = value]
 [, ELEMENT = array_element_data_type]
 [, DELIMITER = delimiter_character]
 [, CATEGORY = category]
 [, COLLATABLE = collatable]
 [, PASSEDBYVALUE]

 [, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]

 [, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}]

 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, ANALYZE = analyze_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function])

PostgreSQL allows you to change the schema or owner of an existing type using the
ALTER TYPE statement:

ALTER TYPE type_name [OWNER TO new_owner_name]
[SET SCHEMA new_schema_name]

The parameters are as follows:

CREATE TYPE type_name

Creates a new user-defined data type called type_name. The name may not
exceed 30 characters in length, nor may it begin with an underscore.

INPUT = input_function_name

Declares the name of a previously created function that converts external
argument values into a form usable by the type’s internal form.

OUTPUT = output_function_name

Declares the name of a previously created function that converts internal out‐
put values to a display format.

INTERNALLENGTH = { int | VARIABLE }

Specifies a numeric value, int, for the internal length of the new type, if the
data type is fixed-length. The keyword VARIABLE (the default) declares that the
internal length is variable.

DEFAULT = value

Defines a value for type when it defaults.

SQL Command Reference | 217

Structuring
Yo

ur D
ata

ELEMENT = array_element_data_type

Declares that the data type is an array and that array_element_data_type is
the data type of the array elements. For example, an array containing integer
values would be ELEMENT = INT4. In general, you should allow the array_
element_data_type value to default. The only time you might want to override
the default is when creating a fixed-length UDT composed of an array of
multiple identical elements that need to be directly accessible by subscripting.

DELIMITER = delimiter_character

Declares a character to be used as a delimiter between output values of an
array produced by the type. Only used with the ELEMENT clause. The default is a
comma.

PASSEDBYVALUE

Specifies that the values of the data type are passed by value and not by
reference. This optional clause cannot be used for types whose value is longer
than the DATUM data type (4 bytes on most operating systems, 8 bytes on a few
others).

ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}

Defines a storage alignment for the type. Four data types are allowed, with
each equating to a specific boundary: CHAR equals a 1-byte boundary, INT2
equals a 2-byte boundary, INT4 equals a 4-byte boundary (the requirement for
a variable-length UDT on PostgreSQL), and DOUBLE equals an 8-byte boundary.

STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}

Defines a storage technique for variable-length UDTs. (PLAIN is required for
fixed-length UDTs.) Four types are allowed:

PLAIN

Stores the UDT inline, when declared as the data type of a column in a
table, and uncompressed.

EXTERNAL

Stores the UDT outside of the table without trying to compress it first.

EXTENDED

Stores the UDT as a compressed value if it fits inside the table. If it is too
long, PostgreSQL will save the UDT outside of the table.

MAIN

Stores the UDT as a compressed value within the table. Bear in mind,
however, that there are situations where PostgreSQL cannot save the UDT
within the table because it is just too large. The MAIN storage parameter
puts the highest emphasis on storing UDTs with all other table data.

SEND = send_function

Converts the internal representation of the type to the external binary repre‐
sentation. Usually coded in C or another low-level language.

218 | Chapter 3: Structuring Your Data

RECEIVE = receive_function

Converts the text’s external binary representation to the internal representa‐
tion. Usually coded in C or another low-level language.

ANALYZE = analyze_function

Performs type-specific statistical collection for columns of the type.

More details on the SEND, RECEIVE, and ANALYZE functions are
available in the PostgreSQL documentation.

When you create a new data type in PostgreSQL, it is available only in the current
database. The user who created the data type is the owner. When you create a
new type, the parameters may appear in any order and are largely optional, except
for the first two (the INPUT and OUTPUT functions). You must create at least these
two functions before defining the type (see “CREATE/ALTER FUNCTION/PRO‐
CEDURE Statement” on page 661 for details). The INPUT function provides the type
with external values that can be used by the operators and functions defined for the
type, and the OUTPUT function renders a usable external representation of the data
type. There are some additional requirements when creating the input and output
functions:

• The INPUT function should either take one argument of type OPAQUE or take•
three arguments of type OPAQUE, OID, and INT4. In the latter case, OPAQUE is the
input text of a C string, OID is the element type for array types, and INT4 (if
known) is the typmod of the destination column.

• The OUTPUT function should either take one argument of type OPAQUE or take•
two arguments of type OPAQUE and OID. In the latter case, OPAQUE is the data
type itself and OID is the element type for array types, if needed.

For example, we can create a UDT called floorplan and use it to define a column in
two tables, one called house and one called condo:

CREATE TYPE floorplan
 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,
 OUTPUT=out_floorplan_proc);
CREATE TABLE house
 (house_plan_id int4,
 size floorplan,
 descrip varchar(30));
CREATE TABLE condo
 (condo_plan_id int4,
 size floorplan,
 descrip varchar(30)
 location_id varchar(7));

SQL Command Reference | 219

Structuring
Yo

ur D
ata

SQL Server
SQL Server supports the CREATE TYPE statement, but not the ALTER TYPE statement.
New data types can also be added to SQL Server using the non-SQL system stored
procedure sp_addtype. Beginning in SQL Server 2014 and applicable to Azure SQL
Database, you may also process data in a table type using memory-optimized tables.
The syntax for SQL Server’s implementation of CREATE TYPE follows:

CREATE TYPE type_name
{ FROM base_type [(precision[, scale])] [[NOT] NULL] |
 AS TABLE table_definition |
 CLR_definition }

where:

FROM base_type

Supplies the data type upon which the data type alias is based. The data
type may be one of the following: BIGINT, BINARY, BIT, CHAR, DATE, DATE
TIME, DATETIME2, DATETIMEOFFSET, DECIMAL, FLOAT, IMAGE, INT, MONEY, NCHAR,
NTEXT, NUMERIC, NVARCHAR, REAL, SMALLDATETIME, SMALLINT, SMALLMONEY,
SQL_VARIANT, TEXT, TIME, TINYINT, UNIQUEIDENTIFIER, VARBINARY, or VARCHAR.
Where appropriate to the data type, a precision and scale may be defined.

[NOT] NULL

Specifies whether the type can hold a NULL value. When omitted, NULL is the
default.

AS TABLE table_definition

Specifies a user-defined table type with columns, data types, keys, constraints
(such as CHECK, UNIQUE, and PRIMARY KEY), and properties (such as CLUSTERED
and NONCLUSTERED), just like a regular table.

SQL Server supports the creation of types written in Microsoft .NET Framework
common language runtime (CLR) methods that can take and return user-supplied
parameters. These types have similar CREATE and ALTER declarations to regular SQL
types; however, the code bodies are external assemblies. Refer to the SQL Server
documentation if you want to learn more about programming routines using the
CLR.

User-defined types created with sp_addtype are accessible by the PUBLIC database
role. However, permission to access user-defined types created with CREATE TYPE
must be granted explicitly, including to PUBLIC.

See also

• CREATE/ALTER FUNCTION/PROCEDURE in Chapter 9•

• DROP•

220 | Chapter 3: Structuring Your Data

CREATE/ALTER VIEW Statement
This statement creates a view (also known as a virtual table). A view acts just like a
table but is actually defined with a query. When a view is referenced in a statement,
the result set of the query becomes the content of the view for the duration of that
statement. Almost any valid SELECT statement can define the contents of a view,
though some platforms restrict certain clauses of the SELECT statement and certain
set operators. Tables and views may not have the same names within a schema,
because they share the same namespace.

In some cases, views can be updated, causing the changes to be translated to the
underlying data in the base tables. Some database platforms support a materialized
view, also known as an indexed view, which is a physically created table that is
defined with a query just like a view.

ALTER VIEW is not part of the SQL standard but is imple‐
mented (with variations) by all of the database platforms dis‐
cussed here.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
CREATE [RECURSIVE] VIEW view_name {[(column[, ...])] |
[OF udt_name [UNDER supertype_name
 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [column_name WITH OPTIONS SCOPE table_name]]]}
AS select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords

CREATE VIEW view_name

Creates a new view using the supplied name.

RECURSIVE

Creates a view that derives values from itself. It must have a column clause and
may not use the WITH clause.

[(column[, ...])]

Names all of the columns in the view. The number of columns declared here
must match the number of columns generated by the select_statement.

SQL Command Reference | 221

Structuring
Yo

ur D
ata

When omitted, the columns in the view derive their names from the columns
in the table. This clause is required when one or more of the columns is derived
and does not have a base table column to reference.

OF udt_name [UNDER supertype_name]

Defines the view based on a UDT rather than on the column clause. The typed
view is created using each attribute of the type as a column in the view. Use the
UNDER clause to define a view on a subtype.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the OID column for the view.

column_name WITH OPTIONS SCOPE table_name

Provides scoping for a reference column in the view. (Since the columns are
derived from the type, there is no column list. Therefore, to specify column
options, you must use column_name WITH OPTIONS)

AS select_statement

Defines the exact SELECT statement that provides the data of the view.

WITH [CASCADED | LOCAL] CHECK OPTION

Used only on views that allow updates to their base tables. Ensures that only
data that may be read by the view may be inserted, updated, or deleted by the
view. For example, if a view of employees showed salaried employees but not
hourly employees, it would be impossible to insert, update, or delete hourly
employee records through that view. The CASCADED and LOCAL options of the
CHECK OPTION clause are used for nested views. CASCADED performs the check
option for the current view and all views upon which it is built; LOCAL performs
the check option only for the current view, even when it is built upon other
views.

Rules at a glance
Views are usually only as effective as the queries upon which they are based. That is
why it is important to be sure that the defining SELECT statement is speedy and well
written. The simplest view is based on the entire contents of a single table:

CREATE VIEW employees
AS
SELECT *
FROM employee_tbl;

A column list also may be specified after the view name. The optional column list
contains aliases serving as names for each element in the result set of the SELECT
statement. If you use a column list, you must provide a name for every column
returned by the SELECT statement. If you don’t use a column list, the columns of the
view will be named whatever the columns in the SELECT statement are called. You
will sometimes see complex SELECT statements within a view that make heavy use

222 | Chapter 3: Structuring Your Data

of AS clauses for all columns, because that allows the developer of the view to put
meaningful names on the columns without including a column list.

The SQL standard specifies that you must use a column list or an AS clause.
However, some vendors allow more flexibility, so follow these rules for when to use
an AS clause:

• When the SELECT statement contains calculated columns, such as (salary *•
1.04)

• When the SELECT statement contains fully qualified column names, such as•
pubs.scott.employee

• When the SELECT statement contains more than one column of the same name•
(though with separate schema or database prefixes)

For example, the following two view declarations have the same functional result:

-- Using a column list
CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_monthly_sales,
 publisher)
AS
SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),
 t.pub_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

-- Using the AS clause with each column
CREATE VIEW title_and_authors
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0

You can also change the titles of columns using the column list. In this case, we’ll
change avg_monthly_sales to avg_sales. Note that the code overrides the default
column names provided by the AS clauses (in bold):

CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_sales, publisher)
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a

SQL Command Reference | 223

Structuring
Yo

ur D
ata

JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

A SQL-standard view can update the base table(s) it is based upon if it meets the
following conditions:

• The view does not have UNION, EXCEPT, or INTERSECT operators.•

• The defining SELECT statement does not contain GROUP BY or HAVING clauses.•

• The defining SELECT statement does not contain any references to non-SQL•
pseudocolumns such as ROWNUM or ROWGUIDCOL.

• The defining SELECT statement does not contain the DISTINCT clause.•
• The view is not materialized.•

This example shows a view named california_authors that allows data modifications
to apply only to authors within the state of California:

CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH LOCAL CHECK OPTION

The view shown in this example would accept INSERT, DELETE, and UPDATE state‐
ments against the base table but guarantee that all inserted, updated, or deleted
records contain a state of 'CA' using the WITH ... CHECK clause.

The most important rule to remember when updating a base table through a view
is that all columns in a table that are defined as NOT NULL must receive a not-NULL
value when receiving a new or changed value. You can do this explicitly by directly
inserting or updating a not-NULL value into the column, or by relying on a default
value. In addition, views do not lift constraints on the base table. Thus, the values
being inserted into or updated in the base table must meet all the constraints origi‐
nally placed on the table through unique indexes, primary keys, CHECK constraints,
etc.

Programming tips and gotchas
Views also can be built upon other views, but this is inadvisable and usually con‐
sidered bad practice. Depending on the platform, such a view may take longer to
compile, but may offer the same performance as a transaction against the base
table(s). On other platforms, where each view is dynamically created as it is invoked,
nested views may take a long time to return a result set because each level of
nesting means that another query must be processed before a result set is returned
to the user. In this worst-case scenario, a three-level nested view must make three
correlated query calls before it can return results to the user.

224 | Chapter 3: Structuring Your Data

Although materialized views are defined like views, they take up space more like
tables. Ensure that you have enough space available for the creation of materialized
views.

MySQL
MySQL supports a CREATE [OR REPLACE] VIEW and an ALTER VIEW statement. It
does not support SQL recursive views, UDT and supertyped views, or views using
REF. The syntax for both statements follows:

{ALTER | CREATE [OR REPLACE]}
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = {user_name | CURRENT_USER}]
[SQL SECURITY {DEFINER | INVOKER}]
VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

where:

ALTER | CREATE [OR REPLACE]

Alters an existing view or creates (or replaces) a view. You can use the replace
form if you want to completely replace the definition of a view, even if such a
replace would delete or change the data types of existing columns of the view.

ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}

Specifies how MySQL should process the view. MERGE tells MySQL to merge the
query plans of the query referencing the view and the underlying view itself
to achieve optimal performance. TEMPTABLE tells MySQL to first retrieve the
results of the view into a temporary table, then use the temporary table in the
query where the view is referenced. UNDEFINED tells MySQL to choose the best
algorithm to process the view. When this clause is omitted, UNDEFINED is the
default.

DEFINER = {user_name | CURRENT_USER}

Specifies the user account to use when checking privileges. You may specify
either a preexisting user or the user who issued the CREATE VIEW statement
(i.e., the CURRENT_USER). CURRENT_USER is the default when this clause is
omitted.

SQL SECURITY {DEFINER | INVOKER}
Specifies the security context under which the view runs: either that of the user
that created the view (DEFINER, the default when this clause is omitted) or the
user running the view (INVOKER).

In this example we create a view listing just authors in California. It will allow only
insertion of authors in California, and only users who have permission to query the
underlying table can query this view:

SQL Command Reference | 225

Structuring
Yo

ur D
ata

CREATE OR REPLACE SQL SECURITY INVOKER VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH CHECK OPTION;

Oracle
Oracle supports extensions to the SQL standard to create object-oriented views,
XMLType views, and views that support LOB and object types:

CREATE [OR REPLACE] [[NO] FORCE][EDITIONING]
 [EDITIONABLE | NONEDITIONABLE]
 [MATERIALIZED] VIEW view_name
 {[(column[, ...]) [constraint_clause]] |
 [OF type_name {UNDER parent_view |
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}
 [(constraint_clause)]}] |
 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT
 {element | xml_schema_url # element}]
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}]]}
 [FOR UPDATE]
AS
(select_statement)
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

Oracle’s implementation of the ALTER VIEW statement supports added capabilities,
such as adding, dropping, or modifying constraints associated with the view. In
addition, the ALTER VIEW statement will explicitly recompile a view that is invalid,
enabling you to locate recompilation errors before runtime. This recompiling fea‐
ture enables you to determine whether a change in a base table negatively impacts
any dependent views:

ALTER [MATERIALIZED] VIEW view_name
 {ADD constraint_clause |
 MODIFY CONSTRAINT constraint_clause [NO]RELY]] |
 DROP {PRIMARY KEY | CONSTRAINT constraint_clause |
 UNIQUE (column[, ...])}}
COMPILE

The parameters are:

OR REPLACE

Replaces any existing view of the same view_name with the new view. It
maintains the original view’s permissions but for regular views will drop any
INSTEAD OF triggers.

[NO] FORCE

Specifies whether or not to force creation of the view regardless of whether
the base tables exist or the user creating the view has privileges to read from
or write to the base tables, views, or functions defined in the view. The FORCE

226 | Chapter 3: Structuring Your Data

clause also creates the view regardless of any errors that occur during view
creation. The NO FORCE clause creates the view only if the base tables and
proper privileges are in place.

EDITIONING

Creates an editioning view. Editioning views are single table–based views that
select all rows but only a subset of the columns from the base table. Within any
edition, there can be only one editioning view of a given base table. The base
table must be in the same schema as the view that’s being created. In addition
to selecting all rows and a subset of columns, editioning views differ from other
views in that they can have DML triggers directly on them; these triggers fire
only when DML operations are performed on the views themselves, not when
data is inserted/updated in the base table. This allows for editions to be used to
shield applications from database structural changes. Editioning views cannot
have INSTEAD OF triggers. They cannot be created if their underlying table
does not exist (even if the FORCE clause is used), and they cannot be object- or
XML-based.

MATERIALIZED

Creates a materialized view, which stores the results of a query. This is used
mostly for performance reasons, in cases where querying the underlying tables
would be significantly slower than querying a cached set of the data. Materi‐
alized views are also used to store local read-only copies of data on remote
servers. A materialized view can be read-only or updatable; the default is
read-only. For changes to replicate to the underlying tables, the view should be
part of a materialized view group. Refresh behavior for the view is configurable:
options include FAST, COMPLETE, FORCE, ON COMMIT, and ON DEMAND. Refer to the
vendor documentation for additional details on materialized views.

constraint_clause

Allows you to specify constraints when creating a view (see the section on
CREATE/ALTER TABLE for details). With ALTER VIEW, this clause can be used
to add, modify, or drop a named preexisting constraint. You can define a
constraint at the view level, similar to a table-level view, or at the column or
attribute level. Note that although Oracle allows you to define constraints on
a view, it doesn’t yet enforce them. Oracle supports constraints on a view in
DISABLE and NOVALIDATE modes.

OF type_name
Declares that the view is an object view of type type_name. The columns of
the view correspond directly to the attributes returned by type_name, where
type_name is a previously declared type (see the section on CREATE/ALTER
TYPE). You do not specify column names for object and XMLType views.

SQL Command Reference | 227

Structuring
Yo

ur D
ata

UNDER parent_view

Specifies a subview based on a preexisting parent_view. The subview must be
in the same schema as the parent view, the type_name must be an immediate
subtype of the parent_view, and only one subview is allowed.

WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}

Defines the root object view as well as any attributes of the object type used
to identify each row of the object view. The attributes usually correspond to the
primary key columns of the base table and must uniquely identify each row of
the view. This clause is incompatible with subviews and dereferenced or pinned
REF keys. The DEFAULT keyword uses the implicit object identifier of the base
object table or view.

OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element |

xml_schema_url # element }] WITH OBJECT IDENTIFIER {DEFAULT |

(attribute[, ...])}

Specifies that the view will return XMLType instances. Specifying the optional
xml_schema_url as a preregistered XML schema and element name further
constrains the returned XML as an element in that XML schema. The WITH
OBJECT IDENTIFIER clause specifies the identifier that uniquely identifies each
row of the XMLType view. One or more attributes may use non-aggregate func‐
tions like EXTRACTVALUE to obtain the identifiers from the resultant XMLType.

WITH READ ONLY

Ensures that the view is used only to retrieve data, not to modify it.

WITH CHECK OPTION [CONSTRAINT constraint_name]
Forces the view to accept only inserted and updated data that can be returned
by the view’s SELECT statement. Alternatively, you can specify a single CHECK
OPTION constraint_name that exists on the base table that you want to enforce.
If the constraint is not named, Oracle names the constraint SYS_Cn, where n is
an integer.

ADD constraint_clause

Adds a new constraint to the view. Oracle supports constraints only in DISABLE
and NOVALIDATE modes.

MODIFY CONSTRAINT constraint_clause [NO]RELY

Changes the RELY or NORELY setting of an existing view constraint. (RELY and
NORELY are explained in the section on CREATE/ALTER TABLE.)

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE

(column[, ...])}

Drops an existing constraint on a view.

COMPILE

Recompiles the view.

228 | Chapter 3: Structuring Your Data

Any dblinks in the view’s SELECT statement must be declared using the CREATE
DATABASE LINK ... CONNECT TO statement. Any view containing flashback queries
will have its AS OF clause evaluated at each invocation of the view, not when the
view is compiled.

In this example, we create a view that has an added constraint:

CREATE VIEW california_authors (last_name, first_name,
 author_ID UNIQUE RELY DISABLE NOVALIDATE,
 CONSTRAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)
AS
SELECT au_lname, au_fname, au_id
FROM authors
WHERE state = 'CA';

We might also wish to create an object view on an Oracle database and schema. This
example creates the type and the object view:

CREATE TYPE inventory_type AS OBJECT
(title_id NUM(6),
 warehouse wrhs_typ,
 qty NUM(8));
CREATE VIEW inventories OF inventory_type
WITH OBJECT IDENTIFIER (title_id)
AS
SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,
 w.location_id), i.qty
FROM inventories i
JOIN warehouses w ON i.wrhs_id = w.wrhs_id;

We could recompile the inventory_type view like this:

ALTER VIEW inventory_type COMPILE:

An updatable view in Oracle cannot contain any of the following:

• The DISTINCT clause•

• UNION, INTERSECT, or MINUS clauses•
• Joins that cause inserted or updated data to affect more than one table•
• Aggregate or analytic functions•

• GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses•

• Subqueries or collection expressions in the SELECT item list (subqueries are•
acceptable in the SELECT statement’s WHERE clause)

• Update pseudocolumns or expressions•

SQL Command Reference | 229

Structuring
Yo

ur D
ata

There are some restrictions on how subviews and materialized views can be defined
in Oracle:

• The subview must use aliases for ROWID, ROWNUM, or LEVEL pseudocolumns.•

• The subview cannot query CURRVAL or NEXTVAL pseudocolumns.•

• The subview cannot contain the SAMPLE clause.•

• The subview evaluates all columns of a SELECT * FROM ... statement at com‐•
pile time. Thus, any new columns added to the base table will not be retrieved
by the subview until the view is recompiled.

Note that while older versions of Oracle supported partitioned views, this feature
has been deprecated. You should use explicitly declared partitions instead.

PostgreSQL
PostgreSQL supports the SQL standard for CREATE VIEW with some variations,
including an extended CREATE OR REPLACE VIEW syntax. A view column name list
must be specified for a RECURSIVE view. The PostgreSQL syntax for CREATE VIEW
is as follows:

CREATE [OR REPLACE] [TEMP[ORARY]][MATERIALIZED]
[RECURSIVE] VIEW view_name [(column[, ...])]
 [USING method]
WITH (view_option_name [= view_option_value] [, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION
 [[NO] DATA]]
]

[TEMP]ORARY

Creates the view as a temporary view. Temporary views are automatically
dropped at the end of the current session.

MATERIALIZED

Stores the results of the query defined by the view. Materialized views are
used mostly for performance, where querying the underlying tables would be
significantly slower than querying a cached set of the data.

USING method

Only used with materialized views. Denotes the table access method.

WITH

Allows setting one or more view options, which are as follows:

check_option (enum)

This parameter may be either local or cascaded, and is equivalent to speci‐
fying WITH [CASCADED | LOCAL] CHECK OPTION (see below).

230 | Chapter 3: Structuring Your Data

security_barrier (true | false)

This should be used if the view is intended to provide row-level security.
Refer to the documentation for details.

<storage_parameter> = <value>

There are quite a few storage parameters, which can be set only for
materialized views. Refer to the documentation for details.

WITH [CASCADED | LOCAL] CHECK OPTION

Forces the view to accept only inserted and updated data that can be returned
by the view’s SELECT statement.

WITH [NO] DATA

Only used with materialized views. Specifies whether or not the view should be
populated at the time it’s created. WITH NO DATA allows for fast creation of the
view since the view query is not executed; however, the view cannot be queried
until the first REFRESH MATERIALIZED VIEW name. If not specified, the default is
DATA.

PostgreSQL’s ALTER VIEW command can be used to set certain properties of a view,
change the ownership or name of a view, move a view to a different schema, or
rename columns. The ALTER VIEW command takes the following forms:

ALTER VIEW [IF EXISTS] name ALTER [COLUMN]

 column_name SET DEFAULT expression

ALTER VIEW [IF EXISTS] name ALTER [COLUMN]

 column_name DROP DEFAULT

ALTER VIEW [IF EXISTS] name OWNER TO

 { new_owner | CURRENT_USER | SESSION_USER }

ALTER VIEW [IF EXISTS] name RENAME [COLUMN]

 column_name TO new_column_name

ALTER VIEW [IF EXISTS] name RENAME TO new_name

ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema

ALTER VIEW [IF EXISTS] name SET

 (view_option_name [= view_option_value] [, ...])

ALTER VIEW [IF EXISTS] name RESET

 (view_option_name [, ...])

SQL Command Reference | 231

Structuring
Yo

ur D
ata

https://oreil.ly/d8I9b
https://oreil.ly/9TC8i

The view options are the same as those that can be used in CREATE VIEW.

You cannot use ALTER VIEW to replace the definition of a view. However, you can
use CREATE OR REPLACE VIEW view_name to substitute the definition of an old view
with the definition of a new view. A CREATE OR REPLACE VIEW command can only
be used if the new view definition adds new columns, not if the new definition
changes the data types of existing columns, deletes columns, or changes the order of
columns.

PostgreSQL allows views to be built on tables, other views, and other defined
class objects. Views based on single tables that don’t involve aggregation, like with
GROUP BY, are updatable by default. For views involving more than one table or
aggregation, INSTEAD OF triggers can be created to control how data is updated
in the underlying tables. You can use functions in views and still have them be
automatically updatable as long as updates do not try to update these columns. Here
is an example of a view definition that allows updating of au_lname, au_fname, and
even au_id but will prevent changing the state because that would cause the updated
record to no longer satisfy the filter of the view. It will also prevent updating
current_age because that is a column that is not part of the base table:

CREATE OR REPLACE VIEW california_authors
AS
 SELECT au_lname, au_fname, au_id,
 au_fname || ' ' || au_lname AS au_full_name,
 age(au_birthdate) AS current_age
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION;

PostgreSQL views are always schema-bound, meaning no objects referenced in the
views (such as tables, other views, or functions) can be altered in such a way that
they would affect the output definitions of the columns of the view. This means
you can’t drop tables or views used in a view, and you can’t alter the data types
of columns of a table used in a view. However, you can change the names of
objects (tables, views, columns) referenced by the view. This catches many off guard,
because it’s different from how most other databases work. PostgreSQL internally
tracks all tables and columns in views by their internal identifiers. When you
rename an object referenced in a view, such as the name of a column, the view
automatically changes. Let’s say you decide to rename the au_lname column in the
authors table to last_name. If you then look at the definition of california_authors,
you will see that it has changed au_lname to authors.last_name AS au_lname. Also
note that all column names have been changed to be fully qualified.

PostgreSQL’s CREATE RECURSIVE VIEW construct is equivalent to writing CREATE
VIEW ... AS WITH RECURSIVE. PostgreSQL also supports an extended CREATE MATE
RIALIZED VIEW construct that creates a view that caches the result of the query that
defines the view. Materialized views, unlike other views, can have indexes defined
on them using the CREATE INDEX construct. Materialized views are never updatable.
Queries on a materialized view are applied to the cached data rather than the

232 | Chapter 3: Structuring Your Data

underlying tables. To refresh data in a materialized view, you would use REFRESH
MATERIALIZED VIEW view_name or REFRESH MATERIALIZED VIEW CONCURRENTLY

view_name.

REFRESH MATERIALIZED VIEW without the CONCURRENTLY keyword is a blocking
operation that prevents querying of the view. Using CONCURRENTLY allows a materi‐
alized view to be queried while it is being refreshed, but can only be used with
materialized views that have a unique index. PostgreSQL has no automatic means of
refreshing a materialized view. Many users employ a cronjob, triggers, or some other
job scheduling tool like pgAgent or pgSchedule to refresh materialized views.

Here, we define a PostgreSQL materialized view with a unique index:

CREATE MATERIALIZED VIEW vw_mat_authors AS
 SELECT au_lname, au_fname, au_id
 FROM authors;
CREATE UNIQUE INDEX ux_vw_mat_authors USING btree(au_id);

SQL Server
SQL Server offers some extensions to the SQL standard but does not support object
views, subviews, or recursive views. SQL Server 2014 and later provide a CREATE OR
ALTER construct that is equivalent to the CREATE OR REPLACE supported by the other
databases described here. Its implementation of ALTER VIEW allows you to change
an existing view without affecting the permissions or dependent objects of the view.
The syntax for both statements follows:

CREATE [OR ALTER] VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [, ...]]
AS select_statement
[WITH CHECK OPTION]
;

where:

WITH ENCRYPTION

Encrypts the text of the view in the sys.comments table. This option is usually
invoked by software vendors who want to protect their intellectual capital.

WITH SCHEMABINDING

Binds the view to the definitions of the underlying objects, meaning the refer‐
enced tables and views cannot be changed in a way that would affect the defini‐
tion of the output columns of the view. The tables and views referenced in the
view must also be qualified with at least the schema name (e.g., dbo.authors or
nutshell.dbo.authors, not simply authors). This also means any referenced tables
and views cannot be dropped or renamed without first dropping the view or
dropping the schema binding via ALTER VIEW.

WITH VIEW_METADATA

Specifies that SQL Server return metadata about the view (rather than the base
table) to calls made from DBLIB or OLEDB APIs. Views created or altered

SQL Command Reference | 233

Structuring
Yo

ur D
ata

with VIEW_METADATA enable their columns to be updated by INSERT and UPDATE
INSTEAD OF triggers.

WITH CHECK OPTION

Forces the view to accept only inserted and updated data that can be returned
by the view’s SELECT statement.

The SELECT clause of a SQL Server view cannot:

• Have COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER BY is allowed if•
you use SELECT TOP)

• Reference a temporary table•
• Reference a table variable•
• Reference more than 1,024 columns, including those referenced by subqueries•

Here, we define a SQL Server view with both ENCRYPTION and CHECK OPTION

clauses:

CREATE VIEW california_authors (last_name, first_name, author_id)
WITH ENCRYPTION
AS
 SELECT au_lname, au_fname, au_id
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION
GO

SQL Server allows multiple SELECT statements in a view, as long as they are linked
with UNION or UNION ALL clauses. It also allows functions and hints in a view’s
SELECT statement. A SQL Server view is updatable if all of the conditions in the
following list are true:

• The SELECT statement has no aggregate functions.•

• The SELECT statement does not contain TOP, GROUP BY, DISTINCT, or UNION•
clauses.

• The SELECT statement has no derived columns (see “SUBQUERY Substate‐•
ment” on page 337.

• The FROM clause of the SELECT statement references at least one table.•

SQL Server allows indexes to be created on views (see CREATE/ALTER INDEX). By
creating a unique, clustered index on a view, you cause SQL Server to store a physi‐
cal copy of the view on the database. Changes to the base table are automatically
updated in the indexed view. Indexed views consume extra disk space but provide a
boost in performance. These views must be built using the SCHEMABINDING clause.

SQL Server also allows the creation of local and distributed partitioned views. A
local partitioned view is a partitioned view where all views are present on the same

234 | Chapter 3: Structuring Your Data

SQL server. A distributed partitioned view is a partitioned view where one or more
views are located on distinct remote servers.

Partitioned views must very clearly derive their data from different sources, with
each distinct data source joined to the next with a UNION ALL statement. Partitioned
views are updatable. Furthermore, all columns of the partitioned views should be
selected and identical, including the collation. It is not sufficient for data types to be
coercible, as it normally is for UNION ALL queries. (The idea is that you have split the
data out logically by means of a frontend application; SQL Server then recombines
the data through the partitioned view.) This example shows how the data in the view
comes from three separate SQL servers:

CREATE VIEW customers
AS
--Select from a local table on server New_York
SELECT *
FROM sales_archive.dbo.customers_A
UNION ALL
SELECT *
FROM houston.sales_archive.dbo.customers_K
UNION ALL
SELECT *
FROM los_angeles.sales_archive.dbo.customers_S

Note that each remote server (New_York, houston, and los_angeles) has to be defined
as a remote server on all of the SQL servers using the distributed partitioned view.

Partitioned views can greatly boost performance because they can split I/O and
user loads across many machines. However, they are difficult to plan, create, and
maintain. Be sure to read the vendor documentation for complete details about all
the permutations available with partitioned views.

To create a materialized view on SQL Server, first use the CREATE VIEW ... WITH
SCHEMABINDING option, then create a unique clustered index on the view using
CREATE INDEX. Refer to the vendor documentation to see the various rules and
requirements you must meet to create a materialized view.

When altering an existing view, SQL Server acquires and holds an exclusive schema
lock on the view until the alteration is finished. ALTER VIEW drops any indexes that
might be associated with a view; you must manually re-create them using CREATE
INDEX.

INSTEAD OF triggers can be created on views to control how data is updated in the
underlying tables.

See also

• CREATE/ALTER TABLE•

• DROP•

SQL Command Reference | 235

Structuring
Yo

ur D
ata

• SELECT in Chapter 4•

• SUBQUERY in Chapter 4•

• CREATE/ALTER/DROP TRIGGER in Chapter 9•

DROP Statements
All of the database objects created with CREATE statements may be destroyed using
complementary DROP statements. On some platforms, a ROLLBACK statement after
a DROP statement will recover the dropped object. However, on other database
platforms the DROP statement is irreversible and permanent, so it is advisable to use
the command with care.

In general, vendor support for dropping different object types lags behind that pro‐
vided by the SQL standard. However, the SQL standard does not support the DROP
DATABASE and DROP INDEX commands, even though every vendor covered in this
book (and just about everyone else in the market) does. The exact syntax for each
of these commands is covered in the platform-specific sections that follow. Refer
to Table 3-1 for an overview of vendor support for the different DROP statements,
including those not provided by the SQL standard.

SQL standard syntax
DROP [object_type] object_name {RESTRICT | CASCADE}

Keywords

DROP [object_type] object_name
Irreversibly and permanently destroys the object of type object_type called
object_name. The object_name does not need a schema identifier; if none is
provided the current schema is assumed. SQL supports dropping a long list
of object types, each created with its own corresponding CREATE statement.
CREATE statements covered in this chapter with corresponding DROP statements
include:

• DATABASE•

• DOMAIN•

• INDEX•

• SCHEMA•

• TABLE•

• TYPE•

• VIEW•

236 | Chapter 3: Structuring Your Data

RESTRICT | CASCADE

Prevents the DROP from taking place if any dependent objects exist (RESTRICT),
or causes all dependent objects to also be dropped (CASCADE). This clause is not
allowed with some forms of DROP, such as DROP TRIGGER, but is mandatory for
others, such as DROP SCHEMA. To further explain, DROP SCHEMA RESTRICT will
only drop an empty schema. Otherwise (i.e., if the schema contains objects),
the operation will be prevented. In contrast, DROP SCHEMA CASCADE will drop a
schema and all objects contained therein.

Rules at a glance
For rules about the creation or modification of each of the object types, refer to the
sections on the corresponding CREATE/ALTER statements.

The DROP statement destroys a preexisting object. The object is permanently
destroyed, and all users who had permission to access the object immediately lose
the ability to access it.

The object may be qualified—that is, you may fully specify the schema where the
dropped object is located. For example:

DROP TABLE scott.sales_2008 CASCADE;

This statement will drop not only the table scott.sales_2014, but also any views,
triggers, or constraints built on it. A DROP statement may also include an unqualified
object name, in which case the current schema context is assumed. For example:

DROP TRIGGER before_ins_emp;
DROP ROLE sales_mgr;

Although not required by the SQL standard, most implementations cause the DROP
command to fail if the database object is in use by another user.

Programming tips and gotchas
DROP will only work when it is issued against a preexisting object of the appropri‐
ate type and when the user has appropriate permissions (usually the DROP TABLE
permission—refer to “GRANT Statement” on page 451 for more information). The
SQL standard requires only that the owner of an object be able to drop it, but most
database platforms allow variations on that requirement. For example, the database
superuser/superadmin can usually drop any object on a database server.

With some vendors, the DROP command fails if the database object has extended
properties. For example, SQL Server will not drop a table that is replicated unless
you first remove the table from replication. PostgreSQL will not allow dropping
anything that has dependencies without the CASCADE clause.

SQL Command Reference | 237

Structuring
Yo

ur D
ata

It is important to be aware that most vendors don’t notify
you if the DROP command creates a dependency problem. So
if a table that is used by a few views and stored procedures
elsewhere in the database is dropped, no warning is issued;
those other objects simply fail when they are accessed. To
prevent this problem, you may use the RESTRICT syntax where
it’s available, or check for dependencies before invoking the
DROP statement.

MySQL / MariaDB
MySQL and MariaDB support the DROP statement for the following SQL objects:

DROP { {DATABASE | SCHEMA} | FUNCTION |
 PROCEDURE | [TEMPORARY] TABLE | TRIGGER | VIEW }
[IF EXISTS] object_name[, ...]
[RESTRICT |CASCADE]

The supported SQL syntax elements are:

{DATABASE | SCHEMA} database_name

Drops the named database, including all the objects it contains (such as tables
and indexes). DROP SCHEMA is a synonym for DROP DATABASE in MySQL. The
DROP DATABASE command removes all database and table files from the filesys‐
tem, as well as two-digit subdirectories. MySQL will return a message showing
how many files were erased from the database directory. (Files with these
extensions are erased: .bak, .dat, .frm, .hsh, .isd, .ism, .mrg, .myd, .myi, .dm,
and .fm.) If the database is linked, both the link and the database are erased.
You may drop only one database at a time.

FUNCTION routine_name

Drops the named routine from the database. You can use the IF EXISTS clause
with a DROP FUNCTION statement.

INDEX index_name ON table_name

Drops the named index from the named table. To drop a primary key, use the
index name PRIMARY. This statement is mapped to an ALTER TABLE statement
to drop the index.

PROCEDURE routine_name

Drops the named routine from a MySQL v5.1 or greater database. You can use
the IF EXISTS clause with a DROP PROCEDURE statement.

[TEMPORARY] TABLE table_name[, ...]

Drops one or more named tables, with table names separated from each other
by commas. MySQL erases each table’s definition and deletes the three table
files (.frm, .myd, and .myi) from the filesystem. Issuing this command causes
MySQL to commit all active transactions. The TEMPORARY keyword drops only
temporary tables without committing running transactions or checking access
rights.

238 | Chapter 3: Structuring Your Data

TRIGGER [schema_name.]trigger_name

Drops a named trigger from a MySQL v5.0.2 or greater database. You can use
the IF EXISTS clause with a DROP TRIGGER statement to ensure that you only
drop a trigger that actually exists within the database.

VIEW view_name

Drops the named view for the MySQL database. You can use the IF EXISTS
clause with a DROP VIEW statement.

IF EXISTS

Prevents an error message when you attempt to drop an object that does not
exist.

RESTRICT | CASCADE

Noise words. These keywords do not generate an error, nor do they have any
other effect.

MySQL supports the ability to drop a database, a table (or tables), or an index from
a table. You can use the IF EXISTS clause to prevent MySQL from returning an
error message if you try to delete an object that doesn’t exist.

Other objects that MySQL allows you to drop using similar syntax include:

DROP { EVENT | LOGFILE GROUP |
 SERVER | SPATIAL REFERENCE SYSTEM | TABLESPACE } object_name

MariaDB in addition to the preceding supports:

DROP { PACKAGE | PACKAGE BODY } object_name

These variations of the DROP statement are beyond the scope of this book. Check the
MySQL and MariaDB documentation for more details.

Oracle
Oracle supports the DROP statement for the following SQL objects, as well as numer‐
ous Oracle-specific objects:

DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE |
 TABLE | TRIGGER | TYPE [BODY] | [MATERIALIZED] VIEW }
object_name

The rules for Oracle DROP statements are less consistent than the SQL standard’s
rules, so the full syntax of each DROP variant is shown in the following list:

DATABASE database_name

Drops the named database from the Oracle server.

FUNCTION function_name

Drops the named function, as long as it is not a component of a package. (If
you want to drop a function from a package, use the CREATE PACKAGE ... OR
REPLACE statement to redefine the package without that function.) Any local

SQL Command Reference | 239

Structuring
Yo

ur D
ata

objects that depend on or call the function are invalidated, and any statistical
types associated with the function are disassociated.

INDEX index_name [FORCE]

Drops a named index or domain index from the database. Dropping an index
invalidates all objects that depend on the parent table, including views, pack‐
ages, functions, and stored procedures. Dropping an index also invalidates
cursors and execution plans that use the index and will force a hard parse of
the affected SQL statements when they are next executed.

Non-IOT indexes are secondary objects and can be dropped and re-created
without any loss of user data. IOTs, because they combine both table and index
data in the same structure, cannot be dropped and re-created in this manner.
IOTs should be dropped using the DROP TABLE syntax.

When you drop a partitioned index, all partitions are dropped. When you
drop a composite partitioned index, all index partitions and subpartitions
are dropped. When you drop a domain index, any statistics associated with
the domain index are removed and any statistics types are disassociated. The
optional keyword FORCE applies only when dropping domain indexes. FORCE
allows you to drop a domain index marked IN PROGRESS, or to drop a domain
index when its indextype routine invocation returns an error. For example:

DROP INDEX ndx_sales_salesperson_quota;

PROCEDURE procedure_name

Drops the named stored procedure. Any dependent objects are invalidated
when you drop a stored procedure, and attempts to access them before you
re-create the stored procedure will fail with an error. If you re-create the stored
procedure and then access a dependent object, the dependent object will be
recompiled.

ROLE role_name

Drops the named role, removes it from the database, and revokes it from all
users and roles to whom it has been granted. No new sessions can use the role,
but sessions that are currently running under the role are not affected. For
example, the following statement drops the sales_mgr role:

DROP ROLE sales_mgr:

TABLE table_name [CASCADE CONSTRAINTS] [PURGE]

Drops the named table, erases all of its data, drops all indexes and triggers
built from the table (even those in other schemas), and invalidates all permis‐
sions and all dependent objects (views, stored procedures, etc.). On partitioned
tables, Oracle drops all partitions (and subpartitions). On index-organized
tables, Oracle drops all dependent mapping tables. Statistics types associated
with a dropped table are disassociated. Materialized view logs built on a table
are also dropped when the table is dropped.

240 | Chapter 3: Structuring Your Data

The DROP TABLE statement is effective for standard tables, index-organized
tables, and object tables. The table being dropped is only moved to the recy‐
cling bin, unless you add the optional keyword PURGE, which tells Oracle to
immediately free all space consumed by the table. (Oracle also supports a
non-standard SQL command called PURGE that lets you remove tables from the
recycling bin outside of the DROP TABLE statement.) DROP TABLE erases only
the metadata of an external table. You must use an external operating system
command to drop the file associated with an external table and reclaim its
space.

Use the optional CASCADE CONSTRAINTS clause to drop all referential integrity
constraints elsewhere in the database that depend on the primary or unique
key of the dropped table. You cannot drop a table with dependent referential
integrity constraints without using the CASCADE CONSTRAINTS clause. The fol‐
lowing example drops the job_desc table in the emp schema, then drops the job
table and all referential integrity constraints that depend on the primary key
and unique key of the job table:

DROP TABLE emp.job_desc;
DROP TABLE job CASCADE CONSTRAINTS;

TRIGGER trigger_name
Drops the named trigger from the database.

TYPE [BODY] type_name [{FORCE | VALIDATE}]

Drops the specification and body of the named object type, nested table type,
or VARRAY, as long as they have no type or table dependencies. You must use the
optional FORCE keyword to drop a supertype, a type with an associated statistics
type, or a type with any sort of dependencies. All subtypes and statistics types
are then invalidated. Oracle will also drop any public synonyms associated
with a dropped type. The optional BODY keyword tells Oracle to drop only
the body of the type while keeping its specification intact. BODY cannot be
used in conjunction with the FORCE or VALIDATE keywords. Use the optional
VALIDATE keyword when dropping subtypes to check for stored instances of the
named type in any of its supertypes. Oracle performs the drop only if no stored
instances are found. For example:

DROP TYPE salesperson_type;

VIEW view_name [CASCADE CONSTRAINTS]

Drops the named view and marks as invalid any views, subviews, synonyms,
or materialized views that refer to the dropped view. Use the optional clause
CASCADE CONSTRAINTS to drop all referential integrity constraints that depend
on the view. Otherwise, the DROP statement will fail if dependent referential
integrity constraints exist. For example, the following statement drops the
active_employees view in the hr schema:

DROP VIEW hr.active_employees;

SQL Command Reference | 241

Structuring
Yo

ur D
ata

In the DROP syntax, object_name can be replaced with [schema_name.]

object_name. If you omit the schema name, the default schema of the user session
is assumed. Thus, the following DROP statement drops the specified view from the
sales_archive schema:

DROP VIEW sales_archive.sales_2014;

However, if your personal schema is scott, the following command is assumed to be
against scott.sales_2014:

DROP VIEW sales_2014;

Oracle also supports the DROP statement for a large number of objects that aren’t
part of SQL, including:

DROP { ANALYTIC VIEW | ATTRIBUTE | AUDIT POLICY | CLUSTER |
CONTEXT | DATABASE LINK | DIMENSION | EDITION |
 DIRECTORY | DISKGROUP | FLASHBACK ARCHIVE | HIERARCHY |
 INDEXTYPE | INMEMORY JOIN GROUP |
 JAVA | LIBRARY | MATERIALIZED VIEW | MATERIALIZED VIEW
 LOG | MATERIALIZED ZONEMAP | OPERATOR | OUTLINE | PACKAGE | PROFILE |
 PLUGGABLE DATABASE |RESTORE POINT | ROLLBACK SEGMENT |
 SEQUENCE | SYNONYM |
 TABLESPACE | TABLESPACE SET | TYPE BODY | USER } object_name

These variations are beyond the scope of this book. Refer to the Oracle documenta‐
tion if you want to drop an object of one of these types (although the basic syntax is
the same for almost all variations of the DROP statement).

PostgreSQL
PostgreSQL supports both the RESTRICT and CASCADE optional keywords from the
SQL standard. RESTRICT is assumed when CASCADE is not specified. It also allows
dropping and creating objects in a transaction; as such, you can roll back a sequence
of drops and recover everything.

PostgreSQL supports a wide variety of DROP variants, including for PostgreSQL-
specific objects. The SQL objects covered are as follows:

DROP { DATABASE | DOMAIN | FUNCTION | INDEX | ROLE |
 PROCEDURE | SCHEMA | TABLE | TRIGGER | TYPE |
 [MATERIALIZED] VIEW }
[IF EXISTS]object_name
[CASCADE | RESTRICT]

Following is the full SQL-supported syntax for each variant:

DATABASE database_name

Drops the named database and erases the operating system directory contain‐
ing all of the database’s data. This command can only be executed by the
database owner, while that user is connected to a database other than the target
database.

242 | Chapter 3: Structuring Your Data

DOMAIN domain_name[, ...] [CASCADE | RESTRICT]

Drops one or more named domains owned by the session user. CASCADE auto‐
matically drops objects that depend on the domain, while RESTRICT prevents
the action from occurring if any objects depend on the domain. When omitted,
RESTRICT is the default behavior.

FUNCTION function_name ([data_type1[, ...]) [CASCADE | RESTRICT]

Drops the named user-defined function. Since PostgreSQL allows multiple
functions of the same name, distinguished only by the various input parame‐
ters they require, you must specify one or more data types to uniquely identify
the UDF you wish to drop. For example:

DROP FUNCTION median_distribution (int, int, int, int);

INDEX index_name[, ...] [CASCADE | RESTRICT]

Drops one or more named indexes that you own. For example:

DROP INDEX ndx_titles, ndx_authors;

PROCEDURE procedure_name [([data_type1[, ...])] [, ...] [CASCADE

| RESTRICT]

Drops one or more named procedures that you own. Since PostgreSQL allows
multiple procedures of the same name, distinguished only by the various input
parameters they require, you typically must specify one or more data types to
uniquely identify the procedure.

ROLE rule_name[, ...]

Drops one or more named database roles. In PostgreSQL, a role cannot be
dropped when it is referenced in any database. That means you’ll need to drop
or reassign ownership of any objects owned by the role, using the REASSIGN
OWNED and DROP OWNED statements, before dropping it, and then revoke any
privileges the role has been granted.

SCHEMA schema_name[, ...] [CASCADE | RESTRICT]

Drops one or more named schemas from the current database. A schema can
only be dropped by a superuser or the owner of the schema (even when the
owner does not explicitly own all of the objects in the schema).

TABLE table_name[, ...] [CASCADE | RESTRICT]

Drops one or more existing tables from the database, as well as any indexes or
triggers specified for the tables. For example:

DROP TABLE authors, titles;

TRIGGER trigger_name ON table_name [CASCADE | RESTRICT]

Drops the named trigger from the database. You must specify the table_name
because PostgreSQL requires that trigger names be unique only for the tables to
which they are attached. This means it is possible to have many triggers called,
say, insert_trigger or delete_trigger, each on a different table. For example:

DROP TRIGGER insert_trigger ON authors;

SQL Command Reference | 243

Structuring
Yo

ur D
ata

TYPE type_name[, ...] [CASCADE | RESTRICT]

Drops one or more preexisting user-defined types from the database. Post‐
greSQL does not check to see what impact the DROP TYPE command might
have on any dependent objects, such as functions, aggregates, or tables; you
must check the dependent objects manually. (Do not remove any of the built-in
types that ship with PostgreSQL!) Note that PostgreSQL’s implementation of
types differs from the SQL standard. Refer to the section on the CREATE/ALTER
TYPE statement for more information.

[MATERIALIZED] VIEW view_name[, ...] [CASCADE | RESTRICT]

Drops one or more preexisting views from the database. If a view is material‐
ized, the keyword MATERIALIZED needs to be included.

CASCADE | RESTRICT

CASCADE automatically drops objects that depend on the object being dropped,
while RESTRICT prevents the action from occurring if any objects depend on
the object being dropped. When omitted, RESTRICT is the default behavior.

IF EXISTS

Suspends the creation of an error message if the object to be dropped does not
exist. This subclause is usable for most variations of the DROP statement.

Note that PostgreSQL drop operations do not allow you to specify the target data‐
base where the operation will take place (except for DROP DATABASE). Therefore, you
should execute any drop operation from the database where the object you want to
drop is located.

PostgreSQL supports variations of the DROP statement for several objects that are
extensions to the SQL standard. The key ones are shown here:

DROP { AGGREGATE | CAST | CONVERSION | EXTENSION |
 FOREIGN DATA WRAPPER| FOREIGN TABLE | GROUP | LANGUAGE |
 OPERATOR [CLASS] |
 RULE | SEQUENCE | TABLESPACE | USER } object_name

These variations are beyond the scope of this book. Refer to the PostgreSQL docu‐
mentation if you want to drop an object of one of these types (although the basic
syntax is the same for almost all variations of the DROP statement).

SQL Server
SQL Server supports the DROP statement for the following SQL objects:

DROP { DATABASE | FUNCTION | INDEX | PROC[EDURE] | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW }
[IF EXISTS] object_name

Following is the full syntax for each variant:

244 | Chapter 3: Structuring Your Data

DATABASE database_name[, ...]

Drops the named database(s) and erases all disk files used by the database(s).
This command may only be issued from the master database. Replicated data‐
bases must be removed from their replication schemes before they can be
dropped, as must log shipping databases. You cannot drop a database while
it is in use, nor can you drop system databases (master, model, msdb, or
tempdb). For example, we can drop the northwind and pubs databases with one
command:

DROP DATABASE northwind, pubs
GO

FUNCTION [schema.]function_name[, ...]

Drops one or more user-defined functions from the current database.

INDEX index_name ON table_or_view_name[, ...] [WITH { MAXDOP = int |

ONLINE = {ON | OFF} | MOVE TO location [FILESTREAM_ON location] }]

Drops one or more indexes from tables or indexed views in the current data‐
base and returns the freed space to the database. This statement should not
be used to drop a PRIMARY KEY or UNIQUE constraint. Instead, drop these
constraints using the ALTER TABLE ... DROP CONSTRAINT statement. When
dropping a clustered index from a table, all non-clustered indexes are rebuilt.
When dropping a clustered index from a view, all non-clustered indexes are
dropped. The WITH subclause may only be used when dropping a clustered
index. MAXDOP specifies the maximum degrees of parallelism that SQL Server
may use to drop the clustered index. Values for MAXDOP may be 1 (suppresses
parallelism), 0 (the default, using all or fewer processors on the system), or a
value greater than 1 (restricts parallelism to the value of int). ONLINE specifies
that queries or updates may continue on the underlying tables (with ON), or
that table locks are applied and the table is unavailable for the duration of the
process (with OFF). MOVE TO specifies a preexisting filegroup or partition, or the
default location for data within the database to which the clustered index will
be moved. The clustered index is moved to the new location in the form of a
heap.

PROC[EDURE] procedure_name[, ...]

Drops one or more stored procedures from the current database. SQL Server
allows multiple versions of a single procedure via version numbers, but these
versions cannot be dropped individually; you must drop all versions of a stored
procedure at once. System procedures (those with an sp_ prefix) are dropped
from the master database if they are not found in the current user database. For
example:

DROP PROCEDURE calc_sales_quota
GO

SQL Command Reference | 245

Structuring
Yo

ur D
ata

ROLE rule_name[, ...]

Drops one or more roles from the current database. The role must not own
any objects, or else the statement will fail. You must first drop owned objects or
change their ownership before dropping a role that owns any objects.

SCHEMA schema_name

Drops a schema that does not own any objects. To drop a schema that owns
objects, first drop the dependent objects or assign them to a different schema.

TABLE [database_name.][schema_name.]table_name[, ...]

Drops a named table and all data, permissions, indexes, triggers, and con‐
straints specific to that table. (The table_name may be a fully qualified table
name like pubs.dbo.sales or a simple table name like sales, if the current data‐
base and owner are correct.) Views, functions, and stored procedures that
reference the table are not dropped or marked as invalid, but will return an
error when their procedural code encounters the missing table. Be sure to
drop these yourself! You cannot drop a table referenced by a FOREIGN KEY
constraint without first dropping the constraint. Similarly, you cannot drop a
table used in replication without first removing it from the replication scheme.
Any user-defined rules or defaults are unbound when the table is dropped.
They must be rebound if the table is re-created.

TRIGGER trigger_name[, ...] [ON {DATABASE | ALL SERVER}]

Drops one or more triggers from the current database. The subclause [ON
{DATABASE | ALL SERVER}] is available when dropping DDL triggers, while
the subclause [ON ALL SERVER] is also available to LOGON event triggers. ON
DATABASE indicates the scope of the DDL trigger applied to the current database
and is required if the subclause was used when the trigger was created. ON ALL
SERVER indicates the scope of the DDL or LOGON trigger applied to the current
server and is required if the subclause was used when the trigger was created.

TYPE [schema_name.]type_name[, ...]

Drops one or more user-defined types from the current database.

VIEW [schema_name.]view_name[, ...]

Drops one or more views from the database, including indexed views, and
returns all space to the database.

IF EXISTS

Conditionally drops an object only if it already exists, starting in SQL Server
2016 and Azure SQL Database.

SQL Server also has a large number of objects that extend the SQL standard and
that are removed using the more-or-less standardized syntax of the DROP statement.
The key ones are:

DROP { AGGREGATE | APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY |
 BROKER PRIORITY | CERTIFICATE | CONTRACT | CREDENTIAL |
 CRYPTOGRAPHIC PROVIDER | DATABASE AUDIT SPECIFICATION |

246 | Chapter 3: Structuring Your Data

 DATABASE ENCRYPTION KEY | DEFAULT | ENDPOINT | EVENT NOTIFICATION |
 EVENT SESSION | FULLTEXT CATALOG | FULLTEXT INDEX | FULLTEXT
 STOPLIST | LOGIN | MASTER KEY | MESSAGE TYPE | PARTITION FUNCTION |
 PARTITION SCHEME | QUEUE | REMOTE SERVICE BINDING | RESOURCE POOL |
 ROUTE | SECURITY POLICY | SEQUENCE | SERVER AUDIT |
 SERVER AUDIT SPECIFICATION | SERVER ROLE | SERVICE | SIGNATURE |
 STATISTICS | SYMMETRIC KEY | SYNONYM | USER | WORKLOAD GROUP |
 XML SCHEMA COLLECTION } object_name

These variations are beyond the scope of this book. Refer to the SQL Server docu‐
mentation to drop an object of one of these types (although the basic syntax is the
same for almost all variations of the DROP statement).

See also

• CREATE/ALTER SCHEMA•

• CREATE/ALTER TABLE•

• CREATE/ALTER VIEW•

• DELETE in Chapter 5•

• GRANT in Chapter 6•

• INSERT in Chapter 5•

• RETURN in Chapter 9•

• SELECT in Chapter 4•

• SET CONSTRAINTS in Chapter 6•

• SUBQUERY in Chapter 4•

• UPDATE in Chapter 5•

SQL Command Reference | 247

Structuring
Yo

ur D
ata

4
Reading Your Data

In this chapter, we will explore the key SQL statements and clauses needed to extract
information from your database. You will learn about the fundamental SELECT state‐
ment and the various subclauses you can use within it to select data and aggregate
data into subtotals. By the end of this chapter, you will understand the concepts
of JOIN operations, SET operations, aggregation, window operations, common table
expressions, and subqueries. You will also know how to combine these effectively to
query any data in the core database platforms.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support” on page 250.1.
2. Check Table 4-1.2.
3. Look up the specific SQL statement, check the syntax, and read the “Keywords,”3.

“Rules at a glance,” and “Programming tips and gotchas” sections and read the
section on the standard for SQL syntax and description. Do this even if you are
looking for a specific platform implementation.

4. Finally, read the platform-specific implementation information.4.

You will note that the entry for a given platform implementation does not duplicate
information on any clauses that do not differ from the standard. So, it is possible
that you will need to flip between the descriptions for a vendor variation and the
SQL standard to cover all possible details of that command.

In our discussions of MySQL, we will also include MariaDB, a fork of MySQL.
For the most part, MySQL and MariaDB provide fully code-compatible syntax. In

249

these cases we will refer to them collectively as MySQL. We will explicitly mention
MariaDB only in situations where it deviates from MySQL in an important way.

SQL Platform Support
Table 4-1 provides a listing of the SQL statements covered in this chapter, the
platforms that support them, and the degree to which they support them. The
following list offers useful tips for reading Table 4-1, as well as an explanation of
what each abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.1.
2. The SQL statement class for each command is indicated in the second column.2.
3. The subsequent columns list the level of support for each vendor:3.

Supported (S)
The platform supports the SQL standard for the particular command.

Supported, with variations (SWV)
The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

Supported, with limitations (SWL)
The platform supports some but not all of the functions specified by the
SQL standard for the particular command.

Not supported (NS)
The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail.

Remember that even if a specific SQL command is listed in the table as “Not
supported,” the platform usually has alternative coding or syntax to enact the same
command or function. Therefore, be sure to read the discussion and examples for
each command later in this chapter.

Table 4-1. Alphabetical quick SQL command reference

SQL command SQL class MySQL/MariaDB Oracle PostgreSQL SQL Server

ALL/ANY/SOME SQL-data S SWV SWV SWV

BETWEEN SQL-data S S S S

EXCEPT SQL-data NS/SWL SWL SWL SWL

EXISTS SQL-data S S S S

FILTER SQL-data NS NS S NS

GROUP BY SQL-data SWV SWV SWV SWV

IN SQL-data S S S S

250 | Chapter 4: Reading Your Data

SQL command SQL class MySQL/MariaDB Oracle PostgreSQL SQL Server

INTERSECT SQL-data NS/SWL SWL SWL SWL

IS SQL-data S S S S

JOIN SQL-data SWV SWV SWV SWL

LIKE SQL-data S S SWV SWV

ORDER BY SQL-data SWL SWV SWV SWL

OVER SQL-data SWL SWV SWV SWL

SELECT SQL-data SWV SWV SWV SWV

SUBQUERY SQL-data SWL S S S

UNION SQL-data S SWL SWL SWL

VALUES SQL-data SWL NS S SWL

WHERE SQL-data S S S S

WITH SQL-data S SWV SWV SWV

WITH ORDINALITY SQL-data NS NS S NS

SQL Command Reference
ALL/ANY/SOME Operators
The ALL operator performs a Boolean test of a subquery for the existence of a value
in all rows. The ANY operator and its synonym SOME perform a Boolean test of a
subquery for the existence of a value in any of the rows tested.

You will also find the ALL keyword used in conjunction with UNION. This will be
covered in “UNION Set Operator” on page 343.

Platform Command

MySQL Supported

Oracle Supported with variations

PostgreSQL Supported with variations

SQL Server Supported with variations

SQL standard syntax
SELECT ...
WHERE expression comparison {ALL | ANY | SOME} (subquery)

Keywords

WHERE expression

Tests a scalar expression (such as a column) against every value in the
subquery for ALL and against every value until a match is found for ANY and

SQL Command Reference | 251

R
ead

ing
 Yo

ur
D

ata

SOME. All rows must match the expression to return a Boolean TRUE value for
the ALL operator, while one or more rows must match the expression to return
a Boolean TRUE value for the ANY and SOME operators.

comparison

Compares the expression to the subquery. The comparison must be a stan‐
dard comparison operator like =, <>, !=, >, >=, <, or <=.

Rules at a glance
The ALL operator returns a Boolean TRUE value when one of two things happens:
either the subquery returns an empty set (i.e., no records match), or every record
in the set meets the comparison. ALL returns FALSE when any record in the set does
not match the value comparison. The ANY and SOME operators return a Boolean
TRUE when at least one record in the subquery matches the comparison operation,
and FALSE when no record matches the comparison operation (or when a subquery
returns an empty result set). If even one return value of the subquery is NULL, the
operation evaluates as NULL, not as TRUE.

Do not include special clauses like ORDER BY, GROUP BY, CUBE,
ROLLUP, WITH, etc. in your subquery.

For example, this query returns authors who currently have no titles:

SELECT au_id
FROM authors
WHERE au_id <> ALL(SELECT titleauthor.au_id FROM titleauthor);

You can use ANY or SOME to perform filtering checks of different kinds. For example,
the following query will retrieve from the employee table any records that exist in
the jobs table where the employee has the same job_lvl as the minimum required
level of a job:

SELECT *
FROM employee
WHERE job_lvl = ANY(SELECT min_lvl FROM jobs);

Programming tips and gotchas
The ALL and ANY/SOME operators are somewhat difficult to get used to. Most devel‐
opers find it easier to use similar functions like IN and EXISTS.

252 | Chapter 4: Reading Your Data

EXISTS is semantically equivalent to the ANY/SOME construct

MySQL
MySQL supports the SQL standard versions of ALL and ANY/SOME.

Oracle
Oracle supports the SQL standard versions of ALL and ANY/SOME with one minor
variation, which is that you can supply a list of values instead of a subquery. For
example, to find all employees who have a job_lvl value equal to 9 or 14:

SELECT * FROM employee
WHERE job_lvl = ALL(9, 14);

PostgreSQL
PostgreSQL supports the SQL standard versions of ALL and ANY/SOME. In addition, it
supports their use with arrays. For example, to find all employees who have a job_lvl
value equal to 9 or 14:

SELECT * FROM employee
WHERE job_lvl = ANY(ARRAY[9, 14]);

PostgreSQL also supports the use of these terms in conjunction with LIKE and
the case-insensitive ILIKE. A common use is to provide a shorthand for multiple
LIKE/ILIKE clauses. For example, this:

SELECT * FROM employee
WHERE name_last ILIKE ANY(ARRAY['smith', 'paris%', '%chin%']);

is equivalent to:

SELECT * FROM employee
WHERE name_last ILIKE 'smith'
 OR name_last ILIKE 'paris%'
 OR name_last ILIKE '%chin%';

SQL Server
SQL Server supports the SQL standard versions of ALL and ANY/SOME. It also sup‐
ports some additional comparison operators: not greater than (!>) and not less than
(!<).

SQL Command Reference | 253

R
ead

ing
 Yo

ur
D

ata

See also

• BETWEEN•

• EXISTS•

• IN•

• LIKE•

• SELECT•

• UNION•

• WHERE•

BETWEEN Operator
The BETWEEN operator performs a Boolean test of a value against a range of values. It
returns TRUE when the value is included in the range and FALSE when the value falls
outside of the range. The result is NULL (unknown) if any of the range values are
NULL.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL standard syntax
SELECT ...
WHERE expression [NOT] BETWEEN lower_range AND upper_range

Keywords

WHERE expression

Compares a scalar expression, such as a column, to the range of values boun‐
ded by upper_range and lower_range.

[NOT] BETWEEN lower_range AND upper_range

Compares the expression to the lower_range and upper_range. The compar‐
ison is inclusive, meaning that it is equivalent to saying “where expression
is [not] greater than or equal to lower_range and less than or equal to
upper_range.”

Rules at a glance
The BETWEEN operator is used to test an expression against a range of values. It may
be used with any data type except BLOB, CLOB, NCLOB, REF, or ARRAY.

For example, this query returns title_ids that have year-to-date sales of between
10,000 and 20,000:

254 | Chapter 4: Reading Your Data

SELECT title_id
FROM titles
WHERE ytd_sales BETWEEN 10000 AND 20000

BETWEEN is inclusive of the range of values listed, so it includes the values 10,000 and
20,000 in the search. If you want an exclusive search, you must use the greater than
(>) and less than (<) symbols:

SELECT title_id
FROM titles
WHERE ytd_sales > 10000
 AND ytd_sales < 20000

The NOT operator allows you to search for values outside of the BETWEEN range. For
example, you can find all the title_ids that were not published during 2021:

SELECT title_id
FROM titles
WHERE pub_date NOT BETWEEN '01-JAN-2021'
 AND '31-DEC-2021'

Programming tips and gotchas
Some coders are very particular about how the keyword AND is used in WHERE
clauses. To prevent a casual reviewer from thinking that the AND used in a BETWEEN
operation is a logical AND operator, you might want to use parentheses to encapsulate
the entire BETWEEN clause:

SELECT title_id
FROM titles
WHERE (ytd_sales BETWEEN 10000 AND 20000)
 AND pubdate >= '2021-06-12 00:00:00.000'

PostgreSQL also supports @> (the contains operator) and && (the overlaps opera‐
tor), which serve the same purpose as BETWEEN but for array types, range types, and
multi-range types.

See also

• ALL/ANY/SOME•

• EXISTS•

• SELECT•

• WHERE•

EXCEPT Set Operator
The EXCEPT set operator retrieves the result sets of two or more queries, including
all the records retrieved by the first query that are not also found in subsequent
queries. Whereas JOIN clauses are used to return the rows of two or more queries
that are in common, EXCEPT is used to filter out the records that are present in only
one of multiple similar tables.

SQL Command Reference | 255

R
ead

ing
 Yo

ur
D

ata

EXCEPT is in a class of keywords called set operators. Other
set operators include INTERSECT and UNION. (MINUS is a syno‐
nym of the EXCEPT keyword; EXCEPT is the SQL standard.) All
set operators are used to simultaneously manipulate the result
sets of two or more queries, hence the term “set operators.”

Platform Command

MySQL Not supported

MariaDB Supported, with limitations

Oracle Supported, with limitations (as MINUS)

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL standard syntax
There is technically no limit to the number of queries that you may combine with
the EXCEPT operator. The general syntax is:

{SELECT statement1 | VALUES (expr1[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
{SELECT statement2 | VALUES (expr2[, ...])}
EXCEPT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords

VALUES (expr1[, ...])

Generates a derived result set with explicitly declared values as expr1, expr2,
etc.—it’s essentially a SELECT statement result set without the SELECT ... FROM
syntax. This is known as a row constructor, since the rows of the result set
are manually constructed. According to the SQL standard, multiple handcoded
rows in a row constructor must be enclosed in parentheses and separated by
commas.

EXCEPT

Determines which rows will be excluded from the final result set.

ALL | DISTINCT

ALL considers duplicate rows from all result sets in the EXCEPT comparison.
DISTINCT drops duplicate rows from all result sets prior to the EXCEPT compar‐
ison. Any columns containing a NULL value are considered duplicates. (If
neither ALL nor DISTINCT is used, the DISTINCT behavior is the default.)

256 | Chapter 4: Reading Your Data

CORRESPONDING

Specifies that only columns with the same name in both queries are returned,
even if both queries use the asterisk (*) shortcut.

BY (column1, column2, ...)

Specifies that only the named columns are returned, even if more columns
with corresponding names exist in the queries. Must be used with the
CORRESPONDING keyword.

Rules at a glance
There is only one significant rule to remember when using EXCEPT: the number and
order of the columns should be the same in all queries, and the data types should be
of the same category.

The data types do not have to be identical, but they must be compatible. For
example, CHAR and VARCHAR are compatible data types. By default, the result set will
default to the largest data type size of each column in each ordinal position. For
example, a query retrieving rows from VARCHAR(10) and VARCHAR(15) columns will
use the VARCHAR(15) data type and size.

Programming tips and gotchas
None of the platforms supports the CORRESPONDING [BY (column1,

column2, ...)] clause.

According to the SQL standard, the UNION and EXCEPT set operators evaluate with
equal precedence. However, the INTERSECT set operator evaluates before the other
set operators. We recommend that you explicitly control the precedence of the set
operators using parentheses as a general best practice.

According to the SQL standard, only one ORDER BY clause is allowed in the entire
query. Include it at the end of the last SELECT statement. To avoid column and table
ambiguity, be sure to alias each column for each table with the same respective alias.
For example:

SELECT au_lname AS lastname, au_fname AS firstname
FROM authors
EXCEPT
SELECT emp_lname AS lastname, emp_fname AS firstname
FROM employees
ORDER BY lastname, firstname

While each of the column lists may list columns with correspondingly compatible
data types, there may be variation in behavior across the DBMS platforms with
regard to the length of the columns. For example, if the au_lname column in the
previous example’s first query is markedly longer than the emp_lname column in
the second query, the platforms may apply different rules as to which length is used
for the final result. In general, though, the platforms will choose the longer (and less
restrictive) column size for use in the result set.

SQL Command Reference | 257

R
ead

ing
 Yo

ur
D

ata

Each DBMS may apply its own rules as to which column name is used if the names
vary across column lists. In general, the column names of the first query are used.

On platforms that do not support EXCEPT, you can substitute a
LEFT JOIN, NOT IN, or NOT EXISTS. The following queries are
examples of how you can achieve EXCEPT functionality using
NOT EXISTS and NOT IN:

SELECT DISTINCT a.city
FROM authors AS a
WHERE NOT EXISTS
 (SELECT *
 FROM publishers AS p
 WHERE a.city = p.city)

SELECT DISTINCT a.city
FROM authors AS a
WHERE a.city NOT IN
 (SELECT p.city
 FROM pubs.publishers AS p
 WHERE p.city IS NOT NULL)

In general, NOT EXISTS is faster than NOT IN. In addition, there is a subtle issue
with NULLs that differentiates the IN and NOT IN operators and the EXISTS and NOT
EXISTS set operators. To get around this different handling of NULLs, simply add
the IS NOT NULL clause to the WHERE clause, as shown in the preceding example.

The following example illustrates the use of LEFT JOIN:

SELECT DISTINCT a.city
FROM authors AS a
 LEFT JOIN (SELECT city
 FROM publishers
 WHERE city IS NOT NULL) AS p ON a.city = p.city
WHERE p.city IS NULL;

MySQL and MariaDB
MySQL does not support EXCEPT. MariaDB 10.3 and later support the EXCEPT,
EXCEPT ALL, and EXCEPT DISTINCT set operators using the SQL standard syntax.
For MySQL, you can use the NOT IN or NOT EXISTS operations as alternatives to
EXCEPT, as detailed in the previous section.

Oracle
Oracle versions below Oracle 21c do not support the EXCEPT set operator. However,
they have an alternative set operator, MINUS, with identical functionality to EXCEPT.
Its syntax is as follows:

258 | Chapter 4: Reading Your Data

<SELECT statement1>
MINUS
<SELECT statement2>
MINUS
...

MINUS is the functional equivalent of MINUS DISTINCT; the ALL clause is not
implemented.

Oracle does not support MINUS on queries containing:

• Columns whose data types are LONG, BLOB, CLOB, BFILE, or VARRAY•

• A FOR UPDATE clause•

• TABLE collection expressions•

If the first query in a set operation contains any expressions in the SELECTitem list,
you must include AS clauses to associate aliases with those expressions. Also, only
the last query in the set operation may contain an ORDER BY clause.

For example, you could generate a list of all store IDs that do not have any records
in the sales table as follows:

SELECT stor_id FROM stores
MINUS
SELECT stor_id FROM sales

The MINUS command is functionally similar to a NOT IN query. This query retrieves
the same results:

SELECT stor_id FROM stores
WHERE stor_id NOT IN
 (SELECT stor_id FROM sales)

PostgreSQL
PostgreSQL supports the EXCEPT and EXCEPT ALL set operators using the basic SQL
standard syntax:

<SELECT statement1>
EXCEPT [ALL]
<SELECT statement2>
EXCEPT [ALL]
...

EXCEPT DISTINCT is not supported, but EXCEPT is the functional equivalent. EXCEPT
or EXCEPT ALL are not supported on queries with a FOR UPDATE clause.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT
clause, although you can define a subquery for the SELECT statement that does
include these. Subsequent queries in the EXCEPT or EXCEPT ALL set operation may

SQL Command Reference | 259

R
ead

ing
 Yo

ur
D

ata

contain these clauses, but such queries must be enclosed in parentheses. Otherwise,
the last occurrence of ORDER BY or LIMIT will be applied to the entire set operation.

PostgreSQL evaluates SELECT statements in a multi-EXCEPT statement from top
to bottom, unless you use parentheses to change the evaluation hierarchy of the
statements.

Normally, duplicate rows are eliminated from the two result sets, unless you add the
ALL keyword. For example, you could find all titles in the authors table that have no
records in the sales table using this query:

SELECT title_id
FROM authors
EXCEPT ALL
SELECT title_id
FROM sales;

SQL Server
SQL Server supports EXCEPT, but none of its subclauses. For comparison purposes,
SQL Server considers NULL values equal when evaluating an EXCEPT result set. If
using the SELECT ... INTO statement, only the first query may contain the INTO
clause. ORDER BY is only allowed at the end of the statement and is not allowed with
each individual query. Conversely, GROUP BY and HAVING clauses can only be used
within individual queries and may not be used to affect the final result set. The FOR
BROWSE clause may not be used with statements that include EXCEPT.

See also

• INTERSECT•

• SELECT•

• UNION•

EXISTS Operator
The EXISTS operator tests a subquery for the existence of rows. All the platforms
support the SQL standard syntax.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL standard syntax
SELECT ...
WHERE [NOT] EXISTS (subquery)

260 | Chapter 4: Reading Your Data

Keywords

WHERE [NOT] EXISTS

Tests the subquery for the existence of one or more rows. If even one row
satisfies the subquery clause, it returns a Boolean TRUE value. The optional NOT
keyword returns a Boolean TRUE value when the subquery returns no matching
rows.

subquery

Retrieves a result set based on a fully formed subquery.

Rules at a glance
The EXISTS operator checks a subquery for the existence of one or more records
against the records in the parent query.

For example, if we want to see whether there are any jobs where no employee is
filling the position:

SELECT *
FROM jobs
WHERE NOT EXISTS
 (SELECT * FROM employee
 WHERE jobs.job_id = employee.job_id)

This example tests for the absence of records in the subquery using the optional NOT
keyword. The next example looks for specific records in the subquery to retrieve the
main result set:

SELECT au_lname
FROM authors
WHERE EXISTS
 (SELECT *
 FROM publishers
 WHERE authors.city = publishers.city)

This query returns the last names of authors who live in the same city as their
publishers. Note that the asterisk in the subquery is acceptable, since the subquery
only needs to return a single record to provide a Boolean TRUE value. Columns are
irrelevant in these cases.

Programming tips and gotchas
EXISTS, in many queries, does the same thing as ANY (in fact, it is semantically
equivalent to the ANY operator). EXISTS is usually most effective with correlated
subqueries.

The EXISTS subquery usually searches for only one of two things. Your first option
is to use the asterisk wildcard (e.g., SELECT * FROM ...) so that you are not retriev‐
ing any specific column or value. In this case, the asterisk means “any column.” The

SQL Command Reference | 261

R
ead

ing
 Yo

ur
D

ata

second option is to select only a single column in the subquery (e.g., SELECT au_id
FROM ...). The third option is to select a constant, such as (SELECT 1 FROM ...).

EXISTS can be rewritten using an IN clause. Here is an example written with EXISTS:

SELECT au_id
FROM authors
WHERE EXISTS(SELECT au_id
 FROM titleauthor AS ta WHERE ta.au_id = authors.au_id)

and its equivalent using IN:

SELECT au_id
FROM authors
WHERE au_id IN(SELECT ta.au_id
 FROM titleauthor AS ta
 WHERE ta.au_id = authors.au_id)

See also

• ALL/ANY/SOME•

• IN•

• SELECT•

• WHERE•

FILTER Clause
The FILTER clause is used in conjunction with aggregate functions, except when
they are used as window aggregates. PostgreSQL supports the SQL standard syntax
for this clause; the other platforms do not support it.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
The FILTER clause is part of a SELECT statement and qualifies an aggregate function
call:

[aggregate_function(input_args) FILTER
 (WHERE search_condition)
input_args := value[,..]

262 | Chapter 4: Reading Your Data

In databases where the FILTER clause is not supported, the functionality can be
simulated for aggregates that ignore NULLs with a CASE statement, as follows:

[aggregate_function(input_args)
input_args := CASE WHEN search_condition THEN value
 ELSE NULL END[,...]

Keywords

aggregate_function

An aggregate function such as AVG, COUNT, COUNT DISTINCT, MAX, MIN, or SUM.

WHERE search_condition

Any condition allowed in a WHERE clause is allowed.

Rules at a glance
The FILTER clause is allowed only in queries that utilize aggregate functions. Here is
an example that uses the FILTER clause to count books by price in PostgreSQL:

SELECT SUM(ytd_sales) AS total_sales
 , SUM(ytd_sales) FILTER(WHERE price < '$20.00')
 AS sales_book_lt_20
FROM titles;

And here is an alternative using CASE:

SELECT SUM(ytd_sales) AS total_sales
 , SUM(CASE WHEN price < '$20.00' THEN ytd_sales
 ELSE NULL END) AS sales_book_lt_20
FROM titles;

The results are:

total_sales sales_book_lt_20
----------- -----------------------
97446 83821

See also

• CASE in Chapter 7

• GROUP BY•

• SELECT•

• WHERE•

GROUP BY Clause
The GROUP BY clause is used to aggregate or dedupe data. It is often paired with
aggregate functions and the HAVING clause.

SQL Command Reference | 263

R
ead

ing
 Yo

ur
D

ata

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
[GROUP BY group_by_expression
 [HAVING search_condition]]

group_by_expression ::= { (grouping_column[, ...]) |
 ROLLUP (grouping_column[, ...]) |
 CUBE (grouping_column[, ...]) |
 GROUPING SETS (grouping_set_list) | () |
 grouping_set, grouping_set_list }

Keywords

GROUP BY group_by_expression

Groups result sets into the categories defined in the group_by_expression.
Used in queries that utilize aggregate functions such as AVG, COUNT, COUNT
DISTINCT, MAX, MIN, and SUM. The group_by_expression of the GROUP BY clause
has an elaborate syntax of its own; refer to the following section for examples
and more information on ROLLUP, CUBE, and GROUPING SETS.

HAVING search_condition

Adds search conditions on the results of the GROUP BY clause in a manner
similar to the WHERE clause. HAVING does not affect the rows used to calculate
the aggregates. HAVING clauses may contain subqueries.

Rules at a glance
The GROUP BY clause is needed only in queries that utilize aggregate functions. The
HAVING clause is almost always accompanied by a GROUP BY clause, but a GROUP BY
clause is often used without a HAVING clause.

The GROUP BY clause. The GROUP BY clause is used to report an aggregated value
for one or more rows returned by a SELECT statement based on one or more
non-aggregated columns called grouping columns. For example, here is a query that
counts up how many people were hired each year during the years 2016 through
2021:

SELECT hire_year, COUNT(emp_id) AS nbr_emps
FROM employee
WHERE status = 'ACTIVE'

264 | Chapter 4: Reading Your Data

 AND hire_year BETWEEN 2016 AND 2021
GROUP BY hire_year;

The results are:

hire_year nbr_emps
--------- --------
2016 27
2017 17
2018 13
2019 19
2020 20
2021 32

Queries using aggregate functions provide many types of summary information.
The most common aggregate functions include:

AVG

Returns the average of all non-NULL values in the specified column(s)

AVG DISTINCT

Returns the average of all unique non-NULL values in the specified column(s)

COUNT

Counts the occurrences of all non-NULL values in the specified column(s)

COUNT DISTINCT

Counts the occurrences of all unique non-NULL values in the specified
column(s)

COUNT(*)

Counts every record in the table

MAX

Returns the highest non-NULL value in the specified column(s)

MIN

Returns the lowest non-NULL value in the specified column(s)

SUM

Totals all non-NULL values in the specified column(s)

SUM DISTINCT

Totals all unique non-NULL values in the specified column(s)

Some queries that use aggregates return a single row and are used to aggregate
the whole table. Single-value aggregates are known as scalar aggregates. Scalar aggre‐
gates do not need a GROUP BY clause. For example:

-- Query
SELECT AVG(price)
FROM titles

SQL Command Reference | 265

R
ead

ing
 Yo

ur
D

ata

-- Results
14.77

Queries in which all returned columns are aggregates also do not need a GROUP BY
clause.

Queries that return both regular column values and aggregate function values are
commonly called vector aggregates. Vector aggregates use the GROUP BY clause and
return one or many rows.

There are a few rules to follow when using GROUP BY:

• Place GROUP BY in the proper clause order—after the WHERE clause and before•
the ORDER BY clause.

• Include all non-aggregate columns in the GROUP BY clause.•

• Do not use column aliases in the GROUP BY clause (though table aliases are•
acceptable).

For example, let’s suppose we need to get the total purchase amount of several
purchases from an Order_Details table that looks like this:

OrderID ProductID UnitPrice Quantity
----------- ----------- ------------------- --------
10248 11 14.0000 12
10248 42 9.8000 10
10248 72 34.8000 5
10249 14 18.6000 9
10249 51 42.4000 40
10250 41 7.7000 10
10250 51 42.4000 35
10250 65 16.8000 15
...

We can do this with a query like the following:

SELECT OrderID, SUM(UnitPrice * Quantity) AS Order_Amt
FROM order_details
WHERE orderid IN (10248, 10249, 10250)
GROUP BY OrderID

The results are:

OrderID Order_Amt
----------- ----------------
10248 440.0000
10249 1863.4000
10250 1813.0000

We could further refine the aggregations by using more than one grouping column.
Consider the following query, which retrieves the average price of our products,
grouped first by name and then by size:

266 | Chapter 4: Reading Your Data

SELECT name, size, AVG(unit_price) AS avg
FROM product
GROUP BY name, size

The results are:

name size avg
------------ ------ -----------------------
Flux Capacitor small 900
P32 Space Modulator small 1400
Transmogrifier medium 1400
Acme Rocket large 600
Land Speeder large 6500

In addition, the GROUP BY clause supports a few very important subclauses:

{ROLLUP | CUBE} ([grouping_column[, ...]])[, grouping_set_list]

Groups the aggregate values of the result set by one or more grouping columns.
(Without ROLLUP or CUBE, the GROUP BY (grouping_column[, ...]) clause is
the simplest and most common form of the GROUP BY clause.)

ROLLUP

Produces subtotals for each set of grouping columns as a hierarchical result
set, adding subtotal and grand total rows into the result set in a hierarchical
fashion. ROLLUP operations return one row per grouping column, with NULL
appearing in the grouping column to show the subtotaled or totaled aggregate
value.

CUBE

Produces subtotals and cross-tabulated totals for all grouping columns. In a
sense, the CUBE clause enables you to quickly return multidimensional result
sets from standard relational tables without a lot of programmatic work. CUBE
is especially useful when working with large amounts of data. Like ROLLUP,
CUBE provides subtotals of the grouping columns, but it also includes subtotal
rows for all possible combinations of the grouping columns specified in the
query.

GROUPING SETS [{ROLLUP | CUBE}] ([grouping_column[, ...]])

[, grouping_set_list]

Enables aggregated groups on several different sets of grouping columns within
the same query. This is especially useful when you want to return only a
portion of an aggregated result set. The GROUPING SETS clause also lets you
select which grouping columns to compare, whereas CUBE returns all of the
grouping columns and ROLLUP returns a hierarchical subset of the grouping
columns. As the syntax shows, the SQL standard also allows GROUPING SETS to
be paired with ROLLUP or CUBE.

Table 4-2 illustrates the differences between the result sets returned by GROUP BY on
its own and with each of these subclauses.

SQL Command Reference | 267

R
ead

ing
 Yo

ur
D

ata

Table 4-2. GROUP BY syntax variations

GROUP BY syntax Returns the following sets

 GROUP BY (col_A, col_B, col_C)
 GROUP BY ROLLUP (col_A, col_B, col_C)

 GROUP BY CUBE (col_A, col_B, col_C)

 (col_A, col_B, col_C)
 (col_A, col_B, col_C)
 (col_A, col_B)
 (col_A)
 ()
 (col_A, col_B, col_C)
 (col_A, col_B)
 (col_A)
 (col_B, col_C)
 (col_B)
 (col_C)
 ()

Each type of GROUP BY clause returns a different set of aggregated values and, in the
case of ROLLUP and CUBE, totals and subtotals.

The concepts of ROLLUP, CUBE, and GROUPING SETS are much more intuitive when
explained by example. In the following example, we query for data summarizing the
number of sales_orders by order_year and by order_quarter:

SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2020, 2021)
GROUP BY ROLLUP (order_year, order_quarter)
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
NULL NULL 648 -- grand total
2020 NULL 380 -- total for year 2020
2020 1 87
2020 2 77
2020 3 91
2020 4 125
2021 NULL 268 -- total for year 2021
2021 1 139
2021 2 119
2021 3 10

Adding grouping columns to the query provides more details (and more subtotal‐
ing) in the result set. Now let’s modify the previous example by adding a region to
the query (but since the number of rows increases, we’ll only look at the first and
second quarters):

SELECT order_year AS year, order_quarter AS quarter, region,
 COUNT (*) AS orders
FROM order_details

268 | Chapter 4: Reading Your Data

WHERE order_year IN (2020, 2021)
 AND order_quarter IN (1,2)
 AND region IN ('USA', 'CANADA')
GROUP BY ROLLUP (order_year, order_quarter,region)
ORDER BY order_year, order_quarter, region;

The results are:

year quarter region orders
---- ------- ------ ------
NULL NULL NULL 183 -- grand total
2020 NULL NULL 68 -- subtotal for year 2020
2020 1 NULL 36 -- subtotal for all regions in q1 of 2020
2020 1 CANADA 3
2020 1 USA 33
2020 2 NULL 32 -- subtotal for all regions in q2 of 2021
2020 2 CANADA 3
2020 2 USA 29
2021 NULL NULL 115 -- subtotal for year 2021
2021 1 NULL 57 -- subtotal for all regions in q1 of 2021
2021 1 CANADA 11
2021 1 USA 46
2021 2 NULL 58 -- subtotal for all regions in q2 of 2021
2021 2 CANADA 4
2021 2 USA 54

The GROUP BY CUBE clause is useful for performing multidimensional analyses on
aggregated data. Like GROUP BY ROLLUP, it returns subtotals, but unlike GROUP BY
ROLLUP, it returns subtotals combining all of the grouping columns named in the
query. (As you will see, it also has the potential to increase the number of rows
returned in the result set.)

In the following example, we query for data summarizing the number of
sales_orders by order_year and by order_quarter:

SELECT order_year AS year, order_quarter AS quarter,
 COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2020, 2021)
GROUP BY CUBE (order_year, order_quarter)
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
NULL NULL 648 -- grand total
NULL 1 226 -- subtotal for q1 of both years
NULL 2 196 -- subtotal for q2 of both years
NULL 3 101 -- subtotal for q3 of both years
NULL 4 125 -- subtotal for q4 of both years
2020 NULL 380 -- total for year 2020
2020 1 87

SQL Command Reference | 269

R
ead

ing
 Yo

ur
D

ata

2020 2 77
2020 3 91
2020 4 125
2021 NULL 268 -- total for year 2021
2021 1 139
2021 2 119
2021 3 10

The GROUP BY GROUPING SETS clause lets you aggregate on more than one group
in a single query. For each group set, the query returns subtotals with the grouping
column marked as NULL. While the CUBE and ROLLUP clauses place predefined
subtotals into the result set, the GROUPING SETS clause allows you to control what
subtotals to add to the query. The GROUPING SETS clause will also return a grand
total if you include a set with no columns, such as ().

Using a similar example query to the ones shown with ROLLUP and CUBE, this time
we’ll subtotal by year and quarter and separately by year:

SELECT order_year AS year, order_quarter AS quarter, COUNT (*)
AS orders
FROM order_details
WHERE order_year IN (2020, 2021)
GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))
ORDER BY order_year, order_quarter;

The results are:

year quarter orders
---- ------- ------
2020 NULL 380 -- total for year 2020
2020 1 87
2020 2 77
2020 3 91
2020 4 125
2021 NULL 268 -- total for year 2021
2021 1 139
2021 2 119
2021 3 10

Another way to think of GROUPING SETS is to consider it to be like a UNION ALL of
more than one GROUP BY query that references different parts of the same data. You
can tell the database to add subtotals to a GROUPING SET by simply adding in the
ROLLUP or CUBE clause according to how you would like subtotaling to occur.

GROUPING SETS can also be concatenated to concisely generate large combinations
of groupings. Concatenated GROUPING SETS yield the cross product of groupings
from each of the sets within a GROUPING SETS list. Concatenated GROUPING SETS
are compatible with CUBE and ROLLUP, but since they perform a cross product of all
GROUPING SETS, they will generate a very large number of final groupings from even
a small number of concatenated groupings. This is demonstrated in the example in
Table 4-3.

270 | Chapter 4: Reading Your Data

Table 4-3. GROUP BY GOUPING SETS syntax

GROUP BY syntax Returns the following sets

 GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

 GROUP BY GROUPING SETS (col_A, col_B)
 (col_Y, col_Z)

 (col_A, col_Y)
 (col_A, col_Z)
 (col_B, col_Y)
 (col_B, col_Z)

You can imagine how large the result set would be if the concatenated GROUPING
SETS contained a large number of groupings! However, the information returned
can be very valuable and hard to reproduce.

The HAVING clause. The HAVING clause adds search conditions on the result of the
GROUP BY clause. The HAVING clause works very much like the WHERE clause, but
it applies to the GROUP BY clause. The HAVING clause supports all the same search
conditions as the WHERE clause shown earlier. For example, using the same query as
at the beginning of the previous section, say we now want to find only those jobs
that are performed by more than three people:

-- Query
SELECT j.job_desc "Job Description",
 COUNT(e.job_id) "Nbr in Job"
FROM employee e
JOIN jobs j ON e.job_id = j.job_id
GROUP BY j.job_desc
HAVING COUNT(e.job_id) > 3

-- Results
Job Description Nbr in Job
-- -----------
Acquisitions Manager 4
Managing Editor 4
Marketing Manager 4
Operations Manager 4
Productions Manager 4
Public Relations Manager 4
Publisher 7

Note that the SQL standard does not require that an explicit GROUP BY clause appear
with a HAVING clause. For example, the following query against the employee table is
valid because it has an implied GROUP BY clause:

SELECT COUNT(dept_nbr)
FROM employee
HAVING COUNT(dept_nbr) > 30;

SQL Command Reference | 271

R
ead

ing
 Yo

ur
D

ata

Although it’s valid, this application of the HAVING clause is rather rare.

IN Operator
The IN operator provides a way to delineate a list of values, either explicitly listed or
from a subquery, and compare a value against that list in a WHERE or HAVING clause.
In other words, it gives you a way to say “Is value A in this list of values?” All the
platforms support the SQL standard syntax.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL standard syntax
{WHERE | HAVING | {AND | OR}}
 value [NOT] IN ({comp_value1, comp_value2[, ...] | subquery})

Keywords

{WHERE | HAVING | {AND | OR}} value

IN is permitted in either the WHERE or the HAVING clause. The IN comparison
may also be a part of an AND or OR clause in a multicondition WHERE or HAVING
clause. value may be of any data type, but is usually the name of a column of
the table referenced by the transaction, or perhaps a host variable when used
programmatically.

NOT

Optionally tells the database to look for a result set that contains values that are
not in the list.

IN ({comp_value1, comp_value2[, ...] | subquery})

Defines the list of comparative values (hence, comp_value) to compare against.
Each comp_value must be of the same or a compatible data type as the initial
value. They are also governed by standard data type rules. For example, string
values must be delimited by quotes, while integer values need no delimiters. As
an alternative to listing specific values, you may use parentheses to enclose a
subquery that returns one or more values of a compatible data type.

Rules at a glance
In the following example, generated on SQL Server, we look for all employees in
the employee table of the hr database who have a home state of Georgia, Tennessee,
Alabama, or Kentucky:

272 | Chapter 4: Reading Your Data

SELECT *
FROM hr..employee
WHERE home_state IN ('AL','GA','TN','KY')

Similarly, we can look for all employees in the hr database who are authors in the
pubs database:

SELECT *
FROM hr..employee
WHERE emp_id IN (SELECT au_id FROM pubs..authors)

We can also use the NOT keyword to return a result set based upon the absence of
a value. In the following case, the company headquarters is located in New York,
and many workers commute in from neighboring states. We want to see all such
workers:

SELECT *
FROM hr..employee
WHERE home_state
 NOT IN ('NY','NJ','MA','CT','RI','DE','NH')

Note that Oracle, while fully supporting the SQL standard functionality, extends the
functionality of the IN operator by allowing multiple argument matches. For exam‐
ple, the following SELECT ... WHERE ... IN statement is acceptable on Oracle:

SELECT *
FROM hr..employee e
WHERE (e.emp_id, e.emp_dept)
 IN ((242, 'sales'), (442, 'mfg'), (747, 'mkt))

See also

• ALL/ANY/SOME•

• BETWEEN•

• EXISTS•

• LIKE•

• SELECT•

INTERSECT Set Operator
The INTERSECT set operator retrieves the result sets of two or more queries, includ‐
ing only the records retrieved by the first query that are also found in all subsequent
queries (that is, it includes only those rows that appear in all the result sets). In some
ways, INTERSECT is similar to an INNER JOIN operation (see “JOIN Subclause” on
page 278 for details).

INTERSECT is in a class of keywords called set operators. Other
set operators include EXCEPT and UNION. All set operators are
used to simultaneously manipulate the result sets of two or
more queries; hence the term “set operators.”

SQL Command Reference | 273

R
ead

ing
 Yo

ur
D

ata

Platform Command

MySQL Not supported

MariaDB Supported, with limitations

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL standard syntax
There is technically no limit to the number of queries that you may combine with
the INTERSECT set operator. The general syntax is:

<SELECT statement1>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
<SELECT statement2>
INTERSECT [ALL | DISTINCT]
[CORRESPONDING [BY (column1, column2, ...)]]
...

Keywords

INTERSECT

Determines which rows will be included in the final single result set.

ALL | DISTINCT

ALL includes duplicate rows from all result sets in the INTERSECT comparison.
DISTINCT drops duplicate rows from all result sets prior to the INTERSECT
comparison. Any columns containing a NULL value are considered duplicates.
(If neither ALL nor DISTINCT is used, the DISTINCT behavior is the default.)

CORRESPONDING

Specifies that only columns with the same name in both queries are returned,
even if both queries use the asterisk (*) shortcut.

BY (column1, column2, ...)

Specifies that only the named columns are returned, even if more columns
with corresponding names exist in the queries. Must be used with the
CORRESPONDING keyword.

Rules at a glance
There is only one significant rule to remember when using INTERSECT: the order
and number of columns must be the same in all of the queries.

Also, while the data types of the corresponding columns do not have to be identical,
they must be compatible (for example, CHAR and VARCHAR are compatible data types).

274 | Chapter 4: Reading Your Data

By default, the result set will default to the largest of the columns in each ordinal
position.

Programming tips and gotchas
None of the platforms support the SQL standard CORRESPONDING [BY (column1,
column2, ...)] clause.

The SQL standard evaluates INTERSECT as higher priority than other set operators,
but not all platforms evaluate set operator precedence the same way. You can
explicitly control the precedence of set operators using parentheses. Otherwise, the
DBMS might evaluate the expressions either from leftmost to rightmost or from
first to last.

According to the standard, only one ORDER BY clause is allowed in the entire query.
It should be included at the end of the last SELECT statement. To avoid column and
table ambiguity, be sure to alias each column of each table with the same respective
alias. For example:

SELECT a.au_lname AS last_name, a.au_fname AS first_name
FROM authors AS a
INTERSECT
SELECT e.emp_lname AS last_name, e.emp_fname AS last_name
FROM employees AS e
ORDER BY last_name, first_name

Also, be aware that while your column data types may be compatible throughout
the queries in the INTERSECT, there may be some variation in behavior across the
DBMS platforms with regard to varying length of the columns. For example, if the
au_lname column in the first query is markedly longer than the emp_lname column
in the second query, different platforms may apply different rules as to which length
is used for the final result. In general, though, the platforms will choose the longer
(and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the
columns across the tables have different names. In general, the column names from
the first query are used.

On platforms that do not support INTERSECT, substitute a
query using INNER JOIN.

Here is the earlier example rewritten as an INNER JOIN:

SELECT DISTINCT a.au_lname AS last_name, a.au_fname AS first_name
FROM authors AS a
 INNER JOIN employees AS e

SQL Command Reference | 275

R
ead

ing
 Yo

ur
D

ata

 ON (a.au_lname = e.emp_lname AND a.au_fname = e.emp_fname)
ORDER BY last_name, first_name

MySQL and MariaDB
MySQL does not support INTERSECT. MariaDB 10.3 and later support the
INTERSECT, INTERSECT ALL, and INTERSECT DISTINCT set operators using the SQL
standard syntax.

Oracle
Oracle supports the INTERSECT and INTERSECT ALL set operators using the basic
SQL standard syntax. INTERSECT DISTINCT is not supported, but INTERSECT is the
functional equivalent.

For example, you could find all store IDs that also have sales using this query:

SELECT stor_id FROM stores
INTERSECT
SELECT stor_id FROM sales

Oracle does not support INTERSECT on the following types of queries:

• Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY data types•

• Queries containing a FOR UPDATE clause or a TABLE collection expression•

If the first query in the set operation contains any expressions in the SELECT item
list, you should include the AS keyword to associate an alias with the column
resulting from the expression. Also, only the first query in the set operation may
contain an ORDER BY clause.

PostgreSQL
PostgreSQL supports the INTERSECT and INTERSECT ALL set operators using the
basic SQL standard syntax, but not on queries with a FOR UPDATE clause. INTERSECT
DISTINCT is not supported, but INTERSECT is the functional equivalent.

For example, you can find all authors who are also employees and whose last last
names start with “P” as follows:

SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
INTERSECT
SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

The first query in the set operation may not contain an ORDER BY clause or a LIMIT
clause. Subsequent queries in the INTERSECT [ALL] set operation may contain
these clauses, but such queries must be enclosed in parentheses. Otherwise, the

276 | Chapter 4: Reading Your Data

rightmost occurrence of ORDER BY or LIMIT will be assumed to apply to the entire
set operation.

SQL Server
SQL Server supports INTERSECT, but not its subclauses. The column names of
the result set are those returned by the first query. Any column names or aliases
referenced in an ORDER BY clause must appear in the first query. When using
INTERSECT (or EXCEPT) to compare more than two result sets, each pair of result sets
(i.e., each pair of queries) is compared before moving to the next pair in the order
of expressions in parentheses first, INTERSECT set operators second, and EXCEPT and
UNION last in order of appearance.

Also note that you can use NOT IN or NOT EXISTS operations in conjunction with
a correlated subquery, as alternatives. Refer to the sections on IN and EXISTS for
examples.

See also

• EXCEPT•

• EXISTS•

• IN•

• SELECT•

• UNION•

IS Operator
The IS operator determines whether a value is NULL or not. All the platforms
support the SQL standard syntax.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL standard syntax
{WHERE | {AND | OR}} expression IS [NOT] NULL

Keywords

{WHERE | {AND | OR}} expression IS NULL

Returns a Boolean value of TRUE if the expression is NULL, and FALSE if
the expression is not NULL. The expression evaluated for NULL can be
preceded by the WHERE keyword or the AND or OR keywords.

SQL Command Reference | 277

R
ead

ing
 Yo

ur
D

ata

NOT

Inverses the predicate: the statement will instead return a Boolean TRUE if the
value of expression is not NULL, and FALSE if the value of expression is
NULL.

Rules at a glance
Because the value of NULL is unknown, you cannot use comparison expressions to
determine whether a value is NULL. For example, the expressions X = NULL and X
<> NULL cannot be resolved because no value can equal, or not equal, an unknown.

Instead, you must use the IS NULL operator. Be sure that you do not put the word
NULL within quotation marks, because if you do that, the DBMS will interpret the
value as the word “NULL” and not the special value NULL.

Programming tips and gotchas
Some platforms support the use of a comparison operator to determine whether an
expression is NULL. However, all platforms covered by this book now support the
SQL standard IS [NOT] NULL syntax.

Sometimes, checking for NULL will make your WHERE clause only slightly more
complex. For example, rather than a simple predicate to test the value of stor_id, as
shown here:

SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)

you can add a second predicate to accommodate the possibility that stor_id might be
NULL:

SELECT stor_id, ord_date
FROM sales
WHERE stor_id IN (6630, 7708)
 OR stor_id IS NULL

See also

• SELECT• • WHERE•

JOIN Subclause
The JOIN subclause enables you to retrieve rows from two or more logically related
tables. You can define many different join conditions and types of joins, though the
types of joins supported by the different platforms vary greatly.

278 | Chapter 4: Reading Your Data

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL standard syntax
FROM table [AS alias] { [join_type] JOIN [LATERAL] joined_table
[[AS] alias]
 { ON join_condition1 [{AND | OR} join_condition2] [...] |
 USING (column1[, ...]) }} |
 [PARTITION BY (column1[, ...])]
[...]

Keywords

FROM table

Defines the first table or view in the join.

[join_type] JOIN [LATERAL] joined_table

Specifies the type of JOIN and the second (and any subsequent) table(s) in the
join. You may also define an alias on any of the joined_tables. The join types
are:

CROSS JOIN

Specifies the complete cross product of two tables. For each record in
the first table, all the records in the second table are joined, creating a
huge result set. This command has the same effect as leaving off the join
condition, and its result set is also known as a Cartesian product.

Cross joins are not advisable or recommended.

[INNER] JOIN

Specifies that unmatched rows in either table of the join should be dis‐
carded. If no join type is explicitly defined, this is the default.

LEFT [OUTER] JOIN

Specifies that all records be returned from the table on the left side of the
join statement. If a record returned from the left table has no matching
record in the table on the right side of the join, it is still returned. Columns
from the right table return NULL values when there is no matching row.

SQL Command Reference | 279

R
ead

ing
 Yo

ur
D

ata

It is a good idea to configure all your outer joins as left outer joins (rather
than mixing left and right outer joins) wherever possible, for consistency.

RIGHT [OUTER] JOIN

Specifies that all records be returned from the table on the right side of
the join statement, even if the table on the left has no matching record.
Columns from the left table return NULL values when there is no match‐
ing row.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether
a row from one table matches a row in the other table. Any columns
that have no value in the corresponding joined table are assigned a NULL
value.

NATURAL

Specifies that the join (either inner or outer) should be performed on all
columns of identical name shared between the two tables. Consequently,
you should not specify join conditions using the ON or USING clauses. The
query will fail if you issue it on two tables that do not contain any columns
with the same name(s).

LATERAL

The LATERAL keyword can be used with a LEFT JOIN or CROSS JOIN.
It denotes a correlated subquery or function call where elements from
previously specified tables are used in the subquery or as arguments to the
function. The function used can return more than one row.

[AS] alias

Specifies an alias or shorthand for the joined table. The AS keyword is optional
when specifying an alias.

ON join_condition

Joins together the rows of the table shown in the FROM clause and the rows of
the table declared in the JOIN clause. You may have multiple JOIN statements,
all based on a common set of values. These values are usually contained in
columns of the same name and data type appearing in both of the tables being
joined. These columns, or possibly a single column from each table, are called
the join key or common key. Most (but not all) of the time, the join key is the
primary key of one table and a foreign key in the other table. As long as the
values in the columns match, the join can be performed.

join_conditions are syntactically depicted in the following form (note that join
types are intentionally excluded in this example):

FROM table_name1
JOIN table_name2
 ON table_name1.column1 = table_name2.column2
 [{AND|OR} table_name1.column3 = table_name2.column4]

280 | Chapter 4: Reading Your Data

 [...]
JOIN table_name3
 ON table_name1.columnA = table_name3.columnA
 [{AND|OR} table_name1.column3 = table_name2.column4]
 [...]
[JOIN...]

Use the AND operator and the OR operator to issue a JOIN with multiple conditions. It
is also a good idea to use brackets around each pair of joined tables if more than two
tables are involved, as this makes reading the query much easier.

USING (column[, ...])

Assumes an equality condition on one or more named columns that appear in
both tables. The column (or columns) must exist, as named, in both tables.
Writing a USING clause is a little quicker than writing ... ON table1.columnA
= table2.columnA, but the results are functionally equivalent.

PARTITION BY (column1[, ...])

Useful for filling gaps in result sets. Only Oracle supports this clause. Refer to
the Oracle section for an example.

Rules at a glance
Joins enable you to retrieve records from two (or more) logically related tables in a
single result set. You can use a SQL standard JOIN (detailed here) to perform this
operation, or something called a theta join. Theta joins, which use a WHERE clause to
establish the filtering criteria, are the “old” way to do join operations.

For example, you might have a table called employee that tracks information about
everyone employed in your company. The employee table, however, doesn’t contain
extensive information about the job an employee holds; instead, it holds only
job_ids. All information about the job, such as its description and title, are stored in
a table called job. Using a join, you can easily return columns from both tables in a
single set of records. The following sample queries illustrate the difference between
a theta join and a SQL standard JOIN:

/* Theta join */
SELECT emp_lname, emp_fname, job_title
FROM employee, jobs
WHERE employee.job_id = jobs.job_id;

/* SQL standard join */
SELECT emp_lname, emp_fname, job_title
FROM employee
JOIN jobs ON employee.job_id = jobs.job_id;

Whenever you reference multiple columns in a single query, the columns must be
unambiguous. In other words, the columns must either be unique to each table
or be referenced with a table identifier, as is done for the job_id column in the
preceding example (any columns in the query that don’t exist in both tables don’t

SQL Command Reference | 281

R
ead

ing
 Yo

ur
D

ata

need to be qualified by table identifiers). However, queries like this are often hard to
read. The following variation of the previous SQL standard JOIN is in better form,
because it uses the short, easy-to-read aliases e and j to refer to the employee and
jobs tables:

SELECT e.emp_lname, e.emp_fname, j.job_title
FROM employee AS e
JOIN jobs AS j ON e.job_id = j.job_id;

The previous examples were limited to equi-joins, or joins based on equality using
an equals sign (=). However, most other comparison operators are also allowed: you
can perform joins with >, <, >=, <=, <>, and so forth.

You cannot join on binary large object data types (e.g., BLOB) or any other large
object data types (e.g., CLOB, NLOB, etc.). Other data types are usually allowed in a
join comparison.

Following are examples of each type of join:

CROSS JOIN

Here are some cross join examples. The first is a theta join that simply leaves
off the join conditions, the second is written using the CROSS JOIN clause, and
the final query is similar in concept to the first, with a JOIN clause that omits
the join conditions:

SELECT *
FROM employee, jobs;

SELECT *
FROM employee
CROSS JOIN jobs;

SELECT *
FROM employee
JOIN jobs;

As mentioned earlier, cross joins—joins between two or
more tables that return all the data for all the rows in
all possible variations (i.e., the Cartesian product of the
tables—are a really bad idea. Take a careful look at these
examples so you know what they look like, and then
avoid them!

INNER JOIN

Following is an inner join written using the SQL standard syntax:

SELECT a.au_lname AS 'last name',
 a.au_fname AS 'first name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

282 | Chapter 4: Reading Your Data

There are lots of authors in the authors table, but very few of them have cities
that match their publishers’ cities in the publishers table. For example, the
preceding query executed in the pubs database on SQL Server produces results
like the following:

last name first name publisher
--------------- -------------------- ------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems

The join is called an inner join because only those records that meet the join
condition in both tables are said to be “inside” the join. You could also issue the
same query, on platforms that support it, by substituting the USING clause for
the ON clause:

SELECT a.au_lname AS 'last name',
 a.au_fname AS 'first name',
 p.pub_name AS 'publisher'
FROM authors AS a
INNER JOIN publishers AS p USING (city)
ORDER BY a.au_lname DESC

The results for this query would be the same.

LEFT [OUTER] JOIN

Following is an example of a left outer join, where we ask for the publisher
for each author (we could also substitute the USING clause for the ON clause, as
shown in the previous inner join example):

SELECT a.au_lname AS "last name",
 a.au_fname AS "first name",
 p.pub_name AS "publisher"
FROM authors AS a
LEFT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

In this example every author from the left (authors) table will be returned,
along with the publisher’s name where there is a match, or a NULL value where
there is no match. For example, in the SQL Server pubs database, the query
returns:

last name first name publisher
--------------- -------------------- ----------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
Straight Dean NULL
...

As mentioned earlier, it’s best to avoid mixing left and right outer joins, for
greater consistency. Left joins are the more common choice.

SQL Command Reference | 283

R
ead

ing
 Yo

ur
D

ata

RIGHT [OUTER] JOIN

A right outer join is essentially the same as a left outer join, except it returns
all the records from the table on the right side of the query. For example, the
following query executed in the pubs database on SQL Server:

SELECT a.au_lname AS "last name",
 a.au_fname AS "first name",
 p.pub_name AS "publisher"
FROM authors AS a
RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

returns the following result set:

last name first name publisher
---------------- ---------------- ------------------------
Carson Cheryl Algodata Infosystems
Bennet Abraham Algodata Infosystems
NULL NULL New Moon Books
NULL NULL Binnet & Hardley
...

Every publisher from the right (publishers) table is returned, along with the
authors’ names where there is a match, or a NULL value where there is no
match. Again, it’s best to avoid mixing right and left outer joins.

NATURAL [INNER | {LEFT | RIGHT} [OUTER]] JOIN

Natural joins are a substitute for the ON or USING clause, so do not use NATURAL
with those clauses. For example:

SELECT a.au_lname AS "first name",
 a.au_fname AS "last name",
 p.pub_name AS "publisher"
FROM authors AS a
NATURAL RIGHT OUTER JOIN publishers AS p
ORDER BY a.au_lname DESC

The preceding query will work the same as the earlier examples, but only if
both tables possess a column called city and that is the only column that they
hold in common. You could similarly perform any of the other types of joins
(INNER, FULL, OUTER) using the NATURAL prefix.

We suggest you avoid natural joins. They save a couple of keystrokes, but at the
expense of possible breakage of your code in the future. For example, suppose
you have a date_add column in your authors table but not in your publishers
table, but you later decide to add that column to the publishers table. Natural
join queries you wrote previously will suddenly start giving very unexpected
results because they will now also be joining by date_add.

284 | Chapter 4: Reading Your Data

FULL [OUTER] JOIN

If we take our previous example query and render it as a FULL JOIN, it looks
like this (note that the OUTER keyword is optional):

SELECT a.au_lname AS "last name",
 a.au_fname AS "first name",
 p.pub_name AS "publisher"
FROM authors AS a
FULL JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC;

The result set returned by the query is actually the accumulation of the result
sets of issuing separate LEFT and RIGHT join queries (some records have been
excluded for brevity):

last name first name publisher
-------------------- -------------------- --------------------
Yokomoto Akiko NULL
White Johnson NULL
Stringer Dirk NULL
...
Dull Ann NULL
del Castillo Innes NULL
DeFrance Michel NULL
Carson Cheryl Algodata Infosystems
Blotchet-Halls Reginald NULL
Bennet Abraham Algodata Infosystems
NULL NULL Binnet & Hardley
NULL NULL Five Lakes Publishing
NULL NULL New Moon Books
...
NULL NULL Scootney Books
NULL NULL Ramona Publishers
NULL NULL GGG&G

As you can see, with a FULL JOIN you get some records with all of the data
(LEFT and RIGHT JOINs), some with the NULLs on the right and data on the
left (LEFT JOIN), and some with NULLs on the left and data on the right (RIGHT
JOIN).

LATERAL {query | function}

This example uses SQL standard syntax to return the three top-priced books by
each author and will only include authors who have at least one title published.
You can achieve the same results in MySQL and older versions of PostgreSQL
by replacing the FETCH FIRST 3 ROWS ONLY with LIMIT 3:

SELECT a.au_lname AS "first name",
 a.au_fname AS "last name",
 topt.title, topt.pubdate
FROM authors AS a
 CROSS JOIN LATERAL
 (SELECT t.title, t.pubdate
 FROM titles AS t

SQL Command Reference | 285

R
ead

ing
 Yo

ur
D

ata

 INNER JOIN titleauthor AS ta ON
 t.title_id = ta.title_id
 WHERE ta.au_id = a.au_id
 ORDER BY t.pubdate DESC
 FETCH FIRST 3 ROWS ONLY
) AS topt
ORDER BY a.au_lname ASC, topt.pubdate DESC;

If you wanted to list all authors even if they have no published titles, you would
use a left join as follows:

SELECT a.au_lname AS "first name",
 a.au_fname AS "last name",
 topt.title, topt.pubdate
FROM authors AS a
 LEFT JOIN LATERAL
 (SELECT t.title, t.pubdate
 FROM titles AS t
 INNER JOIN titleauthor AS ta ON
 t.title_id = ta.title_id
 WHERE ta.au_id = a.au_id
 ORDER BY t.pubdate DESC
 LIMIT 3
) AS topt ON (1=1)
ORDER BY a.au_lname ASC, topt.pubdate DESC;

The LATERAL keyword can be used only with CROSS JOIN or LEFT JOIN.

Programming tips and gotchas
As described in the preceding section, there are many types of joins, each with their
own rules and behaviors. If an explicit join_type is omitted, an INNER JOIN is
assumed.

In general, you should favor the JOIN clause over the WHERE clause for describing
join expressions. This not only keeps your code cleaner, making it easy to differ‐
entiate join conditions from search conditions, but also avoids the possibility of
buggy behavior resulting from some platform-specific implementations of outer
joins specified using the WHERE clause.

In general, we do not recommend the use of labor-saving keywords like NATURAL,
since the subclause will not automatically update itself when the structures of the
underlying tables change. Consequently, statements using these constructs may fail
when a table change is introduced without also changing the query.

Not all join types are supported by all platforms, so refer to the following sections
for full details on platform-specific join support.

Joins involving more than two tables can be difficult. When
joins involve three or more tables, it is a good idea to think of
the query as a series of two table joins.

286 | Chapter 4: Reading Your Data

MySQL
MySQL supports most SQL standard syntax, except that natural joins are supported
only on outer joins, not on inner joins. MySQL also does not support the PARTITION
BY clause. The JOIN syntax is:

FROM table [AS alias]
{[STRAIGHT_JOIN joined_table] |
{ {[INNER] | [CROSS] |
 [NATURAL] [{LEFT | RIGHT | FULL} [OUTER]]}
 JOIN [LATERAL] joined_table [AS alias]
 { ON join_condition1 [{AND|OR} join_condition2] [...] } |
 USING (column1[, ...]) }}
[...]

where:

STRAIGHT_JOIN

Forces the optimizer to join tables in the exact order in which they appear
in the FROM clause. The STRAIGHT_JOIN keyword is functionally equivalent to
JOIN, except that it forces the join order from left to right. This option was
supplied because MySQL might, rarely, join the tables in the wrong order.

Refer to “Rules at a glance” on page 281 for examples.

MySQL is very fluid in the way it supports joins. You can use several different
syntaxes to perform a join; for example, you can explicitly declare a join in a query
using the JOIN clause, but then show the join condition in the WHERE clause. The
other platforms force you to pick one method or the other and do not allow you to
mix them in a single query. However, we think it’s bad practice to mix methods, so
our examples use SQL standard JOIN syntax.

Oracle
Oracle fully supports the SQL standard JOIN syntax. There’s also an older syntax for
outer theta joins that involves adding “(+)” to the column names on the opposite
side of the direction of the join (this comes from the fact that the table supplying the
NULL value rows in effect has NULL value rows added to it). However, this syntax
should be avoided because it doesn’t support some of the features of SQL standard
joins, such as FULL JOIN. Oracle also supports CROSS APPLY and OUTER APPLY
clauses (also found in SQL Server), which are equivalent to the SQL standard’s
LATERAL clause.

For example, the following query does a RIGHT OUTER JOIN on the authors and
publishers tables:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors AS a

SQL Command Reference | 287

R
ead

ing
 Yo

ur
D

ata

RIGHT OUTER JOIN publishers AS p ON a.city = p.city
ORDER BY a.au_lname DESC

The old Oracle syntax looks like this:

SELECT a.au_lname AS 'first name',
 a.au_fname AS 'last name',
 p.pub_name AS 'publisher'
FROM authors a, publishers p
WHERE a.city(+) = p.city
ORDER BY a.au_lname DESC

Refer to “Rules at a glance” on page 281 for more JOIN examples.

Oracle is unique in offering partitioned outer joins, which are useful for filling gaps
in result sets due to sparse data storage. For example, assume we store production
records in a manufacturing table keyed on day and product ID. The table holds a
row showing the quantity of each product produced during any day on which it
is made, but there are no rows for the days it is not produced. This is considered
sparse data, since a list of all rows will not show every day for every product. For
calculation and reporting purposes, it’s very useful to be able to create result sets
where each product has a row for every day, regardless of whether or not it was
manufactured on that day. A partitioned outer join makes it simple to do that, since
it lets you define a logical partition and apply an outer join to each partition value.
The following example does a partitioned outer join with a times table to make sure
each product_id has the full set of dates in a specified time range:

SELECT times.time_id AS time, product_id AS id, quantity AS qty
FROM manufacturing
PARTITION BY (product_id)
RIGHT OUTER JOIN times
ON (manufacturing.time_id = times.time_id)
WHERE manufacturing.time_id
BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;

Here is the output from this query:

time id qty
--------- ------ ---
01-OCT-05 101 10
02-OCT-05 101
03-OCT-05 101
04-OCT-05 101 17
05-OCT-05 101 23
06-OCT-05 101
01-OCT-05 102
02-OCT-05 102
03-OCT-05 102 43
04-OCT-05 102 99
05-OCT-05 102
06-OCT-05 102 87

288 | Chapter 4: Reading Your Data

Getting these results without using a partitioned outer join would require much
more complex and less efficient SQL.

PostgreSQL
PostgreSQL fully supports the SQL standard syntax, except for the PARTITION BY
clause. Refer to “Rules at a glance” on page 281 for examples. When using functions
in a LATERAL construct, the LATERAL keyword is optional.

For example, if you wanted to create a set of dates from publication date to present
date for each title, you could write your LATERAL query as follows:

SELECT title_id, i AS cal_date
FROM titles CROSS JOIN
 generate_series(titles.pubdate, CURRENT_DATE, interval '1 day')
 AS i
ORDER BY title_id, cal_date

Or with the LATERAL keyword:

SELECT title_id, i AS cal_date
FROM titles CROSS JOIN
 LATERAL generate_series(titles.pubdate, CURRENT_DATE,
 interval '1 day')
 AS i
ORDER BY title_id, cal_date

SQL Server
SQL Server supports INNER, OUTER, and CROSS joins using the ON clause. It does not
support NATURAL join syntax, nor PARTITION BY or the USING clause. SQL Server
also does not support the LATERAL clause, though it does support CROSS APPLY,
which is equivalent to CROSS JOIN LATERAL, and OUTER APPLY, which is equivalent
to LEFT JOIN LATERAL. SQL Server’s JOIN syntax is:

FROM table [AS alias]
{ {[INNER] | [CROSS] | [{LEFT | RIGHT | FULL} [OUTER]]}
 [JOIN | APPLY] joined_table [AS alias]
 { ON join_condition1 [{AND|OR}
 join_condition2] [...] } }
[...]

Refer to “Rules at a glance” on page 281 for examples.

The equivalent SQL Server query for the LATERAL example is:

SELECT a.au_lname AS "first name",
 a.au_fname AS "last name",
 topt.title, topt.pubdate
FROM authors AS a
 CROSS APPLY
 (SELECT TOP 3 t.title, t.pubdate
 FROM titles AS t

SQL Command Reference | 289

R
ead

ing
 Yo

ur
D

ata

 INNER JOIN titleauthor AS ta ON
 t.title_id = ta.title_id
 WHERE ta.au_id = a.au_id
 ORDER BY t.pubdate DESC
) AS topt
ORDER BY a.au_lname ASC, topt.pubdate DESC;

If you wanted to make sure all authors are listed even if they have no published
titles, you would use the OUTER APPLY clause, as follows:

SELECT a.au_lname AS "first name",
 a.au_fname AS "last name",
 topt.title, topt.pubdate
FROM authors AS a
 OUTER APPLY
 (SELECT TOP 3 t.title, t.pubdate
 FROM titles AS t
 INNER JOIN titleauthor AS ta ON
 t.title_id = ta.title_id
 WHERE ta.au_id = a.au_id
 ORDER BY t.pubdate DESC
) AS topt
ORDER BY a.au_lname ASC, topt.pubdate DESC;

See also

• SELECT•

• ORDER BY•

• WHERE•

LIKE Operator
The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE,
and DELETE statements to be matched, specifically in the WHERE clause. A specified
pattern may include special wildcard characters. The specific wildcards supported
vary from platform to platform.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
WHERE expression [NOT] LIKE string_pattern
 [ESCAPE escape_sequence]

290 | Chapter 4: Reading Your Data

Keywords

WHERE expression [NOT] LIKE

Returns a Boolean TRUE when the value of expression matches the string
_pattern. The expression may be a column, a constant, a host variable, a scalar
function, or a concatenation of any of these. It should not be a user-defined
type, nor should it be certain LOB types.

NOT

Inverses the predicate, so the statement returns a Boolean TRUE if the value
of expression does not contain the string_pattern and returns FALSE if the
value of expression contains the string_pattern.

ESCAPE escape_sequence

Allows you to search for the presence of characters that would normally be
interpreted as wildcards.

Rules at a glance
Matching string patterns is easy with LIKE, but there are a couple of rules to
remember:

• All characters, including trailing and leading spaces, are important.•

• Differing data types may be compared using LIKE, but they store string patterns•
differently. In particular, be aware of the differences between the CHAR, VARCHAR,
and DATE data types.

• Using LIKE may negate indexes or force the DBMS to use alternative, less•
optimal indexes than a straight comparison operation.

The SQL standard standard currently supports two wildcard operators that are
supported by all of the platforms covered in this book:

%

Matches any string

_ (underscore)
Matches any single character

The first query in the following example retrieves any city record with “ville” in its
name. The second query returns authors with a first name not like Sheryl or Cheryl
(or Aheryl, Bheryl, Dheryl, 2heryl, and so forth):

SELECT * FROM authors
WHERE city LIKE '%ville%';
SELECT * FROM authors
WHERE au_fname NOT LIKE '_heryl';

Some of the platforms support additional wildcard symbols. These are described in
the platform-specific sections that follow.

SQL Command Reference | 291

R
ead

ing
 Yo

ur
D

ata

Use of the ESCAPE clause allows you to look for wildcard characters in the strings
stored in your database. Using this mechanism, you designate a character—typically
a character that does not otherwise appear in the pattern string—as your escape
character. For example, you might designate the tilde (~) because you know it
never appears in the pattern string. Any wildcard character preceded by the escape
sequence is then treated not as a wildcard, but rather as the character itself. For
example, we can look through the comments column of the sales_detail table (on
SQL Server) to see whether any customers have mentioned a newly introduced
discount using this query:

SELECT ord_id, comment
FROM sales_detail
WHERE comment LIKE '%~%%' ESCAPE '~'

In this case, the first and last %s are interpreted as wildcards, but the second %
character is interpreted as just that (a % character), because it is preceded by the
designated escape sequence.

Programming tips and gotchas
The usefulness of LIKE is based on the wildcard operators that it supports. LIKE
returns a Boolean TRUE value when the comparison finds one or more matching
values.

The default case sensitivity of the DBMS is very important to the behavior of
LIKE. For example, SQL Server is not case-sensitive by default (though it can be
configured that way), so it will evaluate the strings 'DAD' and 'dad' to be equal.
MySQL is also case-insensitive by default but has a LIKE BINARY operator to force
case sensitivity. Oracle and PostgreSQL, on the other hand, are case-sensitive. Thus,
on those platforms a comparison of 'DAD' and 'dad' would show them to be
unequal. PostgreSQL (but not Oracle) has an ILIKE operator for case-insensitive
matching. Here’s an example query to better illustrate this point:

SELECT *
FROM authors
WHERE lname LIKE 'LARS%'

This query on MySQL and SQL Server would find authors whose last names
are stored as 'Larson' or 'Lars', even though the search was for the uppercase
'LARS%'. Oracle and PostgreSQL, however, would not find 'Larson' or 'Lars',
because they perform case-sensitive comparisons by default.

MySQL
MySQL supports the SQL standard syntax for LIKE. Additionally, it supports the
special functions REGEXP, RLIKE, NOT REGEXP, and NOT RLIKE for the evaluation of
regular expressions.

292 | Chapter 4: Reading Your Data

Oracle
Oracle supports the SQL standard syntax for LIKE. Its LIKE syntax is as follows:

WHERE expression [NOT] {LIKE | LIKEC | LIKE2 |
 LIKE4} string_pattern
[ESCAPE escape_sequence]

The Oracle-specific syntax elements have the following meanings:

LIKEC

Uses Unicode complete characters

LIKE2

Uses Unicode USC2 code points

LIKE4

Uses Unicode UCS4 code points

Since Oracle is case-sensitive, you should enclose the expression, the string
_pattern, or both with the UPPER function. That way, you are always comparing
apples to apples.

PostgreSQL
PostgreSQL supports the SQL standard syntax for LIKE. It’s case-sensitive by default
but provides the keyword ILIKE for case-insensitive pattern matching. You can also
use the operators ~~ as an equivalent to LIKE, ~~* for ILIKE, and !~~ and !~~* for
NOT LIKE and NOT ILIKE, respectively. These are all extensions to the SQL standard
syntax.

For example, the following queries are functionally the same:

SELECT * FROM authors
WHERE city LIKE '%ville';
SELECT * FROM authors
WHERE city ~~ '%ville';

Since these queries are in lowercase, you might run into a case-sensitivity problem.
That is, the queries are looking for a lowercase '%ville', but the table might
contain uppercase (and unequal) values such as 'BROWNSVILLE', 'NASHVILLE', and
'HUNTSVILLE'. You can get around this as follows:

-- Convert the values to uppercase
SELECT * FROM authors
WHERE city LIKE UPPER('%ville');

-- Perform the pattern match using case insensitivity
SELECT * FROM authors
WHERE city ~~* '%ville';
SELECT * FROM authors
WHERE city ILIKE '%ville';

SQL Command Reference | 293

R
ead

ing
 Yo

ur
D

ata

Although beyond the scope of this text, you should be aware that PostgreSQL also
supports POSIX regular expressions. See the platform documentation for details.

SQL Server
SQL Server supports the SQL standard syntax for LIKE, and the following additional
wildcard operators:

[]

Matches any value in the specified set, as in [abc], or range, as in [k–n]

[^]

Matches any characters not in the specified set or range

Using SQL Server’s additional wildcard operators, you have some added capabilities.
For example, you can retrieve any author with a last name like Carson, Carsen,
Karson, or Karsen:

SELECT * FROM authors
WHERE au_lname LIKE '[CK]ars[eo]n'

or you can retrieve any author with a last name that ends in “arson” or “arsen,” but is
not Larsen or Larson:

SELECT * FROM authors
WHERE au_lname LIKE '[A-Z^L]ars[eo]n'

Remember that when you’re performing string comparisons
with LIKE, all characters in the pattern string are significant,
including all leading and trailing blank spaces.

See also

• DELETE in Chapter 5

• SELECT

• UPDATE in Chapter 5

• WHERE

ORDER BY Clause
The ORDER BY clause specifies the sort order of the result set retrieved by a SELECT
statement.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

294 | Chapter 4: Reading Your Data

SQL standard syntax
ORDER BY { sort_expression [COLLATE collation_name]
 [ASC | DESC] [NULLS {FIRST | LAST}] }[, ...]
[OFFSET int {ROW | ROWS}]
[FETCH {FIRST | NEXT} numeric {ROW | ROWS | PERCENT}
 {ONLY | WITH TIES}]

Keywords

ORDER BY

Specifies the order in which rows should be returned by a query. You should
not anticipate a specific ordering if you exclude the ORDER BY clause, even if
you specify a GROUP BY clause and it appears that a sort has been done.

sort_expression

Specifies an item in the query that will help determine the order of the result
set. You can have multiple sort expressions. They are usually column names
or column aliases from the query; however, they may also be expressions like
(salary * 1.02).

COLLATE collation_name

Overrides the default collation of the sort_expression and applies the
collation_name to the expression for the purposes of the ORDER BY clause.

ASC | DESC

Specifies that the result set should be returned in either ascending order (ASC)
or descending order (DESC).

NULLS {FIRST | LAST}

NULLS FIRST and NULLS LAST specify that the records containing NULLs
should appear either first or last, respectively. By default, Oracle and Post‐
greSQL place NULLs last for ascending-order sorts and first for descending-
order sorts.

OFFSET int {ROW | ROWS}

Specifies the number of rows to skip from the start of the ORDER BY set.

FETCH {FIRST | NEXT} numeric {ROW | ROWS | PERCENT}

Returns the first or next (from OFFSET) numeric rows or PERCENT of records.
If ROW or ROWS is used, the value must be an integer. When using FIRST, there
should be no OFFSET clause. PERCENT is any number from 0 to 100 and can
include fractional values.

ONLY | WITH TIES

ONLY returns at most the specified number or percentage of rows. WITH TIES
returns additional rows if, based on the ORDER BY clause, records within that
count are tied. In other words, rather than returning one or more of the tied
records at random, up to the numeric specified, all of the tied records that

SQL Command Reference | 295

R
ead

ing
 Yo

ur
D

ata

are within the count are returned even if the total count exceeds the numeric
specified.

Rules at a glance
The ORDER BY clause should reference columns as they appear in the item list of the
SELECT statement, preferably using their aliases (if aliases exist). For example:

SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY first_name, last_name

The ORDER BY clause uses a major-to-minor sort ordering. This means that the
result set is ordered by the first column referenced; equal values in the first column
are then ordered by the second column, equal values in the second column are
ordered by the third column, and so forth.

The individual aspects of a column’s ordering—COLLATE and ASC/DESC—are inde‐
pendent of the other columns in the ORDER BY clause. Thus, you could order a result
set in ascending order by one column, and then flip the next column and order it in
descending order:

SELECT au_fname AS first_name, au_lname AS last_name
FROM authors
ORDER BY au_lname ASC, au_fname DESC

NULLs are always grouped together (i.e., considered equal) for the purposes of
sorting. Depending on your platform, NULLs will be clumped together at the top or
at the bottom of the result set. The following query on SQL Server:

SELECT title, price
FROM titles
ORDER BY price, title

provides this result set:

title price
-- -------
Net Etiquette NULL
The Psychology of Computer Cooking NULL
The Gourmet Microwave 2.9900
You Can Combat Computer Stress! 2.9900
Life Without Fear 7.0000
Onions, Leeks, and Garlic: Cooking Secrets of the Me 20.9500
Computer Phobic AND Non-Phobic Individuals: Behavior 21.5900
But Is It User Friendly? 22.9500
...

You can force NULLs to appear at the top or bottom of the result set using ASC
or DESC. Of course, all the non-NULL rows of the result set are also ordered in
ascending or descending order.

296 | Chapter 4: Reading Your Data

Some platforms support specification of NULL sorting. In Oracle and PostgreSQL
by default NULLs are sorted to the end, but you can change the behavior as follows
to yield the previous result by doing:

SELECT title, price
FROM titles
ORDER BY price NULLS FIRST, title NULLS LAST

The SQL standard also supports for the sort_expression the use of columns that
are not referenced in the SELECT item list. For example, the following query is valid:

SELECT title, price
FROM titles
ORDER BY title_id

Looking at this example, you can see that although the query does not select title_id,
that column is the primary sort_expression. The result set is returned in title_id
order even though that column is not selected.

You can limit the number of records returned using the [OFFSET] FETCH {FIRST |
NEXT} subclauses. For example, the following query will skip the first 10 titles and
return the next 10:

SELECT title, price
FROM titles
ORDER BY title
OFFSET 10 ROWS
FETCH NEXT 10 ROWS ONLY

Programming tips and gotchas
When using set operators (EXCEPT, INTERSECT, UNION), only the last query may have
an ORDER BY clause.

A number of behaviors that were supported in SQL92 are deprecated in more recent
SQL standards. You should avoid these usages although all the databases covered
here still support them:

References to table aliases
For example, ORDER BY e.emp_id should be changed to ORDER BY emp_id. If
there is an ambiguous column name, use an alias to compensate.

References to ordinal position
Use explicitly defined column aliases to compensate.

You may sort not only on columns, but also on expressions involving columns, or
even literals:

SELECT SUBSTRING(title,1,55) AS title, (price * 1.15) as price
FROM titles
WHERE price BETWEEN 2 and 19
ORDER BY price, title

SQL Command Reference | 297

R
ead

ing
 Yo

ur
D

ata

When sorting on expressions from the SELECT item list, you should use aliases to
make the ORDER BY sort_expression column references easier to read.

MySQL
MySQL supports the SQL standard, except for the COLLATE option, FETCH PERCENT,
and NULLS {FIRST | LAST}. In addition to the SQL standard OFFSET FETCH, it also
supports a LIMIT OFFSET subclause that is equivalent in purpose and predates the
SQL standard’s subclause. MySQL’s ORDER BY syntax is:

ORDER BY {sort_expression [ASC | DESC]}[, ...]
[OFFSET int {ROW | ROWS}]
[FETCH {FIRST | NEXT} numeric {ROW | ROWS} {ONLY | WITH TIES}]
[LIMIT int OFFSET int]

where:

LIMIT int

Specifies the maximum number of records to return

OFFSET int

Specifies how many records to skip

You cannot use the LIMIT OFFSET construct in conjunction with the OFFSET FETCH
construct.

You should not attempt to ORDER BY columns of the BLOB data type, because only
the first bytes, defined by the MAX_SORT_LENGTH setting, will be used in the sort. By
default, MySQL sorts NULL values lowest (first) for ASC order and highest (last) for
DESC order.

Oracle
Oracle supports the SQL standard, except for the COLLATE option. It also supports a
SIBLINGS option. Oracle’s ORDER BY syntax is:

ORDER [SIBLINGS] BY {sort_expression
 [ASC | DESC] [NULLS {FIRST | LAST}]}[, ...]
[OFFSET int {ROW | ROWS}]
[FETCH {FIRST | NEXT} numeric {ROW | ROWS | PERCENT}
 {ONLY | WITH TIES}]

where:

ORDER [SIBLINGS] BY sort_expression

Sorts the result set of the query in order of the sort_expression(s). A
sort_expression may be a column name, an alias, an integer indicating a
column’s ordinal position, or another expression (e.g., salary * 1.02). The ORDER
SIBLINGS BY clause tells Oracle to preserve any ordering specified by a hier‐
archical query clause (CONNECT BY), and to use the sort expression order for
ordering of siblings in the hierarchy.

298 | Chapter 4: Reading Your Data

You can emulate the behavior of the COLLATE option for a single session by using
the NLSSORT function with the NLS_SORT parameter. You can also emulate the
behavior of the COLLATE option for all sessions on the server either explicitly, by
using the NLS_SORT initialization parameter, or implicitly, with the NLS_LANGUAGE
initialization parameter.

You should not perform an ORDER BY on any LOB column, nested table, or VARRAY.

PostgreSQL
PostgreSQL supports the SQL standard, with the exception of the COLLATE and
FETCH PERCENT options. It also supports a LIMIT OFFSET subclause similar to
MySQL’s, and a USING subclause. Support for OFFSET FETCH was introduced in
PostgreSQL 13. PostgreSQL’s ORDER BY syntax is:

ORDER BY {sort_expression [ASC | DESC] [USING operator]
 [NULLS {FIRST | LAST}]}[, ...]
[OFFSET int {ROW | ROWS}]
[FETCH {FIRST | NEXT} int {ROW | ROWS} {ONLY | WITH TIES}]
[LIMIT int OFFSET int]

where:

USING operator

Specifies a specific comparison operator. Thus, you may sort by >, <, =, >=,
<=, and so forth. Ascending order is the same as specifying USING <, while
descending order is the same as USING >.

LIMIT int

Specifies the maximum number of records to return.

OFFSET int

Specifies how many records to skip.

ASC and DESC are SQL standards. If not specified, ASC is the default. PostgreSQL
sorts NULL values as higher than any other value by default, causing NULL values
to appear at the end of ASC sorts and at the beginning of DESC sorts. You can use the
NULLS {FIRST | LAST} clause to change this behavior. For example:

SELECT stor_id, ord_date, qty AS quantity
FROM sales
ORDER BY stor_id, ord_date DESC, qty ASC NULLS FIRST;

You cannot use both OFFSET FETCH and LIMIT OFFSET, as they achieve equivalent
goals. Although LIMIT OFFSET is faster to type, the OFFSET FETCH construct is SQL
standard–compliant and allows for specifying how ties are treated in the result set.
For example:

SELECT stor_id, ord_date, qty
FROM sales
ORDER BY qty

SQL Command Reference | 299

R
ead

ing
 Yo

ur
D

ata

FETCH FIRST 3 ROWS WITH TIES;
stor_id | ord_date | qty
--------+------------------------+-----
 6380 | 1994-09-13 00:00:00-04 | 3
 6380 | 1994-09-14 00:00:00-04 | 5
 7896 | 1993-12-12 00:00:00-05 | 10
 7067 | 1994-09-14 00:00:00-04 | 10
 8042 | 1994-09-14 00:00:00-04 | 10
(5 rows)

Note that the output has five rows instead of three because the last three are tied for
third place.

In SELECT statements that involve single tables or use JOINs, but not set operations
(UNION, for example), you may also order by columns of the table that do not appear
in the select_item list. For example:

SELECT stor_name
FROM sales
ORDER BY stor_id, qty;

SQL Server
SQL Server supports the SQL standard, except for the FETCH PERCENT and NULLS
{FIRST | LAST} options. PERCENT can be used with TOP to simulate FETCH PERCENT.
For example, the following query retrieves the authors’ first names from the authors
table in the SQL_Latin1 collation:

SELECT au_fname
FROM authors
ORDER BY au_fname
COLLATE SQL_Latin1_general_cp1_ci_as

By default, SQL Server sorts NULL values higher than all other values.

SQL Server allows a variety of collations that can affect how the result set is evalu‐
ated. Thus, under certain collations “SMITH” and “smith” might evaluate and sort
differently. You should not use TEXT, IMAGE, or NTEXT columns as sort_expressions
on SQL Server.

See also

• SELECT•

OVER Clause
The OVER clause appears in the SELECT clause as a function qualifier for window
function–based columns and when aggregates are used in a window construct. The
WINDOW clause often accompanies one or more OVER clauses and appears after the

300 | Chapter 4: Reading Your Data

whole SELECT statement. It is used to name a window specification that is then used
by name in the OVER clause(s).

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL standard syntax
FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning]
 [ordering] [framing]
 partitioning ::= PARTITION BY value[, value...]
 [COLLATE collation_name]
 ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
 rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
 framing ::= {ROWS | RANGE | GROUPS} {start | between}
 [exclusion]
 start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}
 between ::= BETWEEN bound AND bound
 bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer
 FOLLOWING}
 exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP |
 EXCLUDE TIES | EXCLUDE NO OTHERS}

In addition to the OVER clause, you can have a WINDOW clause before the ORDER BY
clause and after the WHERE clause in a SELECT statement. It is followed by one or
more definitions of named windows. The syntax is as follows:

WINDOW {window_name AS (window_specification)[, ...]}

Keywords

OVER {window_name | (window_specification)}

The OVER clause may reference a predefined window (defined in a WINDOW
clause) that can be used across multiple columns or can provide a window
specification consisting of ORDER BY and PARTITION BY clauses. A window of
data consists of a subset of rows relative to the current row.

partitioning

Defines the group of rows that a row is a member of. The values are col‐
umn names or expressions that include column names. All records with these
expressions in common belong to the same partition. If there is no partitioning
clause, then all rows belong to the same partition.

SQL Command Reference | 301

R
ead

ing
 Yo

ur
D

ata

ordering

Specifies the order in which rows should be sorted in the window.

framing

Denotes which rows are considered to be in the window (a subset of rows
relative to the current row). The syntax of the framing subclause is as follows:

{ROWS | RANGE} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer PRECEDING |
 CURRENT ROW}
between ::= BETWEEN bound AND bound
bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer
 FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP |
 EXCLUDE TIES | EXCLUDE NO OTHERS}

ASC | DESC

Specifies that the result set should be returned in either ascending order (ASC)
or descending order (DESC) based on the value | position.

NULLS {FIRST | LAST}

Specifies that the records containing NULLs should appear either first or last in
the result set, respectively.

WINDOW {window_name AS (window_specification)[, ...]}

Defines one or more named windows, providing a specification for each.

Rules at a glance
Each SELECT statement may have zero or more OVER clauses. Here are a few exam‐
ples. The following query ranks each title across all titles (dr) and then within the
group that has the same publisher:

SELECT t.title_id,
 DENSE_RANK() OVER(ORDER BY price) AS dr,
 DENSE_RANK() OVER(PARTITION BY pub_id ORDER BY price) AS dr_pub
FROM titles AS t
ORDER BY title_id;

The next query uses the SUM aggregate function to produce a running total and an
overall total for price. Note that the ORDER BY clause used in an OVER clause does
not need to be the same as the SELECT ... ORDER BY, but it does make it easier to
debug:

SELECT t.title_id,
 SUM(price) OVER() AS overall_total,
 SUM(price) OVER(ORDER BY price) AS running_total
FROM titles AS t
ORDER BY title_id;

Finally, here’s an example of a query that uses named windows:

302 | Chapter 4: Reading Your Data

SELECT t.title_id,
 DENSE_RANK() OVER wprice AS dr,
 SUM(price) OVER(wpub) AS wpub_total
FROM titles AS t
WINDOW wprice AS (ORDER BY price),
 wpub AS (PARTITION BY pub_id)
ORDER BY title_id;

MySQL
MySQL supports a subset of the SQL standard syntax for the OVER and window
_specification clauses, as shown here:

FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning]
 [ordering] [framing]
 partitioning ::= PARTITION BY value[, value...]
 ordering ::= ORDER BY rule[, rule...]
 rule ::= {value | position | alias} [ASC | DESC]]
 framing ::= {ROWS | RANGE} {start | between} [exclusion]
 start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}
 between ::= BETWEEN bound AND bound
 bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer
 FOLLOWING}

It also supports the WINDOW clause, and has the same options for the window_spec
ification clause.

Oracle
Oracle fully supports the SQL standard OVER and window_specification clauses,
except for the COLLATE clause. Its syntax is as follows:

FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning]
 [ordering] [framing]
 partitioning ::= PARTITION BY value[, value...]
 ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
 rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
 framing ::= {ROWS | RANGE | GROUPS} {start | between}
 [exclusion]
 start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}
 between ::= BETWEEN bound AND bound
 bound ::= {start | UNBOUNDED FOLLOWING |
 unsigned-integer FOLLOWING}
 exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP |
 EXCLUDE TIES | EXCLUDE NO OTHERS}

SQL Command Reference | 303

R
ead

ing
 Yo

ur
D

ata

The WINDOW clause was introduced in Oracle 21c. It allows
anything that is also allowed in the window_specification of
the OVER clause.

PostgreSQL
PostgreSQL supports all the SQL standard syntax for the OVER and window_spec
ification clauses, except for the SIBLINGS keyword and COLLATE clause. It allows
all aggregate functions, including user-defined ones, to be used as window aggre‐
gates. Aggregates can be created in nearly any PostgreSQL-supported language, but
the PL/pgSQL and SQL built-in languages do not support the creation of window
functions (window functions can be created in C, PL/V8, and PL/R).

The PostgreSQL OVER syntax is as follows:

FUNCTION_NAME(expr) OVER {window_name | (window_specification)}
window_specification ::= [window_name] [partitioning]
 [ordering] [framing]
 partitioning ::= PARTITION BY value[, value...]
 ordering ::= ORDER BY rule[, rule...]
 rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
 framing ::= {ROWS | RANGE | GROUPS} {start | between}
 [exclusion]
 start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}
 between ::= BETWEEN bound AND bound
 bound ::= {start | UNBOUNDED FOLLOWING |
 unsigned-integer FOLLOWING}
 exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP |
 EXCLUDE TIES | EXCLUDE NO OTHERS}

It also supports the WINDOW clause, with the same options for the window_specif
ication clause.

SQL Server
SQL Server supports a subset of the SQL standard syntax for the OVER clause. It does
not support named windows or the WINDOW clause. SQL Server’s OVER syntax is as
follows:

FUNCTION_NAME(expr) OVER {(window_specification)}
window_specification ::= [partitioning] [ordering] [framing]
 partitioning ::= PARTITION BY value[, value...]
 [COLLATE collation_name]
 ordering ::= ORDER BY rule[, rule...]
 rule ::= {value | position | alias} [ASC | DESC]
 framing ::= {ROWS | RANGE} {start | between}
 start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}

304 | Chapter 4: Reading Your Data

 between ::= BETWEEN bound AND bound
 bound ::= {start | UNBOUNDED FOLLOWING |
 unsigned-integer FOLLOWING}

See also

• SELECT•
• “SQL Window Functions” on page 625•

SELECT Statement
The SELECT statement retrieves rows, columns, and derived values from one or
many tables of a database.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
The full syntax of the SELECT statement is powerful and complex, but it can be
broken down into these main clauses:

SELECT [{ALL | DISTINCT}] select_item [AS alias][, ...]
FROM [ONLY | OUTER]
 {table_name [[AS] alias] | view_name [[AS] alias]}[, ...]
[[join_type] JOIN join_condition]
[WHERE search_condition] [{AND | OR | NOT} search_condition[...]]

group_by_clause

order_by_clause

Keywords

[{ALL | DISTINCT}] select_item

Retrieves values that compose the query result set. Each select_item may be a
literal, an aggregate or scalar function, a mathematical calculation, a parameter
or variable, or a subquery, but a select_item is most commonly a column
from a table or view. A comma must separate each item in a list of such items.

The schema or owner name should be prefixed to a column’s name when it’s
extracted from a context outside of the current user’s. If another user owns the
table, that user must be included in the column reference. For example, if the
user jake needed to access data in the schema katie he would use:

SQL Command Reference | 305

R
ead

ing
 Yo

ur
D

ata

SELECT emp_id
FROM katie.employee;

You can use the asterisk (*) shorthand to retrieve all columns in every table
or view listed in the FROM clause. It’s a good idea to use this shortcut on
single-table queries only.

ALL, the default behavior, returns all records that meet the selection criteria.
DISTINCT tells the database to filter out any duplicate records, thus retrieving
only one instance of many identical records.

AS alias

Replaces a column heading (when in the select_item clause) or a table name
or view name (when in the FROM clause) with a shorter heading or name. This
clause is especially useful for replacing cryptic or lengthy names with short,
easy-to-understand names or mnemonics, and for when the column contains
only derived data, so you don’t end up with a column called something like
ORA000189x7/0.02. It is also very useful in self-joins and correlated subqueries
where a single query references the same table more than once. When multiple
items appear in the select_item clause or FROM clause, make sure to place
the commas after the AS alias clauses. Also, be careful to always use an alias
uniformly once you introduce it into the query.

FROM [ONLY | OUTER] {table_name | view_name}[, ...]

Lists all of the tables and/or views from which the query retrieves data. Sepa‐
rate table and view names using commas. The FROM clause also allows you to
assign aliases to long table/or view names or subqueries using the AS clause.
Using shorter aliases instead of longer table or view names simplifies coding.
(Of course, this might thwart the DBA’s carefully planned naming conventions,
but the alias only lasts for the duration of the query. Refer to “Rules at a glance”
on page 308 for more information on aliases.) A FROM clause may contain a
subquery (refer to “SUBQUERY Substatement” on page 337 for details).

ONLY

Specifies that only the rows of the named table or view (and no rows in
subtables or subviews) will be retrieved in the result set. When using ONLY,
be sure to enclose the table_name or view_name within parentheses. ONLY is
ignored if the table or view has no subtables or subviews.

OUTER

Specifies that the rows of the named table or view, along with the rows and
columns of any and all subtables or subviews, will be retrieved in the result
set. Columns of the subtables (or subviews) will be appended to the right, in
subtable hierarchy order according to the depth of the subtable. In extensive
hierarchies, subtables with common parents are appended in the creation
order of their types. When using OUTER, be sure to enclose the table_name
or view_name within parentheses. OUTER is ignored if the table or view has no
subtables or subviews.

306 | Chapter 4: Reading Your Data

[join_type] JOIN join_condition

Joins together the result set of the table shown in the FROM clause to another
table that shares a meaningful relationship based on a common set of values.
These values are usually contained in columns of the same name and data type
that appear in both tables being joined. These columns, or possibly a single
column from each table, are called the join key or common key. Most—but not
all—of the time, the join key is the primary key of one table and a foreign key
in the other table. As long as the data in the columns matches, the join can be
performed. (Note that joins can also be performed using the WHERE clause. This
technique is sometimes called a theta join.)

Refer to “JOIN Subclause” on page 278 for details of different kinds of joins.

Join conditions are most commonly depicted in the form:

JOIN table_name2 ON table_name1.column1 comparison_operator
 table_name2.column1
JOIN table_name3 ON table_name1.columnA comparison_operator
 table_name3.columnA
[...]

When the comparison_operator is the equals sign (=), a join is said to be an
equi-join. However, the comparison operator may be <, >, <=, >=, or even <>.

Use the AND operator to issue a JOIN with multiple conditions. You can also use
the OR operator to specify alternative join conditions.

If an explicit join_type is omitted, an INNER JOIN is assumed. Note that there
are many types of joins, each with its own rules and behaviors. Also be aware
that an alternative approach to the join condition, via the USING clause, exists:

USING (column_name[, ...])

Acts as an alternative to the ON clause. With this clause, instead of describ‐
ing the conditions of the join, you simply provide one or more column
names (separated by commas) that appear in both tables. The database
then evaluates the join based on those columns (the column names must
be identical in both tables). In the following example, the two queries
produce identical results:

 SELECT emp_id
 FROM employee
 LEFT JOIN sales USING (emp_id, region_id);

 SELECT emp_id
 FROM employee AS e
 LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;

WHERE search_condition

Filters unwanted data from the result set of the query, returning only those
records that satisfy the search conditions. A poorly written WHERE clause can

SQL Command Reference | 307

R
ead

ing
 Yo

ur
D

ata

ruin the performance of an otherwise useful SELECT statement, so mastering
the nuances of the WHERE clause is of paramount importance. Search conditions
are syntactically depicted in the form WHERE [schema.[table_name.]]column
operator value.

WHERE clauses usually compare the values contained in a column of the table.
The values of the column are compared using an operator of some type (refer
to Chapter 2 for more details). For example, a column might equal (=) a given
value, be greater than (>) a given value, or be BETWEEN a range of values.

WHERE clauses may contain many search conditions concatenated together
using the AND or OR Boolean operators, and parentheses can be used to impact
the order of precedence of the search conditions. WHERE clauses can also con‐
tain subqueries (refer to “WHERE Clause” on page 349 for details).

group_by_clause

Refer to “GROUP BY Clause” on page 263 for details.

order_by_clause

Refer to “ORDER BY Clause” on page 294 for details.

Rules at a glance
Each clause of the SELECT statement has a specific use. Thus, it is possible to speak
individually of the FROM clause, the WHERE clause, the GROUP BY clause, and so forth.
You can get more details and examples of SELECT statements by looking up the
entries for each clause of the statement elsewhere in this chapter. Not every query
needs every clause, but at a minimum a query needs a select_item list.

Because the SELECT clause is so important and offers so many options, we’ve divided
this “Rules at a glance” section into the following detailed subsections:

• Aliases and WHERE clause joins•

• The JOIN clause•

• The WHERE clause•

• The ORDER BY clause•

All of these clauses, as well as the GROUP BY clause, are discussed at greater length in
their respective sections in this chapter.

Aliases and WHERE clause joins. Column names may need to be prefixed with their
database, schema, and table names, particularly when the same column name may
appear in more than one table in the query. For example, on an Oracle database,
both the jobs table and scott’s employee table may contain job_id columns. The
following example joins the employee and jobs tables using the WHERE clause. This is
an old-style join syntax:

308 | Chapter 4: Reading Your Data

SELECT scott.employee.emp_id,
 scott.employee.fname,
 scott.employee.lname,
 jobs.job_desc

FROM scott.employee,
 jobs
WHERE scott.employee.job_id = jobs.job_id
ORDER BY scott.employee.fname,
 scott.employee.lname

You can also use aliases to write such a query more simply and clearly:

SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM scott.employee AS e,
 jobs AS j
WHERE e.job_id = j.job_id
ORDER BY e.fname,
 e.lname

These two queries illustrate the following important rules about WHERE clause joins:

• Use commas to separate multiple elements in the select_item list, tables in the•
FROM clause, and items in the order_expression.

• Use the AS clause to define aliases.•

• Use aliases consistently throughout the SELECT statement once you define•
them.

In general, you should favor the JOIN clause (explained next) over the WHERE clause
for describing join expressions. This not only keeps your code cleaner, making it
easy to differentiate join conditions from search conditions, but also allows you to
avoid the counterintuitive behavior that may result from using the WHERE clause for
outer joins in some implementations.

The JOIN clause. To perform the same query as in the previous example using a
SQL standard join, list the first table and the keyword JOIN, followed by the name of
the table to be joined, the keyword ON, and the join condition that would have been
used in the old-style query. The next example shows the preceding query using the
SQL standard JOIN clause:

SELECT e.emp_id, e.fname, e.lname, j.job_desc
FROM scott.employee AS e
JOIN jobs AS j ON e.job_id = j.job_id
ORDER BY e.fname, e.lname;

Alternatively, you could use the USING clause. Instead of describing the conditions
of the join, simply provide one or more column_names (separated by commas) that

SQL Command Reference | 309

R
ead

ing
 Yo

ur
D

ata

appear in both of the joined tables. The database then evaluates the join based
on those columns (the column names must be identical in both tables). In the
following example, the two queries (one using the ON clause and one using the USING
clause) produce identical results:

SELECT emp_id
FROM employee LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id
FROM employee AS e
LEFT JOIN sales AS s
 ON e.emp_id = s.emp_id
 AND e.region_id = s.region_id;

Refer to “JOIN Subclause” on page 278 for details on different types of joins.

The WHERE clause. A poorly written WHERE clause can ruin an otherwise beautiful
SELECT statement, so it’s important that you master the nuances of the WHERE clause
(discussed in more detail later in this chapter). Here is an example of a typical query
with a multipart WHERE clause:

SELECT a.au_lname,
 a.au_fname,
 t2.title,
 t2.pubdate
FROM authors a
JOIN titleauthor t1 ON a.au_id = t1.au_id
JOIN titles t2 ON t1.title_id = t2.title_id
WHERE (t2.type = 'business' OR t2.type = 'popular_comp')
 AND t2.advance > 5500
ORDER BY t2.title

In examining this query, note that the parentheses impact the order of processing
for the search conditions. You can use parentheses to move search conditions up or
down in precedence, just like you would in an algebra equation.

On some platforms, the database’s default collation (also
known as the sort order) impacts how the WHERE clause filters
results for a query. For example, SQL Server is (by default)
dictionary-order and case-insensitive, making no differentia‐
tion between “Smith,” “smith,” and “SMITH.” Oracle, how‐
ever, is dictionary-order and case-sensitive, finding the values
“Smith,” “smith,” and “SMITH” to be unequal.

The WHERE clause offers many more specific capabilities than the preceding example
illustrates. The following list references some of the more common capabilities of
the WHERE clause:

310 | Chapter 4: Reading Your Data

NOT

Inverts a comparison operation using the syntax WHERE NOT expression. Thus,
you might use WHERE NOT LIKE ... or WHERE NOT IN ... in a query.

Comparison operators
Compares any set of values, using the operations <, >, <>, >=, <=, and =. For
example:

WHERE emp_id = '54123'

IS NULL or IS NOT NULL conditions
Search for any NULL or NOT NULL values, respectively, using the syntax WHERE
expression IS [NOT] NULL.

AND

Merges multiple conditions, returning only those records that meet all condi‐
tions. The maximum number of multiple conditions is platform-dependent.
For example:

WHERE job_id = '12' AND job_status = 'active'

OR

Merges alternative conditions, returning records that meet any of the condi‐
tions. For example:

WHERE job_id = '13' OR job_status = 'active'

LIKE

Tells the query to use a pattern-matching string contained within quotation
marks. The wildcard symbols supported by each platform are detailed in their
individual sections. All platforms support the percent sign (%) for a wildcard
symbol. For example, to find any phone number starting with the 415 area
code:

WHERE phone LIKE '415%'

EXISTS

Used only with subqueries, EXISTS tests to see whether the subquery data
exists. It is typically much faster than a WHERE IN subquery. For example, the
following query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE EXISTS
 (SELECT last_name FROM employees)

BETWEEN

Performs a range check to see whether a value is in between two values (inclu‐
sive of those two values). For example:

WHERE ytd_sales BETWEEN 4000 AND 9000.

SQL Command Reference | 311

R
ead

ing
 Yo

ur
D

ata

IN

Performs a test to see whether an expression matches any one value out of a list
of values. The list may be literal, as in WHERE state IN ('or', 'il', 'tn',
'ak'), or it may be derived using a subquery:

WHERE state IN (SELECT state_abbr FROM territories)

SOME | ANY

Functions the same as the EXISTS operation, though with slightly different syn‐
tax. For example, the following query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE
 au_lname = SOME(SELECT last_name FROM employees)

ALL

Performs a check to see whether all records in the subquery match the eval‐
uation criteria, and returns TRUE when the subquery returns zero rows. For
example:

WHERE city = ALL
 (SELECT city FROM employees WHERE emp_id = 54123)

Refer to “WHERE Clause” on page 349 for additional details.

The ORDER BY clause. A result set can be sorted through the ORDER BY clause, in
accordance with the database’s sort order. Each column of the result set may be
sorted in either ascending (ASC) or descending (DESC) order. (Ascending order is
the default.) If no ORDER BY clause is specified, most implementations return the
data either according to the physical order of the data within the table or according
to the order of an index utilized by the query. However, when no ORDER BY clause
is specified, there is no guarantee as to the order of the result set. Following is an
example of a SELECT statement with an ORDER BY clause on SQL Server:

SELECT e.emp_id "Emp ID",
 e.fname "First",
 e.lname "Last",
 j.job_desc "Job Desc"
FROM employee e,
 jobs j

WHERE e.job_id = j.job_id
 AND j.job_desc = 'Acquisitions Manager'
ORDER BY e.fname DESC,
 e.lname ASC

The results are:

Emp ID First Last Job Desc
--------- --------------- --------------- --------------------
MIR38834F Margaret Rancé Acquisitions Manager
MAS70474F Margaret Smith Acquisitions Manager

312 | Chapter 4: Reading Your Data

KJJ92907F Karla Jablonski Acquisitions Manager
GHT50241M Gary Thomas Acquisitions Manager

After the result set is pared down to meet the search conditions, it is sorted by the
authors’ first names in descending order. Where the authors’ first names are equal,
the results are sorted in ascending order by last name. Refer to “ORDER BY Clause”
on page 294 for more details.

You may write an ORDER BY clause using columns in the table
that do not appear in the select_item list. For example, you
might query all emp_ids from the employee table, yet ORDER BY
the employees’ first and last names.

Programming tips and gotchas
Once you’ve assigned an alias to a table or view in the FROM clause, use it exclusively
for all other references to that table or view within the query (in the WHERE clause,
for example). Do not mix references to the full table name and the alias within a
single query. You should avoid mixed references for a couple of reasons. First, it
is simply inconsistent and makes code maintenance more difficult. Second, some
database platforms return errors on SELECT statements containing mixed references.
(Refer to “SUBQUERY Substatement” on page 337 for special instructions on alias‐
ing within a subquery.)

MySQL, PostgreSQL, and SQL Server support certain types of queries that do not
need a FROM clause. Use these types of queries with caution, since the SQL standard
requires a FROM clause. Queries without a FROM clause must be manually migrated
either to the SQL standard form or to a form that also works on the target database.
Refer to the entry for each clause to fully investigate the varying degrees of support
offered by the different database vendors for the various options of the SELECT
command.

MySQL
MySQL’s implementation of SELECT includes support for JOIN (with some varia‐
tions, as detailed in “JOIN Subclause” on page 278), the INTO clause, the LIMIT
clause, and the PROCEDURE clause. Its syntax follows:

SELECT [DISTINCT | DISTINCTROW | ALL] [HIGH_PRIORITY] [STRAIGHT_JOIN]
 [{SQL_SMALL_RESULT | SQL_BIG_RESULT}] [SQL_BUFFER_RESULT]
 [SQL_CALC_FOUND_ROWS] select_item[, ...]
[INTO {OUTFILE 'filename' options | DUMPFILE 'filename' |
 variable[, ...]}]
[FROM table_name[, ...]

join_clause

[WHERE search_condition]

SQL Command Reference | 313

R
ead

ing
 Yo

ur
D

ata

group_by_clause

order_by_clause

[PROCEDURE procedure_name (param[, ...])]
[FOR {UPDATE | SHARE} [OF table_name[, ...]] [NOWAIT | SKIP LOCKED] |
 LOCK IN SHARE MODE]

where:

DISTINCT | DISTINCTROW | ALL

DISTINCTROW is a synonym for DISTINCT. ALL is assumed if DISTINCT or
DISTINCTROW is not specified.

HIGH_PRIORITY

Gives the query a higher priority than statements that modify data within the
table. This should be used only for special, high-speed queries.

STRAIGHT_JOIN

Similar to JOIN, except that the left table is always read before the right table.
This is a join optimization feature. It should be avoided unless you are getting
bad query plans with the standard JOIN syntax.

SQL_SMALL_RESULT | SQL_BIG_RESULT

Tells the optimizer to expect a small or large result set, respectively, for a GROUP
BY or DISTINCT clause. MySQL builds a temporary table when a query has a
DISTINCT or GROUP BY clause, and these optional keywords tell MySQL whether
to build a fast temporary table in memory (for SQL_SMALL_RESULT) or a slower,
disk-based temporary table (for SQL_BIG_RESULT) to process the worktable.

SQL_BUFFER_RESULT

Forces the result set into a temporary table so that MySQL can free table locks
earlier and get the result set to the client faster.

SQL_CALC_FOUND_ROWS

Calculates how many rows are in the result set (regardless of a LIMIT clause),
which can then be retrieved using SELECT FOUND_ROWS().

select_item

Retrieves the expressions or columns listed. Columns may be listed in the
format [database_name.[table_name.]]column_name. If the database and/or
table names are left out, MySQL assumes the current database and table.

INTO {OUTFILE 'filename' options | DUMPFILE 'filename' |

variable[, ...]}

Writes the result set of the query to a file named 'filename' on the host
filesystem with the OUTFILE option. The named file must not already exist on
the filesystem. The DUMPFILE option writes a single continuous line of data
without column terminations, line terminations, or escape characters. This

314 | Chapter 4: Reading Your Data

option is used mostly for BLOB files. Specific rules for using this clause are
detailed following this list. The INTO variable clause allows you to list one or
more variables (one for each column returned). If using INTO variable, do not
also specify a filename.

FROM ...

Indicates the table from which rows will be retrieved. The table may be
described as [database_name.]table_name. MySQL will treat the query as a
join if more than one table appears in the FROM clause.

PROCEDURE procedure_name (param[, ...])

Names a procedure that processes the data in the result set. The procedure is an
external procedure (usually C++), not an internal database stored procedure.

FOR {UPDATE | SHARE} [OF table_name[, ...]] [NOWAIT | SKIP LOCKED] |

LOCK IN SHARE MODE

Issues a write lock on the rows returned by the query (UPDATE) for its exclusive
use (provided the table is of InnoDB or BDB type), or issues read locks on
the rows returned by the query (SHARE and LOCK IN SHARE MODE), such that
other users may see the rows but may not modify them. NOWAIT and SKIP
LOCKED cause a FOR UPDATE or FOR SHARE query to execute immediately. NOWAIT
returns an error if a row lock cannot be obtained, while SKIP LOCKED excludes
rows from the result set that are locked by another transaction.

Keep a couple of rules in mind when using the INTO clause. First, the output file
cannot already exist, since overwrite functionality is not supported. Second, any file
created by the query will be readable by everyone that can connect to the server.
(When using SELECT ... INTO OUTFILE, you can then turn around and use the
MySQL command LOAD DATA INFILE to quickly load the data.)

You can use the following options to better control the content of the output file
when using SELECT ... INTO OUTFILE:

• ESCAPED BY•

• FIELDS TERMINATED BY•

• LINES TERMINATED BY•

• OPTIONALLY ENCLOSED BY•

The following example illustrates the use of these optional commands via a MySQL
query that returns a result set in a comma-delimited output file:

SELECT job_id, emp_id, lname+fname
INTO OUTFILE "/tmp/employees.text"
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY "\;n"
FROM employee;

SQL Command Reference | 315

R
ead

ing
 Yo

ur
D

ata

MySQL also allows SELECT statements without a FROM clause when performing
simple arithmetic. For example, the following queries are valid in MySQL:

SELECT 2 + 2;
SELECT 565 - 200;
SELECT (365 * 2) * 52;

For interoperability with Oracle, MySQL also supports selection from the pseudo-
table called dual:

SELECT 565 - 200 FROM DUAL;

MySQL offers an interesting alternative to the SQL standard for querying tables—
the HANDLER statement. The HANDLER statement works a lot like SELECT, except that
HANDLER provides very rapid data reads that circumvent the SQL query engine in
MySQL. However, since the HANDLER statement is not a SQL statement, we’ll refer
you to the MySQL documentation for more information.

Oracle
Oracle allows a very large number of extensions to the SQL standard SELECT
statement. For example, since both nested tables and partitioned tables are allowed
in Oracle (see “CREATE/ALTER TABLE Statement” on page 140), the SELECT
statement allows queries to those types of structures. Oracle’s SELECT syntax is as
follows:

SELECT ({[ALL | DISTINCT]} | [UNIQUE]) [optimizer_hints]
select_item [AS alias][, ...]
[INTO {variable[, ...] | record}]
FROM {[ONLY] {[schema.][table_name | view_name |
 materialized_view_name]} [@database_link]
 [AS [OF] {SCN | TIMESTAMP} expression] |
 subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT
 constraint_name]}] |
 [[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND
 {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression] |
 TABLE (nested_table_column) [(+)]
 {[PARTITION (partition_name) |
 SUBPARTITION (subpartition_name)]}
 [SAMPLE [BLOCK] [sample_percentage] [SEED (seed_value)]]}
 [AS alias][, ...]

join_clause
[WHERE search_condition [{AND | OR} search_condition[, ...]]
 [[START WITH value] CONNECT BY [PRIOR] condition]]
group_by_clause

[MODEL model_clause]
order_by_clause

[FOR UPDATE [OF [schema.][table.]column][, ...]
 {[NOWAIT | WAIT (int)]}]

316 | Chapter 4: Reading Your Data

https://oreil.ly/tgqF2

Unless otherwise noted, the clauses shown here follow the SQL standard. Similarly,
elements of the clauses are identical to those in the SQL standard unless otherwise
noted. For example, Oracle’s GROUP BY clause is nearly identical to the SQL stan‐
dard, including its component elements, such as ROLLUP, CUBE, GROUPING SETS,
concatenated GROUPING SETS, and the HAVING clause.

The parameters are:

{ALL | DISTINCT} | UNIQUE

UNIQUE is a synonym for DISTINCT. In Oracle, DISTINCT and UNIQUE cannot be
used on LOB columns.

optimizer_hints

Overrides the default behavior of the query optimizer with user-specified
behaviors. For example, hints can force Oracle to use an index that it might
not otherwise use or to avoid an index that it might otherwise use. Refer to the
vendor documentation for more information about optimizer hints.

select_item

Retrieves the expressions or columns listed. Columns can be from a
named query, table, view, or materialized view and can be listed in the for‐
mat [schema.[table_name.]]column_name. If you omit the schema, Oracle
assumes the context of the current schema. Oracle also allows for named
queries that may be referenced much like nested table subqueries (discussed in
“SUBQUERY Substatement” on page 337); it refers to using named queries as
subquery factoring. In addition to named queries, Oracle supports subqueries
and the asterisk (*), shorthand for all columns, in the select_item list.

INTO {variable[, ...] | record}

Retrieves the result set values into PL/SQL variables or into a PL/SQL record.

FROM [ONLY]

Identifies the table, view, materialized view, partition, or subquery from which
the result set is retrieved. The ONLY keyword is optional and applies only to
views belonging to a hierarchy. Use ONLY when you want to retrieve records
from a named view only, and not from any of its subviews.

AS [OF] {SCN | TIMESTAMP} expression

Implements SQL-driven flashback, whereby system change numbers (SCNs)
or timestamps are applied to each object in the select_item list. Records
retrieved by the query are only those that existed at the specified SCN or
time. (This feature can also be implemented at the session level using the DBMS
_FLASHBACK built-in package.) SCN expression must equal a number, while
TIMESTAMP expression must equal a timestamp value. Flashback queries can‐
not be used on linked servers.

SQL Command Reference | 317

R
ead

ing
 Yo

ur
D

ata

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT con

straint_name]}]

Mentioned separately because Oracle allows you extra ways to control a sub‐
query. WITH READ ONLY indicates that the target of the subquery cannot be
updated. WITH CHECK OPTION indicates that any update to the target of the
subquery must produce rows that would be included in the subquery. WITH
CONSTRAINT creates a CHECK OPTION constraint of constraint_name on the
table. Note that WITH CHECK OPTION and WITH CONSTRAINT are usually used in
INSERT ... SELECT statements.

[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE} AND {exp | MAX

VALUE}] AS OF {SCN | TIMESTAMP} expression

Specifies a special kind of query to retrieve the history of changes made to
data from a table, view, or materialized view. The VERSIONS_XID pseudocol‐
umn shows the identifier corresponding to the transaction that made the
change. This kind of query is referred to as a flashback query; it requires that
you specify an SCN or TIMESTAMP value for each object in the select_item
list. (You can implement SQL-driven session-level flashback using the Oracle
DBMS_FLASHBACK package.)

The optional subclause VERSIONS BETWEEN is used to retrieve multiple versions of
the data specified, either using an upper and lower boundary of an SCN (a number)
or TIMESTAMP (a timestamp value), or using the MINVALUE and MAXVALUE keywords.
Without this clause, only one past version of the data is returned. (Oracle also pro‐
vides several version query pseudocolumns for additional versioning information.)

The AS OF clause, discussed earlier in this list, determines the SCN or moment in
time from which the database issues the query when used with the VERSIONS clause.

You cannot use flashback queries with the VERSIONS clause against temporary tables,
external tables, tables in a cluster, or views.

TABLE

Required when querying a hierarchically declared nested table.

PARTITION | SUBPARTITION

Restricts a query to the specified partition or subpartition of the table. Rows are
retrieved only from the named partition or subpartition, not from the entire
table, reducing I/O.

SAMPLE [BLOCK] [sampling_percentage] [SEED (seed_value)]

Tells Oracle to select records from a random sampling of rows within the result
set, as a percentage of rows or blocks, rather than from the entire table. BLOCK
tells Oracle to use block sampling rather than row sampling. The sampling
_percentage, telling Oracle the total block or row percentage to be included
in the sample, may be anywhere between .000001 and 99. The optional SEED
clause is used to provide limited repeatability. If you specify a seed value,
Oracle will attempt to return the same sample from one execution of the query

318 | Chapter 4: Reading Your Data

to the next. The seed value can be between 0 and 4,294,967,295. When SEED is
omitted, the resulting sample will change from one execution of the query to
the next. Sampling may be used only on single-table queries.

join_clause

Merges the result sets of two or more tables in a single query. See the descrip‐
tion following this list for more information.

WHERE ... [[START WITH value] CONNECT BY [PRIOR] condition]

Filters records returned in the result set. Oracle allows the use of hierarchical
information within tables, whose filtering can be controlled with the START
WITH clause. START WITH identifies the rows that will serve as the parent rows
in the result set. CONNECT BY identifies the relationship condition between the
parent rows and their child rows. The PRIOR keyword is used to identify the
parent rows instead of the child rows.

Hierarchical queries use the LEVEL pseudocolumn to identify (1) the root
node, (2) the child nodes, (3) the grandchild nodes, and so forth. Other
pseudocolumns available in hierarchical queries are CONNECT_BY_ISCYCLE and
CONNECT_BY_ISLEAF. Hierarchical queries are mutually exclusive of the ORDER
BY and GROUP BY clauses. Do not use those clauses in a query containing START
WITH or CONNECT BY. You can order records from siblings of the same parent
table by using the ORDER SIBLINGS BY clause.

MODEL model_clause

Allows you to create a multidimensional array from query results and then
apply formulas (called rules) to this array to calculate new values. See “The
MODEL clause” on page 325 for details.

FOR UPDATE [OF [schema.][table.]column[, ...] {[NOWAIT | WAIT (int)]}

Locks the rows of the result set so that other users cannot lock or update
them until you’re finished with your transaction. FOR UPDATE cannot be used
in a subquery, in queries using DISTINCT or GROUP BY, or in queries with set
operators or aggregate functions. Child rows in a hierarchical table are not
locked when this clause is issued against the parent rows. The OF keyword is
used to lock only the selected table or view. Otherwise, Oracle locks all the
tables or views referenced in the FROM clause. When using OF, the columns
are not significant, though real column names (not aliases) must be used. The
NOWAIT and WAIT keywords tell Oracle either to return control immediately if
a lock already exists or to wait int seconds before returning control to you,
respectively. If neither NOWAIT nor WAIT is specified, Oracle waits until the rows
become available.

Unlike some other database platforms, Oracle does not allow a SELECT statement
without a FROM clause. The following query, for example, is invalid:

SELECT 2 + 2;

SQL Command Reference | 319

R
ead

ing
 Yo

ur
D

ata

As a workaround, Oracle has provided a special-purpose table called DUAL. Any
time you want to write a query that does not retrieve data from a user-created table,
such as to perform a calculation, use FROM DUAL. Both of the following queries are
valid:

SELECT 2 + 2
FROM DUAL;
SELECT (((52-4) * 5) * 8)
FROM DUAL;

Oracle’s implementation of SELECT is quite straightforward if you want to retrieve
data from a table. As mentioned previously, Oracle allows the use of named queries.
A named query is, in a sense, an alias to an entire query that can save you time
when you’re writing a complex multi-subquery SELECT statement. For example:

WITH pub_costs AS
 (SELECT pub_id, SUM(job_lvl) dept_total
 FROM employees e
 GROUP BY pub_id),
avg_costs AS
 (SELECT SUM(dept_total)/COUNT(*) avg
 FROM employee)
SELECT * FROM pub_costs
WHERE dept_total > (SELECT avg FROM avg_cost)
ORDER BY department_name;

Here we create two named subqueries—pub_costs and avg_costs—which are later
referenced in the main query. The named queries are effectively the same as subqu‐
eries; however, subqueries must be written out in their entirety each time they’re
used, while named queries need not be.

Oracle allows you to select rows from a single partition of a partitioned table using
the PARTITION clause, or to retrieve only a statistical sampling of the rows (as a
percentage of rows or blocks) of a result set using SAMPLE. For example:

SELECT *
FROM sales PARTITION (sales_2021_q3) sales
WHERE sales.qty > 1000;
SELECT *
FROM sales SAMPLE (12);

Flashback queries are a feature of Oracle that enable retrieval of point-in-time result
sets. For example, you could find out what everyone’s salary was yesterday before a
big change was applied to the database:

SELECT job_lvl, lname, fname
FROM employee
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

Another interesting Oracle extension of the standard query format is the hierarchi‐
cal query. Hierarchical queries return the results of queries against hierarchically
designed tables in the order you define. For example, the following query returns

320 | Chapter 4: Reading Your Data

the names of the employees and their positions in the hierarchy (represented by the
position in the org_char column), employee IDs, manager IDs, and job IDs:

-- Query
SELECT LPAD(' ',2*(LEVEL-1)) || lname AS org_chart,
 emp_id, mgr_id, job_id
FROM employee
START WITH job_id = 'Chief Executive Officer'
CONNECT BY PRIOR emp_id = mgr_id;

-- Results
ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
-------------- ----------- ---------- ------------------------
Cramer 101 100 Chief Executive Officer
Devon 108 101 Business Operations Mgr
Thomas 109 108 Acquisitions Manager
Koskitalo 110 108 Productions Manager
Tonini 111 108 Operations Manager
Whalen 200 101 Admin Assistant
Chang 203 101 Chief Financial Officer
Gietz 206 203 Comptroller
Buchanan 102 101 VP Sales
Callahan 103 102 Marketing Manager

In the previous query, the CONNECT BY clause defines the hierarchical relationship of
the emp_id value as the parent row equal to the mgr_id value in the child row, while
the START WITH clause specifies where in the hierarchy the result set should begin.

Oracle supports the following types of JOIN syntax (refer to “JOIN Subclause” on
page 278 for more details):

FROM table1 {
 CROSS JOIN table2 |
 INNER JOIN table2 [{ON join_condition |
 USING (column_list)}] |
 NATURAL [LEFT [OUTER]] JOIN table2 |
 LEFT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}] |
 RIGHT [OUTER] JOIN table2 [{ON join_condition
 | USING (column_list)}]|
 NATURAL [RIGHT [OUTER]] JOIN table2
 FULL [OUTER] JOIN table2 }

[CROSS] JOIN

Retrieves all records of both table1 and table2. This is syntactically the same
as FROM table1, table2 with no join conditions in the WHERE clause.

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching
values in both tables according to the join condition. Note that the syntax
FROM table1, table2 with join conditions in the WHERE clause is semantically
equivalent to an inner join.

SQL Command Reference | 321

R
ead

ing
 Yo

ur
D

ata

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause
containing all columns that are in common between the two joined tables.
(Be careful if columns have the same names but not the same data types or
the same sort of values!) LOB columns cannot be referenced in a natural join.
Referencing a LOB or collection column in a NATURAL JOIN clause will return an
error.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records
in the rightmost table (i.e., table2). If there isn’t a matching record in table2,
NULL values are substituted for that table’s columns. You can use this type of
join to retrieve all the records in a table, even when there are no counterparts in
the joined table. For example:

SELECT j.job_id, e.lname
FROM jobs j
LEFT OUTER JOIN employee e ON j.job_id = e.job_id
ORDER BY d.job_id

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table, regardless of whether there is a
matching record in the leftmost table. A right join is the same as a left join,
except that the optional table is on the left.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row
from one table matches a row in the other table. Any columns that have no
value in the corresponding joined table are assigned a NULL value.

ON join_condition

Declares the condition(s) that join the result sets of two tables together. This
takes the form of declaring the columns in table1 and table2 that must match
the join condition. When multiple columns must be compared, use the AND
clause.

USING (column_list)

Acts as an alternative to the ON clause. Instead of describing the conditions of
the join, simply provide a column name (or columns separated by commas)
that appears in both tables. The column name(s) must be identical in both
tables and cannot be prefixed with a table name or alias. USING cannot be
used on LOB columns of any type. The following two queries produce identical
results. One is written with a USING clause and the other specifies join condi‐
tions using SQL standard syntax:

SELECT column1
FROM foo
LEFT JOIN poo USING (column1, column2);

SELECT column1

322 | Chapter 4: Reading Your Data

FROM foo
LEFT JOIN poo ON foo.column1 = poo.column1
AND foo.column2 = poo.column2;

Partitioned outer joins. Oracle supports the PARTITION BY subclause of the SQL
standard’s JOIN clause, which defines a special kind of query called a partitioned
outer join that extends the conventional outer join syntax by applying a right or
left outer join to a partition of one or more rows. This is especially useful for
querying sparse data along a particular dimension of data, thereby returning rows
that otherwise would be omitted from the result set. The PARTITION BY clause can
be used on either side of an outer join, resulting in a UNION of the outer joins of
each of the partitions in the partitioned result set and the table on the other side of
the join. (When this clause is omitted, Oracle treats the entire result set as a single
partition.) PARTITION BY is not allowed with a FULL OUTER JOIN.

For example, our product table keeps track of all products we produce, while the
manufacturing table shows when we produce them. Since we’re not continuously
making every product at all times, the joined data between the two tables may be
sparse at times. Thus, the following query:

SELECT manufacturing.time_id AS time, product_name AS name,
 quantity AS qty
FROM product
PARTITION BY (product_name)
RIGHT OUTER JOIN times ON (manufacturing.time_id =
 product.time_id)
WHERE manufacturing.time_id
 BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')
 AND TO_DATE('06/10/05', 'DD/MM/YY')
ORDER BY 2, 1;

returns this result:

time name qty

--------- ---------- ----------

01-OCT-05 flux capacitor 10
02-OCT-05 flux capacitor

03-OCT-05 flux capacitor
04-OCT-05 flux capacitor
05-OCT-05 flux capacitor
06-OCT-05 flux capacitor 10
06-OCT-05 flux capacitor 8
01-OCT-05 transmogrifier 10
01-OCT-05 transmogrifier 15
02-OCT-05 transmogrifier
03-OCT-05 transmogrifier
04-OCT-05 transmogrifier 10
04-OCT-05 transmogrifier 11

SQL Command Reference | 323

R
ead

ing
 Yo

ur
D

ata

05-OCT-05 transmogrifier
06-OCT-05 transmogrifier

Flashback queries. Oracle also supports flashback queries, which keep track of
previous values of the results returned for a SELECT statement. In the following set
of example code, we’ll issue a regular query on a table, change the values in the table
with an UPDATE statement, and then query the flashback version of the data. First,
the regular query:

SELECT salary FROM employees
WHERE last_name = 'McCreary';

The results are:

SALARY

3800

Now, we’ll change the value in the employees table and query the table to confirm
the current value:

UPDATE employees SET salary = 4000
WHERE last_name = 'McCreary ';
SELECT salary FROM employees
WHERE last_name = 'McCreary ';

The results are:

SALARY

4000

Finally, we’ll perform a flashback query to see what the salary value was in the past:

SELECT salary FROM employees
AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY)
WHERE last_name = 'McCreary';

The results are:

SALARY

3800

If we wanted to be more elaborate, we could find out all of the values of salary for a
given time period, say, the last two days:

SELECT salary FROM employees
VERSIONS BETWEEN TIMESTAMP
 SYSTIMESTAMP - INTERVAL '1' MINUTE AND
 SYSTIMESTAMP - INTERVAL '2' DAY
WHERE last_name = 'McCreary';

324 | Chapter 4: Reading Your Data

The results are:

SALARY

4000
3800

The MODEL clause. Oracle supports a MODEL clause that enables spreadsheet-like
result sets to be returned from a SELECT statement. The MODEL clause is designed to
alleviate the need for developers to extract data from the database and put it into a
spreadsheet, like Microsoft Excel, for further manipulation. It creates a multidimen‐
sional array in which cells can be referenced by dimension values. For instance, you
might dimension an array on product and time, specifying column values that you
wish to access via combinations of those two dimensions. You can then write rules
that are similar in concept to spreadsheet formulas, that are executed in order to
change values in your model, or that create new values, and perhaps even new rows,
in your model.

Syntactically, the MODEL clause appears after the GROUP BY clause and before the
ORDER BY clause. The earlier syntax diagram for Oracle’s SELECT statement shows
the position of the clause, and the syntax details are presented here:

MODEL
 [{IGNORE | KEEP} NAV]
 [UNIQUE {DIMENSION | SINGLE REFERENCE}]
 [RETURN {UPDATED | ALL} ROWS]
 [REFERENCE reference_model_name ON (subquery)
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV]
 [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
[MAIN main_model_name]
 [PARTITION BY (column [AS alias][, ...])]
 DIMENSION BY (column [AS alias][, ...])
 MEASURES (column [AS alias][, ...])
 [{IGNORE | KEEP} NAV]
 [UNIQUE {DIMENSION | SINGLE REFERENCE}]]
 model_rules_clause
[RULES [UPSERT [ALL] | UPDATE]
 [{AUTOMATIC | SEQUENTIAL} ORDER]]
 [ITERATE (int) [UNTIL (ending_condition)]]
 ([{UPSERT [ALL] | UPDATE }] measure [...]
 [FOR { dimension | (dimension[, ...]) }
 { [IN ({subquery | literal[, ...]})] |
 [LIKE pattern] FROM start_literal TO end_literal
 {INCREMENT | DECREMENT} diff_literal }[, ...]
 [ORDER [SIBLINGS] BY (order_column [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...])]]
 = expr[, ...])

SQL Command Reference | 325

R
ead

ing
 Yo

ur
D

ata

The parameters of the MODEL clause are as follows:

{IGNORE | KEEP} NAV

Specifies whether NULL or absent values (NAV) are retained as NULLs (KEEP),
or whether they are replaced with suitable defaults (IGNORE): zero for numeric
types, 1-Jan-2000 for date types, an empty string for character types, and NULL
for anything else.

UNIQUE {DIMENSION | SINGLE REFERENCE}

Specifies the scope within which the database ensures that a given cell reference
points to a unique data value. Use DIMENSION to require that each possible cell
reference, whether on the left or right side of a rule, represents a single value.
Use SINGLE REFERENCE to perform that check only for those cell references that
appear on the righthand side of a rule.

RETURN {UPDATED | ALL} ROWS

Specifies whether all rows are returned from model processing, or whether
only updated rows are returned.

reference_model_name ON (subquery)

Specifies the name and rowsource for a reference model. This is a model on
which you cannot perform calculations, but which contains values that you can
reference from within your main query.

PARTITION BY (column[, ...])

Splits a model into independent partitions based on the columns given. You
cannot partition reference models.

DIMENSION BY (column[, ...])

Specifies the dimensions for a model. Values from these columns represent
the set of index values that are used to identify cells in the multidimensional
addressing space.

MEASURES (column[, ...])

Specifies the values associated with each unique combination of dimensions
(e.g., with each cell of the model).

alias

Specifies an alias for a column.

MAIN model_name

Begins the definition of the main model, and also gives that model a name.
The main model represents the model on which you perform work. Rows
from your containing SELECT feed into this model, rules are applied, and the
resulting rows are returned.

RULES [UPSERT [ALL] | UPDATE]

Specifies whether rules may both create new cells and update existing cells
(UPSERT), or whether they must only update existing cells (UPDATE). If you want

326 | Chapter 4: Reading Your Data

your model to be able to create new rows in your result set, specify UPSERT. The
default is UPSERT. You can also control this behavior on a rule-by-rule basis; see
rule in the syntax.

{AUTOMATIC | SEQUENTIAL} ORDER

Specifies whether the optimizer determines the order in which rules are evalu‐
ated (AUTOMATIC), or whether rules are evaluated in the order in which you list
them (SEQUENTIAL). The default is SEQUENTIAL.

ITERATE (int)

Requests that entire set of rules be evaluated repeatedly, int times. The default
is to evaluate the set of rules just once.

UNTIL(ending_condition)

Specifies a condition that, when met, causes iteration to end. You must still
specify an int, which serves as a safeguard against infinite loops.

measure[...]

A reference to one of the measures listed in the MEASURES clause. When you
reference a measure, the square brackets are part of the syntax. You must
specify all dimensions, either via a subquery or by listing them, and the specific
value of the measure associated with those dimensions will be returned, or
referenced.

FOR ...

A FOR loop iterating over one or many dimensions. The multi-iterating FOR
loop is much like a subquery where each row of the result set represents a
specific combination of dimensions.

{ dimension | (dimension[, ...]) }

A list of values, whether from columns or expressions, that collectively identify
a unique cell in the model.

IN ({subquery | literal[, ...]})

The source of values for a FOR loop may be a subquery, or it may be a specific
list of literal values.

LIKE pattern

Allows you to insert dimension values into a pattern. Use a percent-sign to
mark the location at which you want dimension values to be inserted. For
example, use FOR x LIKE 'A%B' FROM 1 TO 3 INCREMENT 1 to generate values
such as 'A1B', 'A2B', 'A3B'.

FROM start_literal TO end_literal {INCREMENT | DECREMENT} diff_literal

Defines the starting and ending FOR loop values, and also the difference
between each subsequent value as the loop iterates from start to end.

SQL Command Reference | 327

R
ead

ing
 Yo

ur
D

ata

ORDER [SIBLINGS] BY (order_column [ASC | DESC] [NULLS FIRST | NULLS

LAST][, ...])

Imposes an order of evaluation with respect to the cells referenced from the left
side of a rule. Use this clause if you want a rule to be applied to cells in order.
Otherwise, you have no guarantee as to the order in which the rule is applied to
the cells that it affects. You can order records from siblings of the same parent
table by using the ORDER SIBLINGS BY clause.

Following is a list of functions that have been designed specifically for use in the
MODEL clause:

CV() or CV(dimension_column)

Returns the current value of a dimension column. May be used only on the
righthand side of an expression in a rule. When the CV() form is used, the
dimension column is determined implicitly based on the function call’s posi‐
tion in a list of dimension values.

PRESENTNNV(measure[dimension[, ...], not_null, was_null)

Returns either not_null or was_null, depending on whether the specified
measure was NULL when model processing began. This function may be used
only from the righthand side of a rule expression.

PRESENTV(measure[dimension[, ...], did_exist, didnt_exist)

Returns either did_exist or didnt_exist, depending on whether the specified
measure existed when model processing began. This function may be used
only from the righthand side of a rule expression. Be aware that whether a
measure existed is a completely separate question from whether that measure
was NULL.

ITERATION_NUMBER

Returns 0 on the first iteration through the rules, 1 on the second iteration, and
so forth. This is useful when you want to base rule calculations on the number
of iterations.

The following example demonstrates that the MODEL clause gives a normal SELECT
statement the ability to construct a multidimensional array as a result set and
calculate inter-row and inter-array values interdependently. The newly calculated
values are returned as part of the SELECT statement’s result set:

SELECT SUBSTR(region,1,20) country, SUBSTR(product,1,15)
 product, year, sales
FROM sales_view
WHERE region IN ('USA','UK')
MODEL RETURN UPDATED ROWS
 PARTITION BY (region)
 DIMENSION BY (product, year)
 MEASURES (sale sales)
 RULES (
 sales['Bounce',2006] = sales['Bounce',2005]
 + sales['Bounce',2004],

328 | Chapter 4: Reading Your Data

 sales['Y Box', 2006] = sales['Y Box', 2005],
 sales['2_Products',2006] = sales['Bounce',2006]
 + sales['Y Box',2006])
ORDER BY region, product, year;

In this example, a query against the sales_view materialized view returns the sum
of sales over the course of a few years for the regions 'USA' and 'UK'. The MODEL
clause then falls between the WHERE clause and the ORDER BY clause. Since sales_view
currently holds data for the years 2004 and 2005, we provide it with rules to
calculate figures for the year 2006.

The subclause RETURN UPDATED ROWS limits the result set to the rows that were
created or updated by the query. Next, the example defines the logical divisions of
the data using data elements from the materialized view and using the PARTITION
BY, DIMENSION BY, and MEASURES subclauses. The RULES subclause then references
individual measures of the model by referring to combinations of different dimen‐
sion values, much like a spreadsheet macro references worksheet cells with specific
lookups and references to ranges of values.

Oracle (and SQL Server, using a somewhat different technique) supports a non-SQL
standard query type known as a pivot query. Although you should refer to the
vendor documentation for exactly how to write a pivot (or unpivot) query, an
example here will help you take advantage of this useful technique. A pivot query
turns the result set on its side, enabling you to extract more value from the data.
In Oracle, you must first create your pivot table. By using a pivot table, you can
then turn the result “on its side” so that the order_type column becomes the column
headings:

CREATE TABLE pivot_table AS
SELECT * FROM (SELECT year, order_type, amt FROM sales)
PIVOT SUM(amt) FOR order_type IN ('retail', 'web');

SELECT * FROM pivot_table ORDER BY YEAR;

The results are:

YEAR RETAIL WEB
---- ----------- ------
2004 7014.54
2005 9745.12
2006 16717.88 10056.6
2007 28833.34 39334.9
2008 66165.77 127109.4

PostgreSQL
PostgreSQL supports a straightforward implementation of the SELECT statement.
It supports JOIN and subquery applications. PostgreSQL also allows the creation
of new temporary or permanent tables using the SELECT ... INTO syntax or the
CREATE TABLE AS SELECT construct. Its SELECT syntax is as follows:

SQL Command Reference | 329

R
ead

ing
 Yo

ur
D

ata

SELECT [ALL | DISTINCT [ON (select_item[, ...])]]
[AS alias [(alias_list)]][, ...]
[INTO [LOGGED | UNLOGGED] [[TEMP]ORARY] [TABLE] new_table]
[FROM [ONLY] table1[.*] [AS alias][, ...]]
[[join_type] JOIN table2 {[ON join_condition] |
 [USING (column_list)]}]
[WHERE search_condition]
[group_by_clause]
[order_by_clause]
[for_update_clause]

for_update_clause ::= [FOR {UPDATE | NO KEY UPDATE | SHARE | KEY SHARE}
 [OF table_name[, ...]] [NOWAIT | SKIP LOCKED] [...]]

where:

ALL | DISTINCT [ON (select_item[, ...]]

Supports the ALL and DISTINCT keywords of the SQL standard, where ALL
(the default) returns all rows (including duplicates) and DISTINCT eliminates
duplicate rows. In addition, DISTINCT ON eliminates duplicates on only the
specified select_items, not on all of the select_items in the query (example
follows).

select_item

Includes the standard elements of a select_item list supported by the SQL
standard. In addition to the asterisk (*) shorthand to retrieve all rows, you can
use table_name.* to retrieve all rows from an individual table.

AS alias [(alias_list)]

Creates an alias or a list of aliases for one or more columns (or tables in
the FROM clause). AS is required for select_item aliases, but not for FROM
table aliases. (Some other database platforms treat the AS as an option when
declaring an alias.)

INTO [UNLOGGED | LOGGED] [[TEMP]ORARY] [TABLE] new_table

Creates a new table from the result set of the query. Both TEMP and TEMPORARY
are acceptable usages to create a temporary table that is automatically dropped
at the end of the session. Otherwise, the command creates a permanent table.
Permanent tables created with this statement must have new, unique names,
but temporary tables may have the same name as an existing table. If you create
a temporary table with the same name as an existing permanent table, the
temporary table is used to resolve all operations against that table name while
in the same session as the one that created it. Other sessions will continue to
see the existing permanent table. The UNLOGGED table creates a table where only
the creation of the table structure is written to the transaction logs. Creating
unlogged tables is generally faster than logged ones and could be as much as 5
times faster. However, because UNLOGGED table data writing is not logged, data
inserted can not be replicated. They are also truncated during database restarts
or crashes. That said, you should only use unlogged tables for data you do

330 | Chapter 4: Reading Your Data

not need to read on replicas and data that can be easier recreated. When the
logging option is not specified, a LOGGED table is created.

FROM [ONLY]table1[, ...]

Specifies one or more source tables where the data resides. (Be sure to specify a
join condition or a theta WHERE clause so that you don’t get a Cartesian product
of all records in all tables.) PostgreSQL allows inheritance in child tables of
declared parent tables. The ONLY keyword is not supported for partitioned
tables because the parent never has data. Use the ONLY keyword to suppress
rows from the child tables of your source table. (You can turn off this default
inheritance globally with the command SET SQL_Inheritance TO OFF.) Post‐
greSQL also supports nested table subqueries (see the section on SUBQUERY later
in this chapter). The FROM clause is not needed when used for computation:

SELECT 8 * 40;

PostgreSQL will also include an implicit FROM on SELECT statements that
include schema-identified columns. For example, the following query is accept‐
able (though not recommended):

SELECT sales.stor_id WHERE sales.stor_id = '6380';

for_update_clause

If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE, or FOR KEY SHARE is specified, the
SELECT statement locks the selected rows against concurrent updates. SKIP LOCKS
allows records already locked to not be updated. This is suitable if you are updating
records in batches and can always revisit records that haven’t been updated in a
secondary batch.

PostgreSQL supports a handy variation of the DISTINCT clause, DISTINCT ON

(select_item[, ...]). This variation allows you to pick and choose the exact
columns that are considered for elimination of duplicates. PostgreSQL chooses the
result set in a manner much like it does for ORDER BY. You should include an ORDER
BY clause so that there’s no unpredictability as to which record is returned. For
example, this query retrieves the most recent sales report for each store based on the
most recent order date:

SELECT DISTINCT ON (stor_id), ord_date, qty
FROM sales
ORDER BY stor_id, ord_date DESC;

However, there would be no way to predict what single record would have been
returned without the ORDER BY clause.

PostgreSQL also allows retrieving a whole row as a column, as follows:

SELECT DISTINCT ON (stor_id) stor_id, s AS sale_row
FROM sales AS s
ORDER BY stor_id, ord_date DESC;

SQL Command Reference | 331

R
ead

ing
 Yo

ur
D

ata

This query retrieves the most recent sales report for each store based on the most
recent order date, but instead of returning individual columns, it returns the whole
row as a column value. This is done simply by specifying the name of the table or
table alias. If a table alias is specified, then the table name cannot be used; you must
use the alias. The output of the preceding query looks like this:

6380 (6380,6871,"1994-09-14 00:00:00-04",5,"Net 60",BU1032)
7066 (7066,QA7442.3,"1994-09-13 00:00:00-04",75,"ON invoice",PS2091)
7067 (7067,D4482,"1994-09-14 00:00:00-04",10,"Net 60",PS2091)
7131 (7131,N914008,"1994-09-14 00:00:00-04",20,"Net 30",PS2091)
7896 (7896,TQ456,"1993-12-12 00:00:00-05",10,"Net 60",MC2222)
8042 (8042,423LL922,"1994-09-14 00:00:00-04",15,"ON invoice",MC3021)

This feature is particularly useful for outputting data to applications by combining
it with a function such as jsonb_agg or json_agg, as follows, and using ORDER BY
aggregation syntax (a feature supported for all PostgreSQL aggregate functions,
including user-defined ones):

SELECT json_agg(s ORDER BY stor_id, ord_date) AS sale_rows
FROM sales AS s;

Refer to “JOIN Subclause” on page 278 for information on the supported join types.

SQL Server
SQL Server supports most of the basic elements of the SQL standard SELECT state‐
ment, including all of the various join types. It also offers several variations on the
SELECT statement, including optimizer hints, the INTO clause, the TOP clause, GROUP
BY variations, COMPUTE, and WITH OPTIONS. The SQL Server SELECT syntax is:

SELECT {[ALL | DISTINCT] | [TOP number [PERCENT] [WITH TIES]]}
 select_item [AS alias]
[INTO new_table_name]
[FROM {[rowset_function | table1[, ...]]} [AS alias]]
[[join_type] JOIN table2 [ON join_condition]]
[WHERE search_condition]
group_by_clause
order_by_clause

[COMPUTE {aggregation (expression)}[, ...]
 [BY expression[, ...]]]
[FOR {BROWSE | XML | JSON}]
[OPTION (hint[, ...])]

where:

TOP number [PERCENT] [WITH TIES]

Indicates that only the specified number of rows should be retrieved in the
query result set. If PERCENT is specified, only the first number percent of the
rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause.
This variation specifies that additional rows are returned from the base result

332 | Chapter 4: Reading Your Data

set using the same value in the ORDER BY clause, appearing as the last of the TOP
rows.

INTO new_table_name

Creates a new table from the result set of the query. You can use this command
to create temporary or permanent tables. (Refer to SQL Server’s rules for creat‐
ing temporary or permanent tables in “CREATE/ALTER TABLE Statement”
on page 140.) The SELECT ... INTO command quickly copies the rows and
columns queried from other table(s) into a new table using a non-logged
operation. Since it is not logged, COMMIT and ROLLBACK statements do not affect
it.

FROM {[rowset_function | table1[, ...]]}

Supports the standard behavior of the SQL standard FROM clause, including
nested table subqueries. In addition, SQL Server supports a set of extensions
called rowset functions. Rowset functions allow SQL Server to source data from
special or external data sources such as XML streams, full-text search file
structures (a special structure in SQL Server used to store things like MS Word
documents and MS PowerPoint slide shows within the database), or external
data sources (like an MS Excel spreadsheet).

See the SQL Server documentation for the full description of the available
FROM {[rowset_function | table1[, ...]]} options. Among the many
possibilities, SQL Server currently supports the following functions:

CONTAINSTABLE

Returns a table derived from a specified table that contains at least one
full-text index TEXT or NTEXT column. The records derived are based upon
either a precise, fuzzy, weighted-match, or proximity-match search. The
derived table is then treated like any other FROM data source.

FREETEXTTABLE

Similar to CONTAINSTABLE, except that records are derived based upon a
meaning search of 'freetext_string'. FREETEXTTABLE is useful for ad
hoc queries against full-text tables, but less accurate than CONTAINSTABLE.

OPENDATASOURCE

Provides a means of sourcing data external to SQL Server via OLEDB
without declaring a linked server, such as an MS Excel spreadsheet or a
Sybase Adaptive Server database table. This is intended for the occasional
ad hoc query; if you frequently retrieve result sets from external data
sources, you should declare a linked server.

OPENQUERY

Executes a pass-through query against a linked server. This is an effective
means of performing a nested table subquery against a data source that is
external to SQL Server. The data source must first be declared as a linked
server.

SQL Command Reference | 333

R
ead

ing
 Yo

ur
D

ata

OPENROWSET

Executes a pass-through query against an external data source. This
is similar to OPENDATASOURCE, except that OPENDATASOURCE only opens
the data source; it does not actually pass through a SELECT statement.
OPENROWSET is intended for occasional, ad hoc usage only.

OPENXML

Provides a queryable, table-like view to an XML document using a file
handle. This is covered in “SQL Server XML keywords, functions, proce‐
dures, and methods” on page 787.

COMPUTE {aggregation (expression)}[, ...] [BY expression[, ...]]

Generates additional aggregations—usually totals—that appear at the end of
the result set. BY expression adds subtotals and control breaks to the result
set. COMPUTE and COMPUTE BY can be used simultaneously in the same query.
COMPUTE BY must be coupled with an ORDER BY clause, though the expression
used by COMPUTE BY can be a subset of the order_by_expression. The aggrega‐
tion may be any of these function calls: AVG, COUNT, MAX, MIN, STDEV, STDEVP,
VAR, VARP, or SUM. Examples are shown later in this section.

COMPUTE, in any form, does not work with the DISTINCT keyword or with TEXT,
NTEXT, or IMAGE data types.

FOR {BROWSE | XML | JSON}

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse
mode cursor. (DB-Library is the original access methodology for SQL Server
and has since been supplanted by OLE DB in most applications.) FOR BROWSE
can only be used against tables with a unique index and a column with the
TIMESTAMP data type; it cannot be used in UNION statements or when a HOLDLOCK
hint is active.

FOR XML and FOR JSON are used to extract the result set as an XML document
or as JSON, respectively. See Chapter 10 for details on working with these
formats.

OPTION (hint[, ...])

Replaces elements of the default query plan with your own. Because the
optimizer usually picks the best query plan for any query, you are strongly
discouraged from placing optimizer hints into your queries. Refer to the SQL
Server documentation for more information on hints.

Here’s an example of SQL Server’s SELECT ... INTO capability. This example creates
a table called non_mgr_employees using SELECT ... INTO. The table contains the
emp_id, first name, and last name of each non-manager from the employee table,
joined with their job descriptions (taken from the jobs table):

SELECT e.emp_id, e.fname, e.lname,
 SUBSTRING(j.job_desc,1,30) AS job_desc
INTO non_mgr_employee

334 | Chapter 4: Reading Your Data

FROM employee e
JOIN jobs AS j ON e.job_id = j.job_id
WHERE j.job_desc NOT LIKE '%MANAG%'
ORDER BY 2,3,1

The newly created and loaded table non_mgr_employee now can be queried like any
other table.

SELECT ... INTO is not logged or recoverable and so should
only be used for operations that can be restarted from the
beginning.

COMPUTE has a number of permutations that can impact the result set retrieved by
the query. The following example shows the sum of book prices broken out by type
of book and sorted by type and then price:

-- Query
SELECT type, price
FROM titles
WHERE type IN ('business','psychology')
 AND price > 10
ORDER BY type, price
COMPUTE SUM(price) BY type

-- Results
type price
------------ ---------------------
business 11.9500
business 19.9900
business 19.9900
 sum
 =====================
 51.9300
type price
------------ ---------------------
psychology 10.9500
psychology 19.9900
psychology 21.5900
 sum
 =====================
 52.5300

The COMPUTE clause behaves differently if you do not include BY. The following
query retrieves the grand total of prices and advances for books with prices over
$16.00:

-- Query
SELECT type, price, advance
FROM titles

SQL Command Reference | 335

R
ead

ing
 Yo

ur
D

ata

WHERE price > $16
COMPUTE SUM(price), SUM(advance)

-- Results
type price advance
------------ --------------------- ---------------------
business 19.9900 5000.0000
business 19.9900 5000.0000
mod_cook 19.9900 .0000
popular_comp 22.9500 7000.0000
popular_comp 20.0000 8000.0000
psychology 21.5900 7000.0000
psychology 19.9900 2000.0000
trad_cook 20.9500 7000.0000
 sum
 =====================
 165.4500
 sum
 =====================
 41000.0000

You can even use COMPUTE BY and COMPUTE in the same query to produce subtotals
and grand totals. (For the sake of brevity, we’ll show an example query, but not
the result set.) In this example, we find the sum of prices and advances by type for
business and psychology books that cost over $16.00:

SELECT type, price, advance
FROM titles
WHERE price > $16
 AND type IN ('business','psychology')
ORDER BY type, price
COMPUTE SUM(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)

Don’t forget that you must include the ORDER BY clause with a COMPUTE BY clause!
(You do not need an ORDER BY clause with a simple COMPUTE clause without the
BY keyword.) There are many permutations that you can perform in a single query
—multiple COMPUTE and COMPUTE BY clauses, GROUP BY with a COMPUTE clause, and
even COMPUTE with an ORDER BY statement. It’s actually fun to tinker around with the
different ways you can build queries using COMPUTE and COMPUTE BY. It’s not theme
park fun, but whaddya want? This is a programming book!

SQL Server (and Oracle, using a somewhat different technique) also supports a
non-SQL standard query known as a pivot query. Although you should refer to
the vendor documentation for details on exactly how to write a pivot (or unpivot)
query, an example here will help you take advantage of this useful technique. A
pivot query turns the result set on its side, enabling you to extract more value from
the data. For example, the following query produces a two-column, four-row result
set:

336 | Chapter 4: Reading Your Data

-- Query
SELECT days_to_make, AVG(manufacturing_cost) AS Avg_Cost
FROM manufacturing.products
GROUP BY days_to_make;

-- Results
days_to_make Avg_Cost
0 5
1 225
2 350
4 950

By using a pivot query, you can then turn the result “on its side” so that the
days_to_make column values become the column headings and the query returns
one row with five columns:

-- Query
SELECT 'Avg_Cost' As Cost_by_Days, [0], [1], [2], [3], [4]
FROM
 (SELECT days_to_make, manufacturing_cost
 FROM manufacturing.products)
AS source
PIVOT
 (AVG(manufacturing_cost)
 FOR days_to_make IN ([0], [1], [2], [3], [4]))
 AS pivottable;

-- Results
Cost_by_Days 0 1 2 3 4
Avg_Cost 5 225 350 NULL 950

See also

• JOIN•

• GROUP BY•

• ORDER BY•

• WHERE•

• WITH•

SUBQUERY Substatement
A subquery is a nested query. Subqueries may appear in various places within a SQL
statement.

Platform Command

MySQL Supported, with limitations

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL Command Reference | 337

R
ead

ing
 Yo

ur
D

ata

SQL standard syntax
The different types of subqueries the SQL standard supports are described “Rules at
a glance” on page 338. Scalar, table, and nested table subqueries are represented by
the following generalized syntax:

SELECT column1, column2, ... (scalar_subquery)
FROM table1, ... (nested_table_subquery)
 AS subquery_table_name]
WHERE foo = (scalar_subquery)
 OR foo IN (table_subquery)

Correlated subqueries are more complex because the values of such subqueries are
dependent on values retrieved in their main queries. For example:

SELECT column1
FROM table1 AS t1
WHERE foo IN
 (SELECT value1
 FROM table2 AS t2
 WHERE t2.pk_identifier = t1.fk_identifier)

Note that the IN clause is for example purposes only. Any comparison operator may
be used.

Keywords

scalar_subquery

Includes a scalar subquery in the SELECT item list or in the WHERE or HAVING
clause of a query.

table_subquery

Includes a table subquery only in the WHERE clause, with operators such as
IN, ANY, SOME, EXISTS, or ALL that act upon multiple values. Table subqueries
return one or more rows containing a single value each.

nested_table_subquery

Includes a nested table subquery only in the FROM clause, in conjunction with
the AS clause.

Rules at a glance
Subqueries allow you to return one or more values and nest them inside a SELECT,
INSERT, UPDATE, or DELETE statement, or inside another subquery. Subqueries can be
used wherever expressions are allowed. Subqueries also can often be replaced with
a JOIN statement. Depending on the DBMS, subqueries may perform less quickly
than joins.

338 | Chapter 4: Reading Your Data

Subqueries are always enclosed in parentheses.

SQL supports the following types of subquery:

Scalar subqueries
Subqueries that retrieve a single value. These are the most widely supported
type of subquery among the various database platforms.

Vector subqueries
Subqueries that retrieve a single row which has more than one column.

Table subqueries
Subqueries that retrieve more than one value or row of values.

Scalar and vector subqueries can, on some platforms, appear as part of the expres‐
sion in a SELECT list of items, a WHERE clause, or a HAVING clause. Nested table
subqueries tend to appear in the FROM clauses of SELECT statements.

A correlated subquery is a subquery that is dependent upon a value in an outer
query. Consequently, the inner query is executed once for every record retrieved
in the outer query. Since subqueries can be nested many layers deep, a correlated
subquery may reference any level in the main query higher than its own level.

Different rules govern the behavior of a subquery, depending on the clause in which
it appears. The level of support amongst the database platforms also varies: some
platforms support subqueries in all clauses mentioned earlier (SELECT, FROM, WHERE,
and HAVING), while others support subqueries in only one or two of the clauses.

Subqueries are usually associated with the SELECT statement. Since subqueries may
appear in the WHERE clause, they can be used in any SQL statement that supports
a WHERE clause, including SELECT, INSERT ... SELECT, DELETE, and UPDATE state‐
ments.

Certain operators in a WHERE clause, such as =, <, >, >=, <=, and <> (or !=), expect
only one value. If a subquery returns more than one value but the operator expects
a single value, the entire query will fail. Scalar subqueries should be used in these
cases because they can return only a single value. On the other hand, table subquer‐
ies may return multiple values, but they are usable only with multivalue expressions
like [NOT] IN, ANY, ALL, SOME, or [NOT] EXISTS.

Table subqueries may appear in the FROM clause and should be aliased by the AS
clause. The result set returned by a table subquery, sometimes called a derived table,
offers similar functionality to a view (see “CREATE/ALTER VIEW Statement” on
page 221 for more on views). Every column returned in the derived table need not
be used in the query, though they can all be acted upon by the outer query.

SQL Command Reference | 339

R
ead

ing
 Yo

ur
D

ata

Correlated subqueries typically appear as a component of a WHERE or HAVING clause
in the outer query (and, less commonly, in the SELECT item list) and are correlated
through the WHERE clause of the inner query (that is, the subquery). Correlated
subqueries can also be used as table subqueries, though this is less common. Be sure
to include in such a subquery a WHERE clause that evaluates based on a correlating
value from the outer query; the example for a correlated query in the earlier SQL
standard syntax diagram illustrates this requirement.

It is also important to specify a table alias, called a correlation name, using the AS
clause or other alias shortcut for every table referenced in a correlated query, in
both the outer and inner queries. Correlation names avoid ambiguity and help the
DBMS quickly resolve the tables involved in the query.

All SQL standard–compliant subqueries comply with the following short list of
rules:

• A subquery cannot include an ORDER BY clause.•
• A subquery cannot be enclosed in an aggregate function. For example, the•

following query is invalid:

SELECT foo FROM table1
WHERE sales >= AVG(SELECT column1 FROM sales_table ...)

You can get around this limitation by performing the aggregation in the subquery
rather than in the outer query.

Programming tips and gotchas
For most vendor platforms, subqueries should not reference large object data types
(e.g., CLOB or BLOB on Oracle and IMAGE or TEXT on SQL Server) or array data types
(such as TABLE or CURSOR on SQL Server).

The platforms all support subqueries, but not every vendor supports every type of
subquery. Table 4-4 summarizes vendor support at the time of writing.

Table 4-4. Platform-specific subquery support

Platform MySQL Oracle PostgreSQL SQL Server

Scalar subquery in SELECT item list ✓ ✓ ✓ ✓
Scalar subquery in WHERE/HAVING clause ✓ ✓ ✓ ✓
Vector subquery in WHERE/HAVING clause ✓ ✓ ✓ ✓
Table subquery in FROM clause ✓ ✓ ✓ ✓
Correlated subquery in WHERE/HAVING clause ✓ ✓ ✓ ✓

Aside from SELECT statements, subqueries may also be used in INSERT, UPDATE, and
DELETE statements that include a WHERE clause. Subqueries are often used for the
following purposes:

340 | Chapter 4: Reading Your Data

• To identify the rows inserted into the target table using an INSERT ... SELECT•
statement, a CREATE TABLE ... SELECT statement, or a SELECT ... INTO
statement

• To identify the rows of a view or materialized view in a CREATE VIEW statement•

• To identify value(s) assigned to existing rows using an UPDATE statement•

• To identify values for conditions in the WHERE and HAVING clauses of SELECT,•
UPDATE, and DELETE statements

• To build a view of a table(s) on the fly (i.e., nested table subqueries)•

Examples. This section shows subquery examples that are equally valid on MySQL,
Oracle, PostgreSQL, and SQL Server.

A simple scalar subquery is shown in the SELECT item list of the following query:

SELECT job, (SELECT AVG(salary) FROM employee) AS "Avg Sal"
FROM employee

Table subqueries are functionally equivalent to querying a view. In the following,
we query the education level and salary in a table subquery, and then perform
aggregations on the values in the derived table in the outer query:

SELECT AVG(edlevel), AVG(salary)
FROM
 (SELECT edlevel, salary
 FROM employee) AS emprand
GROUP BY edlevel

Remember that this query may fail, depending on the plat‐
form, without the AS clause to associate a name with the
derived table.

The following query shows a standard table subquery in the WHERE clause expres‐
sion. In this case, we want all project numbers for employees in the department
'A00':

SELECT projno
FROM emp_act
WHERE empno IN
 (SELECT empno
 FROM employee
 WHERE workdept ='A00')

The subquery is executed only once for the outer query.

In the next example, we want to know the names of employees and their level of
seniority. We get this result set through a correlated subquery:

SQL Command Reference | 341

R
ead

ing
 Yo

ur
D

ata

SELECT firstname, lastname,
 (SELECT COUNT(*)
 FROM employee, senior
 WHERE employee.hiredate > senior.hiredate) as senioritype
FROM employee

Unlike the previous subquery, this subquery is executed one time for every row
retrieved by the outer query. In a query like this, the total processing time could
be very long, since the inner query may potentially execute many times for a single
result set.

Correlated subqueries depend on values retrieved by the outer query to complete
the processing of the inner query. They are tricky to master, but they offer unique
programmatic capabilities. The following example returns information about orders
where the quantity sold in each order is less than the average quantity in other sales
for that title:

SELECT s1.ord_num, s1.title_id, s1.qty
FROM sales AS s1
WHERE s1.qty <
 (SELECT AVG(s2.qty)
 FROM sales AS s2
 WHERE s2.title_id = s1.title_id)

For this example, you can accomplish the same functionality using a self-join.
However, there are situations in which a correlated subquery may be the only easy
way to do what you need.

The next example shows how a correlated subquery might be used to update values
in a table:

UPDATE course SET ends =
 (SELECT min(c.begins) FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE c.begins BETWEEN course.begins AND course.ends)

Similarly, you can use a subquery to determine which rows to delete. This example
uses a correlated subquery to delete rows from one table based on related rows in
another table:

DELETE FROM course
WHERE EXISTS
 (SELECT * FROM course AS c
 WHERE course.id > c.id
 AND (course.begins BETWEEN c.begins
 AND c.ends OR course.ends BETWEEN c.begins AND c.ends))

MySQL
MySQL supports subqueries in the FROM clause and the WHERE clause. It supports
scalar subqueries in the SELECT item list.

342 | Chapter 4: Reading Your Data

Oracle
Oracle supports SQL-standard subqueries, though it uses a different nomenclature.
In Oracle, a table subquery that appears in the FROM clause is called an inline view.
That makes sense because table subqueries are basically views built on the fly.
Oracle calls a subquery that appears in the WHERE clause or the HAVING clause of a
query a nested subquery. It allows correlated subqueries in the SELECT item list and
in the WHERE and HAVING clauses.

PostgreSQL
PostgreSQL supports SQL-standard subqueries in the FROM, WHERE, and HAVING clau‐
ses and also allows them to have ORDER BY clauses. However, subqueries appearing
in a HAVING clause cannot include ORDER BY, FOR UPDATE, or LIMIT clauses. It
supports scalar and vector subqueries in the SELECT item list.

SQL Server
SQL Server supports SQL-standard subqueries. Scalar subqueries can be used
almost anywhere a standard expression is allowed. Subqueries in SQL Server cannot
include the COMPUTE or FOR BROWSE clauses. They can include the ORDER BY clause if
the TOP clause is also used.

See also

• DELETE in Chapter 5

• INSERT in Chapter 5

• ORDER BY•

• SELECT•

• UPDATE in Chapter 5

• WHERE•

UNION Set Operator
The UNION set operator combines the result sets of two or more queries, showing all
the rows returned by each of the queries as a single result set.

UNION is in a class of keywords known as set operators.
Other set operators include INTERSECT and EXCEPT. All
set operators are used to simultaneously manipulate the result
sets of two or more queries; hence the term “set operators.”

Platform Command

MySQL Supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL Command Reference | 343

R
ead

ing
 Yo

ur
D

ata

SQL standard syntax
There are technically no limits to the number of queries that you may combine with
the UNION statement. The general syntax is:

<SELECT statement1>
UNION [ALL | DISTINCT]
<SELECT statement2>
UNION [ALL | DISTINCT]
...

Keywords

UNION

Determines which result sets will be combined into a single result set. Dupli‐
cate rows are, by default, excluded.

ALL | DISTINCT

Combines duplicate rows from all result sets (ALL) or eliminates duplicate rows
from the final result set (DISTINCT). Columns containing a NULL value are
considered duplicates. If neither ALL nor DISTINCT is used, DISTINCT behavior
is the default.

Rules at a glance
There is only one significant rule to remember when using UNION: the order, num‐
ber, and data types of the columns should be the same in all queries.

The data types do not have to be identical, but they should be compatible. For
example, CHAR and VARCHAR are compatible data types. By default, the result set will
default to the largest of two (or more) compatible data types, so a query that unions
three CHAR columns—CHAR(5), CHAR(10), and CHAR(12)—will display the results in
the CHAR(12) format with extra space padded onto the smaller column results.

Programming tips and gotchas
Even though the SQL standard calls for INTERSECT to take precedence over other
set operators in a single statement, many platforms evaluate all set operators with
equal precedence. You can explicitly control the precedence of set operators using
parentheses. Otherwise, the DBMS is likely to evaluate them in order from the
leftmost to the rightmost expression.

Depending on the platform, specifying DISTINCT can incur a significant perfor‐
mance cost, since it often involves a second pass through the results to winnow out
duplicate records. ALL can be specified in any instance where no duplicate records
are expected (or where duplicate records are OK) for faster results.

According to the SQL standard, only one ORDER BY clause is allowed in the entire
query. Include it at the end of the last SELECT statement. To avoid column and table
ambiguity, be sure to alias matching columns in each table with the same respective

344 | Chapter 4: Reading Your Data

aliases. However, for column-naming purposes, only the aliases in the first query
are used for each column in the SELECT ... UNION query. For example:

SELECT au_lname AS "lastname", au_fname AS "firstname"
FROM authors
UNION
SELECT emp_lname AS "lastname", emp_fname AS "firstname"
FROM employees
ORDER BY lastname, firstname

Also be aware that even if the queries in your UNION have compatible data-typed
columns, there may be some variation in behavior across the DBMS platforms,
especially with regard to the length of the columns. For example, if the au_lname
column in the first query is markedly longer than the emp_lname column in the
second query, different platforms may apply different rules as to which length is
used. In general, though, the platforms will choose the longer (and less restrictive)
column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the
columns across the tables have different names. In general, the column names of the
first query are used.

MySQL
MySQL fully supports the SQL standard syntax.

Oracle
Oracle supports the UNION and UNION ALL set operators using the basic SQL
standard syntax. UNION DISTINCT is not supported, but UNION is the functional
equivalent.

For example, you could find out all unique store IDs without duplicates using this
query:

SELECT stor_id FROM stores
UNION
SELECT stor_id FROM sales;

Oracle does not support UNION [ALL] on the following types of queries:

• Queries containing columns with LONG, BLOB, CLOB, BFILE, or VARRAY data types•

• Queries containing a FOR UPDATE clause or a TABLE collection expression•

If the first query in the set operation contains any expressions in the SELECT item
list, include the AS keyword to associate an alias with the column resulting from the
expression. Also, only the last query in the set operation may contain an ORDER BY
clause.

SQL Command Reference | 345

R
ead

ing
 Yo

ur
D

ata

PostgreSQL
PostgreSQL supports the UNION and UNION ALL set operators using the basic SQL
standard syntax, but not on queries with a FOR UPDATE clause UNION DISTINCT is
not supported, but UNION is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a
LIMIT clause. Subsequent queries in the UNION [ALL] set operation may contain
these clauses, but such queries must be enclosed in parentheses. Otherwise, the
rightmost occurrence of ORDER BY or LIMIT will be assumed to apply to the entire
set operation.

For example, we could find all authors and all employees whose last names start
with “P” with the following query:

SELECT a.au_lname
FROM authors AS a
WHERE a.au_lname LIKE 'P%'
UNION
SELECT e.lname
FROM employee AS e
WHERE e.lname LIKE 'W%';

SQL Server
SQL Server supports the UNION and UNION ALL set operators using the basic SQL
standard syntax. UNION DISTINCT is not supported, but UNION is the functional
equivalent.

You can use SELECT ... INTO with UNION or UNION ALL, but INTO may appear only
in the first query of the union. Special keywords, such as SELECT TOP and GROUP
BY ... WITH CUBE, are usable with all queries in a union, but if you use them in one
query you must use them with all of the queries. If you use SELECT TOP or GROUP
BY ... WITH CUBE in only one query in a union, the operation will fail.

Each query in a union must contain the same number of columns. The data types
of the columns do not have to be identical, but they must implicitly convert. For
example, mixing VARCHAR and CHAR columns is acceptable. SQL Server uses the
larger of the two columns when evaluating the size of the columns returned in the
result set. Thus, if a SELECT ... UNION statement has a CHAR(5) column and a
CHAR(10) column, it will display the data of both columns as a CHAR(10) column.
Numeric columns are converted to and displayed as the most precise data type in
the union.

For example, the following query unions the results of two independent queries that
use GROUP BY ... WITH CUBE:

SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id >= '722-51-5454'

346 | Chapter 4: Reading Your Data

GROUP BY ta.au_id WITH CUBE
UNION
SELECT ta.au_id, COUNT(ta.au_id)
FROM pubs..titleauthor AS ta
JOIN pubs..authors AS a ON a.au_id = ta.au_id
WHERE ta.au_id < '722-51-5454'
GROUP BY ta.au_id WITH CUBE

See also

• EXCEPT•

• INTERSECT•

• SELECT•

VALUES Clause
The VALUES multi-row constructor is a constructor often found in INSERT state‐
ments, but it can also be used in FROM statements or anywhere you can have a table
expression to create an inline table. When used in a FROM statement, the column
names and table name must be aliased.

Platform Command

MySQL/MariaDB Supported, with limitations

Oracle Not supported

PostgreSQL Supported

SQL Server Supported, with limitations

SQL standard syntax
(VALUES [ROW](<row1 columns>), [ROW](<row2 columns>), ...
 [ROW](<rown columns>))
[AS <table_alias>(column1, column2[,... columnn])]

Keywords

(VALUES [ROW](<row1 columns>), [ROW](<row2 columns>), ... [ROW](<rown

columns>))

Defines a set of rows. Each row is enclosed in parentheses, and column values
are separated by commas. Each row must have the same number of columns.

ROW

Optional keyword to denote the beginning of a row. Some databases do not
support this keyword and others require it.

AS <table_alias>(column1, column2[, ... columnn])

Specifies names for the table and columns. When not specified, the default
names for columns are column1, column2, … column.

SQL Command Reference | 347

R
ead

ing
 Yo

ur
D

ata

Rules at a glance
VALUES clauses can stand alone or be included in SELECT statements, JOIN clauses,
IN clauses, NOT IN clauses, DELETE statements, INSERT ... SELECT statements,
UPDATE statements, and any statement that might have a query or subquery (such as
DECLARE, CREATE TABLE, CREATE VIEW, and so forth). The following example defines
a virtual table consisting of two rows with two named columns:

SELECT *
FROM
(VALUES ('ABC1', 'Title 1'),
 ('DCF1', 'Title 2')
) AS t(title_id, title);

VALUES can also be used in a common table expression (WITH clause) as follows:

WITH t(title_id, title) AS (
 VALUES
 ('ABC1', 'Title 1'),
 ('DCF1', 'Title 2')
)
SELECT * FROM t;

And it can be used standalone without aliasing, as follows:

VALUES ('ABC1', 'Title 1'),
 ('DCF1', 'Title 2');

The output of the preceding queries is:

ABC1 | Title 1
DCF1 | Title 2

MySQL and MariaDB
MySQL 8 and later support the VALUES multi-row constructor, which can be used
standalone or within a SELECT, INSERT, or UPDATE statement. When used as table
output the ROW keyword is not optional for MySQL. For example:

SELECT *
FROM
(VALUES ROW('ABC1', 'Title 1'),
 ROW('DCF1', 'Title 2')
) AS t(title_id, title);

When used in an INSERT statement, the ROW keyword can be left out.

MariaDB also supports the VALUES multi-row constructor, which can be used stand‐
alone, in a WITH clause, or within an INSERT statement. The ROW keyword is not
supported. MariaDB allows aliasing in a WITH clause, but not when VALUES is used
standalone.

348 | Chapter 4: Reading Your Data

Oracle
Oracle does not support the VALUES multi-row constructor.

PostgreSQL
PostgreSQL fully supports the VALUES constructor, except for the ROW keyword.

SQL Server
SQL Server supports the multi-row VALUES constructor and allows its use in
SELECT ... FROM and INSERT statements. It does not support its use in WITH or IN
clauses or standalone, and it does not support the optional ROW keyword. When
used in the FROM clause, renaming of columns is required.

See also

• IN•

• INSERT•

• JOIN•

• SELECT•

• WITH•

WHERE Clause
The WHERE clause sets the search criteria for an operation such as SELECT, UPDATE,
or DELETE. Any records in the target table(s) that do not meet the search criteria are
excluded from the operation. The search conditions may include many variations,
such as calculations, Boolean operators, and SQL predicates (for example, LIKE or
BETWEEN). All the platforms support the SQL standard syntax.

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL standard syntax
{ WHERE search_criteria | WHERE CURRENT OF cursor_name }

Keywords

WHERE search_criteria

Defines search criteria for the statement to ensure that only the target rows are
affected.

SQL Command Reference | 349

R
ead

ing
 Yo

ur
D

ata

WHERE CURRENT OF cursor_name

Restricts the operation of the statement to the current row of a defined and
opened cursor called cursor_name.

Rules at a glance
WHERE clauses are found in SELECT statements, DELETE statements, INSERT ...

SELECT statements, UPDATE statements, and any statement that might have a query or
subquery (such as DECLARE, CREATE TABLE, CREATE VIEW, and so forth).

The search conditions, all of which are described in their own entries elsewhere in
this book, can include:

All records (=ALL, >ALL, <= ALL, SOME/ANY)
For example, to see publishers who live in the same city as their authors:

SELECT pub_name
FROM publishers
WHERE city = SOME (SELECT city FROM authors);

Combinations(AND, OR, and NOT) and evaluation hierarchy
For example, to see all authors with sales in quantities greater than or equal to
75 units, or coauthors with a royalty of greater than or equal to 60:

SELECT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2));

Comparison operators (such as =, < >, <, >, <=, and >=)
For example, to see the last and first names of authors who don’t have a
contract (i.e., authors with contract value of 0):

SELECT au_lname, au_fname
FROM authors
WHERE contract = 0;

Lists (IN and NOT IN)
For example, to see all authors who do not yet have a title in the titleauthor
table:

SELECT au_fname, au_lname
FROM authors
WHERE au_id NOT IN (SELECT au_id FROM titleauthor);

NULL comparisons (IS NULL and IS NOT NULL)
For example, to see titles that have NULL year-to-date sales:

350 | Chapter 4: Reading Your Data

SELECT title_id, SUBSTRING(title, 1, 25) AS title
FROM titles
WHERE ytd_sales IS NULL;

Be sure not to specify = NULL in a query. NULL is
unknown and can never be equal to anything. Using =
NULL is not the same as specifying the IS NULL operator.

Pattern matches (LIKE and NOT LIKE)
For example, to see authors whose last names start with a “C”:

SELECT au_id
FROM authors
WHERE au_lname LIKE 'C%';

Range operations (BETWEEN and NOT BETWEEN)
For example, to see authors with last names that fall alphabetically between
“Smith” and “White”:

SELECT au_lname, au_fname
FROM authors
WHERE au_lname BETWEEN 'smith' AND 'white';

Programming tips and gotchas
The WHERE clause may require special handling when dealing with certain data types,
such as LOBs, or certain character sets, including Unicode.

Parentheses are used to control evaluation hierarchy within a WHERE clause. Encap‐
sulating a clause within parentheses tells the DBMS to evaluate that clause before
others. Parentheses can be nested to create a hierarchy of evaluations. The inner‐
most parenthetical clause will be evaluated first. You should watch parentheses very
carefully, for two reasons:

• You must always have an equal number of opening and closing parentheses.•
Any imbalance in the number of opening and closing parentheses will cause an
error.

• You should be careful where you place parentheses, since misplacing a paren‐•
thesis can dramatically change the result set of your query.

For example, consider again the following query, which returns six rows in the pubs
database on the SQL Server platform:

SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)

SQL Command Reference | 351

R
ead

ing
 Yo

ur
D

ata

 OR (a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60)
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2))

The output from this query is as follows:

au_id

213-46-8915
724-80-9391
899-46-2035
998-72-3567

Changing just one set of parentheses produces different results:

SELECT DISTINCT a.au_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
WHERE (ta.title_id IN (SELECT title_id FROM sales
 WHERE qty >= 75)
 OR a.au_id IN (SELECT au_id FROM titleauthor
 WHERE royaltyper >= 60))
 AND a.au_id IN (SELECT au_id FROM titleauthor
 WHERE au_ord = 2)

This time, the output will look like this:

au_id

213-46-8915
724-80-9391
899-46-2035

See also

• ALL/ANY/SOME•

• BETWEEN•

• DECLARE CURSOR in Chapter 9

• DELETE in Chapter 5

• EXISTS•

• IN•

• LIKE•

• SELECT•

• UPDATE•

WITH Clause
The WITH clause defines a short-term view that is instantiated for the duration
of a parent query. It may or may not have an alias associated with it in order
to ease referencing from the parent query (or subqueries) later. The temporary
named result set created by a WITH clause is called a common table expression (CTE),
and this is also known as subquery factoring. CTEs are not stored in the database
schema like standard views, but they behave in essentially the same way. In fact,

352 | Chapter 4: Reading Your Data

when CTEs were added to the SQL:1999 standard, they were simply referred to as
statement-scoped views. All the platforms support the SQL standard syntax for the
WITH clause, some with extensions.

Platform Command

MySQL Supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
WITH [RECURSIVE] with_query[, ...]
SELECT...

Keywords

with_query

Defines a query with a name that takes the form some_name AS (query_def
inition) or some_name(col1,col2,col3 ...) AS (query_definition).
There can be one or more with_querys before the final query. Each
with_query must be separated by a comma.

RECURSIVE

Denotes that the CTE batch may contain queries that call themselves, generally
using tail recursion. This keyword is syntactic sugar providing a hint to the
query planner that a WITH clause has recursive elements.

Rules at a glance
WITH clauses are used to make complex SQL queries easier to read and debug by
dividing them into subsets. They are also used to compartmentalize a subquery
that is reused in multiple parts of a parent query (each CTE is associated with an
anchoring parent query, which may in turn have multiple CTEs), to write recursive
queries, and to improve performance.

Some databases allow for writable CTEs, which have elements that update data and
return the changed data.

Programming tips and gotchas
The WITH clause can have implications for query performance. Depending on the
database vendor and version, a query written with WITH may perform better or
worse than a similar query utilizing nested SELECT statements. When in doubt,
experiment with writing your query using WITH and without WITH.

SQL Command Reference | 353

R
ead

ing
 Yo

ur
D

ata

Here’s an example of a non-recursive CTE:

WITH au AS (SELECT au_state AS state, COUNT(*) AS au_count
 FROM authors
 GROUP BY au_state
),
 pu AS (SELECT pub_state AS state, COUNT(*) AS pub_count
 FROM publishers
 GROUP BY pub_state
)
SELECT au.state, au.au_count, pu.pub_count
FROM au INNER JOIN pu ON au.state = pu.state;

A completely SQL standard–compliant recursive CTE that counts from 1 to 20
might look like this:

WITH RECURSIVE numbers AS (
 SELECT 1 AS n
 UNION ALL
 SELECT n + 1
 FROM numbers
 WHERE n+1 <= 20
)
SELECT *
FROM numbers;

There is no physical numbers table; numbers is a CTE expression that builds
on itself. If you did have a numbers table in your database, however, the CTE
version would still be used; this is because in the case of name clashes CTEs take
precedence.

Recursive CTEs cannot include DISTINCT. Some databases, like PostgreSQL, will
error if you prefix a with_query with RECURSIVE and it has no recursive elements.
SQL Server, although it supports recursive queries, does not allow the RECURSIVE
keyword.

MySQL and MariaDB
MySQL fully supports the WITH clause as of version 8.0. MariaDB introduced sup‐
port in version 10.2.

Oracle
Oracle supports the SQL standard WITH as well as a MATERIALIZE Hint that forces a
CTE to be materialized for better performance. To force materialization you would
write something like:

WITH au AS (SELECT /*+ MATERIALIZE */ au_state, COUNT(*) AS au_count
 FROM authors
 GROUP BY au_state
),
 pu AS (SELECT /*+ MATERIALIZE */ pub_state, COUNT(*) AS pub_count

354 | Chapter 4: Reading Your Data

 FROM publishers
 GROUP BY pub_state
)
SELECT au.state, au.au_count, pu.pub_count
FROM au INNER JOIN pu ON au.state = pu.state;

PostgreSQL
PostgreSQL fully supports the SQL standard WITH clause and some extensions to it.
PostgreSQL allows CTEs to contain one or more INSERT/UPDATE/DELETE statements
if they are followed with a RETURNING clause. The final query can also be an INSERT/
UPDATE/DELETE but need not have a RETURNING clause. This is useful, for example, to
move deleted records to another table, as follows:

WITH del AS (DELETE
 FROM authors
 WHERE au_state = 'CA' RETURNING *)
INSERT INTO deleted_authors(au_id)
SELECT del.au_id
FROM del;

PostgreSQL also supports a MATERIALIZED/NOT MATERIALIZED extension to the stan‐
dard. To force materialization of a CTE you would prefix it with MATERIALIZED, and
if you wanted to discourage materialization you could similarly prefix it with NOT
MATERIALIZED, as follows:

WITH au AS MATERIALIZED
(SELECT au_state AS state, COUNT(*) AS au_count
 FROM authors
 GROUP BY au_state
),
pu AS NOT MATERIALIZED
(SELECT pub_state AS state, COUNT(*) AS pub_count
 FROM publishers
 GROUP BY pub_state
)
SELECT au.state, au.au_count, pu.pub_count
FROM au INNER JOIN pu ON au.state = pu.state;

WITH RECURSIVE is also supported in the definition of views, which allows for
writing recursive views. PostgreSQL will complain if you use WITH RECURSIVE and
have no recursive elements in your view.

SQL Server
SQL Server supports WITH but does not allow the RECURSIVE keyword; it internally
determines whether a WITH clause is recursive or not. SQL Server does not allow
ORDER BY clauses in CTEs unless they are used in conjunction with TOP. It also
does not allow INTO or OPTION clauses with query hints. Unlike other statements
where the ; is optional, CTEs must start with a ; if they are part of a set of query
statements.

SQL Command Reference | 355

R
ead

ing
 Yo

ur
D

ata

The earlier recursive CTE would be written without the RECURSIVE keyword as
follows:

WITH numbers AS (
 SELECT 1 AS n
 UNION ALL
 SELECT n + 1
 FROM numbers
 WHERE n+1 <= 20
)
SELECT *
FROM numbers;

See also

• ALTER/CREATE VIEW•

• RETURNING in Chapter 5

• SELECT•

• SUBQUERY•

WITH ORDINALITY Clause
The WITH ORDINALITY clause adds an incrementing integer column to the result of
a set-returning function. The name of the column is ordinality unless it is renamed.
It is generally used in the FROM or JOIN clause and is commonly used in conjunction
with the UNNEST function to expand and number array data.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
set_returning_function_call WITH ORDINALITY [AS ..]

Keywords

set_returning_function_call

Defines a function call, for example UNNEST(somevalue).

Rules at a glance
WITH ORDINALITY is used to number the results of a set-returning function. For reg‐
ular SELECT queries, you would use ROW_NUMBER() OVER() instead for numbering.

356 | Chapter 4: Reading Your Data

Programming tips and gotchas
Here is a PostgreSQL example of using WITH ORDINALITY to number an array of
values:

SELECT *
FROM unnest(ARRAY['PC8888','BU1032',
 'PS7777','PS3333','BU1111']
) WITH ORDINALITY AS title_id;

The output of this query is:

title_id | ordinality

PC8888 | 1
BU1032 | 2
PS7777 | 3
PS3333 | 4
BU1111 | 5

You can also rename the output of the columns using aliases, as follows:

SELECT *
FROM unnest(ARRAY['PC8888','BU1032',
 'PS7777','PS3333','BU1111']
) WITH ORDINALITY AS title_id(id, ord);

WITH ORDINALITY is often used in a JOIN clause or a LATERAL JOIN clause.

See also

• JOIN• • SELECT•

SQL Command Reference | 357

R
ead

ing
 Yo

ur
D

ata

5
Manipulating Your Data

In this chapter, we will explore the key SQL statements and clauses needed to update
information in your database. You will learn about the fundamental UPDATE, INSERT,
and DELETE statements and the various subclauses you can use within them to select
data you need to update.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support” on page 360.1.
2. Check Table 5-1.2.
3. Look up the specific SQL statement, check the syntax, and read the “Keywords,”3.

“Rules at a glance,” and “Programming tips and gotchas” sections. Do this even
if you are looking for a specific platform implementation.

4. Finally, read the platform-specific implementation information.4.

You will note that the entry for a given platform implementation does not duplicate
information on any clauses that do not differ from the standard. So, it is possible
that you will need to flip between the descriptions for a vendor variation and the
SQL standard to cover all possible details of that command.

In our discussions of MySQL, we will also include MariaDB, a fork of MySQL.
For the most part, MySQL and MariaDB provide fully code-compatible syntax. In
these cases we will refer to them collectively as MySQL. We will explicitly mention
MariaDB only in situations where it deviates from MySQL in an important way.

359

SQL Platform Support
Table 5-1 provides a listing of the SQL statements covered in this chapter, the
platforms that support them, and the degree to which they support them. The
following list offers useful tips for reading Table 5-1, as well as an explanation of
what each abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.1.
2. The SQL statement class for each command is indicated in the second column.2.
3. The subsequent columns list the level of support for each vendor:3.

Supported (S)
The platform supports the SQL standard for the particular command.

Supported, with variations (SWV)
The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

Supported, with limitations (SWL)
The platform supports some but not all of the functions specified by the
SQL standard for the particular command.

Not supported (NS)
The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail. Remember
that even if a specific SQL command is listed in the table as “Not supported,” the
platform usually has alternative coding or syntax to enact the same command or
function. Therefore, be sure to read the discussion and examples for each command
later in this chapter. Likewise, one command in Table 5-1 is not found in the SQL
standard; this is indicated with the term “Non-standard” in the “SQL class” column
of the table.

Table 5-1. Alphabetical quick SQL command reference

SQL command SQL class MySQL/ MariaDB Oracle PostgreSQL SQL Server

COMMIT SQL-transaction SWV SWV SWV SWV

DELETE SQL-data SWV SWV SWV SWV

INSERT SQL-data SWV SWV SWV SWV

MERGE SQL-data NS SWV NS SWV

RELEASE SAVEPOINT SQL-transaction S NS S NS

RETURNING Non-standard NS/SWL SWV S NS

ROLLBACK SQL-transaction SWL SWV S SWV

SAVEPOINT SQL-transaction S S S SWL

360 | Chapter 5: Manipulating Your Data

SQL command SQL class MySQL/ MariaDB Oracle PostgreSQL SQL Server

SET TRANSACTION SQL-transaction SWV SWL SWV SWL

START TRANSACTION SQL-transaction SWL NS SWV NS

TRUNCATE TABLE SQL-data SWL SWV SWV SWL

UPDATE SQL-data SWV SWV SWV SWV

SQL Command Reference
COMMIT Statement
The COMMIT statement explicitly ends an open transaction and makes the changes
permanent in the database. Transactions can be opened implicitly as part of an
INSERT, UPDATE, or DELETE statement, or opened explicitly with a START statement.
In either case, an explicitly issued COMMIT statement will end the open transaction.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
COMMIT [WORK] [AND [NO] CHAIN]

Keywords

COMMIT [WORK]

Ends the current open transaction and writes any data manipulated by the
transaction to the database. The optional keyword WORK is noise and has no
effect.

AND [NO] CHAIN

AND CHAIN directs the DBMS to initiate (or start) a new transaction with the
same characteristics as the preceding transaction. In effect, the two transactions
are separate units of work, but they share a common transaction environment
(such as transaction isolation level). Including the optional NO keyword directs
the DBMS to explicitly use the SQL standard default behavior. The COMMIT
keyword by itself is functionally equivalent to the statement COMMIT WORK AND
NO CHAIN.

SQL Command Reference | 361

M
anip

ulating
Yo

ur D
ata

Rules at a glance
For simple operations, you will execute transactions (that is, SQL code that manip‐
ulates or changes data and objects in a database) without explicitly declaring a
transaction. However, all transactions are best managed by explicitly closing them
with a COMMIT statement. Because records and even entire tables can be locked for
the duration of a transaction, it is extremely important that transactions are comple‐
ted as quickly as possible. Manually issuing a COMMIT statement with a transaction
can help control user concurrency issues and locking problems on the database.

Programming tips and gotchas
The most important gotcha to consider is that some database platforms perform
automatic and implicit transactions, while others require explicit transactions. If
you assume a platform uses one method of transactions and not the other, you
may get bitten. Thus, when moving between database platforms you should follow
a standard, preset way of addressing transactions. We recommend always using
explicit transactions with START TRANSACTION, on database platforms that support
it, to begin a transaction, and COMMIT or ROLLBACK to end a transaction.

In addition to finalizing a single or group of data manipulation operation(s), COMMIT
has some interesting effects on other aspects of a transaction. First, it closes any
associated open cursors. Second, any temporary table(s) specified with ON COMMIT
DELETE ROWS (an optional clause of the CREATE TABLE statement, discussed in
Chapter 3) are cleared of data. Third, all deferred constraints are checked. If any
deferred constraints are violated, the transaction is rolled back. Finally, all locks
opened by the transaction are released. The SQL standard dictates that transactions
are implicitly opened when one of the following statements is executed:

• ALTER•

• CLOSE•

• COMMIT AND CHAIN•

• CREATE•

• DELETE•

• DROP•

• FETCH•

• FREE LOCATOR•

• GRANT•

• HOLD LOCATOR•

• INSERT•

• OPEN•

• RETURN•

362 | Chapter 5: Manipulating Your Data

• REVOKE•

• ROLLBACK AND CHAIN•

• SELECT•

• START TRANSACTION•

• UPDATE•

So, even if you did not explicitly open a transaction when you issued one of
the commands listed here, the standard dictates that the DBMS platform opens a
transaction for you.

MySQL
MySQL supports COMMIT and two transaction-safe engines, InnoDB and NDB Clus‐
ter, using this syntax:

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

The RELEASE keyword directs MySQL to close the current client connection once
the current transaction is complete. NO CHAIN and NO RELEASE are the default
behavior.

Oracle
Oracle supports the standard, but not the AND [NO] CHAIN clause. It also provides
some extensions to the standard clause. Oracle’s COMMIT syntax is:

COMMIT [WORK] [{COMMENT 'text' | FORCE 'text'[, int]}]

where:

COMMENT 'text'

Associates a comment with the current transaction. 'text' is a literal string up
to 255 characters long. The text string is stored in the Oracle data dictionary
view DBA_2PC_PENDING with the transaction ID, in case the transaction rolls
back.

FORCE 'text' [, int]

Allows an in-doubt distributed transaction to be manually committed. 'text'
is a literal string that identifies the local or global transaction ID, which can
be found by querying the Oracle data dictionary view DBA_2PC_PENDING.
The optional int parameter is an integer that explicitly assigns a system change
number (SCN) to the transaction. Without int, the transaction commits using
the current SCN.

Issuing a COMMIT statement with the FORCE clause will commit only the trans‐
action explicitly identified in the FORCE clause. It will not affect the current
transaction unless it is explicitly identified. The FORCE clause is not usable in
PL/SQL statements.

SQL Command Reference | 363

M
anip

ulating
Yo

ur D
ata

The following example commits a transaction while associating a comment with the
transaction:

COMMIT WORK COMMENT 'In-doubt transaction, Call (949) 555-1234';

PostgreSQL
PostgreSQL implements the following syntax:

COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]

In PostgreSQL, both the WORK and TRANSACTION keywords are optional. When you
issue a COMMIT, all open transactions are written to disk and the results of those
transactions then become visible to other users. For example:

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,
 'Net 60','BU7832');
COMMIT WORK;

SQL Server
SQL Server does not support the AND [NO] CHAIN clause. It supports the keyword
TRANSACTION as an equivalent to WORK, and it supports a DELAYED_DURABILTY setting.
The syntax is as follows:

COMMIT { [TRAN[SACTION] [transaction_name]] | [WORK]
 [WITH (DELAYED_DURABILITY = { OFF | ON })] }

SQL Server allows the creation of a specific, named transaction using the START
TRANSACTION statement (discussed later in this chapter). The COMMIT TRANSACTION
syntax allows you to specify an explicit named transaction to close, or to store a
transaction name in a variable. Curiously, SQL Server ignores transaction_name
when doing a commit. The transaction_name is only useful as a programming
documentation tool to clarify which COMMIT goes with which BEGIN.

The COMMIT WORK statement causes SQL Server to terminate all open transactions
and write their changes to the database. You may not specify a transaction name
when using COMMIT WORK.

When you set DELAYED_DURABILITY to ON, SQL Server runs the transaction commits
asynchronously, reporting success before the logs are written to disk. The DELAYED_
DURABILITY transaction setting is ignored when this setting is DISABLED or FORCED at
the database or system level, (using the following syntax):

ALTER DATABASE ... SET DELAYED_DURABILITY = { DISABLED | ALLOWED |
 FORCED }

FORCED means DELAYED_DURABILITY is set to ON and DISABLED means DELAYED_
DURABILITY is set to OFF. The default behavior when this is not set is OFF.

364 | Chapter 5: Manipulating Your Data

See also

• ROLLBACK• • START TRANSACTION•

DELETE Statement
The DELETE statement erases records from a specified table or tables. DELETE
statements acting against tables are sometimes called search deletes. The DELETE
statement may also be used in conjunction with a cursor. DELETE statements acting
upon the rows of a cursor are also called positional deletes.

Platform Command

MySQL/MariaDB Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
DELETE FROM { table_name | ONLY (table_name) }
[FOR PORTION OF application_time_period_name
 FROM point_in_time_1 TO point_in_time_2]
[[AS] correlation_name]
[{ WHERE search_condition | WHERE CURRENT OF cursor_name }]

Keywords

FROM { table_name | ONLY (table_name) }

Identifies the table (called table_name) from which rows will be deleted. The
current schema is assumed if one is not specified. You may alternatively specify
a single table view name. FROM is mandatory, except in the DELETE ... WHERE
CURRENT OF statement. When not using the ONLY clause, do not enclose the
table_name in parentheses. ONLY restricts cascading of the deleted records
to any subtables of the target table or view. This clause affects only typed
(object-oriented) tables and views. If used with a non-typed table or view, it is
ignored and does not cause an error.

FOR PORTION OF application_time_period_name FROM point_in_time_1 TO

point_in_time_2

This clause can only be used for system-versioned tables with time periods
defined. application_time_period_name identifies the time period that will be
used for filtering. point_in_time_1 defines the beginning of the time period
and point_in_time_2 defines the end.

[AS] correlation_name

An alias for the table_name that should be used in the search_condition.

SQL Command Reference | 365

M
anip

ulating
Yo

ur D
ata

WHERE search_condition

Defines search criteria for the DELETE statement, using one or more
search_condition clauses to ensure that only the target rows are deleted. Any
legal WHERE clause is acceptable. Typically, these criteria are evaluated against
each row of the table before the deletion occurs. In the case of versioned tables
and in the absence of a FOR PORTION OF clause, there is an implicit AND endcol
= endval clause added, where endcol refers to the name of the period end
column and endval is the highest allowed value of a table. This ensures that
only current state data is deleted and not prior history data.

WHERE CURRENT OF cursor_name

Restricts the DELETE statement to the current row of a defined and open cursor
called cursor_name.

Rules at a glance
The DELETE statement erases rows from a table or view. The space released will be
returned to the database where the table is located, though this may not happen
immediately. Keep in mind, however, that the SQL standard is mute about releasing
space—that’s an implementation detail.

A simple DELETE statement that erases all records in a given table has no WHERE
clause, as in the following:

DELETE FROM sales;

You can use any valid WHERE clause to filter records that you do not want to delete.
All three of the following examples are valid DELETE statements, and since all are
search deletes, they all include the FROM clause:

DELETE FROM sales
WHERE qty IS NULL;

DELETE FROM suppliers
WHERE supplierid = 17
 OR companyname = 'Tokyo Traders';

DELETE FROM distributors
WHERE postalcode IN
 (SELECT territorydescription FROM territories);

Note that in a positional delete, the FROM clause is not required.

In some cases, you may wish to delete a specific row that is being processed by a
declared and open cursor:

DELETE titles WHERE CURRENT OF title_cursor;

This query assumes that you have declared and opened a cursor named title_cursor;
whichever row the cursor is on will be deleted when the command is executed.

366 | Chapter 5: Manipulating Your Data

MariaDB, Oracle, and SQL Server support system-versioned tables, but only
MariaDB supports defining application time periods.

Programming tips and gotchas
It is rare to issue a DELETE statement without a WHERE clause because this results
in all rows being deleted from the affected table. You should first issue a SELECT
statement with the same WHERE clause you intend to use in the DELETE statement.
That way, you can be sure exactly which records will be deleted.

If it becomes necessary to remove all the rows in a table, you should consider using
the nonstandard though very common TRUNCATE TABLE statement (described later
in this chapter). In those databases that support the command, TRUNCATE TABLE
is usually a faster method to physically remove all rows because the deletion of
individual records is not logged. The reduction of logging overhead saves consid‐
erable time when erasing a large number of records, but on some platforms this
makes rollback of a TRUNCATE statement impossible. Furthermore, on some database
platforms all foreign keys on the table must be dropped before issuing a TRUNCATE
statement. TRUNCATE does not fire triggers.

MySQL and MariaDB
MySQL’s DELETE syntax provides a number of extensions to the SQL standard, but it
does not support the WHERE CURRENT OF clause. The syntax is shown here:

DELETE [LOW_PRIORITY] [QUICK][IGNORE] [table_name[.*][, ...]]
{FROM table_name[.*][, ...] | [USING table_name[.*][, ...]]}
[PARTITION (partition_name[, ...])]
[WHERE search_condition]
[ORDER BY clause]
[LIMIT nbr_of_rows]

MariaDB supports all the syntax of MySQL plus a returning clause, which is detailed
in “RETURNING Clause” on page 403:

DELETE [LOW_PRIORITY] [QUICK][IGNORE] [table_name[.*][, ...]]
{FROM table_name[.*][, ...] | [USING table_name[.*][, ...]]}
[PARTITION (partition_name[, ...])]
[FOR PORTION OF application_time_period_name
 FROM point_in_time_1 TO point_in_time_2]
[WHERE search_condition]
[order_by_clause]
[LIMIT nbr_of_rows]
[returning_clause]

MariaDB also provides the following syntax for deleting periods of time from a
system-versioned table:

DELETE HISTORY
FROM table_name

SQL Command Reference | 367

M
anip

ulating
Yo

ur D
ata

[PARTITION (partition_name[, ...])]
[BEFORE SYSTEM_TIME [TIMESTAMP | TRANSACTION] expression]

The parameters are:

LOW_PRIORITY

Delays the execution of DELETE until no other clients are reading from the
table. This is useful for storage engines that employ table locking for deletes,
such as MyISAM and Aria.

QUICK

Prevents the storage engine from merging index leaves during the DELETE
operation.

IGNORE

Signals to continue with the operation even if noncritical errors arise. For
example, if you have referential integrity in place between two tables and you
try to delete records from the primary table, IGNORE will cause the DELETE
operation to skip over records in the primary table that have related records
in another table. If IGNORE is not specified, then the whole DELETE transaction
fails.

DELETE table_name[.*][, ...]

Enables you to delete from more than one table at a time. Tables listed before
the FROM clause, assuming one or more tables appear in the FROM clause, will
be the target of the DELETE operation. That is, if more than one table appears
before the FROM clause, all matching records in all of the tables will be deleted.
(The .* clause is an option to improve compatibility with MS Access.)

FROM table_name[.*]

Specifies the table or tables from which records will be deleted. If tables are
listed before the FROM clause, the table or tables in the FROM clause are assumed
to be used to support a join or lookup operation.

USING table_name[.*][, ...]

Substitutes the table or tables before the FROM clause with those after the FROM
clause.

order_by_clause

Specifies the order in which rows will be deleted. This is useful only in con‐
junction with LIMIT.

LIMIT nbr_of_rows

Places an arbitrary cap on the number of records deleted before control is
passed back to the client.

MySQL allows deletion from more than one table at a time. For example, the
following two DELETE statements are functionally equivalent:

368 | Chapter 5: Manipulating Your Data

DELETE orders FROM customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '20150101' AND '20151231';

DELETE FROM orders USING customers, orders
WHERE customers.customerid = orders.customerid
 AND orders.orderdate BETWEEN '20150101' AND '20151231';

In the preceding examples, we delete all orders made by customers during the year
2015. Note that you cannot use ORDER BY or LIMIT clauses in a multi-table DELETE
like those just shown.

You can also delete records in orderly batches using the ORDER BY clause in conjunc‐
tion with the LIMIT clause:

DELETE FROM sales
WHERE customerid = 'TORTU'
ORDER BY customerid
LIMIT 5

MySQL exhibits several behaviors that speed up DELETE operations. For example, it
normally returns the number of records deleted when it completes the operation,
but it will return zero as the number of deleted records when you delete all records
from a table because it is faster to do so than to count the actual number of rows
deleted. In AUTOCOMMIT mode, MySQL will even substitute a TRUNCATE statement for
a DELETE statement without a WHERE clause because TRUNCATE is faster.

Note that the speed of a MySQL DELETE operation is directly related to the number
of indexes on the table and the available index cache. You can speed up DELETE
operations by executing the command against tables with few or no indexes or by
increasing the size of the index cache.

Oracle
Oracle allows you to delete rows from tables, views, materialized views, nested
subqueries, partitioned views, and tables. Its DELETE syntax is as follows:

DELETE [FROM]
 {table_name | ONLY (table_name)} [alias]
 [{PARTITION (partition_name) |
 SUBPARTITION (subpartition_name)}] |
 (subquery [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constraint_name]}]) |
 TABLE (collection_expression) [(+)]}[hint]
[WHERE search_condition]
[RETURNING expression[, ...] INTO variable[, ...]]
[LOG ERRORS [INTO [schema.]table_name] [(simple_expression)]
[REJECT LIMIT {UNLIMITED |int}]]

SQL Command Reference | 369

M
anip

ulating
Yo

ur D
ata

The parameters are:

table_name [alias]

Specifies the table, view, materialized view, or partitioned table or view from
which the records will be deleted. You may optionally prepend a schema
identifier to the table_name or append a database link. Otherwise, Oracle will
assume the user’s default schema and the local database server. You may also
optionally apply an alias to the table_name. The alias is required if the target
table references an object type attribute or method.

PARTITION partition_name

Applies the DELETE operation to the named partition, rather than to the entire
table. You are not required to name a partition when deleting from a parti‐
tioned table, but it can, in many cases, help reduce the complexity of the WHERE
clause.

SUBPARTITION subpartition_name

Applies the operation to a named subpartition, rather than to the entire table.

(subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT

constraint_name]}])

Specifies that the target for deletion is a nested subquery, not a table, view, or
other database object. The parameters of this clause are:

subquery

Describes the SELECT statement that makes up the subquery. The subquery
can be any standard subquery, though it may not contain an ORDER BY
clause.

WITH READ ONLY

Specifies that the subquery cannot be updated.

WITH CHECK OPTION [CONSTRAINT constraint_name]

Tells Oracle to abort any changes to the deleted table that would not
appear in the result set of the subquery. [CONSTRAINT constraint_name>]
directs Oracle to further restrict changes based upon a specific constraint
identified by constraint_name.

TABLE (collection_expression) [(+)]

Informs Oracle that the collection_expression should be treated like a table
even though it may, in fact, be a subquery, a function, or some other collection
constructor. In any case, the value returned by the collection_expression
must be a nested table or VARRAY.

hint

Instructs the database to use specific optimizer instructions other than those it
might choose for itself; for example, to use or ignore a specific index. Refer to
the vendor documentation for a full discussion of hints.

370 | Chapter 5: Manipulating Your Data

RETURNING expression

Retrieves the rows affected by the command (DELETE normally only shows
the number of rows deleted). The RETURNING clause can be used when the
target is a table, a materialized view, or a view with a single base table. When
used for single-row deletes, the RETURNING clause stores values from the row
deleted by the statement, defined by expression, into PL/SQL variables and
bind variables. When used for a multi-row delete, the RETURNING clause stores
the values of the deleted rows, defined by expression, into bind arrays.

INTO variable

Specifies the variables into which the values returned as a result of the
RETURNING clause are stored. There must be a corresponding variable for
every expression in the RETURNING clause.

LOG ERRORS [INTO [schema.]table_name] [(simple_expression)] [REJECT

LIMIT {UNLIMITED |int}]

Captures DML errors and log column values of affected rows, saving them in
an error-logging table. Constraint violations will always cause the statement
to fail and roll back, regardless of whether you specify a LOG ERRORS clause.
The LOG ERRORS clause also cannot track errors in the error-logging table
for columns with LONG, LOG, or object-type columns, though the table that is
the target of the DML operation may have columns of these data types. The
parameters of this clause are:

INTO [schema.]table_name

Specifies the error-logging table. When omitted, the default is ERR$_xxx,
where xxx is the first 25 characters of the name of the table from which the
records are being deleted.

(simple_expression)
Specifies a value that tags each error in the logging table so that you can
differentiate errors from many DML statements.

REJECT LIMIT {UNLIMITED | int}

Specifies an upper limit for the number of errors to be logged (int) before
terminating the DELETE and rolling back any changes. The default is 0. The
UNLIMITED keyword allows error logging with no upper limit.

When you execute a DELETE statement, Oracle releases space from the target table
(or the base table of a target view) back to the table or index that owned the data.

When deleting from a view, the view cannot contain a set operator, the DISTINCT
keyword, joins, an aggregate function, an analytic function, a subquery in the
SELECT list, a collection expression in the SELECT list, a GROUP BY clause, an ORDER
BY clause, a CONNECT BY clause, or a START WITH clause.

Here’s an example where we delete records from a remote server:

DELETE FROM scott.sales@chicago;

SQL Command Reference | 371

M
anip

ulating
Yo

ur D
ata

In the following query, we delete from a derived table that is a collection expression:

DELETE TABLE(SELECT contactname FROM customers
 c WHERE c.customerid = 'BOTTM') s
WHERE s.region IS NULL OR s.country = 'MEXICO';

Here’s an example where we delete from a partition:

DELETE FROM sales PARTITION (sales_q3_1997)
WHERE qty > 10000;

Finally, in the next example, we use the RETURNING clause to look at the values that
are deleted:

DELETE FROM employee
WHERE job_id = 13
 AND hire_date + TO_YMINTERVAL('01-06') =< SYSDATE;
RETURNING job_lvl
INTO :int01;

This example deletes records from the employee table and returns the job_lvl values
into the predefined :into1 variable.

For more information on the RETURNING clause, see
“RETURNING Clause” on page 403.

PostgreSQL
PostgreSQL uses the DELETE command to remove rows and any defined subclasses
from the table. Its implementation is otherwise identical to the SQL standard, with a
few extensions:

[WITH [RECURSIVE] cte_expression[, ...]]
DELETE [FROM] [ONLY] [schema.]table_name
[USING usinglist]
[WHERE search_condition | WHERE CURRENT OF cursor_name]
[RETURNING { * | expression [AS alias][, ...] }]

When deleting rows from only the table specified, use the optional ONLY clause.
Otherwise, PostgreSQL will also delete records from any explicitly defined subtable.
PostgreSQL supports a few other important subclauses:

WITH [RECURSIVE] cte_expression[, ...]]

Defines the temporary named result set of a common table expression, derived
from SELECT/DELETE/INSERT/UPDATE statements, for the DELETE statement.
If the CTEs have INSERT/DELETE/UPDATE clauses, these need to also have
RETURNING clauses.

372 | Chapter 5: Manipulating Your Data

USING usinglist

Specifies a list of table expressions, thereby allowing columns from other tables
to appear in the WHERE clause. This has the same effect as specifying multiple
tables in the FROM clause of a SELECT statement.

RETURNING { * | expression [AS alias][, ...] }

Specifies an expression to be returned by the DELETE statement after each row
is deleted. The expression can return all columns (using the * wildcard) or any
columns you specify that are in table_name or in the usinglist.

The following statement deletes all records in the authors table where the royaltyper
value in titleauthor is 40 and returns the deleted rows, including the title_id from
titleauthor of related records that were deleted. This example also demonstrates
aliasing the table names:

DELETE FROM authors AS au
USING titleauthor AS ta
WHERE au.au_id = ta.au_id AND ta.royaltyper = 40
RETURNING au.*, ta.title_id;

This example deletes all records in one table based on the results of a subquery
against another table (in this case, erasing from the titleauthor table the records that
have a match concerning “computers” in the titles table):

DELETE FROM titleauthor
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE title LIKE '%computers%')

And here we delete all records in a table and return the full details of the deleted
rows:

DELETE FROM titles WHERE ytd_sales IS NULL RETURNING *;

SQL Server
SQL Server allows records to be deleted both from tables and from views that
describe a single table. SQL Server also allows a second FROM clause to allow JOIN
constructs, as in the following example:

[WITH cte_expression[, ...]]
DELETE [TOP (number) [PERCENT]] [FROM] table_name [[AS] alias]
[WITH (hint [...])]
[OUTPUT expression INTO {@table_variable | output_table}
 [(column_list[, ...])]]
[FROM table_source[, ...]]
[[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}]
 JOIN joined_table ON condition][, ...]]
[WHERE search_condition | WHERE CURRENT OF [GLOBAL] cursor_name]
[OPTION (hint[, ...n])]

SQL Command Reference | 373

M
anip

ulating
Yo

ur D
ata

The syntax elements are as follows:

WITH cte_expression

Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the DELETE statement.

DELETE table_name

Allows the deletion of records from the named table or view filtered by the
WHERE clause. You can delete records from a view, provided the view is based
on one table and contains no aggregate functions and no derived columns. If
you omit the server name, database name, or schema name when naming the
table or view, SQL Server assumes the current context. An OPENDATASOURCE or
OPENQUERY function, as described in “SELECT Statement” on page 305, may be
referenced instead of a table or view.

TOP (number) [PERCENT]

Indicates that the statement should delete only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are retrieved. If
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT data type with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the number should be of the BIGINT
data type.

WITH (hint)

Instructs the database to use specific optimizer instructions other than those it
might choose for itself; for example, to use or ignore a specific index. The WITH
(hint) clause specifies one or more table hints that are allowed for the target
table. Refer to the vendor documentation for a full discussion of hints.

OUTPUT expression INTO {@table_variable | output_table} [(column

_list[, ...])]

Retrieves the rows affected by the command, whereas DELETE normally only
shows the number of rows deleted, placing the rows you specify in expression
into either a given table_variable or output_table. If the column_list is
omitted for the output_table, the output_table must have the same num‐
ber of columns as the number of columns in the OUTPUT expression. The
output_table cannot have triggers, participate in a foreign key, or have any
CHECK constraints.

FROM table_source

Names an additional FROM clause that correlates records from the table in the
first FROM clause using a JOIN rather than forcing you to use a correlated
subquery. One or more tables may be listed in the second FROM clause.

374 | Chapter 5: Manipulating Your Data

[{INNER | CROSS | [LEFT | RIGHT | FULL] OUTER}] JOIN joined_table ON

condition][, ...]

Specifies one or more JOIN clauses, in conjunction with the second FROM clause.
You may use any of the join types that SQL Server supports. Refer to “JOIN
Subclause” on page 278 for more information.

GLOBAL cursor_name

Specifies that the DELETE operation should occur on the current row of an open
global cursor. This clause is otherwise the same as the standard WHERE CURRENT
OF.

OPTION (hint[, ...])

Replaces elements of the default query plan with your own. Because the opti‐
mizer usually picks the best query plan for any query, we strongly discourage
you from placing optimizer hints into your queries.

A significant extension in SQL Server’s implementation of the DELETE statement is
the addition of a second FROM clause. The second FROM allows the use of the JOIN
statement and makes it quite easy to delete rows from the table specified in the first
FROM by correlating rows of a table declared in the second FROM. For example, you
could use a rather complex subquery to erase all the sales records of computer books
with this command:

DELETE sales
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE type = 'computer')

But SQL Server allows a more elegant construction using a second FROM clause and a
JOIN clause:

DELETE s
FROM sales AS s
INNER JOIN titles AS t ON s.title_id = t.title_id
 AND type = 'computer'

The following example deletes all rows with an order_date of 2012 or earlier, in
batches of 2,500:

WHILE 1 = 1
BEGIN
 DELETE TOP (2500)
 FROM sales_history WHERE order_date <= '20120101'
 IF @@rowcount < 2500 BREAK
END

SQL Command Reference | 375

M
anip

ulating
Yo

ur D
ata

Common table expressions may be used with SELECT, INSERT, UPDATE, and DELETE
statements as well as the CREATE VIEW statement. These expressions are a means of
naming and defining a temporary result set from a SELECT statement, even allowing
recursive behaviors. When defining a CTE, you may not use COMPUTE, COMPUTE BY,
FOR XML, FOR BROWSE, INTO, OPTION, or ORDER BY clauses (see “WITH Clause” on
page 352 for further details). Multiple SELECT statements are allowed in a WITH
clause only if they are combined with set operators such as UNION, UNION ALL,
EXCEPT, or INTERSECT. The following is a simple DELETE statement using a common
table expression:

WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;

The OUTPUT clause allows you to see all of the rows that are being deleted:

DELETE TOP 10 error_log WITH (READPAST)
OUTPUT deleted.*
WHERE error_log_id = '28-OCT-2008';

See also

• INSERT•

• RETURNING•

• SELECT in Chapter 4•

• TRUNCATE TABLE•

• UPDATE•

• VALUES in Chapter 4•

• WHERE in Chapter 4•

• WITH in Chapter 4•

INSERT Statement
The INSERT statement adds rows of data to a table or view through one of several
methods:

• One or more rows can be inserted using the DEFAULT values specified for a•
column via the CREATE TABLE or ALTER TABLE statements.

• The actual values to be inserted into each column of the record can be declared•
(this is the most common method).

• The result set of a SELECT statement can be inserted into a table or view,•
populating it with many records simultaneously.

All the databases we discuss also allow bulk loading data from a file, but each does
it with vendor-specific syntax. We will include these bulk loading statements in this
section even though they are not SQL-standard.

376 | Chapter 5: Manipulating Your Data

Platform Command

MySQL/MariaDB Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
INSERT INTO {table_name | view_name} [(column1[, ...])]
[OVERRIDING {SYSTEM | USER} VALUE]
{DEFAULT VALUES | VALUES [ROW]
 ({value1 | DEFAULT}[, ...])[, [ROW] (value1[, ...])] |
 select_statement}

Keywords

{table_name | view_name} [(column1[, ...])]

Declares the updatable target table or view into which the records will be
inserted. You must have INSERT privileges on the table or, at a minimum, on
the columns that will receive the inserted values. If no schema information
is included, as in scott.employee, the current schema and user context are
assumed. You may optionally include a list of the columns in the target table or
view that will receive data.

OVERRIDING {SYSTEM | USER} VALUE

OVERRIDING SYSTEM VALUE requires the SYSTEM keyword when inserting a
literal value into a column that would otherwise be given a system-generated
value, such as an autogenerated sequence number. The OVERRIDING USER

VALUE clause does the converse, by inserting system-supplied values even if
a user has provided literal values to insert.

DEFAULT VALUES

Inserts all values declared via the DEFAULT column characteristic on the target
table where they exist, and NULLs where they do not exist. (Of course, the
DEFAULT column characteristic can specify NULL as a value, too.) This opera‐
tion inserts a single record. It might encounter an error, depending on how the
PRIMARY KEY constraint or UNIQUE constraint is constructed on the target table
(assuming such constraints exist).

VALUES [ROW] ({value1| DEFAULT}[, ...]) [, ...]

Specifies the actual value(s) to be inserted into the target table. The number
of values must match the exact number of columns in the column list, if
one is provided. Furthermore, the data types and sizes of the values must be
compatible with the columns of the target table. Each value in the value list
corresponds to the column with the same ordinal number in the column list.
Thus, the first column will get its data from the first value, the second column
from the second value, and so on until all columns are satisfied. In the case

SQL Command Reference | 377

M
anip

ulating
Yo

ur D
ata

of a multivalue constructor, each value set must be separated by commas and
enclosed in parentheses. You may also optionally use the keywords DEFAULT to
insert a column’s default value and NULL to insert a NULL value. ROW is noise
but is required by some databases.

select_statement

Inserts rows retrieved via the specified SELECT statement into the target table
or view. The values retrieved by the fully formed SELECT statement’s item list
correspond directly to the columns of the column list. The target table or view
may not be referenced in the SELECT statement’s FROM or JOIN clauses.

Rules at a glance
You may insert values into tables, and into views built upon a single source table.
The INSERT ... VALUES statement adds one or more rows of data to a table, using
literal values supplied in the statement. In the following example, a new row in the
authors table is inserted for the author Jessica Rabbit:

INSERT INTO authors (au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1)

Every column in the table is assigned a specific, literal value except the phone
column, which is assigned the default value (as defined in the CREATE TABLE or
ALTER TABLE statement), and the city column, which is set to NULL.

You can use a multivalue constructor to insert more than one row as follows:

INSERT INTO authors (au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1),
 ('211-11-1111', 'Jones', 'James', DEFAULT,
 '1717 Mission St', NULL, 'CA', '90674', 1)

It’s important to remember that you may skip columns in the table and set them to
NULL, assuming they allow NULL values. Inserts that leave some columns NULL
are called partial INSERTs. Here is a partial INSERT that performs the same work as
the preceding example:

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)

The INSERT statement, combined with a nested SELECT statement, allows a table
to be quickly populated with one or more rows from the result set of the SELECT
statement. For example, to load data from the sales_new table into the sales table:

INSERT INTO sales (stor_id, ord_num, ord_date, qty,
 payterms, title_id)
SELECT
 CAST(store_nbr AS CHAR(4)),

378 | Chapter 5: Manipulating Your Data

 CAST(order_nbr AS VARCHAR(20)),
 order_date,
 quantity,
 SUBSTRING(payment_terms,1,12),
 CAST(title_nbr AS CHAR(1))
FROM new_sales
WHERE order_date >= '01-JAN-2022'
-- Retrieve only the newer records

You must specify the columns in the table that will receive data by enclosing their
names in parentheses, in a comma-delimited list. This column_list can be omitted,
but all columns that are defined for the table are then assumed, in their ordinal
positions. Any column with an omitted value will be assigned its default value
(according to any DEFAULT column setting on the table) or, if no DEFAULT column
setting exists, NULL. The columns in the column list may be in any order, but
you may not repeat any column in the list. Furthermore, the columns and their
corresponding value entries must agree in terms of data type and size.

The first of the following two examples leaves off the column list, while the second
uses only DEFAULT values:

INSERT INTO authors
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,
 '1717 Main St', NULL, 'CA', '90675', 1);

INSERT INTO temp_details
DEFAULT VALUES

The first statement will succeed only if all the values in the value list correspond
correctly with the data types and size limitations of the columns of the target table.
Any inconsistencies will generate an error. The second statement will succeed only
as long as defaults have been declared for the columns of the target table, or those
columns allow NULL values.

Executing an INSERT statement without a column list is a
“worst practice,” since the statement may fail if the target table
ever changes.

Programming tips and gotchas
INSERT statements will always fail under the following circumstances:

• When a data type mismatch occurs between a column and its value•

• When a column is defined as NOT NULL and the insertion value is NULL•

• When a duplicate value is inserted into a UNIQUE or PRIMARY KEY constraint•

• When the inserted values do not meet the requirements of a CHECK constraint•

SQL Command Reference | 379

M
anip

ulating
Yo

ur D
ata

• When an inserted value is constrained by a FOREIGN KEY constraint because the•
value is not derived from the declared primary key of another table

The most common error encountered when executing INSERT statements is a mis‐
match between the number of columns and the number of values. If you acciden‐
tally leave out a value that corresponds to a column, you are likely to encounter an
error that will cause the statement to fail.

INSERT statements also fail when an inserted value is of a data type that is a
mismatch with the column of the target table. For example, an attempt to insert
a string like 'Hello World' into an integer column would fail. On the other hand,
some database platforms automatically and implicitly convert certain data types. For
example, SQL Server will automatically convert a date value to a character string for
insertion into a VARCHAR column.

Another common problem encountered with the INSERT statement is a size mis‐
match between a value and its target column. For example, inserting a long string
into a CHAR(5) target column or inserting a very large integer into a TINYINT
column can cause problems. Depending on the platform you are using, the size
mismatch may cause an outright error and rollback of the transaction, or the data‐
base server may simply trim the extra data. Either result is undesirable. Similarly, a
problem can arise when an INSERT statement attempts to insert a NULL value into a
target column that does not accept NULLs.

Most problems with INSERT statements occur because the
programmer does not know the target table very well. Make
sure you understand the target table or view before writing
elaborate INSERT statements.

MySQL and MariaDB
MySQL supports several INSERT syntax options that have helped to foster this
platform’s reputation for high speed. The value list ROW keyword is optional:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [[database_name.]owner.]table_name
 [(column1[, ...])]
[PARTITION (partition_name[, partition_name] ...)]
{VALUES | VALUE ([ROW] {value1 | DEFAULT}[, ...])
 [, [ROW](,...)] |
 select_statement SET [ON DUPLICATE KEY UPDATE]
 column1=value1, column2=value2[, ...]}

MariaDB 10.5 and later support a RETURNING clause, which MySQL does not
(described in “RETURNING Clause” on page 403). The syntax for MariaDB is as
follows:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] [[database_name.]owner.]table_name

380 | Chapter 5: Manipulating Your Data

 [(column1[, ...])]
[PARTITION (partition_name[, partition_name] ...)]
{VALUES | VALUE ([ROW] {value1 | DEFAULT}[, ...])
 [, [ROW](,...)] |
 select_statement SET [ON DUPLICATE KEY UPDATE]
 column1=value1, column2=value2[, ...]}
[RETURNING select_expr[, select_expr ...]]

where:

LOW_PRIORITY | DELAYED | HIGH_PRIORITY

Defers the execution of INSERT until no other clients are reading from the table,
for LOW_PRIORITY. This may result in a long wait. LOW_PRIORITY should not be
used with MyISAM tables because it disables concurrent inserts. The DELAYED
keyword allows the client to continue immediately, even if the INSERT has not
yet completed. DELAYED is ignored with INSERT ... SELECT and INSERT ...
ON DUPLICATE. HIGH_PRIORITY merely overrides the effect of servers running in
LOW_PRIORITY mode; it does not otherwise boost priority (or processing speed)
for queries running normally.

IGNORE

Directs MySQL not to attempt to insert records that would duplicate a value in
a primary key or unique index; without this clause, the INSERT will fail if such
duplication occurs. If a duplicate is encountered while the IGNORE clause is in
use, the duplicate records are ignored while all the other records are inserted.

PARTITION (partition_name[, ...])]

Only relevant for partitioned tables, this clause is used to explicitly specify
what partitions can be inserted into. This reduces the work of the planner as it
means it doesn’t need to consider all partitions of a table for insert.

SET column=value

An alternate syntax that allows you to specify values for target columns by
name.

ON DUPLICATE KEY UPDATE

Causes an INSERT operation that would create a duplicate value in a primary
key or unique index to update the value of the existing row.

Additionally, for loading data from a delimited file, MySQL offers a LOAD DATA
statement:

LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE table_name
 [PARTITION (partition_name [, partition_name] ...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'delimiter_character']

SQL Command Reference | 381

M
anip

ulating
Yo

ur D
ata

 [[OPTIONALLY] ENCLOSED BY 'quote_character']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'delimiter_character']
 [TERMINATED BY 'delimiter_character']
]
 [IGNORE int {LINES | ROWS}]
 [(col_name_or_user_var[, col_name_or_user_var] ...)]
 [SET column1=value1, column2=value2[, ...]]

The MariaDB variant of LOAD DATA is the same as MySQL’s, but lacks the PARTITION
clause:

LOAD DATA
 [LOW_PRIORITY | CONCURRENT] [LOCAL]
 INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE table_name
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'delimiter_character']
 [[OPTIONALLY] ENCLOSED BY 'quote_character']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'delimiter_character']
 [TERMINATED BY 'delimiter_character']
]
 [IGNORE int {LINES | ROWS}]
 [(col_name_or_user_var[, col_name_or_user_var] ...)]
 [SET column1=value1, column2=value2[, ...]]

where:

LOW_PRIORITY | CONCURRENT

Only relevant for storage engines that perform table locking (MyISAM, MEM‐
ORY, and MERGE). LOW_PRIORITY waits until no clients are connected to
the table before performing the insert. CONCURRENT does inserts concurrently
with other connections and can only be used with MyISAM. These terms are
mutually exclusive.

LOCAL

Loads the data from the client’s filesystem instead of the server’s, which is the
default behavior for MySQL and MariaDB.

INFILE 'file_name'

Specifies the name of the input file to load.

[REPLACE | IGNORE]

In the event of a duplicate key violation, indicates whether to replace the
existing record or skip the row to be inserted.

382 | Chapter 5: Manipulating Your Data

CHARACTER SET 'charset_name'

Specifies the encoding of the data in the data file.

TERMINATED BY = 'delimiter_character'

Specifies the delimiter character for each column in a line of text. The default is
the tab (\t) character.

[OPTIONALLY] ENCLOSED BY = 'quote_character'

Defines the character to use for quoting column data. The OPTIONALLY allows
for the data to be unquoted.

ESCAPED BY 'char'

Defines the character to use to escape the ENCLOSED BY or TERMINATED BY
characters.

IGNORE int [LINES|ROWS]

Declares the number of rows to skip before inserting. For data with a header
row, int should be 1 or higher.

MySQL does not support the SQL-standard OVERRIDING

clause.

MySQL additionally supports a statement called REPLACE with similar syntax to
INSERT that overwrites existing values rather than discarding rows that are dupli‐
cates.

Oracle
Oracle’s implementation of the INSERT statement allows data insertion into a given
table, view, partition, subpartition, or object table. It also supports additional exten‐
sions such as inserting records into many tables at once and conditional inserts. The
syntax is:

-- Standard INSERT statement
INSERT [INTO] {table_name
 [[SUB]PARTITION { (prtn_name) | (key_value) }] |
 (subquery) [WITH {READ ONLY | CHECK OPTION
 [CONSTRAINT constr_name]}] |
 TABLE (collection) [(+)] } [alias]
 [(column1[, ...])]
{VALUES (value1[, ...]) [RETURNING expression1[, ...]
 INTO variable1[, ...]] |
 select_statement [WITH {READ ONLY |
 CHECK OPTION [CONSTRAINT constr_name]}]}
-- Conditional INSERT statement
INSERT {[ALL | FIRST]} WHEN condition
 THEN standard_insert_statement

SQL Command Reference | 383

M
anip

ulating
Yo

ur D
ata

ELSE standard_insert_statement
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT {int | UNLIMITED}]]

where:

INSERT [INTO]

Inserts one or more rows into a single table, view, materialized view, or sub‐
query. The INTO keyword is optional. You insert a single row using the VALUES
clause and many rows using a subquery.

table_name [[SUB]PARTITION { (prtn_name) | (key_value) }]

Identifies the target into which you will insert data. The target may be a
table, view, materialized view, or subquery. To enable you to fully qualify the
target, table_name can expand to [schema.]table_name[@db_link]. You may
optionally identify the schema and remote address (via @db_link) of the target,
but the current schema and local database are assumed if you do not otherwise
specify them. You may also optionally identify the PARTITION or SUBPARTITION
(through the prtn_name parameter or a key_value for a hash partition or
subpartition) into which the record(s) will be inserted, as long as the target is
not an object table or object view.

subquery

Instructs Oracle to insert records into the base table or tables of the subquery,
where the subquery is a normally formed SELECT statement. Essentially, you’re
using a subquery to construct a view on the fly, and the effect is the same
as inserting into a view. This is the primary means for inserting values into
multiple tables at one time. All of the columns defined by the subquery, across
all tables, must have a corresponding value to insert, or a failure will occur.
Multi-table inserts must use the subquery format. The following options apply
when using subqueries:

WITH READ ONLY

Indicates that the subqueried table or view cannot be updated until the
statement completes.

WITH CHECK OPTION [CONSTRAINT constr_name]

Indicates that you cannot insert into the table or view rows that would not
pass the constr_name check constraint.

TABLE (collection) [(+)] } [alias]

Directs Oracle that the collection should be treated like a standard target
(i.e., a table or view), whether it be a subquery, a column, a function, or
a collection constructor. In any event, the table collection must return a
nested table or VARRAY set of values. Since constructions can be very long,
you can provide an optional alias. Aliases are not allowed in multi-table
insert operations.

384 | Chapter 5: Manipulating Your Data

(column1[, ...])

Specifies the target column(s) into which data will be inserted. If you leave off
the list of columns, Oracle assumes that the VALUES clause or columns of the
subquery will perfectly match the columns of the target. Oracle will return an
error if you do not insert a value for any columns marked as NOT NULL that do
not have defined default values.

VALUES (value1[, ...]) [RETURNING expression1[, ...] INTO

variable1[, ...]]

Inserts values into the target table or tables. As with the SQL standard, there
must be a matching value for every column, though the value can be DEFAULT
or, if the column accepts NULLs, the literal NULL. DEFAULT is not allowed when
inserting into a view. On multi-table insert operations, the VALUES clause must
return a corresponding value for every item in the SELECT list of the subquery.
The syntax is as follows:

RETURNING expression1

Retrieves the rows inserted by the operation. The expression returned
by the statement is often a value being inserted, but it may be another
value. For example, you might use the RETURNING clause to find the value
of an automatically generated primary key. Single-row operations store the
results into host variables or PL/SQL variables, while multi-row operations
store them in bind arrays. You can use RETURNING against tables, views
with a single base table, and materialized views. The RETURNING clause is
not allowed with multi-table insert operations.

INTO variable1

Specifies the variables that will hold the values returned as a result of
the RETURNING clause. You must declare a corresponding host variable or
PL/SQL variable for each expression in the RETURNING clause. You cannot
use the INTO clause to hold a LONG data type, with remote objects, on views
that have INSTEAD OF triggers, or with parallel INSERT, UPDATE, or DELETE
statements.

ALL

Performs a multi-table INSERT. ALL is used only with the subquery format.
Without a WHEN clause, ALL unconditionally inserts all the data retrieved by the
subquery into the tables defined. With a WHEN clause, ALL performs conditional
insert operations that tell Oracle to evaluate all WHEN clauses regardless of the
results of any other WHEN operation. Each time a WHEN clause evaluates as TRUE,
Oracle executes the corresponding INTO clause. Multi-table inserts are not
parallelized on index-organized tables or bitmap-indexed tables. They are not
allowed at all when:

• The target is a view or materialized view.•
• The target is a remote table.•

SQL Command Reference | 385

M
anip

ulating
Yo

ur D
ata

• The INSERT command uses a TABLE collection expression.•
• The table needs more than 999 total target columns.•
• The subquery uses a sequence.•

FIRST

Tells Oracle to evaluate the WHEN clauses in order and, when it finds the first
TRUE expression, to execute the corresponding INTO clause and skip all other
WHEN clauses.

WHEN condition THEN standard_insert_statement

Sets a condition and, when the condition is TRUE, executes the THEN insert
clause. The value of condition is evaluated for each column returned in the
result set of the subquery. Up to 127 WHEN clauses are allowed.

ELSE standard_insert_statement

Executes when no WHEN clause evaluates as TRUE.

LOG ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT

{int | UNLIMITED}]

Captures DML errors and logs column values of the affected rows into an
error-logging table. INTO specifies the name of the error-logging table. When
omitted, Oracle inserts the affected rows into a table with a name of ERR$_
prepended to the first 25 characters of the table name. expression is a literal
string or general SQL expression (such as TO_CHAR(SYSDATE)) that you want
inserted into the error-logging table. REJECT LIMIT allows an upper limit for
the total number of errors allowed before terminating the DML operation and
rolling back the transaction. (Note that you cannot track errors for LONG, LOB,
or object type columns.)

Oracle allows the standard INSERT operations as described in the SQL implementa‐
tion section, such as INSERT ... SELECT and INSERT ... VALUES. However, it has a
great many special variations.

When inserting into tables that have assigned sequences, be sure to use the
<sequence_name>.nextval function call to insert the next logical number in the
sequence. For example, assume you want to use the authors_seq sequence to set
the value of au_id when inserting a new row into the authors table. You can do this
as follows:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

When retrieving values during an INSERT operation, check for a one-to-one match
between the expressions in the RETURNING clause and the variables of the INTO
clause. The expressions returned by the clause do not necessarily have to be those
mentioned in the VALUES clause. For example, the following INSERT statement places

386 | Chapter 5: Manipulating Your Data

a record into the sales table, but places a completely distinct value into a bind
variable:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)
RETURNING hire_date INTO :temp_hr_dt;

Notice that the RETURNING clause returns the hire_date even though hire_date is not
one of the values listed in the VALUES clause. (In this example, it is reasonable to
assume a default value was established for the hire_date column.)

An unconditional multi-table INSERT statement into a lookup table that contains a
list of all the approved jobs in the company looks like this:

INSERT ALL
 INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+1, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+2, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 INTO jobs(job_id+3, job_desc, min_lvl, max_lvl)
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions
WHERE job_status = 'Active';

And just to make things more complex, Oracle allows multi-table INSERT state‐
ments that are conditional:

INSERT ALL
 WHEN job_status = 'Active' INTO jobs
 WHEN job_status = 'Inactive' INTO jobs_old
 WHEN job_status = 'Terminated' INTO jobs_canceled
 ELSE INTO jobs
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;

Note that in the preceding example, you would have to follow each INTO clause with
a VALUES clause if you were skipping NOT NULL columns in the target table. The
following example shows this syntax:

INSERT FIRST
 WHEN job_status = 'Active'
 INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Inactive'
 INTO jobs_old
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Terminated'
 INTO jobs_canceled
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 WHEN job_status = 'Terminated'

SQL Command Reference | 387

M
anip

ulating
Yo

ur D
ata

 INTO jobs_outsourced
 VALUES(job_id, job_desc, min_lvl, max_lvl)
 ELSE INTO jobs
 VALUES(job_id, job_desc, min_lvl, max_lvl)
SELECT job_identifier, job_title, base_pay, max_pay
FROM job_descriptions;

Notice that in this example, the FIRST clause also directs Oracle to execute the
first occurrence of job_status = 'Terminated' by inserting the records into the
jobs_canceled table and skipping the jobs_outsourced INSERT operation.

Oracle allows you to insert data into a table, partition, or view (also known as
the target) using either a regular or a direct-path INSERT statement. In a regular
insert, Oracle maintains referential integrity and reuses free space in the target. In a
direct-path insert, Oracle appends data at the end of the target table without filling
in any free space gaps elsewhere in the table. This method bypasses the buffer cache
and writes directly to the datafiles; hence the term “direct path.”

Oracle allows the use of hints to circumvent default query
optimization for INSERT statements. For example, you can
use the APPEND hint to ensure that an INSERT uses a direct-
path approach. Refer to the platform documentation for more
details on hints that are usable with INSERT.

The direct-path approach enhances performance on long, multi-record insert oper‐
ations. However, if any of the following are true, Oracle will perform a regular
INSERT instead of a direct-path INSERT:

• The data in the target is altered with an UPDATE or DELETE statement before the•
INSERT statement, in a single transaction. (UPDATE and DELETE are allowed after
the direct-path INSERT statement.)

• The INSERT statement is or may become distributed.•

• The target contains a LOB or object data type column.•
• The target has a clustered index or index-organized table.•
• The target has triggers or referential integrity constraints.•
• The target is replicated.•

• The ROW_LOCKING initialization parameter is set to INTENT.•

In addition, Oracle will not allow you to query (e.g., using SELECT) a table later in
the same transaction after you perform a direct-path INSERT into that table until a
COMMIT has been performed.

Oracle allows you to use parallel direct-path inserts into multiple tables, but you
may only use subqueries to insert the data into the tables, not a standard VALUES
clause.

388 | Chapter 5: Manipulating Your Data

Inserting LOBs and BFILEs is tricky. You should initialize such
values to NULL before inserting. RAW columns are also tricky.
If you insert a regular string into a RAW column, all future
queries against the column will be forced to use a table scan.

Oracle has no SQL construct specifically for loading data from delimited files;
however, you can create an external table that links to a file on the filesystem, and
then use the standard INSERT statement from the SELECT of the external table.

PostgreSQL
PostgreSQL supports the SQL standard for the INSERT statement, except for the
OVERRIDING clause. It also has added support for a RETURNING clause and WITH clause
(common table expressions):

[WITH cte_expression[, ...]]
INSERT INTO table_name [(column1[, ...])]
{[DEFAULT] VALUES | VALUES {(value1[, ...]) | DEFAULT} |
 select_statement}
[ON CONFLICT
 [({ index_column_name | (index_expression) }
 [COLLATE collation] [opclass][, ...])
 [WHERE index_predicate]
 ON CONSTRAINT constraint_name]
 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name[, ...]) =
 [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name[, ...]) = (select_statement)
[ON ALL SERVER] }[, ...]
 WHERE condition]
]
[RETURNING { * | column_value [AS output_name][, ...] }]

where:

(column1>[, ...])

Identifies one or more columns in the target table. The list must be enclosed
in parentheses, and commas must separate each item in the list. SQL Server
automatically provides values for IDENTITY columns, TIMESTAMP columns, and
columns with DEFAULT constraints.

DEFAULT

Tells the INSERT statement simply to create a new record using all of the default
values specified for the target table.

ON CONFLICT ...

ON CONFLICT is an optional clause that specifies an alternative action to raising
a unique violation or exclusion constraint violation error. For each individual

SQL Command Reference | 389

M
anip

ulating
Yo

ur D
ata

row for insertion, either the insertion happens or, in the event of a primary
key or unique key violation, the alternative DO NOTHING OR DO UPDATE action
is taken. ON CONFLICT DO NOTHING skips insertion of the row. ON CONFLICT
DO UPDATE updates the existing row that conflicts with the row proposed for
insertion.

RETURNING { * | column_value [AS output_name][, ...] }

Retrieves the rows inserted by the operation. You may return all columns using
an asterisk (*), or one or more specific columns of the table with the heading
output_name. For example, you might use the RETURNING clause to find the
value of an automatically generated primary key.

For copying from delimited files and outputs of programs to a table, PostgreSQL
offers a COPY FROM statement:

COPY table_name [(column_name[, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option[, ...])]
 [WHERE condition]

where:

WITH option[, ...]

Allows for controlling the behavior of reads. Valid options are:

FORMAT format_name

Specifies the format of data to be read. format_name options are text, csv,
or binary, with text being the default if not specified.

FREEZE [boolean]
Indicates whether to copy the data with rows frozen. COPY FREEZE cannot
be performed on a partitioned table.

DELIMITER 'delimiter_character'

Specifies the delimiter character for columns in a line of text. When not
specified, it defaults to the tab character for text format and a comma for
CSV.

NULL 'null_string'

Specifies a string that denotes a NULL value. Only one is allowed, and it
will be converted to NULL on insert.

HEADER [boolean]

Indicates whether the first line of the file or program output is a header
and should be skipped for insertion. The default is TRUE.

QUOTE 'quote_character'

Defines the character to use for quoting. When not specified, it defaults to
the double quote.

390 | Chapter 5: Manipulating Your Data

ESCAPE 'escape_character'

Specifies the character that should appear before the quote_character
when that character appears in a data value, so that it displays correctly.

FORCE_QUOTE { (column_name[, ...]) | * }

Forces quoting of non-NULL column values for certain columns.

FORCE_NOT_NULL (column_name[, ...])

Prevents matching of certain columns’ values against NULL.

FORCE_NULL (column_name[, ...])

Matches certain columns’ values against NULL, even when quoted.

ENCODING 'encoding_name'

Specifies the encoding of the file. When not specified it defaults to the
encoding of the database.

There is also a companion COPY TO for exporting data to a flat file, which we will
not cover but has a similar syntax. An alternative way to load data from a flat file
is to use the file_fdw foreign data wrapper extension and create a foreign table that
points to the file. The foreign table convention for file_fdw is very similar in options
to COPY FROM, with the added benefit of being able to query the file like any other
table.

PostgreSQL attempts to perform automatic data type coercion when the expressions
in the VALUE clause or the SELECT item list of a subquery do not match the data types
defined for the target table or view.

Here is an example that attempts to add a new row and does nothing in the event of
failure:

INSERT INTO titleauthor(au_id, title_id, au_ord, royaltyper)
VALUES('409-56-7008','BU1032', 1, 60)
ON CONFLICT DO NOTHING;

Here is the same insert that on key violation updates all the values except the keys:

INSERT INTO titleauthor(au_id, title_id, au_ord, royaltyper)
VALUES('409-56-7008','BU1032', 1, 60)
ON CONFLICT (au_id, title_id) DO UPDATE
 SET au_ord = EXCLUDED.au_ord,
 royaltyper = EXCLUDED.royaltyper;

Finally, this version does the same but also returns the changed values:

INSERT INTO titleauthor(au_id, title_id, au_ord, royaltyper)
VALUES('409-56-7008','BU1032', 1, 60)
ON CONFLICT (au_id, title_id) DO UPDATE
 SET au_ord = EXCLUDED.au_ord,
 royaltyper = EXCLUDED.royaltyper
RETURNING *;

SQL Command Reference | 391

M
anip

ulating
Yo

ur D
ata

SQL Server
SQL Server supports a few extensions to the SQL standard for INSERT. Specifically,
it supports several rowset functions (explained later), as well as the capability to
insert the results from stored procedures and extended procedures directly into the
target table. SQL Server’s syntax is:

[WITH cte_expression[, ...]]
INSERT [TOP (number) [PERCENT]]
[INTO] table_name [(column1[, ...])]
[OUTPUT expression INTO {@table_variable | output_table}
 [(column_list[, ...])]]
{[DEFAULT] VALUES | VALUES (value1[, ...]) | select_statement |
 EXEC[UTE] proc_name [[@param =] value] [OUTPUT] [, ...]]}

SQL Server also supports a variant for copying from files, BULK INSERT:

BULK INSERT table_name FROM 'data_file'
[WITH (
 [[,] BATCHSIZE = batch_size]
 [[,] CHECK_CONSTRAINTS]
 [[,] CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
 [[,] DATAFILETYPE =
 { 'char' | 'native'| 'widechar' | 'widenative' }]
 [[,] DATA_SOURCE = 'data_source_name']
 [[,] ERRORFILE = 'file_name']
 [[,] ERRORFILE_DATA_SOURCE = 'data_source_name']
 [[,] FIRSTROW = first_row]
 [[,] FIRE_TRIGGERS]
 [[,] FORMATFILE_DATA_SOURCE = 'data_source_name']
 [[,] KEEPIDENTITY]
 [[,] KEEPNULLS]
 [[,] KILOBYTES_PER_BATCH = kilobytes_per_batch]
 [[,] LASTROW = last_row]
 [[,] MAXERRORS = max_errors]
 [[,] ORDER ({ column [ASC | DESC] }[, ...n])]
 [[,] ROWS_PER_BATCH = rows_per_batch]
 [[,] ROWTERMINATOR = 'row_terminator']
 [[,] TABLOCK]

 -- input file format options
 [[,] FORMAT = 'CSV']
 [[,] FIELDQUOTE = 'quote_characters']
 [[,] FORMATFILE = 'format_file_path']
 [[,] FIELDTERMINATOR = 'field_terminator']
 [[,] ROWTERMINATOR = 'row_terminator']
)]

For BULK INSERT, the number of columns and order of data in the file must match
the database table structure.

Options for both types of INSERT are as follows:

392 | Chapter 5: Manipulating Your Data

WITH cte_expression

Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the INSERT statement.

WITH bulk_insert_options

Itemizes options for bulk insert behavior. Most commonly used are:

FORMAT 'CSV'

Specifies that the input file is a CSV file.

FIELDQUOTE = 'quote_character'

Defines the character to use for quoting character.

FORMATFILE = 'format_file_path'
Provides the path to a format file usually generated by using the bcp utility
on the table or view. Allows for skipping columns or having a different
column order in the file than in the table.

FIELDTERMINATOR = 'delimiter_character'

Specifies the delimiter character for each column in a line of text. The
default is the tab (\t) character.

ROWTERMINATOR = 'delimiter_character'

Specifies the delimiter character for each row. The default is the newline
(\r\n) character.

FIRSTROW = int

Indicates the number of the first row of data to load. For files with headers,
you should set this to 2 or higher.

CODEPAGE = 'codepage_value'

Specifies the code page of the data in the data file.

[BULK] INSERT [INTO] table_name

Identifies the insertion target (a table, view, or rowset function). When insert‐
ing into a view, an INSERT cannot affect more than one of the base tables in the
view, if there are more than one. Rowset functions allow SQL Server to source
data from special or external data sources such as XML streams, full-text search
file structures (a special structure in SQL Server used to store things like
MS Word documents and MS PowerPoint slideshows within the database), or
external data sources (such as an MS Excel spreadsheet). Examples are shown
later in this section. Rowset functions SQL Server supports for the INSERT
statement include:

OPENQUERY

Executes a pass-through INSERT against a linked server. This is an effective
means of performing a nested INSERT against a data source that is external
to SQL Server. The data source must first be declared as a linked server.

SQL Command Reference | 393

M
anip

ulating
Yo

ur D
ata

OPENROWSET

Executes a pass-through INSERT statement against an external data source.
This is similar to OPENDATASOURCE, except that OPENDATASOURCE only opens
the data source; it does not actually pass through an INSERT statement.
OPENROWSET is intended for occasional, ad hoc usage only.

TOP (number) [PERCENT]

Indicates that the statement should insert only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are inserted. If
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT data type with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the value of number should conform
to the rules for the BIGINT data type.

(column1[, ...])

Identifies one or more columns in the target table. The list must be enclosed
in parentheses, and commas must separate each item in the list. SQL Server
automatically provides values for IDENTITY columns, TIMESTAMP columns, and
columns with DEFAULT constraints.

OUTPUT expression INTO {@table_variable | output_table} [(column

_list[, ...])]

Retrieves the rows affected by the command (whereas INSERT normally
only shows the number of rows affected), placing the rows you specify
in expression into either a given table_variable or output_table. If the
column_list is omitted for the output_table, the output_table must have the
same number of columns as the target table. The output_table cannot have
triggers, participate in a foreign key constraint, or have any CHECK constraints.

DEFAULT

Tells the INSERT statement simply to create a new record using all of the default
values specified for the target table.

EXEC[UTE] proc_name [[@param =] value] [OUTPUT][, ...]]

Directs SQL Server to execute a dynamic Transact-SQL statement, a stored
procedure, a remote procedure call (RPC), or an extended stored procedure
and store the results in a local table. proc_name is the name of the stored proce‐
dure you wish to execute. You may optionally include any of the parameters of
the stored procedure, as identified by @param (the at sign is required), assign a
value to the parameter, and optionally designate the parameter as an OUTPUT
parameter. The columns returned by the result set must match the data types of
the columns in the target table.

Although SQL Server automatically assigns values to IDENTITY columns and
TIMESTAMP columns, it does not do so for UNIQUEIDENTIFIER columns. Columns
of either of the former data types can simply be skipped in the column and value

394 | Chapter 5: Manipulating Your Data

lists. However, you cannot do that with a UNIQUEIDENTIFIER column. Instead, you
must use the NEWID() function to obtain and insert a globally unique ID (GUID):

INSERT INTO guid_sample (global_ID, sample_text,
 sample_int)
VALUES (NEWID(), 'insert first record','10000')
GO

When migrating between platforms, remember that inserting an empty string ('')
into a SQL Server TEXT or VARCHAR column results in a zero-length string being
stored. This is not the same as a NULL value, as some platforms interpret it. When
inserting into a table using the INSERT ... SELECT variant, WITH hints are allowed
on the subquery as long as you do not use READPAST, NOLOCK, and READUNCOMMITTED.

The following example illustrates the INSERT ... EXEC statement. It first creates
a temporary table called #ins_exec_container. Then, the first INSERT operation
retrieves a listing of the c:\temp directory and stores it in the temporary table,
while the second INSERT executes a dynamic SELECT statement:

CREATE TABLE #ins_exec_container (result_text
 VARCHAR(300) NULL)
GO
INSERT INTO #ins_exec_container
EXEC master..xp_cmdshell "dir c:\temp"
GO
INSERT INTO sales
EXECUTE ('SELECT * FROM sales_2002_Q4')
GO

This functionality can be very useful when you want to build business logic using
Transact-SQL stored procedures; for example, to determine the state of objects in or
outside of the database and then act on those results using Transact-SQL.

SQL Server allows the use of hints to circumvent default query
optimization for INSERT statements. However, this type of tun‐
ing is recommended only for the most advanced users. Refer
to the vendor documentation for more details on hints that
are usable with INSERT.

Common table expressions may be used with SELECT, INSERT, UPDATE, and DELETE
statements, as well as the CREATE VIEW statement. CTEs offer a means of naming
and defining a temporary result set from a SELECT statement, even allowing recur‐
sive behaviors (see “WITH Clause” on page 352 for details). When defining a CTE,
you may not use the COMPUTE, COMPUTE BY, FOR XML, FOR BROWSE, INTO, OPTION, or
ORDER BY clauses. Multiple SELECT statements are allowed in a CTE only if they are
combined with set operators such as UNION, UNION ALL, EXCEPT, or INTERSECT.

SQL Command Reference | 395

M
anip

ulating
Yo

ur D
ata

The following is a simple DELETE statement using a common table expression:

WITH direct_reports (Manager_ID, DirectReports) AS
(SELECT manager_ID, COUNT(*)
 FROM hr.employee AS e
 WHERE manager_id IS NOT NULL
 GROUP BY manager_id)
DELETE FROM direct_reports
WHERE DirectReports <= 1;

Performing an INSERT that shows what records and column values were inserted is
easy using the OUTPUT clause:

INSERT hr.employee
 OUTPUT INSERTED.employee_id, INSERTED.employee_lname,
 INSERTED.employee_fname
 INTO @my_temporary_table_variable
VALUES ('Insert Error', GETDATE());

See also

• DELETE•

• MERGE•

• RETURNING•

• SELECT in Chapter 4•

• UPDATE•

• WITH in Chapter 4•

MERGE Statement
The MERGE statement is sort of like a CASE statement for DML operations. It com‐
bines UPDATE and INSERT statements into a single atomic statement with either/or
functionality. MERGE examines the records of a source table and a target table. If
the records exist in both tables, the records in the target table are updated with the
values of the records in the source table, based upon predefined conditions. Records
that exist in the source table but not the target table are inserted into the target
table.

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Supported, with variations

SQL standard syntax
MERGE INTO {object_name | subquery} [[AS] alias]
USING table_reference [[AS] alias]
ON search_condition
WHEN MATCHED

396 | Chapter 5: Manipulating Your Data

 THEN {UPDATE SET column = {expression | DEFAULT}
 [, ...] | DELETE}
WHEN NOT MATCHED
 THEN INSERT [(column[, ...])]
 VALUES (expression[, ...])

Keywords

MERGE INTO {object_name | subquery}

Declares the target object of the merge operation. The target object may be a
table or updatable view of object_name, or it may be a nested table subquery.

[AS] alias

Provides an optional alias for the target table.

USING table_reference

Declares the source table, view, or subquery of the merge operation.

ON search_condition

Specifies the condition (or conditions) on which a match between the source
and target table is evaluated. The syntax is essentially the same as for the
ON subclause of the JOIN clause (discussed in Chapter 4). For example, when
merging records from the new_hire_emp table into the emp table, the clause
might look like ON emp.emp_id = new_hire_emp.emp_id.

WHEN MATCHED THEN UPDATE SET column = {expression | DEFAULT}[, ...] |

DELETE

Declares that if a record from the source table has a matching record in the
target table (based on the search_condition), one or more specified columns
of the target table should be updated with the indicated value of expression or
deleted.

WHEN NOT MATCHED THEN INSERT [(column[, ...])] VALUES

(expression[, ...])

Declares that if a record from the source table does not have a matching record
in the target table (based on the search_condition), a new record should be
inserted into the target table using one or more specified columns with the
value of expression.

Rules at a glance
The rules for using MERGE are straightforward:

• The WHEN MATCHED and WHEN NOT MATCHED clauses are required, but may not be•
specified more than once.

• The target table can be a standard updatable table, an updatable view, or an•
updatable subquery.

• If the table_reference is a subquery, enclose it in parentheses.•

SQL Command Reference | 397

M
anip

ulating
Yo

ur D
ata

• The search_condition clause should not contain any references to stored•
procedures or user-defined functions.

• The search_condition clause may contain multiple elements using the AND or•
OR operators.

• If the column list is omitted from the WHEN NOT MATCHED clause, a column list•
of all the columns in the target table, in ordinal position, is assumed.

Other important rules used by the MERGE statement are self-evident. For example,
the columns referenced in the WHEN MATCHED clause must be updatable.

Programming tips and gotchas
The MERGE statement is sometimes nicknamed the “upsert” statement. This is
because it allows, in a single operation, a set of records to be either inserted into a
table or, if they already exist, updated with new values. The only tricky aspect of the
MERGE statement is getting used to the idea of the either/or processing of the INSERT
and UPDATE statements.

Assume that we have two tables, EMP and NEW_HIRE. The EMP table contains all
employees of the company who have successfully completed the mandatory 90-day
probationary period at the start of their employment. Employees in the EMP table
can also have several statuses, such as active, inactive, and terminated. Any new hire
to the company is recorded in the NEW_HIRE table. After 90 days, they are moved
into the EMP table like all other regular employees. However, since our company
hires college interns every summer, it’s very likely that some of our new hires will
actually have a record in the EMP table from last year with a status of inactive. Using
pseudocode, the business problem is summarized as:

For each record in the NEW_HIRE table
 Find the corresponding record in the EMP table
 If the record exists in the EMP table
 Update existing data in the EMP table
 Else
 Insert this record into the EMP table
 End If
End For

We could write a rather lengthy stored procedure that would examine all the records
in the NEW_HIRE table and then conditionally perform INSERT statements for
the entirely new employees or UPDATE statements for the returning college interns.
However, the following MERGE statement makes this process much easier:

MERGE INTO emp AS e
 USING (SELECT * FROM new_hire) AS n
 ON e.empno = n.empno
WHEN MATCHED THEN
 UPDATE SET
 e.ename = n.ename,
 e.sal = n.sal,

398 | Chapter 5: Manipulating Your Data

 e.mgr = n.mgr,
 e.deptno = n.deptno
WHEN NOT MATCHED THEN
 INSERT (e.empno, e.ename, e.sal, e.mgr, e.deptno)
 VALUES (n.empno, n.ename, n.sal, n.mgr, n.deptno);

As you can see, the MERGE statement is very useful for data loading operations.

MySQL
MySQL does not support the MERGE statement. However, you may use the syntacti‐
cally and functionally similar REPLACE statement to do the same thing as MERGE.
MySQL also supports ON DUPLICATE KEY UPDATE for inserts, which achieves a
similar purpose (see the discussion of this platform in “INSERT Statement” on page
376 for details).

Oracle
Oracle supports the MERGE statement with only the tiniest variations. Its syntax is as
follows:

MERGE INTO [schema.]{object_name | subquery} [alias]
USING [schema.]table_reference [alias]
ON (search_condition)
WHEN MATCHED THEN
 { UPDATE SET column = { expression | DEFAULT }[, ...] |
 DELETE [search_condition] }
WHEN NOT MATCHED THEN
 INSERT (column[, ...]) VALUES (expression[, ...]
[LOG ERRORS [INTO [schema.]table_name] [(expression)]
 [REJECT LIMIT { int | UNLIMITED}]]

The differences between the SQL standard and Oracle’s implementation include:

• The Oracle implementation does not allow the AS keyword when assigning an•
alias to the target or source table.

• Oracle requires parentheses around the search_condition clause.•

• In Oracle the WHEN NOT MATCHED clause requires an INSERT column list, while•
the SQL standard makes this optional.

Oracle supports error logging on the MERGE statement, following the syntax LOG
ERRORS [INTO [schema.]table_name] [(expression)] [REJECT LIMIT { int

| UNLIMITED }]. This clause captures DML errors and logs column values of the
affected rows into an error-logging table. INTO specifies the name of that table.
When omitted, Oracle inserts the affected rows into a table with a name of ERR$_
prepended to the first 25 characters of the table name. expression is a literal string
or general SQL expression (such as TO_CHAR(SYSDATE)) that you want inserted into
the error-logging table. REJECT LIMIT allows an upper limit for the total number of

SQL Command Reference | 399

M
anip

ulating
Yo

ur D
ata

errors allowed before terminating the DML operation and rolling back the transac‐
tion. (Note that you cannot track errors for LONG, LOB, or object type columns.)

Refer to the examples in the earlier “Rules at a glance” and “Programming tips and
gotchas” sections for more information.

PostgreSQL
PostgreSQL does not support the MERGE statement. However, it does support an
INSERT ON CONFLICT clause that achieves a similar purpose (see the discussion of
this platform in “INSERT Statement” on page 376 for details).

SQL Server
SQL Server supports its own distinctive variant of the MERGE statement. The syntax
follows:

[WITH common_table_expression[, ...]]
MERGE [TOP (number) [PERCENT]]
[INTO] {object_name | subquery} [[AS] alias]
USING (table_reference) [[AS] alias]
ON search_condition
WHEN MATCHED
 THEN { UPDATE SET column = { expression | DEFAULT }
 [, ...] | DELETE }
WHEN NOT MATCHED [BY {[TARGET] | SOURCE}]
 THEN INSERT [(column[, ...])]
 [DEFAULT] VALUES (expression[, ...])
[OUTPUT expression [INTO {@table_variable | output_table}
 [(column_list[, ...])]]]
[OPTION (query_hint[,...])]

where:

WITH cte_expression

Defines the temporary named result set of a common table expression, derived
from a SELECT statement, for the DELETE statement.

TOP (number) [PERCENT]

Indicates that the statement should insert only the specified number of rows. If
PERCENT is specified, only the first number percent of the rows are inserted. If
number is an expression, such as a variable, it must be enclosed in parentheses.
The expression should be of the FLOAT data type with a range of 0 to 100 when
using PERCENT. When not using PERCENT, the value of number should conform
to the rules for the BIGINT data type.

WHEN {[TARGET] | SOURCE} NOT MATCHED

Specifies the behavior of the transaction when a matching value is not discov‐
ered between the source and target tables. When neither keyword is specified,
the TARGET behavior is assumed, so WHEN NOT MATCHED is equivalent to WHEN

400 | Chapter 5: Manipulating Your Data

TARGET NOT MATCHED. The WHEN SOURCE NOT MATCHED clause is for use with
additional search conditions, all of which must be matched for the condition
to be considered satisfied. Otherwise, you should use WHEN [TARGET] NOT
MATCHED. You may have two WHEN SOURCE NOT MATCHED clauses that specify
different conditions for a DELETE operation and an UPDATE operation.

OUTPUT expression INTO {@table_variable | output_table} [(column

_list[, ...])]

Retrieves the rows affected by the command (whereas MERGE normally
only shows the number of rows affected), placing the rows you specify
in expression into either a given table_variable or output_table. If the
column_list is omitted for the output_table, the output_table must have the
same number of columns as the target table. The output_table cannot have
triggers, participate in a foreign key constraint, or have any CHECK constraints.

OPTION (query_hint[, ...])

Specifies that optimizer hints are used to customize the way the SQL Server
Database Engine processes the statement. Refer to the documentation for
details.

The MERGE statement allows a few variations on simply specifying a column name
to update or insert values into. The column may be {DELETED | INSERTED |
from_table_name}.{* | column_name} or $ACTION ($ACTION is a keyword that
outputs the actual INSERT, UPDATE, or DELETE statement used by the MERGE state‐
ment, depending on the action(s) it performs). SQL Server maintains the same
inserted and deleted pseudotables that are used in triggers to maintain transactional
consistency within the MERGE statement. Therefore, a column may be referenced
in the OUTPUT clause using the inserted or deleted pseudotables. In addition, any
AFTER triggers declared on the target table may fire according to the INSERT, UPDATE,
or DELETE triggers defined upon it and the INSERT, UPDATE, or DELETE transaction
initiated by the MERGE statement.

See also

• DELETE•

• INSERT•

• JOIN in Chapter 4•

• SELECT in Chapter 4•

• SUBQUERY in Chapter 4•

• UPDATE•

RELEASE SAVEPOINT Statement
The RELEASE SAVEPOINT statement removes the specified savepoint and any more
recent savepoints in the current transaction.

SQL Command Reference | 401

M
anip

ulating
Yo

ur D
ata

https://oreil.ly/m4AO4

Platform Command

MySQL Supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
RELEASE SAVEPOINT savepoint_name

Keywords

savepoint_name

Represents a named savepoint (or target specification) created earlier in the
transaction with the SAVEPOINT statement. The savepoint_name must be
unique within the transaction.

Rules at a glance
Use the RELEASE SAVEPOINT statement within a transaction to destroy a named
savepoint. Any savepoints that were created after the named savepoint will also be
destroyed.

To illustrate the behavior of savepoints, the following example code inserts a few
records, creates a savepoint named first_savepoint, and then releases it:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);
SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
RELEASE SAVEPOINT first_savepoint;
COMMIT;

In this example, the first_savepoint savepoint is destroyed and then all three records
are inserted into the authors table.

In the next example, we perform the same action but with more savepoints:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);
SAVEPOINT first_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);
SAVEPOINT second_savepoint;
INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('366-36-3636', 'Duck', 'P.J.', 1);
SAVEPOINT third_savepoint;

402 | Chapter 5: Manipulating Your Data

RELEASE SAVEPOINT second_savepoint;
COMMIT;

Here, when we release the savepoint called second_savepoint, the database actually
releases second_savepoint and third_savepoint since third_savepoint was created after
second_savepoint.

Once released, a savepoint name can be reused.

Programming tips and gotchas
Issuing either a COMMIT or a full ROLLBACK statement will destroy all open savepoints
in a transaction. Issuing a ROLLBACK TO SAVEPOINT statement returns the transac‐
tion to its state at the specified savepoint; any savepoints declared afterward are
nullified.

MySQL
MySQL supports the SQL standard syntax.

Oracle
Oracle does not support the RELEASE SAVEPOINT statement.

PostgreSQL
PostgreSQL supports the SQL standard syntax, although the keyword SAVEPOINT is
optional:

RELEASE [SAVEPOINT] savepoint_name

SQL Server
SQL Server does not support the RELEASE SAVEPOINT statement.

See also

• ROLLBACK• • SAVEPOINT•

RETURNING Clause
The RETURNING clause can appear in an INSERT, UPDATE, or DELETE statement and
is used to return a set of rows consisting of changed values or deleted values.
Although it does not appear in the SQL standard, it is supported by many relational
databases, so it can be considered a de facto standard.

Platform Command

MySQL Not supported

MariaDB Supported, with limitations

SQL Command Reference | 403

M
anip

ulating
Yo

ur D
ata

Platform Command

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
RETURNING {* | column_name[,...]}

Keywords

RETURNING {* | column_name[, ...]}

Returns all columns (with *) or a specific set of columns (with column
_name[, ...]) of all records inserted, deleted, or updated, depending on
whether the RETURNING clause appears in an INSERT, DELETE, or UPDATE
statement.

Rules at a glance
RETURNING is used to return all or a subset of columns from inserted, updated, or
deleted rows. The clause immediately follows other clauses in the INSERT, UPDATE, or
DELETE statement.

MySQL and MariaDB
MySQL does not support the RETURNING clause. MariaDB supports it for INSERT
(since version 10.5) and DELETE (since v10.1). It does not support RETURNING for
the UPDATE clause, but does support it for the REPLACE clause (described in the
discussion of this platform in “INSERT Statement” on page 376).

Oracle
Oracle supports the RETURNING clause with INSERT, UPDATE, and DELETE, but
requires an INTO part. It also allows for returning aggregate values such as
SUM(column_name). Oracle’s syntax is as follows:

RETURNING {* | column_name[,...]
[BULK COLLECT] INTO [row_variable | table_variable]

PostgreSQL
PostgreSQL supports the RETURNING clause with INSERT, UPDATE, and DELETE. In
addition to returning changed columns of the changed table, it allows returning
other columns from joined tables. Its syntax is as follows:

RETURNING {* | column_name| table_name.column_name[,...]

404 | Chapter 5: Manipulating Your Data

RETURNING { * | expression [AS alias][, ...] }

Specifies an expression to be returned by the DELETE/INSERT/UPDATE statement
after each row is actioned. The expression can return all columns (using the
* wildcard) or any columns you specify that are present in the designated
table_name or DELETE usinglist.

SQL Server
SQL Server does not support the RETURNING clause, but does support an OUTPUT
clause. The syntax of OUTPUT allows for returning both original values and changed
values instead of just changed values.

See also

• DELETE•

• INSERT•

• UPDATE•

ROLLBACK Statement
The ROLLBACK statement undoes a transaction to its beginning or to a previously
declared savepoint. ROLLBACK also closes any open cursors.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with variations

SQL standard syntax
ROLLBACK [WORK]
[AND [NO] CHAIN]
[TO SAVEPOINT savepoint_name]

Keywords

WORK

An optional keyword, but basically just noise.

AND [NO] CHAIN

Directs the DBMS to end the current transaction and to start a new transaction
with the same characteristics as the previous transaction, such as transaction
isolation level (AND CHAIN), or ends the transaction (AND NO CHAIN). Effectively,
using AND NO CHAIN is the same as not including the clause at all.

SQL Command Reference | 405

M
anip

ulating
Yo

ur D
ata

TO SAVEPOINT savepoint_name

Allows the transaction to be rolled back to a named savepoint (that is, a partial
rollback) rather than rolling back the entire transaction. The savepoint_name
may be a literal expression or a variable. If there is no savepoint of save
point_name active, the statement will return an error. When the TO SAVEPOINT
clause is omitted, all cursors are closed. When the TO SAVEPOINT clause is
included, only the cursors that were open within the savepoint are closed.

In addition to undoing a single data manipulation operation such as an INSERT,
UPDATE, or DELETE statement (or a batch of them), the ROLLBACK statement undoes
transactions up to the last issued START TRANSACTION, SET TRANSACTION, or
SAVEPOINT statement.

Rules at a glance
ROLLBACK is used to undo a transaction. It can be used to undo explicitly declared
transactions that are started with a START TRANSACTION statement or a transaction-
initiating statement. It can also be used to undo implicit transactions that are started
without a START TRANSACTION statement. ROLLBACK is mutually exclusive of the
COMMIT statement.

Most people associate commands like INSERT, UPDATE, and DELETE with the term
“transaction.” However, transactions encompass a wide variety of commands. The
list varies from platform to platform but generally includes any command that
alters data or database structures and is logged to the database logging mechanism.
According to the standard, all SQL statements can be undone with ROLLBACK.

Programming tips and gotchas
The most important gotcha to consider is that some database platforms perform
automatic and implicit transactions, while others require explicit transactions. If you
assume a platform uses one method instead of the other, you may get bitten. Thus,
when moving between database platforms, you should follow a standard, preset
way of addressing transactions. We recommend an explicit approach, using SET
TRANSACTION or START TRANSACTION to begin a transaction and COMMIT or ROLLBACK
to end a transaction.

MySQL
MySQL supports a simple and direct rollback mechanism, as well as the SQL
standard CHAIN keyword:

ROLLBACK [WORK] [AND [NO] CHAIN]
[[NO] RELEASE] TO [SAVEPOINT] savepoint_name

The optional RELEASE clause allows you to specify that MySQL should automatically
terminate the client connection when the current transaction has completed.

406 | Chapter 5: Manipulating Your Data

When creating a table in MySQL, beware that if you might issue a ROLLBACK against
it, it must be transaction-safe. (A transaction-safe table is one declared with the
InnoDB or NDB Cluster property. Refer to “CREATE/ALTER TABLE Statement”
on page 140 for more information.) MySQL allows you to issue transaction-control
statements like COMMIT and ROLLBACK against non-transaction-safe tables, but it will
simply ignore them and autocommit as usual. In the case of a ROLLBACK against a
non-transaction-safe table, the changes will not be rolled back.

MySQL, by default, runs in AUTOCOMMIT mode, causing all data modifications to
automatically be written to disk. You can turn AUTOCOMMIT off by issuing the
command SET AUTOCOMMIT=0. You can also control the autocommit behavior on
a statement-by-statement basis using the BEGIN or BEGIN WORK command:

BEGIN;
SELECT @A:=SUM(salary) FROM employee WHERE job_type=1;
BEGIN WORK;
UPDATE jobs SET summmary=@A WHERE job_type=1;
COMMIT;

MySQL automatically issues an implicit COMMIT upon the completion of any of
these statements: ALTER TABLE, BEGIN, CREATE INDEX, DROP DATABASE, DROP TABLE,
RENAME TABLE, and TRUNCATE.

Oracle
Oracle supports the SQL-standard form of the ROLLBACK statement with the addi‐
tion of the FORCE clause:

ROLLBACK [WORK] {[TO [SAVEPOINT] savepoint_name] | [FORCE 'text']};

ROLLBACK clears all data modifications made to the current open transaction (or to a
specific, existing savepoint). It also releases all locks held by the transaction, erases
all savepoints, undoes all the changes made by the current transaction, and ends the
current transaction.

ROLLBACK ... TO SAVEPOINT rolls back just the portion of the transaction after the
savepoint, erases all savepoints that followed, and releases all table- and row-level
locks acquired after the savepoint. Refer to the upcoming section on the SAVEPOINT
statement for more information.

Oracle’s implementation closely follows the SQL standard, with the exception of
the FORCE option. ROLLBACK FORCE rolls back an in-doubt, distributed transaction.
You must have the FORCE TRANSACTION privilege to issue a ROLLBACK ... FORCE
statement. FORCE cannot be used with TO [SAVEPOINT]. ROLLBACK ... FORCE affects
not the current transaction but the transaction named in 'text', where 'text'
must be equal to the local or global transaction ID of the transaction you want to
roll back. (The transactions and their ID names are detailed in the Oracle system
view DBA_2PC_PENDING.)

SQL Command Reference | 407

M
anip

ulating
Yo

ur D
ata

For example, you might want to roll back your current transaction to the
salary_adjustment savepoint. These two commands are equivalent:

ROLLBACK WORK TO SAVEPOINT salary_adjustment;
ROLLBACK TO salary_adjustment;

In the following example, you roll back an in-doubt distributed transaction:

ROLLBACK FORCE '45.52.67'

PostgreSQL
PostgreSQL supports the basic form of ROLLBACK, with savepoints:

ROLLBACK { [WORK] | [TRANSACTION] }
[AND [NO] CHAIN]
[TO [SAVEPOINT] savepoint_name]

where:

WORK | TRANSACTION

Optional keywords that are not required.

TO [SAVEPOINT] savepoint_name

Rolls back all commands that were executed after the savepoint was estab‐
lished. The savepoint stays active and can be reused later, if needed.

ROLLBACK clears all data modifications made to the current open transaction. It will
return an error if no transaction is currently open. For example, to roll back all open
changes, use:

ROLLBACK;

Be careful with cursors and rolling back to savepoints. For example, a cursor that
is opened within a savepoint will be closed if the transaction is rolled back to that
savepoint. If a cursor is open but has a savepoint midway through its FETCH pro‐
cesses, the cursor position will remain at the position that FETCH left it at (meaning
that it won’t be rolled back). A cursor will remain closed even if rolling back to a
savepoint takes you back before the CLOSE CURSOR command was issued. Generally,
it’s a good idea not to mix cursors and savepoints.

Remember that only the command RELEASE SAVEPOINT permanently destroys a
savepoint; otherwise, it remains active and reusable.

PostgreSQL supports ABORT as a synonym of ROLLBACK, in the form ABORT [WORK]
or ABORT [TRANSACTION].

SQL Server
SQL Server supports both the WORK and TRANSACTION keywords. The only difference
between them is that the ROLLBACK WORK statement doesn’t allow rolling back of a
named transaction or to a specific savepoint. Its syntax is as follows:

408 | Chapter 5: Manipulating Your Data

ROLLBACK [[WORK] | {TRAN | TRANSACTION}
 [transaction_name | savepoint_name]]

If ROLLBACK is issued alone without the WORK or TRAN[SACTION] keywords, it rolls
back all current open transactions. ROLLBACK normally frees locks, but it does not
free locks when rolling back to a savepoint.

SQL Server allows you to name a specific transaction_name in addition to a spe‐
cific savepoint_name. You may reference them explicitly, or you may use variables
within Transact-SQL.

SQL Server does not allow rolling back transactions to a savepoint with a two-phase
commit (i.e., a distributed transaction on SQL Server).

ROLLBACK TRAN[SACTION], when issued in a trigger, undoes all data modifications,
including those performed by the trigger, up to the point of the ROLLBACK statement.
Nested triggers are not executed if they follow a ROLLBACK within a trigger; however,
any statements within the trigger that follow the rollback are not impacted by the
rollback. ROLLBACK behaves similarly to COMMIT with regard to nesting, resetting the
@@TRANCOUNT system variable to zero. (Refer to “COMMIT Statement” on page 361
for more information on transaction control within a SQL Server nested trigger.)

Following is a Transact-SQL batch using COMMIT and ROLLBACK in SQL Server. In
this example, the code inserts a record into the sales table. If the insertion fails the
transaction is rolled back, but if the insertion succeeds the transaction is committed:

BEGIN TRANSACTION -- Initializes a transaction
-- The transaction itself
INSERT INTO sales

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')
-- Some error handling in the event of a failure
IF @@ERROR <> 0
BEGIN
 -- Raises an error in the event log and skips to the end
 RAISERROR 50000 'Insert of sales record failed'
 ROLLBACK WORK
 GOTO end_of_batch
END
-- The transaction is committed if no errors are detected
COMMIT TRAN
-- The GOTO label that enables the batch to skip to
-- the end without committing
end_of_batch:
GO
SAVEPOINT sales1

See also

• COMMIT• • RELEASE SAVEPOINT•

SQL Command Reference | 409

M
anip

ulating
Yo

ur D
ata

• SAVEPOINT•

SAVEPOINT Statement
This command breaks up a transaction at logical breakpoints. Multiple savepoints
may be specified within a single transaction. The main benefit of the SAVEPOINT
command is that transactions may be partially rolled back to a savepoint marker
using the ROLLBACK command (discussed in the previous section).

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with limitations

SQL standard syntax
SAVEPOINT savepoint_name

Keywords

SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

Rules at a glance
Savepoints are established within the scope of the entire transaction in which they
are defined, and savepoint names should be unique within their scope. Always make
sure to provide easy-to-understand names for your savepoints, because you’ll be
referencing them later in your programs. Furthermore, make sure you use BEGIN
and COMMIT statements prudently, because accidentally placing a BEGIN statement
too early or a COMMIT statement too late can have a dramatic impact on the way
transactions are written to the database.

The SQL standard supports the statement RELEASE SAVEPOINT savepoint_name,
enabling an existing savepoint to be eliminated. Refer to “RELEASE SAVEPOINT
Statement” on page 401 for more information about eliminating an existing
savepoint.

Programming tips and gotchas
Some vendors allow duplicate savepoint names within a transaction, but this is not
recommended by the SQL standard. Generally, reusing a savepoint name won’t pro‐
duce an error or warning, but a duplicate savepoint name will render the previous
savepoint with the same name useless. So, be careful when naming savepoints!

410 | Chapter 5: Manipulating Your Data

When a transaction is initiated, resources (namely, locks) are expended to ensure
transactional consistency. Make sure that your transaction runs to completion as
quickly as possible so that the locks are released for others to use.

The following example performs several data modifications and then rolls back to a
savepoint:

INSERT INTO sales
VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832');
SAVEPOINT after_insert;
UPDATE sales SET terms = 'Net 90'
WHERE sales_id = '7896';
SAVEPOINT after_update;
DELETE sales;
ROLLBACK TO after_insert;

MySQL
MySQL fully supports the SQL standard implementation.

Oracle
Oracle fully supports the SQL standard implementation.

PostgreSQL
PostgreSQL fully supports the SQL standard implementation.

SQL Server
SQL Server does not support the SAVEPOINT command. Instead, it uses the SAVE
command:

SAVE TRAN[SACTION] savepoint_name

In addition, rather than declaring the literal name of the savepoint, you can option‐
ally reference a variable containing the name of the savepoint. If you use a variable,
it must be of the CHAR, VARCHAR, NCHAR, or NVARCHAR data type.

SQL Server allows you to have many different named savepoints in a single transac‐
tion. However, be careful—since SQL Server supports multiple savepoints in a sin‐
gle transaction, it might appear that the platform fully supports nested savepoints,
but in fact it does not. Any time you issue a commit or savepoint in SQL Server, it
only commits or rolls back to the last open savepoint.

When the ROLLBACK TRAN[SACTION] savepoint_name command is executed, SQL
Server rolls the transaction back to the specified savepoint, then continues process‐
ing with the next valid Transact-SQL command following the ROLLBACK statement.
The transaction must ultimately be concluded with a COMMIT or a final ROLLBACK
statement.

SQL Command Reference | 411

M
anip

ulating
Yo

ur D
ata

See also

• COMMIT•

• RELEASE SAVEPOINT•

• ROLLBACK•

SET TRANSACTION Statement
The SET TRANSACTION statement controls many characteristics of data modification,
primarily the read/write characteristics and isolation level of a transaction.

Platform Command

MySQL Supported, with variations

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL standard syntax
SET [LOCAL] TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
 [DIAGNOSTIC SIZE int]

Keywords

LOCAL

Changes transaction settings for the current session on the local server only. If
this keyword is not specified, the transaction settings for the next transaction
are changed, even if the transaction runs on a remote server.

READ ONLY

Sets the next upcoming transaction as a read-only transaction. Once the next
transaction is complete, transaction behavior reverts to the default settings.

READ WRITE

Sets the next upcoming transaction so it may perform transactions that read
and write data.

ISOLATION LEVEL

Sets the isolation level for the next transaction in the session. Options are:

READ COMMITTED

Allows a transaction to read rows written by other transactions only when
they have been committed.

412 | Chapter 5: Manipulating Your Data

READ UNCOMMITTED

Allows a transaction to read rows that have been written, but not commit‐
ted, by other transactions.

REPEATABLE READ

All sessions can see records that are committed before their first transac‐
tions were begun. Other open sessions can see or change only committed
rows in the user’s current session. Consequently, later transactions can add
records that might then be visible to the transactions of earlier sessions,
but the other sessions must requery to see those records.

SERIALIZABLE

All sessions can see records that are committed before their first transac‐
tions were begun. Before that point, open sessions can see records within
other user sessions but cannot insert or update until those sessions’ trans‐
actions are completed. This is the most restrictive isolation level and the
default for the SQL standard.

DIAGNOSTIC SIZE int

Designates the specific number of error messages (int) to capture for a trans‐
action. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a glance
When issued, SET TRANSACTION sets the properties of the next upcoming transac‐
tion. Because of this, SET TRANSACTION is an interim statement that should be issued
after one transaction completes and before the next transaction starts. (To begin a
transaction and set its characteristics at the same time, use START TRANSACTION.)
More than one option may be applied with this command, but only one access
mode, isolation level, and diagnostic size may be specified at a time.

The isolation level of a transaction specifies the degree of isolation a transaction has
from other concurrently running sessions. The isolation level controls:

• Whether rows read and updated by your database session are available to other•
concurrently running database sessions.

• Whether the update, read, and write activity of other database sessions can•
affect your database session.

If you are unfamiliar with isolation levels, be sure to read your platform’s vendor
documentation.

Programming tips and gotchas
The ISOLATION LEVEL clause controls a number of behaviors and anomalies in a
transaction concerning concurrent transactions, including the following:

SQL Command Reference | 413

M
anip

ulating
Yo

ur D
ata

Dirty reads
Occur when a transaction reads the altered records of another transaction
before the other transaction has completed. This allows a data modification to
occur on a record that might not be committed to the database.

Nonrepeatable reads
Occur when one transaction reads a record while another modifies it. If the
first transaction then attempts to reread the record, it won’t be able to find it.

Phantom records
Occur when Transaction A reads a group of records, but Transaction B adds or
changes the data so that more records satisfy the query issued by Transaction
A. Thus, Transaction A may read in the records of Transaction B as if they
were committed to the database, when in fact the records from Transaction B
may still be rolled back. Since Transaction A is reading records that are not yet
permanent, these are called phantom records.

Table 5-2 shows the impact of various isolation level settings on the anomalies just
listed.

Table 5-2. Isolation level and anomaly impact

Isolation level Dirty reads Nonrepeatable reads Phantom records

READ UNCOMMITTED Allowed Allowed Allowed

READ COMMITTED Not allowed Allowed Allowed

REPEATABLE READ Not allowed Not allowed Allowed

SERIALIZABLE Not allowed Not allowed Not allowed

None of the platforms support DIAGNOSTIC SIZE.

MySQL
MySQL allows you to set the transaction isolation level for the next individual
transaction, the whole session, or globally across the server, as follows:

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
 {READ UNCOMMITTED |READ COMMITTED | REPEATABLE READ |
 SERIALIZABLE} | {READ WRITE | READ ONLY}

By default, MySQL sets the isolation level for the transaction that immediately
follows the statement. The keywords are:

GLOBAL

Sets the transaction isolation level for all subsequent transactions across all user
sessions or system threads.

SESSION

Sets the transaction isolation level for all subsequent transactions of the current
session.

414 | Chapter 5: Manipulating Your Data

TRANSACTION ISOLATION LEVEL

Sets a specific transaction isolation level, as described earlier in the section
“Keywords” on page 361.

If no transaction isolation level is specified, MySQL defaults to REPEATABLE READ.

The SUPER privilege is required to set a GLOBAL transaction isolation level. You can
also set the default isolation level via the MYSQL command-line executable using
the –transaction-isolation switch. Following is an example that sets all subsequent
threads (both user and system threads) to the SERIALIZABLE transaction isolation
level:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Oracle
Oracle allows you to set a transaction as read-only or read/write, set the transaction
isolation level, and specify a specific rollback segment for your transactions:

SET TRANSACTION { [READ ONLY | READ WRITE]
| [ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }]
| [USE ROLLBACK SEGMENT segment_name]
| NAME 'transaction_name' };

where:

READ ONLY

Sets the next transaction as read-only and serializable. This option is not
available to the user SYS. The only statements permitted in read-only sessions
are SELECT, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and SET ROLE.

USE ROLLBACK SEGMENT segment_name

Sets the next read/write transaction to be written to a specific Oracle rollback
segment identified by segment_name. Because it applies only to the current
transaction, USE ROLLBACK SEGMENT should be the first statement in the trans‐
action. This option is not compatible with the READ ONLY option. The rollback
segment must already exist, or this statement will fail.

NAME 'transaction_name'

Assigns a name of 255 characters or less to the current transaction. This option
is useful in distributed transaction processing environments for two-phase
commits because it lets you easily identify which local transactions belong to a
single distributed transaction.

The USE ROLLBACK SEGMENT variant can be useful for performance tuning, as it
allows you to direct long-running transactions to rollback segments large enough to
hold them, while small transactions can be directed to rollback segments that might
be small enough to be retained in the cache.

SQL Command Reference | 415

M
anip

ulating
Yo

ur D
ata

Oracle only supports the READ COMMITTED and SERIALIZABLE transaction isolation
levels. The default transaction isolation level in Oracle is READ COMMITTED, and the
default transaction style is READ WRITE.

The SET TRANSACTION statement should be the first statement in any SQL batch,
but Oracle treats it virtually the same as the START TRANSACTION statement, so one
could be substituted for the other.

In the following example, the query reports from a biweekly process on the chicago
server while avoiding any impact from other users who might be updating or
inserting records:

SET TRANSACTION READ ONLY NAME 'chicago';
SELECT prod_id, ord_qty
FROM sales
WHERE stor_id = 5;

In another case, late-night batch processing might create a huge transaction that
would overflow all but the rollback segment created to support that one transaction:

SET TRANSACTION USE ROLLBACK SEGMENT huge_tran_01;

PostgreSQL
SET TRANSACTION in PostgreSQL impacts only the new transaction you are begin‐
ning. Consequently, you may have to issue this statement before each new trans‐
action. PostgreSQL adds two enhancements to the SET TRANSACTION statement,
DEFERRABLE and SNAPSHOT. The syntax is:

SET TRANSACTION ISOLATION LEVEL { SERIALIZABLE |
 REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 { READ WRITE | READ ONLY }
 [NOT] DEFERRABLE

or:

SET TRANSACTION SNAPSHOT snapshot_id

where:

[NOT] DEFERRABLE

Allows a transaction to block when acquiring its snapshot, then run without
the overhead of a SERIALIZABLE transaction (well suited to backups and long-
running reports). The DEFERRABLE property has no effect unless the transaction
is also SERIALIZABLE and READ ONLY.

SET TRANSACTION SNAPSHOT snapshot_id

Allows a new transaction to run with the same snapshot_id as an existing
transaction. The preexisting transaction must have exported its snapshot with
the pg_export_snapshot function. Refer to the documentation for details.

416 | Chapter 5: Manipulating Your Data

https://oreil.ly/c3ZjN

By default, PostgreSQL uses the READ COMMITTED transaction isolation level. You can
set the default transaction isolation level for all transactions in the session by using
either of the following commands:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
 { READ COMMITTED | SERIALIZABLE };

SET default_transaction_isolation =
 { 'read committed' | 'serializable' }

Of course, you can then override the isolation level of any subsequent transaction
using the SET TRANSACTION statement.

For example, you can set the next transaction to the SERIALIZABLE transaction
isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Or you could set all the transactions in an entire session to SERIALIZABLE:

SET SESSION CHARACTERISTICS AS TRANSACTION
 ISOLATION LEVEL SERIALIZABLE;

SQL Server
The SET TRANSACTION ISOLATION LEVEL command in SQL Server sets the isolation
level for an entire session. All queries that follow this statement run under the
designated isolation level until it is changed. The syntax is:

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED |
 READ UNCOMMITTED | REPEATABLE READ |
 SNAPSHOT | SERIALIZABLE}

where:

SNAPSHOT

Specifies that data read by any statement in a transaction will be the transac‐
tionally consistent version of the data that existed at the start of the transaction.
Statements in the transaction effectively get a snapshot of the committed data
as it existed at the start of the transaction.

For example, the following command lowers the transaction isolation level for all
SELECT statements during the session from READ COMMITTED to REPEATABLE READ:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
GO

READ COMMITTED is the default isolation level in SQL Server. Setting the transaction
isolation level to READ UNCOMMITTED or SERIALIZABLE has the same effect as using
the NOLOCK or HOLDLOCK optimizer hints, respectively. Refer to the vendor documen‐
tation for more details.

SQL Command Reference | 417

M
anip

ulating
Yo

ur D
ata

See also

• COMMIT• • ROLLBACK•

START TRANSACTION Statement
The START TRANSACTION statement allows you to perform all the functions of SET
TRANSACTION while also initiating a new transaction.

Platform Command

MySQL Supported, with limitations

Oracle Not supported

PostgreSQL Supported, with variations

SQL Server Not supported; use BEGIN TRANSACTION instead

SQL standard syntax
START TRANSACTION [READ ONLY | READ WRITE]
 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |
 REPEATABLE READ | SERIALIZABLE}]
[DIAGNOSTIC SIZE int]

Keywords

READ ONLY

Sets the next upcoming transaction as a read-only transaction. Once the next
transaction is complete, transaction behavior reverts to the default settings.

READ WRITE

Sets the next upcoming transaction so it may perform transactions that read
and write data.

ISOLATION LEVEL

Sets the isolation level for the next transaction in the session.

READ COMMITTED

Allows a transaction to read rows written by other transactions only when they
have been committed.

READ UNCOMMITTED

Allows a transaction to read rows that have been written, but not committed,
by other transactions.

REPEATABLE READ

All sessions can see records that are committed before their first transactions
were begun. Other open sessions can see or change only committed rows in
the user’s current session. Consequently, later transactions can add records

418 | Chapter 5: Manipulating Your Data

that might then be visible to the transactions of earlier sessions, but the other
sessions must requery to see those records.

SERIALIZABLE

All sessions can see records that are committed before their first transactions
were begun. Before that point, open sessions can see records within other
user sessions but cannot insert or update until those sessions’ transactions are
completed. This is the most restrictive isolation level and the default for the
SQL standard.

DIAGNOSTIC SIZE int

Designates the specific number of error messages (int) to capture for a trans‐
action. The GET DIAGNOSTICS statement retrieves these error messages.

Rules at a glance
According to the SQL standard, the only difference between SET and START is that
SET is considered outside of the current transaction, while START is considered
the beginning of a new transaction. Thus, SET TRANSACTION settings apply to the
next transaction, whenever that may be initiated, while START TRANSACTION settings
apply to the transaction currently being initiated.

While only MySQL and PostgreSQL support the START TRANSACTION statement,
SQL Server (as well as MySQL and PostgreSQL) supports a similar command,
BEGIN TRAN[SACTION], and its synonym, BEGIN WORK. BEGIN TRANSACTION declares
an explicit transaction, but it does not set isolation levels. The only significant rule
of the START TRANSACTION statement is that it is used to control the access mode,
isolation level, and/or diagnostic size of the current transaction only. Once a new
transaction starts, you must either issue new values for the setting(s) or rely on the
defaults.

Most database platforms allow you to implicitly control transactions, using what
is commonly called autocommit mode. In autocommit mode, the database treats
each statement as a transaction in and of itself, complete with implicit BEGIN
TRANSACTION and COMMIT TRANSACTION statements.

The alternative to autocommit mode is to manually control each transaction. Under
explicit transaction control, you declare each new transaction with the START
TRANSACTION statement. A new transaction may also start implicitly any time a
transaction-initiating statement is issued, such as an INSERT, UPDATE, DELETE, or
SELECT. The transaction is not committed or rolled back until either a COMMIT or
ROLLBACK statement is explicitly issued.

Oracle does not support the explicit declaration of a new transaction using START
TRANSACTION, but it does support explicitly committing, savepointing, and rolling
back a transaction. Other platforms, including MySQL, PostgreSQL, and SQL
Server, allow you both to explicitly declare a transaction with START TRANSACTION
and to explicitly commit, savepoint, and roll back the transaction.

SQL Command Reference | 419

M
anip

ulating
Yo

ur D
ata

Programming tips and gotchas
Many of the platforms discussed in this book run in autocommit mode by default.
Therefore, it is a good rule of thumb to use explicitly declared transactions only
if you intend to do so for all transactions in a session. In other words, do not
mix implicitly declared transactions and explicitly declared transactions in a single
session.

Each transaction that is explicitly declared can only be made permanent with the
COMMIT statement. Similarly, any transaction that fails or needs to be discarded must
be explicitly undone with the ROLLBACK statement.

Be sure to issue START in a pair with either COMMIT or
ROLLBACK. Otherwise, the DBMS may not complete the trans‐
action(s) until it encounters a COMMIT or ROLLBACK statement.
Poor planning and omitting timely COMMITs (or ROLLBACKs)
could potentially lead to huge transactions.

It is a good idea to issue explicit COMMITs or ROLLBACKs after one or a few state‐
ments because long-running transactions can lock up resources, thus preventing
other users from accessing those resources. Long-running or very large transaction
batches can fill up the rollback segments or transaction logs of a database, even if
those files are small.

MySQL
MySQL normally runs in autocommit mode, meaning changes are automatically
saved to disk when completed. If a change fails for any reason, it is automatically
rolled back.

MySQL supports START TRANSACTION and a synonym, BEGIN [WORK]. You can
suspend autocommit for one or several statements using the BEGIN syntax:

START TRANSACTION [{WITH CONSISTENT SNAPSHOT |
 READ WRITE | READ ONLY}]
BEGIN [WORK]

where:

WITH CONSISTENT SNAPSHOT

Starts a consistent read of data on engines that support consistency of reads
(currently, only InnoDB) when running under a transaction isolation level that
supports consistent reads (i.e., SERIALIZABLE and REPEATABLE READ).

BEGIN [WORK]

Marks the beginning of one or more transactions. WORK is an optional keyword
with no effect.

420 | Chapter 5: Manipulating Your Data

Issuing the following command can disable autocommit mode for all sessions and
threads:

SET AUTOCOMMIT=0

Once you have disabled autocommit, the COMMIT statement is required to store
any data modification to disk, and the ROLLBACK statement is required to undo
changes made during a transaction. Disabling autocommit is only effective with
“transaction-safe” tables, such as InnoDB or BDB tables. Disabling autocommit on
non-transaction-safe tables has no effect—autocommit will still be enabled.

Earlier versions of MySQL use an update log. However, the
update log does not support SQL standard transactions unless
the tables are defined as InnoDB or NDB Cluster tables.

Transactions are stored in the binary log in a single write operation when the
COMMIT statement is issued. Here’s an example:

BEGIN;
 SELECT @A := SUM(salary)
 FROM employee
 WHERE type=1;
 UPDATE payhistory SET summmary=@A WHERE type=1;
COMMIT;

Rollbacks issued against non-transactional tables will fail with the error ER_
WARNING_NOT_COMPLETE_ROLLBACK, but transaction-safe tables will be restored as
expected.

MySQL’s START TRANSACTION command does not allow setting the transaction
isolation level. You must first issue a SET TRANSACTION command to set the isolation
level.

Oracle
Oracle does not support the START TRANSACTION command. Transactions in Oracle
are started implicitly. Refer to the discussion of this platform in the previous section
for more information about how Oracle controls individual transactions.

PostgreSQL
PostgreSQL’s START TRANSACTION command has the following syntax:

START TRANSACTION [ISOLATION LEVEL {READ COMMITTED |
 READ UNCOMMITTED | REPEATABLE READ | SERIALIZABLE}
 {READ ONLY | READ WRITE}
 [NOT] DEFERRABLE]

where:

SQL Command Reference | 421

M
anip

ulating
Yo

ur D
ata

[NOT] DEFERRABLE

Allows a transaction to block when acquiring its snapshot, then run without
the overhead of a SERIALIZABLE transaction (well suited to backups and long-
running reports). The DEFERRABLE property has no effect unless the transaction
is also SERIALIZABLE and READ ONLY.

PostgreSQL also supports a synonym, BEGIN [WORK | TRANSACTION], which is
more commonly used than START TRANSACTION.

PostgreSQL normally runs in autocommit mode, where each data modification
statement or query is its own transaction. It applies an implicit COMMIT for any
transaction that completes without an error, and an implicit ROLLBACK for any
statement that fails. The BEGIN statement allows explicit COMMIT or ROLLBACK of a
transaction, which may then consist of multiple statements.

Manually coded transactions are much faster in PostgreSQL than autocommitted
transactions. SET TRANSACTION ISOLATION LEVEL SERIALIZABLE should be set just
after the BEGIN statement to bolster the transaction isolation level. PostgreSQL
allows many data modification statements (INSERT, UPDATE, DELETE) within a
BEGIN ... COMMIT block. However, when the COMMIT command is issued, either
all or none of the transaction is committed, depending on the success or failure of
the command.

BEGIN has a separate usage on database platforms that sup‐
port their own procedural languages (namely, Oracle and
SQL Server). On these platforms, BEGIN (without the key‐
word TRANSACTION), is used to mark a new block of proce‐
dural code. For this reason, you are advised to include the
TRANSACTION keyword for any transactions you write on Post‐
greSQL. Otherwise, you will face some complicated migration
issues should you ever move your code to Oracle or SQL
Server.

Following is an example of BEGIN TRANSACTION in PostgreSQL:

BEGIN TRANSACTION;
 INSERT INTO jobs(job_id, job_desc, min_lvl, max_lvl)
 VALUES(15, 'Chief Operating Officer', 185, 135)
COMMIT;

SQL Server
SQL Server supports the BEGIN TRANSACTION statement rather than the SQL stan‐
dard START TRANSACTION statement. It also supports extensions to the standard that
facilitate transaction backup and recovery, such as the WITH MARK clause. The syntax
is:

BEGIN TRAN[SACTION] [transaction_descriptor
 [WITH MARK ['log_descriptor']]]

422 | Chapter 5: Manipulating Your Data

where:

TRAN[SACTION]

Marks the beginning of a transaction.

transaction_descriptor

Identifies a transaction. This can be a name or string data type (CHAR, NCHAR,
VARCHAR, or NVARCHAR) variable of up to 32 characters in size. When working
with nested transactions, only name the outermost transaction.

WITH MARK 'log_descriptor'

Tells SQL Server to place a mark of name log_descriptor in the transaction
log, allowing it to restore a transaction log up to that point. In a sense, this
allows point-in-time recovery based on the name of the mark for databases set
to FULL recovery mode. WITH MARK must be used in conjunction with a named
transaction.

When nesting transactions, only the outermost BEGIN ... COMMIT or BEGIN ...
ROLLBACK pair should reference the transaction name (if it has one). In general, we
recommend avoiding nested transactions.

Here is a SQL Server set of INSERT statements, all performed as a single transaction:

BEGIN TRANSACTION
 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2003',25,
 'Net 60','BU7832')
 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2003',17,
 'Net 30','BU7832')
 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2003',6,
 'Net 15','BU7832')
COMMIT
GO

If for some reason any one of these INSERT statements had to wait for completion,
they would all have to wait, since they are treated as a single transaction.

The BEGIN TRANSACTION statement does not allow specifying the transaction isola‐
tion level; use SET TRANSACTION before issuing this command to do this.

See also

• COMMIT•

• ROLLBACK•

• SET TRANSACTION•

TRUNCATE TABLE Statement
The TRUNCATE TABLE statement was introduced in the SQL:2008 standard, but
all the databases discussed here supported it before it was incorporated into the
standard. It irrevocably removes all rows from a table without logging the individual
row deletes. It quickly erases all the records in a table without altering the table

SQL Command Reference | 423

M
anip

ulating
Yo

ur D
ata

structure, taking up little or no space in the redo logs or transaction logs. However,
since a truncate operation is not logged, the TRUNCATE TABLE statement cannot be
rolled back once it is issued.

Platform Command

MySQL/MariaDB Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL standard syntax
TRUNCATE TABLE table_name
[CONTINUE IDENTITY | RESTART IDENTITY]

Keywords

table_name

The name of any valid table within the current database or schema context.

CONTINUE IDENTITY | RESTART IDENTITY

If the table has an incrementing identity column, you can optionally specify
whether the incrementing should be restarted or should continue from the
previous incrementing number. With CONTINUE, new IDs will be assigned for
new data instead of overlapping with truncated data.

Rules at a glance
The TRUNCATE TABLE statement has the same effect on a table as a DELETE statement
with no WHERE clause; both erase all rows in a given table. However, there are some
important differences: TRUNCATE TABLE is faster and it is not logged, meaning it
cannot be rolled back if issued in error, and TRUNCATE TABLE does not activate
triggers, while the DELETE statement does.

This command should be issued manually. We strongly encourage you not to place
it into automated scripts or production systems that contain irreplaceable data. It
cannot be paired with transaction control statements such as START TRANSACTION,
COMMIT, or ROLLBACK.

Programming tips and gotchas
Because the TRUNCATE TABLE statement is not logged, it is generally used only in
development databases. Use it in production databases with caution!

424 | Chapter 5: Manipulating Your Data

We strongly advise that you do not write TRUNCATE TABLE
statements into the stored procedures or functions of a pro‐
duction application because most platforms do not log the
operation and cannot recover from an improperly issued
TRUNCATE statement.

The TRUNCATE TABLE command will fail if another user has a lock on the table at
the time the statement is issued. TRUNCATE TABLE does not activate triggers but will
work when they are present. However, it won’t work when foreign key constraints
are in place on a given table.

MySQL and MariaDB
MySQL and MariaDB support a basic format of the TRUNCATE TABLE statement.
Neither supports the CONTINUE/RESTART IDENTITY clause, but TRUNCATE TABLE

in MySQL/MariaDB is equivalent to TRUCATE TABLE RESTART IDENTITY. In both
cases, the word TABLE is optional. The MySQL syntax is:

TRUNCATE [TABLE] name

MariaDB supports an extension to the standard:

TRUNCATE [TABLE] name [WAIT n | NOWAIT]

Additionally, if SQL_MODE=Oracle is set in MariaDB, it supports the following
syntax:

TRUNCATE [TABLE] name [{DROP | REUSE} STORAGE]
[WAIT n | NOWAIT]

where:

{DROP | REUSE} STORAGE

Causes the disk space freed by the deleted rows to be deallocated (DROP), or
causes the space allocated to a table to remain allocated to that table, though
empty (REUSE).

WAIT n | NOWAIT

Instructs the database to wait n seconds for a lock table before canceling.
NOWAIT or WAIT 0 cancels immediately if a lock can’t be obtained immediately.

For more on the SQL_MODE setting, see the vendor documenta‐
tion and “Platform-Specific Extensions” on page 538.

MySQL achieves the result of a TRUNCATE TABLE command by dropping and
re-creating the affected table. Since MySQL stores each table in a file called

SQL Command Reference | 425

M
anip

ulating
Yo

ur D
ata

https://oreil.ly/w9Ipx
https://oreil.ly/w9Ipx

<table_name>.frm, the <table_name>.frm file must exist in the directory containing
the database files for the command to work properly.

For example, to remove all data from the publishers table:

TRUNCATE TABLE publishers

Oracle
Oracle allows a table or an indexed cluster (but not a hash cluster) to be truncated.
Oracle’s syntax is:

TRUNCATE { CLUSTER [owner.]cluster
 | TABLE [owner.]table [{PRESERVE | PURGE}
 MATERIALIZED VIEW LOG] }
[{DROP | REUSE} STORAGE]

TRUNCATE TABLE was first introduced by Oracle, and other platforms soon added
support for the statement. Oracle has added more features to this statement than are
commonly implemented by other vendors. The syntax elements are as follows:

CLUSTER | TABLE

Specifies whether an index cluster or a table will be truncated. An index cluster
is a physical construct that stores related rows of two tables next to each other
physically on disk to speed up joins by reducing I/O. The MATERIALIZED VIEW
LOG and STORAGE options are not available when truncating an index cluster.

{PRESERVE | PURGE} MATERIALIZED VIEW LOG

Maintains any snapshot logs when a master table is truncated (PRESERVE), or
clears out any snapshot logs (PURGE).

{DROP | REUSE} STORAGE

Causes the disk space freed by the deleted rows to be deallocated (DROP), or
causes the space allocated to a table to remain allocated to that table, though
empty (REUSE).

For example, this command erases all records in the table scott.authors:

TRUNCATE TABLE scott.authors
 PRESERVE MATERIALIZED VIEW LOG REUSE STORAGE

It also maintains the existing snapshot log and allows the table to keep and reuse the
storage space already allocated to it.

PostgreSQL
PostgreSQL fully supports the standard and adds additional options: a CASCADE |
RESTRICT clause, an ONLY clause, and the ability to specify more than one table to
truncate. The TABLE keyword is optional. The syntax is as follows:

426 | Chapter 5: Manipulating Your Data

TRUNCATE [TABLE] [ONLY] table_name [*][, ...]
[CONTINUE IDENTITY | RESTART IDENTITY]
[CASCADE | RESTRICT]

where:

[ONLY] table_name

Specifies the name (optionally schema-qualified) of a table to truncate. If ONLY
is specified before the table name, only that table is truncated. If ONLY is
not specified, the table and all its descendant tables (if any) are truncated.
Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included. One or more table names are allowed as long as
they are separated by commas.

CASCADE

Automatically truncates all tables that have foreign key references to any of the
named tables, or to any tables added to the group due to CASCADE.

RESTRICT

Aborts the command if any of the named tables have foreign key references
from tables that are not listed in the command. This is the default if neither
CASCADE nor RESTRICT is specified.

When no IDENTITY clause is specified, the default behavior is CONTINUE IDENTITY.
The IDENTITY clause applies to table columns specified using serial as well as those
defined using the GENERATED clause.

The following command erases all the records in the authors table on a PostgreSQL
database and also truncates all data in tables with a foreign key constraint to
authors:

TRUNCATE authors CASCADE;

SQL Server
SQL Server supports the standard except for CONTINUE IDENTITY | RESTART

IDENTITY. It also adds additional clauses for handling table partitions. The SQL
Server TRUNCATE TABLE syntax is as follows:

TRUNCATE TABLE table_name
[WITH (PARTITIONS ({partition_number_expression | range}
 [, ...n]))]

where:

WITH (PARTITIONS)

Specifies the numbered partitions to truncate or range of rows to be removed.
Only use this clause if your table is partitioned; otherwise, an error will be
generated. If the WITH PARTITIONS clause is not provided on a partitioned
table, the entire table will be truncated.

SQL Command Reference | 427

M
anip

ulating
Yo

ur D
ata

See also

• DELETE•

UPDATE Statement
The UPDATE statement changes existing data in a table. Use great caution when
issuing an UPDATE statement without a WHERE clause, since the statement then affects
every row in the entire table.

Platform Command

MySQL/MariaDB Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
UPDATE [ONLY] {table_name | view_name}
[FOR PORTION OF application_time_period_name
 FROM point_in_time_1 TO point_in_time_2]
[[AS] correlation_name]
SET { (column_name[, ...]) = [ROW] (val[, ...]) |
 {column_name = { ARRAY [array_val[, ...]] | DEFAULT |
 NULL | scalar_expression }[, ...]} |
 ROW = row_expression }
[WHERE search_condition | WHERE CURRENT OF cursor_name]

Keywords

ONLY

Restricts cascading of the updated values to any subtables of the target table or
view. ONLY affects only typed (object-oriented) tables and views. If used with a
non-typed table or view, it causes an error.

table_name | view_name

Specifies the target table or view of the UPDATE statement. You need appropriate
permissions on the target, according to the rules of the platform. Updates
against views often have special rules. Generally, it is advisable to perform an
UPDATE against a view only if the view is representative of a single table.

FOR PORTION OF application_time_period_name FROM point_in_time_1 TO

point_in_time_2

This clause can only be used for system-versioned tables with time periods
defined. application_time_period_name identifies the time period that will be
used for filtering. point_in_time_1 defines the beginning of the time period
and point_in_time_2 defines the end.

428 | Chapter 5: Manipulating Your Data

[AS] correlation_name

An alias for the table_name that should be used in the search_condition.

SET

Assigns a specific value to a column or row.

(column_name[, ...]) = [ROW] (val[, ...]) | column_name = {ARRAY

[array_val[, ...] | DEFAULT | NULL | scalar_expression }[, ...]

Allows you to set new values for the specified column(s), as in SET (column1,
column2) = ('foo', 'foo2'). You can update as many columns as you like
in one statement, though you cannot update the same column more than once
in a single statement and the order of your column list has to match the
order of your value list. There should be exactly the same number of columns
specified as there are values. ARRAY [array_val[, ...] assigns the column
to an array value or to an empty array (using ARRAY[]). This behavior is not
widely supported by DBMS platforms. DEFAULT sets the column to its default
value, as defined by a DEFAULT specification. NULL sets the column to NULL.
scalar_expression sets the column to any single value expression, such as a
literal string or numeric value, a scalar function, or a scalar subquery.

ROW = row_expression

Used to set a value for each and every column in the table, as in SET ROW =
ROW('foo', 'bar'). Mutually exclusive with SET column_name. This behavior
is not widely supported by DBMS platforms.

WHERE search_condition

Defines search criteria for the UPDATE statement using the search_condition
to ensure that only the target rows are updated. Any legal WHERE clause is
acceptable. Typically, these criteria are evaluated against each row of the table
before the update is applied. If the search condition is a subquery, the subquery
is executed on each row, which is potentially a long-running process.

WHERE CURRENT OF cursor_name

Restricts the UPDATE statement to the current row of a defined and opened
cursor called cursor_name.

Rules at a glance
The UPDATE statement can be used to modify the values of one or more columns of a
table or view at a time. Typically, you will update the values in one or more rows at a
time. The new values must be scalar (except in row expressions and arrays). That is,
a given field/column must have a single, constant value at the time the transaction is
executed, though it can be literal or derived from a function call or subquery.

A basic UPDATE statement without a WHERE clause looks like this:

UPDATE authors
SET contract = 0

SQL Command Reference | 429

M
anip

ulating
Yo

ur D
ata

This example sets the contract status of all authors in the authors table to 0
(meaning they don’t have contracts anymore). Similarly, values can be adjusted
mathematically with an UPDATE statement:

UPDATE titles
SET price = price * 1.1

This UPDATE statement would increase all book prices by 10%.

You can also set multiple values in one statement, as shown here, where we set all
author last names and first names to uppercase letters:

UPDATE authors SET au_lname = UPPER(au_lname),
 au_fname = UPPER(au_fname);

Adding a WHERE clause to an UPDATE statement allows records in the table to be
modified selectively:

UPDATE titles
SET type = 'pers_comp',
 price = (price * 1.15)
WHERE type = 'popular_com';

This query makes two changes to any record of the type 'popular_com': it increases
the price by 15% and alters the type to 'pers_comp'.

The preceding query can alternatively be written in a column list = value list format
as follows:

UPDATE titles
SET (type, price) = ('pers_comp', (price * 1.15))
WHERE type = 'popular_com';

You can also invoke functions or subqueries to derive the values used in an UPDATE
statement. In some cases, you may wish to update the specific row that is being pro‐
cessed by a declared and open cursor. The following example shows both concepts:

UPDATE titles SET ytd_sales = (SELECT SUM(qty)
 FROM sales
 WHERE title_id = 'TC7777')
WHERE CURRENT OF title_cursor;

This query assumes that you have declared and opened a cursor named title_cursor
and that it is processing titles with IDs of 'TC7777'.

Sometimes you need to update values in a given table based on the values stored
in another table. For example, if you need to update the publication date for all the
titles written by a certain author, you might find the author and a list of their titles
first through subqueries:

UPDATE titles
SET pubdate = 'Jan 01 2022'
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor

430 | Chapter 5: Manipulating Your Data

 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))

Programming tips and gotchas
The UPDATE statement alters values in existing records of a table or view. If you
update a view, the view should include all necessary (NOT NULL) columns, or else the
statement may fail. Columns with a DEFAULT value can usually be safely omitted.

The SET ROW clause is not widely supported among DBMS platforms and should
be avoided. The WHERE CURRENT OF clause is more commonly implemented, but it
must be used in conjunction with a cursor. Make sure you understand the use and
functionality of cursors before using this clause.

In an interactive user session, it is good practice to issue a SELECT statement using
the same WHERE clause before issuing the actual UPDATE statement. This precaution
enables you to check all rows in the result set before actually performing the UPDATE,
helping ensure that you don’t alter anything you don’t mean to alter.

MySQL and MariaDB
MySQL supports the SQL standard UPDATE statement with a few variations, includ‐
ing the LOW PRIORITY clause, the IGNORE clause, and the LIMIT clause and the ability
to reference multiple tables:

UPDATE [LOW PRIORITY] [IGNORE] table_references
SET [table_alias.]column_name = {scalar_expression}
 [, ...]
WHERE search_conditions
[ORDER BY column_name1 [{ASC | DESC}][, ...]]
[LIMIT int]

MariaDB supports all of MySQL’s syntax plus a partitioning clause and the SQL
standard FOR PORTION OF clause. Its UPDATE syntax is as follows:

UPDATE [LOW PRIORITY] [IGNORE] table_references
[PARTITION (partition_list)]
[FOR PORTION OF application_time_period_name
 FROM point_in_time_1 TO point_in_time_2]
SET [table_alias.]column_name = {scalar_expression}
 [, ...]
WHERE search_conditions
[ORDER BY column_name1 [{ASC | DESC}][, ...]]
[LIMIT int]

The parameters are:

SQL Command Reference | 431

M
anip

ulating
Yo

ur D
ata

table_references

Lists one or more tables that can be used in the search_conditions and
SET operations. It also allows for JOIN clauses and subqueries in the table
references.

LOW PRIORITY

Tells the database to delay the execution of the UPDATE statement until no other
client is reading from the table.

IGNORE

Tells the database to ignore any duplicate key errors generated by PRIMARY KEY
and UNIQUE constraints. However, only records that don’t generate such errors
will be updated.

ORDER BY

Tells the database to update the rows in the specified order (ascending or
descending) of the columns specified.

LIMIT int

Restricts the UPDATE action to a specific number of rows, as designated by the
int value.

MySQL and MariaDB support DEFAULT value assignment in both the INSERT state‐
ment and the UPDATE statement.

The following UPDATE increases all prices in the titles table by 1:

UPDATE titles SET price = price + 1;

The next example limits the UPDATE to the first 10 records encountered in the titles
table, according to title_id. Also, the value of price is updated twice. Those two
updates of price are assessed from left to right. First the price is doubled, and then it
is increased by 1:

UPDATE titles
SET price = price * 2,
 price = price + 1
ORDER BY title_id
LIMIT 10;

Oracle
The Oracle implementation of UPDATE allows updates against views, materialized
views, subqueries, and tables in an allowable schema:

UPDATE [ONLY]
 { [schema.]{view_name | materialized_view_name |
 table_name}
 [@database_link] [alias]
 {[PARTITION (partition_name)] |
 [SUBPARTITION (subpartition_name)]}
 | subquery [WITH { [READ ONLY] |

432 | Chapter 5: Manipulating Your Data

 [CHECK OPTION [CONSTRAINT constraint_name]] }]
 | [TABLE (collection_expression_name) [(+)]] }
SET {column_name1[, ...]} = {expression[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 {column_name2[, ...]} = {expression[, ...] | subquery} |
 VALUE [(alias)] = {value | (subquery)},
 [, ...]
{WHERE search_conditions | CURRENT OF cursor_name}
[RETURNING expression[, ...] INTO variable[, ...]]
[LOG ERRORS
 [INTO [schema.]table]
 [(simple_expression)]
 [REJECT LIMIT { int | UNLIMITED }]]

where:

ONLY

Tells Oracle not to update rows from any subviews. Applies only to views that
belong to a hierarchy.

materialized_view_name

Applies the UPDATE statement to a preexisting snapshot.

@database_link

Applies the UPDATE statement to a view or table on a remote server made
available through a preexisting database link.

alias

Specifies an alias for the table being updated. Oracle allows table aliases, but it
does not support the AS keyword with UPDATE statements. Aliases can also be
supplied for the VALUE clause of an UPDATE statement.

PARTITION

Applies the update to a named partition, rather than to an entire table. You are
not required to name a partition when updating a partitioned table, but doing
so can, in many cases, help reduce the complexity of your WHERE clause.

SUBPARTITION

Applies the update to a named subpartition, rather than to an entire table.

WITH READ ONLY

Specifies that the subquery cannot be updated. In some cases, an UPDATE
transaction may actually alter the records used in a subquery. The WITH READ
ONLY clause prevents this from happening.

WITH CHECK OPTION

Tells Oracle to abort any changes to the updated table that would not appear in
the result set of the subquery.

CONSTRAINT

Tells Oracle to further restrict changes based upon a specific constraint.

SQL Command Reference | 433

M
anip

ulating
Yo

ur D
ata

SET VALUE

Allows you to set the entire row value for any TABLE data type. The SET VALUE
clause is very similar to the SQL standard SET ROW clause. You can also specify
a subquery that retrieves all values needed by the SET VALUE clause.

RETURNING

Retrieves the rows affected by the command, whereas UPDATE normally only
shows the number of rows updated. When used for a single-row update, the
values of the row can be stored in PL/SQL variables and bind variables. When
used for a multi-row delete, the values of the rows are stored in bind arrays.

INTO

Indicates the variables into which the values brought back by the RETURNING
clause should be stored.

LOG ERRORS INTO [schema.]table

Specifies the name of the error-logging table.

REJECT LIMIT { int | UNLIMITED }

Specifies the upper limit of errors to log before the statement terminates or
rolls back.

Oracle has some important rules about issuing UPDATE statements:

• UPDATE statements are not allowed against tables or the base tables of views•
containing a domain index with a status of FAILED or IN PROGRESS. UPDATE
statements are also not allowed against any table that has an index partition
with a status of UNUSABLE. (You can avoid the index partition problem by
setting the SKIP_UNUSABLE_INDEXES session parameter to TRUE.)

• Updates against views can be problematic if a view’s defining query contains•
a join, an aggregate function, a set operator, the DISTINCT keyword, an ORDER
BY clause, a GROUP BY clause, a CONNECT BY clause, a START WITH clause, an
analytical function, a collection expression, or a subquery. (Under these cir‐
cumstances, you can use an INSTEAD OF trigger to update the tables underlying
a view.)

The following code snippets show some examples of the extensions that Oracle
offers to the UPDATE statement. To begin with, assume that the sales table has
grown into a large partitioned table. You can update a specific partition using the
PARTITION clause. For example:

UPDATE sales PARTITION (sales_yr_2004) s
 SET s.payterms = 'Net 60'
WHERE qty > 100;

You can also use the SET VALUE clause to supply a new value for each column in the
row identified by the WHERE clause:

434 | Chapter 5: Manipulating Your Data

UPDATE big_sales bs
 SET VALUE(bs) = (SELECT VALUE(s) FROM sales s
 WHERE bs.title_id = s.title_id
 AND bs.stor_id = s.stor_id)
WHERE bs.title_id = 'TC7777';

You can return values for review after an update by using the RETURNING clause.
The following example updates one row, placing the updated values into PL/SQL
variables:

UPDATE employee
SET job_id = 13, job_level = 140
WHERE last_name = 'Josephs'
RETURNING last_name, job_id
INTO :var1, :var2;

You can also log errors to a table:

UPDATE employee
SET job_id = 13, job_level = 140
WHERE last_name = 'Josephs'
LOG ERRORS INTO errlog ('job_id job_level failure')
REJECT LIMIT 10;

PostgreSQL
PostgreSQL supports the SQL-standard UPDATE syntax with a couple of small varia‐
tions: it provides an additional FROM clause and RETURNING clause, and although it
supports an array functionality, it does not support the ARRAY keyword. PostgreSQL
also supports the UPDATE statement within a common table expression. If the UPDATE
is not the final query, then it must have a RETURNING clause. PostgreSQL’s UPDATE
syntax is:

[WITH [RECURSIVE] select_clause[, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
SET {{column_name = { ARRAY [array_val[, ...]] | DEFAULT |
 NULL | scalar_expression },
 column_name = { ARRAY | DEFAULT |
 NULL | scalar_expression }
 [, ...]}
 | (column_name[, ...]) = [ROW](val[, ...])
SET { column_name = {expression | DEFAULT} |
 (column_name[, ...]) = [ROW](val[, ...]) |
 {column_name[, ...]) = (subquery) }[, ...])
[FROM expression[, ...])]
[WHERE search_condition | WHERE CURRENT OF cursor_name]
[returning_clause]

Most of the syntax elements are the same as in the SQL standard. The only nonstan‐
dard elements are:

SQL Command Reference | 435

M
anip

ulating
Yo

ur D
ata

FROM

Provides the ability to build highly selective join-based criteria when determin‐
ing which rows to update. FROM is not needed when only one table (the target
table) is used to determine the rows to be updated.

returning_clause

Provides the ability to return changed values or values from joined tables. Refer
to “RETURNING Clause” on page 403 for details.

In the following example, we want to update job_lvl for employees who have a
job_id of 12 and a min_lvl of 25. We could do this with a large, complex subquery,
or we could use the FROM clause to enable us to build a join:

UPDATE employee As e
SET job_lvl = 80
FROM jobs As j
WHERE e.job_id = j.job_id
AND j.job_id = 12
AND j.min_lvl = 25;

SQL Server
SQL Server supports most of the basic components of the SQL standard UPDATE
statement, but it does not support the ONLY and ARRAY keywords, nor does it support
an array update functionality. However, SQL Server has extended the capabilities of
UPDATE by adding table hints using the WITH clause, query hints using the OPTION
clause, as well as more robust variable handling, as follows:

[WITH cte_query[,...]]
UPDATE {table_name | view_name | rowset}
[WITH (table_hint1, table_hint2[, ...])]
SET {column_name = {DEFAULT | NULL | scalar_expression}
 | variable_name = scalar_expression
 | variable_name = column_name = scalar_expression}[, ...]
[OUTPUT expression INTO {@table_variable | output_table}
 [(column_list[, ...])]]
[FROM {table1 | view1 | nested_table1 | rowset1}[, ...]]
 [AS alias]
[JOIN {table2[, ...]}]
WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}
[OPTION (hint1, hint2[, ...])]

where:

WITH (table_hint1, table_hint2[, ...])

Allows the use of table hints to override the default behavior of the query
optimizer. Since the query optimizer is quite good at choosing query plans, use
hints only with a deep understanding of the tables, indexes, and data affected
by the operation. Without this understanding, including hints could result in a
decrease rather than an increase in performance.

436 | Chapter 5: Manipulating Your Data

variable_name

SQL Server variables must be declared prior to the UPDATE statement, in
the form DECLARE @variable. The construct SET @variable = column1 =
expression1 sets a variable to the final value of an updated column, whereas
SET @variable = column1, column1 = expression sets the variable to the
value of the column before execution of the UPDATE statement.

FROM

Provides the ability to build highly selective join-based criteria when determin‐
ing which rows to update. FROM is not needed when only one table (the target
table) is used to determine the rows to be updated.

AS alias

Allows you to assign an easy-to-use alias to the table, view, nested table sub‐
query, or rowset function.

JOIN

Provides the ability to use SQL standard syntax for joined tables, in conjunc‐
tion with the FROM clause.

GLOBAL

A slight variation on the SQL standard’s WHERE CURRENT OF clause. The clause
WHERE CURRENT OF cursor_name, when used in combination with a cursor,
directs SQL Server to update only the single record where the cursor is cur‐
rently positioned. The cursor is assumed to be a local cursor, but it can be
designated a global cursor by using the keyword GLOBAL.

OPTION (hint1, hint2[, ...])

Allows the use of query hints to override the default behavior of the query
optimizer. As in the WITH clause, which uses table hints, use query hints only
if you have a deep understanding of the tables, indexes, and data affected by
the operation. Without this understanding, including hints could result in a
decrease rather than an increase in performance.

The primary extension to the SQL standard that SQL Server offers in an UPDATE
statement is a FROM clause. This FROM clause allows the use of the JOIN statement
to make it especially easy to update rows in the target table by correlating rows
declared in the FROM clause with the rows updated by the UPDATE table_name
component of the statement. The following example shows an update using the SQL
standard style and a rather cumbersome subquery, followed by an update using SQL
Server’s FROM clause extension to update the result of a table join. Both statements
accomplish the same work, but in very different ways:

-- SQL standard style
UPDATE titles
SET pubdate = GETDATE()
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor

SQL Command Reference | 437

M
anip

ulating
Yo

ur D
ata

 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))
-- SQL Server style
UPDATE titles
SET pubdate = GETDATE()
FROM authors AS a
JOIN titleauthor AS t2 ON a.au_id = t2.au_id
WHERE t2.title_id = titles.title_id
 AND a.au_lname = 'White'

Performing this update using the SQL Server style is simply a matter of joining two
tables—authors and titleauthor—to the titles table. To perform the same operation
using SQL standard–compliant code, the au_id in author must first be found and
passed up to the titleauthors table, and then the title_id must be identified and
passed up to the main UPDATE statement.

The following example updates the state column for the first 10 authors from the
authors table:

UPDATE authors
SET state = 'ZZ'
FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1
WHERE authors.au_id = t1.au_id

The important thing to note about this example is that it is normally difficult to
update the first n records in an UPDATE statement, unless there is some explicit row
sequence you can identify in the WHERE clause. However, the nested table subquery
in the FROM clause uses a TOP keyword to return the first 10 records, thereby saving a
lot of added programming that would otherwise be required.

See also

• DECLARE CURSOR in Chapter 9•

• JOIN in Chapter 4•

• RETURNING•

• SELECT in Chapter 4•

• WHERE in Chapter 4•

• WITH in Chapter 4•

438 | Chapter 5: Manipulating Your Data

6
Securing Your Data

In this chapter, we will discuss the SQL commands that enable DBAs and develop‐
ers to permit or disable access to data, objects, and execution permissions within
the database, as well as several commands that provide a higher level of control over
the runtime characteristics of a worker session. These statements, particularly GRANT
and REVOKE, make up the core of the data control language (DCL) category within
the SQL standard.

There are some variations between vendors in terms of which statements they clas‐
sify as DCL statements, and not all of them use that name. For example, SQL Server
includes a DENY statement that implements a subset of the behavior of the SQL
standard’s REVOKE statement (as explained in “REVOKE Statement” on page 475),
and MySQL categorizes GRANT and REVOKE as database administration statements
and does not use the term DCL.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support” on page 440.1.
2. Check Table 6-1.2.
3. Look up the specific SQL statement, check the syntax, and read the “Keywords,”3.

“Rules at a glance,” and “Programming tips and gotchas” sections. Do this even
if you are looking for a specific platform implementation.

4. Finally, read the platform-specific implementation information.4.

You will note that the entry for a given platform implementation does not duplicate
information on any clauses that do not differ from the standard. So, it is possible

439

that you will need to flip between the descriptions for a vendor variation and the
SQL standard to cover all possible details of that command.

In our discussions of MySQL, we will also include MariaDB, a fork of MySQL.
For the most part, MySQL and MariaDB provide fully code-compatible syntax. In
these cases we will refer to them collectively as MySQL. We will explicitly mention
MariaDB only in situations where it deviates from MySQL in an important way.

SQL Platform Support
Table 6-1 provides a listing of the SQL statements discussed in this chapter, the
platforms that support them, and the degree to which they are supported. The
following list offers useful tips for reading Table 6-1, as well as an explanation of
what each abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.1.
2. The SQL statement class for each command is indicated in the second column.2.
3. The subsequent columns list the level of support for each vendor:3.

Supported (S)
The platform supports the SQL standard for the particular command.

Supported, with variations (SWV)
The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

Supported, with limitations (SWL)
The platform supports some but not all of the functions specified by the
SQL standard for the particular command.

Not supported (NS)
The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail. Remember
that even if a specific SQL command is listed in the table as “Not supported,” the
platform usually has alternative coding or syntax to enact the same command or
function. Therefore, be sure to read the discussion and examples for each command
later in this chapter.

Table 6-1. Alphabetical quick SQL command reference

SQL Statement SQL class MySQL/
MariaDB

Oracle PostgreSQL SQL Server

CONNECT SQL-connection NS SWL SWL SWV

CREATE ROLE SQL-schema SWL SWV SWV SWL

GRANT SQL-schema SWV SWV SWV SWV

440 | Chapter 6: Securing Your Data

SQL Statement SQL class MySQL/
MariaDB

Oracle PostgreSQL SQL Server

REVOKE SQL-schema SWV SWV SWV SWV

SET CONNECTION SQL-connection NS NS S SWL

SET CONSTRAINTS SQL-connection NS S S NS

SET PATH SQL-session NS NS NS NS

SET ROLE SQL-session NS SWV SWV NS

SET SCHEMA SQL-session NS NS S NS

SET SESSION AUTHORIZATION SQL-session NS NS S NS

SET TIME ZONE SQL-session SWL SWV SWL NS

SET TRANSACTION SQL-session SWV SWL S SWV

SQL Command Reference
CONNECT Statement
The CONNECT statement establishes a connection to the DBMS and to a specific
database within the DBMS under a predefined user context.

Platform Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

SQL standard syntax
CONNECT TO [DEFAULT | {[server_name] [AS connection_name]
 [USER user_name]}]

Keywords

DEFAULT

Initiates a default session with the server, with the current database and the
default user authorization. The standard specifies that CONNECT TO DEFAULT
is issued implicitly if you start a SQL session without first issuing a CONNECT
statement.

server_name

An implementation-defined string that points to the database server instance
to which the connection will be made. server_name may be a string literal
enclosed in single quotes or a host variable.

SQL Command Reference | 441

Securing
 Yo

ur
D

ata

AS connection_name

Establishes a connection with the name connection_name, which may be a
string literal enclosed in single quotes or a host variable. This is optional
only for the first connection attached to a server; all subsequent sessions must
include the AS clause. This is useful for telling user connections apart when
many users (or perhaps even a single user) have many open sessions on a given
server_name.

USER user_name

Specifies the user_name under which to establish the connection to the named
server.

Rules at a glance
Issue the CONNECT statement to open an interactive SQL working session with a
DBMS. The period between issuing the CONNECT and DISCONNECT statements is
commonly called a session. Typically, you will complete all work on a DBMS during
an explicitly invoked session.

If you do not specify the server name, the connection name, or the username,
the DBMS will provide default values for you. The defaults vary from platform to
platform.

To connect to the houston server under the user ID pubs_admin, you might issue the
command:

CONNECT TO houston USER pubs_admin

If the DBMS requires named connections, you might use the following alternative
syntax:

CONNECT TO houston USER pubs_admin
 AS pubs_administrative_session;

Or if you want just a simple, short-term connection, you might use the default:

CONNECT TO DEFAULT;

Programming tips and gotchas
If the CONNECT statement is invoked before the previous session has been explicitly
disconnected, the old session becomes dormant and the new session becomes
active. You can then switch between connections using the SET CONNECTION state‐
ment, described later in this chapter.

MySQL
MySQL does not support the CONNECT statement.

442 | Chapter 6: Securing Your Data

Oracle
The CONNECT statement in Oracle allows a database connection under a specific
username. Alternatively, a connection can be established for special privileges with
AS SYSOPER or AS SYSDBA. The Oracle syntax is:

CONN[ECT] [[logon | / | proxy] [AS role]]

where:

CONN[ECT] [logon | / | proxy]

Establishes a connection to the database instance using the specified cre‐
dentials. If you omit the username and/or password or enter a slash (/),
Oracle prompts you for them. proxy has the syntax proxyuser[username]
[password]; the username and the brackets around it are required, but the
password is optional (if you do not provide it, you will be prompted for it).

AS role

Optionally establishes the connection as the specified system role, enabling
special privileges. role can be one of SYSASM, SYSBACKUP, SYSDBA, SYSDG,
SYSOPER, SYSRAC, or SYSKM.

If another connection is already open, CONNECT commits any open transactions,
closes the current session, and opens the new one.

Oracle also allows the CONNECT statement in its SQL*Plus and
iSQL*Plus tools. SQL*Plus uses the CONNECT command some‐
what differently: to connect a user to a specific schema.

PostgreSQL
PostgreSQL allows the use of the CONNECT statement when defining a user connec‐
tion to a database for embedded SQL only (e.g., inside a C program), using the
following syntax:

EXEC SQL CONNECT TO target_name [AS connection_name]
USER {login_name[.password] | $integrated}

where:

CONNECT TO target_name

Specifies the server and database to which you want to connect. You may
use a variety of expressions to declare the target, such as database_name[@host
name][:port] with or without prefixes for TCP (tcp:postgresql://…) or Unix
(unix:postgresql://…), the keyword DEFAULT (to connect to the default database
under the default username), a variable, or a SQL string literal.

SQL Command Reference | 443

Securing
 Yo

ur
D

ata

AS connection_name

Names the connection with an alphanumeric string of up to 30 characters in
length. Symbols are allowed, except for hyphens (-), but the first character
must be a letter. CURRENT and ALL are reserved and may not be used for a
connection_name. You need only define connection names when making more
than one connection.

USER {login_name[.password] | $integrated}

Connects the session under the login_name specified using either the password
provided or Windows integrated security. The password is optional when sup‐
plying a login name.

When using psql, the command-line client shipped with PostgreSQL, use the \c or
\connect switch, which has the following syntax:

\c or \connect
[-reuse-previous=on|off]
[dbname [user_name] [host] [port] | conninfo]

where:

-reuse-previous
Denotes whether to use previous connections settings if the setting is not
explicitly overwritten by this connections setting. This is set to on by default.

dbname

Specifies the name of the database to connect to on the current connected
server if no further arguments are specified.

user_name

Specifies the login role to connect as.

host

Specifies the host server name or IP address. Defaults to local when not
specified.

port

Specifies the port the service runs under. Defaults to 5432 if there is a host
specified and no port.

conninfo

Specifies the connection string used for the connection.

For example, in psql you could switch to a different database (here, nutshell) under
the same logged-in role with the following command:

\c nutshell

444 | Chapter 6: Securing Your Data

https://oreil.ly/gA7GB

SQL Server
SQL Server supports the basic elements of the CONNECT statement within embedded
SQL (inside C++ or Visual Basic programs), with the following syntax:

CONNECT TO [server_name.]database_name [AS connection_name]
USER {login_name[.password] | $integrated}

where:

CONNECT TO [server_name.]database_name

Specifies the server and database to which you want to connect. You may leave
off the server_name if you wish to default to the local server.

AS connection_name

Names the connection with an alphanumeric string of up to 30 characters in
length. Symbols are allowed, except for hyphens (-), but the first character
must be a letter. CURRENT and ALL are reserved and may not be used for a
connection_name. You need only define connection names when making more
than one connection.

USER {login_name[.password] | $integrated}

Connects the session under the login_name specified using either the password
provided or Windows integrated security. The password is optional when sup‐
plying a login name.

For example, we can connect to the server named new_york as the Windows user
pubs_admin as follows:

CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under SQL Server standard security:

EXEC SQL CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under Windows integrated security:

EXEC SQL CONNECT TO new_york.pubs USER $integrated

To switch to a different connection, use the SET CONNECTION statement.

See also

• SET CONNECTION•

CREATE ROLE Statement
CREATE ROLE allows the creation of a named set of privileges that may be assigned to
users of a database. When a role is granted to a user, that user gets all the privileges
and permissions of that role at the database level. Roles are generally accepted as
one of the best means for maintaining security and controlling privileges within a
database.

SQL Command Reference | 445

Securing
 Yo

ur
D

ata

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL standard syntax
CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords

CREATE ROLE role_name

Creates a new role and differentiates that role from a host DBMS user and
other roles. A role can be assigned any permission that a user can be assigned.
The important difference is that a role can then be assigned to one or more
users, thus giving them all the permissions of that role.

WITH ADMIN {CURRENT_USER | CURRENT_ROLE}

Assigns a role immediately to the currently active user or currently active role
along with the privilege to pass the use of the role on to other users. The
statement defaults to WITH ADMIN CURRENT_USER.

Rules at a glance
Using roles for database security can greatly ease administration and user mainte‐
nance. The general steps for using roles in database security are:

1. Assess the needs for roles and pick the role names (e.g., administrator, man‐1.
ager, data_entry, report_writer, etc.).

2. Assign permissions to each role as if it were a standard database user, using2.
the GRANT statement. For example, the manager role might have permission to
read from and write to all user tables in a database, while the report_writer
role might only have permission to execute read-only reports against certain
reporting tables in the database.

3. Use the GRANT statement to grant roles to users of the system according to the3.
types of work they will perform.

Permissions can be disabled using the REVOKE command.

Programming tips and gotchas
The main problem with roles is that occasionally a database administrator will
provide redundant permissions to a role and separately to a user. If you ever need to
prevent a user’s access to a resource in situations like this, you usually will need to

446 | Chapter 6: Securing Your Data

REVOKE the permissions twice: the role must be revoked from the user, and then the
specific user-level privilege must also be revoked from the user.

MySQL
MySQL supports a variation of the CREATE ROLE statement. It does not support
the WITH ADMIN clause but does offer an IF NOT EXISTS extension that causes
the statement to produce a warning (instead of raising an error and rolling the
statement back) if you try to create a role that already exists. Its syntax is as follows:

CREATE ROLE [IF NOT EXISTS] role_name[, role_name2, ..]|

For example:

CREATE ROLE IF NOT EXISTS 'admins', 'read_only';

You can also specify a hostname, for example if you want the role to apply only to
users connecting from the local server:

CREATE ROLE 'admins'@'localhost';

When the hostname is omitted it defaults to @'%', which means connection from
anywhere.

Additionally, MySQL provides a SET DEFAULT ROLE statement that defines which
roles become active for a given user when they connect to the server:

SET DEFAULT ROLE role_name[, role_name2, ...] TO user_name

Oracle
Oracle supports the concept of roles, though its implementation is very different
from the SQL standard’s. It also offers an ALTER ROLE statement that is not currently
supported by the SQL standard. The syntax is as follows:

{CREATE | ALTER} ROLE role_name
 [NOT IDENTIFIED |
 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |
 USING package_name}]

where:

{CREATE | ALTER} ROLE role_name

Identifies the name of the new role being created or the preexisting role being
modified.

NOT IDENTIFIED

Declares that no password is needed for the role to receive authorization to the
database. This is the default.

IDENTIFIED

Declares that the users of the role must authenticate themselves by the method
indicated before the role is enabled via the SET ROLE command, where:

SQL Command Reference | 447

Securing
 Yo

ur
D

ata

BY password

Creates a local role authenticated by the string value of password. Only single-
byte characters are allowed in the password, even when using a multibyte
character set.

EXTERNALLY

Creates an external role that is authenticated by the operating system or a
third-party provider. In either case, the external authentication service will
likely require a password.

GLOBALLY

Creates a global role that is authenticated by an enterprise directory service,
such as an LDAP directory.

USING package_name

Creates an application role that enables a role only through an application
that uses a PL/SQL package of package_name. If you omit the schema, Oracle
assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as if
it were a user via the GRANT command. When users want to get access to the
permissions of a role protected by a password, they use the SET ROLE command.
If a password is placed on the role, any user wishing to access it must provide the
password with the SET ROLE command.

Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are
available in all versions of Oracle. EXP_FULL_DATABASE and IMP_FULL_DATABASE are
newer roles used for import and export operations. See the discussion of Oracle
in “GRANT Statement” on page 451 for further details on the preconfigured roles
available in Oracle.

The following example uses CREATE to specify a new role in Oracle, grants it privi‐
leges, assigns it a password with ALTER ROLE, and grants the new role to a couple of
users:

CREATE ROLE boss;
GRANT ALL ON employee TO boss;
GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;
ALTER ROLE boss IDENTIFIED BY le_grand_fromage;
GRANT boss TO emily, jake;

PostgreSQL
PostgreSQL supports both the ALTER and CREATE ROLE statements, and it offers a
nearly identical extension of its own called ALTER/CREATE GROUP. The CREATE ROLE
WITH LOGIN statement is equivalent to the PostgreSQL-specific CREATE USER and
is the recommended way of creating new users. The PostgreSQL syntax for CREATE/
ALTER ROLE follows:

448 | Chapter 6: Securing Your Data

{CREATE | ALTER} ROLE name
[[WITH] [[NO]SUPERUSER] [[NO]CREATEDB] [[NO]CREATEUSER] [[NO]INHERIT]
[[NO]LOGIN]
 [CONNECTION LIMIT int]
 [{ENCRYPTED | UNENCRYPTED} PASSWORD 'password']
 [VALID UNTIL 'date_and_time'] [IN ROLE rolename[, ...]]
 [IN GROUP groupname[, ...]] [ROLE rolename[, ...]]
 [ADMIN rolename[, ...]] [USER rolename[, ...]] [...]]
[RENAME TO new_name]
[SET parameter {TO | =} {value | DEFAULT}]
[RESET parameter]

where:

{CREATE | ALTER} ROLE name

Specifies the new role to create or the existing role to modify, where name is the
name of the role to create or modify.

[NO]SUPERUSER

Specifies whether the role is a superuser or not. The superuser may override all
access restrictions within the database. NOSUPERUSER is the default.

[NO]CREATEDB

Specifies whether the role may create databases or not. NOCREATEDB is the
default.

[NO]CREATEROLE

Specifies whether the role may create new roles and alter or drop other roles.
NOCREATEROLE is the default.

[NO]CREATEUSER

Specifies whether the role may create a superuser. This clause is deprecated in
favor of [NO]SUPERUSER.

[NO]INHERIT

Specifies whether the role inherits the privileges of the roles of which it is a
member. A role with INHERIT automatically may use the privileges that are
granted to the roles of which it is (directly or indirectly) a member. INHERIT is
the default.

[NO]LOGIN

Specifies whether the role may log in. With LOGIN, a role is essentially a user.
With NOLOGIN, a role provides a mapping to specific database privileges but is
not an actual user. The default is NOLOGIN.

CONNECTION LIMIT int

Specifies how many concurrent connections a role can make, if it has LOGIN
privileges. The default is −1; that is, unlimited.

SQL Command Reference | 449

Securing
 Yo

ur
D

ata

{ENCRYPTED | UNENCRYPTED} PASSWORD 'password'

Sets a password for the role, if it has LOGIN privileges. The password may be
stored in plain text (UNENCRYPTED) or encrypted in MD5-format in the system
catalogs (ENCRYPTED). Older clients may not support MD5 authentication, so be
careful.

VALID UNTIL 'date_and_time'

Sets a date and time when the role’s password will expire, if it has LOGIN
privileges. When omitted, the default is no time limit.

IN ROLE, IN GROUP

Specifies one or more existing roles (or groups, though this clause is depre‐
cated) of which the role is a member.

ROLE, GROUP

Specifies one or more existing roles (or groups, though this clause is depre‐
cated) that are automatically added as members of the new or modified role.

ADMIN rolename

Similar to the ROLE clause, except new roles are given the right to grant mem‐
bership in this role to others.

USER username

Equivalent to the ROLE clause WITH LOGIN. This is a deprecated clause that is
still accepted for backward compatibility.

[RENAME TO new_name]

Renames an existing role to a new name.

[SET parameter {TO | =} {value | DEFAULT}], [RESET parameter]

Sets a configuration parameter, or resets a configuration parameter to the
default value. Configuration parameters are fully detailed within PostgreSQL’s
documentation.

Use the DROP ROLE clause to drop a role you no longer want.

SQL Server
SQL Server supports ALTER and CREATE ROLE statements, as well as equivalent
capabilities via the system stored procedure sp_add_role. It does not support the
WITH ADMIN clause. SQL Server’s syntax is as follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]

ALTER ROLE existing_role_name
 { WITH NAME = role_name_new | ADD MEMBER role_name |
 DROP MEMBER role_name }

450 | Chapter 6: Securing Your Data

where:

AUTHORIZATION owner_name

Specifies the database user or role that owns the newly created role. The newly
created role may also be assigned to system roles, such as db_securityadmin.
When omitted, the role is owned by the user that created it.

WITH NAME = role_name_new

Specifies the new name of the role, where the role is a database user or user-
defined database role. Changing the name of a role does not change any other
aspect of the role, such as permissions granted to the role, the owner, or the
internal ID number.

ADD MEMBER = role_name

Adds a newly created user role or user-defined database role to an existing role,
where the role is a database user or user-defined database role.

DROP MEMBER = role_name

Drops an existing user or user-defined database role from a previously created
role, where the role is a database user or user-defined database role.

See also

• GRANT•

• REVOKE•

• SET ROLE•

GRANT Statement
The GRANT statement assigns privileges to users and roles, allowing them to access
and use database objects as well as a variety of powerful system privileges. In
addition, most database platforms use the GRANT statement to authorize users and
roles to create new database objects and execute stored procedures, functions, and
so forth.

Object privileges are quite standard, both within the SQL standard and across the
various database platforms. However, system privileges per se are not a part of the
SQL standard. System privileges, even within a given database platform, can vary
quite a lot (say, between SQL Server and Azure SQL Database). Consequently, these
are beyond the scope of our discussion.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Command Reference | 451

Securing
 Yo

ur
D

ata

SQL standard syntax
GRANT { {object privilege[, ...] | role[, ...]} }
[ON database_object_name]
[TO grantee[, ...]]
[WITH HIERARCHY OPTION] [WITH GRANT OPTION] [WITH ADMIN OPTION]
[FROM {CURRENT_USER | CURRENT_ROLE}]
[GRANTED BY grantor]

Keywords

GRANT object privilege[, ...]

Grants privileges to issue one or more SQL statements. Multiple privileges may
be granted at one time, separated by commas. You should not combine ALL
PRIVILEGES with other privileges, but the remainder may be combined in any
order. Valid privileges are:

ALL PRIVILEGES

Grants all privileges currently assigned to the grantor to the named user(s)
and/or for the specified database objects. This is generally not a recom‐
mended approach, since it can encourage sloppy permissioning.

EXECUTE

Grants the privilege to execute any SQL standard routine (stored proce‐
dure, user-defined function, or user-defined method).

SELECT | INSERT | UPDATE | DELETE

Grants the specified privilege for a given user on the specified database
object, such as a table or view. You may add a parenthetical list of the
columns of the table or view on which the privilege will be granted (except
for the DELETE statement).

REFERENCES

Grants the privilege to use the column(s) in any constraint or assertion,
not just a foreign key. The REFERENCES clause also allows you to define
column-specific details (by including a parenthetical, comma-delimited
list) for statements such as INSERT, SELECT, and so on. Finally, REFERENCES
grants the privilege to create or drop foreign key constraints referencing
the database object as a parent object.

TRIGGER

Grants the privilege to create a trigger to operate on a specific table and its
columns.

UNDER

Grants the privilege to create subtypes or typed tables.

USAGE

Grants privileges to use a domain, user-defined type, character set, colla‐
tion, sequence, or translation.

452 | Chapter 6: Securing Your Data

GRANT role[, ...]

Grants a specific, predefined role to the grantee; this role must be available
to the user or role identified in the FROM clause. For example, the database
administrator might want to create a role called Reporter that has read-only
access to several tables. Subsequently granting this role to a user would bestow
upon that user all of the read-only permissions granted to the Reporter role.
That is, users can have roles assigned to them and receive all of the permissions
already assigned to those roles.

ON database_object_name

Grants privileges on the specified, predefined database object identified by
database_object_name, which may be one of the following:

{[TABLE] object_name | DOMAIN object_name |
 COLLATION object_name | CHARACTER SET object_name |
 TRANSLATION object_name | SPECIFIC ROUTINE routine_name}

TO grantee

Assigns the privilege(s) to the named user(s) or role(s), designated as grantee.
You can assign privileges to multiple users and/or roles, as long as commas
separate them. Alternatively, privileges may be granted to PUBLIC, meaning that
all users (including those that will be created in the future) have the specified
privileges.

WITH HIERARCHY OPTION

Bestows the WITH HIERARCHY OPTION privilege, enabling the grantee to SELECT
not only from the named table, but also from all of its subtables. This applies to
privilege grants only.

WITH GRANT OPTION

Enables the grantee to further grant the privileges to other users. This applies to
privilege grants only.

WITH ADMIN OPTION

Bestows the ability to assign a role. The ability to assign role responsibilities is
separate from the ability to grant privileges to other users or roles.

FROM {CURRENT_USER | CURRENT_ROLE}

Names the user who is granting the specified privilege(s), either the
CURRENT_USER or the CURRENT_ROLE. This clause is optional and assumes the
current user context.

GRANTED BY grantor

Names the user who is granting the specified privilege(s). If specified, the
grantor must be CURRENT_ROLE or CURRENT_USER. This clause is currently
present in this form only for SQL compatibility.

SQL Command Reference | 453

Securing
 Yo

ur
D

ata

Rules at a glance
Although it may be tempting to GRANT ALL PRIVILEGES to the users of your data‐
base and application, long experience has taught us that this is a recipe for disaster.
You are strongly encouraged to use the principle of “least privileges,” meaning that
you should only grant permissions to users that are essential for them to perform
their designated work. Applying this principle usually results in the need to create
many users with varying levels of privileges. For example, instead of allowing a user
to connect with admin privileges, you might need several types of users, some who
can read only specific tables and views of the database, others who can read tables
and views as well as execute certain stored procedures, and yet another who can
read and write data, execute stored procedures, and take backups and bulk-copy
data.

Don’t be a lazy SQL developer! Always apply the principle
of least privileges when granting permissions. That is, never
grant more permissions than those essential to the user or role
in question. Giving every user system admin privileges is sim‐
ply inexcusable in this era of constant hacks and significant
compliance regulation. If you take the lazy way out, you may
subject your organization to data breaches, hacks, and possible
failure of very important compliance audits.

Hackers have stepped up the sophistication of their attacks over the decades,
frequently causing enormous damage and costing organizations untold millions
simply because the databases they target have only one or two users, each equipped
with full permissions throughout the database. Don’t make that same mistake.

You may grant many privileges on a single object with one statement, but do not
mix the ALL PRIVILEGES privilege with the individual SQL statement keywords in
a single GRANT statement. You can grant a specific privilege on a specific database
object to a single user using the syntax:

GRANT privilege_name ON object_name TO grantee

For example:

GRANT SELECT ON employee TO dylan;

You can grant a specific privilege on a specific object to all users via the PUBLIC user.
When a grant is issued to PUBLIC, that means everyone has that permission on that
object, without the need for a specific grant. For example:

GRANT SELECT ON employee TO PUBLIC;

When granting privileges to multiple grantees, simply place a comma between each:

GRANT SELECT ON employee TO dylan, ava, PUBLIC

The previous example shows that you may grant privileges to multiple users—in
this case, dylan, ava, and the PUBLIC role—in a single GRANT statement. When

454 | Chapter 6: Securing Your Data

granting privileges on a table, you may extend or restrict the privileges to the
column level by providing a list of columns enclosed in parentheses after the table
name. For example:

GRANT SELECT ON employee(emp_id, emp_fname, emp_lname, job_id)
TO dylan, jake

This example shows that dylan and jake now have SELECT privileges on several
columns of the employee table.

Programming tips and gotchas
Depending on the specific database implementation, views may or may not have
access privileges independent from their base tables.

Note that all of the optional WITH clauses control extensions to the base privilege(s)
granted in the statement. Thus, the following command grants dylan the privilege to
SELECT records from the employee table:

GRANT SELECT ON employee TO dylan;

but the following command grants the privilege to SELECT records from the
employee table and to grant that SELECT privilege to other users:

GRANT SELECT ON employee TO dylan
WITH GRANT OPTION;

Similarly, you can use the REVOKE statement to revoke only the WITH GRANT OPTION,
the individual SELECT privilege, or both.

Most of the platforms isolate privileges at the user and role level. Thus, an individual
user who is a member of two roles may be granted an individual permission four
times—once for their primary role, once for PUBLIC, and once via each of the roles
of which the user is a member. In this situation, you must be very careful. To
remove the privilege completely, you’ll have to remove the user from each role that
has the permission and then revoke the user’s privileges directly in both of the other
roles. As a general rule, you should limit permissions granted to a role that all users
belong to. For example, some databases have a built-in PUBLIC role of which all
users are members of.

MySQL and MariaDB
MySQL and MariaDB provide additional access privileges, primarily relating to
object manipulation within a database. Details on the supported privilege types are
available in the MySQL and MariaDB documentation. The MySQL syntax (which is
shared by MariaDB) is as follows:

GRANT [{ ALL [PRIVILEGES] |
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] | DELETE |
 REFERENCES [(column_name[, ...])] } |
 {[{ALTER | CREATE | DROP} [dml_option]] | [EVENT] | [EXECUTE] |
 [FILE] | [INDEX] | [LOCK TABLES] | [PROCESS] | [RELOAD] |

SQL Command Reference | 455

Securing
 Yo

ur
D

ata

https://oreil.ly/XyuG7
https://oreil.ly/pSpSK

 [REPLICATION {CLIENT | SLAVE}] | [SHOW DATABASES] | [SHOW VIEW] |
 [SHUTDOWN] | [SUPER] | [TRIGGER] | [USAGE]}[, ...]
ON [{TABLE | FUNCTION | PROCEDURE}]
 { [database_name.]table_name | * | *.* | database_name.* }
[PROXY ON user_name TO user_name[, ...]]
TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, ...]
[AS user_name
 [WITH ROLE {DEFAULT | NONE | ALL | ALL EXCEPT [role_name[, ...]] }]
[REQUIRE security_options]
[WITH with_option[...]]

Where keywords not covered by or that deviate from the standard are:

REFERENCES

The REFERENCES clause is ignored but allowed.

{ALTER | CREATE | DROP} [dml_option]

Grants the ability to alter, drop, or create tables and other database objects.
When using the CREATE syntax, you are not required to specify an ON clause to
identify a specific table. When you specify ALTER, CREATE, or DROP and an object
name, it is assumed the object is a table. You can further refine this subclause
with these dml_options:

{CREATE | ALTER | DROP} ROUTINE

Grants the privilege to create, alter, or drop procedures and functions.

CREATE TEMPORARY TABLE

Grants the ability to use the CREATE TEMPORARY TABLE statement, for use with
GRANT CREATE only.

CREATE USER

Grants the privilege to create, drop, and rename users as well as to use the
statement REVOKE ALL PRIVILEGES.

CREATE VIEW

Grants the ability to use the CREATE VIEW statement.

EVENT

Grants the privilege to create events for the event scheduler.

FILE

Grants the ability to load data from, or write data to, files using the SELECT
INTO and LOAD DATA commands.

INDEX

Grants the ability to create or drop indexes.

LOCK TABLES

Grants the privilege to execute the MySQL command LOCK TABLES on tables
where the user has SELECT privileges.

456 | Chapter 6: Securing Your Data

PROCESS

Grants the ability to view running processes using SHOW PROCESSLIST.

RELOAD

Grants the ability to invoke the FLUSH and RESET commands.

REPLICATION {CLIENT | SLAVE}

Grants a user the privilege to see metadata about replication slaves and masters
(CLIENT), or grants a replication slave the right to read binlogs from a replica‐
tion master (SLAVE).

SHOW DATABASES

Grants the privilege to execute the MySQL command SHOW DATABASES.

SHOW VIEW

Grants the ability to use the SHOW CREATE VIEW command.

SHUTDOWN

Grants the privilege to use the MYSQLADMIN SHUTDOWN command to kill the
server process.

SUPER

Grants the user the privilege of one connection even if the MAX_CONNECTIONS
threshold is reached. Users with SUPER privileges can also execute important
MySQL commands such as CHANGE MASTER, KILL, MYSQLADMIN DEBUG, PURGE
[MASTER] LOGS, and SET GLOBAL.

TRIGGER

Grants the ability to create and drop triggers on a specific table.

USAGE

Creates a “no privilege” user account (i.e., a user that has no privileges).

PROXY ON user_name TO user_name[, ...]

Allows the named user to impersonate another user—i.e., to assume all of the
previously granted rights and privileges of that user. Note that the other user
may also be a role. The PROXY privilege must be granted alone and cannot be
specified with other privileges.

ON {[database_name.]table_name | * | *.* | database_name.*}

Grants privileges on the specified table_name, on all tables within the current
database using an asterisk (*), on all tables in all databases with *.*, or on all
tables in the specified database_name with database_name.*.

TO grantee_name [IDENTIFIED BY [PASSWORD] 'password'][, ...]

Names the user or users who will gain the specified privilege(s). The PASSWORD
keyword is entirely optional. You may enter multiple users separated by com‐
mas. When granting privileges to a new user, you may also optionally set the

SQL Command Reference | 457

Securing
 Yo

ur
D

ata

new password for the new named user at the same time using the IDENTIFIED
BY clause.

AS user_name [WITH ROLE {DEFAULT | NONE | ALL | ALL EXCEPT

[role_name[, ...]] }

The AS clause, added in MySQL 8.0.16, provides additional context for state‐
ment execution. Its primary use is to grant the privileges of another role, but to
restrict certain privileges already specified for that role. The AS clause may not
be used in combination with the PROXY subclause and currently supports grant‐
ing global privileges only (e.g., ON *.*). It cannot be used to grant privileges
greater than those held by the granting user. In other words, this clause can
only restrict privileges and not escalate them.

REQUIRE security_options= {NONE | {SSL | X509} [CIPHER 'cipher_name'

[AND]] [ISSUER 'issuer_name' [AND]] [SUBJECT 'subject_name'] }

Specifies whether the user must connect with a secured connection or not,
according to these security options:

REQUIRE NONE

The account has no special SSL or X509 requirements. This is the default if
no REQUIRE subclause is specified.

REQUIRE SSL

Allows only SSL-encrypted connections for the account.

REQUIRE X509

Specifies that the client must have a valid certificate, though the certificate,
issuer, and subject do not matter. You can specify X509 to also include
one or more specific SUBJECTs, ISSUERs, and CIPHERs. The AND keyword is
optional between the security_options.

REQUIRE CIPHER 'cipher_name'

Ensures that a specific cipher method and ciphers and key lengths of
sufficient length are used.

REQUIRE ISSUER 'issuer_name'

Ensures that a valid X509 certificate containing a specific certificate
authority (CA) issuer is used.

REQUIRE SUBJECT 'subject_name'

Ensures that a valid X509 certificate containing a specific subject is used.

WITH with_option

Allows you to set one or more optional privileges:

GRANT OPTION

Entitles the grantee to assign the granted privilege (in fact, any privilege
that that user/role possesses) to other users.

458 | Chapter 6: Securing Your Data

MAX_QUERIES_PER_HOUR count

Limits the number of queries not served from the cache that may be
performed by the user per hour. Queries served from the cache do not
count against the limit. The default value of 0 means unlimited queries per
hour.

MAX_UPDATES_PER_HOUR count

Limits the number of UPDATE statements that may be performed by the
user per hour. The default value of 0 means unlimited updates per hour.

MAX_CONNECTIONS_PER_HOUR count

Limits the maximum number of simultaneously open connections that the
user may hold per hour. The default value of 0 means the maximum num‐
ber of simultaneous connections is determined by the MAX_USER_CONNEC
TION system variable.

Since MySQL is focused on speed, you can implement server-wide features that pro‐
vide high-speed performance. For example, you can enable the SKIP_GRANT_TABLES
startup option to disable checks for privileges. This can speed up queries, but
obviously no permission checking is done, which means that all users have full
access to all resources in the database.

The following are access privileges that are usable with tables: SELECT, INSERT,
UPDATE, DELETE, CREATE, DROP, GRANT, WITH GRANT OPTION, CREATE VIEW, SHOW
VIEW, INDEX, TRIGGER, and ALTER. INSERT, UPDATE, and SELECT permissions are also
grantable or revocable at the column level of a table. Thus, for example, you can
grant SELECT permissions on a specific column of a specific table. In any situation,
table, database, and column names may each be up to 64 characters in length.

For routines (i.e., procedures and functions), you can specify ALTER ROUTINE,
EXECUTE, and WITH GRANT OPTION permissions. CREATE ROUTINE is not actually
a routine-level privilege because a user must have this privilege in the first place to
create a routine.

Several privileges can be granted only globally, using ON *.* syntax, including FILE,
PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW DATABASES,
SHUTDOWN, SUPER, and CREATE USER.

When specifying the user, password protection may be enforced by including the
IDENTIFIED BY clause. The following example grants read permissions on the
employee table to three users with passwords:

GRANT SELECT ON employee TO dylan IDENTIFIED BY 'porsche',
 kelly IDENTIFIED BY 'mercedes',
 emily IDENTIFIED BY 'saab';

MySQL also supports the possibility of granting rights to a specific user on a specific
host if the grantee_name is in the form USER@HOST. The username may be up to
16 characters long (this same restriction applies to the grantee_name when the
@HOST portion is not included), and the hostname may be up to 60 characters long.

SQL Command Reference | 459

Securing
 Yo

ur
D

ata

Wildcards can be included in the hostname of a grantee_name to provide the access
privilege to a large number of users at one time. A missing hostname is considered
the same as the % wildcard. For example, consider this GRANT statement:

GRANT SELECT ON employee TO katie@% IDENTIFIED BY 'audi',
 annalynn IDENTIFIED BY 'cadillac',
 cody@us% IDENTIFIED BY 'bmw';

It grants read privileges on the employee table to the user katie explicitly at any
hostname. Similarly, it grants read privileges to the user annalynn implicitly at any
hostname. Finally, this statement grants read privileges to the user cody explicitly at
any hostname starting with “US.” MySQL allows you to issue grants on remote hosts
as well. For example, the following GRANT statement provides all permissions on all
tables of the current database across all hosts in the notforprofit.org domain to the
user annalynn:

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

If you grant permissions to a user that doesn’t exist in MySQL, MySQL creates
that user. The two statements that follow create a user and password with global
privileges and another user that has no privileges (the USAGE privilege):

GRANT SELECT ON *.* TO tony IDENTIFIED BY 'humbolt';
GRANT USAGE ON sales.* TO alicia IDENTIFIED BY 'dakota';

Failing to include the IDENTIFIED BY clause in a GRANT state‐
ment that creates a new user will create a user without a
password. This practice is insecure and dangerous.

If you ever create a new user using the GRANT command and
forget to specify a password, you can and should subsequently
set a password using the SET PASSWORD command.

Privileges are written directly to system tables at four different levels:

Global level
Global privileges apply to all databases on a given server and are stored in the
mysql.user system table.

Database level
Database privileges apply to all tables in a given database and are stored in the
mysql.db system table.

Table level
Table privileges apply to all columns in a given table and are stored in the
mysql.tables_priv system table.

Column level
Column privileges apply to single columns in a given table and are stored in
the mysql.columns_priv system table.

460 | Chapter 6: Securing Your Data

Because of the way permissions are granted and the system tables involved, you
may grant redundant permissions at different levels. For example, you could grant a
user SELECT privileges on a specific table, and then grant global SELECT privileges on
that same table to all users of the database. To ensure that particular user no longer
had the privilege of SELECTing from the table, you would then have to revoke both
of those privileges. Bear in mind that MySQL does not automatically revoke any
privileges when dropping a table or database, though it will drop routine privileges
when dropping a procedure or function.

System tables in MySQL are unprotected, so it is also possible to change permis‐
sions by issuing INSERT, UPDATE, and DELETE statements against those tables rather
than by using GRANT or REVOKE. Normally, all privileges are read into memory when
MySQL starts. Database, table, and column privileges issued by a GRANT statement
are available immediately and take effect right away. User privileges issued by a
GRANT statement are noticed immediately and take effect the next time the user
connects. If you directly modify permissions in the system tables, none of the
changes will be noticed until you restart MySQL or issue a FLUSH PRIVILEGES
command.

On MySQL, system privileges are known as dynamic privi‐
leges. Examples of MySQL system privileges include options
like audit admin, firewall admin, show routine, and many
more. Refer to the vendor documentation for more details
about the variety and meaning of dynamic privileges.

If high-level, certificate-based security is important, you should consider using the
REQUIRE clause. You do not have to specify all elements of the REQUIRE clause if you
simply want the user to have a valid SSL or X509 certificate. However, you may add
more specifications if they’re required to meet your needs. Here, for example, we
grant privileges to the user tony on the localhost MySQL server and require an X509
subject, issuer, and cipher:

GRANT SELECT ON *.* TO 'tony'@'localhost'
 IDENTIFIED BY 'humbolt'
 REQUIRE SUBJECT '/C=EE/ST=CA/L=Frisco/O=MySQL demo client
 certificate/CN=Tony Tubs/Email=tont@myorg.com'
 AND ISSUER '/C=FI/ST=CA/L=UC/O=MySQL/CN=Tony
 Tubs/Email=tont@myorg.com'
 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

Oracle
Oracle’s implementation of the GRANT statement supports an enormous number of
variations and permutations. The syntax is as follows:

GRANT { [object_privilege][, ...] | [system_privilege][, ...] |
 [role][, ...] }
[ON { [schema_name.][object][, ...] |
 [DIRECTORY directory_object_name] |

SQL Command Reference | 461

Securing
 Yo

ur
D

ata

 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
TO {grantee_name[, ...] | role_name[, ...] | PUBLIC}
 [WITH { GRANT | HIERARCHY } OPTION]
[IDENTIFIED BY password] [WITH ADMIN OPTION]

You can grant multiple privileges with a single invocation of the command, but they
must all be of the same type (object, system, or role).

For example, you could grant a user three object privileges on a single table in one
GRANT statement, and then issue a separate grant of two system privileges to a role,
and yet a third grant of several roles to a user, but you could not do all of this in one
GRANT statement.

Following are the parameters to Oracle’s GRANT statement:

GRANT object_privilege

Grants the specified privilege(s) to the specified grantee_name or role_name
on the named schema object (for example, a table or view). You may combine
several object privileges, schema objects, and grantees in a single statement.
However, you may not grant system privileges or roles in the same statement as
object privileges. The object privileges are:

ALL [PRIVILEGES]

Grants all available privileges on a named schema object. Available for use
on tables.

ALTER

Grants the privilege to change an existing table using the ALTER TABLE
statement. Available for use on tables and sequences.

DEBUG

Grants access to a table through a debugger. The access granted applies
to any triggers on the table and to information in SQL that directly refer‐
ences the table. Available for use on tables, views, procedures, functions,
packages, Java objects, and types.

EXECUTE

Grants the privilege to execute a stored procedure, user-defined function,
index type, library, or package. Available for use on procedures, func‐
tions, packages, Java objects, libraries, types, index types, and user-defined
operators.

INDEX

Grants the privilege to create indexes on a table.

{ ON COMMIT REFRESH | QUERY REWRITE }

Grants the privilege to create a refresh-on-commit materialized view or
to create a materialized view for query rewrite on the specified table.
Available for materialized views only.

462 | Chapter 6: Securing Your Data

QUERY REWRITE

Grants the privilege to create a materialized view for query rewriting on a
specific table. Available for materialized views only.

{ READ | WRITE }

Grants the privilege to read and write files in a named directory, including
the full pathname of the operating system directory. Since Oracle has the
ability to store files outside of the database, the Oracle server process must
run under a user context with privileges on the applicable directories. You
can enable Oracle to enforce security on individual users via this security
mechanism. Note that WRITE is only useful in connection with an external
table, such as a logfile or an error file.

GRANT system_privilege

Grants the specified Oracle system privilege to one or more users or roles. For
example, you could grant the CREATE TRIGGER privilege or the ALTER USER
privilege; in each case, issuing a grant for a system privilege empowers the user
or role to execute the command of the same name. Refer to Table 6-2 later in
this section for a list of common system privileges.

role

Grants a role to the specified user or to another role. In addition to user-
defined roles, there are a number of system roles that come predefined with
Oracle:

CONNECT, RESOURCE, and DBA
Provided for backward compatibility with older versions of Oracle. Do
not use these roles in current or newer versions of Oracle, since they may
be dropped in the future. It’s highly recommended for security that these
roles are either disabled or, better yet, dropped.

DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, and SELECT_CATALOG_ROLE
Grant members of these roles the privilege to delete, execute, and select
from data dictionary views and packages.

EXP_FULL_DATABASE and IMP_FULL_DATABASE
Grant members of these roles the privilege to execute the import and
export utilities.

AQ_USER_ROLE and AC_ADMINISTRATOR_ROLE
Grant members of these roles the privilege to use or administrate Oracle’s
Advanced Queuing functionality.

SNMPAGENT

Assigned only to Oracle Enterprise Manager and Intelligent Agent.

RECOVERY_CATALOG_OWNER

Grants the privilege to create users who own their own recovery catalogs.

SQL Command Reference | 463

Securing
 Yo

ur
D

ata

HS_ADMIN_ROLE

Grants the privilege to access areas of the data dictionary used to support
Oracle’s heterogeneous services feature.

ON schema_name

Grants a user or role the named privilege(s) on an object in the schema. Data‐
base objects include tables, views, sequences, stored procedures, user-defined
functions, packages, materialized views, user-defined types, libraries, index
types, user-defined operators, and any synonyms for any of these. If you do not
include the schema name, Oracle assumes the schema of the current user.

Oracle also supports two additional keywords for special cases:

DIRECTORY

Grants privileges on a directory object, which is an Oracle object corre‐
sponding to a filesystem directory.

JAVA

Grants privileges on a Java SOURCE or a RESOURCE schema object.

TO {grantee_name | role_name | PUBLIC} [WITH { GRANT | HIERARCHY }

OPTION]

Names the user or role that will get the specified privilege(s). PUBLIC may also
be used to revoke privileges granted to the PUBLIC role. Multiple grantees can
be listed with a comma between each.

WITH GRANT OPTION

Enables the grantee to grant the specific privilege(s) to other users or to PUBLIC,
but not to roles.

WITH HIERARCHY OPTION

Enables the grantee to receive privileges on all subobjects when granted privi‐
leges on a parent object. This includes subobjects created in the future. You can
use this option only when granting the SELECT object privilege.

IDENTIFIED BY password

Establishes or changes a password that the grantee must use to enable a role
being granted.

Grants to users take effect right away. Grants to roles also take effect right away,
assuming the roles are enabled. Otherwise, a grant to a role takes effect when the
role is enabled. Note that you can grant roles to users and to other roles (including
PUBLIC). For example:

GRANT sales_reader TO sales_manager;

To grant privileges on a view, you must have the specific privilege and the WITH
GRANT OPTION privilege on all of the base tables for the view.

464 | Chapter 6: Securing Your Data

Any time you want a privilege to be available to all users, simply grant it to PUBLIC:

GRANT SELECT ON work_schedule TO public;

However, there are some restrictions when granting system privileges and roles:

• A privilege or role should not appear more than once in the GRANT statement.•
• Roles cannot be granted to themselves.•
• Roles cannot be granted recursively. That is, you can’t grant the role•

sales_reader to sales_manager and then grant the role sales_manager to
sales_reader.

You can grant multiple privileges of the same type in a single statement. However,
the grants must be on the same type of object:

GRANT UPDATE (emp_id, job_id), REFERENCES (emp_id),
ON employees
TO sales_manager;

As an aside, granting any of the object permissions on a table allows the user (or
role) to lock the table in any lock mode using Oracle’s LOCK TABLE statement.

Recent versions of Oracle have added a number of business intelligence objects.
Although the business intelligence features are beyond the scope of this book,
granting privileges to them works in essentially the same way as granting privileges
to any other object. The business intelligence objects include MINING MODEL, CUBE,
CUBE MEASURE FOLDER, CUBE DIMENSIONS, and CUBE BUILD PROCESS. Oracle also
includes some additional advanced queuing features in other add-on components.
The privilege syntax for these add-ons’ objects is similar to that for objects such
as AQ_USER_ROLE and AQ_ADMINISTRATOR_ROLE. Refer to Oracle’s documentation
for more information on business intelligence and advanced queuing features and
privileges.

Oracle has a massive number of system privileges and system
roles, covering the spectrum of all available feature sets as well
as a variety of specialized system roles. Refer to the vendor
documentation to explore the wide variety of system privileges
and roles.

Nearly every supported Oracle object or command is assignable with a GRANT
command (as shown in Table 6-2). Privileges can be granted not only on data‐
base objects (such as tables and views) and system commands (such as CREATE
ANY TABLE), but also on schema objects (such as DIRECTORY, JAVA SOURCE, and
RESOURCE). The ANY option grants the privilege to execute a given statement against
objects of a specific type owned by any user within the schema. Without the ANY
option, the user can only execute the statement against objects in their own schema.

SQL Command Reference | 465

Securing
 Yo

ur
D

ata

Table 6-2. Oracle system privileges

Options Description

CREATE | ALTER | DROP

CREATE CLUSTER Grants the privilege to create a cluster in the grantee’s own schema.

{CREATE | ALTER |

DROP} ANY CLUSTER

Grants the privilege to create, alter, or drop (respectively) a cluster in any
schema.

{CREATE | DROP} ANY

CONTEXT

Grants the privilege to create or drop (respectively) any context namespace.

CREATE DIMENSION Grants the privilege to create dimensions in the grantee’s own schema.

{CREATE | ALTER |

DROP} ANY DIMENSION

Grants the privilege to create, alter, or drop dimensions in any schema.

{CREATE | DROP} ANY

DIRECTORY

Grants the privilege to create or drop directory database objects.

{CREATE | ALTER |

DROP | EXECUTE}

[ANY] INDEX

Grants the privilege to create, alter, drop, or execute a specific index in one
or (using the ANY keyword) all schemas.

CREATE INDEXTYPE Grants the privilege to create an index type in the grantee’s own schema.

{CREATE | DROP |

EXECUTE} ANY INDEXTYPE

Grants the privilege to create, drop, or execute an index type in any
schema.

CREATE DATABASE LINK Grants the privilege to create private database links in the grantee’s own
schema.

CREATE EXTERNAL JOB Allows the grantee to create an executable scheduler job that runs on the
OS within the grantee’s schema.

CREATE [ANY] JOB Grants the privilege to create, alter, or drop jobs, schedules, or programs
in any schema or, without ANY, a single specific schema. Grant this with
caution, because it allows the user to execute any code as if they were
another user.

{CREATE | DROP}

[ANY] LIBRARY

Grants the privilege to create or drop external procedure/function libraries
in any or, without ANY, a single specific schema.

{CREATE | ALTER

| DROP} [ANY]

MATERIALIZED VIEW

Grants the privilege to create, alter, or drop materialized views in any or,
without ANY, a single specific schema.

CREATE OPERATOR Grants the privilege to create an operator and its bindings in the grantee’s
own schema.

{CREATE | ALTER |

DROP | EXECUTE} ANY

OPERATOR

Grants the privilege to create, alter, drop, or execute an operator and its
bindings in any schema.

{CREATE | ALTER |

DROP } ANY OUTLINE

Grants the privilege to create, alter, or drop outlines that can be used in
any schema that uses outlines.

SELECT ANY OUTLINE Grants the privilege to clone private outlines from public ones.

466 | Chapter 6: Securing Your Data

Options Description

{CREATE | ALTER |

DROP | EXECUTE}

[ANY] PROCEDURE

Grants the privilege to create, alter, drop, or execute stored procedures,
functions, and packages in any schema, or, without ANY, in the current
schema.

{CREATE | ALTER |

DROP} PROFILE

Grants the privilege to create, alter, or drop profiles.

CREATE PUBLIC

DATABASE LINK

Grants the privilege to create public database links.

{CREATE | DROP}

PUBLIC SYNONYM

Grants the privilege to create or drop public synonyms.

ALTER RESOURCE COST Allows the grantee to set costs for session resources.

{CREATE | ALTER |

DROP} [ANY] ROLE

Grants the privilege to create a database role (do not use ANY with the
CREATE keyword), as well as to alter or drop any existing role.

{CREATE | ALTER |

DROP | GRANT} ANY

ROLE

Grants the privilege to create, alter, drop, or grant roles in the database.

{CREATE | ALTER |

DROP} ROLLBACK SEGMENT

Grants the privilege to create, alter, or drop rollback segments.

{CREATE | ALTER |

DROP | SELECT} [ANY]

SEQUENCE

Grants the privilege to create, alter, drop, or select sequences in any
schema in the database or, without ANY, to create, alter, drop, or select a
sequence in the current schema.

CREATE SNAPSHOT Grants the privilege to create snapshots (aka materialized views) in the
grantee’s own schema.

{CREATE | ALTER |

DROP} ANY SNAPSHOT

Grants the privilege to create, alter, or drop snapshots in any schema.

CREATE SYNONYM Grants the privilege to create synonyms in the grantee’s own schema.

{CREATE | DROP} ANY

SYNONYM

Grants the privilege to create or drop private synonyms in any schema.

EXECUTE

EXECUTE ANY CLASS Grants the privilege to run any job class in a job in the grantee’s schema.

EXECUTE ANY PROGRAM Grants the privilege to run any program in a job within the grantee’s
schema.

SESSION

ALTER SESSION Grants the privilege to issue ALTER SESSION statements.

CREATE SESSION Grants the privilege to connect to the database.

DEBUG ANY PROCEDURE Grants the privilege to debug all PL/SQL objects in the database. Similar to
granting DEBUG privileges on all procedures, functions, and packages.

DEBUG CONNECT SESSION Grants the privilege to connect the current session to the Java Debug Wire
Protocol (JDWP) debugger.

SQL Command Reference | 467

Securing
 Yo

ur
D

ata

Options Description

DROP PUBLIC DATABASE

LINK

Grants the privilege to drop public database links.

FLASHBACK ARCHIVE

ADMINISTRATOR

Grants the privilege to create, alter, or drop any flashback data archive.

GRANT ANY ROLE Grants the privilege to grant a role to other users.

MANAGE SCHEDULER Grants full privileges for jobs (i.e., privileges to drop, create, or alter any job
class, window, or window group).

ON COMMIT REFRESH Grants privileges to create a refresh-on-commit materialized view on any
table in the database or alter any refresh-on-demand materialized view
into a refresh-on-commit materialized view.

RESTRICTED SESSION Enforces that the grantee logs on after the instance is started using the
SQL*Plus STARTUP RESTRICT statement.

TABLE/TABLESPACE

ALTER ANY TABLE Grants the privilege to alter any table or view in the schema.

BACKUP ANY TABLE Enables the use of the export utility to incrementally export objects from
the schemas of other users.

CREATE ANY TABLE Grants the privilege to create tables in any schema. The owner of
the schema containing the table must have enough free space in the
tablespace to contain the table.

DELETE ANY TABLE Allows the deletion of rows from tables, table partitions, or views in any
schema.

DROP ANY TABLE Grants the privilege to drop or truncate tables or table partitions in any
schema.

FLASHBACK ANY TABLE Grants the privilege to issue a SQL flashback query on any table, view,
or materialized view in any schema. This privilege is not required for
DBMS_FLASHBACK procedures.

INSERT ANY TABLE Grants the privilege to insert rows into tables and views in any schema.

LOCK ANY TABLE Grants the privilege to lock tables and views in any schema.

SELECT ANY TABLE Grants the privilege to query tables, views, or snapshots in any schema.

UPDATE ANY TABLE Grants the privilege to update rows in tables and views in any schema.

{CREATE | ALTER |

DROP} TABLESPACE

Grants the privilege to create, alter, or drop tablespaces.

MANAGE TABLESPACE Grants the privilege to take tablespaces offline and online and begin and
end tablespace backups.

UNLIMITED TABLESPACE Grants the privilege to use an unlimited amount of any tablespace. This
privilege overrides any specific quotas assigned. If you revoke this privilege
from a user, the user’s schema objects remain, but further tablespace
allocation is denied unless authorized by specific tablespace quotas. You
cannot grant this system privilege to roles.

TRIGGER

468 | Chapter 6: Securing Your Data

Options Description

ADMINISTER DATABASE

TRIGGER

Grants the privilege to create a trigger on DATABASE. (The user/role
must also have the CREATE TRIGGER or CREATE ANY TRIGGER
privilege.)

{CREATE | ALTER |

DROP} [ANY] TRIGGER

Grants the privilege to create, alter, or drop database triggers in any
schema or, without ANY, to create, alter, or drop a trigger in the current
schema.

TYPE

{CREATE | ALTER |

DROP} [ANY] TYPE

Grants the privilege to create, alter, or drop object types and object-type
bodies in any schema or, without ANY, to create, alter, or drop a type in
the current schema.

EXECUTE ANY TYPE If granted to a specific user, allows that user to use and reference object
types and collection types in any schema and to invoke methods of an
object type in any schema. If granted to a role, individual members of that
role will not be able to invoke methods of an object type in any schema.

USER

ALTER USER Grants the privilege to alter any user. The privilege authorizes the grantee
to:

• Change another user’s password or authentication method.•

• Assign quotas on any tablespace.•

• Set default and temporary tablespaces.•

• Assign a profile and default roles.•

BECOME USER Grants the privilege to become another user (required by any user
performing a full database import).

CREATE USER Grants the privilege to create users. The privilege also allows the grantee
to:

• Assign quotas on any tablespace.•

• Set default and temporary tablespaces.•

• Assign a profile as part of a CREATE USER statement.•

DROP USER Grants the privilege to drop users.

UNDER ANY TYPE Allows the creation of subtypes under any parent object type, such as a
table or view.

VIEW

{CREATE | DROP}

[ANY] VIEW

Grants the privilege to create or drop views in any schema or, without ANY,
to create a view in the current schema.

SQL Command Reference | 469

Securing
 Yo

ur
D

ata

Options Description

MERGE ANY VIEW Grants the privilege to the optimizer to use view merging on behalf of the
user to speed up query performance.

UNDER ANY VIEW Grants the privilege to create a subview under any parent view.

As this table shows, the ANY keyword has a special meaning. In effect, ANY gives a
user the privilege to execute the specified command or operation in any schema.
If you want to include all user schemas but exclude the SYS system schema, keep
the O7_DICTIONARY_ ACCESSIBILITY initialization parameter at its default value of
FALSE.

PostgreSQL
PostgreSQL supports most of the SQL standard syntax for GRANT as well as some
additional features. PostgreSQL’s GRANT syntax has a couple of variants. Note that
not all of the privileges are available on all the types of objects, and there are
some additional options that are not shown here (see the following list and the
documentation for details):

GRANT { { ALL [PRIVILEGES] | { SELECT | INSERT | UPDATE | DELETE |
 TRUNCATE | REFERENCES | TRIGGER | USAGE | CREATE |
 CONNECT | TEMP[ORARY] | EXECUTE }[, ...] } }
ON { TABLE | SEQUENCE | DATABASE | DOMAIN | FUNCTION |
 FOREIGN DATA WRAPPER | FOREIGN SERVER | PROCEDURE | ROUTINE |
 LANGUAGE | LARGE OBJECT | SCHEMA | TABLESPACE | TYPE }
 object_name[, ...]
TO grantee[, ...]
[WITH GRANT OPTION]
[GRANTED BY grantor]

GRANT role_name[, ...]
TO grantee[, ...]
[WITH ADMIN OPTION]
[GRANTED BY grantor]

where:

ALL [PRIVILEGES]

Grants all privileges the grantor has available to grant. The PRIVILEGES key‐
word is optional. Using ALL is generally not a recommended approach, since it
can encourage sloppy permissioning.

TRUNCATE

Grants the privilege to use TRUNCATE on a table.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the
database object as a parent object.

470 | Chapter 6: Securing Your Data

https://oreil.ly/wKE6m

USAGE

Grants privileges to use sequences, domains, foreign data wrappers, foreign
servers, languages, schemas, or types.

CREATE

Grants the privilege to create objects of the specified type. Usable with ON
DATABASE, ON SCHEMA, and ON TABLESPACE. On databases, this privilege allows
the creation of new schemas within the database. On schemas, it allows the
creation of new objects and the renaming of existing objects in the schema. On
tablespaces, this privilege allows the creation of tables and indexes within the
tablespace.

CONNECT

Grants the privilege to connect to a specific database.

TEMP[ORARY]

Grants permission to create temporary tables when using the named database.

EXECUTE

Grants permission to call a function or procedure.

TO grantee

Names the user or role that will be granted the specified privilege (multiple
users or roles can be listed with a comma between each). Options are [GROUP]
role_name, PUBLIC, CURRENT_ROLE, CURRENT_USER, and SESSION_USER. PUBLIC
is a synonym for all users.

Multiple privileges may be granted at one time, in a comma-separated list. However,
when granting privileges, they should be of a related type. You should not combine
ALL [PRIVILEGES] with other privileges, but many of the remaining privileges may
be combined in any order.

The owner of an object may revoke most of their own privileges on that object, but
the privilege for the creator of an object to assign privileges on that object cannot be
revoked. Similarly, the right to drop an object is permanently assigned to the creator
of the object and cannot be revoked. Users other than the creator of an object or a
superuser do not have permissions on an object until they are specifically granted.

Certain privileges are allowed only for certain objects, as shown here:

TABLE

May be granted SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, and ALL [PRIVILEGES].

SEQUENCE

May be granted USAGE, SELECT, UPDATE, and ALL [PRIVILEGES].

DATABASE

May be granted CONNECT, CREATE, TEMP[ORARY], and ALL [PRIVILEGES].

SQL Command Reference | 471

Securing
 Yo

ur
D

ata

DOMAIN, FOREIGN DATA WRAPPER, FOREIGN SERVER, LANGUAGE, TYPE
May be granted USAGE and ALL [PRIVILEGES].

FUNCTION, PROCEDURE, ROUTINE
May be granted EXECUTE and ALL [PRIVILEGES].

LARGE OBJECT

May be granted SELECT, UPDATE, and ALL [PRIVILEGES].

SCHEMA

May be granted CREATE, USAGE, and ALL [PRIVILEGES].

TABLESPACE

May be granted CREATE and ALL [PRIVILEGES].

In the following examples, INSERT privileges are granted on the publishers table to
the PUBLIC role and SELECT and UPDATE privileges are granted on the sales table to
the users emily and dylan:

GRANT INSERT ON TABLE publishers TO PUBLIC;
GRANT SELECT, UPDATE ON sales TO emily, dylan;

The following example grants database control privileges to the user katie and then
assigns the users katie and anna to a new group:

GRANT ALL ON DATABASE publishing TO katie;
GRANT manager_role ON katie, anna WITH ADMIN OPTION;

SQL Server
SQL Server’s implementation of GRANT offers few variations from the SQL standard.
SQL Server does not support the SQL standard’s FROM clause or the HIERARCHY or
ADMIN options, but it does offer the ability to grant specific system privileges and to
grant them under another user’s security context. The syntax is as follows:

GRANT { [object_privilege][, ...] | [execute_privilege] }
[ON { [definition_scope::[[schema_name.]object_name]
 [(column[, ...])] }]
TO { grantee[, ...] | role[, ...] | PUBLIC | GUEST }
[WITH GRANT OPTION]
[AS {group | role}]

where:

GRANT object_privilege

Grants privileges for a variety of objects, which may be combined in any order
(with the exception of the ALL [PRIVILEGES] privilege). Object privileges may
be granted for tables, views, functions (table-valued, scalar, and aggregate),
procedures (stored and extended), service queues, and synonyms. ALL can
only be used by members of the SYSADMIN and DB_OWNER system roles, or by
the object owner. It was deprecated in SQL Server 2008 and is only included

472 | Chapter 6: Securing Your Data

for backward compatibility. GRANT ALL is now shorthand for the following
privileges:

GRANT ALL on databases
Grants the privileges BACKUP DATABASE, BACKUP LOG, CREATE DATABASE,
CREATE DEFAULT, CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE,
CREATE TABLE, and CREATE VIEW.

GRANT ALL on functions
Grants the privileges EXECUTE and REFERENCES for scalar functions and
DELETE, INSERT, REFERENCES, SELECT, and UPDATE for table-valued func‐
tions.

GRANT ALL on procedures (includes both stored procedures and extended stored
procedures)

Grants the EXECUTE privilege.

GRANT ALL on tables and views
Grants the privileges DELETE, INSERT, REFERENCES, SELECT, and UPDATE.

GRANT execute_privilege

Grants the privilege to execute one of the corresponding statements (EXECUTE)
or to select against one (or more) of the views in the SYS schema (SELECT).
Refer to the vendor’s documentation for more details.

The privilege to issue a CREATE statement also implies the privilege to issue
the equivalent ALTER or DROP statement. However, granting a single granular
permission does not ensure that all required permissions have been granted—
for example, granting EXECUTE permission on sp_addlinkedserver doesn’t allow
a user to create a linked server unless that user has also been added as a
member to the sysadmin role.

ON [definition_scope::][[schema_name.]object_name] [(column[, ...])]

Specifies the object for which the privilege is granted. This clause is not
required when granting system privileges. The definition_scope is required
and indicates the type of object to which you will be granting privileges.
definition_scopes must always include the assignment symbols (::). Allowa‐
ble values for definition scope include LOGIN::, DATABASE::, OBJECT::, ROLE::,
SCHEMA::, and USER::.

The definition scope OBJECT:: is for tables, views, and other database objects.
Other definition_scopes are applicable to objects of the same name: see the
documentation for details.

TO {grantee[, ...] | role[, ...] | PUBLIC | GUEST}

Names the user or role that will gain the privilege being granted. Multiple
grantees can be listed in a comma-separated list. Use the keyword PUBLIC to
grant privileges to the PUBLIC role, a role that implicitly includes all users.
SQL Server also supports a GUEST role, which is the role used by all users who

SQL Command Reference | 473

Securing
 Yo

ur
D

ata

https://oreil.ly/YLySp
https://oreil.ly/a10OG

do not have any other roles in the database. Because SQL Server allows two
different security models (one based on the database and one based on the
Windows operating system), you may be granting privileges to a SQL Server
user, a Windows user, a Windows group, or a SQL Server database role.

AS {group | role}

Specifies an alternative user or group that has the authority in the current
database to execute the GRANT command. You can use the AS clause to grant
privileges as if the granting session is part of a different group or role context
from the current one.

Privileges may not be granted in any database other than the current database, nor
may privileges be granted in more than one database at a time.

SQL Server has a somewhat different security model than the
other platforms described here (and the SQL standard). Like
the standard, SQL Server uses the GRANT command to assign
specific privileges to a user or role and the REVOKE command
to remove those permissions. However, SQL Server augments
these commands with the DENY command, using essentially
the same syntax as REVOKE.

DENY, under SQL Server, allows DBAs to declare certain privi‐
leges as strictly off-limits to a user or role. Any privileges that
have been denied must be revoked before they can be granted.
As such, DENY takes precedence over GRANT and REVOKE. DENY
can be used to effectively restrict any permission from an indi‐
vidual who might otherwise inherit permissions from mem‐
bership in Windows groups or SQL Server database roles.

SQL Server applies precedence to permissions. Thus, if a user has a privilege gran‐
ted at the user level, but the permission is revoked at the group level (when the user
is a member of a group), the permission is revoked at both levels.

SQL Server, much like Oracle, has a very large num‐
ber of system privileges and roles. They span a variety
of scenarios, like ALTER ANY CERTIFICATE and RECEIVE
service_broker_queue. Refer to the vendor documentation
for more details about the variety and meaning of SQL Serv‐
er’s system privilege and roles.

Privileges to CREATE or ALTER an object also imply the privilege to DROP the object.
Privileges to CREATE an object additionally imply the privilege to ALTER the object.

In the following example, the CREATE DATABASE and CREATE TABLE privileges are
granted to the users emily and sarah. Next, numerous permissions on the titles table
are granted to the editors group. The editors are then able to grant permissions to
others:

474 | Chapter 6: Securing Your Data

GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah;
GO
GRANT SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
WITH GRANT OPTION;
GO

The following example grants permissions to the database user sam and the Win‐
dows user jacob:

GRANT CREATE TABLE TO sam, [corporate\jacob];
GO

Finally, the following example shows how to grant permissions using the optional
AS keyword. In this example, the user emily owns the sales_detail table, and she
grants SELECT privileges to the sales_manager role. The user sumit, who is a member
of the sales_manager role, wants to grant SELECT privileges to sam, but he cannot
because the permissions were granted to the sales_manager role and not to him
explicitly. sumit can use the AS clause to get around this hurdle:

-- Initial grant
GRANT SELECT ON sales_detail TO sales_manager
WITH GRANT OPTION;
GO
-- Sumit passes the privilege to Sam as a member of the
-- sales_manager role
GRANT SELECT ON sales_detail TO sam AS sales_manager;
GO

See also

• REVOKE•

REVOKE Statement
The REVOKE statement takes two main forms. The first form of the statement
removes specific statement permissions from a user, group, or role. The second
form removes access permissions to specific database objects or resources.

Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
REVOKE { [special_options] | {privilege[, ...] | role[, ...]} }
ON database_object_name

SQL Command Reference | 475

Securing
 Yo

ur
D

ata

FROM grantee[, ...]
[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]
{CASCADE | RESTRICT}

Keywords

special_options

Allows the use of one of three optional special options:

GRANT OPTION FOR

Undoes the WITH GRANT OPTION privilege assigned to a user, meaning that
the user can no longer grant privileges to other users on the object. That
user’s own privileges on the object remain intact. (This clause is valid to
revoke a privilege, but not to revoke a role.)

HIERARCHY OPTION FOR

Undoes the WITH HIERARCHY OPTION privilege that allows a user to SELECT
not only from the named table, but also all of its subtables. (This clause is
valid to revoke a privilege, but not to revoke a role.)

ADMIN OPTION FOR

Undoes the ability to grant a role to other users. (This clause is valid to
revoke a privilege, but not to revoke a role.)

privilege

Revokes privileges for a variety of statements, which may all be combined in
any order:

ALL PRIVILEGES

Revokes all privileges currently assigned to the named user(s) and/or for
the specified database object(s). Generally not a recommended approach,
since it can encourage sloppy coding.

EXECUTE

Revokes the privileges to execute a routine (i.e., a stored procedure, user-
defined function, or method).

SELECT | INSERT | UPDATE | DELETE

Revokes the specific privilege for a given user on the specified database
object, such as a table or view. You may add a parenthetical list of the
columns on a given table where the privilege will be revoked for SELECT,
INSERT, and UPDATE privileges, to limit the action to those columns.

REFERENCES

Revokes the user’s privilege to create any constraints or assertions refer‐
encing the database object as a parent object. You may add a parenthetical
list of the columns on a given table where the privilege will be revoked, to
limit the action to those columns.

476 | Chapter 6: Securing Your Data

TRIGGER

Revokes the user’s ability to create triggers on the specified tables. As a
side effect of the REVOKE, any triggers that depend on the privilege are also
dropped.

UNDER

Revokes the privilege to create subtypes or typed tables.

USAGE

Revokes the privilege to use a domain, user-defined type, character set,
collation, or translation.

role

Revokes a specific, predefined role from the grantee identified in the FROM
clause.

ON database_object_name

Revokes privileges on a specific, predefined database object. SQL does not
include support for system privileges, but many implementations provide a
variation of this clause to revoke such privileges. (The ON subclause is not used
at all when revoking system privileges or roles.) The database_object_name
may be one of the following:

{ [TABLE] object_name | DOMAIN object_name |
 COLLATION object_name | CHARACTER SET object_name |
 TRANSLATION object_name | TYPE object_name |
 [SPECIFIC] {ROUTINE | FUNCTION | PROCEDURE | METHOD}
 object_name }

FROM grantee

Names the user(s) or role(s) who will lose the specified privilege(s). The PUBLIC
keyword may be used to revoke privileges granted to the PUBLIC global user list.
Multiple grantees can be listed with a comma between each.

FROM { CURRENT_USER | CURRENT_ROLE }

Optionally used to specify who granted the privilege to the user in the first
place. For example, when using FROM CURRENT_USER, the privilege is revoked
only if the current user granted the privilege. Otherwise, the statement will fail.
When this clause is omitted, CURRENT_USER is the default.

RESTRICT | CASCADE

Limits a REVOKE operation to only the specified privilege (RESTRICT), or causes
the specified privilege and all dependent privileges to be revoked (CASCADE) and
possibly causes objects that depend on the privilege to be dropped. Note that
REVOKE ... RESTRICT will fail if dependent privileges exist. The dependent
privileges must be revoked first.

SQL Command Reference | 477

Securing
 Yo

ur
D

ata

Rules at a glance
A specific privilege on a specific database object can be revoked for a single user
using REVOKE privilege_name ON object_name FROM grantee RESTRICT. A specific
privilege on a specific object may be revoked from all users via the PUBLIC global
user list.

When revoking privileges from multiple grantees, simply place a comma between
each. You may also revoke privileges from one or more grantees and the PUBLIC role
in a single REVOKE statement. (PUBLIC is described in detail in the section on the
GRANT statement. When a GRANT is issued to PUBLIC, that means everyone has the
specified permissions.)

When revoking privileges on a table, the operation may be restricted to the column
level by including a list of columns enclosed in parentheses after the table name.

Programming tips and gotchas
Most of the platforms isolate privileges at the user and role level. (Remember, a role
is a group of privileges.) Thus, it’s possible for an individual user who is assigned
two roles to be granted the same permission three times. In this situation, to revoke
that permission you would have to revoke the user’s privilege directly and remove
the user from both roles.

An important aspect of REVOKE (and its sister command GRANT) is that certain
elements of the command are geared toward object-level permissions, while other
options of the command are more oriented toward roles or administrative privi‐
leges. Generally, these operations are never combined. (The differences in object-
level permissions and administrative privileges are fully explained in the database
platform sections that follow.) For example, you might want to revoke certain
object-level privileges for a given role (salespeople) or for individual users (e_fudd
and prince_edward). You could do this with the following commands:

REVOKE SELECT ON TABLE authors FROM salespeople RESTRICT;
REVOKE ALL PRIVILEGES ON TABLE sales FROM e_fudd,
 prince_edward CASCADE;

A lot of table-level privileges can even be assigned down to the column level. Those
privileges can be revoked as follows:

REVOKE INSERT(au_id, au_fname, au_lname)
 ON authors FROM e_fudd;

The special option clauses (GRANT OPTION, HIERARCHY OPTION, and ADMIN OPTION)
all exist to allow you to revoke the ability of users to pass privileges or roles on
to other users. However, these clauses do not prevent the first group of users them‐
selves from exercising those privileges. For example, we can issue this command if
we no longer want anyone in the role manager to grant their UPDATE privileges to
other users:

REVOKE GRANT OPTION FOR UPDATE ON sales FROM manager CASCADE;

478 | Chapter 6: Securing Your Data

You can also remove role privileges from a user with the REVOKE command:

REVOKE manager FROM e_fudd CASCADE;

A common best practice is to keep REVOKE and GRANT statements as self-contained
and logical as possible. Under this practice, you should avoid using the CASCADE
and ALL PRIVILEGES clauses because they perform work for you that may not be
immediately evident within the scope of the command.

MySQL
MySQL supports the SQL standard keywords, with the exception of UNDER. It also
has a shortcut to allow global assignment or revocation of privileges. The complete
MySQL REVOKE syntax is as follows (full details on the supported privilege types are
available in the MySQL and MariaDB documentation):

REVOKE [{ ALL [PRIVILEGES] | [, GRANT OPTION]
 {SELECT | INSERT | UPDATE} [(column_name[, ...])] |
 DELETE | REFERENCES [(column_name[, ...])] } |
{ [USAGE] | [{ALTER | CREATE | DROP}] | [FILE] |
 [INDEX] | [PROCESS] | [RELOAD] | [SHUTDOWN] |
 [CREATE TEMPORARY TABLES] | [LOCK TABLES] |
 [REPLICATION CLIENT] | [REPLICATION SLAVE] |
 [SHOW DATABASES] | [SUPER] }[, ...] |
[PROXY]
ON [object_type] {table_name | * | *.* | database_name.*}
FROM user_name[, ...]

where:

ALL [PRIVILEGES]

Covers all privileges that apply at the level indicated by the ON clause, except
GRANT OPTION, which must be revoked through its own subclause. (This
includes privileges like SELECT, INSERT, UPDATE, DELETE, and others that are
applicable to the object.) The PRIVILEGES keyword is optional.

REFERENCES

Unimplemented.

USAGE

Revokes all of a user’s privileges.

{ALTER | CREATE | DROP}

Revokes the ability to alter, create, or drop tables and other database objects.

FILE

Revokes the ability to load data from or write data to files using the SELECT
INTO and LOAD DATA commands.

INDEX

Revokes the ability to create or drop indexes.

SQL Command Reference | 479

Securing
 Yo

ur
D

ata

https://oreil.ly/mxVlB
https://oreil.ly/oObyX

PROCESS

Revokes the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD

Revokes the ability to invoke the FLUSH command.

SHUTDOWN

Revokes the ability to use the MYSQLADMIN SHUTDOWN command to kill the
server process.

CREATE TEMPORARY TABLES

Revokes the ability to create temporary tables.

LOCK TABLES

Revokes the ability to use the MySQL command LOCK TABLES on tables where
the user has SELECT privileges.

REPLICATION CLIENT

Revokes the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE

Revokes the right to read binlogs of a replication master from a replication
slave.

SHOW DATABASES

Revokes the privilege to execute the MySQL command SHOW DATABASES.

SUPER

Revokes the user privilege of opening one connection even if the MAX_CON`
NECTIONS threshold has been reached. Also revokes the privileges to execute
the MySQL commands CHANGE MASTER, KILL, MYSQLADMIN DEBUG, PURGE
[MASTER] LOGS, and SET GLOBAL.

PROXY

Revokes a proxy for the given user, in which the user impersonates or becomes
known as another user to the MySQL system.

ON [object_type] {table_name | * | *.* database_name.*}

Removes privileges from the specified table_name, from all tables within the
current database with *, from all tables in the specified database_name with
database_name.*, or from all tables in all databases with *.*. The optional
object_type may be used to revoke privileges on specific objects (namely, the
TABLE, FUNCTION, or PROCEDURE object types).

FROM

Removes the privileges of one or more users, separated by commas. Usernames
may also include an @host_name suffix, if you wish to restrict the revocation to
a specific host computer.

480 | Chapter 6: Securing Your Data

REVOKE has size limitations: usernames cannot be longer than 16 characters, while
host, database, and database object names can be up to 60 characters long. User‐
names may also be linked to a specific host. Refer to the discussion of MySQL in
“GRANT Statement” on page 451 for more details.

MySQL’s implementation of REVOKE does not explicitly roll
back permissions on objects that are dropped. Thus, it is
necessary to explicitly REVOKE permissions on a table, even
if the table is dropped. For example, let’s say you drop a table
without issuing a REVOKE on the existing permissions. If you
later re-create the table, all of the old permissions will still be
in place. Similarly, a user’s privileges persist in the database
even after the user has been dropped.

It is also important to note that MySQL allows multiple levels of permissions. Thus,
a user might have access to a table from a table-level grant, and have an additional
set of permissions to the same table because they have been given global database or
server-wide permissions. Thus, you need to be careful when revoking permissions,
because global-level permissions might continue to provide to a user permissions
you thought you had revoked!

The first of the following commands revokes all privileges on the sales table for
users emily and dylan, while the second command revokes SELECT privileges for the
user kelly in the current database:

REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;
REVOKE SELECT ON * FROM kelly;

The first of the next two commands removes kelly’s ability to grant privileges to
other users on the sales table, while the second command removes privileges that
the user sam has on the pubs database:

REVOKE GRANT OPTION ON sales FROM kelly;
REVOKE ALL ON pubs.* FROM sam;

Oracle
The REVOKE command can be used not only to immediately revoke object and
system privileges, but also to revoke a role from a user (or a role from another role).
Refer to the section on the GRANT statement for more information on the specific
object and system privileges supported by the REVOKE command.

SQL Command Reference | 481

Securing
 Yo

ur
D

ata

The two forms of the REVOKE command, REVOKE object

_privilege and REVOKE system_privilege, are mutually
exclusive. Do not attempt to do both operations in a single
statement. Since the complete syntax for both forms of the
command is extremely long, refer to the section on Oracle
in “GRANT Statement” on page 451 for more details on the
different object_privileges available in Oracle. Note that
Oracle’s system_privileges number in the hundreds; refer
to the vendor documentation for documentation on all the
options.

Oracle provides an interesting twist on privileges. While other database platforms
typically allow a user to have more than one context for a set of privileges (based
on the individual user, and any groups or roles to which that user belongs), Oracle
takes this one step further. More than one grantor may have given a user a particu‐
lar privilege on a specific object. When this is the case, all grantors must revoke that
privilege to effectively rid the user of the privilege. If even one grantor doesn’t do
this, the user still has the privilege.

In Oracle, use the following syntax with REVOKE:

REVOKE { [object_privilege][, ...] |
 [system_privilege] |
 [role] }
[ON { [schema_name.][object] |
 [DIRECTORY directory_object_name] |
 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]] }]
FROM {grantee_name[, ...] | role_name[, ...] | PUBLIC}
[CASCADE [CONSTRAINTS]] [FORCE]

where:

object_privilege

Revokes the specified privilege(s) for the given user(s) or role(s) on the named
schema object (for example, a table or view). The available privileges include:

ALL [PRIVILEGES]

Revokes all granted privileges on the named schema object. Since ALL also
includes the REFERENCES privilege, you must include the CASCADE clause
(see REFERENCES below). The PRIVILEGES keyword is optional.

ALTER

Revokes the privilege to change an existing table using the ALTER TABLE
statement.

EXECUTE

Revokes the privilege to execute a stored procedure, user-defined function,
or package.

482 | Chapter 6: Securing Your Data

INDEX

Revokes the privilege to create indexes on a table.

REFERENCES

Revokes the privilege to define referential integrity constraints. Requires
that the CASCADE CONSTRAINTS clause also be used.

SELECT | INSERT | DELETE | UPDATE

Revokes the privilege to execute each of the respective SQL commands
against the named schema object. Note that DELETE privileges are depen‐
dent on SELECT privileges.

system_privilege

Revokes the specified Oracle system privilege(s), such as CREATE TRIGGER or
ALTER USER, for the given user(s) or role(s). Do not use the ON clause with
the REVOKE system_privilege variation of the statement. Because there are
so many system privileges, we won’t list them again here. Please refer to the
section on Oracle’s implementation of the GRANT statement for a full list of
system privileges.

role

Revokes a user’s or role’s membership in the named role.

ON

Revokes the named privilege for the given user(s) or role(s) from the
named object. Objects include tables, views, sequences, stored procedures,
user-defined functions, packages, materialized views, user-defined types, libra‐
ries, index types, user-defined operators, and synonyms for any of these.
For example, you could revoke SELECT privileges for a given user on the
scott.authors table. If you do not include the schema name, Oracle assumes the
schema of the current user. Oracle also supports two additional keywords for
special cases:

DIRECTORY directory_object_name

Identifies a directory object from which the privileges are revoked.

JAVA [{ SOURCE | RESOURCE }] [schema_name.][object]

Identifies a Java source or a resource schema object from which the privi‐
leges are revoked.

FROM {grantee_name | role_name | PUBLIC}

Names the user or role that will lose the specified privilege. PUBLIC may also be
used to revoke privileges granted to the PUBLIC role. Multiple grantees can be
listed with a comma between each.

CASCADE [CONSTRAINTS]

Drops any referential integrity constraints that depend on the privilege
being revoked. This clause is needed only when the REFERENCES or ALL
[PRIVILEGES] clauses are used.

SQL Command Reference | 483

Securing
 Yo

ur
D

ata

FORCE

Required to revoke EXECUTE object privileges on user-defined type objects with
type or table dependencies.

Oracle automatically cascades the revocation from the defined grantee_name to all
users that received their privileges from the grantee. In addition, any objects created
by the grantee that depend on the privilege (such as stored procedures, triggers,
views, and packages that depend on a SELECT privilege against a certain table) will
become invalid.

Users who are granted the GRANT ANY ROLE system privilege may revoke any role.
The REVOKE command can only revoke privileges specifically granted with the GRANT
command, not privileges available through roles or the operating system. In those
cases, you must use the REVOKE command to drop the privilege from the role. All
users assigned to the role will then lose the privilege.

The following are examples of revoking a role from specific grantee and revoking a
system privilege from a role:

REVOKE read_only FROM sarah;
REVOKE CREATE ANY SEQUENCE,
 CREATE ANY DIRECTORY FROM read_only;

Here’s an example that revokes a REFERENCES privilege and cascades the revoked
privileges:

REVOKE REFERENCES
ON pubs_new_york.emp
FROM dylan
CASCADE CONSTRAINTS;

Finally, the following example grants all privileges on a specific table, and then
revokes a privilege:

GRANT ALL PRIVILEGES ON emp TO dylan;
REVOKE DELETE, UPDATE ON emp FROM dylan;

PostgreSQL
PostgreSQL supports most of the SQL standard syntax for REVOKE as well as some
additional features. It does not offer the SQL-standard special option HIERARCHY
OPTION FOR. PostgreSQL’s REVOKE syntax has a couple of variants. Note that not
all of the privileges are available on all the types of objects, and there are some addi‐
tional options that are not shown here (see the following list and the documentation
for details):

REVOKE [GRANT OPTION FOR]
{ ALL [PRIVILEGES] | {SELECT | INSERT |
 UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER |
 USAGE | CREATE | CONNECT | TEMP[ORARY] | EXECUTE }[, ...] }
ON { {[TABLE] | ALL TABLES IN SCHEMA} | {SEQUENCE |
 ALL SEQUENCES IN SCHEMA} | DATABASE | DOMAIN |

484 | Chapter 6: Securing Your Data

https://oreil.ly/X817t

 FOREIGN DATA WRAPPER | FOREIGN SERVER |
 { {FUNCTION | PROCEDURE | ROUTINE} |
 ALL {FUNCTIONS | PROCEDURES | ROUTINES} IN SCHEMA } | LANGUAGE |
 LARGE OBJECT | SCHEMA | TABLESPACE | TYPE} object_name[, ...] }
FROM grantee[, ...]
[GRANTED BY grantor]
[CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR]
 role_name[, ...] FROM grantee[, ...]
 [GRANTED BY grantor]
 [CASCADE | RESTRICT]

where:

ALL [PRIVILEGES]

Shorthand for every privilege the grantor has available to grant. Revokes all
privileges currently assigned to the named user(s) and/or group(s) for the
specified database object(s). Generally not a recommended approach, since it
can encourage sloppy coding. The PRIVILEGES keyword is optional.

TRUNCATE

Revokes the user or group’s privilege to use TRUNCATE on a table.

REFERENCES

Revokes the privilege to create or drop foreign key constraints that reference
the database object as a parent object. You may add a parenthetical list of the
columns in a given table where the privilege will be revoked.

TRIGGER

Revokes the privilege to create or drop triggers on a table.

USAGE

Revokes the privilege to use a sequence, domain, foreign data wrapper, foreign
server, language, schema, or user-defined type.

CREATE

Revokes the privilege to create objects.

CONNECT

Revokes the privilege to connect to a specific database.

TEMP[ORARY]

Revokes permission to create temporary tables when using the named
database.

EXECUTE

Revokes permission to call a function or procedure.

SQL Command Reference | 485

Securing
 Yo

ur
D

ata

FROM grantee

Names the user or role that will lose the specified privilege (multiple users
or roles can be listed with a comma between each). Options are [GROUP]
role_name, PUBLIC, CURRENT_ROLE, and CURRENT_USER.

CASCADE | RESTRICT

Limits a REVOKE operation to only the specified privilege (RESTRICT), or causes
the specified privilege and all dependent privileges to be revoked (CASCADE).
Only used with the GRANT OPTION FOR clause. When omitted, PostgreSQL
assumes RESTRICT by default.

Refer to the section detailing PostgreSQL’s implementation of the GRANT statement
to see a full list of privileges allowed for each object type. You may, in turn, revoke
any of these privileges that have been assigned to a user or role.

PostgreSQL’s implementation of REVOKE is relatively straightforward. The only issue
to be aware of is that PostgreSQL treats the term GROUP as a synonym for ROLE. For
example, the following commands remove some privileges from the PUBLIC group
and from the READ_ONLY group:

REVOKE ALL PRIVILEGES ON employee FROM public;
REVOKE SELECT ON jobs FROM read_only;

When revoking the GRANT OPTION FOR clause, you should pay extra attention to
dependencies. If you revoke a user’s privilege with the RESTRICT keyword, the
statement will fail if other users depend on the revokee. If you revoke a user’s
privilege with the CASCADE keyword, the statement will revoke privileges not only
for the revokee, but for all users that depend on the revokee.

SQL Server
SQL Server implements the REVOKE statement as a means to undo any permission
settings for a given user or role. This is significant because SQL Server also supports
an extension statement called DENY, which explicitly disallows a user from a specific
resource. In SQL Server, REVOKE can be used to undo permissions granted to a
user with GRANT, but if you want to explicitly prevent a user from having a certain
privilege, you must use the DENY statement.

SQL Server does not support the HIERARCHY OPTION FOR and ADMIN OPTION FOR
clauses of the SQL standard, but it does allow revocation of a couple of administra‐
tive privileges (CREATE and BACKUP). The syntax is as follows:

REVOKE [GRANT OPTION FOR]
{ [object_privilege][, ...] | [system_privilege] }
[ON [class::][object] [(column[, ...])]] |
{TO | FROM} {grantee_name[, ...] | role[, ...] |
 PUBLIC | GUEST)}
[CASCADE]
[AS {group_name | role_name}]

486 | Chapter 6: Securing Your Data

where:

REVOKE object_privilege

Revokes privileges for a variety of statements, which may be combined in any
order. Refer to the discussion of SQL Server’s implementation of the GRANT
statement for a full list of object privileges.

REVOKE system_privilege

Revokes privileges to execute commands and perform certain functions. Refer
to the SQL Server documentation for a full list of system privileges, permis‐
sions, and roles.

ON object [(column[, ...])]

Identifies the object from which privileges will be removed. If the object is a
table or view, you may optionally revoke privileges on specific columns. You
may revoke SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges on
a table or view, but only SELECT and UPDATE privileges on the columns of
a table or view. You may revoke EXECUTE privileges on a stored procedure,
user-defined function, or extended stored procedure.

{TO | FROM} {grantee_name | role | PUBLIC | GUEST}

Names the user(s) or role(s) that will lose the specified privilege. PUBLIC may
be used to revoke privileges granted to the PUBLIC role (a role that implicitly
includes all users), and GUEST can be used to revoke privileges granted to SQL
Server’s GUEST role (an account used by all users who do not have a user
account in the database). Multiple grantees can be listed with a comma between
each.

CASCADE

Revokes privileges from users who received their permissions under the WITH
GRANT OPTION clause. Required when using the GRANT OPTION FOR clause.

AS {group_name | role_name}

Defines the authority by which the privilege is revoked. In certain circumstan‐
ces, a user may need to temporarily assume the privileges of a group to revoke
the specified privileges. To accommodate this scenario, you can use the AS
clause to assume the authority of a given group.

The two forms of the REVOKE command, REVOKE object_privilege and REVOKE
system_privilege, are mutually exclusive. Do not attempt to do both operations in
a single statement. The key syntactical difference between the two versions is that
you should not include the ON clause when revoking system privileges. For example,
to drop a system privilege, you might use:

REVOKE CREATE DATABASE, BACKUP DATABASE FROM dylan, katie

Privileges granted to a user with WITH GRANT OPTION should be revoked using both
GRANT OPTION FOR and CASCADE. For example:

SQL Command Reference | 487

Securing
 Yo

ur
D

ata

REVOKE GRANT OPTION FOR
SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
CASCADE
GO

REVOKE can be used only in the current database. Consequently, the CURRENT_USER
and CURRENT_ROLE options in the SQL standard are always implied. REVOKE is also
used to disable any DENY settings.

SQL Server’s DENY statement is syntactically the same as
REVOKE. However, it is conceptually different in that REVOKE
neutralizes a user’s privileges, while DENY explicitly prohibits
a user from having certain privileges. You can use the DENY
statement to keep a user or role from accessing a privilege,
even if it is granted through a role or an explicit GRANT
statement.

You must use REVOKE to remove previously granted or denied privileges. For exam‐
ple, say the user sumit took an extended leave of absence for parental care. During
that time, his permissions on the employee table were denied. Upon his return,
you’ll want to lift (REVOKE) the denied privileges:

DENY ALL ON employee TO sumit;
GO
REVOKE ALL ON employee TO sumit;
GO

In this example, the REVOKE command does not remove sumit’s privileges; rather, it
neutralizes the DENY statement.

See also

• GRANT•

SET CONNECTION Statement
The SET CONNECTION statement allows users to switch between several open connec‐
tions on one or more database servers.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Supported, with limitations

488 | Chapter 6: Securing Your Data

SQL standard syntax
SET CONNECTION {DEFAULT | connection_name}

Keywords

connection_name

Names the connection of the current session. If the connection_name is dif‐
ferent from the current session’s connection name, the connection context is
switched to the connection_name.

DEFAULT

Switches to the default connection from any other connection. This enables
rapid switching to the default connection without knowing its name.

Description
This command does not end a connection. Instead, it switches from the current
connection to the connection named (making it the current connection), or from
the current connection to the default connection. When switching between connec‐
tions, the old connection becomes dormant (without committing any changes),
while the new connection becomes active.

Rules at a glance
SET CONNECTION does not create a connection; it merely switches your connection
context. Use the CONNECT command to create a new connection, and use DISCONNECT
to terminate a connection.

Programming tips and gotchas
The SET CONNECTION command is not frequently used, since many users connect
programmatically via ODBC, JDBC, or some other connectivity method. However,
on those platforms that support SET CONNECTION, the command can be very use‐
ful for rapidly changing connection properties without terminating any existing
connections.

MySQL
Not supported.

Oracle
Not supported.

SQL Command Reference | 489

Securing
 Yo

ur
D

ata

PostgreSQL
PostgreSQL supports the SQL standard syntax for SET CONNECTION, but only in
embedded SQL, not within its ad hoc querying tool, psql, or pgAdmin. For psql and
libpq you can use \connect.

The value for connection_name must reference a connection named in a previous
CONNECT statement, either as a literal or as a variable.

Here is a full SQL program in PostgreSQL that shows CONNECT, DISCONNECT, and SET
CONNECTION:

EXEC SQL CONNECT TO nutshell AS nutshell_1 USER postgres;
EXEC SQL SET CONNECTION nutshell_1;
EXEC SQL SELECT name FROM employee INTO :name;
EXEC SQL DISCONNECT ALL;
-- Terminates all sessions. You could alternatively use two
-- DISCONNECT commands, one for each named connection.

SQL Server
SQL Server supports the SET CONNECTION command, but only in embedded SQL
(for example, in a C++ program), not within its ad hoc querying tool, SQL Query
Analyzer. The syntax is the same as the SQL standard command, except that it does
not support the DEFAULT keyword:

SET CONNECTION connection_name

The value for connection_name must reference a connection named in a previous
CONNECT statement, either as a literal or as a variable. Though it is supported, this
command is not used very often; most prefer the SQL Server–specific command
USE instead.

Here is a full Transact-SQL program in SQL Server that shows CONNECT,
DISCONNECT, and SET CONNECTION:

EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;
EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;
-- Opens connections to the servers named "chicago" and
 "new_york"
EXEC SQL SET CONNECTION chicago1;
EXEC SQL SELECT name FROM employee INTO :name;
-- Sets the chicago1 connection as active and performs work
 within that session
EXEC SQL SET CONNECTION new_york1;
EXEC SQL SELECT name FROM employee INTO :name;
-- Sets the new_york1 connection as active and performs work
 within that session
EXEC SQL DISCONNECT ALL;
-- Terminates all sessions. You could alternately use two
-- DISCONNECT commands, one for each named connection.

490 | Chapter 6: Securing Your Data

See also

• CONNECT•

SET CONSTRAINTS Statement
The SET CONSTRAINTS statement defines, for the current transaction, whether a
deferrable constraint is checked after each DML statement or when the transaction
is finally committed. If the session is not currently in an open transaction, the
setting applies to the next transaction.

Platform Command

MySQL Not supported

Oracle Supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
SET CONSTRAINTS {constraint_name[, ...] | ALL} {DEFERRED | IMMEDIATE}

Keywords

constraint_name[, ...] | ALL

Names one or more deferrable constraints to which the setting will apply.
The keyword ALL sets the constraint mode for all deferrable constraints of the
current transaction.

DEFERRED

Checks the conditions specified by the deferrable constraint when the transac‐
tion is committed, rather than when the DML statements are issued.

IMMEDIATE

Checks the conditions specified by the deferrable constraint immediately after
each DML statement is issued, rather than when the transaction is committed.

Rules at a glance
SET CONSTRAINTS ALL defines a value for the constraint mode of all deferrable
constraints of the current transaction. If the session is not currently in a transaction,
the SET CONSTRAINTS statement applies to the next transaction issued during the
session.

The following example sets all deferrable constraints to be checked immediately
following the issuance of each DML statement:

SET CONSTRAINTS ALL IMMEDIATE;

SQL Command Reference | 491

Securing
 Yo

ur
D

ata

The next example sets two constraints to defer their data modifications until the
transaction is committed:

SET CONSTRAINTS scott.hr_job_title, scott.emp_bonus DEFERRED:

Programming tips and gotchas
PostgreSQL fully supports the SQL standard syntax. Older versions allowed the
synonym NOT DEFERRABLE in place of IMMEDIATE.

MySQL
Not supported.

Oracle
Oracle fully supports the SQL standard syntax as well as the alias SET CONSTRAINT.

PostgreSQL
PostgreSQL fully supports the SQL standard syntax, but it currently allows SET
CONSTRAINTS to affect only foreign key, primary key, unique key, and exclusion
constraints. Check constraints and not null constraints are not affected and are
always considered IMMEDIATE.

SQL Server
Not supported.

SET PATH Statement
The SET PATH statement changes the value of the CURRENT PATH setting to one or
more schemas. The PATH is used for searching for SQL-invoked routines.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL standard syntax
SET PATH schema_name[, ...]

Keywords

schema_name[, ...]

Defines one or more schemas as the current path.

492 | Chapter 6: Securing Your Data

Rules at a glance
SET PATH defines one or more schemas used to qualify an unqualified routine name
(that is, the name of any function, procedure, or method).

The following example sets the current path (i.e., schema name) for unqualified
routines to scott:

SET PATH scott;

Then, whenever a routine is referenced during the current session, the scott schema
will be used if no schema is identified.

Programming tips and gotchas
When referencing multiple schema names, all the schemas must belong to the
current database. (The schemas cannot be on a remote database.)

SET PATH does not apply the schema to unqualified objects like tables or views; it
only applies to routines.

SET PATH is not supported by any of the platforms discussed in this book. Post‐
greSQL does support a SET search_path which achieves the same purpose, but is
not limited to routines; it applies to all unqualified objects.

See also

• SET SCHEMA•

SET ROLE Statement
The SET ROLE statement enables and disables specific roles for the current session.

Platform Command

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Not supported

SQL standard syntax
SET ROLE {NONE | role_name}

Keywords

NONE

Assigns the CURRENT_ROLE role to the current session.

SQL Command Reference | 493

Securing
 Yo

ur
D

ata

role_name

Associates the set of privileges associated with the named role with the current
session.

Rules at a glance
When a user session is opened using the CONNECT statement, issuing the SET ROLE
statement grants that session the privileges associated with a role. The SET ROLE
command can be issued only outside of a transaction.

The value for role_name must reference a valid user role existing on the server. You
may specify the role name either as a literal or through a variable.

Programming tips and gotchas
Most database platforms offer some method of setting or changing the role used
during a user session. SET ROLE is the SQL-standard approach, but it is not widely
supported by the different database platforms. The following sections detail the
analogous commands supported by the platforms discussed in this book; check
your platform’s documentation for more information.

MySQL
MySQL does not support the SET ROLE command, but it provides an analogous
method to control connection settings in the [client] section of the .my.cnf config‐
uration file in the home directory. For example:

[client]
host=server_name
user=user_name
password=client_password

To rapidly change between user roles, you can reassign host, user, and password
connection properties, respectively, by assigning new values to MYSQL_HOST, USER
(for Windows only), and MYSQL_PWD (though MYSQL_PWD is insecure in that other
users can view this file).

Oracle
When a user initiates a connection, Oracle explicitly assigns roles to that user.
The role(s) under which the session is operating can be changed with the SET
ROLE command, assuming the user is a member of the assigned role. Oracle uses
the MAX_ENABLED_ROLES initialization parameter (in the init.ora file) to control the
maximum number of roles that can be enabled concurrently. The Oracle syntax for
the SET ROLE command is:

SET ROLE { role_name [IDENTIFIED BY password][, ...]
 | [ALL [EXCEPT role_name[, ...]]
 | NONE }

494 | Chapter 6: Securing Your Data

where:

role_name

Declares a valid role name (or names) already created within Oracle, of which
the user must already be a member. Any roles not specified here are unavailable
throughout the current session. You can enable multiple roles by providing a
list, placing a comma between each role listed.

IDENTIFIED BY password

If the role_name has a password, that password must be specified using this
clause.

ALL

Enables all roles that are granted to the current user, including roles that are
granted through other roles. Cannot be used with the IDENTIFIED BY clause.

EXCEPT

Specifies a list of roles to exclude from a SET ROLE ALL command.

NONE

Disables all roles, including the default role.

Roles with passwords may be accessed only through the statement SET ROLE

role_name IDENTIFIED BY password. For example, we can use this statement to
enable the specific roles read_only and updater—identified by the passwords editor
and red_marker, respectively—for the current session:

SET ROLE
 read_only IDENTIFIED BY editor,
 updater IDENTIFIED BY red_marker;

To enable all roles except the read_write role, we can issue this command:

SET ROLE ALL EXCEPT read_write;

PostgreSQL
PostgreSQL supports the SQL standard SET ROLE command, with some extensions.
Its syntax is as follows:

SET [SESSION | LOCAL] ROLE {role_name | NONE}
RESET ROLE

where:

SESSION | LOCAL

Specifies whether the role takes effect for the current session (SESSION) or only
for the current transaction (LOCAL).

RESET ROLE

Resets the role to the role used to log in.

SQL Command Reference | 495

Securing
 Yo

ur
D

ata

SQL Server
Not supported.

See also

• CONNECT•

• CREATE ROLE•

• SET SESSION AUTHORIZATION•

SET SCHEMA Statement
The SET SCHEMA statement changes the value of the CURRENT SCHEMA setting to a
user-specified schema.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
SET SCHEMA schema_name[, ...]

Keywords

schema_name[, ...]

Defines one or more schemas as the current path.

Rules at a glance
SET SCHEMA sets the default schema name for unqualified objects in the current SQL
session.

The following example sets the current schema for unqualified objects to scott:

SET SCHEMA scott;

Then, whenever an object is referenced during the current session, the scott schema
will be used if no schema is identified.

Programming tips and gotchas
This command is only supported by PostgreSQL. However, all of the other plat‐
forms discussed here have an approximately equivalent command.

496 | Chapter 6: Securing Your Data

MySQL
MySQL does not support the SET SCHEMA command. In MySQL the terms database
and schema are synonymous; the equivalent command is USE DATABASE:

USE DATABASE schema_name

Oracle
Oracle does not support the SET SCHEMA command. IThe equivalent is ALTER
SESSION SET CURRENT_SCHEMA:

ALTER SESSION SET CURRENT_SCHEMA = schema_name

PostgreSQL
PostgreSQL supports the SET SCHEMA command, which is an alias for its SET
SEARCH_PATH command. However, SET SCHEMA supports only one schema, unlike
SET SEARCH_PATH, which allows you to specify multiple schemas: the first one
listed is where non-schema-qualified objects are created when you issue a CREATE
statement, and is the first schema searched for non-schema-qualified objects. The
schemas are searched in the order they are listed. The PostgreSQL syntax is as
follows:

SET SCHEMA = schema_name
SET SEARCH_PATH = schema_name[,...]
ALTER [ROLE | DATABASE | SYSTEM] SET SEARCH_PATH = schema_name[,..]

Prefixing the SET SEARCH_PATH command with ALTER [ROLE | DATABASE |

SYSTEM] causes the setting to persist across connections; otherwise, it lasts only
for the duration of the current connection.

SQL Server
SQL Server does not support the SET SCHEMA command. It does allow you to set
the default schema for each user with the following command, but does not permit
setting the schema for the current session:

ALTER USER SET DEFAULT_SCHEMA = schema_name

See also

• SET PATH• • SET ROLE•

SET SESSION AUTHORIZATION Statement
The SET SESSION AUTHORIZATION statement sets the user identifier for the current
session.

SQL Command Reference | 497

Securing
 Yo

ur
D

ata

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL standard syntax
SET SESSION AUTHORIZATION username

Keywords

username

Sets the session user and the current user of the SQL session to the context of
username, where username may be a literal, a parameter, or a host variable.

Rules at a glance
This command allows you to switch between users and to run under the corre‐
sponding permissions.

Programming tips and gotchas
This command is only supported by PostgreSQL. However, all of the other plat‐
forms discussed here provide a way to achieve equivalent functionality.

Some platforms allow you to use special shortcut keywords like CURRENT_USER and
SESSION_USER. These are usually the same thing: the username of the currently
active session provided by the client. However, CURRENT_USER and SESSION_USER
can diverge in a session when SETUID functions and other similar mechanisms are
invoked.

Superuser permissions are required to invoke the SET SESSION AUTHORIZATION
command, but you will still be able to switch back to the initial user session even
if the current user session does not normally have permission to run SET SESSION
AUTHORIZATION.

You might also wish to check the value of CURRENT_USER and SESSION_USER before
using them. You can do that with this SQL statement:

SELECT SESSION_USER, CURRENT_USER;

Normally, you should issue SET SESSION AUTHORIZATION before any transactions,
to set the session and current user values for all transactions that follow. It must be
issued as the only command in its transaction batch.

498 | Chapter 6: Securing Your Data

MySQL
Not supported. You must disconnect your session from MySQL and then reconnect
to utilize another set of user privileges.

Oracle
Not supported. Similar functionality is achieved using the CONNECT statement or by
logging off the server and reconnecting.

PostgreSQL
PostgreSQL supports the SQL standard syntax for this command. The only differ‐
ence, and it is a minor one, is that the SQL standard does not allow this command
during a transaction, while PostgreSQL does not care one way or the other.

SQL Server
Not supported. Similar functionality is achieved with the CONNECT statement or by
logging off the server and reconnecting.

See also

• CONNECT• • GRANT•

SET TIME ZONE Statement
The SET TIME ZONE statement changes the current session’s time zone if it needs to
be different from the default time zone.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Not supported

SQL standard syntax
SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' [HOUR TO MINUTE]}

Keywords

LOCAL

Sets the current session’s time zone to that of the local server.

SQL Command Reference | 499

Securing
 Yo

ur
D

ata

INTERVAL

Specifies the time zone offset from Coordinated Universal Time (UTC) in
terms of hours and minutes. The offset can be either an increase (with +) or
decrease (with –) in relation to the default time.

HOUR TO MINUTE

Specifies the data type of the TIME ZONE value.

Rules at a glance
This is a relatively simple command that either sets the user session time zone to
that of the server (LOCAL), or sets the time zone in relation to Coordinated Universal
Time (formerly Greenwich Mean Time, or GMT). Thus, an INTERVAL of 2 would
advance the time zone to two hours after UTC, while an INTERVAL of –6 would
reduce the time zone to six hours before UTC (i.e., to the United States Central
Standard Time zone).

Programming tips and gotchas
Like most SET commands, SET TIME ZONE can be executed only outside of an
explicit transaction. In other words, you do not need to encapsulate the command
within a START or BEGIN TRANSACTION and a COMMIT TRANSACTION statement.

MySQL
MySQL allows you to specify a named time zone set through the system variable
time_zone, or to set the time zone to the server’s default by using the LOCAL or the
DEFAULT clause:

SET TIME ZONE {'time_zone' | LOCAL | DEFAULT }

To set the time zone globally and on startup, use:

SET GLOBAL TIME ZONE 'time_zone'

Oracle
In Oracle, you can use the following ALTER SESSION command to set the session
time zone:

ALTER SESSION
 SET TIME_ZONE = {'[+ | -] hh:mm'
 | LOCAL
 | DBTIMEZONE
 | 'region'}

Use LOCAL to revert back to your session’s original default time zone, use
DBTIMEZONE to set your session’s time zone to the database’s time zone, and use
'region' to specify a time zone region name such as 'EST' or 'PST'. Use an
offset such as '–5:00' to specify your time zone in terms of an hour and minute

500 | Chapter 6: Securing Your Data

displacement from UTC. A displacement of '–5:00' means that your time is five
hours behind UTC time (e.g., 5:00 A.M. your time is 10:00 A.M. UTC time).

To retrieve a list of valid time zone region names, issue the following query:

SELECT tzname FROM v$timezone_names;

Both of the following commands set the time zone to Eastern Standard Time. The
first command does this by specifying the appropriate displacement from UTC,
while the second command specifies the time zone region name:

ALTER SESSION SET TIME_ZONE = '-5:00';
ALTER SESSION SET TIME_ZONE = 'EST';

Oracle’s time zone support is complex. Steven Feuerstein and Bill Pribyl’s Oracle
PL/SQL Programming, 6th ed. (O’Reilly) contains a good explanation of it in the
chapter on datetime data types.

PostgreSQL
PostgreSQL allows a session’s time zone value to be set to a named time zone, or set
to the server default by using the LOCAL or the DEFAULT clause:

SET TIME ZONE {'time_zone' | LOCAL | DEFAULT }

PostgreSQL also allows the time zone to be set at the database level or system level,
using the following syntax:

ALTER DATABASE name_of_database SET TIME ZONE
 {'time_zone' | LOCAL | DEFAULT }

In order for system-level changes to take effect, the database service needs to be
reloaded or a reload configuration needs to be called, as shown here:

ALTER SYSTEM SET TIME ZONE 'time_zone';
SELECT pg_reload_conf();

There are some variations from the SQL standard:

time_zone

Specifies a time zone by name. The possible values depend on the operating
system; for example, the file /usr/share/zoneinfo contains the database of time
zones for Linux servers.

LOCAL | DEFAULT

Sets the current session’s time values to those of the default time zone as
determined by the local server.

For example, 'PST8PDT' is a valid time zone for California on Linux systems, while
'Europe/Rome' is a valid time zone for Italy on Linux and other systems. If you
specify an invalid time zone, the command sets the time zone to UTC.

The following example sets the PostgreSQL time zone to Pacific Standard Time:

SET TIME ZONE 'PST8PDT';

SQL Command Reference | 501

Securing
 Yo

ur
D

ata

Next, the time for the current session is returned to the server’s default time zone:

SET TIME ZONE LOCAL;

SQL Server
Not supported.

502 | Chapter 6: Securing Your Data

7
SQL Built-in Functions

A function is a special type of command word in the SQL command set, and
each SQL dialect varies in its implementation of that command set. The value of a
function can be determined by input parameters, as with a function that averages
a list of database values. However, many functions do not use any type of input
parameter. The function that returns the current system time, CURRENT_TIME, is an
example of such a function. Functions may also return tables or sets of rows. These
types of functions are often referred to as set-returning functions.

The SQL standard supports a number of useful functions. This chapter and the
next cover those functions, providing detailed descriptions and examples for each
platform. We do not cover every function under the sun, but will focus on the most
commonly used functions. In addition, each database supports a large set of its own
internal functions that are outside the scope of the SQL standard; listings of these
functions for each vendor are provided at the end of each chapter.

In the case of MariaDB and MySQL, we will refer only to MySQL except in cases
where MariaDB deviates from MySQL behavior.

Most database platforms support the ability to create user-
defined functions (UDFs). For more information on UDFs,
refer to Chapter 9. JSON and XML functions are covered
in Chapter 10 and will not be discussed in this or the next
chapter.

503

How to Use This Chapter
When researching a function in this chapter:

1. Check the SQL syntax and read the description, even if you are looking for a1.
specific platform implementation.

2. Read the platform-specific implementation information.2.

Elements of the vendors’ implementations that do not differ from the standard are
not discussed in the individual platform sections; these sections only call out any
differences from the standard. For details not provided in a particular platform
section, see the section on the SQL syntax.

Types of Functions
There are different ways to categorize functions into groups. The following subsec‐
tions describe distinctions that are critical to understanding how functions work.

Deterministic and Nondeterministic Functions
Functions can be either deterministic or nondeterministic. A deterministic function
always returns the same results if given the same input values. A nondeterministic
function may return different results every time it is called, even when the same
input values are provided.

Why is it important that a given input always returns the same output? It has
to do with how functions may be used within views and indexes, in user-defined
functions, and in stored procedures. Restrictions vary across implementations, but
these objects sometimes allow only deterministic functions within their defining
code. For example, many databases allow the creation of an index on a column
expression, but only if the expression does not contain any nondeterministic func‐
tions. Check your platform’s documentation for details.

Aggregate Functions
Another way of categorizing functions is in terms of whether they operate on values
from just one row at a time, on values from a collection, or on a set of rows.
Aggregate functions operate on a collection of values and return a single summariz‐
ing value. Aggregate functions are also often combined with GROUP BY and HAVING
clauses that determine the number of groups of data. We’ll cover aggregates in the
next chapter.

Window Functions
Window functions are similar to aggregate functions in that they operate over many
rows at one time. The difference lies in how you define those rows. Aggregate
functions operate over the sets of rows defined by a query’s GROUP BY clause. With
window functions, you specify the set of rows for each function call, so different

504 | Chapter 7: SQL Built-in Functions

invocations of a function within the same query can execute over different sets
of rows. A window function also always returns the same number of rows as you
started with, whereas the results of a query with an aggregate function collapse the
grouped rows into one value. In many cases aggregate functions can be used like
window functions. In these cases the aggregate function has an OVER() clause just
like any other window function call.

SQL Functions
We’ll focus on functions that are not aggregate or window functions in this chapter.
These functions may be deterministic or nondeterministic, and they may return
tables or single values. The SQL standard provides many functions that can be
used to manipulate collections, strings, and numbers, as well as to retrieve system
information such as the current user or system time. These functions fall into the
categories listed in Table 7-1.

Table 7-1. Categories of functions

Function
category

Explanation

Variable
functions
(including date
and time
functions)

These functions, unlike others, are not followed by (); they are called like any other
variables and return information such as the current server time or the username of the
currently logged-in user. Date and time functions perform operations on temporal data
types and return values in a temporal data type format. There is no SQL function that
operates on a temporal data type and returns a temporal result; the closest function is
EXTRACT (covered in “Numeric Functions” on page 511), which operates on temporal
values and returns numeric values.

General-purpose
functions

This category includes functions that can be used with many kinds of data types, and
are often used for conditional logic. For example, CASE supplies IF/THEN logic to SQL
statements, and CAST can convert values from one data type to another.

Numeric
functions

These functions perform operations on numeric values and return numeric values.

String functions
and operators

These functions perform operations on character values (e.g., the CHAR, VARCHAR,
NCHAR, NVARCHAR, and CLOB data types) and return string or numeric values.

Collection
functions

These functions take a collection object such as a nested table, array, or collection type and
expand them into subelements.

Variable Functions
The SQL standard variable functions identify the current user session and its char‐
acteristics, such as the current session privileges. Variable functions are always
nondeterministic. The CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP

functions included in Table 7-2 fall into the date-and-time category of functions.
Although the four platforms discussed in this book provide many additional func‐
tions beyond these SQL built-ins (see “Platform-Specific Extensions” on page 538
for details), the SQL standard defines only those listed in this table.

SQL Functions | 505

SQ
L B

uilt-in
Functio

ns

Table 7-2. SQL standard built-in scalar functions

Function Usage

CURRENT_DATE Returns the current date

CURRENT_ROLE Returns the current active role within a database

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current date and time

CURRENT_USER or
USER

Returns the username of the currently active user within the database server

CURRENT_USER Returns the currently active authorization ID, if it differs from the user’s ID

SYSTEM_USER Returns the username of the currently active user within the host operating system

MySQL
MySQL supports all of the functions listed in Table 7-2 with and without (),
except for USER, CURRENT_USER, and SYSTEM_USER—so, for example, CURRENT_DATE
and CURRENT_DATE() are both allowed. In addition, MySQL supports NOW() as a
synonym for the function CURRENT_TIMESTAMP.

Oracle
Oracle supports the USER, CURRENT_DATE, and CURRENT_TIMESTAMP functions.

PostgreSQL
PostgreSQL supports all of the functions listed in Table 7-2. In addition, it supports
NOW() as a synonym for the function CURRENT_TIMESTAMP.

SQL Server
SQL Server supports all of the functions listed in Table 7-2 except for CURRENT_DATE
and CURRENT_TIME. In addition, it supports GETDATE() as a synonym for
CURRENT_TIMESTAMP.

Examples
The following queries retrieve the current date and time. Notice that the various
platforms return dates in their native formats:

/* On MySQL */
SELECT CURRENT_TIMESTAMP;
2022-0405 14:48:44

/* On Oracle */
SELECT CURRENT_TIMESTAMP FROM DUAL;
05-APR-22 02.48.44.554000 PM -04:00

/* On PostgreSQL */

506 | Chapter 7: SQL Built-in Functions

SELECT CURRENT_TIMESTAMP;
2022-04-05 14:48:44.84403-04

/* On SQL Server */
SELECT CURRENT_TIMESTAMP;
2022-04-05 14:48:44.060

General-Purpose Functions
The SQL standard provides several general-purpose functions that can be used with
many kinds of data types. These are often used for conditional logic.

CASE
The CASE function provides IF/THEN/ELSE functionality within a SELECT, INSERT,
or UPDATE statement. It evaluates a list of conditions and returns one value out of
several possible values.

CASE has two usages: simple and searched. Simple CASE expressions compare one
value, the input_value, with a list of other values and return a result associated
with the first matching value. Searched CASE expressions allow the analysis of
several logical conditions and return a result associated with the first one that is
true.

All vendors support the SQL standard syntax for CASE.

SQL standard syntax.
-- Simple comparison operation
CASE input_value
WHEN value THEN resulting_value
[WHEN value_n THEN resulting_value_n ...]
[ELSE else_result_value]
END

-- Boolean searched operation
CASE
WHEN boolean_condition THEN resulting_value
[WHEN boolean_condition_n THEN resulting_value_n ...]
[ELSE else_result_expression]
END

In the simple CASE function, the input_value is evaluated against each WHEN clause.
The resulting_value is returned for the first TRUE instance of input_value =
when_condition. If no when_condition evaluates as TRUE, the else_result_value
is returned. If no else_result_value is specified, NULL is returned.

The structure is essentially the same in the more elaborate Boolean searched opera‐
tion, except that each WHEN clause has its own Boolean comparison operation.

In either usage, multiple WHEN clauses are used. If there is more than one ELSE, it will
cause an error.

SQL Functions | 507

SQ
L B

uilt-in
Functio

ns

Examples. Here is a simple comparison operation where the CASE function alters
the display of the contract column to make it more understandable:

SELECT au_fname,
 au_lname,
 CASE contract
 WHEN 1 THEN 'Yes'
 ELSE 'No'
 END 'contract'
FROM authors
WHERE state = 'CA'

Here is an elaborate searched CASE function in a SELECT statement that will report
how many titles have been sold in different year-to-date sales ranges:

SELECT CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END 'YTD Sales',
 COUNT(*) 'Number of Titles'
FROM titles
GROUP BY CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END
ORDER BY MIN(ytd_sales)

The results are:

YTD Sales Number of Titles
---------------------- ----------------
Unknown 2
Not more than 200 1
Between 201 and 1000 2
Between 1001 and 5000 9
Between 5001 and 10000 1
Over 10000 3

Next is an UPDATE statement that applies discounts to all of the titles. This more
complicated command will discount all popular computing–related titles by 25%
and all other titles by 10%, with the exception of titles with year-to-date sales
exceeding 10,000 units, which will receive only a 5% discount. This query uses a
searched CASE expression to perform the price adjustments:

508 | Chapter 7: SQL Built-in Functions

UPDATE titles
SET price = price *
 CASE
 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount
 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount
 ELSE 0.9 -- 10% discount
 END
WHERE pub_date IS NOT NULL

This example demonstrates completion of three separate UPDATE operations in a
single statement.

CAST
The CAST function explicitly converts an expression of one data type to another. All
vendors support the SQL standard syntax for CAST, and PostgreSQL and SQL Server
also provide some extensions.

SQL standard syntax.
CAST(expression AS data_type[(length)])

The CAST function converts a given expression, such as a column value or variable,
into another defined data type. The length of the data type may optionally be
supplied for those data types (such as CHAR or VARCHAR) that support lengths.

Be aware that some conversions, such as converting DECIMAL
values to INTEGER, will result in rounding operations. Also,
some conversion operations may result in an error if the
new data type does not have sufficient space to display the
converted value.

PostgreSQL. In addition to the standard CAST function, PostgreSQL provides a ::
operator to achieve the same purpose. You will find this operator used more fre‐
quently than CAST because it is shorter to type and allows for easy chaining of
cast operations. The data type qualifiers can be length, precision, or any custom
qualifiers supported for that type:

expression::data_type[(data_type_qualifiers)]

Here’s an example of chaining:

SELECT 50::numeric(10,2)::text
'50.00'

SQL Server. In addition to CAST, SQL Server provides a TRY_CAST function that will
return NULL instead of an error when it fails to cast. For example:

SELECT TRY_CAST('One' AS integer)
NULL

SQL Functions | 509

SQ
L B

uilt-in
Functio

ns

Examples. This example retrieves the year-to-date sales figure as a CHAR and
concatenates it with a literal string and a portion of the title of the book. It converts
ytd_sales values to CHAR(5), and it shortens the length of the title column to make
the results more readable. Note that SQL Server uses + for concatenation instead of
the SQL standard ||:

SELECT CAST(ytd_sales AS CHAR(5)) || ' Copies sold of ' +
CAST(title AS VARCHAR(30))
FROM titles
WHERE ytd_sales IS NOT NULL
 AND ytd_sales > 10000
ORDER BY ytd_sales DESC;

The results are:

22246 Copies sold of The Gourmet Microwave
18722 Copies sold of You Can Combat Computer Stress
15096 Copies sold of Fifty Years in Buckingham Pala
...

COALESCE
The COALESCE function returns the first non-NULL value in a list. The values should
be coercible to the same data type, or an error might result.

All vendors support the SQL standard syntax for COALESCE.

SQL standard syntax.
COALESCE(expression1[,expression2[,...])

Examples.
/* Oracle */
SELECT COALESCE(NULL,2,NULL,1) AS n FROM DUAL;
 n

 2

/* MySQL, PostgreSQL, SQL Server */
SELECT COALESCE(NULL,2,NULL,1) AS n;

NULLIF
The NULLIF function returns NULL if two values are equivalent and the first value
when they are different. All vendors support the SQL standard syntax for NULLIF.

SQL standard syntax.
NULLIF(expression1,expression2)

NULLIF (expression1,expression2) is shorthand for:

510 | Chapter 7: SQL Built-in Functions

CASE WHEN expression1 = expression2 THEN NULL ELSE expression1 END

Examples.
/* Oracle */
SELECT NULLIF(1,2) AS n FROM DUAL;
 n

 1

SELECT NULLIF(1,1) AS n FROM DUAL;
 n

 NULL

/* MySQL, PostgreSQL, SQL Server */
SELECT NULLIF(1,2) AS n;
 n

 1

SELECT NULLIF(1,1) AS n;
n

 NULL

Numeric Functions
The numeric functions and syntax supported by the SQL standard are listed in
Table 7-3. These functions return a numeric value given a value, although the input
values are not always numeric. In addition to the functions listed here, the SQL
standard also specifies the use of the trigonometric functions ACOS, ASIN, ATAN, COS,
COSH, SIN, SINH, TAN, and TANH. Platform support for these functions varies, with
individual vendors often providing their own alternatives; refer to the individual
sections for details.

Table 7-3. SQL numeric functions

Function Usage

ABS Returns the absolute value of a number.

BIT_LENGTH Returns the number of bits in the value. This function is not in the SQL standard, but
most of the databases discussed support it.

CARDINALITY Returns the number of elements in a collection.

CEIL, CEILING Rounds a noninteger value upward to the next highest integer. Returns an integer
value unchanged.

CHAR_LENGTH,

CHARACTER

_LENGTH

Returns an integer value representing the number of characters in a string expression.

EXP Raises a value to the power of the mathematical constant known as e.

SQL Functions | 511

SQ
L B

uilt-in
Functio

ns

Function Usage

EXTRACT Allows the date part (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, or TIMEZONE_MINUTE) to be extracted from a temporal
expression.

FLOOR Rounds a noninteger value downward to the next lowest integer. Returns an integer
value unchanged.

LN Returns the natural logarithm of a number.

LOG10 Returns the base-10 logarithm of a number.

MOD Returns the remainder of one number divided by another.

OCTET_LENGTH Returns an integer value representing the number of octets in another value. This
value is the same as BIT_LENGTH / 8.

POSITION Returns an integer value representing the starting position of a string within the
search string.

POSITION_REGEX Returns an integer value representing the starting position of a string within the
search string that fits a regular expression (regex) pattern

POWER Raises a number to the specified power.

SQRT Computes the square root of a number.

WIDTH_BUCKET Deposits a value into the appropriate bucket from a set of buckets covering a given
range.

ABS
ABS returns the absolute value of the number in expression. All platforms support
the SQL standard ABS function.

SQL standard syntax.
ABS(expression)

Examples. The following examples show how to use the ABS function:

/* Oracle */
SELECT ABS(-1) FROM DUAL;
1

/* SQL standard and other platforms */
SELECT ABS(-1);
1

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH
Many platforms stray from the SQL standard in their support for scalar functions
for determining the length of expressions. While the platform support is nonstan‐
dard, the equivalent functionality exists under different names.

512 | Chapter 7: SQL Built-in Functions

SQL standard syntax.
BIT_LENGTH(expression)
CHAR_LENGTH(expression)
CHARACTER_LENGTH(expression)
OCTET_LENGTH(expression)

The SQL standard’s scalar functions for getting the length of a value take an
expression to calculate the value and return the length as an integer. The
BIT_LENGTH function returns the number of bits contained within the value of
expression, CHAR_LENGTH (and its synonym CHARACTER_LENGTH) returns the num‐
ber of characters in the string expression, and OCTET_LENGTH returns the number
of octets in the string expression. All of these functions will return NULL if
expression is NULL.

MySQL. MySQL supports BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, and
OCTET_LENGTH. It also supports a LENGTH function that returns the number of bytes
in a string.

PostgreSQL. PostgreSQL supports BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH,
and OCTET_LENGTH. It also supports LENGTH, which is a platform-specific alias for
CHAR_LENGTH.

Oracle. Oracle supports the LENGTHB function, which returns an integer value
representing the number of bytes in an expression. For the length of an expression
in characters, Oracle provides a LENGTH function as a synonym for CHAR_LENGTH.

SQL Server. SQL Server provides a LEN function that returns the number of charac‐
ters in a string and a DATALENGTH function that returns the number of bytes in a
string.

Examples. The following example, shown for different databases, determines the
length of a string and a value retrieved from a column:

/* On MySQL and PostgreSQL */
SELECT CHAR_LENGTH(title), OCTET_LENGTH(title)
FROM titles;

/* On Oracle */
SELECT LENGTH(title), LENGTHB(title) FROM titles;

/* On SQL Server */
SELECT DATALENGTH(title), LENGTH(title) FROM titles;

CARDINALITY
The CARDINALITY function returns the number of elements in a collection.

SQL standard syntax.
CARDINALITY(expression)

SQL Functions | 513

SQ
L B

uilt-in
Functio

ns

MySQL. Does not support the CARDINALITY function.

Oracle. Supports the CARDINALITY function for sets.

PostgreSQL. Supports the CARDINALITY function for arrays and returns the number
of elements in the array.

SQL Server. Does not support the CARDINALITY function.

Example. The following example uses CARDINALITY :

/* SQL standard, Oracle, PostgreSQL */
SELECT sometable.id,
 CARDINALITY(sometable.collection_column) AS num_elements
FROM sometable;
id num_elements
------------ ------------
 101 5
 102 2

CEIL, CEILING
The CEIL (or CEILING) function returns the smallest integer greater than an input
value that you specify.

SQL standard syntax.
CEIL(expression)
CEILING(expression)

MySQL. Supports both CEIL and CEILING.

Oracle. Supports only CEIL.

PostgreSQL. Supports both CEIL and CEILING.

SQL Server. Supports only CEILING.

Examples. When you pass a positive, non-integer number, the effect of CEIL is to
round up to the next highest integer:

SELECT CEIL(100.1) FROM DUAL;
CEIL(100.1)

 101

Remember, though, that with negative numbers, rounding “up” results in a lower
absolute value:

SELECT CEIL(−100.1) FROM DUAL;
CEIL(−100.1)

 −100

514 | Chapter 7: SQL Built-in Functions

Use FLOOR to get behavior opposite to that of CEIL.

EXP
The EXP function returns the value of the mathematical constant e (approximately
2.718281) raised to the power of a specified number. All platforms support the SQL
standard syntax.

SQL standard syntax.
EXP(expression)

Example. The following Oracle-based example uses EXP to return an approxima‐
tion of e:

SELECT EXP(1) FROM DUAL;
 EXP(1)

2.71828183

Use LN to go in the opposite direction.

EXTRACT
The SQL scalar function for extracting parts from a date is EXTRACT. MySQL,
Oracle, and PostgreSQL support the SQL standard syntax.

SQL standard syntax.
EXTRACT(date_part FROM expression)

The SQL EXTRACT function takes a date_part and an expression that evaluates to a
datetime value.

MySQL. MySQL’s implementation extends somewhat beyond the SQL standard,
which does not have a provision for returning multiple fields from the same call to
EXTRACT (e.g., DAY_HOUR). MySQL supports the date_parts listed in Table 7-4.

Table 7-4. MySQL date_parts

Type value Meaning

MICROSECOND Microseconds

SECOND Seconds

MINUTE Minutes

HOUR Hours (for MariaDB this is always between 0 and 23; for MySQL it may be higher if
the time represents an interval)

DAY Days

WEEK Weeks

MONTH Months

SQL Functions | 515

SQ
L B

uilt-in
Functio

ns

Type value Meaning

QUARTER Quarter

YEAR Years

SECOND_MICROSECOND Seconds and microseconds

MINUTE_MICROSECOND Minutes, seconds, and microseconds

MINUTE_SECOND Minutes and seconds

HOUR_MICROSECOND Hours, minutes, seconds, and microseconds

HOUR_SECOND Hours, minutes, and seconds

HOUR_MINUTE Hours and minutes

DAY_MICROSECOND Days, hours, minutes, seconds, and microseconds

DAY_SECOND Days, hours, minutes, and seconds

DAY_MINUTE Days, hours, and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

Oracle. Oracle supports the SQL standard syntax with the date_parts listed in
Table 7-5. The unit types that have TIMEZONE in the name can only be used with
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE data types. The
sub-day units cannot be used with the DATE type.

Table 7-5. Oracle date_parts

Type value Meaning

DAY The day of the month field (1–31)

HOUR The hour field (0–23)

MINUTE The minutes field (0–59)

MONTH The month field (1–12)

SECOND The seconds field (0–59)

TIMEZONE_HOUR The hour component of the time zone offset

TIMEZONE_MINUTE The minute component of the time zone offset

TIMEZONE_REGION The current time zone name

TIMEZONE_ABBR The abbreviation of the current time zone

YEAR The year field

PostgreSQL. PostgreSQL supports the SQL standard syntax with a few extra
date_parts that can be used for TIMESTAMP, TIMESTAMP WITH TIME ZONE, DATE,
and INTERVAL data types. The date_parts it supports are listed in Table 7-6. In

516 | Chapter 7: SQL Built-in Functions

addition, PostgreSQL has an alias, DATE_PART(text, value), which is clearer in
purpose.

Table 7-6. PostgreSQL date_parts

Type value Meaning

CENTURY The century. Prior to version 8.0, this returned the year field divided by 100. It now
returns the century according to the Gregorian calendar, where the first century starts in
the year 0001 and there is no century numbered 0 (zero).

DAY The day of the month field (1–31).

DECADE The year field divided by 10.

DOW The day of the week field (0–6, where Sunday is 0). This type only works for
TIMESTAMP values.

DOY The day of the year field (1–366). The maximum returned value is only 365 for years
that are not leap years. This type can only be used with TIMESTAMP values.

EPOCH The number of seconds between the epoch (1970-01-01 00:00:00-00) and the supplied
value. The result can be negative for values before the epoch.

HOUR The hour field (0–23).

ISODOW The day of the week as Monday (1) to Sunday (7).

ISOYEAR The ISO 8601 week-numbering year that the date falls in (not applicable to intervals).

JULIAN The Julian date corresponding to the date or timestamp (not applicable to intervals).
Timestamps that are not local midnight result in a fractional value.

MICROSECONDS The seconds field (including fractional parts) multiplied by 1,000,000.

MILLENNIUM The millennium. Prior to version 8.0, this returned the year field divided by 1,000.
It now returns the millennium according to the Gregorian calendar, where the first
millennium starts in 0001 and there is no millennium numbered 0 (zero). The year
1001 is the start of the second millennium, while the year 2001 is the start of the third
millennium.

MILLISECONDS The seconds field (including fractional parts) multiplied by 1,000.

MINUTE The minutes field (0–59).

MONTH The month field (1–12) or, for interval values, the number of months modulo 12
(0–11).

QUARTER The quarter of the year (1–4) in which the value occurs. This type can only be used with
TIMESTAMP values.

SECOND The seconds field (0–59).

TIMEZONE The time zone offset in seconds.

TIMEZONE_HOUR The hour component of the time zone offset.

TIME

ZONE_MINUTE

The minute component of the time zone offset.

WEEK The number of the week within the year in which the value falls.

YEAR The year field.

SQL Functions | 517

SQ
L B

uilt-in
Functio

ns

SQL Server. SQL Server does not support the SQL standard EXTRACT function
but provides the function DATEPART(date_part, expression) as an equivalent. It
supports the date_parts listed in Table 7-7.

Table 7-7. SQL Server date_parts

Type value Meaning

day The day of the month for the datetime expression. The abbreviations d and dd can also be
used.

dayofyear The day of the year for the datetime expression. The abbreviations y and dy can also be
used.

hour The hour of the day for the datetime expression. The abbreviation hh can also be used.

iso_week The ISO 8601 week number (1–53). The abbreviations isowk and isoww can also be used.

microsecond The microseconds (0–999999) for the datetime expression. The abbreviation mcs can also be
used.

millisecond The milliseconds for the datetime expression. The abbreviation ms can also be used.

minute The minute of the hour for the datetime expression. The abbreviations n and mi can also be
used.

month The month (1–12). The abbreviations m and mm can also be used.

nanosecond The number of nanoseconds (0–999999999). The abbreviation ns can also be used.

quarter The quarter of the year in which the datetime expression falls. The abbreviations q and qq
can also be used.

second The second of the minute for the datetime expression. The abbreviations s and ss can also be
used.

TZoffset The time zone. The abbreviation tz can also be used.

week The week of the year for the datetime expression. The abbreviations wk and ww can also be
used.

weekday The day of the week for the datetime expression. The abbreviation dw can also be used.

year The year field of the datetime expression. The abbreviations yy and yyyy can also be used
for two-digit and four-digit years, respectively.

Examples. These examples extract date parts from several datetime values:

/* On MySQL */
SELECT EXTRACT(YEAR FROM '2013-07-02');
2013
SELECT EXTRACT(YEAR_MONTH FROM '2013-07-02 01:02:03');
201307
SELECT EXTRACT(DAY_MINUTE FROM '2013-07-02 01:02:03');
20102

/* On PostgreSQL */

518 | Chapter 7: SQL Built-in Functions

SELECT EXTRACT(HOUR FROM TIMESTAMP '2022-02-16 20:38:40');
20

FLOOR
The FLOOR function returns the largest integer less than an input value that you
specify. All platforms support the SQL standard syntax.

SQL standard syntax.
FLOOR(expression)

Examples. When you pass a positive number, the effect of FLOOR is to eliminate
anything after the decimal point:

SELECT FLOOR(100.1) FROM DUAL;
FLOOR(100.1)

 100

Remember, though, that with negative numbers going in the “less-than” direction
corresponds to increasingly larger absolute values:

SELECT FLOOR(−100.1) FROM DUAL;
FLOOR(−100.1)

 −101

Use CEIL to get behavior opposite to FLOOR.

LN, LOG, and LOG10
The LN function returns the natural logarithm of a number, which is the power
to which you would need to raise the mathematical constant e (approximately
2.718281) in order to get the number in question as the result. LOG10 returns the
base-10 logarithm of a number. Some databases also include a LOG function which
may be equivalent to either LN or LOG10, and so should be used with caution.

SQL standard syntax.
LN(expression)
LOG10(expression)

MySQL. MySQL supports the SQL standard syntax for the LN function. It also
supports the use of LOG as a synonym for LN when no base is provided, and it
supports the SQL standard LOG10 function. The syntax of the MySQL LOG function
is as follows:

LOG(expression[, base])

Oracle. Oracle supports the SQL standard syntax for the LN and LOG10 functions.

SQL Functions | 519

SQ
L B

uilt-in
Functio

ns

PostgreSQL. PostgreSQL supports the SQL standard syntax for the LN function. It
also supports a LOG function that can be used as a synonym for LOG10 when no base
is provided or be used for other bases. The syntax of the PostgreSQL LOG function is:

LOG([base,] expression)

SQL Server. SQL Server calls its logarithm function LOG. When no base is passed it,
it returns the natural log. The syntax is as follows:

LOG(expression[, base])

Example. The following examples demonstrate finding the natural logarithm of a
number closely approximating the mathematical constant e and the base-10 log of
100:

-- Oracle
SELECT LN(2.718281), LOG10(100) FROM DUAL;
LN(2.718281) LOG10(100)
------------ —---------
 .999999695 2

-- MySQL
SELECT LN(2.718281), LOG10(100) AS log10,
LOG(2.718281) AS logln, LOG(64,2) AS logb2;
 ln | log10 | logln | logb2
-------------------+-------+--------------------+----------
 0.999999695226903 | 2 | 0.999999695226903 | 6

-- PostgreSQL
SELECT LN(2.718281), LOG10(100) AS log10,
LOG(100) AS logb10, LOG(2,64) AS logb2;
 ln | log10 | logb10 | logb2
--------------------+-------+--------+--------------------
 0.9999996952269030 | 2 | 2 | 6.0000000000000000

-- SQL Server
SELECT LOG(2.718281) AS ln, LOG10(100) AS log10,
LOG(100,10) AS logb10, LOG(64,2) AS logb2;
 ln | log10 | logb10 | logb2
--------------------+-------+--------+--------------------
 0.999999695226903 | 2 | 2 | 6

Use the EXP function to go in the other direction.

MOD
The MOD function returns the remainder of a dividend divided by a divider; it
returns a divide by 0 error if the divider is 0. All platforms support the SQL
standard syntax for the MOD function.

520 | Chapter 7: SQL Built-in Functions

SQL standard syntax.
MOD(dividend, divider)

Example. The following example shows how to use the MOD function from within a
SELECT statement:

SELECT MOD(12, 5) FROM NUMBERS
2

POSITION
The POSITION function returns an integer that indicates the starting position of a
string within the search string.

SQL standard syntax.
POSITION(string1 IN string2 [USING CHARACTERS | OCTETS])

The standard syntax for the POSITION function is to return the first location of
string1 within string2. POSITION returns 0 if string1 does not occur within
string2 and NULL if either argument is NULL. The measurement defaults to
characters if USING is not specified.

MariaDB and MySQL and MariaDB. MySQL and MariaDB support the SQL stan‐
dard syntax for the POSITION function, with the exception of the USING clause.
MySQL also provides a LOCATE alias function that can take an additional input
of start_at to denote the starting index position of the search. The syntax is as
follows:

POSITION(string1 IN string2)
LOCATE(string1, string2[, start_at])

PostgreSQL. PostgreSQL supports the SQL standard syntax for the POSITION func‐
tion, with the exception of the USING clause. Its syntax is as follows:

POSITION(string1 IN string2)

Oracle. Oracle’s equivalent function is called INSTR:

INSTR(string1, string2[, start_at][, occurrence])

It returns the position of string2 within string1, optionally searching from a
starting position of start_at (an integer) and looking for the specified occurrence
of string2. For example:

SELECT INSTR('foobar', 'o', 1, 1) FROM DUAL;
2

Use INSTRB for bytes, INSTRC for Unicode complete characters, INSTR2 for Unicode
UCS2 code points, and INSTR4 for Unicode UCS4 code points.

SQL Functions | 521

SQ
L B

uilt-in
Functio

ns

SQL Server. Instead of POSITION, SQL Server supports CHARINDEX and PATINDEX
functions. CHARINDEX and PATINDEX are very similar, except that PATINDEX allows
the use of wildcard characters in the search criteria:

CHARINDEX(string1, string2[, start_at])
PATINDEX('%pattern%', expression)

Examples.
/* SQL standard, MySQL, PostgreSQL */
SELECT POSITION('bar' IN 'foobar');
4

/* MySQL */
SELECT LOCATE('bar', 'foobar');
4

/* MySQL and PostgreSQL */
SELECT POSITION('fu' IN 'snafu');
0

/* Oracle **/
SELECT INSTR('foobar', 'bar', 1, 1) FROM DUAL;
4

/* SQL Server */
SELECT CHARINDEX('bar', 'foobar');
4

SELECT PATINDEX('%fg', 'abcdefg');
6

POSITION_REGEX
The POSITION_REGEX function returns an integer that indicates the starting position
of a string within the search string that fits a regex pattern. None of the platforms
discussed here actually use the function name POSITION_REGEX, but they all support
the same capabilities through a different function.

SQL standard syntax.
POSITION_REGEX([START | AFTER]
 pattern IN string
 [FROM start_position]
 [USING CHARACTERS | OCTETS]
 [OCCURRENCE regex_occurrence]
 [GROUP regex_capture_group]
)

The standard syntax for the POSITION_REGEX function is to return the first location
of the regular expression pattern within a string. POSITION_REGEX returns 0 if the
pattern does not occur within the string and NULL if either argument is NULL.

522 | Chapter 7: SQL Built-in Functions

The optional variables start_position, regex_occurrence, and regex_

capture_group are all integers. The start_position is the position to start search‐
ing within the string and defaults to 1.

START | AFTER defaults to START if not specified and determines if the position
returned is the beginning of the match or after the match.

regex_occurrence is the nth occurrence position that should be returned. It
defaults to 1 (meaning the first occurrence) if not specified.

MySQL and MariaDB. MySQL and MariaDB do not support POSITION_REGEX, but
both provide an equivalent function called REGEXP_INSTR. In MySQL, it has this
syntax:

REGEXP_INSTR(string, pattern
 [, start_position]
 [, regex_occurrence]
 [, return_option]
 [, match_type]
)

where:

return_option

The type of position to return. If this value is 0, REGEXP_INSTR returns the posi‐
tion of the matched substring’s first character. If the value is 1, REGEXP_INSTR
returns the position following the matched substring. If omitted, the default is
0.

match_type

A string that may contain any or all the following characters specifying how to
perform matching:

'c'

Performs case-sensitive matching.

'i'

Performs case-insensitive matching.

'm'

Enables multiple-line mode, which recognizes line terminators such as
carriage returns and line feeds anywhere in the source string. The default
behavior is to match line terminators only at the start and end of the entire
source string.

'n'

Causes the . character to match line terminators. The default is for .
matching to stop at the end of a line.

SQL Functions | 523

SQ
L B

uilt-in
Functio

ns

'u'

Specifies Unix-only line endings. Only the newline character is recognized
as a line ending by the ., ^, and $ match operators.

In MariaDB, the function has this syntax:

REGEXP_INSTR([BINARY] string [COLLATE collation], pattern)

If the string is preceded with BINARY, then the position returned is the byte
position rather than the character position. If collation is specified, then the case
sensitivity rules of the collation are applied. Case-insensitive matching can be forced
using (?i) and (?-i) in the pattern.

Oracle. Oracle does not support POSITION_REGEX. An equivalent function in Ora‐
cle is the REGEXP_INSTR function, which has this syntax:

REGEXP_INSTR(string, pattern
 [, start_position]
 [, regex_occurrence]
 [, return_option]
 [, match_type]
)

where:

pattern

The pattern is limited to 512 bytes.

match_type

This is a string that can take on one or more of the following values:

'i'

Performs case-insensitive matching.

'c'

Performs case-sensitive matching.

'n'

Indicates that the “match any character” subpattern (.) will include the
newline character. Otherwise, (.) does not match the newline.

'm'

Treats the source string as multiple lines. By default Oracle treats a source
string as a single line. If present, ^ and $ are treated as the start and end,
respectively, of any line anywhere in the source string, rather than only at
the start or end of the entire source string.

'x'

Ignores whitespace characters. By default, whitespace characters match
themselves.

524 | Chapter 7: SQL Built-in Functions

PostgreSQL. PostgreSQL does not support POSITION_REGEX. An equivalent func‐
tion in PostgreSQL 15 and later is REGEXP_INSTR, which has this syntax:

REGEXP_INSTR(string, pattern
 [, start_position]
 [, regex_occurrence]
 [, end_option]
 [, flags]
 [, subexpr]
)

end_option, if specified, must have a value of 0 or 1. If the end_option parameter is
omitted or specified as 0, the function returns the position of the first character of
the match. If end_option is 1, then it returns the character following the match. 0 is
equivalent to the SQL standard START clause and 1 is equivalent to AFTER.

SQL Server. SQL Server does not support POSITION_REGEX. The closest equivalent
is the PATINDEX function, which does not support regular expressions. It therefore
supports a more limited set of patterns than POSITION_REGEX or the REGEXP_INSTR
functions found in other databases. For regular expression support in SQL Server,
many people turn to building user-defined CLR functions that leverage the rich reg‐
ular expression support in .NET System.Text.RegularExpressions. Refer to Chapter 9
for details on building CLR functions.

The syntax of PATINDEX is as follows:

PATINDEX(pattern, string)

The pattern clause usually uses % as a wildcard.

Examples.
/* On MySQL and PostgreSQL 15+ */
SELECT REGEXP_INSTR('I have a duck', 'duck')

 10

/* On Oracle */
SELECT REGEXP_INSTR('I have a duck', 'duck') FROM DUAL;

 10

POWER
The POWER function raises a number to a specific value. All platforms support the
SQL standard syntax.

SQL standard syntax.
POWER(base, exponent)

SQL Functions | 525

SQ
L B

uilt-in
Functio

ns

The result of the POWER function is base raised to the exponent power, or
baseexponent. If base is negative, exponent must be an integer.

Examples. Raising a positive number to an exponent is straightforward:

SELECT POWER(10,3) FROM DUAL;
POWER(10,3)

 1000

Anything raised to the 0th power evaluates to 1:

SELECT POWER(0,0) FROM DUAL;
POWER(0,0)

 1

Negative exponents move the decimal point to the left:

SELECT POWER(10,−3) FROM DUAL;
POWER(10,−3)

 .001

SQRT
The SQRT function returns the square root of a number. All platforms support the
SQL standard syntax.

SQL standard syntax.
SQRT(expression)

Example.
SELECT SQRT(100) FROM DUAL;
 SQRT(100)

 10

WIDTH_BUCKET
The WIDTH_BUCKET function assigns values to buckets (individual segments) in an
equiwidth histogram.

SQL standard syntax.
WIDTH_BUCKET(expression, min, max, buckets)

The expression argument represents a value to be assigned to a bucket, typically
based on one or more columns returned by a query. The buckets argument speci‐
fies the number of buckets to create over the range defined by min through max.
min is inclusive, whereas max is not. The value from expression is assigned to one
of those buckets, and the function then returns the corresponding bucket number.

526 | Chapter 7: SQL Built-in Functions

When expression falls outside the range of buckets, the function returns either 0
or max + 1, depending on whether expression is lower than min or greater than or
equal to max.

MySQL. Does not support WIDTH_BUCKET.

Oracle. Supports the SQL standard syntax.

PostgreSQL. Supports the SQL standard syntax.

SQL Server. Does not support WIDTH_BUCKET.

Examples. The following example divides the integer values 1 through 10 into two
buckets:

SELECT x, WIDTH_BUCKET(x,1,10,2)FROM pivot;
 X WIDTH_BUCKET(X,1,10,2)
---------- ----------------------
 1 1
 2 1
 3 1
 4 1
 5 1
 6 2
 7 2
 8 2
 9 2
 10 3

This next example is more interesting. It divides 11 values (from 1 through 10) into
three buckets and illustrates the distinction between min being inclusive and max
being noninclusive:

SELECT x, WIDTH_BUCKET(x,1,10,3)FROM pivot;
 X WIDTH_BUCKET(X,1,10,3)
---------- ----------------------
 1 1
 2 1
 3 1
 4 2
 5 2
 6 2
 7 3
 8 3
 9 3
 9.9 3
 10 4

Pay particular attention to the results for X=1, X=9.9, and X=10. An input value of
min (1, in this example) falls into the first bucket, proving that the lower end of
the range for bucket 1 is defined as x >= min. An input value of max, however,
falls outside the highest bucket. In this example, 10 falls into the overflow bucket

SQL Functions | 527

SQ
L B

uilt-in
Functio

ns

numbered max + 1. The value 9.9, on the other hand, falls into bucket 3, illustrating
that the upper end of the range for the highest bucket is defined as x < max.

Trigonometric functions
The SQL standard defines the following trigonometric functions, which take as
input a radian value in numeric format and compute the radian value of the sine,
cosine, tangent, hyperbolic sine, hyperbolic cosine, hyperbolic tangent, arc sine, arc
cosine, or arc tangent. The function names are, respectively, SIN, COS, TAN, SINH,
COSH, TANH, ASIN, ACOS, ATAN.

The following rules apply:

• In case of NULL inputs the output is NULL.•

• For ASIN and ACOS the values must be between –1 and 1, or an exception•
should be raised.

Several databases additionally support an ATAN2 function, which takes as input two
arguments expressed in radians and returns the arc tangent of the two.

SQL standard syntax.
-- SIN can be replaced with any of the aforementioned
 trigonometric functions
SIN(expression)

MySQL. MySQL supports all the SQL standard trigonometric functions, as well
as the functions COT for cotangent and ATAN2 for arc tangent. Its ATAN and ATAN2
functions take as input two arguments. MySQL also includes a RADIANS function
that converts degrees to radians and a DEGREES function that converts radians to
degrees.

Oracle. Oracle supports all the SQL standard trigonometric functions and ATAN2.

PostgreSQL. PostgreSQL supports all the SQL standard trigonometric functions,
as well as a COT function for cotangent, the ATAN2 function, a RADIANS function
that converts degrees to radians, and a DEGREES function that converts radians to
degrees. In addition, PostgreSQL provides variants of the non-hyperbolic trigono‐
metric functions that take as input and return degrees instead of radians. These
variants have names that end in D, as follows: SIND, COSD, TAND, ASIND, ACOSD, ATAND,
and ATAN2D.

SQL Server. SQL Server supports all the SQL standard trigonometric functions,
and a COT function for cotangent. It also includes a RADIANS function that converts
degrees to radians and a DEGREES function that converts radians to degrees.

528 | Chapter 7: SQL Built-in Functions

Examples.
SELECT COSH(180) FROM DUAL -> 7.4469E+77
SELECT ACOS(0) -> 1.570796
SELECT ASIN(0) -> 0.000000
SELECT COS(0) -> 1.000000
SELECT COT(3.1415) -> −10792.88993953

String Functions and Operators
Basic string functions and operators offer a number of capabilities and return
string values as their results. Some string functions are dyadic, indicating that they
operate on two strings at once. The SQL standard supports the string functions and
operators listed in Table 7-8.

Table 7-8. SQL string functions and operators

Function or operator Usage

Concatenation operator
(||)

Appends two or more literal string expressions, column values, or variables together
into one string

CONVERT Converts a string to a different representation within the same character set

LOWER Converts a string to all lowercase characters

OVERLAY Returns the result of replacing a substring of one string with another

SUBSTRING Returns a portion of a string

TRANSLATE Converts a string from one character set to another

TRIM Removes leading characters, trailing characters, or both from a character string

UPPER Converts a string to all uppercase characters

Concatenation operator
The SQL standard defines a concatenation operator (||), which joins two distinct
strings into one string value.

SQL standard syntax.
string1 || string2

MySQL. MySQL supports CONCAT as a synonym for the SQL concatenation operator
and uses the || operator for logical OR. CONCAT can take an arbitrary number of
arguments.

Oracle. Oracle supports the SQL concatenation operator and CONCAT as a synonym.
However, it only allows CONCAT with two arguments, so it is not a complete SQL
standard replacement for the concatenation operator.

SQL Functions | 529

SQ
L B

uilt-in
Functio

ns

PostgreSQL. PostgreSQL supports the SQL concatenation operator and CONCAT as
a synonym, with an arbitrary number of arguments. It also allows the use of the ||
operator for other data types; for example, it can be used to concatenate two arrays.

SQL Server. SQL Server does not support || as a concatenation operator, but uses
the plus sign (+) as a synonym. It has the system setting CONCAT_NULL_YIELDS_NULL,
which can be set to alter the behavior when NULL values are used in the concatena‐
tion of string values with +. SQL Server also supports a CONCAT function which can
take an indefinite number of arguments and ignores NULLs.

Examples.
/* SQL standard syntax */
'string1' || 'string2' || 'string3'
'string1string2string3'

/* On MySQL, Oracle, PostgreSQL, and SQL Server */
CONCAT('string1', 'string2')
'string1string2'

/* On MySQL, PostgreSQL, and SQL Server */
CONCAT('string1', 'string2', 'string3')
'string1string2string3'

If any of the concatenation values are NULL, the entire returned string is NULL.
Also, if a numeric value is concatenated, it is implicitly converted to a character
string.

/* On MySQL, PostgreSQL, and SQL Server */
SELECT CONCAT('My ', 'bologna ', 'has ', 2, ' names');
'My bologna has 2 names'

/* On Oracle */
SELECT CONCAT('My ', NULL) FROM DUAL;
'My '

/* On MySQL and PostgreSQL */
SELECT CONCAT('My ', NULL);
NULL

/* On SQL Server */
SELECT CONCAT('My ', NULL);
'My '

CONVERT and TRANSLATE
The CONVERT function alters the representation of a character string within its
character set and collation. For example, it might be used to alter the number of bits
per character.

530 | Chapter 7: SQL Built-in Functions

TRANSLATE alters the character set of a string value from one base character set to
another. Thus, TRANSLATE might be used to translate a value from the English char‐
acter set to a Kanji (Japanese) or Cyrillic (Russian) character set. The translation
must already exist, either by default or by virtue of having been created using the
CREATE TRANSLATION command.

SQL standard syntax.
CONVERT(char_value USING conversion_char_name)

TRANSLATE(char_value USING translation_name)

CONVERT converts char_value to the character set with the name supplied in
conversion_char_name. TRANSLATE converts char_value to the character set pro‐
vided in translation_name.

MySQL. MySQL supports the SQL standard syntax for CONVERT but does not
support TRANSLATE.

Oracle. Oracle supports CONVERT and TRANSLATE with the same meaning as the
SQL standard, but with slightly different syntax:

CONVERT(char_value, target_char_set, source_char_set)

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

Under Oracle’s implementation, the CONVERT function returns the text of
char_value in the target character set. char_value is the string to convert,
target_char_set is the name of the character set into which the string is to be con‐
verted, and source_char_set is the name of the character set in which char_value
was originally stored.

Oracle’s TRANSLATE function follows the SQL standard syntax, but it supports only
two arguments for the character set: you can choose between the database character
set (CHAR_CS) and the national character set (NCHAR_CS).

Oracle also supports a different function named TRANSLATE,
which omits the USING keyword. That version of TRANSLATE
has nothing to do with character set translation.

Both the target and source character set names can be passed either as literal strings,
as variables, or as columns from a table. Note that replacement characters might
be substituted when converting from or to a character set that does not support a
representation of all the characters used in the conversion.

Oracle supports several common character sets, including US7ASCII, WE8DEC‐
DEC, WE8HP, F7DEC, WE8EBCDIC500, WE8PC850, and WE8ISO8859P1. For
example:

SQL Functions | 531

SQ
L B

uilt-in
Functio

ns

SELECT CONVERT('Gro2', 'US7ASCII', 'WE8HP') FROM DUAL;
Gross

PostgreSQL. PostgreSQL’s implementation of the TRANSLATE function can convert
any occurrence of one text string to another within a specified string. The CONVERT
function is used for converting from a binary string representing specific text
encoding to another binary string representation in a different text encoding. Their
syntax is as follows:

CONVERT(bytea, source_encoding, target_encoding)
TRANSLATE(character_string, from_text, to_text)

Here are some examples:

SELECT TRANSLATE('12345abcdea', '5a', 'XX');
'1234XXbcdeX'
SELECT TRANSLATE('12345abcdea', '5a', 'XY');
'1234XYbcdeY'
SELECT TRANSLATE('Straight Talk About Computers', 'Computer', 'PC');
'Saigh Talk AbC PCs'
SELECT CONVERT('Café'::bytea, 'UTF8', 'WIN1252');
\x436166e9

SQL Server. SQL Server does not support TRANSLATE. Its implementation of
CONVERT is a very rich utility that alters the base data type of an expression but is
otherwise quite different from the SQL standard’s CONVERT function. It is function‐
ally equivalent to the CAST function, and has the following syntax:

CONVERT(data_type[(length) | (precision, scale)],
 expression[, style])

The style clause is used to define the format of a date conversion; refer to the
vendor documentation for more information. Following is an example:

SELECT title, CONVERT(char(7), ytd_sales)
FROM titles
ORDER BY title
GO

LOWER and UPPER
The functions LOWER and UPPER allow the case of a string to be altered quickly
and easily so that all the characters are lower- or uppercase, respectively. These
functions are supported in all the database implementations covered in this book.
The different database platforms also support a variety of other text formatting
functions that are specific to their implementations.

SQL standard syntax.
LOWER(string)
UPPER(string)

532 | Chapter 7: SQL Built-in Functions

LOWER converts string into a lowercase string. UPPER is the uppercase counterpart of
LOWER.

MySQL. MySQL additionally supports the synonyms UCASE and LCASE.

Example.
SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');
you talkin to me?, YOU TALKING TO ME?!

OVERLAY
The OVERLAY function embeds one string into another and returns the result.

SQL standard syntax.
OVERLAY(string PLACING embedded_string FROM start
[FOR length])

If any of the inputs are NULL, the OVERLAY function returns NULL. The
embedded_string replaces the length characters in string, starting at the character
position start. If the length is not specified, the embedded_string will replace all
the characters in string after start.

MySQL. MySQL does not support the OVERLAY function, but you can simulate it
by using a combination of SUBSTRING and the concatenation operator (discussed
elsewhere in this section).

Oracle. Oracle does not support the OVERLAY function. You can simulate it by using
a combination of SUBSTRING and the concatenation operator.

PostgreSQL. PostgreSQL supports the OVERLAY function.

SQL Server. SQL Server does not have an OVERLAY function but offers a function
called STUFF that is similar in purpose. In the case of STUFF, the length is not
optional. The syntax is as follows:

STUFF(string, start, length, embedded_string)

Examples.
/* SQL standard and PostgreSQL */
SELECT OVERLAY('NORTH DAKOTA' PLACING 'CAROLINA' FROM 7);
'NORTH CAROLINA'
SELECT OVERLAY('MINNIE ADORES MICKEY' PLACING 'LOVES' FROM 8 FOR 6);
'MINNIE LOVES MICKEY'

/* SQL Server */
SELECT STUFF('NORTH DAKOTA', 7, 6, 'CAROLINA');
'NORTH CAROLINA'
SELECT STUFF('MINNIE ADORES MICKEY', 8, 6, 'LOVES');
'MINNIE LOVES MICKEY'

SQL Functions | 533

SQ
L B

uilt-in
Functio

ns

SUBSTRING
The SUBSTRING function allows one character string to be returned from another.

SQL standard syntax.
SUBSTRING(extraction_string FROM starting_position
 [FOR length])

If any of the inputs are NULL, the SUBSTRING function returns NULL. The
extraction_string is the source from which the character value is to be extracted.
It may be a literal string, a column in a table with a character data type, or a
variable with a character data type. The starting_position is an integer value
telling the function at which position to begin performing the extraction. The
optional length is an integer value that tells the function how many characters to
extract, starting at the starting_position. If this is omitted, the substring starting
at starting_position and continuing to the end of the extraction_string is
returned. The starting_position should be a positive number that is greater than
or equal to 1. If a negative value is passed in for starting_position, it is converted
to 1.

MySQL. MySQL supports the SQL standard. This platform’s implementation
assumes that the characters are to be extracted from the starting position and will
continue to the end of the character string. The syntax is as follows:

SUBSTRING(extraction_string [FROM starting_position]
 [FOR length])

Oracle. Oracle’s implementation, SUBSTR, largely functions the same way as the
SQL standard’s SUBSTRING. When the starting_position is a negative number,
Oracle counts from the end of the extraction_string. If length is omitted, the
remainder of the string (starting at starting_position) is returned. The syntax is:

SUBSTR(extraction_string, starting_position[, length])

PostgreSQL. PostgreSQL supports the SQL standard syntax. It also allows for the
alias SUBSTR. The PostgreSQL syntax is:

SUBSTRING(extraction_string [FROM starting_position]
 [FOR length])
SUBSTRING(extraction_string, starting_position[, length])
SUBSTR(extraction_string, starting_position[, length])

SQL Server. SQL Server supports the SQL standard syntax. It allows the function to
be applied to text, image, and binary data types; however, the starting_position
and length represent the number of bytes rather than the number of characters to
count. The SQL Server syntax is as follows:

SUBSTRING(extraction_string [FROM starting_position]
 [FOR length])

534 | Chapter 7: SQL Built-in Functions

Examples. Most of these examples will work on any of the database platforms
profiled in this book. Only the second Oracle example, with a negative starting
position, fails on the others (assuming, of course, that Oracle’s SUBSTR is translated
into SUBSTRING):

/* On Oracle, counting from the left */
SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;
'CDEF'

/* On PostgreSQL, counting from the left */
SELECT SUBSTR('ABCDEFG',3,4);
'CDEF'

/* On Oracle, counting from the right */
SELECT SUBSTR('ABCDEFG',−5,4) FROM DUAL;
'CDEF'

/* On MySQL or PostgreSQL */
SELECT SUBSTRING('Be vewy, vewy quiet' FROM 5);
'ewy, vewy quiet'

/* On PostgreSQL or SQL Server */
SELECT au_lname, SUBSTRING(au_fname, 1, 1)
FROM authors
WHERE au_lname = 'Carson';
Carson C

TRIM
The TRIM function removes leading characters, trailing characters, or both from
a specified character string or BLOB value. This function also removes other types
of characters from a specified character string. The default behavior is to trim the
specified character from both sides of the character string. If no removal character
is specified, TRIM removes spaces by default.

SQL standard syntax.
TRIM([[{LEADING | TRAILING | BOTH}] [removal_char] FROM]
 target_string)

The removal_char is the character to be stripped out, and the target_string is the
character string from which characters are to be stripped. If no removal_char is
specified, TRIM strips out spaces.

MySQL. MySQL supports the TRIM function.

Oracle. Oracle supports the TRIM function.

PostgreSQL. PostgreSQL supports the TRIM function and an alias, BTRIM. It also
supports LTRIM and RTRIM functions to trim off leading or trailing characters,
respectively. When a character is not specified, the space character is assumed.

SQL Functions | 535

SQ
L B

uilt-in
Functio

ns

SQL Server. SQL Server provides the functions LTRIM and RTRIM to trim off leading
spaces or trailing spaces, respectively. These functions cannot be used to trim other
characters. SQL Server 2017 introduced a TRIM function, but it does not follow the
SQL standard syntax; it only allows removal of whitespace from the front and back.
The syntax is:

TRIM(target_string)

Examples.
/* SQL standard and all platforms (add FROM DUAL for Oracle) */
SELECT TRIM(' wamalamadingdong ');
'wamalamadingdong'

/* PostgreSQL and SQL Server **/
SELECT LTRIM(RTRIM(' wamalamadingdong '));
'wamalamadingdong'

/* SQL standard, MySQL, Oracle (add FROM DUAL), and PostgreSQL */
SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');
'76 AMC GREMLIN'

/* SQL standard, MySQL, Oracle (add FROM DUAL), and PostgreSQL */
SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');
'WHISKEY'

/* SQL standard, MySQL, Oracle (add FROM DUAL), and PostgreSQL */
SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');
'scooby '

Collection Functions

TABLE
The TABLE function expands a collection object into a set of rows.

SQL standard syntax.
TABLE (collection_value_expression)

The collection_value_expression is a collection object such as a set of a type. It is
used to return the results of a set-returning function.

MySQL. MySQL does not support the TABLE function.

Oracle. Oracle supports the TABLE function and requires its use for all set-
returning functions.

PostgreSQL. PostgreSQL does not support the TABLE function; however, functions
can be defined as RETURNS TABLE or SET OF and used without wrapping in a
TABLE construct. In addition, PostgreSQL supports WITH ORDINALITY for all TABLE/
set-returning functions.

536 | Chapter 7: SQL Built-in Functions

SQL Server. SQL Server does not support the TABLE function; however, functions
can be defined as RETURNS TABLE or SET OF and used without wrapping in a TABLE
construct.

Examples.
/* SQL standard, Oracle */
SELECT *
FROM TABLE(some_table_function(a,b,c));

/* SQL Server, PostgreSQL */
SELECT *
FROM some_table_function(a,b,c);

UNNEST
The UNNEST function expands an array or multiset value into a set of rows.

SQL standard syntax.
UNNEST (collection_value_expression)
[WITH ORDINALITY]

The collection_value_expression is a collection object such as an array. If the
WITH ORDINALITY clause is included, then an extra column called ordinality is added
to the output that sequentially numbers the rows.

MySQL. MySQL does not support the UNNEST function.

PostgreSQL. PostgreSQL supports the UNNEST function.

Oracle. Oracle does not support the UNNEST function. You can use the TABLE
function as an alternative.

SQL Server. SQL Server does not support the UNNEST function. You can to some
extent replace it with the STRING_SPLIT function, which takes a delimited string and
returns a set of strings broken by the delimiter.

Examples.
/* SQL standard and PostgreSQL */
SELECT f.ord, f.a
FROM UNNEST(ARRAY['wamalamadingdong', 'dong dong'])
 WITH ORDINALITY AS f(a,ord);
ord a
--- ------
1 wamalamadingdong
2 dong dong

SQL Functions | 537

SQ
L B

uilt-in
Functio

ns

Platform-Specific Extensions
The following sections provide comprehensive listings of key vendor-supported
functions that are not included in the SQL standard. These functions are platform-
specific, so those supported by one vendor may not be supported by another (or not
in the same way). This list does not include aggregate functions, window functions,
XML functions, or JSON functions, which are covered in 8 and 10, respectively.
Functions discussed earlier in the chapter are also not included in these listings.

MySQL-Supported Functions
This section provides an alphabetical listing of MySQL-supported functions that are
not part of the SQL standard, with examples and corresponding results for most:

ADDDATE(date, days)

Returns date with days added to it. For example:

ADDDATE('2022-04-14', 1) -> '2022-04-15'

ADDDATE(date, INTERVAL expr unit)

Synonym for DATE_ADD. Returns date with expr units of unit added. For
example:

ADDDATE('2022-04-14', INTERVAL 1 DAY) -> '2022-04-15'

AES_DECRYPT(crypt_str, key_str)

Returns crypt_str decrypted using AES and the key key_str.

AES_ENCRYPT(str, key_str)

Returns str encrypted with AES using the key key_str. For example:

AES_DECRYPT(AES_ENCRYPT('secret sauce', 'password'), 'password') ->
'secret sauce'

ASCII(text)

Returns the ASCII code of the first character of text. For example:

ASCII('x') -> 120

BENCHMARK(count, expr)

Executes the expression expr count times. The result is always 0. For example:

BENCHMARK(1000000,ATAN2(3.1415, 1)) -> 0

BIN(number)

Returns a string containing the binary value of number, where number is a
BIGINT.

BINARY(string)

Casts string to a binary string.

BIT_COUNT(number)

Returns the number of bits that are set in number. For example:

538 | Chapter 7: SQL Built-in Functions

BIT_COUNT(5) -> 2

BIT_LENGTH(string)

Returns the length of string in bits. For example:

BIT_LENGTH('abc') -> 24

CHAR(number[, ...])

Returns a string consisting of the characters corresponding to the ASCII code
values in the arguments. Any NULL values are ignored. For example:

CHAR(120,121,122) -> 'xyz'

CHARSET(str)

Returns the character set of the string argument str. For example:

CHARSET('oolong') -> 'latin1'

COERCIBLITY(expr)

Returns the collation coercibility value of expr, which is an integer value
between 0 and 5; the lowest values have the highest precedence. For example:

COERCIBILITY('darjeeling') -> 4

COLLATION(str)

Returns the collation of str. For example:

COLLATION(_utf8'assam') -> 'utf8_general_ci'

COMPRESS(string)

Returns a compressed version of string.

CONCAT_WS(separator, str1, str2[, ...])

A special form of CONCAT that inserts separator between every pair of string
arguments concatenated. If separator is NULL, the result is NULL. For
example:

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

CONNECTION_ID()

Returns the connection ID for the connection. Every connection has its own
unique ID. For example:

CONNECTION_ID() -> 305102

CONV(number, from_base, to_base)

Returns a string representation of the number number, converted from base
from_base to base to_base. If any argument is NULL, the result is NULL. For
example:

CONV(12,10,2) -> 1100

CRC32(expr)

Returns the CRC32 checksum of expr. For example:

Platform-Specific Extensions | 539

SQ
L B

uilt-in
Functio

ns

CRC32('mysql') -> 2501908538

CURDATE()

Returns today’s date as a value in YYYY-MM-DD or YYYYMMDD format, depending
on whether the function is used in a string or numeric context. For example:

CURDATE() -> '2022-0-24'

CURTIME()

Returns the current time as a value in HH:MM:SS or HHMMSS format,
depending on whether the function is used in a string or numeric context.
For example:

CURTIME() -> '20:40:20'

DATABASE()

Returns the current database name. For example:

DATABASE() -> 'PUBS'

DATE_ADD(date, INTERVAL expr unit)

Synonym for ADDDATE. Returns the result of adding the INTERVAL to the date
expression. For example:

DATE_ADD('2022-04-15', INTERVAL 1 DAY) -> '2022-04-16'

DATE_ FORMAT(date, format)

Formats the date value according to the format string. For example:

DATE_FORMAT('2022-04-15', '%M-%D-%Y') -> 'April-15th-2022'

Table 7-9 lists the available specifiers for format and their meanings.

Table 7-9. MySQL format specifiers

Format specifier Meaning

%a Abbreviation of the day (Sun–Sat)

%b Abbreviation of the month (Jan–Dec)

%c Number of the month (1–12)

%D Day of the month with a suffix (1st, 2nd, 3rd, ...)

%d Two-digit day of the month (01, 02, ...)

%e Day of the month (1, 2, 3, ...)

%H Hour (00–23)

%h Hour (01–12)

%I Hour (01–12)

%i Minute (00–59)

%j Day of the year (001–366)

%k Hour (0–23)

540 | Chapter 7: SQL Built-in Functions

Format specifier Meaning

%l Hour (1–12)

%M Full month name (January–December)

%m Month (01–12)

%p AM or PM

%r 12-hour time (hh:mm:ss AM or PM)

%S or %s Seconds (00–59)

%T 24-hour time (hh:mm:ss)

%U Week number (00–53, Sunday being the first day of the week)

%u Week number (00–53, Monday being the first day of the week)

%V Week number (01–53, Sunday being the first day of the week)

%v Week number (01–53, Monday being the first day of the week)

%W Name of the day (Sunday–Saturday)

%w Day of the week (0–6, 0 being Sunday and 6 being Saturday)

%X Four-digit year with Sunday being the first day of the week

%x Four-digit year with Monday being the first day of the week

%Y Four-digit year

%y Two-digit year

%% Literal “%”

DATE_SUB(date, INTERVAL expr unit)

Synonym for SUBDATE. Returns the result of subtracting the INTERVAL from the
date expression. For example:

DATE_SUB('2022-04-15', INTERVAL 1 DAY) -> '2022-04-14'

DAYNAME(date)

Returns the name of the weekday for date. For example:

DAYNAME('2022-04-15') -> 'Friday'

DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31. For example:

DAYOFMONTH('2022-04-15') -> 15

DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ... 7 = Saturday).
For example:

DAYOFWEEK('2022-04-15') -> 6

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. For example:

Platform-Specific Extensions | 541

SQ
L B

uilt-in
Functio

ns

DAYOFYEAR('2022-04-15') -> 105

DECODE(crypt_str, pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password;
crypt_str should be a string returned from ENCODE. For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

DEFAULT(column_name)

Returns the default value of the column column_name. For example:

SELECT DEFAULT(a_column) FROM a_table -> 0

DEGREES(number)

Returns the argument number converted from radians to degrees. For example:

DEGREES(3.1415926) -> 179.99999692953

DES_DECRYPT(crypt_str, key_str)

Returns crypt_str decrypted using DES and the key key_str.

DES_ENCRYPT(str, key_str)

Returns str encrypted with DES using the key key_str. For example:

DES_DECRYPT(DES_ENCRYPT('secret sauce', 'password'), 'password') ->
'secret sauce'

ELT(n, str1, str2, str3[, ...n])

Returns str1 if n = 1, str2 if n = 2, and so on. If n is less than 1 or greater than
the number of arguments, this function returns NULL. ELT is the complement
of FIELD. For example:

ELT(1, 'Hi', 'There') -> 'Hi'
ELT(2, 'Hi', 'There') -> 'There'

ENCODE(str, pass_str)

Encrypts str using pass_str as the password. The result is a binary string the
same length as the string; to decrypt it, use DECODE. For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

ENCRYPT(str[,salt])

Encrypts str using the Unix crypt system call. The optional salt argument
should be a string with two characters. For example:

ENCRYPT('password') -> 'ZB7yqPUHvNnmo'

EXPORT_SET(bits, on, off,[separator,[number_of_bits]])

Returns a string where every bit in bits that is set gets an on string and every
unset bit gets an off string. Each string is separated with separator; the default
is a comma (,). number_of_bits is optional; when omitted, the default is 64.
For example:

542 | Chapter 7: SQL Built-in Functions

EXPORT_SET(4,'T','F') ->
F,F,T,F,
F,F

FIELD(str, str1, str2, str3[, ...])

Returns the index of str in the given string arguments, or 0 if str is not found.
FIELD is the complement of ELT. For example:

FIELD('GOOSE','DUCK','DUCK','GOOSE','DUCK') -> 3

FIND_IN_SET(str, strlist)

Returns the index of str within the strlist, where strlist is a list of
strings separated by commas. This function is equivalent to calling FIELD(str,
CONCAT_WS(',', str1, str2, str3[, ...])). For example:

FIND_IN_SET('b','a,b,c,d') -> 2

FORMAT(number, decimals)

Formats the number number to a format like #,###,###.##, rounded to
decimals decimals. If decimals is 0, the result has no decimal point or frac‐
tional part. For example:

FORMAT(12345.2132,2) -> 12,345.21
FORMAT(12345.2132,0) -> 12,345

FOUND_ROWS()

Returns the number of rows that would have been returned by a query that was
previously executed with the LIMIT clause. The query of FOUND_ROWS must be
done immediately after the limited query is executed. For example:

FOUND_ROWS() -> 31415926

FROM_DAYS(number)

Given a day number, returns a DATE value. This function should not be used
for values that precede the advent of the Gregorian calendar (1582), due to the
days lost when the calendar was changed. For example:

FROM_DAYS(888888) -> 2433-09-10

FROM_UNIXTIME(unix_timestamp)

Returns a representation of the unix_timestamp argument as a value in YYYY-
MM-DD HH:MM:SS or YYYYMMDDHHMMSS format, depending on whether the func‐
tion is used in a string or numeric context. For example:

FROM_UNIXTIME(1647000892) -> 2022-03-11 07:14:52

FROM_UNIXTIME(unix_timestamp, format)

Returns a string representation of the unix_timestamp, formatted according to
the format string. format may contain the same specifiers as those listed in the
entry for the DATE_FORMAT function (Table 7-9). For example:

FROM_UNIXTIME(1647000892,'%Y %D %M') -> '2022 11th March'

Platform-Specific Extensions | 543

SQ
L B

uilt-in
Functio

ns

GET_LOCK(str, timeout)

Tries to obtain a lock with a name given by the string str, with a timeout of
timeout seconds. Returns 1 if the lock is obtained successfully, or NULL if an
error occurs or the attempt to acquire the lock times out. For example:

GET_LOCK('lochness',10) -> 1

GREATEST(x, y[, ...])

Returns the largest argument. For example:

GREATEST(8,2,4) -> 8

HEX(number)

Returns a string representation of the hexadecimal value of number. This is
equivalent to CONV(number, 10, 16). For example:

HEX(255) -> FF

HOUR(time)

Returns the hour for time, in the range 0 to 23. For example:

HOUR('08:20:15') -> 8

IF(expr1, expr2, expr3)

Returns expr2 if expr1 is TRUE; otherwise, returns expr3. For example:

IF(1,'yes','no') -> 'yes'
IF(0,'yes','no') -> 'no'

IFNULL(expr1, expr2)

Returns expr1 if expr1 is not NULL; otherwise, returns expr2. For example:

IFNULL(0,'NULL') -> 0
IFNULL(NULL,'NULL') -> 'NULL'

INET_ATON(expr)

Returns a numeric representation of a network IP address found in expr. For
example:

INET_ATON('127.0.0.1') -> 2130706433

INET_NTOA(num)

Returns the network IP address as a string decoded from the numeric value
num. For example:

INET_NTOA(2130706433) -> '127.0.0.1'

INSERT(str, pos, len, newstr)

Returns the string str with newstr inserted at character position pos for length
len. For example:

INSERT('paper',2,3,'ea') -> 'pear'

544 | Chapter 7: SQL Built-in Functions

INSTR(str, substr)

Returns the position of the first occurrence of the substring substr in the
string str. For example:

INSTR('ducks','c') -> 3

INTERVAL(num1, num2, num3, num4[, ... n])

Returns 0 if num1 < num2, 1 if num1 < num3, and so on. It is required that num2 <
num3 < num4 < ... < numN. For example:

INTERVAL(5,1,6) -> 1
INTERVAL(5,2,3,7,9) -> 2

IS_FREE_LOCK(lock)

Returns 1 if lock is free and 0 if the lock is currently in use. The function may
return NULL on error conditions. For example:

IS_FREE_LOCK('lochness') -> 0

IS_USED_LOCK(lock)

Returns the connection identifier if the lock with the ID lock is taken, and
NULL otherwise. For example:

IS_USED_LOCK('lochness') -> 0

ISNULL(expr)

Returns 1 if expr is NULL; otherwise, it returns 0. For example:

ISNULL(1) -> 0
ISNULL(NULL) -> 1

LAST_DAY(expr)

Returns the last day in the month for the date found in expr. For example:

LAST_DAY('2022-01-01') -> '2022-01-31'

LAST_INSERT_ID([expr])

Returns the last automatically generated value that was inserted into an
AUTO_INCREMENT column. For example:

LAST_INSERT_ID() -> 0

LEAST(X, Y[, ... n])

With two or more arguments, returns the smallest (minimum-valued) argu‐
ment. For example:

LEAST(10,5,3,7) -> 3

LEFT(str, len)

Returns the leftmost len characters from the string str. For example:

LEFT('Ducks', 4) -> 'Duck'

Platform-Specific Extensions | 545

SQ
L B

uilt-in
Functio

ns

LOAD_FILE(file_name)

Reads the file identified by file_name and returns the file contents as a string.
The file must be on the server, and the user must specify the full pathname to
the file and have permission to access the file.

LOG2(X)

Returns the base-2 logarithm of X. For example:

LOG2(50) -> 5.64386

LPAD(str, len, padstr)

Returns the string str, left-padded with the string padstr until str is len
characters long. For example:

LPAD('ucks',6,'d') -> 'dducks'

LTRIM(str)

Returns the string str with leading space characters removed. For example:

LTRIM(' Howdy! ') -> 'Howdy! '

MAKE_SET(bits, str1, str2[, ... n])

Returns a set (a string containing substrings separated by commas) consisting
of the string arguments that have the corresponding bit in bits set; str1
corresponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, ... are not
appended to the result. For example:

MAKE_SET(1 | 4,'hello','nice','world') -> 'hello,world'

MAKEDATE(y, n)

Returns a date corresponding to the year y and the day number n. For example:

MAKEDATE(2022, 1) -> '2022-01-01'

MAKETIME(hour, minute, second)

Returns a time matching hour:minute:second. For example:

MAKETIME(2, 30, 0) -> '02:30:00'

MATCH(col1, col2, ...) AGAINST (expr [search_modifier])

Performs a full-text search looking for expr in the supplied columns. See the
MySQL documentation for more information on full-text searching.

MD5(string)

Calculates an MD5 checksum for the string. The value is returned as a 32-
digit hex number. For example:

MD5('somestring') -> 1f129c42de5e4f043cbd88ff6360486f

MICROSECOND(time)

Returns the microseconds for time, in the range 0 to 999999. For example:

MICROSECOND('08:20:15.000050') -> 50

546 | Chapter 7: SQL Built-in Functions

MID(str, pos, len)

Synonym for SUBSTRING(str, pos, len).

MINUTE(time)

Returns the minute for time, in the range 0 to 59. For example:

MINUTE('08:20:15') -> 20

MONTH(date)

Returns the month for date, in the range 1 to 12. For example:

MONTH('2022-04-15') -> 4

MONTHNAME(date)

Returns the name of the month for date. For example:

MONTHNAME('2022-04-15') -> 'April'

NOW(), SYSDATE()

Returns the current date and time as a value in YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string
or numeric context. For example:

NOW() -> 2022-04-15 20:40:24
SYSDATE() -> 2022-04-15 20:40:24
CURRENT_TIMESTAMP -> 2022-04-15 20:40:24

NULLIF(expr1, expr2)

Returns NULL if expr1 is equal to expr2; otherwise, returns expr1.
For example:

NULLIF(2,29) -> 2
NULLIF(29,29) -> NULL

OCT(n)

Returns an octal value equivalent of n, where n is a number. This is equivalent
to CONV(n,10,8). Returns NULL if n is NULL. For example:

OCT(255) -> 377

ORD(str)

Returns the character ordinal of the multibyte character string str. The value is
calculated using the following formula: ((first byte ASCII code) * 256 + (second
byte ASCII code) * 256 * 256) (third byte ASCII code) * 256 * 256 * 256[, ...].
If str isn’t a multibyte character, this function returns the same value as the
ASCII function. For example:

ORD('29') -> 50

PASSWORD(str)

Calculates a password string from the plain-text password str. This is the
function that is used for encrypting MySQL passwords. For example:

PASSWORD('password') -> '5d2e19393cc5ef67'

Platform-Specific Extensions | 547

SQ
L B

uilt-in
Functio

ns

PERIOD_ADD(period, months)

Adds the number of months found in months to the period in period (in the
format YYMM or YYYYMM). Returns a value in the format YYYYMM. For example:

PERIOD_ADD(9902,3) -> 199905

PERIOD_DIFF(period1, period2)

Returns the number of months between period1 and period2. period1 and
period2 should be in the format YYMM or YYYYMM. Seven digits is default dis‐
played, but full double precision is available For example:

PERIOD_DIFF(9902,9905) -> −3

PI()

Returns the value of π. Seven digits is the default displayed, but adding a higher
precision will result in higher-precision value. For example:

PI() -> 3.141593
PI() +0.000000000000000000 -> 3.141592653589793116

POW(X, Y), POWER(X, Y)

Returns the value of X raised to the power of [ON ALL SERVER]. For example:

POW(2, 8) -> 256.000000

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4. For example:

QUARTER('2022-04-15') -> 2

QUOTE(str)

Returns str with special characters properly escaped for usage within a SQL
statement. For example:

QUOTE('\'start and end with quote\") -> '\'start and end
 with quote\"

RADIANS(X)

Returns the argument X, converted from degrees to radians. For example:

RADIANS(180) -> 3.1415926535898

RAND(), RAND([ON ALL SERVER])

Returns a random floating-point value in the range 0 to 1.0. If an integer argu‐
ment [ON ALL SERVER] is specified, it is used as the seed value. For example:

RAND() -> 0.29588872501244

expr REGEXP pat, expr RLIKE pat

Returns 1 if expr matches the regular expression pattern in pat; otherwise,
returns 0. For example:

'oolong' REGEXP '^[a-z]' -> 1

548 | Chapter 7: SQL Built-in Functions

REGEXP_REPLACE(s, pattern, replacement, match_type), REGEXP_REPLACE(s,

pattern, replacement)

Returns s with all substrings matching the regular expression pattern replaced
with the string found in replacement. MySQL supports a match_type option
to allow non-default processing by the regular expression matching engine.
The options are 'i' for case-insensitive matching, 'c' for case-sensitive
matching, 'n' for the “.” character also matching newlines, and ‘m’ to recog‐
nize line terminators within the string.

MariaDB does not support the match_type argument, but all special processing
can be specified as part of the pattern using standard POSIX regex syntax.

For example:

REGEXP_REPLACE('ab1ab2ab3', '[0-9]+', 'X') -> abXabXabX

RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK.
Returns 1 if the lock is released, or NULL if the named lock doesn’t exist or isn’t
locked by this thread (in which case the lock is not released). For example:

RELEASE_LOCK('lochness') -> 1

REPEAT(str, count)

Returns a string consisting of the string str repeated count times. For example:

REPEAT('Duck', 3) -> 'DuckDuckDuck'

REPLACE(str, from_str, to_str)

Returns the string str with all occurrences of the string from_str replaced by
the string to_str. For example:

REPLACE('change', 'e', 'ing') -> 'changing'

REVERSE(str)

Returns the string str reversed. For example:

REVERSE('STOP') -> 'POTS'

RIGHT(str, int)

Returns the rightmost int characters of the string str. For example:

RIGHT('Hello, World!', 6) -> 'World!'

ROUND(X[, D])

Returns the argument X, rounded to a number with D decimals. If D is 0, the
result has no decimal point or fractional part. For example:

ROUND(12345.6789, 2) -> 12345.68

ROW_COUNT()

Returns the number of rows updated in the previous statement. For example:

ROW_COUNT() -> 4

Platform-Specific Extensions | 549

SQ
L B

uilt-in
Functio

ns

RPAD(str, len, padstr)

Returns the string str, right-padded with the string padstr until str is len
characters long. For example:

RPAD('duck',6,'s') -> 'duckss'

RTRIM(str)

Returns the string str with trailing space characters removed. For example:

RTRIM(' welcome ') -> 'welcome '

SCHEMA()

Synonym for DATABASE.

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a
value in HH:MM:SS or HHMMSS format, depending on whether the function
is used in a string or numeric context. For example:

SEC_TO_TIME(256) -> 00:04:16

SECOND(time)

Returns the seconds for time, in the range 0 to 59. For example:

SECOND('08:20:15') -> 15

SHA(X), SHA1(X)

Returns a SHA1 160-bit checksum for X. For example:

SHA('abc') -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SIGN(X)

Returns the sign of the argument as −1, 0, or 1, depending on whether X is
negative, zero, or positive. For example:

SIGN(−3.1415926) -> −1

SLEEP(s)

Sleeps for s seconds. For example:

SLEEP(60) -> 0

SOUNDEX(string)

Returns a character string containing the phonetic representation of string.
This function allows words that are spelled differently but sound alike in
English to be compared for equality. For example:

SOUNDEX('thimble') -> 'T514'

expr1 SOUNDS LIKE expr2

Synonymous with the expression:

SOUNDEX(expr1) = SOUNDEX(expr2)

550 | Chapter 7: SQL Built-in Functions

SPACE(n)

Returns a string consisting of n space characters. For example:

SPACE(5) -> ' '

STD(expr), STDDEV(expr)

Returns the standard deviation of expr. The STDDEV form of this function is
provided for Oracle compatibility. For example:

STD(5) -> NULL

STR_TO_DATE(str, format)

Returns a date parsed from str using the format specifiers found in the format
argument. This is the reverse of DATE_FORMAT; see that entry for a list of the
supported specifiers (Table 7-9). For example:

STR_TO_DATE('28/08/2016', '%d/%m/%Y') -> '2016-08-28'

STRCMP(expr1, expr2)

STRCMP Compares expr1 and expr2 and returns 0 if the strings are the same,
−1 if the first argument is smaller than the second according to the current sort
order, and 1 otherwise. For example:

STRCMP('DUCKY', 'DUCK') -> 1STRCMP('DUCK', 'DUCK') -> 0

SUBDATE(date, INTERVAL expr unit)

Synonym for DATE_SUB. Returns the result of subtracting the INTERVAL from
the date expression. For example:

SUBDATE('2022-04-15', INTERVAL 1 DAY) -> '2022-04-14'

SUBSTRING(str, pos), SUBSTRING(str FROM pos)

Returns a substring from the string str starting at the position pos. For
example:

SUBSTRING('Hello, World!', 8) -> 'World!'
SUBSTRING('Hello, World!' FROM 8) -> 'World!'

SUBSTRING(str, pos, len)

Returns a substring len characters long from the string str, starting at the
position pos. Synonym for MID(str, pos, len) and the SQL standard func‐
tion SUBSTRING(str FROM pos FOR len). For example:

SUBSTRING('Hello, World!', 8, 10) -> 'World!'
SUBSTRING('Hello, World!' FROM 8 FOR 10) -> 'World!'

SUBSTRING_INDEX(str, delim, count)

Returns the substring str after count occurrences of the delimiter delim. For
example:

SUBSTRING_INDEX('www.mysql.com', '.', 2) -> 'www.mysql'

SUBTIME(expr1, expr2)

Returns the result of subtracting expr2 from expr1. For example:

Platform-Specific Extensions | 551

SQ
L B

uilt-in
Functio

ns

SUBTIME('2022-04-15 16:30:00.999999', '0 0:30:0.999996') ->
'2022-04-15 16:00:00.000003'

TIME(expr)

Returns the time portion of the value found in expr. For example:

TIME('2016-08-28 08:20:15') -> '08:20:15'

TIME_FORMAT(time, format)

Used like DATE_FORMAT, but the format string may contain only those format
specifiers that handle hours, minutes, and seconds. Other specifiers produce a
NULL value or 0. See DATE_FORMAT for a list of the available format specifiers
(Table 7-9). For example:

TIME_FORMAT('2022-04-15 08:20:15', '%r') -> 08:20:15 AM

TIME_TO_SEC(time)

Returns the time argument, converted to seconds. For example:

TIME_TO_SEC('08:20:15') -> 30015

TIMEDIFF(expr1, expr2)

Returns the difference between expr1 and expr2. For example:

TIMEDIFF('2016-08-28 08:20:15', '2016-08-28 08:20:16') ->
'00:00:01.000000'

TIMESTAMP(expr1[, expr2])

Returns a timestamp value where the date comes from expr1 and the time
component comes from expr2. For example:

TIMESTAMP('2016-08-28', '08:20:16') -> '2016-08-28 08:20:16'

TIMESTAMPADD(unit, interval, expr)

Returns a timestamp constructed by adding interval to the date expression
expr. The units for interval are specified by unit. For example:

TIMESTAMPADD(DAY, 2, '2016-08-28') -> '2016-08-30 00:00:00'

TIMESTAMPDIFF(unit, expr1, expr2)

Returns an integer that is the result of subtracting expr1 from expr2. The units
of the result are specified by unit. For example:

TIMESTAMPDIFF(DAY, '2016-08-30', '2016-08-28') -> −2

TO_DAYS(date)

Given a date, returns a day number (the number of days since the year 0). For
example:

TO_DAYS('2022-03-15') -> 738594

TRUNCATE(X, D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no
decimal point or fractional part. For example:

552 | Chapter 7: SQL Built-in Functions

TRUNCATE('123.456', 2) -> '123.45'
TRUNCATE('123.456', 0) -> '123'
TRUNCATE('123.456', −1) -> '120'

UCASE(str)

Synonym for the SQL standard function UPPER(str). For example:

UCASE('duck') -> 'DUCK'

UNCOMPRESS(string)

Returns an uncompressed version of string.

UNCOMPRESS_LENGTH(string)

Returns the length of string in its uncompressed form.

UNHEX(str)

Returns a binary string constructed from hex characters in str.

UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since
1970-01-01 00:00:00 GMT). If called with a date argument, returns the value of
the argument as seconds since 1970-01-01 00:00:00 GMT. For example:

UNIX_TIMESTAMP() -> 1649105629
UNIX_TIMESTAMP('2022-04-04') -> 1649044800

UTC_DATE()

Returns the current UTC date. For example:

UTC_DATE() -> '2022-04-15'

UTC_TIME()

Returns the current UTC time. For example:

UTC_TIME() -> '01:01:00'

UTC_TIMESTAMP()

Returns the current UTC date and time. For example:

UTC_TIMESTAMP() -> '2022-04-15 01:01:00'

UUID()

Returns a universal unique identifier. For example:

UUID() -> '1ae84bc9-5e4d-8f22-1f2e-123456789abc'

VERSION()

Returns a string indicating the MySQL or MariaDB server version. For
example:

VERSION() -> '10.6.5-MariaDB'

WEEK(date), WEEK(date, first)

With a single argument, returns the week for date, in the range 1 to 53. (The
beginning of a week 53 is possible during some years.) The two-argument form

Platform-Specific Extensions | 553

SQ
L B

uilt-in
Functio

ns

of WEEK allows the user to specify whether the week starts on Sunday (0) or
Monday (1). For example:

WEEK('2022-04-15') -> 15

WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 = Sunday).
For example:

WEEKDAY('2022-04-15') -> 4

WEEKOFYEAR(date)

Returns the calendar week for date, where the calendar week is an integer
between 1 and 53, inclusive. For example:

WEEKOFYEAR('2022-01-01') -> 1

op1 XOR op2

Returns the logical XOR of op1 and op2. For example:

1 XOR 1, 1 XOR 0 -> 0, 1

YEAR(date)

Returns the year for date, in the range 1000 to 9999. For example:

YEAR('2022-04-15') -> 2022

YEARWEEK(date), YEARWEEK(date, first)

Returns the year and week for date. The second argument works exactly like
the second argument to WEEK. Note that the year may be different from the year
in the date argument for the first and the last week of the year. For example:

YEARWEEK('2022-04-15') -> 202215

Oracle-Supported Functions
This section provides an alphabetical listing of the SQL functions specific to Oracle,
with examples and corresponding results for most of them.

ADD_MONTHS(date, int)

Returns the date plus int months. For example:

SELECT ADD_MONTHS('15-APR-2022', 3) FROM DUAL -> 15-JUL-22

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') FROM DUAL -> 120

ASCIISTR(text)

Converts text from any character set into an ASCII equivalent. Characters in
text that have no equivalent in ASCII will be replaced with the string \XXXX,
where XXXX represents the UTF-16 code unit. For example:

554 | Chapter 7: SQL Built-in Functions

SELECT ASCIISTR('ÄBC') FROM DUAL -> '\00C4BC'

BFILENAME(directory, filename)

Returns a BFILE locator associated with a physical LOB binary file on the
server’s filesystem in directory with the name filename.

BIN_TO_NUM(expr[, ...n])

Returns a decimal number equivalent of the binary bit vector contained in the
expr argument(s). For example:

SELECT BIN_TO_NUM(1,0,1) FROM DUAL -> 5

BITAND(integer1, integer2)

Returns the bitwise AND of the two integer arguments. For example:

SELECT BITAND(101, 2) FROM DUAL -> 0
SELECT BITAND(column1, 1) FROM DUAL -> 1

CHARTOROWID(char)

Converts a value from a character data type (CHAR or VARCHAR2) to a ROWID data
type.

CHR(number [USING NCHAR_CS])

Returns the character having the binary equivalent to number in either the
database character set (if USING NCHAR_CS is not included) or the national
character set (if USING NCHAR_CS is included).

CLUSTER_ID(), CLUSTER_PROBABILITY(), CLUSTER_SET()

Support data mining features. See the documentation for the Oracle Data
Mining Java API or the DBMS_DATA_MINING package for more details on these
functions.

COMPOSE(string)

Returns string as a fully normalized Unicode string.

CUBE_TABLE('expr')

Extracts a two-dimensional relational view from an OLAP cube or dimension.
See the Oracle OLAP documentation for more information.

CV([dimension_column])

Relevant only in the inter-row calculations performed within the MODEL
clause of a SELECT statement, this function returns the current value of the
dimension_column. CV can only be used in the righthand side of a rule, since it
returns the value of the dimension_column from the lefthand side of the same
rule.

DATAOBJ_TO_PARTITION(table, partition_id)

Returns the partition identifier for the system-partitioned table specified by
the arguments. See the Oracle documentation for more information on this
function.

Platform-Specific Extensions | 555

SQ
L B

uilt-in
Functio

ns

DBTIMEZONE

Returns the time zone offset from UTC time for the database server. For
example:

SELECT DBTIMEZONE FROM DUAL -> +00:00

DECODE(expr, search, result[, search, result[, ... n]][, default])

Compares expr to the search value; if expr is equal to search, it returns the
result. For example:

DECODE('B','A',1,'B',2,...'Z',26,'?') -> 2

Without a match, DECODE returns default, or NULL if default is omitted.
Refer to the Oracle documentation for more details. Consider using CASE
instead, as CASE is part of the SQL standard.

DECOMPOSE(string [{CANONICAL | COMPATIBILITY}])

Returns string decomposed into Unicode code points. The second argument
specifies the type of decomposition performed. CANONICAL, which specifies the
default behavior, allows the original Unicode string to be recomposed.

DEREF(expression)

Returns the object referenced by expression, where expression must return a
REF to an object.

DUMP(expression[, return_format[, starting_at[, length]]])

Returns a VARCHAR2 value containing a data type code, length in bytes, and
internal representation of expression. The resulting value is returned in the
format of return_format. For example:

SELECT DUMP('abc', 1016) FROM DUAL ->
Typ=96 Len=3 CharacterSet=AL32UTF8: 61,62,63

EMPTY_BLOB(), EMPTY_CLOB()

Return an empty LOB locator that can be used to initialize a LOB variable. These
functions can also be used to initialize a LOB column or attribute to empty in an
INSERT or UPDATE statement.

FEATURE _ID(), FEATURE _SET(), FEATURE_VALUE()

Support data mining features. See the documentation for the Oracle Data
Mining Java API or the DBMS_DATA_MINING package for more details on these
functions.

FROM_TZ(timestamp, timezone)

Returns timestamp converted to a TIMESTAMP WITH TIME ZONE value, where
timestamp is a TIMESTAMP value and timezone is a string in the TZH:TZM
format. For example:

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL ->
'15-APR-22 11.59.59 PM +08:00'

556 | Chapter 7: SQL Built-in Functions

GREATEST(expression[, ... n])

Returns the greatest of the list of expressions. All expressions after the first
are implicitly converted to the data type of the first expression before the
comparison. For example:

SELECT GREATEST(8,2,4) FROM DUAL -> 8

HEXTORAW(string)

Converts a string containing hexadecimal digits into a raw value. For example:

SELECT HEXTORAW('0FE') FROM DUAL -> '00FE'

INITCAP(string)

Returns string, with the first letter of each word in uppercase and all other
letters in lowercase. For example:

SELECT INITCAP('thomas jefferson') FROM DUAL -> 'Thomas Jefferson'

INSERTCHILDXML(xml_fragment, xpath, child_expr, value_expr[, name

space])

Injects the nodes specified by child_expr within value_expr into xml_
fragment at the location given by the XPath query xpath, and returns the
result. The optional namespace argument provides the namespace for the
XPath query. For example:

SELECT INSERTCHILDXML('<a>', '/a', 'b', 'B1B2')
 FROM DUAL -> '<a>B1B2'

INSERTXMLBEFORE(xml_fragment, xpath, value_expr[, namespace])

Injects value_expr into xml_fragment at the location given by the XPath query
xpath and returns the result. The optional namespace argument provides the
namespace for the XPath query. For example:

SELECT INSERTXMLBEFORE('<a>B2', '/a/b', 'B1')
 FROM DUAL -> '<a>B1B2'

ITERATION_NUMBER

Relevant only in the inter-row calculations performed within the MODEL clause
of a SELECT statement, this function returns the number of times the rules
within the MODEL clause have been executed while processing the query.

LAST_DAY(date)

Returns the date of the last day of the month that contains date. For example:

SELECT LAST_DAY('15-APR-2022') FROM DUAL -> 30-APR-22

LEAST(expression[, ...n])

Returns the least of the list of expressions. For example:

SELECT LEAST(10,5,3,7) FROM DUAL -> 3

Platform-Specific Extensions | 557

SQ
L B

uilt-in
Functio

ns

LNNVL(condition)

Returns TRUE if condition is false or if one of the operands in condition is
NULL; otherwise, returns FALSE. For example:

SELECT COUNT(*) FROM authors WHERE LNNVL(contract <> 1) -> 4

LOCALTIMESTAMP[(precision)]

Returns a TIMESTAMP value for the current date and time. This function is
similar to CURRENT_TIMESTAMP, with the exception that this function does not
return a TIME ZONE value with the TIMESTAMP. For example:

SELECT LOCALTIMESTAMP FROM DUAL -> '15-APR-22 03.15.00 PM'

LPAD(string1, number[, string2])

Returns string1, left-padded to length number using characters in string2;
string2 defaults to a single blank. For example:

SELECT LPAD('ucks',5,'d') FROM DUAL -> 'ducks'

MAKE_REF({table_name | view_name}, key[, ... n])

Creates a reference (REF) to a row of an object view or a row in an object table
whose object identifier is primary key–based.

MONTHS_BETWEEN(date1, date2)

Returns the number of months between the dates date1 and date2. When
date1 is later than date2, the result is positive. When it is earlier, the result is
negative. For example:

SELECT MONTHS_BETWEEN('15-APR-2022', '15-JUL-2021') FROM DUAL -> 9

NANVL(a, b)

Returns b when a is not a number (NaN); returns a otherwise. The expression
a must evaluate to a BINARY_FLOAT or BINARY_DOUBLE number, which are the
only number types that permit storing NaN. For example:

SELECT c1, NANVL(c1, 0) FROM NUMS ->
1.0E+000 1.0E+000
2.0E+000 2.0E+000
Nan 0

NCHAR(number)

Synonym for CHR(number) USING NCHAR_CS.

NEW_TIME(date, time_zone1, time_zone2)

Returns the date and time in time_zone2, using date as the input date/time
and using time_zone1 as the originating time zone. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH12:MI:SS'
SELECT NEW_TIME(TO_DATE('04-15-99 08:22:31',
 'MM-DD-YY HH12:MI:SS'),'AST', 'PST')
 FROM DUAL ->
15-APR-2022 04:22:31

558 | Chapter 7: SQL Built-in Functions

time_zone1 and time_zone2 may be any of these text strings:

'AST', 'ADT'

Atlantic Standard or Daylight Time

'BST', 'BDT'

Bering Standard or Daylight Time

'CST', 'CDT'

Central Standard or Daylight Time

'EST', 'EDT'

Eastern Standard or Daylight Time

'GMT'

Greenwich Mean Time

'HST', 'HDT'

Alaska–Hawaii Standard or Daylight Time

'MST', 'MDT'

Mountain Standard or Daylight Time

'NST'

Newfoundland Standard Time

'PST', 'PDT'

Pacific Standard or Daylight Time

'YST', 'YDT'

Yukon Standard or Daylight Time

NEXT_DAY(date, string)
Returns the date of the first weekday named by string that is later than date.
The argument string must be either the full name or the abbreviation of a day
of the week in the date language of the session. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY'
SELECT NEXT_DAY('15-APR-2022', 'SUNDAY') FROM DUAL ->
17-APR-2022

NLS_CHARSET_DECL_LEN(bytecnt, csid)

Returns the declaration width (bytecnt) of an NCHAR column using the charac‐
ter set ID (csid) of the column.

NLS_CHARSET_ID(text)

Returns the NLS character set ID number corresponding to text.

NLS_CHARSET_NAME(number)

Returns the VARCHAR2 name for the NLS character set corresponding to the ID
number.

Platform-Specific Extensions | 559

SQ
L B

uilt-in
Functio

ns

NLS_INITCAP(string[, nlsparameter])

Returns string with the first letter of each word in uppercase and all other
letters in lowercase. The nlsparameter offers special linguistic sorting features.

NLS_LOWER(string[, nlsparameter])

Returns string with all letters in lowercase. The nlsparameter offers special
linguistic sorting features.

NLS_UPPER(string[, nlsparameter])

Returns string with all letters in uppercase. The nlsparameter offers special
linguistic sorting features.

NLSSORT(string[, nlsparameter])

Returns the string of bytes used to sort string. The nlsparameter offers
special linguistic sorting features.

NUMTODSINTERVAL(number, string)

Converts number to an INTERVAL DAY TO SECOND literal, where number is a
number or an expression resolving to a number, such as a numeric data type
column. The second argument, string, specifies how to interpret number: it
can be 'DAY', 'HOUR', 'MINUTE', or 'SECOND'. For example:

SELECT NUMTODSINTERVAL(100, 'DAY') FROM DUAL ->
+000000100 00:00:00.000000000

NUMTOYMINTERVAL(number, string)

Converts number to an INTERVAL YEAR TO MONTH literal, where number is a
number or an expression resolving to a number, such as a numeric data type
column. The second argument, string, specifies how to interpret number: it
can be 'YEAR' or 'MONTH'. For example:

SELECT NUMTOYMINTERVAL(100, 'YEAR') FROM DUAL -> +000000100-00

NVL(expression1, expression2)

If expression1 is NULL, expression2 is returned in place of that NULL value.
Otherwise, expression1 is returned. expression1 and expression2 may be
any data type. For example:

SELECT NVL(2,29) FROM DUAL -> 2

NVL2(expression1, expression2, expression3)

Similar to NVL, except that if expression1 is not NULL, expression2 is
returned, and if expression1 is NULL, expression3 is returned. The expres‐
sions may be any data type except LONG. For example:

SELECT NVL2(1,3,5) FROM DUAL -> 3

ORA_HASH(expression[, buckets[, seed]])

Computes a hash value from expression and returns a bucket number based
on the computed hash value. The optional buckets argument is the maximum
bucket number to use, which is one less than the total number of buckets, since

560 | Chapter 7: SQL Built-in Functions

the bucket numbering starts at 0. The default for buckets is 4,294,967,295. The
optional seed value is used to seed the hashing function so that multiple results
can be produced from the same data by changing only the seed value. The seed
value defaults to 0. This example pseudorandomly assigns all numbers to one
of two buckets and returns those assigned to the first bucket, which will be a
sample of roughly half of the values:

SELECT C1 FROM FIVE_NUMS WHEREORA_HASH(C1, 1, TO_CHAR(
 SYSTIMESTAMP, 'SSSS.FF')) = 0 ->
1
5

PATH(number)

Returns the path specified by the UNDER_PATH condition with the correlation
variable number in an XML query. See the Oracle SQL Reference for more
information.

PRESENTNNV(cell_reference, expr1, expr2)

Relevant only in the inter-row calculations performed within the MODEL clause
of a SELECT statement, this function returns expr1 when cell_reference exists
and is not NULL; otherwise, it returns expr2.

PRESENTV(cell_reference, expr1, expr2)

Relevant only in the inter-row calculations performed within the MODEL clause
of a SELECT statement, this function returns expr1 when cell_reference
exists; otherwise, it returns expr2.

PREVIOUS(cell_reference)

Relevant only in the inter-row calculations performed within the ITERATE ...
[UNTIL] section of a SELECT statement’s MODEL clause, this function returns the
value held by cell_reference at the beginning of the iteration.

RAWTOHEX(raw)

Converts a raw value to a string (character data type) of its hexadecimal equiva‐
lent. For example:

SELECT RAWTOHEX('Hi') FROM DUAL -> 4869

RAWTONHEX(raw)

Converts a raw value to an NVARCHAR2 (character data type) of its hexadecimal
equivalent.

REF(table_alias)

Takes a table alias associated with a row from an object table or an object view.
A special reference value is returned for the object instance that is bound to the
variable or row.

REFTOHEX(expression)

Converts expression to a character value containing its hexadecimal
equivalent.

Platform-Specific Extensions | 561

SQ
L B

uilt-in
Functio

ns

REGEXP_REPLACE(string, pattern[, newstr[, start_at[, occurrence[,

mparam]]]])

Searches string from a starting position of start_at (an integer greater than
0) looking for the specified occurrence of the regular expression pattern, and
returns the result of replacing all occurrences of pattern within string with
another string, newstr. Both the start_at and occurrence parameters default
to 1. The mparam argument can be used to modify the matching behavior of the
function and can be set to one or more of the following characters:

'i'

Matching is case-insensitive.

'c'

Matching is case-sensitive.

'n'

The “.” character matches newline characters.

'm'

Treats the input string as multiple lines; use ^ to match the beginning of a
line and $ to match the end of a line.

For example:

SELECT REGEXP_REPLACE('Hello, World!', '([^]*!)', 'Reader!')
 FROM DUAL -> 'Hello, Reader!'

REGEXP_SUBSTR(string, pattern[, start_at[, occurrence[, mparam]]])

Searches string from a starting position of start_at (an integer greater than
0) looking for the specified occurrence of the regular expression pattern, and
returns the substring within string matching pattern. Both the start_at and
occurrence parameters default to 1. The options for mparam are the same as for
REGEXP_REPLACE. For example:

SELECT REGEXP_SUBSTR('Hello, World!', '([^]*!)') FROM DUAL ->
'World!'

REMAINDER(m, n)

Returns the remainder of m divided by n. This return value is equivalent to the
expression:

m-n*ROUND(m/n)

The function MOD uses FLOOR instead of ROUND. For example:

SELECT REMAINDER(11, 4), MOD(11, 4) FROM DUAL ->
-1 3

REPLACE(string, search_string[, replacement_string])

Returns string with every occurrence of search_string replaced with
replacement_string. For example:

562 | Chapter 7: SQL Built-in Functions

SELECT REPLACE('change', 'e', 'ing') FROM DUAL -> changing

REVERSE(string)

Reverses the characters of string. For example:

SELECT REVERSE('hello') FROM DUAL -> olleh

ROUND(date[, format])

Returns the date rounded to the unit specified by the format model. When
format is omitted, the date is rounded to the nearest day. (For more on valid
format specifiers, see Table 7-10 in the description of the TO_CHAR function.)
For example:

SELECT ROUND(TO_DATE('15-APR-2022'), 'MONTH') FROM DUAL -> 01-APR-2022

ROUND(number[, decimal])

Returns number rounded to decimal places to the right of the decimal point.
When decimal is omitted, number is rounded to an integer. Note that decimal,
an integer, can be negative to round off digits to the left of the decimal point.
For example:

SELECT ROUND(12345.6789, 2) FROM DUAL -> 12345.68

ROWIDTOCHAR(rowid), ROWIDTONCHAR(rowid)

ROWIDTOCHAR converts the rowid value to an 18-character-long VARCHAR2 value;
ROWIDTONCHAR converts rowid to an 18-character-long NVARCHAR2 value. For
example:

SELECT ROWIDTOCHAR(ROWID) FROM NUMS ->
ABAsxDAAKAAAAEqAAA
ABAsxDAAKAAAAEqAAB
ABAsxDAAKAAAAEqAAC
ABAsxDAAKAAAAEqAAD

RPAD(string1, number[, string2])

Returns string1, right-padded to the length number with the value of string2,
repeated as needed. string2 defaults to a single blank. For example:

SELECT RPAD('duck',8,'s') FROM DUAL -> 'duckssss'

SCN_TO_TIMESTAMP(scn)

Returns the timestamp associated with the system change number (scn) argu‐
ment. For example:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM NUMS WHERE c1 = 1 ->
15-APR-22 02.56.05.000000000 PM

SESSIONTIMEZONE

Returns the session’s time zone offset. For example:

SELECT SESSIONTIMEZONE FROM DUAL -> −06:00

Platform-Specific Extensions | 563

SQ
L B

uilt-in
Functio

ns

SET(nested_table)

Returns a nested table of distinct elements from the input nested_table. For
more information, see the Oracle SQL Reference.

SIGN(number)

Returns −1 when number < 0, 0 when number = 0, and 1 when number > 0. For
example:

SELECT SIGN(−3.1415926) FROM DUAL -> −1

SOUNDEX(string)

Returns a character string containing the phonetic representation of string.
This function allows words that are spelled differently but sound alike in
English to be compared for equality. For example:

SELECT SOUNDEX('thimble') FROM DUAL -> 'T514'

SYS_CONNECT_BY_PATH(column, char)

For hierarchical queries, SYS_CONNECT_BY_PATH returns the path from the root
to the node with the column name specified by the column parameter. The char
parameter specifies the node separator for the return path. For more on Oracle
hierarchical queries, refer to the Oracle SQL Reference.

SYS_CONTEXT(namespace, attribute[, length])

Returns the value of the attribute associated with the context namespace,
usable in both SQL and PL/SQL statements. The length parameter optionally
defines the size of the value returned by the function; it defaults to up to 256
bytes, but you may specify a value of between 1 and 4,000 bytes. For example:

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL -> 'LOGIN'

SYS_DBURIGEN(column[, rowid][, ...][, 'text()'])

Returns a URL that can be used as a unique reference to the row specified by
the column parameter. For columns that don’t hold unique values, a rowid can
be used directly after the column it identifies to guarantee that the URL only
points to one row. Use the 'text()' option if you want the URL to point to the
text within an XML document, instead of the document itself.

SYS_EXTRACT_UTC(datetime)

Returns the datetime argument converted to a UTC datetime value. For
example:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2022-04-15 11:59:59.00 −08:00')
 FROM DUAL -> '15-APR-22 07.59.59.000000000 PM'

SYS_GUID()

Generates and returns a globally unique identifier (RAW value) made up of 16
bytes. For example:

SELECT SYS_QUID() FROM DUAL -> C0FD3FDC30148EAEE030440A49096A41

564 | Chapter 7: SQL Built-in Functions

SYS_TYPEID(object_value)

Returns the type ID of the object_value parameter.

SYSDATE

Returns the current date and time on the system in which the database is
hosted. The value returned is of type DATE. For example:

SELECT SYSDATE FROM DUAL -> 15-APR-2022

SYSTIMESTAMP

Returns the current date and time on the system in which the database is
hosted. The value returned is of type TIMESTAMP. For example:

SELECT SYSTIMESTAMP FROM DUAL -> 15-APR-2022 11.15.00.000000 PM −06:00

TIMESTAMP_TO_SCN(timestamp_value)

Returns the approximate system change number (SCN) associated with the
timestamp_value. The return value is of type NUMBER.

TO_BINARY_DOUBLE(expr[, format[, nls_parameter]])

Converts expr to a BINARY_DOUBLE, optionally in the format specified by the
format parameter. If expr is a character expression, the format and nls_
parameter options have equivalent meanings, as they do in the TO_CHAR func‐
tion. If expr is a numeric expression, format and nls_parameter must be
omitted. For example:

SELECT c1, TO_BINARY_DOUBLE(c1) FROM NUMS ->
1 1.0E+000
2 2.0E+000
3 3.0E+000

TO_BINARY_FLOAT(expr[, format[, nls_parameter]])

Converts expr to a BINARY_FLOAT, optionally in the format specified by the
format parameter. If expr is a character expression, the format and nls_param
eter options have equivalent meanings, as they do in the TO_CHAR function. If
expr is a numeric expression, format and nls_parameter must be omitted. For
example:

SELECT c1, TO_BINARY_FLOAT(c1) FROM NUMS ->
1 1.0E+000
2 2.0E+000
3 3.0E+000

TO_CHAR(character_expr)

Converts character_expr to the database character set. For example:

SELECT TO_CHAR('Howdy') FROM DUAL -> Howdy

TO_CHAR(date | interval[, format[, nls_parameter]])

Converts date or interval to a VARCHAR2 in the format specified by format.
When format is omitted, date is converted to the default date format. The
nls_parameter option offers additional control over formatting. For example:

Platform-Specific Extensions | 565

SQ
L B

uilt-in
Functio

ns

SELECT TO_CHAR(TO_DATE('15-APR-2022'), 'MON-DD-YYYY') FROM DUAL ->
APR-15-2022

Table 7-10 lists the available specifiers for format and their meanings.

Table 7-10. Oracle format specifiers

Format specifier Meaning

AD or A.D. AD indicator

AM or A.M. Meridian indicator

BC or B.C. BC indicator

D Day of week (1–7)

DAY Name of day

DD Day of month (1–31)

DDD Day of year (1–366)

DL Long date format

DS Short date format

DY Abbreviated name of day

FF Fractional seconds; to specify the precision, include a number (1–9) after the FF specifier

HH or HH12 Hour (1–12)

HH24 Hour (0–23)

J Julian day; the number of days since January 1, 4713 BC

MI Minute (0–59)

MM Month (01–12)

MON Abbreviated name of month

RM Roman numeral month (I–XII)

SS Second (0–59)

SSSSS Seconds past midnight (0–86,399)

SYYY Four-digit year; BC dates are prefixed with a minus sign

TS Short time format

TZD Daylight savings information (example: PST versus PDT)

TZH Time zone hour

TZM Time zone minute

TZR Time zone region

X Local radix character

Y, YY, or YYY One-, two-, or three-digit year

Y,YYY Year with comma

YYYY Four-digit year

566 | Chapter 7: SQL Built-in Functions

TO_CHAR(number[, format[, nls_parameter]])

Converts number to a VARCHAR2 in the format specified. When format is omit‐
ted, number is converted to a string long enough to hold the number. The
nls_parameter option offers additional control over formatting options. For
example:

SELECT TO_CHAR(123.45, '$999.99') FROM DUAL -> $123.45

TO_CLOB(expr)

Converts the character expression given by expr to the CLOB data type. For
example:

SELECT LENGTH(TO_CLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_DATE(string[, format[, nls_parameter]])

Converts string (a CHAR or VARCHAR2) to the DATE data type. The nls_
parameter option offers additional control over formatting options. For
example:

SELECT TO_DATE('15/04/2022', 'DD/MM/YYYY') FROM DUAL
-> 15-APR-2022

TO_DSINTERVAL(string[, nls_parameter])

Converts the character expression given by string to the INTERVAL DAY TO
SECOND data type. The nls_parameter option offers additional control over
formatting options. For example:

SELECT CURRENT_DATE, CURRENT_DATE-TO_DSINTERVAL('14 00:00:00')FROM DUAL ->
15-APR-2022 01-APR-2022

TO_LOB(long_column)

Converts LONG or LONG RAW values in the column long_column to LOB values.
Usable only by LONG or LONG RAW expressions and only in the SELECT list of a
subquery in an INSERT statement.

TO_MULTI_BYTE(string)

Returns string with all of its single-byte characters converted to their corre‐
sponding multibyte characters.

TO_NCHAR(expr[, format[, nls_parameter]])

Synonymous with the TO_CHAR function, except the return data type is NCHAR.
For more on valid format specifiers, see the TO_CHAR function.

TO_NCLOB(expr)

Converts the character expression given by expr to the NCLOB data type. For
example:

SELECT LENGTH(TO_NCLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_NUMBER(string[, format[, nls_parameter]])

Converts a numeric string (a CHAR or VARCHAR2) to the NUMBER data type,
optionally in the format specified by the format parameter. The nls_parameter

Platform-Specific Extensions | 567

SQ
L B

uilt-in
Functio

ns

option offers additional control over formatting options. (For more on valid
format specifiers, see the TO_CHAR function.) For example:

SELECT TO_NUMBER('12345') FROM DUAL -> 12345

TO_SINGLE_BYTE(string)

Returns string with all of its multibyte characters converted to their corre‐
sponding single-byte characters.

TO_TIMESTAMP(string[, format[, nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP
data type, optionally in the format specified by the format parameter. The
nls_parameter option offers additional control over formatting options. (For
more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP(CURRENT_DATE) FROM DUAL -> 15-APR-22 12.00.00 AM

TO_TIMESTAMP_TZ(string[, format[, nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP WITH
TIME ZONE data type, optionally in the format specified by the format param‐
eter. The nls_parameter option offers additional control over formatting
options. (For more on valid format specifiers, see the TO_CHAR function.) For
example:

SELECT TO_TIMESTAMP_TZ('15-04-2022', 'DD-MM-YYYY') FROM DUAL ->
15-APR-22 12.00.00.000000000 AM −07:00

TO_YMINTERVAL(string)

Converts the character expression provided by string to the INTERVAL YEAR
TO MONTH data type. For example:

SELECT TO_DATE('29-FEB-2020')+TO_YMINTERVAL('04-00') FROM DUAL ->
29-FEB-24

TREAT(expr AS [REF] [schema.]type)

Converts expr from its declared type to the type specified by the type parame‐
ter. For more information on the usage of this function, refer to the Oracle SQL
Reference.

TRUNC(base[, number])

Returns base truncated to number decimal places. When number is omitted,
base is truncated to an integer. number can be negative to truncate all digits to
the left of the decimal point. For example:

SELECT TRUNC('123.456', 2) FROM DUAL -> 123.45

TRUNC(date[, format])

Returns date truncated to the unit specified by format. When format is omit‐
ted, date is truncated to the nearest whole day. (For more on valid format
specifiers, see the TO_CHAR function.) For example:

568 | Chapter 7: SQL Built-in Functions

SELECT TRUNC(TO_DATE('15/04/2022', 'MM/DD/YYYY'), 'YYYY')
 FROM DUAL -> 2022

TZ_OFFSET({expr| SESSIONTIMEZONE | DBTIMEZONE})

Returns the time zone offset corresponding to the argument. The character
expression expr can either be the name of the time zone or a time zone offset.
The SESSIONTIMEZONE and DBTIMEZONE arguments provide the time zone for
the session or database, respectively. For example:

SELECT TZ_OFFSET('+08:00'), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL ->
+08:00 −07:00

UID

Returns an integer that uniquely identifies the currently logged-on session user.
No parameters are needed. For example:

SELECT UID FROM DUAL -> 47

UNISTR(string)

Converts string to the NCHAR data type, while converting any Unicode-
encoded values within string. For example:

SELECT UNISTR('El Ni\00F1o') FROM DUAL -> 'El Niño'

UPDATEXML(instance, xpath, expr[, namespace])

Updates the values held by nodes within instance to the new value in expr.
Only those nodes returned by the XPath query contained in the xpath param‐
eter are updated. The optional namespace parameter specifies the XML name‐
space in the query. For more information on XML queries, refer to the Oracle
SQL Reference. For example:

SELECT UPDATEXML(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar', '<bar>Bye, World!</bar>') from DUAL -> Bye, World!

VALUE(table_alias)

Takes a table_alias associated with a row in an object table and returns the
object instance stored within the object table for that row.

VSIZE(expression)

Returns the number of bytes in the internal representation of expression.
When expression is NULL, returns NULL. For example:

SELECT vsize(1) FROM DUAL -> 2

PostgreSQL-Supported Functions
This section lists the scalar and set-returning functions specific to PostgreSQL, with
examples and corresponding results for most of them. The more esoteric functions
have been left out because they are not widely used:

Platform-Specific Extensions | 569

SQ
L B

uilt-in
Functio

ns

AGE(timestamp[, timestamp])

Returns the time between the two timestamp values. If only one timestamp
value is provided, the second is assumed to be the current time. For example:

AGE('2021-12-31', CURRENT_TIMESTAMP) ->
3 mons 15 days 00:34:41.658325

ARRAY_APPEND(array, element)

Returns the result of appending element to array. For example:

ARRAY_APPEND(ARRAY[1,2], 3) -> {1,2,3}

ARRAY_CAT(array1, array2)

Returns the result of appending array2 to array1. For example:

ARRAY_CAT(ARRAY[1,2], ARRAY[3,4]) -> {1,2,3,4}

ARRAY_DIMS(array)

Returns the text representation of array dimensions. For example:

ARRAY_DIMS(ARRAY[1,2]) -> '[1:2]'

ARRAY_FILL(anyelement, integer[][, integer[]])

Returns a dimensional array filled with the anyelement value. The integer[]
integer array determines the dimensions. The optional integer array supplies
lower bound values. For example:

ARRAY_FILL(true, ARRAY[2,3]) -> {{t,t,t},{t,t,t}}
ARRAY_FILL(true, ARRAY[3], ARRAY[2]) -> [2:4]={t,t,t}

ARRAY_LENGTH(array, i)

Returns the length of a requested array dimension. For example:

ARRAY_LENGTH(ARRAY[[1,2],[2,3],[4,5]], 1) -> 3

ARRAY_LOWER(array, i)

Returns the lower bound of the dimension i of array. For example:

ARRAY_LOWER(ARRAY[[1,2],[2,3],[4,5]], 1) -> 1

ARRAY_NDIMS(array)

Returns the number of dimensions of array. For example:

ARRAY_NDIMS(ARRAY[1,2]) -> 1

ARRAY_POSITION(array, anyelement)

Returns the position number of an element in a one-dimensional array, or
NULL if the element is not present. For example:

ARRAY_POSITION(ARRAY[1,2,-1,2],-1) -> 3

ARRAY_POSITIONS(array, anyelement)

Returns an integer array that specifies the positions of an element in a one-
dimensional array, or NULL if the element is not present. For example:

570 | Chapter 7: SQL Built-in Functions

ARRAY_POSITIONS(ARRAY[1,2,-1,2],2) -> {2,4}

ARRAY_PREPEND(i, array)

Returns the result of prepending i to array. For example:

ARRAY_PREPEND(0, ARRAY[1,2]) -> {0,1,2}

ARRAY_REMOVE(array, anyelement)

Returns an array with any occurrences of the specified element removed from
the input array. For example:

ARRAY_REMOVE(ARRAY[1,2,-1,2],2) -> {1,-1}

ARRAY_REPLACE(array, anyelement)

Returns an array with any occurrences of the specified element in the input
array replaced with another element. For example:

ARRAY_REPLACE(ARRAY[1,2,-1,2],2,3) -> {1,3,-1,3}

ARRAY_TO_STRING(array, delimiter)

Returns a string that is constructed by concatenating the elements of array,
with delimiter used as a delimiter between each element. For example:

ARRAY_TO_STRING(ARRAY[1,2,3], ';') -> '1;2;3'

ARRAY_TO_TSVECTOR(text[])

Converts an array of text to full-text tsvector type. For example:

ARRAY_TO_TSVECTOR(ARRAY['Johnny smokes', 'weed', 'weed']) ->
'Johnny smokes' 'weed'

ARRAY_UPPER(array, i)

Returns the upper bound of the dimension i of array. For example:

ARRAY_UPPER(ARRAY[1,2], 1) -> 2

ASCII(text)

Returns the ASCII code of the first character of text. For example:

ASCII('x') -> 120

BROADCAST(inet)

Constructs a broadcast address as text. For example:

BROADCAST('192.168.1.5/24') -> '192.168.1.255/24'

BTRIM(s, c)

Return s without the characters found in c. For example:

BTRIM('<<<trim_me>>>', '><') -> 'trim_me'

CBRT(float8)

Returns the cube root of float8. For example:

CBRT(8) -> 2

Platform-Specific Extensions | 571

SQ
L B

uilt-in
Functio

ns

CHAR(text)

Converts text to the CHAR type.

CHR(integer)

Returns the character with the given code. In UTF8 encoding the argument is
treated as a Unicode code point. In other multibyte encodings the argument
must designate an ASCII character. CHR(0) is disallowed because text data types
cannot store that character. For example:

CHR(64) -> @

CLOCK_TIMESTAMP()

Returns the current date and time, which can change within a single SQL
statement execution.

CONCAT_WS(separator, str1, str2[, ...])

A special form of CONCAT that inserts separator between every pair of string
arguments concatenated. If separator is NULL, the result is NULL. For
example:

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

CURRVAL(s)

Returns the current value of the sequence named s. For example:

CURRVAL('myseq') -> 99

DATE_TRUNC(precision, timestamp)

Truncates timestamp to the specified precision. For example:

DATE_TRUNC('hour', TIMESTAMP '2022-04-15 23:58:30') ->
2022-04-15 23:00:00

DECODE(s, type)

Decodes an encoded string s. The type can be 'base64', 'hex', or 'escape'.
For example:

DECODE(ENCODE('darjeeling', 'base64'), 'base64') ->
'darjeeling'

DEGREES(float8)

Converts radians to degrees. For example:

DEGREES(3.1415926) -> 179.999996929531

ENCODE(s, type)

Encodes a string s. The type can be 'base64', 'hex', or 'escape'. For
example:

DECODE(ENCODE('darjeeling', 'base64'), 'base64') ->
'darjeeling'

FLOAT(int), FLOAT4(int)

Converts int to a floating point.

572 | Chapter 7: SQL Built-in Functions

FORMAT(string, replace1[, replace2, ...])

Formats arguments according to a format string;

format('Hello %s %L you owe me %I', 'Donald', 'Duck',
 'mucho money') -> Hello Donald 'Duck' you owe me "mucho money"

GET_CURRENT_TS_CONFIG()

Gets the default full text configuration. For example:

GET_CURRENT_TS_CONFIG() -> english

HOST(inet)

Extracts the host address as text. For example:

HOST('192.168.1.5/24') -> '192.168.1.5'

INITCAP(text)

Converts the first letter of each word to uppercase. For example:

INITCAP('my name is inigo montoya.') -> 'My Name Is Inigo Montoya.'

INTEGER(float)

Converts a float to an integer.

ISFINITE(interval)

Returns 'f' if interval is open, and 't' otherwise. For example:

ISFINITE(INTERVAL '4 hours') -> 't'

ISFINITE(timestamp)

Returns 'f' if timestamp is either invalid or infinite, and 't' otherwise. For
example:

ISFINITE(TIMESTAMP '2022-02-16 21:28:30') -> 't'

JUSTIFY_DAYS(interval)

Returns the number of 30-day time periods within interval. For example:

JUSTIFY_DAYS(INTERVAL '90 days') -> 3

JUSTIFY_HOURS(interval)

Returns the number of 24-hour time periods within interval. For example:

JUSTIFY_HOURS(INTERVAL '48 hours') -> 2 days

JUSTIFY_INTERVAL(interval)

Returns the number of 30-day time periods and remaining 24-hour time peri‐
ods within interval. For example:

JUSTIFY_INTERVAL(INTERVAL '2 mon - 12 hour') ->
'2 mons -12:00:00'

LEFT(string, n)

Returns the leftmost n characters of string. For example:

LEFT('hello', 3) -> hel

Platform-Specific Extensions | 573

SQ
L B

uilt-in
Functio

ns

LPAD(text, int[, char])

Returns the string text, left-padded to the specified (int) length with the
specified fill character (if not specified, defaults to a space). For example:

LPAD('Duck', 10, 's') -> 'ssssssDuck'

LTRIM(text)

Returns text with all leading whitespace removed. For example:

LTRIM(' Howdy! ') -> 'Howdy! '

MASKLEN(cidr)

Returns the netmask length of cidr. For example:

MASKLEN('192.168.1.5/24') -> 24

MD5(s)

Returns the MD5 hash of s.

NETMASK(inet)

Returns the netmask for inet. For example:

NETMASK('192.168.1.5/24') -> '255.255.255.0'

NETWORK(inet)

Returns the network part of inet. For example:

NETWORK('192.168.1.5/24') -> '192.168.1.0/24'

NEXTVAL(s)

Returns the next number in the sequence named s. For example:

NEXTVAL('myseq') -> 100

NORMALIZE(text[, form])

Converts the string text to the specified Unicode normalization form. The
optional form keyword specifies the form: NFC (the default), NFD, NFKC, or
NFKD. This function can only be used when the server encoding is UTF8. For
example:

NORMALIZE(U&'\0061\0308bc',NFC) -> U&'\00E4bc'

NUMNODE(tsquery)

Returns the number of lexemes plus operators in a tsquery. For example:

NUMNODE('happy & fat & elephant'::tsquery) -> 5

PARSE_IDENT(string[, boolean DEFAULT true])

Returns an array from a string that represents an identifier, such as
<schema>.<table>. boolean denotes strict mode and defaults to true if not
specified. For example:

PARSE_IDENT('"Nutshell".orders') -> {Nutshell,orders}
PARSE_IDENT('Nutshell.orders') -> {nutshell,orders}

574 | Chapter 7: SQL Built-in Functions

PG_CLIENT_ENCODING()

Returns the name of the current client encoding in use. For example:

PG_CLIENT_ENCODING() -> UTF8

PI()

Returns the constant π.

PHRASETO_TSQUERY([regconfig,]text)

Converts the text to the specified full-text query and includes distance opera‐
tors. If the full-text regconfig is not provided, then uses the default database
one. For example:

PHRASETO_TSQUERY('happy fat elephant') ->
'happi' <-> 'fat' <-> 'eleph'
PHRASETO_TSQUERY('simple','happy fat elephant') ->
'happy' <-> 'fat' <-> 'elephant'

PLAINTO_TSQUERY([regconfig,] text)

Converts the text to the specified full-text query. If the full-text regconfig is not
provided, then uses the default database one. For example:

PLAINTO_TSQUERY('happy fat elephant') ->
'happi' & 'fat' & 'eleph'
PLAINTO_TSQUERY('simple','happy fat elephant') ->
'happy' & 'fat' & 'elephant'

POW(number, exponent)

Raises number to the specified exponent. For example:

POW(2, 3) -> 8

QUOTE_IDENT(s)

Returns s properly escaped so that it can be used as an identifier in a SQL
statement. For example:

QUOTE_IDENT('tea') -> "tea"

QUOTE_LITERAL(anyelement)

Returns anyelement properly escaped so that it can be used as a string literal in
a SQL statement. If it’s NULL, returns NULL. For example:

QUOTE_LITERAL('you''re here') -> 'you''re here'

QUOTE_NULLABLE(anyelement)

Converts anyelement to a string literal. If it’s NULL, returns NULL as an
unquoted string. For example:

QUOTE_NULLABLE('you''re here') -> 'you''re here'
QUOTE_NULLABLE(null) -> NULL

RADIANS(float8)

Converts degrees to radians. For example:

RADIANS(180) -> 3.14159265358979

Platform-Specific Extensions | 575

SQ
L B

uilt-in
Functio

ns

RADIUS(circle)

Returns the radius of circle. For example:

RADIUS(CIRCLE '((0,0), 2.0)') -> 2

RANDOM()

Returns a random value between 0.0 and 1.0. For example:

RANDOM() -> 0.785398163397448

REGEXP_MATCH(s, pattern[, flags])

Returns captured substrings as an array resulting from the first match within
s of the regular expression pattern. The optional flags argument can specify
non-default processing by the regular expression matching engine. The most
common options for flags are 'i' for case-insensitive matching and 'n' for
newline-sensitive matching. 'g' for global matching is not supported by this
function. For example:

REGEXP_MATCH('catfish cowfish dogcat', 'c[a-z]+') -> {catfish}

REGEXP_MATCHES(s, pattern[, flags])

Returns a set of rows of arrays within s matching the regular expression
pattern. The optional flags argument can specify non-default processing by
the regular expression matching engine. The most common options for flags
are 'i' for case-insensitive matching, 'n' for newline-sensitive matching, and
'g' for global matching. For example:

REGEXP_MATCHES('catfish cowfish dogcat', 'c[a-z]+', 'g') ->
{catfish}
{cowfish}
{cat}

REGEXP_REPLACE(s, pattern, replacement[, flags])

Returns s with all substrings matching the regular expression pattern replaced
with the string found in replacement. The optional flags argument can select
non-default processing by the regular expression matching engine. The most
common options for flags are 'i' for case-insensitive matching, 'n' for
newline-sensitive matching, and 'g' for global matching. For example:

REGEXP_REPLACE('ab1ab2ab3', '[0-9]+', 'X') -> abXab2ab3
REGEXP_REPLACE('ab1ab2ab3', '[0-9]+', 'X', 'g') -> abXabXabX

REGEXP_SPLIT_TO_ARRAY(s, pattern[, flags])

Returns s split into an array using the regular expression pattern as the
delimiter for array elements. The optional flags argument can specify non-
default processing by the regular expression matching engine. The most
common options for flags are 'i' for case-insensitive matching, 'n' for
newline-sensitive matching, and 'g' for global matching. For example:

REGEXP_SPLIT_TO_ARRAY('a b c', E'\\s+') -> {a,b,c}

576 | Chapter 7: SQL Built-in Functions

REGEXP_SPLIT_TO_TABLE(s, pattern[, flags])

Returns s split into a table using the regular expression pattern as the delim‐
iter for rows. The optional flags argument can select non-default processing
by the regular expression matching engine. The most common options for
flags are 'i' for case-insensitive matching, 'n' for newline-sensitive match‐
ing, and 'g' for global matching. For example:

REGEXP_SPLIT_TO_TABLE('a b c', E'\\s+') ->
'a'
'b'
'c'

REPEAT(string, n)

Repeats string the number of times designated by n. For example:

REPEAT('hello ', 3) -> hello hello hello

REPLACE(string, search_string[, replacement_string])

Returns string with every occurrence of search_string replaced with
replacement_string. For example:

REPLACE('change', 'e', 'ing') -> changing

REVERSE(string)

Reverses the characters of string. For example:

REVERSE('hello') -> olleh

RIGHT(string, n)

Returns the rightmost n characters of string. For example:

RIGHT('hello', 3) -> llo

ROUND(number[, p])

Rounds number to p decimal places. The optional p argument defaults to 0 for
classic rounding of integers. For example:

ROUND(5.5) -> 6
ROUND(5.5555, 2) -> 5.56

RPAD(text, int[, char])

Pads text to the specified length (int) using char (defaults to a space). For
example:

RPAD('Duck', 10, 's') -> 'Duckssssss'

RTRIM(text)

Returns text with all trailing whitespace removed. For example:

RTRIM(' St. Lucia ') -> ' St. Lucia'

SET_MASKLEN(inet, size)

Sets the netmask length for inet to size. For example:

SET_MASKLEN('192.168.1.5/24',16) -> '192.168.1.5/16'

Platform-Specific Extensions | 577

SQ
L B

uilt-in
Functio

ns

SETSEED(i)

Seeds the random number generator with i.

SETVAL(s, i)

Sets the next number in the sequence named s to i. For example:

SETVAL('myseq', 0)

SETWEIGHT(tsvector, weight[, lexemes])

Sets the full-text weight of elements in a full-text vector. The weight is a letter
between A and D. lexemes is an optional array of text; if not provided, all
elements in the vector are assigned the weight. For example:

SETWEIGHT('johnny:1 smokes:2 weed:3,4'::tsvector, 'A') ->
'johnny':1A 'smokes':2A 'weed':3A,4A

SETWEIGHT('johnny:1 smokes:2 weed:3,4'::tsvector, 'A',
 ARRAY['smokes', 'weed']) -> 'johnny':1 'smokes':2A 'weed':3A,4A

SIGN(number)

Returns the sign of number. For example:

SIGN(−69), SIGN(69) -> -1,1

SPLIT_PART(s, delimiter, nth)

Returns the nth substring of s using delimiter as a delimiter. For example:

SPLIT_PART('Donald~@~Mickey~@~Minnie', '~@~', 2) -> Mickey

STARTS_WITH(s, substring)

Returns a Boolean indicating whether the string s starts with substring. For
example:

STARTS_WITH('Donald Duck', 'Donald') -> TRUE

STATEMENT_TIMESTAMP()

Returns the date and time at which the SQL statement began execution.

STRING_TO_ ARRAY(str1, delimiter)

Returns an array that is constructed by extracting the elements of str1 using
delimiter as a delimiter between each element. For example:

STRING_TO_ARRAY('1;2;3', ';') -> {1,2,3}

STRING_TO_ TABLE(str1, delimiter)

Returns the set of rows that is constructed by extracting the elements of
str1 using delimiter as a delimiter between each element. Note that all
set-returning functions in PostgreSQL support the WITH ORDINALITY clause.
For example:

SELECT v.ord, v.val
FROM STRING_TO_TABLE('Donald~@~Mickey~@~Minnie', '~@~')
 WITH ORDINALITY AS v(val, ord) ->
 ord | val

578 | Chapter 7: SQL Built-in Functions

-----+--------
 1 | Donald
 2 | Mickey
 3 | Minnie

STRIP(tsvector)

Strips weights and positions from a tsvector. For example:

STRIP('johnny:1A smokes:2 weed:3,4'::tsvector) ->
'johnny' 'smokes' 'weed'

STRPOS(s, substring)

Returns the starting index of substring in the string s. For example:

STRPOS('Donald Duck', 'Duck') -> 8

SUBSTR(s, start[, count])

Returns the substring of s starting at start with count characters. If count
is omitted, it returns the substring from start to the end of the string. For
example:

SUBSTR('Donald Duck', 8) -> Duck

TIMEOFDAY()

Returns the current timestamp (using CLOCK_TIMESTAMP) as a string.

TIMESTAMP(date[, time])
Converts date to a timestamp.

TO_ASCII(string), TO_ASCII(string, encodingname)

Converts string to ASCII from another encoding, which may be identified
by name or number. If encoding is omitted the database encoding is assumed
(which in practice is the only useful case). The conversion consists primarily
of dropping accents. Conversion is only supported from LATIN1, LATIN2,
LATIN9, and WIN1250 encodings. (See the PostgreSQL unaccent module for
another, more flexible solution.) For example:

TO_ASCII('Café') -> Cafe

TO_CHAR(expression, format)

Converts expression to a formatted string. For example:

TO_CHAR(NUMERIC '-125.8', '999D99S') -> 125.80-
TO_CHAR(INTERVAL '15h 2m 12s', 'HH24:MI:SS') -> 15:02:12

TO_DATE(string, format)

Converts string to a date using the second argument for the input format. For
example:

TO_DATE('05 Dec 2020', 'DD Mon YYYY') -> 2020-12-05

Table 7-11 lists the available specifiers for format and their meanings.

Platform-Specific Extensions | 579

SQ
L B

uilt-in
Functio

ns

https://oreil.ly/2r4GG

Table 7-11. PostgreSQL format specifiers

Format specifier Meaning

AD or A.D. AD indicator

AM or A.M. Meridian indicator

BC or B.C. BC indicator

CC Two-digit century

D Day of week (1–7)

DAY Full uppercase day name

Day Full CamelCase day name

day Full lowercase day name

DD Day of month (01–31)

DDD Day of year (001–366)

DY Abbreviated day name

Dy Abbreviated camel-case day name

dy Abbreviated lowercase day name

HH or HH12 Hour (01–12)

HH24 Hour (00–23)

I Last digits of ISO year

IW ISO week number of year

IY, IYY, IYYY Last two digits, three digits, or all digits of ISO year, respectively

J Julian day number (days since January 1, 4713 BC)

MI Minute (00–59)

MM Month (01–12)

MON Abbreviated month name

Mon Abbreviated camel-case month name

mon Abbreviated lowercase month name

MONTH Full uppercase month name

Month Full camel-case month name

month Full lowercase month name

MS Milliseconds (000–999)

PM or P.M. Meridian indicator

Q Quarter of the year

RM Roman numeral month (I–XII)

rm Lowercase Roman numeral month (i–xii)

SS Second (00–59)

SSSS Seconds past midnight (0–86,399)

580 | Chapter 7: SQL Built-in Functions

Format specifier Meaning

SYYY Four-digit year; BC dates are prefixed with a minus sign

TS Short time format

TZ Uppercase time zone name

tz Lowercase time zone name

US Microseconds (000000–999999)

W Week of month (1–5)

WW Week of year (1–53)

Y, YY, YYY, YYYY One-, two-, three-, or four-digit year, respectively

Y,YYY Year with comma

TO_HEX(integer)

Converts integer to its hexadecimal representation. For example:

to_hex(50000000) -> 2faf080

TO_NUMBER(string, format)

Converts string to a numeric value using the second argument for the input
format. For example:

TO_NUMBER('12,454.8-', '99G999D9S') -> -12454.8

TO_TIMESTAMP(text, format)

Converts text to a timestamp value using the second argument for the input
format. (For more on valid format specifiers, see the TO_DATE function.) For
example:

TO_TIMESTAMP('05 Dec 2020', 'DD Mon YYYY') -> 2020-12-05 00:00:00-08

TO_TSQUERY([config,]string)

Normalizes words in a query string and converts it to a full-text query. If the
full-text configuration is not specified then it uses the default configuration for
the database. For example:

TO_TSQUERY('like & swimming') -> 'like' & 'swim'
TO_TSQUERY('simple','like & swimming') -> 'like' & 'swimming'

TRANSACTION_TIMESTAMP()

Returns the date and time at which the current transaction was started.

TRUNC(float8)

Truncates (toward zero). For example:

TRUNC(PI()) -> 3

VARCHAR(string)

Converts string to a VARCHAR.

Platform-Specific Extensions | 581

SQ
L B

uilt-in
Functio

ns

WEBSEARCH_TO_TSQUERY([regconfig,] text)

Converts the text to the specified full-text query and converts words like “and”
and “or” to their equivalent query operators. If the full-text regconfig is not
provided, uses the default database configuration. For example:

WEBSEARCH_TO_TSQUERY('happy fat elephant or dog') ->
'happi' & 'fat' & 'eleph' | 'dog'
WEBSEARCH_TO_TSQUERY('simple','happy fat elephant or dog') ->
'happy' & 'fat' & 'elephant' | 'dog'

SQL Server–Supported Functions
This section provides an alphabetical listing of SQL Server–supported functions,
with examples and corresponding results for most.

APP_NAME()

Returns the application name for the current session, set by the application. For
example:

APP_NAME() -> 'SQL Enterprise Manager'

ASCII(text)

Returns the ASCII code of the first character of text. For example:

ASCII('x') -> 120

BINARY_CHECKSUM(* | expression[, ... n])

Returns the binary checksum for a list of expressions or for a row of a table.
This example returns a list of user IDs where the stored password’s checksum
doesn’t match the current password’s checksum:

SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = BINARY_CHECKSUM(password)

CHAR(integer_expression)

Converts a numeric ASCII code to a character. For example:

CHAR(78) -> 'N'

CHARINDEX(substring, string[, start_location])

Returns the position of the first occurrence of substring in string, optionally
from the given start_location. For example:

CHARINDEX('he', 'Howdy, there!') -> 9

CHECKSUM(* | expression[, ... n])

Returns a checksum (computed over the row values or expressions provided).
The following example returns a list of user IDs for which the stored pass‐
word’s checksum doesn’t match the current password’s checksum (there is also
an aggregate form of this function called CHECKSUM_AGG):

582 | Chapter 7: SQL Built-in Functions

SELECT userid AS 'Changed' FROM users
WHERE NOT password_chksum = CHECKSUM(password)

COL_LENGTH(table, column)

Returns the length of column in bytes. For example:

COL_LENGTH('authors', 'au_fname') -> 50

COL_NAME(table_id, column_id)

Returns the column name, given table_id and column_id. For example:

COL_NAME(OBJECT_ID('authors'), 1)

CONTAINS({column | *}, contains_search_condition)

Searches column for exact or “fuzzy” matches of the contains_seach_

condition. CONTAINS is an elaborate function used to perform full-text
searches; refer to the vendor documentation for more information. This exam‐
ple returns all product IDs from the products table that contain the words
“peanut” and “butter” in close proximity to each other.

SELECT productid FROM products
WHERE CONTAINS(productname, ' "peanut" NEAR "butter" ')

CONTAINSTABLE(table, column, contains_search_condition)

Returns a table with exact and “fuzzy” matches of the contains_search_
condition. CONTAINSTABLE is an elaborate function used to perform full-text
searches. The following example returns all product IDs from the products
table that contain the words “peanut” and “butter” in close proximity to each
other:

SELECT products.productid, products.productname, ct.rank
FROM products
 INNER JOIN CONTAINSTABLE(products, productname,
 ' "peanut" NEAR "butter" ')
 AS ct ON products.productid = ct.key

DATABASEPROPERTYEX(database, property)

Returns a database option or property. For example:

DATABASEPROPERTYEX('pubs', 'Version') -> 539

DATA_LENGTH(expression)

Returns the number of bytes in a character or binary string. For example:

SELECT MAX(DATA_LENGTH(au_fname)) FROM authors -> 11

DATEADD(date_part, number, date)

Adds a number of date_parts (e.g., days) to a datetime value. For example:

DATEADD(Year, 10, CURRENT_TIMESTAMP) -> 2032-04-15 01:46:21.707

DATEDIFF(date_part, start_date,end_date)

Calculates the difference between two datetime values expressed in the speci‐
fied date_part. For example:

Platform-Specific Extensions | 583

SQ
L B

uilt-in
Functio

ns

DATEDIFF(Day, CURRENT_TIMESTAMP, DATEADD(Year, 1,
 CURRENT_TIMESTAMP)) -> 366

DATENAME(date_part, date)

Returns the name of a date_part (e.g., month) of a datetime argument. For
example:

DATENAME(month, GETDATE()) -> 'April'

DATEPART(date_part, date)

Returns the value of a date_part (e.g., year) of a datetime argument. For
example:

DATEPART(year, GETDATE()) -> 2022

DAY(date)

Returns an integer value representing the day of the date provided as a param‐
eter. For example:

DAY('04/15/2022') -> 15

DB_ID([database_name])

Returns the database ID when provided with a database_name. For example:

DB_ID() -> 5

DB_NAME(database_id)

Returns the database name when provided with a database_id. For example:

DB_NAME(5) -> 'pubs'

DEGREES(numeric_expression)

Converts radians to degrees. For example:

DEGREES(PI()) -> 180

DIFFERENCE(character_expression, character_expression)

Compares how two arguments sound and returns a number from 0 to 4, with a
higher result indicating a better phonetic match. For example:

DIFFERENCE('moe', 'low') -> 3

FILE_ID(file_name)

Returns the file ID for the logical file_name. For example:

FILE_ID('master') -> 1

FILE_NAME(file_id)

Returns the logical filename for the file_id. For example:

FILE_NAME(1) -> 'master'

FILEGROUP_ID(filegroup_name)

Returns the filegroup ID for the logical filegroup_name. For example:

FILEGROUP_ID('PRIMARY') -> 1

584 | Chapter 7: SQL Built-in Functions

FILEGROUP_NAME(filegroup_id)

Returns the logical filegroup name for filegroup_id. For example:

FILEGROUP_NAME(1) -> 'PRIMARY'

FILEGROUPPROPERTY(filegroup_name, property)

Returns the filegroup property value for the specified property. For example:

FILEGROUPPROPERTY('PRIMARY', 'IsReadOnly') -> 0

FILEPROPERTY(file_name, property)

Returns the file property value for the specified property. For example:

FILEPROPERTY('pubs', 'SpaceUsed') -> 160

FORMATMESSAGE(msg_number, param_value n])

Constructs a message from an existing message in the SYSMESSAGES table
(similar to RAISEERROR). For example:

sp_addmessage 50001, 1, 'Table %s has %s rows.'
SELECT FORMATMESSAGE(50001, 'AUTHORS', (SELECT COUNT(*)
 FROM AUTHORS)) -> 'Table AUTHORS has 23 rows.'

FREETEXT({column | *}, freetext_string)

Used for full-text searches. Returns rows with column values that match the
meaning, but not exactly the value, of freetext_string. For example:

SELECT * FROM authors WHERE FREETEXT (*, 'kev')

FREETEXTTABLE(table, {column | *}, freetext_string[, top_n_by_rank])

Used for full-text searches. Returns rows from table with column values
that match the meaning, but not exactly the value, of freetext_string. For
example:

SELECT * FROM FREETEXTTABLE (authors, *, 'kev')

FULLTEXTCATALOGPROPERTY(catalog_name, property)

Returns the full-text catalog properties. For example:

FULLTEXTCATALOGPROPERTY('Cat_Desc', 'LogSize')

FULLTEXTSERVICEPROPERTY(property)

Returns the full-text service-level properties. For example:

FULLTEXTSERVICEPROPERTY('IsFulltextInstalled') -> 1

GETANSINULL([database])

Returns the default nullability setting for new columns. For example:

GETANSINULL() -> 1

GETDATE()

Returns the current date and time. For example:

GETDATE() -> 2022-04-1519:26:59.893

Platform-Specific Extensions | 585

SQ
L B

uilt-in
Functio

ns

GETUTCDATE()

Returns the current date as a Coordinated Universal Time (UTC) date. For
example:

GETUTCDATE() -> 2022-04-15 02:26:46.720

HOST_ID()

Returns the workstation ID. For example:

HOST_ID() -> 216

HOST_NAME()

Returns the process hostname. For example:

HOST_NAME() -> 'PLATO'

IDENT_CURRENT(table_name)

Returns the last identity value generated for the specified table. For example:

IDENT_CURRENT('jobs') -> 876

IDENT_INCR(table_or_view)

Returns an identity column increment value. For example:

IDENT_INCR('jobs') -> 1

IDENT_SEED(table_or_view)

Returns an identity seed value. For example:

IDENT_SEED('jobs') -> 1

IDENTITY(data_type[, seed, increment]) AS column_name

Used in a SELECT INTO statement to insert an identity column into the destina‐
tion table. For example:

SELECT IDENTITY(int, 1,1) AS ID INTO NewTable FROM OldTable

INDEX_COL(table, index_id, key_id)

Returns an index column name given a table name, an index ID, and the
sequential number of the column in the index key. For example:

INDEX_COL(OBJECT_ID('authors'), 1, 1) -> NULL

INDEXPROPERTY(table_id, index, property)

Returns an index property (such as FILLFACTOR). For example:

INDEXPROPERTY(OBJECT_ID('authors'), 'UPKCL_auidind',
 'IsPadIndex') -> 0

IS_MEMBER({group | role})

Returns true or false (1 or 0) depending on whether or not the user is a
member of the specified Windows NT group or SQL Server role. For example:

IS_MEMBER('db_owner') -> 0

586 | Chapter 7: SQL Built-in Functions

IS_SRVROLEMEMBER(role[, login])

Returns true or false (1 or 0) depending on whether or not the user is a
member of the specified server role. For example:

IS_SRVROLEMEMBER('sysadmin') -> 0

ISDATE(expression)
Validates whether a character string can be converted to DATETIME. For
example:

ISDATE(NULL), ISDATE(GETDATE()) -> 0 1

ISNULL(check_expression, replacement_value)

Returns the first argument if it is not NULL; otherwise, returns the second
argument. For example:

ISNULL(NULL, 'NULL') -> 'NULL'

You should use COALESCE instead of ISNULL because COALESCE is a SQL stan‐
dard function, is more versatile, and achieves the same goal as ISNULL.

ISNUMERIC(expression)

Validates whether a character string can be converted to NUMERIC. For example:

ISNUMERIC('3.1415'), ISNUMERIC('IRK') -> 1 0

LEFT(character_expression, integer_expression)

Returns the leftmost integer_expression characters of character_

expression. For example:

LEFT('Wet Paint', 3) -> 'Wet'

LTRIM(character_expression)

Trims leading space characters. For example:

LTRIM(' beaucoup ') -> 'beaucoup '

MONTH(date)

Returns the month part of the date provided. For example:

MONTH(GETDATE()) -> 4

NCHAR(integer_expression)

Returns the Unicode character with the given integer code. For example:

NCHAR(120) -> 'x'

NEWID()

Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

NEWID() -> '32B35185-F55E-4FE0-B2C8-B57B35815C12'

OBJECT_ID(object)

Returns the object ID of object. For example:

OBJECT_ID('authors') -> 8

Platform-Specific Extensions | 587

SQ
L B

uilt-in
Functio

ns

OBJECT_NAME(object_id)

Returns the object name of the object with the given object_id. For example:

OBJECT_NAME(OBJECT_ID('authors')) -> 'authors'

OBJECTPROPERTY(id, property)

Returns the properties of objects in the current database. For example:

OBJECTPROPERTY(object_id('authors'),'ISTABLE') -> 1

OPEN {{[GLOBAL] cursor_name} | cursor_variable_name}

Opens a local or global cursor.

OPENDATASOURCE(provider_name, init_string)

Makes a connection to a data source without using a linked server name. For
examples, refer to the documentation.

OPENQUERY(linked_server, query)

Queries a remote data source previously configured as a linked server. For
examples, refer to the documentation.

OPENROWSET(provider_name, {datasource, user_id, password |

provider_string}, {[catalog.][schema.]object | query})

Queries a remote data source without setting it up as a linked server. For
examples, refer to the documentation.

PARSENAME(object_name, object_piece)

Returns the database name, owner name, server name, or object name for the
object specified. object_piece is an integer between 1 and 4. For example:

PARSENAME('pubs..authors', 1) -> 'authors'
PARSENAME('pubs..authors', 2) -> NULL
PARSENAME('pubs..authors', 3) -> 'pubs'
PARSENAME('pubs..authors', 4) -> NULL

PATINDEX('%pattern%', expression)

Returns the position of the first occurrence of a pattern in a string. For
example:

PATINDEX('%Du%', 'Donald Duck') -> 8

PERMISSIONS([object_id[, column]])

Returns a numeric value representing a bitmap with the current user’s permis‐
sions on the specified object or column. For example:

PERMISSIONS(OBJECT_ID('authors'))&8 -> 8

PI()

Returns the constant pi. For example:

2*PI() -> 6.2831853071795862

RADIANS(numeric_expression)

Converts degrees to radians. For example:

588 | Chapter 7: SQL Built-in Functions

https://oreil.ly/L88k9
https://oreil.ly/Comch
https://oreil.ly/x1BzD

RADIANS(90.0) -> 1.570796326794896600

RAND([seed])

Returns a pseudorandom FLOAT type value between seed and 1. For example:

RAND(PI()) -> 0.71362925915543995

REPLICATE(character_expression, integer_expression)

Repeats a string a number of times. For example:

REPLICATE('FOOBAR', 3) -> 'FOOBARFOOBARFOOBAR'

REPLACE(string_expression1, string_expression2, string_expression3)

Performs a search and replace on string_expression1, replacing each occur‐
rence of string_expression2 with string_expression3. For example:

REPLACE('North Dakota', 'Dakota', 'Carolina') -> 'North Carolina'

REVERSE(character_expression)

Reverses the characters of a string. For example:

REVERSE('Donald Duck') -> 'kcuD dlanoD'

RIGHT(character_expression, integer_expression)

Returns the rightmost integer_expression characters of character_

expression. For example:

RIGHT('Donald Duck', 4) -> 'Duck'

ROUND(number, decimal[, function])

Returns number rounded to decimal places to the right of the decimal point.
Note that decimal, an integer, can be negative to round off digits to the left
of the decimal point. If a nonzero integer is provided for function, the return
value will be truncated; otherwise, the value is rounded. For example:

ROUND(PI(), 2) -> 3.1400000000000001

ROWCOUNT_BIG()

Returns the number of rows affected by the most recent query. (Same as
@@ROWCOUNT, but returns a BIGINT type.) For example:

ROWCOUNT_BIG() -> 1

RTRIM(character_expression)

Trims trailing space characters from the expression. For example:

RTRIM(' beaucoup ') -> ' beaucoup'

SIGN(numeric_expression)

Returns −1 if the argument is negative, 0 if it is zero, and 1 if the argument is
positive. For example:

SIGN(-PI()) -> −1.0

Platform-Specific Extensions | 589

SQ
L B

uilt-in
Functio

ns

SOUNDEX(character_expression)

Returns a four-character code based on how the argument string sounds. This
function allows words that are spelled differently but sound alike in English to
be compared for equality. For example:

SOUNDEX('char') -> 'C600'
SOUNDEX('care') -> 'C600'

SPACE(integer_expression)

Returns a string consisting of a given number of space characters. For example:

SPACE(5) -> ' '

STATS_DATE(table_id, index_id)

Returns the date and time that index statistics were last updated. For example:

SELECT i.name, STATS_DATE(i.id, i.indid)
FROM sysobjects o, sysindexes i
WHERE o.name = 'authors' AND o.id = i.id ->
UPKCL_auidind 2022-01-06 01:34:00.153
aunmind 2022-01-06 01:34:00.170

STR(number[, int[, decimal]])

Converts number to a character string with length int and decimal decimal
places.

STRING_ESCAPE(string, escape_type)

Returns string with special characters escaped. The only supported
escape_type is 'json'. For example:

STRING_ESCAPE('"Hello"', 'json') -> \"Hello\"

STRING_SPLIT(string, delimiter)

Returns a table with a column named value derived from a delimited string.
This is often used with the CROSS APPLY and OUTER APPLY constructs. For
example:

SELECT value
FROM string_split('Donald Duck', ' ') ->
value

Donald
Duck

STUFF(string1, start, length, string2)

Replaces length characters within string1, starting with the character in the
start position, with those in string2. For example:

STUFF('North Dakota', 7, 6, 'Carolina') -> 'North Carolina'

590 | Chapter 7: SQL Built-in Functions

SUBSTRING(string,start, length)

Extracts length characters from string, starting at the character in the start
position. For example:

SUBSTRING('North Dakota', 7, 6) -> 'Dakota'

SUSER_ID([login])

Returns the system user ID of the current user, or for the specified login.

SUSER_SID([login])

Returns the security ID (SID) for the current user, or for the specified login.
The SID is returned in binary format. For example:

SUSER_SID('montoyai') -> 0x68FC17A71010DE40B005BCF2E443B377

SUSER_SNAME([server_user_sid])

Returns the login name for the current user, or for the specified SID. For
example:

SUSER_SNAME() -> 'montoyai'

TEXTPTR(column)

Returns a pointer to a TEXT, NTEXT, or IMAGE column in VARBINARY format. For
example:

SELECT TEXTPTR(pr_info)
FROM pub_info WHERE pub_id = '0736'
ORDER BY pub_id ->
0xFEFF6F00000000005C00000001000100

TEXTVALID(table.column, text_ptr)

Returns true or false (1 or 0), depending on whether or not the provided
pointer to a TEXT, NTEXT, or IMAGE column is valid. For example:

SELECT pub_id, 'Valid (if 1) Text data'
 = TEXTVALID('pub_info.logo', TEXTPTR(logo))
FROM pub_info
ORDER BY pub_id ->
0736 1
0877 1
1389 1
1622 1
1756 1
9901 1
9952 1
9999 1

TYPEPROPERTY(data_type, property)

Returns information about data type properties. The data_type argument can
contain the name of any data type, and property can be a string containing one
of the following:

Platform-Specific Extensions | 591

SQ
L B

uilt-in
Functio

ns

Precision
The number of digits or characters the data type can store.

Scale
The number of decimal places, for a numeric data type. A NULL value will
be returned if data_type is not a numeric data type.

For example:

TYPEPROPERTY('decimal', 'PRECISION') -> 38

UNICODE(ncharacter_expression)

Returns the Unicode code point for the first character of the input parameter.
For example:

UNICODE('Hello!') -> 72

USER_ID([user])

Returns the user ID for user in the current database. If user is omitted, the
current user’s ID will be returned. For example:

USER_ID() -> 2

USER_NAME([id])

Returns the username of the user identified by id or, if no ID is provided, of
the current user. For example:

USER_NAME() -> 'montoyai'

YEAR(date)

Returns an integer that is the YEAR part of the specified date. For example:

YEAR(CURRENT_TIMESTAMP) -> 2022

592 | Chapter 7: SQL Built-in Functions

8
SQL Built-in Aggregate and

Window Functions

In the previous chapter we discussed the different kinds of functions that exist in
a database and focused our attention on scalar and set-returning (table) functions.
In this chapter we will delve into the use of aggregate and window functions and
detail which ones are defined in the SQL standard, providing detailed descriptions
and examples for each platform. In addition, each database supports a long set of its
own internal window and aggregate functions that are outside the scope of the SQL
standard; listings of these functions for each vendor are provided at the end of each
chapter.

In the case of MariaDB and MySQL, we will refer only to MySQL except in cases
where MariaDB deviates from MySQL behavior.

Many database platforms also support the ability to create
user-defined aggregate and window functions (UDFs). For
more information on UDFs, refer to Chapter 9. JSON and
XML functions are covered in Chapter 10 and will not be
discussed in this chapter.

How to Use This Chapter
When researching a function in this chapter:

1. Check the SQL syntax and read the description, even if you are looking for a1.
specific platform implementation.

2. Read the platform-specific implementation information.2.

593

Elements of the vendors’ implementations that do not differ from the standard are
not discussed in the individual platform sections; these sections only call out any
differences from the standard. For details not provided in a particular platform
section, see the section on the SQL syntax.

SQL Aggregate Functions
Aggregate functions return a single value based upon a set of other values. If
used among other expressions in the item list of a SELECT statement, the SELECT
statement must have a GROUP BY or HAVING clause. No GROUP BY or HAVING clause
is required if the aggregate function is the only value retrieved by the SELECT
statement. The aggregate functions supported by the SQL standard and their syntax
are listed in Table 8-1.

Table 8-1. SQL aggregate functions

Function Usage

ARRAY_AGG(expression) Returns an array of a set of values

AVG(expression) Computes the average value of a column given by
expression

CORR(dependent, independent) Computes a correlation coefficient

COUNT(expression) Counts the rows defined by expression

COUNT(*) Counts all rows in the specified table or view

COVAR_POP(dependent,

independent)

Computes population covariance

COVAR_SAMP(dependent,

independent)

Computes sample covariance

CUME_DIST(value_list) WITHIN

GROUP (ORDER BY sort_list)

Computes the relative percent position of a hypothetical row
within a group of rows. The values returned are always
between 0 and 1.

DENSE_RANK(value_list)

WITHIN GROUP (ORDER BY

sort_list)

Generates a dense rank (no ranks are skipped) for a
hypothetical row (value_list) in a group of rows
generated by GROUP BY

LISTAGG(expression, separa

tor) WITHIN GROUP (ORDER BY

sort_list)

Orders data within each group specified in the ORDER BY
clause and then concatenates the values

MAX(expression) Finds the maximum value in a column given by expression

MIN(expression) Finds the minimum value in a column given by expression

PERCENT_RANK(value_list)

WITHIN GROUP (ORDER BY

sort_list)

Generates a relative rank for a hypothetical row
(value_list) in a group of rows generated by GROUP
BY by dividing that row’s rank less 1 by the number of rows in
the group

594 | Chapter 8: SQL Built-in Aggregate and Window Functions

Function Usage

PERCENTILE_CONT(percentile)

WITHIN GROUP (ORDER BY

sort_list)

Generates an interpolated value that, if added to the group,
would correspond to the percentile given

PERCENTILE_DISC(percentile)

WITHIN GROUP (ORDER BY

sort_list)

Returns the value with the smallest cumulative distribution
value greater than or equal to percentile

RANK(value_list) WITHIN

GROUP (ORDER BY sort_list)

Generates a rank for a hypothetical row (value_list) in a
group of rows generated by GROUP BY

REGR_AVGX(dependent,

independent)

Computes the average of the independent variable

REGR_AVGY(dependent,

independent)

Computes the average of the dependent variable

REGR_COUNT(dependent,

independent)

Counts the number of pairs remaining in the group after any
pair with one or more NULL values has been eliminated

REGR_INTERCEPT(dependent,

independent)

Computes the y-intercept of the least-squares-fit linear
equation

REGR_R2(dependent,

independent)

Computes the coefficient of determination

REGR_SLOPE(dependent,

independent)

Determines the slope of the least-squares-fit linear equation

REGR_SXX(dependent,

independent)

Sums the squares of the independent variables

REGR_SXY(dependent,

independent)

Sums the products of each pair of variables

REGR_SYY(dependent,

independent)

Sums the squares of the dependent variables

STDDEV_POP(expression) Computes the population standard deviation of all
expression values in a group

STDDEV_SAMP(expression) Computes the sample standard deviation of all expression
values in a group

SUM(expression) Computes the sum of the column values given by
expression

VAR_POP(expression) Computes the population variance of all expression values
in a group

VAR_SAMP(expression) Computes the sample standard deviation of all expression
values in a group

Technically speaking, ALL, ANY, and SOME are considered aggregate functions. How‐
ever, they have been discussed as range search criteria since they are most often
used that way. Refer to “ALL/ANY/SOME Operators” on page 251 for more infor‐
mation on these functions.

SQL Aggregate Functions | 595

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

The number of values processed by an aggregate function varies depending on
the number of rows queried from the table. This behavior differentiates aggregate
functions from scalar functions, which can only operate on the values of a single
row per invocation.

SQL Aggregate Syntax
The general syntax of an aggregate function is:

aggregate_function_name([ALL | DISTINCT] expression)
[within_group_specification] [filter_clause]
 [OVER window_clause]

filter_clause ::= FILTER (search_specification)
within_group_specification ::= WITHIN GROUP
 (sort_specification)

The aggregate_function_name may be any function listed in Table 8-1. The ALL
keyword, which specifies the default behavior, evaluates all rows when aggregating
the value of the function. The DISTINCT keyword uses only distinct values when
evaluating the function.

All aggregate functions except COUNT(*) and ARRAY_AGG(*)
will ignore NULL values when computing their results.

For an explanation of sort_specification, see “ORDER BY Clause” on page 294.

For an explanation of search_specification, see “WHERE Clause” on page 349.

For an explanation of window_clause, see “SQL Window Functions” on page 625.

For an explanation of filter_clause, see “FILTER Clause” on page 262.

MySQL aggregate syntax
MySQL supports the standard syntax except for the filter_clause clause.

Oracle aggregate syntax
Oracle supports the standard syntax except for the filter_clause clause.

PostgreSQL aggregate syntax
PostgreSQL deviates from the standard in that it allows for sorting to be applied to
any aggregate, so it has two allowed forms:

AGG_FUNCTION_NAME(expr) [within_group_specification]
 [filter_clause] [OVER window_clause]

596 | Chapter 8: SQL Built-in Aggregate and Window Functions

AGG_FUNCTION_NAME(expr [sort_specification]) [filter_clause]
 [OVER window_clause]

The within_group_specification syntax is mandatory for the PERCENTILE_CONT
and PERCENTILE_DIST functions; these are inverse distribution functions,
where order is absolutely required. PostgreSQL doesn’t allow the use of
within_group_specification for other functions.

The SQL standard allows sort_specification to be used after the expression in
the ARRAY_AGG function.

SQL Server aggregate syntax
SQL Server supports the standard syntax except for the filter_clause clause.

Examples
The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS avg_ytd_sales
FROM titles GROUP BY type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

The following query returns a running total number of books sold by store sorted in
order of sale date. Note that the number of records will be the same as in the table:

SELECT stor_id, ord_date, SUM(qty)
OVER (PARTITION BY stor_id ORDER BY ord_date) AS num_sold
FROM sales
ORDER BY stor_id, ord_date;

See also

• “SQL Window Functions” on page 625•

• FILTER in Chapter 4•

• GROUP BY in Chapter 4•

• SELECT in Chapter 4•

ARRAY_AGG
The ARRAY_AGG function aggregates a set of values into a single array. The values can
be composite objects. Use the DISTINCT keyword to include each distinct value only
once in an array.

SQL Aggregate Functions | 597

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

SQL standard syntax
sort_specification ::= expression1 [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...]
ARRAY_AGG([ALL | DISTINCT] expression
 [ORDER BY sort_specification]) [filter_clause]
 [OVER (window_clause)]

MySQL
MySQL does not support the ARRAY_AGG function. GROUP_CONCAT (discussed in
“LISTAGG” on page 608) achieves similar behavior, but only returns strings;
MySQL does not support the concept of arrays.

Oracle
Oracle does not support the ARRAY_AGG function. On Oracle you can use LISTAGG,
which concatenates values as a string.

PostgreSQL
PostgreSQL supports the SQL standard syntax for the ARRAY_AGG function.

SQL Server
SQL Server does not support the ARRAY_AGG function. You can instead use
STRING_AGG (discussed in “LISTAGG” on page 608), which concatenates values
as a string. SQL Server does not support arrays.

Example
The following query returns a distinct array of types from the titles table for each
pub_id and also alphabetically orders the types:

/** PostgreSQL **/
SELECT pub_id, ARRAY_AGG(DISTINCT type ORDER BY type) AS atypes
FROM titles
GROUP BY pub_id
ORDER BY pub_id;

See also

• COLLECT• • LISTAGG•

AVG and SUM
The AVG function computes the average of values in a column or an expression, and
SUM computes the sum. Both functions work with numeric values and ignore NULL
values. Use the DISTINCT keyword to compute the average or sum of all distinct

598 | Chapter 8: SQL Built-in Aggregate and Window Functions

values in a column or expression. All the platforms discussed here support the SQL
standard syntax for this function.

SQL standard syntax
AVG([ALL | DISTINCT] expression) [OVER (window_clause)]
SUM([ALL | DISTINCT] expression) [OVER (window_clause)]

For an explanation of window_clause, see “SQL Window Functions” on page 625.

Examples
The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS "average_ytd_sales" FROM titles
GROUP BY type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

The following query returns a running total of the number of books sold by each
store, sorted in order of sale date. Note that the number of records will be the same
as in the table:

SELECT stor_id, ord_date, SUM(qty)
OVER (PARTITION BY stor_id ORDER BY ord_date) AS num_sold
FROM sales
ORDER BY stor_id, ord_date;

COLLECT
The COLLECT function aggregates a set of objects into a single collection (a nested
table). The values can be composite objects. Use the DISTINCT keyword to include
each distinct value only once in a collection.

SQL standard syntax
sort_specification ::= expression1 [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...]
COLLECT([ALL | DISTINCT] expression
 [ORDER BY sort_specification]) [filter_clause]
 [OVER (window_clause)]

MySQL
MySQL does not support the COLLECT function. GROUP_CONCAT (discussed in
“LISTAGG” on page 608) achieves similar behavior but only returns strings.
MySQL does not support the concept of arrays.

Oracle
Oracle supports the SQL standard syntax for the COLLECT function.

SQL Aggregate Functions | 599

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

PostgreSQL
PostgreSQL does not support the COLLECT function. Use ARRAY_AGG instead.

SQL Server
SQL Server does not support the COLLECT function. You can instead use STRING_AGG
(discussed in “LISTAGG” on page 608), which concatenates values as a string. SQL
Server does not support arrays.

Example
The following query returns a distinct array of types from the titles table for each
pub_id and also alphabetically orders the types:

/** Oracle **/
SELECT pub_id, COLLECT(DISTINCT type ORDER BY type) AS atypes
FROM titles
GROUP BY pub_id
ORDER BY pub_id;
PUB_

ATYPES
--
1389
ST00001ITPYYoQQ9irKWp9GZU3dg=('popular_comp')

See also

• ARRAY_AGG• • LISTAGG•

CORR
The CORR function returns the correlation coefficient between a set of dependent
and independent variables.

SQL standard syntax
CORR(dependent, independent) [OVER (window_clause)]

Any pair in which either the dependent variable, the independent variable, or both
are NULL is ignored. The result of the function is NULL when none of the input
pairs consists of two non-NULL values.

To use CORR as a window aggregate, include the OVER clause. For an explanation of
window_clause, see “SQL Window Functions” on page 625.

MySQL
Does not support the CORR function.

600 | Chapter 8: SQL Built-in Aggregate and Window Functions

Oracle
Supports the CORR function both in aggregate form and window form.

PostgreSQL
Supports the CORR function both in aggregate form and window form.

SQL Server
Does not support the CORR function.

Examples
The following CORR example uses the data retrieved by the first SELECT:

/** On Oracle and PostgreSQL **/
SELECT * FROM test2;
 y x
---------- ----------
 1 3
 2 2
 3 1
SELECT CORR(y,x) FROM test2;
CORR(Y,X)

 −1

The following CORR example uses the window aggregate form:

/** On Oracle and PostgreSQL **/
SELECT y, x, CORR(y,x) OVER () AS corr FROM test2;
 y x corr
---------- ----------------------
 1 3 -1
 2 2 -1
 3 1 -1

COUNT
The COUNT function is used to compute the number of rows in an expression. All the
platforms support the SQL standard syntax.

SQL standard syntax
COUNT(*) [OVER (window_clause)]
COUNT([ALL | DISTINCT] expression) [OVER (window_clause)]

where:

COUNT(*)

Counts all the rows in the target table, regardless of whether they include
NULLs.

SQL Aggregate Functions | 601

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

COUNT([ALL | DISTINCT] expression)

Computes the number of rows with non-NULL values in a specific column or
expression. When the keyword DISTINCT is used, duplicate values are ignored
and a count of the distinct values is returned. ALL returns the number of
non-NULL values in the expression and is implicit when DISTINCT is not used.

For an explanation of window_clause, see “SQL Window Functions” on page 625.

Examples
This query counts all the rows in a table:

SELECT COUNT(*) FROM publishers;

The following query finds the number of different countries where publishers are
located:

SELECT COUNT(DISTINCT country) "Count of Countries"
FROM publishers

This query provides a running count of titles published by date:

SELECT title_id, pubdate, count(*) OVER (ORDER BY pubdate)
FROM titles
ORDER BY pubdate, title_id;

COVAR_POP
The COVAR_POP function returns the population covariance of a set of dependent
and independent variables.

SQL standard syntax
COVAR_POP(dependent, independent) [OVER (window_clause)]

The function disregards any pair in which either the dependent variable, the inde‐
pendent variable, or both are NULL. If no rows remain in the group after NULL
elimination, the result of the function is NULL.

For an explanation of window_clause, see “SQL Window Functions” on page 625.

MySQL
Does not support the COVAR_POP function.

Oracle
Supports the SQL standard syntax of the COVAR_POP function.

PostgreSQL
Supports the SQL standard syntax of the COVAR_POP function.

602 | Chapter 8: SQL Built-in Aggregate and Window Functions

SQL Server
Does not support the COVAR_POP function.

Example
The following COVAR_POP example uses the data retrieved by the first SELECT:

/** On Oracle and PostgreSQL **/
SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_POP(y,x) FROM test2;
COVAR_POP(Y,X)

 -.66666667

COVAR_SAMP
The COVAR_SAMP function returns the sample covariance of a set of dependent and
independent variables.

SQL standard syntax
COVAR_SAMP(dependent, independent) [OVER (window_clause)]

The function disregards any pair in which either the dependent variable, the inde‐
pendent variable, or both are NULL. The result of the function is NULL when none
of the input pairs consists of two non-NULL values.

For an explanation of window_clause, see “SQL Window Functions” on page 625.

MySQL
Does not support the COVAR_SAMP function.

Oracle
Supports the SQL standard syntax of the COVAR_SAMP function.

PostgreSQL
Supports the SQL standard syntax of the COVAR_SAMP function.

SQL Server
Does not support the COVAR_SAMP function.

SQL Aggregate Functions | 603

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

Example
The following COVAR_SAMP example uses the data retrieved by the first SELECT:

/** On Oracle and PostgreSQL **/
SELECT * FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1

SELECT COVAR_SAMP(y,x) FROM test2;
COVAR_SAMP(Y,X)

 −1

CUME_DIST
The CUME_DIST function computes the relative rank of a hypothetical row within a
group of rows, using the following equation:

(rows_preceding_hypothetical + rows_peered_with_hypothetical) /
 rows_in_group

Bear in mind that the rows_in_group value includes the hypothetical row that you
are proposing when you call the function.

SQL standard syntax
CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. There‐
fore, both lists must have the same number of expressions.

MySQL
MySQL does not support the CUME_DIST aggregate function.

Oracle
Oracle supports the SQL standard aggregate syntax for CUME_DIST and also supports
it as a window function. See the subsection on this function in “SQL Window
Functions” on page 625.

604 | Chapter 8: SQL Built-in Aggregate and Window Functions

PostgreSQL
PostgreSQL supports the SQL standard aggregate syntax for CUME_DIST and also
supports it as a window function. See the subsection on this function in “SQL
Window Functions” on page 625.

SQL Server
SQL Server does not support the CUME_DIST aggregate function.

Example
The following example determines the relative rank of the hypothetical new row
(num=4, odd=1) within each group of rows from test4, where groups are distin‐
guished by the values in the odd column:

/** On Oracle and PostgreSQL **/
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, CUME_DIST(4,1) WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD CUME_DIST(4,1)WITHINGROUP(ORDERBY NUM,ODD)
---------- ---
 0 1
 1 .8

In the group odd=0, the new row comes after the three rows (0,0), (2,0), and
(4,0). It will peer with itself. The total number of rows in the group, including the
hypothetical row, will be four. The relative rank, therefore, is computed as follows:

(3 rows preceding + 1 peering) / (3 in group + 1 hypothetical)
= 4 / 4 = 1

In the group odd=1, the new row follows the three rows (1,1), (3,1), and a duplicate
(3,1). Again, there is one peer: the hypothetical row itself. The number of rows in
the group is five, which includes the hypothetical row. The relative rank is thus:

(3 rows preceding + 1 peering) / (4 in group + 1 hypothetical)
 = 4 / 5 = .8

SQL Aggregate Functions | 605

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

DENSE_RANK
The DENSE_RANK function computes a rank in a group for a hypothetical row that
you supply. This is a dense rank, which means rankings are never skipped, even
when a group contains rows that rank identically.

SQL standard syntax
DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. There‐
fore, both lists must have the same number of expressions.

MySQL
Does not support the DENSE_RANK aggregate function.

Oracle
Supports the DENSE_RANK aggregate function.

PostgreSQL
Supports the DENSE_RANK aggregate function.

SQL Server
Supports the DENSE_RANK aggregate function.

Example
The following example determines the dense rank of the hypothetical new row
(num=4, odd=1) within each group of rows from test4, where groups are distin‐
guished by the values in the odd column:

/** On Oracle, PostgreSQL, or SQL Server **/
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd,
 DENSE_RANK(4,1)

606 | Chapter 8: SQL Built-in Aggregate and Window Functions

 WITHIN GROUP (ORDER BY num, odd) AS dr
FROM test4
GROUP BY odd;
 ODD DR
---------- --
 0 3
 1 3

In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is
in position 4. In the group odd=1, the new row follows (1,1), (3,1), and a duplicate
(3,1). In that case, the duplicate occurrences of (3,1) both rank 2, so the new row
is ranked 3. Compare this behavior with RANK, discussed later in this section, which
gives a different result.

EVERY
The EVERY function returns true if all items in the set return true and false if any
items in the set return false.

SQL standard syntax
EVERY(boolean_expression) [filter_clause]

MySQL
Supports the EVERY aggregate function.

Oracle
Does not support the EVERY aggregate function.

PostgreSQL
Supports the EVERY aggregate function and provides an alias, BOOL_AND.

SQL Server
Does not support the EVERY aggregate function.

Example
The following query returns a list by type indicating whether it has titles and if
royalties are greater than 10 in the set. t is for true and the f is for false:

/** On MySQL and PostgreSQL **/
SELECT type, EVERY(title > '') AS have_titles,
 EVERY(royalty > 10) AS all_royalty_gt10
FROM titles
WHERE royalty IS NOT NULL
GROUP BY type
ORDER BY type;

SQL Aggregate Functions | 607

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

 type | have_titles | all_royalty_gt10
--------------+-------------+------------------
business | t | f
mod_cook | t | t
popular_comp | t | f
psychology | t | f
trad_cook | t | f

LISTAGG
The LISTAGG function aggregates a set of values into a single string separated by
some separator. Although LISTAGG is the SQL standard name, some platforms
provide equivalent functionality by another name.

SQL standard syntax
LISTAGG ([ALL | DISTINCT] string_expression
 [WITHIN GROUP (ORDER BY sort_list)], separator
 [overflow_clause])
 [OVER (window_clause)]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
overflow_clause ::= ON OVERFLOW overflow_behavior
overflow_behavior ::= ERROR | TRUNCATE [string_literal]
 count_indication
count_indication ::= WITH COUNT | WITHOUT COUNT

MySQL
For MySQL, GROUP_CONCAT achieves the same purpose as LISTAGG. The output of
the function is a VARCHAR or VARBINARY if the length is under 512 characters and a
BLOB if it’s greater than or equal to 512 characters. The input expression need not be
a string. The syntax of the MySQL GROUP_CONCAT function is as follows:

GROUP_CONCAT([ALL | DISTINCT] expression [ORDER BY sort_list]
 SEPARATOR separator)

Oracle
Oracle fully supports the SQL standard syntax for the LISTAGG function.

PostgreSQL
PostgreSQL does not support LISTAGG but supports the analogous STRING_AGG
function as both a regular aggregate and a window aggregate. The syntax is as
follows:

STRING_AGG([ALL | DISTINCT] expression
 [ORDER BY sort_list], separator) [filter_clause]
 [OVER window_clause]

608 | Chapter 8: SQL Built-in Aggregate and Window Functions

SQL Server
SQL Server does not support LISTAGG but supports the analogous STRING_AGG
function. It does not support DISTINCT in conjunction with this function. Its syntax
is as follows:

STRING_AGG(expression, separator)
[WITHIN GROUP (ORDER BY sort_list)]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC]

Example
The following examples list authors who have more than one title and list the titles
separated by &:

/** MySQL **/
SELECT ta.au_id,
 GROUP_CONCAT(t.title
 SEPARATOR ' & ' ORDER BY t.title) AS titles
FROM titleauthor AS ta
 INNER JOIN titles AS t ON ta.title_id = t.title_id
GROUP BY ta.au_id
HAVING COUNT(*) > 1
ORDER BY ta.au_id;

/** Oracle **/
SELECT ta.au_id,
 LISTAGG(t.title,
 ' & ') WITHIN GROUP (ORDER BY t.title) AS titles
FROM titleauthor AS ta
 INNER JOIN titles AS t ON ta.title_id = t.title_id
GROUP BY ta.au_id
HAVING COUNT(*) > 1
ORDER BY ta.au_id;

/** PostgreSQL **/
SELECT ta.au_id,
 STRING_AGG(t.title,
 ' & ' ORDER BY t.title) AS titles
FROM titleauthor AS ta
 INNER JOIN titles AS t ON ta.title_id = t.title_id
GROUP BY ta.au_id
HAVING COUNT(*) > 1
ORDER BY ta.au_id;

/** SQL Server **/
SELECT ta.au_id,
 STRING_AGG(t.title,
 ' & ') WITHIN GROUP (ORDER BY t.title) AS titles
FROM titleauthor AS ta
 INNER JOIN titles AS t ON ta.title_id = t.title_id

SQL Aggregate Functions | 609

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

GROUP BY ta.au_id
HAVING COUNT(*) > 1
ORDER BY ta.au_id;

/** Results **/
 au_id | titles
-------------+--
 213-46-8915 | The Busy Executive's Database Guide
 & You Can Combat Computer Stress!
 267-41-2394 | Cooking with Computers: Surreptitious Balance Sheets
 & Sushi, Anyone?
 486-29-1786 | Emotional Security: A New Algorithm & Net Etiquette
 724-80-9391 | Computer Phobic AND Non-Phobic...
 & Cooking with Computers: Surreptitious Balance Sheets
 899-46-2035 | Is Anger the Enemy?
 & The Gourmet Microwave
 998-72-3567 | Is Anger the Enemy?
 & Life Without Fear

MIN and MAX
MIN(expression) and MAX(expression) find the minimum and maximum values of
expression (string, datetime, or numeric) in a set of rows. Either DISTINCT or ALL
may be used with these functions, but they do not affect the result. All the platforms
support the SQL standard syntax for these functions.

SQL standard syntax
MIN([ALL | DISTINCT] expression) [OVER (window_clause)]
MAX([ALL | DISTINCT] expression) [OVER (window_clause)]

Examples
The following query finds the best and worst sales for any title on record:

SELECT MIN(ytd_sales), MAX(ytd_sales)
FROM titles;

Aggregate functions are used often in the HAVING clauses of queries with GROUP BY.
The following query selects all categories (types) of books that have an average price
for all books in the category higher than $15.00:

SELECT type AS "Category", AVG(price) AS "Average Price"
FROM titles
GROUP BY type
HAVING AVG(price) > 15

PERCENT_RANK
The PERCENT_RANK function generates a relative rank for a hypothetical row by
dividing that row’s rank less 1 by the number of rows in the group.

610 | Chapter 8: SQL Built-in Aggregate and Window Functions

SQL standard syntax
PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item ...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. There‐
fore, both lists must have the same number of expressions.

MySQL
Does not support the PERCENT_RANK aggregate function.

Oracle
Supports the SQL standard syntax for the PERCENT_RANK aggregate function.

PostgreSQL
Supports the SQL standard syntax for the PERCENT_RANK aggregate function.

SQL Server
Does not support the PERCENT_RANK aggregate function.

Example
The following example determines the percentage rank of the hypothetical new
row (num=4, odd=1) within each group of rows from test4, where groups are
distinguished by the values in the odd column:

/** On Oracle and PostgreSQL **/
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

SELECT odd, PERCENT_RANK(4,1)
 WITHIN GROUP (ORDER BY num, odd) AS pr
FROM test4 GROUP BY odd;
 ODD PR
---------- --
 0 1
 1 .75

SQL Aggregate Functions | 611

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

In the group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is in
position 4. The rank computation is (4th rank – 1) / 3 rows = 100%. In the group
odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1), and is again ranked at
4. The rank computation for odd=1 is (4th rank – 1) / 4 rows = 3/4 = 75%.

PERCENTILE_CONT
The PERCENTILE_CONT function generates an interpolated value corresponding to a
percentile that you specify and the value from the ORDER BY clause that falls at that
percentile.

SQL standard syntax
PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_item)
percentile::= value between 0 and 1
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

The ORDER BY sort_item must be a numeric value, and only one column/expres‐
sion is allowed.

MySQL and MariaDB
MySQL does not support the PERCENTILE_CONT function in any form. MariaDB
supports PERCENTILE_CONT as a window function but not as an aggregate function.
The syntax is as follows:

PERCENTILE_CONT(percentile) WITHIN GROUP
(ORDER BY sort_item) OVER (partitioning)

MariaDB also supports a window function called MEDIAN which is shorthand for
PERCENTILE_CONT(0.5). It has the following syntax:

MEDIAN(column_name) OVER (partitioning)

See “SQL Window Functions” on page 625 for a description
of partitioning.

Oracle
Oracle supports the SQL standard syntax for the PERCENTILE_CONT aggregate func‐
tion. It also allows use of windowing syntax:

PERCENTILE_CONT(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)

612 | Chapter 8: SQL Built-in Aggregate and Window Functions

PostgreSQL
PostgreSQL supports the SQL standard syntax for the PERCENTILE_CONT aggre‐
gate function. It also supports an ARRAY form that allows for specifying multiple
percentiles and returning an array of values:

PERCENTILE_CONT(ARRAY[percentiles]) WITHIN GROUP (ORDER BY sort_item)
percentiles ::= percentile[, percentile...]

SQL Server
SQL Server only supports PERCENTILE_CONT as a window function, not as an aggre‐
gate function. The syntax is as follows:

PERCENTILE_CONT(percentile) WITHIN GROUP
(ORDER BY sort_item) OVER (partitioning)

Examples
The following example groups the data in test2 by the column named x and invokes
PERCENTILE_CONT to return a 50th-percentile value:

SELECT Y, X FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1
 4 4

/** Returns median value (SQL standard, Oracle, and PostgreSQL) **/
SELECT PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY X) AS median
FROM test2;
 median
--
 2.5

/** Returns median value for window (Oracle, MariaDB, SQL Server) **/
SELECT Y,
 PERCENTILE_CONT(0.50)
 WITHIN GROUP (ORDER BY X) OVER () AS median
FROM test2;
 Y median
---------- ----------
 1 2.5
 2 2.5
 3 2.5
 4 2.5

/** PostgreSQL array form **/
SELECT Y,
 PERCENTILE_CONT(ARRAY[0.25, 0.5,1])

SQL Aggregate Functions | 613

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

 WITHIN GROUP (ORDER BY X) OVER () AS median
FROM test2;
 median
--
 {1.75,2.5,4}

PERCENTILE_DISC
The PERCENTILE_DISC function determines the value in a group with the smallest
cumulative distribution greater than or equal to a percentile that you specify.

SQL standard syntax
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_item)
percentile::= value between 0 and 1
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

The ORDER BY sort_item must be a numeric value, and only one column/expres‐
sion is allowed.

MySQL and MariaDB
MySQL does not support the PERCENTILE_DISC function in any form. MariaDB
supports PERCENTILE_DISC as a window function but not as an aggregate function.
The syntax is as follows:

PERCENTILE_DISC(percentile) WITHIN GROUP
(ORDER BY sort_item) OVER (partitioning)

See “SQL Window Functions” on page 625 for a description
of partitioning.

Oracle
Oracle supports the SQL standard syntax for the PERCENTILE_DISC aggregate func‐
tion. It also allows use of windowing syntax:

PERCENTILE_DISC(percentile) WITHIN GROUP
(ORDER BY sort_list) OVER (partitioning)

PostgreSQL
PostgreSQL supports the SQL standard syntax for the PERCENTILE_DISC aggre‐
gate function. It also supports an ARRAY form that allows for specifying multiple
percentiles and returning an array of values:

PERCENTILE_DISC(ARRAY[percentiles]) WITHIN GROUP (ORDER BY sort_item)
percentiles ::= percentile[, percentile...]

614 | Chapter 8: SQL Built-in Aggregate and Window Functions

SQL Server
SQL Server only supports PERCENTILE_DISC as a window function, not as an aggre‐
gate function. The syntax is as follows:

PERCENTILE_DISC(percentile) WITHIN GROUP
(ORDER BY sort_item) OVER (partitioning)

Examples
The following example groups the data in test2 by the column named x and invokes
PERCENTILE_DISC to return a 50th-percentile value:

SELECT Y, X FROM test2;
 Y X
---------- ----------
 1 3
 2 2
 3 1
 4 4

/** Returns median value (SQL standard, Oracle, and PostgreSQL) **/
SELECT PERCENTILE_DISC(0.50) WITHIN GROUP (ORDER BY X) AS median
FROM test2;
 median
--
 2

/** Returns median value for window (Oracle, MariaDB, SQL Server) **/
SELECT Y,
 PERCENTILE_DISC(0.50)
 WITHIN GROUP (ORDER BY X) OVER () AS median
FROM test2;
 Y median
---------- ----------
 1 2
 2 2
 3 2
 4 2

/** PostgreSQL array form **/
SELECT
 PERCENTILE_DISC(ARRAY[0.25, 0.5,1])
 WITHIN GROUP (ORDER BY X) AS median
FROM test2;
 median
--
 {1,2,4}

SQL Aggregate Functions | 615

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

RANK
The RANK function computes a rank in a group for a hypothetical row that you
supply. This is not a dense rank. If the group contains rows that rank identically,
it’s possible for ranks to be skipped. If you want a dense rank, use the DENSE_RANK
function discussed earlier in this section.

SQL standard syntax
RANK(value_list) WITHIN GROUP (ORDER BY sort_list)
value_list ::= expression[, expression...]
sort_list ::= sort_item[, sort_item...]
sort_item ::= expression [ASC | DESC] [NULLS FIRST | NULLS LAST]

Items in the value_list correspond by position to items in the sort_list. There‐
fore, both lists must have the same number of expressions.

MySQL
Does not support the RANK aggregate function.

Oracle
Supports the SQL standard syntax for the RANK aggregate function.

PostgreSQL
Supports the SQL standard syntax for the RANK aggregate function.

SQL Server
Does not support the RANK aggregate function.

Example
The following example determines the rank of the hypothetical new row (num=4,
odd=1) within each group of rows from test4, where groups are distinguished by the
values in the odd column:

/** On Oracle and PostgreSQL **/
SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1
 4 0
 5 1

616 | Chapter 8: SQL Built-in Aggregate and Window Functions

SELECT odd, RANK(4,1)
 WITHIN GROUP (ORDER BY num, odd)
FROM test4 GROUP BY odd;
 ODD RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)
---------- ------------------------------------
 0 3
 1 4

In both cases, the rank of the hypothetical new row is 4. In the group odd=0, the
new row comes after (0,0), (2,0), and (4,0), and thus it is in position 4. In the group
odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In this case, even
though two of the rows are duplicates and so have the same rank, the new row is
still ranked 4 because it is preceded by three rows. Compare this behavior with that
of DENSE_RANK.

The REGR Family of Functions
The SQL standard defines a family of functions, having names beginning with
REGR_, that relate to different aspects of linear regression. The functions work in the
context of a least-squares regression line.

SQL standard syntax
Following is the syntax and a brief description of each REGR_ function:

REGR_AVGX(dependent, independent)

Averages (as in AVG(x)) the independent variable values

REGR_AVGY(dependent, independent)

Averages (as in AVG(y)) the dependent variable values

REGR_COUNT(dependent, independent)

Counts the number of non-NULL number pairs

REGR_INTERCEPT(dependent, independent)

Computes the y-intercept of the regression line

REGR_R2(dependent, independent)

Computes the coefficient of determination

REGR_SLOPE(dependent, independent)

Computes the slope of the regression line

REGR_SXX(dependent, independent)

Sums the squares of the independent variable values

REGR_SXY(dependent, independent)

Sums the products of each pair of values

REGR_SYY(dependent, independent)

Sums the squares of the dependent variable values

SQL Aggregate Functions | 617

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

The REGR_ functions only work on number pairs containing two non-NULL values.
Any number pair with one or more NULL values will be ignored.

MySQL
MySQL does not support the REGR_ family of functions.

Oracle
Oracle supports the SQL standard syntax for all REGR_ functions. It also supports the
following analytic syntax:

REGR_function(dependent, independent) OVER (window_clause)

For an explanation of window_clause, see “SQL Window Functions” on page 625.

PostgreSQL
PostgreSQL supports the SQL standard syntax for all REGR_ functions.

SQL Server
SQL Server does not support the REGR_ family of functions.

Example
The following REGR_COUNT example demonstrates that any pair with one or more
NULL values is ignored. The table test3 contains three non-NULL number pairs,
and three other pairs that have at least one NULL:

SELECT * FROM test3;
 Y X
---------- ----------
 1 3
 2 2
 3 1
 4 NULL
 NULL 4
 NULL NULL

The REGR_COUNT function ignores the pairs containing NULLs, counting only those
pairs with two non-NULL values:

/** On Oracle and PostgreSQL **/
SELECT REGR_COUNT(y,x) FROM test3;
REGR_COUNT(Y,X)

 3

618 | Chapter 8: SQL Built-in Aggregate and Window Functions

Likewise, all other REGR_ functions filter out any pairs containing NULL values
before performing their respective computations.

STDDEV_POP
Use STDDEV_POP to find the population standard deviation within a group of
numeric values. It can also be used as a window aggregate.

SQL standard syntax
STDDEV_POP(numeric_expression) [OVER (window_clause)]

For an explanation of window_clause, see “SQL Window Functions” on page 625.

MySQL
Supports the STDDEV_POP function both in aggregate form and window form. It also
supports the aliases STD and STDDEV.

Oracle
Supports the STDDEV_POP function both in aggregate form and window form.

PostgreSQL
Supports the STDDEV_POP function both in aggregate form and window form.

SQL Server
Does not support the STDDEV_POP function. Use the STDEVP function instead.

Example
The following example computes the population standard deviation for the values 1,
2, and 3:

SELECT * FROM test;
 X

 1
 2
 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT STDDEV_POP(x) AS sp FROM test;

/** On SQL Server **/
SELECT STDEVP(x) AS sp FROM test;

/** MySQL result **/
sp

SQL Aggregate Functions | 619

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

0.8165

/** Oracle result **/
SP

 .816496581

/** PostgreSQL result **/
sp

 0.81649658092772603273

/** SQL Server result **/
sp

0.816496580927726

STDDEV_SAMP
Use STDDEV_SAMP to find the sample standard deviation within a group of numeric
values. It can also be used as a window aggregate.

SQL standard syntax
STDDEV_SAMP(numeric_expression) [OVER (window_clause)]

For an explanation of window_clause, see “SQL Window Functions” on page 625.

MySQL
Supports the STDDEV_SAMP function both in aggregate form and window form.

Oracle
Supports the STDDEV_POP function both in aggregate form and window form. It also
provides the STDDEV function, which operates similarly to STDDEV_SAMP except that
it returns zero (instead of NULL) when there is only one value in the set.

PostgreSQL
Supports the STDDEV_POP function both in aggregate form and window form.

SQL Server
Does not support the STDDEV_SAMP function. Use STDEV (with only one D!) instead.

Example
The following example computes the sample standard deviation for the values 1, 2,
and 3:

620 | Chapter 8: SQL Built-in Aggregate and Window Functions

SELECT * FROM test;
 X

 1
 2
 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT STDDEV_SAMP(x) FROM test;
STDDEV_SAMP(X)

 1.000..

/** On SQL Server **/
SELECT STDEV(x) FROM test;
STDEV

 1.000..

VAR_POP
Use VAR_POP to compute the population variance of a set of values.

SQL standard syntax
VAR_POP(numeric_expression)

MySQL
Supports the SQL standard syntax for the VAR_POP aggregate function.

Oracle
Supports the SQL standard aggregate syntax for VAR_POP and also supports it as a
window aggregate, with the following syntax:

VAR_POP(numeric_expression) [OVER (window_clause)]

For an explanation of window_clause, see “SQL Window Functions” on page 625.

PostgreSQL
Supports the SQL standard syntax for the VAR_POP aggregate function.

SQL Server
Does not support the VAR_POP function. Use VARP instead.

Example
The following example computes the population variance for the values 1, 2, and 3:

SQL Aggregate Functions | 621

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

SELECT * FROM test;
 X

 1
 2
 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT VAR_POP(x) FROM test;
VAR_POP(X)

.666666667

/** On SQL Server **/
SELECT VARP(x) FROM test;
VARP(X)

0.666666666666667

VAR_SAMP
Use VAR_SAMP to compute the sample variance of a set of values.

SQL standard syntax
VAR_SAMP(numeric_expression)

MySQL
Supports the SQL standard syntax for the VAR_SAMP aggregate function.

Oracle
Supports the SQL standard syntax for VAR_SAMP and also supports it as a window
aggregate, with the following syntax (for an explanation of the window_clause, see
“SQL Window Functions” on page 625):

VAR_SAMP(numeric_expression) [OVER (window_clause)]

Oracle also provides a VARIANCE function, which differs from VAR_SAMP by returning
zero (instead of NULL) for sets that contain only a single value.

PostgreSQL
Supports the SQL standard syntax for the VAR_SAMP aggregate function.

SQL Server
Does not support the VAR_SAMP function. Use VAR instead.

622 | Chapter 8: SQL Built-in Aggregate and Window Functions

Example
The following example computes the sample variance for the values 1, 2, and 3:

SELECT * FROM test;
 X

 1
 2
 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT VAR_SAMP(x) AS v FROM test;

/** On SQL Server **/
SELECT VAR(x) AS v FROM test;

/** Result **/
v

 1

Complementary Functions
In this section we’ll cover two key features often used in conjunction with aggregate
functions: the GROUPING function and the MATCH_RECOGNIZE clause.

GROUPING
When GROUPING SETS, ROLLUP, or CUBE is used in a GROUP BY clause, the GROUPING
function is allowed in the SELECT clause (see “GROUP BY Clause” on page 263 for
details on these subclauses). All the platforms support the SQL standard syntax for
this function.

SQL standard syntax
GROUPING(column_reference)

The result of a GROUPING call is 1 in the case of a row whose values are the results
of aggregation over a column_reference during the execution of a grouped query
containing CUBE, ROLLUP, or GROUPING SETS, and 0 otherwise. The main purpose
of GROUPING is to distinguish between true NULL values and NULL placeholders
resulting from the execution of one of these operations.

Examples
/** SQL standard, Oracle, PostgreSQL **/
SELECT royalty, SUM(advance) AS "total advance",
 GROUPING(royalty) AS "grp"
FROM titles
GROUP BY ROLLUP(royalty)

Complementary Functions | 623

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

ORDER BY royalty NULLS FIRST;

/** MySQL, SQL Server (will work on Oracle & PostgreSQL but
 sorting will be different **/
SELECT royalty, SUM(advance) AS "total advance",
 GROUPING(royalty) AS "grp"
FROM titles
GROUP BY ROLLUP(royalty)
ORDER BY royalty;

/** Result **/
 royalty | total advance | grp
---------+---------------+-----
 | | 0
 | $95,400.00 | 1
 10 | $57,000.00 | 0
 12 | $2,275.00 | 0
 14 | $4,000.00 | 0
 16 | $7,000.00 | 0
 24 | $25,125.00 | 0

MATCH_RECOGNIZE
SQL:2016 introduced a row pattern recognition clause that allows for finding pat‐
terns between sequentially ordered rows using regular expression syntax. There are
two forms of it: one appears in the FROM clause of a SQL statement and utilizes
aggregate functions, and the other appears in an OVER WINDOW clause. Oracle is the
only one of the platforms we discuss that supports MATCH_RECOGNIZE, but Oracle
does not support its use in OVER. Refer to the Modern SQL website for further
examples.

SQL standard syntax
MATCH_RECOGNIZE(
 [PARTITION BY partition_list]
 [ORDER BY sort_specification]
 [MEASURES pattern_measure_list]
 [ONE ROW PER MATCH | ALL ROWS PER MATCH [row_pattern_empty_matching]]
 [AFTER MATCH SKIP PAST LAST ROW]
 row_pattern_common_syntax)

partition_list ::= column1[, ...]
sort_specification ::= expression1 [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...]
pattern_measure_list ::= pattern_measure_definition[, ...]
 pattern_measure_definition ::= pattern_measure_expression
 AS measure_name
 measure_name ::= identifier
row_pattern_empty_matching ::=
 SHOW EMPTY MATCHES | OMIT EMPTY MATCHES | WITH UNMATCHED ROWS
row_pattern_common_syntax ::=

624 | Chapter 8: SQL Built-in Aggregate and Window Functions

https://oreil.ly/Wkqag

 [AFTER MATCH pattern_skip_to]
 PATTERN (row_recognize_expression)
 DEFINE define_for_expressions_used_in_pattern
 pattern_skip_to ::= SKIP TO NEXT ROW | SKIP PAST LAST ROW |
 SKIP TO FIRST variable_name | SKIP TO LAST variable_name |
 SKIP TO variable_name
 define_for_expressions_used_in_pattern ::=
 <a whole language takes pages>

Example
SELECT NUM
FROM test4
ORDER BY NUM;
 NUM

 0
 1
 2
 3
 3
 4
 5

/** On Oracle **/
SELECT count(*) AS cnt
FROM test4
MATCH_RECOGNIZE (ORDER BY num
 PATTERN (new_val)
 DEFINE new_val AS
 (num > prev(num))
);
CNT

4

SQL Window Functions
SQL allows for a window_clause in aggregate function calls, the addition of which
makes those functions into window functions. This section describes how to use the
window_clause within Oracle and SQL Server.

Oracle tends to refer to window functions as analytic
functions.

Window (or analytic) functions are similar to standard aggregate functions in that
they operate on multiple rows, or groups of rows, within the result set returned

SQL Window Functions | 625

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

from a query. However, the groups of rows that a window function operates on
are defined not by a GROUP BY clause, but by partitioning and windowing clauses.
Furthermore, the order within these groups is defined by an ordering clause, but
that order affects only function evaluation and has no effect on the order in which
rows are returned by the query.

Window functions are the last items in a query to be evalu‐
ated, except for the ORDER BY clause. Because of this late eval‐
uation, window functions cannot be used within the WHERE,
GROUP BY, or HAVING clauses.

SQL Standard Window Syntax
SQL specifies the following syntax for window functions:

FUNCTION_NAME(expr) [filter_clause] OVER window_clause
filter_clause ::= FILTER (WHERE boolean_expression)
window_clause ::= window_name | (window_specification)
window_specification ::= [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...]
 [COLLATE collation_name]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE | GROUPS} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer PRECEDING |
 CURRENT ROW}
between ::= BETWEEN bound1 AND bound2
bound1 ::= bound
bound2 ::= bound
bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP | EXCLUDE TIES |
 EXCLUDE NO OTHERS}

MySQL Window Syntax
SQL specifies the following syntax for window functions:

FUNCTION_NAME(expr) OVER window_clause
window_clause ::= window_name | (window_specification)
window_specification ::= [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC]
framing ::= {ROWS | RANGE} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer
 PRECEDING | CURRENT ROW}
between ::= BETWEEN bound1 AND bound2
bound1 ::= bound
bound2 ::= bound

626 | Chapter 8: SQL Built-in Aggregate and Window Functions

bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP | EXCLUDE TIES |
 EXCLUDE NO OTHERS}

Oracle Window Syntax
Oracle’s window function syntax is as follows (the window_name clause and the
exclusion clause are supported only in Oracle 21c, but are included here for
completeness):

FUNCTION_NAME(expr) OVER {window_clause}
window_clause ::= window_name | (window_specification)
window_specification ::= [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...]
 [COLLATE collation_name]
ordering ::= ORDER [SIBLINGS] BY rule[, rule...]
partitioning ::= PARTITION BY value[, value...]
rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST}]
framing ::= {ROWS | RANGE | GROUPS}
 {not_range | begin AND end [exclusion]}
not_range ::= {UNBOUNDED PRECEDING | CURRENT ROW | value PRECEDING}
begin ::= {UNBOUNDED PRECEDING | CURRENT ROW |
 value {PRECEDING | FOLLOWING}}
end ::= {UNBOUNDED FOLLOWING | CURRENT ROW |
 value {PRECEDING | FOLLOWING}}
exclusion ::= [EXCLUDE CURRENT ROW | EXCLUDE GROUPS | EXCLUDE TIES |
 EXCLUDE NO OTHERS]

PostgreSQL Window Syntax
PostgreSQL’s window syntax is as follows:

FUNCTION_NAME(expr) [filter_clause] OVER window_clause
filter_clause ::= FILTER (WHERE boolean_expression)]
window_clause ::= window_name | (window_specification)
window_specification ::= [partitioning] [ordering] [framing]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER BY rule[, rule...]
rule ::= {value | position | alias} [ASC | DESC]
 [NULLS {FIRST | LAST} | USING operator]
framing ::= {ROWS | RANGE | GROUPS} {start | between} [exclusion]
start ::= {UNBOUNDED PRECEDING | unsigned-integer PRECEDING |
 CURRENT ROW}
between ::= BETWEEN bound1 AND bound2
bound1 ::= bound
bound2 ::= bound
bound ::= {start | UNBOUNDED FOLLOWING | unsigned-integer FOLLOWING}
exclusion ::= {EXCLUDE CURRENT ROW | EXCLUDE GROUP | EXCLUDE TIES |
 EXCLUDE NO OTHERS}

SQL Window Functions | 627

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

SQL Server Window Syntax
SQL Server’s window function syntax is as follows. Note that the window_name and
framing clauses, among other things, are not supported:

FUNCTION_NAME(expr) OVER ([window_specification])
window_specification ::= [partitioning] [ordering]
partitioning ::= PARTITION BY value[, value...]
ordering ::= ORDER BY rule[, rule...]
rule ::= column [ASC | DESC]

Partitioning
Partitioning the rows operated on by the partitioning clause is similar to using
the GROUP BY expression on a standard SELECT statement. The partitioning clause
takes a list of expressions that will be used to divide the result set into groups. We’ll
use the following table as the basis for some examples:

SELECT * FROM odd_nums;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1

The following results illustrate the effects of partitioning by ODD. The sum of the
even numbers is 2 (0 + 2), and the sum of the odd numbers is 4 (1 + 3). The second
column of the result set reports the sum of all values in the partition to which
that row belongs, yet all the detail rows are returned. The query provides summary
results in the context of detail rows:

SELECT NUM, SUM(NUM) OVER (PARTITION BY ODD) S FROM ODD_NUMS;
NUM S
--------- ----------
0 2
2 2
1 4
3 4

Not using a partitioning clause at all will sum all of the numbers in the NUM
column for each row returned by the query. In effect, the entire result set is treated
as a single large partition:

SELECT NUM, SUM(NUM) OVER () S FROM ODD_NUMS;
NUM S
--------- ----------
0 6
1 6
2 6
3 6

628 | Chapter 8: SQL Built-in Aggregate and Window Functions

Ordering
You specify the order of the rows on which a window function operates using the
ordering clause. However, this analytic clause does not define the ordering of the
result set. To define the overall result set ordering, you must use the query’s ORDER
BY clause. The following use of Oracle’s FIRST_VALUE function illustrates the effects
of different orderings of the partitions:

SELECT NUM,
 SUM(NUM) OVER (PARTITION BY ODD) S,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,
 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM DESC) first_desc
FROM ODD_NUMS;
 NUM S FIRST_ASC FIRST_DESC
---------- ---------- ---------- ----------
 0 2 0 2
 2 2 0 2
 1 4 1 3
 3 4 1 3

As you can see, the ORDER BY clauses in the window function invocations affect
the ordering of the rows in the respective partitions when those functions are
evaluated. ORDER BY NUM ASC orders partitions in ascending order, resulting in 0
for the first value in the even-numbered partitions and 1 for the first value in the
odd-numbered partitions, while ORDER BY NUM DESC has the opposite effect.

The preceding query also illustrates an important point: using
window functions, you can summarize and order results in
many different ways in the same query.

Grouping or Windowing
Many analytic functions also allow you to specify a virtual, moving window sur‐
rounding a row within a partition, using the framing clause. Such moving windows
are useful for calculations such as a running total.

The following Oracle-based example uses the framing clause on the analytic var‐
iant of SUM to calculate a running sum of the values in the first column. No
partitioning clause is used, so each invocation of SUM operates over the entire
result set. However, the ORDER BY clause sorts the rows for SUM in ascending order of
NUM’s value, and the BETWEEN clause (which is the windowing clause) causes each
invocation of SUM to include values for NUM only up through the current row. Each
successive invocation of SUM includes yet another value for NUM, in order, from the
lowest value of NUM to the greatest:

SQL Window Functions | 629

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS;
NUM S
--------- ----------
0 0
1 1
2 3
3 6

This example is a bit too easy, as the order of the final result set happens to match
the order of the running total. That doesn’t need to be the case. The following
example generates the same results, but in a different order. You can see that the
running total values are appropriate for each value of NUM, but the rows are
presented in a different order than before. The result set ordering is completely
independent of the ordering used for window function calculations:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS
ORDER BY NUM DESC;
 NUM S
---------- ----------
 3 6
 2 3
 1 1
 0 0

List of Window Functions
SQL specifies that any aggregate function may also be used as a window function.
The platforms largely follow the standard in that respect, so you’ll find that you
can take just about any aggregate function (certainly the standard ones) and apply
to it the window function syntax described in the preceding sections. PostgreSQL
by default allows any aggregate function, including user-defined aggregates, to be
used as a window function unless the aggregate function is specifically marked
read_write in its final output in its CREATE AGGREGATE definition. MySQL (and
MariaDB) allow this for the common aggregate functions; see the documentation
for a list.

In addition to the aggregate functions, SQL defines the window functions described
in the following sections. All examples use the following table and data, which
is a variation on the ODD_NUMS table used earlier to illustrate the concepts of
partitioning, ordering, and grouping:

SELECT * FROM test4;
 NUM ODD
---------- ----------
 0 0
 1 1
 2 0
 3 1
 3 1

630 | Chapter 8: SQL Built-in Aggregate and Window Functions

https://oreil.ly/LaaLV

 4 0
 5 1

or:

SELECT * FROM test;
 X

 1
 2
 3

Platform-specific window functions are included in the lists in “Platform-Specific
Extensions” on page 538.

CUME_DIST
The CUME_DIST function calculates the cumulative distribution, or relative rank, of
the current row with regard to other rows in the same partition. The calculation for
a given row is as follows:

number of peer or preceding rows / number of rows in partition

Because the result for a given row depends on the number of rows preceding that
row in the same partition, it’s important to always specify an ORDER BY clause when
invoking this function.

All the platforms support the SQL standard syntax for the CUME_DIST window
function.

SQL standard syntax.
CUME_DIST() OVER {window_clause}

Example. The following example uses CUME_DIST to generate a relative rank for
each row, ordering by NUM, after partitioning the data by ODD:

SELECT NUM, ODD, CUME_DIST() OVER
 (PARTITION BY ODD ORDER BY NUM) cumedist FROM test4;
 NUM ODD CUMEDIST
---------- ---------- ----------
 0 0 .333333333
 2 0 .666666667
 4 0 1
 1 1 .25
 3 1 .75
 3 1 .75
 5 1 1

SQL Window Functions | 631

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

Following is an explanation of the calculation behind the rank for the row in which
NUM = 0:

1. Because of the ORDER BY clause, the rows in the partition are ordered as follows:1.
• NUM = 0•
• NUM = 2•
• NUM = 4•

2. There are no rows preceding NUM = 0.2.
3. There is one row that is a peer of NUM = 0, and that is the NUM = 0 row itself.3.

Thus, the divisor is 1.
4. There are three rows in the partition as a whole, making the dividend 3.4.
5. The result of 1/3 is .33 repeating, as shown in the example output.5.

DENSE_RANK
The DENSE_RANK function assigns a rank to each row in a partition, which should
be ordered in some manner. The rank for a given row is computed by counting
the number of rows preceding the row in question and then adding 1 to the result.
Rows with duplicate ORDER BY values will rank the same. Unlike with RANK, gaps in
rank numbers will not result from two rows sharing the same rank.

SQL standard syntax.
DENSE_RANK() OVER {window_clause}

MySQL. MySQL supports the SQL standard syntax but does not allow the framing
clause in the window_specification.

Oracle. Oracle supports the SQL standard syntax but requires the ordering clause
and does not allow the framing clause in the window_specification.

PostgreSQL. PostgreSQL supports the SQL standard syntax.

SQL Server. SQL Server requires the ordering clause in the
window_specification:

DENSE_RANK() OVER ([partitioning] ordering)

Example. Compare the results from the following Oracle-based example to those
shown in the section on the RANK function:

632 | Chapter 8: SQL Built-in Aggregate and Window Functions

SELECT NUM, DENSE_RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 5
 5 6

The two rows where NUM = 3 are both ranked at 3, and the next-higher row is
ranked at 4. Rank numbers are not skipped, hence the term “dense.”

FIRST_VALUE and LAST_VALUE
FIRST_VALUE and LAST_VALUE are analytic functions that provide access to more
than one row of a table at the same time without a self-join. FIRST_VALUE provides
the first value in the current partition, and LAST_VALUE provides the last value in the
set.

SQL standard syntax.
FIRST_VALUE(expression) OVER {window_clause} [null_handling]

LAST_VALUE(expression) OVER {window_clause} [null_handling]

null_handling ::= {RESPECT NULLS | IGNORE NULLS}

When null_handling is not specified or supported, the functions behave as if
RESPECT NULLS were set. RESPECT NULLS causes rows that have null values to be
considered. IGNORE NULLS skips rows that have null values.

MySQL. MySQL supports the SQL standard syntax for these functions, except for
the null_handling option.

Oracle. Oracle supports the SQL standard syntax for these functions. The
null_handling clause can be provided after the OVER clause or after the expression,
as follows:

FIRST_VALUE(expression [{RESPECT | IGNORE} NULLS])
OVER {window_clause}

LAST_VALUE(expression [{RESPECT | IGNORE} NULLS])
OVER {window_clause}

PostgreSQL. PostgreSQL supports the SQL standard syntax for these functions
except for the null_handling option.

SQL Window Functions | 633

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

SQL Server. SQL Server does not support the null_handling option and requires
the ordering clause in the window_specification.

Example.
SELECT * FROM test;
 X

 1
 2
 3

/** On all platforms **/
SELECT x, FIRST_VALUE(x) OVER (ORDER BY x) AS fv,
LAST_VALUE(x) OVER (ORDER BY x) AS lv
FROM test4;
X FV LV

1 1 1
2 1 2
3 1 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT x, FIRST_VALUE(x) OVER () AS fv,
LAST_VALUE(x) OVER () AS lv
FROM test;
X FV LV

1 1 3
2 1 3
3 1 3

LAG and LEAD
LAG and LEAD are analytic functions that provide access to more than one row of
a table at the same time without a self-join. LAG provides a “lagging” value in the
result set that lags offset rows behind the current row. LEAD provides a “leading”
value in the result set that leads offset rows before the current row.

SQL standard syntax.
LAG(expression[, offset]) OVER {window_clause} [null_handling]

LEAD(expression[, offset]) OVER {window_clause} [null_handling]

null_handling ::= {RESPECT NULLS | IGNORE NULLS}

When null_handling is not specified or supported, the functions behave as if
RESPECT NULLS were set. RESPECT NULLS causes rows that have null values to be
considered. IGNORE NULLS skips rows that have null values.

634 | Chapter 8: SQL Built-in Aggregate and Window Functions

MySQL. MySQL supports the SQL standard syntax for these functions except
for the null_handling clause. In addition, it requires the ordering clause in the
window_specification.

Oracle. Oracle supports the SQL standard syntax for the LAG and LEAD functions,
but requires the ordering clause in the window_specification. In addition, it
provides an option to specify a default value when the result is undefined. The
null_handling clause can be provided after the OVER clause or after the arguments,
as follows:

LAG(expression[, offset][, default] [{RESPECT | IGNORE} NULLS])
OVER {window_clause}

LEAD(expression[, offset][, default] [{RESPECT | IGNORE} NULLS])
OVER {window_clause}

PostgreSQL. PostgreSQL supports the SQL standard syntax for these functions
except for the null_handling clause. In addition, it provides an option to specify a
default value when there is no preceding row. When no ordering clause is present,
the sorting order is not guaranteed. The syntax is as follows:

LAG(expression[, offset][, default]))
OVER {window_clause}

LEAD(expression[, offset][, default]))
OVER {window_clause}

SQL Server. SQL Server does not support the null_handling clause and requires
an ordering clause in the window_specification.

Example.
SELECT * FROM test;
 X

 1
 2
 3

SELECT x, LAG(x, 1) OVER (ORDER BY x) AS lag,
LEAD(x,1) OVER (ORDER BY x) AS lead
FROM test;
X LAG LEAD

1 NULL 2
2 1 3
3 2 NULL

SQL Window Functions | 635

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

NTILE
The NTILE window function divides an ordered dataset into a number of tiles and
returns the tile number of the data.

SQL standard syntax.
NTILE(number_of_tiles) OVER {window_clause}

MySQL. MySQL supports the SQL standard syntax for the NTILE function.

Oracle. Oracle supports the SQL standard syntax for this function, but it requires
the ordering clause.

PostgreSQL. PostgreSQL supports the SQL standard syntax for the NTILE function.

SQL Server. SQL Server requires an ordering clause in the window_specification.

Example.
SELECT NUM, ODD, NTILE(4) OVER
 (ORDER BY NUM) nt
FROM test4;
 NUM ODD nt
---------- ---------- ----------
 1 1 1
 2 0 1
 3 1 2
 3 1 2
 4 0 3
 5 1 4

NTH_VALUE
NTH_VALUE is an analytic function that provides access to more than one row of a
table at the same time without a self-join; it returns the nth value in the current
result set.

SQL standard syntax.
NTH_VALUE(expression, nth_row) OVER {window_clause}
[null_handling]

nth_row ::= integer or dynamic_expression
dynamic_expession ::= resolves to integer
null_handling ::= {RESPECT NULLS | IGNORE NULLS}

When null_handling is not specified or supported, the function behaves as if
RESPECT NULLS were set. RESPECT NULLS causes rows that have null values to be
considered. IGNORE NULLS skips rows that have null values.

MySQL. MySQL supports the SQL standard syntax for the NTH_VALUE function
except for the null_handling option.

636 | Chapter 8: SQL Built-in Aggregate and Window Functions

Oracle. Oracle supports the SQL standard syntax for this function except for the
null_handling option.

PostgreSQL. PostgreSQL supports the SQL standard syntax for the NTH_VALUE
function except for the null_handling option.

SQL Server. SQL Server does not support the NTH_VALUE window function.

Example.
SELECT * FROM test;
 X

 1
 2
 3

/** On MySQL, Oracle, and PostgreSQL **/
SELECT x, NTH_VALUE(x,1) OVER (ORDER BY x) AS nv1,
NTH_VALUE(x,2) OVER (ORDER BY x) AS nv2
FROM test;
X NV1 NV2

1 1 NULL
2 1 2
3 1 2

/** On MySQL, Oracle, and PostgreSQL **/
SELECT x, NTH_VALUE(x,1) OVER () AS fv,
NTH_VALUE(x,2) OVER () AS lv
FROM test;
X FV LV

1 1 2
2 1 2
3 1 2

PERCENT_RANK
The PERCENT_RANK function computes the relative rank of a row by dividing that
row’s rank less 1 by the number of rows in the partition, also less 1:

(rank - 1) / (rows - 1)

Compare this calculation to that used for CUME_DIST, described earlier in this
section.

SQL standard syntax.
PERCENT_RANK() OVER {window_clause}

MySQL. MySQL supports the SQL standard syntax for the PERCENT_RANK window
function, but requires the ordering clause and does not allow the framing clause.

SQL Window Functions | 637

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

Oracle. Oracle supports the SQL standard syntax for PERCENT_RANK, but requires
the ordering clause and does not allow the framing clause.

PostgreSQL. PostgreSQL fully supports the SQL standard syntax for PERCENT_RANK.

SQL Server. SQL Server does not support the PERCENT_RANK window function.

Example. The following example assigns relative ranks to the values of NUM,
partitioning the data on the ODD column:

/** On MySQL, Oracle, and PostgreSQL **/
SELECT NUM, ODD, PERCENT_RANK() OVER
 (PARTITION BY ODD ORDER BY NUM) pr
FROM test4;
 NUM ODD PR
---------- ---------- ----------
 0 0 0
 2 0 .5
 4 0 1
 1 1 0
 3 1 .333333333
 3 1 .333333333
 5 1 1

Following is an explanation of the calculation behind the rank for the row in which
NUM = 2:

1. Row NUM = 2 is the second row in its partition; thus, it ranks 2.1.
2. Subtract 1 from 2 to get a divisor of 1.2.
3. The dividend is the total number of rows in the partition, or 3.3.
4. Subtract 1 from 3 to get a dividend of 2.4.
5. The result of 1/3 is .33 repeating, as shown in the example output.5.

RANK
The RANK function assigns a rank to each row in a partition, which should be
ordered in some manner. The rank for a given row is computed by counting the
number of rows preceding the row in question and then adding 1 to the result.
Rows with duplicate ORDER BY values will rank the same, leading to gaps in rank
numbers.

SQL standard syntax.
RANK() OVER {window_name | ([partitioning] [ordering])}

MySQL. MySQL supports the SQL standard syntax for the RANK function but
requires the ordering clause.

638 | Chapter 8: SQL Built-in Aggregate and Window Functions

Oracle. Oracle supports the SQL standard syntax for RANK but requires the
ordering clause.

PostgreSQL. PostgreSQL supports the SQL standard syntax for the RANK function.
If the ordering clause is not provided, the ranking is arbitrary.

SQL Server. SQL Server supports the SQL standard syntax for RANK but requires the
ordering clause:

RANK() OVER ([partitioning] ordering)

Example. The following example uses the NUM column to rank the rows in the
test4 table:

SELECT NUM, RANK() OVER (ORDER BY NUM) rank
FROM test4;
 NUM RANK
---------- ----------
 0 1
 1 2
 2 3
 3 4
 3 4
 4 6
 5 7

Because both rows where NUM = 3 rank the same (at 4), the next-higher row will be
ranked at 6. The 5 rank is skipped. To avoid this skipping, use DENSE_RANK instead
(described earlier in this section).

ROW_NUMBER
The ROW_NUMBER function assigns a unique number to each row in a partition.

SQL standard syntax.
ROW_NUMBER() OVER {window_name | ([partitioning] [ordering])}

MySQL. MySQL fully supports the SQL standard syntax for this function. In the
absence of an ordering clause, the ROW_NUMBER ordering is random.

Oracle. Oracle supports the SQL standard syntax for the ROW_NUMBER function but
requires the ordering clause.

PostgreSQL. PostgreSQL fully supports the SQL standard syntax for this function.
In the absence of an ordering clause, the ROW_NUMBER ordering is random.

SQL Server. SQL Server requires an ordering clause:

ROW_NUMBER() OVER ([partitioning] ordering)

SQL Window Functions | 639

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

Example.
SELECT NUM, ODD, ROW_NUMBER() OVER
 (PARTITION BY ODD ORDER BY NUM) rn
FROM test4;
 NUM ODD RN
---------- ---------- ----------
 0 0 1
 2 0 2
 4 0 3
 1 1 1
 3 1 2
 3 1 3
 5 1 4

Platform-Specific Extensions
The following sections provide comprehensive listings of key vendor-supported
aggregate and window functions that are not defined in the SQL standard. These
functions are platform-specific, so a MySQL function, for example, is not guaran‐
teed to be supported by any other vendor. JSON and XML functions are not
included here; they will be covered in Chapter 10.

MySQL-Supported Functions
This section provides an alphabetical listing of MySQL-supported aggregate func‐
tions that are not part of the SQL standard, with examples and corresponding
results.

BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision. The value −1 is returned when no matching rows are
found. For example:

SELECT BIT_AND(mycolumn) -> 0

BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision. The value 0 is returned when no matching rows are
found. For example:

SELECT BIT_OR(mycolumn) -> 1

BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision. The value 0 is returned when no matching rows are
found. For example:

SELECT BIT_XOR(mycolumn) -> 1

640 | Chapter 8: SQL Built-in Aggregate and Window Functions

GROUP_CONCAT([DISTINCT] expr [ORDER BY order [ASC | DESC]] [SEPARATOR

sep])

Returns a concatenation of non-NULL values from a grouping where expr is
the expression to use in the concatenation, order is the expression to use in
the ordering, and sep is the string to insert between concatenated values. For
example:

SELECT estate, GROUP_CONCAT(tea SEPARATOR ';')
FROM catalog GROUP BY estate;

VARIANCE(expr)

Synonym for the SQL standard function VAR_POP.

Oracle-Supported Functions
This section provides an alphabetical listing of the aggregate functions specific to
Oracle, with examples and corresponding results.

ANY_VALUE(expression)

Returns any value in a set of values. This function (introduced in Oracle 21c)
is useful in an aggregation where you don’t care what value you get back and
don’t want to group by the column. For example:

SELECT ANY_VALUE(num) FROM test4 -> 4

APPROX_COUNT(expression), APPROX_COUNT_DISTINCT(expression),
APPROX_MAX(expression), APPROX_MEDIAN(expression), APPROX_SUM(
expression)

These are much like the non-APPROX variants except they return answers faster
and are not exact. There are several more, but these are the most commonly
used.

BIT_AND_AGG(expression)

Returns the bitwise AND of every non-NULL value in expression. For example:

SELECT BIT_AND_AGG(num) FROM test4 -> 0

BIT_OR_AGG(expression)

Returns the bitwise OR of every non-NULL value in expression. For example:

SELECT BIT_OR_AGG(num) FROM test4 -> 7

COLLECT(column)

Creates for each group a nested table consisting of all the values in the column.

CORR_K(expr1, expr2[, return_type]), CORR_S(expr1, expr2[,
return_type])

CORR_K returns Kendall’s tau-b correlation coefficient, and CORR_S returns
Spearman’s rho correlation coefficient for a set of numbered pairs (expr1
and expr2). The return_type argument, a VARCHAR2, can be omitted or
can be one of the following values: 'COEFFICIENT', 'ONE_SIDED_SIG', or

Platform-Specific Extensions | 641

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

'TWO_SIDED_SIG'. The value 'COEFFICIENT' (the default if this argument is
omitted) returns the coefficient of the correlation. The values 'ONE_SIDED_SIG'
and 'TWO_SIDED_SIG' return the one- and two-tailed significance of the corre‐
lation, respectively.

FIRST

Returns a specified value from the row that ranks first, given the order speci‐
fied in the ORDER BY clause. The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK FIRST ORDER BY expr[, ... n])
expr ::= [ASC | DESC] [NULLS {FIRST | LAST}]

The first ranking row following the order specified by expr will be used in the
aggregate function aggregate. aexpr is the expression passed to the aggregate
function. For example:

SELECT MAX(c1) KEEP (DENSE_RANK FIRST ORDER BY c2)
FROM FIVE_NUMS -> 1

GROUP_ID()

Returns a positive value for each duplicate group returned by a query con‐
taining a GROUP BY clause. This function is useful in filtering out duplicate
groups created when using CUBE, ROLLUP, or another GROUP BY extension (see
“GROUPING” on page 623).

GROUPING_ID(column_name1[, column_name2, ...])

Returns the base-10 number that is equal to the binary value constructed by
concatenating the GROUPING values on each of the parameters. GROUPING_ID is
useful when returning a query containing multiple levels of aggregation created
by GROUP BY expressions. Consider using the GROUPING_ID function instead of
multiple GROUPING functions within one query. This function is shorthand for:

BIN_TO_NUM(GROUPING(column_name1)[, GROUPING(column_name2), ...])

KURTOSIS_POP([DISTINCT | ALL | UNIQUE]) [OVER (partitioning)]

Returns the kurtosis population, used to determine outliers. This is new in
Oracle 21c.

KURTOSIS_SAMP([DISTINCT | ALL | UNIQUE]) [OVER (partitioning)]

Returns the kurtosis sampling, used to determine outliers. This is new in
Oracle 21c.

LAST

Returns the row that ranks last given the order specified in the ORDER BY clause.
The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK LAST ORDER BY expr[, ... n])
expr ::= [ASC | DESC] [NULLS {FIRST | LAST}]

The last ranking row following the order specified by expr will be used in
the aggregate function aggregate. The aexpr is the expression passed to the
aggregate function. For example:

642 | Chapter 8: SQL Built-in Aggregate and Window Functions

SELECT MIN(c1) KEEP (DENSE_RANK LAST ORDER BY c1)
FROM FIVE_NUMS -> 5

MEDIAN(expression) [OVER (partitioning)]

Returns the median value in an ordered set of numeric or datetime values. For
example:

SELECT MEDIAN(c1) FROM FIVE_NUMS -> 3

POWERMULTISET(nested_table), POWERMULTISET_BY_CARDINALITY

(nested_table, cardinality)

Return a nested table of nested tables of all nonempty subsets of the input
nested table in the nested_table parameter. POWERMULTISET_BY_CARDINALITY
has an additional parameter that can be used to limit the subsets returned to
a specified minimum cardinality. For more information, see the Oracle SQL
Reference.

PREDICTION(), PREDICTION_BOUNDS(), PREDICTION_COST(),

PREDICTION_DETAILS(), PREDICTION_PROBABILTY(), PREDICTION_SET()

Support Oracle’s data mining features. See the documentation for the Oracle
Data Mining Java API or the DBMS_DATA_MINING package for more details on
these functions.

RATIO_TO_REPORT(value_exprs) OVER (partitioning)

Computes the ratio of a value in value_exprs to the sum of all value_exprs
with each partition. If value_exprs is NULL, the ratio-to-report value is also
NULL. For example:

SELECT c1, RATIO_TO_REPORT(c1) OVER () FROM FIVE_NUMS ->
1 .066666667
2 .133333333
3 .2
4 .266666667
5 .333333333

STATS_BINOMIAL_TEST, STATS_CROSSTAB, STATS_F_TEST, STATS_KS_TEST,
STATS_MODE, STATS_MW_TEST, STATS_ONE_WAY_ANOVA, STATS_T_TEST_INDEP,
STATS_T_TEST_INDEPU, STATS_T_TEST_ONE, STATS_T_TEST_PAIRED,
STATS_WSR_TEST

Oracle provides many sophisticated statistical functions. For further informa‐
tion on the STATS_* functions, see the Oracle SQL Reference.

VARIANCE([DISTINCT] expression) [OVER (window_clause)]

Returns the variance of expression: 0 if the number of rows in expression =
1, and VAR_SAMP if the number of rows in expression > 1. For example:

SELECT VARIANCE(col1) FROM NUMS -> 32.6666667

Platform-Specific Extensions | 643

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

PostgreSQL-Supported Functions
This section lists the aggregate functions specific to PostgreSQL, with examples
and corresponding results. Some of the less frequently used functions have been
omitted:

BIT_AND(expression)

Returns the bitwise AND of every non-NULL value in expression. For example:

SELECT BIT_AND(num) FROM test4 -> 0

BIT_OR(expression)

Returns the bitwise OR of every non-NULL value in expression. For example:

SELECT BIT_OR(num) FROM test4 -> 7

BIT_XOR(expression)

Returns the bitwise exclusive OR of every non-NULL value in expression. For
example:

SELECT BIT_XOR(num) FROM test4 -> 2

BOOL_AND(expression)

Synonym for EVERY(expression).

BOOL_OR(expression)

Returns the logical OR of every non-NULL value in expression. This is equiva‐
lent to the SQL standard SOME aggregate function. For example:

SELECT BOOL_OR(num = 4) FROM test4 -> true

MODE(expression)

Computes the mode, the most frequent value of the aggregated argument
(arbitrarily choosing the first one if there are multiple equally frequent values).
The aggregated argument must be of a sortable type. For example:

SELECT MODE() WITHIN GROUP (ORDER BY num)
FROM test4 -> 3

RANGE_AGG(any_range)

Computes the non-NULL union of a set of ranges and returns a multirange
type. For example:

SELECT range_agg(d)
FROM (VALUES (daterange('2021-10-01', '2021-10-30'))
 ,(daterange('2021-09-10', '2021-09-15'))
 , (daterange('2021-08-15','2021-09-10'))
) AS d(d)
-> {[2021-08-15,2021-09-15),[2021-10-01,2021-10-30)}

RANGE_INTERSECT_AGG(any_range)

Computes the non-NULL intersection of a set of ranges and returns a range. It
returns empty if not all rows intersect. For example:

644 | Chapter 8: SQL Built-in Aggregate and Window Functions

SELECT range_intersect_agg(d)
FROM (VALUES (daterange('2021-09-01', '2021-10-30'))
 ,(daterange('2021-09-10', '2021-09-15'))
 , (daterange('2021-08-15','2021-09-11'))
) AS d(d)-> [2021-09-10,2021-09-11)

VARIANCE(expr)

This is a historical alias for the SQL standard VAR_SAMP function.

SQL Server–Supported Functions
This section provides an alphabetical listing of SQL Server–supported aggregate
functions, with examples and corresponding results.

APPROX_COUNT_DISTINCT(expression)

Like COUNT(DISTINCT expression) but returns approximate answers much
faster for large tables. For example:

SELECT APPROX_COUNT_DISTINCT(title) FROM titles -> 18

CHECKSUM_AGG([ALL | DISTINCT] integer)

Returns the checksum value of all values as an integer. For example:

SELECT CHECKSUM_AGG(CAST(qty AS integer)) FROM sales -> 111

COUNT_BIG([ALL | DISTINCT] expression)

Just like COUNT, except it returns a BIGINT data type instead of an INTEGER data
type. For example:

SELECT COUNT_BIG(title) FROM titles -> 18

GROUPING_ID()

Returns a positive integer denoting a grouping level in a GROUP BY clause. This
function is useful in filtering out duplicate groups created when using CUBE,
ROLLUP, or another GROUP BY extension (see “GROUPING” on page 623). For
example:

SELECT GROUPING_ID(stor_id, ord_date),
 ord_date, stor_id, SUM(qty) AS qty_total
FROM sales
GROUP BY ROLLUP(stor_id, ord_date);

STDEV(expression)

Returns the standard deviation of the values in expression. For example:

SELECT STDEV(qty) FROM sales -> 16.409201831957116

STDEVP(expression)

Returns the standard deviation for the population of values in expression. For
example:

SELECT STDEVP(qty) FROM sales -> 16.013741264834152

Platform-Specific Extensions | 645

SQ
L B

uilt-in
A

g
g

reg
ate and

W
ind

ow
Functio

ns

VAR(expression)

Returns the statistical variance for the values represented by expression. This
is equivalent to the SQL standard VAR_SAMP function. For example:

SELECT VAR(qty) FROM sales -> 269.26190476190476

VARP(expression)

Returns the statistical variance for the population represented by all values of
expression in a group. Equivalent to the SQL standard function VAR_POP. For
example:

SELECT VARP(qty) FROM sales -> 256.43990929705217

646 | Chapter 8: SQL Built-in Aggregate and Window Functions

9
Storing Logic in the Database

Most relational databases allow you to compartmentalize reusable nuggets of logic
in what are called stored procedures and user-defined functions (UDFs). In addition,
many relational databases allow you to react to changes in data or even structural
changes to the database via the use of triggers. The SQL standard defines a syntax
for expressing these. In this chapter we’ll focus on the SQL standard commands
for working with casts, cursors, functions, methods, procedures, triggers, and types
and to what extent these commands are supported in the databases covered in this
book (including any deviations from or extensions to the standard). One particular
feature not covered by the latest SQL standard is syntax for creating aggregate
functions. All the databases we cover support this, but they deviate widely in their
syntax. In addition, the SQL standard does not cover triggers that take action when
objects in a database (such as tables, views, and even functions) are added, altered,
or dropped. Again, most of the platforms provide such triggers, but with varying
syntax, as you will see.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support” on page 648.1.
2. Check Table 9-1.2.
3. Look up the specific SQL statement, check the syntax, and read the “Keywords,”3.

“Rules at a glance,” and “Programming tips and gotchas” sections. Do this even
if you are looking for a specific platform implementation.

4. Finally, read the platform-specific implementation information.4.

647

You will note that the entry for a given platform implementation does not duplicate
information on any clauses that do not differ from the standard. So, it is possible
that you will need to flip between the descriptions for a vendor variation and the
SQL standard to cover all possible details of that command.

In our discussions of MySQL, we will also include MariaDB, a fork of MySQL.
For the most part, MySQL and MariaDB provide fully code-compatible syntax. In
these cases we will refer to them collectively as MySQL. We will explicitly mention
MariaDB only in situations where it deviates from MySQL in an important way.

SQL Platform Support
Table 9-1 provides a listing of the SQL statements discussed in this chapter, the
platforms that support them, and the degree to which they support them. The
following list offers useful tips for reading Table 9-1, as well as an explanation of
what each abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.1.
2. The SQL statement class for each command is indicated in the second column.2.
3. The subsequent columns list the level of support for each vendor:3.

Supported (S)
The platform supports the SQL standard for the particular command.

Supported, with variations (SWV)
The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

Supported, with limitations (SWL)
The platform supports some but not all of the functions specified by the
SQL standard for the particular command.

Not supported (NS)
The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail. Remember
that even if a specific SQL command is listed in the table as “Not supported,” the
platform usually has alternative coding or syntax to enact the same command or
function. Therefore, be sure to read the discussion and examples for each command
later in this chapter. Likewise, some of the commands in Table 9-1 are not found
in the SQL standard; these are indicated with the term “Non-standard” in the “SQL
class” column of the table.

648 | Chapter 9: Storing Logic in the Database

Table 9-1. Alphabetical quick SQL command reference

SQL command SQL class MySQL/
MariaDB

Oracle PostgreSQL SQL Server

ALTER

AGGREGATE

Non-
standard

NS NS SWV NS

ALTER

FUNCTION

Non-
standard

SWV SWV SWV SWV

ALTER METHOD SQL-schema NS NS NS NS

ALTER

PROCEDURE

SQL-schema SWV SWV SWV SWV

ALTER TRIGGER Non-
standard

NS SWV SWV SWV

CALL SQL-schema [ON ALL

SERVER]

SWV [ON ALL

SERVER]

SWL

CLOSE SQL-data [ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

SWV

CREATE

AGGREGATE

Non-
standard

SWV SWV SWV SWV

CREATE CAST SQL-schema NS NS SWV NS

CREATE

FUNCTION

SQL-schema SWV SWV SWV SWV

CREATE METHOD SQL-schema NS NS NS NS

CREATE

PROCEDURE

SQL-schema SWV SWV SWV SWV

CREATE

TRIGGER

SQL-schema SWL SWV SWV SWL

DECLARE

CURSOR

SQL-data SWL SWL SWL SWL

DROP

AGGREGATE

Non-
standard

[ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

DROP CAST SQL-schema NS NS [ON ALL

SERVER]

NS

DROP FUNCTION SQL-schema [ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

DROP

PROCEDURE

SQL-schema [ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

DROP TRIGGER SQL-schema [ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

[ON ALL

SERVER]

FETCH SQL-data SWL SWL SWV SWV

SQL Platform Support | 649

Sto
ring

 Lo
g

ic
in the

D
atab

ase

SQL command SQL class MySQL/
MariaDB

Oracle PostgreSQL SQL Server

OPEN SQL-data [ON ALL

SERVER]

SWV [ON ALL

SERVER]

SWV

RETURN SQL-schema SWL [ON ALL

SERVER]

SWV SWV

SQL Command Reference
CALL Statement
The CALL statement invokes a stored procedure.

Platform Command

MySQL Supported

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with limitations

SQL syntax
CALL procedure_name([parameter[, ...]])

Keywords

procedure_name

Specifies the stored procedure that you want to invoke. It must be a previously
defined stored procedure that is available in the current user context (instance,
database, schema, etc.).

([parameter[, ... 11)

Provides values for each input parameter required by the stored procedure.
Each parameter listed is required by the stored procedure in the same ordi‐
nal position; thus, the fifth parameter listed will provide the value for the
fifth argument required by the stored procedure. The parameters must be
enclosed in parentheses and separated by commas. Note that the parentheses
are required even if there are no parameter values (i.e., if there are no param‐
eter values, you must still use CALL()). Strings should be enclosed in single
quotes. If the stored procedure has only OUT parameters, place host variables or
parameter markers within the parentheses.

650 | Chapter 9: Storing Logic in the Database

Rules at a glance
The CALL statement makes it easy to invoke a stored procedure. Simply provide the
name of the stored procedure and include any parameters it uses, enclosing them
within parentheses.

This Oracle example creates a simple stored procedure, and then calls it:

CREATE PROCEDURE update_employee_salary
 (emp_id NUMBER, updated_salary NUMBER)
IS
BEGIN
 UPDATE employee SET salary = updated_salary
 WHERE employee_id =emp_id;
END;

CALL update_employee_salary(1517, 95000);

Programming tips and gotchas
The return status of a called stored procedure can be found, typically, by using GET
DIAGNOSTIC. GET DIAGNOSTIC is not widely supported among the various database
platforms, so check your platform’s documentation for more details.

Many platforms also support an alternative command called EXECUTE to perform
the same functionality. In some cases you may prefer EXECUTE to CALL, since the
former can be used to execute any kind of prepared SQL, including methods,
functions, or batches of SQL code.

MySQL
MySQL supports the SQL standard form of the CALL statement.

Oracle
Oracle allows the CALL statement to invoke standalone stored procedures, functions,
and methods, as well as stored procedures and functions contained within a type or
package. Following is the Oracle syntax:

CALL [schema.][{type_name | package_name}.]procedure_name@dblink
[(parameter[, ...])]
[INTO :variable_name [[INDICATOR] :indicator_name]];

where:

CALL (schema.]({type_name | package_name}.]procedure_name@dblink

Calls the named object. You may fully enumerate the object name, including
the schema, type, etc., or allow Oracle to assume the current schema and
database instance. If the procedure or function resides in another database,
simply specify the database via a database link name, shown as dblink in the
syntax. dblink must refer to a previously created database link.

SQL Command Reference | 651

Sto
ring

 Lo
g

ic
in the

D
atab

ase

INTO :variable_name

Specifies the name of a previously declared variable that will store the value
returned when you call a function. If you’re calling a function, the INTO clause
is required.

INDICATOR :indicator_name

Retains the condition of the host variable (for example, whether the return
value is NULL) for functions precompiled in a Pro*C/C++ routine.

The parameters used in an Oracle CALL statement may not include pseudocolumns
or the VALUE or REF functions. You must use a host variable for any parameter that
corresponds to an OUT or IN OUT argument of the called stored procedure.

PostgreSQL
PostgreSQL version 11 and later supports the SQL standard form of the CALL
statement. Up to version 13, stored procedures cannot return any values; only IN
parameters are supported. Starting with PostgreSQL 14, stored procedures support
OUT parameters, allowing the CALL statement to return values.

SQL Server
CALL is not supported in Transact-SQL code such as stored procedures. Instead,
use the nonstandard EXECUTE statement. On SQL Server, the EXECUTE statement
provides a superset of the features of the CALL statement. Refer to the vendor
documentation for additional information.

The SQL standard syntax for the CALL statement is supported
via the SQL Server Native Client ODBC driver. This is opti‐
mized to use the remote procedure call (RPC) protocol and
improves performance by reducing parameter and parsing
processing on the server.

See also

• CREATE/ALTER FUNCTION/PROCEDURE•

CLOSE Statement (Cursors)
The CLOSE statement is one of four commands used in cursor processing, along with
DECLARE, FETCH, and OPEN. Cursors allow you to process queries one row at a time,
rather than as a complete set. CLOSE closes a server-side cursor previously created
with a DECLARE CURSOR statement and opened with an OPEN statement.

652 | Chapter 9: Storing Logic in the Database

Platform Command

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with variations

SQL syntax
CLOSE cursor_name

Keywords

CLOSE cursor_name

Identifies and closes a cursor previously created with the DECLARE CURSOR
statement.

Rules at a glance
At the highest level, a cursor must be:

1. Created using DECLARE1.

2. Opened using OPEN2.

3. Operated against using FETCH3.

4. Dismissed using CLOSE4.

By following these steps, you create a result set similar to that generated by a SELECT
statement, except that you can operate against each individual row within the result
set.

The CLOSE statement closes a cursor and destroys the cursor result set. For example:

CLOSE author_names_cursor;

All the database platforms release any locks that were held by the cursor, though this
is not specified in the SQL standard (locking is a physical feature of each database
platform).

For more information on the use of cursors, refer to
“DECLARE CURSOR Statement” on page 711 and “FETCH
Statement (Cursors)” on page 720.

Programming tips and gotchas
You can also close a cursor implicitly using a COMMIT statement or, for cursors
defined with WITH HOLD, using a ROLLBACK statement.

SQL Command Reference | 653

Sto
ring

 Lo
g

ic
in the

D
atab

ase

MySQL
MySQL supports the SQL standard form of the CLOSE statement.

Oracle
Oracle supports the SQL standard form of the CLOSE statement.

PostgreSQL
PostgreSQL supports the SQL standard form of the CLOSE statement. It issues an
implicit CLOSE statement for every open cursor when a transaction is ended with a
COMMIT or ROLLBACK statement.

SQL Server
SQL Server supports the SQL standard syntax for CLOSE and an additional GLOBAL
keyword that identifies the previously defined cursor as a global cursor:

CLOSE [GLOBAL] cursor_name

Although the locks taken up by the cursor are dropped when it is closed, SQL
Server does not automatically reallocate memory structures consumed by a cursor
to the memory pool. To accomplish such reallocation, you must issue a DEALLOCATE
cursor_name command.

This example from SQL Server opens a cursor and fetches a result set of all employ‐
ees who have a last name starting with “K,” then closes the cursor and deallocates
the memory structures:

DECLARE employee_cursor CURSOR FOR
 SELECT lname, fname
 FROM pubs.dbo.employee
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor
DEALLOCATE employee_cursor
GO

See also

• DECLARE CURSOR•

• FETCH•

• OPEN•

654 | Chapter 9: Storing Logic in the Database

CREATE/ALTER AGGREGATE Statement
The CREATE AGGREGATE statement creates a special kind of user-defined function
called an aggregate, which can be used just like the built-in aggregates discussed in
Chapter 8 (SUM, AVG, MAX, MIN, etc.). This command is not part of the SQL standard,
and there is wide variety in how this feature is supported by the different database
platforms and the syntax used. MariaDB, Oracle, and PostgreSQL allow creation
of aggregate functions using embedded SQL or PL/SQL-like code, while MySQL
and SQL Server require them to be created in external libraries and linked in. Only
PostgreSQL supports an ALTER AGGREGATE command for changing the definition of
an aggregate function.

Platform Command

MySQL/MariaDB Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Rules at a glance
The CREATE AGGREGATE command creates a new user-defined function in the data‐
base that can be used in aggregate queries, such as those with GROUP BY. Some
databases also allow these to be used as window aggregate functions in conjunction
with the OVER clause (see Chapter 8 for details).

Programming tips and gotchas
CREATE AGGREGATE is an extension of the SQL standard. All the databases covered in
this book support it in some shape or form even though it is not explicitly defined
in the SQL specifications.

MySQL/MariaDB
In MySQL, the CREATE AGGREGATE FUNCTION command essentially binds the name
of a function to a shared C++/C library that implements the function. The syntax is
as follows:

CREATE AGGREGATE FUNCTION function_name
 RETURNS {STRING | INTEGER | REAL | DECIMAL}
 SONAME shared_library_name

MariaDB 10.3 and later additionally supports creating aggregates using Oracle-
compatible PL/SQL, with the following syntax:

CREATE AGGREGATE FUNCTION function_name
 RETURNS return_type
BEGIN
 // All types of declarations

SQL Command Reference | 655

Sto
ring

 Lo
g

ic
in the

D
atab

ase

 DECLARE CONTINUE HANDLER FOR NOT FOUND RETURN return_val;
 LOOP
 FETCH GROUP NEXT ROW; // Fetches next row from table
 // Other instructions
 END LOOP;
END

See the documentation for details.

Oracle
The Oracle syntax for creating an aggregate function is as follows (see the documen‐
tation for more information):

CREATE FUNCTION function_name
 RETURN {return_type}
 AGGREGATE USING AggRoutinesType

The AggRoutinesType takes the following form:

CREATE TYPE AggRoutinesType(
 STATIC FUNCTION ODCIAggregateInitialize(...) ...,
 MEMBER FUNCTION ODCIAggregateIterate(...) ...,
 MEMBER FUNCTION ODCIAggregateMerge(...) ...,
 MEMBER FUNCTION ODCIAggregateTerminate(...)
);
CREATE TYPE BODY AggRoutinesType IS
:
END;

PostgreSQL
PostgreSQL supports creating aggregates in any language installed in the database.
This includes the built-in C, SQL, and PL/pgSQL, and numerous others you may
have installed, such as PL/V8 (aka JavaScript), PL/R, PL/Perl, and PL/Python. You
can even have different bits of an aggregate function programmed in different
languages. These aggregates can take more than one argument (multicolumn aggre‐
gates), and any aggregate you create in PostgreSQL can be used in a window
aggregate of the form my_agg OVER(PARTITION BY id) AS win_agg.

The general syntax is as follows (see the documentation for more information):

CREATE [OR REPLACE] AGGREGATE name ([argmode] [argname]
 arg_data_type[, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]

656 | Chapter 9: Storing Logic in the Database

https://oreil.ly/ZIBAl
https://oreil.ly/LxnQP
https://oreil.ly/LxnQP
https://oreil.ly/ekNT6

 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
)

At a minimum, a PostgreSQL aggregate definition must include the following items:

name

Provides a name for the aggregate.

sfunc

Identifies the state transition function that is called for every row passing
through the aggregate. For a single-argument aggregate it generally takes two
values, which represent the current state and incoming value, and returns a
value of the data type state_data_type.

FINALFUNC_MODIFY

Indicates whether the final state function modifies its arguments. The default
is READ_ONLY, which means it doesn’t modify the arguments. If FINALFUNC
_MODIFY is READ_WRITE, that bars the function from being used as a window
aggregate.

Many of the optional items, such as combinefunc, serialfunc, and deserialfunc, are
used to support parallelization of aggregate functions. By default aggregates are
marked PARALLEL UNSAFE.

PostgreSQL has special data type placeholders called ANYELEMENT and ANYARRAY that
are often used to produce aggregates that can handle many kinds of data types.

By default PostgreSQL aggregates can be used as ordered aggregates, meaning you
can add an ORDER BY clause in the function call. This makes a lot of sense for
aggregates such as ARRAY_AGG and STRING_AGG, where you need to control the order
of the elements in the aggregate. (Conversely, ordering is pretty meaningless for
aggregates like SUM, where the order of input does not affect the result.)

The following is an example aggregate built with just SQL that returns the first item
in a set:

-- State function
CREATE FUNCTION first_element_state(param_state anyarray,
 Param_new_element anyelement)
RETURNS anyarray
 LANGUAGE sql
 IMMUTABLE PARALLEL SAFE COST 10

SQL Command Reference | 657

Sto
ring

 Lo
g

ic
in the

D
atab

ase

 AS
sql
 SELECT
 CASE WHEN array_upper(param_state,1) IS NULL
 THEN array_append(param_state,param_new_element)
 ELSE param_state END;
sql;
-- Final function
CREATE FUNCTION first_element(param_state anyarray)
RETURNS anyelement
 LANGUAGE sql
 IMMUTABLE PARALLEL SAFE COST 10
 AS
sql
 SELECT param_state[1] ;
sql;

CREATE AGGREGATE first(anyelement) (
 SFUNC=first_element_state,
 STYPE=anyarray,
 FINALFUNC=first_element
)
;

This aggregate is called first and is composed of two functions: first

_element_state, which manages the state, and first_element, which returns the
final value.

We can use the function to return the first title_id that was published by each
publisher and the price of that title alongside the count of titles that the publisher
published as follows:

SELECT
 pub_id,
 count(*),
 first(title_id ORDER BY pubdate, title_id) AS title_id,
 first(price ORDER BY pubdate, title_id) As price,
 first(pubdate ORDER BY pubdate, title_id) As pubdate,
 min(pubdate) AS min_pubdate
FROM titles
GROUP BY pub_id
ORDER BY pub_id;

The output would be:

pub_id | count | title_id | price | pubdate | min_pubdate
--------+-------+----------+--------+------------+-------------
 0736 | 5 | PS7777 | $7.99 | 1991-06-12 | 1991-06-12
 0877 | 7 | MC2222 | $19.99 | 1991-06-09 | 1991-06-09
 1389 | 6 | BU1111 | $11.95 | 1991-06-09 | 1991-06-09

In this example the min_pubdate and pubdate will always be the same since our first
sorting is based on pubdate.

658 | Chapter 9: Storing Logic in the Database

SQL Server
In SQL Server, you must first build a library in .NET, then load the library into the
database using CREATE ASSEMBLY, and then use CREATE AGGREGATE to reference the
class within the library. Once completed, your aggregate may only be called if CLR
is enabled in your database (CLR execution is disabled by default on SQL Server
and is not supported in Azure SQL Database). A full description and explanation
of CLR is beyond the scope of this book (see the vendor documentation for further
details), but the basic syntax of the CREATE AGGREGATE statement is as follows:

CREATE AGGREGATE [schema_name.]aggregate_name
 (@param_name input_sqltype[, ...n])
RETURNS return_sqltype
EXTERNAL NAME assembly_name[.class_name]
input_sqltype ::= system_scalar_type |
 { [udt_schema_name.]udt_type_name }
return_sqltype ::= system_scalar_type |
 { [udt_schema_name.]udt_type_name }

See also

• CREATE/ALTER FUNCTION/PROCEDURE•

• CREATE/ALTER TYPE in Chapter 3•

• GROUP BY in Chapter 4•

• OVER in Chapter 4•

CREATE CAST Statement
The CREATE CAST statement is used to define custom casting behavior between two
data types. Casting is triggered either by calling the CAST function or automatically,
for example when inserting a value of one type into a table column of another type.

Platform Command

MySQL Not supported

Oracle Not supported

PostgreSQL Supported, with variations

SQL Server Not supported

SQL syntax
CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type[, ...])]
 [AS ASSIGNMENT]

SQL Command Reference | 659

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/Ub6z4

Keywords

CREATE CAST (source_type AS target_type)

Creates a new cast that converts a source_type into a target_type.

WITH FUNCTION function_name

Specifies an existing function that will be used to do the conversion. The
function name can be schema-qualified. If no schema is specified, then the
default schema is used to determine which function to use.

AS ASSIGNMENT

Indicates that the cast can be invoked implicitly in assignment contexts. If this
is left out, the cast can be invoked implicitly in any context.

Rules at a glance
User-defined casts are a mechanism of coercing data of one type to another type. In
DBMSs that support the creation of custom data types, they are invaluable. A basic
cast looks like this:

CREATE CAST (employee AS person)
 WITH FUNCTION person(employee)
 AS ASSIGNMENT

MySQL
MySQL does not support the CREATE CAST statement.

Oracle
Oracle does not support the CREATE CAST statement.

PostgreSQL
PostgreSQL fully supports the CREATE CAST statement and extends it. The syntax to
define a new cast takes several forms:

CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type[, ...])]
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

where:

660 | Chapter 9: Storing Logic in the Database

AS IMPLICIT

Is equivalent to not specifying an ASSIGNMENT clause and is the default
behavior.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the
output function of the source data type and passing the resulting string to the
input function of the target data type.

WITHOUT FUNCTION

Indicates that the source type is binary coercible to the target type.

The following example casts Boolean values to bit 0 for true and 1 for false:

-- Define the casting function
CREATE OR REPLACE FUNCTION bool_to_bit(param_val boolean)
RETURNS bit
language sql COST 10 PARALLEL SAFE AS
$$
SELECT CASE param_val WHEN true THEN 1
 WHEN false THEN 0
 ELSE NULL END::bit;
$$;
-- Define the case
CREATE CAST (boolean AS bit)
 WITH FUNCTION bool_to_bit(boolean);

To use the cast you can do the following:

SELECT CAST(true AS bit);

SQL Server
SQL Server does not support the CREATE CAST statement.

See also

• CAST in Chapter 7•

• CREATE/ALTER FUNCTION/PROCEDURE•

• CREATE/ALTER TYPE in Chapter 3•

CREATE/ALTER FUNCTION/PROCEDURE Statement
The CREATE FUNCTION and CREATE PROCEDURE statements (and the respective ALTER
statements) are very similar in syntax and coding. The CREATE PROCEDURE statement
creates a stored procedure, which takes input arguments and performs conditional
processing on various objects in the database. According to the SQL standard,
a stored procedure returns no result set (though it may return values in OUTPUT

SQL Command Reference | 661

Sto
ring

 Lo
g

ic
in the

D
atab

ase

parameters). For example, you might use a stored procedure to perform all the
processes that close an accounting cycle.

The CREATE FUNCTION statement creates a UDF that takes input arguments and
returns an output in the same way as a system-supplied function like CAST or UPPER.
In addition to single scalar values, functions can return a set of rows defined using
TABLE (<structure_of_table>) or a set of values defined as OUT or INOUT in the
argument definition. These functions, once created, can be called in queries and
data manipulation operations, such as INSERT, UPDATE, and the WHERE clause of DML
statements. Refer to Chapter 7 for descriptions of built-in SQL functions and their
individual vendor implementations.

Platform Command

MySQL/MariaDB Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL syntax
CREATE {PROCEDURE | FUNCTION} object_name
 ([{[IN | OUT | INOUT] [parameter_name] data_type
 [DEFAULT parameter_default] [AS LOCATOR] [RESULT]}[, ...]])
[RETURNS data_type [AS LOCATOR] | returns_table_type]
[CAST FROM data_type [AS LOCATOR]]]
[LANGUAGE {ADA | C | COBOL | FORTRAN | M | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[SPECIFIC specific_name]
[DETERMINISTIC | NOT DETERMINISTIC]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[STATIC DISPATCH] code_block

returns_table_type ::= TABLE [(column_name1 data_type1,
 column_name2 data_type2[, ...)] | ONLY PASS THROUGH

Use the following syntax to alter a preexisting UDF or stored procedure:

ALTER {PROCEDURE | FUNCTION} object_name
 [({parameter_name data_type }[, ...])]
[NAME new_object_name]
[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
[PARAMETER STYLE {SQL | GENERAL}]
[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]
[DYNAMIC RESULT SETS int]
[CASCADE | RESTRICT]

662 | Chapter 9: Storing Logic in the Database

Keywords

CREATE {PROCEDURE | FUNCTION} object_name

Creates a new stored procedure or user-defined function with the name
object_name. A UDF returns a value, whereas a stored procedure (in the SQL
standard) does not.

User-defined functions and stored procedures, when
referred to generically, are called routines.

([{[IN | OUT | INOUT] [parameter_name] data_type [AS LOCATOR]

[RESULT]}[, ...]])

Declares one or more parameters to be passed into a routine in a comma-
delimited list enclosed in parentheses. Parameters used may pass a value IN,
OUT, or both in and out via INOUT. The default parameter mode is IN. In the
SQL standard, functions can not specify a parameter mode, so all parameters
are IN.

The syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 data_type,
[{IN | OUT | INOUT}] parameter_name2 data_type,[...]

When providing the optional parameter_name, make sure the name is unique
within the routine. The optional AS LOCATOR subclause is used to validate an
external routine with a RETURNS parameter that is a BLOB, CLOB, NCLOB, ARRAY,
or user-defined type. If you need to change the data type of a RETURNS parame‐
ter on the fly, use the CAST clause (refer to the section on the function CAST
in Chapter 4): for example, RETURNS VARCHAR(12) CAST FROM DATE. When
used with ALTER, this clause adds parameters to a preexisting stored procedure.
Refer to Chapter 2 for details on data types.

RETURNS data_type [AS LOCATOR] [CAST FROM data_type [AS LOCATOR]]

Declares the data type of the result returned by a function. (This clause is used
only in the CREATE FUNCTION statement and is not used in stored procedures.)

RETURNS TABLE (column_name1 data_type1, column_name2

data_type2[, ...])

Returns a set of rows with the defined table structure. SQL:2016 introduced
polymorphic table functions, where the table structure is defined at runtime
rather than compile time. None of the databases considered here support this
syntax, but Oracle 18 and later does support polymorphic table functions with
its own proprietary syntax.

SQL Command Reference | 663

Sto
ring

 Lo
g

ic
in the

D
atab

ase

LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}

Declares the language in which the function is written. Most database plat‐
forms do not support all of these languages, and they may support others, such
as Java. When omitted, the default is SQL. When used with ALTER, this clause
changes the existing LANGUAGE value to the value that you declare.

PARAMETER STYLE {SQL | GENERAL}

Indicates, for external routines only, whether certain implicit and automatic
parameters are passed explicitly with the options (SQL) or not (GENERAL). (The
difference between SQL style and GENERAL style is that SQL style automatically
passes SQL parameters, such as indicators, while GENERAL style does not auto‐
matically pass indicators.) The default is PARAMETER STYLE SQL. When used
with ALTER, this clause changes the existing PARAMETER STYLE value to the
value that you declare.

SPECIFIC specific_name

Uniquely identifies the function. Generally used with user-defined types.

DETERMINISTIC | NOT DETERMINISTIC

States the nature of values returned by the function. (This clause is used
only in CREATE and ALTER FUNCTION statements.) DETERMINISTIC functions
always return the same value when given the same parameter values. NOT
DETERMINISTIC functions may return variable results when given the same
parameter values. For example, CURRENT_TIME is not deterministic because it
returns a constantly advancing value corresponding to the time. The default
is NOT DETERMINISTIC. Specifying that a function is DETERMINISTIC allows the
SQL implementation to cache results for a function and just return the cached
result rather than executing the function. Use DETERMINISTIC with care.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA

Specifies, in conjunction with the LANGUAGE setting, the type of SQL contained
in the user-defined function. When used with ALTER, this clause changes the
existing SQL style value to the value that you declare.

NO SQL

Indicates that no SQL statements of any type are in the function. Used with a
non-SQL LANGUAGE setting such as LANGUAGE ADA ... CONTAINS NO SQL.

CONTAINS SQL

Indicates that SQL statements other than read or modify statements are in the
function. This is the default.

READS SQL DATA

Indicates that the function contains SELECT or FETCH statements.

MODIFIES SQL DATA

Indicates that the function contains INSERT, UPDATE, or DELETE statements.

664 | Chapter 9: Storing Logic in the Database

RETURN NULL ON NULL INPUT | CALL ON NULL INPUT

These options are for use with a host LANGUAGE that cannot support NULLs.
The RETURNS NULL ON NULL INPUT setting causes the function to immediately
return a NULL value if it is passed a NULL value. The CALL ON NULL INPUT
setting causes the function to handle NULLs according to standard rules: for
example, returning UNKNOWN when a comparison of two NULL values occurs.
(This clause is used in the CREATE and ALTER PROCEDURE and FUNCTION state‐
ments.) When used with ALTER, this clause changes the existing NULL-style
value to the value that you declare.

DYNAMIC RESULT SETS int

Declares that a certain number of cursors (int) can be opened by the stored
procedure and that those cursors are visible after returning from the proce‐
dure. When omitted, the default is DYNAMIC RESULT SETS 0. (This clause is
not used in CREATE FUNCTION statements.) When used with ALTER, this clause
changes the existing DYNAMIC RESULT SETS value to the value that you declare.

STATIC DISPATCH

Returns the static values of a user-defined type or ARRAY data type. Required
for non-SQL functions that contain parameters that use user-defined types or
ARRAYs. (This clause is not used in CREATE PROCEDURE statements.) This clause
must be the last clause in the function or procedure declaration before the
code_block.

code_block

Declares the procedural statements that handle all processing within the user-
defined function or stored procedure. This is the most important, and usually
largest, part of a function or procedure.

While we assume that you’re interested in SQL-based UDFs and stored proce‐
dures (this is a SQL book, after all), you can declare that the code block is
derived externally. The syntax for external code_blocks is:

EXTERNAL [NAME external_routine_name] [PARAMETER STYLE
 {SQL | GENERAL}] [TRANSFORM GROUP group_name]

where:

EXTERNAL [NAME external_routine_name]

Defines an external routine and assigns a name to it. When omitted, the
unqualified routine name is used.

PARAMETER STYLE {SQL | GENERAL}

Same as for CREATE PROCEDURE.

TRANSFORM GROUP group_name

Transforms values between user-defined types and host variables in a
user-defined function or a stored procedure. When omitted, the default is
TRANSFORM GROUP DEFAULT.

SQL Command Reference | 665

Sto
ring

 Lo
g

ic
in the

D
atab

ase

NAME new_object_name

Declares the new name to use for a previously defined UDF or stored proce‐
dure. This clause is used only with ALTER FUNCTION and ALTER PROCEDURE
statements.

CASCADE | RESTRICT

Allows you to cause changes to CASCADE down to all dependent UDFs or stored
procedures, or to RESTRICT a change from happening if there are dependent
objects. We strongly recommend that you do not issue an ALTER statement
against UDFs or stored procedures that have dependent objects. This clause is
used only with ALTER FUNCTION and ALTER PROCEDURE statements.

Rules at a glance
With a user-defined function, you declare the input arguments and the return
argument that the function passes back out. You can then call the UDF just as you
would any other function: for example, in SELECT statements, INSERT statements, or
WHERE clauses.

Similarly, with a user-defined procedure, you declare the input arguments that
go into the procedure and the output arguments that come out from it. You
invoke a stored procedure using the CALL statement. The content of the procedure’s
code_block must conform to the rules of whatever procedural language the database
platform supports. Stored procedures cannot be used in SELECT statements, INSERT
statements, or WHERE clauses. Some vendors do not have their own internal proce‐
dural languages, requiring you to use EXTERNAL code_block constructs.

The SQL Server stored procedure in the following example generates a unique
22-digit value (based on elements of the system date and time) and returns it to the
calling process:

-- A SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000
SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS
 CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)
END
GO
Here, we change the name of an existing stored procedure:

666 | Chapter 9: Storing Logic in the Database

ALTER PROCEDURE get_next_nbr
NAME "get_next_ID"
RESTRICT;

Programming tips and gotchas
A stored procedure or function has several advantages over plain SQL. One advan‐
tage is the fact that in many databases it is precompiled, meaning that once it’s been
created, its query plans are already stored in the database. Precompiled routines
can often (though not always) be cached in database memory to provide an addi‐
tional boost in performance by allowing future runs of the same routine to skip
the compile phase. Another advantage is that a stored procedure or user-defined
function can perform many statements with a single communication to the server,
thus reducing network traffic. A third is that it compartmentalizes often complex
logic and allows it to be used across many queries or applications without having to
repeat that logic.

Implementations of user-defined functions and stored procedures vary widely by
platform. Some database platforms do not support internal code_block content. On
these platforms, you can only write an external code_block. The following sections
outline the variations and the capabilities of each platform.

If you execute an ALTER PROCEDURE/FUNCTION statement,
dependent objects may become invalid after a change to an
object on which they depend. This may require an explicit
revalidation step. Be careful to check all dependencies when
altering UDFs or stored procedures on which other UDFs or
stored procedures may depend.

MySQL and MariaDB
MySQL and MariaDB support the CREATE/ALTER FUNCTION and CREATE/ALTER
PROCEDURE statements. In addition, MariaDB supports the CREATE [OR REPLACE]
syntax for both.

The syntax for functions and procedures follows:

CREATE
[DEFINER = {user | CURRENT_USER}]
{ FUNCTION | PROCEDURE } [database_name.]routine_name
 ([{IN | OUT | INOUT}] [parameter[, ...])
[RETURNS type]
LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
 | [COMMENT 'string'] routine_body;

And here is the MariaDB CREATE syntax for functions and procedures:

CREATE [OR REPLACE]
[DEFINER = {user | CURRENT_USER}]

SQL Command Reference | 667

Sto
ring

 Lo
g

ic
in the

D
atab

ase

{ FUNCTION | PROCEDURE } [database_name.]routine_name
 ([{IN | OUT | INOUT}] [parameter[, ...])
[RETURNS type]
LANGUAGE SQL
 | [NOT] DETERMINISTIC
 | [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
 | [COMMENT 'string'] routine_body;

where:

CREATE { FUNCTION | PROCEDURE } [database_name.]routine_name

Creates a function or procedure with a routine_name of not more than 64
characters. The module is stored in the proctable in the MySQL database.

DEFINER

Assigns a user, in the format user_name@host_name, as the owner of the
routine. When omitted, the CURRENT_USER is the default.

([{IN | OUT | INOUT}] parameter[, ...])

Defines one or more parameters for the routine. All function parameters must
be IN parameters, but procedure parameters may be any of the three types.
When this clause is omitted on a procedure, parameters are IN by default.

RETURNS type

Returns a value of type type, which can be any valid MySQL data type. Only
for use with CREATE or ALTER FUNCTION, where it is mandatory.

COMMENT 'string'

Adds a comment to the routine. The comment(s) may be displayed using the
SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

routine_body

Contains one or more valid SQL statements. Multiple SQL statements should
be nested within BEGIN and END. The routine_body can also contain proce‐
dural language such as declarations, loops, and other control structures.

Procedures and functions may contain Data Definition Language (DDL) statements
such as CREATE, ALTER, or DROP. Procedures, but not functions, may contain trans‐
action control statements such as COMMIT and ROLLBACK. Functions may not use
statements that perform explicit or implicit rollbacks or commits, nor may func‐
tions contain statements that return uncontrolled result sets, such as a SELECT
statement without the INTO clause. Neither procedures nor functions may contain
the command LOAD DATA INFILE.

Once implemented, a MySQL function may be called just like any built-in function,
such as ABS or SOUNDEX. Procedures, on the other hand, are invoked using the CALL
statement.

The implementation of CREATE FUNCTION in MySQL and MariaDB supports
both user-defined functions through an implementation that depends on external

668 | Chapter 9: Storing Logic in the Database

procedural code in C/C++ under an operating system that supports dynamic load‐
ing and SQL language functions where the code body is part of the function.

In the case of C/C++, a program is named in the shared_program_library_name
option. The function may be compiled either directly into the MySQL server,
making it permanently available, or as a dynamically callable program. For example,
the code behind the UDF created in the following statement might be found on a
Unix server:

CREATE FUNCTION find_radius RETURNS INT SONAME "radius.so";

MySQL and MariaDB also support SQL functions. Here is an example:

CREATE FUNCTION formatted_name (fname VARCHAR(30), lname VARCHAR(30))
 RETURNS VARCHAR(60) DETERMINISTIC
 RETURN CONCAT(fname,' ',lname);

You could then use this user-defined function just as you would any other function:

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id
FROM authors;

Oracle
Oracle supports ALTER and CREATE for both the FUNCTION and PROCEDURE object
types.

Oracle packages can also be used to create UDFs and stored
procedures; for more information see the vendor documenta‐
tion on the CREATE PACKAGE statement and the discussion
of packages in the Oracle section in “Platform-Specific Exten‐
sions” on page 734.

Oracle’s CREATE FUNCTION/PROCEDURE syntax is as follows:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name
[(parameter1 [IN | OUT | IN OUT] [NOCOPY] data_type[, ...])]
RETURN data_type
[DETERMINISTIC | SQL_MACRO(SCALAR | TABLE)]
[AUTHID {CURRENT_USER | DEFINER}]
[PARALLEL_ENABLE [(PARTITION prtn_name BY {ANY | {HASH | RANGE}
 (column[, ...])}) [{ORDER | CLUSTER} BY (column[, ...])]]]
{{PIPELINED | AGGREGATE} [USING [schema.]implementation_type] |
 [PIPELINED] {IS | AS}}
{code_block | LANGUAGE {JAVA NAME external_program_name |
 C [NAME external_program_name]}
 LIBRARY lib_name [AGENT IN (argument[, ...])] [WITH CONTEXT]
 [PARAMETERS (params[, ...])]}

The ALTER FUNCTION/PROCEDURE statement, whose syntax is shown next, is used to
recompile invalid UDFs or stored procedures:

SQL Command Reference | 669

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/gR65y
https://oreil.ly/gR65y

ALTER {FUNCTION | PROCEDURE) [schema.]object_name COMPILE [DEBUG]
 [compiler_param = value [...]] [REUSE SETTINGS]

Following are the parameter descriptions. Certain clauses are only used with
user-defined functions, including the RETURN clause, the DETERMINISTIC clause,
SQL_MACRO, and the entirety of the USING clause:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name

Creates a new UDF or stored procedure. Use CREATE OR REPLACE to replace
an existing procedure or UDF without first dropping it and then having to
reassign all permissions to it.

IN | OUT | IN OUT

Specifies whether a parameter is an input to the function, an output from the
function, or both.

NOCOPY

Speeds up performance when an OUT or IN OUT argument is very large, as with
a VARRAY or RECORD data type.

AUTHID {CURRENT_USER | DEFINER}

Forces the routine to run in the permission context of either the current user
or the person who owns the function, using AUTHID CURRENT_USER or AUTHID
DEFINER, respectively.

PARALLEL_ENABLE

Enables the routine to be executed by a parallel query operation on a symmet‐
ric multiprocessor (SMP) or parallel-processor server. This clause is used only
for UDFs. (Do not use session state or package variables, because they can’t be
expected to be shared among parallel-execution servers.) Define the behavior
of the PARALLEL_ENABLE query operation using these subclauses:

PARTITION prtn_name BY {ANY | {HASH | RANGE} (column[, ...])}

Defines partitioning of inputs on functions with REF CURSOR arguments.
This may benefit table functions. ANY allows random partitioning. You
can restrict partitioning to a specific RANGE or HASH partition on a comma-
delimited column list.

{ORDER | CLUSTER} BY (column[, ...])

Orders or clusters parallel processing based on a comma-delimited column
list. ORDER BY causes the rows to be locally ordered on the parallel-
execution server according to the column list. CLUSTER BY restricts the
rows on the parallel-execution server to the key values identified in the
column list.

{PIPELINED | AGGREGATE} [USING [schema.]implementation_type]

PIPELINED iteratively returns the results of a table function, instead of the
normal serial return of the VARRAY or nested table result set. This clause is
used only for UDFs. The clause PIPELINED USING implementation_type is for

670 | Chapter 9: Storing Logic in the Database

an external UDF that uses a language such as C++ or Java. The AGGREGATE
USING implementation_type clause defines a UDF as an aggregate function (a
function that evaluates many rows but returns a single value).

IS | AS

Oracle treats IS and AS equally. Use either one to introduce the code_block.

code_block

Oracle allows a PL/SQL code block for user-defined functions and stored pro‐
cedures. Alternatively, you may use the LANGUAGE clause for stored procedures
written in Java or C.

LANGUAGE {JAVA NAME external_program_name | C [NAME external_program

_name] LIBRARY lib_name [AGENT IN (argument[, ...])] [WITH CONTEXT]

[PARAMETERS (params[, ...])] }

Defines the Java or C implementation of the external program. The parameters
and semantics of each declaration are specific to Java and C, not SQL.

ALTER {FUNCTION | PROCEDURE} [schema.] object_name

Recompiles an invalid standalone stored routine. Use CREATE ... OR
REPLACE to change the arguments, declarations, or definition of an existing
routine.

COMPILE [DEBUG] [REUSE SETTINGS]

Recompiles the routine. Note that COMPILE is required. (You can see compile
errors with the SQL*Plus command SHOW ERRORS.) The routine is marked valid
if no compiler errors are encountered. The following optional subclauses may
also be included with the COMPILE clause:

DEBUG

Generates and stores code used by the PL/SQL debugger.

compiler_param = value [...]

Specifies a PL/SQL compiler parameter. Allowable parameters include
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARN

INGS, and NLS_LENGTH_SEMANTICS. Refer to Oracle’s documentation on the
PL/SQL compiler for more details.

REUSE SETTINGS

Maintains the existing compiler switch settings and reuses them for
recompilation. Normally, Oracle drops and reacquires compiler switch
settings.

In Oracle, UDFs and stored procedures are very similar in composition and struc‐
ture. The primary difference is that a stored procedure cannot return a value to
the invoking process, while a function may return a single value to the invoking
process.

SQL Command Reference | 671

Sto
ring

 Lo
g

ic
in the

D
atab

ase

For example, you can pass in the name of a construction project to the following
function to obtain the project’s profit:

CREATE OR REPLACE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) -
 SUM(DECODE(action,'STARTED',amount,0)) +
 SUM(DECODE(action,'PAYMENT',amount,0))
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;
/

In this example, the UDF accepts the project name as an argument. Then it pro‐
cesses the project revenue, behind the scenes, by subtracting the starting costs from
the completion payment and adding any other payments into the amount. The
RETURN (proj_rev); line returns the amount to the invoking process.

Here is the same UDF we created earlier for MySQL/MariaDB implemented as an
Oracle function:

CREATE OR REPLACE FUNCTION formatted_name (fname varchar2,
 lname varchar2)
RETURN varchar2 DETERMINISTIC IS

BEGIN
 RETURN fname || ' ' || lname;
END;
/

SQL macros are a new kind of function introduced in Oracle 21c and backported
to Oracle 19c in the 19.6 release. They’re inlined in a SQL query, and unlike regular
functions must be very simple (see “Platform-Specific Extensions” on page 538 for
more on SQL macros and inline functions). In general they have better performance
than regular functions because they are not called per row of data. Here is the
preceding function written as a SQL macro:

CREATE OR REPLACE FUNCTION formatted_name (fname VARCHAR2,
 lname VARCHAR2)
RETURN VARCHAR2 SQL_MACRO(SCALAR)

BEGIN
 RETURN q'{ fname || ' ' || lname }';
END;
/

You could then use this user-defined function just as you would any other function:

672 | Chapter 9: Storing Logic in the Database

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id
FROM authors;

In Oracle, UDFs can be bound to external libraries written in C and Java. Here is an
example of a UDF defined in a C library:

CREATE PROCEDURE find_root
(x IN REAL)
IS LANGUAGE C
NAME c_find_root
LIBRARY c_utils
PARAMETERS (x BY REFERENCE);
/

In Oracle:

• UDFs cannot be used in a CHECK constraint or DEFAULT constraint of a CREATE•
TABLE or ALTER TABLE statement.

• In a SELECT, INSERT, UPDATE, or DELETE, the UDF cannot, either directly or•
indirectly (if invoked by another routine):
— Have an OUT or IN OUT parameter. (Indirect calls may take OUT and IN OUT—

parameters.)

— Terminate the transaction with COMMIT, ROLLBACK, SAVEPOINT, or a CREATE,—
ALTER, or DROP statement that implicitly issues a COMMIT or ROLLBACK.

— Use session control (SET ROLE) or system control (the Oracle-specific ALTER—
SYSTEM) statements.

— Write to a database (when a component of a SELECT statement or a parallel‐—
ized INSERT, UPDATE, or DELETE statement).

— Write to the same table that is modified by the statement that calls the UDF.—

When you recompile a routine with the ALTER statement, it is marked valid if no
compiler errors are encountered. If any errors are encountered, it is marked invalid.
However, perhaps more importantly, any objects that depend upon the recompiled
routine are marked invalid regardless of whether or not an error occurs. You can
either recompile those dependent objects yourself, or allow Oracle to take some
additional time to recompile them at runtime.

By way of example, the following statement recompiles the project_revenue function
and maintains any compiler information for the PL/SQL debugger:

ALTER FUNCTION project_revenue COMPILE DEBUG;

Oracle also supports set-returning (TABLE) functions. These can be regular PL/SQL,
C, or SQL macros.

Here is a SQL macro TABLE function:

CREATE OR REPLACE FUNCTION stores_titles_sales(param_stor_id VARCHAR2,
 param_date_since date DEFAULT NULL)

SQL Command Reference | 673

Sto
ring

 Lo
g

ic
in the

D
atab

ase

 RETURN VARCHAR2 SQL_MACRO(TABLE)
IS
BEGIN
 RETURN q'{
SELECT t.title, SUM(s.qty) AS qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = param_stor_id
 AND (param_date_since IS NULL OR s.ord_date >= param_date_since)
 GROUP BY t.title
 }';
END;
/

You can use the stores_titles_sales function in any SQL statement as follows:

SELECT *
FROM stores_titles_sales('7066' , '10-JAN-2022');

You can also combine it with a LATERAL clause to return sales for each store as
follows:

SELECT s.stor_name, sts.title, sts.qty
FROM stores AS s
 LEFT JOIN LATERAL
 stores_titles_sales(s.stor_id) AS sts ON 1=1;

PostgreSQL
PostgreSQL supports the CREATE [OR REPLACE] FUNCTION/PROCEDURE and ALTER
FUNCTION/PROCEDURE statements. For versions of PostgreSQL prior to v11, Post‐
greSQL functions can be used to simulate the processing performed by a procedure.

Functions can update data at the same time as returning a value, whereas Post‐
greSQL procedures cannot return values. The main benefit of using a procedure
in PostgreSQL over using a function is that you can have COMMIT statements in a
stored procedure. In contrast, a function runs in a single transaction and either fails
or succeeds. PostgreSQL allows OUT parameters for functions, and starting with v14
stored procedures can have OUT parameters too. OUT parameters in functions are an
alternative way for expressing RETURNS TABLE.

The syntax to use to create a function or procedure in PostgreSQL is:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} routine_name
 ([parameter[, ...]])
[RETURNS data_type | TABLE (colname coltype[, ...]) | SETOF data_type]
{ LANGUAGE {c | sql | internal | plpgsql | other_lang} |
 TRANSFORM {FOR TYPE type_name}[, ...] |
 WINDOW |
 {IMMUTABLE | STABLE | VOLATILE} |
 [NOT] LEAKPROOF |
 {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT} |
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER] |

674 | Chapter 9: Storing Logic in the Database

 PARALLEL {UNSAFE | RESTRICTED | SAFE} |
 COST execution_cost |
 ROWS result_rows |
 SUPPORT support_function |
 SET configuration_parameter { TO value | = value | FROM CURRENT } |
 AS {code_block | object_file, link_symbol} }
parameter ::= [IN | OUT | INOUT | VARIADIC]
 [argname] argtype [{DEFAULT | =} value]

The PostgreSQL syntax for ALTER FUNCTION and ALTER PROCEDURE follows:

ALTER {FUNCTION | PROCEDURE} routine_name
 ([parameter[, ...]]) action
{ [RESTRICT] |
 RENAME TO new_routine_name |
 OWNER TO new_owner_name |
 SET SCHEMA new_schema_name |
 [NO] DEPENDS ON EXTENSION extension_name }

The supported clauses are:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} routine_name

Creates a new function or procedure of the name you provide, or replaces an
existing function or procedure. OR REPLACE does not enable you to change
the name, input parameters, input parameter names, or output results of an
existing routine; you must drop and re-create a routine to change any of those
settings. You also cannot convert a procedure to a function or function to
procedure using REPLACE.

parameter

A function takes as input zero or more parameters. A parameter declaration
consists of a type and an optional mode qualifier, argument name, and default
value. The available mode qualifiers are IN, OUT, INOUT, and VARIADIC. IN
parameters can only be input to the function, and OUT parameters can only be
output by the function. INOUT parameters are both input and output. VARIADIC
allows for an arbitrary number of parameters for input that are all of the same
type. The argname can be used to explicitly set input values when calling the
function and can also be used to reference the argument within the body of
a function in many languages. When no argname is provided, parameters can
only be referenced by their ordinal position within the body of the function.
If you specify a DEFAULT value, this value is used when no input is provided
for the parameter. Parameters that have defaults and are at the end of the
parameter list can be skipped. Default arguments can also be skipped when
using call by parameter name syntax.

RETURNS {data_type | TABLE(colname coltype[, ...])}

Specifies the type of data required by the function or the table structure of the
returned output for set-returning functions. Not used with a procedure.

SQL Command Reference | 675

Sto
ring

 Lo
g

ic
in the

D
atab

ase

LANGUAGE {c | sql | internal | plpgsql | other_lang}

Defines a call to an external program or an internal SQL routine. The lan‐
guages SQL and C are always installed in each database. PL/pgSQL is by default
installed in PostgreSQL databases, but can be removed with:

DROP EXTENSION plpgsql;

There are many other languages you can install, and since languages are
installed per database, you can have different languages installed in each one.
The language SQL is not really a procedural language as it lacks control loops
and flow. SQL functions are the simplest to write and tend to perform better
than those written in other languages. They’re often inlined by the query plan‐
ner, which means they are not treated as black boxes and can take advantage of
things such as indexes on a table. SQL functions are very similar to Oracle SQL
macros, described in the previous subsection, but unlike those they can be used
within other functions and procedures like any other function.

PL/pgSQL provides SQL and procedural support, so is most similar to Oracle
and MariaDB’s PL/SQL.

You can add a new language not installed by default
in PostgreSQL by using the CREATE EXTENSION <lan

guage_name> statement, but this requires additional
libraries to be installed on the system. Common exten‐
sions people use are plperl, plpythonu, plpython, plperlu,
plr, and plv8 (for JavaScript). plrust, plsh, and pljava are
also available. Before using any of these, make sure they
are supported in your version of PostgreSQL.

TRANSFORM {FOR TYPE type_name}[, ...]

Lists the transforms a call to the function should apply to convert between SQL
types and language-specific types.

WINDOW

Denotes that this function is a window function for use in WINDOW SQL clauses.
Not all languages support writing window functions. Window functions are
often written in C, PLV8, or PLR but cannot be written in SQL or PL/pgSQL.

IMMUTABLE | STABLE | VOLATILE

Describes the behavior of a function. IMMUTABLE describes a deterministic
function that does not modify data and returns the same value for the same
inputs. STABLE describes a deterministic function that may modify or access
data stored within the database, but whose outputs will be the same within
the same query given the same inputs. When no value is specified PostgreSQL
assumes VOLATILE, which indicates that the function is not deterministic (i.e.,
may give different results even when the inputs are the same).

676 | Chapter 9: Storing Logic in the Database

[NOT] LEAKPROOF

Indicates whether a function has side effects that could expose internal values,
such as updating data or throwing errors. The default if not specified is NOT
LEAKPROOF. LEAKPROOF is used to denote that a function is safe to be called
before any security policies are applied.

CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT

STRICT is a synonym for RETURNS NULL ON NULL INPUT. Both RETURNS NULL
ON NULL INPUT and CALLED ON NULL INPUT are part of the SQL standard and
were described earlier. When omit ted, the default behavior is similar to CALLED
ON NULL INPUT.

[EXTERNAL] SECURITY {INVOKER | DEFINER}

Tells PostgreSQL to execute using the privileges of the user that called the rou‐
tine (INVOKER) or the privileges of the user that created the routine (DEFINER).
EXTERNAL is a noise word and is included only for SQL standard compliance.

PARALLEL {UNSAFE | RESTRICTED | SAFE}

Denotes whether a function is safe to be run by parallel workers. When omit‐
ted, the function is assumed to be unsafe. If a function used in a query is
marked as PARALLEL UNSAFE, then the query itself cannot be broken apart and
run by parallel worker nodes (i.e., it prevents parallelization of the query it is
used in). If a function is marked as RESTRICTED, then any query that function
is used in can only be run on the leader node. SAFE means the function can
be run in any node, including the parallel worker nodes. Procedures are never
PARALLEL SAFE so do not have this attribute.

COST execution_cost

Provides an indication of how costly a function is relative to other operations.
When not specified, it defaults to 100 for SQL functions and 1 for C func‐
tions. This information is used by the query planner for deciding the order of
functions and short-circuiting with AND clauses, as well as for other uses like
determining JOIN order. For example, if you had two functions of varying cost
and you issued a query such as the following:

SELECT * FROM some_table WHERE very_costly(a) AND not_costly(b);

the planner would execute the not_costly(b) call before the very_costly(a)
call because it knows it can skip the very_costly if not_costly is false.

ROWS result_rows

Indicates the estimated number of rows returned by the function in an average
run, for functions that return a set of records. This information is used by the
query planner for optimization.

SUPPORT support_function

Provides the name of a planner support function to be used with this function.
This allows a function to utilize an index where it otherwise wouldn’t be able
to.

SQL Command Reference | 677

Sto
ring

 Lo
g

ic
in the

D
atab

ase

SET configuration_parameter

Allows setting of various server states that apply only for the life of the function
call (e.g., SET search_path). Most configuration parameters are allowed, but
setting these can impact performance within an overall query, so this should be
done with caution. For example, setting the search_path often disables use of
an index in a query.

code_block | object_file, link_symbol

Defines the composition of the user-defined function. The code_block can be
a string defining the function (dependent on the LANGUAGE setting), such as an
internal function name, the path and name of an object file, a SQL query, or
the text of a procedural language. Alternatively, for a C-language function, the
definition can be an object file and link symbol. If the code_block is specified
using single quotes, then quotes need to be escaped. However, PostgreSQL
offers a feature called dollar quoting to ease writing of code_blocks, which
looks like this:

$some_block$ <body goes here> $some_block$

where some_block is a made-up term of your own choosing that is not
used within the body of the routine. The body of the routine can also use
dollar quoting to express string variables that may contain quotes. For more
information on this feature, see the PostgreSQL section in “Platform-Specific
Extensions” on page 734.

[RESTRICT] | RENAME TO new_routine_name | OWNER TO new_owner_name |

SET SCHEMA new_schema_name

Assigns a new name, owner, or schema to the routine. The RESTRICT keyword
is noise.

[NO] DEPENDS ON EXTENSION extension_name

Marks the routine as dependent on or (with NO) as no longer dependent on an
extension. A routine that’s dependent on an extension is automatically dropped
when that extension is dropped.

An existing function cannot be dropped without dropping
dependent objects first.

For example, you might want to build a user-defined function in PostgreSQL that
returns the first and last name of a person as a single string:

CREATE FUNCTION formatted_name (fname text, lname text)
RETURNS text
 IMMUTABLE COST 1 LANGUAGE SQL
AS
$body$

678 | Chapter 9: Storing Logic in the Database

 SELECT fname || ' ' || lname;
$body$;

You could then use this UDF just as you would any other function:

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id
FROM authors;

Here’s an example of a simple SQL function in PostgreSQL that accepts a stor_id
and an optional date:

CREATE OR REPLACE FUNCTION stores_titles_sales(param_stor_id
 VARCHAR(4), param_date_since date DEFAULT NULL)
RETURNS TABLE(title varchar(80), qty bigint)
 LANGUAGE sql STABLE
AS
$body$
SELECT t.title, SUM(s.qty) AS qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = param_stor_id
 AND (param_date_since IS NULL OR s.ord_date >= param_date_since)
 GROUP BY t.title;
$body$;

In this example, we created a UDF that returns the quantity of sales for each title
for a specific store. We can then use this function to return sales for each title for all
time:

SELECT *
FROM stores_titles_sales('7066');

Or from a particular point in time as follows:

SELECT *
FROM stores_titles_sales('7066' , '2022-01-10');

You can also use table functions with the LATERAL clause to return values based on
earlier tables. This next example returns all stores and corresponding sales for each
store:

SELECT s.stor_name, sts.title, sts.qty
FROM stores AS s
 LEFT JOIN LATERAL stores_titles_sales(s.stor_id) AS sts
 ON true;

PostgreSQL supports custom data types and table types as inputs to and outputs
from functions too, as the following example demonstrates:

CREATE OR REPLACE FUNCTION authors_titles(param_author authors)
RETURNS SETOF titles
 LANGUAGE sql STABLE
AS
$body$
SELECT t

SQL Command Reference | 679

Sto
ring

 Lo
g

ic
in the

D
atab

ase

 FROM titles AS t
 INNER JOIN titleauthor AS ta
 ON t.title_id = ta.title_id
 WHERE ta.au_id = param_author.au_id;
$body$;

You can call this function as follows:

SELECT t.title_id, t.title, t.pubdate
FROM authors AS a, authors_titles(a) AS t
WHERE a.au_id = '409-56-7008';

You can also call the function using named argument syntax. This is useful if
you have several arguments and some are defaults, or just for clarity. Here is the
previous example using named argument call syntax:

SELECT t.title_id, t.title, t.pubdate
FROM authors AS a, authors_titles(param_author => a) AS t
WHERE a.au_id = '409-56-7008';

Note that in PostgreSQL, you use procedures and functions a little differently.
Functions can be called from any SQL statement. Procedures cannot be used in SQL
statements. Instead, they use the CALL syntax, as follows:

CALL update_titles();

PostgreSQL functions and procedures use the same namespace. As such, you can‐
not define both a procedure and a function with the same name that take the same
input arguments. PostgreSQL does support function overloading, which means you
can define a function with the same name as another one that takes a different data
type or set of arguments for input and can also return a different output type.

As mentioned previously, PostgreSQL also supports default arguments, which
allows you to skip an argument and have some default value be used instead. Here is
a revised version of the authors_titles function, to demonstrate overloading and
default arguments:

CREATE OR REPLACE FUNCTION authors_titles(text param_au_id
 DEFAULT NULL)
RETURNS SETOF titles
 LANGUAGE sql STABLE
AS
$body$
SELECT t
 FROM titles AS t
 INNER JOIN titleauthor AS ta
 ON t.title_id = ta.title_id
 WHERE (ta.au_id = param_au_id) OR (param_au_id IS NULL);
$body$;

We can call this function as follows:

680 | Chapter 9: Storing Logic in the Database

SELECT t.title_id, t.title, t.pubdate
FROM authors AS a, authors_titles(a.au_id) AS t
WHERE a.au_id = '409-56-7008';

Or return all titles as follows:

SELECT t.title_id, t.title, t.pubdate
FROM authors_titles() AS t;

PostgreSQL C and SQL language handlers are supported out of the box in all
versions. A C or C++ stored function would be bound to a function in a C/C++
library that is specially designed to be loaded by the PostgreSQL service process. See
the documentation for details on creating these libraries.

Once you’ve created the library, you can reference functions in it using the library
name (minus the file extension) and the name of the function within the library.
The following example defines a window function. SQL, PL/pgSQL, and most
scripted languages (with the notable exceptions of PL/R and PL/V8) do not support
the creation of window functions, so C and C++ are popular options for creating
such functions:

CREATE OR REPLACE FUNCTION run_begin(
 arg anyelement,
 ofs integer)
 RETURNS boolean
 LANGUAGE c
 COST 50
 WINDOW PARALLEL SAFE
AS '$libdir/my_functions', 'window_run_begin';

The $libdir is resolved by the PostgreSQL process to the PostgreSQL library path,
where all extended libraries are installed.

One drawback of building compiled libraries is that a library is always tied to a
particular PostgreSQL major version. So, for example, your my_functions library
would need to be recompiled if you upgraded from PostgreSQL 14 to PostgreSQL
15 even if the code in the function didn’t change.

PostgreSQL supports creating functions in many languages. The plpgsql language
handler is installed by default. To install other languages, you install the library and
environment for that language on your OS and then enable it in your database with
CREATE EXTENSION.

To install Perl untrusted, Perl trusted, and Python untrusted languages in a data‐
base, you would do the following.

CREATE EXTENSION IF NOT EXISTS plperlu;
CREATE EXTENSION IF NOT EXISTS plperl;
CREATE EXTENSION IF NOT EXISTS plpython3u;
CREATE EXTENSION IF NOT EXISTS plv8;
CREATE EXTENSION IF NOT EXISTS plr;

SQL Command Reference | 681

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/qFX1g

Untrusted languages are not guarded from interacting with the operating system,
whereas trusted languages (generally those without a u) are prevented from escap‐
ing the database or calling external libraries. Python and Perl are scripted languages.
As with most scripted languages, the code for the function is embedded in the
function definition.

PostgreSQL functions are used to define actions for CREATE TRIGGER. When Post‐
greSQL functions are used to define trigger actions, they return a special return type
called a trigger. We’ll cover triggers later in this chapter.

SQL Server
SQL Server supports CREATE and ALTER for both procedures and functions. In
addition, it supports the syntax CREATE OR ALTER, which checks for an existing
routine with the specified name and updates its code if there are changes, or creates
the function or procedure if it does not already exist in the database.

By default, stored procedures in SQL Server can return result sets, unlike in the
SQL standard. This makes SQL Server procedures more flexible and powerful. SQL
Server user-defined functions may return single or multi-row result sets using the
TABLE data type or a table-valued function on RETURNS arguments. SQL Server
functions cannot directly update data in the database. This means you can’t have
logic in a SQL Server function that, for example, updates or inserts data into a table.

Use the following syntax to create a user-defined function or stored procedure in
SQL Server:

CREATE [OR ALTER] {FUNCTION | PROCEDURE}
 [schema_name.]object_name[;int]
([{@parameter data_type [VARYING] [=default] [OUTPUT]}
 [READONLY][, ...]])
[RETURNS {data_type | TABLE [(table_definition)]]]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |
 RECOMPILE, ENCRYPTION |
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT] |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}} |
 [INLINE = {ON | OFF}]]
[FOR REPLICATION]
[AS]
 code_block

Use the following syntax to alter an existing user-defined function or stored
procedure:

ALTER {FUNCTION | PROCEDURE) [schema_name.]object_name[;int]
([{@parameter data_type [VARYING] [=default] [OUTPUT]}[, ...]])
[RETURNS {data_type | TABLE}]
[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |
 RECOMPILE, ENCRYPTION |
 RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT |
 EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}}]

682 | Chapter 9: Storing Logic in the Database

[FOR REPLICATION]
[AS]
 code_block

Following are the parameter descriptions:

CREATE [OR ALTER] {FUNCTION | PROCEDURE}

[schema_name.]object_name[;int]

Creates a new UDF or stored procedure in the current database. For SQL
Server stored procedures, you may optionally specify a version number in the
format procedure_name;n, where n is an integer indicating the version number.
This facility allows you to have multiple versions of a single stored procedure.

{@parameter data_type [VARYING] [=default] [OUTPUT]} [READONLY]

[, ...]

Defines one or more input arguments for a UDF or stored procedure. SQL
Server parameters are always declared with an at sign (@) as the first character.

VARYING

Used in stored procedures with a CURSOR data type parameter. Indicates that the
procedure constructs the result set dynamically.

=default

Assigns a default value to the parameter. The default value is used whenever
the stored procedure or UDF is invoked without a value being supplied for the
parameter.

OUTPUT

Used for stored procedures, OUTPUT is functionally equivalent to the standard
OUT clause in the CREATE FUNCTION statement. The value stored in the return
parameter is passed back to the calling procedure through the return variables
of the SQL Server EXEC[UTE] command. Output parameters can be any data
type except the deprecated TEXT and IMAGE.

READONLY

Used in functions to indicate that the parameter cannot be updated or modified
within the routine code body. This is especially useful for user-defined table-
valued parameters (TVPs).

RETURNS {data_type | TABLE [(table_definition)]}

Allows SQL Server UDFs to return a single data_type value or to return
multiple values via the TABLE data type. The TABLE data type is considered
inline if it has no accompanying column list and is defined with a single SELECT
statement. If the RETURNS clause returns multiple values via the TABLE data type,
and if the TABLE has defined columns and data types, the function is considered
a multi-statement table-valued function (TVF).

When creating a TVP, the table_definition (which must be in parenthe‐
ses) follows the standard conventions for creating a regular database table,

SQL Command Reference | 683

Sto
ring

 Lo
g

ic
in the

D
atab

ase

including one or more named columns with a declared data type, constraints
such as NULL or NOT NULL, keys, defaults, check constraints, and the like.

When creating a routine for SQL Server In-Memory OLTP, the syn‐
tax for the code_block and the function’s WITH options are somewhat
changed. First, the code_block should follow the form BEGIN ATOMIC WITH
(set_option[, ...n]) code_block RETURN scalar_expression END. An
in-memory routine allows the WITH options of a regular routine except
ENCRYPTION and INLINE subclauses, but adds another option, NATIVE_COM
PILATION. This in-memory-only option, when specified, tells SQL Server
whether the UDF is natively compiled and is required for natively compiled,
scalar in-memory UDFs.

WITH

Allows the assignment of additional characteristics to a SQL Server UDF or
stored procedure.

ENCRYPTION

Tells SQL Server to encrypt the text of the function or stored procedure, thus
preventing unwarranted review of the internal code. Usable by both UDFs and
stored procedures.

SCHEMABINDING

Specifies that the function is bound to a specific database object, such as a
table or view. That database object cannot be altered or dropped as long as
the function exists (or maintains the SCHEMABINDING option). Usable only by
UDFs.

RECOMPILE

Tells SQL Server not to store a cache plan for the stored procedure, but instead
to recompile the execution plan each time the stored procedure is executed.
This is useful when using atypical or temporary values in the procedure which
might create a suboptimal execution plan, but it can cause degradation in
performance. Usable only by stored procedures. Note that RECOMPILE and
ENCRYPTION can be invoked together.

RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

When used in a scalar function, tells SQL Server to enable or disable the
OnNULLCall attribute, respectively. The default, CALLED ON NULL INPUT, means
that the routine executes even when passed NULL as an argument. On the
other hand, specifying RETURNS NULL ON NULL INPUT means that the routine
will not execute and returns NULL as the output.

EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}

Specifies the privileges under which the routine will execute. This is an
optional clause for both procedures and functions. CALLER (the default value
when this clause is omitted) indicates the routine will run with the privileges of
the user invoking it. SELF indicates that the routine will run with the privileges

684 | Chapter 9: Storing Logic in the Database

of the creator of the routine, OWNER indicates the routine will run with the
privileges of the current owner of the routine, and 'user_name' indicates the
routine will run with the privileges of the named preexisting user.

INLINE = { ON | OFF }

Tells SQL Server whether the scalar function is inlined or not. (This option
only applies to scalar user-defined functions.) When omitted, the default is
automatically set to ON or OFF depending on whether the UDF syntax is
inlinable. If this is set to ON for a UDF that is not inlinable, SQL Server
will throw an error. Inline functions generally perform faster than non-inlined
ones because the code is folded into the definition of the query and thus does
not need to make a function call for each row; for more on this feature see
“Platform-Specific Extensions” on page 538.

FOR REPLICATION

Disables execution of the stored procedure on a subscribing server. This
clause is used primarily to create a filtering stored procedure that is executed
only by SQL Server’s built-in replication engine. It is incompatible with WITH
RECOMPILE.

Like tables (see “CREATE/ALTER TABLE Statement” on page 140), local and global
temporary stored procedures may be declared by prefixing a pound sign (#) or
double pound sign (##) to the name of the procedure, respectively. Temporary pro‐
cedures exist only for the duration of the user or process session that created them.
When that session ends, the temporary procedures automatically delete themselves.

The ALTER FUNCTION and ALTER PROCEDURE statements
in SQL Server support the full syntax provided by the
corresponding CREATE statements. You can use the ALTER
statements to change any of the attributes of an existing
routine without changing permissions or affecting any depen‐
dent objects. Conversely, when a routine is created with
SCHEMABINDING, that routine is bound to any database objects
it references. Those referenced base objects cannot be modi‐
fied in a way that would impact the routine definition without
first modifying or dropping the function or procedure to
remove the dependencies.

A SQL Server stored procedure or UDF may have as many as 2,100 input param‐
eters, specified by the at sign (@). Parameters are defined using SQL Server data
types. (Parameters of the CURSOR data type must be defined with both VARYING and
OUTPUT.) The user or calling process must supply values for any input parameters.
However, a default value can be supplied for any input parameter to allow the
procedure to execute without a user- or process-supplied value. The default must be
a constant or NULL, but it may contain wildcard characters.

SQL Server requires that one or more user-supplied parameters be declared for a
given user-defined function. All SQL Server data types are supported as parameters,

SQL Command Reference | 685

Sto
ring

 Lo
g

ic
in the

D
atab

ase

except TIMESTAMP. Values returned by the function can be any data type except
TIMESTAMP, TEXT, NTEXT, or IMAGE. If an inline table value is required, the TABLE
option without an accompanying column list may be used.

For UDFs, the code_block is either a single SELECT statement for an inline func‐
tion, in the format RETURN (SELECT ...), or a series of Transact-SQL statements
following the AS clause for a multi-statement operation. When using RETURN
(SELECT), the AS clause is optional. Here are some other rules for SQL Server UDFs:

• When using the AS clause, the code_body should be enclosed in BEGIN ... END•
delimiters.

• UDFs cannot make any permanent changes to data or cause other lasting side•
effects. A number of other restrictions exist as a result. For example, INSERT,
UPDATE, and DELETE statements may modify only TABLE variables local to the
function or stored procedure.

• When returning a scalar value, a SQL Server UDF must contain the clause•
RETURN data_type, where data_type is the same as that identified in the
RETURNS clause.

• The last statement of the code_block must be an unconditional RETURN that•
returns a single data_type value or TABLE value.

• The code_block may not contain any global variables that return a perpetually•
changing value, such as @@CONNECTIONS or GETDATE. However, it may contain
variables that return a single, unchanging value, such as @@SERVERNAME.

For example, you might want to build a user-defined function in SQL Server that
returns the first and last name of a person as a single string:

CREATE FUNCTION formatted_name (@fname VARCHAR(30),
 @lname VARCHAR(30))
RETURNS VARCHAR(60)
AS
BEGIN
 RETURN @fname + ' ' + @lname
END;

You could then use this UDF just as you would any other function:

SELECT dbo.formatted_name(au_fname, au_lname)
AS name, au_id AS id
FROM authors;

An inline table-valued UDF supplies values via a single SELECT statement using an
AS RETURN clause. For example, we can supply a store ID and find all of that store’s
titles:

CREATE FUNCTION stores_titles_sales(@stor_id varchar(30))
RETURNS TABLE
AS

686 | Chapter 9: Storing Logic in the Database

RETURN (SELECT title, qty
 FROM sales AS s
 JOIN titles AS t ON t.title_id = s.title_id
 WHERE s.stor_id = @stor_id)

User-defined functions that return TABLE values are often selected as result set
values or used in the FROM clause of a SELECT statement, just like regular tables
are used. In addition, inputs from earlier tables can be used using the CROSS APPLY/
OUTER APPLY constructs. These multi-statement TVFs can have very elaborate code
bodies since the code_block is composed of many Transact-SQL statements that
populate a TABLE return variable.

Here is an example invoking a multi-statement TVF in a FROM clause. Notice that
a table alias is assigned, just as for a regular table, and an OUTER APPLY is used
to return sales from each store. The OUTER APPLY will cause a store’s data to be
returned regardless of whether it has any sales:

SELECT s.stor_name, sts.title, sts.qty
FROM stores AS s OUTER APPLY
 stores_titles_sales(s.stor_id) AS sts;

For stored procedures, the code_block clause contains one or more Transact-SQL
commands, up to a maximum size of 128 MB, delimited by BEGIN and END clauses.
Some rules about SQL Server stored procedures include:

• The code_block allows most valid Transact-SQL statements, but SET SHOW•
PLAN_TEXT and SET SHOWPLAN_ALL are prohibited.

• Some other commands have usage restrictions within stored procedures,•
including ALTER TABLE, CREATE INDEX, CREATE TABLE, all DBCC statements,
DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE STATISTICS.

• SQL Server allows deferred name resolution, meaning that a stored procedure•
compiles without an error even though it references an object that has not yet
been created. SQL Server creates the execution plan and fails only when the
object is actually invoked (for instance, in a stored procedure), if the object still
doesn’t exist.

• Stored procedures can be nested easily in SQL Server. Whenever a stored pro‐•
cedure invokes another stored procedure, the system variable @@NESTLEVEL is
incremented by 1. It is decremented by 1 when the called procedure completes.
Use SELECT @@NESTLEVEL inside a procedure or from an ad hoc query session
to find the current nesting depth.

In the following example, a SQL Server stored procedure generates a unique 22-
digit value (based on elements of the system date and time) and returns it to the
calling process:

-- A SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT

SQL Command Reference | 687

Sto
ring

 Lo
g

ic
in the

D
atab

ase

AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000
SELECT @next_nbr =
 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))
 AS CHAR(6), 6) +
 RIGHT('0000' + CAST(DATEPART (yy, GETDATE())
 AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE())
 AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE())
 AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE())
 AS CHAR(3)), 3)
END
GO

SQL Server supports functions and procedures written in Microsoft .NET Frame‐
work CLR methods that can take and return user-supplied parameters. These
routines have similar CREATE and ALTER declarations to regular SQL routines and
functions; however, the code bodies are external assemblies. Refer to the SQL Server
documentation if you want to learn more about programming routines using the
CLR.

See also

• CALL•

• LATERAL (under JOIN) in Chapter 4•

• OVER in Chapter 4•

• RETURN•

• SELECT in Chapter 4•
• “Platform-Specific Extensions” on•

page 734

CREATE/ALTER METHOD Statement
The CREATE and ALTER METHOD statements allow the creation of a new database
method or the alteration of an existing database method, respectively. An easy (but
loose) way to think of a method is that it is a user-defined function associated with
a user-defined type. For example, a method called Office, of type Address, can accept
a VARCHAR input parameter and return a result Address. None of the major database
platforms support these statements since the CREATE/ALTER FUNCTION/PROCEDURE
statements can provide the same functionality.

688 | Chapter 9: Storing Logic in the Database

An implicitly defined method is created every time a structured type is created.
Using a combination of the CREATE TYPE statement and the CREATE METHOD state‐
ment creates user-defined methods.

SQL syntax
{CREATE | ALTER} [INSTANCE | STATIC | CONSTRUCTOR]
 METHOD method_name
 ([{IN | OUT | INOUT}] param data_type [AS LOCATOR]
 [RESULT][, ...])
RETURNS data_type
FOR udt_name
[SPECIFIC specific_name] code_body

Keywords

{CREATE | ALTER} [INSTANCE | STATIC | CONSTRUCTOR] METHOD method_name

Creates a new method or alters an existing method, and optionally specifies it
as an INSTANCE, STATIC, or CONSTRUCTOR method. An INSTANCE method is one
called on an instance of an object that is of type udt_name. A STATIC method
can be called directly against the udt_name type. A CONSTRUCTOR method is a
method used to create an instance of type udt_name.

([{IN | OUT | INOUT}] param data_type [AS LOCATOR] [RESULT][, ...])

Declares one or more parameters to be passed into the method in a comma-
delimited list enclosed in parentheses. Parameters used with a method may
pass a value IN, OUT, or both in and out via INOUT. Make sure the name is
unique within the method. When used with ALTER, this clause adds parameters
to a preexisting method. Refer to Chapter 2 for details on data types.

AS LOCATOR

Validates an external routine with a RETURNS parameter that is a BLOB, CLOB,
NCLOB, ARRAY, or user-defined type. The locator (i.e., a pointer) for the LOB is
returned, but not the entire value of the LOB.

RESULT

Designates a user-defined type. Not needed for standard data types.

RETURNS data_type

Declares the data type of the results returned by the method. The key purpose
of a user-defined method is to return a value.

FOR udt_name

Associates the method with a specific preexisting user-defined type, created
using CREATE TYPE.

SPECIFIC specific_name

Uniquely identifies the function; generally used with user-defined types.

SQL Command Reference | 689

Sto
ring

 Lo
g

ic
in the

D
atab

ase

The SQL standard CREATE METHOD statement is supported only
by IBM’s UDB DB2 platform at this time, not by any of the
database platforms covered in this book. A method is essen‐
tially a special-purpose user-defined function and follows the
same syntax as that outlined here. You can approximate the
functionality of a method using a stored procedure or func‐
tion, depending upon the vendor implementation.

See also

• CREATE/ALTER FUNCTION/PROCEDURE•

• CREATE/ALTER METHOD•

• CREATE/ALTER TYPE in Chapter 3•

CREATE/ALTER/DROP TRIGGER Statement
A trigger is a special kind of stored procedure that fires automatically (hence the
name) when a specific data modification statement is executed against a table. The
trigger is directly associated with the table and is considered a dependent object. For
example, you might want an audit timestamp to be updated on a record whenever
the record is updated. You can accomplish this with a trigger.

ALTER TRIGGER is not a SQL standard–supported statement.
All the platforms support the SQL standard syntax for DROP
TRIGGER.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL syntax
CREATE TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} {DELETE | INSERT |
 UPDATE [OF column[, ...]]}
ON table_name
[REFERENCING {OLD {[ROW] | TABLE} [AS] old_name |
 NEW {ROW | TABLE} [AS] new_name}]
[FOR EACH {ROW | STATEMENT}]
[WHEN (conditions)]

690 | Chapter 9: Storing Logic in the Database

[BEGIN ATOMIC]code_block
[END]

The syntax for DROP TRIGGER is as follows:

DROP TRIGGER trigger_name ON table_name

Keywords

CREATE TRIGGER trigger_name

Creates a trigger named trigger_name and associates it with a specific table.

BEFORE | AFTER

Declares that the trigger logic is fired either BEFORE or AFTER the data manipu‐
lation operation that invoked the trigger. BEFORE triggers perform their opera‐
tions before the INSERT, UPDATE, or DELETE operation occurs, allowing you to
do dramatic things like circumvent the data manipulation operation altogether.
AFTER triggers fire after the operation has completed and are useful for after-
the-fact operations like recalculating running totals.

DELETE | INSERT | UPDATE [OF column[, ...]]

Defines the data manipulation operation that causes the trigger to fire:
DELETE statements, INSERT statements, or UPDATE statements. You may option‐
ally choose which columns will trigger an UPDATE trigger using UPDATE OF
column[, ...]. If an update occurs on any columns not in the column list,
the trigger will not fire.

ON table_name

Declares the preexisting table on which the trigger is dependent.

REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW {ROW | TABLE}

[AS] new_name}

Enables aliasing for the old or new ROW or TABLE acted upon by the trigger.
Although the syntax shows the options as exclusive, you may have up to four
aliasing references: one for the old row, one for the old table, one for the new
row, and one for the new table. The alias OLD refers to the data contained in
the table or row before the data manipulation operation that fired the trigger,
while the alias NEW refers to the data that will be contained in the table or
row after the data manipulation operation that fired the trigger. Note that the
syntax indicates that ROW is optional, but TABLE is not. (That is, OLD ROW AS
is the same as OLD AS, but for TABLE, the only valid option is OLD TABLE
AS.) INSERT triggers do not have an OLD context, while DELETE triggers do
not have a NEW context. The keyword AS is noise and may be omitted. If the
REFERENCING clause specifies either OLD ROW or NEW ROW, the FOR EACH ROW
clause is required.

FOR EACH { ROW | STATEMENT }

Tells the database to apply the trigger for each row in the table that has changed
(ROW) or for each SQL statement issued against the table (STATEMENT). Consider

SQL Command Reference | 691

Sto
ring

 Lo
g

ic
in the

D
atab

ase

a single UPDATE statement that updates the salaries of 100 employees. If you
specify FOR EACH ROW, the trigger will execute 100 times. If you specify FOR
EACH STATEMENT, the trigger will execute only once.

WHEN (conditions)

Allows you to define additional criteria for a trigger. For example, you might
have a trigger called DELETE employee that will fire whenever an employee is
deleted. When a trigger fires, if the search conditions contained in the WHEN
clause evaluate to TRUE, the trigger action will fire. Otherwise, it will not fire.

[BEGIN ATOMIC] | code_block | [END]

The SQL standard requires that the code_block contain only one SQL state‐
ment or, if it contains multiple SQL statements, that they be enclosed in a BEGIN
and END block.

Rules at a glance
The SQL standard only defines triggers on DML events (such as INSERT/UPDATE/
DELETE) on a table. Most of the databases we cover also support triggers on DDL
events such as CREATE, ALTER, and DROP. We will cover both kinds of triggers in this
section.

DML triggers, by default, fire once at the statement level. That is, a single INSERT
statement might insert 500 rows into a table, but an INSERT trigger on that table will
fire only one time. However, some vendors have a FOR EACH ROW clause that causes
the trigger to fire for each row of the data modification operation. A statement that
inserts 500 rows into a table that has a row-level FOR EACH ROW insert trigger will
cause that trigger to fire 500 times, once for each inserted row.

In addition to being associated with a specific data modification statement (INSERT,
UPDATE, or DELETE) on a given table, triggers are associated with a specific time
of firing. In general, triggers can fire BEFORE the data modification statement is
processed, AFTER it is processed, or (when supported by the vendor) INSTEAD OF the
statement being processed. Triggers that fire before or instead of the data modifica‐
tion statement can change the update that a statement makes, while those that fire
afterward can see the final changes and act upon the final changes rendered. AFTER
statements cannot change the original update.

Triggers make use of two pseudotables. (They are pseudotables in the sense that they
are not declared with a CREATE TABLE statement, but they exist logically within the
trigger.) The pseudotables have different names on the different platforms, but we’ll
call them before and after here. They are structured exactly the same as the table a
trigger is associated with, but they contain snapshots of the table’s data: the before
table contains a snapshot of all the records in the table before the trigger fired,
while the after table contains a snapshot of how all the records in the table will
look after the event that fires the trigger has occurred. You can then use comparison
operations to compare the data in the table before and after the event to determine
exactly what you want to happen.

692 | Chapter 9: Storing Logic in the Database

Adding triggers to a table that already has data in it does not cause the triggers to
fire. A trigger will fire only for data modification statements declared in the trigger
definition that occur after the trigger is created.

Once in place, a trigger generally ignores structural changes to tables, such as an
added column or an altered data type on an existing column, unless the modifica‐
tion directly interferes with the operation of the trigger. For example, if you add
a new column to a table, existing triggers will ignore the new column (with the
exception of UPDATE triggers). On the other hand, removing from a table a column
that is used by a trigger will cause that trigger to fail every time it executes.

Programming tips and gotchas
One of the key programming issues associated with triggers is the inappropriate
and uncontrolled use of nested and recursive triggers. A nested trigger is a trigger
that invokes a data manipulation operation that causes other triggers to fire. For
example, assume we have three tables, T1, T2, and T3. Table T1 has a BEFORE
INSERT trigger that inserts a record into table T2. Table T2 also has a BEFORE INSERT
trigger that inserts a record into table T3. Although this is not necessarily a bad
thing if your logic is well considered and fully thought out, it does introduce two
problems. First, an INSERT into table T1 now requires many more I/O operations
and transactions than a simple INSERT statement typically does. Second, you can get
yourself into hot water if table T3 performs an INSERT operation against table T1.
In a case like that, you may have a looping trigger process that can consume all the
available disk space and even shut down the server.

Recursive triggers are triggers that can fire themselves; for example, an INSERT
trigger that performs an INSERT against its own base table. If the procedural logic
within the code_body is not properly constructed, adding a recursive trigger can
cause a looping trigger error. In recognition of this danger, using recursive triggers
often requires setting a special configuration flag on the various database platforms.

MySQL
The MySQL implementation of the CREATE TRIGGER statement follows:

trigger_order: { FOLLOWS | PRECEDES } other_trigger_name
CREATE [DEFINER = {user_name | CURRENT_USER}]
 TRIGGER trigger_name {BEFORE | AFTER} {INSERT | UPDATE |
 DELETE}
 ON table_name
 FOR EACH ROW
 [trigger_order]
 code_body

where:

DEFINER = {user_name | CURRENT_USER}

Specifies the user account to use when checking privileges. You may specify
either a preexisting user or the user who issued the CREATE TRIGGER statement

SQL Command Reference | 693

Sto
ring

 Lo
g

ic
in the

D
atab

ase

(i.e., the CURRENT_USER). CURRENT_USER is the default when this clause is
omitted.

MySQL does not allow triggers on temporary tables. INSERT triggers will fire any
time data is inserted into a table, not just on INSERT statements; that is, they will
also fire when LOAD DATA and REPLACE statements are executed. Similarly, a DELETE
trigger will also fire on a REPLACE statement. Triggers are not, however, activated by
cascading foreign key actions or TRUNCATE TABLE.

You cannot have two triggers with the same name in the same schema, because
triggers are stored in schemas.

MySQL supports multiple triggers per table, even for the same action. By default,
MySQL triggers on a table fire in the order they were defined unless qualified with a
trigger_order clause.

MySQL does not yet support the ALTER TRIGGER statement.

DML triggers. Here is an example trigger that stamps records in the sales table as
updated:

delimiter //
CREATE TRIGGER trig_01_stamp_updated BEFORE UPDATE ON sales
 FOR EACH ROW
BEGIN
 SET new.date_update = CURRENT_TIMESTAMP;
END;//
delimiter ;

DDL triggers. MySQL does not support DDL triggers.

Oracle
Oracle supports the SQL standard for CREATE TRIGGER, with several additions and
variations:

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{ {[object_event] [database_event] [...] ON
 {DATABASE | schema.SCHEMA}} |
 {[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column[, ...]]] [...]}
 ON {table_name | [NESTED TABLE column_name OF] view_name}
 [REFERENCING {[OLD [AS] old_name] [NEW [AS] new_name]
 [PARENT [AS] parent_name]}]
 [FOR EACH ROW] }
[FOLLOWS trigger_name]
[{ENABLE | DISABLE}]
[WHEN (conditions)] code_block

Here is the syntax for ALTER TRIGGER, which allows you to rename, enable, or
disable a trigger without dropping and re-creating it:

694 | Chapter 9: Storing Logic in the Database

ALTER TRIGGER trigger_name
{ {ENABLE | DISABLE} | RENAME TO new_name |
 COMPILE [compiler_directives] [DEBUG] [REUSE SETTINGS] }

The parameters are:

OR REPLACE

Re-creates an existing trigger named trigger_name by assigning it a new
definition.

object_event

In addition to the standard data modification events, Oracle allows triggers
to fire based on object events. object_event operations may be paired with
BEFORE and AFTER keywords. An object_event fires the trigger whenever such
an event occurs, according to the following keywords:

ALTER

Fires whenever an ALTER statement (except ALTER DATABASE) is issued.

ANALYZE

Fires whenever Oracle validates the structure of a database object, or collects or
deletes statistics on an index.

ASSOCIATE STATISTICS

Fires whenever Oracle associates a statistics type with a database object.

AUDIT

Fires whenever Oracle tracks a SQL statement or operation against a schema
object.

COMMENT

Fires whenever an Oracle comment is added in the data dictionary to a data‐
base object.

DDL

Fires whenever Oracle encounters any object_event in this list.

DISASSOCIATE STATISTICS

Fires whenever Oracle disassociates a statistics type from a database object.

DROP

Fires whenever a DROP statement erases a database object from the data
dictionary.

GRANT

Fires whenever a user grants privileges or roles to another user or role.

NOAUDIT

Fires whenever the NOAUDIT statement causes Oracle to stop tracking SQL
statements or operations against schema objects.

SQL Command Reference | 695

Sto
ring

 Lo
g

ic
in the

D
atab

ase

RENAME

Fires whenever the RENAME statement changes the name of a database object.

REVOKE

Fires whenever a user revokes privileges or roles from another user or role.

TRUNCATE

Fires whenever a TRUNCATE statement is issued against a table or cluster.

database_event

In addition to the standard data modification events, Oracle allows triggers to
fire based on database events. database_event operations may be paired with
BEFORE and AFTER keywords. The list of allowable database_event keywords is
as follows:

LOGOFF

Fires whenever a client application logs off of the database. Valid for
BEFORE triggers only.

LOGON

Fires whenever a client application logs on to the database. Valid for AFTER
triggers only.

SERVERERROR

Fires whenever a server error message is logged. Valid for AFTER triggers
only.

SHUTDOWN

Fires whenever an instance of the database is shut down. Valid only for
BEFORE triggers with the ON DATABASE clause.

STARTUP

Fires whenever an instance of the database is opened. Valid only for AFTER
triggers with the ON DATABASE clause.

SUSPEND

Fires whenever a server error causes a transaction to suspend. Valid for
AFTER triggers only.

ON {DATABASE | schema.SCHEMA}

Declares that the trigger fires whenever any database user invokes a triggering
event with ON DATABASE. The trigger then fires for events occurring anywhere
in the entire database. Otherwise, ON schema.SCHEMA declares that the trigger
fires whenever a user connected as schema invokes a triggering event. The
trigger then fires for events occurring anywhere in the current schema.

696 | Chapter 9: Storing Logic in the Database

ON [NESTED TABLE column_name OF] view_name

Declares that the trigger fires only if the data manipulation operation applies
to the column(s) of the view called view_name. The ON NESTED TABLE clause is
compatible only with INSTEAD OF triggers.

REFERENCING PARENT [AS] parent_name

Defines the alias for the current row of the parent table (i.e., supertable).
Otherwise, identical to the SQL standard.

FOLLOWS trigger_name

Specifies that the new trigger is of the same type as another trigger and that
it should fire only after the other trigger has fired. The trigger_name must
already exist. Rather than creating a series of triggers that must fire in a specific
order, it is recommended that you instead create a single trigger with logic to
handle all of the situations that the multiple triggers would have handled.

ENABLE

Enables a deactivated trigger when used with ALTER TRIGGER, or creates a new
trigger in enabled mode (the default). You may alternatively use the statement
ALTER TABLE table_name ENABLE ALL TRIGGERS.

DISABLE

Disables an activated trigger when used with ALTER TRIGGER, or creates a new
trigger in disabled mode. You may alternatively use the statement ALTER TABLE
table_name DISABLE ALL TRIGGERS.

RENAME TO new_name

Renames the trigger to new_name, though the state of the trigger remains
unchanged when used with ALTER TRIGGER.

COMPILE [DEBUG] [REUSE SETTINGS]

Compiles a trigger, whether valid or invalid, and all the objects on which the
trigger depends. If any of the objects are invalid, the trigger is invalid. If all of
the objects are valid, including the code_body of the trigger, the trigger is valid.

DEBUG

Tells the PL/SQL compiler to generate and store extra information for use by
the PL/SQL debugger.

REUSE SETTINGS

Tells Oracle to retain all compiler switch settings, which can save significant
time during the compile process.

compiler_directives

Defines one or more special values for the PL/SQL compiler in the
format directive = 'value‘. The available directives are: PLSQL_OPTIMIZE
_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH
_SEMANTICS. They may each specify a value once in the statement. The directive
is valid only for the unit being compiled.

SQL Command Reference | 697

Sto
ring

 Lo
g

ic
in the

D
atab

ase

DML triggers. When referencing values in the old and new pseudotables, the values
must be prefaced with a colon (:), except in the trigger’s WHEN clause, where no
colons are used. In this example, we’ll call a procedure in the code_body and use
both :old and :new values as arguments:

CREATE TRIGGER scott.sales_check
BEFORE INSERT OR UPDATE OF ord_id, qty ON scott.sales
 FOR EACH ROW
 WHEN (new.qty > 10)
 CALL check_inventory(:new.ord_id, :new.qty, :old.qty);

Here is an Oracle BEFORE trigger that uses the old and new pseudotables to compare
values. By way of comparison, SQL Server uses the deleted and inserted pseudotables
in the same way, while PostgreSQL, like Oracle, uses the pseudotables old and new.
This trigger creates an audit record before changing an employee’s pay record:

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
WHEN (new.emp_salary <> old.emp_salary)
BEGIN
 INSERT INTO employee_audit
 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);
END;

Multiple trigger types may be combined into a single trigger command if they are
of the same level (row or statement) and they are on the same table. When triggers
are combined in a single statement, the clauses IF INSERTING THEN, IF UPDATING
THEN, and IF DELETING THEN may be used in the PL/SQL block to break the code
logic into distinct segments. An ELSE clause can be used in this structure too.

You can also take advantage of capabilities within each database platform to make
your triggers more powerful and easier to program. For example, Oracle has a
special IF ... THEN clause for use just in triggers. This IF ... THEN clause takes
the form IF {DELETING | INSERTING | UPDATING} THEN. The following example
builds an Oracle DELETE and UPDATE trigger that uses the IF DELETING THEN clause:

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
BEGIN
 IF DELETING THEN
 INSERT INTO employee_audit
 VALUES ('DELETED', :old.emp_id, :old.emp_salary,
 :old.emp_ssn);
 ELSE
 INSERT INTO employee_audit
 VALUES ('UPDATED', :old.emp_id, :new.emp_salary,
 :old.emp_ssn);
 END IF;
END;

698 | Chapter 9: Storing Logic in the Database

DDL triggers. Oracle has support for DDL triggers, meaning that you can have a
trigger fire, for example, when a new table is created or when a view is dropped. The
DDL trigger syntax is:

CREATE [OR REPLACE] TRIGGER [schema.]trigger
 { BEFORE | AFTER | INSTEAD OF }
 { dml_event_clause | { ddl_event [OR ddl_event]... |
 database_event [OR database_event]... }
 ON { [schema.]SCHEMA | DATABASE }
 }
 [WHEN (condition)]
 { pl/sql_block | call_procedure_statement }

DDL triggers may be created on either a DATABASE or a SCHEMA for events like
CREATE, ALTER, or DROP. For example:

CREATE TRIGGER audit_object_changes AFTER CREATE ON SCHEMA
 code_body;

The full list of DDL trigger events includes the firing of any of these statements:
ALTER, ANALYZE, ASSOCIATE STATISTICS, AUDIT, COMMENT, CREATE, DISASSOCIATE
STATISTICS, DROP, GRANT, NOAUDIT, RENAME, REVOKE, TRUNCATE, and DDL (which will
fire the trigger when any of the preceding DDL statements are issued). You may also
create a DDL trigger that fires on a specific database state, rather than on a DDL
statement. The database states you may use include AFTER STARTUP, BEFORE SHUT
DOWN, AFTER DB_ROLE_CHANGE, AFTER LOGON, BEFORE LOGOFF, AFTER SERVERERROR,
and AFTER SUSPEND.

Following is an example of a database_event-style trigger that fires on any kind of
server error:

CREATE TRIGGER track_errors
AFTER SERVERERROR ON DATABASE
BEGIN
 IF (IS_SERVERERROR (04030))
 THEN INSERT INTO errors ('Memory error');
 ELSE (IS_SERVERERROR (01403))
 THEN INSERT INTO errors ('Data not found');
 END IF;
END;

This example creates a DDL trigger that is SCHEMA-wide in scope and prevents
creation of any object in the schema scott:

CREATE OR REPLACE TRIGGER create_trigger
AFTER CREATE ON scott.SCHEMA
BEGIN
 RAISE_APPLICATION_ERROR (num => −20000, msg =>
 'Scott created an object');
END;

SQL Command Reference | 699

Sto
ring

 Lo
g

ic
in the

D
atab

ase

PostgreSQL
PostgreSQL’s implementation of CREATE TRIGGER offers most of the features found
in the SQL standard. In PostgreSQL, a trigger may fire BEFORE a data modification
operation is attempted on a record and before any constraints are fired, or it may
fire AFTER a data manipulation operation completes (and after constraints have been
checked), making all operations involved in the transaction visible to the trigger.
Finally, the trigger may fire INSTEAD OF the data modification operation and com‐
pletely replace the INSERT, UPDATE, or DELETE statement with some other behavior.
INSTEAD OF triggers are only supported on views and views do not support BEFORE/
AFTER triggers, as those would be triggered upon insertions to the underlying tables.

The PostgreSQL CREATE TRIGGER syntax is:

CREATE [OR REPLACE] [CONSTRAINT] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{ [DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE] [OF column[, ...]]
 [OR | ,] [TRUNCATE] [OR | ,] }
 ON table_name [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE |
 INITIALLY DEFERRED]]
 [REFERENCING { {OLD | NEW} TABLE [AS] transition_relation_name }]
 FOR [EACH] {ROW | STATEMENT}
 [WHEN (conditions)]
 EXECUTE {FUNCTION | PROCEDURE} function_name (parameters)

PostgreSQL’s implementation of ALTER TRIGGER merely allows you to rename an
existing trigger:

ALTER TRIGGER trigger_name ON table_name RENAME TO new_trigger_name

The parameters are:

OR REPLACE

Re-creates an existing trigger named trigger_name by assigning it a new
definition.

CONSTRAINT

Creates a constraint trigger, where the timing of the trigger firing can be
adjusted using SET CONSTRAINTS.

OR

Declares an additional trigger action. The OR keyword is a synonym for the
comma delimiter.

REFERENCING { {OLD | NEW} TABLE [AS] transition_relation_name }

Enables collection of transition relations, which are row sets comprised of all
the rows inserted, deleted, or modified by the current SQL statement. This
allows the trigger to see a global view of what the statement did. Allowed only
for an AFTER trigger that is not a constraint trigger, and when used with an
UPDATE trigger it must not specify a column_name list. OLD TABLE can only be

700 | Chapter 9: Storing Logic in the Database

used with UPDATE or DELETE triggers; it creates a transition relation containing
the “before” images of all rows affected by the statement. NEW TABLE can
only be used with UPDATE or INSERT triggers and creates a transition relation
containing the “after” images of all rows affected by the statement.

FOR EACH {ROW | STATEMENT}

Tells the database to apply the trigger for each row in the table that has changed
(ROW) or for each SQL statement issued against the table (STATEMENT). A ROW
trigger only has access to the NEW and/or OLD rows. A STATEMENT trigger has
access to what is known as a transition table.

EXECUTE PROCEDURE function_name (parameters)

Executes a previously defined function (created using CREATE FUNCTION) rather
than a block of procedural code. The function executed must be defined to
return a TRIGGER and can be used by more than one trigger. The function
cannot be written in SQL but can be written in almost any other language, with
the most common being PL/pgSQL.

Trigger functions have access to several special variables; see the documentation for
details.

DML triggers. Unlike in most other databases, in PostgreSQL triggers do not have
bodies. They instead reference a special type of function that returns a trigger.
One major benefit of this approach is that you can bind the same trigger function
to multiple tables. The following is an example of a PostgreSQL trigger that time‐
stamps data when it is inserted or updated. The new variable is a variable available
to all functions used in row-level triggers when they are called during an INSERT OR
UPDATE event. new is a reference to the newly created row and can be altered during
BEFORE events. Similarly, old is a variable available to all trigger functions used in
ROW-level triggers when called from an UPDATE or DELETE event. You can bind this
trigger function to any table that has a column called date_update:

-- Trigger function
CREATE FUNCTION trig_date_update()
 RETURNS trigger
 LANGUAGE plpgsql
AS $body$
BEGIN
 new.date_update = CURRENT_TIMESTAMP;
RETURN new;
END; $body$;
-- Use of function in trigger
-- Add column if it doesn't exist already
ALTER TABLE sales ADD COLUMN IF NOT EXISTS date_update timestamptz;

-- Bind trigger function to trigger
CREATE TRIGGER trig_01_stamp_updated
BEFORE INSERT OR UPDATE ON sales

SQL Command Reference | 701

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/V9WY2

FOR EACH ROW
EXECUTE PROCEDURE trig_date_update();

The new and old variables contain at most one row that has the same structure as
the triggered table. Each trigger function gets called for each row that is updated.

An AFTER trigger can’t change data, but these are often used for auditing. The
following is an example trigger that logs a change into a logging table and stores
the old and new records as JSON, but only if data in the date_update column has
changed. Since any row can be converted to JSON in PostgreSQL, this trigger can be
applied to any table in the database:

-- Trigger function
CREATE OR REPLACE FUNCTION trig_log_data_changes()
 RETURNS trigger
 LANGUAGE plpgsql
 COST 100
AS $body$
DECLARE var_old jsonb; var_new jsonb;
BEGIN
var_new = null;
var_old = null;
IF TG_OP IN('DELETE', 'INSERT') OR
 (old.date_update <> new.date_update) THEN
 IF TG_OP IN('INSERT', 'UPDATE') THEN
 var_new = to_jsonb(new);
 END IF;
 IF TG_OP IN('DELETE', 'UPDATE') THEN
 var_old = to_jsonb(old);
 END IF;

 INSERT INTO log_data_changes(
 table_name, action,
 old_row, new_row, date_audit)
 VALUES (tg_relname::varchar, TG_OP, var_old, var_new,
 CURRENT_TIMESTAMP);
END IF;
RETURN new;
END;
$body$;

-- Use of function in trigger
CREATE TRIGGER trig_01_stamp_updated
BEFORE INSERT OR UPDATE ON sales
FOR EACH ROW
EXECUTE PROCEDURE trig_date_update();

PostgreSQL supports adding multiple triggers to a table. The ordering of the trig‐
gers is first based on the events, with BEFORE triggers firing first; then, within each
event type triggers are fired alphabetically. A common convention to follow is to
prefix trigger name with labels such as trig_01 to control the order of firing.

702 | Chapter 9: Storing Logic in the Database

If you update, delete, and insert many records in a single statement, it is more effi‐
cient to use a statement-level trigger than a row-level trigger. Statement-level trig‐
gers provide their functions with transition tables (old_table, new_table) instead
of the row-level variables old and new.

INSTEAD OF triggers in PostgreSQL completely skip the data modification operation
that triggered them in favor of code that you substitute for that operation. These
triggers are commonly used on views to redirect updates to the underlying tables.

Here’s an example of an INSTEAD OF trigger:

-- Trigger function
CREATE FUNCTION insert_california_authors()
RETURNS trigger
 $body$
BEGIN
 INSERT INTO authors(au_lname, au_fname, au_id,
 au_full_name, au_state)
 VALUES (NEW.au_lname, NEW.au_fname, NEW.au_id,
 NEW.au_full_name, 'CA');
RETURN new;
END; $body$;
-- Use of function in trigger on a view
CREATE TRIGGER california_author_insert
 INSTEAD OF INSERT ON california_authors
 FOR EACH ROW
 EXECUTE FUNCTION insert_california_author();

DDL triggers. PostgreSQL also has support for DDL triggers, which allows you to
specify what to do whenever a database object is created, altered, or dropped. DDL
triggers return a type called an event_trigger. They are defined at the DATABASE
level and can be created for most relational database objects, including tables, views,
schemas, function, procedures, types, and casts. They cannot be used for system
shared objects such as roles, databases, and tablespaces. See the documentation for a
full list of supported objects.

You use the CREATE EVENT TRIGGER command to create DDL triggers, and you
must be a superuser to do so. The CREATE EVENT TRIGGER command is not defined
in the SQL standard. Its syntax is:

CREATE EVENT TRIGGER trigger_name
ON event
[WHEN filter_variable IN (filter_value[, ...]) [AND ...]]
EXECUTE {FUNCTION | PROCEDURE} function_name (parameters)

where:

ON event

Identifies the event that triggers a call to the given function. See the vendor
documentation for more information on events.

SQL Command Reference | 703

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/xOdlb
https://oreil.ly/wZgr5
https://oreil.ly/wZgr5

WHEN

Defines conditions that must be true for the event trigger to be fired.
filter_variable is the name of the variable used to filter. Currently only
TAG is supported. The (filter_value[, ...]) clause defines a set of values
that are allowed. These must be in the set of command tags as noted in the
vendor documentation.

EXECUTE {FUNCTION | PROCEDURE} function_name (parameters)

Executes a previously defined function (created using CREATE FUNCTION) rather
than a block of procedural code. The function executed must be defined to
return an EVENT TRIGGER and can be used by more than one EVENT TRIGGER.
The function cannot be written in SQL but can be written in almost any other
language, with the most common being PL/pgSQL. The PROCEDURE keyword is
allowed for backward compatibility, but the function_name has to be the name
of a function and not a procedure in either case.

The following is an example trigger that logs whenever a table is created, dropped,
or altered:

-- Create the trigger function
CREATE OR REPLACE FUNCTION trig_log_ddl()
RETURNS event_trigger AS $$
BEGIN
 IF tg_tag IN('CREATE TABLE', 'CREATE TABLE AS',
 'CREATE FOREIGN TABLE',
 'DROP FOREIGN TABLE', 'DROP TABLE',
 'ALTER TABLE'
) THEN
 INSERT INTO event_logging(event, tag)
 VALUES (tg_event, tg_tag);
 END IF;
END;
$$ LANGUAGE plpgsql;

-- Create the trigger
CREATE EVENT TRIGGER trig_log_ddl_table
 ON ddl_command_end
 WHEN TAG IN IN('CREATE TABLE','CREATE TABLE AS',
 'DROP TABLE', 'ALTER TABLE')
 EXECUTE FUNCTION trig_log_ddl;

SQL Server
SQL Server supports the basics of the SQL standard with a few variations and
additions. It supports the optional [OR ALTER] syntax but does not support the
REFERENCING or WHEN clauses of the standard. In all supported versions of SQL
Server you may create triggers on tables. SQL Server 2014 and later allow you to
create triggers on views and memory-optimized tables. SQL Server implicitly fires
in the FOR EACH STATEMENT style of the SQL standard.

704 | Chapter 9: Storing Logic in the Database

https://oreil.ly/ETbzs

SQL Server has different syntax for defining DML and DDL triggers. The syntax for
DML triggers is:

CREATE [OR ALTER] TRIGGER trigger_name ON table_name
[WITH {[SCHEMABINDING] | [NATIVE_COMPILATION] | [ENCRYPTION] |
 [EXEC[UTE] AS {CALLER | SELF | OWNER | 'user_name'}]}[,...]]
{FOR | AFTER | INSTEAD OF}
{dml_events}
[WITH APPEND]
[NOT FOR REPLICATION]
AS {code_block | EXTERNAL NAME method_specifier [;]}

where:

CREATE [OR ALTER] TRIGGER trigger_name

Creates a new trigger named trigger_name or (with OR ALTER) alters an
existing trigger of that name by adding or changing trigger properties or the
trigger code_block. When altering an existing trigger, the permissions and
dependencies of the existing trigger are maintained.

ON table_name

Declares the table or view on which the trigger is dependent. You may option‐
ally specify the schema name. Views may have INSTEAD OF triggers defined on
them, as long as they are updatable and do not have the WITH CHECK clause on
them.

WITH {SCHEMABINDING | NATIVE_COMPILATION | ENCRYPTION | EXEC[UTE] AS

{CALLER | SELF | OWNER | 'user_name'}}

SCHEMABINDING ensures that the table(s) referenced by a trigger cannot be
dropped or altered without first dropping dependent objects. This clause is
required for triggers on memory-optimized tables, but not allowed on tradi‐
tional tables.

NATIVE_COMPILATION specifies that the trigger is natively compiled; this is used
only on memory-optimized tables.

ENCRYPTION encrypts the text of the CREATE TRIGGER statement in system
metadata, and prevents the trigger from being used in a SQL Server replication
scheme. This option is useful to protect important intellectual property. Azure
SQL Database does not support this clause at present.

The EXECUTE AS clause specifies the privileges under which the trigger will
execute. CALLER (the default when this clause is omitted) indicates the routine
will run with the privileges of the user invoking the routine. SELF indicates the
routine will run with the privileges of the creator of the routine, OWNER indicates
the routine will run with the privileges of its current owner, and 'user_name'
indicates the routine will run with the privileges of the named preexisting user.

SQL Command Reference | 705

Sto
ring

 Lo
g

ic
in the

D
atab

ase

FOR | AFTER | INSTEAD OF

Tells SQL Server when the trigger should fire. FOR and AFTER are synonyms and
specify that the trigger should fire only after the triggering data modification
statement (and any cascading actions and constraint checks) have completed
successfully. INSTEAD OF is similar to the SQL standard BEFORE in that the
code of the trigger may completely replace the data modification operation.
It specifies that the trigger be executed instead of the modification statement
that fired the trigger. Also note that INSTEAD OF triggers are not currently
supported on memory-optimized tables. INSTEAD OF DELETE triggers cannot
be used when there is a cascading action on the delete. Only INSTEAD OF
triggers can access TEXT, NTEXT, or IMAGE columns.

dml_events

Specifies that the trigger fires for standard DML statements like DELETE,
INSERT, and/or UPDATE. You may specify one or more DML events in a CREATE
TRIGGER statement.

WITH APPEND

Adds an additional trigger of an existing type to a table or view. This clause is
supported for backward compatibility with earlier versions of SQL Server and
can be used only with FOR triggers. It cannot be used with INSTEAD OF triggers
or if AFTER is explicitly stated during creation, nor can it be used with CLR
triggers.

NOT FOR REPLICATION

Prevents data manipulation operations invoked through SQL Server’s built-in
replication engine from firing the trigger.

AS EXTERNAL NAME method_specifier

Used with a CLR trigger to specify the method of an assembly to bind with
the trigger. It takes no arguments and returns void. CLR coding is beyond the
scope of this book; refer to the SQL Server documentation if you want to learn
more about programming routines using the CLR.

DML triggers. In SQL Server, any combination of triggers is possible in a single
trigger definition statement; simply separate each option with a comma. (When you
do so, the same code fires for each statement in the combination definition.)

SQL Server also allows multiple triggers for a given data manipulation operation
on a table or view. Thus, three UPDATE triggers are possible on a single table,
and multiple AFTER triggers are possible on a given table. Their specific order is
undefined, though the first and last triggers can be explicitly declared using the
sp_settrigger-order system stored procedure. Only one INSTEAD OF trigger is
possible per INSERT, UPDATE, or DELETE statement on a given table.

This SQL Server example stamps an updated date on a specific table:

706 | Chapter 9: Storing Logic in the Database

-- Add a date_update column if not present
ALTER TABLE sales ADD date_update datetime2;
CREATE TRIGGER trig_01_stamp_updated
 ON sales
 AFTER INSERT, UPDATE
AS
BEGIN
 UPDATE sales SET date_update = CURRENT_TIMESTAMP
 FROM inserted
 WHERE sales.stor_id = inserted.stor_id
 AND sales.ord_num = inserted.ord_num
 AND sales.title_id = inserted.title_id;
END
GO

In the following example we specify that all new contractor employees inserted
into the employee table will instead be inserted into the contractor table, using an
INSTEAD OF INSERT trigger:

CREATE TRIGGER if_emp_is_contractor
INSTEAD OF INSERT ON employee
BEGIN
 INSERT INTO contractor
 SELECT * FROM inserted WHERE status = 'CON'
 INSERT INTO employee
 SELECT * FROM inserted WHERE status = 'FTE'
END
GO

SQL Server instantiates two important pseudotables when a trigger is fired: deleted
and inserted. They are equivalent, respectively, to the before and after pseudotables
described in “Rules at a glance” on page 692. These tables are identical in structure
to the table on which the triggers are defined, except that they contain the old data
before the data modification statement fired (deleted) and the new values of the
table after the data modification statement has fired (inserted).

The IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions on
a given column or columns, in the way the SQL standard statement uses the
UPDATE(column) syntax. Specify multiple columns by adding separate UPDATE(col
umn) clauses after the first. Follow the AS IF UPDATE(column) clause with a
Transact-SQL BEGIN ... END block to allow the trigger to fire multiple Transact-
SQL operations. This clause is functionally equivalent to the IF ... THEN ... ELSE
operation.

In addition to intercepting data modification statements as shown in the SQL
standard example, SQL Server allows you to perform other sorts of actions when a
data modification operation occurs. In the following example, we’ve decided that the
table sales_archive_2002 is off-limits and that anyone who attempts to alter data in
this table is to be notified of that restriction:

SQL Command Reference | 707

Sto
ring

 Lo
g

ic
in the

D
atab

ase

CREATE TRIGGER archive_trigger
ON sales_archive_2002
FOR INSERT, UPDATE
AS RAISERROR (50009, 16, 10, 'No changes allowed to this table')
GO

SQL Server does not allow the following statements within the Transact-SQL
code_block of a DML trigger: ALTER, CREATE, DROP, DENY, GRANT, REVOKE, LOAD,
RESTORE, RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK state‐
ments or the UPDATE STATISTICS command.

You can cause triggers to fire recursively using the recursive triggers setting of the
sp_dboption system stored procedure. Recursive triggers, by their own action, cause
themselves to fire again. For example, if an INSERT trigger on table T1 performs
an INSERT operation on table T1, it might perform a recursive operation. Since
recursive triggers can be dangerous, this functionality is disabled by default.

Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of
the nested triggers performs a ROLLBACK operation, no further triggers execute. An
example of nested triggers is a trigger on table T1 firing an operation against table
T2, which also has a trigger that fires an operation against table T3. The triggers
cancel if an infinite loop is encountered. Nested triggers are enabled with the nested
triggers setting of the system stored procedure sp_configure. If nested triggers are
disabled, recursive triggers are disabled as well, regardless of what the recursive
triggers setting is in sp_dboption.

In the following example, we want to reroute the user activity that occurs on the
people table—especially UPDATE transactions—so that changes to records in the
people table are instead written to the people_reroute table. Our UPDATE trigger will
record any changes to columns 2, 3, or 4 of the people table and write them to
the people_reroute table. The trigger will also record which user issued the UPDATE
statement and the time of the transaction:

CREATE TABLE people
 (people_id CHAR(4),
 people_name VARCHAR(40),
 people_addr VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2),
 zip CHAR(5),
 phone CHAR(12),
 sales_rep empid NOT NULL)
GO
CREATE TABLE people_reroute
 (reroute_log_id UNIQUEIDENTIFIER DEFAULT NEWID(),
 reroute_log_type CHAR (3) NOT NULL,
 reroute_people_id CHAR(4),
 reroute_people_name VARCHAR(40),
 reroute_people_addr VARCHAR(40),
 reroute_city VARCHAR(20),
 reroute_state CHAR(2),

708 | Chapter 9: Storing Logic in the Database

 reroute_zip CHAR(5),
 reroute_phone CHAR(12),
 reroute_sales_rep empidNOT NULL,
 reroute_user sysname DEFAULT SUSER_SNAME(),
 reroute_changed datetime DEFAULT GETDATE())
GO
CREATE TRIGGER update_person_data
ON people
FOR UPDATE AS
IF (UPDATE(people_name)
 OR UPDATE(people_addr)
 OR UPDATE(city))
BEGIN
-- Audit OLD record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'old', d.people_id, d.people_name, d.people_addr, d.city
 FROM deleted AS d
-- Audit NEW record
 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,
 reroute_people_name, reroute_people_addr, reroute_city)
 SELECT 'new', n.people_id, n.people_name, n.people_addr, n.city
 FROM inserted AS n
END
GO

Note that SQL Server CREATE statements allow deferred name resolution, meaning
that commands will be processed even if they refer to a database object that does not
yet exist in the database.

DDL triggers. SQL Server also supports triggers for DDL events such as creating,
altering, or dropping objects in a database, which are commonly used in change-
tracking use cases. Additionally, triggers are allowed on LOGO[ON ALL SERVER]
events, such as when a particular user logs in (again, these are typically used in
auditing and change-tracking scenarios).

The SQL Server syntax for creating a DDL trigger is as follows:

CREATE [OR ALTER] TRIGGER trigger_name
ON {ALL SERVER | DATABASE}
[WITH {[ENCRYPTION] | [EXEC[UTE] AS {CALLER | SELF | 'user_name'}]}
 [,...]]
{FOR | AFTER}
{{ddl_events} | LOGON}
AS {code_block | EXTERNAL NAME method_specifier [;]}

where the parameters that differ from the DML syntax are:

SQL Command Reference | 709

Sto
ring

 Lo
g

ic
in the

D
atab

ase

ON {ALL SERVER | DATABASE}

Specifies whether the defined trigger applies to all DDL or LOGON actions for
the entire instance of SQL Server (ALL SERVER, not allowed on Azure SQL
Database) or for the currently scoped database (DATABASE).

ddl_events

Specifies the DDL event or events that cause the trigger to fire (CREATE, ALTER,
DROP, GRANT, DENY, REVOKE, BIND, UNBIND, RENAME, or UPDATE STATISTICS).
DDL events may fire FOR or AFTER the event. SQL Server also provides a
number of shortcuts called “DDL event groups” that include many DDL events
under a single term; for example, DDL_TABLE_EVENTS includes the CREATE,
ALTER, and DROP TABLE event types. Refer to the SQL Server documentation for
a full listing.

LOGON

Specifies a trigger that fires FOR or AFTER LOGON. Typically used to add an entry
to an audit table whenever users access an instance or database of SQL Server.

Here is an example that logs table CREATES, DELETES, and ALTERS:

-- Table to hold audit information
CREATE TABLE log_table_ddl(action_statement nvarchar(1000),
 date_done datetime DEFAULT CURRENT_TIMESTAMP));

CREATE TRIGGER log_create_drop_alter_tables
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE, CREATE_TABLE
AS
 INSERT INTO log_table_ddl(action_statement)
SELECT EVENTDATA().value(
 '(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', 'nvarchar(max)'
);
GO

Now whenever you create, drop, or alter a table, you’ll see the DDL for the action in
the log_table_ddl table.

See also

• CALL•

• CREATE/ALTER FUNCTION/PROCEDURE•

• DELETE in Chapter 5•

• DROP in Chapter 3•

• INSERT in Chapter 5•

• UPDATE in Chapter 5•

710 | Chapter 9: Storing Logic in the Database

https://oreil.ly/J87x3

DECLARE CURSOR Statement
The DECLARE CURSOR statement is one of four commands used in cursor processing,
along with FETCH, OPEN, and CLOSE. Cursors allow you to process queries one row at
a time, rather than in a complete set. The DECLARE CURSOR command specifies the
exact records to be retrieved and manipulated (one row at a time) from a specific
table or view.

Cursors are especially important for relational databases because databases are
set-based, while most client-centric programming languages are row-based. Cursors
allow programmers to program using methodologies supported by their favorite
row-based programming languages. However, cursors run counter to the default
behavior of some relational database platforms, which operate on sets of records,
and on those specific platforms cursor operations may be noticeably slower than
standard set-based operations.

Platform Command

MySQL/MariaDB Supported, with limitations

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL syntax
DECLARE cursor_name [{SENSITIVE | INSENSITIVE | ASENSITIVE}]
[[NO] SCROLL] CURSOR [{WITH | WITHOUT} HOLD]
 [{WITH | WITHOUT} RETURN]
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column[, ...]]}]

Keywords

DECLARE cursor_name

Gives the cursor a unique name in the context in which it is defined (for
example, in the database or schema where it is created). No other cursors may
share the same name.

SENSITIVE | INSENSITIVE | ASENSITIVE

Defines the manner in which the cursor interacts with the source table and the
result set retrieved by the cursor query, where:

SENSITIVE

Tells the database to operate directly against the result set, so that the
cursor will see changes to its result set as it moves through the records.

SQL Command Reference | 711

Sto
ring

 Lo
g

ic
in the

D
atab

ase

INSENSITIVE

Tells the database to create a temporary but separate copy of the result
set, so that all changes made against the result set by other operations are
invisible to the cursor during the cursor operation.

ASENSITIVE

Allows the database implementation to determine whether to make a copy
of the result set. ASENSITIVE is the SQL standard default.

[NO] SCROLL

Tells the database whether to enforce processing one row at a time (NO SCROLL)
or not (SCROLL). With SCROLL rows are processed using FETCH NEXT, but all
forms of the FETCH clause are allowed against the result set.

{WITH | WITHOUT} HOLD

Tells the cursor to remain open when a transaction encounters the COMMIT
statement (WITH HOLD), or to close when the transaction encounters a COMMIT
statement (WITHOUT HOLD). A cursor that uses WITH HOLD can only be and is
always closed with a ROLLBACK statement or a CLOSE CURSOR statement.

{WITH | WITHOUT} RETURN

Used only in stored procedures. The WITH RETURN clause tells the database to
return the result set, if it is still open, when the procedure terminates. With
the WITHOUT RETURN clause, which is the default, all open cursors are implicitly
closed when the procedure terminates.

FOR select_statement

Defines the underlying SELECT statement that determines the rows in the result
set of the cursor. As with a regular SELECT statement, the results of the query
may be sorted according to an ORDER BY clause.

FOR {READ ONLY | UPDATE [OF column[, ...]]}

Specifies that the cursor is not updatable in any way, using FOR READ ONLY.
This is the default when the cursor is defined with the SCROLL or INSENSITIVE
properties, and when the query contains an ORDER BY clause or is against a
non-updatable table. Alternatively, you can specify FOR UPDATE OF column1[,
column2, ...], defining the column(s) where you want to execute UPDATE
statements, or omit the column list to include all columns in the cursor.

Rules at a glance
Cursors enable the retrieval and manipulation of records from a table one row at
a time. That is, they allow row-by-row processing, rather than the traditional set
processing offered by SQL.

At a high level, these are the steps you follow when working with a cursor:

1. Create the cursor using DECLARE.1.

712 | Chapter 9: Storing Logic in the Database

2. Open the cursor using OPEN.2.

3. Operate against the cursor using FETCH.3.

4. Dismiss the cursor using CLOSE.4.

The DECLARE CURSOR command works by specifying a SELECT statement. Each row
returned by the SELECT statement may be individually retrieved and manipulated.
In this Oracle example, the cursor is declared in the declaration block, along with
some other variables. The cursor is then opened, fetched against, and closed in the
BEGIN ... END block that follows:

DECLARE CURSOR title_price_cursor FOR
SELECT title, price
FROM titles
WHERE price IS NOT NULL;
 title_price_val title_price_cursor%ROWTYPE;
 new_price NUMBER(10,2);
BEGIN
 OPEN title_price_cursor;
 FETCH title_price_cursor INTO title_price_val;
 new_price := "title_price_val.price" * 1.25
 INSERT INTO new_title_price
 VALUES (title_price_val.title, new_price)
 CLOSE title_price_cursor;
END;

Because this example uses PL/SQL, much of the code is beyond the scope of this
book. However, the DECLARE block clearly shows that the cursor is declared. In the
PL/SQL execution block, the cursor is initialized with the OPEN command, values
are retrieved with the FETCH command, and the cursor finally is terminated with the
CLOSE command.

The SELECT statement is the heart of your cursor, so it is a good idea to test it
thoroughly before embedding it in the DECLARE CURSOR statement. The SELECT
statement may operate against a base table or a view. For that matter, read-only
cursors may operate against non-updatable views. The SELECT statement can have
subclauses such as ORDER BY, GROUP BY, and HAVING if it is not updating the base
table. If the cursor is FOR UPDATE, however, it is a good idea to exclude these clauses
from the SELECT statement.

In this next example from SQL Server, a cursor from the publishers table is declared
and opened. The cursor takes the first record from publishers that matches the
SELECT statement and inserts it into another table; it then moves to the next record
and then the next, until all records are processed. Finally, the cursor is closed and
deallocated (DEALLOCATE is used only with SQL Server):

DECLARE @publisher_name VARCHAR(20)
DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA'

SQL Command Reference | 713

Sto
ring

 Lo
g

ic
in the

D
atab

ase

OPEN pub_cursor
FETCH NEXT FROM pub_cursor INTO @publisher_name
WHILE @@FETCH_STATUS = 0
BEGIN
 INSERT INTO foreign_publishers VALUES(@publisher_name)
END
CLOSE pub_cursor
DEALLOCATE pub_cursor

In this example, you see how the cursor moves through a set of records. (The
example was intended only to demonstrate this concept, since there is actually a
better way to accomplish the same task; namely, an INSERT ... SELECT statement.)

Programming tips and gotchas
Most platforms do not support dynamically executed cursors. Rather, cursors are
embedded within an application program, stored procedure, user-defined function,
etc. In other words, the various statements for creating and using a cursor are usu‐
ally used only in the context of a stored procedure or other database-programming
object, not in a straight SQL script.

For ease of programming and migration, don’t use the SCROLL clause or the various
sensitivity keywords. Some platforms support only forward-scrolling cursors, so
you can avoid headaches later by just sticking to the simplest form of cursor.

Cursors behave differently on the various database platforms when crossing a trans‐
action boundary—for example, when a set of transactions is rolled back in the midst
of a cursor operation. Be sure to familiarize yourself with exactly how each database
platform behaves in these circumstances.

MySQL does not support server-side cursors in the SQL standard style, but it does
support extensive C programming extensions that provide the same functionality.

MySQL and MariaDB
MySQL supports a subset of the SQL standard syntax:

DECLARE cursor_name
FOR select_statement

It only allows cursors within stored procedures, functions, and triggers. MySQL
cursors are always read-only, non-updatable, non-scrollable (the cursor only moves
in one direction and cannot skip rows), and asensitive (meaning that the server
will choose whether to make a copy of the result table according to what is most
expedient). MySQL will not allow you to create more than one cursor in a block
with the same name. Cursors must be declared after variables and conditions, but
before handlers.

MariaDB 10.3 and later support an Oracle mode (SET SQL_MODE='ORACLE'); in that
mode MariaDB supports a subset of the Oracle CURSOR syntax, such as parameters
for cursors.

714 | Chapter 9: Storing Logic in the Database

https://oreil.ly/I6RTh

Oracle
Oracle has a rather interesting implementation of cursors. In reality, all Oracle
data modification statements (INSERT, UPDATE, DELETE, and SELECT) implicitly open
a cursor. For example, a C program accessing Oracle would not need to issue a
DECLARE CURSOR statement to retrieve data on a record-by-record basis, because
that is the implicit behavior of Oracle. Because of this behavior, you’ll only use
DECLARE CURSOR in PL/SQL constructs such as stored procedures, not in a script
that is purely SQL.

Since cursors can only be used in stored procedures and
user-defined functions in Oracle, they are documented in the
Oracle PL/SQL reference material, not in the SQL reference
material.

Oracle utilizes a variation of the DECLARE CURSOR statement that supports parame‐
terized inputs, as the following syntax demonstrates:

DECLARE CURSOR cursor_name [(parameter data_type[, ...])]
IS select_statement
[FOR UPDATE [OF column_name[, ...]]]

where:

[(parameter data_type[, ...])] IS select_statement

Defines the parameter name and data type of each input parameter as well as
the select_statement used to retrieve the cursor result set. Serves the same
purpose as the SQL standard FOR select_statement clause.

FOR UPDATE [OF column_name]
Defines the cursor or specific columns of the cursor as updatable. Otherwise,
the cursor is assumed to be read-only.

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement
unless they are first declared as variables. The parameters are not assigned in the
DECLARE statement; instead, they are assigned values in the OPEN command. This is
important since any system function will return an identical value for all rows in the
cursor result set.

PostgreSQL
PostgreSQL only supports read-only cursors, so it does not support the FOR {READ
ONLY | UPDATE} clause. It also does not support the {WITH | WITHOUT} RETURN
clause, but it does allow you to return result sets in binary rather than text format
(and the compiler will not cause errors with many of the SQL standard keywords).

PostgreSQL has different rules for declaring cursors at the SQL level versus at the
procedural level. The SQL-level definition looks as follows:

SQL Command Reference | 715

Sto
ring

 Lo
g

ic
in the

D
atab

ase

DECLARE cursor_name [BINARY] [ASENSITIVE | INSENSITIVE]
 [[NO] SCROLL] CURSOR
[{WITH | WITHOUT} HOLD]
[FOR select_statement]

PostgreSQL’s implementation for using cursors in procedural languages such as PL/
pgSQL looks as follows:

DECLARE cursor_name [[NO] SCROLL]
 CURSOR[(variable_name data_type[, ...])]
[FOR select_statement]

where:

BINARY

Forces the cursor to retrieve binary-formatted data rather than text-formatted
data.

INSENSITIVE

Indicates that data retrieved by the cursor is unaffected by updates from other
processes or cursors. This is PostgreSQL’s default behavior, so omitting this
keyword has no effect.

[NO] SCROLL

Allows multiple rows to be retrieved by a single FETCH operation in either a for‐
ward or backward direction. Be aware that SCROLL can slow down processing.
NO SCROLL specifies that the cursor reads only in a forward direction and that it
does not skip any records.

{WITH | WITHOUT} HOLD

Specifies that the cursor can continue to be used after the transaction that
created it successfully commits (WITH HOLD), or that the cursor cannot be used
outside of the transaction that created it (WITHOUT HOLD). If neither WITHOUT
HOLD nor WITH HOLD is specified, WITHOUT HOLD is the default.

PostgreSQL allows cursors only within a transaction. You should enclose a cursor
within a BEGIN and COMMIT or ROLLBACK transaction block.

BINARY cursors tend to be faster, because PostgreSQL stores data as binary on the
backend. However, user applications are only text-aware, so you’ll have to build in
binary handling for any BINARY cursors.

Here’s an example cursor declaration:

DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA';

PostgreSQL does not support an explicit OPEN command for SQL cursors because
DECLARE automatically opens the cursor. For cursors used in PL/pgSQL and some
other languages, OPEN is supported and used to open an unbounded cursor. You

716 | Chapter 9: Storing Logic in the Database

can also return cursors as the output of PL/pgSQL functions; the type returned is
refcursor.

PostgreSQL cursors support the SQL standard CLOSE command as well as an exten‐
sion, CLOSE ALL, that closes all open cursors in a session. PostgreSQL closes any
existing cursor when a newly declared cursor is created with the same name.

SQL Server
SQL Server supports the SQL standard syntax for declaring a cursor, as well as a
second form with several Transact-SQL extensions that provide flexibility in how a
cursor scrolls through a result set and manipulates data, as shown here:

-- SQL standard syntax
DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR { READ ONLY | UPDATE [OF column_name[, ...]] }]

-- Transact-SQL extended syntax
DECLARE cursor_name CURSOR
[LOCAL | GLOBAL] [SCROLL | FORWARD_ONLY]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement
[FOR UPDATE [OF column_name[, ...]]]

These syntax forms are not compatible. You cannot mix
together keywords of the two forms.

The parameters are as follows:

INSENSITIVE | SCROLL | FORWARD_ONLY

Determines how the cursor will move through the result set, with three
options:

INSENSITIVE

Creates the result set as a table in tempdb. Changes to the base table are
not reflected in the cursor result set. Not compatible with SQL Server
extensions to the DECLARE CURSOR command such as LOCAL, GLOBAL,
STATIC, KEYSET, DYNAMIC, FAST_FORWARD, etc., and can only be used in
a SQL standard–style DECLARE CURSOR statement, such as DECLARE sample
CURSOR INSENSITIVE FOR select_statement FOR UPDATE.

SCROLL

Enables all FETCH options (ABSOLUTE, FIRST, LAST, NEXT, PRIOR, and
RELATIVE). Otherwise, only FETCH NEXT is available. With the extended

SQL Command Reference | 717

Sto
ring

 Lo
g

ic
in the

D
atab

ase

syntax, if DYNAMIC, STATIC, or KEYSET is used, the cursor defaults to SCROLL
behavior. FAST_FORWARD is mutually exclusive of SCROLL.

FORWARD_ONLY

Indicates that the cursor must scroll from the first to the last record in the
result set and that FETCH NEXT is the only supported form of the FETCH
statement. The cursor is assumed to be DYNAMIC unless STATIC or KEYSET
is used. FAST_FORWARD is mutually exclusive of FORWARD_ONLY and only
available with the extended syntax.

LOCAL | GLOBAL

Scopes the cursor for the local Transact-SQL batch or makes the cursor avail‐
able to all Transact-SQL batches issued by the current session via OPEN and
FETCH statements, respectively. A global cursor name can be referenced by any
stored procedure, function, or Transact-SQL batch executed in the current
session. A global cursor is implicitly deallocated at disconnect, but a local
cursor must be manually deallocated. The LOCAL and GLOBAL keywords are
optional. The default behavior, if neither is specified, is defined by the default to
local database property.

STATIC | KEYSET | DYNAMIC | FAST_FORWARD

Determines how records are manipulated in the result set. These settings are
incompatible with the FOR UPDATE clause. There are four options:

STATIC

Makes a temporary copy of the result set data and stores it in tempdb.
Modifications made to the source table or view do not show up when
processing the cursor. STATIC cursors cannot modify data in the source
table or view.

KEYSET

Makes a temporary copy of the result set with membership and fixed row
order (also known as a keyset) in tempdb. The keyset correlates the data
in the cursor result set to the base table or view, so that the cursor can
see changes made to the underlying data. Rows that have been deleted or
updated show an @@FETCH_STATUS of −2 (unless the update was done using
UPDATE ... WHERE CURRENT OF, in which case they are fully visible), while
rows inserted by other users are not visible at all.

DYNAMIC

Determines the records in the cursor result set as each FETCH operation is
executed. Thus, DYNAMIC cursors see all changes made to the base table or
view, even those by other users. Because the result set may be in constant
flux, DYNAMIC cursors do not support FETCH ABSOLUTE.

FAST_FORWARD

Creates a FORWARD_ONLY, READ_ONLY cursor that quickly reads through the
entire cursor result set at one time.

718 | Chapter 9: Storing Logic in the Database

READ_ONLY | SCROLL_LOCKS | OPTIMISTIC

Determines concurrency and positional update behavior for the cursor. These
settings are incompatible with FOR UPDATE. The allowable parameters are:

READ_ONLY

Prevents updates to the cursor and disallows the cursor from being refer‐
enced in UPDATE or DELETE statements that contain WHERE CURRENT OF.

SCROLL_LOCKS

Ensures that positional updates and deletes succeed by locking the cursor
result set rows as they are read into the cursor. The locks are held until
the cursor is closed and deallocated. SCROLL_LOCKS is mutually exclusive of
FAST_FORWARD.

OPTIMISTIC

Ensures that positional updates and deletes succeed unless the row being
updated or deleted in the cursor result set has changed since it was read
into the cursor. SQL Server accomplishes this by comparing a timestamp,
or a checksum value when no timestamp exists, on the columns. It does
not lock the rows in the cursor result set. OPTIMISTIC is mutually exclusive
of FAST_FORWARD.

TYPE_WARNING

Warns the user when the cursor is implicitly converted from one type to
another (for example, from SCROLL to FORWARD_ONLY).

FOR {READ ONLY | UPDATE [OF column_name[, ...]]}

FOR READ ONLY identifies the cursor as read-only, using the SQL standard
syntax. This clause is not available in the extended syntax; use READ_ONLY
instead. FOR UPDATE allows updates to columns in the cursor using UPDATE and
DELETE statements with the WHERE CURRENT OF clause. If FOR UPDATE is used
without a column list, all columns in the cursor are updatable. Otherwise, only
those columns listed are updatable.

The SQL standard syntax is supported to enable your code to be more transporta‐
ble. The Transact-SQL extended syntax enables you to define cursors using the same
cursor types that are available in popular database APIs such as ODBC, OLEDB,
and ADO, but it may only be used in SQL Server stored procedures, user-defined
functions, triggers, and ad hoc queries.

If you define a Transact-SQL extension cursor but do not define concurrency
behavior using the OPTIMISTIC, READ_ONLY, or SCROLL_LOCKS keywords, then:

• The cursor defaults to READ_ONLY if it was defined as FAST_FORWARD or STATIC,•
or the user has insufficient privileges to update the base table or view.

• The cursor defaults to OPTIMISTIC if the cursor was defined as DYNAMIC or•
KEYSET.

SQL Command Reference | 719

Sto
ring

 Lo
g

ic
in the

D
atab

ase

Note that variables may be used in the select_statement of a SQL Server cursor,
but the variables are evaluated when the cursor is declared. Thus, a cursor contain‐
ing a column based on the system function GETDATE() will have the same date and
time for every record in the cursor result set.

In the following SQL Server example, we use a KEYSET cursor to change blank
spaces to dashes in the phone column of the authors table:

SET NOCOUNT ON
DECLARE author_name_cursor CURSOR LOCAL KEYSET TYPE_WARNING
 FOR SELECT au_fname FROM pubs.dbo.authors
DECLARE @name varchar(40)
OPEN author_name_cursor
FETCH NEXT FROM author_name_cursor INTO @name
WHILE (@@fetch_status <> −1)
BEGIN
-- @@fetch_status checks for 'record not found' conditions and errors
 IF (@@fetch_status <> −2)
 BEGIN
 PRINT 'updating record for ' + @name
 UPDATE pubs.dbo.authors
 SET phone = replace(phone, ' ', '-')
 WHERE CURRENT OF author_name_cursor
 END
 FETCH NEXT FROM author_name_cursor INTO @name
END
CLOSE author_name_cursor
DEALLOCATE author_name_cursor
GO

See also

• CLOSE•

• FETCH•

• OPEN•

FETCH Statement (Cursors)
The FETCH statement is one of four commands used in cursor processing, along
with DECLARE, OPEN, and CLOSE. Cursors allow you to process queries one row at a
time, rather than as a complete set. FETCH positions a cursor on a specific row and
retrieves that row from the result set.

There is another FETCH clause, which can be used directly in
SQL statements. Refer to “ORDER BY Clause” on page 294 for
details on the OFFSET ... FETCH clause.

720 | Chapter 9: Storing Logic in the Database

Cursors are important in relational databases because relational databases are set-
based, while most client-centric programming languages are row-based. Cursors
allow you to perform operations on a single row at a time, to better fit what a client
program can do, rather than operating on a whole set of records at once. You will
find the use of cursors mostly in SQL procedures and functions.

Platform Command

MySQL Supported, with limitations

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL standard syntax
FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } } FROM] cursor_name
[INTO variable1[, ...]]

Keywords

NEXT

Tells the cursor to return the record immediately following the current row,
and increments the current row to the row returned. FETCH NEXT is the default
behavior for FETCH. It retrieves the first record if FETCH is performed as the first
fetch against a cursor.

PRIOR

Tells the cursor to return the record immediately preceding the current row
and decrements the current row to the row returned. FETCH PRIOR does not
retrieve a record if it is performed as the first fetch against the cursor.

FIRST

Tells the cursor to return the first record in the cursor result set, making it the
current row.

LAST

Tells the cursor to return the last record in the cursor result set, making it the
current row.

ABSOLUTE int

Tells the cursor to return the int record from the cursor record set counting
from the top if int is a positive integer or the int record counting from the
bottom if int is a negative integer, making the returned record the new current
record of the cursor. If int is 0, no rows are returned. If the value of int moves
the cursor past the end of the cursor result set, the cursor is positioned after the
last row (for a positive int) or before the first row (for a negative int).

SQL Command Reference | 721

Sto
ring

 Lo
g

ic
in the

D
atab

ase

RELATIVE int

Tells the cursor to return the record int rows after the current record if int
is positive or int rows before the current record if int is negative, making the
returned record the new current row of the cursor. If int is 0, the current row
is returned. If the value of int moves the cursor past the end of the cursor
result set, the cursor is positioned after the last row (for a positive int) or
before the first row (for a negative int).

[FROM] cursor_name

Gives the name of the (open) cursor from which you want to retrieve rows. The
cursor must have been previously created and instantiated using the DECLARE
and OPEN statements. FROM is optional, but encouraged.

INTO variable1[, ...]

Stores data from each column in the open cursor into a local variable. Each
column in the cursor must have a corresponding variable of a matching data
type in the INTO clause. Each column value is directly related to the variables in
ordinal positions.

Rules at a glance
At the highest level, a cursor must be:

1. Created using DECLARE1.

2. Opened using OPEN2.

3. Operated against using FETCH3.

4. Dismissed using CLOSE4.

By following these steps, you create a result set similar to that of a SELECT state‐
ment, except that you can operate against each individual row within the result set
separately.

Each database platform has its own rules about how variables
are used. For example, SQL Server requires an at sign (@) as
a prefix, PostgreSQL and Oracle have no prefix, and so forth.
The SQL standard says that a colon (:) prefix is necessary for
languages that are embedded, like C or COBOL, but no prefix
is needed for procedural SQL.

A cursor rests either directly on a row, before the first row, or after the last row.
When a cursor is resting directly on a row, that row is known as the current row.
You can use cursors to position an UPDATE or DELETE statement in the current row
using the WHERE CURRENT OF clause.

It is important to remember that a cursor result set does not wrap around. Thus, if
you have a result set containing 10 records and you tell the cursor to move forward

722 | Chapter 9: Storing Logic in the Database

12 records, it will not wrap back around to the beginning and continue its count
from there. Instead, the default cursor behavior is to stop after the last record in the
result set when scrolling forward, and to stop before the first record when scrolling
back. For example, on SQL Server:

FETCH RELATIVE 12 FROM employee_cursor
INTO @emp_last_name, @emp_first_name, @emp_id

When fetching values from the database into variables, make sure that the data
types and numbers of columns and variables match. Otherwise, you’ll get an error.
For example, this will fail since the employee_cursor contains three columns while
the fetch operation has only two variables:

FETCH PRIOR FROM employee_cursor
INTO @emp_last_name, @emp_id

Programming tips and gotchas
The most common errors encountered with the FETCH statement are mismatches
between the number, order, or data types of the variables and the values in the
cursor. So, before you write your FETCH statements, make sure you know exactly
what values are in the cursor and what their data types are.

Typically, the database will lock at least the current row and possibly all rows held
by the cursor. According to the SQL standard, cursor locks are not held through
ROLLBACK or COMMIT operations, although this behavior varies from platform to
platform.

Although the FETCH statement is detailed in isolation here, it should always be
managed as a group with the DECLARE, OPEN, and CLOSE statements. For example,
every time you open a cursor, the server consumes memory. If you forget to close
your cursors, you could create memory-management problems. So, you need to
make sure that every declared and opened cursor is eventually closed.

Cursors are also often used in stored procedures or batches of procedural code. The
reason for this is because sometimes you need to perform actions on individual
rows rather than on entire sets of data at a time. But because cursors operate on
individual rows and not sets of data, they are often much slower than other means
of accessing your data. It’s important to analyze your approach. Many challenges,
such as a convoluted DELETE operation or a very complex UPDATE, can be solved by
using clever WHERE and JOIN clauses instead of cursors.

MySQL
MySQL supports the basics of the SQL standard FETCH statement:

FETCH cursor_name INTO variable_name1[, ...]

It will fetch the next row (if one exists) using the specified open cursor and advance
the cursor pointer one increment. When no more rows are available, MySQL
returns a SQLSTATE value of '02000' and a NO DATA condition event. You can detect

SQL Command Reference | 723

Sto
ring

 Lo
g

ic
in the

D
atab

ase

and treat this occurrence using a handler for the SQLSTATE value or for a NOT FOUND
condition.

Oracle
Oracle cursors are implicitly forward-only cursors that always scroll forward one
record at a time. An Oracle cursor, when compared to the SQL standard, is essen‐
tially a FETCH NEXT 1 cursor. Oracle cursors must either insert the retrieved values
into matching variables or use the BULK COLLECT clause to insert all of the records of
the result set into an array. Oracle does not support keywords like PRIOR, ABSOLUTE,
and RELATIVE. However, it does support both forward-only and scrollable cursors in
the database via the Oracle Call Interface (OCI). The OCI also supports features like
PRIOR, ABSOLUTE, and RELATIVE for read-only cursors whose result sets are based on
read-consistent snapshots.

Oracle’s FETCH syntax is:

FETCH cursor_name
{ INTO variable_name1[, ...] | BULK COLLECT INTO
 collection_name[, ...] [LIMIT int] }

where:

BULK COLLECT INTO collection_name

Retrieves the entire rowset, or a specified number of rows (see LIMIT), into a
client-side array or collection variable named collection_name.

LIMIT int

Limits the number of records fetched from the database when using the BULK
statement. The int value is a nonzero integer (or a variable representing an
integer value).

Oracle supports dynamic SQL-based cursors whose text can be built at runtime.
It also supports cursor_names that may be any allowable variable, parameter, or
host-array type. In fact, you may also use user-defined or %ROWTYPE record variables
for the INTO clause. This allows you to construct flexible, dynamic cursors in a
template-like structure.

For example:

DECLARE
 TYPE namelist IS TABLE OF employee.lname%TYPE;
 names namelist;
 CURSOR employee_cursor IS SELECT lname FROM employee;
BEGIN
 OPEN employee_cursor;
 FETCH employee_cursor BULK COLLECT INTO names;
 ...
 CLOSE employee_cursor;
END;

724 | Chapter 9: Storing Logic in the Database

Oracle’s FETCH is often paired with a PL/SQL FOR loop (or other kind of loop) to
cycle through all the rows in the cursor. You should use the cursor attributes %FOUND
or %NOTFOUND to detect the end of the rowset. For example:

DECLARE
 TYPE employee_cursor IS REF CURSOR RETURN employee%ROWTYPE;
 employee_cursor EmpCurTyp;
 employee_rec employee%ROWTYPE;
BEGIN
 LOOP
 FETCH employee_cursor INTO employee_rec;
 EXIT WHEN employee_cursor%NOTFOUND;
 ...
 END LOOP;
CLOSE employee_cursor;
END;

This example uses a standard PL/SQL loop with an EXIT clause to end the loop
when there are no more rows in the cursor to process.

PostgreSQL
PostgreSQL supports both forward- and backward-scrolling cursors with a superset
of modes compared to the SQL standard. The syntax for FETCH in PostgreSQL is:

FETCH { FORWARD [{ALL | int}] | BACKWARD [{ALL | int}] |
 ABSOLUTE int | RELATIVE int | int | ALL | NEXT | PRIOR |
 FIRST | LAST }
{ IN | FROM } cursor_name
[INTO :variable1[, ...]]

where:

FORWARD [{ALL | int}]

Fetches the next row (same as NEXT), if there are no other keywords specified.
This is the default if no other mode is defined. FORWARD ALL fetches all remain‐
ing rows in the cursor and positions the cursor after the last remaining row,
while FORWARD int returns all rows up to int rows forward (or the current row
if int is 0) and places the cursor after the last row fetched.

BACKWARD [{ALL | int}]
Fetches the prior row, if no other keywords are specified. BACKWARD ALL fetches
all prior rows in the cursor and positions the cursor before the first row, while
BACKWARD int returns all rows up to int rows back (or the current row if int is
0) and places the cursor before the last row fetched.

ABSOLUTE int

Fetches the row occurring at position int.

RELATIVE int

Fetches the int next rows (if positive) or int prior rows (if negative).

SQL Command Reference | 725

Sto
ring

 Lo
g

ic
in the

D
atab

ase

int

Indicates how many records to scroll forward (if positive) or backward (if
negative). int is a signed integer.

ALL

Retrieves all records remaining in the cursor.

NEXT

Retrieves the next single record.

PRIOR

Retrieves the previous single record.

IN | FROM cursor_name

Specifies the previously declared and opened cursor from which data will be
retrieved.

INTO variable

Assigns a cursor value to a specific variable. As with SQL standard cursors, the
values retrieved by the cursor and the variables must match in number, data
type, and order.

PostgreSQL cursors must be used with transactions explicitly declared using BEGIN
and must be closed with COMMIT or ROLLBACK.

The following PostgreSQL statement retrieves five records from the employee table
and displays them:

FETCH FORWARD 5 IN employee_cursor;

PostgreSQL also supports a separate command, MOVE, to move to a specific cursor
position. It differs from FETCH only by not returning values into variables:

MOVE { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }
 { [int | ALL | NEXT | PRIOR] }
{ IN | FROM } cursor_name

For example, the following code declares a cursor, skips forward five records, and
then returns the values in the sixth record:

BEGIN WORK;
 DECLARE employee_cursor CURSOR FOR SELECT * FROM employee;
 MOVE FORWARD 5 IN employee_cursor;
 FETCH 1 IN employee_cursor;
 CLOSE employee_cursor;
COMMIT WORK;

The preceding code will return a single row from the employee_cursor result set.

SQL Server
SQL Server supports a variation of FETCH that is very close to the SQL standard:

726 | Chapter 9: Storing Logic in the Database

FETCH [{ NEXT | PRIOR | FIRST | LAST |
 { ABSOLUTE int | RELATIVE int } }]
[FROM] [GLOBAL] cursor_name
[INTO @variable1[, ...]]

The differences between SQL Server’s implementation and the SQL standard are
very small. First, SQL Server allows you to use variables in place of the int and
cursor_name values. Second, SQL Server allows the declaration and use of GLOBAL
cursors that can be accessed by any user or session, not just the ones that created
them.

There are some rules that apply to how you use the FETCH command based upon
how you issued the DECLARE CURSOR command:

• When you declare a SCROLL SQL standard cursor, all FETCH options are sup‐•
ported. In all other SQL standard cursors, NEXT is the only option supported.
(There is also an alternative Transact-SQL-style DECLARE CURSOR statement.)

• DYNAMIC SCROLL cursors support all FETCH options except ABSOLUTE.•

• FORWARD_ONLY and FAST_FORWARD cursors support only FETCH NEXT.•

• KEYSET and STATIC cursors support all FETCH options.•

SQL Server also requires a DEALLOCATE statement, in addition
to CLOSE, to release memory consumed by a cursor.

Here’s a full example that declares and opens a cursor, initiates several fetches, and
then finally closes and deallocates the cursor:

DECLARE @vc_lname VARCHAR(30), @vc_fname VARCHAR(30), @i_emp_id CHAR(5)
DECLARE employee_cursor SCROLL CURSOR FOR
 SELECT lname, fname, emp_id
 FROM employee
 WHERE hire_date <= 'FEB-14-2004'
OPEN employee_cursor
-- Fetch the last row in the cursor.
FETCH LAST FROM employee_cursor
-- Fetch the row immediately prior to the current row in the cursor.
FETCH PRIOR FROM employee_cursor
-- Fetch the fifth row in the cursor.
FETCH ABSOLUTE 5 FROM employee_cursor
-- Fetch the row that is two rows after the current row.
FETCH RELATIVE 2 FROM employee_cursor
-- Fetch values eight rows prior to the current row into variables.
FETCH RELATIVE −8 FROM employee_cursor
INTO @vc_lname, @vc_fname, @i_emp_id

SQL Command Reference | 727

Sto
ring

 Lo
g

ic
in the

D
atab

ase

CLOSE employee_cursor
DEALLOCATE employee_cursor
GO

Remember that in SQL Server you must not only CLOSE the cursor, but also
DEALLOCATE it. In some rare cases, you might wish to reopen a closed cursor.
You can reuse any cursor that you have closed but not deallocated. The cursor is
permanently destroyed only when it is deallocated.

See also

• CLOSE•

• DECLARE CURSOR•

• OPEN•

• ORDER BY in Chapter 4•

OPEN Statement (Cursors)
The OPEN statement is one of four commands used in cursor processing, along with
DECLARE, FETCH, and CLOSE. Cursors allow you to process queries one row at a time,
rather than as a complete set. The OPEN statement opens a preexisting cursor created
with the DECLARE CURSOR statement.

Cursors are especially important in relational databases because databases are set-
based, while most client-centric programming languages are row-based. Cursors
allow programmers and databases to perform operations a single row at a time,
while the default behavior of a relational database is to operate on a whole set of
records.

Platform Command

MySQL Supported

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with variations

SQL standard syntax
OPEN cursor_name

Keywords

OPEN cursor_name

Identifies and opens a previously defined cursor created with the DECLARE
CURSOR command.

Rules at a glance
At the highest level, a cursor must be:

728 | Chapter 9: Storing Logic in the Database

1. Created using DECLARE1.

2. Opened using OPEN2.

3. Operated against using FETCH3.

4. Dismissed using CLOSE4.

By following these steps, you create a result set similar to that generated by a SELECT
statement, except that you can operate against each individual row within the result
set.

The following generic SQL example opens a cursor and fetches the first and last
names of all of the authors from the authors table:

DECLARE employee_cursor CURSOR FOR
 SELECT au_lname, au_fname
 FROM pubs.dbo.authors
 WHERE lname LIKE 'K%'
OPEN employee_cursor
FETCH NEXT FROM employee_cursor
BEGIN
 FETCH NEXT FROM employee_cursor
END
CLOSE employee_cursor

Programming tips and gotchas
The most common error encountered with the OPEN statement is failing to close the
cursor properly. Although the OPEN statement is detailed in isolation here, it should
always be managed as a group with the DECLARE, FETCH, and CLOSE statements. You
won’t get an error message if you fail to close a cursor, but the cursor may continue
to hold locks and consume memory and other resources on the server as long as it
is open. If you forget to close your cursors, you could end up creating a problem
similar to a memory leak. Each cursor consumes memory until it is closed, so
even if you’re no longer using the cursors, they’re still taking up memory that the
database server might otherwise be using elsewhere. It’s worth taking a little extra
time to make sure that every declared and opened cursor is eventually closed.

Cursors are often used in stored procedures and in batches of procedural code.
They are useful when you need to perform actions on individual rows rather than
on entire sets of data at a time. But because cursors operate on individual rows
and not on sets of data, they are often much slower than other means of accessing
data. Make sure that you analyze your approach carefully. Many challenges, such as
a convoluted DELETE operation or a very complex UPDATE, can be solved by using
clever WHERE and JOIN clauses instead of cursors.

MySQL
MySQL supports the SQL standard.

SQL Command Reference | 729

Sto
ring

 Lo
g

ic
in the

D
atab

ase

Oracle
Oracle fully supports the SQL standard, and it allows parameters to be passed
directly in to the cursor when it is opened. Do this using the following format:

OPEN cursor_name [parameter1[, ...]]

PostgreSQL
PostgreSQL supports the SQL standard. Additionally, it implicitly opens a cursor
when it is created using the DECLARE statement.

SQL Server
In addition to the standard OPEN statement, SQL Server allows “global” cursors
using the following syntax:

OPEN [GLOBAL] cursor_name

GLOBAL cursors can be referenced by multiple users, even if they have not explicitly
been assigned permissions to the cursor. If this keyword is omitted, a local cursor is
assumed.

SQL Server allows you to declare several different kinds of cursors. If a cursor
is INSENSITIVE or STATIC, the OPEN statement creates a temporary table to hold
the cursor result set. Similarly, if the cursor is declared with the KEYSET option, a
temporary table is automatically created to hold the keyset.

See also

• CLOSE•

• DECLARE CURSOR•

• FETCH•

• SELECT in Chapter 4•

RETURN Statement
The RETURN statement terminates processing within a SQL-invoked function (as
opposed to a host-invoked function) or stored procedure and returns the routine’s
result value.

Some vendors use RETURNS instead of RETURN (the SQL
standard).

Platform Command

MySQL Supported, with limitations

Oracle Supported

730 | Chapter 9: Storing Logic in the Database

Platform Command

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL syntax
RETURN return_parameter_value | NULL

Keywords

return_parameter_value

Represents a value returned by the routine code. A wide variety of value types
are possible.

NULL

Terminates the function without returning an actual value.

Rules at a glance
Use the RETURN statement within procedural code to terminate processing. For
example, you might create a user-defined function that takes a complex and
often-used CASE expression and, when passed a parameter, returns a single, easy-to-
understand expression value.

Programming tips and gotchas
Although the RETURN statement is categorized as a separate command within SQL, it
is deeply intertwined with the CREATE FUNCTION and CREATE PROCEDURE statements.
Consequently, the RETURN statement is almost always found embedded in one
of these other commands. Check “CREATE/ALTER FUNCTION/PROCEDURE
Statement” on page 661 or your vendor documentation to get a more complete
understanding of each platform’s implementation of RETURN within the context of
these statements.

MySQL
MySQL supports the SQL standard syntax for RETURN, excluding the NULL keyword:

RETURN return_parameter_value

For example:

DELIMITER $$
CREATE FUNCTION metric_volume(length decimal(4,1),
 width decimal(4,1),
 height decimal(4,1)
) RETURNS DECIMAL
BEGIN
 RETURN length * width * height;
END;

SQL Command Reference | 731

Sto
ring

 Lo
g

ic
in the

D
atab

ase

$$
DELIMITER ;

Oracle
Oracle supports the SQL standard syntax for RETURN, excluding the NULL keyword.
(Oracle does support the return of a NULL value, just not using the SQL stan‐
dard syntax.) Oracle allows the RETURN clause only in user-defined functions and
user-defined operators. The returned value cannot be a LONG, LONG RAW, or REF
data type in the CREATE OPERATOR statement. PL/SQL user-defined functions fully
support Boolean data types internally, but you cannot invoke a Boolean UDF from
a SQL statement. To hold Boolean values, use INT (0 or 1) or VARCHAR2 ('TRUE' or
'FALSE').

The following example creates a function that returns the value stored in the
proj_rev variable to the calling session:

CREATE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0) -
 SUM(DECODE(action,'STARTED',amount,0) +
 SUM(DECODE(action,'PAYMENT',amount,0)
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

PostgreSQL
PostgreSQL supports the SQL standard syntax for RETURN and several variations of
it:

RETURN
RETURN return_parameter_value
RETURN QUERY (sql_statement)
RETURN QUERY EXECUTE command-sql-string [USING expression[, ...]]
RETURN NEXT

PostgreSQL allows you to define user-defined functions in various languages (see
the PostgreSQL section in “CREATE/ALTER FUNCTION/PROCEDURE State‐
ment” on page 661 for details. The common nonprocedural SQL function type
does not have a RETURN clause within its body, so we will limit our discussion to the
use of RETURN in PL/pgSQL functions. (Stored procedures do not support RETURN
of a value, but you can use RETURN without any value to exit the stored procedure.
Any variables that need to be output by a stored procedure must be done using OUT
parameters.) The basic form looks as follows:

732 | Chapter 9: Storing Logic in the Database

CREATE FUNCTION metric_volume -- Input dimensions in centimeters
 (length decimal(4,1),
 width decimal(4,1),
 height decimal(4,1))
RETURNS decimal -- Cubic centimeters
AS
$$
BEGIN
 RETURN (length * width * height);
END;
$$ LANGUAGE plpgsql;

For set-returning functions, you may use RETURN QUERY, RETURN QUERY EXECUTE, or
RETURN NEXT.

RETURN NEXT is used if you need to do additional processing to each row or need
to skip a row before returning the answer. It returns each row. RETURN QUERY, on
the other hand, returns the results of a query. RETURN QUERY EXECUTE is similar
but takes a quoted query instead of an unquoted query. It is often used if you are
building the query condition based on other inputs.

Here is an example that uses RETURN QUERY:

CREATE FUNCTION pets
 (num_pets integer)
RETURNS SETOF text
AS
$$
BEGIN
 RETURN QUERY
 (SELECT name::text
 FROM unnest(ARRAY['cat','dog', 'fish', 'raccoon', 'ferret'])
 AS f(name) LIMIT num_pets);
END;
$$ LANGUAGE plpgsql;

SQL Server
SQL Server supports the RETURN statement with this syntax:

RETURN [return_integer_value]

The RETURN command is typically used in stored procedures or user-defined func‐
tions. It causes an immediate and complete exit from the program and, optionally,
returns an integer value upon exit. SQL Server procedures implicitly return a zero
value if no RETURN clause is supplied in the procedure definition. Any commands
that follow the RETURN statement are ignored.

The RETURN statement in the following function returns an integer representing the
calculated value:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters
 (@length decimal(4,1),

SQL Command Reference | 733

Sto
ring

 Lo
g

ic
in the

D
atab

ase

 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic centimeters
AS
BEGIN
 RETURN (@length * @width * @height)
END
GO

This example creates a function that returns a calculated value—the metric volume
of a space—to the calling session.

See also

• CREATE/ALTER FUNCTION/PROCEDURE

• CREATE/ALTER/DROP TRIGGER

Platform-Specific Extensions
This section covers programming features specific to each database platform that
are not covered by the SQL standard. This is not an exhaustive list of features, but
ones we think you might find useful on a day-to-day basis.

MySQL and MariaDB
MySQL and MariaDB provide a few useful extensions to the SQL standard. SQL
modes are a unique feature that affect the SQL syntax the server supports and the
data validation checks it performs. MariaDB also supports Oracle-style packages,
which group together related functions and database objects.

SQL_MODE. Both MySQL and MariaDB have a setting called SQL_MODE that can be
set at the session level or globally, using the sql-mode option or sql_mode system
variable. This setting controls how the databases process SQL.

You can check the current session-level and global settings using the following code:

SELECT @@SQL_MODE, @@GLOBAL.SQL_MODE;

MySQL’s SQL_MODE options are a subset of what MariaDB offers. Both have the
following notable offerings:

ANSI_QUOTES

Causes " to be treated as an identifier quote character, like `, not as a string
quote character.

ANSI

Causes syntax and behavior to be more in line with the SQL standard. This is
shorthand for the following comma-separated list of modes: REAL_AS_FLOAT,
PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

734 | Chapter 9: Storing Logic in the Database

https://oreil.ly/vtxcF
https://oreil.ly/MFkij

TRADITIONAL

Causes the database to give an error instead of a warning (more traditional
database behavior) when invalid data is inserted into a column, such as a
date like '0000-00-00' or text that is too long for a field. This is shorthand
for specifying STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_ENGINE_SUBSTITUTION.

The most notable mode options MariaDB offers that MySQL doesn’t are for imper‐
sonating other databases (including their stored routines behavior):

ORACLE

Allows the server to understand a subset of Oracle’s PL/SQL language and
supports Oracle’s “packages” feature..

MSSQL

Supports SQL Server’s idiosyncratic use of [] as well as the SQL standard ""
and `` for quoting identifiers. In version 10.4.5 and later, it also supports a
limited subset of SQL Server’s Transact-SQL language.

MariaDB packages. As mentioned in the previous section, MariaDB supports
Oracle-style stored packages and a subset of the PL/SQL dialect when
SQL_MODE=ORACLE is enabled. (This mode is not available in MySQL).

MariaDB packages can be used to manage related functions and objects as a single
unit. A package is defined with two statements: CREATE PACKAGE creates the specifi‐
cation for the package and declares the public routines, and CREATE PACKAGE BODY
creates the body for a previously specified stored package, including public and
private routines, private variables, and initialization code. The syntax of the CREATE
PACKAGE command is as follows:

CREATE [OR REPLACE]
 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]
 PACKAGE [IF NOT EXISTS]
 [db_name.]package_name
 [package_characteristic ...]
{ AS | IS }
 [package_specification_element ...]
END [package_name]

package_characteristic:
 COMMENT 'string' | SQL SECURITY { DEFINER | INVOKER }
package_specification_element:
 FUNCTION_SYM package_specification_function ; |
 PROCEDURE_SYM package_specification_procedure ;
package_specification_function:
 func_name [(func_param[, func_param]...)]
 RETURNS func_return_type
 [package_routine_characteristic...]
package_specification_procedure:
 proc_name [(proc_param [, proc_param]...)]

SQL Command Reference | 735

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/2wAex

 [package_routine_characteristic...]
func_return_type:
 type
func_param:
 param_name [IN | OUT | INOUT | IN OUT] type
proc_param:
 param_name [IN | OUT | INOUT | IN OUT] type
type:
 Any valid MariaDB explicit or anchored data type
package_routine_characteristic:
 COMMENT 'string' | LANGUAGE SQL |
 { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA } |
 SQL SECURITY { DEFINER | INVOKER }

The syntax of the CREATE PACKAGE BODY command is identical, except that you
specify PACKAGE BODY instead of just PACKAGE. The abridged version is:

CREATE PACKAGE BODY package_name AS
[BEGIN
 ⋮
END [name];

Here is an example of a MariaDB package definition:

SET sql_mode=ORACLE;
DELIMITER $$
CREATE PACKAGE nutshell AS
FUNCTION metric_volume(length NUMBER,
 width NUMBER,
 height NUMBER)
RETURN NUMBER;
END nutshell;
$$

CREATE PACKAGE BODY nutshell AS
FUNCTION metric_volume
 (length NUMBER,
 width NUMBER,
 height NUMBER)
RETURN NUMBER IS
BEGIN
 RETURN (length * width * height);
END metric_volume;
END nutshell;
$$
DELIMITER ;

Oracle
Oracle supports numerous programming constructs not defined in the SQL stan‐
dard. In this section we’ll cover some of Oracle’s unique features.

736 | Chapter 9: Storing Logic in the Database

SQL macros. SQL macros, added in Oracle 19c (version 19.6), are a new structure
similar in concept to what PostgreSQL and SQL Server refer to as inline functions.
You can define SCALAR macros and TABLE macros, and use them within SQL state‐
ments. The main disadvantage with SQL macros is that they can’t be used in regular
stored procedures and functions, like PostgreSQL and SQL Server inline functions
can; however, their performance is much better than that of regular PL/SQL func‐
tions because the function definition is folded into the query definition and thus
does not need to be called per row. SQL macros can be called within other SQL
macros. You saw examples of their use in “CREATE/ALTER FUNCTION/PROCE‐
DURE Statement” on page 661. One additional benefit of TABLE SQL macros is that,
unlike other table functions, you do not need to predefine the structure of each row,
so there’s no need to define a companion table type.

Packages. A package in Oracle is a collection of related program objects stored
together in the database. Packages can include procedures, functions, variables,
constants, cursors, and exceptions. Oracle also allows for including external C and
Java libraries in packages.

A package is defined with two statements. CREATE PACKAGE declares the publicly
exposed types, items, variables, and subprograms:

CREATE [OR REPLACE] [{EDITIONABLE | NONEDITIONABLE}]
PACKAGE name [...] {IS | AS}
<package_item_list>
END [name];

CREATE PACKAGE BODY defines these objects along with any private program objects
and provides any required initialization code:

CREATE [OR REPLACE] [{EDITIONABLE | NONEDITIONABLE}]
PACKAGE BODY name {IS | AS}
<declare_section>
[<initialize_section>]
END [name];

In addition to providing the ability to create packages, Oracle ships with quite a
few packages; for example, the Spatial Data Objects packages (which have names
prefixed with SDO_) include numerous functions and definitions of types for doing
geospatial work.

Here is an example of a package definition:

CREATE PACKAGE nutshell AS
FUNCTION metric_volume(length NUMBER,
 width NUMBER,
 height NUMBER)
RETURN NUMBER;
END nutshell;
/

SQL Command Reference | 737

Sto
ring

 Lo
g

ic
in the

D
atab

ase

CREATE PACKAGE BODY nutshell AS
FUNCTION metric_volume
 (length NUMBER,
 width NUMBER,
 height NUMBER)
RETURN NUMBER IS
BEGIN
 RETURN (length * width * height);
END metric_volume;
END nutshell;
/

You can reference package functions and other content by prefixing them with the
package name. For example to call the metric_volume function inside the package
we just defined, you would do:

SELECT nutshell.metric_volume(10.2,5,4) FROM dual;

Pipelined table functions. Pipelined table functions are set-returning functions
that allow for termination and partial return before the whole set of data is returned.
The main benefits of a pipeline function over a non-pipelined function are:

• Memory does not need to be allocated to hold the full dataset before sending it.•
• The output of the function can be used immediately, before piping of all the•

records is complete.
• The function is parallelizable.•

These features generally result in reduced memory consumption and faster
performance.

There are a number of restrictions on how you can use pipe‐
lined table functions, detailed in the documentation.

A pipeline function, unlike other set-returning functions, outputs data using the
PIPE statement. Here is an example of a pipelined function that returns a table
of sequential integers based on the start and end range you provide. All pipelined
functions return a collection type. You should define the collection type before
defining the function:

CREATE TYPE iset_t IS TABLE OF INTEGER;
/
CREATE FUNCTION number_range(i_start INTEGER,
 i_end INTEGER) RETURN iset_t PIPELINED IS
 BEGIN
 FOR i IN i_start..i_end LOOP
 PIPE ROW(i);

738 | Chapter 9: Storing Logic in the Database

https://oreil.ly/Hr9rr

 END LOOP;
 RETURN;
 END number_range;
/

In versions of Oracle prior to 18c, you needed to wrap the function in a TABLE
function call, as follows:

SELECT * FROM TABLE(number_range(1,100));

In versions of Oracle from 18c on you can skip the TABLE call:

SELECT * FROM number_range(1,100);

To really experience the benefit of a pipelined function you need to run a query that
will force termination early, such as the following one. Note that our range is huge,
but the pipelined function will terminate once it has output the first 10 rows and
does not need to allocate memory for 100,000,000 entries:

SELECT *
FROM number_range(1,100000000)
FETCH FIRST 10 ROWS ONLY;

PostgreSQL
PostgreSQL has several features for managing logic beyond the SQL stan‐
dard–defined stored procedures, functions, and triggers. We’ll cover the key ones
here.

Dollar quoting. PostgreSQL has a feature for escaping strings called dollar quoting.
A dollar-quoted string follows this convention:

$something$
body
$something$

where the quoting begins with some set of characters enclosed in $$ and ends with
the same set of characters in $$. You’ll find many functions written in dollar quotes.

Dollar-quoted strings can encase other dollar-quoted strings. The following is an
example of a function that uses dollar quotes to define a function body and then to
specify the output. Note that you should not use the same variable string for both
the inner and outer names. First, here’s what it looks like without dollar quoting:

CREATE OR REPLACE FUNCTION hello_dollars()
RETURNS text AS
'SELECT ''Charlie''''s dog stays at John''''s house'';'
language sql;

And here’s the same example with dollar quoting:

CREATE OR REPLACE FUNCTION hello_dollars()
RETURNS text AS
$body$

SQL Command Reference | 739

Sto
ring

 Lo
g

ic
in the

D
atab

ase

SELECT $inner$Charlie's dog stays at John's house$inner$;
$body$ language sql;

In both cases, the result is:

Charlie's dog stays at John's house

Inline functions. An inline function is one whose definition is completely folded
into the overall query definition. A function cannot be inlined if any of these
conditions are true:

• The function is not written in SQL.•

• The function is marked as SECURITY DEFINER.•

• The function is marked as STRICT (STRICT functions are generally not inlinable•
except under very special circumstances beyond the scope of this book).

Inline functions have a number of benefits over non-inlined ones. Since the query
planner makes no distinction between an inline SQL function and the rest of a
SQL query, it can see if the function is using tables already in the query, and it can
utilize indexes. In addition, these functions are not called per row since their defini‐
tion is collapsed into the query definition. This makes them generally faster. The
formatted_name and stores_titles_sales functions in “CREATE/ALTER FUNC‐
TION/PROCEDURE Statement” on page 661 are examples of inlined functions.

PostgreSQL has no specific keyword to designate a function as
inline.

Extensions. Much of the extensibility of PostgreSQL is thanks to the feature called
extensions. Extensions are a mechanism of packaging a bundle of related objects so
they can be easily installed or dropped in a single step. Extensions can contain more
than just functions and procedures; they can contain aggregates, tables, types, views,
domains, language handlers, foreign data wrappers, full-text search dictionaries,
and pretty much any other type of object that PostgreSQL supports. Extensions
include a number of files: usually a single binary library, one or more SQL scripts
that contain logic to install the objects or upgrade existing objects in the extension,
and a control file ending with file extension .control. The control file denotes the
name of the extension and the module library (if any), and the version of the
extension. (An extension need not have a library and can consist of just SQL
and PL/pgSQL or other language functions and statements.) These files are then
deployed into the PostgreSQL install share/extension folder.

740 | Chapter 9: Storing Logic in the Database

If you want to create your own extensions, refer to the docu‐
mentation for details.

Many popular extensions are shipped separately from PostgreSQL. For example,
one of the most popular and biggest extensions is the PostGIS geospatial extension,
which has over 800 functions; it introduces new types for geospatial work and fol‐
lows the SQL/MM Part 3 standard. PostGIS is packaged separately from PostgreSQL
but generally available via any PostgreSQL Database as a Service (DBaaS) and from
most repositories that include PostgreSQL as an offering.

There are also many small extensions that are included in the PostgreSQL source
code, with binaries and extension files preinstalled. Most of these are not enabled
by default, with the exception of the plpgsql extension. You can find help for using
these included extensions in Appendix F of the vendor documentation.

To use an extension, you need to install whatever OS dependencies it relies on.
Each extension then needs to be enabled in each database you use it in. It’s standard
practice to install extensions in specific dedicated schemas. For example, you can
create a schema called contrib and install the extensions in that schema; this is a
common choice for the name because PostgreSQL’s packaged extensions are located
in the contrib folder of the PostgreSQL source tarball.

In addition, you may want to make it so that users do not have to prefix the
functions with the schema name when using them. You can allow this by revising
the database search_path to include the schemas the extensions are installed in.

The following code installs two popular included extensions for text pattern match‐
ing, fuzzystrmatch and pg_trgm:

CREATE SCHEMA contrib;
CREATE EXTENSION IF NOT EXISTS fuzzystrmatch SCHEMA contrib;
CREATE EXTENSION IF NOT EXISTS pg_trgm SCHEMA contrib;
ALTER DATABASE nutshell SET search_path=public,contrib;

The fuzzystrmatch extension includes the soundex function, which is often pre‐
installed in other vendor databases, as well as the levenstein and dmetaphone
functions.

The pg_trgm extension contains additional functions for text pattern matching and
new index classes. It is often used to make it possible for case-insensitive searches
like first_name ILIKE '%John%' and for regular expressions to take advantage of
indexes.

You use extension functions just as you would any other functions you create.
The following example uses the soundex function that is part of the fuzzystrmatch
extension:

SQL Command Reference | 741

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/kddre
https://oreil.ly/kddre
https://postgis.net
https://oreil.ly/A47IY

SELECT contrib.soundex('Hello There') As soundex,
 contrib.dmetaphone('Hello There') AS dmetaphone

Extensions can be upgraded using:

ALTER EXTENSION name_of_extension UPDATE;

To upgrade an extension to a specific version, use the following command:

ALTER EXTENSION name_of_extension UPDATE TO "version_num";

DO. PostgreSQL supports a SQL command called DO that allows running code
in any scripted language that is installed in the database (DO is not supported for
the SQL language because any code written is naturally assumed to be SQL unless
otherwise stated). A DO command cannot return a value, so it’s usually reserved for
echoing information or doing DML work. Think of DO as an anonymous stored
procedure that disappears after it has finished its work. Here is an example of
running PL/pgSQL code in a DO block:

DO $$
BEGIN
RAISE NOTICE 'Hello, it is: %s', clock_timestamp();
END
$$ LANGUAGE plpgsql;

SQL Server
SQL Server extensions to the SQL standard include support for performance-
optimized inline functions and CLR functions.

Inline functions. An inline function is one in which the definition of the function
is completely folded into the overall query definition. SQL Server does not require
you mark a scalar function as INLINE = ON to make it inlinable; however, if you do,
it will throw an error if the scalar function is not inlinable. The requirements for
inlining are as follows:

• The function must be a Transact-SQL function.•
• The function must not contain any procedural logic, such as looping of•

variables.

Set-returning functions can also be inlined, as long as they are defined with a single
SELECT statement. Because their definition is collapsed into the query definition,
inline functions are not called per row. This makes them generally faster.

Assemblies. Aside from Transact-SQL stored procedures and functions, SQL
Server allows for including more complex logic by utilizing external .NET libraries.
These libraries in turn often reference other .NET libraries. For these to work,
the supported .NET Framework and whatever extra libraries referenced need to be
installed on the server.

742 | Chapter 9: Storing Logic in the Database

Assemblies are .NET libraries that are registered for use in SQL Server using the
vendor-specific CREATE ASSEMBLY DDL command. Once an assembly is registered,
it can be bound to a stored procedure, stored function, or aggregate function. Such
functions are often referred to as common language runtime (CLR) functions; refer
to the documentation for more information.

By default, CLR support is not enabled; you can enable it as needed by setting
the clr enabled configuration option to 1. You can also set the clr strict security
configuration option, which controls whether unsigned assemblies can be registered
or not. Here is an example that registers a library and binds it:

EXEC sp_configure 'show advanced options',1;
GO
EXEC sp_configure 'clr enabled',1;
GO
sp_configure 'clr strict security',0
RECONFIGURE;
GO
CREATE ASSEMBLY CLRRegex from 'C:\Regexp\CLRRegex.dll'
WITH PERMISSION_SET = SAFE
GO

EXEC sp_configure 'clr strict security',1;

RECONFIGURE;
GO

Once you have an assembly registered, you can link to functions in it using the
following syntax:

CREATE FUNCTION
CLRRegexReplace(@pattern NVARCHAR(MAX),
 @replaceString NVARCHAR(MAX),
 @subjectString NVARCHAR(MAX),
 @isIgnoreCase bit, @isMultiline bit)
RETURNS NVARCHAR(MAX)
AS EXTERNAL NAME CLRRegex.CLRRegex.RegexReplace;
GO

Note that CLR support is never available in SQL Server Azure.

See also

• CREATE/ALTER FUNCTION/PROCEDURE•

SQL Command Reference | 743

Sto
ring

 Lo
g

ic
in the

D
atab

ase

https://oreil.ly/n736K

10
Flexible and Schemaless

One of the strengths of relational databases is their ability to enforce data structures.
You constrain data in a relational database by defining tables and defining columns
within those tables that enforce basic data types like strings, dates, and numbers,
and then define relationships between tables. SQL, as the lingua franca of relational
databases, is by extension a tool for transforming this well-structured relatable data
into a format digestible by applications. In the early days of relational databases,
data types were simple and people looked to relational databases for structure. This
started to change with the advent of SQL:1999. The big leap in SQL:1999 was that
types need not be just primitives, but could also be composites of primitives. This
allowed table columns to store arrays, nested tables, and even user-defined types.
Specialized data types sprung up to support networks, encryption, full text search,
geospatial applications, and much more.

A relational database is not the only way to organize data, however. Here are some
alternatives to the relational model, often referred to as NoSQL or not-only-SQL
databases:

Key/value stores
Data is stored as a set of key/value pairs, where the key acts as a unique
identifier. Support is often limited to retrieval, insertion, modification, and
deletion.

Document stores
This is similar to a filesystem. Each document (record) is a complex object in
its own right. The storage format is often proprietary, and there are few or no
relationships between documents.

745

Graph databases
This is a straightforward method for organizing and storing hierarchical data
or network data—think binary trees, schematics, and street maps. Data lives in
nodes; edges connect (relate) nodes.

Wide-column stores
Data is stored in columns and rows, but columns and names of columns can
vary across rows.

What most NoSQL databases have in common is a lack of support for the stan‐
dard beyond SQL:1992. They also sacrifice data consistency and data integrity in
exchange for speedier operations and scalability. Conversely, to address some of
the shortcomings pointed out by the NoSQL movement, the SQL standard has
gradually added support for non-relational data types such as XML/XPath, JSON
Path, and JSON.

Graph Databases
The main benefit of graph databases is the ability to query highly related data
without the need of many joins. The database language standards committees are
working on two graph language specifications, which share a common pattern
matching language for queries:

• SQL Property Graph Queries (SQL/PGQ) allows you to create property graph•
views on top of existing SQL tables and query those property graph views in a
SQL FROM clause

• The Graph Query Language (GQL) is a full database language to create graphs•
and insert, update, delete, and query graph data.

The details of GQL, SQL/PGQ, and graph databases are beyond the scope of this
book.

To learn more about the graph pattern matching language, take a look at the paper
“Graph Pattern Matching in GQL and SQL/PGQ” by Alin Deutsch et al. (at the time
of writing, this is a not-yet-reviewed version of a paper submitted to a SIGMOD
conference).

In this chapter we’ll cover the JSON and XML support found in MySQL, MariaDB,
Oracle, PostgreSQL, and SQL Server. XML has been overtaken by JSON in recent
years, but it is still widely used, and it allows for stricter definition and rules than
JSON.

Much of the popularity of JSON is driven by the ubiquity of JavaScript as the
language of the web. Application developers (and pretty much anyone supervising
developers) want fast turnaround and rapid prototyping. This often means storing
the data exactly as the application produces it, without establishing a well-thought-
out relational structure in advance.

746 | Chapter 10: Flexible and Schemaless

https://oreil.ly/S0gHs

Why JSON?
When JSON first arrived on the scene in the early 2000s, many database practi‐
tioners wondered if relational databases should accommodate what is clearly a
non-relational data structure. The purists, wanting to preserve the sanctity of
relations, opined that JSON could be relegated to NoSQL databases. The more
moderate faction held that there were flaws with this approach. A majority of the
NoSQL offerings sacrificed database essentials such as transactions, consistency, and
integrity. What’s more, they did not share common protocols; rather than being
united in their rebellion against the totalitarianism of SQL, they had splintered.
NoSQL had no standards, and there was no common language that could be used
across all NoSQL databases. Thus, letting NoSQL handle JSON begged the question
of which NoSQL, which soon led to the existential question of “What is NoSQL?”

Soon, the SQL community embraced the idea that perhaps the rules could be bent
to accommodate non-relational data types. XML had crept into the SQL standard,
and while storing JSON in a relational database might feel icky, leaving it to the
Wild West of NoSQL was certainly worse. So, somewhat reluctantly, SQL welcomed
JSON into the fold.

As time went on, relational databases started getting really good at storing JSON,
encouraging the SQL standard to evolve to work with it. In their most recent
versions, all the platforms discussed in this book have functions for querying JSON
data. You now have the many benefits of a relational system coupled with the
flexibility of a non-relational subsystem.

So what role can JSON play as a data type in SQL? Under what circumstances might
its flexible structure be helpful in an otherwise rows-and-columns architecture? All
the reasons for adopting JSON revolved around the ability to store heterogeneous
data. Tables in a relational database demand homogeneity. All data entering the
table must have a predetermined number of attributes, manifested as columns; no
deviation allowed. While this rigidity results in impeccable organization of the data,
it means tables are incapable of handling data with variable attributes.

Here’s a crude example: let’s say you’re designing a database to store survey data.
Each department in the organization wishes to pose its own set of survey questions
to the customers. Some departments have more questions than others, and they
want to be able to adjust those questions (removing some and adding others) over
time. An elementary survey table would demand that each question occupy a single
column. If each department developed its own set of questions, the survey table
could easily mushroom into hundreds of columns. And every time any department
wanted to add a new question or drop a question, the structure of the table would
have to undergo modification.

Further, let’s say that each department has its own customer base; customers are
rarely served by more than one department. The organization could have a fine arts
department and a heavy machinery department, and a reasonable prediction would
be that customers who buy art supplies are not the same as customers who buy tun‐
nel borers. A monolithic survey table design would mean that NULL values would

Why JSON? | 747

Flexib
le and

Schem
aless

have to be stored for a huge number of questions for all customers. And finally, if we
assume that departments are encouraged to create their survey questions without
worrying about whether the answers will be used later, it follows that many of the
questions and answers may not end up ever being considered. Under these fluid
circumstances, maintaining a rigorous rows-and-columns structure feels wasteful,
not to mention the insanity of constantly altering the columns. The downside of the
one-answer-per-row relational model is that it adds complexity to the programming
required to query and edit a single user survey. If you instead stored the questions
and answers for each survey as columns and rows in related tables, you could allow
for growth and avoid including unneeded columns in one monolithic table.

Here’s where JSON steps in. Instead of hundreds of columns devoted to all the
possible questions that have ever been asked in the survey, a JSON column only
needs to store the questions posed to a given customer (and store only responses
with answers). The JSON column does not require a predetermined schema that
each row must abide by. A survey filled out 10 years ago by an artist could be
completely different from a survey filled out yesterday by a civil engineer.

So how do we introduce a JSON column, and what support functions are available
to manage the JSON data?

Exporting Relational Data as JSON
Even if you are a strong opponent of storing JSON in a relational database, you
might still find utility in exporting relational data in JSON format. By doing this,
you are using JSON as an interchange format to interact with other systems. The
JSON functions introduced in SQL:2016 help you deal with this use case. Similarly
there are functions that will take a JSON document as input and expand it into a
fully structured flat table.

For the examples in this chapter for demonstrating exporting relational data into
JSON and XML format, we will be using this example table (as usual, in the case of
MariaDB and MySQL, we will refer only to MySQL except in cases where MariaDB
deviates from MySQL behavior):

/** Oracle might require setting of the date format **/
ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD';

/** On all platforms **/
CREATE TABLE friends(id integer, name_first varchar(50),
 name_last varchar(50), date_birth date);

INSERT INTO friends(id, name_first, name_last, date_birth)
VALUES (1, 'John', 'Smith', '1935-01-01');

INSERT INTO friends(id, name_first, name_last, date_birth)
VALUES (2, 'Jane', 'Doe', '1937-01-01');

748 | Chapter 10: Flexible and Schemaless

JSON Support
JSON support was added to Part 2, SQL/Foundation, in the SQL:2016 standard,
but several databases had already implemented their own support by then. You
will find equivalent ways of querying JSON data, but under different names, in
these databases. We’ll try to highlight these differences in our discussion of the SQL
standard JSON functions, and show how the various platforms deviate from or go
beyond the standard.

JSON Data Types
The SQL:2016 spec did not define a data type specifically for JSON data. JSON
is assumed to use the existing BLOB and string data types. Some databases have
decided to implement a JSON-specific data type to make clear that the column
is storing JSON data, check that it is valid JSON, and improve performance. The
JSON-specific data types are covered in this section.

MySQL
MySQL supports a JSON type.

Oracle
In Oracle 19c and earlier, JSON is stored as VARCHAR2. Oracle 21c introduced a JSON
type.

PostgreSQL
PostgreSQL supports two data types for JSON. JSON is a plain-text data type that
validates that the JSON is well formed and preserves the original format of the
data, including extra spaces, the order of the JSON keys, and any duplicate keys.
When selecting the whole JSON type object, the system will return exactly what you
inserted/updated.

The newer JSONB is a binary storage format that reorders the data for efficiency,
dedupes duplicate keys (taking the last entry), and strips out spaces between ele‐
ments. It has much richer index, operator, and function support than the JSON
type. JSONB supports indexing of the whole JSONB object and also supports full-text
search, whereas the JSON data type does not. You can cast JSON to JSONB to take
advantage of some of the features JSONB has that JSON lacks, but if you cast back
you will not have the same JSON you started with (when JSONB is output the keys of
the elements in the object are reordered and whitespace between keys is removed).
JSONB is designed for efficiency of both storage and operations. You’ll find that most
operations on JSON documents are significantly faster with JSONB than when using
the JSON type. How much faster depends on the level of nesting and size of the
document.

JSON Support | 749

Flexib
le and

Schem
aless

PostgreSQL also includes another type, called JSONPATH,
which should be formatted as a SQL/JSON path expression.
Although this type is not normally used as a column data type,
it can be used if you want to store JSON path queries. It is
also useful for validating that a string expression is a valid
SQL/JSON path expression that PostgreSQL supports.

PostgreSQL 14 introduced support for subscripting, a feature that has existed for
arrays for some time and now is allowed for other data types. JSONB is one of the
first types to take advantage of this feature. The main benefit of subscripting is that
it allows a cleaner way to edit data (see the documentation for details). An example
of subscripting follows:

CREATE TABLE products(id integer primary key, data jsonb);
INSERT INTO products(id, data) VALUES (1,
 '{"name":"Refrigerator","type":"Kitchen Appliance",
 "dimensions":{"width": 20, "height": 100 } }');

UPDATE products SET data['dimensions']['width'] = to_jsonb(25)
 WHERE id= 1;

SQL Server
SQL Server does not have a dedicated JSON type. For storing JSON, NVARCHAR(max)
is generally used. If JSON will not grow beyond a certain size, you can gain some
efficiency by specifying the maximum length; e.g., NVARCHAR(3000).

Examples
This example demonstrates how to create a table with a column that holds JSON in
the various databases and then add some data to it:

/** MySQL, Oracle 21c+, PostgreSQL **/
CREATE TABLE bag_o_json(id integer primary key, data json);

/** Oracle < 21c **/
CREATE TABLE bag_o_json(id integer primary key, data varchar2(3800));

/** SQL Server **/
CREATE TABLE bag_o_json(id integer primary key, data nvarchar(3800));

/** PostgreSQL binary JSON **/
CREATE TABLE bag_o_json(id integer primary key, data jsonb);

/** All platforms (add data) **/
INSERT INTO bag_o_json(id, data)
VALUES (1, '{"lname":"Doe","fname":"Jane","alive":true, "age": 20}');

INSERT INTO bag_o_json(id, data)
VALUES (2, '{
 "contact": {

750 | Chapter 10: Flexible and Schemaless

https://oreil.ly/nMwv8

 "first_name": "John",
 "last_name": "Doe",
 "address": {
 "city": "Boston",
 "state": "MA",
 "country": "United States"
 }
 },
 "tags": ["Missing", "Presumed Dead"]
}');

SQL/JSON Path
SQL/JSON Path is the query language you use to navigate JSON documents in
SQL. Many of the JSON functions you will use will take as input a JSON Path
query. The most common of these are JSON_VALUE and JSON_QUERY. JSON Path is
syntactically similar to the JSONPath language used in JavaScript; both JSON Path
and JSONPath borrow from XPath, which is used to navigate XML documents. The
support for SQL/JSON Path varies wildly across the relational databases discussed
in this book.

SQL/JSON Path key elements
The key elements supported in SQL/JSON Path are shown in Table 10-1.

Table 10-1. SQL/JSON Path key elements

Element Description

$ Root object/element.

@ Current object/element.

. or [] Child operator.

.. Recursive descent. JSON Path borrows this syntax from E4X.

* Wildcard. All objects/elements regardless of names.

[] Subscript operator. XPath uses this to iterate over element collections and for
predicates. In JavaScript and JSON it is the native array operator.

[,] Union operator. In XPath, this results in a combination of node sets. JSON Path
allows alternative names or array indices as a set.

[start:end:step] Array slice operator. Borrowed from ES4.

?() Applies a filter (script) expression.

() Script expression, using the underlying script engine.

&&, ||, ! Used in filter expressions to denote AND, OR, and NOT.

SQL/JSON Path literals
SQL/JSON Path also supports certain literals:

JSON Support | 751

Flexib
le and

Schem
aless

boolean
Takes on a value of true or false. It should not be quoted.

null
Equivalent to NULL. It should not be quoted.

numerics
Used to express any number; e.g., an integer like 11, a fraction like 11.3, or
scientific notation like 11.3e0. These should not be quoted.

strings
Used to express string literals; e.g., “This is a dog”. These should be quoted. If
the text has double quotes within it, they should be escaped with JavaScript
escaping: e.g., “Say \"hello\” to my dog”.

SQL/JSON Path functions
SQL/JSON Path includes the following functions that can be applied to an item:

$.type()

Returns the data type of an element

$.size()

Returns the size of an element

$.double()

Converts an element to double precision

$.ceiling()

For numbers, returns the ceiling as an integer

$.floor()

For numerics, returns the floor as an integer

$.abs()

For numerics, returns the absolute value

$.datetime()

Converts an element to a datetime value

$.keyvalue()

Converts a JSON object into a set of key/value pairs

SQL/JSON Path modes
SQL/JSON Path has two modes, lax and strict. Most databases do not support the
keywords for these distinctions and default to lax mode. For databases that do
support it in their functions, lax mode is assumed if there is no explicit request
for strict mode. Keep in mind that modes are not supported in all databases and
even when supported may not be supported by all functions that take a JSON path
expression. Lax mode specifies that if a value fitting the JSON path expression is not

752 | Chapter 10: Flexible and Schemaless

found, a NULL value should be returned. In strict mode, if no value is found based
on the JSON path expression an error is raised. The mode specifier is included
before the path. For instance, this example from SQL Server will trigger an error
and cancel the query if the requested element is not found in at least one row:

SELECT id, JSON_VALUE(data, 'strict $.contact.address.state') As jobj
FROM bag_o_json;

In SQL standard specs lax and strict modes also dictate whether or not keys are
quoted and if literals can be quoted.

See also

• JSON_QUERY• • JSON_VALUE•

SQL Standard JSON Functions
This section lists all the JSON functions defined in the standard and provides details
on their implementations in the various relational databases, including alternative
syntax or alternative functions where relevant (for information on vendor-provided
functions, see “JSON Platform-Specific Extensions” on page 767).

JSON_ARRAY
The JSON_ARRAY function accepts as input one or more value expressions and
returns a JSON array.

SQL standard syntax.
JSON_ARRAY(expression1[, expression2[, ...])

MySQL. MySQL supports the JSON_ARRAY function.

Oracle. Oracle supports the JSON_ARRAY function.

PostgreSQL. PostgreSQL does not support the JSON_ARRAY function. Use the equiv‐
alent JSON_BUILD_ARRAY or JSONB_BUILD_ARRAY instead.

SQL Server. SQL Server does not support the JSON_ARRAY function. Use concatena‐
tion functions and operators instead.

Examples.
/** SQL standard, MySQL **/
SELECT JSON_ARRAY('abc', 'def') AS ja;

/** Oracle **/
SELECT JSON_ARRAY('abc', 'def') AS ja FROM dual;

/** PostgreSQL **/
SELECT JSON_BUILD_ARRAY('abc', 'def') AS ja;

JSON Support | 753

Flexib
le and

Schem
aless

/** SQL Server **/
SELECT '[' +
 CONCAT_WS(',', QUOTENAME(STRING_ESCAPE('abc', 'json'), '"'),
 QUOTENAME('def', '"'))
 + ']' AS ja;

 ja

 ["abc", "def"]

JSON_ARRAYAGG
JSON_ARRAYAGG is an aggregate function that takes a set of values and converts them
to a JSON array. Refer to Chapter 8 for details on working with aggregate functions.

SQL standard syntax.
JSON_ARRAYAGG([ALL | DISTINCT] expression
 [ORDER BY sort_specification])

sort_specification ::= expression1 [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...]

MySQL. MySQL supports the JSON_ARRAYAGG aggregate function, with the excep‐
tion of the NULLS FIRST and NULLS LAST clauses.

Oracle. Oracle fully supports the JSON_ARRAYAGG aggregate function.

PostgreSQL. PostgreSQL does not support the JSON_ARRAYAGG function. Use the
equivalent JSON_AGG or JSONB_AGG instead; both functions support any type, includ‐
ing table types, and support ORDER BY with NULLS FIRST or NULLS LAST and
DISTINCT clauses. For table types, the result of each array element will be a JSON
object. The syntax of these functions is as follows:

JSON_AGG([ALL | DISTINCT] anyelement
 [ORDER BY sort_specification]) [filter_clause]
 [OVER window_name | window_specification]

JSONB_AGG([ALL | DISTINCT] expression
 [ORDER BY sort_specification]) [filter_clause]
 [OVER window_name | window_specification]

sort_specification ::= expression1 [ASC | DESC]
 [NULLS FIRST | NULLS LAST][, ...]

SQL Server. SQL Server does not support the JSON_ARRAYAGG function. Use some‐
thing like STRING_AGG for simple JSON arrays, and for full JSON documents use the
JSON PATH construct.

754 | Chapter 10: Flexible and Schemaless

Examples.
/** SQL standard, MySQL, Oracle **/
SELECT odd, JSON_ARRAYAGG(num ORDER BY num) AS nums
FROM test4
GROUP BY odd;

/** PostgreSQL **/
SELECT odd, JSON_AGG(num ORDER BY num) AS nums
FROM test4
GROUP BY odd;

/** SQL Server **/
SELECT odd,
 '[' + STRING_AGG(num, ',') WITHIN GROUP(ORDER BY num) + ']' as nums
FROM test4
GROUP BY odd;

 odd | nums
-----+--------------
 0 | [2, 4]
 1 | [1, 3, 3, 5]

JSON_EXISTS
The JSON_EXISTS function takes a JSON expression and returns TRUE or FALSE
depending on whether it exists in a JSON object.

SQL standard syntax.
JSON_EXISTS(json_object, json_path
 [json_exists_error_behavior ON ERROR])

json_path ::= refer to the "SQL/JSON Path" section for details
json_object ::= any valid JSON object or array
json_exists_error_behavior ::= TRUE | FALSE | UNKNOWN | ERROR

MySQL and MariaDB. MySQL does not support the JSON_EXISTS function; its
JSON_CONTAINS function offers similar functionality.

MariaDB supports JSON_EXISTS but returns 1 for TRUE and 0 for FALSE. If any of the
inputs are NULL, MariaDB returns NULL instead of UNKNOWN or ERROR.

Oracle. Oracle supports the JSON_EXISTS function, but not in the SELECT clause. It
can only be used in the WHERE clause.

PostgreSQL. PostgreSQL does not support the JSON_EXISTS function. The ? and @?
operators offer similar functionality and can be used anywhere in an SQL statement.
They return Boolean true/false values; the syntax is as follows:

JSON Support | 755

Flexib
le and

Schem
aless

jsonb_object @? json_path
jsonb_object ? object_name
json_object ? object_name

SQL Server. SQL Server does not support the JSON_EXISTS function. The closest
proxy is to use JSON_VALUE.

Examples.
/** MariaDB (doesn't seem to work for complex JSON path queries) **/
SELECT id
FROM bag_o_json
WHERE JSON_EXISTS(data, "$.fname") ;

/** Oracle **/
-- check if attribute exists
SELECT id
FROM bag_o_json
WHERE JSON_EXISTS(data, '$.fname');

-- check if attribute equals some value
SELECT id
FROM bag_o_json
WHERE JSON_EXISTS(data, '$?(@.fname == "Jane")');

/** PostgreSQL **/
-- check if attribute exists on upper level
SELECT id
FROM bag_o_json
WHERE data::jsonb ? 'fname';

-- check if attribute equals some value
SELECT id
FROM bag_o_json
WHERE data::jsonb @? '$?(@.fname == "Jane")';

/** SQL Server **/
-- check if attribute exists on upper level
SELECT id
WHERE JSON_VALUE(data, '$.fname') IS NOT NULL;

SELECT id
WHERE JSON_VALUE(data, '$.fname') = 'Jane';

id

1

756 | Chapter 10: Flexible and Schemaless

JSON_OBJECT
The JSON_OBJECT function takes a sequence of name/value pairs and builds a single
JSON object from these.

SQL standard syntax.
JSON_OBJECT(json_name_value[{, json_name_value}]
 [json_constructor_null_clause]
 [json_key_uniqueness_constraint]
 [json_output_clause]
)

json_name_value ::= [KEY] json_name VALUE json_value |
 json_name : json_value
json_constructor_null_clause ::= NULL ON NULL | ABSENT ON NULL
json_key_uniqueness_constraint ::= WITH UNIQUE [KEYS] |
 WITHOUT UNIQUE [KEYS]
json_representation ::= JSON [ENCODING {UTF8 | UTF16 | UTF32}]
json_output_clause ::= RETURNING data_type [FORMAT json_representation]

MySQL. MySQL supports JSON_OBJECT with just the key/value input, as follows:

JSON_OBJECT(json_name_value[{, json_name_value}])
json_name_value ::= json_name, json_value

Oracle. Oracle fully supports the JSON_OBJECT function, with some enhancements:

JSON_OBJECT(json_name_value[{, json_name_value}]
 [json_constructor_null_clause]
 [json_key_uniqueness_constraint]
 [json_output_clause]
)

json_name_value ::= [KEY] json_name VALUE json_value |
 json_name : json_value | * | table_name.*
json_output_clause ::= RETURNING { VARCHAR2 [(size [BYTE | CHAR])] |
 CLOB | BLOB | JSON }

Oracle supports a wildcard option for json_name_value that adds all columns in a
query or all columns in a table to the object as key/value JSON pairs. The JSON
format option in the json_output_clause was introduced in Oracle 21c.

PostgreSQL. PostgreSQL has JSON_OBJECT, JSONB_OBJECT, JSON_BUILD_OBJECT,
and JSONB_BUILD_OBJECT functions that serve the same purpose as the JSON_OBJECT
function, but with slightly different syntax. The JSONB variants return a binary JSON
object and the JSON variants return plain-text JSON. The syntax for these functions
is as follows:

JSON_BUILD_OBJECT(json_name_values)
JSONB_BUILD_OBJECT(json_name_values)
JSON_OBJECT(text_array | keys, values)

JSON Support | 757

Flexib
le and

Schem
aless

JSONB_OBJECT(text_array | keys, values)

json_name_value ::= json_name, json_value
json_name_values ::= json_name_value[{, json_name_value}]
keys ::= text_array
values ::= text_array

To mimic the wildcard format offered by Oracle, you can use the
TO_JSON(table_name_or_alias) and TO_JSONB(table_name_or_alias) functions.

SQL Server. SQL Server does not support the JSON_OBJECT function; use
the FOR JSON AUTO, WITHOUT_ARRAY_WRAPPER clause instead. Without the
WITHOUT_ARRAY_WRAPPER, SQL Server will return a query as a single JSON object
with an array wrapped around the whole set. If the WITHOUT_ARRAY_WRAPPER clause
exists, then each row is returned as separate JSON documents.

select_statement
FOR JSON { {AUTO | PATH} [[, ROOT [('RootName')]]
 [, INCLUDE_NULL_VALUES]
 [, WITHOUT_ARRAY_WRAPPER]] }

Examples. For these examples, we’ll use the following table:

CREATE TABLE friends(id integer, name_first varchar(50),
 name_last varchar(50), date_birth date);
INSERT INTO friends(id, name_first, name_last, date_birth)
VALUES (1, 'John', 'Smith', '1935-01-01');
INSERT INTO friends(id, name_first, name_last, date_birth)
VALUES (2, 'Jane', 'Doe', '1937-01-01');

This example selects columns from the friends table and outputs them as a JSON
object with different property names from the original names:

-- SQL standard, Oracle
SELECT id, json_object('last': name_last,
 'first': name_first,
 'birth_age': date_birth) AS jobj
FROM friends;

-- MySQL
SELECT id, json_object('last', name_last,
 'first', name_first,
 'birth_age', date_birth) AS jobj
FROM friends;

-- PostgreSQL
SELECT id, json_build_object('last', name_last,
 'first', name_first,
 'birth_age', date_birth) AS jobj
FROM friends;

758 | Chapter 10: Flexible and Schemaless

-- SQL Server
SELECT id, (SELECT f.name_last AS last,
 f.name_first AS first,
 f.date_birth AS birth_date
 FROM friends AS f
 WHERE f.id = friends.id
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER) AS jobj
FROM friends;

id | jobj
----+--
 1 | {"last" : "Smith", "first" : "John", "birth_age" : "1935-01-01"}
 2 | {"last" : "Doe", "first" : "Jane", "birth_age" : "1937-01-01"}
(2 rows)

To maintain the names of table columns and output all columns, you could do the
following:

-- Oracle
SELECT id, json_object(*) AS jobj
FROM friends;

-- PostgreSQL
SELECT id, to_json(friends) AS jobj
FROM friends;

-- SQL Server
SELECT id, (SELECT f.*
 FROM friends AS f
 WHERE f.id = friends.id
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER) AS jobj
FROM friends;

JSON_OBJECTAGG
JSON_OBJECTAGG is an aggregate function that takes one name/value pair for each
row and then aggregates all the rows into a single JSON object.

SQL standard syntax.
JSON_OBJECTAGG(json_name_value [json_constructor_null_clause]
 [json_key_uniqueness_constraint] [json_output_clause])

json_name_value ::= [KEY] json_key VALUE json_value |
 json_key : json_value
json_constructor_null_clause ::= NULL ON NULL | ABSENT ON NULL
json_key_uniqueness_constraint ::= WITH UNIQUE [KEYS] |
 WITHOUT UNIQUE [KEYS]
json_representation ::= JSON [ENCODING {UTF8 | UTF16 | UTF32}]
json_output_clause ::= RETURNING data_type [FORMAT json_representation]

JSON Support | 759

Flexib
le and

Schem
aless

MySQL. MySQL supports a basic form of the JSON_OBJECTAGG function with just
key/value input, as follows:

JSON_OBJECTAGG(json_key, json_value)

Oracle. Oracle supports the JSON_OBJECTAGG function, with some enhancements:

JSON_OBJECTAGG(json_name_value [json_constructor_null_clause]
 [json_key_uniqueness_constraint]
 [json_output_clause]
)

json_output_clause ::= RETURNING
 { VARCHAR2 [(size [BYTE | CHAR])] | CLOB | BLOB | JSON }
json_name_value ::= [KEY] json_key VALUE json_value

json_key has to be a string. Oracle supports a wildcard option for this that adds all
columns in a query or all columns in a table to the object as key/value JSON pairs.
The JSON format option in the json_output_clause was introduced in Oracle 21c.

PostgreSQL. PostgreSQL does not support the JSON_OBJECTAGG function; use
JSON_OBJECT_AGG or JSONB_OBJECT_AGG instead. The syntax of these functions is
as follows:

JSON_OBJECT_AGG(json_key, json_value)
JSONB_OBJECT_AGG(json_key, json_value)

SQL Server. SQL Server does not support the JSON_OBJECTAGG function.

Examples. For these examples we’ll use the friends table we created in the previous
section:

-- SQL standard, Oracle
SELECT json_objectagg(
 KEY CAST(id AS varchar(20)) VALUE name_first) AS jobj
FROM friends;

-- MySQL (only supports one key, value pair)
SELECT json_objectagg(id, name_first) AS jobj
FROM friends;

-- PostgreSQL
SELECT json_object_agg(id, name_first) AS jobj
FROM friends;

SELECT jsonb_object_agg(id, name_first) AS jobj
FROM friends;
{"1": "John", "2": "Jane"}

760 | Chapter 10: Flexible and Schemaless

JSON_QUERY
The JSON_QUERY function extracts JSON text from a document using SQL/JSON
path query syntax.

SQL standard syntax.
JSON_QUERY(json_api_common_syntax [json_output_clause]
 [json_query_wrapper_behavior WRAPPER]
 [json_query_quotes_behavior QUOTES [ON SCALAR STRING]]
 [json_query_empty_behavior ON EMPTY]
 [json_query_error_behavior ON ERROR]
)

json_api_common_syntax ::= item json_path_specification
 [AS json_table_path_name]
 [PASSING value AS identifier[, value AS identifier, ...]]
json_constructor_null_clause ::= NULL ON NULL | ABSENT ON NULL
json_key_uniqueness_constraint ::= WITH UNIQUE [KEYS] |
 WITHOUT UNIQUE [KEYS]
json_representation ::= JSON [ENCODING {UTF8 | UTF16 | UTF32}]
json_output_clause ::= RETURNING data_type [FORMAT json_representation]

MySQL and MariaDB. MySQL does not support the JSON_QUERY function, but
JSON_EXTRACT is equivalent in purpose:

JSON_EXTRACT(json_doc, json_path_expression)

MariaDB supports a basic form of the JSON_QUERY function that accepts as input a
json_doc containing JSON-formatted data and a json_path_expression, which is a
query expression described using SQL/JSON Path syntax. The MariaDB syntax for
this function is:

JSON_QUERY(json_doc, json_path_expression)

Oracle. Oracle has a JSON_QUERY function that follows the standard and provides
some improvements. Its syntax is as follows:

JSON_QUERY(expr [FORMAT JSON], json_path_expression
 [json_query_returning_clause] [json_query_wrapper_clause]
 [json_query_empty_error ON ERROR]
 [json_query_empty_error ON EMPTY]
)

json_query_returning_clause ::=
 [RETURNING {VARCHAR2 [(size [BYTE | CHAR] [TRUNCATE])]} |
 {CLOB | BLOB}] [PRETTY] [ASCII]
json_query_wrapper_clause ::= WITHOUT [ARRAY] WRAPPER |
 WITH [UNCONDITIONAL | CONDITIONAL] [ARRAY] WRAPPER
json_query_empty_error ::= { ERROR | NULL | EMPTY |
 EMPTY ARRAY | EMPTY OBJECT }

JSON Support | 761

Flexib
le and

Schem
aless

PostgreSQL. PostgreSQL does not support the JSON_QUERY function; use
JSONB_PATH_QUERY or JSONB_PATH_QUERY_FIRST instead. The syntax is as follows:

JSONB_PATH_QUERY(jsonb_document, json_path_expression)
JSONB_PATH_QUERY_FIRST(jsonb_document, json_path_expression)

jsonb_document is an expression or column of type JSONB. To use these func‐
tions with the JSON type, cast JSON to JSONB. Note that unlike the SQL stan‐
dard function, which by default returns NULL for no matches and only one
JSON object, JSONB_PATH_QUERY is a set-returning function that returns one or
more values per expression and returns no records if there is no match. The
JSONB_PATH_QUERY_FIRST function returns the first JSONB object in the document
that matches the query and returns NULL if there is no match.

SQL Server. SQL Server supports the JSON_QUERY function in the most basic form.
The syntax is as follows:

JSON_QUERY(json_doc, json_path_expression)

Examples. For these examples we’ll use the bag_o_json table we created in “JSON
Data Types” on page 749:

-- SQL standard, MariaDB, Oracle, SQL Server
SELECT id, json_query(data, '$.contact.address') As jobj
FROM bag_o_json;

-- PostgreSQL
SELECT id, jsonb_path_query_first(j.data::jsonb, '$.contact.address')
 AS jobj
FROM bag_o_json AS j ;

The output in all cases is (plus or minus whitespace):

1 NULL
2 { "city": "Boston", "state": "MA", "country": "United States" }

Here’s the equivalent query on PostgreSQL using the JSONB_PATH_QUERY function:

-- PostgreSQL
SELECT id, jobj
FROM bag_o_json AS j
 CROSS JOIN jsonb_path_query(j.data::jsonb, '$.contact.address')
 AS jobj;

2 { "city": "Boston", "state": "MA", "country": "United States" }

JSON_TABLE
JSON_TABLE is a set-returning function that maps a subset of a JSON object’s data to
table columns and returns a row for each match.

762 | Chapter 10: Flexible and Schemaless

SQL standard syntax.
JSON_TABLE(json_doc, json_path json_table_columns_clause
 [json_table_plan_clause]
 [{ERROR | EMPTY} ON ERROR]
)

json_path ::= valid json_path reference to a data element
json_empty_error ::= ERROR | NULL | EMPTY ARRAY | EMPTY OBJECT
json_table_column_definition ::= column_name FOR ORDINALITY |
 column_name data_type [PATH json_path_column_expression]
 [json_empty_error ON EMPTY] [json_empty_error ON ERROR] |
 column_name data_type FORMAT json_expression
 [PATH json_path_column_expression]
 [json_empty_error ON EMPTY] [json_empty_error ON ERROR]
json_table_columns_clause ::= COLUMNS(json_table_column_definition
 [{, json_table_column_definition}...])
json_returning_clause ::= RETURNING data_type
 [FORMAT json_representation]

The JSON_TABLE function takes at minimum a JSON document (which can be a
JSON column in a table or inlined JSON), the json_path (which is the beginning
element in the document from which the columns will be derived), and a column
clause (which defines what elements within the json_path should be mapped). If
only column names and data types are specified for each column, the column name
is assumed to be a key within the json_path expression.

MySQL. MySQL supports the JSON_TABLE function with a subset of the SQL stan‐
dard syntax options. The MySQL syntax is as follows:

JSON_TABLE(json_doc, json_path json_table_columns_clause
 [json_table_plan_clause] [{ERROR | EMPTY} ON ERROR])

json_table_column_definition ::= column_name FOR ORDINALITY |
 column_name data_type PATH json_path_column_expression
 [json_empty_error ON EMPTY] [json_empty_error ON ERROR] |
 column_name data_type EXISTS PATH json_path_column_expression |
 NESTED [PATH] path COLUMNS (column_list)
column_list ::= column[, column][, ...]
json_empty_error ::= {NULL | DEFAULT json_string | ERROR}

Oracle. Oracle fully supports the SQL standard syntax for the JSON_TABLE
function.

PostgreSQL. PostgreSQL does not support the JSON_TABLE function until Post‐
greSQL. There are many JSON functions and operators you can use to achieve the
same result, depending on what you want to do and how deeply nested your JSON
is.

SQL Server. SQL Server does not support the JSON_TABLE function. Use OPENJSON
instead:

JSON Support | 763

Flexib
le and

Schem
aless

OPENJSON(json_doc)
[WITH (column_definition[, column_definition, ...])]

column_definition ::= column_name data_type json_path_column_expression

The OPENJSON function returns a table. If no WITH column definition set is provided,
then OPENJSON extracts each key/value pair within the document as a column with
data type nvarchar(max).

Examples. For these examples we’ll use the bag_o_json table we created in “JSON
Data Types” on page 749. Here, we expand a JSON array into separate rows. Note
that only rows from bag_o_json that have tags will be included:

-- SQL standard, MySQL, Oracle
SELECT bag_o_json.id, jt.*
FROM bag_o_json,
 JSON_TABLE(data, '$.tags[*]'
 COLUMNS (tag VARCHAR(50) PATH '$')
) AS jt;

-- PostgreSQL
SELECT bag_o_json.id, jt.*
FROM bag_o_json,
 JSON_ARRAY_ELEMENTS_TEXT(data->'tags') AS jt(tag);

-- SQL Server
SELECT id,
 jt.*
FROM bag_o_json AS j
CROSS APPLY OPENJSON(j.data, '$.tags')
 WITH (tag varchar(50) '$') AS jt;

The output is as follows (note that Oracle returns the column names in uppercase):

 ID TAG
---------- -------------------
 2 Missing
 2 Presumed Dead

This example expands a nested property in a table:

-- SQL standard, MySQL, Oracle
SELECT bag_o_json.id, jt.*
FROM bag_o_json,
 JSON_TABLE(bag_o_json.data, '$.contact.address'
 COLUMNS (city VARCHAR(50) PATH '$.city' NULL ON EMPTY,
 state varchar(2) PATH '$.state',
 country VARCHAR(50) PATH '$.country'
)
) AS jt;

-- PostgreSQL
SELECT id,

764 | Chapter 10: Flexible and Schemaless

 jt.*
FROM bag_o_json AS j,
 json_to_record(j.data->'contact'->'address')
 AS jt(city varchar(50),
 state varchar(2),
 country varchar(50))
WHERE jt.city is not null;

-- SQL Server
SELECT id,
 jt.*
FROM bag_o_json AS j
CROSS APPLY OPENJSON(j.data, '$.contact.address')
 WITH (city varchar(50) '$.city',
 state varchar(2) '$.state',
 country varchar(50) '$.country') AS jt;

The output in all cases is (plus or minus whitespace):

 id | city | state | country
----+--------+-------+---------------
 2 | Boston | MA. | United States

JSON_VALUE
The JSON_VALUE function extracts a SQL value from a JSON document based on
a JSON path expression. This allows elements nested in a JSON document to be
retrieved.

SQL standard syntax.
JSON_VALUE(json_api_common_syntax [json_returning_clause]
 [json_empty_error ON EMPTY]
 [json_empty_error ON ERROR]
)

json_api_common_syntax ::= json_doc, json_path_specification
 [AS json_table_path_name]
 [PASSING value AS identifier[, value AS identifier, ...]]
json_returning_clause ::= RETURNING data_type
 [FORMAT json_representation]
json_empty_error ::= ERROR | NULL | DEFAULT value

MySQL. MySQL supports a basic form of the JSON_VALUE function with the follow‐
ing syntax:

JSON_VALUE(json_doc, json_path_expression)

Oracle. Oracle supports the JSON_VALUE function with the following syntax:

JSON_VALUE(json_doc [FORMAT JSON], json_path_expression
 [json_returning_clause]
 [json_empty_error ON EMPTY]

JSON Support | 765

Flexib
le and

Schem
aless

 [json_empty_error ON ERROR]
 [json_value_on_mismatch_clause]
)

json_value_return_object_instance ::= object_type_name
 [USING CASE-SENSITIVE MAPPING]
return_type ::= { VARCHAR2 [(size [BYTE | CHAR] [TRUNCATE])] |
 NUMBER [(precision[, scale])] | DATE | TIMESTAMP [WITH TIME ZONE] |
 CLOB | SDO_GEOMETRY | json_value_return_object_instance }
json_returning_clause ::= RETURNING return_type
 [FORMAT json_representation]
json_empty_error ::= ERROR | NULL | DEFAULT value
json_value_on_mismatch ::= ((IGNORE | ERROR | NULL) ON MISMATCH
 [((MISSING DATA) | (EXTRA DATA) | (TYPE ERROR))]) ...

PostgreSQL. PostgreSQL does not provide the JSON_VALUE function; use the JSON
-> or ->> or JSONB -#> or -#>> operators instead. More details are provided in the
following section covering platform-specific extensions, but the basic syntax is as
follows:

jsonb_document -> {text | integer}
json_document -> {text | integer}
json_document ->> {text | integer}
jsonb_document ->> {text | integer}
json_document #> text_array
jsonb_document #> text_array
json_document #>> text_array
jsonb_document #>> text_array

-> returns a JSON or JSONB object (based on the type of the original document)
that matches the key represented by text | integer. The integer option is for the
nth element in a JSON array. ->> returns the result as text instead of as a JSON
document. #> and #>> take as input a text array representing the nesting of a value
with a document. It is common practice to chain -> to navigate a nested JSON
document and then end with a ->> call.

SQL Server. SQL Server supports a basic form of the JSON_VALUE function with the
following syntax:

JSON_VALUE(json_doc, json_path_expression)

Examples. For these examples we’ll use the bag_o_json table we created in “JSON
Data Types” on page 749. Here, we select a nested value in a JSON column:

-- SQL standard, MySQL, Oracle, SQL Server
SELECT id, JSON_VALUE(data, '$.contact.address.state') As jobj
FROM bag_o_json;

-- PostgreSQL
SELECT id, j.data #>> '{contact,address,state}' AS jobj
FROM bag_o_json AS j ;

766 | Chapter 10: Flexible and Schemaless

The output in all cases is (plus or minus whitespace):

Id jobj
—-- —----
1 NULL
2 MA

JSON Platform-Specific Extensions
This section provides an alphabetical listing of vendor-supported JSON functions
not covered in the previous section.

MySQL JSON functions

JSON_ARRAY_APPEND(json_doc, path, value[, path, value] ...)
Appends a value at the end of a JSON array in the specified path location. For
example:

SELECT JSON_ARRAY_APPEND(b.data, '$.tags', 'Alive Maybe')
FROM bag_o_json AS b
WHERE id = 2;

{"contact": {"first_name": "John", "last_name": "Doe",
 "address": {"city": "Boston", "state": "MA",
 "country": "United States"}},
 "tags": ["Missing", "Presumed Dead", "Alive Maybe"]}

Oracle JSON functions

JSON_DATAGUIDE(expr [, format[, flag]])
Takes JSON data in a column and returns a CLOB with guide information. This
is an aggregate function. For example:

SELECT JSON_DATAGUIDE(data, dbms_json.format_flat,
 DBMS_JSON.PRETTY) AS guide
FROM bag_o_json;

GUIDE
--
[
 {
 "o:path" : "$.age",
 "type" : "number",
 "o:length" : 2
 },
 {
 "o:path" : "$.tags",
 "type" : "array",
 "o:length" : 32
 },
:
:

JSON Support | 767

Flexib
le and

Schem
aless

For further details, see the documentation.

JSON_MERGEPATCH(target_json_doc, merge_patch_doc [returning_type]
[PRETTY] [ASCII] [TRUNCATE] [on_error_clause])

Modifies a target JSON document using a merge document patch. A merge
document patch can include new additions, updates, and deletions. Deletions
are noted with a null. For example:

SELECT JSON_MERGEPATCH(data,
 '{"lname" : "Does", "age" : null, "eye_color" : "violet"}')
 AS new_data
FROM bag_o_json
WHERE id = 1;

NEW_DATA

{"lname":"Does","fname":"Jane","alive":true,"eye_color":"violet"}

Refer to the documentation for details.

JSON_SERIALIZE(json_doc [PRETTY] [ASCII] [TRUNCATE] [{NULL | ERROR |
EMPTY { ARRAY | OBJECT})

Returns a textual representation of JSON data. For example:

SELECT JSON_SERIALIZE(data PRETTY) AS pretty
FROM bag_o_json WHERE id = 1;

PRETTY

{
 "lname" : "Doe",
 "fname" : "Jane",
 "alive" : true,
 "age" : 20
}

Refer to the documentation for details.

JSON_TRANSFORM(input_expr, (operation) ...) [RETURNING data_type]
[json_passing_clause]

Used to modify JSON data using operations (APPEND, INSERT, KEEP, REMOVE,
RENAME, SET) or commands. Refer to the documentation for details and
examples.

PostgreSQL JSON functions and operators
PostgreSQL has various functions and operators that work with the JSON type,
and many more that work with JSONB type. One benefit of using operators over
functions is that they are named the same across all data types that support them.
Using operators is also a much more concise way of querying JSON data than using
functions, and many functions can be represented as operators. We’ll cover both
modes in the following subsections.

768 | Chapter 10: Flexible and Schemaless

https://oreil.ly/BS8yy
https://oreil.ly/ofajN
https://oreil.ly/wOmj0
https://oreil.ly/XExCS

PostgreSQL has more JSON-specific functions than any other database discussed in
this book. We will not itemize all of them here. For a full list, refer to the vendor
documentation.

Operators. For the examples in this section we are using a SELECT to show the
output, but you can use the output just as easily in an UPDATE statement to save the
changes to the database:

json_doc :: type
The :: operator is shorthand for the CAST function. This example converts the
column data from JSON to JSONB:

SELECT data AS before, data::jsonb AS after
FROM bag_o_json
WHERE id=1;

-[RECORD 1]---
before | {"fname":"Jane","lname":"Doe","alive":true, "age": 20}
after | {"age": 20, "alive": true, "fname": "Jane", "lname": "Doe"}

Casting from JSON to JSONB is useful to access the additional functions pro‐
vided for JSONB that are not available for JSON. Note, however, that casting to
JSONB changes the order of keys, so don’t use this for updating data unless you
don’t care about the order of the keys.

jsonb - {text | text[] | integer}

The - operator subtracts an element from a document where text or text[]
are keys in the document or integer is an array index of an upper-level key.
For array indexes, numbering follows the JavaScript convention of starting at 0
instead of the PostgreSQL convention of starting at 1. The JSON type does not
support this operator. Here are some examples:

SELECT data::jsonb - 'fname'
FROM bag_o_json
WHERE id = 1;

{"age": 20, "alive": true, "lname": "Doe"}

SELECT data::jsonb - '{fname,lname}'::text[]
FROM bag_o_json
WHERE id = 1;

{"age": 20, "alive": true}

SELECT data::jsonb->'tags' AS before,
 (data::jsonb->'tags') - 0 AS after
FROM bag_o_json
WHERE id = 2;

 before | after
------------------------------+-------------------

JSON Support | 769

Flexib
le and

Schem
aless

https://oreil.ly/3VDIi
https://oreil.ly/3VDIi

 ["Missing", "Presumed Dead"] | ["Presumed Dead"]
jsonb #- text[]

The #- operator subtracts an element from a document, where text[] denotes
the path of the key. The JSON type does not support this operator. This example
removes the address from the contact:

SELECT data::jsonb #- '{contact, address}'::text[]
FROM bag_o_json
WHERE id = 2;

{"tags": ["Missing", "Presumed Dead"],
 "contact": {"last_name": "Doe", "first_name": "John"}}

jsonb || jsonb
The || operator is the conventional concatenation operator in PostgreSQL and
is supported by the JSONB but not the JSON type to concatenate documents.
Since JSONB can’t have duplicate keys, it is often used to update data. It can also
be used to append new information. In this example, we update the age from
20 to 30 and add a date_missing value:

SELECT data::jsonb || '{"age":30, "date_missing": "2021-10-12"}'::jsonb
FROM bag_o_json
WHERE id = 1;

{"age": 30, "alive": true, "fname": "Jane",
 "lname": "Doe", "date_missing": "2021-10-12"}

The value used is the value associated with the last instance of a key, so the
order is important. This next example would add a date_missing value but not
update the age:

SELECT '{"age":30, "date_missing": "2021-10-12"}'::jsonb || data::jsonb
FROM bag_o_json
WHERE id = 1;

{"age": 20, "alive": true, "fname": "Jane",
 "lname": "Doe", "date_missing": "2021-10-12"}

input_doc -> {key_text | index_integer}
The -> operator returns a subelement of a JSONB or JSON document as the same
data type as the input_doc. It treats the key_text as a key. index_integer is
used to pull out elements of an array. The returned value is JSON in case of a
JSON-type input_doc and JSONB in case of a JSONB input_doc. This operator
can be chained. For example:

SELECT data->'fname' AS fname,
 data->'tags'->1 AS tag_1
FROM bag_o_json;

 fname | tag_1
---------+-----------------
 "Jane" |
 | "Presumed Dead"

770 | Chapter 10: Flexible and Schemaless

input_doc ->> {key_text | index_integer}

The ->> operator returns a subelement of a JSONB or JSON document as text.
If key_text is passed, it treats the key_text as a key. index_integer is used to
pull out elements of an array. For example:

SELECT data->>'fname' AS fname,
 data->'tags'->>1 AS tag_1
FROM bag_o_json;

 fname | tag_1
-------+---------------
 Jane |
 | Presumed Dead

This operator cannot be chained since the TEXT type does not have a ->>
operator.

input_doc #> {key_text_array}
The #> operator returns a subelement of a JSONB or JSON document as the
same data type as the input_doc. It treats the key_text_array as a nested key.
The returned value is JSON in case of a JSON-type input_doc and JSONB in case
of a JSONB input_doc. This operator can be chained. For example:

SELECT data#>'{contact,address,city}' AS city,
 data#>'{tags,1}' AS tag_1
FROM bag_o_json
WHERE id = 2;

 city | tag_1
----------+-----------------
 "Boston" | "Presumed Dead"

input_doc #>> {key_text_array}

The #>> operator returns a subelement of a JSONB or JSON document as text. It
treats the key_text_array as a nested key. The operator cannot be chained. For
example;

SELECT data#>>'{contact,address,city}' AS city,
 data#>>'{tags,1}' AS tag_1
FROM bag_o_json
WHERE id = 2;

 city | tag_1
--------+---------------
 Boston | Presumed Dead

jsonb @> jsonb

The @> operator returns a Boolean denoting whether the first jsonb contains
the second jsonb (not supported for the JSON type). For example:

SELECT id,
 data::jsonb @> '{"fname":"Jane"}'::jsonb AS contains_1,
 '{"fname":"Jane"}'::jsonb @> data::jsonb AS contains_2

JSON Support | 771

Flexib
le and

Schem
aless

FROM bag_o_json;

 id | contains_1 | contains_2
----+------------+------------
 1 | t | f
 2 | f | f

jsonb <@ jsonb

The <@ operator returns a Boolean denoting whether the first jsonb is con‐
tained by the second jsonb (not supported for the JSON type). This gives
the same result as using @> and switching the order of the arguments. For
example:

SELECT id,
 data::jsonb <@ '{"fname":"Jane"}'::jsonb AS contained_by_1,
 '{"fname":"Jane"}'::jsonb <@ data::jsonb AS contained_by_2
FROM bag_o_json;

 id | contained_by_1 | contained_by_2
----+----------------+----------------
 1 | f | t
 2 | f | f

jsonb ? text
The ? operator returns a Boolean denoting whether the jsonb contains the
text as a top-level key (not supported for the JSON type). For example:

SELECT id,
 data::jsonb ? 'fname' AS contains_key
FROM bag_o_json;

 id | contains_key
----+-------------
 1 | true
 2 | false

jsonb ?| text[]
The ? operator returns a Boolean denoting whether the jsonb contains the
key path defined by the text[] array (not supported for the JSON type). For
example:

SELECT id,
 data::jsonb ?| ARRAY['contact','first_name'] AS contains_key
FROM bag_o_json;

 id | contains_key
----+-------------
 1 | false
 2 | true

jsonb @@ jsonpath
The @@ operator returns a Boolean denoting whether the jsonb satisfies the
jsonpath expression (not supported for the JSON type). For example:

772 | Chapter 10: Flexible and Schemaless

SELECT id,
 data::jsonb @@ '($.age > 15)'::jsonpath AS older_than_15
FROM bag_o_json;

 id | older_than_15
----+---------------
 1 | true
 2 | false

Functions.

JSON_AGG(row_or_value), JSONB_AGG(row_or_value)

Builds a JSON/JSONB array from any type of data, including rows. This is an
aggregate function. Here we create a JSON/JSONB dataset for each state:

-- Row aggregate
SELECT s.state, json_agg(s ORDER BY s.stor_name) AS data_json
FROM (SELECT stor_name, city, state
 FROM stores) AS s
GROUP BY s.state;

state | data_json
—----------------------
CA [{"stor_name":"Barnum's","city":"Tustin","state":"CA"},
 ,:
 {"stor_name":"News & Brews","city":"Los Gatos","state":"CA"}]
WA [{"stor_name":"Doc-U-Mat: ... "state":"WA"}]

-- Column aggregate
SELECT s.state,
 json_agg(s.city ORDER BY s.city) AS data_json
FROM stores AS s
GROUP BY s.state;
 state | data_json
-------+------------------------------------
 CA | ["Fremont", "Los Gatos", "Tustin"]
 :
 WA | ["Remulade", "Seattle"]

JSON_BUILD_ARRAY(VARIADIC "any"), JSONB_BUILD_ARRAY(VARIADIC "any")
Builds a JSON or JSONB array from a heterogeneous list of items. The canonical
representation of both types of array will be the same. For example:

SELECT JSON_BUILD_ARRAY(1,2, 'Jack', 'Jill');
SELECT JSONB_BUILD_ARRAY(1,2, 'Jack', 'Jill');

[1, 2, "Jack", "Jill"]

JSON_BUILD_OBJECT(VARIADIC "any"), JSONB_BUILD_OBJECT(VARIADIC "any")
Builds a JSON or JSONB object from alternating key/value pairs. The JSON object
will preserve the order of input but the JSONB object will not. For example:

SELECT JSON_BUILD_OBJECT('name', 'John Smith', 'age', 25);

JSON Support | 773

Flexib
le and

Schem
aless

{"name" : "John Smith", "age" : 25}

SELECT JSONB_BUILD_OBJECT('name', 'John Smith', 'age', 25);

{"age": 25, "name": "John Smith"}

JSON_EACH(json), JSONB_EACH(jsonb)

Returns a key/value pair for each upper-level element of a document. This
is a set-returning function. The key is TEXT and the value is JSON or JSONB
depending on the function used. For example:

SELECT kv.*
FROM bag_o_json, JSON_EACH(data) AS kv
WHERE id = 1;

 key | value
-------+--------
 fname | "Jane"
 lname | "Doe"
 alive | true
 age | 20

JSON_EACH_TEXT(json), JSONB_EACH_TEXT(jsonb)

Like JSON_EACH/JSONB_EACH, but returns TEXT for the value instead of JSON/
JSONB. For example:

SELECT kv.*
FROM bag_o_json, JSON_EACH_TEXT(data) AS kv
WHERE id = 1;

 key | value
-------+--------
 fname | Jane
 lname | Doe
 alive | true
 age | 20

TO_JSON(any_element), TO_JSONB(any_element)

Equivalent to the :: jsonb and :: json operations, except when dealing with
tuples (rows). All elements can be input into these functions, including row
types. TO_JSON preserves the column ordering of the table when casting a row
object whereas TO_JSONB reorders for optimal performance. For example:

SELECT id, TO_JSON(f) AS row_json
FROM friends AS f;

id | row_json
----+--

 1 | {"id":1,"name_first":"John","name_last":"Smith",
"date_birth":"1935-01-01"}
 2 | {"id":2,"name_first":"Jane","name_last":"Doe",
"date_birth":"1937-01-01"}

774 | Chapter 10: Flexible and Schemaless

SELECT id, TO_JSONB(f) AS row_json
FROM friends AS f;

 id | row_json
----+--

 1 | {"id": 1, "name_last": "Smith", "date_birth": "1935-01-01",
"name_first": "John"}
 2 | {"id": 2, "name_last": "Doe", "date_birth": "1937-01-01",
"name_first": "Jane"}

SQL Server JSON functions and keywords
In addition to some functions to support JSON, SQL Server defines several new
SQL keywords that are used to return query results in JSON format. The following
subsections present those keywords and functions.

Keywords.

sql_query FOR JSON {AUTO | PATH}

Produces JSON-formatted text from a SQL query. Refer to the documentation
for details.

AUTO

Follows FOR JSON and makes an array where each row is a separate object
and the column names and values are the key/value pairs in each object. For
example:

SELECT name_first AS name
FROM friends
FOR JSON AUTO;

[{"name":"John"},{"name":"Jane"}]

PATH

Follows FOR JSON and makes an array where each row is a separate element
and the column names define the path in the document. Especially useful if
you have data from various tables and you want to format accordingly. For
example:

SELECT name_first AS 'name.first', name_last AS 'name.last'
FROM friends
FOR JSON PATH;

[{"name":{"first":"John","last":"Smith"}},
 {"name":{"first":"Jane","last":"Doe"}}]

JSON Support | 775

Flexib
le and

Schem
aless

https://oreil.ly/RdjYe

INCLUDE_NULL_VALUES

Follows FOR JSON [AUTO | PATH] and denotes whether NULLs should be
output. Without this clause, any elements that are NULL are left out of the
output. For example:

SELECT name_last,
 CASE WHEN name_last = 'Smith' THEN 20 END AS age
FROM friends
FOR JSON AUTO, INCLUDE_NULL_VALUES;

[{"name_last":"Smith","age":20},
 {"name_last":"Doe","age":null}]

SELECT name_last,
 CASE WHEN name_last = 'Smith' THEN 20 END AS age
FROM friends
FOR JSON AUTO;

[{"name_last":"Smith","age":20},{"name_last":"Doe"}]

WITHOUT_ARRAY_WRAPPER

Follows FOR JSON [AUTO | PATH] and denotes whether there should be an
array wrapper. For example:

SELECT name_last
FROM friends
FOR JSON AUTO, WITHOUT_ARRAY_WRAPPER;

{"name_last":"Smith"},{"name_last":"Doe"}

Functions.

ISJSON(text)

Returns 0 if text in the column is not valid JSON text and 1 if the text is valid
JSON text. For example:

SELECT ISJSON(data)
FROM bag_o_json
WHERE id = 2;

1

JSON_MODIFY(json_doc_text, path, new_value)

Returns a modified json_doc_text at the location specified by path with the
value new_value. For example:

SELECT JSON_MODIFY(data,'$.contact.address.state', 'CA')
FROM bag_o_json
WHERE id = 2;

{
 "contact": {
 "first_name": "John",
 "last_name": "Doe",

776 | Chapter 10: Flexible and Schemaless

 "address": {
 "city": "Boston",
 "state": "CA",
 "country": "United States"
 }
 },
 "tags": ["Missing", "Presumed Dead"]
}

OPENJSON(json_doc_text[, path]) [with_clause]

Returns a set of rows from a json_doc_text. If no with_clause (of the format
WITH ({colName type [column_path] [AS JSON]}[, ...n]))) is specified
for the mapping, returns a set of key/value pairs. This is a table-valued func‐
tion. For example:

SELECT jd.*
FROM bag_o_json
 CROSS APPLY OPENJSON(data, '$.contact.address') AS jd
WHERE id = 2;

key value type
—---------------------------
city Boston 1
state MA 1
country United States 1

Why XML?
All the platforms discussed in this book provide support for XML, though its use as
a data storage format is dwindling today. It is still popular as a file format, however,
and is often a better option than JSON if you have many business rules about what
items can be stored in a document, what data types can be used, and what elements
can have other elements as children. Such documents often have a header, which
is a URL link to a document type descriptor (DTD) document or an XML schema
document (XSD) that specifies the required structure and rules of the document.
Storing the data relationally is also a good option if you have many such rules:
you can store different parts of the document in separate relational tables and then
aggregate them together for output as XML if such output is needed.

You use the XPath standard, defined by the W3C standards-making group, to query
within an XML document. All the databases discussed here use XPath syntax for
extracting elements of XML documents.

XML Data Types
The SQL:2003 spec defined a data type specifically for XML data, and many data‐
bases have implemented an XML-specific type to validate that the data is valid XML,
implement better storage, and allow access methods. The XML-specific data types
are covered in this section.

Why XML? | 777

Flexib
le and

Schem
aless

https://oreil.ly/yUizq

MySQL and MariaDB
MySQL and MariaDB do not support an XML data type; to store XML in these
databases, use a TEXT column. However, MariaDB does support XML tables, using
the CONNECTION storage engine to link to an XML file.

Oracle
Oracle has an XMLTYPE data type for storing XML data. XMLTYPE is a system-
defined opaque type with predefined member functions to extract XML nodes and
fragments.

PostgreSQL
PostgreSQL has an XML data type. Only valid XML can be inserted into an XML data
type. If the data is not valid, the XML parser will throw an error detailing the issue
with the XML document.

SQL Server
SQL Server has an XML data type. Only valid XML can be inserted into an XML data
type. If the data is not valid, the XML parser will throw an error detailing the issue
with the XML document. In addition, SQL Server has implemented object methods
on the XML type and uses those instead of functions for many operations.

Examples
This example demonstrates how to create a table with a column that holds XML in
the various databases and then add some data to it:

/** PostgreSQL, SQL Server **/
CREATE TABLE bag_o_xml(id integer primary key, data xml);

/** Oracle **/
CREATE TABLE bag_o_xml(id integer primary key, data XMLTYPE);

/** All platforms (add data) **/
INSERT INTO bag_o_xml(id, data)
VALUES (1, '<person age="20" alive="true">
 <lname>Doe</lname><fname>Jane</fname>
 </person>');

INSERT INTO bag_o_xml(id, data)
VALUES (2, '<entity>
 <contact>
 <first_name>John</first_name>
 <last_name>Doe</last_name>
 <address city="Boston" state="MA" country="United States" />
 </contact>
 <tags><tag>Missing</tag><tag>Presumed Dead</tag></tags>
 </entity>');

778 | Chapter 10: Flexible and Schemaless

XPath
XPath is the query language used to navigate XML documents. The query syntax
for querying XML documents in the database is the same as the standard XPath
you use for querying XML anywhere. You will find XPath commonly used as input
to the SQL standard XMLEXISTS function, MySQL/MariaDB/Oracle’s EXTRACTVALUE
functions, Oracle’s EXTRACT function, PostgreSQL’s XPATH function, and SQL Server’s
exist, nodes, and query XML methods.

The key elements supported in XPath are shown in Table 10-2.

Table 10-2. XPath supported elements

Path Description

nodename Selects all nodes named nodename.

/ Selects from the root node of the document.

// Selects nodes from the current node regardless of how deeply nested they are in the
document.

. Selects the current contents of the document.

.. Selects the parent of the current node.

@ Selects an attribute.

[expression] A predicate expression used to filter for a subset of nodes in a collection. The expression
may contain an integer to denote an index position in a collection, functions like LAST or
POSITION, or Boolean expressions like age>20.

SQL XML Functions
The following are XML functions defined in the standard that are widely supported
by the database platforms covered in this book. Alternatives are listed where appro‐
priate (see “XML Platform-Specific Extensions” on page 783 for details) but minor
syntax differences are not discussed.

XMLAGG
XMLAGG is an aggregate function that concatenates a set of XML row values into a
single XML document.

SQL standard syntax.
XMLAGG(xml [ORDER BY column[, column...]) [OVER (...)]

MySQL. MySQL does not support the XMLAGG function.

Oracle. Oracle supports the XMLAGG function.

PostgreSQL. PostgreSQL supports the XMLAGG function.

SQL Server. SQL Server does not support the XMLAGG function.

Why XML? | 779

Flexib
le and

Schem
aless

Example. This example converts elements of a relational table row into XML
fragments:

-- SQL Standard, Oracle, PostgreSQL
SELECT XMLAGG(data)
FROM bag_o_xml;

XMLEXISTS
XMLEXISTS is a function that returns true or false depending on whether an XML
document satisfies the path expression.

SQL standard syntax.
XMLEXISTS(text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}])

MySQL. MySQL does not support the XMLEXISTS function. Use EXTRACTVALUE
instead.

Oracle. Oracle supports the XMLEXISTS function, but only allows its use in the
WHERE clause.

PostgreSQL. PostgreSQL supports the XMLEXISTS function and allows its use in
both WHERE and SELECT clauses.

SQL Server. SQL Server does not support the XMLEXIST function. Use the
XML.exist(text) method instead.

Examples. This example checks to see if an XML fragment exists in the XML
column data:

-- SQL standard, Oracle, PostgreSQL
SELECT id
FROM bag_o_xml
WHERE XMLEXISTS('//lname[text() = ''Doe'']'
 PASSING BY VALUE bag_o_xml.data);

-- SQL Server
SELECT id
WHERE data.exist('//lname[text() = ''Doe'']') = 1
FROM bag_o_xml;

 id
----+
 1

XMLFOREST
XMLFOREST is a function that takes one or more values and attributes alias pairs to
form an XML fragment.

780 | Chapter 10: Flexible and Schemaless

SQL standard syntax.
XMLFOREST(value AS alias[, ...])

MySQL. MySQL does not support the XMLFOREST function.

Oracle. Oracle supports the XMLFOREST function.

PostgreSQL. PostgreSQL supports the XMLFOREST function.

SQL Server. SQL Server does not support the XMLFOREST function. Use the FOR XML
PATH construct instead.

Example. This example converts elements of a relational table row into XML
fragments:

-- SQL standard, Oracle, PostgreSQL
SELECT XMLFOREST(id AS id,
 name_last AS last_name,
 name_first AS first_name)
FROM friends;

-- SQL Server
SELECT
 REPLACE(
 REPLACE(r.row, '<row>',''),
 '</row>','') AS fragment
FROM friends CROSS APPLY (SELECT id AS id,
 name_last AS last_name,
 name_first AS first_name
 FOR XML PATH('row')) AS r(row);

<id>1</id><last_name>Smith</last_name><first_name>John</first_name>
<id>2</id><last_name>Doe</last_name><first_name>Jane</first_name>

XMLTABLE
XMLTABLE is a set-returning function that maps a subset of an XML object’s data to
table columns and returns a row for each match.

SQL standard syntax.
XMLTABLE([XMLNAMESPACES(namespace uri AS namespace name[, ...])]
 row_expression PASSING [BY REF] xml_document_expression [BY REF]
 COLUMNS name { type [PATH xpath_column_expression]
 [DEFAULT default_expression] [NOT NULL | NULL] | FOR ORDINALITY }
[, ...])

The XMLTABLE function takes at minimum the row_expression, which is an XPath
statement that filters for each row of data, and xml_document_expression, which is
the XML data.

Why XML? | 781

Flexib
le and

Schem
aless

MySQL. MySQL does not support the XMLTABLE function. You can use the
EXTRACTVALUE function to achieve the same or similar results.

Oracle. Oracle supports the XMLTABLE function.

PostgreSQL. PostgreSQL supports the XMLTABLE function.

SQL Server. SQL Server does not support the XMLTABLE function. Use the XML
methods of the XML data type instead; see “SQL Server XML keywords, functions,
procedures, and methods” on page 787 for details.

Examples. For these examples we’ll use the bag_o_xml table we created in “XML
Data Types” on page 777. Here, we expand the XML tags into separate rows. Note
that only rows from bag_o_xml that have tags will be included:

-- SQL standard, Oracle, PostgreSQL
SELECT bag_o_xml.id, jt.*
FROM bag_o_xml, XMLTABLE('//tags/tag' PASSING bag_o_xml.data
 COLUMNS tag VARCHAR(50) PATH '.')
 AS jt;

-- SQL Server
SELECT id,
 jt.n.value('.', 'varchar(50)') AS tag
FROM bag_o_xml AS j
CROSS APPLY j.data.nodes('//tags/tag') AS jt(n);

The output is as follows (note that Oracle returns the results in uppercase):

 id tag
---------- -------------------
 2 Missing
 2 Presumed Dead

In MySQL there’s no easy way to get this set of values because EXTRACTVALUE is a
scalar rather than a set-returning function. Calling EXTRACTVALUE is equivalent to
calling xpath_expression with the /text() function at the end:

-- MySQL
SELECT bag_o_xml.id, EXTRACTVALUE(bag_o_xml.data, '//tags/tag')
FROM bag_o_xml
WHERE CAST(EXTRACTVALUE(bag_o_xml.data, 'count(//tags/tag)')
 AS integer) > 0;

 id tag
---------- -------------------
 2 Missing Presumed Dead

This example expands a nested property to a table:

-- SQL standard, Oracle, PostgreSQL
SELECT bag_o_xml.id, jt.*
FROM bag_o_xml,

782 | Chapter 10: Flexible and Schemaless

 XMLTABLE('//contact/address' PASSING bag_o_xml.data
 COLUMNS city VARCHAR(50) PATH '@city',
 state varchar(2) PATH '@state',
 country VARCHAR(50) PATH '@country'
) AS jt;

-- SQL Server
SELECT id,
 jt.n.value('@city', 'varchar(50)') AS city,
 jt.n.value('@state', 'varchar(2)') AS state,
 jt.n.value('@country', 'varchar(50)') AS country
FROM bag_o_xml AS j
CROSS APPLY j.data.nodes('//contact/address') AS jt(n);

The output in all cases is (plus or minus whitespace):

 id | city | state | country
----+--------+-------+---------------
 2 | Boston | MA | United States

XML Platform-Specific Extensions
This section provides an alphabetical listing of vendor-supported XML functions
not covered in the preceding section.

MySQL XML functions
MySQL provides two functions for working with XML data:

EXTRACTVALUE(xml_fragment, xpath)

Extracts a value from an xml_fragment that matches the XPath expression
xpath and returns the result. For example:

SELECT EXTRACTVALUE(data, '//first_name/text() | //fname/text()')
FROM bag_o_xml;

Jane
John

UPDATEXML(xmldoc, xpath, replacementxml)

Returns a new XML document based on replacing the data in xmldoc at the
location defined by xpath with the specified replacementxml. If the path does
not exist, no change is made. For example:

SELECT UPDATEXML(data, '/person/lname', '<lname>Does</lname>')
FROM bag_o_xml;
<person age="20" alive="true">
<lname>Does</lname><fname>Jane</fname>
</person>

Why XML? | 783

Flexib
le and

Schem
aless

Oracle XML functions
Oracle has a lot of functions for XML; we will only highlight a few here. Refer to the
documentation for a full list, and for more information on the functions included
here.

For more information on XML queries, refer to the Oracle
SQL Reference.

DELETEXML(xml_fragment, xpath[, namespace])

Deletes nodes within xml_fragment that match the XPath expression xpath
and returns the result. The optional namespace parameter specifies the name‐
space for the XPath expression. For example:

SELECT DELETEXML('<a>Sifl<c>Olly</c>', '/a/c') FROM DUAL;
'<a>Sifl'

DEPTH(number)

Returns the depth of the path specified by the UNDER_PATH condition in an
XML query.

EXTRACT(instance, xpath[, namespace])

Returns the XML nodes from instance returned by running the XPath query
contained in the xpath parameter. The optional namespace parameter specifies
the XML namespace in the query. (Oracle also supports an EXTRACT function
for date values, which was covered in Chapter 7.) For example:

SELECT EXTRACT(data, '//first_name/ | //fname') AS first_name_node
FROM bag_o_xml;

FIRST_NAME

Jane
John

EXTRACTVALUE(instance, xpath[, namespace])

Returns the value from an XML node returned by running the XPath query
contained in the xpath parameter. The optional namespace parameter specifies
the XML namespace in the query. For example:

SELECT EXTRACTVALUE(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),
 '/foo/bar')
FROM DUAL;
Hello, World!

784 | Chapter 10: Flexible and Schemaless

https://oreil.ly/IROSN

INSERTCHILDXML(xml_fragment, xpath, child_expr, value_expr[, name

space])

Injects the nodes in value_expr specified by child_expr into xml_fragment
at the location given by the XPath query xpath, and returns the result. The
optional namespace argument provides the namespace for the XPath query. For
example:

SELECT INSERTCHILDXML('<a>', '/a', 'b', 'B1B2')
FROM DUAL;
'<a>B1B2'

INSERTXMLBEFORE(xml_fragment, xpath, value_expr[, namespace])

Injects value_expr into xml_fragment at the location given by the XPath query
xpath and returns the result. The optional namespace argument provides the
namespace for the XPath query. For example:

SELECT INSERTXMLBEFORE('<a>B2', '/a/b', 'B1')
FROM DUAL;
'<a>B1B2'

SYS_XMLAGG(expr[, format])

Returns a single XML document created by aggregating the XML documents or
fragments in expr. The optional format parameter can be used to format the
XML document.

SYS_XMLGEN(expr[, format])

Returns a single XML document created from expr. The optional format
parameter can be used to format the XML document.

XMLCAST(value AS data_type)

Casts value to the type data_type and returns the result.

XMLCDATA(value)

Returns value as an XML CDATA section.

XMLCOLATTVAL(expr [AS alias][, ...])

Returns an XML fragment from the expr arguments. The optional AS clause
can be used to change the value of the name attribute.

XMLCONCAT(instance[, ...])

Returns an XML instance that is the union of all XML instance parameters.

XMLDIFF(xml1, xml2[, hashlevel, flags])

Returns an Xdiff schema that’s the result of diffing xml1 and xml2.

XMLELEMENT([NAME] name[, XMLATTRIBUTES(expr [AS alias][, ...])][,

value[, ...]])

Returns an XMLELEMENT with the name specified in the name parameter and the
attributes specified in the optional XMLATTRIBUTES clause. The value parame‐
ters provide the values of the XMLELEMENT result.

Why XML? | 785

Flexib
le and

Schem
aless

XMLEXISTS(xquery[, passing_clause])

Returns TRUE if the XQuery specified in xquery returns a nonempty XQuery
result, and FALSE otherwise.

XMLPARSE([DOCUMENT | CONTENT] value [WELLFORMED])

Returns an XML instance constructed as a result of parsing the XML document
in value.

XMLPATCH(xml, xdiff)

Returns an XML instance as a result of patching the XML document in xml
with the Xdiff found in xdiff.

XMLQUERY(query)

Returns the results of executing the XMLQuery found in query.

XMLROOT(value, VERSION [version | NO VALUE][, STANDALONE {YES | NO |

NO VALUE})

Returns a new XML document using value as the body and the version infor‐
mation for the XML document prolog.

XMLSEQUENCE(instance)

Returns an array of XML fragments constructed from the top-level nodes in
the XML instance provided by the instance parameter.

XMLSERIALIZE(...)

Returns an XML expression serialized to a string.

XMLTRANSFORM(instance, stylesheet)

Returns the result of applying the XSL stylesheet in the stylesheet parameter
to the XML document contained in instance.

PostgreSQL XML functions
PostgreSQL has many functions for XML. We highlight a few here; refer to the
documentation for a full list.

XMLCOMMENT(text)

Formats a piece of text as an XML comment. For example:

SELECT XMLCOMMENT('My document');
<!--My document-->

XMLCONCAT(xml, [, ...])

Concatenates an arbitrary number of XML documents into one. For example:

SELECT XMLCONCAT('<?xml version="1.1"?><cat>Jerry</cat>',
 '<?xml version="1.1"?><dog>Snoopy</dog>');

<?xml version="1.1"?>
<cat>Jerry</cat>
<dog>Snoopy</dog>

786 | Chapter 10: Flexible and Schemaless

https://oreil.ly/SsC3r

XMLELEMENT(NAME name[, XMLATTRIBUTES (attvalue [AS attname] [, ...])]

[, content [, ...]])

Produces an XML element with the given name, attributes, and content. For
example:

SELECT XMLELEMENT(NAME person, XMLATTRIBUTES('Joe' AS name));

<person name="Joe"/>

XPATH(path_expression, xml[, nsarray_text[]])

Returns an array of XML values from the input XML that satisfy the XPath 1.0
path_expression. For example:

You will often see this function paired with array subscription to pick out an
element from the array or the UNNEST function to expand the array. This value
is often then cast to text to make it usable. For example:

SELECT id, dm[1]::text AS first_name, dm AS raw_array
FROM bag_o_xml,
 XPATH('//first_name/text() | //fname/text()', data) AS dm;

 id | first_name | raw_array
----+------------+-----------
 1 | Jane | {Jane}
 2 | John | {John}

XMLPI(NAME name [, content])

Produces an XML processing instruction, commonly used to provide applica‐
tion instructions associated with all or part of an XML document. For example:

SELECT XMLPI(NAME javascript, 'function hello() {
 alert("hello world");
}');

 <?javascript function hello() {
 alert("hello world");
 }?>

SQL Server XML keywords, functions, procedures, and methods
XML is a data type in SQL Server. Like most other data types, it can be used as both
a column data type and a variable data type. As a complex data type, it has methods
attached to it. In addition, SQL Server defines new SQL keywords specifically for
XML that are used to return a query in XML format. The following subsections
describe those key elements.

Keywords.

sql_query FOR XML {RAW | AUTO | EXPLICIT | PATH}

Produces an XML document from a SQL query. Refer to the documentation for
details.

Why XML? | 787

Flexib
le and

Schem
aless

https://oreil.ly/19NAW

AUTO

Follows FOR XML and makes table names the object and column names or
aliases as attributes. The SELECT statement must have a FROM clause. For
example:

SELECT name_first AS name
FROM friends
FOR XML AUTO;

<friends name="John" />
<friends name="Jane" />

EXPLICIT

Follows FOR XML and requires that the columns define explicitly what parts go
into which part of the XML document (refer to the EXPLICIT mode documen‐
tation for details). For example:

SELECT 1 AS Tag,
 NULL AS Parent,
 f.name_first AS "friend!1!first",
 f.name_last AS "friend!1!last"
FROM friends AS f
FOR XML EXPLICIT;

<friend first="John" last="Smith" />
<friend first="Jane" last="Doe" />

PATH [(path_name)] [, ROOT (root_name)]

Follows FOR XML and allows for a query to return both elements and attributes.
Refer to the PATH mode documentation for details. Precede the alias name
with an @ to make a column an attribute. If there is no @ in the alias, then the
column is converted to a tag. For example:

SELECT
 f.name_first AS "@first",
 f.name_last AS "@last"
FROM friends AS f
FOR XML PATH ('friend'), ROOT ('friends');

<friends>
 <friend first="John" last="Smith" />
 <friend first="Jane" last="Doe" />
</friends>

SELECT
 f.name_first AS "first",
 f.name_last AS "last"
FROM friends AS f
FOR XML PATH ('friend'), ROOT ('friends');

<friends>
 <friend>
 <first>John</first>

788 | Chapter 10: Flexible and Schemaless

https://oreil.ly/EFHKX
https://oreil.ly/BshGX

 <last>Smith</last>
 </friend>
 <friend>
 <first>Jane</first>
 <last>Doe</last>
 </friend>
</friends>

RAW

Follows FOR XML and returns an XML where there is no root tag and all rows
are returned in <row> tags. Refer to the RAW mode documentation for details.
For example:

SELECT
 f.name_first AS "first",
 f.name_last AS "last"
FROM friends AS f
FOR XML RAW;

<row first="John" last="Smith" />
<row first="Jane" last="Doe" />

Functions and procedures.

OPENXML(@docHandle) [WITH existing_table_or_in_line_column_def]

A function that can be used in FROM. It takes as input a document han‐
dle returned by SP_XML_PREPAREDOCUMENT. This example follows the SP_XML
_PREPAREDOCUMENT example to create a table from the prepared document. The
optional WITH clause defines the structure of the data. For example:

EXEC sp_xml_preparedocument @docHandle OUTPUT, @xmlDocument;

SELECT *
INTO friends2
FROM OPENXML(@docHandle, N'/friends/friend')
 WITH (name_first nvarchar(50) '@first',
 name_last nvarchar(50) '@last'
);

SP_XML_PREPAREDOCUMENT @docHandle OUTPUT, @xmlDocument

A stored procedure that returns a document pointer to XML data for later use
in OPENXML. Mostly useful for large XML documents; for smaller documents,
you can use CAST(string AS xml). For example:

DECLARE @docHandle int;
DECLARE @xmlDocument nvarchar(max); -- Or XML type
SET @xmlDocument = N'<friends>
 <friend first="John" last="Smith" />
 <friend first="Jane" last="Doe" />
 </friends>';
EXEC sp_xml_preparedocument @docHandle OUTPUT, @XMLDocument;

Why XML? | 789

Flexib
le and

Schem
aless

https://oreil.ly/E0Xaq

XML methods. XML methods are called with object-oriented dot notation on the
data. Refer to the documentation for further details and examples.

exist(xpath)

Returns 1 if the xpath exists in the document or 0 if it doesn’t. See “XMLEX‐
ISTS” on page 780 for an example.

modify(XML_DML)

Updates data using the provided XML Data Modification Language command
(XML_DML). Can only be used in UPDATE statements, not SELECT statements. For
example:

UPDATE bag_o_xml
 SET data.modify('replace value of (/person/fname/text())[1]
 with "Janet"')
WHERE id = 1;

nodes(xpath)

Returns a set of XML nodes that match the XPath expression. For example:

SELECT id, jt.n.value('.', 'varchar(50)') AS tag
FROM bag_o_xml AS j
CROSS APPLY j.data.nodes('//tags/tag') AS jt(n);

query(xpath)

Returns XML data satisfying the query condition. For example:

SELECT
 data.query('//address') AS address
FROM bag_o_xml
WHERE id = 2;

<address city="Boston" state="MA" country="United States" />

value(xpath, data_type)

Returns the scalar value at a given path. Doesn’t support XPath union opera‐
tions (the | operator). For example:

SELECT id,
 data.value('(//address/@city)[1]', 'varchar(50)') AS value
FROM bag_o_xml;

id value
—- —----
1 NULL
2 Boston

790 | Chapter 10: Flexible and Schemaless

https://oreil.ly/Owonn
https://oreil.ly/f9wPV

APPENDIX

Shared and Platform-Specific Keywords

This appendix is intended to serve as a quick reference for words that you should
not use as object or variable names in your databases. Strictly speaking, a keyword
is a word with special meaning within a specific computer programming context,
while a reserved word is a word that cannot be used as an identifier for objects like
tables, views, and procedures, because the word is reserved for use by the computer
language itself. These terms are often used interchangeably, although they are not
truly synonyms. In our case, we use the term “keywords” colloquially defined as
“words you should not use in an identifier, whether strictly prohibited or not.”

Of course, the names of all SQL statements and built-in functions are keywords,
as are the names of other language elements (clauses, predicates, expressions, etc.).
We have attempted to identify and list them all here, but because they are so numer‐
ous, and because the language and the various database platforms are constantly
evolving, it is possible that we have missed some. Consequently, you should treat the
following lists as guidelines, but not as definitively complete. (And if you identify
any gaps, please submit them to the errata.)

The following sections contain two expansive lists of keywords, ordered alphabeti‐
cally from A to Z. First, we provide a list of keywords identified in the SQL:2019
standard. Second, we present a list of shared keywords that are not part of the
standard but are used by at least two of the four database platforms we cover in this
book. Since those shared keywords are widespread in the industry, we recommend
that you avoid using them as identifiers even though they may be allowed on
some database platforms. Refer to each vendor’s documentation for the full list of
keywords that are unique to that platform.

791

https://oreil.ly/L6pvJ

SQL Standard Keywords
A
A
ABS
ABSOLUTE
ACOS
ACTION
ADA
ADD
ADMIN
AFTER
ALL
ALLOCATE

ALTER
ALWAYS
AND
ANY
ARE
ARRAY
ARRAY_AGG
ARRAY_MAX_CARDINALITY
AS
ASC
ASENSITIVE

ASIN
ASSERTION
ASSIGNMENT
ASYMMETRIC
AT
ATAN
ATOMIC
ATTRIBUTE
ATTRIBUTES
AUTHORIZATION
AVG

B
BEFORE
BEGIN
BEGIN_FRAME
BEGIN_PARTITION
BERNOULLI

BETWEEN
BIGINT

BINARY
BLOB

BOOLEAN

BOTH
BREADTH
BY

C
C
CALL
CALLED
CARDINALITY
CASCADE
CASCADED
CASE
CAST
CATALOG
CATALOG_NAME
CEIL
CEILING
CHAIN
CHAINING
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHARACTER_SET_CATALOG
CHARACTER_SET_NAME
CHARACTER_SET_SCHEMA
CHARACTERISTICS
CHARACTERS
CHECK
CLASS_ORIGIN

CLASSIFIER
CLOB

CLOSE
COALESCE
COBOL
COLLATE
COLLATION
COLLATION_CATALOG
COLLATION_NAME
COLLATION_SCHEMA
COLLECT
COLUMN
COLUMN_NAME
COLUMNS
COMMAND_FUNCTION
COMMAND_FUNCTION_CODE
COMMIT
COMMITTED
CONDITION
CONDITION_NUMBER
CONDITIONAL
CONNECT
CONNECTION
CONNECTION_NAME
CONSTRAINT

792 | Appendix: Shared and Platform-Specific Keywords

CONSTRAINT_CATALOG
CONSTRAINT_NAME
CONSTRAINT_SCHEMA
CONSTRAINTS
CONSTRUCTOR
CONTAINS
CONTINUE
CONVERT
COPY
CORR
CORRESPONDING
COS
COSH
COUNT
COVAR_POP
COVAR_SAMP
CREATE
CROSS

CUBE
CUME_DIST
CURRENT
CURRENT_CATALOG
CURRENT_DATE
CURRENT_DEFAULT_TRANSFORM_GROUP
CURRENT_PATH
CURRENT_ROLE
CURRENT_ROW
CURRENT_SCHEMA
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSFORM_GROUP_FOR_TYPE
CURRENT_USER
CURSOR
CURSOR_NAME
CYCLE

D
DATA
DATE

DATETIME_INTERVAL_CODE
DATETIME_INTERVAL_PRECISION
DAY
DEALLOCATE
DEC
DECIMAL
DECFLOAT
DECLARE
DEFAULT
DEFAULTS
DEFERRABLE
DEFERRED
DEFINE
DEFINED
DEFINER
DEGREE
DELETE
DENSE_RANK
DEPTH

DEREF
DERIVED
DESC
DESCRIBE
DESCRIBE_CATALOG
DESCRIBE_NAME
DESCRIBE_PROCEDURE_SPECIFIC_CATALOG
DESCRIBE_PROCEDURE_SPECIFIC_NAME
DESCRIBE_PROCEDURE_SPECIFIC_SCHEMA
DESCRIBE_SCHEMA
DESCRIPTOR
DETERMINISTIC
DIAGNOSTICS
DISCONNECT
DISPATCH
DISTINCT
DOMAIN
DOUBLE
DYNAMIC_FUNCTION
DYNAMIC_FUNCTION_CODE

E
EACH
ELEMENT
ELSE
EMPTY
ENCODING
END

END_FRAME
END_PARTITION
ENFORCED
EQUALS
ERROR
ESCAPE

EVERY
EXCEPT
EXCLUDE
EXCLUDING
EXEC
EXECUTE

EXISTS
EXP
EXPRESSION
EXTERNAL
EXTRACT

SQL Standard Keywords | 793

F
FALSE
FETCH
FILTER
FINAL
FINISH
FINISH_CATALOG
FINISH_NAME
FINISH_PROCEDURE_SPECIFIC_CATALOG
FINISH_PROCEDURE_SPECIFIC_NAME
FINISH_PROCEDURE_SPECIFIC_SCHEMA
FINISH_SCHEMA
FIRST
FIRST_VALUE
FLAG
FLOAT

FLOOR
FOLLOWING
FOR

FOREIGN
FORMAT
FORTRAN
FOUND
FRAME_ROW
FREE
FROM
FULFILL
FULFILL_CATALOG
FULFILL_NAME
FULFILL_PROCEDURE_SPECIFIC_CATALOG
FULFILL_PROCEDURE_SPECIFIC_NAME
FULFILL_PROCEDURE_SPECIFIC_SCHEMA
FULFILL_SCHEMA
FULL
FUNCTION
FUSION

G–H
G
GENERAL
GENERATED
GET
GLOBAL
GO

GOTO
GRANT
GRANTED
GROUP
GROUPING
GROUPS

HAS_PASS_THROUGH_COLUMNS
HAS_PASS_THRU_COLS
HAVING
HIERARCHY
HOLD
HOUR

I
IDENTITY
IGNORE
IMMEDIATE
IMMEDIATELY
IMPLEMENTATION
IN
INCLUDING
INCREMENT

INDICATOR
INITIAL
INITIALLY
INNER
INOUT
INPUT
INSENSITIVE
INSERT

INSTANCE
INSTANTIABLE
INSTEAD
INT
INTEGER

INTERSECT
INTERSECTION

INTERVAL

INTO
INVOKER
IS
IS_PRUNABLE
ISOLATION

J
JOIN
JSON
JSON_ARRAY
JSON_ARRAYAGG

JSON_EXISTS
JSON_OBJECT
JSON_OBJECTAGG
JSON_QUERY

JSON_TABLE
JSON_TABLE_PRIMITIVE
JSON_VALUE

794 | Appendix: Shared and Platform-Specific Keywords

K–L
K
KEEP
KEY
KEY_MEMBER
KEY_TYPE
KEYS
LAG

LANGUAGE
LARGE
LAST
LAST_VALUE
LATERAL
LEAD
LEADING

LEFT
LENGTH
LEVEL
LIKE
LIKE_REGEX
LISTAGG
LN

LOCAL
LOCALTIME
LOCALTIMESTAMP
LOCATOR
LOG
LOG10
LOWER

M
M
MAP
MATCH
MATCH_NUMBER
MATCH_RECOGNIZE
MATCHED
MATCHES
MAX
MAXVALUE

MEMBER
MERGE
MESSAGE_LENGTH
MESSAGE_OCTET_LENGTH
MESSAGE_TEXT
METHOD
MIN
MINUTE
MINVALUE

MOD
MODIFIES
MODULE
MONTH
MORE
MULTISET
MUMPS

N
NAME
NAMES
NATIONAL
NATURAL
NCHAR
NCLOB

NESTED

NESTING
NEW
NEXT
NFC
NFD
NFKC
NFKD

NO
NONE
NORMALIZE
NORMALIZED
NOT
NTH_VALUE
NTILE

NULL
NULLABLE
NULLIF
NULLS
NUMBER
NUMERIC

O
OBJECT
OCCURRENCES_REGEX
OCTET_LENGTH
OCTETS
OF
OFFSET
OLD

OMIT
ON
ONE
ONLY
OPEN
OPTION
OPTIONS

OR
ORDER
ORDERING
ORDINALITY
OTHERS
OUT
OUTER

OUTPUT
OVER
OVERFLOW
OVERLAPS
OVERLAY
OVERRIDING

P–Q
P
PAD
PARAMETER
PARAMETER_MODE
PARAMETER_NAME
PARAMETER_ORDINAL_POSITION
PARAMETER_SPECIFIC_CATALOG
PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA
PARTIAL
PARTITION
PASCAL
PASS
PASSING
PAST
PATH

PATTERN
PER
PERCENT
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
PERIOD
PLACING

SQL Standard Keywords | 795

PLAN
PLI
PORTION
POSITION
POSITION_REGEX
POWER
PRECEDES
PRECEDING

PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVATE
PRIVATE_PARAMETERS
PRIVATE_PARAMS_S

PRIVILEGES
PROCEDURE
PRUNE
PTF
PUBLIC
QUOTES

R
RANGE
RANK
READ
READS
REAL

RECURSIVE
REF
REFERENCES
REFERENCING
REGR_AVGX
REGR_AVGY
REGR_COUNT
REGR_INTERCEPT
REGR_R2
REGR_SLOPE
REGR_SXX

REGR_SXY
REGR_SYY
RELATIVE
RELEASE
REPEATABLE
RESPECT
RESTART
RESTRICT
RESULT
RET_ONLY_PASS_THRU
RETURN
RETURNED_CARDINALITY
RETURNED_LENGTH
RETURNED_OCTET_LENGTH
RETURNED_SQLSTATE
RETURNING

RETURNS
RETURNS_ONLY_PASS_THROUGH
REVOKE
RIGHT
ROLE
ROLLBACK
ROLLUP
ROUTINE
ROUTINE_CATALOG
ROUTINE_NAME
ROUTINE_SCHEMA
ROW
ROW_COUNT
ROW_NUMBER
ROWS
RUNNING

S
SAVEPOINT
SCALAR
SCALE
SCHEMA
SCHEMA_NAME
SCOPE
SCOPE_CATALOG
SCOPE_NAME
SCOPE_SCHEMA
SCROLL
SEARCH
SECOND
SECTION
SECURITY
SEEK
SELECT
SELF
SENSITIVE
SEQUENCE
SERIALIZABLE
SERVER_NAME
SESSION
SESSION_USER

SET
SETS
SHOW
SIBLINGS
SIMILAR
SIMPLE
SIN
SINH
SIZE
SKIP
SMALLINT

SOME
SOURCE
SPACE
SPECIFIC
SPECIFIC_NAME
SPECIFICTYPE
SQL
SQLEXCEPTION
SQLSTATE
SQLWARNING
SQRT
START

796 | Appendix: Shared and Platform-Specific Keywords

START_CATALOG
START_NAME
START_PROCEDURE_SPECIFIC_CATALOG
START_PROCEDURE_SPECIFIC_NAME
START_PROCEDURE_SPECIFIC_SCHEMA
START_SCHEMA
STATE
STATEMENT
STATIC
STDDEV_POP
STDDEV_SAMP
STRING
STRUCTURE

STYLE
SUBCLASS_ORIGIN
SUBMULTISET
SUBSET
SUBSTRING
SUBSTRING_REGEX
SUCCEEDS
SUM
SYMMETRIC
SYSTEM
SYSTEM_TIME
SYSTEM_USER

T
T
TABLE
TABLE_NAME
TABLE_SEMANTICS
TABLESAMPLE
TAN
TANH
TEMP| TEMPORARY
THEN
THROUGH
TIES
TIME

TIMESTAMP

TIMEZONE_HOUR
TIMEZONE_MINUTE
TO
TOP_LEVEL_COUNT
TRAILING
TRAN
TRANSACTION
TRANSACTION_ACTIVE
TRANSACTIONS_COMMITTED
TRANSACTIONS_ROLLED_BACK
TRANSFORM
TRANSFORMS
TRANSLATE

TRANSLATE_REGEX
TRANSLATION
TREAT
TRIGGER
TRIGGER_CATALOG
TRIGGER_NAME
TRIGGER_SCHEMA
TRIM
TRIM_ARRAY
TRUE
TRUNCATE
TYPE

U
UESCAPE
UNBOUNDED
UNCOMMITTED
UNCONDITIONAL
UNDER
UNION
UNIQUE
UNKNOWN

UNNAMED
UNNEST
UPDATE
UPPER
USAGE
USER
USER_DEFINED_TYPE_CATALOG
USER_DEFINED_TYPE_CODE

USER_DEFINED_TYPE_NAME
USER_DEFINED_TYPE_SCHEMA
USING
UTF8
UTF16
UTF32

V–Z
VALUE
VALUE_OF
VALUES
VAR_POP
VAR_SAMP
VARBINARY

VARCHAR
VARYING
VERSIONING
VIEW
WHEN
WHENEVER

WHERE
WIDTH_BUCKET
WINDOW
WITH
WITHIN
WITHOUT

WORK
WRAPPER
WRITE
XML
YEAR
ZONE

SQL Standard Keywords | 797

Keywords Shared Across Multiple Platforms
ACCESS
ANALYZE
ATAN2
BACKUP
CACHE
CHECKPOINT
CLUSTER
COMMENT
COT
DATABASE
DEGREES
DISABLE
DISCARD
DISK
ENABLE
ENUM

EVENT
EXCLUSIVE
EXPLAIN
FETCH
FILE
FILTER
FIRST_VALUE
FOLLOWING
FORCE
FOUND
IDENTIFIED
IMPORT
INDEX
INDEXES
INOUT
KILL

LOAD
LOCK
LOCKED
MODE
NAME
NOWAIT
OWNER
PARSER
PARTITION
PASSWORD
RADIANS
REGEXP_INSTR
RENAME
REPLACE
REPLICA
REPLICATION

RESET
RESOURCE
RESTORE
RULE
SERVER
SHARE
SHUTDOWN
SNAPSHOT
STATISTICS
STORAGE
TABLES
TABLESPACE
TEXT
TYPES
XML

798 | Appendix: Shared and Platform-Specific Keywords

Index

Symbols
!< (not less than operator), 29
!= (not equal to operator), 29, 32
!> (not greater than operator), 29
"..." (double quotes), enclosing delimited

identifiers, 23, 32
(pound symbol)

prefixing temporary procedures, SQL
Server, 685

prefixing temporary tables, SQL
Server, 204

#>> (pound symbol, right angle bracket)
operator, 771

#–(element subtraction operator), 770
% (modula arithmetic operator), 28
% (wildcard operator, matches any

string), 32, 291
& (bitwise AND operator), 28
'...' (single quotes)

enclosing delimited identifiers, 32
enclosing string literals, 27, 32

(...) (parentheses), affecting operator
precedence, 32

* (multiplication arithmetic operator), 28,
32

+ (addition arithmetic operator), 28, 32
+ (concatenation operator, SQL Server),

32
+ (positive unary operator), 31
, (list item separator), 32
- (negative unary operator), 31
- (range indicator in CHECK constraint),

32

-- (comments, single-line), 32
->> (arrow operator), 771
. (identifier qualifier separator), 32
/ (division arithmetic operator), 28, 32
/*...*/ (comments, multiline), 32
:: (CAST function operator), 769
:= (assignment operator), Oracle, 28
< (less than operator), 29, 32
<= (less than or equal to operator), 29, 32
<> (not equal to operator), 29, 32
<@ (left angle bracket, at) operator, 772
= (equal to comparison operator), 29, 32
> (greater than operator), 29, 32
>= (greater than or equal to operator), 29,

32
? (question mark) operator, 772
?| (question mark, bar) operator, 772
@ (at sign), prefixing parameters, SQL

Server, 685
@> (at, right angle bracket) operator, 771
@@ (at sign) operator, 772
[...] (brackets)

enclosing delimited identifiers, 21
wildcard operator, matches in set, SQL

Server, 294
[^...] (wildcard operator, matches not in

set, SQL Server), 294
^ (bitwise exclusive OR operator), 28
_ (underscore), in identifiers, 22
_ (wildcard operator, matches any charac‐

ter), 291
| (bitwise OR operator), 28
|| (concatenation operator), 529, 770
~ (bitwise NOT unary operator), 31

799

–(subtraction arithmetic operator), 28, 32,
769

A
abbreviations in identifiers, 22
ABS function, 512
access control, 5
ADDDATE function, MySQL, 538
addition arithmetic operator (+), 28, 32
ADD_MONTHS function, Oracle, 554
AES_DECRYPT function, MySQL, 538
AES_ENCRYPT function, MySQL, 538
AGE function, PostgreSQL, 570
aggregate functions, 504, 594-623

(see also GROUP BY clause; HAVING
clause)

ARRAY_AGG, 597
AVG, 598
COLLECT, 599
CORR, 600
COUNT, 601
COVAR_POP, 602
COVAR_SAMP, 603
CUME_DIST, 604-605
DENSE_RANK, 606
EVERY, 607
LISTAGG, 608
MAX, 610
MIN, 610
Oracle, 641-643
PERCENTILE_CONT, 612
PERCENTILE_DISC, 614
PERCENT_RANK, 610
RANK, 616
REGR_, 617
STDDEV_POP, 619
STDDEV_SAMP, 620
SUM, 598
syntax, 596
VAR_POP, 621
VAR_SAMP, 622

aliases
assigning, 28
WHERE clause joins and, 308

ALL operator, 29, 251-254
ALL PRIVILEGES, 452
ALTER AGGREGATE statement, 655-659

Oracle, 656

PostgreSQL, 656-658
SQL Server, 659

ALTER DATABASE statement
MySQL and MariaDB, 73

ALTER DATABASEstatement, 72-106
Oracle, 74-92
PostgreSQL, 92-94
SQL Server, 94-106

ALTER FUNCTION statement, 661-688
MySQL and MariaDB, 667-669
Oracle, 669-674
PostgreSQL, 674-682
SQL Server, 682-688

ALTER INDEX statement, 108-136
Oracle, 113-122
PostgreSQL, 122-127
SQL Server, 127-136

ALTER METHOD statement, 688-690
ALTER PROCEDURE statement, 661-688

MySQL and MariaDB, 667-669
Oracle, 669-674
PostgreSQL, 674-682
SQL Server, 682-688

ALTER ROLE statement, 447
ALTER SCHEMA statement, 136-140
ALTER SESSION statement, Oracle, 500
ALTER TABLE statement, 140-205

MySQL and MariaDB, 149-159
Oracle, 159-192, 191
PostgreSQL, 192-200
SQL Server, 200-205

ALTER TRIGGER statement
Oracle, 694-699
PostgreSQL, 700-704
SQL Server, 704-710

ALTER TYPE statement, 205-220
Oracle, 209-216
PostgreSQL, 216-219

ALTER VIEW statement, 221-236
MySQL, 225
Oracle, 226-230
PostgreSQL, 230-233
SQL Server, 233-235

ampersand (&), bitwise AND operator, 28
analytic functions (see window functions)
AND operator, 29
angle brackets (see left angle bracket;right

angle bracket)

800 | Index

ANSI standard for SQL (see SQL stan‐
dard)

ANY operator, 29, 251-254
Any Type data types, Oracle, 46
ANY_VALUE function, Oracle, 641
APPROX_ functions, Oracle, 641
APPROX_COUNT_DISTINCT, SQL

Server, 645
APP_NAME function, SQL Server, 582
arithmetic operators, 28
ARRAY_AGG function, 597
ARRAY_APPEND function, PostgreSQL,

570
ARRAY_CAT function, PostgreSQL, 570
ARRAY_DIMS function, PostgreSQL, 570
ARRAY_FILL function, PostgreSQL, 570
ARRAY_LENGTH function, PostgreSQL,

570
ARRAY_LOWER function, PostgreSQL,

570
ARRAY_NDIMS function, PostgreSQL,

570
ARRAY_POSITION function, Post‐

greSQL, 570
ARRAY_POSITIONS function, Post‐

greSQL, 570
ARRAY_PREPEND function, Post‐

greSQL, 571
ARRAY_REMOVE function, PostgreSQL,

571
ARRAY_REPLACE function, PostgreSQL,

571
ARRAY_TO_STRING function, Post‐

greSQL, 571
ARRAY_TO_TSVECTOR function, Post‐

greSQL, 571
ARRAY_UPPER function, PostgreSQL,

571
arrow operator (->>), 771
ASCII function

MySQL, 538
Oracle, 554
PostgreSQL, 571
SQL Server, 582

ASCIISTR function, Oracle, 554
assertions, 5
assignment operator (:=), Oracle, 28
assignment operator (=), 28

asterisk (*), multiplication arithmetic
operator, 28, 32

at sign (@), prefixing parameters, SQL
Server, 685

at sign (@@) operator, 772
at, right angle bracket (@>) operator, 771
attributes (see columns)
AuthorizationID (user), 5
AVG DISTINCT function, 265
AVG function, 265, 598

B
BEGIN statement, PostgreSQL, 422
BEGIN TRANSACTION statement, SQL

Server, 422
BENCHMARK function, MySQL, 538
BETWEEN operator, 29, 254
BFILE data type, Oracle, 37, 46
BFILENAME function, Oracle, 555
BIGINT data type, 37

MySQL, 41
PostgreSQL, 50
SQL Server, 55

BIGSERIAL data type, PostgreSQL, 37,
50, 54

BIN function, MySQL, 538
BINARY data type, 37

MySQL, 41
SQL Server, 55

binary data types, 35
BINARY function, MySQL, 538
BINARY_CHECKSUM function, SQL

Server, 582
BINARY_DOUBLE data type, Oracle, 37,

46
BINARY_FLOAT data type, Oracle, 37, 46
BIN_TO_NUM function, Oracle, 555
BIT data type, 37

MySQL, 42
PostgreSQL, 50
SQL Server, 55

BIT VARYING data type, PostgreSQL, 37,
50

BITAND function, Oracle, 555
bitwise AND operator (&), 28
bitwise exclusive OR operator (^), 28
bitwise NOT unary operator (~), 31
bitwise operators, 28

Index | 801

bitwise OR operator (|), 28
BIT_AND function

MySQL, 640
PostgreSQL, 644

BIT_AND_AGG function, Oracle, 641
BIT_COUNT function, MySQL, 538
BIT_LENGTH function, 512

MySQL, 539
BIT_OR function

MySQL, 640
PostgreSQL, 644

BIT_OR_AGG function, Oracle, 641
BIT_XOR function

MySQL, 640
PostgreSQL, 644

BLOB data type, 37
MySQL, 42
Oracle, 46

BOOL data type, 37
PostgreSQL, 50

BOOLEAN data type, 35, 37, 50
Boolean literals, 26
BOOL_AND function, PostgreSQL, 644
BOOL_OR function, PostgreSQL, 644
BOX data type, PostgreSQL, 37, 50
brackets ([...])

enclosing delimited identifiers, 21
wildcard operator, matches in set, SQL

Server, 294
BROADCAST function, PostgreSQL, 571
BTRIM function, PostgreSQL, 571
built-in functions, SQL, 503-592
BYTEA data type, PostgreSQL, 37, 50

C
CALL statement, 650-652
Call-Level Interface (CLI), package con‐

taining, 13
candidate key (see UNIQUE constraints)
Cantor, Georg, 9
CARDINALITY function, 513
caret (^), bitwise exclusive OR operator,

28
caret, brackets ([^...]), wildcard operator,

matches not in set, SQL Server, 294
CASE function, 507-509
case of identifiers, 22
case sensitivity of identifiers, 26

CAST function, 509
CAST function operator (::), 769
catalogs, 4, 21
CBRT function, PostgreSQL, 571
CEIL (or CEILING) function, 514
CHAR data type, 37

MySQL, 42
Oracle, 46
PostgreSQL, 50
SQL Server, 55

CHAR FOR BIT DATA data type, 37
CHAR function

MySQL, 539
PostgreSQL, 572
SQL Server, 582

CHAR VARYING data type, 37
Oracle, 49
SQL Server, 59

CHARACTER data type, 37
Oracle, 46
PostgreSQL, 50
SQL Server, 55

character sets, 5
character string data types, 35
character string literals, 27
CHARACTER VARYING data type, 37

Oracle, 49
PostgreSQL, 55
SQL Server, 59

CHARINDEX function, SQL Server, 582
CHARSET function, MySQL, 539
CHARTOROWID function, Oracle, 555
CHAR_LENGTH function, 512
CHECK constraints, 67
CHECKSUM function, SQL Server, 582
CHECKSUM_AGG function, SQL Server,

645
CHR function

Oracle, 555
PostgreSQL, 572

CIDR data type, PostgreSQL, 37, 51
CIRCLE data type, PostgreSQL, 37, 51
CLI (Call-Level Interface), package con‐

taining, 13
CLOB data type, Oracle, 37, 47
CLOCK_TIMESTAMP function, Post‐

greSQL, 572
CLOSE statement, 652-654
clustered indexes, SQL Server, 148

802 | Index

clusters, 4
CLUSTER_ID function, Oracle, 555
CLUSTER_PROBABILITY function,

Oracle, 555
CLUSTER_SET function, Oracle, 555
COALESCE function, 510
Codd, E. F.

relational database rules, 2-9
relational database theory description,

2
research by, leading to SEQUEL, 1

COERCIBLITY function, MySQL, 539
COLLATION function, MySQL, 539
collations, 5
COLLECT function, 599

Oracle, 641
collection data types, 35
collection functions, 536
colon, equal sign (:=), assignment opera‐

tor, Oracle, 28
column-level constraints, 60
columns, 4

constraints for, 60-68
data types of, 35

columnstore index, SQL Server, 127, 131
COL_LENGTH function, SQL Server,

583
COL_NAME function, SQL Server, 583
comma (,), list item separator, 32
comments, 32
COMMIT statement, 361-365
common table expression (CTE), 352-356
comparison operators, 29
COMPOSE function, Oracle, 555
composite (concatenated) indexes, 109
COMPRESS function, MySQL, 539
compressed tables, Oracle, 175
concatenated indexes, 109
concatenation operator (+), SQL Server,

32
concatenation operator (||), 529, 770
CONCAT_WS function

MySQL, 539
PostgreSQL, 572

CONNECT statement, 441-445
connection statements, 15
CONNECTION_ID function, MySQL,

539
constraints, 5, 60-68

CHECK, 67
FOREIGN KEY, 62-65
PRIMARY KEY, 61
scope of, 60
setting (see SET CONSTRAINTS

statement)
syntax for, 60
UNIQUE, 66

CONTAINS function, SQL Server, 583
CONTAINSTABLE function, SQL Server,

583
control statements, 15
CONV function, MySQL, 539
CONVERT function, 530-532
CORR function, 600
correlated subqueries, 339
CORR_K function, Oracle, 641
CORR_S function, Oracle, 641
COUNT DISTINCT function, 265
COUNT function, 265, 601
COUNT_BIG function, SQL Server, 645
COVAR_POP function, 602
COVAR_SAMP function, 603
CRC32 function, MySQL, 539
CREATE AGGREGATE statement

MySQL and MariaDB, 655
Oracle, 656
PostgreSQL, 656-658
SQL Server, 659

CREATE CAST statement, 659-661
CREATE DATABASE statement, 72-106

MySQL and MariaDB, 73
Oracle, 74-92
PostgreSQL, 92-94
SQL Server, 94-106

CREATE DOMAIN statement, 106-108
CREATE FUNCTION statement, 661-688

MySQL and MariaDB, 667-669
Oracle, 669-674
PostgreSQL, 674-682
SQL Server, 682-688

CREATE INDEX statement, 108-136
MySQL and MariaDB, 110-113
Oracle, 113-122
PostgreSQL, 122-127
SQL Server, 127-136

CREATE METHOD statement, 688-690
CREATE PROCEDURE statement,

661-688

Index | 803

MySQL and MariaDB, 667-669
Oracle, 669-674
PostgreSQL, 674-682
SQL Server, 682-688

CREATE ROLE statement, 445-451
MySQL, 447
Oracle, 447
PostgreSQL, 448-450
SQL Server, 450

CREATE SCHEMA statement, 136-140
CREATE TABLE statement, 140-205

MySQL and MariaDB, 149-159
Oracle, 159-192
PostgreSQL, 192-200
SQL Server, 200-205

CREATE TRIGGER statement, 690-710
MySQL, 693
Oracle, 694-699
PostgreSQL, 700-704
SQL Server, 704-710

CREATE TYPE statement, 205-220
Oracle, 209-216
PostgreSQL, 216-219
SQL Server, 220

CREATE VIEW statement, 221-236
MySQL, 225
Oracle, 226-230
PostgreSQL, 230-233
SQL Server, 233-235

cross joins, 282
CUBE subclause, 267
CUBE_TABLE function, Oracle, 555
CUME_DIST function, 604-605, 631
CURDATE function, MySQL, 540
CURRVAL function, PostgreSQL, 572
CURSOR data type, SQL Server, 37, 56
cursors

closing (see CLOSE statement)
creating (see DECLARE CURSOR

statement)
opening (see OPEN statement)
retrieving records from (see FETCH

statement)
CURTIME function, MySQL, 540
CV function, Oracle, 555

D
dashes (--), single-line comment, 32

Data Control Language (DCL), 15
Data Definition Language (DDL), 15
Data Manipulation Language (DML), 15
data statements, 15
data structures, 4-6
data types, 5, 35

MySQL, 41-45
Oracle, 45-49
platform comparisons of, 37-41
PostgreSQL, 49-55
SQL, 35-60
SQL Server, 55-60

database, 21
altering (see ALTER DATABASE state‐

ment)
connecting to (see CONNECT state‐

ment)
connections, switching between (see

SET CONNECTION statement)
creating (see CREATE DATABASE

statement)
database design, 141
DATABASE function, MySQL, 540
DATABASEPROPERTYEX function, SQL

Server, 583
DATALINK data type, 35, 37
DATAOBJ_TO_PARTITION function,

Oracle, 555
DATA_LENGTH function, SQL Server,

583
date and time data types

arithmetic operations on, 28
list of, 35

DATE data type, 37
MySQL, 42
Oracle, 47
PostgreSQL, 51
SQL Server, 56

date literals, 26
DATEADD function, SQL Server, 583
DATEDIFF function, SQL Server, 583
DATENAME function, SQL Server, 584
DATEPART function, SQL Server, 584
DATERANGE data type, PostgreSQL, 51
DATETIME data type, 37

MySQL, 42
SQL Server, 56

DATETIME2 data type, SQL Server, 56

804 | Index

DATETIMEOFFSET data type, SQL
Server, 37, 56

DATE_ADD function, MySQL, 540
DATE_FORMAT function, MySQL, 540
DATE_SUB function, MySQL, 541
DATE_TRUNC function, PostgreSQL,

572
DAY function, SQL Server, 584
DAYNAME function, MySQL, 541
DAYOFMONTH function, MySQL, 541
DAYOFWEEK function, MySQL, 541
DAYOFYEAR function, MySQL, 541
DBCLOB data type, 37
DBTIMEZONE function, Oracle, 556
DB_ID function, SQL Server, 584
DB_NAME function, SQL Server, 584
DCL (Data Control Language), 15
DDL (Data Definition Language), 15
DEC data type, 37, 56
DECIMAL data type, 37

MySQL, 42
Oracle, 47
PostgreSQL, 51, 53
SQL Server, 56

declarative processing, 8
DECLARE CURSOR statement, 711-720

MySQL and MariaDB, 714
Oracle, 715
PostgreSQL, 715
SQL Server, 717-720

DECODE function
MySQL, 542
Oracle, 556
PostgreSQL, 572

DECOMPOSE function, Oracle, 556
DEFAULT function, MySQL, 542
DEGREES function

MySQL, 542
PostgreSQL, 572
SQL Server, 584

DELETE privilege, 452
DELETE statement, 365-376

MySQL and MariaDB, 367-369
Oracle, 369-372
PostgreSQL, 372
SQL Server, 373-376

DELETEXML function, Oracle, 784
delimited (quoted) identifiers, 23, 32
delimiters, system, 32

DENSE_RANK function, 606, 632
DEPTH function, Oracle, 784
DEREF function, Oracle, 556
derived tables, 339
DES_DECRYPT function, MySQL, 542
DES_ENCRYPT function, MySQL, 542
deterministic functions, 504
diagnostic statements, 15
dialects, SQL, 16
DIFFERENCE function, SQL Server, 584
distributed partitioned views, SQL Server,

235
division arithmetic operator (/), 28, 32
DML (Data Manipulation Language), 15
DO command, 742
domains, 5
DOUBLE data type, 37

MySQL, 42
DOUBLE PRECISION data type, 37

MySQL, 42
Oracle, 47
PostgreSQL, 51
SQL Server, 57

double quotes ("..."), enclosing delimited
identifiers, 21, 23, 32

DROP statements, 236-247
MySQL and MariaDB, 238
Oracle, 239-242
PostgreSQL, 242-244
SQL Server, 244-247

DROP TRIGGER statement, 690-710
MySQL, 693
Oracle, 694-699
PostgreSQL, 700-704
SQL Server, 704-710

DUMP function, Oracle, 556
dynamic privileges, 461

E
ELT function, MySQL, 542
EMPTY_BLOB function, Oracle, 556
EMPTY_CLOB function, Oracle, 556
ENCODE function

MySQL, 542
PostgreSQL, 572

ENCRYPT function, MySQL, 542
entities (see tables)
ENUM data type, 37, 43

Index | 805

equal sign (=)
assignment operator, 28
comparison operator, 29, 32

EVERY function, 607
EXCEPT set operator, 255-260
exclamation point

equals sign (!=), not equal to operator,
29, 32

left angle bracket (!<), not less than
operator, 29

right angle bracket, not greater than (!
>) operator, 29

EXECUTE privilege, 452
EXISTS operator, 29, 260-262
EXP function, 515
EXPORT_SET function, MySQL, 542
eXtensible Markup Language (XML), in

SQL3, 14
extensions, 740
external tables, Oracle, 188-189
EXTRACT function, 515-518

Oracle, 784
EXTRACTVALUE function

MySQL, 783
Oracle, 784

F
FEATURE_ID function, Oracle, 556
FEATURE_SET function, Oracle, 556
FEATURE_VALUE function, Oracle, 556
FETCH statement, 720-728

MySQL, 723
Oracle, 724-725
PostgreSQL, 725
SQL Server, 726

FIELD function, MySQL, 543
FILEGROUPPROPERTY function, SQL

Server, 585
FILEGROUP_ID function, SQL Server,

584
FILEGROUP_NAME function, SQL

Server, 585
FILEPROPERTY function, SQL Server,

585
files (devices), SQL Server, 101
FILE_ID function, SQL Server, 584
FILE_NAME function, SQL Server, 584
FILTER clause, 262

FIND_IN_SET function, MySQL, 543
FIRST function, Oracle, 642
FIRST_VALUE function, 633
flashback queries, 324
FLOAT data type, 37

MySQL, 43
Oracle, 47
SQL Server, 57, 58

FLOAT function, PostgreSQL, 572
FLOAT4 data type, PostgreSQL, 37, 51
FLOAT8 data type, PostgreSQL, 37, 51
FLOOR function, 519
foreign data wrapper (FDW), PostgreSQL,

198
FOREIGN KEY constraints, 62-65
foreign tables, PostgreSQL, 198
FORMAT function

MySQL, 543
PostgreSQL, 573

FORMATMESSAGE function, SQL
Server, 585

FOUND_ROWS function, MySQL, 543
framing clause, 629
FREETEXT function, SQL Server, 585
FREETEXTTABLE function, SQL Server,

585
FROM_DAYS function, MySQL, 543
FROM_TZ function, Oracle, 556
FROM_UNIXTIME function, MySQL,

543
full joins, 285
FULLTEXTCATALOGPROPERTY func‐

tion, SQL Server, 585
FULLTEXTSERVICEPROPERTY func‐

tion, SQL Server, 585
functions

aggregate, 504
defined, 503

(see also specific functions)
deterministic, 504
nondeterministic, 504
window, 504

G
general-purpose functions, 507-510

CASE function, 507-509
CAST function, 509
COALESCE function, 510

806 | Index

NULLIF function, 510
GEOGRAPHY data type, 37
GEOMETRY data type, 37
GETANSINULL function, SQL Server,

585
GETDATE function, SQL Server, 585
GETUTCDATE function, SQL Server,

586
GET_CURRENT_TS_CONFIG function,

PostgreSQL, 573
GET_LOCK function, MySQL, 544
GRANT privilege, 452
GRANT statement, 451-475

MySQL and MariaDB, 455-461
Oracle, 461-470
PostgreSQL, 470-472
SQL Server, 472-475

graph databases, 746
GRAPHIC data type, 37
greater than operator (>), 29, 32
greater than or equal to (>=) operator, 29,

32
GREATEST function

MySQL, 544
Oracle, 557

GROUP BY clause, 263-272
grouping columns, 264
GROUPING function, 623
GROUPING SETS subclause, 267-271
GROUPING_ID function

Oracle, 642
SQL Server, 645

GROUP_CONCAT function, MySQL,
641

GROUP_ID function, Oracle, 642

H
HAVING clause, 271
heaps, Oracle, 188-189
HEX function, MySQL, 544
HEXTORAW function, Oracle, 557
hierarchical queries, Oracle, 320
HIERARCHYID data type, SQL Server,

37, 57
HOST function, PostgreSQL, 573
HOST_ID function, SQL Server, 586
HOST_NAME function, SQL Server, 586
HOUR function, MySQL, 544

I
identifier qualifier separator (.), 32
identifiers, 21-26

case sensitivity of, 26
delimited (quoted), 23, 26, 32
naming conventions for, 22
rules for, 21, 23-26
size of, 23
uniqueness of, 25

IDENTITY function, SQL Server, 586
IDENT_CURRENT function, SQL

Server, 586
IDENT_INCR function, SQL Server, 586
IDENT_SEED function, SQL Server, 586
IF function, MySQL, 544
IFNULL function, MySQL, 544
IMAGE data type, SQL Server, 37, 57
IN operator, 29, 272
index-organized table (IOT), 121, 148

Oracle, 188-189
indexed views, 8
indexes, 108-136

altering (see ALTER INDEX state‐
ment)

creating (see CREATE INDEX state‐
ment)

INDEXPROPERTY function, SQL Server,
586

INDEX_COL function, SQL Server, 586
INET data type, PostgreSQL, 37, 51
INET_ATON function, MySQL, 544
INET_NTOA function, MySQL, 544
INFORMATION_SCHEMA, 7
INITCAP function

Oracle, 557
PostgreSQL, 573

inner joins, 282
INSERT function, MySQL, 544
INSERT privilege, 452
INSERT statement, 376-396

(see also MERGE statement)
MySQL and MariaDB, 380-383
Oracle, 383-389
PostgreSQL, 389-391
SQL Server, 392-395

INSERTCHILDXML function, Oracle,
557, 785

Index | 807

INSERTXMLBEFORE function, Oracle,
557, 785

instances, 21
INSTR function, MySQL, 545
INT data type, 37

MySQL, 43
PostgreSQL, 51
SQL Server, 57

INT2 data type, 37
INT4 data type, PostgreSQL, 37, 51
INT8 data type, PostgreSQL, 50
INTEGER data type, 37

MySQL, 43
Oracle, 47
PostgreSQL, 51

INTEGER function, PostgreSQL, 573
INTERSECT set operator, 273-277
INTERVAL data type, PostgreSQL, 37, 52
interval data types, 35
INTERVAL DAY TO SECOND data type,

37, 47
INTERVAL function, MySQL, 545
INTERVAL YEAR TO MONTH data

type, 37, 47
IS operator, 277
ISDATE function, SQL Server, 587
ISFINITE function, PostgreSQL, 573
ISJSON function, SQL Server, 776
ISNULL function

MySQL, 545
SQL Server, 587

ISNUMERIC function, SQL Server, 587
isolation levels (see SET TRANSAC‐

TION statement;START TRANSAC‐
TION statement)

IS_FREE_LOCK function, MySQL, 545
IS_MEMBER function, SQL Server, 586
IS_SRVROLEMEMBER function, SQL

Server, 587
IS_USED_LOCK function, MySQL, 545
ITERATION_NUMBER function, Oracle,

557

J
Java Routines and Types (JRT), package

containing, 14
JOIN clause, 11
JOIN subclause, 278-290

MySQL, 287
Oracle, 287-289
PostgreSQL, 289
SQL Server, 289

joins, 11
cross, 282
full, 285
inner, 282
left, 283
natural, 284
right, 284
theta joins, 11

JRT (Java Routines and Types), package
containing, 14

JSON
data types, 749-750
exploring relational data as, 748
MySQL JSON functions, 767
Oracle JSON functions, 767
platform-specific extensions, 767-777
PostgreSQL JSON functions/opera‐

tors, 768-775
reasons to use, 747-748
SQL Server JSON functions/keywords,

775-777
SQL standard JSON functions,

753-767
SQL/JSON Path, 751-753
support, 749-777

JSON data type
MySQL, 43
PostgreSQL, 52

JSONB data type, PostgreSQL, 52
JSONB_BUILD_ARRY function, Post‐

greSQL, 773
JSONB_BUILD_OBJECT function, Post‐

greSQL, 773
JSONB_EACH function, PostgreSQL, 774
JSONB_EACH_TEXT function, Post‐

greSQL, 774
JSON_AGG function, PostgreSQL, 773
JSON_ARRAY function, 753
JSON_ARRAYAGG function, 754
JSON_ARRAY_APPEND function,

MySQL, 767
JSON_BUILD_ARRY function, Post‐

greSQL, 773
JSON_BUILD_OBJECT function, Post‐

greSQL, 773

808 | Index

JSON_DATAGUIDE function, Oracle,
767

JSON_EACH function, PostgreSQL, 774
JSON_EACH_TEXT function, Post‐

greSQL, 774
JSON_EXISTS function, 755
JSON_MERGEPATCH function, Oracle,

768
JSON_MODIFY function, SQL Server,

776
JSON_OBJECT function, 757-759
JSON_OBJECTAGG function, 759
JSON_QUERY function, 761-762
JSON_SERIALIZE function, Oracle, 768
JSON_TABLE function, 762-765
JSON_TRANSFORM function, Oracle,

768
JSON_VALUE, 765
JUSTIFY_DAYS function, PostgreSQL,

573
JUSTIFY_HOURS function, PostgreSQL,

573
JUSTIFY_INTERVAL function, Post‐

greSQL, 573

K
keywords, 21, 34, 791-798

defined, 791
shared, 798

KURTOSIS_POP function, Oracle, 642
KURTOSIS_SAMP function, Oracle, 642

L
LAG function, 634
LAST function, Oracle, 642
LAST_DAY function

MySQL, 545
Oracle, 557

LAST_INSERT_ID function, MySQL, 545
LAST_VALUE function, 633
LEAD function, 634
LEAST function

MySQL, 545
Oracle, 557

least privileges, principle of, 454
left angle bracket

equal sign, less than or equal to
(<=)operator, 29, 32

left angle bracket, less than (<)operator,
29, 32

left angle bracket, right angle bracket (<>)
not equal to operator, 29, 32

left angle, at (<@) operator, 772
LEFT function

MySQL, 545
PostgreSQL, 573
SQL Server, 587

left joins, 283
less than operator (<), 29, 32
less than or equal to operator (<=), 29, 32
levels of conformance, 13
LIKE operator, 29, 290-294
LINE data type, PostgreSQL, 37, 52
list item separator (,), 32
LISTAGG function, 608
literals, 20, 26
LN function, 519
LNNVL function, Oracle, 558
LOAD_FILE function, MySQL, 546
local partitioned views, SQL Server, 234
LOCALTIMESTAMP function, Oracle,

558
LOG function, 519
LOG10 function, 519
LOG2 function, MySQL, 546
logical operators, 29
LONG data type, Oracle, 37, 47
LONG RAW data type, Oracle, 37, 47
LONG VARCHAR data type, 37
LONG VARGRAPHIC data type, 37
LONGBLOB data type, MySQL, 37, 43
LONGTEXT data type, MySQL, 37, 43
LOWER function, 532
LPAD function

MySQL, 546
Oracle, 558
PostgreSQL, 574

LSEG data type, PostgreSQL, 37, 52
LTRIM function

MySQL, 546
PostgreSQL, 574
SQL Server, 587

Index | 809

M
MACADDR data type, PostgreSQL, 37, 53
MAKEDATE function, MySQL, 546
MAKETIME function, MySQL, 546
MAKE_REF function, Oracle, 558
MAKE_SET function, MySQL, 546
Management of External Data (MED),

package containing, 14
MariaDB

ALTER DATABASE statement, 73
ALTER FUNCTION statement,

667-669
ALTER PROCEDURE statement,

667-669
ALTER TABLE statement, 149-159
basics, 19
CREATE AGGREGATE statement,

655
CREATE DATABASE statement, 73
CREATE FUNCTION statement,

667-669
CREATE INDEX statement, 110-113
CREATE PROCEDURE statement,

667-669
CREATE TABLE statement, 149-159
DECLARE CURSOR statement, 714
DELETE statement, 367-369
DROP statements, 238
GRANT statement, 455-461
INSERT statement, 380-383
UPDATE statement, 431

MASKLEN function, PostgreSQL, 574
MATCH function, MySQL, 546
MATCH_RECOGNIZE clause, 624
materialized views, 8
MAX function, 265, 610
MD5 function

MySQL, 546
PostgreSQL, 574

MED (Management of External Data),
package containing, 14

MEDIAN function, Oracle, 643
MEDIUMBLOB data type, MySQL, 37, 43
MEDIUMINT data type, MySQL, 37, 43
MEDIUMTEXT data type, MySQL, 37, 44
MERGE statement, 396-401
metadata, 7
methods, 207

altering (see ALTER METHOD state‐
ment)

creating (see CREATE METHOD
statement)

MICROSECOND function, MySQL, 546
Microsoft SQL Server (see SQL Server)
MID function, MySQL, 547
MIN function, 265, 610
MINUS set operator, Oracle, 258
minus sign (–)

negative unary operator, 31
range indicator in CHECK constraint,

32
subraction arithmetic operator, 28, 32

MINUTE function, MySQL, 547
MOD function, 520
MODE function, PostgreSQL, 644
MODEL clause, 325-329
modula arithmetic operator (%), 28
MONEY data type, 37

PostgreSQL, 53
SQL Server, 57

MONTH function
MySQL, 547
SQL Server, 587

MONTHNAME function, MySQL, 547
MONTHS_BETWEEN function, Oracle,

558
Multimedia data types, Oracle, 45
multiplication arithmetic operator (*), 28,

32
MySQL, 19

ALTER DATABASE statement, 73
ALTER FUNCTION statement,

667-669
ALTER PROCEDURE statement,

667-669
ALTER TABLE statement, 149-159
ALTER VIEW statement, 225
basics, 19
CREATE AGGREGATE statement,

655
CREATE DATABASE statement, 73
CREATE FUNCTION statement,

667-669
CREATE INDEX statement, 110-113
CREATE PROCEDURE statement,

667-669
CREATE ROLE statement, 447

810 | Index

CREATE TABLE statement, 149-159
CREATE TRIGGER statement, 693
CREATE VIEW statement, 225
data types, 41-45
DECLARE CURSOR statement, 714
DELETE statement, 367-369
DROP statements, 238
DROP TRIGGER statement, 693
FETCH statement, 723
functions, 640

(see also specific functions)
GRANT statement, 455-461
identifier rules, 23-26
INSERT statement, 380-383
REVOKE statement, 479-481
SELECT statement, 313-316
UPDATE statement, 431

N
naming conventions, 22
NANVL function, Oracle, 558
NATIONAL CHAR data type, 37

Oracle, 48
SQL Server, 57

NATIONAL CHAR VARYING data type,
37
Oracle, 47
SQL Server, 58

NATIONAL CHARACTER data type, 37
Oracle, 48
SQL Server, 57

NATIONAL CHARACTER VARYING
data type, 37
Oracle, 47
SQL Server, 58

NATIONAL TEXT data type, SQL Server,
37, 57

natural joins, 284
NCHAR data type, 37

MySQL, 44
Oracle, 48
SQL Server, 57

NCHAR function
Oracle, 558
SQL Server, 587

NCHAR VARYING data type, 37, 47
NCLOB data type, 37, 48
negative unary operator (–), 31

nested tables, Oracle, 175
NETMASK function, PostgreSQL, 574
NETWORK function, PostgreSQL, 574
NEWID function, SQL Server, 587
NEW_TIME function, Oracle, 558
NEXTVAL function, PostgreSQL, 574
NEXT_DAY function, Oracle, 559
NLSSORT function, Oracle, 560
NLS_CHARSET_DECL_LEN function,

Oracle, 559
NLS_CHARSET_ID function, Oracle, 559
NLS_CHARSET_NAME function, Ora‐

cle, 559
NLS_INITCAP function, Oracle, 560
NLS_LOWER function, Oracle, 560
NLS_UPPER function, Oracle, 560
nondeterministic functions, 504
normalization, 2, 141
NORMALIZE function, PostgreSQL, 574
NoSQL, 17, 745
not equal to operator (!=), 29
not equal to operator (<>), 29, 32
not greater than operator (!>), 29
not less than operator (!<), 29
NOT operator, 29
NOW function, MySQL, 547
NTEXT data type, SQL Server, 37, 57
NTH_VALUE function, 636
NTILE function, 636
NULL values, 6
NULLIF function, 510

MySQL, 547
NUMBER data type, 37, 48
NUMERIC data type, 37

MySQL, 44
PostgreSQL, 51, 53
SQL Server, 56, 57

numeric data types, 35
numeric functions, 511-528

ABS function, 512
BIT_LENGTH function, 512
CEIL function, 514
CHAR_LENGTH function, 512
EXTRACT function, 515-518
FLOOR function, 519
LN, LOG, and LOG10 functions, 519
MOD function, 520
OCTET_LENGTH function, 512
POSITION function, 521

Index | 811

POSITION REGEX function, 522-525
POWER function, 525
SQRT function, 526
WIDTH_BUCKET function, 526

numeric literals, 26
NUMNODE function, PostgreSQL, 574
NUMTODSINTERVAL function, Oracle,

560
NUMTOYMINTERVAL function, Oracle,

560
NVARCHAR data type, 37

MySQL, 44
SQL Server, 58

NVARCHAR2 data type, Oracle, 37, 48
NVL function, Oracle, 560
NVL2 function, Oracle, 560

O
Object Language Binding (OBL), package

containing, 14
object-type table, Oracle, 189-191
OBJECTPROPERTY function, SQL

Server, 588
objects, 4, 21
OBJECT_ID function, SQL Server, 587
OBJECT_NAME function, SQL Server,

588
OCT function, MySQL, 547
OCTET_LENGTH function, 512
OID data type, PostgreSQL, 37, 53
OPEN function, SQL Server, 588
Open Geospatial Consortium (OGC), 49
OPEN statement, 728-730
OPENDATASOURCE function, SQL

Server, 588
OPENQUERY function, SQL Server, 588
OPENROWSET function, SQL Server,

588
OPENXML function, SQL Server, 789
operator class (opclass), PostgreSQL, 126
operators, 20, 27-32, 32

arithmetic operators, 28
assignment operators, 28
bitwise operators, 28
comparison operators, 29
defined, 27
logical operators, 29
precedence for, 31

unary operators, 31
OR operator, 29
Oracle, 20

ALTER AGGREGATE statement, 656
ALTER DATABASE statement, 74-92
ALTER FUNCTION statement,

669-674
ALTER INDEX statement, 113-122
ALTER PROCEDURE statement,

669-674
ALTER SESSION statement, 500
ALTER TABLE statement, 159-192
ALTER TRIGGER statement, 694-699
ALTER TYPE statement, 209-216
ALTER VIEW statement, 226-230
assignment operator (:=), 28
basics, 20
CREATE AGGREGATE statement,

656
CREATE DATABASE statement,

74-92
CREATE FUNCTION statement,

669-674
CREATE INDEX statement, 113-122
CREATE PROCEDURE statement,

669-674
CREATE ROLE statement, 447
CREATE TABLE statement, 159-192
CREATE TRIGGER statement,

694-699
CREATE TYPE statement, 209-216
CREATE VIEW statement, 226-230
data types, 45-49
DECLARE CURSOR statement, 715
DELETE statement, 369-372
DROP statements, 239-242
DROP TRIGGER statement, 694-699
FETCH statement, 724-725
functions, 554-569, 641-643

(see also specific functions)
GRANT statement, 461-470
identifier rules, 23-26
INSERT statement, 383-389
MINUS set operator, 258
REVOKE statement, 481-484
SELECT statement, 316-329
spatial data, 46
UPDATE statement, 432-435

ORA_HASH function, Oracle, 560

812 | Index

ORD function, MySQL, 547
ORDER BY clause, 294-300, 312
ordering clause, 629
outer joins, 323

(see also left joins;natural joins;right
joins)

partitioned, 323
OVER clause, 300-305
OVERLAY function, 533

P
packages, 737
parent types, 208
parentheses ((...)), affecting opeator

precedence, 32, 32
PARSENAME function, SQL Server, 588
PARSE_IDENT function, PostgreSQL,

574
partitioned outer joins, Oracle, 323
partitioned tables

MySQL, 157-159
Oracle, 175-188
PostgreSQL, 197

partitioned views, SQL Server, 234
partitioning clause, 628
PASSWORD function, MySQL, 547
PATH data type, PostgreSQL, 37, 53
PATH function, Oracle, 561
PATINDEX function, SQL Server, 588
percent sign (%)

modula arithmetic operator, 28
wildcard operator, matches any string,

32
PERCENTILE_CONT function, 612
PERCENTILE_DISC function, 614
PERCENT_RANK function, 610, 637
period (.), identifier qualifier separator, 32
PERIOD_ADD function, MySQL, 548
PERIOD_DIFF function, MySQL, 548
PERMISSIONS function, SQL Server, 588
Persistent Stored Modules (PSM), pack‐

age containing, 13, 16
PG_CLIENT_ENCODING function,

PostgreSQL, 575
PHRASETO_TSQUERY function, Post‐

greSQL, 575
physical_attributes clause, Oracle, 171
PI function

MySQL, 548
PostgreSQL, 575
SQL Server, 588

pipelined table functions, 738
pivot query, 329
PL/pgSQL, 16
PL/SQL, 16
PLAINTO_TSQUERY function, Post‐

greSQL, 575
platform comparisons, 37

(see also specific platforms)
data types, 37-41

plus sign (+)
addition arithmetic operator, 28, 32
concatenation operator, SQL Server,

32
positive unary operator, 31

POINT data type, PostgreSQL, 37, 53
POLYGON data type, PostgreSQL, 37, 53
POSITION function, 521
POSITION REGEX function, 522-525
positional deletes, 365
positive unary operator (+), 31
PostGIS, 49
PostgreSQL, 20

ALTER AGGREGATE statement,
656-658

ALTER DATABASE statement, 92-94
ALTER FUNCTION statement,

674-682
ALTER INDEX statement, 122-127
ALTER PROCEDURE statement,

674-682
ALTER TABLE statement, 192-200
ALTER TRIGGER statement, 700-704
ALTER TYPE statement, 216-219
ALTER VIEW statement, 230-233
basics, 20
BEGIN statement, 422
bitwise operators, 28
CREATE AGGREGATE statement,

656-658
CREATE DATABASE statement,

92-94
CREATE FUNCTION statement,

674-682
CREATE INDEX statement, 122-127
CREATE PROCEDURE statement,

674-682

Index | 813

CREATE ROLE statement, 448-450
CREATE TABLE statement, 192-200
CREATE TRIGGER statement,

700-704
CREATE TYPE statement, 216-219
CREATE VIEW statement, 230-233
data types, 49-55
DECLARE CURSOR statement, 715
DELETE statement, 372
DROP statements, 242-244
DROP TRIGGER statement, 700-704
FETCH statement, 725
functions, 569-582, 644

(see also specific functions)
GRANT statement, 470-472
identifier rules, 23-26
INSERT statement, 389-391
REVOKE statement, 484-486
SELECT statement, 329-332
UPDATE statement, 435

pound symbol (#)
prefixing temporary procedures, SQL

Server, 685
prefixing temporary tables, SQL

Server, 204
pound symbol, right angle bracket (#>>)

operator, 771
POW function

MySQL, 548
PostgreSQL, 575

POWER function, 525
POWERMULTISET functions, Oracle,

643
PREDICTION_ functions, Oracle, 643
prefixes for identifiers, 22
PRESENTNNV function, Oracle, 561
PRESENTV function, Oracle, 561
PREVIOUS function, Oracle, 561
PRIMARY KEY constraints, 61
principle of least privileges, 454
privileges

assigning (see GRANT statement)
list of, 452
revoking (see REVOKE statement)

procedural programming, 8
procedures, stored

altering (see ALTER PROCEDURE
statement)

calling (see CALL statement)

creating (see CREATE PROCEDURE
statement)

returning from (see RETURN state‐
ment)

projections, 9
(see also SELECT clause)

pseudotables, 692
PSM (Persistent Stored Modules), pack‐

age containing, 13, 16

Q
QUARTER function, MySQL, 548
queries, multiple (see SELECT state‐

ment;set operators)
question mark (?) operator, 772
question mark, bar (?|) operator, 772
QUOTE function, MySQL, 548
quoted (delimited) identifiers, 23, 32
quotes (see double quotes;single quotes)
QUOTE_IDENT function, PostgreSQL,

575
QUOTE_LITERAL function, PostgreSQL,

575
QUOTE_NULLABLE function, Post‐

greSQL, 575

R
RADIANS function

MySQL, 548
PostgreSQL, 575
SQL Server, 588

RADIUS function, PostgreSQL, 576
RAND function

MySQL, 548
SQL Server, 589

RANDOM function, PostgreSQL, 576
range indicator in CHECK constraint (–),

32
RANGE_AGG function, PostgreSQL, 644
RANGE_INTERSECT_AGG function,

PostgreSQL, 644
RANK function, 616, 638
RATIO_TO_REPORT function, Oracle,

643
RAW data type, Oracle, 37, 48
RAWTOHEX function, Oracle, 561
RAWTONHEX function, Oracle, 561

814 | Index

RDBMS (Relational Database Manage‐
ment System), 2

REAL data type, 37
MySQL, 44
Oracle, 48
PostgreSQL, 51
SQL Server, 58

records (rows), 4, 4
deleting (see DELETE state‐

ment;TRUNCATE TABLE state‐
ment)

inserting (see INSERT statement)
querying (see SELECT statement)
updating (see UPDATE statement)

recursive triggers, 693
REF function, Oracle, 561
REFERENCES privilege, 452
REFTOHEX function, Oracle, 561
REGEXP function, MySQL, 548
REGEXP_MATCH function, PostgreSQL,

576
REGEXP_MATCHES function, Post‐

greSQL, 576
REGEXP_REPLACE function

MySQL, 549
Oracle, 562
PostgreSQL, 576

REGEXP_SPLIT_TO_ARRAY function,
PostgreSQL, 576

REGEXP_SPLIT_TO_TABLE function,
PostgreSQL, 577

REGEXP_SUBSTR function, Oracle, 562
REGR_ functions, 617
Relational Database Management System

(RDBMS), 2
relational databases

history of, 1
rules of, 2-9

"A Relational Model of Data for Large
Shared Data Banks" (Codd), 2

RELEASE SAVEPOINT statement,
401-403

RELEASE_LOCK function, MySQL, 549
REMAINDER function, Oracle, 562
REPEAT function

MySQL, 549
PostgreSQL, 577

REPLACE function
MySQL, 549

Oracle, 562
PostgreSQL, 577
SQL Server, 589

REPLICATE function, SQL Server, 589
reserved words, 21, 34

defined, 791
RETURN statement, 730-734
RETURNING clause, 403-405
REVERSE function

MySQL, 549
Oracle, 563
PostgreSQL, 577
SQL Server, 589

REVOKE statement, 475-488
MySQL, 479-481
Oracle, 481-484
PostgreSQL, 484-486
SQL Server, 486-488

right angle bracket(>) greater than opera‐
tor, 29, 32

right angle bracket, equal sign (>=),
greater than or equal to operator, 29,
32

RIGHT function
MySQL, 549
PostgreSQL, 577
SQL Server, 589

right joins, 284
roles

changing (see ALTER ROLE state‐
ment)

creating (see CREATE ROLE state‐
ment)

ROLLBACK statement, 405-410
ROLLUP subclause, 267
ROUND function

MySQL, 549
Oracle, 563
PostgreSQL, 577
SQL Server, 589

row processing, 8
ROWCOUNT_BIG function, SQL Server,

589
ROWID data type, Oracle, 37, 48
ROWIDTOCHAR function, Oracle, 563
rows (see records)
rowstore index, SQL Server, 127
ROWVERSION data type, SQL Server,

37, 58

Index | 815

ROW_COUNT function, MySQL, 549
ROW_NUMBER function, 639
RPAD function

MySQL, 550
Oracle, 563
PostgreSQL, 577

RTRIM function
MySQL, 550
PostgreSQL, 577
SQL Server, 589

S
SAVEPOINT statement, 410-412
savepoints

releasing (see RELEASE SAVEPOINT
statement)

rolling back to (see ROLLBACK state‐
ment)

setting (see SAVEPOINT statement)
scalar aggregates, 265
SCHEMA function, MySQL, 550
schema statements, 15
schemas, 4, 21

creating (see CREATE SCHEMA
statement)

defined, 136
setting (see SET SCHEMA statement)
setting for unqualified objects (see

SET PATH statement)
Schemata package, 14
SCN_TO_TIMESTAMP function, Oracle,

563
search deletes, 365
SECOND function, MySQL, 550
security, 439-502
SEC_TO_TIME function, MySQL, 550
SELECT clause, 10
SELECT privilege, 452
SELECT statement, 305-337

Codds rules in examples of, 9-11
GROUP BY clause, 263-272
MySQL, 313-316
Oracle, 316-329
PostgreSQL, 329-332
set operators and, 30
SQL Server, 332-337
WHERE clause (see WHERE clause)

selections, 10

(see also WHERE clause)
SEQUEL (Structured English Query Lan‐

guage), 1
SERIAL data type, 37

MySQL, 44
PostgreSQL, 53

SERIAL4 data type, 37, 53
SERIAL8 data type, PostgreSQL, 37, 54
session statements, 15
sessions, 442
SESSIONTIMEZONE function, Oracle,

563
SET CONNECTION statement, 488-491
SET CONSTRAINTS statement, 491-492
SET data type, MySQL, 37, 44
SET function, Oracle, 564
set operations, 8
set operators, 30, 256

EXCEPT, 255-260
INTERSECT, 273-277
MINUS, 258
UNION, 343-347

SET PATH statement, 492
set processing, 8
SET ROLE statement, 493-496
SET SCHEMA statement, 496
SET SESSION AUTHORIZATION state‐

ment, 497-499
SET TIME ZONE statement, 499-502
SET TRANSACTION statement, 412-418
SETSEED function, PostgreSQL, 578
SETVAL function, PostgreSQL, 578
SETWEIGHT function, PostgreSQL, 578
SET_MASKLEN function, PostgreSQL,

577
SHA function, MySQL, 550
SHA1 function, MySQL, 550
SIGN function

MySQL, 550
Oracle, 564
PostgreSQL, 578
SQL Server, 589

single quotes (...)
enclosing delimited identifiers, 32
enclosing string literals, 27, 32

slash (/), division arithmetic operator, 28,
32

slash, asterisk (/*...*/), enclosing multiline
comments, 32

816 | Index

SLEEP function, MySQL, 550
SMALLDATETIME data type, SQL

Server, 37, 58
SMALLINT data type, 37

MySQL, 44
Oracle, 48
PostgreSQL, 54
SQL Server, 58

SMALLMONEY data type, SQL Server,
37, 58

SOME operator, 29, 251-254
sorting rules (see collations)
SOUNDEX function

MySQL, 550
Oracle, 564
SQL Server, 590

SOUNDS LIKE function, MySQL, 550
SPACE function

MySQL, 551
SQL Server, 590

spatial data
MySQL, 41
Oracle, 46

spatial indexes, SQL Server, 134-136
SPLIT_PART function, PostgreSQL, 578
SP_XML_PREPAREDOCUMENT func‐

tion, SQL Server, 789
SQL (Structured Query Language)

built-in functions, 503-592
functions, 505-537

(see also specific functions)
general-purpose functions, 507-510
origins, 1
variable functions, 505-506

SQL Server, 20
ALTER AGGREGATE statement, 659
ALTER DATABASE statement, 94-106
ALTER FUNCTION statement,

682-688
ALTER INDEX statement, 127-136
ALTER PROCEDURE statement,

682-688
ALTER TABLE statement, 200-205
ALTER TRIGGER statement, 704-710
ALTER VIEW statement, 233-235
basics, 20
BEGIN TRANSACTION statement,

422

CREATE AGGREGATE statement,
659

CREATE DATABASE statement,
94-106

CREATE FUNCTION statement,
682-688

CREATE INDEX statement, 127-136
CREATE PROCEDURE statement,

682-688
CREATE ROLE statement, 450
CREATE TABLE statement, 200-205
CREATE TRIGGER statement,

704-710
CREATE TYPE statement, 220
CREATE VIEW statement, 233-235
data types, 55-60
DECLARE CURSOR statement,

717-720
DELETE statement, 373-376
DROP statements, 244-247
DROP TRIGGER statement, 704-710
FETCH statement, 726
functions, 582-592, 645-646

(see also specific functions)
GRANT statement, 472-475
identifier rules, 23-26
INSERT statement, 392-395
REVOKE statement, 486-488
SELECT statement, 332-337
temporary procedures, 685
UPDATE statement, 436-438

SQL standard
history of, 11-16
levels of conformance, 13
sorting requirements of, 6

(see also specific standards)
SQL/CLI (Call-Level Interface) package,

13
SQL/Foundation package, 13
SQL/Framework package, 13
SQL/JRT (Java Routines and Types) pack‐

age, 14
SQL/JSON Path, 751-753
SQL/MED (Management of External

Data) package, 14
SQL/OLB (Object Language Binding)

package, 14
SQL/PSM (Persistent Stored Module)

package, 13, 16

Index | 817

SQL/Schemata package, 14
SQL/XML package, 14
SQL2 (SQL92), 11
SQL3 (SQL2003), statement classes, 15
SQL_VARIANT data type, SQL Server,

37, 58
SQRT function, 526
square brackets (see brackets)
START TRANSACTION statement,

418-423
STARTS_WITH function, PostgreSQL,

578
STATEMENT_TIMESTAMP function,

PostgreSQL, 578
STATS_ functions, Oracle, 643
STATS_DATE function, SQL Server, 590
STD function, MySQL, 551
STDDEV_POP function, 619
STDDEV_SAMP function, 620
STDEV function, SQL Server, 645
STDEVP function, SQL Server, 645
storage_clause, Oracle, 172-175
stored procedures

altering (see ALTER PROCEDURE
statement)

calling (see CALL statement)
creating (see CREATE PROCEDURE

statement)
returning from (see RETURN state‐

ment)
STR function, SQL Server, 590
straight joins, MySQL, 287
STRCMP function, MySQL, 551
string functions, 529-536

concatenation operator (||), 529, 770
CONVERT and TRANSLATE func‐

tions, 530-532
LOWER and UPPER function, 532
OVERLAY function, 533
SUBSTRING function, 534-535
TRIM function, 535

string literals, 27
STRING_ESCAPE function, SQL Server,

590
STRING_SPLIT function, SQL Server,

590
STRING_TO_ARRAY function, Post‐

greSQL, 578

STRING_TO_TABLE function, Post‐
greSQL, 578

STRIP function, PostgreSQL, 579
STRPOS function, PostgreSQL, 579
structured data (see data structures)
STR_TO_DATE function, MySQL, 551
STUFF function, SQL Server, 590
SUBDATE function, MySQL, 551
subpartitioned tables

Oracle, 175-188
PostgreSQL, 197

SUBQUERY substatement, 337-347
SUBSTR function

PostgreSQL, 579
SQL Server, 591

SUBSTRING function, 534-535
MySQL, 551

SUBSTRING_INDEX function, MySQL,
551

SUBTIME function, MySQL, 551
subtraction arithmetic operator (–), 28,

32, 769
subtypes, 208
suffixes for identifiers, 22
SUM DISTINCT function, 265
SUM function, 265, 598
supertypes, 208
SUSER_ID function, SQL Server, 591
SUSER_SID function, SQL Server, 591
SUSER_SNAME function, SQL Server,

591
SYSDATE function

MySQL, 547
Oracle, 565

system delimiters, 32
SYSTIMESTAMP function, Oracle, 565
SYS_CONNECT_BY_PATH function,

Oracle, 564
SYS_CONTEXT function, Oracle, 564
SYS_DBURIGEN function, Oracle, 564
SYS_EXTRACT_UTC function, Oracle,

564
SYS_GUID function, Oracle, 564
SYS_TYPEID function, Oracle, 565
SYS_XMLAGG function, Oracle, 785
SYS_XMLGEN function, Oracle, 785

818 | Index

T
TABLE data type, SQL Server, 37, 58
TABLE function, 536
table-level constraints, 60
tables, 4, 4

altering (see ALTER TABLE state‐
ment)

creating (see CREATE TABLE state‐
ment)

temporal (date and time) data types
arithmetic operations on, 28
list of, 35

TEXT data type, 37
MySQL, 44
PostgreSQL, 54
SQL Server, 59

TEXTPTR function, SQL Server, 591
TEXTVALID function, SQL Server, 591
theta joins, 11, 281
tilde (), bitwise NOT unary operator, 31
TIME data type, 37

MySQL, 45
PostgreSQL, 54
SQL Server, 59

time data types (see date and time data
types)

TIME function, MySQL, 552
time zone, changing (see SET TIME

ZONE statement)
TIMEDIFF function, MySQL, 552
TIMEOFDAY function, PostgreSQL, 579
TIMESPAN data type, 37
TIMESTAMP data type, 37

MySQL, 45
Oracle, 48
PostgreSQL, 54
SQL Server, 59

TIMESTAMP function
MySQL, 552
PostgreSQL, 579

TIMESTAMP WITH TIME ZONE data
type, 37

TIMESTAMPADD function, MySQL, 552
TIMESTAMPDIFF function, MySQL, 552
TIMESTAMPTZ data type, 37
TIMESTAMP_TO_SCN function, Oracle,

565
TIMETZ data type, PostgreSQL, 37, 54

TIME_FORMAT function, MySQL, 552
TIME_TO_SEC function, MySQL, 552
TINYBLOB data type, 37, 45
TINYINT data type, 37, 59
TINYTEXT data type, MySQL, 37, 45
TO_ASCII function, PostgreSQL, 579
TO_BINARY_DOUBLE function, Oracle,

565
TO_BINARY_FLOAT function, Oracle,

565
TO_CHAR function

Oracle, 565-567
PostgreSQL, 579

TO_CLOB function, Oracle, 567
TO_DATE function

Oracle, 567
PostgreSQL, 579-581

TO_DAYS function, MySQL, 552
TO_DSINTERVAL function, Oracle, 567
TO_HEX function, PostgreSQL, 581
TO_JSON function, PostgreSQL, 774
TO_LOB function, Oracle, 567
TO_MULTI_BYTE function, Oracle, 567
TO_NCHAR function, Oracle, 567
TO_NCLOB function, Oracle, 567
TO_NUMBER function

Oracle, 567
PostgreSQL, 581

TO_SINGLE_BYTE function, Oracle, 568
TO_TIMESTAMP function

Oracle, 568
PostgreSQL, 581

TO_TIMESTAMP_TZ function, Oracle,
568

TO_TSQUERY function, PostgreSQL,
581

TO_YMINTERVAL function, Oracle, 568
Transact-SQL, 17
transaction statements, 15
transactions

closing and making changes perma‐
nent (see COMMIT statement)

savepoints in
releasing (see RELEASE SAVE‐

POINT statement)
setting (see SAVEPOINT state‐

ment)
settings for (see SET TRANSACTION

statement)

Index | 819

starting (see START TRANSACTION
statement)

undoing (see ROLLBACK statement)
TRANSACTION_TIMESTAMP function,

PostgreSQL, 581
TRANSLATE function, 530-532
TREAT function, Oracle, 568
TRIGGER privilege, 452
triggers

altering (see ALTER TRIGGER state‐
ment)

creating (see CREATE TRIGGER
statement)

defined, 690
trigonometric functions, 528
TRIM function, 535
TRUNC function

Oracle, 568
PostgreSQL, 581

TRUNCATE function, MySQL, 552
TRUNCATE TABLE statement, 423-428
tuples (see records)
TYPEPROPERTY function, SQL Server,

591
TZ_OFFSET function, Oracle, 569

U
UCASE function, MySQL, 553
UDF (user-defined function)

altering (see ALTER FUNCTION
statement)

creating (see CREATE FUNCTION
statement)

returning from (see RETURN state‐
ment)

UDT (user-defined type)
altering (see ALTER TYPE statement)
creating (see CREATE TYPE state‐

ment)
UID function, Oracle, 569
unary operators, 31
UNCOMPRESS function, MySQL, 553
UNCOMPRESS_LENGTH function,

MySQL, 553
UNDER privilege, 452
underscore (_)

in identifiers, 22
wildcard operator, 291

UNHEX function, MySQL, 553
UNICODE function, SQL Server, 592
UNION set operator, 343-344
UNIQUE constraints, 66
UNIQUEIDENTIFIER data type, SQL

Server, 37, 59
UNISTR function, Oracle, 569
UNIX_TIMESTAMP function, MySQL,

553
UNNEST function, 537
UNSIGNED data type attribute, MySQL,

41
UPDATE privilege, 452
UPDATE statement, 428-438

(see also MERGE statement)
MySQL and MariaDB, 431
Oracle, 432-435
PostgreSQL, 435
SQL Server, 436-438

UPDATEXML function
MySQL, 783
Oracle, 569

UPPER function, 532
URITYPE data type, Oracle, 48
UROWID data type, Oracle, 37, 49
USAGE privilege, 452
user (AuthorizationID), 5
user-defined function (UDF)

altering (see ALTER FUNCTION
statement)

creating (see CREATE FUNCTION
statement)

returning from (see RETURN state‐
ment)

user-defined type (UDT)
altering (see ALTER TYPE statement)
creating (see CREATE TYPE state‐

ment)
USER_ID function, SQL Server, 592
USER_NAME function, SQL Server, 592
UTC_DATE function, MySQL, 553
UTC_TIME function, MySQL, 553
UTC_TIMESTAMP function, MySQL,

553
UUID function, MySQL, 553

V
VALUE function, Oracle, 569

820 | Index

VALUES clause, 347-349
VAR function, SQL Server, 646
VARBINARY data type, 37

MySQL, 45
SQL Server, 59

VARBIT data type, PostgreSQL, 37, 50
VARCHAR data type, 37

Oracle, 49
PostgreSQL, 55
SQL Server, 59

VARCHAR FOR BIT DATA data type, 37
VARCHAR function, PostgreSQL, 581
VARCHAR2 data type, Oracle, 37, 49
VARGRAPHIC data type, 37
variable functions, 505-506
VARIANCE function

MySQL, 641
Oracle, 643
PostgreSQL, 645

VARP function, SQL Server, 646
VAR_POP function, 621
VAR_SAMP function, 622
vector aggregates, 266
VERSION function, MySQL, 553
vertical bar (|), bitwise OR operator, 28
views, 4, 8
virtual tables (see views)
VSIZE function, Oracle, 569

W
WEBSEARCH_TO_TSQUERY function,

PostgreSQL, 582
WEEK function, MySQL, 553
WEEKDAY function, MySQL, 554
WEEKOFYEAR function, MySQL, 554
WHERE clause, 10, 310-312, 349-352

comparison operators in, 29
logical operators in, 29
theta joins in, 11

WIDTH_BUCKET function, 526
wildcard operator (%), matches any

string, 32, 291
wildcard operator ([...]), matches in set,

SQL Server, 294
wildcard operator (_), matches any char‐

acter, 291
window functions, 504, 625-639

CUME_DIST, 631

DENSE_RANK, 632
FIRST_VALUE, 633
framing clause, 629
LAG, 634
LAST_VALUE, 633
LEAD, 634
MySQL syntax, 626
NTH_VALUE, 636
NTILE, 636
Oracle syntax, 627
ordering clause, 629
partitioning clause, 628
PERCENT_RANK, 637
PostgreSQL syntax, 627
RANK, 638
ROW_NUMBER, 639
SQL Server syntax, 628
SQL standard syntax, 626

WITH clause, 352-356
WITH ORDINALITY clause, 356

X
XML (eXtensible Markup Language),

777-790
data types, 777-778
in SQL3, 14
indexes, 133
MySQL functions, 783
Oracle functions, 784-786
platform-specific extensions, 783-790
PostgreSQL functions, 786
reasons to use, 777
SQL Server keywords, functions, pro‐

cedures, methods, 787-790
XPath, 779

XML data type, 35, 37, 60
XMLAGG function, 779
XMLCAST function, Oracle, 785
XMLCDATA function, Oracle, 785
XMLCOLATTVAL function, Oracle, 785
XMLCOMMENT function, PostgreSQL,

786
XMLCONCAT function

Oracle, 785
PostgreSQL, 786

XMLDIFF function, Oracle, 785
XMLELEMENT function

Oracle, 785

Index | 821

PostgreSQL, 787
XMLEXISTS function, 780

Oracle, 786
XMLFOREST function, 780
XMLPARSE function, Oracle, 786
XMLPATCH function, Oracle, 786
XMLPI function, PostgreSQL, 787
XMLQUERY function, Oracle, 786
XMLROOT function, Oracle, 786
XMLSEQUENCE function, Oracle, 786
XMLSERIALIZE function, Oracle, 786
XMLTABLE function, 781-783
XMLTRANSFORM function, Oracle, 786
XMLTYPE data type, Oracle, 37, 49
XMLType table, Oracle, 189-191
XOR function, MySQL, 554

XPath, 779
XPATH function, PostgreSQL, 787

Y
YEAR data type, MySQL, 37, 45
YEAR function

MySQL, 554
SQL Server, 592

YEARWEEK function, MySQL, 554

Z
ZEROFILL data type attribute, MySQL,

41

822 | Index

About the Authors
Kevin Kline is a noted database expert and software industry veteran. A Microsoft
SQL Server MVP since 2004, Kevin is a founder and former president of the Profes‐
sional Association for SQL Server (PASS.Org) and the author of many popular IT
books. Kevin is also a top-rated speaker at industry trade shows worldwide.

Regina O. Obe is coprincipal of Paragon Corporation, a database consulting com‐
pany based in Boston. She has close to 30 years of professional experience in various
programming languages and database systems, with a special focus on PostgreSQL
and the PostGIS spatial database extension for PostgreSQL. Regina is a member of
the PostGIS steering committee and development team. She is a coauthor of several
database books with her husband, Leo Hsu.

Leo Hsu is coprincipal of Paragon Corporation, a database consulting company
based in Boston. He has over 25 years of professional experience developing
and thinking about databases for organizations large and small. He also holds a
lectureship at Tufts University, teaching SQL to graduate-level students. Leo has
coauthored several database books with his wife, Regina Obe.

Colophon
The animal on the cover of SQL in a Nutshell is a veiled chameleon (Chamaeleo
calyptratus). Also known as cone-headed chameleons, veiled chameleons are named
after the “pointy knob” on their heads (more formally known as a casque). The
casque helps to direct drips or trickles of water to the mouth.

Veiled chameleons thrive in semi-arid and tropical climates, making their homes in
trees or large plants. Their diet generally consists of insects, although occasionally
they will eat larger prey or plants. They are native to the southwestern Arabian
peninsula but are also found in Hawaii (where they were introduced) and Florida
(where a wild population has developed through pet escapes). They can be kept as
pets but being held or handled frequently increases their stress levels.

Females can lay up to 85 eggs in a clutch and typically mate several times a year.
At birth, veiled chameleons are light green; as they grow older, they develop their
stripes and brighter colors. They typically live between five and eight years, with
males living longer than females.

As with other chameleons, changes in their color result from a variety of factors,
from stress and conflict to reproductive status and temperature. When contemplat‐
ing battle, males intensify their stripe colors. The more intense the stripe brighten‐
ing (and the longer it lasts), the stronger the bite. This strength signaling allows
the chameleons to determine whether a fight is reasonable between two combatants
before they actually enter a conflict.

http://PASS.Org
https://www.paragoncorporation.com
https://www.paragoncorporation.com

The veiled chameleon’s conservation status is Least Concern. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Dover’s Animals. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and
the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/

	Cover
	Copyright
	Table of Contents
	Preface
	Why This Book?
	Who Should Read This Book?
	How This Book Is Organized
	How to Use This Book
	Resources
	Changes in the Fourth Edition
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Kevin E. Kline’s Acknowledgments
	Regina Obe and Leo Hsu’s Acknowledgments

	Chapter 1. SQL History and Implementations
	The Relational Model and ANSI SQL
	Codd’s Rules for Relational Database Systems
	Codd’s Rules in Action: Simple SELECT Examples

	History of the SQL Standard
	Levels of Conformance
	Parts of the SQL Standard
	SQL Statement Classes

	SQL Dialects
	NoSQL

	Chapter 2. Foundational Concepts
	Database Platforms Described in This Book
	Categories of Syntax
	Identifiers
	Literals
	Operators
	Keywords and Reserved Words

	SQL and Platform-Specific Data Types
	MySQL Data Types
	Oracle Data Types
	PostgreSQL Data Types
	SQL Server Data Types

	Constraints
	Scope
	Syntax
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	UNIQUE Constraints
	CHECK Constraints

	Chapter 3. Structuring Your Data
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	CREATE/ALTER DATABASE Statement
	CREATE DOMAIN Statement
	CREATE/ALTER INDEX Statement
	CREATE/ALTER SCHEMA Statement
	CREATE/ALTER TABLE Statement
	CREATE/ALTER TYPE Statement
	CREATE/ALTER VIEW Statement
	DROP Statements

	Chapter 4. Reading Your Data
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	ALL/ANY/SOME Operators
	BETWEEN Operator
	EXCEPT Set Operator
	EXISTS Operator
	FILTER Clause
	GROUP BY Clause
	IN Operator
	INTERSECT Set Operator
	IS Operator
	JOIN Subclause
	LIKE Operator
	ORDER BY Clause
	OVER Clause
	SELECT Statement
	SUBQUERY Substatement
	UNION Set Operator
	VALUES Clause
	WHERE Clause
	WITH Clause
	WITH ORDINALITY Clause

	Chapter 5. Manipulating Your Data
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	COMMIT Statement
	DELETE Statement
	INSERT Statement
	MERGE Statement
	RELEASE SAVEPOINT Statement
	RETURNING Clause
	ROLLBACK Statement
	SAVEPOINT Statement
	SET TRANSACTION Statement
	START TRANSACTION Statement
	TRUNCATE TABLE Statement
	UPDATE Statement

	Chapter 6. Securing Your Data
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	CONNECT Statement
	CREATE ROLE Statement
	GRANT Statement
	REVOKE Statement
	SET CONNECTION Statement
	SET CONSTRAINTS Statement
	SET PATH Statement
	SET ROLE Statement
	SET SCHEMA Statement
	SET SESSION AUTHORIZATION Statement
	SET TIME ZONE Statement

	Chapter 7. SQL Built-in Functions
	How to Use This Chapter
	Types of Functions
	Deterministic and Nondeterministic Functions
	Aggregate Functions
	Window Functions

	SQL Functions
	Variable Functions
	General-Purpose Functions
	Numeric Functions
	String Functions and Operators
	Collection Functions

	Platform-Specific Extensions
	MySQL-Supported Functions
	Oracle-Supported Functions
	PostgreSQL-Supported Functions
	SQL Server–Supported Functions

	Chapter 8. SQL Built-in Aggregate and Window Functions
	How to Use This Chapter
	SQL Aggregate Functions
	SQL Aggregate Syntax
	ARRAY_AGG
	AVG and SUM
	COLLECT
	CORR
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUME_DIST
	DENSE_RANK
	EVERY
	LISTAGG
	MIN and MAX
	PERCENT_RANK
	PERCENTILE_CONT
	PERCENTILE_DISC
	RANK
	The REGR Family of Functions
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP

	Complementary Functions
	GROUPING
	MATCH_RECOGNIZE

	SQL Window Functions
	SQL Standard Window Syntax
	MySQL Window Syntax
	Oracle Window Syntax
	PostgreSQL Window Syntax
	SQL Server Window Syntax
	Partitioning
	Ordering
	Grouping or Windowing
	List of Window Functions

	Platform-Specific Extensions
	MySQL-Supported Functions
	Oracle-Supported Functions
	PostgreSQL-Supported Functions
	SQL Server–Supported Functions

	Chapter 9. Storing Logic in the Database
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	CALL Statement
	CLOSE Statement (Cursors)
	CREATE/ALTER AGGREGATE Statement
	CREATE CAST Statement
	CREATE/ALTER FUNCTION/PROCEDURE Statement
	CREATE/ALTER METHOD Statement
	CREATE/ALTER/DROP TRIGGER Statement
	DECLARE CURSOR Statement
	FETCH Statement (Cursors)
	OPEN Statement (Cursors)
	RETURN Statement
	Platform-Specific Extensions

	Chapter 10. Flexible and Schemaless
	Why JSON?
	Exporting Relational Data as JSON

	JSON Support
	JSON Data Types
	SQL/JSON Path
	SQL Standard JSON Functions
	JSON Platform-Specific Extensions

	Why XML?
	XML Data Types
	XPath
	SQL XML Functions
	XML Platform-Specific Extensions

	Appendix A. Shared and Platform-Specific Keywords
	SQL Standard Keywords
	A
	B
	C
	D
	E
	F
	G–H
	I
	J
	K–L
	M
	N
	O
	P–Q
	R
	S
	T
	U
	V–Z

	Keywords Shared Across Multiple Platforms

	Index

