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About the Book
Every day, businesses operate around the clock, and a huge amount of data is 
generated at a rapid pace. This book helps you analyze this data and identify key 
patterns and behaviors that can help you and your business understand your 
customers at a deep, fundamental level.

SQL for Data Analytics, Third Edition is a great way to get started with data analysis, 
showing how to effectively sort and process information from raw data, even without 
any prior experience.

You will begin by learning how to form hypotheses and generate descriptive statistics 
that can provide key insights into your existing data. As you progress, you will learn 
how to write SQL queries to aggregate, calculate, and combine SQL data from sources 
outside of your current dataset. You will also discover how to work with advanced 
data types, like JSON. By exploring advanced techniques, such as geospatial analysis 
and text analysis, you will be able to understand your business at a deeper level. 
Finally, the book lets you in on the secret to getting information faster and more 
effectively by using advanced techniques like profiling and automation. 

By the end of this book, you will be proficient in the efficient application of SQL 
techniques in everyday business scenarios and looking at data with the critical eye 
of analytics professional. 

About the Authors
Jun Shan is an expert information technology professional who has been designing 
and implementing data management systems for more than 20 years. He also 
teaches SQL and Relational Database at Columbia University in the City of New York 
and Saint Peter's University. He completed his Master of Science in Computer Science 
from Virginia Tech and is currently a solution architect in a top 3 cloud computing 
service provider.

Matt Goldwasser is the Head of Applied Data Science at the T. Rowe Price NYC 
Technology Development Center. Prior to his current role, Matt was a data science 
manager at OnDeck, and prior to that, he was an analyst at Millennium Management. 
Matt holds a bachelor of science in mechanical and aerospace engineering from 
Cornell University.
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Upom Malik is a data science and analytics leader who has worked in the technology 
industry for over 8 years. He has a master's degree in chemical engineering from 
Cornell University and a bachelor's degree in biochemistry from Duke University. As a 
data scientist, Upom has overseen efforts across machine learning, experimentation, 
and analytics at various companies across the United States. He uses SQL and other 
tools to solve interesting challenges in finance, energy, and consumer technology. 
Outside of work, he likes to read, hike the trails of the Northeastern United States, 
and savor ramen bowls from around the world.

Benjamin Johnston is a senior data scientist for one of the world's leading data-
driven MedTech companies and is involved in the development of innovative digital 
solutions throughout the entire product development pathway, from problem 
definition to solution research and development, through to final deployment. He is 
currently completing his Ph.D. in machine learning, specializing in image processing 
and deep convolutional neural networks. He has more than 10 years of experience in 
medical device design and development, working in a variety of technical roles, and 
holds first-class honors bachelor's degrees in both engineering and medical science 
from the University of Sydney, Australia.

Audience
If you are a database engineer looking to transition into analytics or a backend 
engineer who wants to develop a deeper understanding of production data, you will 
find this book useful. This book is also ideal for data scientists or business analysts 
who want to improve their data analytics skills using SQL. 

Basic familiarity with SQL (such as basic SELECT, WHERE, and GROUP BY clauses), a 
good understanding of linear algebra and statistics, and PostgreSQL 14 are necessary 
to make the most of this book. 

About the Chapters
Chapter 1, Understanding and Describing Data, helps you learn the basics of data 
analytics. You will learn how to form hypotheses and generate descriptive statistics 
that can provide insights into your data. You will achieve this goal by using 
mathematical and graphical techniques to analyze data with Excel.

Chapter 2, The Basics of SQL for Analytics, helps you learn the basics of SQL in the world 
of data and CRUD operations. You will learn how to use basic SQL to manipulate data 
in a relational database.
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Chapter 3, SQL for Data Preparation, shows you how to clean and prepare data for 
analysis using SQL techniques. You will begin by learning how to combine multiple 
tables and queries into a dataset before moving on to more advanced materials.

Chapter 4, Aggregate Functions for Data Analysis, covers SQL's aggregate functions, 
which are powerful techniques for summarizing data. You will be able to apply these 
functions to generate descriptive statistics and learn how to aggregate data across all 
rows and break out subpopulations for further analysis.

Chapter 5, Window Functions for Data Analysis, covers SQL's window functions, which 
take order into account for a group of data. You will be able to apply these functions 
to gain new insights into data and gain important knowledge about the data, such as 
orders and ranks.

Chapter 6, Importing and Exporting Data, provides you with the skills required to 
interact with your database from other software tools (such as Python).

Chapter 7, Analytics Using Complex Data Types, gives you a rich understanding of the 
various data types available in SQL and shows you how to extract insights from 
datetime data, geospatial data, arrays, JSON, and text.

Chapter 8, Performant SQL, helps you optimize your queries so that they run faster. In 
addition to learning how to analyze query performance, you will also learn how you 
can use additional SQL functionality, such as functions and triggers, to expand the 
default functionality.

Chapter 9, Using SQL to Uncover the Truth: A Case Study, reinforces your acquired skills 
to help you solve real-world problems outside of those described in this book. Using 
the scientific method and critical thinking, you will be able to analyze your data and 
convert it into actionable tasks and information.

Conventions
Code words in the text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown 
as follows: "Three of the columns, Year of Birth, Height, and Number of 
Doctor Visits, are quantitative because they are represented by numbers."

Words that you see on the screen (for example, in menus or dialog boxes) also appear 
in the text like this: "Choose the Delimited option in the Text Import Wizard 
dialog box, and make sure that you start the import at row 1."
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A block of code is set as follows:

SELECT *

FROM products

WHERE production_end_date IS NULL;

New terms and important words are shown like this: "Statistics can be further divided 
into two subcategories: descriptive statistics and inferential statistics."

Setting up Your Environment
Before exploring the book in detail, you need to set up specific software and tools. In 
the following section, you shall see how to do that.

Installing PostgreSQL 14

The following sections list the instructions for installing and setting up PostgreSQL 14 
on Windows, Linux, and macOS.

Downloading and Installing PostgreSQL on Windows

First, download and install PostgreSQL on Windows:

1. Navigate to https://www.postgresql.org/download/. Select Windows from the list of 
Packages and Installers.

Figure 0.1: PostgreSQL Downloads page

https://www.postgresql.org/download/
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2. Click Download the installer.

Figure 0.2: PostgreSQL interactive installer download

3. Select version 14.2 as this is the version that is used in this book.

Figure 0.3: PostgreSQL downloads page
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4. Click Next for most of the installation steps. You will be asked to specify a 
data directory. It is recommended that you specify a path that you will easily 
remember in the future.

Figure 0.4: PostgreSQL installation – Windows
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5. Specify a password for the postgres superuser.

Figure 0.5: Setting the superuser password
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6. Do not change the port number that is specified by default, unless it conflicts 
with an application that is already installed on your system.

Figure 0.6: PostgreSQL port settings

7. Click Next to proceed through the rest of the steps and wait for the installation 
to finish.
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Setting the PATH Variable

To validate whether the PATH variable has been set correctly, open the command 
line, type or paste the following command, and press the return key:

psql -U postgres

If you get the following error, you need to add the PostgreSQL binaries directory to 
the PATH variable:

Figure 0.7: Error – Path variable not set

The following steps will help you do that:

1. Search for the term environment variables in Windows Search:

Figure 0.8: Windows Search for environment variables
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2. Click Environment Variables:

Figure 0.9: Windows System Properties
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3. Click Path and then click Edit:

Figure 0.10: Setting the PATH variable
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4. Click New:

Figure 0.11: Setting the PATH variable
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5. Using Windows Explorer, locate the path where PostgreSQL is installed. Add the 
path to the bin folder of the PostgreSQL installation:

Figure 0.12: Entering the path

6. Click OK and restart the system.

7. Now, open the command line where you can either type or paste the following 
command. Press the return key to execute it:

psql -U postgres

8. Enter the password you set in step 5 of the Downloading and Installing PostgreSQL 
on Windows section. Then, press the return key. You should be able to log in to 
the PostgreSQL console:
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Figure 0.13: PostgreSQL shell

9. Type \q and press the return key to exit the shell:

Figure 0.14: Exiting the PostgreSQL shell
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The following steps will help you install PostgreSQL on Ubuntu or a Debian-based 
Linux system.

1. Open the Terminal. Then, type or paste the following command on a new line 
and press the return key:

Figure 0.15: Commands on the Terminal

2. Upon installation, PostgreSQL will create a user called postgres. You will need 
to log in as that user to access the PostgreSQL shell:

sudo su postgres

You should see your shell prompt change as follows:

Figure 0.16: Accessing the PostgreSQL shell on Linux

3. Typing the following command will take you to the PostgreSQL shell:

psql
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You can type \l (a backslash and a lowercase L) to see a list of all the databases 
that are loaded by default:

Figure 0.17: List of databases on Linux

Note

You have covered how to install PostgreSQL on Ubuntu and Debian-based 
systems here. For instructions to install it on other distributions, please refer 
to your distribution's documentation. The PostgreSQL download page for 
Linux can be found at https://www.postgresql.org/download/linux/.

Installation on macOS

This section will help you install PostgreSQL on macOS. Before you start installing the 
software, make sure you have the Homebrew package manager installed on your 
system. If you do not, head over to https://brew.sh/ and paste the script provided on 
the webpage in a macOS Terminal (the Terminal app) and press the return key. 

https://www.postgresql.org/download/linux/
https://brew.sh/
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Follow the prompts that appear and wait for the script to finish the installation.

Note

The following instructions are written based on macOS Catalina version 
10.15.6, which was the latest version at the time of writing. For more help 
on using Terminal, refer to the following link: https://support.apple.com/en-in/
guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac.

Figure 0.18: Installing Homebrew

https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
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Once Homebrew is installed, follow these steps to install PostgreSQL:

1. Open a new Terminal window. Type in the following commands in succession 
followed by the return key to install the PostgreSQL package:

brew doctor brew update

brew install postgres

Wait for the installation to complete. Depending on your local setup and 
connection speed, you will see messages like those shown below (note that only 
the partial installation log is shown here):

Figure 0.19: Installation progress (partially shown) for PostgreSQL
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2. Once the installation is complete, start the PostgreSQL process by typing the 
following command in Terminal and pressing the return key:

pg_ctl -D /usr/local/var/postgres start

You should see an output similar to the following:

Figure 0.20: Starting the PostgreSQL process

3. Once the process is started, log in to the PostgreSQL shell using the default 
superuser called postgres as follows (press the return key to execute 
the command):

psql postgres

4. You can type \l (a backslash and a lowercase L) followed by the return key to see 
a list of all the databases that are loaded by default:

Figure 0.21: List of databases loaded by default

5. Enter \q and then press the return key to quit the PostgreSQL shell.

Note

pgAdmin will get installed automatically along with PostgreSQL 14.
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Installing Python

Installing Python on Windows

1. Find your desired version of Python on the official installation page at https://
www.anaconda.com/distribution/#windows.

2. Ensure that you select Python 3.9 from the download page.

3. Ensure that you install the correct architecture for your computer system—
that is, either 32-bit or 64-bit. You can find out this information in the System 
Properties window of your OS.

4. After you download the installer, double-click on the file and follow the user-
friendly prompts on screen.

Installing Python on Linux

To install Python on Linux, you have a couple of good options:

1. Open Command Prompt and verify that Python 3 is not already installed by 
running python3 --version.

2. To install Python 3, run this:

sudo apt-get update

sudo apt-get install python3.9

3. If you encounter problems, there are numerous sources online that can help you 
troubleshoot the issue.

4. You can also install Python by downloading the Anaconda Linux installer from 
https://www.anaconda.com/distribution/#linux and following the instructions.

https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#linux
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Installing Python on macOS

Similar to Linux, you have a couple of methods for installing Python on a Mac. 
To install Python on macOS, do the following:

1. Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the 
open search box, and hit Enter.

2. Install Xcode through the command line by running xcode-select—install.

3. The easiest way to install Python 3 is using Homebrew, which is installed through 
the command line by running ruby -e "$(curl -fsSL https://raw. 
githubusercontent.com/Homebrew/install/master/install)".

4. Add Homebrew to your $PATH environment variable. Open your profile in the 
command line by running sudo nano ~/.profile and inserting export  
PATH="/usr/local/opt/python/libexec/bin:$PATH" at the bottom.

5. The final step is to install Python. In the command line, run brew 
install python.

6. Again, you can also install Python via the Anaconda installer, which is available at 
https://www.anaconda.com/distribution/#macos.

Installing Git

Installing Git on Windows or macOS

Git for Windows/Mac can be downloaded and installed via https://git-scm.com/. 
However, for improved user experience, it is recommended that you install Git 
through an advanced client such as GitKraken (https://www.gitkraken.com/).

Installing Git on Linux

Git can be easily installed via the command line:

sudo apt-get install git

If you prefer a graphical user interface, GitKraken (https://www.gitkraken.com/) is also 
available for Linux.

https://www.anaconda.com/distribution/#macos
https://git-scm.com/
https://www.gitkraken.com/
https://www.gitkraken.com/
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Loading the Sample Datasets – Windows
Most exercises in this book use a sample database, sqlda, which contains fabricated 
data for a fictional electric vehicle company called ZoomZoom. Set it up by performing 
the following steps:

1. First, create a database titled sqlda. Open the command line and type or paste 
the following command. Then, press the return key to execute it:

createdb -U postgres sqlda

You will be prompted to enter the password that you set for the postgres 
superuser during installation:

Figure 0.22: PostgreSQL shell password request

2. To check whether the database has been successfully created, log in to the shell 
by typing or pasting the following command and pressing the return key:

psql -U postgres

Enter your password when prompted. Press the return key to proceed.

3. Type \l (a backslash and a lowercase L) and then press the return key to check if 
the database has been created. The sqlda database should appear along with a 
list of the default databases:

Figure 0.23: PostgreSQL list of databases
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4. Download the data.dump file from the Datasets folder in the GitHub 
repository of this book by clicking this link: http://packt.link/GuU31. Modify the 
highlighted path in the following command based on where the file is located on 
your system. Type or paste the command into the command line and press the 
return key to execute it:

psql -U postgres -d sqlda -f C:\<path>\data.dump

Note

Alternatively, you can use the command line and navigate to the local folder 
where you have downloaded the file using the cd command. For example, 
if you have downloaded it to the Downloads folders of your computer, 
you can navigate to it using cd C:\Users\<your username>\
Downloads. In this case, remove the highlighted path prefix in the step. 
The command should look like this: psql -U postgres -d sqlda 
-f data.dump.

You should get an output similar to the one that follows:

Figure 0.24: PostgreSQL database import

http://packt.link/GuU31


Loading the Sample Datasets – Windows | xxv

5. Check whether the database has been loaded correctly. Log in to the 
PostgreSQL console by typing or pasting the following command. 
Press the return key to execute it:

psql –U postgres

In the shell, type the following command to connect to the sqlda database:

\c sqlda

Then type \dt. This command should list all the tables in the database, 
as follows:

Figure 0.25: Validating that the database has been imported

Note

You are importing the database using the postgres superuser for 
demonstration purposes only. It is advised in production environments to 
use a separate account.
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Loading the Sample Datasets – Linux
Most exercises in this book use a sample database, sqlda, which contains fabricated 
data for a fictional electric vehicle company called ZoomZoom. Set it up by performing 
the following steps:

1. Switch to the postgres user by typing the following command in the terminal. 
Press the return key to execute it:

sudo su postgres

You should see your shell change as follows:

Figure 0.26: Loading the sample datasets on Linux

2. Type or paste the following command to create a new database called sqlda. 
Press the return key to execute it:

createdb sqlda

You can then type the psql command to enter the PostgreSQL shell, followed 
by \l (a backslash followed by lowercase L) to check if the database was 
successfully created:

Figure 0.27: Accessing the PostgreSQL shell on Linux

Enter \q and then press the return key to quit the PostgreSQL shell.
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3. Download the data.dump file from the Datasets folder in the GitHub 
repository of this book by running this command:

wget "https://github.com/PacktPublishing/SQL-for-Data-Analytics-Third-
Edition/tree/main/Datasets/data.dump"

4. Navigate to the folder where you have downloaded the file using the cd 
command. Then, type the following command:

psql -d sqlda < data.dump

5. Then, wait for the dataset to be imported:

Figure 0.28: Importing the dataset on Linux
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6. To test whether the dataset was imported correctly, type ppsql postgres 
and then press the return key to enter the PostgreSQL shell. Then, run \c 
sqlda followed by \dt to see the list of tables within the database:

Figure 0.29: Validating the import on Linux

Note

You are importing the database using the postgres superuser for 
demonstration purposes only. It is advised in production environments to 
use a separate account.

Loading the Sample Datasets – macOS
Most exercises in this book use a sample database, sqlda, which contains fabricated  
data for a fictional electric vehicle company called ZoomZoom. Now, set it up by 
performing the following steps:

1. Enter the PostgreSQL shell by typing the following command in Terminal. 
Press the return key to execute it:

psql postgres
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2. Now, create a new database called sqlda by typing the following command and 
pressing return (do not forget the semicolon at the end):

create database sqlda;

3. You should see the following output. Type \l (a backslash followed by lowercase 
L) in Terminal and press the return key to check whether the database was 
successfully created (you should see the sqlda database listed there):

Figure 0.30: Checking whether a new database is successfully created

4. Type or paste \q in the PostgreSQL shell and press the return key to exit.

5. Download the data.dump file from the Datasets folder in the GitHub 
repository of this book at https://packt.link/GuU31. Navigate to the folder 
where you have downloaded the file using the cd command. Then, type the 
following command:

psql sqlda < ~/Downloads/data.dump

Note

The preceding command assumes that the file is saved in the Downloads 
directory. Make sure you change the highlighted path based on the location 
of the data.dump file on your system.

https://packt.link/GuU31
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6. Then, wait for the dataset to be imported:

Figure 0.31: Importing the dataset

7. To test if the dataset was imported correctly, type psql postgres and then 
press the return key to enter the PostgreSQL shell again. Then, run \c sqlda 
followed by \dt to see the list of tables within the database:

Figure 0.32: List of tables within the sqlda database
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Running SQL files
Commands and statements can be executed via a *.sql file from the command line 
using the following command:

psql -d your_database_name -U your_username < commands.sql

Alternatively, they can be executed via the SQL interpreter:

database=#

To get to the interactive interpreter, type the following command:

psql -d your_database_name -U your_username

Accessing the Code Files
You can find the complete code files of this book at https://packt.link/wEkdN.

The high-quality color images used in this book can be found at  
https://packt.link/Ue9Qb.

If you have any issues or questions about installation, please email us  
at workshops@packt.com.

https://packt.link/wEkdN
https://packt.link/Ue9Qb
mailto:workshops@packt.com




Overview

By the end of this chapter, you will be able to explain data and statistics 
and classify data based on its characteristics. You will find out how to 
calculate basic univariate statistics of data and identify outliers. You will also 
learn how to use bivariate analysis to understand the relationship between 
two variables. 

Understanding and 

Describing Data

1
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Introduction
Data collection and analysis is an old practice going back to the beginning of 
civilization. Records from ancient Egyptian papyrus suggest that pharaohs collected 
census information from villages, possibly to determine the number of soldiers that 
could be enlisted for the war. However, it was after the arrival of modern computers 
that the art of data analytics became a significant phenomenon that is changing 
people's lives every day.

This book, as its name suggests, teaches you how to use Structured Query 
Language (SQL) for data analytics. SQL is the tool that you will be focusing on in the 
rest of the book. But before diving into SQL, this chapter will provide an overview of 
data analytics. You will be introduced to fundamental concepts such as the definition 
and type of statistics and different methods of statistics, which will lay the foundation 
for the concepts that future chapters will be based on, define the purpose of the 
SQL operations that you will learn about, and set up the domain of analytics in which 
the SQL operations will run on. You will start the chapter by learning about data 
and statistics.

Data Analytics and Statistics
Raw data is a group of values that you can extract from a source. It becomes useful 
when it is processed to find different patterns in the data that was extracted. These 
patterns, also referred to as information, help you to interpret the data, make 
predictions, and identify unexpected changes in the future. This information is then 
processed into knowledge. 

Knowledge is a large, organized collection of persistent and extensive information 
and experience that can be used to describe and predict phenomena in the real 
world. Data analysis is the process by which you convert data into information 
and, thereafter, knowledge. Data analytics is when data analysis is combined with 
making predictions. 

There are several data analysis techniques available to make sense of data. One of 
them is statistics, which uses mathematical techniques on datasets. 

Statistics is the science of collecting and analyzing a large amount of data to identify 
the characteristics of the data and its subsets. For example, you may want to study 
the medical history of a country to identify the most common causes of illness-related 
fatality. You can also dive deeper into some subgroups, such as people from different 
geographic areas, to identify whether there are specific patterns for people from 
each area. 
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Statistics is performed on datasets. Different data inside datasets have different 
characteristics and require different methods of processing. Some types of data, 
such as name and label, may be qualitative, which means it provides descriptive 
information. Others, such as counts and amounts, are quantitative, which means 
you can perform numerical operations, such as addition or multiplication, on 
these values. For example, the following dataset is a collection of some biomedical 
information collected across a set of patients:

Figure 1.1: Healthcare data

In this case, the unit of observation for the dataset is an individual patient because 
each row represents an individual observation, which is a unique patient. There 
are 10 data points, each with 5 variables. Three of the columns, Year of Birth, 
Height, and Number of Doctor Visits in the Year 2018, are 
quantitative because they are represented by numbers. Two of the columns, Eye 
Color and Country of Birth, are qualitative.

To get you familiar with the fundamental concepts of datasets and statistics, here is 
an activity.
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Activity 1.01: Classifying a New Dataset

In this activity, you will classify the sales data of different cars in a dataset. You are 
about to start a job in a new city at a start-up. You are excited to start your new job, 
but you have decided to sell all your belongings before you head off, which includes 
your car. As you are not sure what price to sell it at, you decide to collect some data. 
You ask some friends and family who have recently sold their cars about the make 
of the car and how much they sold it for. Based on this information, you now have a 
dataset. The data is as follows:

Figure 1.2: Used car sales data

These are the steps to perform:

1. Determine the unit of observation.

2. Identify whether each column is quantitative or qualitative based on the 
definition provided in the text right before the activity. If you can apply 
arithmetical operations to it, it is quantitative. Otherwise, it is qualitative.

3. Use a numeric value to represent different string values if a column contains 
string values and the string values are fixed and limited. This is a common 
technique that makes it faster for computers to process data. For example, 
to process a day in the week column, you can use 0 to represent Sunday, 1 to 
represent Monday, and so on. Try to use this concept and convert the Make 
column into a numeric data column.
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In this activity, you learned how to classify your data. In the next section, you will 
learn about various types of statistics.

Note 

The solution for this activity can be found via this link.

Types of Statistics 
Statistics can be further divided into two subcategories: descriptive statistics and 
inferential statistics.

Descriptive statistics are used to describe a collection of data. For example, the 
average age of people in a country is a descriptive statistics indicator that describes 
an aspect of the country's residents. Descriptive statistics on a single variable in a 
dataset are called univariate analysis, while descriptive statistics that look at two 
or more variables at the same time are called multivariate analysis. In particular, 
statistics that look at two variables are called bivariate analysis. The average age 
of a country is an example of univariate analysis, while an analysis examining the 
interaction between GDP per capita, healthcare spending per capita, and age is 
multivariate analysis.

In contrast, inferential statistics allows datasets to be collected as a sample or a 
small portion of measurements from a larger group, called a population. Inferential 
statistics are used to infer the properties of a population-based on the properties of 
a sample. For example, a survey of 10,000 people is a sample of the entire population 
of a country with 100 million people. Instead of collecting the age of every person in 
the country, you survey 10,000 people in the country and use their average age as the 
average age of the country.

Note

In this book, you will be primarily focusing on descriptive statistics.
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Methods of Descriptive Statistics

In this section, you will take a closer look at the basic mathematical techniques of 
univariate and bivariate analyses and how to use them to describe and understand a 
given dataset. You will be introduced to the following methods in this order:

Univariate Analysis Techniques

• Data Frequency Distribution

• Quantiles

• Central Tendency

• Dispersion

Bivariate Analysis Techniques

• Scatterplots

• Linear Trend Analysis and Pearson Correlation Coefficient

• Interpreting and Analyzing the Correlation Coefficient

• Time Series Data

Univariate Analysis

As mentioned in the previous section, one of the main branches of statistics is 
univariate analysis. It consists of multiple methods that are used to understand a 
single aspect of a dataset. In this section, you will look at some of the most common 
univariate analysis techniques.

Data Frequency Distribution

The distribution of data is simply a count of the number of values that are in a 
dataset. For example, say that you have a dataset of 1,000 medical records and one of 
the variables in the dataset is eye color. If you look at the dataset and find 700 people 
have brown eyes, 200 people have green eyes, and 100 people have blue eyes, then 
you have just described the distribution of the dataset. Specifically, because you used 
the absolute number to show the occurrence frequency of a certain pattern (eye color 
in this example), you have described the absolute frequency distribution.
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If you were to describe the counts not by the actual number of occurrences in the 
dataset but by the proportion of the total number of data points, then you would be 
describing the relative frequency distribution. In the preceding eye color example, 
the relative frequency distribution would be 70% brown eyes, 20% green eyes, and 
10% blue eyes. It is easy to calculate the distribution when the variable can take on 
several fixed values, such as eye color. 

But what about a quantitative variable that can take on a range of continuous values, 
such as height? The general way to calculate distributions for these types of variables 
is to make interval "buckets" that these values can be assigned to, and then calculate 
distributions using these buckets. For example, height can be broken down into 5 
cm interval buckets. A height of 172 will fall into the 170–174.99 bucket and a height 
of 181 will fall into the 180–184.99 bucket. You can then create a distribution based 
on the values of buckets derived from the heights. This distribution is based on the 
absolute number of heights in each bucket, so it is an absolute frequency distribution. 
You can then divide each row in the table by the total number of data points and get 
the relative frequency distribution.

Another useful thing to do with distributions is to put the numbers in a graph, which 
is called data visualization. Data visualization shows the relationship between data 
points visually, making it easier to spot patterns. In Exercise 1.01, Creating a Histogram, 
you will create a histogram, which is a graphical representation of the continuous 
distribution using interval buckets.

Exercise 1.01: Creating a Histogram

In this exercise, you will use Microsoft Excel to create a histogram. Imagine, as a 
healthcare policy analyst, you want to see the distribution of heights to see whether it 
is possible to discover any patterns related to the quality of healthcare. To accomplish 
this task, you need to create a histogram.

Note

You can use spreadsheet software such as Excel or any data analysis 
scripting language, such as Python, to create histograms. For convenience, 
you will use Excel in this exercise. 
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Perform the following steps:

1. All the datasets used in this chapter can be found on GitHub. To access the files, 
open the following address in your preferred browser: http://packt.link/hW355.

Figure 1.3: Download code files from Github

Click the Code drop-down menu in the upper right corner and click on the 
Download ZIP option. You will get a zip file containing all codes in this book. 
Unzip it and go to the Datasets folder. You will find the data files inside.

http://packt.link/hW355
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2. Open Microsoft Excel to a blank workbook:

Figure 1.4: A blank Excel workbook

Note

The Excel version used in this book is Office 365 Excel v2203. If you are 
using another version of Excel, your screen and menu may look different, 
but the workflow is the same and you should be able to find the menus/
options related to the tasks in this book.
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3. Go to the Data tab and click Get Data | From File | From Text/CSV.

Figure 1.5: Opening a CSV file
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4. Find the heights.csv dataset file in the Datasets folder of the GitHub 
repository. After navigating to it, click Import.

Figure 1.6: Selecting heights.csv
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5. The Text Import Wizard dialog box will show up.

Figure 1.7: Selecting the Delimiter option

Note 

There is a delimiter selection drop-down menu at the top of the 
window. A delimiter is a token used to separate different columns in the 
same row. For example, if you have two columns with name and age in 
a row, such as Sarah and 23, you need to use a character to separate 
these two values so that computers know they belong to different columns. 
Comma-Separated Values (CSVs) traditionally use commas as delimiters 
(in the future, use whatever is appropriate for your dataset), which will result 
in the following row:

Sarah, 23

The heights.csv file only has one column. So, it does not need a delimiter. 
You can leave the option as is. Now, click Load.
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6. In column C, write the numbers 140, 145, 150, and so on in increments of five 
all the way to 220 in cells C2 to C18, as shown in Figure 1.8:

Figure 1.8: Entering the data into the Excel sheet
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7. Click Data Analysis (if you do not see the Data Analysis option, follow 
these instructions to enable it: https://support.office.com/en-us/article/load-the-
analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4) on the Data tab.

8. Select Histogram and click OK from the selection box that pops up. The 
Histogram dialog will pop up.

9. Click the selection button on the far-right side of the textbox for Input Range. 
You should be returned to the heights worksheet along with a blank box with 
a button that has an arrow in it.

Figure 1.9: Input range dialog box

Drag and highlight all the data in heights from A2 to A10001, which will 
result in: 

Figure 1.10: Entering the data range for input

Now, click the button with the arrow to return to the Histogram window.

10. Click the selection button on the far-right side of the dialog box for Bin Range. 
You should be returned to the heights worksheet along with a blank box with 
a button that has an arrow in it. Drag and highlight all the data in heights from 
C2 to C18. Now, click the button with the arrow.

https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
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11. Select New Worksheet Ply under Output options and make sure Chart 
Output is marked, as shown in Figure 1.11. Now, click OK:

Figure 1.11: Selecting New Worksheet Ply



16 | Understanding and Describing Data

12. As you chose to output the histogram in a new worksheet ply, a new worksheet 
(usually called Sheet2) will be created. Click Sheet2. Find the graph and 
doubleclick the title where it says Histogram. Type the word Heights. It 
should produce a graph that is similar to the one in Figure 1.12:

Figure 1.12: The distribution of height for adult males

Looking at the shape of the distribution can help you find interesting patterns. 
Notice the symmetrical bell-shaped cut of this distribution. This distribution is often 
found in many datasets and is known as a normal distribution. This is one of the 
most common distributions that you will run into in the real world. This book will 
not discuss this distribution in much detail but keep an eye out for it in your data 
analysis as it shows up quite often.

Quantiles

In the previous section, Data Frequency Distribution, you learned how to compute 
the frequency of distribution as well as how to visualize it. However, there is more 
to study in the pattern of each distribution. For example, given any two normal 
distributions, one may be more concentrated around the middle, thus having a 
sharper peak. Another may spread out more and look flatter. You will need to use 
some quantitative metrics to evaluate the characteristics of each distribution.
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One way to numerically quantify data distribution is to use quantiles. N-quantiles 
are a set of n-1 points used to divide a dataset into n groups based on the order 
of a variable. These points are often called cut points. For example, a 4-quantiles 
(also referred to as a quartile) has three cut points (n-1) that divide a variable into 
four approximately equal groups of numbers. There are several common names for 
quantiles used interchangeably, which are as follows:

Figure 1.13: Common names for n-quantiles

The procedure for calculating quantiles varies from place to place. In one of the 
most common approaches, you can use the following procedure to calculate the 
n-quantiles for data points for a single variable:

1. Order the data points from lowest to highest based on the variable.

2. Determine the number, n, of n-quantiles you want to calculate and the number 
of cut points, n-1.

3. Determine the number of k cut points you want to calculate, that is, a number 
from 1 to n-1. If this is the first step of the calculation, set k to be equal to 1.

Find the index, i, for the kth cut point using the following:

Figure 1.14: The index
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4. If for the kth cut point the i calculated is a whole number, simply pick that 
numbered item from the ordered data points. If i is not a whole number, find 
the numbered item that is lower than i and the one higher than it. Multiply 
the difference between the numbered item and the one after it by the decimal 
portion of the index. Add this number to the lower-numbered item.

5. Repeat Steps 1 to 4 with different values of k until you have calculated all the 
cut points.

Now that you have understood the steps of calculating quartiles, it would be helpful 
to work through an exercise for better understanding. 

Exercise 1.02: Calculating the Quartiles for Add-On Sales

In this exercise, you will classify the data and calculate the quartiles for a car purchase 
using Excel. Your new boss wants you to look at some data before you start on 
Monday so that you have a better sense of one of the problems you will be working 
on—that is, the increasing sales of add-ons and upgrades for car purchases. 

Your boss sends over a list of 11 car purchases and how much was spent on add-ons 
and upgrades to the base model of the new ZoomZoom Model Chi. The following are 
the values of Add-on Sales ($): 5000, 1700, 8200, 1500, 3300, 9000, 2000, 
0, 0, 2300, and 4700.

Note

All the datasets used in this chapter can be found on GitHub:

https://packt.link/skue4

Perform the following steps to complete the exercise:

1. Open Microsoft Excel to a blank workbook.

2. Go to the Data tab and click Get Data | From File | From Text/CSV. 
You can find the auto_upgrades.csv dataset file in the Datasets folder of 
the GitHub repository. Navigate to the file and click Import.

3. As this file has only one column, it has no delimiters, although CSVs traditionally 
use commas as delimiters (in the future, use whatever is appropriate for your 
dataset). For now, click the auto_upgrades tab and select Sort from the tab.

https://packt.link/skue4
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4. A sorted dialog box will pop up. Now, click OK. The values will now be sorted 
from lowest to highest. The list in Figure 1.15 shows the sorted values:

Figure 1.15: The add-on sales figures sorted

5. Now, determine the number of n-quantiles and cut points you need to calculate. 
Quartiles are equivalent to 4-quantiles, as shown in Figure 1.13. Because the 
number of cut points is just one less than the number of n-quantiles (n-1), you 
know there will be three cut points.
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6. Calculate the index for the first cut point, in this case, k=1; d, the number of 
population-based values, equals 11, and n, the number of n-quantiles, equals 4. 
Plugging this into the equation from Figure 1.16, you will get 3.5:

Figure 1.16: Calculating the index for the first cut point

7. Because index 3.5 is a noninteger, you need to find the third and fourth items 
(1,500 and 1,700, respectively). Find the difference between them, which is 
200, and then multiply this by the decimal portion of 0.5, yielding 100. You add 
this to the third numbered item, 1,500, and get 1,600.

8. Repeat Steps 2 to 5 for k=2 and k=3 to calculate the second and third quartiles. 
You should get 2,300 and 4,850, respectively.

In this exercise, you learned how to classify data and calculate quartiles using Excel. 
Quartiles are useful because they divide the dataset into four subsets based on order, 
and it is easy to derive the top half, bottom half, as well as the half that is closest 
to the median from the four data subsets. With most modern tools, including SQL, 
computers can quickly calculate quantiles with built-in functionality so that you do not 
need to do it manually. Still, it is helpful to understand how it is calculated through 
this example.

Central Tendency

The typical value of a variable is one of the common questions asked of a variable in a 
dataset. This value is often described as the central tendency of the variable. There 
are several ways to describe the central tendency of a dataset. Each of these has its 
own advantages and disadvantages. Some of the ways to measure central tendency 
include the following:
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• Mode: Mode is simply the value that comes up most often in the distribution of 
a variable. In Figure 1.1, the example on eye color, the mode would be "brown 
eyes" because it occurs most frequently in the dataset. If multiple values are tied 
for the most common variable, then the variable is called multimodal, and all the 
highest values are reported. If no value is repeated, then there is no mode for 
that set of values. 

Mode tends to be useful when a variable can take on a small, fixed number of 
values. However, it is problematic to calculate when a variable is a continuous 
quantitative variable, as seen in the example on height in Figure 1.12. With 
these variables, other calculations are more appropriate for determining the 
central tendency.

• Average/mean: The average of a variable (also called the mean) is the value 
calculated when you take the sum of all the values of the variable and divide it by 
the number of data points. For example, if you have a small dataset of ages, 26, 
25, 31, 35, and 29, the average of these ages would be 29.2 because that is the 
number you get when you derive the sum of the five numbers and then divide 
by 5, that is, the number of data points. 

The mean is easy to calculate and, generally, does a good job of describing 
a "typical" value for a variable. No wonder it is one of the most reported 
descriptive statistics in the literature. However, using the average to determine 
the central tendency has one major drawback, that is, it is sensitive to outliers. 
An outlier is a data point that is significantly different in value from the rest of 
the data and occurs rarely. Outliers can often be identified by using graphical 
techniques (such as scatterplots and box plots). These techniques display the 
data visually and can help in identifying any data points that are very far from 
the rest of the data.

When a dataset has an outlier, it is called a skewed dataset. Some common 
reasons why outliers occur include unclean data, extremely rare events (such as 
a month where you win a lottery versus the months where you receive a regular 
salary), and problems with measurement instruments. Outliers may change 
the average to a point where it is no longer representative of a typical value in 
the data.
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• Median: The median (also called the 2nd quartile and the 50th percentile) 
is another measure of central tendency but has some advantages over the 
average. To calculate the median, take the numbers of a variable and sort them 
from the lowest to the highest, and then determine the middle number. For 
an odd number of data points, this number is simply the middle value of the 
ordered data. If there is an even number of data points, then take the average of 
the two middle numbers.

While the median is a bit unwieldy to calculate, it is less affected by outliers, 
unlike the mean. To illustrate this fact, calculate the median of the skewed age 
dataset of 26, 25, 31, 35, 29, and 82. When you calculate the median of the 
dataset, you get the value of 30. This value is much closer to the typical value of 
the dataset than the average of 38. This robustness toward outliers is one of the 
major reasons the median is calculated.

Note

As a rule, it is a good idea to calculate both the mean and median of a 
variable. If there is a significant difference in the value of the mean and the 
median, then the dataset may have outliers.

Next, you will learn how to perform central tendency calculations in the 
following exercise.

Exercise 1.03: Calculating the Central Tendency of Add-On Sales

In this exercise, you will calculate the central tendency of the given data using Excel. 
To better understand the Add-on Sales data (the items that are sold in addition to 
the main purchase), you will need to gain an understanding of what a typical value for 
this variable is. Calculate the mode, mean, and median of the Add-on Sales data. 
Here is the data for the 11 cars purchased: 5000, 1700, 8200, 1500, 3300, 9000, 
2000, 0, 0, 2300, and 4700.

Perform the following steps to implement the exercise:

1. Open an Excel workbook and type in the preceding numbers in a column. 

2. Calculate the mode by finding the most common value. Because 0 is the most 
common value in the dataset, the mode is 0.
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3. Calculate the mean. Sum the numbers in Add-on Sales, which should 
equal 37,700. Then, divide by the number of values (11), and you get a mean 
of 3,427.27.

4. Select the entire range of data. In the Data menu, choose Sort | AtoZ. 
Calculate the median by identifying the middle value of the data, as shown in 
Figure 1.17:

Figure 1.17: Add-on Sales figures sorted

Because there are 11 values, the middle value will be the sixth on the list. You 
now take the sixth element in the ordered data and get a median of 2300.

Note

When you compare the mean and the median, you can see that there is 
a significant difference between the two. As previously mentioned in the 
Central Tendency section, it is a sign that you have outliers in your dataset. 
You will then need to determine whether you want to cleanse your data by 
removing the outliers or not. You will learn how to determine which values 
are outliers in the next section, Dispersion.
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Now that you know about central tendency, you can learn about a different property 
of data, called dispersion.

Dispersion

Another property of interest in a dataset is discovering how close together data 
points are in a variable. For example, the number sets [100, 100, 100] and [50, 100, 
150] both have a mean of 100, but the numbers in the second group are spread 
out more than in the first. This property of describing how the data is spread is 
called dispersion.

There are many ways to measure the dispersion of a variable. Here are some of the 
most common ways to evaluate dispersion.

Range: The range is simply the difference between the highest and lowest values for 
a variable. For example, the range in Exercise 1.03, Calculating the Central Tendency 
of Add-On Sales is 0–9,000. It is easy to calculate but is very susceptible to outliers. It 
also does not provide much information about the spread of values in the middle of 
the dataset.

Standard deviation/variance: Standard deviation is simply the square root of the 
average of the squared difference between each data point and the mean. The value 
of standard deviation ranges from 0 to positive infinity. The closer the standard 
deviation is to 0, the less the numbers in the dataset vary. If the standard deviation is 
0, it means all the values for a dataset variable are the same.

One subtle distinction to note is that there are two different formulas for standard 
deviation, which are shown in Figure 1.18. When the dataset represents the entire 
population, you should calculate the population standard deviation using formula A in 
Figure 1.18. The variable ux here is the mean (average) of the dataset. If your sample 
represents a portion of the observations, then you should use formula B for the 
sample standard deviation, as displayed in Figure 1.18. The variable ux here is also 
the mean (average) of the dataset. When in doubt, use the sample standard deviation 
as it is more conservative. Also, in practice, the difference between the two formulas 
is very small when there are several data points:

Figure 1.18: The standard deviation formulas for A) population and B) sample
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The standard deviation is generally the quantity used most often to describe 
dispersion. Like the range, it can also be affected by outliers, though not in such 
an extreme way as the range. It can also be fairly involved to calculate. Modern 
tools make it easy to calculate the standard deviation. For example, for the dataset 
in Exercise 1.03, Calculating the Central Tendency of Add-On Sales, you can use the 
STDEV() function in Excel to calculate the sample standard deviation:

Figure 1.19: Calculating standard deviation in Excel 

One final note is that, occasionally, you may see a related value called variance. It is 
simply the square of the standard deviation.

Interquartile Range (IQR): IQR is the difference between the first quartile, Q1 (this 
is also called the lower quartile), and the third quartile, Q3 (this is also called the 
upper quartile).

Note

For more information on calculating quantiles and quartiles, refer to the 
Data Frequency Distribution section in this chapter.
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IQR, unlike the range and standard deviation, is robust toward outliers. While it is 
one of the most complicated functions to calculate, it provides a more robust way to 
measure the spread of datasets. In fact, IQR is often used to define outliers. If a value 
in a dataset is smaller than Q1 - 1.5 X IQR or larger than Q3 + 1.5 X IQR, then the value 
is considered an outlier. 

To better illustrate dispersion, you will work through an example in the next exercise.

Exercise 1.04: Dispersion of Add-On Sales

In this exercise, you will calculate the range, standard deviation, and IQR. To better 
understand the sales of additions and upgrades, you need to take a closer look at the 
dispersion of the data. Here is the data for the 11 cars purchased: 5000, 1700, 8200, 
1500, 3300, 9000, 2000, 0, 0, 2300, and 4700. Follow these steps to perform 
the exercise:

1. Calculate the range by finding the minimum value of the data, 0, and subtracting 
it from the maximum value of the data, 9000, yielding 9000.

2. Follow and execute the data. The standard deviation calculation requires you to 
determine whether you want to calculate the sample standard deviation or the 
population standard deviation. As these 11 data points only represent a small 
portion of all purchases, you will calculate the sample standard deviation.

3. Find the mean of the dataset, which you calculated in Exercise 1.02, Calculating 
the Quartiles for Add-On Sales, to be 3427.27.

4. Subtract each data point from the mean and square the result. The results are 
summarized in the following figure:

Figure 1.20: The sum of the squared calculation
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5. Sum up the Difference with Mean Squared values, yielding 91,441,818.

6. Divide the sum by the number of data points minus 1, which, in this case, is 10, 
and take its square root. This calculation should result in 3,023.93 as the sample 
standard deviation.

7. Find the first and third quartiles to calculate the IQR. This calculation can be 
found in Exercise 1.02, Calculating the Quartiles for Add-On Sales, to give you 1,600 
and 4,850. Then, subtract the two to get the value of 3,250.

In this exercise, you calculated the range, standard deviation, and IQR using Excel. In 
the next section, you will learn how to use bivariate analysis to find patterns.

Bivariate Analysis

So far, you have understood the methods for describing a single variable. Now, you 
will learn how to find patterns with two variables using bivariate analysis.

Scatterplots

One of the most effective ways to conduct bivariate analysis is using scatterplots. 
A general principle you will find in analytics is that graphs are incredibly helpful for 
finding patterns. Just as histograms can help you to understand a single variable, 
scatterplots can help you to understand two variables. Scatterplots can be produced 
easily using data analysis tools, such as Excel.

Note

Scatterplots are particularly helpful when there is only a small number of 
points, usually a number between 30 and 500. If you have many points 
and plotting them appears to produce a giant blob in your scatterplot, take 
a random sample of 200 of those points and plot them to help discern any 
interesting trends.
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A lot of different patterns are worth looking out for within a scatterplot. The most 
common pattern people look for is an upward or downward trend between the 
two variables noting, as one variable increases, does the other variable increase 
or decrease? Such a trend indicates there may be a predictable mathematical 
relationship between the two variables. For example, there is an upward trend 
between age and the income a person makes. Figure 1.21 shows an example of a 
linear trend:

Figure 1.21: The upward linear trend between two variables, the age  
and the income of a person
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There are also other trends that are worth looking out for that are not linear, 
including quadratic, power, inverse, and logistic trends. Look at the following figure 
to see what some of these trends look like:

Figure 1.22: Other common trends

Note

The process of approximating a trend with a mathematical function is 
known as regression analysis. Regression analysis plays a critical part in 
analytics but is outside the scope of this book. 
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While trends are useful for understanding and predicting patterns, detecting changes 
in trends is often as important. Changes in trends usually indicate a critical change 
in whatever you are measuring and are worth examining further for an explanation. 
For example, the stock of a company begins to drop after rising for a long time. The 
following figure shows an example of a change in a trend, where the linear trend 
wears off after x=50:

Figure 1.23: An example of a change in a trend
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Another pattern that people tend to look for is periodicity—that is, repeating patterns 
in the data. Such patterns can indicate that two variables may have cyclical behavior 
and can be useful in making predictions. A very common example is the temperature, 
which goes higher during the day and goes lower during the night. Figure 1.24 shows 
an example of periodic behavior:

Figure 1.24: An example of periodic behavior
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Scatterplots are also used to detect outliers. While most points in a graph appear to 
be in a specific region of the graph, some points, such as the two in the upper-left 
corner in the following figure (circled in red), are quite far away from the rest. It may 
indicate that these two points are outliers in regard to the two variables. When doing 
further bivariate analysis, it may be wise to remove these points to reduce any noise 
and produce better insights.

Figure 1.25: A scatterplot with two outliers

These techniques with scatterplots allow data professionals to understand the 
broader trends in their data and take the first steps to turn data into information.
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Linear Trend Analysis and Pearson Correlation Coefficient

One of the most common trends in analyzing bivariate data is linear trends. The 
linear trend shows if there is a relationship in which when one variable increases, 
another variable shows a pattern of increase or decrease. Some linear trends are 
weak, while other linear trends are strong in terms of how well they fit the data. In 
Figure 1.26 and Figure 1.27, you will see examples of scatterplots with their line of 
best fit. This is a line calculated using a technique known as Ordinary Least Squares 
(OLS) regression:

Note

OLS is beyond the scope of this book, but you need to understand that it 
indicates how well bivariate data fits a linear trend and is a valuable tool for 
understanding the relationship between two variables.

Figure 1.26: A scatterplot with a strong linear trend



34 | Understanding and Describing Data

The following figure shows a scatterplot with a weak linear trend:

Figure 1.27: A scatterplot with a weak linear trend

One method for quantifying linear correlation is to use the Pearson correlation 
coefficient. The Pearson correlation coefficient, often represented by the letter r, is 
a number ranging from -1 to 1, indicating how well a scatterplot fits a linear trend. To 
calculate the Pearson correlation coefficient, r, you can use the following formula:

Figure 1.28: The formula for calculating the Pearson correlation coefficient
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Here, the denominator is the standard deviation of variables x and y. The nominator 
is the covariance between x and y. This formula is a bit heavy, so work through an 
example to turn the formula into specific steps.

Exercise 1.05: Calculating the Pearson Correlation Coefficient for Two 

Variables

In this exercise, you will calculate the Pearson correlation coefficient for the 
relationship between Hours Worked Per Week and Sales Per Week ($). 
In the figure, you can see some listed data for 10 salespeople at the ZoomZoom 
dealership in Houston and how much they netted in sales that week:

Figure 1.29: Data for 10 salespersons at a ZoomZoom dealership

Note

The salesperson.csv dataset can be directly downloaded from 
GitHub to perform this exercise. Here is the link to the Datasets folder: 
https://packt.link/mriXZ.

https://packt.link/mriXZ
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Perform the following steps to complete the exercise:

1. Create a scatterplot of the two variables in Excel by using the data given in the 
scenario. This will help you to get a rough estimate of what to expect for the 
Pearson correlation coefficient.

Figure 1.30: A scatterplot of Hours Worked Per Week and Sales Per Week ($)

There does not appear to be a strong linear relationship, but there does appear 
to be a general increase in Sales Per Week ($) versus Hours Worked 
Per Week.

2. Calculate the mean of each variable. You should get 57.40 for Hours Worked 
Per Week and 1,861,987.43 for Sales Per Week ($). If you are not sure 
how to calculate the mean, refer to the Central Tendency section in this chapter.

3. Calculate four values for each row: the difference between each value and its 
mean and the square of the difference between each value and its mean. Then, 
find the product of these differences. You should get a table of values, as shown 
in the following figure:
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Figure 1.31: Calculations for the Pearson correlation coefficient

4. Find the sum of the squared terms and the sum of the product of the 
differences. You should get 2,812.40 for Hours Worked Per Week (x), 
7,268,904,226,420.96 for Sales Per Week (y), and 54,492,841.19 for the 
product of the differences.

5. Take the square root of the sum of the differences to get 53.03 for Hours 
Worked Per Week (x) and 2,696,090.55 for Sales Per Week (y).

6. Input the values into the equation from Figure 1.32 to get 0.38. The calculation 
will be: 54492841.19/(53.03 * 2696090.55) = 0.38:

Figure 1.32: The final calculation of the Pearson correlation coefficient

You learned how to calculate the Pearson correlation coefficient for two variables in 
this exercise and got the final output of 0.38 after using the formula.

Interpreting and Analyzing the Correlation Coefficient

Manually calculating the correlation coefficient can be complicated. It is generally 
preferable to calculate it on the computer. As you will learn in Chapter 3, SQL for Data 
Preparation, it is possible to calculate the Pearson correlation coefficient using SQL.
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To interpret the Pearson correlation coefficient, compare its value to the table in 
Figure 1.33. The closer to 0 the coefficient is, the weaker the correlation. The higher 
the absolute value of a Pearson correlation coefficient, the more likely it is that the 
points will fit a straight line:

Figure 1.33: Interpreting the Pearson correlation coefficient

There are a couple of things to watch out for when examining the correlation 
coefficient. The first is that the correlation coefficient measures how well two 
variables fit a linear trend. Two variables may share a strong trend but have a 
relatively low Pearson correlation coefficient. 

For example, look at the points in Figure 1.34. If you calculate the correlation 
coefficient for these two variables, you will find it is -0.08. However, the curve has 
a very clear quadratic relationship. Therefore, when you look at the correlation 
coefficients of bivariate data, be on the lookout for nonlinear relationships that may 
describe the relationship between the two variables:

Figure 1.34: A strong nonlinear relationship with a low correlation coefficient
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Another point of importance is the number of points used to calculate a correlation. 
It only takes two points to define a perfectly straight line. Therefore, you may be able 
to calculate a high correlation coefficient when there are fewer points. However, this 
correlation coefficient may not hold when more bivariate data is presented. As a rule 
of thumb, correlation coefficients calculated with fewer than 30 data points should be 
taken with a pinch of salt. Ideally, you should have as many good data points as you 
can to calculate the correlation.

Notice the use of the term "good data points." One of the recurring themes of 
this chapter was the negative impact of outliers on various statistics. Indeed, with 
bivariate data, outliers can impact the correlation coefficient. Look at the graph in 
Figure 1.35. It has 11 points, one of which is an outlier. Due to that outlier, the Pearson 
correlation coefficient, r, for the data is 0.59; however, without it, it equals 1.0. 
Therefore, care should be taken to remove outliers, especially from limited data.

Figure 1.35: Calculating r for a scatterplot with an outlier
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Finally, one of the major problems associated with calculating correlation is the logical 
fallacy of correlation implying causation. That is, just because x and y have a strong 
correlation, does not mean that x causes y. Take one example of the number of 
Hours Worked Per Week versus Sales Per Week. Imagine that, after adding 
more data points, it turns out the correlation is 0.5 between these two variables. 
Many beginner data professionals and experienced executives alike would conclude 
that more working hours cause more sales and start making their sales team work 
nonstop. While it is possible that working more hours causes more sales, a high 
correlation coefficient is not hard evidence for that.

Another possibility may be a reverse set of causation. It is possible that because of 
the increase in sales, there is more paperwork, therefore the need to stay longer 
at the office to complete it. In this scenario, working more hours may not cause 
more sales.

There may also exist a third factor responsible for the association between the two 
variables. For example, experienced salespeople work longer hours and also do 
a better job of selling. Therefore, the real cause is having employees with lots of 
sales experience, and the recommendation should be to hire more experienced 
sales professionals.

As a data analytics professional, you will be responsible for avoiding pitfalls such as 
confusing correlation and causation, and you need to think critically about all the 
possibilities that might be responsible for the results you see.

Time Series Data

One of the most important types of bivariate analysis is a time series. A time series is 
simply a bivariate relationship where the x-axis variable is time. An example of a time 
series can be found in Figure 1.36, which shows a time series from January 2010 to 
September 2012.

While at first glance it may not seem to be the case, date and time information is 
quantitative in nature. Understanding how things change over time is one of the most 
important types of analysis done in organizations and provides a lot of information 
about the context of the business.
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All the patterns discussed in the previous section can also be found in time series 
data. Time series are also important in organizations because they can be indicative 
of when specific changes happened. Such time points can be useful in determining 
what caused these changes.

Figure 1.36: An example of a time series

You will now look at a small dataset to demonstrate how to perform basic 
statistical analysis.
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Activity 1.02: Exploring Dealership Sales Data

In this activity, you will explore a dataset using statistics. As a data analyst for 
ZoomZoom, a company specializing in electric vehicles, you are doing some high-level 
analysis on annual sales at dealerships across the country using a .csv file.

1. Open the dealerships.csv document in Excel. You can find it in the 
Datasets folder of the GitHub repository.

2. Make a frequency distribution for the number of female employees at 
a dealership.

3. Determine the average and median annual sales for a dealership.

4. Determine the standard deviation of sales.

5. Do any of the dealerships seem like an outlier? Explain your reasoning.

6. Calculate the quintiles (five-quantiles) of the annual sales.

7. Calculate the correlation coefficient of annual sales to female employees and 
interpret the result.

You have learned how to deal with data, processes, and types in this activity. Overall, 
you have learned how to use univariate techniques and bivariate techniques for data 
analysis in this section. But how do you handle missing data? This next section helps 
you to understand how to deal with this possibility.

Note 

The solution for this activity can be found via this link.

Working with Missing Data
In all the examples so far, you have been dealing with datasets that are clean and 
easy to decipher. However, datasets in real world are more complicated than these. 
One of the many problems you may have to deal with when working with datasets is 
missing values. 
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You will further learn the specifics of preparing data in Chapter 3, SQL for Data 
Preparation. However, in this section, you will learn several strategies that you 
can use to handle missing data. Some of your strategies include the following:

• Deleting rows: If a very small number of rows (that is, less than 5% of your 
dataset) is missing data, then the simplest solution may be to just delete the 
data points from your set. This would not impact your results too much.

• Mean/median/mode imputation: If 5% to 25% of your data for a variable is 
missing, another option is to take the mean, median, or mode of that column 
and fill in the blanks with that value. It may provide a small bias to your 
calculations, but it will allow you to complete more analysis without deleting 
valuable data.

• Regression imputation: If possible, you may be able to build and use a model 
to impute missing values. This skill may be beyond the capability of most data 
analysts, but if you are working with a data scientist, this option could be viable.

• Deleting variables: Ultimately, you cannot analyze data that does not exist. 
If you do not have a lot of data available, and a variable is missing most of its 
data, it may simply be better to remove that variable than to make too many 
assumptions and reach faulty conclusions.

You will also find that a decent portion of data analysis is more an art than a 
science. Working with missing data is one such area. With experience, you will find a 
combination of strategies that work well for different scenarios.

Statistical Significance Testing
Often, an analyst is interested in comparing the statistical properties of two groups, 
or perhaps just one group before and after a change. Of course, the difference 
between these two groups may just be due to chance.

An example of where this comes up is in marketing A/B tests. Companies often test 
two different types of landing pages for a product and measure how many clicks it 
will receive on each of the landing pages. For example, if you make the image of a 
product two times larger, will this make people more likely to click it? You may find 
that 10% of the visitors for variation A of the landing page clicked on the product, and 
11% for variation B. So, does that mean variation B is 10% better than A or is this just 
a result of day-to-day variance? You need a method based on statistics to determine 
just that.
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Statistical significance testing is the method of determining whether the data that you 
have supports a certain hypothesis. To build such a method, there are several major 
parts you need to define first, see Figure 1.40. First, you have the test statistic you are 
examining. It may be a proportion, an average, the difference between two groups, or 
a distribution. The next necessary part is a null hypothesis, which is the idea that the 
results observed are the product of chance.

You will then need an alternative hypothesis, which is the idea that the results seen 
cannot be explained by chance alone. Finally, a test requires a significance level, 
which is the value the test statistic needs to take before it is decided that the null 
hypothesis cannot explain the difference.

Figure 1.37: Parts of statistical significance testing
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Common Statistical Significance Tests

A statistical significance test is an important part of data analysis. In a typical data 
analysis scenario, data analysts will bring in data from the real world and create 
models that fit this data. But how accurate are these models? Can you accurately 
predict what will happen in the real world based on the models? To answer this 
question, you need to perform a statistical significance test.

All statistical significance tests have the four aspects discussed in the previous 
section. Different significance tests have different ways of calculating these 
components. Some common statistical significance tests include the following:

• Two-sample Z-test: This test is for determining whether the average of the two 
samples is different. This test assumes that both samples are drawn from a 
normal distribution with a known population standard deviation.

• Two-sample T-test: A test for determining whether the average of two samples 
is different when either the sample set is too small (that is, less than 30 data 
points per sample) or the population standard deviation is unknown. The two 
samples are also generally drawn from distributions assumed to be normal.

• Pearson's Chi-squared test: A test for determining whether the distribution 
of data points to categories is different than what would be expected due to 
chance. This is the primary test for determining whether the proportions in tests, 
such as those in an A/B test, are beyond what would be expected from chance.

SQL and Analytics
Throughout this chapter, you have learned about different techniques used in data 
analytics. All these analytics techniques inevitably lead to the storage and processing 
of massive data. While there are many tools in today's market that can help you with 
these tasks, a relational database is the most important one. 

A relational database is a convenient and easy-to-understand way to store datasets. 
Modern relational database management systems, such as PostgreSQL databases, 
also provide a powerful tool for processing and analyzing data, which is SQL. Using 
SQL, you can clean data, transform data into more useful formats, and analyze data 
with statistics to find interesting patterns. The rest of this book will be dedicated to 
understanding how you can use SQL for these purposes productively and efficiently.
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Summary
Data analytics is a powerful method through which you analyze raw data to find 
patterns and gather predictions that help you to understand the world. The goal of 
analytics is to turn data into information and knowledge. To accomplish this goal, 
statistics, or descriptive statistics and statistical significance testing, are used to 
understand data.

Univariate analysis, a branch of descriptive statistics, can be utilized to understand a 
single variable of data. It can also be used to find outliers and the distribution of data 
by utilizing frequency distributions and quantiles. It is useful in finding the central 
tendency of a variable by calculating the mean, median, and mode of data and the 
dispersion of data using the range, standard deviation, and IQR.

Bivariate analysis is also used to understand the relationship between datasets. 
You can determine trends, changes in trends, periodic behavior, and anomalous 
points regarding two variables by using scatterplots. You can also use the Pearson 
correlation coefficient to measure the strength of a linear trend between the 
two variables. The Pearson correlation coefficient, however, is subject to scrutiny 
due to the outliers or the number of data points used to calculate the coefficient. 
Additionally, just because two variables have a strong correlation coefficient, does not 
mean that one variable causes the other variable to change.

Statistical significance testing also provides important information about data and 
allows you to determine how likely it is that certain outcomes would occur by chance. 
It also helps you to understand whether the changes seen between groups are of 
consequence rather than by chance.

As important as statistics are, they must be built on top of a significant amount of 
data. Both data storage and computation can be extremely demanding. Different 
tools have been built to utilize the power of computers for statistics. One of the most 
important tools is a relational database, as well as SQL. In the rest of this book, you 
will learn about the concept and use of SQL. This will start with the next chapter, 
which provides you with an introduction to relational databases and SQL. You will 
learn how to Create, Read, Update, and Delete (CRUD) a dataset.







Overview

In this chapter, you will learn about relational databases and basic data 
types in SQL. You will learn to read data from a database using the 
SELECT keyword and use basic keywords in a SELECT query. You will 
also learn how to create, modify, and delete tables in SQL. You will explore 
the purpose of SQL and learn how it can be used in an analytics workflow. 

The Basics of SQL for 

Analytics

2
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Introduction
Since the invention of the first commercial computer, the process of storing data 
has evolved considerably over the past 50 years. Easy access to computers plays 
an important role as companies and organizations have been able to change the 
way they work with large and complex datasets—from manual bookkeeping to 
intelligent and statistics-based data management. Using data, insights that would 
have been virtually impossible to derive 50 years ago can now be found with just a 
few lines of code. Two of the most important tools in this revolution are the relational 
database and its primary language, Structured Query Language (SQL). These two 
technologies have been cornerstones of data processing and continue to be the 
backbone of most companies that deal with substantial amounts of data. Companies 
use relational databases as the primary method for storing much of their data. 
Furthermore, companies take much of this data and put it into specialized databases 
called data warehouses to perform advanced analytics on their data. Virtually all 
these data warehouses are accessed using SQL.

Relational databases require data to be organized into a fixed format and processed 
following a predefined algorithm. In recent years, there has been an emergence of 
NoSQL databases. Originally created as an alternative way of data storage, these 
NoSQL databases utilize technologies that are different from relational operations 
and SQL and can achieve what traditional relational databases cannot do or are not 
good at, such as distributed compute/storage, unformatted data (such as tweets) 
processing, and non-atomic read/write. 

However, these NoSQL databases usually focus on a specific usage scenario and have 
yet to provide a more generic platform that can meet the needs of the majority of 
common database usage patterns. As such, these databases quickly evolved from 
"No SQL" to "Not Only SQL," signifying that they are a part of a larger ecosystem for 
data management, together with relational databases and SQL.

Compared to NoSQL databases, relational databases have several advantages that 
make them the center of data management ecosystems. The core reason is that 
relational databases maintain a good balance of features and performances for a 
wide variety of data operations, which makes them good candidates for a generic 
data management platform. The second reason is that all relational databases 
use SQL, which has a solid mathematical theory behind it and is easy to learn. In 
general, relational databases and SQL serve as the best place to start your data 
analytics journey. 
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Most people will find that SQL alone is enough for their needs. Only a small fraction 
of people will need the functionalities provided by a NoSQL database. But even for 
the latter, SQL will still serve as a great foundation for data analytical purposes.

Note

It is assumed that every person following this book has had some basic 
exposure to SQL. However, for those users who have very limited exposure, 
or have not used it for some time, this chapter will provide a basic refresher 
of what relational databases and SQL are, along with a basic review of 
SQL operations and syntax. You will also go over practice exercises to help 
reinforce these concepts.

To begin with, it is important to understand data and its characteristics.

The World of Data
Start with a simple question: what is data? Data is the recorded description or 
measurements of something in the real world. For example, a list of heights is data; 
that is, height is a measure of the distance between a person's head and their feet. 
The data is used to describe a unit of observation. In the case of these heights, a 
person is a unit of observation.

As you can imagine, there is a lot of data you can gather to describe a person—
including their age, weight, and smoking preferences. One or more of these 
measurements used to describe a specific unit of observation is called a data 
point, and each measurement in a data point is called a variable (often referred 
to as a feature). When you have several data points together, you have a dataset. 
For example, you may have Person A, who is a 45-year-old smoker, and Person B, 
who is a 24-year-old non-smoker. Here, age is a variable. The age of Person A is 
one measurement and the age of Person B is another. 45 and 24 are the values 
of measurement. A compilation of data points with measurements such as ages, 
weights, and smoking trends of various people is called a dataset.
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Types of Data

Data can be broken down into three main categories: structured, semi-structured, 
and unstructured.

Figure 2.1: The classification of types of data

Structured data has an atomic definition for all the variables, such as the data type, 
value range, and meaning for values. In many cases, even the order of variables is 
clearly defined and strictly enforced. For example, the record of a student in a school 
registration card contains an identification number, name, and date of birth, each 
with a clear meaning and stored in order.

Unstructured data, on the other hand, does not have a definition as clear as 
structured data, and thus is harder to extract and parse. It may be some binary blob 
that comes from electronic devices, such as video and audio files. It may also be a 
collection of natural input tokens (words, emojis), such as social network posts and 
human speech.

Semi-structured data usually does not have a pre-defined format and meaning, but 
each of its measurement values is tagged with the definition of that measurement. 
For example, all houses have an address. But some may have a basement, or a 
garage, or both. It is also possible that owners may add upgrades that cannot be 
expected at the time when this house's information is recorded. All components in 
this data have clear definitions, but it is difficult to come up with a pre-defined list for 
all the possible variables, especially for the variables that may come up in the future. 
Thus, this house data is semi-structured.

Relational Databases and SQL
A relational database is a database that utilizes the relational model of data. The 
relational model, invented by Dr. Edgar F. Codd in 1970, organizes data as relations, 
or sets of tuple. Tuple is the mathematical term for a series of attributes grouped 
together in a particular order. A more common (and more practical) name for a 
tuple is a record. Each record consists of a series of attributes that generally describe 
the record.
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For instance, a fast-moving consumer goods company wants to track its customers. 
They can save the customer information in a relation called customer_info. Each 
record in this relation contains details about one customer. The attributes in each 
record include information such as the customer's last name, first name, age, date 
of signup, and delivery address. This relationship and its first two records will look 
like this:

Figure 2.2: An example customer_info relation

As you can see, each relation is indeed a two-dimensional table that looks like an 
Excel spreadsheet. Thus, when implemented in a relational database, these relations 
are called tables. Each table is made up of rows and columns. Each row of the table is 
a record, and the attributes are represented as columns of the table. There cannot be 
duplicate columns and the columns must follow the same order in all the rows. Every 
column also has a data type that describes the type of data in the column.

While not technically required, most tables in a relational database have a column 
(sometimes a group of columns) referred to as the primary key, which uniquely 
identifies a row of the database. In the example shown in Figure 2.2, each row 
contains a column called ID. This record, as the name suggests, is an attribute that 
can be used to uniquely identify this record. It is known as a relational key. In all other 
columns, you can have data duplicated across different rows. But in the primary key 
column(s), the data must be unique.

Most of the operations in a relational database, and in all data management systems, 
are organized around tables and the data inside them. They generally can be 
categorized into four groups—create, read, update, and delete. To utilize any data, 
you must create the definition of the dataset first, then create the individual data 
records one by one and put them into the dataset. Once a dataset is created, you can 
read all aspects of information from it. If there is any change to the data, you need to 
update the affected records. 

Finally, when you do not need the data anymore, you will want to delete the records 
to save storage costs and increase performance. If you do not need this dataset, 
you can even delete the whole dataset by removing its definition from the database. 
These operations, by the order of each operation's position in a dataset's lifecycle, are 
generally called CRUD. CRUD stands for create, read, update, and delete. 
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In relational databases, all these operations are carried out using SQL. You will learn 
all the related SQL statements in this and the upcoming chapters.

Note

Virtually all relational databases that use SQL deviate from the relational 
model in some basic ways. For example, not every table has a specified 
relational key. Additionally, a relational model does not technically allow 
duplicate rows, but you can have duplicate rows in a relational database. 
These differences are minor and will not matter to most readers of 
this book.

Advantages and Disadvantages of SQL Databases

As discussed in the previous sections, since relations are collections of records that 
have clearly defined attributes in a defined order, they are considered structured 
data. Relational databases are the main tool used for storing and processing 
structured data.

Since the release of Oracle Database in 1979, SQL has become an industry standard 
for structured data in nearly all computer applications—and for good reasons. 
SQL databases provide a range of advantages that make them the first choice for 
many applications:

• Intuitive: Relations represented as tables serve as a common data structure 
that almost everyone understands. As such, working with and reasoning about 
relational databases is much easier than doing so with other models.

• Efficient: Using a technique known as normalization, relational databases allow 
the representation of data without unnecessarily repeating it. As such, relational 
databases can represent large amounts of information while utilizing less space. 
This reduced storage footprint also allows the database to reduce operation 
costs, making well-designed relational databases quick to process.

• Declarative: SQL is a declarative language, meaning that when you write code, 
you only need to tell the computer what data you want, and the database takes 
care of determining how to execute the SQL code. You never have to worry 
about telling the computer how to access and pull data from the table.
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• Robust: Most popular SQL databases have a property known as atomicity, 
consistency, isolation, and durability (ACID) compliance, which guarantees the 
validity of the data, even if the hardware fails.

That said, there are still some downsides to SQL databases, which are as follows:

• Relatively lower specificity: While SQL is declarative, its functionality can often 
be limited to what has already been programmed into it. Although most popular 
relational database software is updated constantly with new functionality being 
built all the time, it can be difficult to process and work with data structures and 
algorithms that are not programmed into a relational database.

• Limited scalability: SQL databases are incredibly robust, but this robustness 
comes at a cost. As the amount of information you have doubles, the cost 
of resources increases even more than double. When very large volumes of 
information are involved, other data stores such as NoSQL databases may 
be efficient.

• Sacrificing performance for consistency: Relational databases are generally 
designed for consistency, which means they will take extra steps to make sure 
multiple users will see the same data when they try to access/modify the data at 
the same time. To achieve this, relational databases implement some complex 
checking and data locking mechanisms into their operational logic. For usage 
scenarios that do not require consistency, especially for high-performance 
operations like search engines or social network sites, this is an unnecessary 
burden and will hurt the performance of the application.

• Lack of semi-structured and unstructured data processing ability: The 
fundamental theory that SQL is built on is the relational theory, which, by 
definition, handles only structured data. Relational databases can store and 
fetch semi-structured and unstructured data. But processing this data requires 
processing power and functionalities that are beyond standard SQL. Later 
chapters of this book will cover some examples of this type of processing.

PostgreSQL Relational Database Management System (RDBMS)
In any production computer system, data constantly flows in and out and is 
eventually stored on storage hardware. It must be properly received, stored with 
the location recorded so that it can be retrieved later, retrieved as requested by the 
user, and sent out in the appropriate format. These tasks are handled by software 
commonly referred to as a relational database management system (RDBMS). 
SQL is the language utilized by users of an RDBMS to access and interact with a 
relational database.
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There are many different types of RDBMS. They can be loosely categorized into two 
groups, commercial and open source. These RDBMSs differ slightly in the way they 
operate on data and even some minor parts in SQL syntax. There is an American 
National Standards Institute (ANSI) standard for SQL, which is largely followed by 
all RDBMSs. But each RDBMS may also have its own interpretations and extensions of 
the standard.

In this book, you will use one of the most popular open-source RDBMSs, PostgreSQL. 
You have installed a copy of PostgreSQL in the activities described in the preface. 
During that activity, you installed and enabled a PostgreSQL server application on 
your local machine. Your local machine's hard disk is the storage device on which 
data is stored. Once installation is complete, the PostgreSQL server software will be 
running in the backend of your computer and monitoring and handling requests 
from the user. Users communicate with the server software via a client tool. There 
are many popular client tools that you can choose from. PostgreSQL comes with two 
tools, a graphic user interface called pgAdmin (sometimes called pgAdmin4), and a 
command-line tool called psql. You used psql in the Preface. For the rest of this book, 
you will use pgAdmin for SQL operations.

Note

In Exercise 2.01, Running Your First SELECT Query, you will learn how to run 
a simple SQL query via pgAdmin in a sample database that is provided 
in this book, which is called the ZoomZoom database. But before the 
exercise, here is an explanation of how tables are organized in PostgreSQL 
and what tables the ZoomZoom database has.

In PostgreSQL, tables are collected in common collections in databases 
called schemas. One or several schemas form a database. For example, 
a products table can be placed in the analytics schema. Tables 
are usually referred to when writing queries in the format [schema].
[table]. For example, a products table in the analytics schema 
would generally be referred to as analytics.products. 

However, there is also a special schema called the public schema. This 
is a default schema. If you do not explicitly mention a schema when 
operating on a table, the database will assume the table exists in the 
public schema. For example, when you specify the products table 
without a schema name, the database will assume you are referring to the 
public.products table.
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Here is the list of the tables in the sqlda database, as well as a brief description for 
each table:

• closest_dealerships: Contains the distance between each customer 
and dealership

• countries: An empty table with columns describing countries

• customer_sales: Contains raw data in a semi-structured format of some 
sales records

• customer_survey: Contains feedback with ratings from the customers

• customers: Contains detailed information for all customers

• dealerships: Contains detailed information for all dealerships

• emails: Contains the details of emails sent to each customer

• products: Contains the products sold by ZoomZoom

• public_transportation_by_zip: Contains the availability measure of 
public transportation in different zip codes in the United States

• sales: Contains the sales records of ZoomZoom on a per customer per 
product basis

• salespeople: Contains the details of salespeople in all the dealerships 

• top_cities_data: Contains some aggregation data for customer counts in 
different cities

Note

Though you may run the examples provided in this book using another 
RDBMS, such as MySQL, it is not guaranteed this will work as described. 
To make sure your results match the text, it is highly recommended that you 
use PostgreSQL.
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Exercise 2.01: Running Your First SELECT Query

In this exercise, you will use pgAdmin to connect to a sample database called 
ZoomZoom on your PostgreSQL server and run a basic SQL query.

Note

You should have set up the PostgreSQL working environment while 
studying the preface. If you set up your PostgreSQL on a Windows or Mac, 
the installation wizard would have installed pgAdmin on your machine. If 
you set up your PostgreSQL on a Linux machine, you will need to go to the 
official PostgreSQL website to download and install pgAdmin, which is a 
separate package. Once set up, the user interface of pgAdmin is consistent 
across different platforms. This book will use screenshots from pgAdmin 
version 14 installed on a Windows machine. Your pgAdmin interface should 
be very similar regardless of your operating system.

Perform the following steps to complete the exercise:

1. Go to Start > PostgreSQL 14 > pgAdmin 4. The pgAdmin interface should 
pop up. Enter your user password when requested to do so. You will be directed 
to the pgAdmin Welcome page. If you are a first-time user, you will be prompted 
to set a password. Make sure to note down the password.

Figure 2.3: pgAdmin initial interface
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2. Click on the Servers in the left panel to expand its contents. You should see an 
entry called PostgreSQL 14. This is the PostgreSQL RDBMS installed on your 
machine. Click to open its content. Enter your user password when requested to 
do so.

Figure 2.4: Databases in PostgreSQL 14 server

You should see a Databases entry under PostgreSQL 14, which contains 
two databases, PostgreSQL default database postgres and a 
sample database called sqlda. A database is a collection of multiple tables. The 
sqlda database is the database that you imported in this book's preface after 
installing PostgreSQL. 

This database has been created with a sample dataset for a fictional company 
called ZoomZoom, which specializes in car and electronic scooter retail. 
ZoomZoom sells via both the internet and its fleet of dealerships. Each 
dealership has a salesperson. Customers will purchase a product and optionally 
participate in a survey. Periodically, ZoomZoom will also send out promotional 
emails with meaningful subjects to customers. The dates that the email is sent, 
opened, and clicked, as well as the email subject and the recipient customer 
are recorded.

3. Click the sqlda database to open its contents. Open Schemas > public > 
Tables. This shows you all the tables in the public schema.
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4. Right-click on the sqlda database and choose the Query Tool option to open 
the SQL query editor. You will see the query editor on the right side of the 
pgAdmin interface.

Figure 2.5: PostgreSQL SQL editor

5. Paste or type out the following query in the terminal. Click on the Execute 
button (marked with a red circle in the following screenshot) to execute the SQL:

SELECT first_name

FROM customers 

WHERE state='AZ' 

ORDER BY first_name;
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The result of this SQL appears below the query editor:

Figure 2.6: Sample SQL and result

Note

In this screenshot, as well as many screenshots later in this book, only the 
first few rows are shown due to the number of rows returned exceeding the 
number of rows that can be displayed in this book. In addition, there is a 
semicolon at the end of this statement. This semicolon is not a part of the 
SQL statement, but it tells the PostgreSQL server that this is the end of the 
current statement. It is also widely used to separate several SQL statements 
that are grouped together and should be executed one after another.

The SQL query you just executed in this exercise is a SELECT statement. You will 
learn further details about this statement in the next section.
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SELECT Statement

In a relational database, CRUD operations are run by running SQL statements. A 
SQL statement is a command that utilizes certain SQL keywords and follows certain 
standards to specify what result you expect from the relational database. In Exercise 
2.01, Running your first SELECT query, you saw an example SQL SELECT statement. 
SELECT is probably the most common SQL statement; it retrieves data from a 
database. This operation is almost exclusively done using the SELECT keyword.

The most basic SELECT query follows this pattern:

SELECT…FROM <table_name>;

This query is a way to pull data from a single table. In its simplest form, if you want 
to pull all the data from the products table in the sample database, simply use 
this query:

SELECT * FROM products;

This query will pull all the data from a database. The output will be:

Figure 2.7: Simple SELECT statement

It is important to understand the syntax of the SELECT query in a bit more detail. 

Note

In the statements used in this section, SQL keywords such as SELECT 
and FROM are in uppercase, while the names of tables and columns are in 
lowercase. SQL statements (and keywords) are case insensitive. However, 
when you write your own SQL, it is generally recommended to follow 
certain conventions on the usage of case and indentation. It will help you 
understand the structure and purpose of the statement.
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Within the SELECT clause, the * symbol is shorthand for returning all the columns 
from a database. The semicolon operator (;) is used to tell the computer it has 
reached the end of the query, much as a period is used for a normal sentence. To 
return only specific columns from a query, you can simply replace the asterisk (*) 
with the names of the columns to be returned in the order you want them to be 
returned. For example, if you wanted to return the product_id column followed by 
the model column of the products table, you would write the following query:

SELECT product_id, model FROM products;

The output will be as follows:

Figure 2.8: SELECT statement with column names

To return the model column first and the product_id column second, you would 
write this:

SELECT model, product_id FROM products;
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The output will be the following:

Figure 2.9: SELECT statement with column names versus Figure 2.8

It is important to note that although the columns are output in the order you 
defined in the SELECT query, the rows will be returned in no specific order. You will 
learn how to output the result in a certain order in the ORDER BY section later in 
this chapter.

A SELECT query can be broken down into five parts:

1. Operation: The first part of a query describes what is going to be displayed. 
In this case, the word SELECT is followed by the names of columns combined 
with functions.

2. Data: The next part of the query is the data, which is the FROM keyword, 
followed by one or more tables connected with reserved keywords indicating 
which data should be scanned for filtering, selection, and calculation.

3. Condition: This is a part of the query that filters the data to show only rows that 
meet conditions usually indicated with WHERE.
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4. Grouping: This is a special clause that takes the rows of a data source and 
assembles them together using a key created by a GROUP BY clause, and then 
calculates an output for all rows with the same value in the GROUP BY key. You 
will learn more about this step in Chapter 4, Aggregate Functions for Data Analysis.

5. Postprocessing: This is a part of the query that takes the results of the data and 
formats them by sorting and limiting the data, often using keywords such as 
ORDER BY and LIMIT.

Take, for instance, the statement that you ran in Exercise 2.01, Running your first 
SELECT query. Suppose that, from the customers table, you wanted to retrieve 
the first name of all customers in the state of Arizona. You also want these names 
listed alphabetically. You could write the following SELECT query to retrieve 
this information:

SELECT first_name

FROM customers 

WHERE state='AZ' 

ORDER BY first_name;

The first few rows of the result look like this:

Figure 2.10: Sample SELECT statement
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The operation of the query you executed in the preceding exercise follows 
a sequence:

1. Start with the data in the customers table.

2. Filter the customers table to where the state column equals AZ.

3. Capture the first_name column from the filtered table.

4. Check the first_name column, which is ordered alphabetically.

This demonstrates how a query can be broken down into a series of steps for the 
database to process. This breakdown is based on the keywords and patterns found in 
a SELECT query. There are many keywords that you can use while writing a SELECT 
query. To learn the keywords, you will start with the WHERE clause in the next section.

The WHERE Clause

The WHERE clause is a piece of conditional logic that limits the amount of data 
returned. You can use the WHERE clause to specify conditions based on which the 
SELECT statement will retrieve specific rows. In a SELECT statement, you will usually 
find this clause placed after the FROM clause.

The condition in the WHERE clause is generally a Boolean statement that can either be 
true or false for every row. In the case of numeric columns, these Boolean statements 
can use equals (=), greater than (>), or less than (<) operators to compare the 
columns against a value.

For example, say you want to see the model names of the products with the model 
year of 2014 from the sample dataset. You would write the following query:

SELECT model 

FROM products 

WHERE year=2014;

The output of this SQL is:

 

Figure 2.11: Simple WHERE clause
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You were able to filter out the products matching a certain criterion using the WHERE 
clause. If you want a list of products before 2014, you could simply modify the WHERE 
clause to say year<2014. But what if you want to filter out rows using multiple 
criteria at once? Alternatively, you might also want to filter out rows that match 
either of two or more conditions. You can do this by adding an AND or OR clause in 
the queries.

The AND/OR Clause

The previous query, which outputs Figure 2.11, had only one condition. However, you 
might be interested in multiple conditions being met at once. For this, you need to 
put multiple statements together using AND or OR clauses. The AND clause helps us 
retrieve only the rows that match two or more conditions. The OR clause, on the other 
hand, retrieves rows that match one (or many) of the conditions in a set of two or 
more conditions.

For example, you want to return models that were not only built in 2014, but also 
have a Manufacturer's Suggested Retail Price (MSRP) of less than $1,000. You can 
write the following query:

SELECT model, year, base_msrp 

FROM products 

WHERE year=2014

AND base_msrp<=1000;

The result will look like this:

 

Figure 2.12: WHERE clause with AND operator

Here, you can see that the year of the product is 2014 and base_msrp is lower 
than $1,000. This is exactly what you are looking for.

Suppose you want to return any models that were released in the year 2014 or had 
a product type of automobile. You would write the following query:

SELECT Model, product_type 

FROM products 

WHERE year=2014

OR product_type='automobile';
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The result is as follows:

 

Figure 2.13: WHERE clause with OR operator

You already know that there is one product, Lemon Limited Edition, with 
a year of 2014. The rest of the products in the example have been listed with 
automobile as the product_type. You are seeing the combined dataset of 
year=2014 together with product_type='automobile'. That is exactly what 
the OR operator does.

When using more than one AND or OR condition, you may need to use parentheses 
to separate and position pieces of logic together. This will ensure that your query 
works as expected and is as readable as possible. For example, if you wanted to get 
all products with models between the years 2016 and 2018, as well as any products 
that are scooters, you could write the following:

SELECT * 

FROM products 

WHERE year> 2016

AND year<2018

OR product_type='scooter';
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The result contains all the scooters as well as an automobile that has a year between 
2016 and 2018. 

 

Figure 2.14: WHERE clause with multiple AND/OR operators

However, to clarify the WHERE clause, it would be preferable to write the following:

SELECT * 

FROM products 

WHERE (year>2016 AND year<2018) 

OR product_type='scooter';

You will receive the same result as above. The logic of this SQL is easier to 
understand. You will find that the AND and OR clauses are used quite a lot in SQL 
queries. However, in some scenarios, they can be tedious, especially when there are 
more efficient alternatives for such scenarios.

The IN/NOT IN Clause

Now that you can write queries that match multiple conditions, you also might want 
to refine your criteria by retrieving rows that contain (or do not contain) one or more 
specific values in one or more of their columns. This is where the IN and NOT IN 
clauses come in handy.
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For example, you are interested in returning all models from the years 2014, 2016, 
or 2019. You could write a query such as this:

SELECT model, year 

FROM products 

WHERE year = 2014

OR year = 2016 

OR year = 2019;

The result will look like the following image, showing three models from these 
three years:

 

Figure 2.15: WHERE clause with multiple OR operator

However, this is tedious to write. Using IN, you can instead write the following:

SELECT model, year 

FROM products 

WHERE year IN (2014, 2016, 2019);

This is much cleaner and makes it easier to understand what is going on. It will also 
return the same result as above.

Conversely, you can also use the NOT IN clause to return all the values that are not 
in a list of values. For instance, if you wanted all the products that were not produced 
in the years 2014, 2016, and 2019, you could write the following:

SELECT model, year 

FROM products 

WHERE year NOT IN (2014, 2016, 2019);
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Now you see the products that are in years other than the three mentioned in the 
SQL statement.

 

Figure 2.16: WHERE clause with the NOT IN operator

In the next section, you will learn how to use the ORDER BY clause in your queries.

ORDER BY Clause

SQL queries will order rows as the database finds them if they are not given specific 
instructions to do otherwise. For many use cases, this is acceptable. However, you will 
often want to see rows in a specific order.

For instance, you want to see all the products listed by the date when they were first 
produced, from earliest to latest. The method for doing this in SQL would be using 
the ORDER BY clause as follows:

SELECT model, production_start_date 

FROM products 

ORDER BY production_start_date;
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As shown in the screenshot below, the products are ordered by the production_
start_date field.

 

Figure 2.17: SELECT statement with ORDER BY

If an order sequence is not explicitly mentioned, the rows will be returned in 
ascending order. Ascending order simply means the rows will be ordered from the 
smallest value to the highest value of the chosen column or columns. In the case of 
things such as text, this means arranging in alphabetical order. You can make the 
ascending order explicit by using the ASC keyword. For the last query, this could be 
achieved by writing the following:

SELECT model 

FROM products 

ORDER BY production_start_date ASC;

This SQL will return the same result in the same order as the SQL above.

If you want to extract data in descending order, you can use the DESC keyword. If 
you wanted to fetch manufactured models ordered from newest to oldest, you would 
write the following query:

SELECT model, production_start_date 

FROM products 

ORDER BY production_start_date DESC;
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The result will be sorted by descending order of production_start_date, 
latest first.

Figure 2.18: SELECT statement with ORDER BY DESC

Also, instead of writing the name of the column you want to order by, you can refer to 
the position number of that column in the query's SELECT clause. For instance, you 
wanted to return all the models in the products table ordered by product ID. 
You could write the following:

SELECT product_id, model 

FROM products 

ORDER BY product_id;
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The result will be like the following:

 

Figure 2.19: SELECT statement with numbered ORDER BY 

However, because product_id is the first column in the SELECT statement, you 
could instead write the following:

SELECT product_id, model 

FROM products 

ORDER BY 1;

This SQL will return the same result as Figure 2.19.

Finally, you can order by multiple columns by adding additional columns after ORDER 
BY, separated with commas. For instance, you want to order all the rows in the table 
first by the year of the model from newest to oldest, and then by the MSRP from 
least to greatest. You would then write the following query:

SELECT * 

FROM products 

ORDER BY year DESC, base_msrp ASC;
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The following is the output of the preceding code:

 

Figure 2.20: Ordering multiple columns using ORDER BY

In the next section, you will learn about the LIMIT keyword in SQL.

The LIMIT Clause

Most tables in SQL databases tend to be quite large and, therefore, returning every 
single row is unnecessary. Sometimes, you may want only the first few rows. For this 
scenario, the LIMIT keyword comes in handy. Imagine that you wanted to only get 
the model of the first five products that were produced by the company. You could 
get this by using the following query:

SELECT model 

FROM products 

ORDER BY production_start_date 

LIMIT 5;



76 | The Basics of SQL for Analytics

The following is the output of the preceding query:

Figure 2.21: Query with LIMIT

When you are not familiar with a table or query, it is a common concern that running 
a SELECT statement will accidentally return many rows, which can take up a lot of 
time and machine bandwidth. As a common precaution, you should use the LIMIT 
keyword to only retrieve a small number of rows when you run the query for the 
first time.

IS NULL/IS NOT NULL Clause

Often, some entries in a column may be missing. This could be for a variety of 
reasons. Perhaps the data was not collected or not available at the time that the data 
was collected. Perhaps the absence of a value is representative of a certain state in 
the row and provides valuable information. 

Whatever the reason, you are often interested in finding rows where the data is not 
filled in for a certain value. In SQL, blank values are often represented by the NULL 
value. For instance, in the products table, the production_end_date column 
having a NULL value indicates that the product is still being made. In this case, to list 
all products that are still being made, you can use the following query:

SELECT * 

FROM products 

WHERE production_end_date IS NULL;
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The following is the output of the query:

 

Figure 2.22: Products with NULL production_end_date

If you are only interested in products that are not being produced anymore, you can 
use the IS NOT NULL clause, as shown in the following query:

SELECT *

FROM products

WHERE production_end_date IS NOT NULL;

The following is the output of the code:

Figure 2.23: Products with non-NULL production_end_date

Now, you will learn how to use these new keywords in the following exercise.



78 | The Basics of SQL for Analytics

Exercise 2.02: Querying the salespeople Table Using Basic Keywords in a SELECT 

Query

In this exercise, you will create various queries using basic keywords in a SELECT 
query. For instance, after a few days at your new job, you finally get access to the 
company database. Your boss has asked you to help a sales manager who does not 
know SQL particularly well. The sales manager would like a couple of different lists 
of salespeople. 

First, you need to generate a list of the first 10 salespersons hired by dealership 17, 
that is, the salespersons with oldest hire_date, ordered by hiring date, with the 
oldest first. Second, you need to get all salespeople that were hired in 2021 and 2022 
but have not been terminated, that is, the hire_date must be later than 2021-01-
01, and terminiation_date is NULL, ordered by hire date, with the latest first. 
Finally, the manager wants to find a salesperson that was hired in 2021 but only 
remembers that their first name starts with "Nic." He has asked you to help find this 
person. You will use your SQL skill to help the manager to achieve these goals.

Note

For all future exercises in this book, you will be using pgAdmin 4.
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Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Examine the schema for the salespeople table from the schema drop-down 
list. Get familiar with the names of the columns in the following figure:

Figure 2.24: Schema of the salespeople table

3. Execute the following query to get the usernames of salespeople from 
dealership_id 17, sorted by their hire_date values, and then set LIMIT 
to 10:

SELECT * 

FROM salespeople 

WHERE dealership_id = 17 

ORDER BY hire_date 

LIMIT 10;
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The following is the output of the preceding code:

Figure 2.25: Usernames of 10 earliest salespeople in dealership 17 sorted by hire date

Now you have the list of the first 10 salespersons hired by dealership 17, that is, 
the salespersons with the oldest hire_date, ordered by hiring date, with the 
oldest first. 

4. Now, to find all the salespeople that were hired in 2021 and 2022 but have not 
been terminated, that is, the hire_date must be later than 2021-01-01, and 
termination_date is null, ordered by hire date, with the latest first:

SELECT * 

FROM salespeople 

WHERE hire_date >= '2021-01-01' 

AND termination_date IS NULL 

ORDER BY hire_date DESC; 

54 rows are returned from this SQL. The following are the first few rows of 
the output:

Figure 2.26: Active salespeople hired in 2021/2022 sorted by hire date latest first
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5. Now, find a salesperson that was hired in 2021 and whose first name starts 
with Nic.

SELECT * 

FROM salespeople 

WHERE first_name LIKE 'Nic%' 

AND hire_date >= '2021-01-01' 

AND hire_date <= '2021-12-31';

Figure 2.27: Salespeople hired in 2021 and whose first name starts with Nic

Note

To access the source code for this specific section, please refer to  
https://packt.link/y2qsW.

In this exercise, you used various basic keywords in a SELECT query to help the sales 
manager get a list of salespeople that they needed.

Activity 2.01: Querying the customers Table Using Basic Keywords in a SELECT 

Query

The marketing department has decided that they want to run a series of marketing 
campaigns to help promote a sale. To do this, they need the email communication 
records for ZoomZoom customers in the state of Florida, and details of all customers 
in New York City. They also need the customer phone numbers with specific orders. 
The following are the steps to complete the activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Examine the schema for the customers table from the schema drop-down list. 
Get yourself familiar with the columns in this table.

3. Write a query that retrieves all emails for ZoomZoom customers in the state of 
Florida in alphabetical order.

https://packt.link/y2qsW
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4. Write a query that pulls all first names, last names, and emails for ZoomZoom 
customers in New York City in the state of New York. They should be ordered 
alphabetically, with the last name followed by the first name.

5. Write a query that returns all customers with a phone number ordered by the 
date the customer was added to the database.

The output in Figure 2.30 will help the marketing manager to carry out campaigns and 
promote sales.

Note

To access the source code for this specific section, please refer to  
https://packt.link/8bQ6n.

In this activity, you used various basic keywords in a SELECT query and helped the 
marketing manager to get the data they needed for the marketing campaign.

Note 

The solution for this activity can be found via this link.

Creating Tables
Now that you know how to read data from tables, you will look at how to create 
new tables. There are two ways to do this—by creating blank tables or by using 
SELECT queries.

Creating Blank Tables

To create a new blank table, you use the CREATE TABLE statement. This statement 
takes the following structure:

CREATE TABLE {table_name} (

{column_name_1} {data_type_1} {column_constraint_1},

{column_name_2} {data_type_2} {column_constraint_2},

{column_name_3} {data_type_3} {column_constraint_3},

…

{column_name_last} {data_type_last} {column_constraint_last}

);

https://packt.link/8bQ6n
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Here, {table_name} is the name of the table, {column_name} is the name 
of the column, {data_type} is the data type of the column, and {column_
constraint} is one or more optional keywords giving special properties to the 
column. Before discussing how to use the CREATE TABLE query, you should first 
learn about column data types and column constraints.

Basic Data Types of SQL
Each column in a table has a data type. You will explore the major data types of 
PostgreSQL here. These types include:

• Numeric

• Character

• Boolean

• Datetime

• Data structures (array and JSON)

Note

Although the ANSI SQL standard defines a list of data types, different 
RDBMSs may have their own interpretations and extensions. The data 
types discussed in this book are based on the PostgreSQL definition. If you 
use a different RDBMS, you may see some differences in implementation. 
Furthermore, all RDBMSs, including PostgreSQL, are actively evolving. 
They constantly add support for new data types, and slightly adjust data 
type implementations if necessary. So, it is always prudent to use the data 
type definitions in this book as general guidance and double-check your 
RDBMS for the exact data type definitions it has.
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Numeric

Numeric data types represent numbers. The following figure provides an overview of 
some of the main types:

Figure 2.28: Major numeric data types

Character

Character data types store text information. The following figure summarizes 
character data types:

Figure 2.29: Major character data types

Under the hood, all character data types use the same underlying data structure in 
PostgreSQL (and in many other RDBMSs). The most common character data type is 
varchar(n).
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Boolean

Booleans are a data type used to represent True or False. The following table 
summarizes values that are represented as Boolean when used in a query with a data 
column type of Boolean:

Figure 2.30: Accepted Boolean values

While all these values are accepted, the values of True and False are compliant 
with best practices. Booleans can also take on NULL values.

Datetime

The datetime data type is used to store time-based information, such as dates and 
times. The following are some examples of datetime data types:

Figure 2.31: Popular datetime data types

You will explore this data type further in Chapter 7, Analytics Using Complex Data Types.
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Data Structures: JSON and Arrays
Many versions of modern SQL also support data structures, such as JavaScript 
Object Notation (JSON) and arrays. Arrays are simply lists of data usually written as 
members enclosed in square brackets. For example, ['cat', 'dog', 'horse'] 
is an array. A JSON object is a series of key-value pairs that are separated by commas 
and enclosed in curly braces. For example, {'name': 'Bob', 'age': 27, 
'city': 'New York'} is a valid JSON object. These data structures show up 
constantly in technology applications, and being able to use them in a database 
makes it easier to perform many kinds of analysis work.

You will explore data structures in more detail in Chapter 7, Analytics Using Complex 
Data Types. Before that, you will learn about some basic operations in an RDBMS 
using SQL.

Column Constraints
Column constraints are keywords that help you specify the properties you want to 
attribute to a particular column. In other words, you can ensure that all the rows in 
that column adhere to your specified constraint. Some major column constraints are 
as follows:

• NOT NULL: This constraint guarantees that no value in a column can be NULL.

• UNIQUE: This constraint guarantees that every single row for a column has a 
unique value and that no value is repeated.

• PRIMARY KEY: This is a special constraint that is unique for each row and helps 
you to find a specific row more quickly. If the primary key of this table contains 
only one column, you can add this PRIMARY KEY constraint to the column 
definition of the primary key column. If the primary key of this table consists 
of multiple columns, you need to use a table constraint to define the key in the 
CREATE statement.
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Simple CREATE Statement

Now that you know about data types and column constraints, you can start creating 
your first table. Suppose you want to create a table called state_populations 
with columns for the initials and populations of states. The query would look 
as follows:

CREATE TABLE state_populations (

  state VARCHAR(2) PRIMARY KEY,

  population NUMERIC

);

Once you execute this statement, you can run a simple SELECT statement to verify 
that the table is created. However, you cannot see any row in the output as you have 
not run any statements to populate it.

 

Figure 2.32: Simple CREATE statement

Note

Sometimes, you may run a CREATE TABLE query and get the error 
relation {table_name} already exists. This simply means that a 
table with the same name already exists. You either must delete the table 
with the same name or change the name of your table. You will learn how to 
delete a table later in this chapter.

You will soon be exploring the second way to create a table, which is by using a SQL 
query. But first, you will do an exercise to create a blank table in SQL.
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Exercise 2.03: Creating a Table in SQL

In this exercise, you will create a table using the CREATE TABLE statement. The 
marketing team at ZoomZoom would like to create a table called countries to 
analyze the data of different countries. It should have four columns: an integer key 
column, a unique name column, a founding year column, and a capital column.

Follow these steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Execute the following query to drop the countries table since it already exists 
in the database:

DROP TABLE IF EXISTS countries;

3. Run the following query to create the countries table:

CREATE TABLE countries ( 

  key INT PRIMARY KEY,

  name text UNIQUE, 

  founding_year INT, 

  capital text

);

You should get a result message as follows, which indicates the creation of a 
blank table:

Figure 2.33: CREATE statement for the countries table
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Note

To access the source code for this specific section, please refer to  
https://packt.link/COMnA.

In this exercise, you learned how to create a table using different column constraints 
and the CREATE TABLE statement. In the next section, you will create tables using 
the SELECT query.

Creating Tables with SELECT

You already know how to create a table. However, say you wanted to create a table 
using data from an existing table. This can be done by using a modification of the 
CREATE TABLE statement:

CREATE TABLE {table_name} AS (

  {select_query}

);

Here, {select_query} is any SELECT query that can be run in your database. For 
instance, say you wanted to create a table based on the products table that only 
had products from the year 2014. Suppose the title of the table is products_2014; 
you could write the following query:

CREATE TABLE products_2014 AS ( 

  SELECT *

FROM products 

WHERE year=2014

);

https://packt.link/COMnA
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Running this SQL will yield the following result:

Figure 2.34: CREATE from a SELECT query

This can be done with any query, and the table will inherit all the properties of the 
output query. 

PostgreSQL also provides another way to create a table from a query, which utilizes a 
SELECT … INTO … syntax. An example of this syntax is shown below:

SELECT * 

INTO products_2014

FROM products 

WHERE year=2014;

Note

Before running this query, please check the table list in the sqlda 
database and make sure this table does not exist. If it does, please drop the 
table from the console.
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This query achieves the same result as the CREATE … AS statement. In this book, 
you will use the CREATE … AS statement because the syntax inside the parenthesis 
is a complete SELECT statement, thus it is easier to create and modify the query 
without changing the structure of the statement. You can choose either based on 
your personal preference.

One issue with creating a table with a query is that the data types of the query are 
not explicitly specified and can be confusing. Luckily, PostgreSQL stores the table 
definitions in a set of system tables, and you can read the table definition from the 
system tables. For example, to check the column definitions of the products_2014 
table, you can run the following SQL:

SELECT COLUMN_NAME, DATA_TYPE 

FROM INFORMATION_SCHEMA.COLUMNS 

WHERE TABLE_NAME = 'products_2014';

From the result, you can identify all the columns and their data types in the 
products_2014 table:

Figure 2.35: Query table definition from information schema

Updating Tables
Over time, you may also need to modify a table by adding columns, adding new data, 
or updating existing rows. This section will help you understand how to do this.
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Adding and Removing Columns

To add new columns to an existing table, you use the ALTER TABLE … ADD 
COLUMN statement, as shown in the following query:

ALTER TABLE {table_name}

ADD COLUMN {column_name} {data_type};

For example, if you wanted to add a new column to the products_2014 table that 
you will use to store the products' weights in kilograms called weight, you could do 
this by using the following query:

ALTER TABLE products_2014 

ADD COLUMN weight INT;

This query will make a new column called weight in the products_2014 table and 
will give it the integer data type so that only integers can be stored in it. 

 

Figure 2.36: ALTER statement that adds a column to a table

If you want to remove a column from a table, you can use the ALTER TABLE … 
DROP COLUMN statement:

ALTER TABLE {table_name} 

DROP COLUMN {column_name};

Here, {table_name} is the name of the table you want to change, and {column_
name} is the name of the column you want to drop. Imagine that you decide 
to delete the weight column you just created. You could get rid of it using the 
following query:

ALTER TABLE products_2014 

DROP COLUMN weight;

As you can see from the screenshot below, the column is dropped: 

 

Figure 2.37: ALTER statement that drops a column from a table
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Adding New Data

You can add new data to a table using several methods in SQL. One of those methods 
is to simply insert values straight into a table using the INSERT INTO… VALUES 
statement. It has the following structure:

INSERT INTO {table_name} (

  {column_1], {column_2}, …{column_last}

)

VALUES (

  {column_value_1}, {column_value_2}, … {column_value_last}

);

Here, {table_name} is the name of the table you want to insert your data into, 
{column_1}, {column_2}, … {column_last} is a list of the columns whose 
values you want to insert, and {column_value_1}, {column_value_2}, … 
{column_value_last} is the list of values you want to insert into the table. If a 
column in the table is not put into the INSERT statement, the column is assumed to 
have a NULL value.

For example, say you want to insert a new entry for a scooter into the 
products_2014 table. This can be done with the following query:

INSERT INTO products_2014 ( 

product_id, model, year, 

  product_type, base_msrp,

  production_start_date, production_end_date

)

VALUES (

  13, 'Nimbus 5000', 2014,

  'scooter', 500.00,

  '2014-03-03', '2020-03-03'

);

This query adds a new row to the products_2014 table accordingly. You can run a 
SELECT query to see all the rows in the table:

Figure 2.38: INSERT statement adding one row to table
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Another way to insert data into a table is to use the INSERT statement with a 
SELECT query using the following syntax:

INSERT INTO {table_name} ({column_1], {column_2}, …{column_last})

{select_query};

Here, {table_name} is the name of the table into which you want to insert the 
data, {column_1}, {column_2}, … {column_last} is a list of the columns 
whose values you want to insert, and {select query} is a query with the same 
structure as the values you want to insert into the table.

Take the example of the products_2014 table. You have created it with a SELECT 
query with one row. Earlier in this section, you have inserted one row into it. So, now 
it contains two rows. If you also want to insert the products from 2016, you could use 
the following query, which inserts one more row into the table:

INSERT INTO products_2014( 

  product_id, model, year, product_type, base_msrp,

  production_start_date, production_end_date

) 

SELECT* 

FROM products 

WHERE year=2016;

This query produces the following result:

 

Figure 2.39: The Products_2014 table after a successful INSERT INTO query

Now it contains three rows from three different ways of inserting data: one row from 
CREATE as the result of a SELECT query, one row from an INSERT with data, and 
one row from INSERT using the result of a SELECT query.

Next, you will learn how to update the content in a row.



Updating Tables | 95

Updating Existing Rows

Sometimes, you may need to update the values of the data present in a table. To do 
this, you can use the UPDATE statement:

UPDATE {table_name} SET 

  {column_1} = {column_value_1},

  {column_2} = {column_value_2},

  …

  {column_last} = {column_value_last} 

WHERE {conditional};

Here, {table_name} is the name of the table with data that will be changed, 
{column_1}, {column_2},… {column_last} is the list of columns whose 
values you want to change, {column_value_1}, {column_value_2}, … 
{column_value_last} is the list of new values you want to update into those 
columns, and {WHERE} is a conditional statement like the one you would find in a 
SELECT query.

To illustrate its use of the UPDATE statement, imagine that, for the rest of the year, 
the company has decided to sell all scooter models before 2018 for $299.99. You 
could change the data in the products_2014 table using the following query:

UPDATE Products_2014 SET

  base_msrp = 299.99 

WHERE product_type = 'scooter' 

AND year<2018;

This query produces the following output. You can see that the base_msrp column 
of all three records has been updated to 299.99 because they are all scooters 
manufactured before 2018.

Figure 2.40: Successful update of the products_2014 table
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In the following exercise, you will take a closer look at how to use UPDATE statements 
in a SQL database.

Exercise 2.04: Updating the Table to Increase the Price of a Vehicle

In this exercise, you will update the data in a table using the UPDATE statement. 
Due to an increase in the cost of the rare metals needed to manufacture an electric 
vehicle, the 2022 Model Chi will need to undergo a price hike of 10%. The current 
price is $95,000.

In a real-world scenario, you will update the products table to increase the price of 
this product. However, because you will use the same sqlda database throughout 
the book, it would be better to keep the values in the original tables unchanged so 
that your SQL results remain consistent. For this reason, you will create new tables 
for all the INSERT, ALTER, UPDATE, DELETE, and DROP statement examples.

Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Run the following query to create a product_2022 table from the 
products table:

CREATE TABLE products_2022 AS ( 

SELECT * 

FROM products 

WHERE year=2022

);

3. Run the following query to update the price of Model Chi by 10% in the 
products_2022 table:

UPDATE Products_2022 SET 

  base_msrp = base_msrp*1.10 

WHERE model='Model Chi' 

AND year=2022;

4. Write the SELECT query to check whether the price of Model Chi in 2022 has 
been updated:

SELECT * 

FROM products_2022 

WHERE model='Model Chi' 

AND year=2022;



Updating Tables | 97

The following is the output of the preceding code:

Figure 2.41: The updated price of Model Chi in 2022

As you see from the output, the price of Model Chi is now $104,500; it was 
previously $95,000.

Note

To access the source code for this specific section, please refer to  
https://packt.link/fOQgA.

In this exercise, you learned how to update a table using the UPDATE statement. 
Next, you will learn how to delete data from tables and drop tables.

Deleting Data and Tables

You often discover that data in a table is out of date and, therefore, can no longer be 
used. At such times, you might need to delete data from a table.

Deleting Values from a Row

Often, you might be interested in deleting a value from a row. The easiest way to 
accomplish this is to use the UPDATE structure that has already been discussed, and 
by setting the column value to NULL:

UPDATE {table_name} SET 

  {column_1} = NULL,

  {column_2} = NULL,

  …

  {column_last} = NULL 

WHERE {conditional};

Here, {table_name} is the name of the table with the data that needs to be 
changed, {column_1}, {column_2},… {column_last} is the list of columns 
whose values you want to delete, and {WHERE} is a conditional statement like the 
one you would find in a SELECT query.

https://packt.link/fOQgA
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For instance, you have the wrong email address on file for the customer with the 
customer ID equal to 3. To fix that, you can use the following query:

UPDATE customers SET

  email = NULL 

WHERE customer_id=3;

However, there might be cases where you might need to delete rows from a table. 
For example, in the database, you have a row labeled test customer, which is 
no longer needed and needs to be deleted. In the next section, you will learn how to 
delete rows from a table.

Deleting Rows from a Table

Deleting a row from a table can be done using the DELETE statement, which looks 
like this:

DELETE FROM {table_name} 

WHERE {condition};

For instance, you must delete the products whose product_type is scooter from 
the products_2014 table. To do that, you can use the following query:

DELETE FROM products_2014 

WHERE product_type='scooter';

In the past few sections, you have inserted three products into this table, all scooters. 
After running the DELETE statement, PostgreSQL shows that there was no product in 
this table anymore as all records are deleted.

 

Figure 2.42: DELETE statement example

If you want to delete all the data in the products_2014 table without deleting the 
table, you could write the following query, which is DELETE without any conditions:

DELETE FROM products_2014;
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Alternatively, if you want to delete all the data in a query without deleting the table, 
you could use the TRUNCATE keyword like so:

TRUNCATE TABLE products_2014;

Now you have learned how to delete rows from a table, the next section will teach 
you how to delete a table entirely.

Deleting Tables

To delete all the data in a table and the table itself, you can just use the DROP TABLE 
statement with the following syntax:

DROP TABLE {table_name};

Here, {table_name} is the name of the table you want to delete. If you wanted 
to delete all the data in the products_2014 table along with the table itself, you 
would write the following:

DROP TABLE products_2014;

If you want to read from this table, you will receive an error message from 
PostgreSQL telling you that the table does not exist:

 

Figure 2.43: DROP statement example
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As seen in Figure 2.46, once the table is dropped, all aspects of this table are gone, 
and you cannot perform any operations on it. For example, if you try to run the 
DROP TABLE products_2014 statement again, you will run into an error. A 
PostgreSQL enhancement of the DROP statement is DROP TABLE IF EXISTS. 
This statement will check the existence of the table. If the table is not in the database, 
PostgreSQL will skip this statement with a notification, but without reporting an error, 
as shown below:

DROP TABLE IF EXISTS products_2014;

 

Figure 2.44: DROP TABLE IF EXISTS statement example

DROP TABLE IF EXISTS is helpful if you want to automate SQL script execution. 
One common usage scenario is to use it before the CREATE TABLE statement. If 
the table already exists, your CREATE TABLE statement will fail and raise an error. 
But if your DROP TABLE IF EXISTS statement is before your CREATE TABLE 
statement, pre-existing tables would have been dropped before you tried to recreate 
them. This is useful in automated computing operations where you constantly 
create temporary tables that you do not need after the current computing job is 
completed. The catch is that you must make sure that the table is truly temporary 
and is not used by anyone else. Otherwise, you may accidentally drop tables that are 
used by some other users without knowing. For this reason, the DROP TABLE IF 
EXISTS statement is usually only used in environments designated for automated 
data processing.

Now test what you have learned by performing an exercise to delete or drop the table 
using the DROP TABLE statement.
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Exercise 2.05: Deleting an Unnecessary Reference Table

In this exercise, you will learn how to delete a table using SQL. For instance, the 
marketing team has finished analyzing the potential number of customers they have 
in every state, and they no longer need the state_populations table. To save 
space in the database, delete the table. If you have not created this table, please go 
back to the Simple CREATE Statement section in this chapter and create it now.

Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL 
query editor.

2. Run the following query to drop the state_populations table:

DROP TABLE state_populations;

3. Check that the state_populations table has been deleted from 
the database.

4. Since the table has just been dropped, a SELECT query on this table throws an 
error, as expected:

SELECT * 

FROM state_populations;

You will find the error shown in the following figure:

Figure 2.45: Error shown as the state_populations table was dropped

5. Also, drop the products_2022 table that was created above to keep the 
database clean:

DROP TABLE products_2022;

Note

To access the source code for this specific section, please refer to  
https://packt.link/kJVag.

https://packt.link/kJVag
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In this exercise, you learned how to delete a table using the DROP TABLE statement. 
In the next activity, you will test the skills you learned by creating and modifying 
tables using SQL.

Activity 2.02: Creating and Modifying Tables for Marketing Operations

In this activity, you will test your ability to create and modify tables using SQL. 

You did a great job of pulling data for the marketing team. However, the marketing 
manager, who you helped, realized that they had made a mistake. It turns out that 
instead of just the query, the manager needs to create a new table in the company's 
analytics database. Furthermore, they need to make some changes to the data that 
is present in the customers table. It is your job to help the marketing manager with 
the table:

1. Open pgAdmin, connect to the sqlda database and open SQL query editor. 
Create a new table called customers_nyc that pulls all the rows from the 
customers table where the customer lives in New York City in the state of 
New York.

2. Delete all customers in postal code 10014 from the new table. Due to local laws, 
they will not be eligible for marketing.

3. Add a new text column called event.

4. Set the value of the event column to thank-you party.

The following is the expected output:

Figure 2.46: The customers_nyc table with event set to thank-you party
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You tell the manager that you have completed these steps. He tells the marketing 
operations team, who then uses the data to launch a marketing campaign. The 
marketing manager then asks you to delete the customers_nyc table.

Note

To access the source code for this specific section, please refer to  
https://packt.link/xeMaT.

In this activity, you used different CRUD operations to modify a table as requested 
by the marketing manager. You will now come full circle to explore how SQL and 
analytics connect.

Note 

The solution for this activity can be found via this link.

SQL and Analytics
Throughout this chapter, you may have noticed the terms SQL table and dataset are 
interchangeable. More specifically, it should be clear that SQL tables can be thought 
of as datasets, rows can be considered as individual units of observation, and 
columns can be considered as features. If you view SQL tables in this way, you can 
see that SQL is a natural way to store datasets on a computer.

However, SQL can go further than just providing a convenient way to store datasets. 
Modern SQL implementations also provide tools for processing and analyzing data 
through various functions. Using SQL, you can clean data, transform data into more 
useful formats, and analyze a variety of statistical measures to discover interesting 
patterns. The rest of this book will be dedicated to understanding how SQL can be 
used for these purposes productively and efficiently.

https://packt.link/xeMaT
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Summary
Data analytics can be enhanced by the power of relational databases. Relational 
databases are a mature and ubiquitous technology used for storing and querying 
structured data. Relational databases store data in the form of relations, also known 
as tables, which allow an excellent combination of performance, efficiency, and ease 
of use.

SQL is the language used to access relational databases. SQL supports many different 
data types, including numeric data, text data, and even data structures.

SQL can be used to perform all the tasks in the lifecycle of Create, Read, Update, and 
Delete (CRUD). SQL can be used to create and drop tables, as well as insert, delete, 
and update data elements. When querying data, SQL allows a user to pick which fields 
to pull, as well as how to filter the data. This data can also be ordered, and SQL allows 
as much or as little data as you need to be pulled. 

Having reviewed the basics of data analytics and SQL, you will move on to the 
next chapter's discussion of how SQL can be used to perform the first step in data 
analytics: cleaning and transformation of data.







Overview

In this chapter, you will learn how to clean and prepare data for analysis 
using SQL techniques. You will learn how to combine multiple tables and 
queries into a dataset using joins, unions, and subqueries. You will also use 
functions to transform data. These will make the data conform to certain 
standards before you apply advanced data analysis techniques in future 
chapters. By the end of this chapter, you will be able to transform and clean 
data using SQL functions and remove duplicate data using the DISTINCT 
and DISTINCT ON commands.

SQL for Data Preparation

3
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Introduction
In the previous chapters, you learned the basics of data analysis and SQL. You 
learned how to use CREATE, INSERT, SELECT, ALTER, UPDATE, DELETE, and 
DROP SQL statements to apply create, read, update, and delete (CRUD) operations 
on a table. These techniques are the foundation for data analytics. 

However, in the real world, as a data analyst, you usually do not handle the entire 
CRUD flow. To be more specific, you usually do not create datasets from scratch. You 
will receive data from outside sources. This data is usually in a form that would not 
fit your needs perfectly and you would need to perform some transform operations 
to make the data usable. One such operation is the creation of clean datasets from 
existing raw datasets. The raw data may be missing some information, contain 
information that is not in the format that fits your needs, or contains information 
that may not be accurate. 

According to Forbes, it is estimated that almost 80% of the time spent by analytics 
professionals involves preparing data. Building models with unclean data harms 
analysis by leading to poor conclusions. SQL can help in this tedious but important 
task by providing efficient ways to build clean datasets.

This chapter will start by discussing how to assemble data using JOIN and UNION. 
Furthermore, you will use different functions, such as CASE WHEN, COALESCE, 
NULLIF, and LEAST/GREATEST, to clean data. You will then learn how to transform 
and remove duplicate data from queries using the DISTINCT command.

Assembling Data
In Chapter 2, The Basics of SQL for Analytics, you learned how to perform operations 
with a single table. But what if you need data from two or more tables? In this section, 
you will assemble data in multiple tables using joins and unions.
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Connecting Tables Using JOIN

Most of the time, the data you are interested in is spread across multiple tables. A 
simple SELECT statement over one table will not be enough to get you what you 
need. Fortunately, SQL has methods for bringing related tables together using the 
JOIN keyword.

To illustrate, look at two tables in the ZoomZoom database—dealerships 
and salespeople. 

 

Figure 3.1: Structure of dealerships table
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And the salespeople table looks like this:

Figure 3.2: Structure of salespeople table

In the salespeople table, you can observe that there is a column called 
dealership_id. This dealership_id column is a direct reference to the 
dealership_id column in the dealerships table. When table A has a column 
that references the primary key of table B, the column is said to be a foreign key to 
table A. In this case, the dealership_id column in salespeople is a foreign key 
to the dealerships table.
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Note

Foreign keys can also be added as a column constraint to a table to 
improve the integrity of the data by making sure that the foreign key never 
contains a value that cannot be found in the referenced table. This data 
property is known as referential integrity. The method of adding foreign 
key constraints can also help to improve performance in some databases. 
Foreign key constraints are not used in most analytical databases and 
are beyond the scope of this book. You can learn more about foreign key 
constraints in the official PostgreSQL documentation.

As these two tables are related, you can perform some interesting analyses with 
them. For instance, you may be interested in determining which salespeople work 
at a dealership in California. One way of retrieving this information is to first query 
which dealerships are in California. You can do this using the following query:

SELECT *

FROM dealerships

WHERE state='CA';

This query should give you the following results:

 

Figure 3.3: Dealerships in California

Now that you know that the only two dealerships in California have the IDs of 2 and 
5, respectively, you can then query the salespeople table, as follows:

SELECT *

FROM salespeople

WHERE dealership_id in (2, 5)

ORDER BY 1;
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The following are the first nine rows of the output of the code:

 

Figure 3.4: Salespeople in California

While this method gives you the results you want, it is tedious to perform two queries 
to get these results. What would make this process easier would be to somehow add 
the information from the dealerships table to the salespeople table and then 
filter for users in California. SQL provides such a tool with the JOIN clause. The JOIN 
clause is a SQL clause that allows a user to join one or more tables together based on 
distinct conditions.
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Types of Joins

In this chapter, you will learn about three fundamental joins, which are illustrated in 
the following figure—inner joins, outer joins, and cross joins:

Figure 3.5: Major types of joins

Inner Joins

An inner join connects rows in different tables, based on a condition known as the 
join predicate. In many cases, the join predicate is a logical condition of equality. 
Each row in the first table is compared against every other row in the second table. 
For row combinations that meet the inner join predicate, that row is returned in the 
query. Otherwise, the row combination is discarded.
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Inner joins are usually written in the following form:

SELECT {columns}

FROM {table1}

INNER JOIN {table2} 

  ON {table1}.{common_key_1}={table2}.{common_key_2};

Here, {columns} is the columns you want to get from the joined table, {table1} 
is the first table, {table2} is the second table, {common_key_1} is the column in 
{table1} you want to join on, and {common_key_2} is the column in {table2} 
to join on.

Now, go back to the two tables discussed previously—dealerships and 
salespeople. As mentioned earlier, it would be good if you could append the 
information from the dealerships table to the salespeople table knowing 
which state each dealership is in. For the time being, assume that all the salespeople 
IDs have a valid dealership_id value.

Note

At this point in the book, as you have yet to learn the necessary skills to 
verify that every dealership ID is valid in the salespeople table, so you 
assume it. However, in real-world scenarios, it will be important for you to 
validate these things on your own. There are very few datasets and systems 
that guarantee clean data.

You can join the two tables using an equal to condition in the join predicate, 
as follows:

SELECT *

FROM salespeople

INNER JOIN dealerships

  ON salespeople.dealership_id = dealerships.dealership_id

ORDER BY 1;
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The following figure shows the first few rows of the output:

 

Figure 3.6: The salespeople table joined to the dealerships table

As you can see in the preceding output, the table is the result of joining the 
salespeople table to the dealerships table. Note that the first table listed 
in the query, salespeople, is on the left-hand side of the result, while the 
dealerships table is on the right-hand side. This left-right order will become very 
important in the next section when you learn about outer joins between tables. 
During an outer join, whether a table is on the left or right side can impact the output 
of the query. For an inner join, however, the order of tables is not important for join 
predicates that use an equal operation.

Now, look at the columns involved; dealership_id in the salespeople table 
matches dealership_id in the dealerships table. This shows how the join 
predicate is met. By running this join query, you have effectively created a new 
"super dataset" consisting of the two tables merged where the two dealership_id 
columns are equal.
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You can now run a SELECT query over this "super dataset" in the same way as one 
large table using the clauses and keywords from Chapter 2, The Basics of SQL for 
Analytics. For example, going back to the multi-query issue to determine which sales 
query works in California, you can now address it with one easy query:

SELECT *

FROM salespeople

INNER JOIN dealerships

  ON salespeople.dealership_id = dealerships.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1;

This gives you the following output, which displays the first few rows of the entire 
result set:

 

Figure 3.7: Salespeople in California with one query
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You will observe that the output in Figure 3.6 and Figure 3.7 is nearly identical, with the 
exception being that the table in Figure 3.7 has the dealerships data appended 
as well. If you want to retrieve only the salespeople table portion of this, you can 
select the salespeople columns using the following star syntax:

SELECT salespeople.*

FROM salespeople

INNER JOIN dealerships

  ON dealerships.dealership_id = salespeople.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1;

Here are the first few rows returned by this query:

Figure 3.8: Salespeople in California with SELECT table alias

There is another shortcut that can help while writing statements with several JOIN 
clauses. You can alias table names to avoid typing the entire name of the table every 
time. Simply write the name of the alias after the first mention of the table after 
the JOIN clause, and you can save a decent amount of typing. For instance, for the 
preceding query, if you wanted to alias salespeople with s and dealerships 
with d, you could write the following statement:

SELECT s.*

FROM salespeople s

INNER JOIN dealerships d

  ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;
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Alternatively, you could also put the AS keyword between the table name and alias to 
make the alias more explicit:

SELECT s.*

FROM salespeople AS s

INNER JOIN dealerships AS d

  ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;

Now that you have covered the basics of inner joins, it is time to discuss outer joins.

Outer Joins

As discussed, inner joins will only return rows from the two tables when the join 
predicate is met for both tables, that is, when both tables have rows that can satisfy 
the join predicate. Otherwise, no rows from either table are returned. It can happen 
that sometimes you want to return all rows from one of the tables, even if the other 
table does not have any row meeting the join predicate. In this case, since there is 
no row meeting the join predicate, the second table will return nothing but NULL. 
Outer join is a join type in which all rows from at least one table, if meeting the query 
WHERE condition, will be presented after the JOIN operation.

Outer joins can be classified into three categories: left outer joins, right outer joins, 
and full outer joins:

• Left outer join: Left outer joins are where the left table (that is, the table 
mentioned first in a join clause) will have every row returned. If a row from the 
other table (the right table) is not found, a row of NULL is returned from the 
right table. Left outer joins are performed by using the LEFT OUTER JOIN 
keywords, followed by a join predicate. This can also be written in short as 
LEFT JOIN.

To show how left outer joins work, examine two tables: the customers table 
and the emails table. For the time being, assume that not every customer has 
been sent an email, and you want to mail all customers who have not received 
an email. You can use a left outer join to make that happen since the left side of 
the join is the customers table. To help manage the output, you will limit it to 
the first 1,000 rows. The following code snippet is utilized:

SELECT 

  *

FROM 



Assembling Data | 119

  customers c

LEFT OUTER JOIN 

  emails e ON e.customer_id=c.customer_id

ORDER BY 

  c.customer_id

LIMIT 

  1000;

The following is the output of the preceding code: 

Figure 3.9: Customers left-joined to emails

When you look at the output of the query, you should see that entries from 
the customers table are present. However, for some of the rows, such as for 
customer_id 27, which can be seen in Figure 3.9, the columns belonging to 
the emails table are completely full of NULL values. This arrangement explains 
how the outer join is different from the inner join. If the inner join was used, the 
customer_id 27 row would not show because there is no matching record in 
the emails table.
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This query, however, is still useful because you can now use it to find people who 
have never received an email. Because those customers who were never sent an 
email have a null customer_id column in the values returned from emails 
table, you can find all these customers by checking the customer_id column 
in the emails table, as follows:

SELECT 

    c.customer_id,

    c.title,

    c.first_name,

    c.last_name,

    c.suffix,

    c.email,

    e.email_id,

    e.email_subject,

    e.opened,

    e.clicked,

    e.bounced,

    e.sent_date,

    e.opened_date,

    e.clicked_date

FROM 

  customers c

LEFT OUTER JOIN 

  emails e ON c.customer_id = e.customer_id

WHERE 

  e.customer_id IS NULL

ORDER BY 

  c.customer_id

LIMIT 

  1000;
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The following is the output of the query:

 

Figure 3.10: Customers with no emails sent

As you can see, all entries are blank in the email_id column of the emails 
table, indicating that the customer of that row has not received any emails. You 
could simply grab the emails from this join to get all the customers who have not 
received an email.

• Right outer join: A right outer join is very similar to a left join, except the table 
on the "right" (the second listed table) will now have every row show up, and the 
"left" table will have NULL values if the JOIN condition is not met. To illustrate, 
let's "flip" the last query by right-joining the emails table to the customers 
table with the following query:

SELECT

    e.email_id,

    e.email_subject,

    e.opened,

    e.clicked,

    e.bounced,

    e.sent_date,

    e.opened_date,

e.clicked_date,
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    c.customer_id,

    c.title,

    c.first_name,

    c.last_name,

    c.suffix,

c.email

FROM emails e

RIGHT OUTER JOIN customers c 

  ON e.customer_id=c.customer_id

ORDER BY 

  c.customer_id

LIMIT 

  1000;

When you run this query, you will get something similar to the following result:

Figure 3.11: Emails right-joined to the customers table

Notice that this output is similar to what was produced in Figure 3.9, except that the 
data from the emails table is now on the left-hand side, and the data from the 
customers table is on the right-hand side. Once again, customer_id 27 has 
NULL for the email. This shows the symmetry between a right join and a left join.
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• Full outer join: Finally, there is the full outer join. The full outer join will return 
all rows from the left and right tables, regardless of whether the join predicate is 
matched. For rows where the join predicate is met, the two rows are combined 
just like in an inner join. For rows where it is not met, each row from both tables 
will be selected as an individual row, with NULL filled in for the columns from 
the other table. The full outer join is invoked by using the FULL OUTER JOIN 
clause, followed by a join predicate. Here is the syntax of this join:

SELECT 

  *

FROM 

  emails e

FULL OUTER JOIN 

  customers c

  ON e.customer_id=c.customer_id;

The following is the output of the code:

 

Figure 3.12: Emails are full outer joined to the customers table
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In this section, you learned how to implement three different types of outer joins. 
In the next section, you will learn about the cross join.

Cross Joins

Cross join is a join type that has no join predicate. That means every row from the 
"left" table will be matched to all the rows in the "right" table, regardless of whether 
they are related or not. It is also referred to as the Cartesian product. It is named 
"Cartesian" after the French mathematician René Descartes, who raised the idea 
of this type of operation. It can be invoked using a CROSS JOIN clause, followed 
by the name of the other table. To better understand this, take the example of the 
products table.

A common analysis is called market basket analysis, which studies the selling patterns 
between multiple products. For example, diapers are usually sold together with 
baby wipes. So, if you are running a two-month giveaway for diapers for marketing 
purposes and expect more customers to come to the diaper aisle or web page, you 
may want to place baby wipes there too. To perform market basket analysis, you 
want to know every possible combination of two products that you could create from 
a given set of products (such as the ones found in the products table) to create 
a two-month giveaway for marketing purposes. You can use a cross join to get the 
answer to the question using the following query:

SELECT 

  P1.product_id, p1.model, 

  P2.product_id, p2.model

FROM 

  products p1 

CROSS JOIN 

  products p2;
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The output of this query is as follows:

Figure 3.13: The cross join of a product to itself

In this case, you have joined every value of every field in one table to the same 
in another table. The result of the query has 144 rows, which is the equivalent of 
multiplying the 12 products by the same 12 products (12 * 12). You can also see that 
cross join does not require a join predicate. In other words, a cross join can simply be 
thought of as just an outer join with no conditions for joining.  

In general, cross joins are not used much in practice as they can hamper the process 
if you are not careful. Cross joining two large tables can lead to the origination of 
hundreds of billions of rows, which can stall and crash a database. So, if you decide to 
use a cross join, ensure you take utmost care when using it.

So far, you have covered the basics of using joins to fuse tables for a custom analysis 
of data. You will practice this in the following exercise.



126 | SQL for Data Preparation

Exercise 3.01: Using Joins to Analyze a Sales Dealership

In this exercise, you will use joins to bring related tables together. For instance, the 
head of sales at your company would like a list of all customers who bought a car. To 
do the task, you need to create a query that will return all customer IDs, first names, 
last names, and valid phone numbers of customers who purchased a car.

Note

For all exercises in this book, you will be using pgAdmin. All the code files 
for the exercises and the activity in this chapter are also available on GitHub 
at https://packt.link/Y08W5.

To complete this exercise, perform the following steps:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Use an inner join to bring the sales, customers, and products tables 
together, which returns data for customer IDs, first names, last names, and valid 
phone numbers:

SELECT 

  c.customer_id, c.first_name,

  c.last_name, c.phone

FROM 

  sales s

INNER JOIN 

  customers c ON c.customer_id=s.customer_id

INNER JOIN 

  products p ON p.product_id=s.product_id

WHERE 

  p.product_type='automobile'

  AND c.phone IS NOT NULL;

https://packt.link/Y08W5
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You should get an output similar to the following:

 

Figure 3.14: Customers who bought a car

You can see that running the query helped you to join the data from the sales, 
customers, and products tables and obtain a list of customers who bought a 
car and have a phone number.

Note

To access the source code for this specific section, please refer to  
https://packt.link/Y08W5.

In this exercise, using joins, you were able to bring together related tables easily 
and efficiently. Several times, you will also want to combine the result of your queries 
to form new queries so that you can build data analysis on top of existing analysis. 
You can now move forward to learn about methods for joining queries in a dataset.

https://packt.link/Y08W5
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Subqueries

So far, you have been pulling data from tables. You may have observed that the 
results of all SELECT queries are two-dimensional relations that look like the tables 
in a relational database. Knowing this, you may wonder whether there is some way to 
use the relations produced by the SELECT queries instead of referencing an existing 
table in your database. The answer is "yes." You can simply take a query, insert it 
between a pair of parentheses, and give it an alias. This will help you to build an 
analysis on top of existing analysis, thus reducing errors and improving efficiency.

For example, if you wanted to find all the salespeople working in California and 
get the results the same as in Figure 3.7, you could write the query using the 
following alternative:

SELECT 

  *

FROM 

  salespeople

INNER JOIN (

  SELECT 

    * 

  FROM 

     dealerships

  WHERE 

    dealerships.state = 'CA'

  ) d

ON d.dealership_id = salespeople.dealership_id

ORDER BY 

  1;

Here, instead of joining the two tables and filtering for rows with the state equal to 
'CA', you first find the dealerships where the state equals 'CA', and then inner join 
the rows in that query to salespeople.

If a query only has one column, you can use a subquery with the IN keyword 
in a WHERE clause. For example, another way to extract the details from the 
salespeople table using the dealership ID for the state of California would be 
as follows:

SELECT 

  *

FROM 

  salespeople
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WHERE dealership_id IN (

  SELECT dealership_id FROM dealerships

  WHERE dealerships.state = 'CA'

  )

ORDER BY 

  1;

As illustrated in all of these examples, it is quite easy to write the same query using 
multiple techniques. In the next section, you will learn about unions.

Unions

Up till now, in this chapter, you have learned how to join data horizontally. You can 
use joins to add new columns horizontally. However, you may be interested in putting 
multiple queries together vertically, that is, by keeping the same number of columns 
but adding multiple rows. Please see this example for more clarity on this.

Suppose you wanted to visualize the addresses of dealerships and customers using 
Google Maps. To do this, you would need the addresses of both customers and 
dealerships. You could build a query with all customer addresses as follows:

SELECT 

  street_address, city, state, postal_code

FROM 

  customers

WHERE 

  street_address IS NOT NULL;

You could also retrieve dealership addresses with the following query:

SELECT 

  street_address, city, state, postal_code

FROM 

  dealerships

WHERE 

  street_address IS NOT NULL;
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To reduce complexity, it would be nice if there were a way to assemble the two 
queries into one list with a single query. This is where the UNION keyword comes 
into play. You can use the two previous queries and create the following query:

(

SELECT 

  street_address, city, state, postal_code

FROM 

  customers

WHERE 

  street_address IS NOT NULL

)

UNION

(

SELECT 

  street_address, city, state, postal_code

FROM 

  dealerships

WHERE 

  street_address IS NOT NULL

)

ORDER BY 

  1;

This produces the following output:

Figure 3.15: Union of addresses
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Please note that there are certain conditions that need to be kept in mind when 
using UNION. Firstly, UNION requires the subqueries to have the same number of 
columns and the same data types for the columns. If they do not, the query will fail 
to run. Secondly, UNION technically may not return all the rows from its subqueries. 
UNION, by default, removes all duplicate rows in the output. If you want to retain 
the duplicate rows, it is preferable to use the UNION ALL keyword. For example, 
if both of the previous queries return a row with address values such as '123 Main 
St', 'Madison', 'WI', '53710', the result of the UNION statement will only contain one 
record for this value set, but the result of the UNION ALL statement will include two 
records of the same value, one from each query.

In the next exercise, you will implement union operations.

Exercise 3.02: Generating an Elite Customer Party Guest List Using UNION

In this exercise, you will assemble two queries using UNION. To help build marketing 
awareness for the new Model Chi, the marketing team would like to throw a party 
for some of ZoomZoom's wealthiest customers in Los Angeles, CA. To help facilitate 
the party, they would like you to make a guest list with ZoomZoom customers who 
live in Los Angeles, CA, as well as salespeople who work at the ZoomZoom dealership 
in Los Angeles, CA. The guest list should include details such as the first and last 
names and whether the guest is a customer or an employee.

To complete the task, execute the following:

1. Open pgAdmin, connect to the sqlda database, and open the SQL 
query editor.

Write a query that will make a list of ZoomZoom customers and company 
employees who live in Los Angeles, CA. The guest list should contain first and 
last names and whether the guest is a customer or an employee:

(

SELECT 

  first_name, last_name, 'Customer' as guest_type

FROM 

  customers

WHERE 

  city='Los Angeles'

  AND state='CA'

)

UNION

(
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SELECT 

  first_name, last_name, 

  'Employee' as guest_type

FROM 

  salespeople s

INNER JOIN 

  dealerships d ON d.dealership_id=s.dealership_id

WHERE 

  d.city='Los Angeles'

  AND d.state='CA'

);

You should get the following output:

Figure 3.16: Customer and employee guest list in Los Angeles, CA

You can see the guest list of customers and employees from Los Angeles, 
CA, after running the UNION query.
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2. To demonstrate the usage of UNION ALL, first run a simple query that 
combines the products table with all the rows:

SELECT * FROM products

UNION

SELECT * FROM products

ORDER BY 1;

You can see that the query returns 12 rows and there are no duplicated rows, 
just the same as the original products table. However, say you run the 
following query:

SELECT * FROM products

UNION ALL

SELECT * FROM products

ORDER BY 1;

You will see that the query returns 24 rows, in which each row is repeated twice. 
This is because the UNION ALL statement keeps the duplicated rows from both 
products tables. 

Note

To access the source code for this specific section, please refer to  
https://packt.link/Y08W5.

In the exercise, you used the UNION keyword to combine rows from different queries 
effortlessly. In the next section, you will explore common table expressions (CTEs).

Common Table Expressions

CTEs are simply a different version of subqueries. CTEs establish temporary tables by 
using the WITH clause. To understand this clause better, look at the following query, 
which you used before to find California-based salespeople:

SELECT 

  *

FROM 

  salespeople

INNER JOIN (

  SELECT 

https://packt.link/Y08W5
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    * 

  FROM 

    dealerships

  WHERE 

    dealerships.state = 'CA'

  ) d

ON d.dealership_id = salespeople.dealership_id

ORDER BY 

  1;

This could be written using CTEs, as follows:

WITH d as (

  SELECT 

    * 

  FROM 

    dealerships

  WHERE 

    dealerships.state = 'CA'

  )

SELECT 

  *

FROM 

  salespeople

INNER JOIN 

  d ON d.dealership_id = salespeople.dealership_id

ORDER BY 

  1;

The one advantage of CTEs is that they can be designed to be recursive. Recursive 
CTEs can reference themselves. Because of this feature, you can use them to solve 
problems that other queries cannot. However, recursive CTEs are beyond the scope 
of this book.

Now that you know several ways to join data across a database, look at how to 
transform the data from these outputs.
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Cleaning Data
Often, the raw data presented in a query output may not be in the desired form. 
You may want to remove values, substitute values, or map values to other values. 
To accomplish these tasks, SQL provides a wide variety of statements and functions. 
Functions are keywords that take in inputs (such as a column or a scalar value) and 
process those inputs into some sort of output. You will learn about some useful 
functions for data transformation and cleaning in the following sections.

The CASE WHEN Function

CASE WHEN is a function that allows a query to map various values in a column to 
other values. The general format of a CASE WHEN statement is as follows:

CASE 

  WHEN condition1 THEN value1

  WHEN condition2 THEN value2

  …

  WHEN conditionX THEN valueX

  ELSE else_value 

END;

Here, condition1 and condition2, through conditionX, are Boolean 
conditions; value1 and value2, through valueX, are values to map to the 
Boolean conditions; and else_value is the value that is mapped if none of the 
Boolean conditions is met. For each row, the program starts at the top of the CASE 
WHEN statement and evaluates the first Boolean condition. The program then runs 
through each Boolean condition from the first one. For the first condition from the 
start of the statement that evaluates as True, the statement will return the value 
associated with that condition. If none of the statements evaluates as True, then the 
value associated with the ELSE statement will be returned.

For example, you want to return all rows for customers from the customers table. 
Additionally, you would like to add a column that labels a user as being an Elite 
Customer type if they live in postal code 33111, or as a Premium Customer 
type if they live in postal code 33124. Otherwise, it will mark the customer as a 
Standard Customer type. This column will be called customer_type. You can 
create this table by using a CASE WHEN statement, as follows:

SELECT 

  CASE 

    WHEN postal_code='33111' THEN 'Elite Customer'

    WHEN postal_code='33124' THEN 'Premium Customer'
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    ELSE 'Standard Customer' 

  END AS customer_type,

  *

FROM customers;

This query should give the following output:

Figure 3.17: The customer_type query

As you can see in the preceding table, there is a column called customer_type 
indicating the type of customer a user is. The CASE WHEN statement effectively 
mapped a postal code to a string describing the customer type. Using a CASE WHEN 
statement, you can map values in any way you please.

Exercise 3.03: Using the CASE WHEN Function to Get Regional Lists

The aim of this exercise is to create a query that will map various values in a 
column to other values. For instance, the head of sales has an idea to try and create 
specialized regional sales teams that will be able to sell scooters to customers in 
specific regions, as opposed to generic sales teams.
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To make their idea a reality, the head of sales would like a list of all customers 
mapped to regions. For customers from the states of MA, NH, VT, ME, CT, or RI, they 
would like them labeled as New England. Customers from the states of GA, FL, 
MS, AL, LA, KY, VA, NC, SC, TN, VI, WV, or AR, they would like the customers labeled as 
Southeast. Customers from any other state should be labeled as Other.

To complete this exercise, perform the following steps:

1. Open pgAdmin, connect to the sqlda database, and open the SQL 
query editor.

2. Create a query that will produce a customer_id column and a column called 
region, with the states categorized as in the following scenario:

SELECT 

  c.customer_id,

  CASE 

    WHEN c.state in (

      'MA', 'NH', 'VT', 'ME', 

      'CT', 'RI') 

    THEN 'New England'

    WHEN c.state in (

      'GA', 'FL', 'MS', 

      'AL', 'LA', 'KY', 'VA', 

      'NC', 'SC', 'TN', 'VI', 

      'WV', 'AR') 

    THEN 'Southeast'

ELSE 'Other' 

  END as region

FROM 

  customers c

ORDER BY 

  1;
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This query will map a state to one of the regions based on whether the 
state is in the CASE WHEN condition listed for that line. You should get the 
following output:

Figure 3.18: The regional query output

In the preceding output, in the case of each customer, a region has been 
mapped based on the state where the customer resides.

Note

To access the source code for this specific section, please refer to  
https://packt.link/Y08W5.

In this exercise, you learned how to map various values in a column to other values 
using the CASE WHEN function. In the next section, you will learn about a useful 
function, COALESCE, which will help to replace the NULL values.

https://packt.link/Y08W5


Cleaning Data | 139

The COALESCE Function

Another common requirement is to replace the NULL values with a standard value. 
This can be accomplished easily by means of the COALESCE function. COALESCE 
allows you to list any number of columns and scalar values, and, if the first value in 
the list is NULL, it will try to fill it in with the second value. The COALESCE function 
will keep continuing down the list of values until it hits a non-NULL value. If all values 
in the COALESCE function are NULL, then the function returns NULL.

To illustrate a simple usage of the COALESCE function, study the customers table. 
Some of the records do not have the value of the phone field populated:

Figure 3.19: The COALESCE query

For instance, the marketing team would like a list of the first names, last names, and 
phone numbers of all customers for a survey. However, for customers with no phone 
number, they would like the table to instead write the value NO PHONE. You can 
accomplish this request with COALESCE:

SELECT 

  first_name, last_name,

  COALESCE(phone, 'NO PHONE') as phone

FROM 
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  customers

ORDER BY 

  1;

This query produces the following results:

Figure 3.20: The COALESCE query

When dealing with creating default values and avoiding NULL, COALESCE will always 
be helpful.

The NULLIF Function

NULLIF is used as the opposite of COALESCE. While COALESCE is used to convert 
NULL into a standard value, NULLIF is a two-value function and will return NULL if 
the first value equals the second value.

For example, the marketing department has created a new direct mail piece to send 
to the customer. One of the quirks of this new piece of advertising is that it cannot 
accept people who have titles (Mr, Dr, Mrs, and so on) longer than three letters. 
However, some records may have a title that is longer than three letters. If the system 
cannot accept them, they should be removed during the retrieval of results.

In the sample database, the only known title longer than three characters is 
Honorable. Therefore, they would like you to create a mailing list that is just all the 
rows with valid street addresses and to block out all titles with NULL that are spelled 
as Honorable. This could be done with the following query:
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SELECT customer_id,

        NULLIF(title, 'Honorable') as title,

        first_name,

        last_name,

        suffix,

        email,

        gender,

        ip_address,

        phone,

        street_address,

        city,

        state,

        postal_code,

        latitude,

        longitude,

        date_added

FROM 

  customers c

ORDER BY 

  1;

This will remove all mentions of Honorable from the title column.

Figure 3.21: The NULLIF query

Next, you will learn about other types of functions, such as the LEAST and 
GREATEST functions. 
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The LEAST/GREATEST Functions

Two functions that come in handy for data preparation are the LEAST and 
GREATEST functions. Each function takes any number of values and returns the 
least or the greatest of the values, respectively.

For example, if you use the LEAST function with two parameters, such as 600 and 
900, 600 will be returned as the value. It is the opposite of what the GREATEST 
function will return. The parameters can either be literal values or the values stored 
inside numeric fields.

The simple use of this variable would be to replace the value if it is too high or low. 
You can study an example closely to understand it better. For instance, the sales team 
may want to create a sales list where every scooter is $600 or less. You can create this 
using the following query:

SELECT 

  product_id, model,

  year, product_type, 

  LEAST(600.00, base_msrp) as base_msrp,

  production_start_date,

  production_end_date

FROM 

  products

WHERE 

  product_type='scooter'

ORDER BY 

  1;

This query should give the following output:

 

Figure 3.22: Cheaper scooters



Cleaning Data | 143

From the output, you can see that if base_msrp was lower than 600, the SQL query 
will return the original base_msrp. But if base_msrp is higher than 600, you will 
get 600 back. It is the lower value of base_msrp and 600 that the query returns, 
which is what the LEAST() function is supposed to do.

The Casting Function

Another useful data transformation is to change the data type of a column within a 
query. This is usually done to use a function only available to one data type, such as 
text, while working with a column that is in a different data type, such as numeric. To 
change the data type of a column, you simply need to use the column::datatype 
format, where column is the column name and datatype is the data type you want 
to change the column to. 

For example, to change the year in the products table to a text column in a query, 
use the following query:

SELECT 

  product_id, 

  model,

  year::TEXT, 

  product_type,

  base_msrp, 

  production_start_date,

  production_end_date

FROM 

  products;

This query produces the following output:

Figure 3.23: The year column as text
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This will convert the year column to text. You can now apply text functions to this 
transformed column. Please note that not every data type can be cast to a specific 
data type. For instance, datetime cannot be cast to float types. Your SQL client will 
throw an error if you ever make an unexpected conversion.

Transforming Data
Each dataset is unique along with each of the business use cases for the datasets. 
That means the processing and transforming of datasets are unique in their own way. 
However, there are some processing logics that you will frequently run into in the real 
world. You will learn some of these in the sections in this section.

The DISTINCT and DISTINCT ON Functions

When looking through a dataset, you may be interested in determining the unique 
values in a column or group of columns. This is the primary use case of the 
DISTINCT keyword.

For example, if you wanted to know all the unique model years in the products 
table, you could use the following query:

SELECT DISTINCT year

FROM products

ORDER BY 1;

This should give the following result:

 

Figure 3.24: Distinct model years
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You can also use it with multiple columns to get all the distinct column combinations 
present. For example, to find all distinct years and what product types were released 
for those model years, you can simply use the following:

SELECT DISTINCT year, product_type

FROM products

ORDER BY 1, 2;

This should give the following output:

Figure 3.25: Distinct model years and product types

Another keyword related to DISTINCT is DISTINCT ON. Now, DISTINCT ON 
allows you to ensure that only one row is returned, and one or more columns are 
always unique in the set. The general syntax of a DISTINCT ON query is as follows:

SELECT DISTINCT ON (distinct_column)

column_1,

column_2,

…

column_n

FROM table

ORDER BY order_column;
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Here, distinct_column is the column(s) you want to be distinct in your 
query, column_1 through column_n are the columns you want in the 
query, and order_column allows you to determine the first row that will be 
returned for a DISTINCT ON query if multiple columns have the same value for 
distinct_column.

For order_column, the first column mentioned should be distinct_column. 
If an ORDER BY clause is not specified, the first row will be decided randomly. 

For example, you want to get a unique list of salespeople where each salesperson 
has a unique first name. In the case that two salespeople have the same first name, 
you will return the one that joined the company earlier. This query would look 
as follows:

SELECT DISTINCT ON (first_name)

  *

FROM 

  salespeople

ORDER BY 

  first_name, hire_date;

It should return this output:

 

Figure 3.26: DISTINCT ON first_name
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This table now guarantees that every row has a distinct username. If there are 
multiple users with the same first name, then the user who was hired first by the 
company will be pulled by the query. 

For example, if the salespeople table has multiple rows with the first name Abby, 
the row in Figure 3.26 with the name of Abby (that is, the first row in the outputs) is 
for the first person employed at the company with the name Abby. Likewise, when 
you have two employees with the same first name, the query results will order them 
by the start date. For example, when two employees, Andrey Haack with the start 
date of 2016-01-10 and Andrey Kures with the start date of 2016-05-17, 
exist in the database, Andrey Haack will be listed first, since his start date is earlier. 

In the next section, you will go through an activity demonstrating how SQL can be 
used to make a dataset for a model.

Activity 3.01: Building a Sales Model Using SQL Techniques

In this activity, you will clean and prepare the data for analysis using SQL techniques. 
The data science team wants to build a new model to help predict which customers 
are the best prospects for remarketing. A new data scientist has joined their team. 
It is your responsibility to help the new data scientist prepare and build a dataset to 
be used to train a model. Write a query to assemble a dataset. Here are the steps 
to perform:

1. Open pgAdmin, connect to the sqlda database, and open the SQL 
query editor.

2. Use INNER JOIN to join the customers table to the sales table.

3. Use INNER JOIN to join the products table to the sales table.

4. Use LEFT JOIN to join the dealerships table (right table) to the sales 
table (left table).

5. Return all columns of the customers table and the products table.  

6. Return the dealership_id column from the sales table, but fill in 
dealership_id in sales with -1 if it is NULL.
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7. Add a column called high_savings that returns 1 if the sales amount was 
500 less than base_msrp or lower. Otherwise, it returns 0. Please make sure 
that you perform the query on a joined table.

Expected Output:

The following figure shows some of the rows from the output of this activity. You can 
see that a number of dealership_id are replaced with -1 by the query, as they 
are indeed NULL. This is because internet sales do not go through a dealership and 
thus do not have a dealership_id value. Some of the rows also have their value 
in the high_savings column marked as 1, indicating the sales amount is $500 or 
more below base_msrp. You can go through some rows, try to get the original data, 
and confirm the SQL is written properly:

 Figure 3.27: Building a sales model query



Summary | 149

You have now learned how SQL can be used to clean and organize data for 
analytical purposes.

Note 

The solution for this activity can be found via this link.

Summary
SQL provides you with many tools for mixing and cleaning data. In this chapter, you 
first learned how to combine two or more tables. You started with the JOIN keyword, 
which fuses data from tables based on their common columns. There are several 
types of JOIN. Depending on whether you want to retain the data in a certain table 
or not, you can choose INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, 
FULL OUTER JOIN, or CROSS JOIN. You then learned how to use subqueries 
and CTEs to preserve and reuse the results of queries. You can also use UNION and 
UNION ALL to merge the results of two queries with the same structure into one 
result set.

After learning how to combine data from different datasets, you learned how to 
perform certain transformations on the data. You first started with the CASE WHEN 
function, which is a generic way to convert one expression into another based on 
custom-defined conditions. You then learned how to use the COALESCE() and 
NULLIF() functions to convert between NULL and non-NULL values. You also 
learned how to change the data type of an expression using casting functions, and 
finally, you learned about the DISTINCT and DISTINCT ON functions to get distinct 
lists of values.

Now that you know how to prepare a dataset, you will learn how to start making 
analytical insights in the next chapter, using aggregate functions.





Overview

In this chapter, you will study the conceptual logic of aggregate functions, 
write SQL to execute these functions, and learn how to analyze data using 
them. You will also learn how to modify them using keywords such as 
HAVING and GROUP BY.

By the end of this chapter, you will be able to apply these functions to gain 
new insights into data and understand the properties of datasets, such as 
data quality.

Aggregate Functions for Data 

Analysis

4
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Introduction
In the previous chapter, you learned how to use SQL to prepare datasets for analysis. 
Eventually, the purpose of data preparation is to make the data suitable for analysis 
so that you can make sense of it. Once the data has been prepared, the next step is to 
analyze it. Generally, data scientists and analytics professionals will try to understand 
the data by summarizing it and trying to find high-level patterns. SQL can help with 
this task primarily by using aggregate functions. These functions take multiple rows 
as input and return new information based on those input rows. To begin, you will 
learn about aggregate functions.

In this chapter, you will understand the fundamentals of aggregate functions through 
the following topics:

• Aggregate Functions

• Aggregate Functions with the GROUP BY Clause

• Aggregate Functions with the HAVING Clause

• Using Aggregates to Clean Data and Examine Data Quality

Aggregate Functions
In addition to just seeing individual rows of data, it is also interesting to understand 
the properties of an entire column or table. For example, say you just received a 
sample dataset of a fictional company called ZoomZoom, which specializes in car 
and electronic scooter retailing. You are wondering about the number of customers 
that this ZoomZoom database contains. You could select all the data from the 
table and then see how many rows were pulled back, but it would be incredibly 
tedious to do so. Luckily, there are functions provided by SQL that can be used to 
perform this type of calculation on large groups of rows. These functions are called 
aggregate functions.
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Aggregate functions take in one or more columns with multiple rows and return a 
number based on those columns. The following table provides a summary of the 
major aggregate functions that are used in SQL:

Figure 4.1: Major aggregate functions

The most frequently used aggregate functions include SUM(), AVG(), MIN(), 
MAX(), COUNT(), and STDDEV(). You will also notice the CORR() function, which 
was discussed in Chapter 1, Understanding and Describing Data. SQL provides this 
function so that you do not need to calculate it manually.
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Aggregate functions can help you to smoothly execute several tasks, such as 
the following:

• Aggregate functions can be used with the WHERE clause to calculate aggregate 
values for specific subsets of data. For example, if you want to know how many 
customers ZoomZoom has in California, you could use the following query:

SELECT 

  COUNT(*) 

FROM 

  customers 

WHERE 

  state='CA';

This results in the following output:

Figure 4.2: Result of COUNT(*) with the WHERE clause

• You can do arithmetic with aggregate functions. In the following query, you can 
divide the count of rows in the customers table by 2:

SELECT 

  COUNT(*)/2 

FROM 

  customers;

This query will return 25000.

Figure 4.3: Result of function – constant calculation
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• You can use aggregate functions with each other in mathematical ways. If you 
want to calculate the average value of a specific column, you can use the AVG 
function. For example, to calculate the average Manufacturer's Suggested 
Retail Price (MSRP) of products at ZoomZoom, you can use the AVG(base_
msrp) function in a query. In addition, you can also build the AVG function using 
SUM and COUNT, as follows:

SELECT 

  SUM(base_msrp)/COUNT(*) AS avg_base_msrp 

FROM 

  Products;

You will get the following result:

Figure 4.4: Result of function calculation

A frequently seen scenario is a calculation involving the COUNT() function. 
For example, you can use the COUNT function to count the total number of 
ZoomZoom customers by counting the total rows in the customers table:

SELECT 

  COUNT(customer_id) 

FROM 

  customers;

The COUNT function will return the number of rows without a NULL value in the 
column. Since the customer_id column is a primary key and cannot be NULL, 
the COUNT function will return the number of rows in the table. In this case, the 
query will return the following output:

Figure 4.5: Result of the COUNT column
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As shown here, the COUNT function works with a single column and counts how 
many non-NULL values it has. However, if the column has at least one NULL 
value, you will not be able to determine how many rows there are. To get a count 
of the number of rows in that situation, you could use the COUNT function with 
an asterisk in brackets, (*), to get the total count of rows:

SELECT 

  COUNT(*) 

FROM 

  customers;

This query will also return 50000:

Figure 4.6: Result of COUNT(*) as compared to the COUNT column

One of the major themes you will find in data analytics is that analysis is 
fundamentally only useful when there is a strong variation in the data. A column 
where every value is exactly the same is not a particularly useful column. To 
identify this potential issue, it often makes sense to determine how many distinct 
values there are in a column. To measure the number of distinct values in a 
column, you can use the COUNT DISTINCT function. The structure of such a 
query would look as follows:

SELECT 

  COUNT (DISTINCT {column1})

FROM 

  {table1}

Here, {column1} is the column you want to count and {table1} is the table 
with the column.
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For example, say you want to verify that your customers are based in all 
50 states of the US, possibly with the addition of Washington D.C., which is 
technically a federal territory but is treated as a state in your system. For this, 
you need to know the number of unique states in the customer list. You can use 
COUNT(DISTINCT expression) to process the query:

SELECT

  COUNT(DISTINCT state) 

FROM 

  customers;

This query returns the following output:

Figure 4.7: Result of COUNT DISTINCT

This result shows that you do have a national customer base in all 50 states and 
Washington D.C.. You can also calculate the average number of customers per 
state using the following SQL:

SELECT 

  COUNT(customer_id)::numeric / COUNT(DISTINCT state) 

FROM 

  customers;

This query returns the following output:

Figure 4.8: Result of COUNT division with casting
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1. Note that in the preceding SQL, the count of customer ID is cast as numeric. 
The reason you must cast this as numeric is that the COUNT() function 
always returns an integer. PostgreSQL treats integer division differently than 
float division in that it will ignore the decimal part of the result. For example, 
dividing 7 by 2 as integers in PostgreSQL will give you 3 instead of 3.5. In the 
preceding example, if you do not specify the casting, the SQL and its result will 
be as follows:

SELECT 

  COUNT(customer_id) / COUNT(DISTINCT state) 

FROM 

  customers;

You will get this output:

Figure 4.9: Result of COUNT division without casting

2. To get a more precise answer with a decimal part, you have to cast one of the 
numbers as a float. There is also an easier way to convert an integer into a float, 
which is to multiply it by 1.0. As 1.0 is a numeric value, its calculation with an 
integer value will result in a numeric value. For example, the following SQL will 
generate the same output as the SQL in the code block preceding Figure 4.8:

SELECT 

  COUNT(customer_id) * 1.0 / COUNT(DISTINCT state) 

FROM 

  customers;
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In the next section, you will work on an exercise to learn how to use aggregate 
functions as part of data analysis.

Note

For all the exercises in this book, you will be using pgAdmin 4, which you 
should have installed by following the instructions in the Preface. All the 
exercises and activities are also available on GitHub at https://packt.link/
OU9zr.

Exercise 4.01: Using Aggregate Functions to Analyze Data

In this exercise, you will analyze and calculate the price of a product using different 
aggregate functions. For instance, say you are curious about the data at your 
company and interested in understanding some of the basic statistics around 
ZoomZoom product prices. Now, you want to calculate the lowest price, highest price, 
average price, and standard deviation of the price for all the products the company 
has ever sold.

Perform the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the lowest price, highest price, average price, and standard deviation 
of the price using the MIN, MAX, AVG, and STDDEV aggregate functions, 
respectively, from the products table:

SELECT 

  MIN(base_msrp), 

  MAX(base_msrp), 

  AVG(base_msrp), 

  STDDEV(base_msrp)

FROM 

  products;

https://packt.link/OU9zr
https://packt.link/OU9zr
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The preceding code will produce an output similar to this:

Figure 4.10: Statistics of the product price

From the preceding output, you can see that the minimum price is 349.99, the 
maximum price is 115000.00, the average price is 33358.32750, and the 
standard deviation of the price is 44484.40866.

Note

Your results may vary in comparison to the preceding output probably 
because your PostgreSQL instance may be configured to show a different 
number of decimal points in the output. The other reason for the difference 
in outputs could be that the data contained in the database has been 
modified from what it was when the original database was created from the 
dump file. However, the key objective here is to demonstrate how you can 
use the aggregate functions to analyze data.

In this exercise, you used aggregate functions to learn about the basic statistics of 
prices. Next, you will use aggregate functions with the GROUP BY clause.

Note

To access the source code for this specific section, please refer to  
https://packt.link/OU9zr.

https://packt.link/OU9zr
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Aggregate Functions with the GROUP BY Clause
So far, you have used aggregate functions to calculate statistics for an entire column. 
However, most times you are interested in not only the aggregate values for a whole 
table but also the values for smaller groups in the table. To illustrate this, refer back 
to the customers table. You know that the total number of customers is 50,000. 
However, you might want to know how many customers there are in each state. But 
how can you calculate this?

You could determine how many states there are with the following query:

SELECT DISTINCT 

  state 

FROM 

  customers;

You will see 50 distinct states, Washington D.C., and NULL returned as a result of the 
preceding query, totaling 52 rows. Once you have the list of states, you could then run 
the following query for each state:

SELECT 

  COUNT(*) 

FROM 

  customers 

WHERE 

  state='{state}'

Although you can do this, it is incredibly tedious and can take a long time if there are 
many states. The GROUP BY clause provides a much more efficient solution.
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The GROUP BY Clause

GROUP BY is a clause that divides the rows of a dataset into multiple groups based 
on some sort of key that is specified in the clause. An aggregate function is then 
applied to all the rows within a single group to produce a single number for that 
group. The GROUP BY key and the aggregate value for the group are then displayed 
in the SQL output. The following diagram illustrates this general process:

Figure 4.11: General GROUP BY computational model

In the preceding diagram, you can see that the dataset has multiple groups (Group 
1, Group 2, …, Group N). Here, the aggregate function is applied to all the rows 
in Group 1 and generates the result Aggregate 1. Then, the aggregate function 
is applied to all the rows in Group 2 and generates the result Aggregate 2, and 
so on.

The GROUP BY statements usually have the following structure:

SELECT 

  {KEY}, 

  {AGGFUNC(column1)} 

FROM 

  {table1} 

GROUP BY 

  {KEY}
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Here, {KEY} is a column or a function on a column that is used to create individual 
groups. For each value of {KEY}, a group is created. {AGGFUNC(column1)} is 
an aggregate function on a column that is calculated for all the rows within each 
group. {table} is the table or set of joined tables from which rows are separated 
into groups.

To illustrate this point, you can count the number of customers in each US state using 
a GROUP BY query:

SELECT 

  state, COUNT(*) 

FROM 

  customers 

GROUP BY 

  state;

The computational model looks like this:

Figure 4.12: Customer count by the state computational model
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Here, AK, AL, AR, and the other keys are abbreviations for US states. This grouping 
is a two-step process. In the first step, SQL will create groups based on the existing 
states, one group for each state, labeling the group with the state. SQL then will 
allocate customers into different groups based on their states. Once all the customers 
are allocated to their respective state groups, the execution goes into the second 
step. In this step, SQL will apply the aggregate function to each group and associate 
the result with the group label, which is state in this case. The output of the SQL will 
be a set of aggregate function results with its state label. You should get the following 
output, in which state is the label and count is the aggregate result:

Figure 4.13: Customer count by the state query output

The {KEY} value for the GROUP BY operation can also be a function of column(s). 
The underlying example counts customers based on the year they were added to 
the database. Here, the year was the result of the TO_CHAR function on the date_
added column:

SELECT 

  TO_CHAR(date_added, 'YYYY'), 

  COUNT(*) 

FROM 

  customers 
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GROUP BY 

  TO_CHAR(date_added, 'YYYY')

ORDER BY 

  1;

The result of this SQL is as follows:

Figure 4.14: Customer count GROUP BY function

You can also use the column number to perform a GROUP BY operation:

SELECT 

  state, 

  COUNT(*) 

FROM   

  customers

GROUP BY   

  1;
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This SQL will return the same result as the previous one, which used the column 
name in the GROUP BY clause.

If you want to return the output in alphabetical order, simply use the following query:

SELECT 

  state, 

  COUNT(*) 

FROM  

  customers 

GROUP BY 

  state 

ORDER BY 

  state;

Alternatively, you can write the following with the column order number in GROUP 
BY and ORDER BY instead of column names:

SELECT 

  state, 

  COUNT(*) 

FROM 

  customers 

GROUP BY 

  1

ORDER BY 

  1;
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Either of these queries will give you the following result:

Figure 4.15: Customer count by the state query output in alphabetical order

Often, though, you may be interested in ordering the aggregates themselves. You 
may want to know the number of customers in each state in increasing order so 
that you know which state has the least number of customers. You can then use this 
result to make a business decision, such as launching a new marketing campaign in 
the states where you don't have enough presence. This would require you to order 
the aggregates themselves. The aggregates can also be ordered using ORDER BY, 
as follows:

SELECT 

  state, 

  COUNT(*) 

FROM 

  customers 

GROUP BY 

  state 

ORDER BY 

  COUNT(*);
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This query gives you the following output:

Figure 4.16: Customer count by the state query output in increasing order

You may also want to count only a subset of the data, such as the total number 
of male customers in a particular state. To calculate the total number of male 
customers, you can use the following query:

SELECT 

  state, COUNT(*) 

FROM 

  customers 

WHERE 

  gender='M' 

GROUP BY 

  state 

ORDER BY 

  State;
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This gives you the following output:

Figure 4.17: Male customer count by the state query output in alphabetical order

As shown here, grouping by one column can provide some great insight. You can 
get different aspects of the entire dataset, as well as any subset that you may think 
of. You can use these characteristics to construct a hypothesis and try to verify it. 
For example, you can identify the sales and the count of customers in each state, 
or better yet, the count of a specific subgroup of customers. From there, you can 
run a bivariate analysis, just like what you learned in Chapter 1, Understanding and 
Describing Data. If you can find a relationship between the sales amount and the 
particular group of customers, you may be able to figure out some way to reach out 
to more of these customers and thus increase the sales, or to figure out why other 
groups of customers are not as motivated.

In the next section, you will see that GROUP BY can be generalized to multiple 
columns to provide more granular insight.
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Multiple-Column GROUP BY

While GROUP BY with one column is helpful, you can go even further and use GROUP 
BY on multiple columns. For instance, say you wanted to get a count of not just the 
number of customers ZoomZoom had in each state but also how many male and 
female customers it had in each state. You can find this using multiple GROUP BY 
columns, as follows:

SELECT 

  state, gender, COUNT(*) 

FROM 

  customers 

GROUP BY 

  state, gender 

ORDER BY 

  state, gender;

This gives you the following result:

Figure 4.18: Customer count by the state and gender query  
outputs in alphabetical order
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Any number of columns can be used in a GROUP BY operation in the same way 
as illustrated in the preceding example. In this case, SQL will create one group for 
each unique combination of column values, such as one group for state=AK and 
gender=F, another for state=AK, and gender=M, and so on, then calculate the 
aggregate function for each group and label the result with a value from all the 
grouping columns.

Now, test your understanding by implementing the GROUP BY clause in an exercise.

Exercise 4.02: Calculating the Cost by Product Type Using GROUP BY

In this exercise, you will analyze and calculate the cost of products using aggregate 
functions and the GROUP BY clause. The marketing manager wants to know the 
minimum, maximum, average, and standard deviation of the price for each product 
type that ZoomZoom sells for a marketing campaign. Perform the following steps to 
complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the lowest price, highest price, average price, and standard deviation 
of the price using the MIN, MAX, AVG, and STDDEV aggregate functions from 
the products table and use GROUP BY to check the price of all the different 
product types:

SELECT 

  product_type, 

  MIN(base_msrp), 

  MAX(base_msrp), 

  AVG(base_msrp), 

  STDDEV(base_msrp)

FROM 

  products

GROUP BY 

  1

ORDER BY 

  1;
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You should get the following result:

Figure 4.19: Basic price statistics by product type

From the preceding output, the marketing manager can check and compare the 
price of various products that ZoomZoom sells for the campaign.

Note

To access the source code for this specific section, please refer to  
https://packt.link/OU9zr.

In this exercise, you calculated the basic statistics by product type using aggregate 
functions and the GROUP BY clause. Next, you will learn how to implement 
grouping sets.

Grouping Sets

It is very common to want to see the statistical characteristics of a dataset from 
several different perspectives. For instance, say you wanted to count the total 
number of customers you have in each state, while simultaneously, you also wanted 
the total number of male and female customers you have in each state. One way you 
could accomplish this is by using the UNION ALL keyword, which was discussed in 
Chapter 2, The Basics of SQL for Analytics:

(

  SELECT 

    state, 

    NULL as gender, 

    COUNT(*)

  FROM 

    customers

  GROUP BY 

    1, 2

  ORDER BY 

https://packt.link/OU9zr
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    1, 2

)

UNION ALL

(

  SELECT 

    state, 

    gender, 

    COUNT(*)

  FROM 

    customers

  GROUP BY 

    1, 2

  ORDER BY 

    1, 2

)

ORDER BY 1, 2;

This query produces the following result:

Figure 4.20: Customer count by the state and gender query  
outputs in alphabetical order
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Fundamentally, what you are doing here is creating multiple sets of aggregation, 
one grouped by state and another grouped by state and gender, and then joining 
them together. Thus, this operation is called grouping sets, which means multiple 
sets are generated using GROUP BY. However, using UNION ALL is tedious and can 
involve writing lengthy queries. An alternative way to do this is to use the GROUPING 
SETS statement. This statement allows a user to create multiple sets of grouping for 
viewing, similar to the UNION ALL statement. For example, using the GROUPING 
SETS keyword, you could rewrite the previous UNION ALL query, like so:

SELECT 

  state, 

  gender, 

  COUNT(*)

FROM 

  customers

GROUP BY GROUPING SETS (

  (state),

  (state, gender)

)

ORDER BY 

  1, 2;

This creates the same output as the previous UNION ALL query. Now, you will learn 
how ordered set aggregates work in the next section.

Ordered Set Aggregates

Up until this point, none of the aggregates discussed depended on the order of the 
data. That is because none of the aggregate functions (COUNT, SUM, AVG, MIN, MAX, 
and so on) you have encountered so far was ordinal. You can order the data using 
ORDER BY, but this is not required to complete the calculation, nor will the order 
impact the result. However, there is a subset of aggregate statistics that depends 
on the order of the column to calculate. For instance, the median of a column is 
something that requires the order of the data to be specified. To calculate these use 
cases, SQL offers a series of functions called ordered set aggregate functions. The 
following table lists the main ordered set aggregate functions:
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Figure 4.21: Major ordered set aggregate functions

These functions are used in the following format:

SELECT 

  {ordered_set_function} WITHIN GROUP (ORDER BY {order_column})

FROM {table};

Here, {ordered_set_function} is the ordered set aggregate function,  
{order_column} is the column to order results for the function by, and {table} 
is the table the column is in. For example, you can calculate the median price of the 
products table by using the following query:

SELECT 

  PERCENTILE_CONT(0.5) 

  WITHIN GROUP (ORDER BY base_msrp) 

  AS median

FROM 

  products;

The reason you use 0.5 is that the median is the 50th percentile, which is 0.5 as a 
fraction. This gives you the following result:

Figure 4.22: Result of an ordered set aggregate function
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With ordered set aggregate functions, you now have the tools for calculating virtually 
any aggregate statistic of interest for a dataset. In the next section, you will learn how 
to use aggregates to deal with data quality.

Aggregate Functions with the HAVING Clause
You learned about the WHERE clause in this chapter when you worked on SELECT 
statements, which select only certain rows meeting the condition from the original 
table for later queries. You also learned how to use aggregate functions with the 
WHERE clause in the previous section. Bear in mind that the WHERE clause will 
always be applied to the original dataset. This behavior is defined by the SQL 
SELECT statement syntax, regardless of whether there is a GROUP BY clause or 
not. Meanwhile, GROUP BY is a two-step process. In the first step, SQL selects rows 
from the original table or table set to form aggregate groups. In the second step, 
SQL calculates the aggregate function results. When you apply a WHERE clause, its 
conditions are applied to the original table or table set, which means it will always 
be applied in the first step. Sometimes, you are only interested in certain rows in the 
aggregate function result with certain characteristics, and only want to keep them in 
the query output and remove the rest. This can only happen after the aggregation has 
been completed and you get the results, thus it is part of the second step of GROUP 
BY processing. For example, when doing the customer counts, perhaps you are only 
interested in places that have at least 1,000 customers. Your first instinct may be to 
write something such as this:

SELECT 

  state, COUNT(*)

FROM 

  customers

WHERE 

  COUNT(*)>=1000

GROUP BY 

  state

ORDER BY 

  state;
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However, you will find that the query does not work and gives you the following error:

Figure 4.23: Error showing the query is not working

This is because COUNT(*) is calculated at the second step on the aggregated groups. 
Thus, this filter can only be applied to the aggregated groups, not the original dataset. 
So, using the WHERE clause on aggregate functions will produce an error. To use the 
filter on aggregate functions, you need to use a new clause: HAVING. The HAVING 
clause is similar to the WHERE clause, except it is specifically designed for GROUP BY 
queries. It applies the filter condition on the aggregated groups instead of the original 
dataset. The general structure of a GROUP BY operation with a HAVING statement is 
as follows:

SELECT 

  {KEY},

  {AGGFUNC(column1)}

FROM 

  {table1}

GROUP BY 

  {KEY}

HAVING 

  {OTHER_AGGFUNC(column2)_CONDITION}

Here, {KEY} is a column or a function on a column that is used to create 
individual groups, {AGGFUNC(column1)} is an aggregate function on a column 
that is calculated for all the rows within each group, {table} is the table or 
set of joined tables from which rows are separated into groups, and {OTHER_
AGGFUNC(column2)_CONDITION} is a condition similar to what you would put 
in a WHERE clause involving an aggregate function. Now, test your understanding by 
implementing an exercise while using the HAVING clause.
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Exercise 4.03: Calculating and Displaying Data Using the HAVING Clause

In this exercise, you will calculate and display data using the HAVING clause. The 
sales manager of ZoomZoom wants to know the customer count for the states that 
have at least 1,000 customers who have purchased any product from ZoomZoom. 
Perform the following steps to help the manager to extract the data:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the customer count by states with at least 1000 customers using the 
HAVING clause:

SELECT 

  state, COUNT(*)

FROM 

  customers

GROUP BY 

  state

HAVING 

  COUNT(*)>=1000

ORDER BY 

  state;

This query will give you the following output:

Figure 4.24: Customer count by states with at least 1,000 customers
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Here, you can see the states that have more than 1,000 ZoomZoom customers, 
with CA having 5038, the highest number of customers, and CO having 1042, 
the lowest number of customers.

Note

To access the source code for this specific section, please refer to  
https://packt.link/OU9zr.

In this exercise, you have used the HAVING clause to calculate and display data 
more efficiently.

Using Aggregates to Clean Data and Examine Data Quality
In Chapter 3, SQL for Data Preparation, you learned how SQL can be used to clean data. 
While the techniques mentioned in that chapter do an excellent job of cleaning data, 
aggregates add a number of techniques that can make cleaning data even easier and 
more comprehensive. In this section, you will look at some of these techniques.

Finding Missing Values with GROUP BY

As mentioned in Chapter 3, SQL for Data Preparation, one of the biggest issues with 
cleaning data is dealing with missing values. You learned how to find missing values 
and how to resolve this issue. In this chapter, you will learn how to determine the 
extent of missing data in a dataset.

Using aggregates, identifying the amount of missing data can tell you not only which 
columns have missing data but also the usability of the columns when so much of the 
data is missing. Depending on the extent of missing data, you will have to determine 
whether it makes sense to delete rows with missing data, fill in missing values, or just 
delete columns if they do not have enough data to make definitive conclusions.

The easiest way to determine whether a column is missing values is to use a modified 
CASE WHEN statement, which provides flexible logic to check whether a condition 
is met, with the SUM and COUNT functions to determine what percentage of data is 
missing. The query looks as follows:

SELECT 

  SUM(

CASE 

  WHEN 

https://packt.link/OU9zr
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    {column1} IS NULL 

      OR 

    {column1} IN ({missing_values}) 

      THEN 1 

      ELSE 0 

END

  )::FLOAT/COUNT(*)

FROM 

  {table1}

Here, {column1} is the column that you want to check for missing values, 
{missing_values} is a comma-separated list of values that are considered 
missing, and {table1} is the table or subquery with the missing values.

Based on the results of this query, you may have to vary your strategy for dealing 
with missing data. If a very small percentage of your data is missing (<1%), then you 
might consider just filtering out or deleting the missing data from your analysis. If 
some of your data is missing (<20%), you may consider filling in your missing data 
with a typical value, such as the mean or the mode, to perform an accurate analysis. 
If more than 20% of your data is missing, you may have to remove the column from 
your data analysis, as there would not be enough data to make accurate conclusions 
based on the values in the column.

Now, work on an example and look at missing data in the customers table. 
Specifically, look at the missing data in the state column. Based on some prior 
knowledge, the business team has determined that if the state column in a row 
contains NULL or is an empty string (''), this value is considered a missing value. 
You now need to determine the extent of missing values to see whether this state 
column is still useful. You will do so by dividing the number of records that have the 
missing value in the state column by the total number of the records:

SELECT 

  SUM(

CASE 

  WHEN state IS NULL OR state IN ('') THEN 1 

      ELSE 0 

END

  )::FLOAT/COUNT(*) AS missing_state

FROM 

  customers;
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This gives you the following output:

Figure 4.25: Result of NULL and missing value percentage calculation

As shown here, a little under 11% of the state data is missing. For analysis purposes, 
you may want to consider that these customers are from California, since CA is the 
most common state in the data. However, the far more accurate thing to do would be 
to find and fill in the missing data.

If you are only concerned about NULL values, and there is no need to check other 
missing values, you can also use a COUNT() function, which counts from the column. 
Such a COUNT() function will only count the non-NULL values. By dividing this value 
by the total count, you will get the percentage of non-NULL values. By subtracting 
non-NULL percentage from 100%, you will get the percentage of NULL values in the 
total count:

SELECT 

  COUNT(state) * 1.0 / COUNT(*) AS non_null_state,

  1 - COUNT(state) * 1.0 / COUNT(*) AS null_state

FROM 

  customers;

This gives you the following output of the percentages of non-NULL and NULL values 
displayed as fractions:

Figure 4.26: Result of NULL value percentage calculation

You can see that the null_state value here is the same as the missing_state 
value in the previous SQL. This shows that there is actually no value with an empty 
string (''). All missing values are NULL.
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Measuring Data Uniqueness with Aggregates

Another common task that you might want to perform is to determine whether 
every value in a column is unique. While in many cases this can be solved by setting 
a column with a PRIMARY KEY constraint, this may not always be possible. To solve 
this problem, you can write the following query:

SELECT 

  COUNT (DISTINCT {column1})=COUNT(*)

FROM 

  {table1}

Here, {column1} is the column you want to count and {table1} is the table with 
the column. If this query returns True, then the column has a unique value for every 
single row; otherwise, at least one of the values is repeated. If values are repeated 
in a column that you are expecting to be unique, there may be some issues with the 
data Extract, Transform, and Load (ETL) or there may be a join that has caused a 
row to be repeated.

As a simple example, verify that the customer_id column in customers is unique:

SELECT 

  COUNT(DISTINCT customer_id)=COUNT(*) AS equal_ids

FROM 

  customers;

This query gives you the following output, which shows that the values in the 
customer_id column are truly unique:

Figure 4.27: Result of comparing COUNT DISTINCT versus COUNT(*)

Now that you have learned about the many ways to use aggregate queries, you will 
apply this to some sales data in the following activity.
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Activity 4.01: Analyzing Sales Data Using Aggregate Functions

In this activity, you will analyze data using aggregate functions. The CEO, COO, and 
CFO of ZoomZoom would like to gain some insight into the common statistical 
characteristics of sales now that the company feels they have a strong enough 
analytics team with your arrival. The task has been given to you, and your boss has 
politely let you know that this is the most important project the analytics team has 
worked on. Perform the following steps to complete this activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total number of unit sales the company has made.

3. Calculate the total sales amount in dollars for each state.

4. Identify the top five best dealerships in terms of the most units sold (ignore 
internet sales).

5. Calculate the average sales amount for each channel, as shown in the sales 
table, and look at the average sales amount, first by channel sales, then by 
product_id, and then both together.

Expected Output:

Figure 4.28: Sales after the GROUPING SETS channel and product_id
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6. Calculate the percentage of sales transactions that have a NULL dealership.

7. Calculate the percentage of internet sales the company has made for each year. 
Order the year in a timely fashion and you will get time series data. Does this 
time series suggest something?

Just by looking at the numbers, it does seem that the sales increase both in the 
internet channel and the non-internet channel, simultaneously. So, it is an overall 
increase in the whole ZoomZoom sales portfolio. At this point, as you have gained 
some insight into the common statistical characteristics of sales, you can get back to 
the sales manager and present your findings, work with the business team to dive 
deeper into possible reasons for this increase, and try to apply the findings to the 
company's sales strategy.

Using aggregates, you have unlocked patterns that will help your company to 
understand how to make more revenue and make the company better overall.

Note 

The solution for this activity can be found via this link.

Summary
In this chapter, you learned how to calculate the statistical properties of a dataset 
using aggregate functions, such as the average, count, minimum, maximum, and 
standard deviation. Aggregate functions themselves are applied to a whole dataset. In 
order to use them to analyze the statistics of sub-datasets inside a larger dataset, you 
also learned about the GROUP BY clause of the SELECT statement, which divides a 
large dataset into smaller ones based on the keys you provided and applies aggregate 
functions to each of the groups.

To make the GROUP BY clause more useful, several additional properties were 
introduced, most importantly the HAVING clause. This HAVING clause is used to 
filter the values of aggregated groups. It is applied at the second stage of the GROUP 
BY clause execution and should be distinguished from the WHERE clause, which is 
applied to the original data table or table set and is applied at the first stage of the 
GROUP BY execution.
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Now that you learned about aggregate functions and the GROUP BY clause, you 
are now able to proceed with using tools to examine data quality on a dataset 
level, instead of on a data entry level, like what you did in Chapter 3, SQL for Data 
Preparation. This includes checking the percentage of missing values and confirming 
the uniqueness of a column. You then practiced some of these skills in an activity.

So far, you have learned about two kinds of functions. The row-level functions that 
you learned about in Chapter 3, SQL for Data Preparation, such as CASE, NULLIF, and 
COALESCE, are applied to one data row and will generate one output value for each 
row in the raw data. The aggregate functions that you learned about in this chapter, 
such as COUNT and SUM, are applied to a dataset of many rows and will generate 
one output value for the entire dataset. The former can be used to analyze the 
characteristics of a data point, while the latter can be used to analyze the statistics of 
a dataset. There is one more kind of function, which studies the characteristics of a 
row in relation to other rows in the dataset. This function will generate one output for 
each row in a dataset and is called a window function. You will learn all about window 
functions in Chapter 5, Window Functions for Data Analysis.





Overview

In this chapter, you will learn the conceptual logic of window functions, write 
SQL to execute these functions, and modify them using keywords such as 
PARTITION BY and ORDER BY.

By the end of this chapter, you will be able to apply these functions to gain 
new insights into data and understand the properties of datasets, such as 
ranking and percentiles.

Window Functions for Data 

Analysis

5
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Introduction
You have learned simple functions such as CASE WHEN, COALESCE, and NULLIF 
in Chapter 3, SQL for Data Preparation. These functions receive data from a single row 
and produce a result for this row. The result of these functions is only determined 
by the data value in the row and has nothing to do with the dataset it is in. You 
have also learned aggregate functions such as SUM, AVG, and COUNT in Chapter 4, 
Aggregate Functions for Data Analysis. These functions receive data from a dataset 
of multiple rows and produce a result for this dataset. Both types of functions are 
useful in different scenarios. For example, if you have the physical checkup results 
of all newborn babies in a country, such as weight and height, you can check each 
baby's health by checking these measurements to be within a given range using CASE 
WHEN function. You can also use aggregate functions to get the average and standard 
deviation of the weight and height of babies in this country. Both types of functions 
provide useful insights into the health and welfare of this country's babies.

Sometimes, you may also want to know the characteristics of a data point in regard 
to its position in the dataset. A typical example is a rank. Rank is determined by both 
the measurement itself and the dataset it is in. A baby's height and weight will likely 
have different ranks in the dataset for the whole country and in the dataset for the 
city. Within the same dataset, there also might be subgroups, which are also called 
partitions, that the rank is based on. For example, ranking in different states in the 
whole country from the same country-wide dataset requires dividing the dataset into 
multiple partitions, each corresponding to a state. Ranking is thus calculated inside 
each partition. Within the partition, the rows related to the calculation (that is, the 
number of rows that are before the current row, which determines the rank of the 
current row) are selected to calculate the result. These selected rows form a window. 
Essentially, what you want to achieve is that given a dataset, you want to get a result 
for each row. This result is defined based on the value of the row, the window on 
which it is applied, and the dataset itself. The function used to perform this type of 
calculation is called window function.

The following topics will be covered in this chapter:

• Window Functions

• Basics of Window Functions

• The WINDOW Keyword

• Statistics with Window Functions

• Window Frame
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Window Functions
Continuing with the discussion on Window Functions, you want to find the earliest 
customers for ZoomZoom. In a more technical term, this means you want to rank 
every customer according to the date they became a customer, with the earliest 
customer being ranked 1, the second-earliest customer being ranked 2, and so on. 
You can get all the customers using the following query:

SELECT 

  customer_id, first_name, last_name, date_added

FROM 

  customers

ORDER BY 

  date_added;

The result is:

Figure 5.1: Customers ordered by date_added
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You can order the customers from the earliest to the most recent, copy the output 
to an Excel spreadsheet, and assign a row number to each row so that you have the 
rank for each customer. But this is not automatic and is prone to errors. SQL provides 
several ways using which you can achieve it. Later in this chapter, you will learn how 
to assign numbers to ordered records by using the RANK window function. Here, you 
can first use an aggregate function to get the dates and order them that way:

SELECT 

  date_added, COUNT(*)

FROM 

  customers

GROUP BY 

  date_added

ORDER BY 

  date_added;

The following is the output of the preceding code:

Figure 5.2: Aggregate date-time ordering
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This result gives the dates in a ranked order. With this result, you can calculate how 
many customers joined ZoomZoom before each customer, simply by adding up the 
counts from the days before the customer's joining date. However, this approach 
is still manual, requires extra calculation, and still does not directly provide rank 
information. This is where window functions come into play. Window functions can 
take multiple rows of data and process them, but still retain all the information in the 
rows. For things such as ranks, this is exactly what you need.

To better understand this, you will see what a windows function query looks like in 
the next section.

The Basics of Window Functions

The following is the basic syntax of a window function:

SELECT {columns},

{window_func} OVER (PARTITION BY {partition_key} ORDER BY {order_key})

FROM table1;

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, table1 is the table or joined tables 
you want to pull data from, and the OVER keyword indicates where the window 
definition starts. The window definition in this basic syntax includes two parts, 
{partition_key} and {order_key}. The former is the column or columns you 
want to partition on (more on this later), and the latter is the column or columns you 
want to order by. 

To illustrate this, look at an example. You might be saying to yourself that you do not 
know any window functions, but the truth is that all aggregate functions can be used 
as window functions. Now, use COUNT(*) in the following query:

SELECT 

  customer_id, 

  title, 

  first_name, 

  last_name, 

  gender,

  COUNT(*) OVER () as total_customers

FROM 

  customers

ORDER BY 

  customer_id;
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This results in the following output:

Figure 5.3: Customers listed using the COUNT(*) window query

As shown in Figure 5.3, the query returns title, first_name, and last_name, 
just like a typical SELECT query. However, there is now a new column called total_
customers. This column contains the count of users that would be created by the 
following query:

SELECT 

  COUNT(*)

FROM 

  customers;

The above query returns 50,000. The query returned all of the rows, and the 
COUNT(*) in the query returns the COUNT as any normal aggregate function would.

Now, regarding the other parameters of the query, what happens if you add OVER 
clause to convert this COUNT into a window function, keeping the function as COUNT 
but defining the window using PARTITION BY, such as in the following query?

SELECT

  customer_id, 

  title, 

  first_name, 

  last_name, 

  gender,
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  COUNT(*) OVER (PARTITION BY gender) as total_customers

FROM 

  customers

ORDER BY 

  customer_id;

The following is the output of the preceding code:

Figure 5.4: Customers listed using COUNT(*) partitioned by the gender window query

Here, you can see that total_customers has now changed counts to one of two 
values, 24956 or 25044. As you use the PARTITION BY clause over the gender 
column, SQL divides the dataset into multiple partitions based on the unique values 
of this column. Inside each partition, SQL calculates the total COUNT. For example, 
there are 24956 males, so the COUNT window function for the male partition returns 
24596, which you can confirm with the following query:

SELECT 

  gender, 

  COUNT(*)

FROM 

  customers

GROUP BY 

  1;
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Now you see how the partition is defined and used with the PARTITION BY clause. 
For females, the count is equal to the female count, and for males, the count is equal 
to the male count. What happens now if you use ORDER BY instead in the OVER 
clause as follows?

SELECT 

  customer_id, title, 

  first_name, last_name, gender,

  COUNT(*) OVER (ORDER BY customer_id) as total_customers

FROM 

  customers

ORDER BY 

  customer_id;

The following is the output of the preceding code:

Figure 5.5: Customers listed using COUNT(*) ordered by the customer_id window query
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You will notice something akin to a running count for the total customers. This is 
where the definition of 'window' in window function comes from. When you use 
this window function, since you did not specify a PARTITION BY, the full dataset 
is used for calculation. Within this dataset, when ORDER BY is not specified, it is 
assumed that there is only one window, which contains the entire dataset. However, 
when ORDER BY is specified, the rows in the dataset are ordered according to it. 
For each unique value in the order, SQL forms a value group, which contains all the 
rows containing this value. The query then creates a window for each value group. 
The window will contain all the rows in this value group and all rows that are ordered 
before this value group. An example is shown below: 

Figure 5.6: Windows for customers using COUNT(*) ordered  
by the customer_id window query

Here, the dataset is ordered using customer_id, which happens to be the primary 
key. As such each row has a unique value and forms a value group. The first value 
group, without any row before it, forms its own window, which contains only the first 
row. The second value group's window will contain both itself and the row before 
it, which means the first and second row. Then the third value group's window will 
contain itself and the two rows before it, and so on and so forth. Every value group 
has its window. Once the windows are established, for every value group, the window 
function is calculated based on the window. In this example, this means COUNT 
is applied to every window. Thus, value group 1 (the first row) gets 1 as the result 
since its Window 1 contains one row, value group 2 (the second row) gets 2 since its 
Window 2 contains two rows, and so on and so forth. The results are applied to every 
row in this value group if the group contains multiple rows. Note that the window 
is used for calculation only. The results are assigned to rows in the value group, not 
assigned to the rows in the window. 
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What happens when you combine PARTITION BY and ORDER BY? Now, look at the 
following query:

SELECT 

  customer_id, 

  title, 

  first_name, 

  last_name, 

  gender,

  COUNT(*) OVER (

PARTITION BY gender ORDER BY customer_id

  ) as total_customers

FROM 

  customers

ORDER BY 

  customer_id;

When you run the preceding query, you get the following result:

Figure 5.7: Customers listed using COUNT(*) partitioned  
by gender ordered by the customer_id window query
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Like the previous query, it appears to be some sort of rank. However, it seems to 
differ based on gender. In this particular SQL, the query divides the table into two 
subsets based on the column PARTITION BY. That is because the PARTITION 
BY clause, like GROUP BY, will first divide the dataset into groups (which is called 
partition here) based on the value in the gender column. Each partition is then used 
as a basis for doing a count, with each partition having its own set of value groups. 
These value groups are ordered inside the partition, windows are created based on 
the value groups and their orders, and the window function is applied to the values. 
The results are finally assigned to every row in the value groups.

This process is illustrated in Figure 5.8. This process produces the count you can see. 
The three keywords, OVER(), PARTITION BY, and ORDER BY, are the foundation 
of the power of window functions.

Figure 5.8: Windows for customers listed using COUNT(*) partitioned  
by gender and ordered by the customer_id window query

Now that you understand window functions, attempt applying them in the 
next exercise.
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Exercise 5.01: Analyzing Customer Data Fill Rates over Time

In this exercise, you will apply window functions to a dataset and analyze the data. 
For the last six months, ZoomZoom has been experimenting with various promotions 
to make their customers more engaged in the sale activity. One way to measure the 
level of engagement is to measure people's willingness to fill out all fields on the 
customer form, especially their address. To achieve this goal, the company would 
like a running total of how many users have filled in their street addresses over time. 
Write a query to produce these results.

Note

For all the exercises in this chapter, please use pgAdmin 4.

Perform the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Use window functions and write a query that will return customer information 
and how many people have filled out their street address. Also, order the list by 
date. The query will look as follows:

SELECT 

  customer_id, 

  street_address, 

  date_added::DATE,

  COUNT(

    CASE 

      WHEN street_address IS NOT NULL THEN customer_id 

      ELSE NULL 

    END

  ) OVER (ORDER BY date_added::DATE) 

    as non_null_street_address,

  COUNT(*) OVER (ORDER BY date_added::DATE) 

    as total_street_address

FROM 

  customers

ORDER BY 

  date_added;
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You should get the following result:

Figure 5.9: Street address filter ordered by the date_added window query

3. Write a query to see how the numbers of people filling out the street field 
change over time.

4. In step 1, you have already got every customer address ordered by the signup 
date. In Figure 5.10, the two columns following the signup date column are the 
number of non-NULL addresses and the number of all customer addresses for 
each rolling day, that is, a sum from the beginning of sales to the current day. 
As you learned in Chapter 4, Aggregate Functions for Data Analysis, by dividing the 
number of non-NULL addresses by the number of all customer addresses, you 
can get the percentage of customers with non-NULL street addresses and derive 
the percentage of customers with NULL street addresses. Tracking this number 
will provide an insight into the way customers interact with your sales force over 
time. Also, because both numbers of addresses are calculated for each rolling 
day, the percentage is also for each rolling day. This is an example of different 
window functions sharing the same window in the same query. 
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You can also rewrite the following query using a WINDOW clause to make the 
query simpler, which will be introduced in the next section.

rolling_average

1 WITH 
2  daily_rolling_count as (
3    SELECT 
4      customer_id, 
5      street_address, 
6      date_added::DATE,
7      COUNT(
8        CASE 
9          WHEN street_address IS NOT NULL THEN customer_id 
10          ELSE NULL 
11        END
12      ) OVER (ORDER BY date_added::DATE) 
13        as non_null_street_address,
14      COUNT(*) OVER (ORDER BY date_added::DATE) 
15        as total_street_address

You can find the complete code here: https://packt.link/iMJ6d

The result is:

Figure 5.10: Percent of NULL Addresses per day

https://packt.link/iMJ6d
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This result will give you the list of the rolling percentage of NULL street 
address in each day. You can then provide the full dataset to data analytics 
and visualization software such as Excel to study the general trend of the data, 
discover patterns of change, and raise suggestions on how to increase the 
engagement of customers to the company management.

Note

To access the source code for this specific section, please refer to  
https://packt.link/fAhGN.

In this exercise, you have learned how to use window functions to analyze data. In the 
next section, you will understand how to use the WINDOW keyword in your queries.

The WINDOW Keyword

Now that you understand the basics of window functions, it is time to introduce a 
syntax that will make it easier to write them. In many scenarios, your analysis involves 
running multiple functions against the same window so that you can compare 
them side by side, and you are very likely running them within the same query. For 
example, when you are doing some gender-based analysis, you may be interested in 
calculating a running total number of customers as well as the running total number 
of customers with a title, using the same partition that is based on gender. You will 
result in writing the following query:

SELECT 

  customer_id, 

  title, 

  first_name, 

  last_name, 

  gender,

  COUNT(*) OVER (

    PARTITION BY gender ORDER BY customer_id

  ) as total_customers,

  SUM(CASE WHEN title IS NOT NULL THEN 1 ELSE 0 END) OVER (

   PARTITION BY gender ORDER BY customer_id

  ) as total_customers_title

FROM customers

ORDER BY customer_id;

https://packt.link/fAhGN
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The following is the output of the preceding code:

Figure 5.11: Running total of customers overall with the title by gender window query

Note

Here, the queried dataset incorrectly applies the label "gender" in place 
of "sex." The data for "gender" can be assumed as "sex" for this section. 
"Gender" must not be considered in the context of range of identities or 
with reference to any social and cultural differences.

Although the query gives you the result, it can be tedious to write—especially the 
OVER clause as it is the same for the two functions. Fortunately, you can simplify this 
by using the WINDOW clause to define a generic window for multiple functions in the 
same query. The WINDOW clause facilitates the aliasing of a window.

You can simplify the preceding query by writing it as follows:

SELECT 

  customer_id, 

  title, 

  first_name, 

  last_name, 

  gender,

  COUNT(*) OVER w as total_customers,

  SUM(

    CASE 
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      WHEN title IS NOT NULL THEN 1 

      ELSE 0 

    END

  ) OVER w as total_customers_title

FROM 

  customers

WINDOW w AS (

  PARTITION BY gender ORDER BY customer_id

)

ORDER BY customer_id;

This query should give you the same result you can see in the preceding screenshot. 
However, you did not have to write a long PARTITION BY and ORDER BY query 
for each window function. Instead, you simply made an alias with the defined 
WINDOW w.

Statistics with Window Functions
Now that you understand how window functions work, you can start using them to 
calculate useful statistics, such as ranks, percentiles, and rolling statistics.

In the following table, you have summarized a variety of statistical functions that are 
useful. It is also important to emphasize again that all aggregate functions can also be 
used as window functions (AVG, SUM, COUNT, and so on):

Figure 5.12: Statistical window functions
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Normally, a call to any of these functions inside a SQL statement would be followed 
by the OVER keyword. This keyword will then be followed by more keywords like 
PARTITION BY and ORDER BY, either of which may be optional, depending on 
which function you are using.

For example, the ROW_NUMBER() function will look like this:

ROW_NUMBER() OVER(

  PARTITION BY column_1, column_2

  ORDER BY column_3, column_4

)

You will practice how to use these statistical functions in the next exercise.

Exercise 5.02: Rank Order of Hiring

In this exercise, you will use statistical window functions to understand a dataset. 
ZoomZoom would like to have a marketing campaign for their most tenured 
customers in different states. ZoomZoom wants you to write a query that will rank 
the customers according to their joining date (date_added) for each state. Perform 
the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate a rank for every customer, with a rank of 1 going to the first date_
added, 2 to the second one, and so on, using the RANK() function:

SELECT 

  customer_id, 

  first_name, 

  last_name, 

  state, 

  date_added::DATE,

  RANK() OVER (

    PARTITION BY state ORDER BY date_added

  ) AS cust_rank

FROM 

  customers

ORDER BY

  state, cust_rank;
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The following is the output of the preceding code:

Figure 5.13: Salespeople rank-ordered by tenure

Here, you can see every customer with their information and rank in the cust_
rank column based on their joining date for each state.

Note

To access the source code for this specific section, please refer to  
https://packt.link/fAhGN.

https://packt.link/fAhGN
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In this exercise, you used the RANK() function to rank the data in a dataset in a 
certain order. In the next section, you will learn how to use the window frame.

Note

One question regarding RANK() is the handling of tied values. RANK() 
is defined as the rank of rows, not the rank of values. For example, if the 
first two rows have a tie, the third row will get 3 from the RANK() function. 
DENSE_RANK() could also be used just as easily as RANK(), but it is 
defined as the rank of values, not the rank of rows. In the example above, 
the value of DENSE_RANK() for the third row will be 2 instead of 3, as the 
third row contains the 2nd value in the list of values.

Window Frame
As mentioned in the earlier sections discussing the basics of window functions, by 
default, a window is set for each value group to encompass all the rows from the first 
to the current row in the partition, as shown in Figure 5.6. However, this is the default 
and can be adjusted using the window frame clause. A window function query 
using the window frame clause would look as follows:

SELECT 

  {columns},

  {window_func} OVER (

    PARTITION BY {partition_key} 

    ORDER BY {order_key} 

    {rangeorrows} BETWEEN {frame_start} AND {frame_end}

  )

FROM 

  {table1};

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, {partition_key} is the column 
or columns you want to partition on, {order_key} is the column or columns 
you want to order by, {rangeorrows} is either the RANGE keyword or the ROWS 
keyword, {frame_start} is a keyword indicating where to start the window 
frame, {frame_end} is a keyword indicating where to end the window frame, and 
{table1} is the table or joined tables you want to pull data from.
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One point to consider is the values that {frame_start} and {frame_end} can 
take. To give further details, {frame_start} and {frame_end} can be one of the 
following values:

• UNBOUNDED PRECEDING: A keyword that, when used for {frame_start}, 
refers to the first record of the partition.

• {offset} PRECEDING: A keyword referring to {offset} (an integer) rows 
or ranges before the current row.

• CURRENT ROW: Refers to the current row.

• {offset} FOLLOWING: A keyword referring to {offset} (an integer) rows 
or ranges after the current row.

• UNBOUNDED FOLLOWING: A keyword that, when used for {frame_end}, 
refers to the last record of the partition.

By adjusting the window, various useful statistics can be calculated. One such useful 
statistic is the rolling average. The rolling average is simply the average for a statistic 
in a given time window. For instance, you want to calculate the seven-day rolling 
average of sales over time for ZoomZoom. You will need to get the daily sales first 
by running a SUM … GROUP BY sales_transaction_date. This will provide 
you with a list of daily sales, each row being a day with sales. When you order this list 
of rows by date, the six preceding rows plus the current row will provide you with a 
window of seven rolling days. Taking an AVG over these seven rows will give you the 
seven-day rolling average of the given day.

This calculation can be accomplished with the following query:

rolling_average

1 WITH 
2  daily_sales as (
3   SELECT 
4     sales_transaction_date::DATE,
5     SUM(sales_amount) as total_sales
6   FROM sales
7   GROUP BY 1
8 ),
9 moving_average_calculation_7 AS (
10   SELECT 
11    sales_transaction_date, 
12   total_sales,
13    AVG(total_sales) OVER (
14      ORDER BY sales_transaction_date 
15      ROWS BETWEEN 6 PRECEDING and CURRENT ROW

You can find the complete code here: https://packt.link/4RmVy

https://packt.link/4RmVy
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The following is the output of the preceding code:

 

Figure 5.14: The seven-day moving average of sales

A natural question when considering N-day moving window is how to handle the first 
N-1 days in the ordered column. In the previous query, the first six rows are defined 
as null using a CASE statement because in this scenario the seven-day moving 
average is only defined if there are seven days' worth of information. Without the 
CASE statement, the window calculation will calculate values for the first seven days 
using the first few days. For these days, the seven-day moving average is the average 
of whatever days are in the window. For example, the seven-day moving average 
for the second day is the average of the first day and second day, and the seven-
day moving average for the sixth day is the average of the first six days. Both this 
approach of calculation and the NULL approach can make sense in their respective 
situations. It is up to the data analyst to determine which one makes more sense to a 
particular question.
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Another point of difference to consider is the difference between using a RANGE 
or ROW in a frame clause. In the previous example, you used ROW as the daily sales 
contain one row per day. ROW refers to actual rows and will take the rows before and 
after the current row to calculate values. RANGE refers to the values of the {frame_
start} and {frame_end} in the {order key} column. It differs from ROW when 
two rows have the same values based on the ORDER BY clause used in the window. 
If there are multiple rows having the same value as the value designated in {frame_
start} or {frame_end}, all these rows will be added to the window frame when 
RANGE is specified.

In the following exercise, you will use a rolling window to calculate statistics with 
ordered data.

Exercise 5.03: Team Lunch Motivation

In this activity, you will use a window frame to find some important information in 
your data. To help improve sales performance, the sales team has decided to buy 
lunch for all salespeople at the company every time they beat the figure for the best 
daily total earnings achieved over the last 30 days. Write a query that produces the 
total sales in dollars for a given day and the target the salespeople must beat for 
that day, starting from January 1, 2019. Perform the following steps to complete 
this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the total sales for a given day and the target using the following query:

Exercise5.03.sql

1 WITH 
2  daily_sales as (
3    SELECT 
4      sales_transaction_date::DATE,
5      SUM(sales_amount) as total_sales
6    FROM 
7      sales
8    GROUP BY
9      1
10  ),
11  sales_stats_30 AS (
12    SELECT 
13      sales_transaction_date, 
14      total_sales,
15      MAX(total_sales) OVER (

You can find the complete code here: https://packt.link/7HmGh

https://packt.link/7HmGh
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You should get the following results:

Figure 5.15: Best sales over the last 30 days

Notice the use of a window frame from 30 PRECEDING to 1 PRECEDING. By 
using 1 PRECEDING, you are removing the current row from the calculation. 
The result is a 30-day rolling max in the 30 days before the current day.
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3. Now you will calculate the total sales each day and compare it with that day's 
target, which is the 30-day moving average you just calculated in the previous 
step. The total sales in each day have already been calculated in the SQL above 
in the first common table expression and are later referenced in the main query. 
So, you can write the following SQL:

Exercise5.03.sql

1 WITH 
2  daily_sales as (
3    SELECT 
4      sales_transaction_date::DATE,
5      SUM(sales_amount) as total_sales
6    FROM sales
7    GROUP BY 1
8  ),
9  sales_stats_30 AS (
10    SELECT 
11      sales_transaction_date, 
12      total_sales,
13      MAX(total_sales) OVER (
14        ORDER BY sales_transaction_date 
15        ROWS BETWEEN 30 PRECEDING and 1 PRECEDING

You can find the complete code here: https://packt.link/7HmGh

Figure 5.16: Max Daily Sales Moving-30 Day

https://packt.link/7HmGh
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Note

To access the source code for this specific section, please refer to https://
packt.link/fAhGN.

As you can see, window frames make calculating moving statistics simple, and even 
kind of fun. Now, you will conclude this chapter with an activity that will test your 
ability to use window functions.

Activity 5.01: Analyzing Sales Using Window Frames and Window Functions

In this activity, you will use window functions and window frames in various ways 
to gain insight into sales data. It is the beginning of the year, and time to plan the 
selling strategy for the new year at ZoomZoom. The sales team wants to see how the 
company has performed overall, as well as how individual days have performed over 
the year. To achieve this, ZoomZoom's head of Sales would like you to run an analysis 
for them. Perform the following steps to complete this activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the total sales amount by day for all the days in the year 2021 (that is, 
before the date January 1, 2022).

3. Calculate the rolling 30-day average for the daily total sales amount.

4. Calculate which decile each date would be in compared to other days based on 
their daily 30-day rolling sales amount.

https://packt.link/fAhGN
https://packt.link/fAhGN
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Expected Output:

Figure 5.17: Deciles for dealership sales amount

In this activity, you used window functions to get the sales trend of your entire year 
and utilized this sales trend to identify the days that ZoomZoom is doing well or 
less ideal. 

Note 

The solution for this activity can be found via this link.
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Summary
In this chapter, you learned about the window functions, which generate output 
for a row based on its position inside the dataset or subgroups within the dataset. 
This is different from the simple functions you learned in Chapter 3, SQL for Data 
Preparation, that generates an output for a row regardless of the characteristics of 
the dataset, and different from the aggregate functions you learned in Chapter 4, 
Aggregate Functions for Data Analysis, that generates an output for all rows in a dataset 
or subgroups in the dataset. 

You learned some of the most common window functions including COUNT, SUM, and 
RANK. You also learned how to construct a basic window using OVER. The output of 
window function depends on the current row's position in the dataset or subgroups 
within the dataset, which is called partition, as well as the collection of rows required 
by the calculation, which is called window. As such there are several keywords that 
may impact how the calculation is done, such as PARTITION BY, ORDER BY, 
and window frame keywords. The PARTITION BY clause determines the partition, 
the ORDER BY clause determines the position of the row within the partition, and 
the window frame keywords determine the range and size of the window. You then 
learned how to use window functions to get analytical insights. For example, by 
defining window frame over a daily summary such as daily sales, you can create 
rolling statistics, and gain useful insights into the time trend of the sales. 

At this point, you have learned all the fundamental statements of SQL. You have 
learned how to handle the full CRUD lifecycle using SQL, how to put tables together 
using JOIN and UNION, and you have learned how to use different types of functions 
to obtain the desired results. In Chapter 6, Importing and Exporting Data, you will look 
at how to import and export data to utilize SQL with other programs. You will use the 
COPY command to upload data to your database in bulk. You will also use Excel to 
process data from your database and then simplify your code using python.







Overview

In this chapter, you will learn techniques that will help you move data 
between your database and analytics tools. You will start by learning about 
the psql tool, which will enable you to quickly query data from a database. 
With psql, you can also leverage the COPY command, which allows the 
efficient importing and exporting of data. With these simple tools, you will 
be able to interact with the database and efficiently move data back and 
forth. Further, you will process and analyze data using Python. You will also 
explore Python libraries such as SQLAlchemy and pandas' advanced 
functionality for interacting with your database in Python.

Importing and Exporting Data

6
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Introduction
To extract insights from your database, you need data. While many companies store 
and update data within a central database, there are scenarios in which you will 
need more data than is currently in your database. For example, you are working 
on an ambitious project to revamp a website whose performance has progressively 
degraded over the past nine years. The first step in solving such a problem is to do 
a root cause analysis of it. The central database houses daily logs of the site's page 
load times along with other details. You will need to retrieve this data, clean it up, 
and filter out the entries where the page load times were over a certain threshold. 
You will need to share this information with a team of engineers and developers who 
will categorize these outliers, attributing the poor load times to a server issue, badly 
written code, network failure, or poor caching, among other things. You will then 
need to do an analysis of the categorized data and update the database to include 
the "fault categories" as provided to you by the developers who do not have access 
to the database. For all this, you will first need to retrieve the data and store it in an 
Excel file that can be shared with the developers.

Not only will you want to upload data to your database for further analysis, but if 
you are doing advanced analytics, there will also be situations wherein you will need 
to download data from your database (for example, if you want to carry out a form 
of statistical analysis that is unavailable in SQL). For this reason, you will also learn 
about the process of extracting data from a database. This will allow you to use other 
software to analyze your data. You will look at how you can integrate your workflows 
with a specific programming language that is frequently used for analytics: Python. 
It is powerful because it is easy to use, allows advanced functionality, is open source, 
and has large communities supporting it due to its popularity. You will examine 
how large datasets can be passed between your programming language and your 
databases efficiently so that you can have workflows that take advantage of the 
analytics software tools that are available.

In this chapter, you will learn how to efficiently upload data to a centralized database 
for further analysis. You will start by looking at the bulk uploading and downloading 
functionality in the PostgreSQL COPY command as well as the command-line client, 
psql, and how to run the COPY command locally using the \COPY command from 
psql. To use the \COPY command, you will also gain an understanding of the 
concept of view, which by itself is a very important tool in any RDBMS. You will then 
move on to studying how to handle data using Python. You will learn how to integrate 
Python with PostgreSQL, how to use SQL from Python scripts, and how to use Python 
libraries to achieve various analyses. 
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First, start by exploring the workings of the COPY command.

The COPY Command
At this point, you are probably familiar with the SELECT statement (covered in 
Chapter 2, The Basics of SQL for Analytics), which allows you to retrieve data from 
a database. While this command is useful for small datasets that can be scanned 
quickly, you will often want to save a large dataset to a file. By saving these datasets 
to files, you can further process or analyze the data locally using Excel or Python. To 
retrieve these large datasets, you can use the PostgreSQL COPY command, which 
efficiently transfers data from a database to a file, or from a file to a database. This 
COPY command must be executed when connected to the PostgreSQL database 
using a SQL client, such as the PostgreSQL psql command. In the next section, you 
will learn how to use the psql command, then you will learn how to copy data with it.

Running the psql Command

You have been using the pgAdmin frontend client to access your PostgreSQL 
database, and you have briefly used the psql tool in the Preface when you set up 
your PostgreSQL environment. But you might not be aware that psql was one of 
the first PostgreSQL clients. This interface is still in use today. It enables users to 
run PostgreSQL scripts that can interact with the database server within the local 
computing environment.

The syntax of the psql command is as follows:

psql -h <host> -p <port> -d <database> -U <username>

In this command, you pass in flags that provide the information needed to make the 
database connection. In this case, you have the following:

• -h is the flag for the hostname. The string that comes after it (separated by a 
space) should be the hostname for your database, which can be an IP address, a 
domain name, or localhost if it is run on the local machine.

• -p is the flag for the database port. Usually, this is 5432 for 
PostgreSQL databases.

• -d is the flag for the database name. The string that comes after it should be the 
database name. In this book, you will always use the sqlda database.

• -U is the flag for the username. It is succeeded by the username. In this book, 
you will use the PostgreSQL super username, which is postgres.
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Applying the syntax to the environment you set up for this book, that is, to locally 
connect to the sqlda database that is on your local system as the postgres user, you 
can use this command:

psql -h localhost -p 5432 -d sqlda -U postgres

You will be prompted to enter your password, which is the password you entered 
for the superuser when you installed PostgreSQL on your computer. After that, the 
cursor will change to sqlda=#, where sqlda is the current database that you are 
running in.

You can also simply run the psql command without the parameters. It will prompt 
you for all the information mentioned above. Once it has been entered, you will be 
provided with the same sqlda=# command interface as shown below.

Figure 6.1: Logging into psql

You are now inside psql and can execute SQL just like you can in pgAdmin. For 
example, you can execute the following query:

SELECT 

  product_id 

FROM 

  products

LIMIT

  5;
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The result is as follows:

Figure 6.2: Running SQL in psql 

The COPY Statement

The COPY statement retrieves data from your database and dumps it into the file 
format that you choose. For example, consider the following statement:

COPY (

  SELECT 

    customer_id, 

    first_name, 

    last_name 

  FROM 

    customers 

  LIMIT 

    5

) 

TO STDOUT 

WITH CSV HEADER;
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The following is the output of the code:

 

Figure 6.3: Using COPY to print the results to STDOUT in CSV file format

This statement returns five rows from the customers table, with each record on a 
new line, and each value separated by a comma, in a typical .csv file format. The 
header is also included at the top.

Because the target of the COPY command is specified as STDOUT, the results will only 
be copied into the command-line interface and not into a file. Here is a breakdown of 
this command and the parameters that were passed in:

• COPY is simply the command used to transfer data to a file format.

• (SELECT customer_id, first_name, last_name FROM customers 
LIMIT 5) is the query that you want to copy the result from.

• TO STDOUT indicates that the results should be printed to the standard output 
rather than being saved to a file on the hard drive. Standard output is the 
common term for displaying output in a command-line terminal environment, 
which is often shortened to STDOUT.

• WITH is an optional keyword used to separate the parameters that you will 
use in the database-to-file transfer. Within WITH, you can specify multiple 
parameters, such as the following:

• CSV indicates that you will use the CSV file format. You could have also 
specified BINARY or left this out altogether and received the output in 
text format.
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• HEADER indicates that you want the header printed as well.

Note

You can learn more about the parameters available for the COPY command 
in the PostgreSQL documentation: https://www.postgresql.org/docs/current/
sql-copy.html.

While the STDOUT option is useful, often, you will want to save data to a file. 
The COPY command offers the functionality to do this, but data is saved locally 
on the PostgreSQL server. You must specify the full file path (relative file paths are 
not permitted). If you have your PostgreSQL database running on your computer, 
you can test this out using the following command in psql:

COPY (

  SELECT * 

  FROM customers 

  LIMIT 5

) 

TO 'c:\Users\Public\my_file.csv' 

WITH CSV HEADER;

The output will be the following:

 

Figure 6.4: Output of the COPY statement

You will find that the file has now been saved in CSV format at the location you 
specified in the command.

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html
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Note that this example is executed in a PostgreSQL server that is hosted on a 
Windows machine. So, the full file path is in Windows file path format. If you are 
running the command on any other operating system, you need to adjust the file 
path accordingly. Also, you must use a folder that you have permission to work on. 
Otherwise, you will receive a permission error. For example, on a windows system, 
you may be restricted on which folder you can write to. In this chapter, all the files will 
be placed into the c:\Users\Public folder because the Windows system usually 
allows users to read/write in this folder, so it can be used for your exercise if you 
cannot find a better folder.  

Note

The value in single quotes that follows the To keyword is the absolute 
path to the output file. The format of the path will depend on the operating 
system you are using. On Linux and Mac, the directory separator would be 
a forward-slash (/) character, and the root of the main drive would be /. 
On windows, however, the directory separator would be a back-slash (\) 
character and the path would start with the drive letter.

\COPY with psql

The COPY command, as stated above, runs on the PostgreSQL server. The 
PostgreSQL server in this book is installed on your local machine. So, your local 
machine is the server, and the COPY command will save the file to your local paths. 
However, in a real-world setup, servers are highly protected. Users usually do not 
have access to the file system of the server machines and need to download the files 
to their local machines. 

The terminal psql allows the COPY command to be called remotely using the psql-
specific \COPY instruction, which is similar in syntax to the COPY command but saves 
the file to the local machine. Once you have connected to your database using psql, 
you can test out the \COPY instruction by using the following command:

\COPY (SELECT * FROM customers LIMIT 5) TO 'c:\Users\Public\my_file.csv' 
WITH CSV HEADER; 

The following is the output of the code:

COPY 5
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Here is a breakdown of this command and the parameters that were passed in:

• \COPY invokes the PostgreSQL COPY command to output the data.

• (SELECT * FROM customers LIMIT 5) is the query that you want to 
copy the result from.

• TO 'c:\Users\Public\my_file.csv' indicates that psql should save 
the output from standard output into c:\Users\Public\my_file.csv. 
Note that the \COPY command allows both absolute paths and relative paths. 
However, as there are many possible setups, this chapter will only use the 
absolute path, c:\Users\Public, for data files.

• The WITH CSV HEADER parameters operate in the same way as before.

You can also look at my_file.csv, which you can open with the text editor of your 
choice, such as Notepad:

 

Figure 6.5: The CSV file that you created using your \COPY command

It is worth noting here that while you can split the text of the COPY command into 
multiple lines, the \COPY command does not allow the query to contain multiple 
lines. A simple way to leverage multiline queries is to create a view containing your 
data before the \COPY command and drop the view after your \COPY command has 
finished. You will learn how to create a view in the next section.
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Creating Temporary Views

In many cases, you will find a certain query particularly helpful and would like to keep 
the definition so that you can use it later. In previous chapters, you have learned 
about the usage of subqueries as well as common table expressions. As useful as 
they are, subqueries and common table expressions are only effective within a single 
SQL query. You cannot refer to them outside their main query. To save a query 
definition for future usage, PostgreSQL allows you to create a view, which is a named 
SELECT query that you can reference later.

You can create a VIEW command called customers_sample using the 
following syntax:

CREATE TEMP VIEW customers_sample AS (

  SELECT 

    *

  FROM 

    customers 

  LIMIT 

    12

);

PostgreSQL will give you the following message, letting you know that the view has 
been created successfully:

Figure 6.6: Output of the CREATE VIEW statement

In this example, the SQL statement of this query is stored in a temporary view, 
which can be referenced in a similar way to the syntax used to reference a table. For 
example, look at the following query:

SELECT 

  COUNT(1) 

FROM 

  customers_sample;

This would output 12.
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A view is a named SQL query and does not save any data. Instead, every time the view 
is referenced in a query, SQL replaces the view name with the query defined in the 
view, similar to handling a subquery. Views are saved in the schema until explicitly 
dropped. However, you can also add a TEMP keyword to instruct SQL to remove the 
view automatically once you are logged out of the server.

You can also manually delete the view using a simple command:

DROP VIEW customers_sample;

The output will be as follows: 

DROP VIEW

For example, consider these commands:

CREATE TEMP VIEW customers_sample AS ( 

  SELECT 

    *

  FROM 

    customers 

  LIMIT 

    5

);

\COPY (SELECT * FROM customers_sample) TO 'c:\Users\Public\my_file.csv' 
WITH CSV HEADER

DROP VIEW customers_sample;

The output of this would be identical to the output in the first export example. While 
you can perform this action either way, for readability, you will use the latter format 
in this book for longer queries.
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Configuring COPY and \COPY

There are several options that you can use to configure the COPY and  
\COPY commands:

• FORMAT: format_name can be used to specify the format. The options for 
format_name are csv, text, or binary. Alternatively, you can simply specify 
CSV or BINARY without the FORMAT keyword, or not specify the format at all 
and let the output default to a text file format.

• DELIMITER: delimiter_character can be used to specify the delimiter 
character for CSV or text files (for example, for CSV files, or | for pipe-separated 
files).

• NULL: null_string can be used to specify how NULL values should be 
represented (for example, whether blanks represent NULL values or NULL if 
that is how missing values should be represented in the data).

• HEADER: This specifies that the header should be output.

• QUOTE: quote_character can be used to specify how fields with special 
characters (for example, a comma in a text value within a CSV file) can be 
wrapped in quotes so that they are ignored by COPY.

• ESCAPE: escape_character specifies the character that can be used to 
escape the following character.

• ENCODING: encoding_name allows the specification of the encoding, which 
is particularly useful when you are dealing with foreign languages that contain 
special characters or user input.

For example, running from psql, the following would create a pipe-separated file, 
with a header, with empty (0 lengths) strings to represent a missing (NULL) value, 
and the double quote (") character to represent the quote character:

\COPY customers TO 'c:\Users\Public\my_file.csv' WITH CSV HEADER DELIMITER 
'|' NULL '' QUOTE '"'

The following is the output of the code:

COPY 50000

In the next section, you will learn how to use the COPY and \COPY commands to 
upload large amounts of data to a database.
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Using COPY and \COPY to Bulk Upload Data to Your Database

The COPY and \COPY commands can be used to efficiently download data, but they 
can also be used to upload data. The COPY and \COPY commands are far more 
efficient at uploading data than an INSERT statement. There are a few reasons 
for this:

• When using COPY, there is only one push of a data block, which occurs after all 
the rows have been properly allocated.

• There is less communication between the database and the client, so there is 
less network latency.

• PostgreSQL includes optimizations for COPY that would not be available 
through INSERT.

Here is an example of using the \COPY command to copy rows into a table from a 
file. First, run the following SQL to create a new table for \COPY command testing:

CREATE TABLE customers_csv AS (

 SELECT * FROM customers LIMIT 1

);

Then, run the following \COPY command to test its data loading functionality:

\COPY customers_csv FROM 'c:\Users\Public\my_file.csv' CSV HEADER 
DELIMITER '|'

This outputs the following:

COPY 50000

Here is a breakdown of this command and the parameters that were passed in:

• \COPY is invoking the PostgreSQL COPY command to load the data into 
the database.

• customers_csv is the name of the table that you want to append to.

• FROM 'c:\Users\Public\my_file.csv specifies that you are uploading 
records from c:\Users\Public\my_ file.csv. The FROM keyword 
specifies that you are uploading records, as opposed to the TO keyword, which 
you use to download records.
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• The WITH CSV HEADER parameters operate the same as before.

• DELIMITER '|' specifies what the delimiter is in the file. For a CSV file, this 
is assumed to be a comma, so you do not need this parameter. However, for 
readability, it might be useful to explicitly define this parameter, if for no other 
reason than to remind yourself how the file has been formatted.

Note

While COPY and \COPY are great for exporting data to other tools, there is 
additional functionality in PostgreSQL for exporting a database backup.

For these maintenance tasks, you can use pg_dump for a specific table 
and pg_dumpall for an entire database or schema. These commands 
even let you save data in a compressed (tar) format, which saves space. 
Unfortunately, the output format from these commands is typically SQL, and 
it cannot be readily consumed outside of PostgreSQL. Therefore, it does not 
help you with importing or exporting data to and from other analytics tools, 
such as Python.

Since you have now learned how to import and export data, you will implement an 
exercise to export data to a file and process it in Excel.

Note

For the exercises and activities in this chapter, you will need to be able to 
access your database with psql. Here is the GitHub link to access the files 
of this chapter: https://packt.link/tcTFc.

https://packt.link/tcTFc
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Exercise 6.01: Exporting Data to a File for Further Processing in Excel

The ZoomZoom executive committee is busy scouting for new locations to open their 
next dealership. Since the presentation needs to be made in PowerPoint, you can 
use Microsoft Excel to generate a bar chart of customer numbers per city based on 
the .csv file. Then, you can simply copy that chart to your slide. As a data analyst, 
you will be helping them make this decision by presenting the data in .csv file 
format about the cities that have the highest number of customers. The data will 
need to be retrieved from the customers table of the sqlda database. The psql 
and \COPY commands you learned about will come in handy. This analysis will help 
the ZoomZoom executive committee to decide where they might want to open the 
next dealership.

1. Open the command line to implement this exercise (such as CMD for 
Windows or Terminal for Mac) and connect to the sqlda database using the 
psql command.

Figure 6.7: Running psql from the command line with parameters

Once this command is executed, the command terminal will look like this:

Figure 6.8: The psql interface after being launched from the command line 
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2. Create the top_cities view. The view will be defined as SELECT city, 
count(1) AS number_of_customers …, which gives you the number 
of customers for each city. Because you add the LIMIT 10 statement, you 
only grab the top 10 cities, as ordered by the second column (the number of 
customers). You also filter out the customers without a city:

CREATE TEMP VIEW top_cities AS ( 

  SELECT 

    city,

    count(1) AS number_of_customers 

  FROM 

    customers

  WHERE 

    city IS NOT NULL 

  GROUP BY 

    1

  ORDER BY 

    2 DESC 

  LIMIT 

    10

);

3. Copy the top_cities view from your ZoomZoom database to a local file in 
.csv format. You do this by utilizing the temporary view you just created using 
the following command. Please note that the OS-specific path needs to be 
prepended to the top_cities.csv filename to specify the location to save 
the file. Here, in a windows environment, you will use c:\Users\Public as 
the folder:

\COPY (SELECT * FROM top_cities) TO 'c:\Users\Public\top_cities.csv' 
WITH CSV HEADER DELIMITER ','
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4. Drop the view:

DROP VIEW top_cities;

Here is a breakdown of these statements:

CREATE TEMP VIEW top_cities AS (…) indicates that you are creating a 
new temporary view.

\COPY … copies data from this view to the top_cities.csv file on your 
local computer.

DROP VIEW top_cities; deletes the view because you no longer need it.

If you open the top_cities.csv text file, you should see the following output:

Figure 6.9: Output from the \COPY command

Note

Here, the output file is top_cities.csv. You will be using this file in the 
upcoming exercises in this chapter.

Now that you have the output from your database in CSV file format, you can 
open it with a spreadsheet program, such as Excel.
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5. Using Microsoft Excel or your favorite spreadsheet software or text editor, open 
the top_cities.csv file:

Figure 6.10: The top_cities.csv file open in Excel

6. Next, select all the data, which in this case is from cell A1 to cell B11:
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Figure 6.11: Select the entire dataset by clicking and dragging from cell A1 to cell B11

7. Next, in the top menu, go to Insert and then click on the bar chart icon ( ) to 
create a 2-D Column chart:

 

Figure 6.12: Insert a bar chart to visualize the selected data
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8. Finally, you should end up with the following output:

Figure 6.13: The final output from your visualization

You can see from this chart that Washington D.C. has a very high number of 
customers. Based on this simple analysis, Washington D.C. would probably be the 
obvious next target for ZoomZoom expansion.

Note

To access the source code for this specific section, please refer to  
https://packt.link/tcTFc.

In this exercise, you leveraged your data in an analytical tool. You did this by 
exporting the data using psql and the \COPY command to perform data 
visualization in Excel. This analysis could be useful for helping an executive to make 
a data-driven decision regarding where they should open their next retail location. 
Next, you will look at how you can use advanced programmatic analytical tools to 
leverage your data.

https://packt.link/tcTFc
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Using Python with your Database
While SQL has a breadth of functionality, many data scientists and data analysts 
are starting to use Python too. This is because Python is a high-level language that 
can be easily used to process data. While the functionality of SQL covers most of 
the daily needs of data scientists, Python is growing fast and has generally become 
one of the most important data analytics tools in recent polls. A lot of Python's 
functionality is also fast, in part because so much of it is written in C, a low-level 
programming language.

The other large advantage that Python has is that it is versatile. While SQL is generally 
only used in the data science and statistical analysis communities, Python can be 
used to do anything from statistical analysis to building a web application. As a result, 
the developer community is much larger for Python. A larger developer community 
is a big advantage because there is better community support (for example, on Stack 
Overflow), and more Python packages and modules are being developed every day. 
The last major benefit of Python is that as it is a general programming language, it can 
be easier to deploy Python code to a production environment, and certain controls 
(such as Python namespaces) make Python less susceptible to errors. As a result of 
these advantages, it might be useful to learn Python as a data scientist. 

Getting Started with Python

You have been running SQL against the PostgreSQL server and obtaining results via 
client software such as pgAdmin and psql throughout this book. PostgreSQL DBMS, 
as well as other relational DBMSs, allows for many ways of client connection. You 
can run your SQL through any of these connection methods and retrieve data in the 
same way as with pgAdmin and psql. When you use Python for data analytics, you 
will use a specific Python library called psycopg2. This library, when called from 
a Python runtime environment, will connect to the PostgreSQL server and handle 
traffic between your Python script and the database server. In its simplest form, once 
you connect to the PostgreSQL server using psycopg2, you can submit SQL to the 
database using Python scripts, the same way that you would with psql.

While there are many ways to get access to Python, the Anaconda distribution of 
Python makes it particularly easy to obtain and install Python and other analytical 
tools, as it comes with many commonly used analytics packages preinstalled 
alongside a great package manager. For that reason, you will be using the Anaconda 
distribution in this book.



238 | Importing and Exporting Data

You can take the following steps to get set up using the Anaconda distribution and to 
connect to Postgres:

1. Download and install Anaconda: https://www.anaconda.com/distribution/. During 
the installation, make sure that the Add Anaconda to PATH option 
is selected.

2. Once you have gone through the installation steps, open the Anaconda Prompt 
for Mac/Windows. Type python into the command line and check that you can 
access the Python interpreter, which should look like this:

Figure 6.14: The Python interpreter is now available and ready for input

Note 

If you get an error, it may be because you need to specify your Python path. 
You can enter quit() to exit.

Additionally, as you can see from the screenshot, the python version 
used in this book is 3.9.7. At the time that this book is in writing, there is a 
known issue in Anaconda that psycopg2 is not compatible with certain 
python version 3.9.12 or newer. If you run into any issue with psycopg2 
importing, please reinstall your python using version 3.9.7.

3. Next, download and install the PostgreSQL database client for Python, 
psycopg2, using the Anaconda package manager. Open Anaconda Navigator 
for Mac/Windows. In the left panel, choose the Environments tab. Then, in the 
first drop-down box of the right panel, choose All.

https://www.anaconda.com/distribution/
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Figure 6.15: Checking the psycopg2 installation status 

Type psy in the search box. You will see a list of libraries, including psycopg2. 
If it is not installed yet (that is, the box in front of it is not checked), check the box 
and click on the Apply button in the bottom-right corner. Follow the instructions 
for installation.

Figure 6.16: Installation checkbox for psycopg2 
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4. You can use Python in notebook form in your web browser. This is useful for 
displaying visualizations and running exploratory analyses. In this chapter, you 
are going to use Jupyter Notebook, which was installed as part of the Anaconda 
installation. From the Home tab of Anaconda Navigator, find Jupyter Notebook 
and click on Launch. You should see something like this pop up in your 
default browser:

Figure 6.17: The Jupyter Notebook pop-up screen in your browser

5. Next, you will create a new notebook by clicking the New drop-down button and 
choosing Python 3 (ipykernel):

Figure 6.18: Opening a new Python 3 Jupyter notebook
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You now have a notebook. Each notebook consists of multiple cells. Each cell 
contains some Python statements that will be executed together as one step.

Figure 6.19: A new Jupyter notebook

6. Start writing the following Python script to import psycopg2 into your Python 
runtime by typing it in the cell and clicking on the Run button above:

import psycopg2

7. As you finish running one cell, a new cell is created. Type the following code 
in the new cell and click on the Run button. This statement establishes the 
connection from your Python program (which is a client) to the database server 
specified in the parameters:

conn = psycopg2.connect(

        host="localhost", 

        user="postgres", 

        password="my_password", 

        dbname="sqlda", 

        port=5432

    ) 

8. Type the following script in the new cell that is automatically generated and click 
Run. This code creates a Python cursor that can send SQL statements to the 
database server and retrieve results:

cur = conn.cursor() 

9. Now you can execute a sample SQL statement from the cursor by using its 
execute() method:

cur.execute("SELECT * FROM customers LIMIT 5") 
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10. Finally, you can retrieve the result and display it:

records = cur.fetchall()

print(records)

The following screenshot displays the output:

 

Figure 6.20: The output from your database connection in Python

You may wonder how this is different from running the same SQL from pgAdmin. 
After all, while you were able to connect to the database and read the data, several 
steps were required, and the syntax was a little bit more complex than for some of 
the other approaches you have tried. The power of Python in data analytics, as well 
as other programming languages, lies in the fact that inside a Python program, you 
can directly process the data, which is generally faster and has more functionalities. 
In the next section, you will learn how to use some of the other packages in Python to 
facilitate interfacing with the database.

Improving PostgreSQL Access in Python with SQLAlchemy and pandas

While psycopg2 is a powerful database client for accessing PostgreSQL from 
Python, it is just a connector. It does nothing more than passing the SQL and the 
resulting data between your program and the database server. There are more things 
in Python that can help the data analytics process. You can enhance the code by 
using a couple of other packages—namely, pandas and SQLAlchemy. First, you will 
learn about SQLAlchemy, a Python SQL toolkit that maps representations of objects 
to database tables. You will get familiar with the SQLAlchemy database engine 
and some of the advantages that it offers. This will enable you to access a database 
seamlessly without worrying about connections and Python objects. Next, you will 
learn about pandas—a Python package that can perform data manipulation and 
facilitate data analysis. 
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The pandas package will help you represent your data table structure (called a 
DataFrame) in memory. pandas also has high-level APIs that will enable you to read 
data from a database in just a few lines of code.

While both packages are powerful, it is worth noting that they still use the psycopg2 
package to connect to the database and execute queries. The big advantage that 
these packages provide is that they abstract some of the complexities of connecting 
to the database. By abstracting these complexities, you can connect to the database 
without worrying that you might forget to close a connection or remove a Python 
object such as a cursor.

What is SQLAlchemy?

SQLAlchemy is a Python SQL toolkit and Object-Relational Mapper (ORM) that 
maps representations of objects to database tables. An ORM builds up mappings 
between SQL tables and programming language objects; in this case, Python objects. 
For example, in the following figure, there is a customer table in the database. The 
Python ORM will thus create a class called customer and keep the content in the 
object synchronized with the data in the table. For each row in the customer table, a 
customer object will be created inside the Python runtime. When there are changes 
(inserts, updates, and/or deletes), the ORM can initialize a sync and make the two 
sides consistent.

Figure 6.21: An ORM maps rows in a database to objects in memory
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While the SQLAlchemy ORM offers many great functionalities, its key benefit is the 
Engine object. A SQLAlchemy Engine object contains information about the 
type of database (in your case, PostgreSQL) and a connection pool. The connection 
pool allows multiple connections to the database that operate simultaneously. The 
connection pool is also beneficial because it does not create a connection until a 
query is sent to be executed. Because these connections are not formed until the 
query is executed, the Engine object is said to exhibit lazy initialization. The term 
"lazy" is used to indicate that nothing happens (the connection is not formed) until 
a request is made. This is advantageous because it minimizes the time it takes 
for Python to establish and maintain the connection and reduces the load on 
the database.

Another advantage of the SQLAlchemy Engine object is that it automatically 
commits changes to the database due to CREATE TABLE, UPDATE, INSERT, and 
other statements that modify a database. This will help the data in the database and 
the data in Python to be synchronized all the time.

In your case, you will want to use it because it provides a robust Engine object to 
access databases. If the connection is dropped, the SQLAlchemy Engine object 
can instantiate that connection because it has a connection pool. It also provides a 
nice interface that works well with other packages (such as pandas).

Using Python with SQLAlchemy and pandas

Normally, SQLAlchemy and pandas come together with Anaconda. When you 
install Anaconda on your machine, you have already set them up. However, if you 
are not sure about the installation, you can open Anaconda Navigator and go to the 
Environments tab. From there, you can verify the installed packages and install 
them if they are not there. From the same location, you can also install the packages 
referenced later in this book, such as matplotlib, if necessary.

Now, open Anaconda Navigator if you have not done so. Launch Jupyter Notebook 
and create a new notebook. Enter the following import statements in the first cell:

from sqlalchemy import create_engine 

import pandas as pd
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You will notice that you are importing two packages here. The first is the create_
engine module within the sqlalchemy package, and the second is pandas, which 
you rename to pd following the standard convention (and it has fewer characters). 
Using these two packages, you will be able to read and write data to and from your 
database and visualize the output.

Hit the run button or press Shift + Enter to run these commands. A new active cell 
should pop up:

Figure 6.22: Running your first cell in the Jupyter notebook

Next, you will configure your notebook to display plots and visualizations inline. You 
can do this with the following command:

%matplotlib inline

This tells the matplotlib package (which is a dependency of pandas) to create 
plots and visualizations inline in your notebook. Hit Shift + Enter again to jump to the 
next cell.

In the new cell, you will define your connection string:

cnxn_string = (

    "postgresql+psycopg2://{username}:{pswd}@{host}:{port}/{database}"

)

print(cnxn_string)
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Press Shift + Enter again, and you should now see this connection string was printed. 
This is a generic connection string for psycopg2. You need to fill in your parameters 
to create the database Engine object. You can replace the parameters using 
the parameters that are specific to your connection. The particular parameters 
corresponding to the setup of this book are as follows:

engine = create_engine(

    cnxn_string.format( 

        username="postgres", 

        pswd="your_password",

        host="localhost", 

        port=5432, 

        database="sqlda"

    )

)

In this command, you run create_engine to create your database Engine object. 
You pass in your connection string and you format it for your specific database 
connection by filling in the placeholders for {username}, {pswd}, {host}, 
{port}, and {database}. The host is either an IP address, domain name, or 
the word localhost if the database is hosted locally. Make sure you update the 
password to match your setup.

Because SQLAlchemy is lazy, you will not know whether your database connection 
was successful until you try to send a command. You can test whether this database 
Engine object works by running the following command and hitting Shift + Enter:

engine.execute("SELECT * FROM customers LIMIT 2;").fetchall()

You should see something like this:

Figure 6.23: Executing a query within Python
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The output of this command is a Python list containing rows from your database as 
tuples. While you have successfully read data from your database, you will probably 
find it more practical to read your data into a pandas DataFrame in the next section.

Reading and Writing to a Database with pandas

Python comes with great data structures, including lists, dictionaries, and tuples. 
While these are useful, your data can often be represented in table form, with rows 
and columns, similar to how you would store data in your database. For these 
purposes, the DataFrame object in pandas can be particularly useful. In addition to 
providing powerful data structures, pandas also offers the following:

• Functionality to read data directly from a database

• Data visualization

• Data analysis tools

If you continue from where you left off with your Jupyter notebook, you can use the 
SQLAlchemy Engine object to read data into a pandas DataFrame:

customers_data = pd.read_sql_table('customers', engine)

You have now stored your entire customers table as a pandas DataFrame in the 
customers_data variable. The pandas read_sql_table function requires 
two parameters: the name of a table and the connectable database (in this case, the 
SQLAlchemy Engine object). Alternatively, you can use the read_sql_query 
function, which takes a query string instead of a table name.
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Here is an example of what your notebook might look like at this point:

Figure 6.24: The entirety of your Jupyter notebook

Now that you know how to read data from the database, you can start to do some 
basic analysis and visualization. In essence, a pandas DataFrame is a relational 
table with enhanced information. You can apply similar operations in SQL on 
the DataFrames, such as querying, inserting, filtering, and deleting. For example, 
the head() method returns the first few (default of 5) rows of the DataFrame, 
much like the LIMIT clause in SQL. Then, in addition, you can also perform 
many more operations, such as pivoting, multi-column search and replacement, 
and semi-structured data parsing, which are not possible or are very difficult 
to achieve using SQL. For example, the min()/max() methods will return the 
minimum/maximum values of every column, without the need to specify the column 
name. The full functionalities of pandas are beyond the scope of this book, but will 
demonstrate some basic ones in the coming exercises.
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Writing Data to the Database Using Python

There will always be scenarios in which you will want to use Python to write data back 
to the database. Luckily for you, pandas and SQLAlchemy make this a relatively 
easy task.

If you have your data in a pandas DataFrame, you can write data back to the 
database using the pandas to_sql(…) function, which requires two parameters: 
the name of the table to write to and the connection. Best of all, the to_sql(…) 
function can also create the target table for you by inferring column types using a 
DataFrame's data types. In the coming exercise, Exercise 6.02, Reading, Visualizing, and 
Saving Data in Python you will test out this functionality using the top_cities_data 
DataFrame that you created in Step 8. 

Now, implement an exercise to read, visualize, and save data using Python.

Exercise 6.02: Reading, Visualizing, and Saving Data in Python

In the previous exercise, you executed a SQL query to get a list of the cities that have 
the highest number of customers. Then you dumped the result into a CSV file using 
the COPY command and sent the file to the business department. Upon receiving the 
file, they created a visualization on top of the CSV file in Excel and copied and pasted 
the visualization into a Microsoft PowerPoint slide file for presentation.

Looking at this process, you can see that there is still a lot of manual work and 
coordination between different applications. The whole process involves three 
applications: psql, Excel, and PowerPoint. There is a .csv file passing between psql 
and Excel, and there are copy and paste activities between Excel and PowerPoint.

In this exercise, you will analyze the same demographic information of customers by 
their city to better understand the target audience by reading data from the database 
output and visualizing the results using Python with Jupyter notebooks, SQLAlchemy, 
and pandas. You will run the SQL inside Python, retrieve data in a pandas 
DataFrame, and create a visualization inside Jupyter Notebook. 



250 | Importing and Exporting Data

All this is automated and there are no other applications involved. There will not 
be a need to pass files and clipboards between applications. The following steps 
are involved:

1. Open Anaconda Navigator and launch Jupyter Notebook. Create a 
new notebook.

2. Run the following code in the first cell. The code imports required libraries into 
the Python runtime:

from sqlalchemy import create_engine 

import pandas as pd

3. The second cell sets up the matplotlib environment for drawing. 
Matplotlib is a Python library that is widely used for data visualization, that 
is, drawing charts based on data. It comes together with pandas and should 
have already been installed in your environment. Running this command allows 
matplotlib to output the visualization directly to Jupyter Notebook:

%matplotlib inline 

4. The third cell establishes a connection to the database server. You will need to 
adjust this code based on your server's setup:

cnxn_string = (

    "postgresql+psycopg2://{username}:{pswd}@{host}:{port}/
{database}"
)

engine = create_engine(

    cnxn_string.format( 

        username="postgres", 

        pswd="my_password",

        host="localhost", 

        port=5432, 

        database="sqlda"

    )

)
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5. Enter the following query surrounded by triple quotes (triple quotes allow strings 
that span multiple lines in Python):

query = """ 

  SELECT 

    city,

    COUNT(1) AS number_of_customers, 

    COUNT(NULLIF(gender, 'M')) AS female, 

    COUNT(NULLIF(gender, 'F')) AS male 

  FROM 

    customers

  WHERE 

    city IS NOT NULL 

  GROUP BY 

    1

  ORDER BY 

    2 DESC 

  LIMIT 

    10

"""

For each city, this query calculates the count of customers and calculates the 
count for each gender. It also removes customers with missing city information 
and aggregates your customer data by the first column (the city). In addition to 
this, it sorts the data by the second column (the count of customers) from largest 
to smallest (descending). Then, it limits the output to the top 10 (that is, the 10 
cities with the highest number of customers). 
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6. Read the query result into a pandas DataFrame with the following command 
and execute the cells using Shift + Enter:

top_cities_data = pd.read_sql_query(query, engine)

The pandas read_sql_query method will run a SQL query against the 
database server that the engine points to and return the result in a pandas 
DataFrame. Here, top_cities_data is the DataFrame that pandas returned. 
View the data of top_cities_data by entering this name in a new cell and 
simply hitting Shift + Enter. Just as with the Python interpreter, Jupyter Notebook 
will display the output value:

Figure 6.25: Storing the result of a query as a pandas DataFrame

You will notice that pandas also numbers the rows by default. In pandas, this 
is called an index.
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7. Now, plot the number of men and women in each of the top 10 cities. To view 
the stats for each city separately, you can use a simple bar plot:

ax = top_cities_data.plot.bar(

    'city', 

    y=['female', 'male'],

    title='Number of Customers by Gender and City'

)

The plot() method of the pandas DataFrame will draw a chart in the 
notebook. The chart type depends on the submethod that the plot() method 
uses. The bar() method will draw a bar chart. You can also choose other 
visualization types such as a pie chart (pie()), line chart (line()), and scatter 
plot (scatter()). Here is a screenshot of what your resulting output notebook 
should look like:

Figure 6.26: Data visualization in the Jupyter notebook
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The results show that there is no significant difference in the gender of your 
customers in the cities that you are considering expanding into.

8. Now, use the following command to save the DataFrame into a database table: 

top_cities_data.to_sql(

    'top_cities_data', 

    engine, 

    index=False, 

    if_exists='replace'

)

In addition to the two required parameters, you added two optional parameters 
to this function. The index parameter specifies whether you want the index to 
be a column in your database table as well (a value of False means that you 
will not include it), and the if_exists parameter allows you to specify how 
to handle a scenario in which there is already a table with the same name in 
the database. In this case, you want to drop that table and replace it with the 
new data, so you use the 'replace' option. In general, you should exercise 
caution when using the 'replace' option as you can inadvertently lose your 
existing data.

9. You can utilize the data using SQL as it is currently saved in the database. You 
can query this data from any database client, including pgAdmin. For example, 
in the following SQL, you examine the relationship between the number of 
customers and the sales:

SELECT

  t.city,

  t.number_of_customers,

  SUM(s.sales_amount)

FROM 

  sales s

JOIN 

  customers c

  ON s.customer_id = c.customer_id

JOIN 
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  top_cities_data t

  ON c.city = t.city

GROUP BY

  1, 2

ORDER BY

  2 DESC;

The following is the output of the code:

 

Figure 6.27: Data created in Python that has now been imported into your database

Note

To access the source code for this specific section, please refer to  
https://packt.link/tcTFc.

https://packt.link/tcTFc
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In this exercise, you were able to read data from your database programmatically and 
perform data visualization on the result.

While the to_sql() functionality is simple and works as intended, it uses insert 
statements to send data to the database. For a small table of 10 rows, this is fine; 
however, for larger tables, the psql \COPY command is going to be much faster. 
Next, you will look at how you can write data (such as results from statistical analysis) 
back to the database using COPY.

Improving Python Write Speed with COPY

You can use the COPY command in conjunction with Python, SQLAlchemy, and 
pandas to deliver the same speed that you get with the COPY command in psql. 
For instance, say you define the following function:

import csv

from io import StringIO

def psql_insert_COPY(table, conn, keys, data_iter):

    # gets a DBAPI connection that can provide a cursor 

    dbapi_conn = conn.connection

    with dbapi_conn.cursor() as cur:

        s_buf = StringIO()

        writer = csv.writer(s_buf) 
        writer.writerows(data_iter)  
        s_buf.seek(0)

        columns = ', '.join('"{}"'.format(k) for k in keys)  
        if table.schema:
            table_name = '{}.{}'.format(table.schema, table.name)

        else:

            table_name = table.name

        sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(table_name, columns)

        cur.COPY_expert(sql=sql, file=s_buf)
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Figure 6.28: Python code for importing data using COPY

You can then leverage the method parameter in to_sql, as shown here:

top_cities_data.to_sql(

    'top_cities_data', 

    engine, 

    index=False, 

    if_exists='replace', 

    method=psql_insert_COPY

)

The psql_insert_COPY function defined here can be used without modifications 
to any of your PostgreSQL imports from pandas. Here is a breakdown of what this 
code does:

1. After performing some necessary imports, you begin by defining the function 
using the def keyword followed by the function name (psql_insert_COPY) 
and the parameters (table, conn, keys, and data_iter).

2. Next, you establish a connection (dbapi_conn) and a cursor (cur) that you can 
use for execution.
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3. Next, you write all the data in your rows (represented by data_iter) to a string 
buffer (s_buf), which is formatted like a CSV file, but exists in memory and not 
in a file on your hard drive.

4. Then, you define the column names (columns) and the table name  
(table_name). 

5. Lastly, you execute the COPY statement by streaming the CSV file contents 
through standard input (STDIN).

While it is helpful to read and write directly from the database, or import data 
into the database from a file, sometimes you will want to read a file into Python 
for preprocessing before the data is sent to your database (for example, if the file 
contains errors and cannot be read directly by the database or if the file requires 
additional analytics to be appended to it). In these instances, you can leverage Python 
to read and write CSV files.

Reading and Writing CSV Files with Python

Until now, you have covered the usage of Python in conjunction with SQL. However, 
Python can also process data in other ways.

In addition to reading and writing data to your database, you can use Python to read 
and write data from your local file system. The commands for reading and writing 
CSV files with pandas are very similar to those used for reading and writing from 
your database:

• For writing, pandas.DataFrame.to_csv(file_path, index=False) 
would write the DataFrame to your local file system using the supplied file_ 
path parameter. DataFrame is a property of pandas that temporarily stores 
data. The to_ csv() method of DataFrame has the following parameters: 
file_path, which is a string representing the path to the output file in a 
format specific to the OS, and index, which, if set to true, will write row 
numbers into the output data.

• For reading, pandas.read_csv(file_path, dtype={}) would return 
a DataFrame representation of the data supplied in the CSV file located at the 
file_path. 
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When reading a CSV file, pandas will infer the correct data type based on the values 
in the file. For example, if the column contains only integer numbers, it will create the 
column with an int64 data type.

Similarly, it can infer whether a column contains floats, timestamps, or strings. 
pandas can also infer whether there is a header for the file, and generally, this 
functionality works well. If there is a column that is not read incorrectly (for example, 
a five-digit US zip code might be read in as an integer causing the leading zeros to 
fall off, meaning "07123" would become "7123" without the leading zeros), you can 
specify the column type directly using the dtype parameter. For example, if you 
have a zip_code column in your dataset, you could specify that it is a string using 
dtype={'zip_code': str}.

Note

There are many ways in which a .csv file might be formatted. While 
pandas can generally infer the correct header and data types, many 
parameters are provided to customize the reading and writing of a .csv file 
for your needs.

Using the top_cities_data dataset in your notebook, you can test out 
this functionality:

top_cities_data.to_csv(

    'c:\\Users\\Public\\top_cities_analysis.csv', 

    index=False

) 

my_data = pd.read_csv(

    'c:\\Users\\Public\\top_cities_analysis.csv'

)

my_data
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my_data now contains the data that you wrote to a CSV file and then read back in. 
You do not need to specify the optional dtype parameter in this case because your 
columns could be inferred correctly using pandas. You should see an identical copy 
of the data that is in top_cities_data:

Figure 6.29: Checking that you can write and read CSV files in pandas

In this example, you were able to read and write a CSV file from Python using data 
you queried from your database. With these skills, you can now import and export 
data between a file and your database, between Python and your database, and 
between Python and a file.

Best Practices for Importing and Exporting Data

At this point, you have seen several different methods for reading and writing data 
between your computer and your database. Each method has its own use case and 
purpose. Generally, there are going to be two key factors that should guide your 
decision-making process:

• You should try to access the database with the same tool that you will use to 
analyze the data. As you add more steps to get your data from the database to 
your analytics tool, you increase the ways in which new errors can arise. When 
you cannot access the database using the same tool that you will use to process 
the data, you should use psql to read and write CSV files to your database.

• When writing data, you can save time by using the COPY or \COPY commands.
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Going Passwordless
In addition to everything mentioned so far, it is also a good idea to set up a .pgpass 
file. A .pgpass file specifies the parameters that you use to connect to your 
database, including your password. All of the programmatic methods of accessing 
the database discussed in this chapter (using either psql or Python) will allow you 
to skip the password parameter if your .pgpass file contains the password for 
the matching hostname, database, and username. This not only saves you time but 
also increases the security of your database because you can freely share your code 
without having to worry about passwords embedded in the code.

On Unix-based systems and macOS, you can create the .pgpass file in your home 
directory. On Windows, you can create the file in %APPDATA%\postgresql\
pgpass.conf. %APPDATA% is a Windows system value that points to the current 
application data folder. You can get the actual value of it by opening Windows 
Explorer, typing the exact word %APPDATA%, into the address bar and hitting Enter. 
The folder you are in is the folder this %APPDATA% value points to. The .pgpass file 
should contain one line for every database connection that you want to store, and it 
should follow this format (customized for your database parameters):

hostname:port:database:username:password

For your setup, the entry should be as follows (with the password properly set): 

localhost:5432:sqlda:postgres:my_password

For Unix and Mac users, you will need to change the permissions on the file using the 
following command on the command line (in Terminal):

chmod 0600 ~/.pgpass

For Windows users, it is assumed that you have secured the permissions of the file so 
that other users cannot access it.

Once you have created the file, you can test that it works by calling psql as follows in 
the terminal:

psql -h localhost -p 5432 -d sqlda -U postgres
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As you can see, there is no prompt for the password. psql directly gets into the 
command interface.

Figure 6.30: Passwordless login to psql from the command line

Since the .pgpass file was created successfully, you will not be prompted for 
your password.

With this, you can now connect to your database without typing the password, which 
both speeds up your development and mitigates the risk that you will accidentally 
share a password.

In the following activity, you will use everything you have learned from this chapter to 
see how you can discover sales trends by importing new datasets.

Activity 6.01: Using an External Dataset to Discover Sales Trends

In this activity, you are going to use the United States Census data on public 
transportation usage by zip code to see whether the level of use of public 
transportation shows any correlation to ZoomZoom sales in a given location. 
This will allow you to practice the following skills:

• Importing and exporting data to and from your database

• Interacting with your database programmatically (for example, using Python in 
conjunction with SQLAlchemy and pandas)

Note

Before you begin, you will need to download the public transportation 
statistics by zip code dataset from GitHub: https://packt.link/NdMNL.

https://packt.link/NdMNL
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This dataset contains three columns:

• zip_code: This is the five-digit United States postal code that is used to identify 
a region.

• public_transportation_pct: This is the percentage of the population in a 
postal code that has been identified as using public transportation to commute 
to work.

• public_transportation_population: This is the raw number of people 
in a zip code that use public transportation to commute to work.

Perform the following steps to complete this activity:

1. Copy the data from the public transportation dataset to the ZoomZoom 
customer database by importing this data into a new table in the 
ZoomZoom database.

2. Find the maximum and minimum values of public_transportation_pct 
in this data. Values less than 0 will most likely be missing data.

3. Calculate the average sales amounts for customers that live in high public 
transportation usage regions (over 10%) as well as low public transportation 
usage regions (less than, or equal to, 10%).

4. Read the data into pandas and plot a histogram of the distribution (Hint: you 
can use my_data.plot.hist(y='public_transportation_pct') to 
plot a histogram if you read the data into a my_data pandas DataFrame).

5. Using pandas, test using the to_sql function with and without the 
method=psql_insert_COPY parameter. How do the speeds compare? (Hint: 
in a Jupyter notebook, you can add %time in front of your command to see how 
long it takes to execute the code.)

6. Group customers based on their zip code public transportation usage rounded 
to the nearest 10% and look at the average number of transactions per 
customer. Export this data to Excel and create a scatterplot to better understand 
the relationship between public transportation usage and sales.
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7. Based on this analysis, determine what recommendations you would have for 
the executive team at ZoomZoom when considering expansion opportunities.

Note

To access the source code for this specific section, please refer to  
https://packt.link/tcTFc.

Note 

The solution for this activity can be found via this link.

Summary
In this chapter, you learned how to interface your database with other analytical tools 
for further analysis and visualization. While SQL is powerful, there will still be those 
odd analyses that need to be undertaken in other systems. To solve this problem, 
SQL allows you to transfer data in and out of the database for whatever tasks you 
may require.

Initially, we looked at how you can use the psql command-line tool to query a 
database. From there, we were able to explore the COPY command and the psql-
specific \COPY command, which enabled you to import and export data to and 
from the database in bulk. Next, you looked at programmatically accessing the 
database using analytical software such as Python. From there, you were able to 
explore some of the advanced functionality in Python, including SQLAlchemy and 
pandas, which enabled you to perform data manipulation and visualization using a 
programming language.

In the next chapter, you will examine data structures that can be used to store 
complex relationships in data. You will learn how to mine insights from text data, as 
well as looking at the JSON and array data types so that you can make full use of all 
the information that is available.

https://packt.link/tcTFc






Overview

This chapter covers how to make the most of your data by analyzing 
complex and alternative data types. While data is typically thought of 
as numbers, in the real world, it frequently exists in other formats: text, 
dates and times, and latitude and longitude. In addition to these specialty 
data types, other data types provide the context regarding sequential or 
non-predeterministic attributes. The goal of this chapter is to show how 
you can use SQL and analytics techniques to produce insights from these 
other data types.

By the end of this chapter, you will be able to perform descriptive analytics 
on time series data using datetime. You will use geospatial data to 
identify relationships, then extract insights from complex data types (that is, 
arrays, JSON, and JSONB) and perform text analytics.

Analytics Using Complex Data 

Types

7
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Introduction
In this book, you have learned a lot about SQL's processing power over numbers 
and strings. The majority of data analytics tasks are indeed analyzing numbers and 
strings. However, in the real world, data is often found in various other formats, 
such as words, locations, dates, and, sometimes, complex data structures. This data, 
although presented as numbers and strings, has its own domain of operation and 
computation instead of simple arithmetic. For example, adding one day to January 31, 
2022, will result in February 1, 2022, not January 32, 2022. 

In this chapter, you will look at these data types and examine how you can use this 
data in your analysis:

• Date and time

• Geospatial

• JSON

• ARRAY

• Text

By the end of the chapter, you will have broadened your analysis capabilities so that 
you can leverage just about any type of data available to you.

Date and Time Data types for Analysis
You may be familiar with dates and times, but do you know how these quantitative 
measures are represented? They are represented using numbers, but not a single 
number. Instead, they are measured with a set of numbers, with one number each 
for year, month, day, hour, minute, second, and millisecond.

This is a complex representation, comprising several different components. For 
example, knowing the current minute without knowing the current hour does not 
serve any purpose. Additionally, there are complex ways of interacting with dates and 
times; for example, different points in time can be subtracted from one another. The 
current time can be represented differently depending on where you are in the world.

As a result of these intricacies, you need to take special care when working with this 
type of data. In fact, PostgreSQL, like most databases, offers special data types that 
can represent these types of values. You will start by examining the DATE type.
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The DATE Data type

Dates can be easily represented using strings or numbers (for example, both 
January 1, 2022 and 01/01/2022 clearly represent a specific date), but dates 
are a special form of data as they represent a quantitative value that does not always 
follow the simple numerical sequence. Adding 1 week to the current date means 
adding 7 days, for example. A given date has different properties that you might want 
to use in your analysis—for instance, the year or the day of the week that the date 
represents. Working with dates is also necessary for time series analysis, which is 
one of the most common types of analysis that come up. The SQL standard includes 
the DATE data type, and PostgreSQL offers great functionality for interacting with 
this data type. 

The most common concern about the DATE data type is the display format. 
Different regions use different formats to represent the same date. For example, 
the date January 14, 2022 is written as 01/14/2022 in some countries but 
14/01/2022 in others. You can set your database to display dates in the format that 
you are most familiar with. PostgreSQL uses the DateStyle parameter to configure 
these settings. To view your current settings, you can use the following command:

SHOW DateStyle;

The following is the output of the preceding query in a system where both the 
PostgreSQL server and the pgAdmin client are installed on the same Windows server 
whose system locale is set to the United States:

DateStyle

-----------

ISO, MDY

(1 row)

The first output specifies the International Organization Standardization (ISO) 
output format, which displays the date as Year-Month-Day, and the second output 
parameter specifies the ordering for input or output. In this case, since both the 
server and client are using a United States locale, Month/Day/Year is used as the 
display style. If your PostgreSQL server or client is installed on an operating system 
with a different system locale than the one mentioned here, the result of the previous 
command may be different. For example, if you wanted to set it to the European 
format of Day, Month, Year, you would set DateStyle to 'GERMAN, DMY'. You can 
configure the output for your database using the following command:

SET DateStyle='GERMAN, DMY';
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For this chapter, you will use the ISO display format (Year-Month-Day) and 
the Month/Day/Year input format. You can configure this format by using the 
preceding command.

Now, start by testing out the DATE format:

SELECT '1/8/2022'::DATE;

The following is the output of the query:

date 

------------

 2022-01-08

(1 row)

As you can see, when you input a string, 1/8/2022, using the Month/Day/Year 
format, PostgreSQL understands that this is January 8, 2022 (and not August 1, 
2022). It displays the date using the ISO format specified previously, in the form 
of  YYYY-MM-DD.

Similarly, you could use the following formats with dashes and periods to separate 
the date components, with the same result:

SELECT '1-8-2022'::DATE;

The following is the output of the query:

date 

------------

 2022-01-08

(1 row)

In addition to displaying dates that are input as strings, you can display the current 
date by simply using the current_date keyword in PostgreSQL:

SELECT current_date;

The following is the output of the query:

current_date 

--------------

 2022-06-05

(1 row)
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The DATE data type is useful. The natural extension of it is the data type representing 
the time, such as 10 a.m. or 2 p.m., in a day. The interesting fact is that when people 
talk about time, they usually refer to the combination of a day and a time. Simply 
referring to a time is not enough to determine the exact moment that something 
happens. For example, "the class starts at 6 p.m." very likely implies that the class 
starts at 6 p.m. every Monday for this semester. To avoid any confusion, the SQL 
standard offers the TIMESTAMP data type, which represents a date and a time, 
down to a microsecond, for example, 2022-06-05 13:47:44.472096.

You can see the current timestamp using the NOW() function, and you can specify 
your time zone using AT TIME ZONE '<time zone>'. Here is an example of the 
NOW() function with the Eastern Standard time zone specified:

SELECT NOW() AT TIME ZONE 'EST';

The following is the output of the query:

timezone 

----------------------------

 2022-06-05 13:47:44.472096

(1 row)

You can also use the TIMESTAMP data type without the time zone specified. You can 
get the current time zone with the NOW() function:

SELECT NOW();

The following is the output of the query. The -04 at the end of the string indicates the 
output time zone:

now 

-------------------------------

 2022-06-05 13:47:44.472096-04

(1 row)

Note

In general, it is recommended that you use the timestamp with the 
time zone specified. If you do not specify the time zone, the value 
of the timestamp could be questionable (for example, the time could 
be represented in the time zone where the company is located, in 
Coordinated Universal Time (UTC) time, or the customer's time zone).



272 | Analytics Using Complex Data Types

The DATE and TIMESTAMP data types are helpful not only because they display 
dates in a readable format, but also because they store these values using fewer 
bytes than the equivalent string representation (a DATE type value requires only 
4 bytes, while the equivalent text representation might be 8 bytes for an eight-
character representation such as '20160101'). Additionally, PostgreSQL provides 
special functionalities to manipulate and transform dates. This is particularly useful 
for data analytics.

Transforming Date Data types

Often, you will want to decompose your dates into their component parts. For 
example, while daily sales are important, you may also be interested in the summary 
for each year and month, so that you can review the monthly trend of your sales. You 
may see from this trend which month is your bestselling one so that you can prepare 
your inventory in advance. To do this, you can use EXTRACT(component FROM 
date). Here is an example:

SELECT 

  current_date,

  EXTRACT(year FROM current_date) AS year,

  EXTRACT(month FROM current_date) AS month,

  EXTRACT(day FROM current_date) AS day;

The following is the output of the code:

current_date | year | month | day

--------------+------+-------+-----

2022-06-05  | 2022 |   6 | 5

(1 row)

Similarly, you can abbreviate these components as y, mon, and d, and PostgreSQL will 
understand what you want:

SELECT 

  current_date,

  EXTRACT(y FROM current_date) AS year,

  EXTRACT(mon FROM current_date) AS month,

  EXTRACT(d FROM current_date) AS day;
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The following is the output of the code:

current_date | year | month | day

--------------+------+-------+-----

2022-06-05  | 2022 |   6 | 5

(1 row)

In addition to the year, month, and day, you will sometimes want additional 
components, such as day of the week, week of the year, or quarter. You can 
extract these date parts as follows:

SELECT 

  current_date,

  EXTRACT(dow FROM current_date) AS day_of_week,

  EXTRACT(week FROM current_date) AS week_of_year,

  EXTRACT(quarter FROM current_date) AS quarter;

The following is the output of the code:

current_date | day_of_week | week | quarter

--------------+-------------+------+---------

2022-06-05   |       0 |  23 |      2

(1 row)

Note

EXTRACT always outputs a number; so, in this case, day_of_week 
starts at 0 (Sunday) and goes up to 6 (Saturday). Instead of dow, you can 
use isodow, which starts at 1 (Monday) and goes up to 7 (Sunday).

In addition to extracting date parts from a date, you may want to simply truncate 
your date or timestamp. For example, say you want to view the year and month 
summary for sales, but you only have the date in the sales table. To aggregate the 
sales for year/month, you need to remove the day and timestamp from the date and 
get the year+month output. This can be done using many functions, such as DATE_
TRUNC(), DATE_PART(), or EXTRACT(), each with a slightly different syntax and 
purpose. In the following example, you will use the TO_CHAR() function, which 
extracts the designated parts of a date and organizes them into one string, because 
it offers maximum flexibility over what information you can get and how you want to 
present it:

SELECT NOW(), TO_CHAR(NOW(), 'yyyymm') AS yearmonth;
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The following is the output of the code:

        now       |      yearmonth 

-------------------------------+------------------------

2022-06-05 19:40:08.691618+00 | 202206

The date part extraction functions such as TO_CHAR() and EXTRACT() are 
particularly useful for GROUP BY statements. For example, you can use it to group 
sales by year and month and get the monthly sales for the whole year:

SELECT 

  TO_CHAR(sales_transaction_date, 'yyyymm') AS yearmonth,

  SUM(sales_amount) AS total_quarterly_sales

FROM 

  sales

GROUP BY 

  1

ORDER BY 

  1 DESC;

The result is as follows:

Figure 7.1: Monthly sales using TO_CHAR
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Intervals

In addition to representing dates, you can also represent fixed time intervals using 
the INTERVAL data type. This data type is useful if you want to analyze how long 
something takes. For example, when customers receive a promotional email, they 
may not open it immediately. The interval between the date the email is received 
and the date the email is opened can indicate how attractive the email is to the 
customers. If you want to know how long it takes a customer to open an email after 
receiving it, you need to calculate the interval between those two dates.

Here is an example:

SELECT INTERVAL '5 days';

The following is the output of the code:

interval 

----------

 5 days

(1 row)

Intervals are useful for measuring the difference between two timestamps by 
subtracting these two timestamps. They can also be used to add to/subtract from a 
timestamp to get a new timestamp. For example, if you want to measure the length 
of February, you can calculate the interval between the first day of February and the 
first day of March:

SELECT TIMESTAMP '2022-03-01 00:00:00' - TIMESTAMP '2022-02-01 

00:00:00' AS days_in_feb;

The following is the output of the code:

days_in_feb 

-------------

 28 days

(1 row)

Alternatively, intervals can be used to add the number of days to a timestamp to get a 
new timestamp, such as "what is the date 7 days from now?":

SELECT TIMESTAMP '2022-06-05 00:00:00' + INTERVAL '7 days' AS new_date;
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The following is the output of the code:

new_date

---------------------

 2022-06-12 00:00:00

(1 row)

While intervals offer a precise method for doing timestamp arithmetic, the DATE 
format can be used with integers to accomplish a similar result. In the following 
example, you simply add 7 (an integer) to the date to calculate the new date:

SELECT DATE '2022-06-05' + 7 AS new_date;

The following is the output of the code:

new_date

------------

 2022-06-12

(1 row)

Similarly, you can subtract two dates and get an integer result:

SELECT DATE '2022-03-01' - DATE '2022-02-01' AS days_in_feb;

The following is the output of the code:

days_in_feb 

-------------

28

(1 row)

While the DATE data type offers ease of use, the timestamp with the TIME ZONE 
data type offers precision. If you need your date/time field to be precisely the same 
as the time at which the action occurred, you should use the timestamp with the time 
zone. If not, you can use the DATE field.

Note

All the exercises and activity code for this chapter can also be found on 
GitHub: http://packt.link/LpoE0.

http://packt.link/LpoE0
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Exercise 7.01: Analytics with Time Series Data

ZoomZoom has ramped up its efforts to recruit more customers during the year 
2021, hoping that it can sell more vehicles as the number of new customers grows. In 
this exercise, you will perform a basic analysis using time series data to gain insight 
into whether the sales were affected by the number of new customers. While it 
makes sense to have a day-by-day comparison, daily sales/recruitments can fluctuate 
significantly. It is generally recommended to start from a longer time span, such as 
monthly sales/recruitment, and break down the numbers once you find any patterns. 

Perform the following steps to complete the exercise:

1. First, look at the number of monthly sales. You can use the following aggregate 
query with the TO_CHAR method:

SELECT

  TO_CHAR(sales_transaction_date, 'yyyymm') AS month_date,

  COUNT(1) AS number_of_sales 

FROM 

  sales

WHERE 

  EXTRACT(year FROM sales_transaction_date) = 2021 

GROUP BY 

  1

ORDER BY 

  1;
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After running this SQL, you will get the following result:

 

Figure 7.2: Monthly number of sales

2. Run another query to get the number of new customers joining each month:

SELECT

  TO_CHAR(date_added, 'yyyymm') AS month_date,

  COUNT(1) AS number_of_new_customers

FROM 

  customers

WHERE 

  EXTRACT(year FROM date_added) = 2021

GROUP BY 

  1

ORDER BY 

  1;
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The following is the output of the preceding query:

 

Figure 7.3: Number of new customer sign-ups every month

You can probably see that the flow of new potential customers is fairly steady and 
hovers around 400-500 new customer sign-ups every month, while the number of 
sales (as queried in step 1) varies considerably. So, it looks like the effort of signing up 
new customers may not be directly related to the sales amount.

Note

To access the source code for this specific section, please refer to  
http://packt.link/LpoE0.

http://packt.link/LpoE0
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In this exercise, you used a PostgreSQL function to extract year and month parts from 
a date and used the extracted information to aggregate sales data and customer 
recruitment data to form a time series for comparison. In the next section, you will 
learn about another data type that has its own domain of operations, geospatial data.

Performing Geospatial Analysis in PostgreSQL
In addition to looking at time series data to better understand trends, you can also 
use geospatial information (such as city, country, or latitude and longitude) to better 
understand your customers. For example, governments use geospatial analysis to 
better understand regional economic differences, while a ride-sharing platform might 
use geospatial data to find the closest driver for a customer.

You can represent a geospatial location using latitude and longitude coordinates, and 
this will be the fundamental building block for you to begin geospatial analysis.

Latitude and Longitude

Locations are often thought about in terms of the address—the city, state, country, or 
postal code that is assigned to the location that you are interested in. This is usually 
from an analytics perspective. For example, you can look at the sales volume in the 
ZoomZoom sales table by city and come up with meaningful results about which 
cities are performing well.

Often, you need to understand geospatial relationships numerically to understand 
the distances between two points or relationships that vary based on where you are 
on a map. After all, if you live on the border between two cities, it is unlikely that your 
spending behavior will suddenly change if you walk across into the other city.

Latitude and longitude allow you to look at the location in a continuous context. This 
allows you to analyze the numeric relationships between location and other factors 
(for example, sales). Latitude and longitude also enable you to look at the distances 
between two locations.

Latitude tells you how far north or south a point is. A point at +90° latitude is at the 
North Pole, while a point at 0° latitude is at the equator, and a point at -90° is at the 
South Pole. On a map, lines of constant latitude run east and west.
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Longitude tells you how far east or west a point is. On a map, lines of constant 
longitude run north and south. Greenwich, England, is the point of 0° longitude. 
Points can be defined using longitude as west (-) or east (+) of this point and values 
range from -180° west to +180° east. These values are equivalent because they both 
point to the vertical line that runs through the Pacific Ocean, which is halfway around 
the world from Greenwich, England.

Representing Latitude and Longitude in PostgreSQL

In PostgreSQL, you can represent latitude and longitude using two floating-point 
numbers. In fact, this is how latitude and longitude are represented in the ZoomZoom 
Customers table:

SELECT

  latitude,

  longitude

FROM 

  customers

WHERE 

  latitude IS NOT NULL

LIMIT 

  10;

Here is the output of the preceding query:

Figure 7.4: The latitudes and longitudes of ZoomZoom customers
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Here, you can see that all the latitudes are positive because the United States is north 
of the equator. All the longitudes are negative because the United States is west of 
Greenwich, England. You can also notice that some customers do not have latitude 
and longitude values filled in, because their location is unknown.

While these values can give you the exact location of a customer, you cannot do much 
with that information, because distance calculations require trigonometry and make 
simplifying assumptions that the earth is perfectly round.

Thankfully, PostgreSQL has the tools to solve this problem. You can calculate 
distances in PostgreSQL using two packages, earthdistance and cube. You can 
install these two packages by running the following two commands in pgAdmin:

CREATE EXTENSION cube;

CREATE EXTENSION earthdistance;

These two extensions only need to be installed once by running the two preceding 
commands. The earthdistance module depends on the cube module so you 
must install the cube module first. Once you install the earthdistance module, 
you can define a POINT data type:

SELECT

  POINT(longitude, latitude)

FROM 

  customers

WHERE 

  longitude IS NOT NULL

LIMIT 

  10;
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Here is the output of the preceding query:

Figure 7.5: Customer latitude and longitude represented as points in PostgreSQL

Note

A POINT data type is defined as a combination of two numbers enclosed 
with parenthesis, with the first number being longitude and the second being 
latitude, such as (-90, 38). This is contrary to the convention of latitude 
followed by longitude. The rationale behind this is that longitude more 
closely represents points along an x axis, latitude more closely represents 
points on the y axis, and in mathematics, graphical points are usually noted 
by their x coordinate followed by their y coordinate.

The earthdistance module also allows you to calculate the distance between 
points in miles:

SELECT

 point(-90, 38) <@> point(-91, 37) AS distance_in_miles;
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Here is the output of the preceding query:

distance_in_miles

-------------------

 88.1949338379752

(1 row)

In this example, you defined two points, (38° N, 90° W) and (37° N, 91° W), and 
were able to calculate the distance between these points using the <@> operator. 
This operator calculates the distance in miles (in this case, these two points are 88.2 
miles apart).

In the next exercise, you will see how you can use these distance calculations in a 
practical business context.

Exercise 7.02: Geospatial Analysis

In this exercise, you will identify the closest dealership for each customer. ZoomZoom 
marketers are trying to increase customer engagement by helping customers find 
their nearest dealership. The product team is also interested to know what the typical 
distance is between each customer and their closest dealership.

Follow these steps to implement the exercise:

1. Create a table with the longitude and latitude points for every customer:

CREATE TEMP TABLE customer_points AS (

  SELECT

    customer_id,

point(longitude, latitude) AS lng_lat_point

  FROM 

customers

  WHERE 

longitude IS NOT NULL

  AND 

    latitude IS NOT NULL

);

2. Create a similar table for every dealership:

CREATE TEMP TABLE dealership_points AS (

  SELECT

    dealership_id,

    point(longitude, latitude) AS lng_lat_point
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  FROM 

    dealerships

);

3. Cross-join these tables to calculate the distance from each customer to each 
dealership (in miles):

CREATE TEMP TABLE customer_dealership_distance AS (

  SELECT

    customer_id,

    dealership_id,

    c.lng_lat_point <@> d.lng_lat_point AS distance

  FROM 

    customer_points c

  CROSS JOIN 

    dealership_points d

);

4. Finally, for each customer ID, you select the dealership with the shortest 
distance. So far, you have got the location for customers and dealerships and 
obtained distances from each customer to each dealership. The next task is to 
find the customer-dealership combination that has the shortest distance for the 
customer using a DISTINCT ON clause. As discussed in Chapter 6, Importing 
and Exporting Data, the DISTINCT ON clause guarantees only the first record 
for each unique value of the column in parentheses. In this case, you will get one 
record for every customer_id value, and because this is sorted by distance to 
dealerships, you will get the dealership that has the shortest distance:

CREATE TEMP TABLE closest_dealerships AS (

  SELECT DISTINCT ON (customer_id)

    customer_id,

    dealership_id,

    distance

  FROM customer_dealership_distance

  ORDER BY customer_id, distance

);
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5. Now that you have the data to fulfill the marketing team's request, you can 
calculate the typical distance from each customer to their closest dealership. You 
have learned that there are two common ways to represent the typical value of a 
dataset, mean and median. You will get both using the following query:

SELECT

  AVG(distance) AS avg_dist,

  PERCENTILE_DISC(0.5) 

    WITHIN GROUP (ORDER BY distance) AS median_dist

FROM 

  closest_dealerships;

Here is the output of the preceding query:

Figure 7.6: The average and median distances between  
customers and their closest dealership

The result is that the average distance is about 147 miles away, but the median 
distance is about 91 miles.

There is a clear difference between the mean and median. As you learned in 
Chapter 1, Understanding and Describing Data, both are important indicators of central 
tendency, which represents the most typical value of the dataset. But why are these 
two typical values for the same dataset so different? What does this tell you about 
the data? In Chapter 1, Understanding and Describing Data, you learned that the mean 
is more sensitive to outliers. There are apparently some customers whose distance 
to the closest dealership is much greater than most customers. As such, the mean is 
significantly larger than the median. Generally, it is a good idea to calculate both the 
mean and median of a variable. If there is a significant difference in the values of the 
mean and the median, then the dataset may have outliers. You need to identify these 
outliers for further analysis.
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As you identify the issue with this dataset, a question is whether these outliers are 
caused by data quality issues or not. As you identify which customers are outliers, 
you review their residential data source to confirm that their registered address is 
truly their most up-to-date residential address, not the address they lived at 10 years 
ago. Once identified, you will use the techniques you learned in previous chapters to 
update the information and rerun the analysis, thus forming a loop of data cleansing 
and improvement. This is a very common and useful workflow in the data analytics 
field. It will also help improve the quality of operational data and reduce unnecessary 
waste and mistakes by the operation team.

But what if the data is correct? How will this information be useful to the business? 
Always remember that the purpose of data analytics is to provide insight into 
the business. Now that you know some customers live further from dealerships 
than most customers, what decisions can you make based on this knowledge? 
Do you consider the existence of these customers to indicate the need for more 
dealerships in their area? These observations and analyses are exactly what the 
management team expects the data analysts to do and should be discussed with 
the management team.

Note

To access the source code for this specific section, please refer to  
http://packt.link/LpoE0.

In this section, you have learned that the calculation of geospatial data requires two 
particular packages, together with a specific data type, POINT. In this exercise, you 
identified the closest dealership for each customer by creating the POINT value for 
each customer and each dealership, calculating the distance between each customer 
and every possible dealership using the distance calculation function between points, 
identifying the closest dealership for each customer using the DISTINCT ON clause, 
and finding the average and median distances to a dealership for your customers. 
You were also introduced to some further discussion on what the result data may 
bring you, both from a data cleansing perspective and a data analysis perspective. 
The result of this analysis could provide management with a fresh idea to expand 
the business.

http://packt.link/LpoE0
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Using Array Data types in PostgreSQL
While the PostgreSQL data types that you have explored so far allow you to store 
many different types of data, occasionally you will want to store a series of values in 
a table. For example, you might want to store a list of the products that a customer 
has purchased or the employee ID numbers associated with a specific dealership. For 
this scenario, PostgreSQL offers the ARRAY data type, which allows you to store a list 
of values.

Starting with Arrays

PostgreSQL arrays allow you to store multiple values in a field in a table. For 
example, consider the following first record in the customers table:

customer_id        | 1

title              | NULL

first_name         | Arlena

last_name          | Riveles

suffix             | NULL

email              | ariveles0@stumbleupon.com

gender             | F

ip_address         | 98.36.172.246

phone              | NULL

street_address     | NULL

city               | NULL

state              | NULL

postal_code        | NULL

latitude           | NULL

longitude          | NULL

date_added         | 2019-12-19 00:00:00

Each field contains exactly one value (the NULL value is still a value); however, there 
are some attributes that might contain multiple values with an unspecified length. For 
instance, say you wanted to have a purchased_products field. This could contain 
zero or more values within the field. Imagine the customer purchased the Lemon and 
Bat Limited Edition scooters. You could represent that as follows:

purchased_products | {Lemon,"Bat Limited Edition"}
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You can define an array in a variety of ways. One of the ways to get started is simply 
by creating an array using the following command:

SELECT 

  ARRAY['Lemon', 'Bat Limited Edition'] AS example_purchased_products;

The following is the output of the code:

example_purchased_products 

-------------------------------

 {Lemon,"Bat Limited Edition"}

PostgreSQL knows that the Lemon and Bat Limited Edition values are of the 
TEXT data type, so it creates a TEXT array to store these values.

While you can create an array for any data type, the array is limited to values for that 
data type only. So, you could not have an integer value followed by a text value or vice 
versa (this would produce an error).

You can also create arrays using the ARRAY_AGG aggregate function. This aggregate 
function will create an array of all the values in the group. This is useful when you 
want to have a consolidated list of sub-attributes for each value in a parent attribute. 
For example, the following query aggregates all the vehicles for each product type:

SELECT 

  product_type, ARRAY_AGG(DISTINCT model) AS models 

FROM 

  products 

GROUP BY 

  1;

The following is the output of the preceding query, in which all the models of 
automobile form an array that corresponds to the automobile product type, and all 
the models of scooter form an array that corresponds to the scooter product type:

Figure 7.7: Output of the ARRAY_AGG function
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You can also specify how to order the elements by including an ORDER BY statement 
in the ARRAY_AGG function, as in the following example:

SELECT 

  product_type, 

  ARRAY_AGG(model ORDER BY year) AS models 

FROM   

  products 

GROUP BY 

  1;

This is the output:

Figure 7.8: Output of the ARRAY_AGG function with ORDER BY

But there might be situations where you would want to reverse this operation. This 
can be done by using the UNNEST function, which creates one row for every value in 
the array:

SELECT UNNEST(ARRAY[123, 456, 789]) AS example_ids;

Here is the output of the preceding query:

example_ids

-------------

123

456

789

(3 rows)

You can also create an array by splitting a string value using the STRING_TO_ARRAY 
function. A common scenario is that when you use external transaction systems, 
many systems these days will generate text outputs containing all the information in 
one string. You will need to break the string into multiple parts and parse each part 
accordingly. Here is an example:

SELECT STRING_TO_ARRAY('hello there how are you?', ' ');
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In this example, the sentence is split using the second string (' '), and you end up 
with the following result:

string_to_array

--------------------------

{hello,there,how,are,you?}

(1 row)

Similarly, you can run the reverse operation and concatenate an array of strings into 
a single string:

SELECT 

  ARRAY_TO_STRING(

    ARRAY['Lemon', 'Bat Limited Edition'], ', '

  ) AS example_purchased_products;

In this example, you can join the individual string with the second string using ',':

example_purchased_products

---------------------------

Lemon, Bat Limited Edition

There are other functions that allow you to interact with arrays. Here are a few 
examples of the additional array functionalities that PostgreSQL provides:

Figure 7.9: Examples of additional array functionality

In Exercise 7.03, Analyzing Sequences Using Arrays, you will apply these operators and 
array functionality to capture sequences of marketing touchpoints.
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Exercise 7.03: Analyzing Sequences Using Arrays

In this exercise, you will use arrays to analyze sequences. ZoomZoom sends emails 
to customers in series. For example, before the December holiday season, they 
will send out an email providing a product catalog of all the things they sell. During 
the season, they will send out updates on what product is selling well and what 
discounts are provided. After the season, they will send out thank you emails and 
offer further products and discounts. The marketing team wants you to identify the 
three most common email sequences. You will help them to better understand how 
different these sequences are by looking at whether these sequences are supersets 
of one another:

1. First, create a table that represents the email sequence for every customer:

CREATE TEMP TABLE customer_email_sequences AS (

  SELECT

    customer_id,

    ARRAY_AGG(

      email_subject ORDER BY sent_date

    ) AS email_sequence

  FROM 

emails

  GROUP BY 

    1

);

2. Next, identify the three most common email sequences. Given that you already 
have the email sequences, you can do this by using ORDER BY with LIMIT 
3. As the ORDER BY clause is based on the occurrence of email sequences, 
the SELECT statement will yield the sequences with the most frequent 
ones first. Then with the LIMIT 3 clause, the statement will return only the 
top 3 sequences:

CREATE TEMP TABLE top_email_sequences AS (

  SELECT

    email_sequence,

    COUNT(1) AS occurrences

  FROM 

    customer_email_sequences

  GROUP BY 

    1

  ORDER BY 
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    2 DESC

  LIMIT 

    3

);

SELECT 

  email_sequence 

FROM 

  top_email_sequences;

The code will generate three rows. They are too long to display inside one figure 
so only the first one is shown below:

Figure 7.10: The first result from email sequences

3. Lastly, you would want to check which of these arrays is a superset of the 
other arrays. It is possible that some customers joined later than others, so 
they only received a part of the email sequence. You need to identify these 
sub-sequences as a part of the complete email sequence. The only issue is that 
the email sequence fields are very long and are not intuitive to read through with 
human eyes. To help with this, it is helpful to give your rows a numeric ID for 
identification:

ALTER TABLE 

  top_email_sequences 

ADD COLUMN 

  id SERIAL PRIMARY KEY;

4. Next, you can cross-join the table to itself, and use the @> operator to 
check whether an array containing an email sequence contains another 
email sequence:

SELECT

  super_email_seq.id AS superset_id,

  sub_email_seq.id AS subset_id

FROM 

  top_email_sequences AS super_email_seq
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CROSS JOIN 

  top_email_sequences AS sub_email_seq

WHERE 

  super_email_seq.email_sequence @> sub_email_seq.email_sequence

AND 

  super_email_seq.id != sub_email_seq.id;

The following is the output of the code:

 

Figure 7.11: These results indicate the top email sequences that are supersets of each other

From this, you can gather that the top email sequence contains the second and third 
most common email sequences, while the third most common email sequence is a 
superset of the second most common sequence. This type of analysis is generally 
helpful when looking at what customer touchpoints might lead someone to make a 
purchase or not. For example, some customers joining late may not have received the 
first email, the holiday season product catalog. But if a similar percentage of these 
customers and the customers who have received the first email made a purchase 
after receiving the holiday season discount email, you may reasonably suspect that 
the holiday season discount email is the main reason for purchase, not the product 
catalog. This is also known as attribution modeling.

Note

To access the source code for this specific section, please refer to  
http://packt.link/LpoE0.

While arrays are great for lists of values and sequences, the JSON data type can 
enable you to manage data in key-value pairs, which you will explore in detail in the 
next section.

http://packt.link/LpoE0
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Using JSON Data types in PostgreSQL
While arrays can be useful for storing a list of values in a single field, sometimes 
your data structures can be complex. You might want to store multiple values of 
different types in a single field, and you might want data to be keyed with labels 
rather than stored sequentially. These are common issues with log-level data, as well 
as alternative data. For example, a healthcare patient database may contain a field 
called prescription, which contains all the prescriptions of a patient. Some patients 
may not have any prescriptions, thus this field may be empty. Other patients may 
have multiple prescriptions, and each patient's prescription may be different from 
the others. One patient may have a hypertension drug of 10mg per day. Another 
may have an insomnia drug of two pills per night. Yet another patient may have both. 
It is very hard to store these in a predefined format, so they are usually stored as 
key-value pairs using the JSON format.

JavaScript Object Notation (JSON) is an open standard text format for storing data 
of varying complexity. It can be used to represent just about anything, such as the 
healthcare patient information you saw previously. This is different from the ARRAY 
data type, which can store multiple values. The values must be of the same type. A 
database table has column names, whereas JSON data has keys. You can use JSON to 
represent a record from your customers table easily by storing column names as 
keys and row values as values. The row_to_json function transforms rows to JSON:

SELECT row_to_json(c) FROM customers c limit 1;

Here is the output of the preceding query:

Figure 7.12: A row converted to JSON

This is a little hard to read, but you can add the pretty_bool flag to generate a 
readable version. In the following query, the second parameter of the row_to_json 
function is the pretty_bool flag and it is set to TRUE:

SELECT row_to_json(c, TRUE) FROM customers c limit 1;
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Here is the output of the preceding query:

Figure 7.13: JSON output from row_to_json

As you can see, once you reformat the JSON output from the query, row_to_json 
presents a simple, readable, text representation of your row. The JSON structure 
contains keys and values. In this example, the keys are simply the column names, 
and the values come from the row values. JSON values can either be numeric values 
(integers or floats), Boolean values (True or False), text values (wrapped with 
double quotation marks), or simply NULL.

JSON can also include nested data structures. For example, consider a hypothetical 
scenario in which you want to include purchased products in the table as well. Say 
that there are two purchased products, Lemon and Bat Limited Edition. You 
could write your JSON document this way:

{

  "customer_id":1,

  "example_purchased_products":["Lemon", "Bat Limited Edition"]

}
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Or you could take this example one step further, adding the complete sales records 
of these two products to this customer's record:

{ 

  "customer_id": 7, 

  "sales": [ 

    { 

      "product_id": 7, 

      "sales_amount": 599.99, 

      "sales_transaction_date": "2019-04-25T04:00:30"

    }, 

    { 

      "product_id": 1, 

      "sales_amount": 399.99, 

      "sales_transaction_date": "2011-08-08T08:55:56"

    }, 

    {   

      "product_id": 6, 

      "sales_amount": 65500, 

      "sales_transaction_date": "2016-09-04T12:43:12"

    } 

  ], 

}

In this example, you have a JSON object with two keys: customer_id and sales. 
As you can see, the sales key points to a JSON array of values, but each value is 
another JSON object representing one sale. JSON objects that exist within a JSON 
object are referred to as nested JSON. In this case, you have represented all the sales 
transactions for a customer using a nested array that contains nested JSON objects 
for each sale.

While JSON is a universal format for storing data, it is inefficient because everything 
is stored as one long text string. To retrieve a value associated with a key, you 
would need to first parse the text, and this has a relatively high computational cost 
associated with it. If you just have a few JSON objects, this performance overhead 
might not be a big deal. However, it might become a burden if you are trying to 
perform a JSON operation on a large dataset, such as selecting the JSON object with 
"customer_id": 7 from millions of other JSON objects in your database.

In the next section, you will learn about JSONB, a binary JSON format that is optimized 
for PostgreSQL. This data type allows you to avoid a lot of the parsing overhead 
associated with a standard JSON text string.
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JSONB: Pre-Parsed JSON

As you saw previously, JSON is stored and transferred as a text string. For the 
computer to understand what key it contains and what value corresponds to each 
key, the computer must break up the string into key-value pairs. This will increase the 
time and resources required to handle JSON data. PostgreSQL provides a data type 
called JSONB, which is JSON but stored in pre-parsed format. Upon receiving a JSON 
string for a JSONB column, PostgreSQL will decompose the string into binary format. 
This is advantageous as there is a significant performance improvement when 
querying the keys or values in a JSONB field. This is because the keys and values do 
not need to be parsed; they have already been extracted and stored in an accessible 
binary format.

Note

JSONB differs from JSON in a few other ways as well. First, in JSONB, 
you cannot have more than one key with the same name. Second, the key 
order is not preserved. Third, semantically insignificant details, such as 
whitespace, are not preserved.

Accessing Data from a JSON or JSONB Field

JSON keys can be used to access the associated value using the -> operator. Here is 
an example:

SELECT

  '{

    "a": 1,

    "b": 2,

    "c": 3

  }'::JSON -> 'b' AS data;

In this example, you have a three-key JSON value, and you are trying to access the 
value for the b key. The output is a single output: 2. This is because the -> 'b' 
operation gets the value for the b key from the preceding JSON format, {"a": 1, 
"b": 2, "c": 3}.
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PostgreSQL also allows more complex operations to access the nested JSON format 
by using the #> operator. Look at the following example:

SELECT

  '{

    "a": 1,

    "b": [

      {"d": 4},

      {"d": 6},

      {"d": 4}

    ],

    "c": 3

  }'::JSON #> ARRAY['b', '1', 'd'] AS data;

On the right side of the #> operator, a text array defines the path to access the 
desired value. Its operation can be broken down into three steps: 

1. Select the 'b' value, which is a list of nested JSON objects. 

2. Select the element in the array denoted by '1', which is a nested JSON object 
{"d": 6}. Note that with the suffix '1', the second element is returned 
because array indexes start at 0. 

3. Select the value associated with the 'd' key, and the output is 6.

These functions work with JSON or JSONB fields (keep in mind that they will run much 
faster on JSONB fields). JSONB, however, also enables additional functionality. For 
example, you want to filter rows based on a key-value pair, such as filtering on the 
customer_id field inside the sales transaction record of the JSON format. You could 
use the @> operator, which checks whether the JSONB object on the left contains the 
key value on the right. Here is an example:

SELECT 

  * 

FROM 

  customer_sales 

WHERE 

  customer_json @> '{"customer_id":20}'::JSONB;

The preceding query outputs the corresponding JSONB record:

{"email": "ihughillj@nationalgeographic.com", "phone": null, "sales": 
[], "last_name": "Hughill", "date_added": "2012-08-08T00:00:00", "first_
name":"Itch", "customer_id": 20}
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With JSONB, you can also make your output more readable using the jsonb_
pretty function:

SELECT JSONB_PRETTY(customer_json) FROM customer_sales WHERE customer_
json @> '{"customer_id":20}'::JSONB;

Here is the output of the preceding query:

 

Figure 7.14: Output from the JSONB_PRETTY function

One issue with JSON format is that it is not accepted by all the data processing 
software on the market. To make use of this software, you will need to break JSON 
into a relational dataset, which means the result must be a two-dimensional table 
with two columns. One column contains the key and the other contains the value. 
You can also select just the keys from the JSONB field, and unnest them into multiple 
rows using the JSONB_OBJECT_KEYS function. Using this function, you can also 
extract the value associated with each key from the original JSONB field using the -> 
operator. Here is an example:

SELECT

  JSONB_OBJECT_KEYS(customer_json) AS keys,

  customer_json -> JSONB_OBJECT_KEYS(customer_json) AS values

FROM 

  customer_sales

WHERE 

  customer_json @> '{"customer_id":20}'::JSONB

;
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The following is the output of the preceding query:

Figure 7.15: Key-value pairs exploded into multiple rows using  
the JSONB_OBJECT_KEYS function

Leveraging the JSON Path Language for JSONB Fields

In addition to the previous functions (such as JSONB_OBJECT_KEYS) and operators 
(such as ->), PostgreSQL also offers a special JSON path language that can be 
leveraged to query data within a JSONB field. The first of these functions can check 
whether a path exists in your JSON object:

SELECT

  jsonb_path_exists(customer_json, '$.sales[0]')

FROM 

  customer_sales

LIMIT 

  3;

The following is the output of the document:

jsnob_path_exists

-----------------

t

t

t

(3 rows)
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The jsonb_path_exists function has two required parameters: the JSONB value 
and the JSON path. The JSON path expression uses the JSON path language. Within 
this JSON path language, $ represents the root of the JSON value, and the .key 
notation is used to access the value for a given key. In this case, you can access the 
sales element directly under root using $.sales. The [0] value represents that 
you want the first value contained in the sales array. Alternatively, you could have 
specified [*] to represent all elements in the sales array. This query simply goes 
through the JSON value in each row, checks whether the JSON value contains a sales 
field under its root or not, and returns a Boolean value of true or false based on 
the result.

You can also add additional filters to this query. For example, you might want to 
check whether there are any sales with a sale_amount value of over $400. You can 
do this by adding a filter expression, which makes SQL return TRUE only for the 
rows containing the path, as well as meeting the filter criteria:

SELECT

  jsonb_path_exists(

    customer_json, 

    '$.sales[*].sales_amount ? (@ > 400)'

  )

FROM 

  customer_sales

LIMIT 

  3;

The following is the output of the document:

jsnob_path_exists

-----------------

t

f

f

(3 rows)

In this altered query, you added another element to the path, .sales_amount, 
which gets the sale amount for each sale in the sales array. You also added a filter 
expression using the ? operator. In this case, the ? (@ > 400) filter expression 
indicates that you only get true for values greater than 400.

In addition to checking whether a JSON path exists (with or without additional filter 
criteria), you can also query the result:
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SELECT

  jsonb_path_query(customer_json, '$.sales[0].sales_amount')

FROM 

  customer_sales

LIMIT 

  3;

The following is the output of the document:

jsnob_path_query

-----------------

479.992

314.991

319.992

(3 rows)

In this case, the jsonb_path_query function grabs the first sale using the 
positional index, [0], and grabs the value associated with the sales_amount key. 
Similar to UNNEST, the jsonb_path_query function will expand a result with more 
than one match to multiple rows:

SELECT

  jsonb_path_query('{"test":[1, 2, 3]}', '$.test[*]')

;

The following is the output of the code:

jsnob_path_query

-----------------

1

2

3

(3 rows)

Note

If a path does not exist that meets the filter criteria (if any), jsonb_
path_query will remove that entire row from the output. This is a bit 
counterintuitive because, normally, row filtering can only happen due to 
expressions evaluated in the WHERE clause, so this functionality can 
produce unexpected results.
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But what if you want to grab the array of sales amounts in cases where there are 
multiple sales or no sales? In the following examples, you might want to instead use 
jsonb_path_query_array. In the following example, you return the entire array 
of sales amounts that are greater than $400:

SELECT

  jsonb_path_query_array(

    customer_json, 

    '$.sales[*].sales_amount ? (@ > 400)'

  )

FROM 

  customer_sales

LIMIT 

  3;

The following is the output of the code:

jsnob_path_query_array

-----------------

[479.992]

[]

[]

(3 rows)

In this case, the first record contains the $.sales[*].sales_amount path, 
and has one sale over the threshold, so the jsonb_path_query_array 
function returns the sales value array. The second and third rows had sales in the 
$.sales[*].sales_amount path but none of the values are over the threshold. 
So, the jsonb_path_query_array function returns the NULL array for both rows.

Creating and Modifying Data in a JSONB Field

You can also add and remove elements from JSONB. For example, to add a new 
key-value pair, "c": 2, you can do the following:

select jsonb_insert('{"a":1,"b":"foo"}', ARRAY['c'], '2');

Here is the output of the preceding query:

{"a": 1, "b": "foo", "c": 2}
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If you wanted to insert values into a nested JSON object, you could do that too:

select jsonb_insert('{"a":1,"b":"foo", "c":[1, 2, 3, 4]}', ARRAY['c', 

'1'], '10');

This would return the following output:

{"a": 1, "b": "foo", "c": [1, 10, 2, 3, 4]}

In this example, ARRAY[c, 1] represents the path where the new value should be 
inserted. In this case, it first grabs the c key and the corresponding array value, then 
inserts the value (10) at position 1.

To remove a key, you can simply subtract the key that you want to remove. Here is 
an example:

SELECT '{"a": 1, "b": 2}'::JSONB - 'b';

In this case, you have a JSON object with two keys: a and b. When you subtract b, you 
are left with just the a key and its associated value:

{"a": 1}

So far in this section, you have learned the definition of JSON, how to use JSON data 
in PostgreSQL, the benefits of the JSONB data type, and how to explore and process 
JSONB data using specific functions. In addition to the methodologies described here, 
you might want to search through multiple layers of nested objects. You will practice 
these skills in the following exercise.

Exercise 7.04: Searching through JSONB

In this exercise, you will identify the values using data stored as JSONB. Many source 
systems today will send the transaction information to downstream systems such 
as data analytics software in the format of a JSON string. You will need to properly 
identify values from JSON strings before many of the downstream systems can 
utilize the content. Suppose you want to identify all customers who purchased a 
Blade scooter; you can do this using data stored as JSONB. Complete the exercise by 
implementing the following steps:

1. In this step, you will explode each sale into its own row using the JSONB_
ARRAY_ELEMENTS function: 

CREATE TEMP TABLE customer_sales_single_sale_json AS (

  SELECT

    customer_json,

    JSONB_ARRAY_ELEMENTS(customer_json -> 'sales') AS sale_json
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  FROM 

    customer_sales 

  LIMIT 

    10

);

2. Filter this output and grab the records where product_name is 'Blade':

SELECT DISTINCT 

  customer_json 

FROM 

  customer_sales_single_sale_json 

WHERE 

  sale_json ->> 'product_name' = 'Blade';

The ->> operator is similar to the -> operator, except it returns text output 
rather than JSONB output. This outputs the following result:

Figure 7.16: Records where product_name is Blade

3. Use the JSONB_PRETTY() function to format the output and make the result 
easier to read:

SELECT DISTINCT 

  JSONB_PRETTY(customer_json) 

FROM 

  customer_sales_single_sale_json 

WHERE 

  sale_json ->> 'product_name' = 'Blade';
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Here is the output of the preceding query:

Figure 7.17: Format the output using JSONB_PRETTY()

You can now easily read the formatted result after using the JSONB_PRETTY() 
function. 

4. Perform this same action with the JSON path expressions:

CREATE TEMP TABLE blade_customer_sales AS (

  SELECT

    jsonb_path_query(

      customer_json,

      '$ ? (@.sales[*].product_name == "Blade")'

    ) AS customer_json

  FROM 

    customer_sales

);

SELECT 

  JSONB_PRETTY(customer_json) 

FROM 

  blade_customer_sales;
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5. Finally, count the number of customers who purchased a Blade:

SELECT 

  COUNT(1) 

FROM 

  blade_customer_sales;

The following is the output of the code:

Count

------

986

(1 row)

In this exercise, you identified the values using data stored as JSONB. You used NB_
PRETTY() and JSONB_ARRAY_ELEMENTS() to complete this exercise.

Note

To access the source code for this specific section, please refer to  
http://packt.link/LpoE0.

As you learned in Chapter 1, Understanding and Describing Data, data can be 
categorized as structured, semi-structured, and unstructured. Relational datasets 
are the most common type of structured data, and JSON is one of the most common 
types of semi-structured data, which allows you to store complex information using 
text. You will also often run into data that is stored in an unstructured format, such as 
free speech text. Lots of effort has been put into unstructured text analysis. While it 
can be difficult to decode these text fields if there is no predefined structure, you can 
often produce meaningful insights from these fields. In the following section, you will 
look at various techniques for interacting with text fields, and then examine how you 
can produce analytics-based insights from pure text.

http://packt.link/LpoE0
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Text Analytics Using PostgreSQL
In addition to performing analytics using complex data structures within PostgreSQL, 
you can also make use of the non-numeric data available. Often, the text contains 
valuable insights. For instance, you can imagine a salesperson keeping notes on 
prospective clients, such as "Very promising interaction, the customer is looking 
to make a purchase tomorrow," is valuable data, as does this note: "The customer 
is uninterested. They no longer have a need for the product." While this text can 
be valuable for someone to manually read, it can also be valuable in the analysis. 
Keywords in these statements, such as "promising," "purchase," "tomorrow," 
"uninterested," and "no," can be extracted using the right techniques to try to identify 
top prospects in an automated fashion.

Any block of text can have keywords that can be extracted to uncover trends or make 
predictions—for example, in customer reviews, email communications, or sales 
notes. In many circumstances, text data might be the most relevant data available, 
and you need to use it to create meaningful insights.

In this section, you will look at how you can use some PostgreSQL functionality to 
extract keywords that will help you to identify trends. You will also leverage text 
search capabilities in PostgreSQL to enable rapid searching.

Tokenizing Text

While large blocks of text (for example, sentences and paragraphs) can provide useful 
information to convey to a human reader, there are few analytical solutions that can 
draw insights from unprocessed text. In almost all these cases, it is helpful to parse 
text into individual words. 

Often, the text is broken down into component tokens, where each token is a 
sequence of characters that are grouped together to form a semantic unit. Usually, 
each token is simply a word in the sentence, although in certain cases (such as the 
word "can't"), your parsing engine might parse two tokens: "can" and "not."

Note

Even cutting-edge Natural Language Processing (NLP) techniques 
usually involve tokenization before the text can be processed. NLP can be 
useful to run an analysis that requires a deeper understanding of the text.
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Words and tokens are useful because they can be matched across documents in 
your data. This allows you to draw high-level conclusions at the aggregate level. For 
example, if you have a dataset containing sales notes, and parse out the "interested" 
token, you can hypothesize that sales notes containing "interested" are associated 
with customers who are more likely to make a purchase. So, when a new customer 
comes and makes an initial request, if you see the word "interested" in the note, 
you may want to pay more attention to this request, which has a higher potential of 
realizing a sale.

PostgreSQL has functionality that makes tokenization easy. You can start by using the 
STRING_TO_ARRAY function, which splits a string into an array using a delimiter, for 
example, a space:

SELECT STRING_TO_ARRAY('Danny and Matt are friends.', ' ');

The following is the output of the preceding query:

{Danny,and,Matt,are,friends.}

In this example, the sentence 'Danny and Matt are friends.' is split using 
the space character.

In this example, the output includes punctuation, which might be better removed. 
You can remove punctuation by using the REGEXP_REPLACE function. This 
function accepts four arguments: the text you want to modify, the text pattern that 
you want to replace, the text that should replace it, and any additional flags (most 
commonly, you will add the g flag, specifying that the replacement should happen 
globally, or as many times as the pattern is encountered). You can remove the 
period using a pattern that matches the punctuation defined in the \!@#$%^&*()-
=_+,.<>/?|[] string and replace it with space or an empty string:

SELECT 

  REGEXP_REPLACE(

    'Danny and Matt are friends.', 

    '[!,.?-]', 

    ' ', 

    'g'

  );

The following is the output of the preceding query:

Danny and Matt are friends
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As you can see, the punctuation has been removed.

PostgreSQL also includes stemming functionality, which is useful for identifying 
the root stem of the token. Stem refers to the base word of a term. For example, 
the tokens "run," "ran," and "running" contain the same stem, "run," and are not 
that different in terms of their meaning. The TS_LEXIZE function can help you 
standardize your text by returning the stem of the word, as demonstrated in the 
following example:

SELECT TS_LEXIZE('english_stem', 'running');

The preceding code returns the following:

{run}

You can use these techniques to identify tokens in text. You will learn how to apply 
them in the next exercise.

Exercise 7.05: Performing Text Analytics

You probably have visited some e-commerce websites that, after a purchase, ask you 
to leave some feedback. From a technical perspective, this feedback is free-form text 
containing different words. If you can systematically extract some information, you 
can help the business team to improve its process and enhance the user experience.

You have similar data in your ZoomZoom database. In this exercise, you want to 
quantitatively identify keywords that correspond with higher-than-average ratings 
or lower-than-average ratings using text analytics. In your ZoomZoom database, you 
have access to some customer survey feedback, along with ratings for how likely 
the customer is to refer their friends to ZoomZoom. These keywords will allow you 
to identify key strengths and weaknesses for the executive team to consider in the 
future. You can follow these steps to complete the exercise:

1. Query the data from the customer survey table to gain some familiarity with the 
dataset. This will help you to understand the columns in the table and the data 
inside those columns:

SELECT * FROM customer_survey limit 5;
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The following is the output of the preceding query:

Figure 7.18: Example customer survey responses in your database

You can see that you have access to two columns, a numeric rating between 1 
and 10 and the feedback column in text format.

2. Tokenize the text by parsing it out into individual words and their associated 
ratings. This will provide you with the tokens in this text and their frequency of 
appearance. They in turn will provide the foundation for contextual analysis. You 
can do this using the STRING_TO_ARRAY and UNNEST array transformations:

SELECT 

  UNNEST(STRING_TO_ARRAY(feedback, ' ')) AS word, 

  rating 

FROM   

  customer_survey 

LIMIT 

  10;
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The following is the output of the preceding query:

Figure 7.19: Transformed text output

As you can see from the output in Figure 7.19, there are still some issues with 
these tokens that can prevent you from using them in contextual analysis. For 
example, you see punctuation such as in It's and capitalization such as in I 
and It's. There are also words that do not provide any meaning, such as the 
and so, which are called stop words. You need to remove the stop words and 
punctuation, convert the capitalization, and remove forms and tenses to get 
tokens into their stems. This process is called standardization, which will be 
carried out in Step 3.

3. Standardize the text using the TS_LEXIZE function and the English stemmer, 
'english_stem'. You will then remove characters that are not letters in the 
original text using REGEXP_REPLACE. Adding these functions together with the 
original query will output the following:

SELECT

  (

    TS_LEXIZE(

      'english_stem',

      UNNEST(

        STRING_TO_ARRAY(

          REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),
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          ' '

        )

      )

    )

  )[1] AS token,

  rating

FROM 

  customer_survey

LIMIT 

  10;

The following is the output of the code:

Figure 7.20: Output from TS_LEXIZE and REGEX_REPLACE

Note

When you apply these standardization transformations, the outputs are 
called tokens rather than words. Tokens refer to each linguistic unit.
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Now, you have the key tokens and their associated ratings. Note that the output 
of the standardization operation produces NULL values for the tokens that have 
been removed, so you will need to filter out those rating pairs.

4. Find the average rating associated with each token using a GROUP BY clause:

SELECT

  (

    TS_LEXIZE(

      'english_stem',

      UNNEST(

        STRING_TO_ARRAY(

          REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),

          ' '

        )

      )

    )

  )[1] AS token,

  AVG(rating) AS avg_rating

FROM 

  customer_survey

GROUP BY 

  1

HAVING 

  COUNT(1) >= 3

ORDER BY 

  2

;
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In this query, you group by the first expression in the SELECT statement where 
you perform the tokenization. You can now take the average rating associated 
with each token. This is to make sure that you only take tokens with more than a 
couple of occurrences so that you can filter out the noise. In this case, due to the 
small sample size of feedback responses, you only require that the token occurs 
three or more times (HAVING COUNT(1) >= 3). Finally, you order the results 
by the second expression—the average score. The result is shown here:

 

Figure 7.21: Average ratings associated with text tokens

At one end of the spectrum, you see quite a few results that are negative: pop 
probably refers to popping tires, and batteri probably refers to issues with 
battery life. On the positive side, you gather that customers respond favorably to 
discount, sale, and dealership.

5. Verify the assumptions by filtering survey responses that contain these tokens 
using an ILIKE expression. The ILIKE expression allows you to match text 
that contains a pattern. In this example, you are trying to find text that contains 
the text pop, and the operation is case-insensitive. By wrapping this in % 
symbols, you are specifying that the text can contain any number of characters 
on the left or right. This is done as follows:

SELECT 

  * 

FROM 

  customer_survey 



Text Analytics Using PostgreSQL | 317

WHERE 

  feedback ILIKE '%pop%';

The query returns three relevant survey responses:

Figure 7.22: Filtering survey responses using ILIKE

Note

To access the source code for this specific section, please refer to  
http://packt.link/LpoE0.

Upon receiving the results of your analysis, you can report the key issues to 
your product team to review. You can also report the high-level findings that 
the customers like discounts and the feedback have been positive following the 
introduction of dealerships.

Note

ILIKE is similar to another SQL expression: LIKE. The ILIKE 
expression is case-insensitive, and the LIKE expression is case-
sensitive, so typically, it will make sense to use ILIKE. In situations 
where performance is critical, LIKE might be slightly faster.

Performing Text Search

While you can perform text analytics using aggregations, it might be helpful to 
instead query your database for relevant posts, similar to how you might query a 
search engine.

While you can do this using an ILIKE expression in your WHERE clause, this is not 
terribly fast or extensible. For example, what if you wanted to search the text for 
multiple keywords, correct searches with misspellings, or handle scenarios where one 
of the words might be missing altogether?

For these situations, you can use the text search functionality in PostgreSQL. 

http://packt.link/LpoE0
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This functionality scales up to millions of documents when it is fully optimized.

Note

Documents represent the individual records in a search database. Each 
document represents the entity that you want to search for. For example, on 
a personal website, this might be a blog post that includes the title, author, 
and article for one entry. For a survey, it might include the survey responses 
or perhaps the survey response combined with the survey question. A 
document can span multiple fields or even multiple tables.

You can start with the to_tsvector function, which will perform a similar function 
to the TS_LEXIZE function, but instead of producing a token from a word like 
the TS_LEXIZE function, this to_tsvector function will tokenize the entire 
document. The output data type from this operation is a tsvector data type, which 
is specialized and specifically designed for text search operations. Here is an example:

SELECT

  feedback,

  to_tsvector('english', feedback) AS tsvectorized_feedback

FROM 

  customer_survey

LIMIT 

  1;

The query produces the following result:

Figure 7.23: The tsvector tokenized representation of the original feedback

In this case, the feedback, I highly recommend the lemon scooter. 
It's so fast was converted into a tokenized vector: 'fast':10 'high':2 
'lemon':5 'recommend':3 'scooter':6. Like the TS_LEXIZE function, 
less meaningful "stop words" were removed, such as I, the, It's, and so. Other 
words, such as highly, were stemmed from their root (high). Word order was not 
preserved. The to_tsvector function can also take in JSON or JSONB syntax and 
tokenize the values (no keys) as a tsvector object.
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Now that you have broken down the text using the tsvector data type with 
meaningful tokens and their frequency, you will use a tsquery data type to perform 
a search on tsvector. The tsquery data type defines a search query in the form 
of a useful data type that PostgreSQL can use to search. For example, suppose you 
want to construct a search query with the lemon scooter keywords. You can write 
it as follows:

SELECT to_tsquery('english', 'lemon & scooter');

Or, if you do not want to specify the Boolean syntax, you can write this:

SELECT plainto_tsquery('english', 'lemon scooter');

Both queries produce the same result:

plainto_tsquery

----------------

'lemon' & 'scooter'

(1 row)

Note

to_tsquery accepts Boolean syntax, such as | for or and & for and. It 
also accepts ! for not.

You can also use Boolean operators to concatenate tsquery objects. For example, 
the && operator will produce a query that requires the left query and the right query, 
while the || operator will produce a query that matches either the left or the right 
tsquery object:

SELECT 

  plainto_tsquery('english', 'lemon') 

  && 

  plainto_tsquery('english', 'bat') 

  || 

  plainto_tsquery('english', 'chi');

This produces the following result:

'lemon' & 'bat' | 'chi'

You can query a tsvector object using a tsquery object using the @@ operator. 
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A tsquery data type is often used together with the tsvector data type 
for patterned search. For example, you can search all customer feedback for 
lemon scooter:

SELECT 

  *

FROM 

  customer_survey

WHERE 

  to_tsvector('english', feedback) 

    @@ plainto_tsquery('english', 'lemon scooter');

 This returns the following three results:

Figure 7.24: Search query output using the PostgreSQL search functionality

So far in this section, you have learned how to handle text strings, how to tokenize 
and standardize them, and how to search the tokens inside the strings. In the next 
section, you will learn how to optimize text search on PostgreSQL.

Optimizing Text Search on PostgreSQL

While the PostgreSQL search syntax in the previous example is quite straightforward, 
it needs to convert all text documents into a tsvector object every time a new 
search is performed. Additionally, the search engine needs to check every document 
to see whether any content in the document matches the query terms. This process 
can be tedious. You can improve this in two steps:

1. Store the tsvector objects so that they do not need to be recomputed.

2. Store the tokens and their associated documents in a Generalized Inverted 
Index (GIN). This is a specific format of PostgreSQL storage that can help you 
store indexes of complex data such as tsvector, similar to how an index in the 
back of a book has words or phrases and their associated page numbers so that 
you do not have to check each document to see where it matches.
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To do these two things, you will need to precompute and store the tsvector 
objects for each document, then create a GIN based on tsvector. 

To precompute the tsvector objects, use a materialized view. A materialized view 
is defined as a named query, similar to a view. But unlike a regular view, where the 
results are queried every time, the results for a materialized view are stored as if it is 
a table.

Because a materialized view stores the results in a stored table, it can get out of 
sync with the underlying tables that it queries. It might be prudent to refresh it, such 
as dropping the materialized view and recreating it before usage. You can create a 
materialized view of your survey results using the following query:

DROP MATERIALIZED VIEW IF EXISTS customer_survey_search;

CREATE MATERIALIZED VIEW customer_survey_search AS (

  SELECT

    rating,

    feedback,

    to_tsvector('english', feedback)

      || 

      to_tsvector('english', rating::text) AS searchable

  FROM 

    customer_survey

);

You can see that your searchable column is composed of two columns: the 
rating and feedback columns. There are many scenarios where you will want to 
search on multiple fields, and you can easily concatenate multiple tsvector objects 
together with the || operator.

You can test that the view worked by querying a row:

SELECT * FROM customer_survey_search LIMIT 1;

The query produces the following output:

Figure 7.25: A record from your materialized view with tsvector
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In addition to dropping and recreating, you can also use the following syntax to 
refresh the view (for example, after an insert or update):

REFRESH MATERIALIZED VIEW customer_survey_search;

This will recompute the view concurrently while the old copy of the view remains 
available and unlocked.

Next, you will add the GIN index with the following syntax, which will help improve 
the performance by storing some key information in an organized manner:

CREATE INDEX 

  idx_customer_survey_search_searchable 

ON 

  customer_survey_search 

USING GIN(searchable);

With these two operations (creating the materialized view and creating the GIN 
index), you can now easily query your feedback table using search terms:

SELECT 

  rating, 

  feedback 

FROM 

  customer_survey_search 

WHERE 

  searchable @@ plainto_tsquery('dealership');

The following is the output of the preceding query:

Figure 7.26: Output from the materialized view optimized for search

While the query time improvement might be small or non-existent for a small table 
of 32 rows, these operations greatly improve the speed for large tables (for example, 
with millions of rows), and enable users to quickly search their database in a matter 
of seconds.
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In the following activity, you will put these ideas into practice by creating a searchable 
sales database that will allow you to leverage text queries to find the information that 
you need.

Activity 7.01: Sales Search and Analysis

In this activity, you will set up a search materialized view and answer some business 
questions using what you have learned in the previous sections. The head of sales 
at ZoomZoom has identified a problem: there is no easy way for the sales team to 
search for a customer. You volunteered to create a proof-of-concept internal search 
engine that will make all customers searchable by their contact information and the 
products that they have purchased in the past.

Perform the following steps to complete the activity:

1. Use the customer_sales table and create a searchable materialized view 
with one record per customer. This view should be keyed off the customer_id 
column and searchable on everything related to that customer: name, email 
address, phone number, and purchased products. It is acceptable to include 
other fields as well.

2. A salesperson asks you whether you can use your new search prototype to find 
a customer by the name of Danny who purchased the Bat scooter. Query your 
new searchable view using the Danny Bat keywords. How many rows did 
you get?

3. The sales team wants to know how common it is for someone to buy a scooter 
and automobile combination. To do that, join the products table to get all 
distinct pairs of scooters and automobiles.

4. You can assume that limited-edition releases can be grouped together with 
their standard model counterpart (for example, Bat and Bat Limited 
Edition can be considered the same scooter). Simply filter out Bat Limited 
Edition from the product pairs.
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5. Using the results from the cross join, create a query that counts how many 
customers were found to match each of the product pairs.

Here is the expected output:

Figure 7.27: Customer counts for each scooter and automobile combination

Note

To access the source code for the specific section, please refer to  
http://packt.link/LpoE0.

Note 

The solution for this activity can be found via this link.

http://packt.link/LpoE0
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In this activity, you searched and analyzed the data using the materialized view. 
Then, you learned about the use of SQL keywords such as DISTINCT and JOIN to 
transform the query. Lastly, you learned how to query your database using tsquery 
objects to get the final output.

Summary
In this chapter, you covered special data types, including date and time, geospatial, 
complex data structures, and text data types. For date and time data types, you 
explored how to manipulate time series data, extract components, and represent the 
information in practical ways that would allow you to build analysis. For geospatial 
data types, you learned how to convert latitude and longitude into POINT data types 
that allow you to calculate distances between locations.

For complex data types, you explored several powerful data types: arrays, JSON, and 
JSONB. For these data types, you learned how to create these values, as well as how 
to write complex queries to navigate their structure.

Finally, you learned that text data can be useful in analytics—first in running an 
analysis on keywords, and also in the context of text search, which can be a valuable 
analytical tool.

As your datasets grow larger and larger, these complex analyses become slower and 
slower. In Chapter 8, Performant SQL, you will take an in-depth look at how you can 
begin to optimize these queries using an explanation and analysis of the query plan, 
as well as additional tools, such as indexes, that can speed up your queries.





Overview

In this chapter, you will learn how to optimize a database to allow queries 
to be executed with fewer resources. First, you will look at how a database 
engine performs basic queries by developing your understanding of 
sequential scans. After that, you will look at optimizing SELECT queries 
by creating indexes on database tables, which improve performance. 
You will also learn about tools and techniques for terminating inefficient 
queries that are consuming your database resources. After all this, you 
will explore advanced functionalities by creating custom functions for 
special computations and examine how to apply custom constraints to your 
database by using triggers.

Performant SQL

8



328 | Performant SQL

Introduction
In Chapter 7, Analytics Using Complex Data Types, you learned the necessary skills to 
effectively analyze data within a SQL database. In this chapter, you will turn your 
attention to the efficiency of this analysis, investigating how you can increase the 
performance of SQL queries. Efficiency and performance are key components of data 
analytics. Without considering these factors, physical constraints, such as time and 
processing power, can significantly affect the outcome of an analysis. 

In this chapter, you will first learn the different ways PostgreSQL performs query 
planning, in which the PostgreSQL database evaluates the SQL statement and 
underlying physical implementation and decides how to execute this SQL. You will 
learn the most basic way of retrieving data, which is scanning by sequence. You will 
then learn the concept of an index and the two most common indexes in PostgreSQL, 
the B-tree index and the hash index. From there, you will learn how to kill long-
running queries to free up resources and allow other queries to run.

After covering these topics, you will be introduced to functions and triggers. You will 
learn the definition of functions and the commands to manipulate them. You will also 
learn the concept of a trigger, a special type of function triggered by an event.

The Importance of Highly Efficient SQL
To understand why performance is so important, consider the following scenarios.

You are performing post hoc analysis (that is, analysis after the fact or event). You 
have completed a study and collected a large dataset of individual observations of 
various factors or features. One such example is described within your ZoomZoom 
database, which analyzes the sales data for each customer.

With the data collection process, you want to analyze the data for patterns and 
insights as specified by your problem statement. If your dataset is sufficiently large, 
you could quickly encounter issues if you do not optimize the queries first; the most 
common issue would simply be the time taken to execute the queries. While this does 
not sound like a significant issue, unnecessarily long processing times can cause the 
following problems:

• Reduction in the depth of the completed analysis: As each query takes a long 
time, the practicalities of project schedules may limit the number of queries. So, 
the depth and complexity of the analysis may be limited.
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• Limiting the selection of data for analysis: By artificially reducing the dataset 
using subsampling, you may be able to complete the analysis in a reasonable 
time but would have to sacrifice the number of observations being used. This 
may, in turn, lead to bias being accidentally included in the analysis.

• Increase in project cost: The need to use many more resources simultaneously 
to complete the analysis in a reasonable time would increase the project cost.

Similarly, another potential issue with suboptimal queries is an increase in the 
required system memory and compute power. This can result in either of the 
following two scenarios:

• Failure of the analysis due to insufficient resources

• Significant increase in the cost of the project to recruit the required resources

These days, analysis or queries are increasingly becoming a part of a larger service 
or product. For instance, when an analysis is being completed as a component of 
a bidding website that sets the pricing based on previous transactions, database 
queries may need to be completed in real-time, or at least near real-time. In such 
cases, optimization and efficiency are key for the product to be a success. 

Another such example is a GPS navigation system that incorporates the state of traffic 
as reported by other users. For such a system to be effective and provide up-to-
date navigation information, the database must be analyzed at a rate that keeps up 
with the speed of the car and the progress of the journey. Any delays in the analysis 
that would prevent the navigation from being updated in response to traffic would 
significantly impact the application's commercial viability.

After looking at this example, you can see that efficiency is not only important in an 
effective and thorough post hoc analysis but also critical when incorporating data 
analysis as a component of a separate product or service.

While it is certainly not the job of a data scientist or data analyst to ensure that the 
production process and the database are working at optimal efficiency, it is critical 
that the queries of the underlying analysis are as effective as possible. If you do not 
have an efficient and current database in the first place, further refinements will not 
help to improve the performance of the analysis. In the next section, you will learn 
the methods for increasing the performance of scans for information throughout 
a database.
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Database Scanning Methods
You have learned that all database operations are carried out by database 
management systems (DBMSs) such as PostgreSQL. Typically, the DBMS will run 
these operations in a server's memory, which stores the data to be processed. The 
problem with this approach is that memory storage is not large enough for modern 
databases, which are frequently in a scale of gigabytes, if not terabytes. Data in the 
majority of modern databases is saved on hard disks and uploaded into memory 
when it is used in a database operation. Yet again, a DBMS can only upload a small 
part of the database into memory. Whenever it figures that it needs a certain dataset, 
it must go to the hard disk to retrieve the unit of storage (which is called a hard disk 
block) that has the required data in it. The process that the PostgreSQL server uses to 
search through a database is known as scanning.

SQL-compliant databases, such as PostgreSQL, provide several different methods for 
scanning, searching, and selecting data. The right scan method to use is dependent 
on the use case and the state of the database at the time of scanning. How many 
records are in the database? Which fields are you interested in? How many records 
do you expect to be returned? How often do you need to execute the query? These 
are just some of the questions that you may want to ask when selecting the most 
appropriate scanning method.

Throughout this section, you will understand some of the search methods available, 
how they are used within SQL to execute scans, and several scenarios where they 
should or should not be used.

These topics will be organized into these sections:

• Query Planning

• Index Scanning

• Effective Index Use

• Killing Queries

• Functions and Triggers
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Query Planning

Before investigating the different methods of executing queries, it is useful to 
understand how the PostgreSQL server makes various decisions about the types 
of queries to be used. SQL-compliant databases possess a powerful tool known 
as a Query Planner, which implements a set of features within the server to 
analyze a request and decide how to execute the statement. The Query Planner 
optimizes different variables within the request with the aim of reducing the overall 
execution time.

Note

These variables are described in greater detail in the PostgreSQL 
documentation (https://www.postgresql.org/docs/current/runtime-config-
query.html) and include parameters that correspond to the cost of 
sequential page fetches, CPU operations, and cache size.

Interpreting the planner is critical if you want to achieve high performance from a 
database. Doing so allows you to modify the contents and structure of queries to 
optimize performance. Unfortunately, query planning can require some practice to be 
comfortable with interpreting the output. Even the PostgreSQL official documentation 
notes that plan reading is an art that deserves significant attention. In this chapter, 
you will not see the details of how a Query Planner implements its analysis since 
there are core technical details involved. However, it is important to understand 
how to interpret the plan reported by the Query Planner. You will start with a simple 
plan and then work your way through more complicated queries and query plans. In 
the following exercise, you will learn about the EXPLAIN command, which displays 
the plan for a query before it is executed. When you use the EXPLAIN command 
in combination with a SQL statement, the SQL interpreter will not execute the 
statement, but rather return the steps that are going to be executed (a query plan) by 
the interpreter to return the desired results. 

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
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An example of using the EXPLAIN command is shown in the following exercise.

Note

You have learned how to use the PostgreSQL psql tool and pgAdmin. Query 
Planner outputs its plan in pure text format. To better display and analyze 
the output of Query Planner, you will use psql in this chapter because it can 
display text in a clearer format, but some screenshots that are easier to 
read in graphic format will be generated using pgAdmin.

For all exercises and activities in this chapter, please note that query 
analysis metrics will vary depending on system configuration. Thus, you 
may get outputs that may vary from those presented in the exercises 
and activities. The key point is that the outputs provided in this chapter 
demonstrate the working of the principles.

All the exercises and activities in this chapter are also available on GitHub 
at https://packt.link/PDtJk.

Exercise 8.01: Interpreting the Query Planner

In this exercise, you will interpret a query plan of the emails table of the sqlda 
database using the EXPLAIN command. Then, you will employ a more involved 
query, searching for dates between two specific values in the clicked_date field.

Follow these steps to complete the exercise:

1. Open the default command-line interface (CMD or Terminal) and connect to the 
sqlda database:

C:\> psql -h localhost -p 5432 -d sqlda -U postgres

Upon successful connection, you will be presented with the interface to the 
PostgreSQL database:

Type "help" for help

sqlda=#

2. Enter the following command to get the query plan of the emails table:

EXPLAIN SELECT * FROM emails;

https://packt.link/PDtJk
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Information similar to the following will then be presented:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

This information is returned by the Query Planner; while this is the simplest 
example possible, there is quite a bit to unpack in the planner information. There 
is a lot of information returned in a query plan and being able to comprehend 
the output is vital in tuning the performance of your database queries.

So, look through the output step by step. The first aspect of the plan that is 
provided is the type of scan executed by the query:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

Extracting data using this SELECT command directly from the database 
executes a sequential scan, where the database server traverses through 
each record in the database and compares each record to the criteria in the 
sequential scan, returning those records that match the criteria, if there is a 
WHERE clause.

A sequential scan is the easiest to understand and is guaranteed to work in 
every scenario. In some circumstances, the sequential scan is not the fastest or 
most efficient option; however, it will always produce the correct result. This is 
essentially a brute-force scan and, thus, can always be called upon to execute a 
search. In certain situations, a sequential scan is the most efficient method and 
will be automatically selected by the PostgreSQL server. This is particularly the 
case if any of the following is true:

• The table is quite small.

• The field used in searching contains many duplicates.

• The planner determines that the sequential scan would be equally or more 
efficient for the given criteria compared to any other scan.

You will cover more of the scan types later in the chapter, but Seq Scan, or 
sequential scan, is a simple yet robust type of query.

Following the Seq Scan keyword and the table of its target are a series of 
measurements. The first measurement reported by the planner, as shown here, 
is the startup cost:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)
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The startup cost is the time expended before the scan starts. This time may be 
required to first sort the data or complete other preprocessing applications. 
It is also important to note that the time measured is reported in cost units as 
opposed to seconds or milliseconds. Often, the cost units are an indication of 
the number of disk requests or page fetches made, rather than this being a 
measure in absolute terms. The reported cost is typically more useful as a means 
of comparing the performance of various queries, rather than as an absolute 
measure of time.

The next number in the sequence indicates the total cost of executing the query 
if all available rows are retrieved:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

There are some circumstances in which not all the available rows may be 
retrieved, but you will learn about that in the Index Scanning section of 
this chapter.

The next figure in the plan indicates the total number of rows that are available 
to be returned if the plan is completely executed:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

The final figure, as suggested by its name, indicates the width of each row 
in bytes:

Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

Note

When executing the EXPLAIN command, PostgreSQL does not actually 
implement the query or return the values. It does, however, return a 
description, along with the processing costs involved in executing each 
stage of the plan.

3. Query plan the emails table and set the limit to 5. This will give you an insight 
into how PostgreSQL adjusts its execution plan when the SQL changes. Enter the 
following statement in the PostgreSQL interpreter:

EXPLAIN SELECT * FROM emails LIMIT 5;
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This repeats the previous statement, but the result is limited to the first five 
records. This query will produce the following output from the planner:

Limit  (cost=0.00..0.11 rows=5 width=79)

  ->  Seq Scan on emails  (cost=0.00..9605.58 rows=418158 width=79)

Referring to the preceding output, you can see that there are two individual 
rows in the plan. This indicates that the plan is composed of two separate steps, 
with the lower line of the plan being executed first. This lower line is a repeat 
of what is shown in step 2. The upper line of the plan is the component that 
limits the result to only 5 rows. The Limit process is an additional cost of the 
query; however, it is quite insignificant compared to the lower-level plan, which 
retrieves approximately 418158 rows at a cost of 9605.58 page requests. The 
Limit stage only returns 5 rows at a cost of 0.11 page requests.

Note

The overall estimated cost of a request comprises the time taken to retrieve 
the information from the disk and the number of rows that need to be 
scanned. The internal parameters seq_page_cost and cpu_tuple_
cost define the cost of the corresponding operations within the tablespace 
for the database. While not recommended at this stage, these two variables 
can be changed to modify the steps prepared by the planner.

For more information, refer to the PostgreSQL documentation:  
https://www.postgresql.org/docs/current/runtime-config-query.html.

4. Now, employ a more involved query, searching for dates between two specific 
values in the clicked_date column. Enter the following statement into the 
PostgreSQL interpreter:

EXPLAIN 

SELECT * 

FROM emails 

WHERE clicked_date BETWEEN '2011-01-01' and '2011-02-01';

This will produce a query plan similar to this:

Gather  (cost=1000.00..9037.59 rows=1 width=79)

  Workers Planned: 2

  ->  Parallel Seq Scan on emails  (cost=0.00..8037.49 rows=1 

      width=79)

https://www.postgresql.org/docs/current/runtime-config-query.html
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        Filter: ((clicked_date >= '2011-01-01 00:00:00'::timestamp 

            without time zone) AND (clicked_date <= '2011-02-01 

            00:00:00'::timestamp without time zone))

The first aspect of this query plan to note is that it comprises a few different 
steps. The lower-level query is similar to the previous query in that it executes 
a sequential scan. However, rather than limiting the output, you are filtering it 
based on the timestamp strings provided.

Here, the sequential scan is to be completed in parallel, as indicated by the 
Parallel Seq Scan. PostgreSQL also indicates that it will use two workers to 
execute this scan. Whether PostgreSQL will use a parallel scan or not depends 
on the setup of the server, as well as the power of the computer hardware. If 
PostgreSQL server feels that parallel scan is too complex for the hardware or 
server to handle, it may choose regular sequential scan, like what you saw in the 
steps above. 

In this example, PostgreSQL believes that parallel scan can provide better 
performance and decides to utilize two workers for it. Each individual sequence 
scan should return approximately 54 rows, taking a cost of 8037.49 to 
complete. The upper level of the plan is a Gather state, which is executed at the 
start of the query. You can see here for the first time that the upfront costs are 
non-zero (1000) and a total of 9037.59, including the gather and search steps.

Note

To access the source code for this specific section, please refer  
to https://packt.link/PDtJk.

In this exercise, you worked with the Query Planner and the output of the EXPLAIN 
command. These relatively simple queries highlighted several features of the SQL 
Query Planner as well as the detailed information that is provided by it. It will serve 
you well in your data science endeavors with a good understanding of the Query 
Planner and the rich information returned. Just remember that this understanding 
will come with time and practice. Next, you will practice this skill in an activity.

https://packt.link/PDtJk
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Activity 8.01: Query Planning

In this activity, you will query the plan for reading and interpreting the information 
returned by the planner. For instance, say you are still dealing with the ZoomZoom 
dataset in the sqlda database of customer records and your finance team would like 
to implement a system to regularly generate a report of customer activity in a specific 
geographical region. To ensure that your report can be run in a timely manner, you 
need an estimate of how long the SQL queries will take. You will use the EXPLAIN 
command to find out how long some of the report queries will take:

1. Open PostgreSQL with psql and connect to the sqlda database.

2. Use the EXPLAIN command to return the query plan to select all available 
records within the customers table.

3. Read the output of the plan and determine the total query cost, the setup cost, 
the number of rows to be returned, and the width of each row.

4. Repeat the query from step 2 of this activity, this time limiting the number of 
returned records to 15. Review the updated query plan and compare its output 
against the output of the previous step, paying special attention to how many 
steps are involved in the query plan and what the cost of the limiting step is.

5. Update the SQL to select all rows where customers live within a latitude of 30 
and 40 degrees. Generate the query plan. Compare the total plan cost as well as 
the number of rows returned by the query to the numbers from previous steps.

Expected output:

Seq Scan on customers  (cost=0.00..1785.00 rows=26369 width=140)

  Filter: ((latitude >= '30'::double precision) AND (latitude <= 
'40'::double precision))

In this activity, you practiced reading the plans returned by the Query Planner. As 
discussed at the very beginning of this section, plan reading requires substantial 
practice to master. This activity began this process, and it is strongly recommended 
that you frequently use the EXPLAIN command to improve your plan reading.
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You will continue to practice reading query plans throughout this chapter as you look 
at different scan types and the methods and their use to improve performance. In the 
next section, you will learn how to improve the performance of your queries using 
index scans.

Note 

The solution for this activity can be found via this link.

Index Scanning

Index scans improve the performance of your database queries. Index scans differ 
from sequential scans in that index scans execute a preprocessing step before the 
search of database records can occur.

The simplest way to think of an index scan is just like the index of a text or reference 
book. When creating a non-fiction book, a publisher parses through the contents 
of the book and writes the page numbers corresponding with each alphabetically 
sorted topic. Just as the publisher goes to the initial effort of creating an index for the 
reader's reference, you can create a similar index within the PostgreSQL database.

This index within the database creates a prepared and organized set or a subset of 
references to the data under specified conditions. When a query is executed and 
an index is present that contains information relevant to the query, the planner 
may elect to use the data that was preprocessed and prearranged within the 
index. Without using an index, the database needs to repeatedly scan through all 
records, checking each record for the information of interest. Even if all the desired 
information is at the start of the database, without indexing, the search will still 
scan through all available records. Clearly, this would take a significantly longer time 
than necessary.

There are several different indexing strategies that PostgreSQL can use to create 
more efficient searches, including B-trees, hash indexes, generalized inverted 
indexes (GINs), and generalized search trees (GiSTs). Each of these different 
index types has its own strengths and weaknesses and is therefore used in different 
situations. One of the most frequently used indexes is the B-tree, which is the default 
indexing strategy used by PostgreSQL and is available in almost all database software. 
You will first spend some time investigating the B-tree index, looking at what makes it 
useful, as well as some of its limitations.
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The B-Tree Index

The B-tree index is a type of extended binary search tree and is characterized by the 
fact that it is a self-balancing structure, maintaining its own data structure for efficient 
searching. A generic B-tree structure can be found in Figure 8.1, in which you can see 
that each node in the tree has no more than two elements (thus providing balance) 
and that each node has at most three children. These traits are common among 
B-trees, where each node is limited to n components, thus forcing the split into n+1 
child nodes. The branches of the trees terminate at leaf nodes, which, by definition, 
have no children:

Figure 8.1: Generic B-tree

Using the preceding figure as an example, say you were looking for the number 13 
in the B-tree index. You would start at the first node and select whether the number 
was less than 5 or greater than 10. This would lead you down the right-hand branch 
of the tree, where you would again choose between less than 15 and greater than 
20. You would then select less than 15 and arrive at the location of 13 in the index.

You can immediately see that this operation would be much faster than looking 
through all available values. You can also see that for performance, the tree must be 
balanced to allow for an easy path for traversal. Additionally, there must be sufficient 
information to allow splitting because if you had a tree index with only a few possible 
values to split on and many samples, you would simply divide the data into a 
few groups.



340 | Performant SQL

Considering B-trees in the context of database searching, you would notice that 
you require a condition to divide the information (or split) with and need sufficient 
information for a meaningful split. You do not need to worry about the logic of 
following the tree, as that will be managed by the database itself and can vary 
depending on the conditions for searching. Even so, it is important for you to 
understand the strengths and weaknesses of the method to allow you to make 
appropriate choices when creating the index for optimal performance.

To create an index for a set of data, you use the following syntax:

CREATE INDEX <index name> ON <table name>(table column);

You can also add additional conditions and constraints to make the index 
more selective:

CREATE INDEX <index name> ON <table name>(table column) WHERE 
[condition];

You can also specify the type of index:

CREATE INDEX <index name> ON <table name> USING TYPE(table column)

PostgreSQL supports multiple index types, such as B-tree, hash, and GiST. For 
example, say you execute the following query to create a B-tree type index on 
a column:

CREATE INDEX ix_customers ON customers USING BTREE(customer_id);

This outputs the following message:

CREATE INDEX

This indicates that the index was created successfully.

In the next exercise, you will start with a simple plan and work your way through 
more complicated queries and query plans, using index scans.
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Exercise 8.02: Creating an Index Scan

In this exercise, you will create a number of different index scans and investigate the 
performance characteristics of each of the scans.

Continuing with the scenario from Activity 8.01, Query Planning, say you had completed 
your report service but wanted to make the queries faster. You will try to improve this 
performance using indexing and index scans. You will recall that you are using a table 
of customer information that includes contact details such as name, email address, 
phone number, and address information, as well as the latitude and longitude details 
of their address. Follow these steps to complete this activity:

1. Open PostgreSQL and connect to the sqlda database:

C:\> psql -h localhost -p 5432 -d sqlda -U postgres

Upon successful connection, you will be presented with the interface to the 
PostgreSQL database:

Type "help" for help

sqlda=#

2. Starting with the customers database, use the EXPLAIN command to 
determine the cost of the query and the number of rows returned in selecting all 
the entries with a state value of FO:

EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code will be similar to the following. Please note 
that the actual numbers may vary but the structure will be similar:

Seq Scan on customers  (cost=0.00..1660.00 rows=1 width=140)

  Filter: (state = 'FO'::text)

Note that there is only 1 row returned and that the setup cost is 0, but the total 
query cost is 1660.

3. Determine how many unique state values there are using the 
EXPLAIN command:

EXPLAIN SELECT DISTINCT state FROM customers;
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The output is similar to the following:

HashAggregate  (cost=1660.00..1660.51 rows=51 width=3)

  Group Key: state

  ->  Seq Scan on customers  (cost=0.00..1535.00 rows=50000 width=3)

So, there are 51 unique values within the state column.

4. Create an index called ix_state using the state column of customers:

CREATE INDEX ix_state ON customers(state);

5. Rerun the EXPLAIN statement from step 2:

EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code is similar to this:

Index Scan using ix_state on customers  (cost=0.29..8.31 rows=1 
width=140)
  Index Cond: (state = 'FO'::text)

Notice that an index scan is being used with the index you created in step 4. You 
can also see that you have a non-zero setup cost (0.29), but the total cost is 
much reduced from the previous 1660 to only 8.31. This shows the power of 
the index scan.

Now, consider a slightly different example, looking at the time it takes to return a 
search on the gender column.

6. Use the EXPLAIN command to return the query plan for a search for all records 
of males within the database:

EXPLAIN SELECT * FROM customers WHERE gender='M';

The output is as follows:

Seq Scan on customers  (cost=0.00..1660.00 rows=24957 width=140)

  Filter: (gender = 'M'::text)

As there is no index on the gender column, and the existing index on the 
state column is not relevant, PostgreSQL will still use a sequential scan for 
this statement.

7. Create an index called ix_gender using the gender column of customers:

CREATE INDEX ix_gender ON customers(gender);
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8. Confirm the presence of the index using \d, which lists all the columns and 
indexes for the particular table:

\d customers;

Scrolling to the bottom, you can see the indexes using the ix_prefix, as well 
as the column from the table used to create the index:

                           Table "public.customers"

    Column     |            Type           | Collation | Nullable | 
Default
---------------+---------------------------+-----------+----------+--
-------
customer_id    | bigint                    |           |          |

title          | text                      |           |          |

first_name     | text                      |           |          |

last_name      | text                      |           |          |

suffix         | text                      |           |          |

email          | text                      |           |          |

gender         | text                      |           |          |

ip_address     | text                      |           |          |

phone          | text                      |           |          |

street_address | text                      |           |          |

city           | text                      |           |          |

state          | text                      |           |          |

postal_code    | text                      |           |          |

latitude       | double precision          |           |          |

longitude      | double precision          |           |          |

date_added     | timestamp without time zone |           |          |

Indexes:

    "ix_customers_customer_id" btree (customer_id)

    "ix_gender" btree (gender)

    "ix_state" btree (state)

9. Rerun the EXPLAIN statement from step 6:

EXPLAIN SELECT * FROM customers WHERE gender='M';
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The following is the output of the preceding code:

Bitmap Heap Scan on customers  (cost=285.71..1632.67 rows=24957 
width=140)
  Recheck Cond: (gender = 'M'::text)

  ->  Bitmap Index Scan on ix_gender  (cost=0.00..279.47 rows=24957 
width=0)
        Index Cond: (gender = 'M'::text)

Notice that the query cost has not changed much, despite the use of the index 
scan. This is because there is insufficient information to create a useful tree 
within the gender column. There are only two possible values, M and F. The 
gender index essentially splits the information in two: one branch for males and 
the other for females. The index has not split the data into branches of the tree 
well enough to gain any benefit. The planner still needs to scan through at least 
half of the data, and so it is not worth the overhead of the index.

10. Use EXPLAIN to return the query plan, searching for latitudes less than 38 
degrees and greater than 30 degrees:

EXPLAIN SELECT * FROM customers WHERE (latitude < 38) AND (latitude > 
30);

The following is the output of the preceding code:

Seq Scan on customers  (cost=0.00..1785.00 rows=17944 width=140)

  Filter: ((latitude < '38'::double precision) AND (latitude > 
'30'::double precision))

Notice that the query is using a sequential scan with a filter because there is no 
index set on the filter condition, so PostgreSQL has to scan the entire table row 
by row. The initial sequential scan returns 17944 before the filter and costs 
1785 with 0 startup costs.

11. Now create an index on the filtered column so that PostgreSQL has some 
prior knowledge on how data is stored based on latitude. Create an index 
called ix_latitude using the latitude column of customers:

CREATE INDEX ix_latitude ON customers(latitude);
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12. Rerun the query of step 10 and observe the output of the plan:

Bitmap Heap Scan on customers  (cost=384.22..1688.38 rows=17944 
width=140)
  Recheck Cond: ((latitude < '38'::double precision) AND (latitude > 
'30'::double precision))
  ->  Bitmap Index Scan on ix_latitude  (cost=0.00..379.73 rows=17944 
width=0)
        Index Cond: ((latitude < '38'::double precision) AND 
(latitude > '30'::double precision))

You can see that this plan is more involved than the previous plan, with a bitmap 
heap scan and a bitmap index scan being used. A bitmap scan is a frequently 
used scanning method in PostgreSQL, in which PostgreSQL determines the exact 
way of index processing. It is closely related to the physical implementation of 
database storage. As such, explaining the exact details of a bitmap scan is out of 
the scope of this book.

Now you can get some more information by adding the ANALYZE command 
to EXPLAIN.

13. Use EXPLAIN ANALYZE to query plan the content of the customers table with 
latitude values between 30 and 38:

EXPLAIN ANALYZE SELECT * FROM customers WHERE (latitude < 38) AND 
(latitude > 30);

The following output will be displayed:

Bitmap Heap Scan on customers  (cost=384.22..1688.38 rows=17944 
width=140) (actual time=53.413..57.385 rows=17896 loops=1)
  Recheck Cond: ((latitude < '38'::double precision) AND (latitude > 
'30'::double precision))
  Heap Blocks: exact=1033

  ->  Bitmap Index Scan on ix_latitude  (cost=0.00..379.73 rows=17944 
width=0) (actual time=53.195..53.195 rows=17896 loops=1)
        Index Cond: ((latitude < '38'::double precision) AND 
(latitude > '30'::double precision))
Planning Time: 0.169 ms

Execution Time: 57.981 ms

From the last two rows, you can see that there is 0.169 ms of planning time 
and 57.981 ms of execution time, with the index scan taking almost the same 
amount of time to execute as the bitmap heat scan takes to start.
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14. Create another index for latitude between 30 and 38 on the 
customers table:

CREATE INDEX ix_latitude_less ON customers(latitude) WHERE (latitude 
< 38) and (latitude > 30);

15. Re-execute the query in step 10 and compare the query plans:

Bitmap Heap Scan on customers  (cost=298.25..1602.41 rows=17944 
width=140) (actual time=2.316..7.222 rows=17896 loops=1)
  Recheck Cond: ((latitude < '38'::double precision) AND (latitude > 
'30'::double precision))
  Heap Blocks: exact=1033

  ->  Bitmap Index Scan on ix_latitude_less  (cost=0.00..293.77 
rows=17944 width=0) (actual time=2.165..2.165 rows=17896 loops=1)
Planning Time: 0.293 ms

Execution Time: 7.905 ms

When you use a generic column index that includes all the elements in the 
column, the planning time was 0.169 ms and the execution time was 57.981 
ms. With a more targeted index that only includes a part of the values in the 
column, the numbers were 0.293 ms and 7.905 ms, respectively. Using this 
more targeted index, you were able to shave 50.076 ms off the execution time 
at the cost of an additional 0.124 ms of planning time.

Note

To access the source code for this specific section, please refer  
to https://packt.link/PDtJk.

Thus far, you can improve the performance of your query as indexes have made the 
searching process more efficient. You may have had to pay an upfront cost to create 
the index, but once created, repeat queries can be executed more quickly. Next, you 
will practice index scanning in an activity.

https://packt.link/PDtJk
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Activity 8.02: Implementing Index Scans

In this activity, you will determine whether index scans can be used to reduce query 
time. After creating your customer reporting system for the marketing department in 
Activity 8.01, Query Planning, you have received another request to allow records to be 
identified by their IP address or the associated customer names. You know that there 
are a lot of different IP addresses, and you need performant searches. Plan out the 
queries required to search for records by IP address as well as for certain customers 
with the suffix Jr in their name.

Here are the steps to follow:

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search 
for all records with an IP address of 18.131.58.65. How long does the query 
take to plan and execute?

2. Create a generic index based on the IP address column.

3. Rerun the query in step 1. How long does the query take to plan and execute?

4. Create a more detailed index based on the IP address column with the condition 
that the IP address is 18.131.58.65.

5. Rerun the query in step 1. How long does the query take to plan and execute? 
What are the differences between each of these queries?

6. Use the EXPLAIN ANALYZE commands to profile the query plan to search 
for all records with a suffix of Jr. How long does the query take to plan 
and execute?

7. Create a generic index based on the suffix address column.

8. Rerun the query of step 6. How long does the query take to plan and execute?

Expected output:

Bitmap Heap Scan on customers  (cost=5.07..302.60 rows=100 width=140) 
(actual time=0.072..0.170 rows=102 loops=1)
  Recheck Cond: (suffix = 'Jr'::text)

  Heap Blocks: exact=98

  ->  Bitmap Index Scan on ix_suffix  (cost=0.00..5.04 rows=100 
width=0) (actual time=0.056..0.056 rows=102 loops=1)
        Index Cond: (suffix = 'Jr'::text)

Planning Time: 0.676 ms

Execution Time: 0.212 ms



348 | Performant SQL

Thus, you can improve the performance of your query as indexes have made the 
searching process more efficient. You will learn how the hash index works in the 
next section.

Note 

The solution for this activity can be found via this link.

The Hash Index

The final indexing type you will cover is the hash index. The hash index has only 
recently gained stability as a feature within PostgreSQL, with previous versions 
issuing warnings that the feature is unsafe and reporting that the method is typically 
not as performant as B-tree indexes. At the time of writing, the hash index feature is 
relatively limited in the comparative statements it can run, with equality (=) being the 
only one available.

So, given that the feature is only just stable and somewhat limited in options for use, 
why would anyone use it? Well, hash indices can describe large datasets (in the order 
of tens of thousands of rows or more) using very little data, allowing more of the data 
to be kept in memory and reducing search times for some queries. This is particularly 
important for databases that are at least several gigabytes in size.

A hash index is an indexing method that utilizes a hash function to achieve its 
performance benefits. A hash function is a mathematical function that takes data or 
a series of data and returns a unique series of alphanumeric characters depending 
upon what information was provided and the unique hash code used.

For instance, say you had a customer named Josephine Marquez. You could pass this 
information to a hash function, which could produce a hash result such as 01f38e. 
Suppose you also had records for Josephine's husband, Julio; the corresponding hash 
for Julio could be 43eb38a. A hash map uses a key-value pair relationship to find data.

You will use the values of a hash function to provide the key, using the data contained 
in the corresponding row of the database as the value. As long as the key is unique to 
the value, you can quickly access the information you require. This method can also 
reduce the overall size of the index in memory if only the corresponding hashes are 
stored, thereby dramatically reducing the search time for a query.
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Similar to the syntax for creating a B-tree index, a hash index can be created using the 
following syntax:

CREATE INDEX <index name> ON <table name> USING HASH(table column)

The following example shows how to create a hash index on the gender columns in 
the customers table:

CREATE INDEX ix_gender ON customers USING HASH(gender);

If there is already an index with the same name existing in the database, you can use 
a DROP INDEX <index_name> command to drop and recreate it. In the previous 
section, it was mentioned that the Query Planner can ignore the indices created if it 
deems them to not be significantly faster or more appropriate for the existing query. 
As the hash scan is somewhat limited in use, it may not be uncommon for a different 
search to ignore the indices. Now, you will perform an exercise to implement the 
hash index. This will also show you the difference in performance between different 
index types.

Exercise 8.03: Generating Several Hash Indexes to Investigate Performance

In this exercise, you will generate several hash indexes and investigate the potential 
performance increases that can be gained from using them. You will start the 
exercise by rerunning some of the queries of previous exercises and comparing the 
execution times:

1. Drop all existing indexes using the DROP INDEX command for each of the 
indexes that you have created previously (ix_gender, ix_state, and ix_
latitude_less); otherwise, you will run into an issue with the following steps:

DROP INDEX <index name>;

2. Use EXPLAIN and ANALYZE on the customers table where the gender is 
male, but without using a hash index:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

An output similar to this will be displayed:

Seq Scan on customers  (cost=0.00..1660.00 rows=24957 width=140) 
(actual time=0.168..130.498 rows=24956 loops=1)
  Filter: (gender = 'M'::text)

  Rows Removed by Filter: 25044

Planning Time: 0.217 ms

Execution Time: 12.833 ms



350 | Performant SQL

From the output, you can see that the estimated planning time is 0.217 ms 
and the execution time is 12.833 ms. Note that you may not have the same 
time with this query plan, and the plan may not always produce the same values. 
The key here is to compare the values with the values when PostgreSQL uses an 
index for execution, not the absolute values.

3. Create a B-tree index on the gender column and repeat the query to determine 
the performance using the default index:

CREATE INDEX ix_gender ON customers USING btree(gender);

The following is the output of the preceding code:

Bitmap Heap Scan on customers  (cost=285.71..1632.67 rows=24957 
width=140) (actual time=1.002..7.162 rows=24956 loops=1)
  Recheck Cond: (gender = 'M'::text)

  Heap Blocks: exact=1035

    ->  Bitmap Index Scan on ix_gender  (cost=0.00..279.47 rows=24957 
width=0) (actual time=0.875..0.875 rows=24956 loops=1)
        Index Cond: (gender = 'M'::text)

Planning Time: 0.173 ms

Execution Time: 8.303 ms

From the output, you can decipher that the Query Planner has selected the 
B-tree index, but the costs of the scans do not differ much, although the 
planning and execution time estimates have been modified. This is because 
there are only two values in the column. Thus the selectivity of this index is 
not high.

4. Repeat the following query at least five times manually and observe the time 
estimates after each execution:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The results of the five individual queries should be similar to the one shown 
previously, just that the planning and execution times differ for each separate 
execution of the query.

5. You created a B-tree index called ix_gender in step 3. Now drop the index 
so that you can create another index with the same name using HASH in the 
next step:

DROP INDEX ix_gender;
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6. Create a hash index on the gender column so that you can compare the hash 
index with the B-tree index:

CREATE INDEX ix_gender ON customers USING HASH(gender);

7. Repeat the query from step 4 to see the execution time:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The following output will be displayed:

Seq Scan on customers  (cost=0.00..1660.00 rows=24957 width=140) 
(actual time=0.029..14.028 rows=24956 loops=1)
  Filter: (gender = 'M'::text)

  Rows Removed by Filter: 25044

Planning Time: 0.981 ms

Execution Time: 14.979 ms

PostgreSQL determined that there was no benefit to using the hash index on 
the gender column. So the index was not used by the planner. This is because 
the gender column could have only two possible values and the selectivity is 
very low.

8. Use the EXPLAIN ANALYZE command to profile the performance of the query 
that selects all customers where the state is FO:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following output will be displayed:

Seq Scan on customers  (cost=0.00..1660.00 rows=1 width=140) (actual 
time=13.321..13.321 rows=0 loops=1)
  Filter: (state = 'FO'::text)

  Rows Removed by Filter: 50000

Planning Time: 0.118 ms

Execution Time: 13.338 ms

9. Create a B-tree index on the state column of the customers table and repeat 
the query profiling:

CREATE INDEX ix_state ON customers USING BTREE(state);

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';
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The following is the output of the preceding code:

Index Scan using ix_state on customers  (cost=0.29..8.31 rows=1 
width=140) (actual time=0.045..0.045 rows=0 loops=1)
  Index Cond: (state = 'FO'::text)

Planning Time: 0.404 ms

Execution Time: 0.069 ms

Here, you can see a significant performance increase due to the B-tree index 
with a slight setup cost. How does the index scan perform? Since the execution 
time has dropped from 13.338 ms to 0.069 ms, it is reasonable to accept 
that the planning cost has increased by approximately 300%, from 0.118 ms to 
0.404 ms.

10. Similar to what you just did to the index on the gender column, create a 
hash index for the state column and compare the performance. Drop the ix_
state B-tree index and create a hash index:

DROP INDEX ix_state;

CREATE INDEX ix_state ON customers USING HASH(state);

11. Use EXPLAIN and ANALYZE to profile the performance of the hash scan:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

Index Scan using ix_state on customers  (cost=0.00..8.02 rows=1 
width=140) (actual time=0.032..0.032 rows=0 loops=1)
  Index Cond: (state = 'FO'::text)

Planning Time: 0.359 ms

Execution Time: 0.054 ms

You can see that, for this specific query, a hash index is particularly effective, 
reducing both the planning/setup time and cost of the B-tree index, as well as 
reducing the execution time to less than 1 ms from 13.338 ms.

Note

To access the source code for this specific section, please refer to  
https://packt.link/PDtJk.

https://packt.link/PDtJk
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In this exercise, you used hash indexes to find the effectiveness of a particular query. 
You saw how the execution time goes down when using a hash index in a query. You 
will practice this skill in the coming activity.

Activity 8.03: Implementing Hash Indexes

In this activity, you will investigate the use of hash indexes to improve performance 
using the emails table from the sqlda database. Here is the scenario. You have 
received another request from the marketing department. This time, they would like 
you to analyze the performance of an email marketing campaign.

Given that the success rate of email campaigns is low, different emails are sent 
to multiple customers at a time. Use the EXPLAIN and ANALYZE commands to 
determine the planning time and cost, as well as the execution time and cost, of 
selecting all rows where the email subject is Shocking Holiday Savings On 
Electric Scooters:

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and 
cost, as well as the execution time and cost, of selecting all rows where the email 
subject is Shocking Holiday Savings On Electric Scooters.

2. Create a hash scan on the email_subject column.

3. Repeat step 1. Compare the output of the Query Planner without the hash index 
to the output with the hash index.

4. Create a hash scan on the customer_id column.

5. Use EXPLAIN and ANALYZE to estimate how long it would take to select all 
rows with a customer_id value greater than 100. Also, determine the type of 
scan used and why.

Expected output:

Seq Scan on emails  (cost=0.00..10650.98 rows=417346 width=79) 
(actual time=0.067..105.158 rows=417315 loops=1)
  Filter: (customer_id > 100)

  Rows Removed by Filter: 843

Planning Time: 0.548 ms

Execution Time: 117.899 ms
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In this activity, a sequential scan was used in this query rather than the hash scan 
created due to the current limitations of hash scan usage. Explaining the exact nature 
of this limitation is beyond the scope of this book. At the time of writing, the use of 
the hash scan is limited to equality comparisons, which involve searching for values 
equal to a given value.

Note 

The solution for this activity can be found via this link.

Effective Index Use

So far in this chapter, you have looked at different scanning methods and the use 
of both B-trees and hash scans as a means of reducing query times. You have also 
seen different examples of where an index was created for a field or condition and 
was explicitly not selected by the Query Planner when executing the query as it was 
deemed a more inefficient choice.

In this section, you will spend some time learning about the appropriate use of 
indexes to reduce query times since, while indexes may seem like an obvious choice 
for increasing query performance, this is not always the case.

Consider the following situations:

• The field you have used for your index is frequently changing: In this 
situation, where you are frequently inserting or deleting rows in a table, the 
index that you have created may quickly become inefficient as it was constructed 
for data that is either no longer relevant or has since had a change in value.

Consider the index at the back of this book. If you moved the order of the 
chapters around, the index would no longer be valid and would need to be 
revised. In such a situation, you may need to periodically re-index the data to 
ensure the references to the data are up to date.

In SQL, you can rebuild the data indices by using the REINDEX command, 
which leads to a scenario where you will need to consider the cost, means, and 
strategy of frequent re-indexing versus other performance considerations, such 
as the query benefits introduced by the index, the size of the database, or even 
whether changes to the database structure could avoid the problem altogether.
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• The index is out of date and the existing references are either invalid or 
there are segments of data without an index, preventing the use of the 
index by the Query Planner: In general, PostgreSQL will automatically update 
indexes as the underlying table changes. But there are extremely rare cases 
when the update may not function properly. In such a situation, the index is so 
old that it cannot be used and thus needs to be updated.

• You are frequently looking for records containing the same search criteria 
within a specific field: In Exercise 8.02, Creating an Index Scan, you considered 
an example similar to this when looking for customers within a database 
whose records contained latitude values of less than 38 and greater than 30, 
using SELECT * FROM customers WHERE (latitude < 38) and 
(latitude > 30).

In this example, it may be more efficient to create a partial index using 
a subset of data, like this: CREATE INDEX ix_latitude_less ON 
customers(latitude) WHERE (latitude < 38) and (latitude 
> 30). In this way, the index is only created using the data you are interested 
in, and is thereby smaller in size, quicker to scan, and easier to maintain, and can 
also be used in more complex queries.

• The database is not particularly large: In such a situation, the overhead of 
creating and using the index may simply not be worth it. Sequential scans, 
particularly those using data already in RAM, are quite fast, and if you create an 
index on a small dataset, there is no guarantee that the Query Planner will use it 
or get any significant benefit from using it.

So far, all the query plans in this chapter have only dealt with single-table queries. As 
you can imagine, when the query contains more tables, its query plan will become 
more complex. This is especially true when you try to join two or more tables because 
at this point, you are not only picking data from the hard disk but also trying to match 
data (with a join key) in one table to the data in another. The interpretation and 
understanding of these plans are no doubt very important but are way beyond the 
scope of this book. If you are interested in learning more about this topic, you should 
get yourself familiar with single-table query plans first, then seek further studies on 
the official PostgreSQL website.

In the next section, you will learn how to speed up normal query execution by 
terminating long-running queries.
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Killing Queries
Sometimes, you have a lot of data or perhaps insufficient hardware resources, and 
a query just runs for a very long time. In such a situation, you may need to stop the 
query—perhaps so you can implement an alternative query to get the information 
you need, but without the delayed response. In this section, you are going to 
investigate how you can stop hanging or, at least, extremely long-running queries 
using a secondary PostgreSQL interpreter. The following are some of the commands 
that you will use to kill queries:

• pg_sleep is a command that allows you to tell the SQL interpreter to 
essentially do nothing for a specified period as defined by the input to the 
function in seconds.

• The pg_cancel_backend command causes the interpreter to end the query 
specified by the process ID (PID). The process will be terminated cleanly, 
allowing for appropriate resource cleanup. Clean termination should also be the 
first preference as it reduces the possibility of data corruption and damage to 
the database.

• The pg_terminate_background command stops an existing process but, as 
opposed to pg_cancel_background, forces the process to terminate without 
cleaning up any resources being used by the query. The query is immediately 
terminated, and data corruption may occur as a result.

To invoke these commands, you need the command to be evaluated, and one 
common method is to use a simple select statement, such as the following:

SELECT pg_terminate_background(<PID>);

PID is the process ID of the query you would like to terminate. Assuming this runs 
successfully, it would output the following:

pg_terminate_backend

----------------------

 t

(1 row)

Now that you have learned how to kill a query in both a clean and a forced manner, 
you will step through an exercise to kill a long-running query.
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Exercise 8.04: Canceling a Long-Running Query

In this exercise, you will cancel a long-running query to save time when you are stuck 
at query execution. You have been lucky enough to receive a large data store and you 
decide to run what you originally thought was a simple enough query to get some 
basic descriptive statistics of the data. For some reason, however, the query is taking 
an extremely long time and you are not even sure that it is running.

You decide it is time to cancel the query, which means you would like to send a stop 
signal to the query but allow it sufficient time to clean up its resources gracefully. 
As there may be a wide variety of hardware available to you and the data required 
to induce a long-running query could be quite a lot to download, you will simulate a 
long-running query using the pg_sleep command.

For this exercise, you will require two separate SQL interpreter sessions running in 
separate windows, as shown in the following steps:

1. Launch two separate interpreters by running psql sqlda:

C:\> psql -U postgres sqlda

2. In the first terminal, execute the sleep command with a parameter of 
1000 seconds:

SELECT pg_sleep(1000);

After pressing Enter, you should notice that the cursor of the interpreter does 
not return. Instead, this window seems to be hanging, without responding to any 
keyboard or mouse inputs.

3. In the second terminal, select the pid and query columns from the pg_stat_
activity table where state is active:

SELECT pid, query FROM pg_stat_activity WHERE state = 'active';

The following is the output of the preceding code:

 pid  |                              query                      

------+--------------------------------------------------------------
---
 6452 | SELECT pid, query FROM pg_stat_activity WHERE state = 
'active';
 6336 | SELECT pg_sleep(1000);

(2 rows)
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4. In the second terminal, pass the PID of the pg_sleep query to the pg_
cancel_backend command to terminate the pg_sleep query with a graceful 
cleanup. Note that the PID (6336) might be different in your environment, so 
use whatever PID you got from the previous step:

SELECT pg_cancel_backend(6336);

The following is the output of the preceding code:

pg_cancel_backend

------------------------

t

(1 row)

5. Observe the first terminal and notice that the sleep command is no longer 
executing, as indicated by the return message:

ERROR:  canceling statement due to user request

The above output shows an error as the query was canceled after the 
user's request.

Note

To access the source code for this specific section, please refer to  
https://packt.link/PDtJk.

In this exercise, you learned how to cancel a query that is taking a long time to 
execute. In the next section, you will learn how to use functions and triggers in your 
SQL queries and analyze data.

Functions and Triggers
So far in this chapter, you have discovered how to quantify query performance via 
the Query Planner. In this section, you will construct reusable queries and statements 
via functions, as well as automatic function execution via trigger callbacks. The 
combination of these two SQL features can be used to not only run queries or 
re-index tables as data is added to, updated in, or removed from the database but 
also run hypothesis tests and track their results throughout the life of the database.

https://packt.link/PDtJk


Functions and Triggers | 359

Function Definitions

As in almost all other programming or scripting languages, functions in SQL are 
contained sections of code that provide a lot of benefits, such as efficient code reuse 
and simplified troubleshooting processes. You can use functions to repeat or modify 
statements or queries without re-entering the statement each time or searching 
for its use throughout longer code segments. One of the most powerful aspects 
of functions is that they allow you to break code into smaller, testable chunks. As 
the popular computer science expression goes, "If the code is not tested, it cannot 
be trusted."

So, how do you define functions in SQL? There is a relatively straightforward syntax, 
with the SQL syntax keywords:

CREATE FUNCTION some_function_name (function_arguments)

RETURNS return_type AS $return_name$

DECLARE return_name return_type;

BEGIN

 <function statements>;

RETURN <some_value>;

END; $return_name$

LANGUAGE PLPGSQL;

The following is a short explanation of the functions used in the preceding code:

• some_function_name is the name issued to the function and is used to call 
the function at later stages.

• function_arguments is an optional list of function arguments. This could 
be empty, without any arguments provided, if you do not need any additional 
information to be provided to the function. To provide additional information, 
you can use either a list of different data types as the arguments (such as integer 
and numeric data types) or a list of arguments with parameter names (such as 
the min_val integer and the max_val numeric data type).

• return_type is the data type being returned from the function.

• DECLARE return_name return_type statement is only required 
if return_name is provided, and a variable is to be returned from the 
function. return_name is the name of the variable to be returned 
(optional). If return_name is not required, this line can be omitted from 
the function definition.
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• function_statements are the SQL statements to be executed within 
the function.

• some_value is the data to be returned from the function.

• PLPGSQL specifies the language to be used in the function. PostgreSQL allows 
you to use other languages; however, their use in this context lies beyond the 
scope of this book.

For example, you can create a simple function to add three numbers, as follows:

CREATE FUNCTION add_three(a integer, b integer, c integer)

RETURNS integer AS $$

BEGIN

    RETURN a + b + c;

END;

$$ LANGUAGE PLPGSQL;

You can then call it in your queries, as follows:

SELECT add_three(1, 2, 3);

The following is the output of the code:

add_three

-----------

         6

(1 row)

Now, you will implement an exercise to create a function without arguments.

Note

The complete PostgreSQL documentation for functions can be found at 
https://www.postgresql.org/docs/current/extend.html.

https://www.postgresql.org/docs/current/extend.html
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Exercise 8.05: Creating Functions without Arguments

In this exercise, you will create the most basic function—one that simply returns a 
constant value—so you can build up a familiarity with the syntax. You will construct 
your first SQL function that does not take any arguments as additional information. 
This function may be used to repeat SQL query statements that provide basic 
statistics about the data within the tables of the sqlda database. These are the steps  
to follow:

1. Connect to the sqlda database via psql.

2. Create a function called fixed_val that does not accept any arguments and 
returns an integer. This is a multiline process. Enter the following line first:

CREATE FUNCTION fixed_val() 

RETURNS integer AS $$

This line starts the function declaration for fixed_val, and you can see 
that there are no arguments to the function, as indicated by the open/closed 
brackets, (), nor any returned variables.

3. Enter the BEGIN keyword (notice that as you are not returning a variable, the 
line containing the DECLARE statement has been omitted):

BEGIN

4. You want to return the value 1 from this function, so enter the 
RETURN 1 statement:

RETURN 1;

5. End the function definition:

END; $$

6. Add the LANGUAGE statement, as shown in the following function definition:

LANGUAGE PLPGSQL;

This will complete the function definition.

7. Now that the function is defined, you can use it. As with almost all other SQL 
statements you have completed to date, you simply use the SELECT command:

SELECT * FROM fixed_val();
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This will display the following output:

fixed_val

---------

1

(1 row)

Notice that the function is called using the open and closed brackets in the 
SELECT statement.

8. Use EXPLAIN and ANALYZE in combination with this statement to characterize 
the performance of the function:

EXPLAIN ANALYZE SELECT * FROM fixed_val();

Here is the output of the preceding code:

Function Scan on fixed_val  (cost=0.25..0.26 rows=1 width=4) (actual 
time=19.138..19.139 rows=1 loops=1)
Planning Time: 0.143 ms

Execution Time: 20.774 ms

Notice that the three rows being referenced in the preceding output refer not 
to the result of SELECT * FROM fixed_val(); but rather to the result of 
the Query Planner. Looking at the first line of the information returned by the 
Query Planner, you can see that only one row of information is returned from 
the SELECT statement.

9. So far, you have seen how to create a simple function, but simply returning 
a fixed value is not particularly useful. You will now create a function that 
determines the number of samples in the sales table. Create a function called 
num_samples that does not take any arguments but returns an integer called 
total that represents the number of samples in the sales table:

CREATE FUNCTION num_samples() RETURNS integer AS $total$

10. You want to return a variable called total, and thus you need to declare it. 
Declare the total variable as an integer:

DECLARE total integer;

11. Enter the BEGIN keyword:

BEGIN
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12. Enter the statement that determines the number of samples in the table and 
assigns the result to the total variable:

SELECT COUNT(*) INTO total FROM sales;

13. Return the value for total:

RETURN total;

14. End the function with the variable name:

END; $total$

15. Add the LANGUAGE statement, as shown in the following function definition:

LANGUAGE PLPGSQL;

This will complete the function definition, and upon successful creation, the 
CREATE_FUNCTION statement will be shown.

16. Use the function to determine how many rows or samples there are in the 
sales table:

SELECT num_samples();

Here is the output of the preceding code:

num_samples

---------

37711

(1 row)

You can see that by using the SELECT statement in combination with your SQL 
function, there are 37711 records in the sales database.

Note

To access the source code for this specific section, please refer to  
https://packt.link/PDtJk.

In this exercise, you have created your first user-defined SQL function and discovered 
how to create and return information from variables within the function.

https://packt.link/PDtJk
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In the following activity, you will create a new function that can be called in 
your queries.

Activity 8.04: Defining a Largest Sale Value Function

In this activity, you will create a user-defined function so you can calculate the value 
of the largest sale in a single function call. You will reinforce your knowledge of 
functions as you create a function that determines the value of the largest sale in a 
database. At this stage, your marketing department is starting to make a lot of data 
analysis requests, and you need to be more efficient in fulfilling them, as they are 
currently just taking too long.

Perform the following steps:

1. Connect to the sqlda database.

2. Create a function called max_sale that does not take any input arguments but 
returns a numeric value called big_sale.

3. Declare the big_sale variable and begin the function.

4. Insert the value of the largest sale into the big_sale variable.

5. Return the value for big_sale.

6. End the function with the LANGUAGE statement.

7. Call the function to find out what the value of the largest sale in the database is.

Expected output:

Max

-------

115000

(1 row)

In this activity, you created a user-defined function to calculate the largest sale 
amount from a single function call using the MAX function. Next, you will create a 
function that takes arguments.

Note 

The solution for this activity can be found via this link.
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Exercise 8.06: Creating Functions with Arguments

In this exercise, you will create a single function that will allow you to calculate 
information from multiple tables. Create a function that determines the average 
value from the sales amount column with respect to the value of the corresponding 
channel. After creating your previous user-defined function to determine the biggest 
sale in the database, you have observed a significant increase in the efficiency with 
which you fulfill your marketing department's requests.

Perform the following steps to complete the exercise:

1. Connect to the sqlda database.

2. Create a function called avg_sales that takes a text argument input, 
channel_type, and returns a numeric output:

CREATE FUNCTION avg_sales(channel_type TEXT) 

RETURNS numeric AS $channel_avg$

3. Declare the numeric channel_avg variable and begin the function:

DECLARE channel_avg numeric;

BEGIN

4. Determine the average sales_amount only when the channel value is equal 
to channel_type:

SELECT 

  AVG(sales_amount) 

INTO 

  channel_avg 

FROM 

  sales 

WHERE 

  channel=channel_type;

5. Return channel_avg:

RETURN channel_avg;

6. End the function and specify the LANGUAGE statement:

END; $channel_avg$

LANGUAGE PLPGSQL;
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7. Determine the average sales amount for the internet channel:

SELECT avg_sales('internet');

Here is the output of the preceding code:

avg_sales

----------------

6413.11540412024

(1 row)

8. Now do the same for the dealership channel:

SELECT avg_sales('dealership');

Here is the output of the preceding code:

avg_sales

----------------

7939.33132075954

(1 row)

This output shows the average value for sales for a dealership, which is 
7939.331.

Note

To access the source code for this specific section, please refer to  
https://packt.link/PDtJk.

In this exercise, you were introduced to using function arguments to further modify 
the behavior of functions and the outputs they return. Next, you will learn about the 
\df and \sf commands.

https://packt.link/PDtJk
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The \df and \sf commands

You can use the \df command in PostgreSQL to get a list of the functions available in 
memory, including the variables and data types passed as arguments. The following 
are the first few rows of this command:

                                        List of functions

 Schema |        Name        | Result data type |           Argument data 
types            | Type
--------+--------------------+------------------+------------------------
------------------+------
 public | cube               | cube             | cube, double precision                   
| func
 public | cube               | cube             | cube, double precision, 
double precision | func
 public | cube               | cube             | double precision                         
| func
 public | cube               | cube             | double precision, 
double precision       | func

The \sf function_name command in PostgreSQL can be used to review the 
function definition for already-defined functions. For example, in the preceding 
section, you created a function called max_sale. In this case, say you execute the 
following query:

\sf max_sale

The output will show the definition of that function, as follows:

CREATE OR REPLACE FUNCTION public.max_sale()

 RETURNS integer

 LANGUAGE plpgsql

AS $function$

DECLARE big_sale numeric;

BEGIN

SELECT MAX(sales_amount) INTO big_sale FROM sales;

RETURN big_sale;

END; $function$
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Now that you have walked through several exercises to create functions with and 
without arguments, you can apply your knowledge to real-world problems. In the 
following activity, you will practice creating functions that take arguments.

Activity 8.05: Creating Functions with Arguments

In this activity, your goal is to create a function with arguments and compute the 
output. You will construct a function that computes the average sales amount for 
transaction sales within a specific date range. Each date is to be provided to the 
function as a text string. These are the steps to follow:

1. Create the function definition for a function called avg_sales_window that 
returns a numeric value and takes two DATE values to specify the from and to 
dates in the form YYYY-MM-DD.

2. Declare the return variable as a numeric data type and begin the function.

3. Select the average sales amount as the return variable where the sales 
transaction date is within the specified date.

4. Return the function variable, end the function, and specify the 
LANGUAGE statement.

5. Use the function to determine the average sales value for transactions between 
2020-04-12 and 2021-04-12.

Expected output:

avg_sales_window

----------------

7663.13305937025

(1 row)

In this activity, you constructed a function that computes the average sales amount 
for transaction sales within a specific date range from the database.

Note 

The solution for this activity can be found via this link.
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In the next section, you will learn how to create and run triggers to automate 
database processes. You will also perform an exercise and activity using triggers.

Triggers

Triggers, known as events or callbacks in other programming languages, are useful 
features that, as the name suggests, trigger the execution of SQL statements or 
functions in response to a specific event. Triggers can be initiated when one of the 
following happens:

• A row is inserted into a table.

• A field within a row is updated.

• A row within a table is deleted.

• A table is truncated; that is, all rows are quickly removed from a table.

The timing of the trigger can also be specified to occur:

• Before an insert, update, delete, or truncate operation

• After an insert, update, delete, or truncate operation

• Instead of an insert, update, delete, or truncate operation

Depending upon the context and the purpose of the database, triggers can have a 
wide variety of different use cases and applications. For example, in a production 
environment where a database is being used to store business information and make 
process decisions (such as for a ride-sharing application or an e-commerce store), 
triggers can be used before any operation to create access logs to the database. 
These logs can then be used to determine who has accessed or modified the 
data within the database. Alternatively, triggers could be used to remap database 
operations to a different database or table using the INSTEAD OF trigger.

In the context of a data analysis application, triggers can be used to either create 
datasets of specific features in real-time (such as for determining the average of data 
over time or a sample-to-sample difference), test hypotheses concerning the data, or 
flag outliers being inserted or modified in a dataset.
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Given that triggers are used frequently to execute SQL statements in response to 
events or actions, you can also see why functions are often written specifically for or 
paired with triggers. Self-contained, repeatable function blocks can be used for both 
trialing/debugging the logic within the function as well as inserting the actual code 
within the trigger. So, how do you create a trigger? Similar to the case of function 
definitions, there is a standard syntax; again, they are SQL keywords:

CREATE TRIGGER some_trigger_name 

{ BEFORE | AFTER | INSTEAD OF } 

{ INSERT | DELETE | UPDATE | TRUNCATE } 

ON table_name

FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE function_name ( function_arguments)

Looking at this generic trigger definition, you can see that there are a few 
individual components:

• You need to provide a name for the trigger in place of some_trigger_name.

• You need to select when the trigger is going to occur, either BEFORE, AFTER, or 
INSTEAD OF an event.

• You need to select what type of event you want to trigger on, either INSERT, 
DELETE, UPDATE, or TRUNCATE.

• You need to provide the table you want to monitor for events in table_name.

• The FOR EACH statement is used to specify how the trigger is to be fired. You 
can fire the trigger for each row that is within the scope of the trigger, or just 
once per statement despite the number of rows being inserted into the table.

• Finally, you just need to provide function_name and any relevant/required 
function_arguments to provide the functionality that you want to use on 
each trigger.

Look at the following example, in which you want to add a check that prevents the 
system from accidentally creating a sale for an amount less than half of the base 
MSRP. Before you can create a trigger, you need to define a trigger function:

CREATE OR REPLACE FUNCTION check_sale_amt_vs_msrp()

RETURNS TRIGGER AS $$

DECLARE min_allowed_price numeric;

BEGIN

  SELECT 

    base_msrp * 0.5 
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  INTO 

    min_allowed_price 

  FROM 

    products 

  WHERE 

    product_id = NEW.product_id;

  IF NEW.sales_amount < min_allowed_price THEN

    RAISE EXCEPTION 'Sales amount cannot be less than half of MSRP';

  END IF;

  RETURN NEW;

END;

$$ LANGUAGE PLPGSQL;

Next, you need to create the trigger that will run if a record is added or updated:

CREATE TRIGGER sales_product_sales_amount_msrp 

AFTER INSERT OR UPDATE 

ON sales

FOR EACH ROW

EXECUTE PROCEDURE check_sale_amt_vs_msrp();

You can test that this works by testing an insertion into the sales table that does not 
meet the minimum sales amount criteria:

INSERT INTO sales (

  SELECT 

    customer_id, 

    product_id, 

    sales_transaction_date, 

    sales_amount/3.0, 

    channel, 

    dealership_id 

  FROM 

    sales 

  LIMIT 

    1

);

This gives the following output:

ERROR:  Sales amount cannot be less than half of MSRP

CONTEXT:  PL/pgSQL function check_sale_amt_vs_msrp() line 6 at RAISE
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Now, implement an exercise to create triggers for updating fields.

Note

There are a number of different options available for SQL triggers that lie 
outside the scope of this book. For the complete trigger documentation, you 
can refer to https://www.postgresql.org/docs/current/sql-createtrigger.html.

Exercise 8.07: Creating Triggers to Update Fields

In this exercise, you will introduce two new tables into the sqlda database, one 
called new_products and another called order_info. The new_products 
table contains some product information together with their inventory, and the 
order_info table contains the orders placed on different products.

For this exercise, you will create a trigger that updates the inventory (also called 
stock) value within the new_products table for a product each time that an order is 
inserted into a new order_info table. As orders are placed and items are bought, 
the triggers will be fired, and the quantity of available stock will be updated. Using 
such a trigger, you can update your analysis in real-time as end users interact with 
the database. These triggers will remove the need for you to run the analysis for the 
marketing department manually; instead, they will generate the results for you.

Here are the steps to perform:

1. Create the required tables in the sqlda database using the following queries:

CREATE TABLE order_info (

    order_id integer,

    customer_id integer,

    product_code text,

    qty integer

);

INSERT INTO order_info VALUES (1618, 3, 'GROG1', 12);

INSERT INTO order_info VALUES (1619, 2, 'POULET3', 3);

INSERT INTO order_info VALUES (1620, 4, 'MON123', 1);

INSERT INTO order_info VALUES (1621, 4, 'MON636', 3);

INSERT INTO order_info VALUES (1622, 5, 'MON666', 1);

CREATE TABLE new_products (

    product_code text,

https://www.postgresql.org/docs/current/sql-createtrigger.html
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    name text,

    stock integer

);

INSERT INTO new_products VALUES

('MON636', 'Red Herring', 99);

INSERT INTO new_products VALUES

('MON666', 'Murray"s Arm', 0);

INSERT INTO new_products VALUES

('GROG1', 'Grog', 65);

INSERT INTO new_products VALUES

('POULET3', 'El Pollo Diablo', 2);

INSERT INTO new_products VALUES

('MON123', 'Rubber Chicken + Pulley', 7);

2. Create the required functions in the sqlda database using the Functions.
sql code in the Exercise 8.07 folder, which can be found in the accompanying 
source code. It is also available on GitHub: https://packt.link/PDtJk.

You will need to open up a query tool such as pgAdmin and connect to the 
sqlda database. Copy and paste the content of the Functions.sql file 
into the query tool and run the statements. There are three functions in this 
Functions.sql file that you will use, which are as follows:

• The get_stock function takes a product code as a TEXT input and returns the 
currently available stock for the specific product code.

• The insert_order function is used to add a new order to the order_info 
table and takes customer_id INTEGER, product_code TEXT, and qty 
INTEGER as inputs; it will return the order_id instance generated for the 
new record.

• The update_stock function will extract the information from the most recent 
order and update the corresponding stock information from the products 
table for the corresponding product_code.

3. Get a list of the functions using the \df command after loading the function 
definitions. This will display the following output:

                         List of functions

 Schema |   Name    | Result data type | Argument data types | Type

--------+-----------+------------------+---------------------+------

 public | get_stock | integer          | text                | func

(1 row)

https://packt.link/PDtJk
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4. First, look at the current state of the new_products table:

SELECT * FROM new_products;

Here is the output of the preceding code:

product_code |          name           | stock

--------------+-------------------------+-------

 MON636       | Red Herring             |    99

 MON666       | Murray"s Arm            |     0

 GROG1        | Grog                    |    65

 POULET3      | El Pollo Diablo         |     2

 MON123       | Rubber Chicken + Pulley |     7

(5 rows)

For the order_info table, you can write the following query:

SELECT * FROM order_info;

Here is the output of the preceding code:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

     1618 |           3 | GROG1        |  12

     1619 |           2 | POULET3      |   3

     1620 |           4 | MON123       |   1

     1621 |           4 | MON636       |   3

     1622 |           5 | MON666       |   1

(5 rows)

5. Insert a new order using the insert_order function with customer_id 4, 
product_code MON636, and qty 10:

SELECT insert_order(4, 'MON636', 10);

Here is the output of the preceding code:

insert_order

------------

1623

(1 row)
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6. Review the entries for the order_info table:

SELECT * FROM order_info;

This will display the following output:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

     1618 |           3 | GROG1        |  12

     1619 |           2 | POULET3      |   3

     1620 |           4 | MON123       |   1

     1621 |           4 | MON636       |   3

     1622 |           5 | MON666       |   1

     1623 |           4 | MON636       |  10

(6 rows)

Notice the additional row with order_id 1623.

7. Update the new_products table to account for the newly sold 10 red herrings 
using the update_stock function:

SELECT update_stock();

Here is the output of the preceding code:

update_stock

------------

89

(1 row)

This function call will determine how many red herrings are left in the 
inventory (after the sale of the 10 additional herrings) and will update the 
table accordingly.

8. Review the new_products table and notice the updated stock value for 
Red Herring:

SELECT * FROM new_products;
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Here is the output of the preceding code:

product_code |          name           | stock

--------------+-------------------------+-------

 MON666       | Murray"s Arm            |     0

 GROG1        | Grog                    |    65

 POULET3      | El Pollo Diablo         |     2

 MON123       | Rubber Chicken + Pulley |     7

 MON636       | Red Herring             |    89

(5 rows)

Updating the stock values manually will quickly become tedious. Create a trigger 
to do this automatically whenever a new order is placed.

9. Delete (DROP) the previous update_stock function. Before you can create a 
trigger, you must first adjust the update_stock function to return a trigger, 
which has the benefit of allowing for some simplified code:

DROP FUNCTION update_stock;

10. Create a new update_stock function that returns a trigger. Note that 
the function definition is also contained within the Functions.sql file for 
reference or direct loading into the database:

CREATE FUNCTION update_stock() 

RETURNS TRIGGER AS $stock_trigger$

DECLARE stock_qty integer;

BEGIN

  stock_qty := get_stock(NEW.product_code) - NEW.qty;

  UPDATE 

    new_products 

  SET 

    stock=stock_qty 

  WHERE 

    product_code=NEW.product_code;

  RETURN NEW;

END; $stock_trigger$

LANGUAGE PLPGSQL;



Functions and Triggers | 377

Note that in this function definition, you are using the NEW keyword followed by 
the dot operator (.) and the product_code (NEW.product_code) and qty 
(NEW.qty) field names from the order_info table. The NEW keyword refers 
to the record that was recently inserted, updated, or deleted and provides a 
reference to the information within the record.

In this exercise, you want the trigger to fire after the record is inserted into 
order_info and thus the NEW reference will contain this information. So, 
you can use the get_stock function with NEW.product_code to get the 
currently available stock for the record and simply subtract the NEW.qty value 
from the order record.

11. Finally, create the trigger. You want the trigger to occur after an INSERT 
operation on the order_info table. For each row, you want to execute the 
newly modified update_stock function to update the stock values in the 
product table:

CREATE TRIGGER update_trigger

AFTER INSERT ON order_info

FOR EACH ROW

EXECUTE PROCEDURE update_stock();

12. Now that you have created a new trigger, test it. Call the insert_order 
function to insert a new record into the order_info table:

SELECT insert_order(4, 'MON123', 2);

Here is the output of the preceding code:

insert_order

------------

1624

(1 row)

13. Look at the records from the order_info table:

SELECT * FROM order_info;
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This will display the following output:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

     1618 |           3 | GROG1        |  12

     1619 |           2 | POULET3      |   3

     1620 |           4 | MON123       |   1

     1621 |           4 | MON636       |   3

     1622 |           5 | MON666       |   1

     1623 |           4 | MON636       |  10

     1624 |           4 | MON123       |   2

(7 rows)

14. Look at the records for the new_products table:

SELECT * FROM new_products;

Here is the output of the preceding code:

product_code |          name           | stock

--------------+-------------------------+-------

 MON666       | Murray"s Arm            |     0

 GROG1        | Grog                    |    65

 POULET3      | El Pollo Diablo         |     2

 MON636       | Red Herring             |    89

 MON123       | Rubber Chicken + Pulley |     5

(5 rows)

Our trigger worked. You can see that the available stock for Rubber Chicken 
+ Pulley MON123 has been reduced from 7 to 5, in accordance with the 
quantity of the inserted order.

Note

To access the source code for this specific section, please refer to  
https://packt.link/PDtJk.

https://packt.link/PDtJk
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In this exercise, you have successfully constructed a trigger to execute a secondary 
function following the insertion of a new record into the database. In the next activity, 
you will create a trigger to keep track of the data.

Activity 8.06: Creating a Trigger to Track Average Purchases

Our goal here is to create a trigger for keeping track of the data that is updated. Say 
you are working as a data scientist for ZoomZoom. The business is looking at trying 
a few different strategies to increase the number of items in each sale. To simplify 
your analysis, you decide to add a simple trigger that, for each new order, computes 
the average quantity in all the orders and puts the result in a new table along with the 
corresponding order_id. Here are the steps to follow:

1. Connect to the sqlda database.

2. Create a new table called avg_qty_log that is composed of an order_id 
integer field and an avg_qty numeric field.

3. Create a function called avg_qty that does not take any arguments but 
returns a trigger. The function computes the average value for all order 
quantities (order_info.qty) and inserts the average value, along with the 
most recent order_id, into avg_qty.

4. Create a trigger called avg_trigger that calls the avg_qty function after 
each row is inserted into the order_info table.

5. Insert some new rows into the order_info table with quantities of 6, 7, and 8.

6. Look at the entries in avg_qty_log. Is the average quantity of each 
order increasing?

Expected output:

order_id |      avg_qty

----------+--------------------

     1625 | 4.7500000000000000

     1626 | 5.0000000000000000

     1627 | 5.3000000000000000

(3 rows)
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In this activity, you created a trigger for continuously keeping track of the data that is 
updated in the database.

Note 

The solution for this activity can be found via this link.

Summary
In this chapter, you have covered a wide variety of topics designed to help you 
understand and improve the performance of your SQL queries. The chapter began 
with a thorough discussion of the Query Planner, (including the EXPLAIN and 
ANALYZE statements) as well as various indexing methods. You discussed different 
compromises and considerations that can be made to reduce the time needed 
to execute queries. You considered several scenarios where indexing methods 
would be of benefit and others where the Query Planner may disregard the index, 
thus reducing the efficiency of the query. You then moved on to learn how to kill 
long-running queries. You also covered an in-depth look at functions and automatic 
function calls using triggers and learned about the \df and \sf commands.

In the next chapter, you will combine all the topics you have covered thus far in a final 
case study, applying your SQL knowledge and the scientific method in general, as you 
solve a real-world problem.







Overview

By the end of this chapter, you will be able to solve real-world problems 
outside of those described within this book by using the scientific method 
and critical thinking. You will be able to analyze your data and convert it 
into actionable tasks and information. To accomplish these goals, you will 
examine an extensive and detailed real-world case study of sales data. This 
case study will not only demonstrate the processes used in SQL analysis to 
find solutions for actual problems but will also provide you with confidence 
and experience in solving such problems.

Using SQL to Uncover the 

Truth: A Case Study

9
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Introduction
Throughout SQL for Data Analytics, Third Edition, you have learned a range of new skills 
(including basic descriptive statistics, SQL commands, and importing and exporting 
data in PostgreSQL) as well as more advanced methods to optimize and automate 
SQL (such as functions and triggers). In this final chapter of this workshop, you will 
combine these new skills with the scientific method and critical thinking to solve a 
real-world problem and determine the cause of an unexpected drop in sales.

This chapter provides a case study and will help you build your confidence in applying 
your new SQL skillset to your own problem domains. To solve the problem presented 
in this case study, you will use the complete range of your newly developed skills, 
from using basic SQL searches to filtering out the available information to aggregating 
and joining multiple sets of information and using windowing methods to group the 
data in a logical manner. By completing case studies such as this, you will refine one 
of the key tools in your data analysis toolkit, that is, SQL, to provide a boost to your 
data science career.

Case Study
Throughout this chapter, you will work on a case study. The new ZoomZoom Bat 
Scooter is now available for sale exclusively through its website. Sales are looking 
good, but suddenly, preorders start plunging by 20% after a couple of weeks. What is 
going on? As the best data analyst at ZoomZoom, you have been assigned to figure 
this out.

The Scientific Method

In this case study, you will be following the scientific method to solve the problem. 
Here, you will test guesses (or hypotheses) using objectively collected data. The 
scientific method can be decomposed into the following key steps:

1. Define the question to answer, which in this case is what caused the drop in 
sales of the Bat Scooter after approximately 2 weeks.

2. Perform complete background research to gather sufficient information to 
propose an initial hypothesis for the event or phenomenon.

3. Construct a hypothesis to explain the event or answer the question.

4. Define and execute an objective experiment to test the hypothesis. In an ideal 
scenario, all aspects of the experiment should be controlled and fixed, except for 
the phenomenon that is being tested under the hypothesis.
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5. Analyze the data that was collected during the experiment.

6. Report the results of the analysis, which will hopefully explain why there was a 
drop in the sale of Bat Scooters.

Note 

In this chapter, you are completing a post hoc analysis of the data; that is, 
the event has happened, and all the available data has been collected. 
Post hoc data analysis is particularly useful when events have been 
recorded that cannot be repeated or when certain external factors cannot 
be controlled.

You can perform your analysis with the post hoc analysis data. You will also extract 
information to support or refute your hypothesis. You will, however, be unable to 
definitively confirm or reject the hypothesis without practical experimentation. The 
question that will be the subject of this chapter and that you need to answer is this: 
why did the sales of the ZoomZoom Bat Scooter drop by approximately 20% after 
about 2 weeks?

So, to make the process easier, you will first start with the basic SQL skills for data 
collection and processing.

Exercise 9.01: Preliminary Data Collection Using SQL Techniques

In this exercise, you will collect preliminary data using SQL techniques. You have been 
told that the preorders for the ZoomZoom Bat Scooter were good, but the orders 
suddenly dropped by 20%. The goal of this exercise is to answer some core questions 
about Bat Scooter production, such as the following:  

• When did production start? 

• How much was the Bat Scooter selling for? 

• How does the Bat Scooter compare with other types of scooters in terms 
of price? 
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Perform the following steps to complete this exercise:

1. Load the sqlda database using psql.

2. List the model, base_msrp (MSRP stands for manufacturer's suggested 
retail price), and production_start_date fields within the product table 
for product types matching scooter:

SELECT 

  model, base_msrp, production_start_date 

FROM 

  Products 

WHERE 

  product_type='scooter'

ORDER BY 

  base_msrp;

The following table shows the details of all the products with the scooter 
product type:

         model         | base_msrp | production_start_date

-----------------------+-----------+-----------------------

 Lemon Zester          |    349.99 | 2021-10-01 00:00:00

 Lemon                 |    399.99 | 2012-10-28 00:00:00

 Lemon                 |    499.99 | 2015-12-27 00:00:00

 Bat                   |    599.99 | 2019-06-07 00:00:00

 Blade                 |    699.99 | 2017-02-17 00:00:00

 Bat Limited Edition   |    699.99 | 2019-10-13 00:00:00

 Lemon Limited Edition |    799.99 | 2013-08-30 00:00:00

(7 rows)

Looking at the results from the search, you can see two scooter products with 
Bat in the name: Bat and Bat Limited Edition. The Bat Scooter started 
production on 2019-06-07 (date format: YYYY-MM-DD), with a suggested 
retail price of $599.99, and the Bat Limited Edition Scooter started 
production approximately 4 months later, on 2019-10-13, with a price of 
$699.99.

Looking at the product information, you can see that the Bat Scooter's price 
looks different from the others as it is the only scooter with a suggested retail 
price of $599.99. There are others at $699.99 and above, or $499.99 and 
below. But Bat Scooter sits right in between.
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Similarly, if you consider the production start date in isolation, the original Bat 
Scooter is again unique as it is the only scooter starting production in the second 
quarter, and one of only two in the first half of the year. All other scooters start 
production in the second half of the year, with only the Blade Scooter starting 
production in February.

Now that you have a basic understanding of the products, you would like to see 
how they perform in the market. To use the sales information in conjunction 
with the product information available, you also need to get the product ID for 
each of the scooters.

3. Extract the model names and product IDs for the scooters available within the 
database. You will need this information to reconcile the product information 
with the available sales information:

SELECT 

  model, product_id 

FROM 

  Products 

WHERE 

  product_type='scooter';

The preceding query yields the product IDs shown in the following table:

         model         | product_id

-----------------------+------------

 Lemon                 |          1

 Lemon Limited Edition |          2

 Lemon                 |          3

 Blade                 |          5

 Bat                   |          7

 Bat Limited Edition   |          8

 Lemon Zester          |         12

(7 rows)
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4. In the following steps, you will go through a series of queries for analysis. In the 
real world, these analytics will involve a lot of research and experimentation 
and a lot of back and forth to find the proper SQL statements. As such, it is a 
good habit to save query results that you feel may be helpful, either as a view 
or directly into a table. In this step, you will insert the results of the preceding 
query into a new table called product_names and then select the newly 
inserted content:

SELECT 

  model, product_id 

INTO 

  product_names 

FROM 

  Products 

WHERE 

  product_type='scooter';

SELECT 

  * 

FROM 

  product_names;

Inspect the contents of the product_names table, as shown here:

         model         | product_id

-----------------------+------------

 Lemon                 |          1

 Lemon Limited Edition |          2

 Lemon                 |          3

 Blade                 |          5

 Bat                   |          7

 Bat Limited Edition   |          8

 Lemon Zester          |         12

(7 rows)

Note

To access the source code for this specific section, please refer to  
https://packt.link/b3wRQ.

https://packt.link/b3wRQ
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By completing this preliminary data collection step, you have obtained the 
information that is required to collect sales data on the Bat Scooter, as well as other 
scooter products for comparison. While Exercise 9.01: Preliminary Data Collection Using 
SQL Techniques involved using the simplest SQL commands, it has already yielded 
some useful information and should not be underestimated. 

In Exercise 9.02: Extracting the Sales Information, you will try to extract the sales 
information related to the reduction in sales of the Bat Scooter.

Exercise 9.02: Extracting the Sales Information

In this exercise, you will use a combination of simple SELECT statements as well 
as aggregate and window functions to examine the sales data. You can use the 
preliminary information at hand to extract the Bat Scooter sales records and 
understand what is going on. You have a table, product_names, that contains both 
the model names and product IDs. You will need to combine this information with the 
sales records and extract only those for the Bat Scooter:

1. Load the sqlda database with psql.

2. To get yourself familiarized with the table, list the available fields in the 
sqlda database:

\d sales

The preceding query yields the following fields that are present in the database:                          

                                 Table "public.sales"

         Column         |            Type             | Collation | 
Nullable | Default
------------------------+-----------------------------+-----------+--
--------+---------
 customer_id            | bigint                      |     |    |

 product_id             | bigint                      |     |    |

 sales_transaction_date | timestamp without time zone |     |    |

 sales_amount           | double precision            |     |    |

 channel                | text                        |     |    |

 dealership_id          | double precision            |     |    | 

In this result, you can see references to customer and product IDs, as well as the 
transaction date, sales information, the sales channel, and the dealership ID.
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3. Use an inner join on the product_id columns of both the product_names 
table and the sales table. From the result of the inner join, select model, 
customer_id, sales_transaction_date, sales_amount, channel, 
and dealership_id, and store the values in a separate table called 
product_sales:

SELECT 

  model, 

  customer_id, 

  sales_transaction_date::DATE as sales_date, 

  sales_amount, 

  channel, 

  dealership_id 

INTO 

  products_sales 

FROM 

  Sales 

INNER JOIN 

  product_names 

ON 

  sales.product_id=product_names.product_id;

4. Note that the sales_transaction_date column is cast from TIMESTAMP 
data type to a DATE column sales_date. Since you need to determine the 
sales drop in terms of days, there is no need to keep the data about time. The 
date would suffice.

5. If you get an error, please drop the products_sales table using the following 
DROP query and rerun the code:

DROP TABLE IF EXISTS products_sales;

Note

Throughout this chapter, you will be storing the results of queries and 
calculations in separate tables as this will allow you to look at the results 
of the individual steps in the analysis. In a commercial/production setting, 
you would only store the end result in a separate table, depending on the 
context of the problem being solved.
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6. Look at the first five rows of this new table by using the following query:

SELECT 

  *

FROM 

  products_sales 

LIMIT 

  5;

The following table lists the top five customers who made a purchase. It shows 
the sale amount and the transaction details, such as the date and time:

 model | customer_id | sales_date | sales_amount | channel  | 
dealership_id
-------+-------------+------------+--------------+----------+--------
-------
 Lemon |       42104 | 2015-01-12 |      319.992 | internet |

 Lemon |       41604 | 2014-11-25 |       399.99 | internet |

 Lemon |       41575 | 2013-02-06 |      319.992 | internet |

 Lemon |       41531 | 2013-05-04 |       399.99 | internet |

 Lemon |       41443 | 2014-01-18 |       399.99 | internet | 

(5 rows)

7. Select all the information from the product_sales table that is available for 
the Bat Scooter and order the sales information by sales_date in ascending 
order. By ordering the data in this way, you can look at the first few days of the 
sales records in detail:

SELECT 

  * 

FROM 

  products_sales 

WHERE 

  model='Bat' 

ORDER BY 

  sales_date;
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The preceding query generates the following output:

model | customer_id | sales_date | sales_amount |  channel   | 
dealership_id
-------+-------------+------------+--------------+------------+------
---------
 Bat   |  42213 | 2019-06-07 |  599.99 | internet   |

 Bat   |  45868 | 2019-06-07 |  599.99 | internet   |

 Bat   |  11678 | 2019-06-07 |  599.99 | internet   |

 Bat   |   4319 | 2019-06-07 |  599.99 | internet   |

 Bat   |  31307 | 2019-06-07 |  599.99 | internet   |

 Bat   |  40250 | 2019-06-07 |  599.99 | dealership |  4

 Bat   |  35497 | 2019-06-07 |  599.99 | dealership |  2

 Bat   |  24125 | 2019-06-07 |  599.99 | dealership |  1

 Bat   |   4553 | 2019-06-07 |  599.99 | dealership | 11

 Bat   |   6322 | 2019-06-08 |  599.99 | internet   |

 Bat   |  45880 | 2019-06-08 |  599.99 | dealership |  7

 Bat   |  47790 | 2019-06-08 |  599.99 | dealership | 20

 Bat   |  43477 | 2019-06-08 |  599.99 | internet   |

 Bat   |   6342 | 2019-06-08 |  599.99 | internet   |

 Bat   |  46653 | 2019-06-08 |  599.99 | dealership |  6

 Bat   |  48809 | 2019-06-09 |  599.99 | internet   |

 Bat   |  49856 | 2019-06-09 |  599.99 | dealership | 10

 Bat   |  39653 | 2019-06-09 |  599.99 | dealership |  7

 Bat   |  49226 | 2019-06-09 | 539.991 | internet   |

 Bat   |  43013 | 2019-06-09 |  599.99 | dealership | 16

 Bat   |  42625 | 2019-06-09 |  599.99 | internet   |

 Bat   |  45256 | 2019-06-09 | 539.991 | dealership |  7

 Bat   |  23679 | 2019-06-09 | 539.991 | internet   |

 Bat   |   9045 | 2019-06-09 |  599.99 | dealership | 19

 Bat   |  18602 | 2019-06-09 |  599.99 | internet   |

 Bat   |  14298 | 2019-06-10 |  599.99 | internet   |

 Bat   |  21305 | 2019-06-10 |  599.99 | dealership | 19

-- More --
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8. As you can see, there is one line stating -- More --, which means there are 
more rows in the result set than what is displayed by psql. To find out how 
many rows are returned in the result set, you will count the number of records 
available by using the following query:

SELECT 

  COUNT(model) 

FROM 

  products_sales 

WHERE 

  model='Bat';

The model count for the Bat model is as follows:

count

--------

7328

(1 row) 

So, you have 7328 sales, beginning on 2019-06-07. Check the date of the final 
sales record by performing step 8.

9. Determine the last sale date for the Bat Scooter by selecting the maximum 
(using the MAX function) for sales_date:

SELECT 

  MAX(sales_date) 

FROM 

  products_sales 

WHERE 

  model='Bat';

The last sale date is as follows:

max

--------------------

2022-01-25

The last sale in the database occurred on 2022-01-25.
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10. Now that you know the number of rows, as well as the starting and ending dates 
of the sales result for the Bat Scooter, you can focus on analyzing its sales 
pattern. You will collect the daily sales volume for the Bat Scooter and place it in 
a new table called bat_sales to confirm the information provided by the sales 
team stating that sales dropped by 20% after the first 2 weeks:

SELECT 

  * 

INTO 

  bat_sales 

FROM 

  products_sales 

WHERE 

  model='Bat' 

ORDER BY 

  sales_date;

11. Now, display the first five records of bat_sales ordered by sales_date:

SELECT 

  * 

FROM 

  bat_sales 

ORDER BY 

  sales_date

LIMIT 

  5;

The following is the output of the preceding code:

model | customer_id | sales_date | sales_amount | channel  | 
dealership_id
-------+-------------+------------+--------------+----------+--------
-------
 Bat   |       45868 | 2019-06-07 |       599.99 | internet |

 Bat   |       11678 | 2019-06-07 |       599.99 | internet |

 Bat   |        4319 | 2019-06-07 |       599.99 | internet |

 Bat   |       31307 | 2019-06-07 |       599.99 | internet |

 Bat   |       42213 | 2019-06-07 |       599.99 | internet |

(5 rows)



Case Study | 395

12. Now that you have the individual sales information, you will need to start looking 
at the daily sales as this exercise is aimed at researching daily sales patterns. 
Create a new table (bat_sales_daily) containing the sales transaction dates 
and a daily count of total sales:

SELECT 

  sales_date, 

  COUNT(sales_date) 

INTO 

  bat_sales_daily 

FROM 

  bat_sales 

GROUP BY 

  sales_date 

ORDER BY 

  sales_date;

13. Now that you know the daily number of sales, the next few steps will help you 
determine/confirm whether there has been a drop in sales. Examine the first 
22 records (a little over 3 weeks), as sales were reported to have dropped after 
approximately the first 2 weeks:

SELECT 

  * 

FROM 

  bat_sales_daily 

ORDER BY 

  sales_date

LIMIT 

  22;

This will display the following output:

sales_date | count

------------+-------

 2019-06-07 |     9

 2019-06-08 |     6

 2019-06-09 |    10

 2019-06-10 |    10

 2019-06-11 |     5

 2019-06-12 |    10

 2019-06-13 |    14
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 2019-06-14 |     9

 2019-06-15 |    11

 2019-06-16 |    12

 2019-06-17 |    10

 2019-06-18 |     6

 2019-06-19 |     2

 2019-06-20 |     5

 2019-06-21 |     6

 2019-06-22 |     9

 2019-06-23 |     2

 2019-06-24 |     4

 2019-06-25 |     7

 2019-06-26 |     5

 2019-06-27 |     5

 2019-06-28 |     3

(22 rows)

You can see a drop in sales after 2019-06-17, since there are 7 days in the first 
11 rows that record double-digit sales and none over the next 11 days.

Note

To access the source code for this specific section, please refer to  
https://packt.link/b3wRQ.

At this stage, you can confirm that there has been a drop in sales, although you are 
yet to precisely quantify the extent of the reduction or the reason for the drop in 
sales. Well, you will discover the extent of the reduction in the next activity.

Activity 9.01: Quantifying the Sales Drop

In this activity, you will use your knowledge of the windowing methods that you 
learned about in Chapter 4, Aggregate Functions for Data Analysis, and Chapter 5, 
Window Functions for Data Analysis. In Exercise 9.02, Extracting the Sales Information, 
you identified the occurrence of the sales drop as being approximately 10 days after 
launch. Here, you will try to quantify the drop in sales for the Bat Scooter.

https://packt.link/b3wRQ
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Perform the following steps to complete this activity:

1. Load the sqlda database with psql.

2. Using the OVER and ORDER BY statements, compute the daily cumulative sum 
of sales. This provides you with a discrete count of sales over a period of time on 
a daily basis. Insert the results into a new table called bat_sales_growth.

3. Compute a seven-day lag of the sum column, and then insert all the columns of 
bat_sales_daily and the new lag column into a new table, bat_sales_
daily_delay. This lag column indicates the sales amount a week prior to the 
given record, allowing you to compare sales with the previous week.

4. Inspect the first 15 rows of bat_sales_growth.

5. Compute the sales growth as a percentage, comparing the current sales  
volume to that of a week prior. Insert the resulting table into a new table called 
bat_sales_delay_vol.

6. Compare the first 22 values of the bat_sales_delay_vol table to ascertain 
a sales drop.

The expected output is as follows:

 sales_date | count | sum | lag |         volume

------------+-------+-----+-----+------------------------

 2019-06-07 |     9 |   9 |     |

 2019-06-08 |     6 |  15 |     |

 2019-06-09 |    10 |  25 |     |

 2019-06-10 |    10 |  35 |     |

 2019-06-11 |     5 |  40 |     |

 2019-06-12 |    10 |  50 |     |

 2019-06-13 |    14 |  64 |     |

 2019-06-14 |     9 |  73 |   9 |     7.1111111111111111

 2019-06-15 |    11 |  84 |  15 |     4.6000000000000000

 2019-06-16 |    12 |  96 |  25 |     2.8400000000000000

 2019-06-17 |    10 | 106 |  35 |     2.0285714285714286

 2019-06-18 |     6 | 112 |  40 |     1.8000000000000000

 2019-06-19 |     2 | 114 |  50 |     1.2800000000000000

 2019-06-20 |     5 | 119 |  64 | 0.85937500000000000000

 2019-06-21 |     6 | 125 |  73 | 0.71232876712328767123

 2019-06-22 |     9 | 134 |  84 | 0.59523809523809523810

 2019-06-23 |     2 | 136 |  96 | 0.41666666666666666667

 2019-06-24 |     4 | 140 | 106 | 0.32075471698113207547
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 2019-06-25 |     7 | 147 | 112 | 0.31250000000000000000

 2019-06-26 |     5 | 152 | 114 | 0.33333333333333333333

 2019-06-27 |     5 | 157 | 119 | 0.31932773109243697479

 2019-06-28 |     3 | 160 | 125 | 0.28000000000000000000

(22 rows)

Note 

The solution for this activity can be found via this link.

Exercise 9.03: Launch Timing Analysis

In this exercise, you will try to identify the causes of a sales drop. Now that you 
have confirmed the presence of the sales growth drop, you will try to explain the 
cause of the event. You will test the hypothesis that the timing of the scooter launch 
is the reason for the reduction in sales. Remember from Exercise 9.01, Preliminary 
Data Collection Using SQL Techniques, that the ZoomZoom Bat Scooter launched on 
2019-06-07. Perform the following steps to complete this exercise:

1. Load the sqlda database from psql.

2. Examine the other products in the database. To determine whether the launch 
date is the reason for the sales drop, you need to compare the ZoomZoom Bat 
Scooter to other scooter products according to the launch date. Execute the 
following query to check the launch dates:

SELECT * FROM products;

The result shows the launch dates for all the products:

product_id |         model         | year | product_type | base_msrp 
| production_start_date | production_end_date
------------+-----------------------+------+--------------+----------
-+-----------------------+---------------------
          1 | Lemon                 | 2013 | scooter      |    399.99 
| 2012-10-28 00:00:00   | 2015-02-03 00:00:00
          2 | Lemon Limited Edition | 2014 | scooter      |    799.99 
| 2013-08-30 00:00:00   | 2013-11-24 00:00:00
          3 | Lemon                 | 2016 | scooter      |    499.99 
| 2015-12-27 00:00:00   | 2021-08-24 00:00:00
          5 | Blade                 | 2017 | scooter      |    699.99 
| 2017-02-17 00:00:00   | 2017-09-23 00:00:00
          7 | Bat                   | 2019 | scooter      |    599.99 
| 2019-06-07 00:00:00   |
          8 | Bat Limited Edition   | 2020 | scooter      |    699.99 
| 2019-10-13 00:00:00   |
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         12 | Lemon Zester          | 2022 | scooter      |    349.99 
| 2021-10-01 00:00:00   |
          4 | Model Chi             | 2017 | automobile   | 115000.00 
| 2017-02-17 00:00:00   | 2021-08-24 00:00:00
          6 | Model Sigma           | 2018 | automobile   |  65500.00 
| 2017-12-10 00:00:00   | 2021-05-28 00:00:00
          9 | Model Epsilon         | 2020 | automobile   |  35000.00 
| 2019-10-13 00:00:00   |
         10 | Model Gamma           | 2020 | automobile   |  85750.00 
| 2019-10-13 00:00:00   |
         11 | Model Chi             | 2022 | automobile   |  95000.00 
| 2021-10-01 00:00:00   |
(12 rows)

All the other products were launched outside of the second quarter, unlike the 
Bat Scooter, which was launched in June.

3. List all the scooters from the products table, since you are only interested in 
comparing scooters:

SELECT 

  * 

FROM 

  products 

WHERE 

  product_type='scooter';

The result shows all the information for products with the product type 
of scooter:

 product_id |         model         | year | product_type | base_msrp 
| production_start_date | production_end_date
------------+-----------------------+------+--------------+----------
-+-----------------------+---------------------
          1 | Lemon                 | 2013 | scooter      |    399.99 
| 2012-10-28 00:00:00   | 2015-02-03 00:00:00
          2 | Lemon Limited Edition | 2014 | scooter      |    799.99 
| 2013-08-30 00:00:00   | 2013-11-24 00:00:00
          3 | Lemon                 | 2016 | scooter      |    499.99 
| 2015-12-27 00:00:00   | 2021-08-24 00:00:00
          5 | Blade                 | 2017 | scooter      |    699.99 
| 2017-02-17 00:00:00   | 2017-09-23 00:00:00
          7 | Bat                   | 2019 | scooter      |    599.99 
| 2019-06-07 00:00:00   |
          8 | Bat Limited Edition   | 2020 | scooter      |    699.99 
| 2019-10-13 00:00:00   |
         12 | Lemon Zester          | 2022 | scooter      |    349.99 
| 2021-10-01 00:00:00   |
(7 rows)
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To test the hypothesis that the time of year had an impact on sales performance, 
you require a scooter model to use as the control or reference group. In an ideal 
world, you could launch the ZoomZoom Bat Scooter in a different location or 
region, but just at a different time, and then compare the two. However, this is 
not possible here.

Instead, you will choose a similar scooter that was launched at a different 
time. There are different options in the product database, each with its own 
similarities and differences from the experimental group (ZoomZoom Bat 
Scooter). You could choose the Bat Limited Edition Scooter as the control 
group and use it for comparison. As you can see from the preceding query 
result, it is slightly more expensive, but it was launched only 4 months after the 
Bat Scooter.

Looking at its name, the Bat Limited Edition Scooter seems to share most 
features with ZoomZoom Bat Scooter except for a few extra features because it 
is limited edition.

4. Select the first five rows of the sales database:

SELECT * FROM sales LIMIT 5;

The sales information for the first five customers is as follows:

 customer_id | product_id | sales_transaction_date | sales_amount | 
channel  | dealership_id
-------------+------------+------------------------+--------------+--
--------+---------------
       27275 |          7 | 2021-03-16 08:40:24    |      539.991 | 
internet |
        2017 |          7 | 2019-12-27 07:36:20    |       599.99 | 
internet |
        7213 |          7 | 2021-12-04 18:43:30    |      479.992 | 
internet |
       13194 |          7 | 2019-10-26 12:16:05    |      539.991 | 
internet |
       34454 |          7 | 2020-01-03 04:11:06    |      479.992 | 
internet |
(5 rows)

5. Select the model and sales_transaction_date columns from both the 
products and sales tables for the Bat Limited Edition Scooter. Store the 
results in a table, bat_ltd_sales, ordered by the sales_transaction_
date column, from the earliest date to the latest:

SELECT 

  products.model, 
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  sales.sales_transaction_date 

INTO 

  bat_ltd_sales 

FROM 

  sales 

INNER JOIN 

  products 

ON 

  sales.product_id=products.product_id 

WHERE 

  sales.product_id=8 

ORDER BY 

  sales.sales_transaction_date;

Here is the output:

SELECT 5803

6. Select the first five lines of bat_ltd_sales using the following query:

SELECT * FROM bat_ltd_sales LIMIT 5;

The following table shows the transaction details for the first five entries of Bat 
Limited Edition:

        model        | sales_transaction_date

---------------------+------------------------

 Bat Limited Edition | 2019-10-13 01:49:02

 Bat Limited Edition | 2019-10-13 09:42:37

 Bat Limited Edition | 2019-10-13 10:48:31

 Bat Limited Edition | 2019-10-13 12:22:41

 Bat Limited Edition | 2019-10-13 13:51:34

(5 rows)

7. Calculate the total number of sales for Bat Limited Edition. You can 
check this by using the COUNT function:

SELECT COUNT(model) FROM bat_ltd_sales;

Here is the total sales count:

Count

--------

5803

(1 row)
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This is compared to the original Bat Scooter, which sold 7,328 units.

8. Check the transaction details of the last Bat Limited Edition sale. You can check 
this by using the MAX function:

SELECT MAX(sales_transaction_date) FROM bat_ltd_sales;

The transaction details of the last Bat Limited Edition product are 
as follows:

max

--------------------

2022-01-25  15:08:03

9. Adjust the table to cast the transaction date column as a date, discarding the 
time information as you are only interested in the date of the sale, not the date 
and time of the sale. To do this, write the following query:

ALTER TABLE 

  bat_ltd_sales 

ALTER COLUMN 

  sales_transaction_date TYPE date;

10. Again, select the first five records of bat_ltd_sales to check that the type of 
the sales_transaction_date column is changed to date:

SELECT 

  * 

FROM 

  bat_ltd_sales 

LIMIT 

  5;

The following table shows the first five records of bat_ltd_sales:

        model        | sales_transaction_date

---------------------+------------------------

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

(5 rows)
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11. Similar to the standard Bat Scooter, create a count of sales of the Bat 
Limited Edition Scooter sale on a daily basis. Insert the results into the 
bat_ltd_sales_count table by using the following query:

SELECT 

  sales_transaction_date, 

  count(sales_transaction_date) 

INTO 

  bat_ltd_sales_count 

FROM 

  bat_ltd_sales  

GROUP BY 

  sales_transaction_date 

ORDER BY 

  sales_transaction_date;

12. List the sales count of all the Bat Limited products using the following query:

SELECT 

  * 

FROM 

  bat_ltd_sales_count

ORDER BY

  sales_transaction_date;

The sales count contains many rows. Here are the first 17 rows:

 sales_transaction_date | count

------------------------+-------

 2019-10-13             |     6

 2019-10-14             |     2

 2019-10-15             |     1

 2019-10-16             |     4

 2019-10-17             |     5

 2019-10-18             |     6

 2019-10-19             |     5

 2019-10-20             |     4

 2019-10-21             |     6

 2019-10-22             |     2

 2019-10-23             |     2

 2019-10-24             |     2

 2019-10-25             |     4
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 2019-10-26             |     4

 2019-10-27             |     5

 2019-10-28             |     1

 2019-10-29             |     3

13. Compute the cumulative sum of the daily sales figures and insert the resulting 
table into bat_ltd_sales_growth:

SELECT 

  *, 

  sum(count) OVER (ORDER BY sales_transaction_date) 

INTO 

  bat_ltd_sales_growth 

FROM 

  bat_ltd_sales_count;

14. Select the first 22 days of sales records from bat_ltd_sales_growth:

SELECT 

  * 

FROM 

  bat_ltd_sales_growth 

ORDER BY

  sales_transaction_date

LIMIT 

  22;

The following table displays the first 22 records of sales growth:

 sales_transaction_date | count | sum

------------------------+-------+-----

 2019-10-13             |     6 |   6

 2019-10-14             |     2 |   8

 2019-10-15             |     1 |   9

 2019-10-16             |     4 |  13

 2019-10-17             |     5 |  18

 2019-10-18             |     6 |  24

 2019-10-19             |     5 |  29

 2019-10-20             |     4 |  33

 2019-10-21             |     6 |  39

 2019-10-22             |     2 |  41

 2019-10-23             |     2 |  43

 2019-10-24             |     2 |  45
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 2019-10-25             |     4 |  49

 2019-10-26             |     4 |  53

 2019-10-27             |     5 |  58

 2019-10-28             |     1 |  59

 2019-10-29             |     3 |  62

 2019-10-30             |     8 |  70

 2019-10-31             |     4 |  74

 2019-11-01             |     7 |  81

 2019-11-02             |     7 |  88

 2019-11-03             |     8 |  96

(22 rows)

15. Compare this sales record with the one for the original Bat Scooter sales using 
the following code. The table is from Activity 9.01, Quantifying the Sales Drop:

SELECT 

  * 

FROM 

  bat_sales_growth 

ORDER BY

  sales_date

LIMIT 

  22;

The following table shows the sales details for the first 22 records of the  
bat_sales_growth table:

 sales_date | count | sum

------------+-------+-----

 2019-06-07 |     9 |   9

 2019-06-08 |     6 |  15

 2019-06-09 |    10 |  25

 2019-06-10 |    10 |  35

 2019-06-11 |     5 |  40

 2019-06-12 |    10 |  50

 2019-06-13 |    14 |  64

 2019-06-14 |     9 |  73

 2019-06-15 |    11 |  84

 2019-06-16 |    12 |  96

 2019-06-17 |    10 | 106

 2019-06-18 |     6 | 112

 2019-06-19 |     2 | 114
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 2019-06-20 |     5 | 119

 2019-06-21 |     6 | 125

 2019-06-22 |     9 | 134

 2019-06-23 |     2 | 136

 2019-06-24 |     4 | 140

 2019-06-25 |     7 | 147

 2019-06-26 |     5 | 152

 2019-06-27 |     5 | 157

 2019-06-28 |     3 | 160

(22 rows)

As you can see from the preceding numbers, sales of the Bat Limited 
Edition scooter did not reach double digits during the first 22 days, nor did the 
daily volume of sales fluctuate as much. In keeping with the overall sales figure, 
the Limited Edition scooters sold 64 fewer units over the first 22 days.

16. Compute the seven-day lag function for the sum column and insert the results 
into the bat_ltd_sales_delay table:

SELECT 

  *, 

  lag(sum , 7) OVER (ORDER BY sales_transaction_date) 

INTO 

  bat_ltd_sales_delay 

FROM 

  bat_ltd_sales_growth;

17. Compute the sales growth for bat_ltd_sales_delay in a similar manner 
that you did in Activity 9.01, Quantifying the Sales Drop. Label the column for the 
results of this calculation volume and store the resulting table in bat_ltd_
sales_vol:

SELECT 

  *, 

  (sum-lag)/lag AS volume 

INTO 

  bat_ltd_sales_vol 

FROM 

  bat_ltd_sales_delay;



Case Study | 407

18. Look at the first 22 records of sales in bat_ltd_sales_vol:

SELECT 

  * 

FROM 

  bat_ltd_sales_vol 

ORDER BY

  Sales_transaction_date

LIMIT 

  22;

The sales volume can be seen as follows:

 sales_transaction_date | count | sum | lag |      volume

------------------------+-------+-----+-----+---------------------

 2019-10-13             |     6 |   6 |     |

 2019-10-14             |     2 |   8 |     |

 2019-10-15             |     1 |   9 |     |

 2019-10-16             |     4 |  13 |     |

 2019-10-17             |     5 |  18 |     |

 2019-10-18             |     6 |  24 |     |

 2019-10-19             |     5 |  29 |     |

 2019-10-20             |     4 |  33 |   6 |  4.5000000000000000

 2019-10-21             |     6 |  39 |   8 |  3.8750000000000000

 2019-10-22             |     2 |  41 |   9 |  3.5555555555555556

 2019-10-23             |     2 |  43 |  13 |  2.3076923076923077

 2019-10-24             |     2 |  45 |  18 |  1.5000000000000000

 2019-10-25             |     4 |  49 |  24 |  1.0416666666666667

 2019-10-26             |     4 |  53 |  29 |  0.8275862068965517

 2019-10-27             |     5 |  58 |  33 |  0.7575757575757575

 2019-10-28             |     1 |  59 |  39 |  0.5128205128205128

 2019-10-29             |     3 |  62 |  41 |  0.5121951219512195

 2019-10-30             |     8 |  70 |  43 |  0.6279069767441860

 2019-10-31             |     4 |  74 |  45 |  0.6444444444444444

 2019-11-01             |     7 |  81 |  49 |  0.6530612244897959

 2019-11-02             |     7 |  88 |  53 |  0.6603773584905660

 2019-11-03             |     8 |  96 |  58 |  0.6551724137931034

(22 rows)
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Looking at the volume column, you can see that the sales growth is more 
consistent than for the original Bat Scooter. The growth within the first week is 
less than that of the original model, but it is sustained over a longer period. After 
22 days of sales, the sales growth of the Limited Edition scooter is 65% compared 
to the previous week, as compared with the 28% growth you identified in Activity 
9.01, Quantifying the Sales Drop.

Note

To access the source code for this specific section, please refer to  
https://packt.link/b3wRQ.

At this stage, you have collected data from two similar products that were launched 
at different periods and found some differences in the trajectory of the sales growth 
over the first 3 weeks of sales. In a professional setting, you may also consider 
employing more sophisticated statistical comparison methods, such as tests for 
differences in mean, variance, or survival analysis. These methods lie outside the 
scope of this book; therefore, you will only use simple comparison in this chapter.

While you can see that there is a difference in sales between the two Bat Scooters, 
you cannot rule out the fact that the sales differences can be attributed to the 
difference in the sales price of the two scooters. The Limited Edition scooter is $100 
more expensive. In the next activity, you will compare the sales of the Bat Scooter to 
the 2016 Lemon, which is $100 cheaper, was launched 3 years prior, is no longer in 
production, and started production in the first half of the calendar year.

Activity 9.02: Analyzing the Difference in the Sales Price Hypothesis

In this activity, you are going to investigate the hypothesis that the reduction in sales 
growth can be attributed to the price point of the Bat Scooter. Previously in this 
chapter, you considered the impact of the launch date. However, there could be 
another factor—the sales price included. If you consider the product list of scooters 
in Exercise 9.01, Preliminary Data Collection Using SQL Techniques, and exclude the 
Bat Scooter, you can see that there are two price categories: $699.99 and above or 
$499.99 and below. The Bat Scooter sits exactly between these two groups; perhaps 
the reduction in sales growth can be attributed to the different pricing models. 

https://packt.link/b3wRQ
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In this activity, you will test this hypothesis by comparing Bat sales to the 2016 
Lemon, whose production started on 2015-12-27:

         model         | base_msrp | production_start_date

-----------------------+-----------+-----------------------

 Lemon Zester          |    349.99 | 2021-10-01 00:00:00

 Lemon                 |    399.99 | 2012-10-28 00:00:00

 Lemon                 |    499.99 | 2015-12-27 00:00:00

 Bat                   |    599.99 | 2019-06-07 00:00:00

 Blade                 |    699.99 | 2017-02-17 00:00:00

 Bat Limited Edition   |    699.99 | 2019-10-13 00:00:00

 Lemon Limited Edition |    799.99 | 2013-08-30 00:00:00

(7 rows)

Perform the following steps to complete this activity:

1. Load the sqlda database from psql.

2. Select the sales_transaction_date column for 2016 Lemon model sales 
and insert the column into a table called lemon_sales.

3. Count the sales records available for the 2016 Lemon model.

4. Display the latest sales_transaction_date column.

5. Convert the sales_transaction_date column into a date type.

6. Count the number of sales per day within the lemon_sales table and insert 
the data into a table called lemon_sales_count.

7. Calculate the cumulative sum of sales and insert the corresponding table into a 
new table labeled lemon_sales_sum.

8. Compute the seven-day lag function on the sum column and save the result to 
lemon_sales_delay.

9. Calculate the growth rate using the data from lemon_sales_delay and store 
the resulting table in lemon_sales_growth.

10. Inspect the first 22 records of the lemon_sales_growth table by examining 
the volume data.
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The expected output is as follows:

sales_transaction_date | count | sum | lag |         volume

------------------------+-------+-----+-----+------------------------

 2015-12-27             |     6 |   6 |     |

 2015-12-28             |     8 |  14 |     |

 2015-12-29             |     4 |  18 |     |

 2015-12-30             |     9 |  27 |     |

 2015-12-31             |     9 |  36 |     |

 2016-01-01             |     6 |  42 |     |

 2016-01-02             |     8 |  50 |     |

 2016-01-03             |     6 |  56 |   6 |     8.3333333333333333

 2016-01-04             |     6 |  62 |  14 |     3.4285714285714286

 2016-01-05             |     9 |  71 |  18 |     2.9444444444444444

 2016-01-06             |     3 |  74 |  27 |     1.7407407407407407

 2016-01-07             |     4 |  78 |  36 |     1.1666666666666667

 2016-01-08             |     7 |  85 |  42 |     1.0238095238095238

 2016-01-09             |     3 |  88 |  50 | 0.76000000000000000000

 2016-01-10             |     3 |  91 |  56 | 0.62500000000000000000

 2016-01-11             |     4 |  95 |  62 | 0.53225806451612903226

 2016-01-12             |     6 | 101 |  71 | 0.42253521126760563380

 2016-01-13             |     9 | 110 |  74 | 0.48648648648648648649

 2016-01-14             |     6 | 116 |  78 | 0.48717948717948717949

 2016-01-15             |     6 | 122 |  85 | 0.43529411764705882353

 2016-01-16             |    11 | 133 |  88 | 0.51136363636363636364

 2016-01-17             |     8 | 141 |  91 | 0.54945054945054945055

(22 rows)

Now that you have considered both the launch timing and the suggested retail price 
of the scooter as possible causes of the reduction in sales, it is time to direct your 
efforts to other potential causes, such as the rate of opening marketing emails. 
Does the marketing email opening rate influence sales growth throughout the first 3 
weeks? You will find out in the next exercise.

Note 

The solution for this activity can be found via this link.
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Exercise 9.04: Analyzing Sales Growth by Email Opening Rate

In this exercise, you will analyze the sales growth using the email opening rate. To 
investigate the hypothesis that a decrease in the rate of opening emails impacted 
the Bat Scooter sales rate, you will again select the Bat and Lemon Scooters and 
compare the email opening rates.

Perform the following steps to complete this exercise:

1. Load the sqlda database from psql.

2. Firstly, look at the emails table to see what information is available. Select the 
first five rows of the emails table:

SELECT 

  * 

FROM 

  emails 

LIMIT 

  5;

The following result displays the email information for the first five rows:

email_id | customer_id |      email_subject       | opened | clicked 
| bounced |      sent_date      | opened_date | clicked_date
----------+-------------+--------------------------+--------+--------
-+---------+---------------------+-------------+--------------
   175138 |         575 | Like a Bat out of Heaven | f      | f       
| f       | 2019-05-19 15:00:00 |             |
   175484 |        1074 | Like a Bat out of Heaven | f      | f       
| f       | 2019-05-19 15:00:00 |             |
   177740 |        4229 | Like a Bat out of Heaven | f      | f       
| f       | 2019-05-19 15:00:00 |             |
   177826 |        4359 | Like a Bat out of Heaven | f      | f       
| f       | 2019-05-19 15:00:00 |             |
   180518 |        8197 | Like a Bat out of Heaven | f      | f       
| f       | 2019-05-19 15:00:00 |             |
(5 rows)
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To investigate your hypothesis, you need to know whether an email was 
opened, when it was opened, as well as who the customer was who opened the 
email, and whether that customer purchased a scooter. If the email marketing 
campaign was successful in maintaining the sales growth rate, you would expect 
a customer to open an email soon before a scooter was purchased. The period 
in which the emails were sent, as well as the IDs of customers who received and 
opened an email, can help you determine whether a customer who made a sale 
may have been encouraged to do so following the receipt of an email.

3. To determine this hypothesis, you need to collect the customer_id column 
from both the emails table and the bat_sales table for the Bat Scooter, the 
opened, sent_date, opened_date, and email_subject columns from 
the emails table, as well as the sales_date column from the bat_sales 
table. Since you only want the email records of customers who purchased a Bat 
Scooter, you will join the customer_id column in both tables. Then, you will 
insert the results into a new table—bat_emails:

SELECT 

  emails.email_subject, 

  emails.customer_id, 

  emails.opened, 

  emails.sent_date, 

  emails.opened_date, 

  bat_sales.sales_date 

INTO 

  bat_emails 

FROM 

  emails 

INNER JOIN 

  bat_sales 

ON 

  bat_sales.customer_id=emails.customer_id 

ORDER BY 

  bat_sales.sales_date;

You will obtain the following output:

SELECT 40190
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4. Select the first 10 rows of the bat_emails table, ordering the results by 
sales_date:

SELECT 

  * 

FROM 

  bat_emails 

ORDER BY 

  sales_date

LIMIT 

  10;

The following table shows the first 10 rows of the bat_emails table ordered by 
sales_ date:

                 email_subject                 | customer_id | opened 
|      sent_date      |     opened_date     | sales_date
-----------------------------------------------+-------------+-------
-+---------------------+---------------------+------------
 Black Friday. Green Cars.                     |       31307 | f      
| 2020-07-21 15:00:00 |                     | 2019-06-07
 25% off all EVs. It's a Christmas Miracle!    |       24125 | f      
| 2019-07-23 15:00:00 |                     | 2019-06-07
 Like a Bat out of Heaven                      |       42213 | f      
| 2019-05-19 15:00:00 |                     | 2019-06-07
 A New Year, And Some New EVs                  |       40250 | f      
| 2021-09-03 15:00:00 |                     | 2019-06-07
 Shocking Holiday Savings On Electric Scooters |       24125 | f      
| 2016-07-26 15:00:00 |                     | 2019-06-07
 25% off all EVs. It's a Christmas Miracle!    |       42213 | f      
| 2019-07-23 15:00:00 |                     | 2019-06-07
 We Really Outdid Ourselves this Year          |       31307 | t      
| 2019-09-12 15:00:00 | 2019-09-13 22:03:20 | 2019-06-07
 Save the Planet with some Holiday Savings.    |       24125 | f      
| 2021-07-20 15:00:00 |                     | 2019-06-07
 We Really Outdid Ourselves this Year          |        4319 | f      
| 2019-09-12 15:00:00 |                     | 2019-06-07
 A Brand New Scooter...and Car                 |       24125 | f      
| 2016-12-31 15:00:00 |                     | 2019-06-07
(10 rows)

Here, you can see that there are several emails unopened, over a range of sent 
dates, and that some customers have received multiple emails. Looking at the 
subjects of the emails, some of them do not seem related to the ZoomZoom 
scooters at all.
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5. Select all rows where the sent_date email predates the sales_date column, 
order them by customer_id, and limit the output to the first 22 rows. This 
will help you find out which emails were sent to each customer before they 
purchased their scooter. Write the following query to do so:

SELECT 

  * 

FROM 

  bat_emails 

WHERE 

  sent_date < sales_date 

ORDER BY 

  customer_id 

LIMIT 

  22;

The following table lists the emails that were sent to customers before the date 
in the sales_date column:

                 email_subject                 | customer_id | opened 
|      sent_date      |     opened_date     | sales_date
-----------------------------------------------+-------------+-------
-+---------------------+---------------------+------------
 25% off all EVs. It's a Christmas Miracle!    |           7 | t      
| 2019-07-23 15:00:00 | 2019-07-24 03:55:30 | 2021-12-20
 A Brand New Scooter...and Car                 |           7 | f      
| 2016-12-31 15:00:00 |                     | 2021-12-20
 We Really Outdid Ourselves this Year          |           7 | f      
| 2019-09-12 15:00:00 |                     | 2021-12-20
 Tis' the Season for Savings                   |           7 | f      
| 2018-07-23 15:00:00 |                     | 2021-12-20
 Save the Planet with some Holiday Savings.    |           7 | f      
| 2021-07-20 15:00:00 |                     | 2021-12-20
 Shocking Holiday Savings On Electric Scooters |           7 | f      
| 2016-07-26 15:00:00 |                     | 2021-12-20
 Like a Bat out of Heaven                      |           7 | f      
| 2019-05-19 15:00:00 |                     | 2021-12-20
 The 2013 Lemon Scooter is Here                |           7 | f      
| 2015-10-27 15:00:00 |                     | 2021-12-20
 An Electric Car for a New Age                 |           7 | t      
| 2017-11-26 15:00:00 | 2017-11-27 15:10:55 | 2021-12-20
 We cut you a deal: 20%% off a Blade           |           7 | t      
| 2017-05-15 15:00:00 | 2017-05-16 15:11:17 | 2021-12-20
 A New Year, And Some New EVs                  |           7 | f      
| 2021-09-03 15:00:00 |                     | 2021-12-20
 Zoom Zoom Black Friday Sale                   |           7 | f      
| 2017-07-25 15:00:00 |                     | 2021-12-20
 Black Friday. Green Cars.                     |           7 | f      
| 2020-07-21 15:00:00 |                     | 2021-12-20
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 An Electric Car for a New Age                 |          22 | f      
| 2017-11-26 15:00:00 |                     | 2020-04-10
 The 2013 Lemon Scooter is Here                |          22 | f      
| 2015-10-27 15:00:00 |                     | 2020-04-10
 Zoom Zoom Black Friday Sale                   |          22 | t      
| 2017-07-25 15:00:00 | 2017-07-26 11:31:03 | 2020-04-10
 A Brand New Scooter...and Car                 |          22 | t      
| 2016-12-31 15:00:00 | 2017-01-01 13:31:23 | 2020-04-10
 Shocking Holiday Savings On Electric Scooters |          22 | f      
| 2016-07-26 15:00:00 |                     | 2020-04-10
 Like a Bat out of Heaven                      |          22 | f      
| 2019-05-19 15:00:00 |                     | 2020-04-10
 Tis' the Season for Savings                   |          22 | f      
| 2018-07-23 15:00:00 |                     | 2020-04-10
 We Really Outdid Ourselves this Year          |          22 | f      
| 2019-09-12 15:00:00 |                     | 2020-04-10
 25% off all EVs. It's a Christmas Miracle!    |          22 | f      
| 2019-07-23 15:00:00 |                     | 2020-04-10
(22 rows)

6. Delete the rows of the bat_emails table where emails were sent more than 
six months prior to production. As you can see, there are some emails that 
were sent years before the transaction date. You can easily remove some of 
the unwanted emails by removing those sent before the Bat Scooter was in 
production. In the products table, the production start date for the Bat 
Scooter is 2019-06-07:

DELETE FROM 

  bat_emails 

WHERE 

  sent_date < '2019-06-07';

Note

In this exercise, you are removing information that you no longer require 
from an existing table. This differs from the previous exercises, where you 
created multiple tables: each with a slightly different information from the 
others. The technique you apply will differ, depending on the requirements 
of the problem being solved. Do you require a traceable record of analysis, 
or are efficiency and reduced storage the key?
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7. Delete the rows where the sent date is after the purchase date since they are not 
relevant to the sales:

DELETE FROM 

  bat_emails 

WHERE 

  sent_date > sales_date;

8. Delete those rows where the difference between the transaction date and the 
sent date exceeds 30 since you only want emails that were sent shortly before 
the scooter purchase. An email 1 year before is probably unlikely to influence 
a purchasing decision, but one that is closer to the purchase date may have 
influenced the sales decision. You will set a limit of 1 month (30 days) before the 
purchase. Write the following query to do so:

DELETE FROM 

  Bat_emails 

WHERE 

  sales_date-sent_date > '30 days';

9. Examine the first 22 rows again, ordered by customer_id, by running the 
following query:

SELECT 

  * 

FROM 

  bat_emails 

ORDER BY 

  customer_id 

LIMIT 

  22;
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The following table shows the emails where the difference between the 
transaction date and the sent date is less than 30 days:

               email_subject                | customer_id | opened |      
sent_date      |     opened_date     | sales_date
--------------------------------------------+-------------+--------+-
--------------------+---------------------+------------
 25% off all EVs. It's a Christmas Miracle! |         129 | t      | 
2019-07-23 15:00:00 | 2019-07-24 06:31:37 | 2019-07-26
 A New Year, And Some New EVs               |         145 | f      | 
2021-09-03 15:00:00 |                     | 2021-09-16
 Black Friday. Green Cars.                  |         150 | f      | 
2020-07-21 15:00:00 |                     | 2020-08-15
 Black Friday. Green Cars.                  |         173 | f      | 
2020-07-21 15:00:00 |                     | 2020-08-01
 We Really Outdid Ourselves this Year       |         196 | f      | 
2019-09-12 15:00:00 |                     | 2019-09-20
 We Really Outdid Ourselves this Year       |         319 | f      | 
2019-09-12 15:00:00 |                     | 2019-09-26
 25% off all EVs. It's a Christmas Miracle! |         418 | f      | 
2019-07-23 15:00:00 |                     | 2019-08-18
 A New Year, And Some New EVs               |         560 | t      | 
2021-09-03 15:00:00 | 2021-09-04 15:56:14 | 2021-09-25
 We Really Outdid Ourselves this Year       |         600 | f      | 
2019-09-12 15:00:00 |                     | 2019-09-15
 A New Year, And Some New EVs               |         660 | t      | 
2021-09-03 15:00:00 | 2021-09-04 23:37:03 | 2021-09-04
 A New Year, And Some New EVs               |         681 | f      | 
2021-09-03 15:00:00 |                     | 2021-09-09
 Black Friday. Green Cars.                  |         806 | t      | 
2020-07-21 15:00:00 | 2020-07-22 16:59:40 | 2020-07-26
 A New Year, And Some New EVs               |         881 | t      | 
2021-09-03 15:00:00 | 2021-09-04 21:07:28 | 2021-09-18
 25% off all EVs. It's a Christmas Miracle! |         934 | t      | 
2019-07-23 15:00:00 | 2019-07-24 09:22:45 | 2019-08-21
 25% off all EVs. It's a Christmas Miracle! |         983 | f      | 
2019-07-23 15:00:00 |                     | 2019-07-27
 A New Year, And Some New EVs               |        1060 | f      | 
2021-09-03 15:00:00 |                     | 2021-09-23
 25% off all EVs. It's a Christmas Miracle! |        1288 | f      | 
2019-07-23 15:00:00 |                     | 2019-08-08
 25% off all EVs. It's a Christmas Miracle! |        1317 | f      | 
2019-07-23 15:00:00 |                     | 2019-08-10
 A New Year, And Some New EVs               |        1400 | t      | 
2021-09-03 15:00:00 | 2021-09-04 15:01:00 | 2021-09-06
 Save the Planet with some Holiday Savings. |        1417 | f      | 
2021-07-20 15:00:00 |                     | 2021-07-23
 Save the Planet with some Holiday Savings. |        1433 | f      | 
2021-07-20 15:00:00 |                     | 2021-08-19
 Black Friday. Green Cars.                  |        1529 | f      | 
2020-07-21 15:00:00 |                     | 2020-07-25
(22 rows)
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At this stage, you have reasonably filtered the available data based on the dates 
the email was sent and opened. Looking at the preceding email_subject 
column, it also appears that there are a few emails unrelated to the Bat Scooter 
(for example, 25% of all EVs. It's a Christmas Miracle! and 
Black Friday. Green Cars). These emails seem more related to electric 
cars than scooters, so you can remove them from your analysis.

10. Select the distinct value from the email_subject column to get a list of the 
different emails that were sent to customers:

SELECT 

  DISTINCT(email_subject) 

FROM 

  bat_emails;

The following table shows a list of distinct email subjects:

               email_subject

--------------------------------------------

 A New Year, And Some New EVs

 Save the Planet with some Holiday Savings.

 We Really Outdid Ourselves this Year

 Black Friday. Green Cars.

 25% off all EVs. It's a Christmas Miracle!

(5 rows)

11. Delete all the records that have Black Friday in the email subject. These 
emails do not appear to be relevant to the sale of the Bat Scooter:

DELETE FROM 

  bat_emails 

WHERE 

  position('Black Friday' in email_subject)>0;

Note

The position function in the preceding example is used to find any 
records where the Black Friday string is anywhere in the email_
subject column. Thus, you are deleting any rows where Black 
Friday is in the email subject. For more information on the PostgreSQL 
position function, refer to the following documentation regarding string 
functions: https://www.postgresql.org/docs/current/functions-string.html.

https://www.postgresql.org/docs/current/functions-string.html
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12. Delete all rows where 25% off all EVs. It's a Christmas 
Miracle! and A New Year, And Some New EVs can be found in the 
email_subject column:

DELETE FROM 

  bat_emails 

WHERE 

  position('25% off all EV' in email_subject)>0;

DELETE FROM 

  bat_emails 

WHERE 

  position('Some New EV' in email_subject)>0;

13. At this stage, you have your final dataset of emails that were sent to 
customers. Count the number of rows that are left in the sample by writing the 
following query:

SELECT 

  count(sales_date) 

FROM 

  bat_emails;

You can see that 319 rows are left in the sample:

count

-------

319

(1 row)

14. Now, you will compute the percentage of emails that were opened relative to 
sales. Count the emails that were opened by writing the following query:

SELECT 

  count(opened) 

FROM 

  bat_emails 

WHERE 

  opened='t';
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You can see that 83 emails were opened:

count

-------

83

(1 row)

15. Count the customers who received emails and made a purchase. You can 
determine this by counting the number of unique (or distinct) customers that are 
in the bat_emails table:

SELECT 

  COUNT(DISTINCT(customer_id)) 

FROM 

  bat_emails;

You can see that 314 customers who received an email made a purchase:

count

-------

314

(1 row)

16. Count the unique (or distinct) customers who made a purchase by writing the 
following query:

SELECT 

  COUNT(DISTINCT(customer_id)) 

FROM 

  bat_sales;

The following is the output of the preceding code:

count

-------

6659

(1 row)
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17. Calculate the percentage of customers who purchased a Bat Scooter after 
receiving an email:

SELECT 314.0/6659.0 AS email_rate;

The output of the preceding query is as follows:

email_rate

-------

0.04715422736146568554

(1 row)

Note

In the preceding calculation, you can see that you included a decimal place 
in the figures (for example, 314.0 instead of a simple integer value of 
314). This is because the resulting value will be represented as a fraction 
that is less than 1. If you excluded these decimal places, the SQL server 
would have completed the division operation as integers and the result 
would be 0.

Just under 5% of customers who made a purchase received an email regarding 
the Bat Scooter. There is a strong argument to be made that actively increasing 
the size of the customer base who receive marketing emails could increase 
Bat Scooter sales. But how likely is it that this argument is correct? You must 
compare this number to the effectiveness of other products' email campaigns, 
which is called a control or comparison group. Now that you have examined the 
performance of the email marketing campaign for the Bat Scooter, you need a 
control or comparison group to establish whether the results were consistent 
with that of other products. Without a group to compare against, you simply do 
not know whether the email campaign of the Bat Scooter was good, bad, or 
neither. You will investigate performance in the next exercise.

Note

To access the source code for this specific section, please refer to  
https://packt.link/b3wRQ.

https://packt.link/b3wRQ
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Exercise 9.05: Analyzing the Performance of the Email Marketing Campaign

In this exercise, you will investigate the performance of the email marketing campaign 
for the Lemon Scooter to allow for a comparison with the Bat Scooter. Your 
hypothesis is that if the email marketing campaign's performance of the Bat Scooter 
is consistent with another, such as the 2016 Lemon, then the reduction in sales 
cannot be attributed to differences in the email campaigns.

Perform the following steps to complete this exercise:

1. Load the sqlda database with psql.

2. In Activity 9.02, Analyzing the Difference in the Sales Price Hypothesis, you tried to 
compare the sales of the Lemon Scooter against the Bat Scooter, to find the 
impact of pricing. In this exercise, you will compare the sales of the Lemon 
Scooter against the Bat Scooter from another angle, which is the effectiveness 
of the email campaign. So, first drop the existing lemon_sales table, which 
contains information not related to this exercise:

DROP TABLE IF EXISTS lemon_sales;

3. The 2016 Lemon Scooter is product_id=3. Select customer_id and 
sales_transaction_date from the sales table for the 2016 Lemon 
Scooter. Insert this information into a table called lemon_sales. Here, the 
TIMESTAMP column sales_transaction_date is converted into the DATE 
column sales_date:

SELECT 

  customer_id, 

  sales_transaction_date::DATE as sales_date 

INTO 

  lemon_sales 

FROM 

  sales 

WHERE 

  product_id=3;
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4. Select all the information from the emails database for customers who 
purchased a 2016 Lemon Scooter. Place this information in a new table called 
lemon_emails:

SELECT 

  emails.customer_id, 

  emails.email_subject, 

  emails.opened, 

  emails.sent_date, 

  emails.opened_date, 

  lemon_sales.sales_date 

INTO 

  lemon_emails 

FROM 

  emails 

INNER JOIN 

  Lemon_sales 

ON 

  emails.customer_id=lemon_sales.customer_id;

5. Identify the date when the production of the 2016 Lemon Scooter started, to 
remove all the emails that were sent before:

SELECT 

  production_start_date 

FROM 

  products 

WHERE 

  product_id=3;

The following table shows the production_start_date column:

production_start_date

-------------------

2015-12-27  00:00:00

(1 row)
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6. Now that you know the production start date, you can delete the emails that 
were sent before the start of production of the 2016 Lemon Scooter:

DELETE FROM 

  lemon_emails 

WHERE 

  sent_date < '2015-12-27';

7. Remove all the rows where the sent date occurred after the date in the sales_
date column:

DELETE FROM 

  lemon_emails 

WHERE 

  sent_date > sales_date;

8. Remove all the rows where the sent date occurred more than 30 days before 
the date in the sales_date column:

DELETE FROM 

  lemon_emails 

WHERE 

  (sales_date - sent_date) > '30 days';

9. Remove all the rows from lemon_emails where the email subject is 
not related to the Lemon Scooter. Before doing this, you will search for all 
distinct emails:

SELECT DISTINCT

  email_subject

FROM 

  lemon_emails;

The following table shows the distinct email subjects:

                 email_subject

-----------------------------------------------

 Tis' the Season for Savings

 25% off all EVs. It's a Christmas Miracle!

 A Brand New Scooter...and Car

 Like a Bat out of Heaven

 Shocking Holiday Savings On Electric Scooters

 Save the Planet with some Holiday Savings.

 We cut you a deal: 20%% off a Blade
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 An Electric Car for a New Age

 We Really Outdid Ourselves this Year

 Black Friday. Green Cars.

 Zoom Zoom Black Friday Sale

(11 rows)

10. Delete the email subjects not related to the Lemon Scooter using the 
DELETE command:

Exercise9.05.sql

1 DELETE FROM 
2  lemon_emails 
3 WHERE 
4  POSITION('25% off all EVs.' in email_subject)>0;
5
6 DELETE FROM 
7  lemon_emails 
8 WHERE 
9  POSITION('Like a Bat out of Heaven' in email_subject)>0;
10
11 DELETE FROM 
12  lemon_emails 
13 WHERE 
14  POSITION('Save the Planet' in email_subject)>0;
15

Please find the complete code at https://packt.link/QNwRU.

11. Now, check how many emails to the lemon_scooter customers were opened:

SELECT 

  COUNT(opened) 

FROM 

  lemon_emails 

WHERE 

  opened='t';

You can see that 127 emails were opened:

count

-------

127

(1 row)

12. List the number of customers who received emails and made a purchase:

SELECT 

  COUNT(DISTINCT(customer_id)) 

FROM 

  lemon_emails;

https://packt.link/QNwRU
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The following result shows that 498 customers made a purchase after 
receiving emails:

count

-------

498

(1 row)

13. Calculate the percentage of customers who opened the received emails and 
made a purchase:

SELECT 127.0/498.0 AS email_rate;

You can see that 25% of customers opened the emails and made a purchase:

email_rate

----------------------

0.25502008032128514056

(1 row)

14. Calculate the number of unique customers who made a purchase:

SELECT 

  COUNT(DISTINCT(customer_id)) 

FROM 

  lemon_sales;

You can see that 13854 customers made a purchase:

count

-------

13854

(1 row)

15. Calculate the percentage of customers who made a purchase having received 
an email. This will enable a comparison with the corresponding figure for the 
Bat Scooter:

SELECT 498.0/13854.0 AS email_sales;

The preceding calculation generates a 36% output:

email_sales

----------------------

0.03594629709831095712

(1 row)
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You can see that 25% of customers who opened an email made a purchase, 
which is similar to that figure for the Bat Scooter (83/314=26%). You have also 
calculated that about 3.6% of customers who purchased a Lemon Scooter were 
sent an email, which is much lower than almost 5% of Bat Scooter customers. 

Note

To access the source code for this specific section, please refer to  
https://packt.link/b3wRQ.

In this exercise, you investigated the performance of an email marketing campaign 
for the Lemon Scooter to allow for a comparison with the Bat Scooter using various 
SQL techniques. Now, you will review all the exercises and activities you have done in 
this chapter and see whether you can draw some meaningful conclusions.

Conclusions

Now that you have collected a range of information about the timing of the product 
launches, the sales prices of the products, and the marketing campaigns, you can 
make some conclusions regarding your hypotheses:

• In Exercise 9.03, Launch Timing Analysis, you gathered some evidence to suggest 
that launch timing could be related to the reduction in sales after the first 2 
weeks, although this cannot be proven.

• There is a correlation between the initial sales rate and the sales price of the 
scooter, with a reduced sales price trending with a high sales rate (Activity 9.02, 
Analyzing the Difference in the Sales Price Hypothesis).

• The number of units sold in the first 3 weeks does not directly correlate to 
the sales price of the product (Activity 9.02, Analyzing the Difference in the Sales 
Price Hypothesis).

• There is evidence to suggest that a successful marketing campaign could 
increase the initial sales rate, with an increased email opening rate trending with 
an increased sales rate (Exercise 9.04, Analyzing Sales Growth by Email Opening 
Rate). Similarly, for the customers receiving email trends, there is an increase in 
the number with increased sales (Exercise 9.05, Analyzing the Performance of the 
Email Marketing Campaign).

https://packt.link/b3wRQ
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In-Field Testing

At this stage, you have completed your post hoc analysis (that is, data analysis 
completed after an event) and have evidence to support a couple of theories as 
to why the sales of the Bat Scooter dropped after the first 2 weeks. However, you 
cannot confirm these hypotheses to be true, as you cannot isolate one from the 
other, such as pricing difference or email campaign effectiveness.

This is where you need to turn to another tool in your toolkit: in-field testing. As the 
name suggests, in-field testing is testing hypotheses in the field (for instance, while a 
new product is being launched or existing sales are being made).

One of the most common examples of in-field testing is A/B testing, whereby you 
randomly divide your users or customers into two groups (A and B) and provide 
them with a slightly modified experience or environment and observe the result. 
For example, you randomly assigned customers in group A to a new marketing 
campaign and customers in group B to the existing marketing campaign. You could 
then monitor sales and interactions to see whether one campaign was better than 
the other.

Similarly, if you wanted to test the launch timing, you could launch in Northern 
California, for example, in early November, and Southern California in early 
December, and observe the differences.

The essence of in-field testing is that unless you test your post hoc data analysis 
hypotheses, you will never know whether your hypothesis is true. To test the 
hypothesis, you must only alter the conditions to be tested—for example, the 
launch date. To confirm your post hoc analysis, you could recommend that the 
sales teams apply one or more of the following scenarios and monitor the sales 
records in real-time to determine the cause of the reduction in sales:

• Release the next scooter product at different times of the year in two regions 
that have a similar climate and equivalent current sales records. This would help 
determine whether launch timing had an effect.

• Release the next scooter product at the same time in regions with equivalent 
existing sales records at different price points and observe this for differences 
in sales.

• Release the next scooter product at the same time and the same price point 
in regions with equivalent existing sales records and apply two different email 
marketing campaigns. Track the customers who participated in each campaign 
and monitor the sales.
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Summary
You have just completed your first real-world data analysis problem using SQL. In this 
chapter, you developed the skills necessary to develop hypotheses for problems and 
systematically gather the data required to support or reject them. You started this 
case study with a reasonably difficult problem of explaining an observed discrepancy 
in sales data and discovered two possible sources (launch timing and marketing 
campaign) for the difference while rejecting one alternative explanation (sales price).

While being a required skill for any data analyst, being able to understand and apply 
the scientific method in your exploration of problems will allow you to be more 
effective and find interesting threads of investigation. In this chapter, you used the 
SQL skills you have developed throughout this book, from simple SELECT statements 
to aggregating complex data types, as well as windowing methods. After completing 
this chapter, you will be able to continue and repeat this type of analysis in your own 
data analysis projects to help find actionable insights.

You have reached the end of this book. Throughout these chapters, you have learned 
about data and how you can find patterns within it. You have also learned how 
SQL's powerful functionality can be used to organize data, process it, and identify 
interesting patterns. Additionally, you saw how SQL can be connected to other 
systems and optimized to analyze at scale. This all culminated in using SQL on a case 
study to help improve a business.

However, these skills are only the beginning of your work. Relational databases are 
constantly evolving, and new functionality is being developed all the time. There are 
also several advanced statistical techniques that this book did not cover. So, while this 
book may serve as a guide to data analytics and an invaluable tool in the form of SQL, 
it is only the first step in what is hopefully a rewarding journey.
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Chapter 1: Understanding and Describing Data

Activity 1.01: Classifying a New Dataset

Solution:

1. The unit of observation is a car sale.

2. Date and Sales Amount are quantitative, while Make is qualitative.

While there could be many ways to convert Make into numeric data, one commonly 
accepted method would be to map each of the Make types to a number. For instance, 
Ford could map to 1, Honda could map to 2, Mazda could map to 3, Toyota could 
map to 4, Mercedes could map to 5, and Chevy could map to 6.

Activity 1.02: Exploring Dealership Sales Data

Solution:

1. Open Microsoft Excel to a blank workbook.

2. Go to the Data tab and click on Get Data | From File | From Text/CSV.

3. Find the path to the dealerships.csv file and click on Import.

4. In the file import window, click on Load. The following table is what you will see 
when the file loads.
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Figure 1.38: The dealerships.csv file loaded
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A histogram of the results may vary a little bit depending on what parameters 
are chosen, but it should look similar to Figure 1.38:

Figure 1.39: A histogram showing the number of female employees

5. Calculate the mean and median by following all the steps in Exercise 1.03, 
Calculating the Central Tendency of Add-On Sales. The mean sales are calculated to 
be $171,603,750.13 and the median sales are calculated to be $170,130,716.50.

6. Using steps similar to those found in Exercise 1.04, Dispersion of Add-On Sales, the 
standard deviation of the sales is calculated to be $50,152,290.42.

7. The Boston, MA dealership is an outlier. This can be shown graphically or by 
using the IQR method.

8. You should get the following four cut points for quintiles (five-quantiles):

Figure 1.40: Quintiles and their values

9. Removing the outlier of Boston, you should get a correlation coefficient of 0.55. 
This value implies that there is a strong correlation between the number of 
female employees and the sales of a dealership. While this may be evidence that 
having more female employees leads to more revenue, it may also be a simple 
consequence of a third effect. In this case, larger dealerships have a larger 
number of employees in general, which also means more women will be at these 
locations as well. There may be other correlational interpretations as well.
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Chapter 2: The Basics of SQL for Analytics

Activity 2.01: Querying the customers Table Using Basic Keywords in a SELECT 

Query

Solution:

Here is the solution for Exercise 2.01, Running Your First SELECT Query:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 
Examine the schema for the customers table from the schema drop-down 
list. Make sure you are familiar with the names of the columns, just like you did 
in Exercise 2.02, Querying the salespeople Table Using Basic Keywords in a SELECT 
Query, for the salespeople table.

2. Execute the following query to fetch customers' emails in the state of Florida in 
alphabetical order:

SELECT email 

FROM customers 

WHERE state='FL' 

ORDER BY email;

The following is the output of the preceding code:

Figure 2.47: Emails of customers from Florida in alphabetical order



436 | Appendix

3. Execute the following query to pull all the first names, last names, and email 
addresses for ZoomZoom customers in New York City, New York. The customers 
should be ordered alphabetically, with the last name followed by the first name:

SELECT first_name, last_name, email

FROM customers 

WHERE city='New York City' AND state='NY'

ORDER BY last_name, first_name;

The following is the output of the preceding code:

Figure 2.48: Details of customers from New York City in alphabetical order

4. Execute the following query to fetch all customers that have a phone number 
ordered by the date the customer was added to the database:

SELECT * 

FROM customers 

WHERE phone IS NOT NULL 

ORDER BY date_added;
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The following is the output of the preceding code:

 

Figure 2.49: Customers with a phone number ordered by the date  
the customer was added to the database

The output in Figure 2.30 will help the marketing manager to carry out campaigns and 
promote sales.

Activity 2.02: Creating and Modifying Tables for Marketing Operations 

Solution:

Here is the solution for Exercise 2.02, Creating and Modifying Tables for 
Marketing Operations:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Run the following query to create the table with New York City customers:

CREATE TABLE customers_nyc AS ( 

SELECT * 

FROM customers 

WHERE city='New York City' 

AND state='NY'

);

3. Run the following code to see the output:

SELECT * FROM customers_nyc;
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This is the output of the code:

Figure 2.50: Table showing customers from New York City

4. Run the following query statement to delete users with the postal code 10014:

DELETE FROM customers_nyc 

WHERE postal_code='10014';

5. Execute the following query to add the new event column:

ALTER TABLE customers_nyc 

ADD COLUMN event text;

6. Update the customers_nyc table and set the event column to thank-you 
party using the following query:

UPDATE customers_nyc SET

event = 'thank-you party';

7. Run the following code to see the output:

SELECT * 

FROM customers_nyc;
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The following is the output of the code:

Figure 2.51: The customers_nyc table with event set to thank-you party

8. Delete the customers_nyc table as asked by the manager using 
DROP TABLE:

DROP TABLE customers_nyc;

This will delete the customers_nyc table from the database.
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Chapter 3: SQL for Data Preparation

Activity 3.01: Building a Sales Model Using SQL Techniques

Solution:

1. Open pgAdmin, connect to the sqlda database, and open the SQL 
query editor.

2. Use INNER JOIN to join the customers table to the sales table:

FROM sales s

JOIN customers c

ON s.customer_id = c.customer_id

Note that the SQL in Steps 2, 3, and 4 is not complete SQL that you can run in 
pgAdmin. They are part of the FROM…JOIN clause on which the full SELECT 
statement will be built. They are created to guide you through the process of 
forming a complex dataset using JOIN. If you want to test the SQL, you can 
make it complete by adding SELECT * at the start.

3. Use INNER JOIN to join the products table to the sales table:

FROM sales s

JOIN customers c

ON s.customer_id = c.customer_id

JOIN products p

  ON s.product_id = p.product_id

4. Use LEFT JOIN to join the dealerships table (right table) to the sales 
table (left table):

FROM sales s

LEFT JOIN dealerships d

  ON d.dealership_id = s.dealership_id

JOIN customers c

  ON s.customer_id = c.customer_id

JOIN products p

  ON s.product_id = p.product_id

5. Return all columns of the customers table and the products table:  

SELECT 

  c.*, p.*

FROM sales s
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LEFT JOIN dealerships d

  ON d.dealership_id = s.dealership_id

JOIN customers c

  ON s.customer_id = c.customer_id

JOIN products p

  ON s.product_id = p.product_id;

6. Return the dealership_id column from the sales table, but fill in 
dealership_id in sales with -1 if it is NULL:

SELECT 

COALESCE(s.dealership_id, -1) sales_dealership, 

c.*, p.*

FROM sales s

LEFT JOIN dealerships d

ON d.dealership_id = s.dealership_id

JOIN customers c

ON s.customer_id = c.customer_id

JOIN products p

ON s.product_id = p.product_id;

7. Add a column called high_savings that returns 1 if the sales amount was 
500 less than base_msrp or lower. Otherwise, it returns 0. Please make sure 
that you perform the query on a joined table:

SELECT 

  COALESCE(s.dealership_id, -1) sales_dealership, 

  CASE 

WHEN sales_amount < base_msrp - 500 THEN 1 

    ELSE 0 

  END high_savings,

  c.*, p.*

FROM sales s

LEFT JOIN dealerships d

  ON d.dealership_id = s.dealership_id

JOIN customers c

  ON s.customer_id = c.customer_id

JOIN products p

  ON s.product_id = p.product_id;
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Chapter 4: Aggregate Functions for Data Analysis

Activity 4.01: Analyzing Sales Data Using Aggregate Functions

Solution:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total number of unit sales the company has made:

SELECT 

  COUNT(*)

FROM 

  sales;

The result is as follows:

Figure 4.29: Result of COUNT(*) for sales units

Note that because each sales transaction contains a product ID, there is no NULL 
value in the product_id column. So, COUNT(product_id) will also work. 
Similarly, COUNT(sales_amount) will also work.

3. Calculate the total sales amount in dollars for each state:

SELECT 

  c.state, 

  SUM(s.sales_amount)::DECIMAL(12,2)

FROM 

  sales s

JOIN 

  customers c

ON 

  s.customer_id = c.customer_id

GROUP BY 

  c.state

ORDER BY 

  1;
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The result is as follows:

Figure 4.30: Result of sales by state

4. Identify the top five best dealerships in terms of the most units sold (ignore 
internet sales).

The most common approach to getting the top/bottom N rows is to run the 
SELECT statement with ORDER BY, then use LIMIT to only get the first N 
rows. In this activity, you can use LIMIT 5 together with ORDER BY DESC to 
generate the top five dealerships. However, if there is a tie between the 5th and 
6th elements, LIMIT 5 will cut off between the 5th row and 6th row, regardless 
of whether you want both items or not. In the real world, you need to check the 
boundary condition carefully, that is, check the value below the limit to make 
sure there is no tie. 

For this question, if you just aim at getting the dealership ID, the following SQL 
is good enough. However, if you would like to have the dealership details, you 
need to select the information from the dealerships table, with a filter on the 
dealership IDs from the following query:

SELECT 

  s.dealership_id, 

  COUNT(*)

FROM 

  sales s

WHERE 
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  channel <> 'internet'

GROUP BY 

  s.dealership_id

ORDER BY 

  2 DESC

LIMIT 

  5;

Here is the output:

Figure 4.31: Result of top five dealerships by sales

5. Calculate the average sales amount for each channel, as shown in the sales 
table, and look at the average sales amount, first by channel sales, then by 
product_id, and then both together:

SELECT 

  channel,

  product_id, 

  AVG(sales_amount)

FROM 

  sales

GROUP BY grouping sets (

  (channel),

  (product_id),

  (channel, product_id)

);
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The result is as follows. Note that in this screenshot (the order of rows in 
your result may vary), row 22 and above are grouped by both channel and 
product_id. Rows 23 and 24 are grouped by channel only, and row 25 and 
beyond are grouped by product_id only. In other words, there are three 
different sets here, one is grouped by both channel and product_id, the 
other two by one of these two columns respectively, and all three sets are 
eventually joined together:

Figure 4.32: Result of GROUPING SETS

6. Calculate the ratio of sales transactions that have a NULL dealership:

SELECT 

  1 – COUNT(dealership_id) * 1.0 / COUNT(*)

FROM 

  sales

The result is as follows:

Figure 4.33: Ratio of NULL values of dealership in sales
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7. Calculate the percentage of internet sales the company has made for each year. 
Order the year in a timely fashion and you will get time series data. Does this 
time series suggest something?

SELECT 

  TO_CHAR(sales_transaction_date, 'yyyy'), 

  SUM(sales_amount)

FROM 

  sales

WHERE 

  channel = 'internet'

GROUP BY 

  1

ORDER BY 

  1;

The result is as follows:

Figure 4.34: Internet sales by year 
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From the result data, you can see that there was a significant increase in sales starting 
in 2015. The upward trend is continuing into 2022, which is still at the beginning of 
the year at the point of data collection (the last sales transaction date is 2022-01-25). 
But does this increase occur in the overall sales of ZoomZoom, or does it only happen 
to the internet sales channel? If it is the former, internet sales and non-internet sales 
should have a similar amount of increase. There are many ways to measure and 
compare these two increases. You will use the simplest form by listing the internet 
sales and non-internet sales side by side. The SQL will be as follows:

SELECT 

  TO_CHAR(sales_transaction_date, 'yyyy'), 

  SUM(

CASE 

      WHEN channel = 'internet' THEN sales_amount 

      ELSE 0 

END

  ) AS internet_sales,

  SUM(

CASE 

      WHEN channel <> 'internet' THEN sales_amount 

      ELSE 0 

END

  ) AS non_internet_sales

FROM 

  sales

GROUP BY 

  1 

ORDER BY 

  1;
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The result is as follows:

Figure 4.35: Internet and non-internet sales by year
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Chapter 5: Window Functions for Data Analysis

Activity 5.01: Analyzing Sales Using Window Frames and Window Functions

Solution:

The solution to this activity is as follows:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor. 

2. Calculate the total sales amount by day for all the days in the year 2021 (that is, 
before the date January 1, 2022).

3. The query for this step will be:

SELECT 

  sales_transaction_date::date, 

  SUM(sales_amount) sales_amount

FROM 

  sales

WHERE

  sales_transaction_date::date BETWEEN '20210101' AND '20211231'

GROUP BY

  sales_transaction_date::date;

The result is:

Figure 5.18: Daily Sales of 2021
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4. Calculate the rolling 30-day average for the daily number of sales deals. 
The query for this step will be:

Activity5.01.sql

1 WITH 
2  daily_sales as (
3    SELECT 
4      sales_transaction_date::date, 
5      SUM(sales_amount) sales_amount
6    FROM 
7      sales
8    WHERE
9     sales_transaction_date::date BETWEEN '20210101' AND '20211231'
10    GROUP BY
11      sales_transaction_date::date
12  )
13 SELECT
14  sales_transaction_date,
15  sales_amount,

You can find the complete code here: https://packt.link/f3bEp

The result is:

Figure 5.19: Daily Sales Moving 30-Day Average

https://packt.link/f3bEp
https://packt.link/f3bEp 
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5. Note that the moving average for 2021-01-01 is NULL here because there are 
no daily sales from 2020 in the daily_sales common table expression. So, 
the 30-day preceding window is empty. For 2021-01-02, the 30-day preceding 
window contains only one row, which is the daily sales for 2021-01-01. As it goes 
down the order of dates, more and more days join the window. Eventually, after 
2021-01-31, it became a true 30-day preceding window. 

This activity intentionally applies the sales_transaction_date::date 
BETWEEN '20210101' AND '20211231' filter to the daily_sales 
common table expression to provide you with an illustration of what might 
happen for the first few rows in the moving average window creation. 

In reality, a better way is to include the last 30-day sales of 2020 in the daily_
sales common table expression so that you can still calculate the moving 
average properly for days in January 2021 and use a 2021 date range in the 
main query to only display the 2021 data.

6. Calculate which decile each date would be in compared to other days based on 
their daily 30-day rolling sales amount. 

PostgreSQL does not have a DECILE function, but it has a more general 
NTILE() function that you can use. NTILE(10) is the equivalent 
of DECILE().

7. The query for this step will be:

Activity5.01.sql

1 WITH 
2  daily_sales as (
3    SELECT 
4      sales_transaction_date::date, 
5      SUM(sales_amount) sales_amount
6    FROM 
7      sales
8    WHERE
9     sales_transaction_date::date BETWEEN '20210101' AND '20211231'
10    GROUP BY
11      sales_transaction_date::date
12  ),
13  moving_avg AS (

You can find the complete code here: https://packt.link/f3bEp

https://packt.link/f3bEp
https://packt.link/f3bEp 
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The result is:

Figure 5.20: Dealership Deciles Based on Max Daily Sales Moving 30-Day Average
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Chapter 6: Importing and Exporting Data

Activity 6.01: Using an External Dataset to Discover Sales Trends

Solution:

1. Before you can begin the rest of the analysis, you will need to properly load the 
dataset into Python and export it to your database. First, download the dataset 
from GitHub using the link provided: https://packt.link/l058E. If you are a Linux 
user, you can use the wget command like this:

wget https://github.com/PacktPublishing/SQL-for-Data-Analytics-Third-
Edition/blob/main/Datasets/public_transportation_statistics_by_zip_
code.csv

Alternatively, you can navigate to the link via the browser. Once you navigate to 
the web page, click on Save Page As… using the menus on your browser:

Figure 6.31: Saving the public transportation .csv file

2. Next, create a new Jupyter notebook. Launch Jupyter Notebook from Anaconda 
Navigator. In the browser window that pops up, create a new Python 3 
notebook. In the first cell, type in the standard import statements and the 
connection information (replacing _X with the appropriate parameter for your 
database connection):

from sqlalchemy import create_engine 

import pandas as pd

%matplotlib inline

cnxn_string = ("postgresql+psycopg2://{username}:{pswd}@
{host}:{port}/{database}")
print(cnxn_string)

https://packt.link/l058E
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Here is the output of the code:

postgresql+psycopg2://{username}:{pswd}@{host}:{port}/{database}

In the next cell, type the following code, which will create the 
SQLAlchemy engine:

engine = create_engine(

    cnxn_string.format( 

        username="postgres", 

        pswd="your_password",

        host="localhost", 

        port=5432, 

        database="sqlda"

    )

)

3. Read the data using a command such as the following (replacing the path 
specified with the path to the file on your local computer):

data = pd.read_csv(

    "c:\\Users\\Public\\public_transportation_statistics_by_ zip_
code.csv", 
    dtype={'zip_code':str}

)

4. Check that the data looks correct by creating a new cell, entering data, and then 
hitting Shift + Enter to view the contents of the data. You can also use data. 
head() to see only the first five rows:

data.head()

Here is the output of the code:

Figure 6.32: Reading the public transportation data into pandas
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5. Next, transfer data to the database using data.to_sql(). Using the psql_
insert_COPY function, you can speed this up considerably; however, it is 
not necessary:

Activity6.01.py

1 import csv
2 from io import StringIO
3
4 def psql_insert_COPY(table, conn, keys, data_iter):
5    # gets a DBAPI connection that can provide a cursor 
6    dbapi_conn = conn.connection
7    with dbapi_conn.cursor() as cur:
8        s_buf = StringIO()
9        writer = csv.writer(s_buf) 
10        writer.writerows(data_iter) 
11        s_buf.seek(0)
12
13        columns = ', '.join('"{}"'.format(k) for k in keys) 
14        if table.schema:
15       table_name = '{}.{}'.format(table.schema, table.name) 

Please find the complete code here: https://packt.link/4RAFd

Alternatively, you could have just performed the slower version of this:

data.to_sql(

    'public_transportation_by_zip', 

    engine, 

    if_exists='replace'

)

At this stage, you now have your data in your database, ready for querying.

6. Execute the max() function to see the maximum value in the DataFrame. As 
explained before, this function will return the maximum values of all columns in 
this DataFrame:

data.max()

Figure 6.33: Output of the pandas Data Frame max() method

https://packt.link/4RAFd
https://packt.link/4RAFd 
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7. Execute the min() function to see the minimum value in the DataFrame. As 
explained before, this function will return the minimum values of all columns in 
this DataFrame:

data.min()

Figure 6.34: Output of the pandas DataFrame min() method

8. To see the range of public_transportation_pct values, you can simply 
query this from the database. First, you need to query the database:

engine.execute(""" 

    SELECT

        MAX(public_transportation_pct) AS max_pct, 

        MIN(public_transportation_pct) AS min_pct

    FROM public_transportation_by_zip; 

""").fetchall()

You get the following result from your query:

Figure 6.35: Showing the minimum and maximum values

Looking at the maximum and minimum values, you will see something strange: 
the minimum value is -666666666. You can assume that the values are 
missing, and you can remove them from the dataset.
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9. Calculate the requested sales amounts by running a query in your database. 
Note that you will have to filter out the erroneous percentages that are less 
than 0 based on your analysis. There are several ways to do this; however, the 
following solution is a single succinct query:

Activity6.01.py

1 engine.execute(""" 
2    SELECT
3         (public_transportation_pct > 10) AS                     4 is_high_
public_transport,
5        COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT 
6 c.customer_id) AS sales_per_customer
7    FROM
8        customers c
9    INNER JOIN 
10        public_transportation_by_zip t 
11        ON t.zip_code = c.postal_code
12    LEFT JOIN 
13        sales s
14        ON s.customer_id = c.customer_id 

Please find the complete code here: https://packt.link/4RAFd

Here is an explanation of this query:

• You first identify customers living in an area with public transportation by joining 
the customer table and the public transportation table. 

• Then, you look at the public transportation data associated with their postal 
code. If public_ transportation_pct > 10, then the customer is in a 
high usage public transportation area. This expression will either return True or 
False for each customer.

• You then group customers by this expression to identify the customers that are 
or are not in a high-usage public transportation area. One catch is that you need 
to exclude all zip codes where public_transportation_pct is less than 0 
so that you exclude the missing data (denoted by -666666666).

• You then look at sales per customer by joining the customers table with the 
sales table. You will first count the number of sales from the sales table 
(COUNT(s.customer_id)) and divide it by the unique number of customers 
(COUNT(DISTINCT c.customer_id)). You want to make sure that you 
retain fractional values, so you can multiply by 1.0 to cast the entire expression 
to a float: COUNT(s.customer_ id) * 1.0 / COUNT(DISTINCT 
c.customer_id). The result is the sales per customer.

https://packt.link/4RAFd
https://packt.link/4RAFd 
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• Now that you know how to calculate both the sales per customer and the high 
public transportation flag per customer, you need to join your customer data to 
the public transportation data, and then, finally, to the sales data, to calculate 
them all in one single query. Once you put them side by side, you can aggregate 
the sales per customer by the high transportation flag to see the difference in 
customer behavior between different groups of public transportation availability.

Eventually, you end up with the following output:

Figure 6.36: Calculating the requested sales amount

From this, you see that customers in high public transportation usage areas 
have 12% more product purchases than customers in low-usage public 
transportation areas.

10. Read this data from your database and add a WHERE clause to remove the 
outlier values. You can then plot the results from this query:

data = pd.read_sql_query(""" 

    SELECT 

        *

    FROM 

        public_transportation_by_zip 

    WHERE 

        public_transportation_pct > 0

    AND 

        public_transportation_pct < 50

""", engine) 

data.plot.hist(y='public_transportation_pct')
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You will obtain an output similar to the following:

Figure 6.37: Jupyter notebook with an analysis of the public transportation data

11. Rerun your command from Step 5 to get the timing of the standard to_
sql() function:

%time data.to_sql('public_transportation_by_zip', engine, if_
exists='replace', method=psql_insert_COPY)

%time data.to_sql('public_transportation_by_zip', engine, if_
exists='replace')
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The following is the output of the code:

Figure 6.38: Inserting records with COPY is much faster

12. Group customers based on their zip code public transportation usage rounded 
to the nearest 10%, and then look at the average number of transactions 
per customer. Export this data into Excel and create a scatterplot to better 
understand the relationship between public transportation usage and sales. 
For this analysis, you can tweak the query from Step 9:

Activity6.01.py

1 data = pd.read_sql_query(""" 
2    SELECT
3        10 * ROUND(public_transportation_pct/10) AS                         4 
public_transport,
5        COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT            6  c.customer_id) 
AS sales_per_customer
7    FROM 
8        customers c
9    INNER JOIN 
10        public_transportation_by_zip t 
11        ON t.zip_code = c.postal_code
12    LEFT JOIN 
13        sales s 
14        ON s.customer_id = c.customer_id

Please find the complete code here: https://packt.link/4RAFd

https://packt.link/4RAFd
https://packt.link/4RAFd 
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First, you want to put your query results in a Python variable data so that you easily 
write the result to a CSV file later.

Next is the tricky part: you want to aggregate the public transportation statistics 
somehow. What you can do is round this percentage to the nearest 10%, so 22% 
would become 20%, and so on. You can do this by dividing the percentage number 
(represented as 0.0-100.0) by 10, rounding off, and then multiplying it back by 10: 
10 * ROUND(public_transportation_pct/10).

The logic for the remainder of the query is explained in Step 9.

Next, you open the sales_vs_public_transport_pct.csv file in Excel:

Figure 6.39: Excel workbook containing the data from your query
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After creating the scatterplot, you get the following result, which shows a 
clear positive relationship between public transportation and sales in the 
geographical area:

Figure 6.40: Sales per customer versus public transportation usage percentage

Based on all this analysis, you can say that there is a positive relationship between 
"geographies with public transportation" and "the demand for electric vehicles." 
Intuitively, this makes sense, because electric vehicles could provide an alternative 
transportation option to public transport for getting around cities. As a result of 
this analysis, you would recommend that ZoomZoom management should consider 
expanding in regions with high public transportation usage and in urban areas.
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Chapter 7: Analytics Using Complex Data Types 

Activity 7.01: Sales Search and Analysis

Solution:

1. First, create the materialized view on the customer_sales table. If a view 
with the same name already exists but is not up to date, execute the DROP IF 
EXISTS statement prior to the CREATE statement:

DROP MATERIALIZED VIEW IF EXISTS customer_search;

CREATE MATERIALIZED VIEW customer_search AS ( 

  SELECT

    customer_json -> 'customer_id' AS customer_id, 

    customer_json,

    to_tsvector('english', customer_json) AS search_vector 

  FROM 

    customer_sales

);

This gives you a table of the following format (output shortened for readability):

SELECT * FROM customer_search LIMIT 1;

The following is the output of the code. Note that the output cells are too large 
to fit onto a screen so only the first few words are shown in the screenshot:

Figure 7.28: Sample record from the customer_search table

2. You can now search records based on the salesperson's request for a customer 
named Danny who purchased a Bat scooter using the following query with the 
Danny Bat keywords:

SELECT

  customer_json

FROM

  customer_search

WHERE

  search_vector @@ plainto_tsquery('english', 'Danny Bat');
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This results in eight matching rows:

Figure 7.29: Resulting matches for your Danny Bat query

3. In this complex task, you need to find customers who match with both a 
scooter and an automobile. That means you need to perform a query for each 
combination of scooter and automobile. To get every unique combination of 
scooter and automobile, you can perform a simple cross join:

SELECT DISTINCT

  p1.model, 

  p2.model

FROM

  products p1

CROSS JOIN 

  products p2

WHERE 

  p1.product_type = 'scooter' 

AND 

  p2.product_type = 'automobile'

AND 

  p1.model NOT ILIKE '%Limited Edition%';



Chapter 7: Analytics Using Complex Data Types  | 465

This produces the following output:

Figure 7.30: All combinations of scooters and automobiles

4. Transform the output into a tsquery object:

SELECT DISTINCT

  plainto_tsquery('english', p1.model) 

    && 

    plainto_tsquery('english', p2.model)

FROM

  products p1 

CROSS JOIN  

  products p2 

WHERE 

  p1.product_type = 'scooter' 

AND 

  p2.product_type = 'automobile'

AND 

  p1.model NOT ILIKE '%Limited Edition%';
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This produces the following result:

Figure 7.31: Queries for each scooter and automobile combination

5. Query your database using each of these tsquery objects and count the 
occurrences for each object:

Activity7.01.sql

1 SELECT
2  sub.query, 
3  (
4    SELECT 
5      COUNT(1)
6    FROM 
7      customer_search
8    WHERE 
9      customer_search.search_vector @@ sub.query
10  ) 
11 FROM (
12  SELECT DISTINCT
13    plainto_tsquery('english', p1.model) 
14      && 
15      plainto_tsquery('english', p2.model) AS query

Please find the complete code here: https://packt.link/TVvPy

https://packt.link/TVvPy
https://packt.link/TVvPy 
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The following is the output of the preceding query:

Figure 7.32: Customer counts for each scooter and automobile combination

While there could be a multitude of factors at play here, you see that lemon 
scooter and the model sigma automobile is the combination most frequently 
purchased together, followed by the lemon and chi models. bat is also fairly 
frequently purchased with both of those models, as well as the epsilon model. 
The other combinations are much less common, and it seems that customers rarely 
purchase the lemon zester, the blade, or the gamma model.
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Chapter 8: Performant SQL

Activity 8.01: Query Planning

Solution:

1. Open PostgreSQL with psql and connect to the sqlda database.

2. Use the EXPLAIN command to return the query plan for selecting all available 
records within the customers table:

EXPLAIN 

SELECT * 

FROM customers;

3. Read the output of the plan and determine the total query cost, the setup cost, 
the number of rows to be returned, and the width of each row.

The output is as follows:

Seq Scan on customers  (cost=0.00..1535.00 rows=50000 width=140)

As such, the total query cost is 1535.00, the setup cost is 0.00, the number 
of rows to be returned is 50000, and the width of each row is 140. Your 
result may have numbers that are slightly different. But the general concept of 
measurements should be the same.

4. Repeat the query from step 2 of this activity, this time limiting the number of 
returned records to 15. Review the updated query plan and compare its output 
against the output of the previous step, paying special attention to how many 
steps are involved in the query plan and what the cost of the limiting step is:

EXPLAIN 

SELECT * 

FROM customers

LIMIT 15;

The output is as follows:

Limit  (cost=0.00..0.46 rows=15 width=140)

  ->  Seq Scan on customers  (cost=0.00..1535.00 rows=50000 
width=140)
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The lower line in this output is the same as the output of step 3, in which the 
total query cost is 1535.00, the setup cost is 0.00, the number of rows to 
be returned is 50000, and the width of each row is 140. For the upper line, 
the total query cost is 0.46, the setup cost is 0.00, the number of rows to be 
returned is 15, and the width of each row is 140.

5. Update the SQL to select all rows where customers live within a latitude of 30 
and 40 degrees. Generate the query plan. Compare the total plan cost as well as 
the number of rows returned by the query to the numbers from previous steps:

EXPLAIN 

SELECT * 

FROM customers

WHERE latitude BETWEEN 30 AND 40;

The output is as follows:

Seq Scan on customers  (cost=0.00..1785.00 rows=26369 width=140)

  Filter: ((latitude >= '30'::double precision) AND (latitude <= 
'40'::double precision))

The plan in this output has only one step, in which the total query cost is 1785.00, 
the setup cost is 0.00, the number of rows to be returned is 26369, and the width 
of the rows is still 140. Since there is additional filtering involved, the total cost 
increased but the starting cost remains at zero as there is nothing to prepare in a 
sequential scan. 

Activity 8.02: Implementing Index Scans

Solution:

Here are the steps to follow:

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search 
for all records with an IP address of 18.131.58.65: 

EXPLAIN ANALYZE 

SELECT * 

FROM customers 

WHERE ip_address = '18.131.58.65';

The result is as follows:

Seq Scan on customers  (cost=0.00..1660.00 rows=1 width=140) (actual 
time=0.098..13.626 rows=1 loops=1)
  Filter: (ip_address = '18.131.58.65'::text)
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  Rows Removed by Filter: 49999

Planning Time: 0.199 ms

Execution Time: 13.659 ms

Here, the planning and execution times are 0.199 ms and 13.659 ms, 
respectively.

2. Create a generic index based on the IP address column:

CREATE INDEX ix_ip ON customers(ip_address);

3. Rerun the query in step 1. How long does the query take to plan and execute?

The result is as follows:

Index Scan using ix_ip on customers  (cost=0.29..8.31 rows=1 
width=140) (actual time=0.099..0.101 rows=1 loops=1)
  Index Cond: (ip_address = '18.131.58.65'::text)

Planning Time: 0.791 ms

Execution Time: 0.131 ms

Now the planning and execution times are 0.791 ms and 0.131 ms, 
respectively.

4. Create a more detailed index based on the IP address column with the condition 
that the IP address is 18.131.58.65:

CREATE INDEX ix_ip_less ON customers(ip_address) 

WHERE ip_address = '18.131.58.65';

5. Rerun the query in step 1:

Index Scan using ix_ip on customers  (cost=0.29..8.31 rows=1 
width=140) (actual time=0.026..0.027 rows=1 loops=1)
  Index Cond: (ip_address = '18.131.58.65'::text)

Planning Time: 0.338 ms

Execution Time: 0.055 ms

Now it takes the query 0.338 ms and 0.055 ms to plan and execute. As you 
add more and more restraints to the index definition, the time spent on planning 
increases because PostgreSQL needs more time to review the index definitions 
and determine which index to use. But as indexes are defined with further 
details, the execution time became much less.

6. Use the EXPLAIN ANALYZE commands to profile the query plan to search for 
all records with a suffix of Jr:  

EXPLAIN ANALYZE SELECT * FROM customers WHERE suffix = 'Jr';
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The result is as follows:

Seq Scan on customers  (cost=0.00..1660.00 rows=100 width=140) 
(actual time=0.075..10.694 rows=102 loops=1)
  Filter: (suffix = 'Jr'::text)

  Rows Removed by Filter: 49898

Planning Time: 0.191 ms

Execution Time: 10.732 ms

7. Create a generic index based on the suffix address column:

CREATE INDEX ix_suffix ON customers(suffix);

8. Rerun the query in step 6: 

Bitmap Heap Scan on customers  (cost=5.07..302.60 rows=100 width=140) 
(actual time=0.072..0.170 rows=102 loops=1)
  Recheck Cond: (suffix = 'Jr'::text)

  Heap Blocks: exact=98

  ->  Bitmap Index Scan on ix_suffix  (cost=0.00..5.04 rows=100 
width=0) (actual time=0.056..0.056 rows=102 loops=1)
        Index Cond: (suffix = 'Jr'::text)

Planning Time: 0.676 ms

Execution Time: 0.212 ms

Compared to the original execution time of 10.732 ms, this 0.212 ms 
execution time is a huge improvement. The increase in plan time from 
0.191 ms to 0.676 ms is almost negligible compared to the reduction in 
execution time.

Activity 8.03: Implementing Hash Indexes

Solution:

In this activity, you will follow these steps:

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and 
cost, as well as the execution time and cost, of selecting all rows where the email 
subject is Shocking Holiday Savings on Electric Scooters.

The SQL you use is as follows:

EXPLAIN ANALYZE 

SELECT * FROM emails 

WHERE email_subject='Shocking Holiday Savings On Electric Scooters';
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The result is as follows:

Gather  (cost=1000.00..10480.81 rows=18789 width=79) (actual 
time=237.847..936.473 rows=19873 loops=1)
  Workers Planned: 2

  Workers Launched: 2

  ->  Parallel Seq Scan on emails  (cost=0.00..7601.91 rows=7829 
width=79) (actual time=410.903..633.642 rows=6624 loops=3)
        Filter: (email_subject = 'Shocking Holiday Savings On 
Electric Scooters'::text)
        Rows Removed by Filter: 132762

Planning Time: 157.116 ms

Execution Time: 937.329 ms

2. Create a hash scan on the email_subject column:

CREATE INDEX ix_subject ON emails USING HASH(email_subject);

3. Repeat step 1. Compare the output of the Query Planner without the hash index 
to the output with the hash index:

Bitmap Heap Scan on emails  (cost=605.61..6264.48 rows=18789 
width=79) (actual time=1.223..12.319 rows=19873 loops=1)
  Recheck Cond: (email_subject = 'Shocking Holiday Savings On 
Electric Scooters'::text)
  Heap Blocks: exact=290

  ->  Bitmap Index Scan on ix_subject  (cost=0.00..600.92 rows=18789 
width=0) (actual time=1.073..1.073 rows=19873 loops=1)
        Index Cond: (email_subject = 'Shocking Holiday Savings On 
Electric Scooters'::text)
Planning Time: 0.936 ms

Execution Time: 13.078 ms

The hash index clearly has a positive impact on the performance of the 
two queries.

4. Create a hash scan on the customer_id column:

CREATE INDEX ix_customer_id ON emails USING HASH(customer_id);

5. Use EXPLAIN and ANALYZE to estimate how long it would take to select all 
rows with a customer_id value greater than 100:

EXPLAIN ANALYZE SELECT * FROM emails WHERE customer_id>100;
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The result is as follows:

Seq Scan on emails  (cost=0.00..10650.98 rows=417346 width=79) 
(actual time=0.067..105.158 rows=417315 loops=1)
  Filter: (customer_id > 100)

  Rows Removed by Filter: 843

Planning Time: 0.548 ms

Execution Time: 117.899 ms

You can see that PostgreSQL decided to use a sequential scan instead of a hash 
index because a hash index can only be used with the = comparison, not any 
other operators.

Activity 8.04: Defining a Largest Sale Value Function

Solution:

Perform the following steps:

1. Connect to the sqlda database.

2. Create a function called max_sale that does not take any input arguments but 
returns a numeric value called big_sale:

CREATE FUNCTION max_sale() RETURNS integer AS $big_sale$

3. Declare the big_sale variable and begin the function:

DECLARE big_sale numeric;

BEGIN

4. Insert the value of the largest sale into the big_sale variable:

 SELECT MAX(sales_amount) INTO big_sale FROM sales;

5. Return the value for big_sale:

 RETURN big_sale;

6. End the function with the LANGUAGE statement:

END; $big_sale$

LANGUAGE PLPGSQL;

7. Call the function to find out what the value of the largest sale in the database is:

SELECT * FROM max_sale();
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The output is as follows:

Max

-------

115000

(1 row)

Activity 8.05: Creating Functions with Arguments

Solution:

These are the steps to follow:

1. Create the function definition for a function called avg_sales_window that 
returns a numeric value and takes two DATE values to specify the from and to 
dates in the form YYYY-MM-DD:

CREATE FUNCTION avg_sales_window(from_date DATE, to_date DATE) 

RETURNS numeric AS $sales_avg$

2. Declare the return variable as a numeric data type and begin the function:

DECLARE sales_avg numeric;

BEGIN

3. Select the average sales amount as the return variable where the sales 
transaction date is within the specified date:

SELECT AVG(sales_amount) 

FROM sales 

INTO sales_avg 

WHERE sales_transaction_date > from_date 

AND sales_transaction_date < to_date;

4. Return the function variable, end the function, and specify the 
LANGUAGE statement:

RETURN sales_avg;

END; $sales_avg$

LANGUAGE PLPGSQL;

5. Use the function to determine the average sales values between 2020-04-12 and 
2021-04-12:

SELECT avg_sales_window('2020-04-12', '2021-04-12');
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The output is as follows:

avg_sales_window

----------------

7663.13305937025

(1 row)

Activity 8.06: Creating a Trigger to Track Average Purchases

Solution:

Here are the steps to follow for this activity:

1. Connect to the sqlda database.

2. Create a new table called avg_qty_log that is composed of an order_id 
integer field and an avg_qty numeric field:

CREATE TABLE avg_qty_log (order_id integer, avg_qty numeric);

3. Create a function called avg_qty that does not take any arguments but returns 
a trigger. The function computes the average value for all order quantities 
(order_info.qty) and inserts the average value, along with the most recent 
order_id, into avg_qty:

CREATE FUNCTION avg_qty() RETURNS TRIGGER AS $_avg$

DECLARE _avg numeric;

BEGIN

  SELECT 

    AVG(qty) 

  INTO 

    _avg 

  FROM 

    order_info;

  INSERT INTO 

    avg_qty_log (order_id, avg_qty) 

  VALUES 

    (NEW.order_id, _avg);

  RETURN NEW;

END; $_avg$

LANGUAGE PLPGSQL;
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4. Create a trigger called avg_trigger that calls the avg_qty function after 
each row is inserted into the order_info table:

CREATE TRIGGER avg_trigger

AFTER INSERT ON order_info

FOR EACH ROW

EXECUTE PROCEDURE avg_qty();

5. Insert some new rows into the order_info table with quantities of 6, 7, and 8:

SELECT insert_order(3, 'GROG1', 6);

SELECT insert_order(4, 'GROG1', 7);

SELECT insert_order(1, 'GROG1', 8);

6. Look at the entries in avg_qty_log:

SELECT * FROM avg_qty_log;

The result is as follows:

 order_id |      avg_qty

----------+--------------------

     1625 | 4.7500000000000000

     1626 | 5.0000000000000000

     1627 | 5.3000000000000000

(3 rows)

You can see that the average quantity is gradually increasing.
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Chapter 9: Using SQL to Uncover the Truth: A Case Study 

Activity 9.01: Quantifying the Sales Drop

Solution:

Perform the following steps to complete this activity:

1. Load the sqlda database with psql.

2. Using the OVER and ORDER BY statements, compute the daily cumulative sum 
of sales. This provides you with a discrete count of sales over a period of time on 
a daily basis. Insert the results into a new table called bat_sales_growth:

SELECT 

  *, 

  sum(count) OVER (ORDER BY sales_date) 

INTO 

  bat_sales_growth 

FROM 

  bat_sales_daily;

3. Compute a seven-day lag of the sum column, and then insert all the columns of 
bat_sales_daily and the new lag column into a new table, bat_sales_
daily_delay. This lag column indicates the sales amount a week prior to the 
given record, allowing you to compare sales with the previous week:

SELECT 

  *, 

  lag(sum, 7) OVER (ORDER BY sales_date) 

INTO 

  bat_sales_daily_delay 

FROM 

  bat_sales_growth;



478 | Appendix

4. Inspect the first 15 rows of bat_sales_growth:

SELECT 

  * 

FROM 

  bat_sales_daily_delay 

ORDER BY 

  Sales_date

LIMIT 

  15;

The result is as follows:

 sales_date | count | sum | lag

------------+-------+-----+-----

 2019-06-07 |     9 |   9 |

 2019-06-08 |     6 |  15 |

 2019-06-09 |    10 |  25 |

 2019-06-10 |    10 |  35 |

 2019-06-11 |     5 |  40 |

 2019-06-12 |    10 |  50 |

 2019-06-13 |    14 |  64 |

 2019-06-14 |     9 |  73 |   9

 2019-06-15 |    11 |  84 |  15

 2019-06-16 |    12 |  96 |  25

 2019-06-17 |    10 | 106 |  35

 2019-06-18 |     6 | 112 |  40

 2019-06-19 |     2 | 114 |  50

 2019-06-20 |     5 | 119 |  64

 2019-06-21 |     6 | 125 |  73

(15 rows)

5. Compute the sales growth as a percentage, comparing the current sales 
volume to that of a week prior. Insert the resulting table into a new table 
called bat_sales_delay_vol:

SELECT 

  *, 

  (sum-lag)/lag AS volume 

INTO 
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  bat_sales_delay_vol 

FROM 

  bat_sales_daily_delay;

6. Compare the first 22 values of the bat_sales_delay_vol table to ascertain 
a sales drop:

SELECT * FROM bat_sales_delay_vol LIMIT 22;

The result is as follows:

 sales_date | count | sum | lag |         volume

------------+-------+-----+-----+------------------------

 2019-06-07 |     9 |   9 |     |

 2019-06-08 |     6 |  15 |     |

 2019-06-09 |    10 |  25 |     |

 2019-06-10 |    10 |  35 |     |

 2019-06-11 |     5 |  40 |     |

 2019-06-12 |    10 |  50 |     |

 2019-06-13 |    14 |  64 |     |

 2019-06-14 |     9 |  73 |   9 |     7.1111111111111111

 2019-06-15 |    11 |  84 |  15 |     4.6000000000000000

 2019-06-16 |    12 |  96 |  25 |     2.8400000000000000

 2019-06-17 |    10 | 106 |  35 |     2.0285714285714286

 2019-06-18 |     6 | 112 |  40 |     1.8000000000000000

 2019-06-19 |     2 | 114 |  50 |     1.2800000000000000

 2019-06-20 |     5 | 119 |  64 | 0.85937500000000000000

 2019-06-21 |     6 | 125 |  73 | 0.71232876712328767123

 2019-06-22 |     9 | 134 |  84 | 0.59523809523809523810

 2019-06-23 |     2 | 136 |  96 | 0.41666666666666666667

 2019-06-24 |     4 | 140 | 106 | 0.32075471698113207547

 2019-06-25 |     7 | 147 | 112 | 0.31250000000000000000

 2019-06-26 |     5 | 152 | 114 | 0.33333333333333333333

 2019-06-27 |     5 | 157 | 119 | 0.31932773109243697479

 2019-06-28 |     3 | 160 | 125 | 0.28000000000000000000

(22 rows)
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While the count and cumulative sum columns are reasonably straightforward, why do 
you need the lag and volume columns? That is because to look for a drop in sales 
growth, you need to first calculate the growth. Growth is calculated by comparing 
the daily sum of sales to the same values 7 days earlier (the lag). By subtracting the 
sum and lag values and dividing by the lag, you obtain the volume value and can 
determine sales growth compared to the previous week of the sales transaction. 
Then, you will observe the trend in growth and identify possible drops.

Notice that the sales volume on 2019-06-14 is 700% greater than the launch 
date of 2019-06-07. By 2019-06-17, the volume has doubled compared to the 
week prior. As time passes, this relative difference begins to decrease dramatically. 
By the end of June, the volume is 28% higher than the week prior. At this stage, you 
can observe and confirm the presence of a reduction in sales growth after the first 2 
weeks. In the next exercise, you will attempt to explain the causes of the reduction.

Activity 9.02: Analyzing the Difference in the Sales Price Hypothesis

Solution:

Perform the following steps to complete this activity:

1. Load the sqlda database from psql.

2. Select the sales_transaction_date column for 2016 Lemon model sales 
and insert the column into a table called lemon_sales:

SELECT 

  sales_transaction_date 

INTO 

  lemon_sales 

FROM 

  sales 

WHERE 

  product_id=3;

3. Count the sales records available for the 2016 Lemon model:

SELECT 

  count(sales_transaction_date) 

FROM 

  lemon_sales;
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The result is as follows:

count

-------

 16558

(1 row)

4. Display the latest sales_transaction_date column:

SELECT 

  max(sales_transaction_date) 

FROM 

  lemon_sales;

The result is as follows:

         max

---------------------

 2021-08-23 19:12:10

(1 row)

5. Convert the sales_transaction_date column into a date type:

ALTER TABLE 

  lemon_sales 

ALTER COLUMN 

  sales_transaction_date TYPE DATE;

6. Count the number of sales per day within the lemon_sales table and insert 
the data into a table called lemon_sales_count:

SELECT 

  sales_transaction_date,

  COUNT(sales_transaction_date) 

INTO 

  lemon_sales_count 

FROM

  lemon_sales 

GROUP BY 

  sales_transaction_date 

ORDER BY 

  sales_transaction_date;
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7. Calculate the cumulative sum of sales and insert the corresponding table into a 
new table labeled lemon_sales_sum:

SELECT 

  *, 

  sum(count) OVER (ORDER BY sales_transaction_date) 

INTO 

  lemon_sales_sum 

FROM 

  lemon_sales_count;

8. Compute the seven-day lag function on the sum column and save the result to 
lemon_sales_delay:

SELECT 

  *, 

  lag(sum, 7) OVER (ORDER BY sales_transaction_date) 

INTO 

  lemon_sales_delay 

FROM 

  lemon_sales_sum;

9. Calculate the growth rate using the data from lemon_sales_delay and 
store the resulting table in lemon_sales_growth:

SELECT 

  *, 

  (sum-lag)/lag AS volume 

INTO 

  lemon_sales_growth 

FROM 

  lemon_sales_delay;

10. Inspect the first 22 records of the lemon_sales_growth table by examining 
the volume data: 

SELECT 

  * 

FROM 

  lemon_sales_growth 

ORDER BY 
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  Sales_transaction_date

LIMIT 

  22;

The expected output is as follows:

sales_transaction_date | count | sum | lag |         volume

------------------------+-------+-----+-----+------------------------

 2015-12-27             |     6 |   6 |     |

 2015-12-28             |     8 |  14 |     |

 2015-12-29             |     4 |  18 |     |

 2015-12-30             |     9 |  27 |     |

 2015-12-31             |     9 |  36 |     |

 2016-01-01             |     6 |  42 |     |

 2016-01-02             |     8 |  50 |     |

 2016-01-03             |     6 |  56 |   6 |     8.3333333333333333

 2016-01-04             |     6 |  62 |  14 |     3.4285714285714286

 2016-01-05             |     9 |  71 |  18 |     2.9444444444444444

 2016-01-06             |     3 |  74 |  27 |     1.7407407407407407

 2016-01-07             |     4 |  78 |  36 |     1.1666666666666667

 2016-01-08             |     7 |  85 |  42 |     1.0238095238095238

 2016-01-09             |     3 |  88 |  50 | 0.76000000000000000000

 2016-01-10             |     3 |  91 |  56 | 0.62500000000000000000

 2016-01-11             |     4 |  95 |  62 | 0.53225806451612903226

 2016-01-12             |     6 | 101 |  71 | 0.42253521126760563380

 2016-01-13             |     9 | 110 |  74 | 0.48648648648648648649

 2016-01-14             |     6 | 116 |  78 | 0.48717948717948717949

 2016-01-15             |     6 | 122 |  85 | 0.43529411764705882353

 2016-01-16             |    11 | 133 |  88 | 0.51136363636363636364

 2016-01-17             |     8 | 141 |  91 | 0.54945054945054945055

(22 rows)

Now that you have collected data to test the two hypotheses of timing and cost, what 
observations can you make and what conclusions can you draw?

The first observation that you can make is regarding the total volume of sales for 
the three different scooter products. The Lemon Scooter, over its production life 
cycle of 4.5 years, sold 16558 units, while the two Bat Scooters, the original and 
Limited Edition models, sold 7328 and 5803 units, respectively, and are still currently 
in production, with the Bat Scooter launching about 4 months earlier and with 
approximately 2.5 years of sales data available.
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Looking at the sales growth of the three different scooters, you can also make a few 
different observations:

• The original Bat Scooter, which launched on 2019-06-07 at a price of 
$599.99, experienced a 700% sales growth in its second week of production 
and finished the first 22 days with 28% growth and a sales figure of 160 units.

• The Bat Limited Edition Scooter, which launched in 2019-10-13 at a 
price of $699.99, experienced 450% growth at the start of its second week of 
production and finished with 96 sales and 66% growth over the first 22 days.

• The 2016 Lemon Scooter, which launched in 2015-12-27 at a price of 
$499.99, experienced 830% growth in the second week of production and 
ended its first 22 days with 141 sales and 55% growth.

Based on this information, you can make different conclusions:

• The initial growth rate starting in the second week of sales correlates to the cost 
of the scooter. As the cost increased to $699.99, the initial growth rate dropped 
from 830% to 450%.

• The number of units sold in the first 22 days does not directly correlate to the 
cost. The $599.99 Bat Scooter sold more than the 2016 Lemon Scooter in that 
first period, despite the price difference.

• There is some evidence to suggest that the reduction in sales can be attributed 
to seasonal variations, given the significant reduction in growth and the fact 
that the original Bat Scooter was the only one released in June. So far, the 
evidence suggests that the drop in sales can be attributed to the difference in 
launch timing.

Before you draw the conclusion that the difference can be attributed to seasonal 
variations and launch timing, ensure that you have extensively tested a range of 
possibilities. Perhaps marketing work, such as email campaigns (that is, when the 
emails were sent) and the frequency with which the emails were opened, made 
a difference.
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We are Jun Shan, Matt Goldwasser, Upom Malik, and 
Benjamin Johnston the authors of this book. We really 
hope you enjoyed reading our book and found it useful 
for learning SQL.

It would really help us (and other potential readers!) 
if you could leave a review on Amazon sharing your 
thoughts on SQL for Data Analytics, Third Edition.

Go to the link https://packt.link/r/180181287X.

OR

Scan the QR code to leave your review.

Your review will help us to understand what's worked 
well in this book and what could be improved upon for 
future editions, so it really is appreciated.

Best wishes,

Jun Shan, Matt Goldwasser, Upom Malik,  
and Benjamin Johnston
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Benjamin Johnston
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