

Jun Shan, Matt Goldwasser, Upom Malik, and Benjamin Johnston

Harness the power of SQL to extract insights

from data

SQL for Data
Analytics
Third Edition

SQL for Data Analytics
Third edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Jun Shan, Matt Goldwasser, Upom Malik, and Benjamin Johnston

Reviewers: Haibin Li and Bharath Kumar Bolla

Development Editor: Padma K. Mohapatra

Acquisitions Editors: Anindya Sil and Sneha Shinde

Production Editor: Shantanu Zagade

Editorial Board: Megan Carlisle, Ketan Giri, Heather Gopsill, Bridget Kenningham,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Abhishek Rane,
Brendan Rodrigues, Ankita Thakur, Nitesh Thakur, and Jonathan Wray

First published: August 2019

Second edition: February 2020

Third edition: August 2022

Production reference: 1250822

ISBN: 978-1-80181-287-0

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Understanding and Describing Data 1

Introduction .. 2

Data Analytics and Statistics .. 2

Activity 1.01: Classifying a New Dataset ... 4

Types of Statistics ... 5

Methods of Descriptive Statistics .. 6

Univariate Analysis .. 6

Data Frequency Distribution ...6

Exercise 1.01: Creating a Histogram .. 7

Quantiles..16

Exercise 1.02: Calculating the Quartiles for Add-On Sales 18

Central Tendency ..20

Exercise 1.03: Calculating the Central Tendency of Add-On Sales 22

Dispersion ..24

Exercise 1.04: Dispersion of Add-On Sales .. 26

Bivariate Analysis ... 27

Scatterplots ...27

Linear Trend Analysis and Pearson Correlation Coefficient33

Exercise 1.05: Calculating the Pearson Correlation
Coefficient for Two Variables ... 35

Interpreting and Analyzing the Correlation Coefficient 37

Time Series Data ...40

Activity 1.02: Exploring Dealership Sales Data 42

Working with Missing Data .. 42

Statistical Significance Testing .. 43

Common Statistical Significance Tests .. 45

SQL and Analytics ... 45

Summary .. 46

Chapter 2: The Basics of SQL for Analytics 49

Introduction ... 50

The World of Data ... 51

Types of Data .. 52

Relational Databases and SQL .. 52

Advantages and Disadvantages of SQL Databases 54

PostgreSQL Relational Database
Management System (RDBMS) .. 55

Exercise 2.01: Running Your First SELECT Query 58

SELECT Statement .. 62

The WHERE Clause ... 66

The AND/OR Clause ... 67

The IN/NOT IN Clause .. 69

ORDER BY Clause ... 71

The LIMIT Clause .. 75

IS NULL/IS NOT NULL Clause .. 76

Exercise 2.02: Querying the salespeople Table
Using Basic Keywords in a SELECT Query ... 78

Activity 2.01: Querying the customers Table
Using Basic Keywords in a SELECT Query ... 81

Creating Tables ... 82

Creating Blank Tables .. 82

Basic Data Types of SQL ... 83

Numeric ... 84

Character .. 84

Boolean ... 85

Datetime ... 85

Data Structures: JSON and Arrays .. 86

Column Constraints .. 86

Simple CREATE Statement .. 87

Exercise 2.03: Creating a Table in SQL ... 88

Creating Tables with SELECT ... 89

Updating Tables .. 91

Adding and Removing Columns ... 92

Adding New Data ... 93

Updating Existing Rows ... 95

Exercise 2.04: Updating the Table to Increase
the Price of a Vehicle ... 96

Deleting Data and Tables .. 97

Deleting Values from a Row ... 97

Deleting Rows from a Table .. 98

Deleting Tables ... 99

Exercise 2.05: Deleting an Unnecessary Reference Table 101

Activity 2.02: Creating and Modifying Tables
for Marketing Operations ... 102

SQL and Analytics ... 103

Summary .. 104

Chapter 3: SQL for Data Preparation 107

Introduction ... 108

Assembling Data ... 108

Connecting Tables Using JOIN .. 109

Types of Joins .. 113

Inner Joins ..113

Outer Joins ...118

Cross Joins ...124

Exercise 3.01: Using Joins to Analyze a Sales Dealership 126

Subqueries .. 128

Unions ... 129

Exercise 3.02: Generating an Elite Customer
Party Guest List Using UNION .. 131

Common Table Expressions ... 133

Cleaning Data .. 135

The CASE WHEN Function ... 135

Exercise 3.03: Using the CASE WHEN Function
to Get Regional Lists .. 136

The COALESCE Function .. 139

The NULLIF Function ... 140

The LEAST/GREATEST Functions ... 142

The Casting Function ... 143

Transforming Data .. 144

The DISTINCT and DISTINCT ON Functions ... 144

Activity 3.01: Building a Sales Model Using SQL Techniques 147

Summary .. 149

Chapter 4: Aggregate Functions for Data Analysis 151

Introduction ... 152

Aggregate Functions ... 152

Exercise 4.01: Using Aggregate Functions to Analyze Data 159

Aggregate Functions with the GROUP BY Clause 161

The GROUP BY Clause ... 162

Multiple-Column GROUP BY ... 170

Exercise 4.02: Calculating the Cost by Product Type
Using GROUP BY ... 171

Grouping Sets ... 172

Ordered Set Aggregates .. 174

Aggregate Functions with the HAVING Clause 176

Exercise 4.03: Calculating and Displaying Data
Using the HAVING Clause .. 178

Using Aggregates to Clean Data and Examine Data Quality 179

Finding Missing Values with GROUP BY .. 179

Measuring Data Uniqueness with Aggregates 182

Activity 4.01: Analyzing Sales Data Using Aggregate Functions 183

Summary .. 184

Chapter 5: Window Functions for Data Analysis 187

Introduction ... 188

Window Functions .. 189

The Basics of Window Functions .. 191

Exercise 5.01: Analyzing Customer Data Fill Rates over Time 198

The WINDOW Keyword .. 201

Statistics with Window Functions ... 203

Exercise 5.02: Rank Order of Hiring ... 204

Window Frame .. 206

Exercise 5.03: Team Lunch Motivation .. 209

Activity 5.01: Analyzing Sales Using Window
Frames and Window Functions .. 212

Summary .. 214

Chapter 6: Importing and Exporting Data 217

Introduction ... 218

The COPY Command ... 219

Running the psql Command ... 219

The COPY Statement ... 221

\COPY with psql .. 224

Creating Temporary Views ... 226

Configuring COPY and \COPY ... 228

Using COPY and \COPY to Bulk Upload Data to Your Database 229

Exercise 6.01: Exporting Data to a File for Further
Processing in Excel ... 231

Using Python with your Database .. 237

Getting Started with Python ... 237

Improving PostgreSQL Access in Python
with SQLAlchemy and pandas .. 242

What is SQLAlchemy? .. 243

Using Python with SQLAlchemy and pandas .. 244

Reading and Writing to a Database with pandas 247

Writing Data to the Database Using Python ... 249

Exercise 6.02: Reading, Visualizing, and Saving Data in Python 249

Improving Python Write Speed with COPY ... 256

Reading and Writing CSV Files with Python .. 258

Best Practices for Importing and Exporting Data 260

Going Passwordless .. 261

Activity 6.01: Using an External Dataset
to Discover Sales Trends ... 262

Summary .. 264

Chapter 7: Analytics Using Complex Data Types 267

Introduction ... 268

Date and Time Data types for Analysis .. 268

The DATE Data type ... 269

Transforming Date Data types ... 272

Intervals .. 275

Exercise 7.01: Analytics with Time Series Data 277

Performing Geospatial Analysis in PostgreSQL 280

Latitude and Longitude ... 280

Representing Latitude and Longitude in PostgreSQL 281

Exercise 7.02: Geospatial Analysis ... 284

Using Array Data types in PostgreSQL ... 288

Starting with Arrays ... 288

Exercise 7.03: Analyzing Sequences Using Arrays 292

Using JSON Data types in PostgreSQL .. 295

JSONB: Pre-Parsed JSON .. 298

Accessing Data from a JSON or JSONB Field ... 298

Leveraging the JSON Path Language for JSONB Fields 301

Creating and Modifying Data in a JSONB Field 304

Exercise 7.04: Searching through JSONB ... 305

Text Analytics Using PostgreSQL .. 309

Tokenizing Text .. 309

Exercise 7.05: Performing Text Analytics .. 311

Performing Text Search .. 317

Optimizing Text Search on PostgreSQL ... 320

Activity 7.01: Sales Search and Analysis .. 323

Summary .. 325

Chapter 8: Performant SQL 327

Introduction ... 328

The Importance of Highly Efficient SQL ... 328

Database Scanning Methods ... 330

Query Planning ... 331

Exercise 8.01: Interpreting the Query Planner 332

Activity 8.01: Query Planning ... 337

Index Scanning ... 338

The B-Tree Index .. 339

Exercise 8.02: Creating an Index Scan ... 341

Activity 8.02: Implementing Index Scans .. 347

The Hash Index ... 348

Exercise 8.03: Generating Several Hash Indexes
to Investigate Performance .. 349

Activity 8.03: Implementing Hash Indexes ... 353

Effective Index Use .. 354

Killing Queries ... 356

Exercise 8.04: Canceling a Long-Running Query 357

Functions and Triggers ... 358

Function Definitions .. 359

Exercise 8.05: Creating Functions without Arguments 361

Activity 8.04: Defining a Largest Sale Value Function 364

Exercise 8.06: Creating Functions with Arguments 365

The \df and \sf commands ...367

Activity 8.05: Creating Functions with Arguments 368

Triggers .. 369

Exercise 8.07: Creating Triggers to Update Fields 372

Activity 8.06: Creating a Trigger to Track Average Purchases 379

Summary .. 380

Chapter 9: Using SQL to Uncover the Truth:
A Case Study 383

Introduction ... 384

Case Study ... 384

The Scientific Method .. 384

Exercise 9.01: Preliminary Data Collection
Using SQL Techniques ... 385

Exercise 9.02: Extracting the Sales Information 389

Activity 9.01: Quantifying the Sales Drop ... 396

Exercise 9.03: Launch Timing Analysis .. 398

Activity 9.02: Analyzing the Difference in the
Sales Price Hypothesis .. 408

Exercise 9.04: Analyzing Sales Growth by Email Opening Rate 411

Exercise 9.05: Analyzing the Performance
of the Email Marketing Campaign ... 422

Conclusions ... 427

In-Field Testing ... 428

Summary .. 429

Appendix 431

Index 489

Preface

ii | Preface

About the Book
Every day, businesses operate around the clock, and a huge amount of data is
generated at a rapid pace. This book helps you analyze this data and identify key
patterns and behaviors that can help you and your business understand your
customers at a deep, fundamental level.

SQL for Data Analytics, Third Edition is a great way to get started with data analysis,
showing how to effectively sort and process information from raw data, even without
any prior experience.

You will begin by learning how to form hypotheses and generate descriptive statistics
that can provide key insights into your existing data. As you progress, you will learn
how to write SQL queries to aggregate, calculate, and combine SQL data from sources
outside of your current dataset. You will also discover how to work with advanced
data types, like JSON. By exploring advanced techniques, such as geospatial analysis
and text analysis, you will be able to understand your business at a deeper level.
Finally, the book lets you in on the secret to getting information faster and more
effectively by using advanced techniques like profiling and automation.

By the end of this book, you will be proficient in the efficient application of SQL
techniques in everyday business scenarios and looking at data with the critical eye
of analytics professional.

About the Authors
Jun Shan is an expert information technology professional who has been designing
and implementing data management systems for more than 20 years. He also
teaches SQL and Relational Database at Columbia University in the City of New York
and Saint Peter's University. He completed his Master of Science in Computer Science
from Virginia Tech and is currently a solution architect in a top 3 cloud computing
service provider.

Matt Goldwasser is the Head of Applied Data Science at the T. Rowe Price NYC
Technology Development Center. Prior to his current role, Matt was a data science
manager at OnDeck, and prior to that, he was an analyst at Millennium Management.
Matt holds a bachelor of science in mechanical and aerospace engineering from
Cornell University.

Audience | iii

Upom Malik is a data science and analytics leader who has worked in the technology
industry for over 8 years. He has a master's degree in chemical engineering from
Cornell University and a bachelor's degree in biochemistry from Duke University. As a
data scientist, Upom has overseen efforts across machine learning, experimentation,
and analytics at various companies across the United States. He uses SQL and other
tools to solve interesting challenges in finance, energy, and consumer technology.
Outside of work, he likes to read, hike the trails of the Northeastern United States,
and savor ramen bowls from around the world.

Benjamin Johnston is a senior data scientist for one of the world's leading data-
driven MedTech companies and is involved in the development of innovative digital
solutions throughout the entire product development pathway, from problem
definition to solution research and development, through to final deployment. He is
currently completing his Ph.D. in machine learning, specializing in image processing
and deep convolutional neural networks. He has more than 10 years of experience in
medical device design and development, working in a variety of technical roles, and
holds first-class honors bachelor's degrees in both engineering and medical science
from the University of Sydney, Australia.

Audience
If you are a database engineer looking to transition into analytics or a backend
engineer who wants to develop a deeper understanding of production data, you will
find this book useful. This book is also ideal for data scientists or business analysts
who want to improve their data analytics skills using SQL.

Basic familiarity with SQL (such as basic SELECT, WHERE, and GROUP BY clauses), a
good understanding of linear algebra and statistics, and PostgreSQL 14 are necessary
to make the most of this book.

About the Chapters
Chapter 1, Understanding and Describing Data, helps you learn the basics of data
analytics. You will learn how to form hypotheses and generate descriptive statistics
that can provide insights into your data. You will achieve this goal by using
mathematical and graphical techniques to analyze data with Excel.

Chapter 2, The Basics of SQL for Analytics, helps you learn the basics of SQL in the world
of data and CRUD operations. You will learn how to use basic SQL to manipulate data
in a relational database.

iv | Preface

Chapter 3, SQL for Data Preparation, shows you how to clean and prepare data for
analysis using SQL techniques. You will begin by learning how to combine multiple
tables and queries into a dataset before moving on to more advanced materials.

Chapter 4, Aggregate Functions for Data Analysis, covers SQL's aggregate functions,
which are powerful techniques for summarizing data. You will be able to apply these
functions to generate descriptive statistics and learn how to aggregate data across all
rows and break out subpopulations for further analysis.

Chapter 5, Window Functions for Data Analysis, covers SQL's window functions, which
take order into account for a group of data. You will be able to apply these functions
to gain new insights into data and gain important knowledge about the data, such as
orders and ranks.

Chapter 6, Importing and Exporting Data, provides you with the skills required to
interact with your database from other software tools (such as Python).

Chapter 7, Analytics Using Complex Data Types, gives you a rich understanding of the
various data types available in SQL and shows you how to extract insights from
datetime data, geospatial data, arrays, JSON, and text.

Chapter 8, Performant SQL, helps you optimize your queries so that they run faster. In
addition to learning how to analyze query performance, you will also learn how you
can use additional SQL functionality, such as functions and triggers, to expand the
default functionality.

Chapter 9, Using SQL to Uncover the Truth: A Case Study, reinforces your acquired skills
to help you solve real-world problems outside of those described in this book. Using
the scientific method and critical thinking, you will be able to analyze your data and
convert it into actionable tasks and information.

Conventions
Code words in the text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "Three of the columns, Year of Birth, Height, and Number of
Doctor Visits, are quantitative because they are represented by numbers."

Words that you see on the screen (for example, in menus or dialog boxes) also appear
in the text like this: "Choose the Delimited option in the Text Import Wizard
dialog box, and make sure that you start the import at row 1."

Setting up Your Environment | v

A block of code is set as follows:

SELECT *

FROM products

WHERE production_end_date IS NULL;

New terms and important words are shown like this: "Statistics can be further divided
into two subcategories: descriptive statistics and inferential statistics."

Setting up Your Environment
Before exploring the book in detail, you need to set up specific software and tools. In
the following section, you shall see how to do that.

Installing PostgreSQL 14

The following sections list the instructions for installing and setting up PostgreSQL 14
on Windows, Linux, and macOS.

Downloading and Installing PostgreSQL on Windows

First, download and install PostgreSQL on Windows:

1. Navigate to https://www.postgresql.org/download/. Select Windows from the list of
Packages and Installers.

Figure 0.1: PostgreSQL Downloads page

https://www.postgresql.org/download/

vi | Preface

2. Click Download the installer.

Figure 0.2: PostgreSQL interactive installer download

3. Select version 14.2 as this is the version that is used in this book.

Figure 0.3: PostgreSQL downloads page

Setting up Your Environment | vii

4. Click Next for most of the installation steps. You will be asked to specify a
data directory. It is recommended that you specify a path that you will easily
remember in the future.

Figure 0.4: PostgreSQL installation – Windows

viii | Preface

5. Specify a password for the postgres superuser.

Figure 0.5: Setting the superuser password

Setting up Your Environment | ix

6. Do not change the port number that is specified by default, unless it conflicts
with an application that is already installed on your system.

Figure 0.6: PostgreSQL port settings

7. Click Next to proceed through the rest of the steps and wait for the installation
to finish.

x | Preface

Setting the PATH Variable

To validate whether the PATH variable has been set correctly, open the command
line, type or paste the following command, and press the return key:

psql -U postgres

If you get the following error, you need to add the PostgreSQL binaries directory to
the PATH variable:

Figure 0.7: Error – Path variable not set

The following steps will help you do that:

1. Search for the term environment variables in Windows Search:

Figure 0.8: Windows Search for environment variables

Setting up Your Environment | xi

2. Click Environment Variables:

Figure 0.9: Windows System Properties

xii | Preface

3. Click Path and then click Edit:

Figure 0.10: Setting the PATH variable

Setting up Your Environment | xiii

4. Click New:

Figure 0.11: Setting the PATH variable

xiv | Preface

5. Using Windows Explorer, locate the path where PostgreSQL is installed. Add the
path to the bin folder of the PostgreSQL installation:

Figure 0.12: Entering the path

6. Click OK and restart the system.

7. Now, open the command line where you can either type or paste the following
command. Press the return key to execute it:

psql -U postgres

8. Enter the password you set in step 5 of the Downloading and Installing PostgreSQL
on Windows section. Then, press the return key. You should be able to log in to
the PostgreSQL console:

Setting up Your Environment | xv

Figure 0.13: PostgreSQL shell

9. Type \q and press the return key to exit the shell:

Figure 0.14: Exiting the PostgreSQL shell

xvi | Preface

The following steps will help you install PostgreSQL on Ubuntu or a Debian-based
Linux system.

1. Open the Terminal. Then, type or paste the following command on a new line
and press the return key:

Figure 0.15: Commands on the Terminal

2. Upon installation, PostgreSQL will create a user called postgres. You will need
to log in as that user to access the PostgreSQL shell:

sudo su postgres

You should see your shell prompt change as follows:

Figure 0.16: Accessing the PostgreSQL shell on Linux

3. Typing the following command will take you to the PostgreSQL shell:

psql

Setting up Your Environment | xvii

You can type \l (a backslash and a lowercase L) to see a list of all the databases
that are loaded by default:

Figure 0.17: List of databases on Linux

Note

You have covered how to install PostgreSQL on Ubuntu and Debian-based
systems here. For instructions to install it on other distributions, please refer
to your distribution's documentation. The PostgreSQL download page for
Linux can be found at https://www.postgresql.org/download/linux/.

Installation on macOS

This section will help you install PostgreSQL on macOS. Before you start installing the
software, make sure you have the Homebrew package manager installed on your
system. If you do not, head over to https://brew.sh/ and paste the script provided on
the webpage in a macOS Terminal (the Terminal app) and press the return key.

https://www.postgresql.org/download/linux/
https://brew.sh/

xviii | Preface

Follow the prompts that appear and wait for the script to finish the installation.

Note

The following instructions are written based on macOS Catalina version
10.15.6, which was the latest version at the time of writing. For more help
on using Terminal, refer to the following link: https://support.apple.com/en-in/
guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac.

Figure 0.18: Installing Homebrew

https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://support.apple.com/en-in/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac

Setting up Your Environment | xix

Once Homebrew is installed, follow these steps to install PostgreSQL:

1. Open a new Terminal window. Type in the following commands in succession
followed by the return key to install the PostgreSQL package:

brew doctor brew update

brew install postgres

Wait for the installation to complete. Depending on your local setup and
connection speed, you will see messages like those shown below (note that only
the partial installation log is shown here):

Figure 0.19: Installation progress (partially shown) for PostgreSQL

xx | Preface

2. Once the installation is complete, start the PostgreSQL process by typing the
following command in Terminal and pressing the return key:

pg_ctl -D /usr/local/var/postgres start

You should see an output similar to the following:

Figure 0.20: Starting the PostgreSQL process

3. Once the process is started, log in to the PostgreSQL shell using the default
superuser called postgres as follows (press the return key to execute
the command):

psql postgres

4. You can type \l (a backslash and a lowercase L) followed by the return key to see
a list of all the databases that are loaded by default:

Figure 0.21: List of databases loaded by default

5. Enter \q and then press the return key to quit the PostgreSQL shell.

Note

pgAdmin will get installed automatically along with PostgreSQL 14.

Setting up Your Environment | xxi

Installing Python

Installing Python on Windows

1. Find your desired version of Python on the official installation page at https://
www.anaconda.com/distribution/#windows.

2. Ensure that you select Python 3.9 from the download page.

3. Ensure that you install the correct architecture for your computer system—
that is, either 32-bit or 64-bit. You can find out this information in the System
Properties window of your OS.

4. After you download the installer, double-click on the file and follow the user-
friendly prompts on screen.

Installing Python on Linux

To install Python on Linux, you have a couple of good options:

1. Open Command Prompt and verify that Python 3 is not already installed by
running python3 --version.

2. To install Python 3, run this:

sudo apt-get update

sudo apt-get install python3.9

3. If you encounter problems, there are numerous sources online that can help you
troubleshoot the issue.

4. You can also install Python by downloading the Anaconda Linux installer from
https://www.anaconda.com/distribution/#linux and following the instructions.

https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#linux

xxii | Preface

Installing Python on macOS

Similar to Linux, you have a couple of methods for installing Python on a Mac.
To install Python on macOS, do the following:

1. Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the
open search box, and hit Enter.

2. Install Xcode through the command line by running xcode-select—install.

3. The easiest way to install Python 3 is using Homebrew, which is installed through
the command line by running ruby -e "$(curl -fsSL https://raw.
githubusercontent.com/Homebrew/install/master/install)".

4. Add Homebrew to your $PATH environment variable. Open your profile in the
command line by running sudo nano ~/.profile and inserting export
PATH="/usr/local/opt/python/libexec/bin:$PATH" at the bottom.

5. The final step is to install Python. In the command line, run brew
install python.

6. Again, you can also install Python via the Anaconda installer, which is available at
https://www.anaconda.com/distribution/#macos.

Installing Git

Installing Git on Windows or macOS

Git for Windows/Mac can be downloaded and installed via https://git-scm.com/.
However, for improved user experience, it is recommended that you install Git
through an advanced client such as GitKraken (https://www.gitkraken.com/).

Installing Git on Linux

Git can be easily installed via the command line:

sudo apt-get install git

If you prefer a graphical user interface, GitKraken (https://www.gitkraken.com/) is also
available for Linux.

https://www.anaconda.com/distribution/#macos
https://git-scm.com/
https://www.gitkraken.com/
https://www.gitkraken.com/

Loading the Sample Datasets – Windows | xxiii

Loading the Sample Datasets – Windows
Most exercises in this book use a sample database, sqlda, which contains fabricated
data for a fictional electric vehicle company called ZoomZoom. Set it up by performing
the following steps:

1. First, create a database titled sqlda. Open the command line and type or paste
the following command. Then, press the return key to execute it:

createdb -U postgres sqlda

You will be prompted to enter the password that you set for the postgres
superuser during installation:

Figure 0.22: PostgreSQL shell password request

2. To check whether the database has been successfully created, log in to the shell
by typing or pasting the following command and pressing the return key:

psql -U postgres

Enter your password when prompted. Press the return key to proceed.

3. Type \l (a backslash and a lowercase L) and then press the return key to check if
the database has been created. The sqlda database should appear along with a
list of the default databases:

Figure 0.23: PostgreSQL list of databases

xxiv | Preface

4. Download the data.dump file from the Datasets folder in the GitHub
repository of this book by clicking this link: http://packt.link/GuU31. Modify the
highlighted path in the following command based on where the file is located on
your system. Type or paste the command into the command line and press the
return key to execute it:

psql -U postgres -d sqlda -f C:\<path>\data.dump

Note

Alternatively, you can use the command line and navigate to the local folder
where you have downloaded the file using the cd command. For example,
if you have downloaded it to the Downloads folders of your computer,
you can navigate to it using cd C:\Users\<your username>\
Downloads. In this case, remove the highlighted path prefix in the step.
The command should look like this: psql -U postgres -d sqlda
-f data.dump.

You should get an output similar to the one that follows:

Figure 0.24: PostgreSQL database import

http://packt.link/GuU31

Loading the Sample Datasets – Windows | xxv

5. Check whether the database has been loaded correctly. Log in to the
PostgreSQL console by typing or pasting the following command.
Press the return key to execute it:

psql –U postgres

In the shell, type the following command to connect to the sqlda database:

\c sqlda

Then type \dt. This command should list all the tables in the database,
as follows:

Figure 0.25: Validating that the database has been imported

Note

You are importing the database using the postgres superuser for
demonstration purposes only. It is advised in production environments to
use a separate account.

xxvi | Preface

Loading the Sample Datasets – Linux
Most exercises in this book use a sample database, sqlda, which contains fabricated
data for a fictional electric vehicle company called ZoomZoom. Set it up by performing
the following steps:

1. Switch to the postgres user by typing the following command in the terminal.
Press the return key to execute it:

sudo su postgres

You should see your shell change as follows:

Figure 0.26: Loading the sample datasets on Linux

2. Type or paste the following command to create a new database called sqlda.
Press the return key to execute it:

createdb sqlda

You can then type the psql command to enter the PostgreSQL shell, followed
by \l (a backslash followed by lowercase L) to check if the database was
successfully created:

Figure 0.27: Accessing the PostgreSQL shell on Linux

Enter \q and then press the return key to quit the PostgreSQL shell.

Loading the Sample Datasets – Linux | xxvii

3. Download the data.dump file from the Datasets folder in the GitHub
repository of this book by running this command:

wget "https://github.com/PacktPublishing/SQL-for-Data-Analytics-Third-
Edition/tree/main/Datasets/data.dump"

4. Navigate to the folder where you have downloaded the file using the cd
command. Then, type the following command:

psql -d sqlda < data.dump

5. Then, wait for the dataset to be imported:

Figure 0.28: Importing the dataset on Linux

xxviii | Preface

6. To test whether the dataset was imported correctly, type ppsql postgres
and then press the return key to enter the PostgreSQL shell. Then, run \c
sqlda followed by \dt to see the list of tables within the database:

Figure 0.29: Validating the import on Linux

Note

You are importing the database using the postgres superuser for
demonstration purposes only. It is advised in production environments to
use a separate account.

Loading the Sample Datasets – macOS
Most exercises in this book use a sample database, sqlda, which contains fabricated
data for a fictional electric vehicle company called ZoomZoom. Now, set it up by
performing the following steps:

1. Enter the PostgreSQL shell by typing the following command in Terminal.
Press the return key to execute it:

psql postgres

Loading the Sample Datasets – macOS | xxix

2. Now, create a new database called sqlda by typing the following command and
pressing return (do not forget the semicolon at the end):

create database sqlda;

3. You should see the following output. Type \l (a backslash followed by lowercase
L) in Terminal and press the return key to check whether the database was
successfully created (you should see the sqlda database listed there):

Figure 0.30: Checking whether a new database is successfully created

4. Type or paste \q in the PostgreSQL shell and press the return key to exit.

5. Download the data.dump file from the Datasets folder in the GitHub
repository of this book at https://packt.link/GuU31. Navigate to the folder
where you have downloaded the file using the cd command. Then, type the
following command:

psql sqlda < ~/Downloads/data.dump

Note

The preceding command assumes that the file is saved in the Downloads
directory. Make sure you change the highlighted path based on the location
of the data.dump file on your system.

https://packt.link/GuU31

xxx | Preface

6. Then, wait for the dataset to be imported:

Figure 0.31: Importing the dataset

7. To test if the dataset was imported correctly, type psql postgres and then
press the return key to enter the PostgreSQL shell again. Then, run \c sqlda
followed by \dt to see the list of tables within the database:

Figure 0.32: List of tables within the sqlda database

Running SQL files | xxxi

Running SQL files
Commands and statements can be executed via a *.sql file from the command line
using the following command:

psql -d your_database_name -U your_username < commands.sql

Alternatively, they can be executed via the SQL interpreter:

database=#

To get to the interactive interpreter, type the following command:

psql -d your_database_name -U your_username

Accessing the Code Files
You can find the complete code files of this book at https://packt.link/wEkdN.

The high-quality color images used in this book can be found at
https://packt.link/Ue9Qb.

If you have any issues or questions about installation, please email us
at workshops@packt.com.

https://packt.link/wEkdN
https://packt.link/Ue9Qb
mailto:workshops@packt.com

Overview

By the end of this chapter, you will be able to explain data and statistics
and classify data based on its characteristics. You will find out how to
calculate basic univariate statistics of data and identify outliers. You will also
learn how to use bivariate analysis to understand the relationship between
two variables.

Understanding and

Describing Data

1

2 | Understanding and Describing Data

Introduction
Data collection and analysis is an old practice going back to the beginning of
civilization. Records from ancient Egyptian papyrus suggest that pharaohs collected
census information from villages, possibly to determine the number of soldiers that
could be enlisted for the war. However, it was after the arrival of modern computers
that the art of data analytics became a significant phenomenon that is changing
people's lives every day.

This book, as its name suggests, teaches you how to use Structured Query
Language (SQL) for data analytics. SQL is the tool that you will be focusing on in the
rest of the book. But before diving into SQL, this chapter will provide an overview of
data analytics. You will be introduced to fundamental concepts such as the definition
and type of statistics and different methods of statistics, which will lay the foundation
for the concepts that future chapters will be based on, define the purpose of the
SQL operations that you will learn about, and set up the domain of analytics in which
the SQL operations will run on. You will start the chapter by learning about data
and statistics.

Data Analytics and Statistics
Raw data is a group of values that you can extract from a source. It becomes useful
when it is processed to find different patterns in the data that was extracted. These
patterns, also referred to as information, help you to interpret the data, make
predictions, and identify unexpected changes in the future. This information is then
processed into knowledge.

Knowledge is a large, organized collection of persistent and extensive information
and experience that can be used to describe and predict phenomena in the real
world. Data analysis is the process by which you convert data into information
and, thereafter, knowledge. Data analytics is when data analysis is combined with
making predictions.

There are several data analysis techniques available to make sense of data. One of
them is statistics, which uses mathematical techniques on datasets.

Statistics is the science of collecting and analyzing a large amount of data to identify
the characteristics of the data and its subsets. For example, you may want to study
the medical history of a country to identify the most common causes of illness-related
fatality. You can also dive deeper into some subgroups, such as people from different
geographic areas, to identify whether there are specific patterns for people from
each area.

Data Analytics and Statistics | 3

Statistics is performed on datasets. Different data inside datasets have different
characteristics and require different methods of processing. Some types of data,
such as name and label, may be qualitative, which means it provides descriptive
information. Others, such as counts and amounts, are quantitative, which means
you can perform numerical operations, such as addition or multiplication, on
these values. For example, the following dataset is a collection of some biomedical
information collected across a set of patients:

Figure 1.1: Healthcare data

In this case, the unit of observation for the dataset is an individual patient because
each row represents an individual observation, which is a unique patient. There
are 10 data points, each with 5 variables. Three of the columns, Year of Birth,
Height, and Number of Doctor Visits in the Year 2018, are
quantitative because they are represented by numbers. Two of the columns, Eye
Color and Country of Birth, are qualitative.

To get you familiar with the fundamental concepts of datasets and statistics, here is
an activity.

4 | Understanding and Describing Data

Activity 1.01: Classifying a New Dataset

In this activity, you will classify the sales data of different cars in a dataset. You are
about to start a job in a new city at a start-up. You are excited to start your new job,
but you have decided to sell all your belongings before you head off, which includes
your car. As you are not sure what price to sell it at, you decide to collect some data.
You ask some friends and family who have recently sold their cars about the make
of the car and how much they sold it for. Based on this information, you now have a
dataset. The data is as follows:

Figure 1.2: Used car sales data

These are the steps to perform:

1. Determine the unit of observation.

2. Identify whether each column is quantitative or qualitative based on the
definition provided in the text right before the activity. If you can apply
arithmetical operations to it, it is quantitative. Otherwise, it is qualitative.

3. Use a numeric value to represent different string values if a column contains
string values and the string values are fixed and limited. This is a common
technique that makes it faster for computers to process data. For example,
to process a day in the week column, you can use 0 to represent Sunday, 1 to
represent Monday, and so on. Try to use this concept and convert the Make
column into a numeric data column.

Types of Statistics | 5

In this activity, you learned how to classify your data. In the next section, you will
learn about various types of statistics.

Note

The solution for this activity can be found via this link.

Types of Statistics
Statistics can be further divided into two subcategories: descriptive statistics and
inferential statistics.

Descriptive statistics are used to describe a collection of data. For example, the
average age of people in a country is a descriptive statistics indicator that describes
an aspect of the country's residents. Descriptive statistics on a single variable in a
dataset are called univariate analysis, while descriptive statistics that look at two
or more variables at the same time are called multivariate analysis. In particular,
statistics that look at two variables are called bivariate analysis. The average age
of a country is an example of univariate analysis, while an analysis examining the
interaction between GDP per capita, healthcare spending per capita, and age is
multivariate analysis.

In contrast, inferential statistics allows datasets to be collected as a sample or a
small portion of measurements from a larger group, called a population. Inferential
statistics are used to infer the properties of a population-based on the properties of
a sample. For example, a survey of 10,000 people is a sample of the entire population
of a country with 100 million people. Instead of collecting the age of every person in
the country, you survey 10,000 people in the country and use their average age as the
average age of the country.

Note

In this book, you will be primarily focusing on descriptive statistics.

6 | Understanding and Describing Data

Methods of Descriptive Statistics

In this section, you will take a closer look at the basic mathematical techniques of
univariate and bivariate analyses and how to use them to describe and understand a
given dataset. You will be introduced to the following methods in this order:

Univariate Analysis Techniques

• Data Frequency Distribution

• Quantiles

• Central Tendency

• Dispersion

Bivariate Analysis Techniques

• Scatterplots

• Linear Trend Analysis and Pearson Correlation Coefficient

• Interpreting and Analyzing the Correlation Coefficient

• Time Series Data

Univariate Analysis

As mentioned in the previous section, one of the main branches of statistics is
univariate analysis. It consists of multiple methods that are used to understand a
single aspect of a dataset. In this section, you will look at some of the most common
univariate analysis techniques.

Data Frequency Distribution

The distribution of data is simply a count of the number of values that are in a
dataset. For example, say that you have a dataset of 1,000 medical records and one of
the variables in the dataset is eye color. If you look at the dataset and find 700 people
have brown eyes, 200 people have green eyes, and 100 people have blue eyes, then
you have just described the distribution of the dataset. Specifically, because you used
the absolute number to show the occurrence frequency of a certain pattern (eye color
in this example), you have described the absolute frequency distribution.

Types of Statistics | 7

If you were to describe the counts not by the actual number of occurrences in the
dataset but by the proportion of the total number of data points, then you would be
describing the relative frequency distribution. In the preceding eye color example,
the relative frequency distribution would be 70% brown eyes, 20% green eyes, and
10% blue eyes. It is easy to calculate the distribution when the variable can take on
several fixed values, such as eye color.

But what about a quantitative variable that can take on a range of continuous values,
such as height? The general way to calculate distributions for these types of variables
is to make interval "buckets" that these values can be assigned to, and then calculate
distributions using these buckets. For example, height can be broken down into 5
cm interval buckets. A height of 172 will fall into the 170–174.99 bucket and a height
of 181 will fall into the 180–184.99 bucket. You can then create a distribution based
on the values of buckets derived from the heights. This distribution is based on the
absolute number of heights in each bucket, so it is an absolute frequency distribution.
You can then divide each row in the table by the total number of data points and get
the relative frequency distribution.

Another useful thing to do with distributions is to put the numbers in a graph, which
is called data visualization. Data visualization shows the relationship between data
points visually, making it easier to spot patterns. In Exercise 1.01, Creating a Histogram,
you will create a histogram, which is a graphical representation of the continuous
distribution using interval buckets.

Exercise 1.01: Creating a Histogram

In this exercise, you will use Microsoft Excel to create a histogram. Imagine, as a
healthcare policy analyst, you want to see the distribution of heights to see whether it
is possible to discover any patterns related to the quality of healthcare. To accomplish
this task, you need to create a histogram.

Note

You can use spreadsheet software such as Excel or any data analysis
scripting language, such as Python, to create histograms. For convenience,
you will use Excel in this exercise.

8 | Understanding and Describing Data

Perform the following steps:

1. All the datasets used in this chapter can be found on GitHub. To access the files,
open the following address in your preferred browser: http://packt.link/hW355.

Figure 1.3: Download code files from Github

Click the Code drop-down menu in the upper right corner and click on the
Download ZIP option. You will get a zip file containing all codes in this book.
Unzip it and go to the Datasets folder. You will find the data files inside.

http://packt.link/hW355

Types of Statistics | 9

2. Open Microsoft Excel to a blank workbook:

Figure 1.4: A blank Excel workbook

Note

The Excel version used in this book is Office 365 Excel v2203. If you are
using another version of Excel, your screen and menu may look different,
but the workflow is the same and you should be able to find the menus/
options related to the tasks in this book.

10 | Understanding and Describing Data

3. Go to the Data tab and click Get Data | From File | From Text/CSV.

Figure 1.5: Opening a CSV file

Types of Statistics | 11

4. Find the heights.csv dataset file in the Datasets folder of the GitHub
repository. After navigating to it, click Import.

Figure 1.6: Selecting heights.csv

12 | Understanding and Describing Data

5. The Text Import Wizard dialog box will show up.

Figure 1.7: Selecting the Delimiter option

Note

There is a delimiter selection drop-down menu at the top of the
window. A delimiter is a token used to separate different columns in the
same row. For example, if you have two columns with name and age in
a row, such as Sarah and 23, you need to use a character to separate
these two values so that computers know they belong to different columns.
Comma-Separated Values (CSVs) traditionally use commas as delimiters
(in the future, use whatever is appropriate for your dataset), which will result
in the following row:

Sarah, 23

The heights.csv file only has one column. So, it does not need a delimiter.
You can leave the option as is. Now, click Load.

Types of Statistics | 13

6. In column C, write the numbers 140, 145, 150, and so on in increments of five
all the way to 220 in cells C2 to C18, as shown in Figure 1.8:

Figure 1.8: Entering the data into the Excel sheet

14 | Understanding and Describing Data

7. Click Data Analysis (if you do not see the Data Analysis option, follow
these instructions to enable it: https://support.office.com/en-us/article/load-the-
analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4) on the Data tab.

8. Select Histogram and click OK from the selection box that pops up. The
Histogram dialog will pop up.

9. Click the selection button on the far-right side of the textbox for Input Range.
You should be returned to the heights worksheet along with a blank box with
a button that has an arrow in it.

Figure 1.9: Input range dialog box

Drag and highlight all the data in heights from A2 to A10001, which will
result in:

Figure 1.10: Entering the data range for input

Now, click the button with the arrow to return to the Histogram window.

10. Click the selection button on the far-right side of the dialog box for Bin Range.
You should be returned to the heights worksheet along with a blank box with
a button that has an arrow in it. Drag and highlight all the data in heights from
C2 to C18. Now, click the button with the arrow.

https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4
https://support.office.com/en-us/article/load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4

Types of Statistics | 15

11. Select New Worksheet Ply under Output options and make sure Chart
Output is marked, as shown in Figure 1.11. Now, click OK:

Figure 1.11: Selecting New Worksheet Ply

16 | Understanding and Describing Data

12. As you chose to output the histogram in a new worksheet ply, a new worksheet
(usually called Sheet2) will be created. Click Sheet2. Find the graph and
doubleclick the title where it says Histogram. Type the word Heights. It
should produce a graph that is similar to the one in Figure 1.12:

Figure 1.12: The distribution of height for adult males

Looking at the shape of the distribution can help you find interesting patterns.
Notice the symmetrical bell-shaped cut of this distribution. This distribution is often
found in many datasets and is known as a normal distribution. This is one of the
most common distributions that you will run into in the real world. This book will
not discuss this distribution in much detail but keep an eye out for it in your data
analysis as it shows up quite often.

Quantiles

In the previous section, Data Frequency Distribution, you learned how to compute
the frequency of distribution as well as how to visualize it. However, there is more
to study in the pattern of each distribution. For example, given any two normal
distributions, one may be more concentrated around the middle, thus having a
sharper peak. Another may spread out more and look flatter. You will need to use
some quantitative metrics to evaluate the characteristics of each distribution.

Types of Statistics | 17

One way to numerically quantify data distribution is to use quantiles. N-quantiles
are a set of n-1 points used to divide a dataset into n groups based on the order
of a variable. These points are often called cut points. For example, a 4-quantiles
(also referred to as a quartile) has three cut points (n-1) that divide a variable into
four approximately equal groups of numbers. There are several common names for
quantiles used interchangeably, which are as follows:

Figure 1.13: Common names for n-quantiles

The procedure for calculating quantiles varies from place to place. In one of the
most common approaches, you can use the following procedure to calculate the
n-quantiles for data points for a single variable:

1. Order the data points from lowest to highest based on the variable.

2. Determine the number, n, of n-quantiles you want to calculate and the number
of cut points, n-1.

3. Determine the number of k cut points you want to calculate, that is, a number
from 1 to n-1. If this is the first step of the calculation, set k to be equal to 1.

Find the index, i, for the kth cut point using the following:

Figure 1.14: The index

18 | Understanding and Describing Data

4. If for the kth cut point the i calculated is a whole number, simply pick that
numbered item from the ordered data points. If i is not a whole number, find
the numbered item that is lower than i and the one higher than it. Multiply
the difference between the numbered item and the one after it by the decimal
portion of the index. Add this number to the lower-numbered item.

5. Repeat Steps 1 to 4 with different values of k until you have calculated all the
cut points.

Now that you have understood the steps of calculating quartiles, it would be helpful
to work through an exercise for better understanding.

Exercise 1.02: Calculating the Quartiles for Add-On Sales

In this exercise, you will classify the data and calculate the quartiles for a car purchase
using Excel. Your new boss wants you to look at some data before you start on
Monday so that you have a better sense of one of the problems you will be working
on—that is, the increasing sales of add-ons and upgrades for car purchases.

Your boss sends over a list of 11 car purchases and how much was spent on add-ons
and upgrades to the base model of the new ZoomZoom Model Chi. The following are
the values of Add-on Sales ($): 5000, 1700, 8200, 1500, 3300, 9000, 2000,
0, 0, 2300, and 4700.

Note

All the datasets used in this chapter can be found on GitHub:

https://packt.link/skue4

Perform the following steps to complete the exercise:

1. Open Microsoft Excel to a blank workbook.

2. Go to the Data tab and click Get Data | From File | From Text/CSV.
You can find the auto_upgrades.csv dataset file in the Datasets folder of
the GitHub repository. Navigate to the file and click Import.

3. As this file has only one column, it has no delimiters, although CSVs traditionally
use commas as delimiters (in the future, use whatever is appropriate for your
dataset). For now, click the auto_upgrades tab and select Sort from the tab.

https://packt.link/skue4

Types of Statistics | 19

4. A sorted dialog box will pop up. Now, click OK. The values will now be sorted
from lowest to highest. The list in Figure 1.15 shows the sorted values:

Figure 1.15: The add-on sales figures sorted

5. Now, determine the number of n-quantiles and cut points you need to calculate.
Quartiles are equivalent to 4-quantiles, as shown in Figure 1.13. Because the
number of cut points is just one less than the number of n-quantiles (n-1), you
know there will be three cut points.

20 | Understanding and Describing Data

6. Calculate the index for the first cut point, in this case, k=1; d, the number of
population-based values, equals 11, and n, the number of n-quantiles, equals 4.
Plugging this into the equation from Figure 1.16, you will get 3.5:

Figure 1.16: Calculating the index for the first cut point

7. Because index 3.5 is a noninteger, you need to find the third and fourth items
(1,500 and 1,700, respectively). Find the difference between them, which is
200, and then multiply this by the decimal portion of 0.5, yielding 100. You add
this to the third numbered item, 1,500, and get 1,600.

8. Repeat Steps 2 to 5 for k=2 and k=3 to calculate the second and third quartiles.
You should get 2,300 and 4,850, respectively.

In this exercise, you learned how to classify data and calculate quartiles using Excel.
Quartiles are useful because they divide the dataset into four subsets based on order,
and it is easy to derive the top half, bottom half, as well as the half that is closest
to the median from the four data subsets. With most modern tools, including SQL,
computers can quickly calculate quantiles with built-in functionality so that you do not
need to do it manually. Still, it is helpful to understand how it is calculated through
this example.

Central Tendency

The typical value of a variable is one of the common questions asked of a variable in a
dataset. This value is often described as the central tendency of the variable. There
are several ways to describe the central tendency of a dataset. Each of these has its
own advantages and disadvantages. Some of the ways to measure central tendency
include the following:

Types of Statistics | 21

• Mode: Mode is simply the value that comes up most often in the distribution of
a variable. In Figure 1.1, the example on eye color, the mode would be "brown
eyes" because it occurs most frequently in the dataset. If multiple values are tied
for the most common variable, then the variable is called multimodal, and all the
highest values are reported. If no value is repeated, then there is no mode for
that set of values.

Mode tends to be useful when a variable can take on a small, fixed number of
values. However, it is problematic to calculate when a variable is a continuous
quantitative variable, as seen in the example on height in Figure 1.12. With
these variables, other calculations are more appropriate for determining the
central tendency.

• Average/mean: The average of a variable (also called the mean) is the value
calculated when you take the sum of all the values of the variable and divide it by
the number of data points. For example, if you have a small dataset of ages, 26,
25, 31, 35, and 29, the average of these ages would be 29.2 because that is the
number you get when you derive the sum of the five numbers and then divide
by 5, that is, the number of data points.

The mean is easy to calculate and, generally, does a good job of describing
a "typical" value for a variable. No wonder it is one of the most reported
descriptive statistics in the literature. However, using the average to determine
the central tendency has one major drawback, that is, it is sensitive to outliers.
An outlier is a data point that is significantly different in value from the rest of
the data and occurs rarely. Outliers can often be identified by using graphical
techniques (such as scatterplots and box plots). These techniques display the
data visually and can help in identifying any data points that are very far from
the rest of the data.

When a dataset has an outlier, it is called a skewed dataset. Some common
reasons why outliers occur include unclean data, extremely rare events (such as
a month where you win a lottery versus the months where you receive a regular
salary), and problems with measurement instruments. Outliers may change
the average to a point where it is no longer representative of a typical value in
the data.

22 | Understanding and Describing Data

• Median: The median (also called the 2nd quartile and the 50th percentile)
is another measure of central tendency but has some advantages over the
average. To calculate the median, take the numbers of a variable and sort them
from the lowest to the highest, and then determine the middle number. For
an odd number of data points, this number is simply the middle value of the
ordered data. If there is an even number of data points, then take the average of
the two middle numbers.

While the median is a bit unwieldy to calculate, it is less affected by outliers,
unlike the mean. To illustrate this fact, calculate the median of the skewed age
dataset of 26, 25, 31, 35, 29, and 82. When you calculate the median of the
dataset, you get the value of 30. This value is much closer to the typical value of
the dataset than the average of 38. This robustness toward outliers is one of the
major reasons the median is calculated.

Note

As a rule, it is a good idea to calculate both the mean and median of a
variable. If there is a significant difference in the value of the mean and the
median, then the dataset may have outliers.

Next, you will learn how to perform central tendency calculations in the
following exercise.

Exercise 1.03: Calculating the Central Tendency of Add-On Sales

In this exercise, you will calculate the central tendency of the given data using Excel.
To better understand the Add-on Sales data (the items that are sold in addition to
the main purchase), you will need to gain an understanding of what a typical value for
this variable is. Calculate the mode, mean, and median of the Add-on Sales data.
Here is the data for the 11 cars purchased: 5000, 1700, 8200, 1500, 3300, 9000,
2000, 0, 0, 2300, and 4700.

Perform the following steps to implement the exercise:

1. Open an Excel workbook and type in the preceding numbers in a column.

2. Calculate the mode by finding the most common value. Because 0 is the most
common value in the dataset, the mode is 0.

Types of Statistics | 23

3. Calculate the mean. Sum the numbers in Add-on Sales, which should
equal 37,700. Then, divide by the number of values (11), and you get a mean
of 3,427.27.

4. Select the entire range of data. In the Data menu, choose Sort | AtoZ.
Calculate the median by identifying the middle value of the data, as shown in
Figure 1.17:

Figure 1.17: Add-on Sales figures sorted

Because there are 11 values, the middle value will be the sixth on the list. You
now take the sixth element in the ordered data and get a median of 2300.

Note

When you compare the mean and the median, you can see that there is
a significant difference between the two. As previously mentioned in the
Central Tendency section, it is a sign that you have outliers in your dataset.
You will then need to determine whether you want to cleanse your data by
removing the outliers or not. You will learn how to determine which values
are outliers in the next section, Dispersion.

24 | Understanding and Describing Data

Now that you know about central tendency, you can learn about a different property
of data, called dispersion.

Dispersion

Another property of interest in a dataset is discovering how close together data
points are in a variable. For example, the number sets [100, 100, 100] and [50, 100,
150] both have a mean of 100, but the numbers in the second group are spread
out more than in the first. This property of describing how the data is spread is
called dispersion.

There are many ways to measure the dispersion of a variable. Here are some of the
most common ways to evaluate dispersion.

Range: The range is simply the difference between the highest and lowest values for
a variable. For example, the range in Exercise 1.03, Calculating the Central Tendency
of Add-On Sales is 0–9,000. It is easy to calculate but is very susceptible to outliers. It
also does not provide much information about the spread of values in the middle of
the dataset.

Standard deviation/variance: Standard deviation is simply the square root of the
average of the squared difference between each data point and the mean. The value
of standard deviation ranges from 0 to positive infinity. The closer the standard
deviation is to 0, the less the numbers in the dataset vary. If the standard deviation is
0, it means all the values for a dataset variable are the same.

One subtle distinction to note is that there are two different formulas for standard
deviation, which are shown in Figure 1.18. When the dataset represents the entire
population, you should calculate the population standard deviation using formula A in
Figure 1.18. The variable ux here is the mean (average) of the dataset. If your sample
represents a portion of the observations, then you should use formula B for the
sample standard deviation, as displayed in Figure 1.18. The variable ux here is also
the mean (average) of the dataset. When in doubt, use the sample standard deviation
as it is more conservative. Also, in practice, the difference between the two formulas
is very small when there are several data points:

Figure 1.18: The standard deviation formulas for A) population and B) sample

Types of Statistics | 25

The standard deviation is generally the quantity used most often to describe
dispersion. Like the range, it can also be affected by outliers, though not in such
an extreme way as the range. It can also be fairly involved to calculate. Modern
tools make it easy to calculate the standard deviation. For example, for the dataset
in Exercise 1.03, Calculating the Central Tendency of Add-On Sales, you can use the
STDEV() function in Excel to calculate the sample standard deviation:

Figure 1.19: Calculating standard deviation in Excel

One final note is that, occasionally, you may see a related value called variance. It is
simply the square of the standard deviation.

Interquartile Range (IQR): IQR is the difference between the first quartile, Q1 (this
is also called the lower quartile), and the third quartile, Q3 (this is also called the
upper quartile).

Note

For more information on calculating quantiles and quartiles, refer to the
Data Frequency Distribution section in this chapter.

26 | Understanding and Describing Data

IQR, unlike the range and standard deviation, is robust toward outliers. While it is
one of the most complicated functions to calculate, it provides a more robust way to
measure the spread of datasets. In fact, IQR is often used to define outliers. If a value
in a dataset is smaller than Q1 - 1.5 X IQR or larger than Q3 + 1.5 X IQR, then the value
is considered an outlier.

To better illustrate dispersion, you will work through an example in the next exercise.

Exercise 1.04: Dispersion of Add-On Sales

In this exercise, you will calculate the range, standard deviation, and IQR. To better
understand the sales of additions and upgrades, you need to take a closer look at the
dispersion of the data. Here is the data for the 11 cars purchased: 5000, 1700, 8200,
1500, 3300, 9000, 2000, 0, 0, 2300, and 4700. Follow these steps to perform
the exercise:

1. Calculate the range by finding the minimum value of the data, 0, and subtracting
it from the maximum value of the data, 9000, yielding 9000.

2. Follow and execute the data. The standard deviation calculation requires you to
determine whether you want to calculate the sample standard deviation or the
population standard deviation. As these 11 data points only represent a small
portion of all purchases, you will calculate the sample standard deviation.

3. Find the mean of the dataset, which you calculated in Exercise 1.02, Calculating
the Quartiles for Add-On Sales, to be 3427.27.

4. Subtract each data point from the mean and square the result. The results are
summarized in the following figure:

Figure 1.20: The sum of the squared calculation

Types of Statistics | 27

5. Sum up the Difference with Mean Squared values, yielding 91,441,818.

6. Divide the sum by the number of data points minus 1, which, in this case, is 10,
and take its square root. This calculation should result in 3,023.93 as the sample
standard deviation.

7. Find the first and third quartiles to calculate the IQR. This calculation can be
found in Exercise 1.02, Calculating the Quartiles for Add-On Sales, to give you 1,600
and 4,850. Then, subtract the two to get the value of 3,250.

In this exercise, you calculated the range, standard deviation, and IQR using Excel. In
the next section, you will learn how to use bivariate analysis to find patterns.

Bivariate Analysis

So far, you have understood the methods for describing a single variable. Now, you
will learn how to find patterns with two variables using bivariate analysis.

Scatterplots

One of the most effective ways to conduct bivariate analysis is using scatterplots.
A general principle you will find in analytics is that graphs are incredibly helpful for
finding patterns. Just as histograms can help you to understand a single variable,
scatterplots can help you to understand two variables. Scatterplots can be produced
easily using data analysis tools, such as Excel.

Note

Scatterplots are particularly helpful when there is only a small number of
points, usually a number between 30 and 500. If you have many points
and plotting them appears to produce a giant blob in your scatterplot, take
a random sample of 200 of those points and plot them to help discern any
interesting trends.

28 | Understanding and Describing Data

A lot of different patterns are worth looking out for within a scatterplot. The most
common pattern people look for is an upward or downward trend between the
two variables noting, as one variable increases, does the other variable increase
or decrease? Such a trend indicates there may be a predictable mathematical
relationship between the two variables. For example, there is an upward trend
between age and the income a person makes. Figure 1.21 shows an example of a
linear trend:

Figure 1.21: The upward linear trend between two variables, the age
and the income of a person

Types of Statistics | 29

There are also other trends that are worth looking out for that are not linear,
including quadratic, power, inverse, and logistic trends. Look at the following figure
to see what some of these trends look like:

Figure 1.22: Other common trends

Note

The process of approximating a trend with a mathematical function is
known as regression analysis. Regression analysis plays a critical part in
analytics but is outside the scope of this book.

30 | Understanding and Describing Data

While trends are useful for understanding and predicting patterns, detecting changes
in trends is often as important. Changes in trends usually indicate a critical change
in whatever you are measuring and are worth examining further for an explanation.
For example, the stock of a company begins to drop after rising for a long time. The
following figure shows an example of a change in a trend, where the linear trend
wears off after x=50:

Figure 1.23: An example of a change in a trend

Types of Statistics | 31

Another pattern that people tend to look for is periodicity—that is, repeating patterns
in the data. Such patterns can indicate that two variables may have cyclical behavior
and can be useful in making predictions. A very common example is the temperature,
which goes higher during the day and goes lower during the night. Figure 1.24 shows
an example of periodic behavior:

Figure 1.24: An example of periodic behavior

32 | Understanding and Describing Data

Scatterplots are also used to detect outliers. While most points in a graph appear to
be in a specific region of the graph, some points, such as the two in the upper-left
corner in the following figure (circled in red), are quite far away from the rest. It may
indicate that these two points are outliers in regard to the two variables. When doing
further bivariate analysis, it may be wise to remove these points to reduce any noise
and produce better insights.

Figure 1.25: A scatterplot with two outliers

These techniques with scatterplots allow data professionals to understand the
broader trends in their data and take the first steps to turn data into information.

Types of Statistics | 33

Linear Trend Analysis and Pearson Correlation Coefficient

One of the most common trends in analyzing bivariate data is linear trends. The
linear trend shows if there is a relationship in which when one variable increases,
another variable shows a pattern of increase or decrease. Some linear trends are
weak, while other linear trends are strong in terms of how well they fit the data. In
Figure 1.26 and Figure 1.27, you will see examples of scatterplots with their line of
best fit. This is a line calculated using a technique known as Ordinary Least Squares
(OLS) regression:

Note

OLS is beyond the scope of this book, but you need to understand that it
indicates how well bivariate data fits a linear trend and is a valuable tool for
understanding the relationship between two variables.

Figure 1.26: A scatterplot with a strong linear trend

34 | Understanding and Describing Data

The following figure shows a scatterplot with a weak linear trend:

Figure 1.27: A scatterplot with a weak linear trend

One method for quantifying linear correlation is to use the Pearson correlation
coefficient. The Pearson correlation coefficient, often represented by the letter r, is
a number ranging from -1 to 1, indicating how well a scatterplot fits a linear trend. To
calculate the Pearson correlation coefficient, r, you can use the following formula:

Figure 1.28: The formula for calculating the Pearson correlation coefficient

Types of Statistics | 35

Here, the denominator is the standard deviation of variables x and y. The nominator
is the covariance between x and y. This formula is a bit heavy, so work through an
example to turn the formula into specific steps.

Exercise 1.05: Calculating the Pearson Correlation Coefficient for Two

Variables

In this exercise, you will calculate the Pearson correlation coefficient for the
relationship between Hours Worked Per Week and Sales Per Week ($).
In the figure, you can see some listed data for 10 salespeople at the ZoomZoom
dealership in Houston and how much they netted in sales that week:

Figure 1.29: Data for 10 salespersons at a ZoomZoom dealership

Note

The salesperson.csv dataset can be directly downloaded from
GitHub to perform this exercise. Here is the link to the Datasets folder:
https://packt.link/mriXZ.

https://packt.link/mriXZ

36 | Understanding and Describing Data

Perform the following steps to complete the exercise:

1. Create a scatterplot of the two variables in Excel by using the data given in the
scenario. This will help you to get a rough estimate of what to expect for the
Pearson correlation coefficient.

Figure 1.30: A scatterplot of Hours Worked Per Week and Sales Per Week ($)

There does not appear to be a strong linear relationship, but there does appear
to be a general increase in Sales Per Week ($) versus Hours Worked
Per Week.

2. Calculate the mean of each variable. You should get 57.40 for Hours Worked
Per Week and 1,861,987.43 for Sales Per Week ($). If you are not sure
how to calculate the mean, refer to the Central Tendency section in this chapter.

3. Calculate four values for each row: the difference between each value and its
mean and the square of the difference between each value and its mean. Then,
find the product of these differences. You should get a table of values, as shown
in the following figure:

Types of Statistics | 37

Figure 1.31: Calculations for the Pearson correlation coefficient

4. Find the sum of the squared terms and the sum of the product of the
differences. You should get 2,812.40 for Hours Worked Per Week (x),
7,268,904,226,420.96 for Sales Per Week (y), and 54,492,841.19 for the
product of the differences.

5. Take the square root of the sum of the differences to get 53.03 for Hours
Worked Per Week (x) and 2,696,090.55 for Sales Per Week (y).

6. Input the values into the equation from Figure 1.32 to get 0.38. The calculation
will be: 54492841.19/(53.03 * 2696090.55) = 0.38:

Figure 1.32: The final calculation of the Pearson correlation coefficient

You learned how to calculate the Pearson correlation coefficient for two variables in
this exercise and got the final output of 0.38 after using the formula.

Interpreting and Analyzing the Correlation Coefficient

Manually calculating the correlation coefficient can be complicated. It is generally
preferable to calculate it on the computer. As you will learn in Chapter 3, SQL for Data
Preparation, it is possible to calculate the Pearson correlation coefficient using SQL.

38 | Understanding and Describing Data

To interpret the Pearson correlation coefficient, compare its value to the table in
Figure 1.33. The closer to 0 the coefficient is, the weaker the correlation. The higher
the absolute value of a Pearson correlation coefficient, the more likely it is that the
points will fit a straight line:

Figure 1.33: Interpreting the Pearson correlation coefficient

There are a couple of things to watch out for when examining the correlation
coefficient. The first is that the correlation coefficient measures how well two
variables fit a linear trend. Two variables may share a strong trend but have a
relatively low Pearson correlation coefficient.

For example, look at the points in Figure 1.34. If you calculate the correlation
coefficient for these two variables, you will find it is -0.08. However, the curve has
a very clear quadratic relationship. Therefore, when you look at the correlation
coefficients of bivariate data, be on the lookout for nonlinear relationships that may
describe the relationship between the two variables:

Figure 1.34: A strong nonlinear relationship with a low correlation coefficient

Types of Statistics | 39

Another point of importance is the number of points used to calculate a correlation.
It only takes two points to define a perfectly straight line. Therefore, you may be able
to calculate a high correlation coefficient when there are fewer points. However, this
correlation coefficient may not hold when more bivariate data is presented. As a rule
of thumb, correlation coefficients calculated with fewer than 30 data points should be
taken with a pinch of salt. Ideally, you should have as many good data points as you
can to calculate the correlation.

Notice the use of the term "good data points." One of the recurring themes of
this chapter was the negative impact of outliers on various statistics. Indeed, with
bivariate data, outliers can impact the correlation coefficient. Look at the graph in
Figure 1.35. It has 11 points, one of which is an outlier. Due to that outlier, the Pearson
correlation coefficient, r, for the data is 0.59; however, without it, it equals 1.0.
Therefore, care should be taken to remove outliers, especially from limited data.

Figure 1.35: Calculating r for a scatterplot with an outlier

40 | Understanding and Describing Data

Finally, one of the major problems associated with calculating correlation is the logical
fallacy of correlation implying causation. That is, just because x and y have a strong
correlation, does not mean that x causes y. Take one example of the number of
Hours Worked Per Week versus Sales Per Week. Imagine that, after adding
more data points, it turns out the correlation is 0.5 between these two variables.
Many beginner data professionals and experienced executives alike would conclude
that more working hours cause more sales and start making their sales team work
nonstop. While it is possible that working more hours causes more sales, a high
correlation coefficient is not hard evidence for that.

Another possibility may be a reverse set of causation. It is possible that because of
the increase in sales, there is more paperwork, therefore the need to stay longer
at the office to complete it. In this scenario, working more hours may not cause
more sales.

There may also exist a third factor responsible for the association between the two
variables. For example, experienced salespeople work longer hours and also do
a better job of selling. Therefore, the real cause is having employees with lots of
sales experience, and the recommendation should be to hire more experienced
sales professionals.

As a data analytics professional, you will be responsible for avoiding pitfalls such as
confusing correlation and causation, and you need to think critically about all the
possibilities that might be responsible for the results you see.

Time Series Data

One of the most important types of bivariate analysis is a time series. A time series is
simply a bivariate relationship where the x-axis variable is time. An example of a time
series can be found in Figure 1.36, which shows a time series from January 2010 to
September 2012.

While at first glance it may not seem to be the case, date and time information is
quantitative in nature. Understanding how things change over time is one of the most
important types of analysis done in organizations and provides a lot of information
about the context of the business.

Types of Statistics | 41

All the patterns discussed in the previous section can also be found in time series
data. Time series are also important in organizations because they can be indicative
of when specific changes happened. Such time points can be useful in determining
what caused these changes.

Figure 1.36: An example of a time series

You will now look at a small dataset to demonstrate how to perform basic
statistical analysis.

42 | Understanding and Describing Data

Activity 1.02: Exploring Dealership Sales Data

In this activity, you will explore a dataset using statistics. As a data analyst for
ZoomZoom, a company specializing in electric vehicles, you are doing some high-level
analysis on annual sales at dealerships across the country using a .csv file.

1. Open the dealerships.csv document in Excel. You can find it in the
Datasets folder of the GitHub repository.

2. Make a frequency distribution for the number of female employees at
a dealership.

3. Determine the average and median annual sales for a dealership.

4. Determine the standard deviation of sales.

5. Do any of the dealerships seem like an outlier? Explain your reasoning.

6. Calculate the quintiles (five-quantiles) of the annual sales.

7. Calculate the correlation coefficient of annual sales to female employees and
interpret the result.

You have learned how to deal with data, processes, and types in this activity. Overall,
you have learned how to use univariate techniques and bivariate techniques for data
analysis in this section. But how do you handle missing data? This next section helps
you to understand how to deal with this possibility.

Note

The solution for this activity can be found via this link.

Working with Missing Data
In all the examples so far, you have been dealing with datasets that are clean and
easy to decipher. However, datasets in real world are more complicated than these.
One of the many problems you may have to deal with when working with datasets is
missing values.

Statistical Significance Testing | 43

You will further learn the specifics of preparing data in Chapter 3, SQL for Data
Preparation. However, in this section, you will learn several strategies that you
can use to handle missing data. Some of your strategies include the following:

• Deleting rows: If a very small number of rows (that is, less than 5% of your
dataset) is missing data, then the simplest solution may be to just delete the
data points from your set. This would not impact your results too much.

• Mean/median/mode imputation: If 5% to 25% of your data for a variable is
missing, another option is to take the mean, median, or mode of that column
and fill in the blanks with that value. It may provide a small bias to your
calculations, but it will allow you to complete more analysis without deleting
valuable data.

• Regression imputation: If possible, you may be able to build and use a model
to impute missing values. This skill may be beyond the capability of most data
analysts, but if you are working with a data scientist, this option could be viable.

• Deleting variables: Ultimately, you cannot analyze data that does not exist.
If you do not have a lot of data available, and a variable is missing most of its
data, it may simply be better to remove that variable than to make too many
assumptions and reach faulty conclusions.

You will also find that a decent portion of data analysis is more an art than a
science. Working with missing data is one such area. With experience, you will find a
combination of strategies that work well for different scenarios.

Statistical Significance Testing
Often, an analyst is interested in comparing the statistical properties of two groups,
or perhaps just one group before and after a change. Of course, the difference
between these two groups may just be due to chance.

An example of where this comes up is in marketing A/B tests. Companies often test
two different types of landing pages for a product and measure how many clicks it
will receive on each of the landing pages. For example, if you make the image of a
product two times larger, will this make people more likely to click it? You may find
that 10% of the visitors for variation A of the landing page clicked on the product, and
11% for variation B. So, does that mean variation B is 10% better than A or is this just
a result of day-to-day variance? You need a method based on statistics to determine
just that.

44 | Understanding and Describing Data

Statistical significance testing is the method of determining whether the data that you
have supports a certain hypothesis. To build such a method, there are several major
parts you need to define first, see Figure 1.40. First, you have the test statistic you are
examining. It may be a proportion, an average, the difference between two groups, or
a distribution. The next necessary part is a null hypothesis, which is the idea that the
results observed are the product of chance.

You will then need an alternative hypothesis, which is the idea that the results seen
cannot be explained by chance alone. Finally, a test requires a significance level,
which is the value the test statistic needs to take before it is decided that the null
hypothesis cannot explain the difference.

Figure 1.37: Parts of statistical significance testing

SQL and Analytics | 45

Common Statistical Significance Tests

A statistical significance test is an important part of data analysis. In a typical data
analysis scenario, data analysts will bring in data from the real world and create
models that fit this data. But how accurate are these models? Can you accurately
predict what will happen in the real world based on the models? To answer this
question, you need to perform a statistical significance test.

All statistical significance tests have the four aspects discussed in the previous
section. Different significance tests have different ways of calculating these
components. Some common statistical significance tests include the following:

• Two-sample Z-test: This test is for determining whether the average of the two
samples is different. This test assumes that both samples are drawn from a
normal distribution with a known population standard deviation.

• Two-sample T-test: A test for determining whether the average of two samples
is different when either the sample set is too small (that is, less than 30 data
points per sample) or the population standard deviation is unknown. The two
samples are also generally drawn from distributions assumed to be normal.

• Pearson's Chi-squared test: A test for determining whether the distribution
of data points to categories is different than what would be expected due to
chance. This is the primary test for determining whether the proportions in tests,
such as those in an A/B test, are beyond what would be expected from chance.

SQL and Analytics
Throughout this chapter, you have learned about different techniques used in data
analytics. All these analytics techniques inevitably lead to the storage and processing
of massive data. While there are many tools in today's market that can help you with
these tasks, a relational database is the most important one.

A relational database is a convenient and easy-to-understand way to store datasets.
Modern relational database management systems, such as PostgreSQL databases,
also provide a powerful tool for processing and analyzing data, which is SQL. Using
SQL, you can clean data, transform data into more useful formats, and analyze data
with statistics to find interesting patterns. The rest of this book will be dedicated to
understanding how you can use SQL for these purposes productively and efficiently.

46 | Understanding and Describing Data

Summary
Data analytics is a powerful method through which you analyze raw data to find
patterns and gather predictions that help you to understand the world. The goal of
analytics is to turn data into information and knowledge. To accomplish this goal,
statistics, or descriptive statistics and statistical significance testing, are used to
understand data.

Univariate analysis, a branch of descriptive statistics, can be utilized to understand a
single variable of data. It can also be used to find outliers and the distribution of data
by utilizing frequency distributions and quantiles. It is useful in finding the central
tendency of a variable by calculating the mean, median, and mode of data and the
dispersion of data using the range, standard deviation, and IQR.

Bivariate analysis is also used to understand the relationship between datasets.
You can determine trends, changes in trends, periodic behavior, and anomalous
points regarding two variables by using scatterplots. You can also use the Pearson
correlation coefficient to measure the strength of a linear trend between the
two variables. The Pearson correlation coefficient, however, is subject to scrutiny
due to the outliers or the number of data points used to calculate the coefficient.
Additionally, just because two variables have a strong correlation coefficient, does not
mean that one variable causes the other variable to change.

Statistical significance testing also provides important information about data and
allows you to determine how likely it is that certain outcomes would occur by chance.
It also helps you to understand whether the changes seen between groups are of
consequence rather than by chance.

As important as statistics are, they must be built on top of a significant amount of
data. Both data storage and computation can be extremely demanding. Different
tools have been built to utilize the power of computers for statistics. One of the most
important tools is a relational database, as well as SQL. In the rest of this book, you
will learn about the concept and use of SQL. This will start with the next chapter,
which provides you with an introduction to relational databases and SQL. You will
learn how to Create, Read, Update, and Delete (CRUD) a dataset.

Overview

In this chapter, you will learn about relational databases and basic data
types in SQL. You will learn to read data from a database using the
SELECT keyword and use basic keywords in a SELECT query. You will
also learn how to create, modify, and delete tables in SQL. You will explore
the purpose of SQL and learn how it can be used in an analytics workflow.

The Basics of SQL for

Analytics

2

50 | The Basics of SQL for Analytics

Introduction
Since the invention of the first commercial computer, the process of storing data
has evolved considerably over the past 50 years. Easy access to computers plays
an important role as companies and organizations have been able to change the
way they work with large and complex datasets—from manual bookkeeping to
intelligent and statistics-based data management. Using data, insights that would
have been virtually impossible to derive 50 years ago can now be found with just a
few lines of code. Two of the most important tools in this revolution are the relational
database and its primary language, Structured Query Language (SQL). These two
technologies have been cornerstones of data processing and continue to be the
backbone of most companies that deal with substantial amounts of data. Companies
use relational databases as the primary method for storing much of their data.
Furthermore, companies take much of this data and put it into specialized databases
called data warehouses to perform advanced analytics on their data. Virtually all
these data warehouses are accessed using SQL.

Relational databases require data to be organized into a fixed format and processed
following a predefined algorithm. In recent years, there has been an emergence of
NoSQL databases. Originally created as an alternative way of data storage, these
NoSQL databases utilize technologies that are different from relational operations
and SQL and can achieve what traditional relational databases cannot do or are not
good at, such as distributed compute/storage, unformatted data (such as tweets)
processing, and non-atomic read/write.

However, these NoSQL databases usually focus on a specific usage scenario and have
yet to provide a more generic platform that can meet the needs of the majority of
common database usage patterns. As such, these databases quickly evolved from
"No SQL" to "Not Only SQL," signifying that they are a part of a larger ecosystem for
data management, together with relational databases and SQL.

Compared to NoSQL databases, relational databases have several advantages that
make them the center of data management ecosystems. The core reason is that
relational databases maintain a good balance of features and performances for a
wide variety of data operations, which makes them good candidates for a generic
data management platform. The second reason is that all relational databases
use SQL, which has a solid mathematical theory behind it and is easy to learn. In
general, relational databases and SQL serve as the best place to start your data
analytics journey.

The World of Data | 51

Most people will find that SQL alone is enough for their needs. Only a small fraction
of people will need the functionalities provided by a NoSQL database. But even for
the latter, SQL will still serve as a great foundation for data analytical purposes.

Note

It is assumed that every person following this book has had some basic
exposure to SQL. However, for those users who have very limited exposure,
or have not used it for some time, this chapter will provide a basic refresher
of what relational databases and SQL are, along with a basic review of
SQL operations and syntax. You will also go over practice exercises to help
reinforce these concepts.

To begin with, it is important to understand data and its characteristics.

The World of Data
Start with a simple question: what is data? Data is the recorded description or
measurements of something in the real world. For example, a list of heights is data;
that is, height is a measure of the distance between a person's head and their feet.
The data is used to describe a unit of observation. In the case of these heights, a
person is a unit of observation.

As you can imagine, there is a lot of data you can gather to describe a person—
including their age, weight, and smoking preferences. One or more of these
measurements used to describe a specific unit of observation is called a data
point, and each measurement in a data point is called a variable (often referred
to as a feature). When you have several data points together, you have a dataset.
For example, you may have Person A, who is a 45-year-old smoker, and Person B,
who is a 24-year-old non-smoker. Here, age is a variable. The age of Person A is
one measurement and the age of Person B is another. 45 and 24 are the values
of measurement. A compilation of data points with measurements such as ages,
weights, and smoking trends of various people is called a dataset.

52 | The Basics of SQL for Analytics

Types of Data

Data can be broken down into three main categories: structured, semi-structured,
and unstructured.

Figure 2.1: The classification of types of data

Structured data has an atomic definition for all the variables, such as the data type,
value range, and meaning for values. In many cases, even the order of variables is
clearly defined and strictly enforced. For example, the record of a student in a school
registration card contains an identification number, name, and date of birth, each
with a clear meaning and stored in order.

Unstructured data, on the other hand, does not have a definition as clear as
structured data, and thus is harder to extract and parse. It may be some binary blob
that comes from electronic devices, such as video and audio files. It may also be a
collection of natural input tokens (words, emojis), such as social network posts and
human speech.

Semi-structured data usually does not have a pre-defined format and meaning, but
each of its measurement values is tagged with the definition of that measurement.
For example, all houses have an address. But some may have a basement, or a
garage, or both. It is also possible that owners may add upgrades that cannot be
expected at the time when this house's information is recorded. All components in
this data have clear definitions, but it is difficult to come up with a pre-defined list for
all the possible variables, especially for the variables that may come up in the future.
Thus, this house data is semi-structured.

Relational Databases and SQL
A relational database is a database that utilizes the relational model of data. The
relational model, invented by Dr. Edgar F. Codd in 1970, organizes data as relations,
or sets of tuple. Tuple is the mathematical term for a series of attributes grouped
together in a particular order. A more common (and more practical) name for a
tuple is a record. Each record consists of a series of attributes that generally describe
the record.

Relational Databases and SQL | 53

For instance, a fast-moving consumer goods company wants to track its customers.
They can save the customer information in a relation called customer_info. Each
record in this relation contains details about one customer. The attributes in each
record include information such as the customer's last name, first name, age, date
of signup, and delivery address. This relationship and its first two records will look
like this:

Figure 2.2: An example customer_info relation

As you can see, each relation is indeed a two-dimensional table that looks like an
Excel spreadsheet. Thus, when implemented in a relational database, these relations
are called tables. Each table is made up of rows and columns. Each row of the table is
a record, and the attributes are represented as columns of the table. There cannot be
duplicate columns and the columns must follow the same order in all the rows. Every
column also has a data type that describes the type of data in the column.

While not technically required, most tables in a relational database have a column
(sometimes a group of columns) referred to as the primary key, which uniquely
identifies a row of the database. In the example shown in Figure 2.2, each row
contains a column called ID. This record, as the name suggests, is an attribute that
can be used to uniquely identify this record. It is known as a relational key. In all other
columns, you can have data duplicated across different rows. But in the primary key
column(s), the data must be unique.

Most of the operations in a relational database, and in all data management systems,
are organized around tables and the data inside them. They generally can be
categorized into four groups—create, read, update, and delete. To utilize any data,
you must create the definition of the dataset first, then create the individual data
records one by one and put them into the dataset. Once a dataset is created, you can
read all aspects of information from it. If there is any change to the data, you need to
update the affected records.

Finally, when you do not need the data anymore, you will want to delete the records
to save storage costs and increase performance. If you do not need this dataset,
you can even delete the whole dataset by removing its definition from the database.
These operations, by the order of each operation's position in a dataset's lifecycle, are
generally called CRUD. CRUD stands for create, read, update, and delete.

54 | The Basics of SQL for Analytics

In relational databases, all these operations are carried out using SQL. You will learn
all the related SQL statements in this and the upcoming chapters.

Note

Virtually all relational databases that use SQL deviate from the relational
model in some basic ways. For example, not every table has a specified
relational key. Additionally, a relational model does not technically allow
duplicate rows, but you can have duplicate rows in a relational database.
These differences are minor and will not matter to most readers of
this book.

Advantages and Disadvantages of SQL Databases

As discussed in the previous sections, since relations are collections of records that
have clearly defined attributes in a defined order, they are considered structured
data. Relational databases are the main tool used for storing and processing
structured data.

Since the release of Oracle Database in 1979, SQL has become an industry standard
for structured data in nearly all computer applications—and for good reasons.
SQL databases provide a range of advantages that make them the first choice for
many applications:

• Intuitive: Relations represented as tables serve as a common data structure
that almost everyone understands. As such, working with and reasoning about
relational databases is much easier than doing so with other models.

• Efficient: Using a technique known as normalization, relational databases allow
the representation of data without unnecessarily repeating it. As such, relational
databases can represent large amounts of information while utilizing less space.
This reduced storage footprint also allows the database to reduce operation
costs, making well-designed relational databases quick to process.

• Declarative: SQL is a declarative language, meaning that when you write code,
you only need to tell the computer what data you want, and the database takes
care of determining how to execute the SQL code. You never have to worry
about telling the computer how to access and pull data from the table.

PostgreSQL Relational Database Management System (RDBMS) | 55

• Robust: Most popular SQL databases have a property known as atomicity,
consistency, isolation, and durability (ACID) compliance, which guarantees the
validity of the data, even if the hardware fails.

That said, there are still some downsides to SQL databases, which are as follows:

• Relatively lower specificity: While SQL is declarative, its functionality can often
be limited to what has already been programmed into it. Although most popular
relational database software is updated constantly with new functionality being
built all the time, it can be difficult to process and work with data structures and
algorithms that are not programmed into a relational database.

• Limited scalability: SQL databases are incredibly robust, but this robustness
comes at a cost. As the amount of information you have doubles, the cost
of resources increases even more than double. When very large volumes of
information are involved, other data stores such as NoSQL databases may
be efficient.

• Sacrificing performance for consistency: Relational databases are generally
designed for consistency, which means they will take extra steps to make sure
multiple users will see the same data when they try to access/modify the data at
the same time. To achieve this, relational databases implement some complex
checking and data locking mechanisms into their operational logic. For usage
scenarios that do not require consistency, especially for high-performance
operations like search engines or social network sites, this is an unnecessary
burden and will hurt the performance of the application.

• Lack of semi-structured and unstructured data processing ability: The
fundamental theory that SQL is built on is the relational theory, which, by
definition, handles only structured data. Relational databases can store and
fetch semi-structured and unstructured data. But processing this data requires
processing power and functionalities that are beyond standard SQL. Later
chapters of this book will cover some examples of this type of processing.

PostgreSQL Relational Database Management System (RDBMS)
In any production computer system, data constantly flows in and out and is
eventually stored on storage hardware. It must be properly received, stored with
the location recorded so that it can be retrieved later, retrieved as requested by the
user, and sent out in the appropriate format. These tasks are handled by software
commonly referred to as a relational database management system (RDBMS).
SQL is the language utilized by users of an RDBMS to access and interact with a
relational database.

56 | The Basics of SQL for Analytics

There are many different types of RDBMS. They can be loosely categorized into two
groups, commercial and open source. These RDBMSs differ slightly in the way they
operate on data and even some minor parts in SQL syntax. There is an American
National Standards Institute (ANSI) standard for SQL, which is largely followed by
all RDBMSs. But each RDBMS may also have its own interpretations and extensions of
the standard.

In this book, you will use one of the most popular open-source RDBMSs, PostgreSQL.
You have installed a copy of PostgreSQL in the activities described in the preface.
During that activity, you installed and enabled a PostgreSQL server application on
your local machine. Your local machine's hard disk is the storage device on which
data is stored. Once installation is complete, the PostgreSQL server software will be
running in the backend of your computer and monitoring and handling requests
from the user. Users communicate with the server software via a client tool. There
are many popular client tools that you can choose from. PostgreSQL comes with two
tools, a graphic user interface called pgAdmin (sometimes called pgAdmin4), and a
command-line tool called psql. You used psql in the Preface. For the rest of this book,
you will use pgAdmin for SQL operations.

Note

In Exercise 2.01, Running Your First SELECT Query, you will learn how to run
a simple SQL query via pgAdmin in a sample database that is provided
in this book, which is called the ZoomZoom database. But before the
exercise, here is an explanation of how tables are organized in PostgreSQL
and what tables the ZoomZoom database has.

In PostgreSQL, tables are collected in common collections in databases
called schemas. One or several schemas form a database. For example,
a products table can be placed in the analytics schema. Tables
are usually referred to when writing queries in the format [schema].
[table]. For example, a products table in the analytics schema
would generally be referred to as analytics.products.

However, there is also a special schema called the public schema. This
is a default schema. If you do not explicitly mention a schema when
operating on a table, the database will assume the table exists in the
public schema. For example, when you specify the products table
without a schema name, the database will assume you are referring to the
public.products table.

PostgreSQL Relational Database Management System (RDBMS) | 57

Here is the list of the tables in the sqlda database, as well as a brief description for
each table:

• closest_dealerships: Contains the distance between each customer
and dealership

• countries: An empty table with columns describing countries

• customer_sales: Contains raw data in a semi-structured format of some
sales records

• customer_survey: Contains feedback with ratings from the customers

• customers: Contains detailed information for all customers

• dealerships: Contains detailed information for all dealerships

• emails: Contains the details of emails sent to each customer

• products: Contains the products sold by ZoomZoom

• public_transportation_by_zip: Contains the availability measure of
public transportation in different zip codes in the United States

• sales: Contains the sales records of ZoomZoom on a per customer per
product basis

• salespeople: Contains the details of salespeople in all the dealerships

• top_cities_data: Contains some aggregation data for customer counts in
different cities

Note

Though you may run the examples provided in this book using another
RDBMS, such as MySQL, it is not guaranteed this will work as described.
To make sure your results match the text, it is highly recommended that you
use PostgreSQL.

58 | The Basics of SQL for Analytics

Exercise 2.01: Running Your First SELECT Query

In this exercise, you will use pgAdmin to connect to a sample database called
ZoomZoom on your PostgreSQL server and run a basic SQL query.

Note

You should have set up the PostgreSQL working environment while
studying the preface. If you set up your PostgreSQL on a Windows or Mac,
the installation wizard would have installed pgAdmin on your machine. If
you set up your PostgreSQL on a Linux machine, you will need to go to the
official PostgreSQL website to download and install pgAdmin, which is a
separate package. Once set up, the user interface of pgAdmin is consistent
across different platforms. This book will use screenshots from pgAdmin
version 14 installed on a Windows machine. Your pgAdmin interface should
be very similar regardless of your operating system.

Perform the following steps to complete the exercise:

1. Go to Start > PostgreSQL 14 > pgAdmin 4. The pgAdmin interface should
pop up. Enter your user password when requested to do so. You will be directed
to the pgAdmin Welcome page. If you are a first-time user, you will be prompted
to set a password. Make sure to note down the password.

Figure 2.3: pgAdmin initial interface

PostgreSQL Relational Database Management System (RDBMS) | 59

2. Click on the Servers in the left panel to expand its contents. You should see an
entry called PostgreSQL 14. This is the PostgreSQL RDBMS installed on your
machine. Click to open its content. Enter your user password when requested to
do so.

Figure 2.4: Databases in PostgreSQL 14 server

You should see a Databases entry under PostgreSQL 14, which contains
two databases, PostgreSQL default database postgres and a
sample database called sqlda. A database is a collection of multiple tables. The
sqlda database is the database that you imported in this book's preface after
installing PostgreSQL.

This database has been created with a sample dataset for a fictional company
called ZoomZoom, which specializes in car and electronic scooter retail.
ZoomZoom sells via both the internet and its fleet of dealerships. Each
dealership has a salesperson. Customers will purchase a product and optionally
participate in a survey. Periodically, ZoomZoom will also send out promotional
emails with meaningful subjects to customers. The dates that the email is sent,
opened, and clicked, as well as the email subject and the recipient customer
are recorded.

3. Click the sqlda database to open its contents. Open Schemas > public >
Tables. This shows you all the tables in the public schema.

60 | The Basics of SQL for Analytics

4. Right-click on the sqlda database and choose the Query Tool option to open
the SQL query editor. You will see the query editor on the right side of the
pgAdmin interface.

Figure 2.5: PostgreSQL SQL editor

5. Paste or type out the following query in the terminal. Click on the Execute
button (marked with a red circle in the following screenshot) to execute the SQL:

SELECT first_name

FROM customers

WHERE state='AZ'

ORDER BY first_name;

PostgreSQL Relational Database Management System (RDBMS) | 61

The result of this SQL appears below the query editor:

Figure 2.6: Sample SQL and result

Note

In this screenshot, as well as many screenshots later in this book, only the
first few rows are shown due to the number of rows returned exceeding the
number of rows that can be displayed in this book. In addition, there is a
semicolon at the end of this statement. This semicolon is not a part of the
SQL statement, but it tells the PostgreSQL server that this is the end of the
current statement. It is also widely used to separate several SQL statements
that are grouped together and should be executed one after another.

The SQL query you just executed in this exercise is a SELECT statement. You will
learn further details about this statement in the next section.

62 | The Basics of SQL for Analytics

SELECT Statement

In a relational database, CRUD operations are run by running SQL statements. A
SQL statement is a command that utilizes certain SQL keywords and follows certain
standards to specify what result you expect from the relational database. In Exercise
2.01, Running your first SELECT query, you saw an example SQL SELECT statement.
SELECT is probably the most common SQL statement; it retrieves data from a
database. This operation is almost exclusively done using the SELECT keyword.

The most basic SELECT query follows this pattern:

SELECT…FROM <table_name>;

This query is a way to pull data from a single table. In its simplest form, if you want
to pull all the data from the products table in the sample database, simply use
this query:

SELECT * FROM products;

This query will pull all the data from a database. The output will be:

Figure 2.7: Simple SELECT statement

It is important to understand the syntax of the SELECT query in a bit more detail.

Note

In the statements used in this section, SQL keywords such as SELECT
and FROM are in uppercase, while the names of tables and columns are in
lowercase. SQL statements (and keywords) are case insensitive. However,
when you write your own SQL, it is generally recommended to follow
certain conventions on the usage of case and indentation. It will help you
understand the structure and purpose of the statement.

PostgreSQL Relational Database Management System (RDBMS) | 63

Within the SELECT clause, the * symbol is shorthand for returning all the columns
from a database. The semicolon operator (;) is used to tell the computer it has
reached the end of the query, much as a period is used for a normal sentence. To
return only specific columns from a query, you can simply replace the asterisk (*)
with the names of the columns to be returned in the order you want them to be
returned. For example, if you wanted to return the product_id column followed by
the model column of the products table, you would write the following query:

SELECT product_id, model FROM products;

The output will be as follows:

Figure 2.8: SELECT statement with column names

To return the model column first and the product_id column second, you would
write this:

SELECT model, product_id FROM products;

64 | The Basics of SQL for Analytics

The output will be the following:

Figure 2.9: SELECT statement with column names versus Figure 2.8

It is important to note that although the columns are output in the order you
defined in the SELECT query, the rows will be returned in no specific order. You will
learn how to output the result in a certain order in the ORDER BY section later in
this chapter.

A SELECT query can be broken down into five parts:

1. Operation: The first part of a query describes what is going to be displayed.
In this case, the word SELECT is followed by the names of columns combined
with functions.

2. Data: The next part of the query is the data, which is the FROM keyword,
followed by one or more tables connected with reserved keywords indicating
which data should be scanned for filtering, selection, and calculation.

3. Condition: This is a part of the query that filters the data to show only rows that
meet conditions usually indicated with WHERE.

PostgreSQL Relational Database Management System (RDBMS) | 65

4. Grouping: This is a special clause that takes the rows of a data source and
assembles them together using a key created by a GROUP BY clause, and then
calculates an output for all rows with the same value in the GROUP BY key. You
will learn more about this step in Chapter 4, Aggregate Functions for Data Analysis.

5. Postprocessing: This is a part of the query that takes the results of the data and
formats them by sorting and limiting the data, often using keywords such as
ORDER BY and LIMIT.

Take, for instance, the statement that you ran in Exercise 2.01, Running your first
SELECT query. Suppose that, from the customers table, you wanted to retrieve
the first name of all customers in the state of Arizona. You also want these names
listed alphabetically. You could write the following SELECT query to retrieve
this information:

SELECT first_name

FROM customers

WHERE state='AZ'

ORDER BY first_name;

The first few rows of the result look like this:

Figure 2.10: Sample SELECT statement

66 | The Basics of SQL for Analytics

The operation of the query you executed in the preceding exercise follows
a sequence:

1. Start with the data in the customers table.

2. Filter the customers table to where the state column equals AZ.

3. Capture the first_name column from the filtered table.

4. Check the first_name column, which is ordered alphabetically.

This demonstrates how a query can be broken down into a series of steps for the
database to process. This breakdown is based on the keywords and patterns found in
a SELECT query. There are many keywords that you can use while writing a SELECT
query. To learn the keywords, you will start with the WHERE clause in the next section.

The WHERE Clause

The WHERE clause is a piece of conditional logic that limits the amount of data
returned. You can use the WHERE clause to specify conditions based on which the
SELECT statement will retrieve specific rows. In a SELECT statement, you will usually
find this clause placed after the FROM clause.

The condition in the WHERE clause is generally a Boolean statement that can either be
true or false for every row. In the case of numeric columns, these Boolean statements
can use equals (=), greater than (>), or less than (<) operators to compare the
columns against a value.

For example, say you want to see the model names of the products with the model
year of 2014 from the sample dataset. You would write the following query:

SELECT model

FROM products

WHERE year=2014;

The output of this SQL is:

Figure 2.11: Simple WHERE clause

PostgreSQL Relational Database Management System (RDBMS) | 67

You were able to filter out the products matching a certain criterion using the WHERE
clause. If you want a list of products before 2014, you could simply modify the WHERE
clause to say year<2014. But what if you want to filter out rows using multiple
criteria at once? Alternatively, you might also want to filter out rows that match
either of two or more conditions. You can do this by adding an AND or OR clause in
the queries.

The AND/OR Clause

The previous query, which outputs Figure 2.11, had only one condition. However, you
might be interested in multiple conditions being met at once. For this, you need to
put multiple statements together using AND or OR clauses. The AND clause helps us
retrieve only the rows that match two or more conditions. The OR clause, on the other
hand, retrieves rows that match one (or many) of the conditions in a set of two or
more conditions.

For example, you want to return models that were not only built in 2014, but also
have a Manufacturer's Suggested Retail Price (MSRP) of less than $1,000. You can
write the following query:

SELECT model, year, base_msrp

FROM products

WHERE year=2014

AND base_msrp<=1000;

The result will look like this:

Figure 2.12: WHERE clause with AND operator

Here, you can see that the year of the product is 2014 and base_msrp is lower
than $1,000. This is exactly what you are looking for.

Suppose you want to return any models that were released in the year 2014 or had
a product type of automobile. You would write the following query:

SELECT Model, product_type

FROM products

WHERE year=2014

OR product_type='automobile';

68 | The Basics of SQL for Analytics

The result is as follows:

Figure 2.13: WHERE clause with OR operator

You already know that there is one product, Lemon Limited Edition, with
a year of 2014. The rest of the products in the example have been listed with
automobile as the product_type. You are seeing the combined dataset of
year=2014 together with product_type='automobile'. That is exactly what
the OR operator does.

When using more than one AND or OR condition, you may need to use parentheses
to separate and position pieces of logic together. This will ensure that your query
works as expected and is as readable as possible. For example, if you wanted to get
all products with models between the years 2016 and 2018, as well as any products
that are scooters, you could write the following:

SELECT *

FROM products

WHERE year> 2016

AND year<2018

OR product_type='scooter';

PostgreSQL Relational Database Management System (RDBMS) | 69

The result contains all the scooters as well as an automobile that has a year between
2016 and 2018.

Figure 2.14: WHERE clause with multiple AND/OR operators

However, to clarify the WHERE clause, it would be preferable to write the following:

SELECT *

FROM products

WHERE (year>2016 AND year<2018)

OR product_type='scooter';

You will receive the same result as above. The logic of this SQL is easier to
understand. You will find that the AND and OR clauses are used quite a lot in SQL
queries. However, in some scenarios, they can be tedious, especially when there are
more efficient alternatives for such scenarios.

The IN/NOT IN Clause

Now that you can write queries that match multiple conditions, you also might want
to refine your criteria by retrieving rows that contain (or do not contain) one or more
specific values in one or more of their columns. This is where the IN and NOT IN
clauses come in handy.

70 | The Basics of SQL for Analytics

For example, you are interested in returning all models from the years 2014, 2016,
or 2019. You could write a query such as this:

SELECT model, year

FROM products

WHERE year = 2014

OR year = 2016

OR year = 2019;

The result will look like the following image, showing three models from these
three years:

Figure 2.15: WHERE clause with multiple OR operator

However, this is tedious to write. Using IN, you can instead write the following:

SELECT model, year

FROM products

WHERE year IN (2014, 2016, 2019);

This is much cleaner and makes it easier to understand what is going on. It will also
return the same result as above.

Conversely, you can also use the NOT IN clause to return all the values that are not
in a list of values. For instance, if you wanted all the products that were not produced
in the years 2014, 2016, and 2019, you could write the following:

SELECT model, year

FROM products

WHERE year NOT IN (2014, 2016, 2019);

PostgreSQL Relational Database Management System (RDBMS) | 71

Now you see the products that are in years other than the three mentioned in the
SQL statement.

Figure 2.16: WHERE clause with the NOT IN operator

In the next section, you will learn how to use the ORDER BY clause in your queries.

ORDER BY Clause

SQL queries will order rows as the database finds them if they are not given specific
instructions to do otherwise. For many use cases, this is acceptable. However, you will
often want to see rows in a specific order.

For instance, you want to see all the products listed by the date when they were first
produced, from earliest to latest. The method for doing this in SQL would be using
the ORDER BY clause as follows:

SELECT model, production_start_date

FROM products

ORDER BY production_start_date;

72 | The Basics of SQL for Analytics

As shown in the screenshot below, the products are ordered by the production_
start_date field.

Figure 2.17: SELECT statement with ORDER BY

If an order sequence is not explicitly mentioned, the rows will be returned in
ascending order. Ascending order simply means the rows will be ordered from the
smallest value to the highest value of the chosen column or columns. In the case of
things such as text, this means arranging in alphabetical order. You can make the
ascending order explicit by using the ASC keyword. For the last query, this could be
achieved by writing the following:

SELECT model

FROM products

ORDER BY production_start_date ASC;

This SQL will return the same result in the same order as the SQL above.

If you want to extract data in descending order, you can use the DESC keyword. If
you wanted to fetch manufactured models ordered from newest to oldest, you would
write the following query:

SELECT model, production_start_date

FROM products

ORDER BY production_start_date DESC;

PostgreSQL Relational Database Management System (RDBMS) | 73

The result will be sorted by descending order of production_start_date,
latest first.

Figure 2.18: SELECT statement with ORDER BY DESC

Also, instead of writing the name of the column you want to order by, you can refer to
the position number of that column in the query's SELECT clause. For instance, you
wanted to return all the models in the products table ordered by product ID.
You could write the following:

SELECT product_id, model

FROM products

ORDER BY product_id;

74 | The Basics of SQL for Analytics

The result will be like the following:

Figure 2.19: SELECT statement with numbered ORDER BY

However, because product_id is the first column in the SELECT statement, you
could instead write the following:

SELECT product_id, model

FROM products

ORDER BY 1;

This SQL will return the same result as Figure 2.19.

Finally, you can order by multiple columns by adding additional columns after ORDER
BY, separated with commas. For instance, you want to order all the rows in the table
first by the year of the model from newest to oldest, and then by the MSRP from
least to greatest. You would then write the following query:

SELECT *

FROM products

ORDER BY year DESC, base_msrp ASC;

PostgreSQL Relational Database Management System (RDBMS) | 75

The following is the output of the preceding code:

Figure 2.20: Ordering multiple columns using ORDER BY

In the next section, you will learn about the LIMIT keyword in SQL.

The LIMIT Clause

Most tables in SQL databases tend to be quite large and, therefore, returning every
single row is unnecessary. Sometimes, you may want only the first few rows. For this
scenario, the LIMIT keyword comes in handy. Imagine that you wanted to only get
the model of the first five products that were produced by the company. You could
get this by using the following query:

SELECT model

FROM products

ORDER BY production_start_date

LIMIT 5;

76 | The Basics of SQL for Analytics

The following is the output of the preceding query:

Figure 2.21: Query with LIMIT

When you are not familiar with a table or query, it is a common concern that running
a SELECT statement will accidentally return many rows, which can take up a lot of
time and machine bandwidth. As a common precaution, you should use the LIMIT
keyword to only retrieve a small number of rows when you run the query for the
first time.

IS NULL/IS NOT NULL Clause

Often, some entries in a column may be missing. This could be for a variety of
reasons. Perhaps the data was not collected or not available at the time that the data
was collected. Perhaps the absence of a value is representative of a certain state in
the row and provides valuable information.

Whatever the reason, you are often interested in finding rows where the data is not
filled in for a certain value. In SQL, blank values are often represented by the NULL
value. For instance, in the products table, the production_end_date column
having a NULL value indicates that the product is still being made. In this case, to list
all products that are still being made, you can use the following query:

SELECT *

FROM products

WHERE production_end_date IS NULL;

PostgreSQL Relational Database Management System (RDBMS) | 77

The following is the output of the query:

Figure 2.22: Products with NULL production_end_date

If you are only interested in products that are not being produced anymore, you can
use the IS NOT NULL clause, as shown in the following query:

SELECT *

FROM products

WHERE production_end_date IS NOT NULL;

The following is the output of the code:

Figure 2.23: Products with non-NULL production_end_date

Now, you will learn how to use these new keywords in the following exercise.

78 | The Basics of SQL for Analytics

Exercise 2.02: Querying the salespeople Table Using Basic Keywords in a SELECT

Query

In this exercise, you will create various queries using basic keywords in a SELECT
query. For instance, after a few days at your new job, you finally get access to the
company database. Your boss has asked you to help a sales manager who does not
know SQL particularly well. The sales manager would like a couple of different lists
of salespeople.

First, you need to generate a list of the first 10 salespersons hired by dealership 17,
that is, the salespersons with oldest hire_date, ordered by hiring date, with the
oldest first. Second, you need to get all salespeople that were hired in 2021 and 2022
but have not been terminated, that is, the hire_date must be later than 2021-01-
01, and terminiation_date is NULL, ordered by hire date, with the latest first.
Finally, the manager wants to find a salesperson that was hired in 2021 but only
remembers that their first name starts with "Nic." He has asked you to help find this
person. You will use your SQL skill to help the manager to achieve these goals.

Note

For all future exercises in this book, you will be using pgAdmin 4.

PostgreSQL Relational Database Management System (RDBMS) | 79

Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Examine the schema for the salespeople table from the schema drop-down
list. Get familiar with the names of the columns in the following figure:

Figure 2.24: Schema of the salespeople table

3. Execute the following query to get the usernames of salespeople from
dealership_id 17, sorted by their hire_date values, and then set LIMIT
to 10:

SELECT *

FROM salespeople

WHERE dealership_id = 17

ORDER BY hire_date

LIMIT 10;

80 | The Basics of SQL for Analytics

The following is the output of the preceding code:

Figure 2.25: Usernames of 10 earliest salespeople in dealership 17 sorted by hire date

Now you have the list of the first 10 salespersons hired by dealership 17, that is,
the salespersons with the oldest hire_date, ordered by hiring date, with the
oldest first.

4. Now, to find all the salespeople that were hired in 2021 and 2022 but have not
been terminated, that is, the hire_date must be later than 2021-01-01, and
termination_date is null, ordered by hire date, with the latest first:

SELECT *

FROM salespeople

WHERE hire_date >= '2021-01-01'

AND termination_date IS NULL

ORDER BY hire_date DESC;

54 rows are returned from this SQL. The following are the first few rows of
the output:

Figure 2.26: Active salespeople hired in 2021/2022 sorted by hire date latest first

PostgreSQL Relational Database Management System (RDBMS) | 81

5. Now, find a salesperson that was hired in 2021 and whose first name starts
with Nic.

SELECT *

FROM salespeople

WHERE first_name LIKE 'Nic%'

AND hire_date >= '2021-01-01'

AND hire_date <= '2021-12-31';

Figure 2.27: Salespeople hired in 2021 and whose first name starts with Nic

Note

To access the source code for this specific section, please refer to
https://packt.link/y2qsW.

In this exercise, you used various basic keywords in a SELECT query to help the sales
manager get a list of salespeople that they needed.

Activity 2.01: Querying the customers Table Using Basic Keywords in a SELECT

Query

The marketing department has decided that they want to run a series of marketing
campaigns to help promote a sale. To do this, they need the email communication
records for ZoomZoom customers in the state of Florida, and details of all customers
in New York City. They also need the customer phone numbers with specific orders.
The following are the steps to complete the activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Examine the schema for the customers table from the schema drop-down list.
Get yourself familiar with the columns in this table.

3. Write a query that retrieves all emails for ZoomZoom customers in the state of
Florida in alphabetical order.

https://packt.link/y2qsW

82 | The Basics of SQL for Analytics

4. Write a query that pulls all first names, last names, and emails for ZoomZoom
customers in New York City in the state of New York. They should be ordered
alphabetically, with the last name followed by the first name.

5. Write a query that returns all customers with a phone number ordered by the
date the customer was added to the database.

The output in Figure 2.30 will help the marketing manager to carry out campaigns and
promote sales.

Note

To access the source code for this specific section, please refer to
https://packt.link/8bQ6n.

In this activity, you used various basic keywords in a SELECT query and helped the
marketing manager to get the data they needed for the marketing campaign.

Note

The solution for this activity can be found via this link.

Creating Tables
Now that you know how to read data from tables, you will look at how to create
new tables. There are two ways to do this—by creating blank tables or by using
SELECT queries.

Creating Blank Tables

To create a new blank table, you use the CREATE TABLE statement. This statement
takes the following structure:

CREATE TABLE {table_name} (

{column_name_1} {data_type_1} {column_constraint_1},

{column_name_2} {data_type_2} {column_constraint_2},

{column_name_3} {data_type_3} {column_constraint_3},

…

{column_name_last} {data_type_last} {column_constraint_last}

);

https://packt.link/8bQ6n

Basic Data Types of SQL | 83

Here, {table_name} is the name of the table, {column_name} is the name
of the column, {data_type} is the data type of the column, and {column_
constraint} is one or more optional keywords giving special properties to the
column. Before discussing how to use the CREATE TABLE query, you should first
learn about column data types and column constraints.

Basic Data Types of SQL
Each column in a table has a data type. You will explore the major data types of
PostgreSQL here. These types include:

• Numeric

• Character

• Boolean

• Datetime

• Data structures (array and JSON)

Note

Although the ANSI SQL standard defines a list of data types, different
RDBMSs may have their own interpretations and extensions. The data
types discussed in this book are based on the PostgreSQL definition. If you
use a different RDBMS, you may see some differences in implementation.
Furthermore, all RDBMSs, including PostgreSQL, are actively evolving.
They constantly add support for new data types, and slightly adjust data
type implementations if necessary. So, it is always prudent to use the data
type definitions in this book as general guidance and double-check your
RDBMS for the exact data type definitions it has.

84 | The Basics of SQL for Analytics

Numeric

Numeric data types represent numbers. The following figure provides an overview of
some of the main types:

Figure 2.28: Major numeric data types

Character

Character data types store text information. The following figure summarizes
character data types:

Figure 2.29: Major character data types

Under the hood, all character data types use the same underlying data structure in
PostgreSQL (and in many other RDBMSs). The most common character data type is
varchar(n).

Basic Data Types of SQL | 85

Boolean

Booleans are a data type used to represent True or False. The following table
summarizes values that are represented as Boolean when used in a query with a data
column type of Boolean:

Figure 2.30: Accepted Boolean values

While all these values are accepted, the values of True and False are compliant
with best practices. Booleans can also take on NULL values.

Datetime

The datetime data type is used to store time-based information, such as dates and
times. The following are some examples of datetime data types:

Figure 2.31: Popular datetime data types

You will explore this data type further in Chapter 7, Analytics Using Complex Data Types.

86 | The Basics of SQL for Analytics

Data Structures: JSON and Arrays
Many versions of modern SQL also support data structures, such as JavaScript
Object Notation (JSON) and arrays. Arrays are simply lists of data usually written as
members enclosed in square brackets. For example, ['cat', 'dog', 'horse']
is an array. A JSON object is a series of key-value pairs that are separated by commas
and enclosed in curly braces. For example, {'name': 'Bob', 'age': 27,
'city': 'New York'} is a valid JSON object. These data structures show up
constantly in technology applications, and being able to use them in a database
makes it easier to perform many kinds of analysis work.

You will explore data structures in more detail in Chapter 7, Analytics Using Complex
Data Types. Before that, you will learn about some basic operations in an RDBMS
using SQL.

Column Constraints
Column constraints are keywords that help you specify the properties you want to
attribute to a particular column. In other words, you can ensure that all the rows in
that column adhere to your specified constraint. Some major column constraints are
as follows:

• NOT NULL: This constraint guarantees that no value in a column can be NULL.

• UNIQUE: This constraint guarantees that every single row for a column has a
unique value and that no value is repeated.

• PRIMARY KEY: This is a special constraint that is unique for each row and helps
you to find a specific row more quickly. If the primary key of this table contains
only one column, you can add this PRIMARY KEY constraint to the column
definition of the primary key column. If the primary key of this table consists
of multiple columns, you need to use a table constraint to define the key in the
CREATE statement.

Column Constraints | 87

Simple CREATE Statement

Now that you know about data types and column constraints, you can start creating
your first table. Suppose you want to create a table called state_populations
with columns for the initials and populations of states. The query would look
as follows:

CREATE TABLE state_populations (

 state VARCHAR(2) PRIMARY KEY,

 population NUMERIC

);

Once you execute this statement, you can run a simple SELECT statement to verify
that the table is created. However, you cannot see any row in the output as you have
not run any statements to populate it.

Figure 2.32: Simple CREATE statement

Note

Sometimes, you may run a CREATE TABLE query and get the error
relation {table_name} already exists. This simply means that a
table with the same name already exists. You either must delete the table
with the same name or change the name of your table. You will learn how to
delete a table later in this chapter.

You will soon be exploring the second way to create a table, which is by using a SQL
query. But first, you will do an exercise to create a blank table in SQL.

88 | The Basics of SQL for Analytics

Exercise 2.03: Creating a Table in SQL

In this exercise, you will create a table using the CREATE TABLE statement. The
marketing team at ZoomZoom would like to create a table called countries to
analyze the data of different countries. It should have four columns: an integer key
column, a unique name column, a founding year column, and a capital column.

Follow these steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Execute the following query to drop the countries table since it already exists
in the database:

DROP TABLE IF EXISTS countries;

3. Run the following query to create the countries table:

CREATE TABLE countries (

 key INT PRIMARY KEY,

 name text UNIQUE,

 founding_year INT,

 capital text

);

You should get a result message as follows, which indicates the creation of a
blank table:

Figure 2.33: CREATE statement for the countries table

Column Constraints | 89

Note

To access the source code for this specific section, please refer to
https://packt.link/COMnA.

In this exercise, you learned how to create a table using different column constraints
and the CREATE TABLE statement. In the next section, you will create tables using
the SELECT query.

Creating Tables with SELECT

You already know how to create a table. However, say you wanted to create a table
using data from an existing table. This can be done by using a modification of the
CREATE TABLE statement:

CREATE TABLE {table_name} AS (

 {select_query}

);

Here, {select_query} is any SELECT query that can be run in your database. For
instance, say you wanted to create a table based on the products table that only
had products from the year 2014. Suppose the title of the table is products_2014;
you could write the following query:

CREATE TABLE products_2014 AS (

 SELECT *

FROM products

WHERE year=2014

);

https://packt.link/COMnA

90 | The Basics of SQL for Analytics

Running this SQL will yield the following result:

Figure 2.34: CREATE from a SELECT query

This can be done with any query, and the table will inherit all the properties of the
output query.

PostgreSQL also provides another way to create a table from a query, which utilizes a
SELECT … INTO … syntax. An example of this syntax is shown below:

SELECT *

INTO products_2014

FROM products

WHERE year=2014;

Note

Before running this query, please check the table list in the sqlda
database and make sure this table does not exist. If it does, please drop the
table from the console.

Updating Tables | 91

This query achieves the same result as the CREATE … AS statement. In this book,
you will use the CREATE … AS statement because the syntax inside the parenthesis
is a complete SELECT statement, thus it is easier to create and modify the query
without changing the structure of the statement. You can choose either based on
your personal preference.

One issue with creating a table with a query is that the data types of the query are
not explicitly specified and can be confusing. Luckily, PostgreSQL stores the table
definitions in a set of system tables, and you can read the table definition from the
system tables. For example, to check the column definitions of the products_2014
table, you can run the following SQL:

SELECT COLUMN_NAME, DATA_TYPE

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_NAME = 'products_2014';

From the result, you can identify all the columns and their data types in the
products_2014 table:

Figure 2.35: Query table definition from information schema

Updating Tables
Over time, you may also need to modify a table by adding columns, adding new data,
or updating existing rows. This section will help you understand how to do this.

92 | The Basics of SQL for Analytics

Adding and Removing Columns

To add new columns to an existing table, you use the ALTER TABLE … ADD
COLUMN statement, as shown in the following query:

ALTER TABLE {table_name}

ADD COLUMN {column_name} {data_type};

For example, if you wanted to add a new column to the products_2014 table that
you will use to store the products' weights in kilograms called weight, you could do
this by using the following query:

ALTER TABLE products_2014

ADD COLUMN weight INT;

This query will make a new column called weight in the products_2014 table and
will give it the integer data type so that only integers can be stored in it.

Figure 2.36: ALTER statement that adds a column to a table

If you want to remove a column from a table, you can use the ALTER TABLE …
DROP COLUMN statement:

ALTER TABLE {table_name}

DROP COLUMN {column_name};

Here, {table_name} is the name of the table you want to change, and {column_
name} is the name of the column you want to drop. Imagine that you decide
to delete the weight column you just created. You could get rid of it using the
following query:

ALTER TABLE products_2014

DROP COLUMN weight;

As you can see from the screenshot below, the column is dropped:

Figure 2.37: ALTER statement that drops a column from a table

Updating Tables | 93

Adding New Data

You can add new data to a table using several methods in SQL. One of those methods
is to simply insert values straight into a table using the INSERT INTO… VALUES
statement. It has the following structure:

INSERT INTO {table_name} (

 {column_1], {column_2}, …{column_last}

)

VALUES (

 {column_value_1}, {column_value_2}, … {column_value_last}

);

Here, {table_name} is the name of the table you want to insert your data into,
{column_1}, {column_2}, … {column_last} is a list of the columns whose
values you want to insert, and {column_value_1}, {column_value_2}, …
{column_value_last} is the list of values you want to insert into the table. If a
column in the table is not put into the INSERT statement, the column is assumed to
have a NULL value.

For example, say you want to insert a new entry for a scooter into the
products_2014 table. This can be done with the following query:

INSERT INTO products_2014 (

product_id, model, year,

 product_type, base_msrp,

 production_start_date, production_end_date

)

VALUES (

 13, 'Nimbus 5000', 2014,

 'scooter', 500.00,

 '2014-03-03', '2020-03-03'

);

This query adds a new row to the products_2014 table accordingly. You can run a
SELECT query to see all the rows in the table:

Figure 2.38: INSERT statement adding one row to table

94 | The Basics of SQL for Analytics

Another way to insert data into a table is to use the INSERT statement with a
SELECT query using the following syntax:

INSERT INTO {table_name} ({column_1], {column_2}, …{column_last})

{select_query};

Here, {table_name} is the name of the table into which you want to insert the
data, {column_1}, {column_2}, … {column_last} is a list of the columns
whose values you want to insert, and {select query} is a query with the same
structure as the values you want to insert into the table.

Take the example of the products_2014 table. You have created it with a SELECT
query with one row. Earlier in this section, you have inserted one row into it. So, now
it contains two rows. If you also want to insert the products from 2016, you could use
the following query, which inserts one more row into the table:

INSERT INTO products_2014(

 product_id, model, year, product_type, base_msrp,

 production_start_date, production_end_date

)

SELECT*

FROM products

WHERE year=2016;

This query produces the following result:

Figure 2.39: The Products_2014 table after a successful INSERT INTO query

Now it contains three rows from three different ways of inserting data: one row from
CREATE as the result of a SELECT query, one row from an INSERT with data, and
one row from INSERT using the result of a SELECT query.

Next, you will learn how to update the content in a row.

Updating Tables | 95

Updating Existing Rows

Sometimes, you may need to update the values of the data present in a table. To do
this, you can use the UPDATE statement:

UPDATE {table_name} SET

 {column_1} = {column_value_1},

 {column_2} = {column_value_2},

 …

 {column_last} = {column_value_last}

WHERE {conditional};

Here, {table_name} is the name of the table with data that will be changed,
{column_1}, {column_2},… {column_last} is the list of columns whose
values you want to change, {column_value_1}, {column_value_2}, …
{column_value_last} is the list of new values you want to update into those
columns, and {WHERE} is a conditional statement like the one you would find in a
SELECT query.

To illustrate its use of the UPDATE statement, imagine that, for the rest of the year,
the company has decided to sell all scooter models before 2018 for $299.99. You
could change the data in the products_2014 table using the following query:

UPDATE Products_2014 SET

 base_msrp = 299.99

WHERE product_type = 'scooter'

AND year<2018;

This query produces the following output. You can see that the base_msrp column
of all three records has been updated to 299.99 because they are all scooters
manufactured before 2018.

Figure 2.40: Successful update of the products_2014 table

96 | The Basics of SQL for Analytics

In the following exercise, you will take a closer look at how to use UPDATE statements
in a SQL database.

Exercise 2.04: Updating the Table to Increase the Price of a Vehicle

In this exercise, you will update the data in a table using the UPDATE statement.
Due to an increase in the cost of the rare metals needed to manufacture an electric
vehicle, the 2022 Model Chi will need to undergo a price hike of 10%. The current
price is $95,000.

In a real-world scenario, you will update the products table to increase the price of
this product. However, because you will use the same sqlda database throughout
the book, it would be better to keep the values in the original tables unchanged so
that your SQL results remain consistent. For this reason, you will create new tables
for all the INSERT, ALTER, UPDATE, DELETE, and DROP statement examples.

Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Run the following query to create a product_2022 table from the
products table:

CREATE TABLE products_2022 AS (

SELECT *

FROM products

WHERE year=2022

);

3. Run the following query to update the price of Model Chi by 10% in the
products_2022 table:

UPDATE Products_2022 SET

 base_msrp = base_msrp*1.10

WHERE model='Model Chi'

AND year=2022;

4. Write the SELECT query to check whether the price of Model Chi in 2022 has
been updated:

SELECT *

FROM products_2022

WHERE model='Model Chi'

AND year=2022;

Updating Tables | 97

The following is the output of the preceding code:

Figure 2.41: The updated price of Model Chi in 2022

As you see from the output, the price of Model Chi is now $104,500; it was
previously $95,000.

Note

To access the source code for this specific section, please refer to
https://packt.link/fOQgA.

In this exercise, you learned how to update a table using the UPDATE statement.
Next, you will learn how to delete data from tables and drop tables.

Deleting Data and Tables

You often discover that data in a table is out of date and, therefore, can no longer be
used. At such times, you might need to delete data from a table.

Deleting Values from a Row

Often, you might be interested in deleting a value from a row. The easiest way to
accomplish this is to use the UPDATE structure that has already been discussed, and
by setting the column value to NULL:

UPDATE {table_name} SET

 {column_1} = NULL,

 {column_2} = NULL,

 …

 {column_last} = NULL

WHERE {conditional};

Here, {table_name} is the name of the table with the data that needs to be
changed, {column_1}, {column_2},… {column_last} is the list of columns
whose values you want to delete, and {WHERE} is a conditional statement like the
one you would find in a SELECT query.

https://packt.link/fOQgA

98 | The Basics of SQL for Analytics

For instance, you have the wrong email address on file for the customer with the
customer ID equal to 3. To fix that, you can use the following query:

UPDATE customers SET

 email = NULL

WHERE customer_id=3;

However, there might be cases where you might need to delete rows from a table.
For example, in the database, you have a row labeled test customer, which is
no longer needed and needs to be deleted. In the next section, you will learn how to
delete rows from a table.

Deleting Rows from a Table

Deleting a row from a table can be done using the DELETE statement, which looks
like this:

DELETE FROM {table_name}

WHERE {condition};

For instance, you must delete the products whose product_type is scooter from
the products_2014 table. To do that, you can use the following query:

DELETE FROM products_2014

WHERE product_type='scooter';

In the past few sections, you have inserted three products into this table, all scooters.
After running the DELETE statement, PostgreSQL shows that there was no product in
this table anymore as all records are deleted.

Figure 2.42: DELETE statement example

If you want to delete all the data in the products_2014 table without deleting the
table, you could write the following query, which is DELETE without any conditions:

DELETE FROM products_2014;

Updating Tables | 99

Alternatively, if you want to delete all the data in a query without deleting the table,
you could use the TRUNCATE keyword like so:

TRUNCATE TABLE products_2014;

Now you have learned how to delete rows from a table, the next section will teach
you how to delete a table entirely.

Deleting Tables

To delete all the data in a table and the table itself, you can just use the DROP TABLE
statement with the following syntax:

DROP TABLE {table_name};

Here, {table_name} is the name of the table you want to delete. If you wanted
to delete all the data in the products_2014 table along with the table itself, you
would write the following:

DROP TABLE products_2014;

If you want to read from this table, you will receive an error message from
PostgreSQL telling you that the table does not exist:

Figure 2.43: DROP statement example

100 | The Basics of SQL for Analytics

As seen in Figure 2.46, once the table is dropped, all aspects of this table are gone,
and you cannot perform any operations on it. For example, if you try to run the
DROP TABLE products_2014 statement again, you will run into an error. A
PostgreSQL enhancement of the DROP statement is DROP TABLE IF EXISTS.
This statement will check the existence of the table. If the table is not in the database,
PostgreSQL will skip this statement with a notification, but without reporting an error,
as shown below:

DROP TABLE IF EXISTS products_2014;

Figure 2.44: DROP TABLE IF EXISTS statement example

DROP TABLE IF EXISTS is helpful if you want to automate SQL script execution.
One common usage scenario is to use it before the CREATE TABLE statement. If
the table already exists, your CREATE TABLE statement will fail and raise an error.
But if your DROP TABLE IF EXISTS statement is before your CREATE TABLE
statement, pre-existing tables would have been dropped before you tried to recreate
them. This is useful in automated computing operations where you constantly
create temporary tables that you do not need after the current computing job is
completed. The catch is that you must make sure that the table is truly temporary
and is not used by anyone else. Otherwise, you may accidentally drop tables that are
used by some other users without knowing. For this reason, the DROP TABLE IF
EXISTS statement is usually only used in environments designated for automated
data processing.

Now test what you have learned by performing an exercise to delete or drop the table
using the DROP TABLE statement.

Updating Tables | 101

Exercise 2.05: Deleting an Unnecessary Reference Table

In this exercise, you will learn how to delete a table using SQL. For instance, the
marketing team has finished analyzing the potential number of customers they have
in every state, and they no longer need the state_populations table. To save
space in the database, delete the table. If you have not created this table, please go
back to the Simple CREATE Statement section in this chapter and create it now.

Perform the following steps to complete the exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL
query editor.

2. Run the following query to drop the state_populations table:

DROP TABLE state_populations;

3. Check that the state_populations table has been deleted from
the database.

4. Since the table has just been dropped, a SELECT query on this table throws an
error, as expected:

SELECT *

FROM state_populations;

You will find the error shown in the following figure:

Figure 2.45: Error shown as the state_populations table was dropped

5. Also, drop the products_2022 table that was created above to keep the
database clean:

DROP TABLE products_2022;

Note

To access the source code for this specific section, please refer to
https://packt.link/kJVag.

https://packt.link/kJVag

102 | The Basics of SQL for Analytics

In this exercise, you learned how to delete a table using the DROP TABLE statement.
In the next activity, you will test the skills you learned by creating and modifying
tables using SQL.

Activity 2.02: Creating and Modifying Tables for Marketing Operations

In this activity, you will test your ability to create and modify tables using SQL.

You did a great job of pulling data for the marketing team. However, the marketing
manager, who you helped, realized that they had made a mistake. It turns out that
instead of just the query, the manager needs to create a new table in the company's
analytics database. Furthermore, they need to make some changes to the data that
is present in the customers table. It is your job to help the marketing manager with
the table:

1. Open pgAdmin, connect to the sqlda database and open SQL query editor.
Create a new table called customers_nyc that pulls all the rows from the
customers table where the customer lives in New York City in the state of
New York.

2. Delete all customers in postal code 10014 from the new table. Due to local laws,
they will not be eligible for marketing.

3. Add a new text column called event.

4. Set the value of the event column to thank-you party.

The following is the expected output:

Figure 2.46: The customers_nyc table with event set to thank-you party

SQL and Analytics | 103

You tell the manager that you have completed these steps. He tells the marketing
operations team, who then uses the data to launch a marketing campaign. The
marketing manager then asks you to delete the customers_nyc table.

Note

To access the source code for this specific section, please refer to
https://packt.link/xeMaT.

In this activity, you used different CRUD operations to modify a table as requested
by the marketing manager. You will now come full circle to explore how SQL and
analytics connect.

Note

The solution for this activity can be found via this link.

SQL and Analytics
Throughout this chapter, you may have noticed the terms SQL table and dataset are
interchangeable. More specifically, it should be clear that SQL tables can be thought
of as datasets, rows can be considered as individual units of observation, and
columns can be considered as features. If you view SQL tables in this way, you can
see that SQL is a natural way to store datasets on a computer.

However, SQL can go further than just providing a convenient way to store datasets.
Modern SQL implementations also provide tools for processing and analyzing data
through various functions. Using SQL, you can clean data, transform data into more
useful formats, and analyze a variety of statistical measures to discover interesting
patterns. The rest of this book will be dedicated to understanding how SQL can be
used for these purposes productively and efficiently.

https://packt.link/xeMaT

104 | The Basics of SQL for Analytics

Summary
Data analytics can be enhanced by the power of relational databases. Relational
databases are a mature and ubiquitous technology used for storing and querying
structured data. Relational databases store data in the form of relations, also known
as tables, which allow an excellent combination of performance, efficiency, and ease
of use.

SQL is the language used to access relational databases. SQL supports many different
data types, including numeric data, text data, and even data structures.

SQL can be used to perform all the tasks in the lifecycle of Create, Read, Update, and
Delete (CRUD). SQL can be used to create and drop tables, as well as insert, delete,
and update data elements. When querying data, SQL allows a user to pick which fields
to pull, as well as how to filter the data. This data can also be ordered, and SQL allows
as much or as little data as you need to be pulled.

Having reviewed the basics of data analytics and SQL, you will move on to the
next chapter's discussion of how SQL can be used to perform the first step in data
analytics: cleaning and transformation of data.

Overview

In this chapter, you will learn how to clean and prepare data for analysis
using SQL techniques. You will learn how to combine multiple tables and
queries into a dataset using joins, unions, and subqueries. You will also use
functions to transform data. These will make the data conform to certain
standards before you apply advanced data analysis techniques in future
chapters. By the end of this chapter, you will be able to transform and clean
data using SQL functions and remove duplicate data using the DISTINCT
and DISTINCT ON commands.

SQL for Data Preparation

3

108 | SQL for Data Preparation

Introduction
In the previous chapters, you learned the basics of data analysis and SQL. You
learned how to use CREATE, INSERT, SELECT, ALTER, UPDATE, DELETE, and
DROP SQL statements to apply create, read, update, and delete (CRUD) operations
on a table. These techniques are the foundation for data analytics.

However, in the real world, as a data analyst, you usually do not handle the entire
CRUD flow. To be more specific, you usually do not create datasets from scratch. You
will receive data from outside sources. This data is usually in a form that would not
fit your needs perfectly and you would need to perform some transform operations
to make the data usable. One such operation is the creation of clean datasets from
existing raw datasets. The raw data may be missing some information, contain
information that is not in the format that fits your needs, or contains information
that may not be accurate.

According to Forbes, it is estimated that almost 80% of the time spent by analytics
professionals involves preparing data. Building models with unclean data harms
analysis by leading to poor conclusions. SQL can help in this tedious but important
task by providing efficient ways to build clean datasets.

This chapter will start by discussing how to assemble data using JOIN and UNION.
Furthermore, you will use different functions, such as CASE WHEN, COALESCE,
NULLIF, and LEAST/GREATEST, to clean data. You will then learn how to transform
and remove duplicate data from queries using the DISTINCT command.

Assembling Data
In Chapter 2, The Basics of SQL for Analytics, you learned how to perform operations
with a single table. But what if you need data from two or more tables? In this section,
you will assemble data in multiple tables using joins and unions.

Assembling Data | 109

Connecting Tables Using JOIN

Most of the time, the data you are interested in is spread across multiple tables. A
simple SELECT statement over one table will not be enough to get you what you
need. Fortunately, SQL has methods for bringing related tables together using the
JOIN keyword.

To illustrate, look at two tables in the ZoomZoom database—dealerships
and salespeople.

Figure 3.1: Structure of dealerships table

110 | SQL for Data Preparation

And the salespeople table looks like this:

Figure 3.2: Structure of salespeople table

In the salespeople table, you can observe that there is a column called
dealership_id. This dealership_id column is a direct reference to the
dealership_id column in the dealerships table. When table A has a column
that references the primary key of table B, the column is said to be a foreign key to
table A. In this case, the dealership_id column in salespeople is a foreign key
to the dealerships table.

Assembling Data | 111

Note

Foreign keys can also be added as a column constraint to a table to
improve the integrity of the data by making sure that the foreign key never
contains a value that cannot be found in the referenced table. This data
property is known as referential integrity. The method of adding foreign
key constraints can also help to improve performance in some databases.
Foreign key constraints are not used in most analytical databases and
are beyond the scope of this book. You can learn more about foreign key
constraints in the official PostgreSQL documentation.

As these two tables are related, you can perform some interesting analyses with
them. For instance, you may be interested in determining which salespeople work
at a dealership in California. One way of retrieving this information is to first query
which dealerships are in California. You can do this using the following query:

SELECT *

FROM dealerships

WHERE state='CA';

This query should give you the following results:

Figure 3.3: Dealerships in California

Now that you know that the only two dealerships in California have the IDs of 2 and
5, respectively, you can then query the salespeople table, as follows:

SELECT *

FROM salespeople

WHERE dealership_id in (2, 5)

ORDER BY 1;

112 | SQL for Data Preparation

The following are the first nine rows of the output of the code:

Figure 3.4: Salespeople in California

While this method gives you the results you want, it is tedious to perform two queries
to get these results. What would make this process easier would be to somehow add
the information from the dealerships table to the salespeople table and then
filter for users in California. SQL provides such a tool with the JOIN clause. The JOIN
clause is a SQL clause that allows a user to join one or more tables together based on
distinct conditions.

Assembling Data | 113

Types of Joins

In this chapter, you will learn about three fundamental joins, which are illustrated in
the following figure—inner joins, outer joins, and cross joins:

Figure 3.5: Major types of joins

Inner Joins

An inner join connects rows in different tables, based on a condition known as the
join predicate. In many cases, the join predicate is a logical condition of equality.
Each row in the first table is compared against every other row in the second table.
For row combinations that meet the inner join predicate, that row is returned in the
query. Otherwise, the row combination is discarded.

114 | SQL for Data Preparation

Inner joins are usually written in the following form:

SELECT {columns}

FROM {table1}

INNER JOIN {table2}

 ON {table1}.{common_key_1}={table2}.{common_key_2};

Here, {columns} is the columns you want to get from the joined table, {table1}
is the first table, {table2} is the second table, {common_key_1} is the column in
{table1} you want to join on, and {common_key_2} is the column in {table2}
to join on.

Now, go back to the two tables discussed previously—dealerships and
salespeople. As mentioned earlier, it would be good if you could append the
information from the dealerships table to the salespeople table knowing
which state each dealership is in. For the time being, assume that all the salespeople
IDs have a valid dealership_id value.

Note

At this point in the book, as you have yet to learn the necessary skills to
verify that every dealership ID is valid in the salespeople table, so you
assume it. However, in real-world scenarios, it will be important for you to
validate these things on your own. There are very few datasets and systems
that guarantee clean data.

You can join the two tables using an equal to condition in the join predicate,
as follows:

SELECT *

FROM salespeople

INNER JOIN dealerships

 ON salespeople.dealership_id = dealerships.dealership_id

ORDER BY 1;

Assembling Data | 115

The following figure shows the first few rows of the output:

Figure 3.6: The salespeople table joined to the dealerships table

As you can see in the preceding output, the table is the result of joining the
salespeople table to the dealerships table. Note that the first table listed
in the query, salespeople, is on the left-hand side of the result, while the
dealerships table is on the right-hand side. This left-right order will become very
important in the next section when you learn about outer joins between tables.
During an outer join, whether a table is on the left or right side can impact the output
of the query. For an inner join, however, the order of tables is not important for join
predicates that use an equal operation.

Now, look at the columns involved; dealership_id in the salespeople table
matches dealership_id in the dealerships table. This shows how the join
predicate is met. By running this join query, you have effectively created a new
"super dataset" consisting of the two tables merged where the two dealership_id
columns are equal.

116 | SQL for Data Preparation

You can now run a SELECT query over this "super dataset" in the same way as one
large table using the clauses and keywords from Chapter 2, The Basics of SQL for
Analytics. For example, going back to the multi-query issue to determine which sales
query works in California, you can now address it with one easy query:

SELECT *

FROM salespeople

INNER JOIN dealerships

 ON salespeople.dealership_id = dealerships.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1;

This gives you the following output, which displays the first few rows of the entire
result set:

Figure 3.7: Salespeople in California with one query

Assembling Data | 117

You will observe that the output in Figure 3.6 and Figure 3.7 is nearly identical, with the
exception being that the table in Figure 3.7 has the dealerships data appended
as well. If you want to retrieve only the salespeople table portion of this, you can
select the salespeople columns using the following star syntax:

SELECT salespeople.*

FROM salespeople

INNER JOIN dealerships

 ON dealerships.dealership_id = salespeople.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1;

Here are the first few rows returned by this query:

Figure 3.8: Salespeople in California with SELECT table alias

There is another shortcut that can help while writing statements with several JOIN
clauses. You can alias table names to avoid typing the entire name of the table every
time. Simply write the name of the alias after the first mention of the table after
the JOIN clause, and you can save a decent amount of typing. For instance, for the
preceding query, if you wanted to alias salespeople with s and dealerships
with d, you could write the following statement:

SELECT s.*

FROM salespeople s

INNER JOIN dealerships d

 ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;

118 | SQL for Data Preparation

Alternatively, you could also put the AS keyword between the table name and alias to
make the alias more explicit:

SELECT s.*

FROM salespeople AS s

INNER JOIN dealerships AS d

 ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;

Now that you have covered the basics of inner joins, it is time to discuss outer joins.

Outer Joins

As discussed, inner joins will only return rows from the two tables when the join
predicate is met for both tables, that is, when both tables have rows that can satisfy
the join predicate. Otherwise, no rows from either table are returned. It can happen
that sometimes you want to return all rows from one of the tables, even if the other
table does not have any row meeting the join predicate. In this case, since there is
no row meeting the join predicate, the second table will return nothing but NULL.
Outer join is a join type in which all rows from at least one table, if meeting the query
WHERE condition, will be presented after the JOIN operation.

Outer joins can be classified into three categories: left outer joins, right outer joins,
and full outer joins:

• Left outer join: Left outer joins are where the left table (that is, the table
mentioned first in a join clause) will have every row returned. If a row from the
other table (the right table) is not found, a row of NULL is returned from the
right table. Left outer joins are performed by using the LEFT OUTER JOIN
keywords, followed by a join predicate. This can also be written in short as
LEFT JOIN.

To show how left outer joins work, examine two tables: the customers table
and the emails table. For the time being, assume that not every customer has
been sent an email, and you want to mail all customers who have not received
an email. You can use a left outer join to make that happen since the left side of
the join is the customers table. To help manage the output, you will limit it to
the first 1,000 rows. The following code snippet is utilized:

SELECT

 *

FROM

Assembling Data | 119

 customers c

LEFT OUTER JOIN

 emails e ON e.customer_id=c.customer_id

ORDER BY

 c.customer_id

LIMIT

 1000;

The following is the output of the preceding code:

Figure 3.9: Customers left-joined to emails

When you look at the output of the query, you should see that entries from
the customers table are present. However, for some of the rows, such as for
customer_id 27, which can be seen in Figure 3.9, the columns belonging to
the emails table are completely full of NULL values. This arrangement explains
how the outer join is different from the inner join. If the inner join was used, the
customer_id 27 row would not show because there is no matching record in
the emails table.

120 | SQL for Data Preparation

This query, however, is still useful because you can now use it to find people who
have never received an email. Because those customers who were never sent an
email have a null customer_id column in the values returned from emails
table, you can find all these customers by checking the customer_id column
in the emails table, as follows:

SELECT

 c.customer_id,

 c.title,

 c.first_name,

 c.last_name,

 c.suffix,

 c.email,

 e.email_id,

 e.email_subject,

 e.opened,

 e.clicked,

 e.bounced,

 e.sent_date,

 e.opened_date,

 e.clicked_date

FROM

 customers c

LEFT OUTER JOIN

 emails e ON c.customer_id = e.customer_id

WHERE

 e.customer_id IS NULL

ORDER BY

 c.customer_id

LIMIT

 1000;

Assembling Data | 121

The following is the output of the query:

Figure 3.10: Customers with no emails sent

As you can see, all entries are blank in the email_id column of the emails
table, indicating that the customer of that row has not received any emails. You
could simply grab the emails from this join to get all the customers who have not
received an email.

• Right outer join: A right outer join is very similar to a left join, except the table
on the "right" (the second listed table) will now have every row show up, and the
"left" table will have NULL values if the JOIN condition is not met. To illustrate,
let's "flip" the last query by right-joining the emails table to the customers
table with the following query:

SELECT

 e.email_id,

 e.email_subject,

 e.opened,

 e.clicked,

 e.bounced,

 e.sent_date,

 e.opened_date,

e.clicked_date,

122 | SQL for Data Preparation

 c.customer_id,

 c.title,

 c.first_name,

 c.last_name,

 c.suffix,

c.email

FROM emails e

RIGHT OUTER JOIN customers c

 ON e.customer_id=c.customer_id

ORDER BY

 c.customer_id

LIMIT

 1000;

When you run this query, you will get something similar to the following result:

Figure 3.11: Emails right-joined to the customers table

Notice that this output is similar to what was produced in Figure 3.9, except that the
data from the emails table is now on the left-hand side, and the data from the
customers table is on the right-hand side. Once again, customer_id 27 has
NULL for the email. This shows the symmetry between a right join and a left join.

Assembling Data | 123

• Full outer join: Finally, there is the full outer join. The full outer join will return
all rows from the left and right tables, regardless of whether the join predicate is
matched. For rows where the join predicate is met, the two rows are combined
just like in an inner join. For rows where it is not met, each row from both tables
will be selected as an individual row, with NULL filled in for the columns from
the other table. The full outer join is invoked by using the FULL OUTER JOIN
clause, followed by a join predicate. Here is the syntax of this join:

SELECT

 *

FROM

 emails e

FULL OUTER JOIN

 customers c

 ON e.customer_id=c.customer_id;

The following is the output of the code:

Figure 3.12: Emails are full outer joined to the customers table

124 | SQL for Data Preparation

In this section, you learned how to implement three different types of outer joins.
In the next section, you will learn about the cross join.

Cross Joins

Cross join is a join type that has no join predicate. That means every row from the
"left" table will be matched to all the rows in the "right" table, regardless of whether
they are related or not. It is also referred to as the Cartesian product. It is named
"Cartesian" after the French mathematician René Descartes, who raised the idea
of this type of operation. It can be invoked using a CROSS JOIN clause, followed
by the name of the other table. To better understand this, take the example of the
products table.

A common analysis is called market basket analysis, which studies the selling patterns
between multiple products. For example, diapers are usually sold together with
baby wipes. So, if you are running a two-month giveaway for diapers for marketing
purposes and expect more customers to come to the diaper aisle or web page, you
may want to place baby wipes there too. To perform market basket analysis, you
want to know every possible combination of two products that you could create from
a given set of products (such as the ones found in the products table) to create
a two-month giveaway for marketing purposes. You can use a cross join to get the
answer to the question using the following query:

SELECT

 P1.product_id, p1.model,

 P2.product_id, p2.model

FROM

 products p1

CROSS JOIN

 products p2;

Assembling Data | 125

The output of this query is as follows:

Figure 3.13: The cross join of a product to itself

In this case, you have joined every value of every field in one table to the same
in another table. The result of the query has 144 rows, which is the equivalent of
multiplying the 12 products by the same 12 products (12 * 12). You can also see that
cross join does not require a join predicate. In other words, a cross join can simply be
thought of as just an outer join with no conditions for joining.

In general, cross joins are not used much in practice as they can hamper the process
if you are not careful. Cross joining two large tables can lead to the origination of
hundreds of billions of rows, which can stall and crash a database. So, if you decide to
use a cross join, ensure you take utmost care when using it.

So far, you have covered the basics of using joins to fuse tables for a custom analysis
of data. You will practice this in the following exercise.

126 | SQL for Data Preparation

Exercise 3.01: Using Joins to Analyze a Sales Dealership

In this exercise, you will use joins to bring related tables together. For instance, the
head of sales at your company would like a list of all customers who bought a car. To
do the task, you need to create a query that will return all customer IDs, first names,
last names, and valid phone numbers of customers who purchased a car.

Note

For all exercises in this book, you will be using pgAdmin. All the code files
for the exercises and the activity in this chapter are also available on GitHub
at https://packt.link/Y08W5.

To complete this exercise, perform the following steps:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Use an inner join to bring the sales, customers, and products tables
together, which returns data for customer IDs, first names, last names, and valid
phone numbers:

SELECT

 c.customer_id, c.first_name,

 c.last_name, c.phone

FROM

 sales s

INNER JOIN

 customers c ON c.customer_id=s.customer_id

INNER JOIN

 products p ON p.product_id=s.product_id

WHERE

 p.product_type='automobile'

 AND c.phone IS NOT NULL;

https://packt.link/Y08W5

Assembling Data | 127

You should get an output similar to the following:

Figure 3.14: Customers who bought a car

You can see that running the query helped you to join the data from the sales,
customers, and products tables and obtain a list of customers who bought a
car and have a phone number.

Note

To access the source code for this specific section, please refer to
https://packt.link/Y08W5.

In this exercise, using joins, you were able to bring together related tables easily
and efficiently. Several times, you will also want to combine the result of your queries
to form new queries so that you can build data analysis on top of existing analysis.
You can now move forward to learn about methods for joining queries in a dataset.

https://packt.link/Y08W5

128 | SQL for Data Preparation

Subqueries

So far, you have been pulling data from tables. You may have observed that the
results of all SELECT queries are two-dimensional relations that look like the tables
in a relational database. Knowing this, you may wonder whether there is some way to
use the relations produced by the SELECT queries instead of referencing an existing
table in your database. The answer is "yes." You can simply take a query, insert it
between a pair of parentheses, and give it an alias. This will help you to build an
analysis on top of existing analysis, thus reducing errors and improving efficiency.

For example, if you wanted to find all the salespeople working in California and
get the results the same as in Figure 3.7, you could write the query using the
following alternative:

SELECT

 *

FROM

 salespeople

INNER JOIN (

 SELECT

 *

 FROM

 dealerships

 WHERE

 dealerships.state = 'CA'

) d

ON d.dealership_id = salespeople.dealership_id

ORDER BY

 1;

Here, instead of joining the two tables and filtering for rows with the state equal to
'CA', you first find the dealerships where the state equals 'CA', and then inner join
the rows in that query to salespeople.

If a query only has one column, you can use a subquery with the IN keyword
in a WHERE clause. For example, another way to extract the details from the
salespeople table using the dealership ID for the state of California would be
as follows:

SELECT

 *

FROM

 salespeople

Assembling Data | 129

WHERE dealership_id IN (

 SELECT dealership_id FROM dealerships

 WHERE dealerships.state = 'CA'

)

ORDER BY

 1;

As illustrated in all of these examples, it is quite easy to write the same query using
multiple techniques. In the next section, you will learn about unions.

Unions

Up till now, in this chapter, you have learned how to join data horizontally. You can
use joins to add new columns horizontally. However, you may be interested in putting
multiple queries together vertically, that is, by keeping the same number of columns
but adding multiple rows. Please see this example for more clarity on this.

Suppose you wanted to visualize the addresses of dealerships and customers using
Google Maps. To do this, you would need the addresses of both customers and
dealerships. You could build a query with all customer addresses as follows:

SELECT

 street_address, city, state, postal_code

FROM

 customers

WHERE

 street_address IS NOT NULL;

You could also retrieve dealership addresses with the following query:

SELECT

 street_address, city, state, postal_code

FROM

 dealerships

WHERE

 street_address IS NOT NULL;

130 | SQL for Data Preparation

To reduce complexity, it would be nice if there were a way to assemble the two
queries into one list with a single query. This is where the UNION keyword comes
into play. You can use the two previous queries and create the following query:

(

SELECT

 street_address, city, state, postal_code

FROM

 customers

WHERE

 street_address IS NOT NULL

)

UNION

(

SELECT

 street_address, city, state, postal_code

FROM

 dealerships

WHERE

 street_address IS NOT NULL

)

ORDER BY

 1;

This produces the following output:

Figure 3.15: Union of addresses

Assembling Data | 131

Please note that there are certain conditions that need to be kept in mind when
using UNION. Firstly, UNION requires the subqueries to have the same number of
columns and the same data types for the columns. If they do not, the query will fail
to run. Secondly, UNION technically may not return all the rows from its subqueries.
UNION, by default, removes all duplicate rows in the output. If you want to retain
the duplicate rows, it is preferable to use the UNION ALL keyword. For example,
if both of the previous queries return a row with address values such as '123 Main
St', 'Madison', 'WI', '53710', the result of the UNION statement will only contain one
record for this value set, but the result of the UNION ALL statement will include two
records of the same value, one from each query.

In the next exercise, you will implement union operations.

Exercise 3.02: Generating an Elite Customer Party Guest List Using UNION

In this exercise, you will assemble two queries using UNION. To help build marketing
awareness for the new Model Chi, the marketing team would like to throw a party
for some of ZoomZoom's wealthiest customers in Los Angeles, CA. To help facilitate
the party, they would like you to make a guest list with ZoomZoom customers who
live in Los Angeles, CA, as well as salespeople who work at the ZoomZoom dealership
in Los Angeles, CA. The guest list should include details such as the first and last
names and whether the guest is a customer or an employee.

To complete the task, execute the following:

1. Open pgAdmin, connect to the sqlda database, and open the SQL
query editor.

Write a query that will make a list of ZoomZoom customers and company
employees who live in Los Angeles, CA. The guest list should contain first and
last names and whether the guest is a customer or an employee:

(

SELECT

 first_name, last_name, 'Customer' as guest_type

FROM

 customers

WHERE

 city='Los Angeles'

 AND state='CA'

)

UNION

(

132 | SQL for Data Preparation

SELECT

 first_name, last_name,

 'Employee' as guest_type

FROM

 salespeople s

INNER JOIN

 dealerships d ON d.dealership_id=s.dealership_id

WHERE

 d.city='Los Angeles'

 AND d.state='CA'

);

You should get the following output:

Figure 3.16: Customer and employee guest list in Los Angeles, CA

You can see the guest list of customers and employees from Los Angeles,
CA, after running the UNION query.

Assembling Data | 133

2. To demonstrate the usage of UNION ALL, first run a simple query that
combines the products table with all the rows:

SELECT * FROM products

UNION

SELECT * FROM products

ORDER BY 1;

You can see that the query returns 12 rows and there are no duplicated rows,
just the same as the original products table. However, say you run the
following query:

SELECT * FROM products

UNION ALL

SELECT * FROM products

ORDER BY 1;

You will see that the query returns 24 rows, in which each row is repeated twice.
This is because the UNION ALL statement keeps the duplicated rows from both
products tables.

Note

To access the source code for this specific section, please refer to
https://packt.link/Y08W5.

In the exercise, you used the UNION keyword to combine rows from different queries
effortlessly. In the next section, you will explore common table expressions (CTEs).

Common Table Expressions

CTEs are simply a different version of subqueries. CTEs establish temporary tables by
using the WITH clause. To understand this clause better, look at the following query,
which you used before to find California-based salespeople:

SELECT

 *

FROM

 salespeople

INNER JOIN (

 SELECT

https://packt.link/Y08W5

134 | SQL for Data Preparation

 *

 FROM

 dealerships

 WHERE

 dealerships.state = 'CA'

) d

ON d.dealership_id = salespeople.dealership_id

ORDER BY

 1;

This could be written using CTEs, as follows:

WITH d as (

 SELECT

 *

 FROM

 dealerships

 WHERE

 dealerships.state = 'CA'

)

SELECT

 *

FROM

 salespeople

INNER JOIN

 d ON d.dealership_id = salespeople.dealership_id

ORDER BY

 1;

The one advantage of CTEs is that they can be designed to be recursive. Recursive
CTEs can reference themselves. Because of this feature, you can use them to solve
problems that other queries cannot. However, recursive CTEs are beyond the scope
of this book.

Now that you know several ways to join data across a database, look at how to
transform the data from these outputs.

Cleaning Data | 135

Cleaning Data
Often, the raw data presented in a query output may not be in the desired form.
You may want to remove values, substitute values, or map values to other values.
To accomplish these tasks, SQL provides a wide variety of statements and functions.
Functions are keywords that take in inputs (such as a column or a scalar value) and
process those inputs into some sort of output. You will learn about some useful
functions for data transformation and cleaning in the following sections.

The CASE WHEN Function

CASE WHEN is a function that allows a query to map various values in a column to
other values. The general format of a CASE WHEN statement is as follows:

CASE

 WHEN condition1 THEN value1

 WHEN condition2 THEN value2

 …

 WHEN conditionX THEN valueX

 ELSE else_value

END;

Here, condition1 and condition2, through conditionX, are Boolean
conditions; value1 and value2, through valueX, are values to map to the
Boolean conditions; and else_value is the value that is mapped if none of the
Boolean conditions is met. For each row, the program starts at the top of the CASE
WHEN statement and evaluates the first Boolean condition. The program then runs
through each Boolean condition from the first one. For the first condition from the
start of the statement that evaluates as True, the statement will return the value
associated with that condition. If none of the statements evaluates as True, then the
value associated with the ELSE statement will be returned.

For example, you want to return all rows for customers from the customers table.
Additionally, you would like to add a column that labels a user as being an Elite
Customer type if they live in postal code 33111, or as a Premium Customer
type if they live in postal code 33124. Otherwise, it will mark the customer as a
Standard Customer type. This column will be called customer_type. You can
create this table by using a CASE WHEN statement, as follows:

SELECT

 CASE

 WHEN postal_code='33111' THEN 'Elite Customer'

 WHEN postal_code='33124' THEN 'Premium Customer'

136 | SQL for Data Preparation

 ELSE 'Standard Customer'

 END AS customer_type,

 *

FROM customers;

This query should give the following output:

Figure 3.17: The customer_type query

As you can see in the preceding table, there is a column called customer_type
indicating the type of customer a user is. The CASE WHEN statement effectively
mapped a postal code to a string describing the customer type. Using a CASE WHEN
statement, you can map values in any way you please.

Exercise 3.03: Using the CASE WHEN Function to Get Regional Lists

The aim of this exercise is to create a query that will map various values in a
column to other values. For instance, the head of sales has an idea to try and create
specialized regional sales teams that will be able to sell scooters to customers in
specific regions, as opposed to generic sales teams.

Cleaning Data | 137

To make their idea a reality, the head of sales would like a list of all customers
mapped to regions. For customers from the states of MA, NH, VT, ME, CT, or RI, they
would like them labeled as New England. Customers from the states of GA, FL,
MS, AL, LA, KY, VA, NC, SC, TN, VI, WV, or AR, they would like the customers labeled as
Southeast. Customers from any other state should be labeled as Other.

To complete this exercise, perform the following steps:

1. Open pgAdmin, connect to the sqlda database, and open the SQL
query editor.

2. Create a query that will produce a customer_id column and a column called
region, with the states categorized as in the following scenario:

SELECT

 c.customer_id,

 CASE

 WHEN c.state in (

 'MA', 'NH', 'VT', 'ME',

 'CT', 'RI')

 THEN 'New England'

 WHEN c.state in (

 'GA', 'FL', 'MS',

 'AL', 'LA', 'KY', 'VA',

 'NC', 'SC', 'TN', 'VI',

 'WV', 'AR')

 THEN 'Southeast'

ELSE 'Other'

 END as region

FROM

 customers c

ORDER BY

 1;

138 | SQL for Data Preparation

This query will map a state to one of the regions based on whether the
state is in the CASE WHEN condition listed for that line. You should get the
following output:

Figure 3.18: The regional query output

In the preceding output, in the case of each customer, a region has been
mapped based on the state where the customer resides.

Note

To access the source code for this specific section, please refer to
https://packt.link/Y08W5.

In this exercise, you learned how to map various values in a column to other values
using the CASE WHEN function. In the next section, you will learn about a useful
function, COALESCE, which will help to replace the NULL values.

https://packt.link/Y08W5

Cleaning Data | 139

The COALESCE Function

Another common requirement is to replace the NULL values with a standard value.
This can be accomplished easily by means of the COALESCE function. COALESCE
allows you to list any number of columns and scalar values, and, if the first value in
the list is NULL, it will try to fill it in with the second value. The COALESCE function
will keep continuing down the list of values until it hits a non-NULL value. If all values
in the COALESCE function are NULL, then the function returns NULL.

To illustrate a simple usage of the COALESCE function, study the customers table.
Some of the records do not have the value of the phone field populated:

Figure 3.19: The COALESCE query

For instance, the marketing team would like a list of the first names, last names, and
phone numbers of all customers for a survey. However, for customers with no phone
number, they would like the table to instead write the value NO PHONE. You can
accomplish this request with COALESCE:

SELECT

 first_name, last_name,

 COALESCE(phone, 'NO PHONE') as phone

FROM

140 | SQL for Data Preparation

 customers

ORDER BY

 1;

This query produces the following results:

Figure 3.20: The COALESCE query

When dealing with creating default values and avoiding NULL, COALESCE will always
be helpful.

The NULLIF Function

NULLIF is used as the opposite of COALESCE. While COALESCE is used to convert
NULL into a standard value, NULLIF is a two-value function and will return NULL if
the first value equals the second value.

For example, the marketing department has created a new direct mail piece to send
to the customer. One of the quirks of this new piece of advertising is that it cannot
accept people who have titles (Mr, Dr, Mrs, and so on) longer than three letters.
However, some records may have a title that is longer than three letters. If the system
cannot accept them, they should be removed during the retrieval of results.

In the sample database, the only known title longer than three characters is
Honorable. Therefore, they would like you to create a mailing list that is just all the
rows with valid street addresses and to block out all titles with NULL that are spelled
as Honorable. This could be done with the following query:

Cleaning Data | 141

SELECT customer_id,

 NULLIF(title, 'Honorable') as title,

 first_name,

 last_name,

 suffix,

 email,

 gender,

 ip_address,

 phone,

 street_address,

 city,

 state,

 postal_code,

 latitude,

 longitude,

 date_added

FROM

 customers c

ORDER BY

 1;

This will remove all mentions of Honorable from the title column.

Figure 3.21: The NULLIF query

Next, you will learn about other types of functions, such as the LEAST and
GREATEST functions.

142 | SQL for Data Preparation

The LEAST/GREATEST Functions

Two functions that come in handy for data preparation are the LEAST and
GREATEST functions. Each function takes any number of values and returns the
least or the greatest of the values, respectively.

For example, if you use the LEAST function with two parameters, such as 600 and
900, 600 will be returned as the value. It is the opposite of what the GREATEST
function will return. The parameters can either be literal values or the values stored
inside numeric fields.

The simple use of this variable would be to replace the value if it is too high or low.
You can study an example closely to understand it better. For instance, the sales team
may want to create a sales list where every scooter is $600 or less. You can create this
using the following query:

SELECT

 product_id, model,

 year, product_type,

 LEAST(600.00, base_msrp) as base_msrp,

 production_start_date,

 production_end_date

FROM

 products

WHERE

 product_type='scooter'

ORDER BY

 1;

This query should give the following output:

Figure 3.22: Cheaper scooters

Cleaning Data | 143

From the output, you can see that if base_msrp was lower than 600, the SQL query
will return the original base_msrp. But if base_msrp is higher than 600, you will
get 600 back. It is the lower value of base_msrp and 600 that the query returns,
which is what the LEAST() function is supposed to do.

The Casting Function

Another useful data transformation is to change the data type of a column within a
query. This is usually done to use a function only available to one data type, such as
text, while working with a column that is in a different data type, such as numeric. To
change the data type of a column, you simply need to use the column::datatype
format, where column is the column name and datatype is the data type you want
to change the column to.

For example, to change the year in the products table to a text column in a query,
use the following query:

SELECT

 product_id,

 model,

 year::TEXT,

 product_type,

 base_msrp,

 production_start_date,

 production_end_date

FROM

 products;

This query produces the following output:

Figure 3.23: The year column as text

144 | SQL for Data Preparation

This will convert the year column to text. You can now apply text functions to this
transformed column. Please note that not every data type can be cast to a specific
data type. For instance, datetime cannot be cast to float types. Your SQL client will
throw an error if you ever make an unexpected conversion.

Transforming Data
Each dataset is unique along with each of the business use cases for the datasets.
That means the processing and transforming of datasets are unique in their own way.
However, there are some processing logics that you will frequently run into in the real
world. You will learn some of these in the sections in this section.

The DISTINCT and DISTINCT ON Functions

When looking through a dataset, you may be interested in determining the unique
values in a column or group of columns. This is the primary use case of the
DISTINCT keyword.

For example, if you wanted to know all the unique model years in the products
table, you could use the following query:

SELECT DISTINCT year

FROM products

ORDER BY 1;

This should give the following result:

Figure 3.24: Distinct model years

Transforming Data | 145

You can also use it with multiple columns to get all the distinct column combinations
present. For example, to find all distinct years and what product types were released
for those model years, you can simply use the following:

SELECT DISTINCT year, product_type

FROM products

ORDER BY 1, 2;

This should give the following output:

Figure 3.25: Distinct model years and product types

Another keyword related to DISTINCT is DISTINCT ON. Now, DISTINCT ON
allows you to ensure that only one row is returned, and one or more columns are
always unique in the set. The general syntax of a DISTINCT ON query is as follows:

SELECT DISTINCT ON (distinct_column)

column_1,

column_2,

…

column_n

FROM table

ORDER BY order_column;

146 | SQL for Data Preparation

Here, distinct_column is the column(s) you want to be distinct in your
query, column_1 through column_n are the columns you want in the
query, and order_column allows you to determine the first row that will be
returned for a DISTINCT ON query if multiple columns have the same value for
distinct_column.

For order_column, the first column mentioned should be distinct_column.
If an ORDER BY clause is not specified, the first row will be decided randomly.

For example, you want to get a unique list of salespeople where each salesperson
has a unique first name. In the case that two salespeople have the same first name,
you will return the one that joined the company earlier. This query would look
as follows:

SELECT DISTINCT ON (first_name)

 *

FROM

 salespeople

ORDER BY

 first_name, hire_date;

It should return this output:

Figure 3.26: DISTINCT ON first_name

Transforming Data | 147

This table now guarantees that every row has a distinct username. If there are
multiple users with the same first name, then the user who was hired first by the
company will be pulled by the query.

For example, if the salespeople table has multiple rows with the first name Abby,
the row in Figure 3.26 with the name of Abby (that is, the first row in the outputs) is
for the first person employed at the company with the name Abby. Likewise, when
you have two employees with the same first name, the query results will order them
by the start date. For example, when two employees, Andrey Haack with the start
date of 2016-01-10 and Andrey Kures with the start date of 2016-05-17,
exist in the database, Andrey Haack will be listed first, since his start date is earlier.

In the next section, you will go through an activity demonstrating how SQL can be
used to make a dataset for a model.

Activity 3.01: Building a Sales Model Using SQL Techniques

In this activity, you will clean and prepare the data for analysis using SQL techniques.
The data science team wants to build a new model to help predict which customers
are the best prospects for remarketing. A new data scientist has joined their team.
It is your responsibility to help the new data scientist prepare and build a dataset to
be used to train a model. Write a query to assemble a dataset. Here are the steps
to perform:

1. Open pgAdmin, connect to the sqlda database, and open the SQL
query editor.

2. Use INNER JOIN to join the customers table to the sales table.

3. Use INNER JOIN to join the products table to the sales table.

4. Use LEFT JOIN to join the dealerships table (right table) to the sales
table (left table).

5. Return all columns of the customers table and the products table.

6. Return the dealership_id column from the sales table, but fill in
dealership_id in sales with -1 if it is NULL.

148 | SQL for Data Preparation

7. Add a column called high_savings that returns 1 if the sales amount was
500 less than base_msrp or lower. Otherwise, it returns 0. Please make sure
that you perform the query on a joined table.

Expected Output:

The following figure shows some of the rows from the output of this activity. You can
see that a number of dealership_id are replaced with -1 by the query, as they
are indeed NULL. This is because internet sales do not go through a dealership and
thus do not have a dealership_id value. Some of the rows also have their value
in the high_savings column marked as 1, indicating the sales amount is $500 or
more below base_msrp. You can go through some rows, try to get the original data,
and confirm the SQL is written properly:

 Figure 3.27: Building a sales model query

Summary | 149

You have now learned how SQL can be used to clean and organize data for
analytical purposes.

Note

The solution for this activity can be found via this link.

Summary
SQL provides you with many tools for mixing and cleaning data. In this chapter, you
first learned how to combine two or more tables. You started with the JOIN keyword,
which fuses data from tables based on their common columns. There are several
types of JOIN. Depending on whether you want to retain the data in a certain table
or not, you can choose INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN,
FULL OUTER JOIN, or CROSS JOIN. You then learned how to use subqueries
and CTEs to preserve and reuse the results of queries. You can also use UNION and
UNION ALL to merge the results of two queries with the same structure into one
result set.

After learning how to combine data from different datasets, you learned how to
perform certain transformations on the data. You first started with the CASE WHEN
function, which is a generic way to convert one expression into another based on
custom-defined conditions. You then learned how to use the COALESCE() and
NULLIF() functions to convert between NULL and non-NULL values. You also
learned how to change the data type of an expression using casting functions, and
finally, you learned about the DISTINCT and DISTINCT ON functions to get distinct
lists of values.

Now that you know how to prepare a dataset, you will learn how to start making
analytical insights in the next chapter, using aggregate functions.

Overview

In this chapter, you will study the conceptual logic of aggregate functions,
write SQL to execute these functions, and learn how to analyze data using
them. You will also learn how to modify them using keywords such as
HAVING and GROUP BY.

By the end of this chapter, you will be able to apply these functions to gain
new insights into data and understand the properties of datasets, such as
data quality.

Aggregate Functions for Data

Analysis

4

152 | Aggregate Functions for Data Analysis

Introduction
In the previous chapter, you learned how to use SQL to prepare datasets for analysis.
Eventually, the purpose of data preparation is to make the data suitable for analysis
so that you can make sense of it. Once the data has been prepared, the next step is to
analyze it. Generally, data scientists and analytics professionals will try to understand
the data by summarizing it and trying to find high-level patterns. SQL can help with
this task primarily by using aggregate functions. These functions take multiple rows
as input and return new information based on those input rows. To begin, you will
learn about aggregate functions.

In this chapter, you will understand the fundamentals of aggregate functions through
the following topics:

• Aggregate Functions

• Aggregate Functions with the GROUP BY Clause

• Aggregate Functions with the HAVING Clause

• Using Aggregates to Clean Data and Examine Data Quality

Aggregate Functions
In addition to just seeing individual rows of data, it is also interesting to understand
the properties of an entire column or table. For example, say you just received a
sample dataset of a fictional company called ZoomZoom, which specializes in car
and electronic scooter retailing. You are wondering about the number of customers
that this ZoomZoom database contains. You could select all the data from the
table and then see how many rows were pulled back, but it would be incredibly
tedious to do so. Luckily, there are functions provided by SQL that can be used to
perform this type of calculation on large groups of rows. These functions are called
aggregate functions.

Aggregate Functions | 153

Aggregate functions take in one or more columns with multiple rows and return a
number based on those columns. The following table provides a summary of the
major aggregate functions that are used in SQL:

Figure 4.1: Major aggregate functions

The most frequently used aggregate functions include SUM(), AVG(), MIN(),
MAX(), COUNT(), and STDDEV(). You will also notice the CORR() function, which
was discussed in Chapter 1, Understanding and Describing Data. SQL provides this
function so that you do not need to calculate it manually.

154 | Aggregate Functions for Data Analysis

Aggregate functions can help you to smoothly execute several tasks, such as
the following:

• Aggregate functions can be used with the WHERE clause to calculate aggregate
values for specific subsets of data. For example, if you want to know how many
customers ZoomZoom has in California, you could use the following query:

SELECT

 COUNT(*)

FROM

 customers

WHERE

 state='CA';

This results in the following output:

Figure 4.2: Result of COUNT(*) with the WHERE clause

• You can do arithmetic with aggregate functions. In the following query, you can
divide the count of rows in the customers table by 2:

SELECT

 COUNT(*)/2

FROM

 customers;

This query will return 25000.

Figure 4.3: Result of function – constant calculation

Aggregate Functions | 155

• You can use aggregate functions with each other in mathematical ways. If you
want to calculate the average value of a specific column, you can use the AVG
function. For example, to calculate the average Manufacturer's Suggested
Retail Price (MSRP) of products at ZoomZoom, you can use the AVG(base_
msrp) function in a query. In addition, you can also build the AVG function using
SUM and COUNT, as follows:

SELECT

 SUM(base_msrp)/COUNT(*) AS avg_base_msrp

FROM

 Products;

You will get the following result:

Figure 4.4: Result of function calculation

A frequently seen scenario is a calculation involving the COUNT() function.
For example, you can use the COUNT function to count the total number of
ZoomZoom customers by counting the total rows in the customers table:

SELECT

 COUNT(customer_id)

FROM

 customers;

The COUNT function will return the number of rows without a NULL value in the
column. Since the customer_id column is a primary key and cannot be NULL,
the COUNT function will return the number of rows in the table. In this case, the
query will return the following output:

Figure 4.5: Result of the COUNT column

156 | Aggregate Functions for Data Analysis

As shown here, the COUNT function works with a single column and counts how
many non-NULL values it has. However, if the column has at least one NULL
value, you will not be able to determine how many rows there are. To get a count
of the number of rows in that situation, you could use the COUNT function with
an asterisk in brackets, (*), to get the total count of rows:

SELECT

 COUNT(*)

FROM

 customers;

This query will also return 50000:

Figure 4.6: Result of COUNT(*) as compared to the COUNT column

One of the major themes you will find in data analytics is that analysis is
fundamentally only useful when there is a strong variation in the data. A column
where every value is exactly the same is not a particularly useful column. To
identify this potential issue, it often makes sense to determine how many distinct
values there are in a column. To measure the number of distinct values in a
column, you can use the COUNT DISTINCT function. The structure of such a
query would look as follows:

SELECT

 COUNT (DISTINCT {column1})

FROM

 {table1}

Here, {column1} is the column you want to count and {table1} is the table
with the column.

Aggregate Functions | 157

For example, say you want to verify that your customers are based in all
50 states of the US, possibly with the addition of Washington D.C., which is
technically a federal territory but is treated as a state in your system. For this,
you need to know the number of unique states in the customer list. You can use
COUNT(DISTINCT expression) to process the query:

SELECT

 COUNT(DISTINCT state)

FROM

 customers;

This query returns the following output:

Figure 4.7: Result of COUNT DISTINCT

This result shows that you do have a national customer base in all 50 states and
Washington D.C.. You can also calculate the average number of customers per
state using the following SQL:

SELECT

 COUNT(customer_id)::numeric / COUNT(DISTINCT state)

FROM

 customers;

This query returns the following output:

Figure 4.8: Result of COUNT division with casting

158 | Aggregate Functions for Data Analysis

1. Note that in the preceding SQL, the count of customer ID is cast as numeric.
The reason you must cast this as numeric is that the COUNT() function
always returns an integer. PostgreSQL treats integer division differently than
float division in that it will ignore the decimal part of the result. For example,
dividing 7 by 2 as integers in PostgreSQL will give you 3 instead of 3.5. In the
preceding example, if you do not specify the casting, the SQL and its result will
be as follows:

SELECT

 COUNT(customer_id) / COUNT(DISTINCT state)

FROM

 customers;

You will get this output:

Figure 4.9: Result of COUNT division without casting

2. To get a more precise answer with a decimal part, you have to cast one of the
numbers as a float. There is also an easier way to convert an integer into a float,
which is to multiply it by 1.0. As 1.0 is a numeric value, its calculation with an
integer value will result in a numeric value. For example, the following SQL will
generate the same output as the SQL in the code block preceding Figure 4.8:

SELECT

 COUNT(customer_id) * 1.0 / COUNT(DISTINCT state)

FROM

 customers;

Aggregate Functions | 159

In the next section, you will work on an exercise to learn how to use aggregate
functions as part of data analysis.

Note

For all the exercises in this book, you will be using pgAdmin 4, which you
should have installed by following the instructions in the Preface. All the
exercises and activities are also available on GitHub at https://packt.link/
OU9zr.

Exercise 4.01: Using Aggregate Functions to Analyze Data

In this exercise, you will analyze and calculate the price of a product using different
aggregate functions. For instance, say you are curious about the data at your
company and interested in understanding some of the basic statistics around
ZoomZoom product prices. Now, you want to calculate the lowest price, highest price,
average price, and standard deviation of the price for all the products the company
has ever sold.

Perform the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the lowest price, highest price, average price, and standard deviation
of the price using the MIN, MAX, AVG, and STDDEV aggregate functions,
respectively, from the products table:

SELECT

 MIN(base_msrp),

 MAX(base_msrp),

 AVG(base_msrp),

 STDDEV(base_msrp)

FROM

 products;

https://packt.link/OU9zr
https://packt.link/OU9zr

160 | Aggregate Functions for Data Analysis

The preceding code will produce an output similar to this:

Figure 4.10: Statistics of the product price

From the preceding output, you can see that the minimum price is 349.99, the
maximum price is 115000.00, the average price is 33358.32750, and the
standard deviation of the price is 44484.40866.

Note

Your results may vary in comparison to the preceding output probably
because your PostgreSQL instance may be configured to show a different
number of decimal points in the output. The other reason for the difference
in outputs could be that the data contained in the database has been
modified from what it was when the original database was created from the
dump file. However, the key objective here is to demonstrate how you can
use the aggregate functions to analyze data.

In this exercise, you used aggregate functions to learn about the basic statistics of
prices. Next, you will use aggregate functions with the GROUP BY clause.

Note

To access the source code for this specific section, please refer to
https://packt.link/OU9zr.

https://packt.link/OU9zr

Aggregate Functions with the GROUP BY Clause | 161

Aggregate Functions with the GROUP BY Clause
So far, you have used aggregate functions to calculate statistics for an entire column.
However, most times you are interested in not only the aggregate values for a whole
table but also the values for smaller groups in the table. To illustrate this, refer back
to the customers table. You know that the total number of customers is 50,000.
However, you might want to know how many customers there are in each state. But
how can you calculate this?

You could determine how many states there are with the following query:

SELECT DISTINCT

 state

FROM

 customers;

You will see 50 distinct states, Washington D.C., and NULL returned as a result of the
preceding query, totaling 52 rows. Once you have the list of states, you could then run
the following query for each state:

SELECT

 COUNT(*)

FROM

 customers

WHERE

 state='{state}'

Although you can do this, it is incredibly tedious and can take a long time if there are
many states. The GROUP BY clause provides a much more efficient solution.

162 | Aggregate Functions for Data Analysis

The GROUP BY Clause

GROUP BY is a clause that divides the rows of a dataset into multiple groups based
on some sort of key that is specified in the clause. An aggregate function is then
applied to all the rows within a single group to produce a single number for that
group. The GROUP BY key and the aggregate value for the group are then displayed
in the SQL output. The following diagram illustrates this general process:

Figure 4.11: General GROUP BY computational model

In the preceding diagram, you can see that the dataset has multiple groups (Group
1, Group 2, …, Group N). Here, the aggregate function is applied to all the rows
in Group 1 and generates the result Aggregate 1. Then, the aggregate function
is applied to all the rows in Group 2 and generates the result Aggregate 2, and
so on.

The GROUP BY statements usually have the following structure:

SELECT

 {KEY},

 {AGGFUNC(column1)}

FROM

 {table1}

GROUP BY

 {KEY}

Aggregate Functions with the GROUP BY Clause | 163

Here, {KEY} is a column or a function on a column that is used to create individual
groups. For each value of {KEY}, a group is created. {AGGFUNC(column1)} is
an aggregate function on a column that is calculated for all the rows within each
group. {table} is the table or set of joined tables from which rows are separated
into groups.

To illustrate this point, you can count the number of customers in each US state using
a GROUP BY query:

SELECT

 state, COUNT(*)

FROM

 customers

GROUP BY

 state;

The computational model looks like this:

Figure 4.12: Customer count by the state computational model

164 | Aggregate Functions for Data Analysis

Here, AK, AL, AR, and the other keys are abbreviations for US states. This grouping
is a two-step process. In the first step, SQL will create groups based on the existing
states, one group for each state, labeling the group with the state. SQL then will
allocate customers into different groups based on their states. Once all the customers
are allocated to their respective state groups, the execution goes into the second
step. In this step, SQL will apply the aggregate function to each group and associate
the result with the group label, which is state in this case. The output of the SQL will
be a set of aggregate function results with its state label. You should get the following
output, in which state is the label and count is the aggregate result:

Figure 4.13: Customer count by the state query output

The {KEY} value for the GROUP BY operation can also be a function of column(s).
The underlying example counts customers based on the year they were added to
the database. Here, the year was the result of the TO_CHAR function on the date_
added column:

SELECT

 TO_CHAR(date_added, 'YYYY'),

 COUNT(*)

FROM

 customers

Aggregate Functions with the GROUP BY Clause | 165

GROUP BY

 TO_CHAR(date_added, 'YYYY')

ORDER BY

 1;

The result of this SQL is as follows:

Figure 4.14: Customer count GROUP BY function

You can also use the column number to perform a GROUP BY operation:

SELECT

 state,

 COUNT(*)

FROM

 customers

GROUP BY

 1;

166 | Aggregate Functions for Data Analysis

This SQL will return the same result as the previous one, which used the column
name in the GROUP BY clause.

If you want to return the output in alphabetical order, simply use the following query:

SELECT

 state,

 COUNT(*)

FROM

 customers

GROUP BY

 state

ORDER BY

 state;

Alternatively, you can write the following with the column order number in GROUP
BY and ORDER BY instead of column names:

SELECT

 state,

 COUNT(*)

FROM

 customers

GROUP BY

 1

ORDER BY

 1;

Aggregate Functions with the GROUP BY Clause | 167

Either of these queries will give you the following result:

Figure 4.15: Customer count by the state query output in alphabetical order

Often, though, you may be interested in ordering the aggregates themselves. You
may want to know the number of customers in each state in increasing order so
that you know which state has the least number of customers. You can then use this
result to make a business decision, such as launching a new marketing campaign in
the states where you don't have enough presence. This would require you to order
the aggregates themselves. The aggregates can also be ordered using ORDER BY,
as follows:

SELECT

 state,

 COUNT(*)

FROM

 customers

GROUP BY

 state

ORDER BY

 COUNT(*);

168 | Aggregate Functions for Data Analysis

This query gives you the following output:

Figure 4.16: Customer count by the state query output in increasing order

You may also want to count only a subset of the data, such as the total number
of male customers in a particular state. To calculate the total number of male
customers, you can use the following query:

SELECT

 state, COUNT(*)

FROM

 customers

WHERE

 gender='M'

GROUP BY

 state

ORDER BY

 State;

Aggregate Functions with the GROUP BY Clause | 169

This gives you the following output:

Figure 4.17: Male customer count by the state query output in alphabetical order

As shown here, grouping by one column can provide some great insight. You can
get different aspects of the entire dataset, as well as any subset that you may think
of. You can use these characteristics to construct a hypothesis and try to verify it.
For example, you can identify the sales and the count of customers in each state,
or better yet, the count of a specific subgroup of customers. From there, you can
run a bivariate analysis, just like what you learned in Chapter 1, Understanding and
Describing Data. If you can find a relationship between the sales amount and the
particular group of customers, you may be able to figure out some way to reach out
to more of these customers and thus increase the sales, or to figure out why other
groups of customers are not as motivated.

In the next section, you will see that GROUP BY can be generalized to multiple
columns to provide more granular insight.

170 | Aggregate Functions for Data Analysis

Multiple-Column GROUP BY

While GROUP BY with one column is helpful, you can go even further and use GROUP
BY on multiple columns. For instance, say you wanted to get a count of not just the
number of customers ZoomZoom had in each state but also how many male and
female customers it had in each state. You can find this using multiple GROUP BY
columns, as follows:

SELECT

 state, gender, COUNT(*)

FROM

 customers

GROUP BY

 state, gender

ORDER BY

 state, gender;

This gives you the following result:

Figure 4.18: Customer count by the state and gender query
outputs in alphabetical order

Aggregate Functions with the GROUP BY Clause | 171

Any number of columns can be used in a GROUP BY operation in the same way
as illustrated in the preceding example. In this case, SQL will create one group for
each unique combination of column values, such as one group for state=AK and
gender=F, another for state=AK, and gender=M, and so on, then calculate the
aggregate function for each group and label the result with a value from all the
grouping columns.

Now, test your understanding by implementing the GROUP BY clause in an exercise.

Exercise 4.02: Calculating the Cost by Product Type Using GROUP BY

In this exercise, you will analyze and calculate the cost of products using aggregate
functions and the GROUP BY clause. The marketing manager wants to know the
minimum, maximum, average, and standard deviation of the price for each product
type that ZoomZoom sells for a marketing campaign. Perform the following steps to
complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the lowest price, highest price, average price, and standard deviation
of the price using the MIN, MAX, AVG, and STDDEV aggregate functions from
the products table and use GROUP BY to check the price of all the different
product types:

SELECT

 product_type,

 MIN(base_msrp),

 MAX(base_msrp),

 AVG(base_msrp),

 STDDEV(base_msrp)

FROM

 products

GROUP BY

 1

ORDER BY

 1;

172 | Aggregate Functions for Data Analysis

You should get the following result:

Figure 4.19: Basic price statistics by product type

From the preceding output, the marketing manager can check and compare the
price of various products that ZoomZoom sells for the campaign.

Note

To access the source code for this specific section, please refer to
https://packt.link/OU9zr.

In this exercise, you calculated the basic statistics by product type using aggregate
functions and the GROUP BY clause. Next, you will learn how to implement
grouping sets.

Grouping Sets

It is very common to want to see the statistical characteristics of a dataset from
several different perspectives. For instance, say you wanted to count the total
number of customers you have in each state, while simultaneously, you also wanted
the total number of male and female customers you have in each state. One way you
could accomplish this is by using the UNION ALL keyword, which was discussed in
Chapter 2, The Basics of SQL for Analytics:

(

 SELECT

 state,

 NULL as gender,

 COUNT(*)

 FROM

 customers

 GROUP BY

 1, 2

 ORDER BY

https://packt.link/OU9zr

Aggregate Functions with the GROUP BY Clause | 173

 1, 2

)

UNION ALL

(

 SELECT

 state,

 gender,

 COUNT(*)

 FROM

 customers

 GROUP BY

 1, 2

 ORDER BY

 1, 2

)

ORDER BY 1, 2;

This query produces the following result:

Figure 4.20: Customer count by the state and gender query
outputs in alphabetical order

174 | Aggregate Functions for Data Analysis

Fundamentally, what you are doing here is creating multiple sets of aggregation,
one grouped by state and another grouped by state and gender, and then joining
them together. Thus, this operation is called grouping sets, which means multiple
sets are generated using GROUP BY. However, using UNION ALL is tedious and can
involve writing lengthy queries. An alternative way to do this is to use the GROUPING
SETS statement. This statement allows a user to create multiple sets of grouping for
viewing, similar to the UNION ALL statement. For example, using the GROUPING
SETS keyword, you could rewrite the previous UNION ALL query, like so:

SELECT

 state,

 gender,

 COUNT(*)

FROM

 customers

GROUP BY GROUPING SETS (

 (state),

 (state, gender)

)

ORDER BY

 1, 2;

This creates the same output as the previous UNION ALL query. Now, you will learn
how ordered set aggregates work in the next section.

Ordered Set Aggregates

Up until this point, none of the aggregates discussed depended on the order of the
data. That is because none of the aggregate functions (COUNT, SUM, AVG, MIN, MAX,
and so on) you have encountered so far was ordinal. You can order the data using
ORDER BY, but this is not required to complete the calculation, nor will the order
impact the result. However, there is a subset of aggregate statistics that depends
on the order of the column to calculate. For instance, the median of a column is
something that requires the order of the data to be specified. To calculate these use
cases, SQL offers a series of functions called ordered set aggregate functions. The
following table lists the main ordered set aggregate functions:

Aggregate Functions with the GROUP BY Clause | 175

Figure 4.21: Major ordered set aggregate functions

These functions are used in the following format:

SELECT

 {ordered_set_function} WITHIN GROUP (ORDER BY {order_column})

FROM {table};

Here, {ordered_set_function} is the ordered set aggregate function,
{order_column} is the column to order results for the function by, and {table}
is the table the column is in. For example, you can calculate the median price of the
products table by using the following query:

SELECT

 PERCENTILE_CONT(0.5)

 WITHIN GROUP (ORDER BY base_msrp)

 AS median

FROM

 products;

The reason you use 0.5 is that the median is the 50th percentile, which is 0.5 as a
fraction. This gives you the following result:

Figure 4.22: Result of an ordered set aggregate function

176 | Aggregate Functions for Data Analysis

With ordered set aggregate functions, you now have the tools for calculating virtually
any aggregate statistic of interest for a dataset. In the next section, you will learn how
to use aggregates to deal with data quality.

Aggregate Functions with the HAVING Clause
You learned about the WHERE clause in this chapter when you worked on SELECT
statements, which select only certain rows meeting the condition from the original
table for later queries. You also learned how to use aggregate functions with the
WHERE clause in the previous section. Bear in mind that the WHERE clause will
always be applied to the original dataset. This behavior is defined by the SQL
SELECT statement syntax, regardless of whether there is a GROUP BY clause or
not. Meanwhile, GROUP BY is a two-step process. In the first step, SQL selects rows
from the original table or table set to form aggregate groups. In the second step,
SQL calculates the aggregate function results. When you apply a WHERE clause, its
conditions are applied to the original table or table set, which means it will always
be applied in the first step. Sometimes, you are only interested in certain rows in the
aggregate function result with certain characteristics, and only want to keep them in
the query output and remove the rest. This can only happen after the aggregation has
been completed and you get the results, thus it is part of the second step of GROUP
BY processing. For example, when doing the customer counts, perhaps you are only
interested in places that have at least 1,000 customers. Your first instinct may be to
write something such as this:

SELECT

 state, COUNT(*)

FROM

 customers

WHERE

 COUNT(*)>=1000

GROUP BY

 state

ORDER BY

 state;

Aggregate Functions with the HAVING Clause | 177

However, you will find that the query does not work and gives you the following error:

Figure 4.23: Error showing the query is not working

This is because COUNT(*) is calculated at the second step on the aggregated groups.
Thus, this filter can only be applied to the aggregated groups, not the original dataset.
So, using the WHERE clause on aggregate functions will produce an error. To use the
filter on aggregate functions, you need to use a new clause: HAVING. The HAVING
clause is similar to the WHERE clause, except it is specifically designed for GROUP BY
queries. It applies the filter condition on the aggregated groups instead of the original
dataset. The general structure of a GROUP BY operation with a HAVING statement is
as follows:

SELECT

 {KEY},

 {AGGFUNC(column1)}

FROM

 {table1}

GROUP BY

 {KEY}

HAVING

 {OTHER_AGGFUNC(column2)_CONDITION}

Here, {KEY} is a column or a function on a column that is used to create
individual groups, {AGGFUNC(column1)} is an aggregate function on a column
that is calculated for all the rows within each group, {table} is the table or
set of joined tables from which rows are separated into groups, and {OTHER_
AGGFUNC(column2)_CONDITION} is a condition similar to what you would put
in a WHERE clause involving an aggregate function. Now, test your understanding by
implementing an exercise while using the HAVING clause.

178 | Aggregate Functions for Data Analysis

Exercise 4.03: Calculating and Displaying Data Using the HAVING Clause

In this exercise, you will calculate and display data using the HAVING clause. The
sales manager of ZoomZoom wants to know the customer count for the states that
have at least 1,000 customers who have purchased any product from ZoomZoom.
Perform the following steps to help the manager to extract the data:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the customer count by states with at least 1000 customers using the
HAVING clause:

SELECT

 state, COUNT(*)

FROM

 customers

GROUP BY

 state

HAVING

 COUNT(*)>=1000

ORDER BY

 state;

This query will give you the following output:

Figure 4.24: Customer count by states with at least 1,000 customers

Using Aggregates to Clean Data and Examine Data Quality | 179

Here, you can see the states that have more than 1,000 ZoomZoom customers,
with CA having 5038, the highest number of customers, and CO having 1042,
the lowest number of customers.

Note

To access the source code for this specific section, please refer to
https://packt.link/OU9zr.

In this exercise, you have used the HAVING clause to calculate and display data
more efficiently.

Using Aggregates to Clean Data and Examine Data Quality
In Chapter 3, SQL for Data Preparation, you learned how SQL can be used to clean data.
While the techniques mentioned in that chapter do an excellent job of cleaning data,
aggregates add a number of techniques that can make cleaning data even easier and
more comprehensive. In this section, you will look at some of these techniques.

Finding Missing Values with GROUP BY

As mentioned in Chapter 3, SQL for Data Preparation, one of the biggest issues with
cleaning data is dealing with missing values. You learned how to find missing values
and how to resolve this issue. In this chapter, you will learn how to determine the
extent of missing data in a dataset.

Using aggregates, identifying the amount of missing data can tell you not only which
columns have missing data but also the usability of the columns when so much of the
data is missing. Depending on the extent of missing data, you will have to determine
whether it makes sense to delete rows with missing data, fill in missing values, or just
delete columns if they do not have enough data to make definitive conclusions.

The easiest way to determine whether a column is missing values is to use a modified
CASE WHEN statement, which provides flexible logic to check whether a condition
is met, with the SUM and COUNT functions to determine what percentage of data is
missing. The query looks as follows:

SELECT

 SUM(

CASE

 WHEN

https://packt.link/OU9zr

180 | Aggregate Functions for Data Analysis

 {column1} IS NULL

 OR

 {column1} IN ({missing_values})

 THEN 1

 ELSE 0

END

)::FLOAT/COUNT(*)

FROM

 {table1}

Here, {column1} is the column that you want to check for missing values,
{missing_values} is a comma-separated list of values that are considered
missing, and {table1} is the table or subquery with the missing values.

Based on the results of this query, you may have to vary your strategy for dealing
with missing data. If a very small percentage of your data is missing (<1%), then you
might consider just filtering out or deleting the missing data from your analysis. If
some of your data is missing (<20%), you may consider filling in your missing data
with a typical value, such as the mean or the mode, to perform an accurate analysis.
If more than 20% of your data is missing, you may have to remove the column from
your data analysis, as there would not be enough data to make accurate conclusions
based on the values in the column.

Now, work on an example and look at missing data in the customers table.
Specifically, look at the missing data in the state column. Based on some prior
knowledge, the business team has determined that if the state column in a row
contains NULL or is an empty string (''), this value is considered a missing value.
You now need to determine the extent of missing values to see whether this state
column is still useful. You will do so by dividing the number of records that have the
missing value in the state column by the total number of the records:

SELECT

 SUM(

CASE

 WHEN state IS NULL OR state IN ('') THEN 1

 ELSE 0

END

)::FLOAT/COUNT(*) AS missing_state

FROM

 customers;

Using Aggregates to Clean Data and Examine Data Quality | 181

This gives you the following output:

Figure 4.25: Result of NULL and missing value percentage calculation

As shown here, a little under 11% of the state data is missing. For analysis purposes,
you may want to consider that these customers are from California, since CA is the
most common state in the data. However, the far more accurate thing to do would be
to find and fill in the missing data.

If you are only concerned about NULL values, and there is no need to check other
missing values, you can also use a COUNT() function, which counts from the column.
Such a COUNT() function will only count the non-NULL values. By dividing this value
by the total count, you will get the percentage of non-NULL values. By subtracting
non-NULL percentage from 100%, you will get the percentage of NULL values in the
total count:

SELECT

 COUNT(state) * 1.0 / COUNT(*) AS non_null_state,

 1 - COUNT(state) * 1.0 / COUNT(*) AS null_state

FROM

 customers;

This gives you the following output of the percentages of non-NULL and NULL values
displayed as fractions:

Figure 4.26: Result of NULL value percentage calculation

You can see that the null_state value here is the same as the missing_state
value in the previous SQL. This shows that there is actually no value with an empty
string (''). All missing values are NULL.

182 | Aggregate Functions for Data Analysis

Measuring Data Uniqueness with Aggregates

Another common task that you might want to perform is to determine whether
every value in a column is unique. While in many cases this can be solved by setting
a column with a PRIMARY KEY constraint, this may not always be possible. To solve
this problem, you can write the following query:

SELECT

 COUNT (DISTINCT {column1})=COUNT(*)

FROM

 {table1}

Here, {column1} is the column you want to count and {table1} is the table with
the column. If this query returns True, then the column has a unique value for every
single row; otherwise, at least one of the values is repeated. If values are repeated
in a column that you are expecting to be unique, there may be some issues with the
data Extract, Transform, and Load (ETL) or there may be a join that has caused a
row to be repeated.

As a simple example, verify that the customer_id column in customers is unique:

SELECT

 COUNT(DISTINCT customer_id)=COUNT(*) AS equal_ids

FROM

 customers;

This query gives you the following output, which shows that the values in the
customer_id column are truly unique:

Figure 4.27: Result of comparing COUNT DISTINCT versus COUNT(*)

Now that you have learned about the many ways to use aggregate queries, you will
apply this to some sales data in the following activity.

Using Aggregates to Clean Data and Examine Data Quality | 183

Activity 4.01: Analyzing Sales Data Using Aggregate Functions

In this activity, you will analyze data using aggregate functions. The CEO, COO, and
CFO of ZoomZoom would like to gain some insight into the common statistical
characteristics of sales now that the company feels they have a strong enough
analytics team with your arrival. The task has been given to you, and your boss has
politely let you know that this is the most important project the analytics team has
worked on. Perform the following steps to complete this activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total number of unit sales the company has made.

3. Calculate the total sales amount in dollars for each state.

4. Identify the top five best dealerships in terms of the most units sold (ignore
internet sales).

5. Calculate the average sales amount for each channel, as shown in the sales
table, and look at the average sales amount, first by channel sales, then by
product_id, and then both together.

Expected Output:

Figure 4.28: Sales after the GROUPING SETS channel and product_id

184 | Aggregate Functions for Data Analysis

6. Calculate the percentage of sales transactions that have a NULL dealership.

7. Calculate the percentage of internet sales the company has made for each year.
Order the year in a timely fashion and you will get time series data. Does this
time series suggest something?

Just by looking at the numbers, it does seem that the sales increase both in the
internet channel and the non-internet channel, simultaneously. So, it is an overall
increase in the whole ZoomZoom sales portfolio. At this point, as you have gained
some insight into the common statistical characteristics of sales, you can get back to
the sales manager and present your findings, work with the business team to dive
deeper into possible reasons for this increase, and try to apply the findings to the
company's sales strategy.

Using aggregates, you have unlocked patterns that will help your company to
understand how to make more revenue and make the company better overall.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you learned how to calculate the statistical properties of a dataset
using aggregate functions, such as the average, count, minimum, maximum, and
standard deviation. Aggregate functions themselves are applied to a whole dataset. In
order to use them to analyze the statistics of sub-datasets inside a larger dataset, you
also learned about the GROUP BY clause of the SELECT statement, which divides a
large dataset into smaller ones based on the keys you provided and applies aggregate
functions to each of the groups.

To make the GROUP BY clause more useful, several additional properties were
introduced, most importantly the HAVING clause. This HAVING clause is used to
filter the values of aggregated groups. It is applied at the second stage of the GROUP
BY clause execution and should be distinguished from the WHERE clause, which is
applied to the original data table or table set and is applied at the first stage of the
GROUP BY execution.

Summary | 185

Now that you learned about aggregate functions and the GROUP BY clause, you
are now able to proceed with using tools to examine data quality on a dataset
level, instead of on a data entry level, like what you did in Chapter 3, SQL for Data
Preparation. This includes checking the percentage of missing values and confirming
the uniqueness of a column. You then practiced some of these skills in an activity.

So far, you have learned about two kinds of functions. The row-level functions that
you learned about in Chapter 3, SQL for Data Preparation, such as CASE, NULLIF, and
COALESCE, are applied to one data row and will generate one output value for each
row in the raw data. The aggregate functions that you learned about in this chapter,
such as COUNT and SUM, are applied to a dataset of many rows and will generate
one output value for the entire dataset. The former can be used to analyze the
characteristics of a data point, while the latter can be used to analyze the statistics of
a dataset. There is one more kind of function, which studies the characteristics of a
row in relation to other rows in the dataset. This function will generate one output for
each row in a dataset and is called a window function. You will learn all about window
functions in Chapter 5, Window Functions for Data Analysis.

Overview

In this chapter, you will learn the conceptual logic of window functions, write
SQL to execute these functions, and modify them using keywords such as
PARTITION BY and ORDER BY.

By the end of this chapter, you will be able to apply these functions to gain
new insights into data and understand the properties of datasets, such as
ranking and percentiles.

Window Functions for Data

Analysis

5

188 | Window Functions for Data Analysis

Introduction
You have learned simple functions such as CASE WHEN, COALESCE, and NULLIF
in Chapter 3, SQL for Data Preparation. These functions receive data from a single row
and produce a result for this row. The result of these functions is only determined
by the data value in the row and has nothing to do with the dataset it is in. You
have also learned aggregate functions such as SUM, AVG, and COUNT in Chapter 4,
Aggregate Functions for Data Analysis. These functions receive data from a dataset
of multiple rows and produce a result for this dataset. Both types of functions are
useful in different scenarios. For example, if you have the physical checkup results
of all newborn babies in a country, such as weight and height, you can check each
baby's health by checking these measurements to be within a given range using CASE
WHEN function. You can also use aggregate functions to get the average and standard
deviation of the weight and height of babies in this country. Both types of functions
provide useful insights into the health and welfare of this country's babies.

Sometimes, you may also want to know the characteristics of a data point in regard
to its position in the dataset. A typical example is a rank. Rank is determined by both
the measurement itself and the dataset it is in. A baby's height and weight will likely
have different ranks in the dataset for the whole country and in the dataset for the
city. Within the same dataset, there also might be subgroups, which are also called
partitions, that the rank is based on. For example, ranking in different states in the
whole country from the same country-wide dataset requires dividing the dataset into
multiple partitions, each corresponding to a state. Ranking is thus calculated inside
each partition. Within the partition, the rows related to the calculation (that is, the
number of rows that are before the current row, which determines the rank of the
current row) are selected to calculate the result. These selected rows form a window.
Essentially, what you want to achieve is that given a dataset, you want to get a result
for each row. This result is defined based on the value of the row, the window on
which it is applied, and the dataset itself. The function used to perform this type of
calculation is called window function.

The following topics will be covered in this chapter:

• Window Functions

• Basics of Window Functions

• The WINDOW Keyword

• Statistics with Window Functions

• Window Frame

Window Functions | 189

Window Functions
Continuing with the discussion on Window Functions, you want to find the earliest
customers for ZoomZoom. In a more technical term, this means you want to rank
every customer according to the date they became a customer, with the earliest
customer being ranked 1, the second-earliest customer being ranked 2, and so on.
You can get all the customers using the following query:

SELECT

 customer_id, first_name, last_name, date_added

FROM

 customers

ORDER BY

 date_added;

The result is:

Figure 5.1: Customers ordered by date_added

190 | Window Functions for Data Analysis

You can order the customers from the earliest to the most recent, copy the output
to an Excel spreadsheet, and assign a row number to each row so that you have the
rank for each customer. But this is not automatic and is prone to errors. SQL provides
several ways using which you can achieve it. Later in this chapter, you will learn how
to assign numbers to ordered records by using the RANK window function. Here, you
can first use an aggregate function to get the dates and order them that way:

SELECT

 date_added, COUNT(*)

FROM

 customers

GROUP BY

 date_added

ORDER BY

 date_added;

The following is the output of the preceding code:

Figure 5.2: Aggregate date-time ordering

Window Functions | 191

This result gives the dates in a ranked order. With this result, you can calculate how
many customers joined ZoomZoom before each customer, simply by adding up the
counts from the days before the customer's joining date. However, this approach
is still manual, requires extra calculation, and still does not directly provide rank
information. This is where window functions come into play. Window functions can
take multiple rows of data and process them, but still retain all the information in the
rows. For things such as ranks, this is exactly what you need.

To better understand this, you will see what a windows function query looks like in
the next section.

The Basics of Window Functions

The following is the basic syntax of a window function:

SELECT {columns},

{window_func} OVER (PARTITION BY {partition_key} ORDER BY {order_key})

FROM table1;

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, table1 is the table or joined tables
you want to pull data from, and the OVER keyword indicates where the window
definition starts. The window definition in this basic syntax includes two parts,
{partition_key} and {order_key}. The former is the column or columns you
want to partition on (more on this later), and the latter is the column or columns you
want to order by.

To illustrate this, look at an example. You might be saying to yourself that you do not
know any window functions, but the truth is that all aggregate functions can be used
as window functions. Now, use COUNT(*) in the following query:

SELECT

 customer_id,

 title,

 first_name,

 last_name,

 gender,

 COUNT(*) OVER () as total_customers

FROM

 customers

ORDER BY

 customer_id;

192 | Window Functions for Data Analysis

This results in the following output:

Figure 5.3: Customers listed using the COUNT(*) window query

As shown in Figure 5.3, the query returns title, first_name, and last_name,
just like a typical SELECT query. However, there is now a new column called total_
customers. This column contains the count of users that would be created by the
following query:

SELECT

 COUNT(*)

FROM

 customers;

The above query returns 50,000. The query returned all of the rows, and the
COUNT(*) in the query returns the COUNT as any normal aggregate function would.

Now, regarding the other parameters of the query, what happens if you add OVER
clause to convert this COUNT into a window function, keeping the function as COUNT
but defining the window using PARTITION BY, such as in the following query?

SELECT

 customer_id,

 title,

 first_name,

 last_name,

 gender,

Window Functions | 193

 COUNT(*) OVER (PARTITION BY gender) as total_customers

FROM

 customers

ORDER BY

 customer_id;

The following is the output of the preceding code:

Figure 5.4: Customers listed using COUNT(*) partitioned by the gender window query

Here, you can see that total_customers has now changed counts to one of two
values, 24956 or 25044. As you use the PARTITION BY clause over the gender
column, SQL divides the dataset into multiple partitions based on the unique values
of this column. Inside each partition, SQL calculates the total COUNT. For example,
there are 24956 males, so the COUNT window function for the male partition returns
24596, which you can confirm with the following query:

SELECT

 gender,

 COUNT(*)

FROM

 customers

GROUP BY

 1;

194 | Window Functions for Data Analysis

Now you see how the partition is defined and used with the PARTITION BY clause.
For females, the count is equal to the female count, and for males, the count is equal
to the male count. What happens now if you use ORDER BY instead in the OVER
clause as follows?

SELECT

 customer_id, title,

 first_name, last_name, gender,

 COUNT(*) OVER (ORDER BY customer_id) as total_customers

FROM

 customers

ORDER BY

 customer_id;

The following is the output of the preceding code:

Figure 5.5: Customers listed using COUNT(*) ordered by the customer_id window query

Window Functions | 195

You will notice something akin to a running count for the total customers. This is
where the definition of 'window' in window function comes from. When you use
this window function, since you did not specify a PARTITION BY, the full dataset
is used for calculation. Within this dataset, when ORDER BY is not specified, it is
assumed that there is only one window, which contains the entire dataset. However,
when ORDER BY is specified, the rows in the dataset are ordered according to it.
For each unique value in the order, SQL forms a value group, which contains all the
rows containing this value. The query then creates a window for each value group.
The window will contain all the rows in this value group and all rows that are ordered
before this value group. An example is shown below:

Figure 5.6: Windows for customers using COUNT(*) ordered
by the customer_id window query

Here, the dataset is ordered using customer_id, which happens to be the primary
key. As such each row has a unique value and forms a value group. The first value
group, without any row before it, forms its own window, which contains only the first
row. The second value group's window will contain both itself and the row before
it, which means the first and second row. Then the third value group's window will
contain itself and the two rows before it, and so on and so forth. Every value group
has its window. Once the windows are established, for every value group, the window
function is calculated based on the window. In this example, this means COUNT
is applied to every window. Thus, value group 1 (the first row) gets 1 as the result
since its Window 1 contains one row, value group 2 (the second row) gets 2 since its
Window 2 contains two rows, and so on and so forth. The results are applied to every
row in this value group if the group contains multiple rows. Note that the window
is used for calculation only. The results are assigned to rows in the value group, not
assigned to the rows in the window.

196 | Window Functions for Data Analysis

What happens when you combine PARTITION BY and ORDER BY? Now, look at the
following query:

SELECT

 customer_id,

 title,

 first_name,

 last_name,

 gender,

 COUNT(*) OVER (

PARTITION BY gender ORDER BY customer_id

) as total_customers

FROM

 customers

ORDER BY

 customer_id;

When you run the preceding query, you get the following result:

Figure 5.7: Customers listed using COUNT(*) partitioned
by gender ordered by the customer_id window query

Window Functions | 197

Like the previous query, it appears to be some sort of rank. However, it seems to
differ based on gender. In this particular SQL, the query divides the table into two
subsets based on the column PARTITION BY. That is because the PARTITION
BY clause, like GROUP BY, will first divide the dataset into groups (which is called
partition here) based on the value in the gender column. Each partition is then used
as a basis for doing a count, with each partition having its own set of value groups.
These value groups are ordered inside the partition, windows are created based on
the value groups and their orders, and the window function is applied to the values.
The results are finally assigned to every row in the value groups.

This process is illustrated in Figure 5.8. This process produces the count you can see.
The three keywords, OVER(), PARTITION BY, and ORDER BY, are the foundation
of the power of window functions.

Figure 5.8: Windows for customers listed using COUNT(*) partitioned
by gender and ordered by the customer_id window query

Now that you understand window functions, attempt applying them in the
next exercise.

198 | Window Functions for Data Analysis

Exercise 5.01: Analyzing Customer Data Fill Rates over Time

In this exercise, you will apply window functions to a dataset and analyze the data.
For the last six months, ZoomZoom has been experimenting with various promotions
to make their customers more engaged in the sale activity. One way to measure the
level of engagement is to measure people's willingness to fill out all fields on the
customer form, especially their address. To achieve this goal, the company would
like a running total of how many users have filled in their street addresses over time.
Write a query to produce these results.

Note

For all the exercises in this chapter, please use pgAdmin 4.

Perform the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Use window functions and write a query that will return customer information
and how many people have filled out their street address. Also, order the list by
date. The query will look as follows:

SELECT

 customer_id,

 street_address,

 date_added::DATE,

 COUNT(

 CASE

 WHEN street_address IS NOT NULL THEN customer_id

 ELSE NULL

 END

) OVER (ORDER BY date_added::DATE)

 as non_null_street_address,

 COUNT(*) OVER (ORDER BY date_added::DATE)

 as total_street_address

FROM

 customers

ORDER BY

 date_added;

Window Functions | 199

You should get the following result:

Figure 5.9: Street address filter ordered by the date_added window query

3. Write a query to see how the numbers of people filling out the street field
change over time.

4. In step 1, you have already got every customer address ordered by the signup
date. In Figure 5.10, the two columns following the signup date column are the
number of non-NULL addresses and the number of all customer addresses for
each rolling day, that is, a sum from the beginning of sales to the current day.
As you learned in Chapter 4, Aggregate Functions for Data Analysis, by dividing the
number of non-NULL addresses by the number of all customer addresses, you
can get the percentage of customers with non-NULL street addresses and derive
the percentage of customers with NULL street addresses. Tracking this number
will provide an insight into the way customers interact with your sales force over
time. Also, because both numbers of addresses are calculated for each rolling
day, the percentage is also for each rolling day. This is an example of different
window functions sharing the same window in the same query.

200 | Window Functions for Data Analysis

You can also rewrite the following query using a WINDOW clause to make the
query simpler, which will be introduced in the next section.

rolling_average

1 WITH
2 daily_rolling_count as (
3 SELECT
4 customer_id,
5 street_address,
6 date_added::DATE,
7 COUNT(
8 CASE
9 WHEN street_address IS NOT NULL THEN customer_id
10 ELSE NULL
11 END
12) OVER (ORDER BY date_added::DATE)
13 as non_null_street_address,
14 COUNT(*) OVER (ORDER BY date_added::DATE)
15 as total_street_address

You can find the complete code here: https://packt.link/iMJ6d

The result is:

Figure 5.10: Percent of NULL Addresses per day

https://packt.link/iMJ6d

Window Functions | 201

This result will give you the list of the rolling percentage of NULL street
address in each day. You can then provide the full dataset to data analytics
and visualization software such as Excel to study the general trend of the data,
discover patterns of change, and raise suggestions on how to increase the
engagement of customers to the company management.

Note

To access the source code for this specific section, please refer to
https://packt.link/fAhGN.

In this exercise, you have learned how to use window functions to analyze data. In the
next section, you will understand how to use the WINDOW keyword in your queries.

The WINDOW Keyword

Now that you understand the basics of window functions, it is time to introduce a
syntax that will make it easier to write them. In many scenarios, your analysis involves
running multiple functions against the same window so that you can compare
them side by side, and you are very likely running them within the same query. For
example, when you are doing some gender-based analysis, you may be interested in
calculating a running total number of customers as well as the running total number
of customers with a title, using the same partition that is based on gender. You will
result in writing the following query:

SELECT

 customer_id,

 title,

 first_name,

 last_name,

 gender,

 COUNT(*) OVER (

 PARTITION BY gender ORDER BY customer_id

) as total_customers,

 SUM(CASE WHEN title IS NOT NULL THEN 1 ELSE 0 END) OVER (

 PARTITION BY gender ORDER BY customer_id

) as total_customers_title

FROM customers

ORDER BY customer_id;

https://packt.link/fAhGN

202 | Window Functions for Data Analysis

The following is the output of the preceding code:

Figure 5.11: Running total of customers overall with the title by gender window query

Note

Here, the queried dataset incorrectly applies the label "gender" in place
of "sex." The data for "gender" can be assumed as "sex" for this section.
"Gender" must not be considered in the context of range of identities or
with reference to any social and cultural differences.

Although the query gives you the result, it can be tedious to write—especially the
OVER clause as it is the same for the two functions. Fortunately, you can simplify this
by using the WINDOW clause to define a generic window for multiple functions in the
same query. The WINDOW clause facilitates the aliasing of a window.

You can simplify the preceding query by writing it as follows:

SELECT

 customer_id,

 title,

 first_name,

 last_name,

 gender,

 COUNT(*) OVER w as total_customers,

 SUM(

 CASE

Statistics with Window Functions | 203

 WHEN title IS NOT NULL THEN 1

 ELSE 0

 END

) OVER w as total_customers_title

FROM

 customers

WINDOW w AS (

 PARTITION BY gender ORDER BY customer_id

)

ORDER BY customer_id;

This query should give you the same result you can see in the preceding screenshot.
However, you did not have to write a long PARTITION BY and ORDER BY query
for each window function. Instead, you simply made an alias with the defined
WINDOW w.

Statistics with Window Functions
Now that you understand how window functions work, you can start using them to
calculate useful statistics, such as ranks, percentiles, and rolling statistics.

In the following table, you have summarized a variety of statistical functions that are
useful. It is also important to emphasize again that all aggregate functions can also be
used as window functions (AVG, SUM, COUNT, and so on):

Figure 5.12: Statistical window functions

204 | Window Functions for Data Analysis

Normally, a call to any of these functions inside a SQL statement would be followed
by the OVER keyword. This keyword will then be followed by more keywords like
PARTITION BY and ORDER BY, either of which may be optional, depending on
which function you are using.

For example, the ROW_NUMBER() function will look like this:

ROW_NUMBER() OVER(

 PARTITION BY column_1, column_2

 ORDER BY column_3, column_4

)

You will practice how to use these statistical functions in the next exercise.

Exercise 5.02: Rank Order of Hiring

In this exercise, you will use statistical window functions to understand a dataset.
ZoomZoom would like to have a marketing campaign for their most tenured
customers in different states. ZoomZoom wants you to write a query that will rank
the customers according to their joining date (date_added) for each state. Perform
the following steps to complete this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate a rank for every customer, with a rank of 1 going to the first date_
added, 2 to the second one, and so on, using the RANK() function:

SELECT

 customer_id,

 first_name,

 last_name,

 state,

 date_added::DATE,

 RANK() OVER (

 PARTITION BY state ORDER BY date_added

) AS cust_rank

FROM

 customers

ORDER BY

 state, cust_rank;

Statistics with Window Functions | 205

The following is the output of the preceding code:

Figure 5.13: Salespeople rank-ordered by tenure

Here, you can see every customer with their information and rank in the cust_
rank column based on their joining date for each state.

Note

To access the source code for this specific section, please refer to
https://packt.link/fAhGN.

https://packt.link/fAhGN

206 | Window Functions for Data Analysis

In this exercise, you used the RANK() function to rank the data in a dataset in a
certain order. In the next section, you will learn how to use the window frame.

Note

One question regarding RANK() is the handling of tied values. RANK()
is defined as the rank of rows, not the rank of values. For example, if the
first two rows have a tie, the third row will get 3 from the RANK() function.
DENSE_RANK() could also be used just as easily as RANK(), but it is
defined as the rank of values, not the rank of rows. In the example above,
the value of DENSE_RANK() for the third row will be 2 instead of 3, as the
third row contains the 2nd value in the list of values.

Window Frame
As mentioned in the earlier sections discussing the basics of window functions, by
default, a window is set for each value group to encompass all the rows from the first
to the current row in the partition, as shown in Figure 5.6. However, this is the default
and can be adjusted using the window frame clause. A window function query
using the window frame clause would look as follows:

SELECT

 {columns},

 {window_func} OVER (

 PARTITION BY {partition_key}

 ORDER BY {order_key}

 {rangeorrows} BETWEEN {frame_start} AND {frame_end}

)

FROM

 {table1};

Here, {columns} are the columns to retrieve from tables for the query, {window_
func} is the window function you want to use, {partition_key} is the column
or columns you want to partition on, {order_key} is the column or columns
you want to order by, {rangeorrows} is either the RANGE keyword or the ROWS
keyword, {frame_start} is a keyword indicating where to start the window
frame, {frame_end} is a keyword indicating where to end the window frame, and
{table1} is the table or joined tables you want to pull data from.

Window Frame | 207

One point to consider is the values that {frame_start} and {frame_end} can
take. To give further details, {frame_start} and {frame_end} can be one of the
following values:

• UNBOUNDED PRECEDING: A keyword that, when used for {frame_start},
refers to the first record of the partition.

• {offset} PRECEDING: A keyword referring to {offset} (an integer) rows
or ranges before the current row.

• CURRENT ROW: Refers to the current row.

• {offset} FOLLOWING: A keyword referring to {offset} (an integer) rows
or ranges after the current row.

• UNBOUNDED FOLLOWING: A keyword that, when used for {frame_end},
refers to the last record of the partition.

By adjusting the window, various useful statistics can be calculated. One such useful
statistic is the rolling average. The rolling average is simply the average for a statistic
in a given time window. For instance, you want to calculate the seven-day rolling
average of sales over time for ZoomZoom. You will need to get the daily sales first
by running a SUM … GROUP BY sales_transaction_date. This will provide
you with a list of daily sales, each row being a day with sales. When you order this list
of rows by date, the six preceding rows plus the current row will provide you with a
window of seven rolling days. Taking an AVG over these seven rows will give you the
seven-day rolling average of the given day.

This calculation can be accomplished with the following query:

rolling_average

1 WITH
2 daily_sales as (
3 SELECT
4 sales_transaction_date::DATE,
5 SUM(sales_amount) as total_sales
6 FROM sales
7 GROUP BY 1
8),
9 moving_average_calculation_7 AS (
10 SELECT
11 sales_transaction_date,
12 total_sales,
13 AVG(total_sales) OVER (
14 ORDER BY sales_transaction_date
15 ROWS BETWEEN 6 PRECEDING and CURRENT ROW

You can find the complete code here: https://packt.link/4RmVy

https://packt.link/4RmVy

208 | Window Functions for Data Analysis

The following is the output of the preceding code:

Figure 5.14: The seven-day moving average of sales

A natural question when considering N-day moving window is how to handle the first
N-1 days in the ordered column. In the previous query, the first six rows are defined
as null using a CASE statement because in this scenario the seven-day moving
average is only defined if there are seven days' worth of information. Without the
CASE statement, the window calculation will calculate values for the first seven days
using the first few days. For these days, the seven-day moving average is the average
of whatever days are in the window. For example, the seven-day moving average
for the second day is the average of the first day and second day, and the seven-
day moving average for the sixth day is the average of the first six days. Both this
approach of calculation and the NULL approach can make sense in their respective
situations. It is up to the data analyst to determine which one makes more sense to a
particular question.

Window Frame | 209

Another point of difference to consider is the difference between using a RANGE
or ROW in a frame clause. In the previous example, you used ROW as the daily sales
contain one row per day. ROW refers to actual rows and will take the rows before and
after the current row to calculate values. RANGE refers to the values of the {frame_
start} and {frame_end} in the {order key} column. It differs from ROW when
two rows have the same values based on the ORDER BY clause used in the window.
If there are multiple rows having the same value as the value designated in {frame_
start} or {frame_end}, all these rows will be added to the window frame when
RANGE is specified.

In the following exercise, you will use a rolling window to calculate statistics with
ordered data.

Exercise 5.03: Team Lunch Motivation

In this activity, you will use a window frame to find some important information in
your data. To help improve sales performance, the sales team has decided to buy
lunch for all salespeople at the company every time they beat the figure for the best
daily total earnings achieved over the last 30 days. Write a query that produces the
total sales in dollars for a given day and the target the salespeople must beat for
that day, starting from January 1, 2019. Perform the following steps to complete
this exercise:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total sales for a given day and the target using the following query:

Exercise5.03.sql

1 WITH
2 daily_sales as (
3 SELECT
4 sales_transaction_date::DATE,
5 SUM(sales_amount) as total_sales
6 FROM
7 sales
8 GROUP BY
9 1
10),
11 sales_stats_30 AS (
12 SELECT
13 sales_transaction_date,
14 total_sales,
15 MAX(total_sales) OVER (

You can find the complete code here: https://packt.link/7HmGh

https://packt.link/7HmGh

210 | Window Functions for Data Analysis

You should get the following results:

Figure 5.15: Best sales over the last 30 days

Notice the use of a window frame from 30 PRECEDING to 1 PRECEDING. By
using 1 PRECEDING, you are removing the current row from the calculation.
The result is a 30-day rolling max in the 30 days before the current day.

Window Frame | 211

3. Now you will calculate the total sales each day and compare it with that day's
target, which is the 30-day moving average you just calculated in the previous
step. The total sales in each day have already been calculated in the SQL above
in the first common table expression and are later referenced in the main query.
So, you can write the following SQL:

Exercise5.03.sql

1 WITH
2 daily_sales as (
3 SELECT
4 sales_transaction_date::DATE,
5 SUM(sales_amount) as total_sales
6 FROM sales
7 GROUP BY 1
8),
9 sales_stats_30 AS (
10 SELECT
11 sales_transaction_date,
12 total_sales,
13 MAX(total_sales) OVER (
14 ORDER BY sales_transaction_date
15 ROWS BETWEEN 30 PRECEDING and 1 PRECEDING

You can find the complete code here: https://packt.link/7HmGh

Figure 5.16: Max Daily Sales Moving-30 Day

https://packt.link/7HmGh

212 | Window Functions for Data Analysis

Note

To access the source code for this specific section, please refer to https://
packt.link/fAhGN.

As you can see, window frames make calculating moving statistics simple, and even
kind of fun. Now, you will conclude this chapter with an activity that will test your
ability to use window functions.

Activity 5.01: Analyzing Sales Using Window Frames and Window Functions

In this activity, you will use window functions and window frames in various ways
to gain insight into sales data. It is the beginning of the year, and time to plan the
selling strategy for the new year at ZoomZoom. The sales team wants to see how the
company has performed overall, as well as how individual days have performed over
the year. To achieve this, ZoomZoom's head of Sales would like you to run an analysis
for them. Perform the following steps to complete this activity:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total sales amount by day for all the days in the year 2021 (that is,
before the date January 1, 2022).

3. Calculate the rolling 30-day average for the daily total sales amount.

4. Calculate which decile each date would be in compared to other days based on
their daily 30-day rolling sales amount.

https://packt.link/fAhGN
https://packt.link/fAhGN

Window Frame | 213

Expected Output:

Figure 5.17: Deciles for dealership sales amount

In this activity, you used window functions to get the sales trend of your entire year
and utilized this sales trend to identify the days that ZoomZoom is doing well or
less ideal.

Note

The solution for this activity can be found via this link.

214 | Window Functions for Data Analysis

Summary
In this chapter, you learned about the window functions, which generate output
for a row based on its position inside the dataset or subgroups within the dataset.
This is different from the simple functions you learned in Chapter 3, SQL for Data
Preparation, that generates an output for a row regardless of the characteristics of
the dataset, and different from the aggregate functions you learned in Chapter 4,
Aggregate Functions for Data Analysis, that generates an output for all rows in a dataset
or subgroups in the dataset.

You learned some of the most common window functions including COUNT, SUM, and
RANK. You also learned how to construct a basic window using OVER. The output of
window function depends on the current row's position in the dataset or subgroups
within the dataset, which is called partition, as well as the collection of rows required
by the calculation, which is called window. As such there are several keywords that
may impact how the calculation is done, such as PARTITION BY, ORDER BY,
and window frame keywords. The PARTITION BY clause determines the partition,
the ORDER BY clause determines the position of the row within the partition, and
the window frame keywords determine the range and size of the window. You then
learned how to use window functions to get analytical insights. For example, by
defining window frame over a daily summary such as daily sales, you can create
rolling statistics, and gain useful insights into the time trend of the sales.

At this point, you have learned all the fundamental statements of SQL. You have
learned how to handle the full CRUD lifecycle using SQL, how to put tables together
using JOIN and UNION, and you have learned how to use different types of functions
to obtain the desired results. In Chapter 6, Importing and Exporting Data, you will look
at how to import and export data to utilize SQL with other programs. You will use the
COPY command to upload data to your database in bulk. You will also use Excel to
process data from your database and then simplify your code using python.

Overview

In this chapter, you will learn techniques that will help you move data
between your database and analytics tools. You will start by learning about
the psql tool, which will enable you to quickly query data from a database.
With psql, you can also leverage the COPY command, which allows the
efficient importing and exporting of data. With these simple tools, you will
be able to interact with the database and efficiently move data back and
forth. Further, you will process and analyze data using Python. You will also
explore Python libraries such as SQLAlchemy and pandas' advanced
functionality for interacting with your database in Python.

Importing and Exporting Data

6

218 | Importing and Exporting Data

Introduction
To extract insights from your database, you need data. While many companies store
and update data within a central database, there are scenarios in which you will
need more data than is currently in your database. For example, you are working
on an ambitious project to revamp a website whose performance has progressively
degraded over the past nine years. The first step in solving such a problem is to do
a root cause analysis of it. The central database houses daily logs of the site's page
load times along with other details. You will need to retrieve this data, clean it up,
and filter out the entries where the page load times were over a certain threshold.
You will need to share this information with a team of engineers and developers who
will categorize these outliers, attributing the poor load times to a server issue, badly
written code, network failure, or poor caching, among other things. You will then
need to do an analysis of the categorized data and update the database to include
the "fault categories" as provided to you by the developers who do not have access
to the database. For all this, you will first need to retrieve the data and store it in an
Excel file that can be shared with the developers.

Not only will you want to upload data to your database for further analysis, but if
you are doing advanced analytics, there will also be situations wherein you will need
to download data from your database (for example, if you want to carry out a form
of statistical analysis that is unavailable in SQL). For this reason, you will also learn
about the process of extracting data from a database. This will allow you to use other
software to analyze your data. You will look at how you can integrate your workflows
with a specific programming language that is frequently used for analytics: Python.
It is powerful because it is easy to use, allows advanced functionality, is open source,
and has large communities supporting it due to its popularity. You will examine
how large datasets can be passed between your programming language and your
databases efficiently so that you can have workflows that take advantage of the
analytics software tools that are available.

In this chapter, you will learn how to efficiently upload data to a centralized database
for further analysis. You will start by looking at the bulk uploading and downloading
functionality in the PostgreSQL COPY command as well as the command-line client,
psql, and how to run the COPY command locally using the \COPY command from
psql. To use the \COPY command, you will also gain an understanding of the
concept of view, which by itself is a very important tool in any RDBMS. You will then
move on to studying how to handle data using Python. You will learn how to integrate
Python with PostgreSQL, how to use SQL from Python scripts, and how to use Python
libraries to achieve various analyses.

The COPY Command | 219

First, start by exploring the workings of the COPY command.

The COPY Command
At this point, you are probably familiar with the SELECT statement (covered in
Chapter 2, The Basics of SQL for Analytics), which allows you to retrieve data from
a database. While this command is useful for small datasets that can be scanned
quickly, you will often want to save a large dataset to a file. By saving these datasets
to files, you can further process or analyze the data locally using Excel or Python. To
retrieve these large datasets, you can use the PostgreSQL COPY command, which
efficiently transfers data from a database to a file, or from a file to a database. This
COPY command must be executed when connected to the PostgreSQL database
using a SQL client, such as the PostgreSQL psql command. In the next section, you
will learn how to use the psql command, then you will learn how to copy data with it.

Running the psql Command

You have been using the pgAdmin frontend client to access your PostgreSQL
database, and you have briefly used the psql tool in the Preface when you set up
your PostgreSQL environment. But you might not be aware that psql was one of
the first PostgreSQL clients. This interface is still in use today. It enables users to
run PostgreSQL scripts that can interact with the database server within the local
computing environment.

The syntax of the psql command is as follows:

psql -h <host> -p <port> -d <database> -U <username>

In this command, you pass in flags that provide the information needed to make the
database connection. In this case, you have the following:

• -h is the flag for the hostname. The string that comes after it (separated by a
space) should be the hostname for your database, which can be an IP address, a
domain name, or localhost if it is run on the local machine.

• -p is the flag for the database port. Usually, this is 5432 for
PostgreSQL databases.

• -d is the flag for the database name. The string that comes after it should be the
database name. In this book, you will always use the sqlda database.

• -U is the flag for the username. It is succeeded by the username. In this book,
you will use the PostgreSQL super username, which is postgres.

220 | Importing and Exporting Data

Applying the syntax to the environment you set up for this book, that is, to locally
connect to the sqlda database that is on your local system as the postgres user, you
can use this command:

psql -h localhost -p 5432 -d sqlda -U postgres

You will be prompted to enter your password, which is the password you entered
for the superuser when you installed PostgreSQL on your computer. After that, the
cursor will change to sqlda=#, where sqlda is the current database that you are
running in.

You can also simply run the psql command without the parameters. It will prompt
you for all the information mentioned above. Once it has been entered, you will be
provided with the same sqlda=# command interface as shown below.

Figure 6.1: Logging into psql

You are now inside psql and can execute SQL just like you can in pgAdmin. For
example, you can execute the following query:

SELECT

 product_id

FROM

 products

LIMIT

 5;

The COPY Command | 221

The result is as follows:

Figure 6.2: Running SQL in psql

The COPY Statement

The COPY statement retrieves data from your database and dumps it into the file
format that you choose. For example, consider the following statement:

COPY (

 SELECT

 customer_id,

 first_name,

 last_name

 FROM

 customers

 LIMIT

 5

)

TO STDOUT

WITH CSV HEADER;

222 | Importing and Exporting Data

The following is the output of the code:

Figure 6.3: Using COPY to print the results to STDOUT in CSV file format

This statement returns five rows from the customers table, with each record on a
new line, and each value separated by a comma, in a typical .csv file format. The
header is also included at the top.

Because the target of the COPY command is specified as STDOUT, the results will only
be copied into the command-line interface and not into a file. Here is a breakdown of
this command and the parameters that were passed in:

• COPY is simply the command used to transfer data to a file format.

• (SELECT customer_id, first_name, last_name FROM customers
LIMIT 5) is the query that you want to copy the result from.

• TO STDOUT indicates that the results should be printed to the standard output
rather than being saved to a file on the hard drive. Standard output is the
common term for displaying output in a command-line terminal environment,
which is often shortened to STDOUT.

• WITH is an optional keyword used to separate the parameters that you will
use in the database-to-file transfer. Within WITH, you can specify multiple
parameters, such as the following:

• CSV indicates that you will use the CSV file format. You could have also
specified BINARY or left this out altogether and received the output in
text format.

The COPY Command | 223

• HEADER indicates that you want the header printed as well.

Note

You can learn more about the parameters available for the COPY command
in the PostgreSQL documentation: https://www.postgresql.org/docs/current/
sql-copy.html.

While the STDOUT option is useful, often, you will want to save data to a file.
The COPY command offers the functionality to do this, but data is saved locally
on the PostgreSQL server. You must specify the full file path (relative file paths are
not permitted). If you have your PostgreSQL database running on your computer,
you can test this out using the following command in psql:

COPY (

 SELECT *

 FROM customers

 LIMIT 5

)

TO 'c:\Users\Public\my_file.csv'

WITH CSV HEADER;

The output will be the following:

Figure 6.4: Output of the COPY statement

You will find that the file has now been saved in CSV format at the location you
specified in the command.

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

224 | Importing and Exporting Data

Note that this example is executed in a PostgreSQL server that is hosted on a
Windows machine. So, the full file path is in Windows file path format. If you are
running the command on any other operating system, you need to adjust the file
path accordingly. Also, you must use a folder that you have permission to work on.
Otherwise, you will receive a permission error. For example, on a windows system,
you may be restricted on which folder you can write to. In this chapter, all the files will
be placed into the c:\Users\Public folder because the Windows system usually
allows users to read/write in this folder, so it can be used for your exercise if you
cannot find a better folder.

Note

The value in single quotes that follows the To keyword is the absolute
path to the output file. The format of the path will depend on the operating
system you are using. On Linux and Mac, the directory separator would be
a forward-slash (/) character, and the root of the main drive would be /.
On windows, however, the directory separator would be a back-slash (\)
character and the path would start with the drive letter.

\COPY with psql

The COPY command, as stated above, runs on the PostgreSQL server. The
PostgreSQL server in this book is installed on your local machine. So, your local
machine is the server, and the COPY command will save the file to your local paths.
However, in a real-world setup, servers are highly protected. Users usually do not
have access to the file system of the server machines and need to download the files
to their local machines.

The terminal psql allows the COPY command to be called remotely using the psql-
specific \COPY instruction, which is similar in syntax to the COPY command but saves
the file to the local machine. Once you have connected to your database using psql,
you can test out the \COPY instruction by using the following command:

\COPY (SELECT * FROM customers LIMIT 5) TO 'c:\Users\Public\my_file.csv'
WITH CSV HEADER;

The following is the output of the code:

COPY 5

The COPY Command | 225

Here is a breakdown of this command and the parameters that were passed in:

• \COPY invokes the PostgreSQL COPY command to output the data.

• (SELECT * FROM customers LIMIT 5) is the query that you want to
copy the result from.

• TO 'c:\Users\Public\my_file.csv' indicates that psql should save
the output from standard output into c:\Users\Public\my_file.csv.
Note that the \COPY command allows both absolute paths and relative paths.
However, as there are many possible setups, this chapter will only use the
absolute path, c:\Users\Public, for data files.

• The WITH CSV HEADER parameters operate in the same way as before.

You can also look at my_file.csv, which you can open with the text editor of your
choice, such as Notepad:

Figure 6.5: The CSV file that you created using your \COPY command

It is worth noting here that while you can split the text of the COPY command into
multiple lines, the \COPY command does not allow the query to contain multiple
lines. A simple way to leverage multiline queries is to create a view containing your
data before the \COPY command and drop the view after your \COPY command has
finished. You will learn how to create a view in the next section.

226 | Importing and Exporting Data

Creating Temporary Views

In many cases, you will find a certain query particularly helpful and would like to keep
the definition so that you can use it later. In previous chapters, you have learned
about the usage of subqueries as well as common table expressions. As useful as
they are, subqueries and common table expressions are only effective within a single
SQL query. You cannot refer to them outside their main query. To save a query
definition for future usage, PostgreSQL allows you to create a view, which is a named
SELECT query that you can reference later.

You can create a VIEW command called customers_sample using the
following syntax:

CREATE TEMP VIEW customers_sample AS (

 SELECT

 *

 FROM

 customers

 LIMIT

 12

);

PostgreSQL will give you the following message, letting you know that the view has
been created successfully:

Figure 6.6: Output of the CREATE VIEW statement

In this example, the SQL statement of this query is stored in a temporary view,
which can be referenced in a similar way to the syntax used to reference a table. For
example, look at the following query:

SELECT

 COUNT(1)

FROM

 customers_sample;

This would output 12.

The COPY Command | 227

A view is a named SQL query and does not save any data. Instead, every time the view
is referenced in a query, SQL replaces the view name with the query defined in the
view, similar to handling a subquery. Views are saved in the schema until explicitly
dropped. However, you can also add a TEMP keyword to instruct SQL to remove the
view automatically once you are logged out of the server.

You can also manually delete the view using a simple command:

DROP VIEW customers_sample;

The output will be as follows:

DROP VIEW

For example, consider these commands:

CREATE TEMP VIEW customers_sample AS (

 SELECT

 *

 FROM

 customers

 LIMIT

 5

);

\COPY (SELECT * FROM customers_sample) TO 'c:\Users\Public\my_file.csv'
WITH CSV HEADER

DROP VIEW customers_sample;

The output of this would be identical to the output in the first export example. While
you can perform this action either way, for readability, you will use the latter format
in this book for longer queries.

228 | Importing and Exporting Data

Configuring COPY and \COPY

There are several options that you can use to configure the COPY and
\COPY commands:

• FORMAT: format_name can be used to specify the format. The options for
format_name are csv, text, or binary. Alternatively, you can simply specify
CSV or BINARY without the FORMAT keyword, or not specify the format at all
and let the output default to a text file format.

• DELIMITER: delimiter_character can be used to specify the delimiter
character for CSV or text files (for example, for CSV files, or | for pipe-separated
files).

• NULL: null_string can be used to specify how NULL values should be
represented (for example, whether blanks represent NULL values or NULL if
that is how missing values should be represented in the data).

• HEADER: This specifies that the header should be output.

• QUOTE: quote_character can be used to specify how fields with special
characters (for example, a comma in a text value within a CSV file) can be
wrapped in quotes so that they are ignored by COPY.

• ESCAPE: escape_character specifies the character that can be used to
escape the following character.

• ENCODING: encoding_name allows the specification of the encoding, which
is particularly useful when you are dealing with foreign languages that contain
special characters or user input.

For example, running from psql, the following would create a pipe-separated file,
with a header, with empty (0 lengths) strings to represent a missing (NULL) value,
and the double quote (") character to represent the quote character:

\COPY customers TO 'c:\Users\Public\my_file.csv' WITH CSV HEADER DELIMITER
'|' NULL '' QUOTE '"'

The following is the output of the code:

COPY 50000

In the next section, you will learn how to use the COPY and \COPY commands to
upload large amounts of data to a database.

The COPY Command | 229

Using COPY and \COPY to Bulk Upload Data to Your Database

The COPY and \COPY commands can be used to efficiently download data, but they
can also be used to upload data. The COPY and \COPY commands are far more
efficient at uploading data than an INSERT statement. There are a few reasons
for this:

• When using COPY, there is only one push of a data block, which occurs after all
the rows have been properly allocated.

• There is less communication between the database and the client, so there is
less network latency.

• PostgreSQL includes optimizations for COPY that would not be available
through INSERT.

Here is an example of using the \COPY command to copy rows into a table from a
file. First, run the following SQL to create a new table for \COPY command testing:

CREATE TABLE customers_csv AS (

 SELECT * FROM customers LIMIT 1

);

Then, run the following \COPY command to test its data loading functionality:

\COPY customers_csv FROM 'c:\Users\Public\my_file.csv' CSV HEADER
DELIMITER '|'

This outputs the following:

COPY 50000

Here is a breakdown of this command and the parameters that were passed in:

• \COPY is invoking the PostgreSQL COPY command to load the data into
the database.

• customers_csv is the name of the table that you want to append to.

• FROM 'c:\Users\Public\my_file.csv specifies that you are uploading
records from c:\Users\Public\my_ file.csv. The FROM keyword
specifies that you are uploading records, as opposed to the TO keyword, which
you use to download records.

230 | Importing and Exporting Data

• The WITH CSV HEADER parameters operate the same as before.

• DELIMITER '|' specifies what the delimiter is in the file. For a CSV file, this
is assumed to be a comma, so you do not need this parameter. However, for
readability, it might be useful to explicitly define this parameter, if for no other
reason than to remind yourself how the file has been formatted.

Note

While COPY and \COPY are great for exporting data to other tools, there is
additional functionality in PostgreSQL for exporting a database backup.

For these maintenance tasks, you can use pg_dump for a specific table
and pg_dumpall for an entire database or schema. These commands
even let you save data in a compressed (tar) format, which saves space.
Unfortunately, the output format from these commands is typically SQL, and
it cannot be readily consumed outside of PostgreSQL. Therefore, it does not
help you with importing or exporting data to and from other analytics tools,
such as Python.

Since you have now learned how to import and export data, you will implement an
exercise to export data to a file and process it in Excel.

Note

For the exercises and activities in this chapter, you will need to be able to
access your database with psql. Here is the GitHub link to access the files
of this chapter: https://packt.link/tcTFc.

https://packt.link/tcTFc

The COPY Command | 231

Exercise 6.01: Exporting Data to a File for Further Processing in Excel

The ZoomZoom executive committee is busy scouting for new locations to open their
next dealership. Since the presentation needs to be made in PowerPoint, you can
use Microsoft Excel to generate a bar chart of customer numbers per city based on
the .csv file. Then, you can simply copy that chart to your slide. As a data analyst,
you will be helping them make this decision by presenting the data in .csv file
format about the cities that have the highest number of customers. The data will
need to be retrieved from the customers table of the sqlda database. The psql
and \COPY commands you learned about will come in handy. This analysis will help
the ZoomZoom executive committee to decide where they might want to open the
next dealership.

1. Open the command line to implement this exercise (such as CMD for
Windows or Terminal for Mac) and connect to the sqlda database using the
psql command.

Figure 6.7: Running psql from the command line with parameters

Once this command is executed, the command terminal will look like this:

Figure 6.8: The psql interface after being launched from the command line

232 | Importing and Exporting Data

2. Create the top_cities view. The view will be defined as SELECT city,
count(1) AS number_of_customers …, which gives you the number
of customers for each city. Because you add the LIMIT 10 statement, you
only grab the top 10 cities, as ordered by the second column (the number of
customers). You also filter out the customers without a city:

CREATE TEMP VIEW top_cities AS (

 SELECT

 city,

 count(1) AS number_of_customers

 FROM

 customers

 WHERE

 city IS NOT NULL

 GROUP BY

 1

 ORDER BY

 2 DESC

 LIMIT

 10

);

3. Copy the top_cities view from your ZoomZoom database to a local file in
.csv format. You do this by utilizing the temporary view you just created using
the following command. Please note that the OS-specific path needs to be
prepended to the top_cities.csv filename to specify the location to save
the file. Here, in a windows environment, you will use c:\Users\Public as
the folder:

\COPY (SELECT * FROM top_cities) TO 'c:\Users\Public\top_cities.csv'
WITH CSV HEADER DELIMITER ','

The COPY Command | 233

4. Drop the view:

DROP VIEW top_cities;

Here is a breakdown of these statements:

CREATE TEMP VIEW top_cities AS (…) indicates that you are creating a
new temporary view.

\COPY … copies data from this view to the top_cities.csv file on your
local computer.

DROP VIEW top_cities; deletes the view because you no longer need it.

If you open the top_cities.csv text file, you should see the following output:

Figure 6.9: Output from the \COPY command

Note

Here, the output file is top_cities.csv. You will be using this file in the
upcoming exercises in this chapter.

Now that you have the output from your database in CSV file format, you can
open it with a spreadsheet program, such as Excel.

234 | Importing and Exporting Data

5. Using Microsoft Excel or your favorite spreadsheet software or text editor, open
the top_cities.csv file:

Figure 6.10: The top_cities.csv file open in Excel

6. Next, select all the data, which in this case is from cell A1 to cell B11:

The COPY Command | 235

Figure 6.11: Select the entire dataset by clicking and dragging from cell A1 to cell B11

7. Next, in the top menu, go to Insert and then click on the bar chart icon () to
create a 2-D Column chart:

Figure 6.12: Insert a bar chart to visualize the selected data

236 | Importing and Exporting Data

8. Finally, you should end up with the following output:

Figure 6.13: The final output from your visualization

You can see from this chart that Washington D.C. has a very high number of
customers. Based on this simple analysis, Washington D.C. would probably be the
obvious next target for ZoomZoom expansion.

Note

To access the source code for this specific section, please refer to
https://packt.link/tcTFc.

In this exercise, you leveraged your data in an analytical tool. You did this by
exporting the data using psql and the \COPY command to perform data
visualization in Excel. This analysis could be useful for helping an executive to make
a data-driven decision regarding where they should open their next retail location.
Next, you will look at how you can use advanced programmatic analytical tools to
leverage your data.

https://packt.link/tcTFc

Using Python with your Database | 237

Using Python with your Database
While SQL has a breadth of functionality, many data scientists and data analysts
are starting to use Python too. This is because Python is a high-level language that
can be easily used to process data. While the functionality of SQL covers most of
the daily needs of data scientists, Python is growing fast and has generally become
one of the most important data analytics tools in recent polls. A lot of Python's
functionality is also fast, in part because so much of it is written in C, a low-level
programming language.

The other large advantage that Python has is that it is versatile. While SQL is generally
only used in the data science and statistical analysis communities, Python can be
used to do anything from statistical analysis to building a web application. As a result,
the developer community is much larger for Python. A larger developer community
is a big advantage because there is better community support (for example, on Stack
Overflow), and more Python packages and modules are being developed every day.
The last major benefit of Python is that as it is a general programming language, it can
be easier to deploy Python code to a production environment, and certain controls
(such as Python namespaces) make Python less susceptible to errors. As a result of
these advantages, it might be useful to learn Python as a data scientist.

Getting Started with Python

You have been running SQL against the PostgreSQL server and obtaining results via
client software such as pgAdmin and psql throughout this book. PostgreSQL DBMS,
as well as other relational DBMSs, allows for many ways of client connection. You
can run your SQL through any of these connection methods and retrieve data in the
same way as with pgAdmin and psql. When you use Python for data analytics, you
will use a specific Python library called psycopg2. This library, when called from
a Python runtime environment, will connect to the PostgreSQL server and handle
traffic between your Python script and the database server. In its simplest form, once
you connect to the PostgreSQL server using psycopg2, you can submit SQL to the
database using Python scripts, the same way that you would with psql.

While there are many ways to get access to Python, the Anaconda distribution of
Python makes it particularly easy to obtain and install Python and other analytical
tools, as it comes with many commonly used analytics packages preinstalled
alongside a great package manager. For that reason, you will be using the Anaconda
distribution in this book.

238 | Importing and Exporting Data

You can take the following steps to get set up using the Anaconda distribution and to
connect to Postgres:

1. Download and install Anaconda: https://www.anaconda.com/distribution/. During
the installation, make sure that the Add Anaconda to PATH option
is selected.

2. Once you have gone through the installation steps, open the Anaconda Prompt
for Mac/Windows. Type python into the command line and check that you can
access the Python interpreter, which should look like this:

Figure 6.14: The Python interpreter is now available and ready for input

Note

If you get an error, it may be because you need to specify your Python path.
You can enter quit() to exit.

Additionally, as you can see from the screenshot, the python version
used in this book is 3.9.7. At the time that this book is in writing, there is a
known issue in Anaconda that psycopg2 is not compatible with certain
python version 3.9.12 or newer. If you run into any issue with psycopg2
importing, please reinstall your python using version 3.9.7.

3. Next, download and install the PostgreSQL database client for Python,
psycopg2, using the Anaconda package manager. Open Anaconda Navigator
for Mac/Windows. In the left panel, choose the Environments tab. Then, in the
first drop-down box of the right panel, choose All.

https://www.anaconda.com/distribution/

Using Python with your Database | 239

Figure 6.15: Checking the psycopg2 installation status

Type psy in the search box. You will see a list of libraries, including psycopg2.
If it is not installed yet (that is, the box in front of it is not checked), check the box
and click on the Apply button in the bottom-right corner. Follow the instructions
for installation.

Figure 6.16: Installation checkbox for psycopg2

240 | Importing and Exporting Data

4. You can use Python in notebook form in your web browser. This is useful for
displaying visualizations and running exploratory analyses. In this chapter, you
are going to use Jupyter Notebook, which was installed as part of the Anaconda
installation. From the Home tab of Anaconda Navigator, find Jupyter Notebook
and click on Launch. You should see something like this pop up in your
default browser:

Figure 6.17: The Jupyter Notebook pop-up screen in your browser

5. Next, you will create a new notebook by clicking the New drop-down button and
choosing Python 3 (ipykernel):

Figure 6.18: Opening a new Python 3 Jupyter notebook

Using Python with your Database | 241

You now have a notebook. Each notebook consists of multiple cells. Each cell
contains some Python statements that will be executed together as one step.

Figure 6.19: A new Jupyter notebook

6. Start writing the following Python script to import psycopg2 into your Python
runtime by typing it in the cell and clicking on the Run button above:

import psycopg2

7. As you finish running one cell, a new cell is created. Type the following code
in the new cell and click on the Run button. This statement establishes the
connection from your Python program (which is a client) to the database server
specified in the parameters:

conn = psycopg2.connect(

 host="localhost",

 user="postgres",

 password="my_password",

 dbname="sqlda",

 port=5432

)

8. Type the following script in the new cell that is automatically generated and click
Run. This code creates a Python cursor that can send SQL statements to the
database server and retrieve results:

cur = conn.cursor()

9. Now you can execute a sample SQL statement from the cursor by using its
execute() method:

cur.execute("SELECT * FROM customers LIMIT 5")

242 | Importing and Exporting Data

10. Finally, you can retrieve the result and display it:

records = cur.fetchall()

print(records)

The following screenshot displays the output:

Figure 6.20: The output from your database connection in Python

You may wonder how this is different from running the same SQL from pgAdmin.
After all, while you were able to connect to the database and read the data, several
steps were required, and the syntax was a little bit more complex than for some of
the other approaches you have tried. The power of Python in data analytics, as well
as other programming languages, lies in the fact that inside a Python program, you
can directly process the data, which is generally faster and has more functionalities.
In the next section, you will learn how to use some of the other packages in Python to
facilitate interfacing with the database.

Improving PostgreSQL Access in Python with SQLAlchemy and pandas

While psycopg2 is a powerful database client for accessing PostgreSQL from
Python, it is just a connector. It does nothing more than passing the SQL and the
resulting data between your program and the database server. There are more things
in Python that can help the data analytics process. You can enhance the code by
using a couple of other packages—namely, pandas and SQLAlchemy. First, you will
learn about SQLAlchemy, a Python SQL toolkit that maps representations of objects
to database tables. You will get familiar with the SQLAlchemy database engine
and some of the advantages that it offers. This will enable you to access a database
seamlessly without worrying about connections and Python objects. Next, you will
learn about pandas—a Python package that can perform data manipulation and
facilitate data analysis.

Using Python with your Database | 243

The pandas package will help you represent your data table structure (called a
DataFrame) in memory. pandas also has high-level APIs that will enable you to read
data from a database in just a few lines of code.

While both packages are powerful, it is worth noting that they still use the psycopg2
package to connect to the database and execute queries. The big advantage that
these packages provide is that they abstract some of the complexities of connecting
to the database. By abstracting these complexities, you can connect to the database
without worrying that you might forget to close a connection or remove a Python
object such as a cursor.

What is SQLAlchemy?

SQLAlchemy is a Python SQL toolkit and Object-Relational Mapper (ORM) that
maps representations of objects to database tables. An ORM builds up mappings
between SQL tables and programming language objects; in this case, Python objects.
For example, in the following figure, there is a customer table in the database. The
Python ORM will thus create a class called customer and keep the content in the
object synchronized with the data in the table. For each row in the customer table, a
customer object will be created inside the Python runtime. When there are changes
(inserts, updates, and/or deletes), the ORM can initialize a sync and make the two
sides consistent.

Figure 6.21: An ORM maps rows in a database to objects in memory

244 | Importing and Exporting Data

While the SQLAlchemy ORM offers many great functionalities, its key benefit is the
Engine object. A SQLAlchemy Engine object contains information about the
type of database (in your case, PostgreSQL) and a connection pool. The connection
pool allows multiple connections to the database that operate simultaneously. The
connection pool is also beneficial because it does not create a connection until a
query is sent to be executed. Because these connections are not formed until the
query is executed, the Engine object is said to exhibit lazy initialization. The term
"lazy" is used to indicate that nothing happens (the connection is not formed) until
a request is made. This is advantageous because it minimizes the time it takes
for Python to establish and maintain the connection and reduces the load on
the database.

Another advantage of the SQLAlchemy Engine object is that it automatically
commits changes to the database due to CREATE TABLE, UPDATE, INSERT, and
other statements that modify a database. This will help the data in the database and
the data in Python to be synchronized all the time.

In your case, you will want to use it because it provides a robust Engine object to
access databases. If the connection is dropped, the SQLAlchemy Engine object
can instantiate that connection because it has a connection pool. It also provides a
nice interface that works well with other packages (such as pandas).

Using Python with SQLAlchemy and pandas

Normally, SQLAlchemy and pandas come together with Anaconda. When you
install Anaconda on your machine, you have already set them up. However, if you
are not sure about the installation, you can open Anaconda Navigator and go to the
Environments tab. From there, you can verify the installed packages and install
them if they are not there. From the same location, you can also install the packages
referenced later in this book, such as matplotlib, if necessary.

Now, open Anaconda Navigator if you have not done so. Launch Jupyter Notebook
and create a new notebook. Enter the following import statements in the first cell:

from sqlalchemy import create_engine

import pandas as pd

Using Python with your Database | 245

You will notice that you are importing two packages here. The first is the create_
engine module within the sqlalchemy package, and the second is pandas, which
you rename to pd following the standard convention (and it has fewer characters).
Using these two packages, you will be able to read and write data to and from your
database and visualize the output.

Hit the run button or press Shift + Enter to run these commands. A new active cell
should pop up:

Figure 6.22: Running your first cell in the Jupyter notebook

Next, you will configure your notebook to display plots and visualizations inline. You
can do this with the following command:

%matplotlib inline

This tells the matplotlib package (which is a dependency of pandas) to create
plots and visualizations inline in your notebook. Hit Shift + Enter again to jump to the
next cell.

In the new cell, you will define your connection string:

cnxn_string = (

 "postgresql+psycopg2://{username}:{pswd}@{host}:{port}/{database}"

)

print(cnxn_string)

246 | Importing and Exporting Data

Press Shift + Enter again, and you should now see this connection string was printed.
This is a generic connection string for psycopg2. You need to fill in your parameters
to create the database Engine object. You can replace the parameters using
the parameters that are specific to your connection. The particular parameters
corresponding to the setup of this book are as follows:

engine = create_engine(

 cnxn_string.format(

 username="postgres",

 pswd="your_password",

 host="localhost",

 port=5432,

 database="sqlda"

)

)

In this command, you run create_engine to create your database Engine object.
You pass in your connection string and you format it for your specific database
connection by filling in the placeholders for {username}, {pswd}, {host},
{port}, and {database}. The host is either an IP address, domain name, or
the word localhost if the database is hosted locally. Make sure you update the
password to match your setup.

Because SQLAlchemy is lazy, you will not know whether your database connection
was successful until you try to send a command. You can test whether this database
Engine object works by running the following command and hitting Shift + Enter:

engine.execute("SELECT * FROM customers LIMIT 2;").fetchall()

You should see something like this:

Figure 6.23: Executing a query within Python

Using Python with your Database | 247

The output of this command is a Python list containing rows from your database as
tuples. While you have successfully read data from your database, you will probably
find it more practical to read your data into a pandas DataFrame in the next section.

Reading and Writing to a Database with pandas

Python comes with great data structures, including lists, dictionaries, and tuples.
While these are useful, your data can often be represented in table form, with rows
and columns, similar to how you would store data in your database. For these
purposes, the DataFrame object in pandas can be particularly useful. In addition to
providing powerful data structures, pandas also offers the following:

• Functionality to read data directly from a database

• Data visualization

• Data analysis tools

If you continue from where you left off with your Jupyter notebook, you can use the
SQLAlchemy Engine object to read data into a pandas DataFrame:

customers_data = pd.read_sql_table('customers', engine)

You have now stored your entire customers table as a pandas DataFrame in the
customers_data variable. The pandas read_sql_table function requires
two parameters: the name of a table and the connectable database (in this case, the
SQLAlchemy Engine object). Alternatively, you can use the read_sql_query
function, which takes a query string instead of a table name.

248 | Importing and Exporting Data

Here is an example of what your notebook might look like at this point:

Figure 6.24: The entirety of your Jupyter notebook

Now that you know how to read data from the database, you can start to do some
basic analysis and visualization. In essence, a pandas DataFrame is a relational
table with enhanced information. You can apply similar operations in SQL on
the DataFrames, such as querying, inserting, filtering, and deleting. For example,
the head() method returns the first few (default of 5) rows of the DataFrame,
much like the LIMIT clause in SQL. Then, in addition, you can also perform
many more operations, such as pivoting, multi-column search and replacement,
and semi-structured data parsing, which are not possible or are very difficult
to achieve using SQL. For example, the min()/max() methods will return the
minimum/maximum values of every column, without the need to specify the column
name. The full functionalities of pandas are beyond the scope of this book, but will
demonstrate some basic ones in the coming exercises.

Using Python with your Database | 249

Writing Data to the Database Using Python

There will always be scenarios in which you will want to use Python to write data back
to the database. Luckily for you, pandas and SQLAlchemy make this a relatively
easy task.

If you have your data in a pandas DataFrame, you can write data back to the
database using the pandas to_sql(…) function, which requires two parameters:
the name of the table to write to and the connection. Best of all, the to_sql(…)
function can also create the target table for you by inferring column types using a
DataFrame's data types. In the coming exercise, Exercise 6.02, Reading, Visualizing, and
Saving Data in Python you will test out this functionality using the top_cities_data
DataFrame that you created in Step 8.

Now, implement an exercise to read, visualize, and save data using Python.

Exercise 6.02: Reading, Visualizing, and Saving Data in Python

In the previous exercise, you executed a SQL query to get a list of the cities that have
the highest number of customers. Then you dumped the result into a CSV file using
the COPY command and sent the file to the business department. Upon receiving the
file, they created a visualization on top of the CSV file in Excel and copied and pasted
the visualization into a Microsoft PowerPoint slide file for presentation.

Looking at this process, you can see that there is still a lot of manual work and
coordination between different applications. The whole process involves three
applications: psql, Excel, and PowerPoint. There is a .csv file passing between psql
and Excel, and there are copy and paste activities between Excel and PowerPoint.

In this exercise, you will analyze the same demographic information of customers by
their city to better understand the target audience by reading data from the database
output and visualizing the results using Python with Jupyter notebooks, SQLAlchemy,
and pandas. You will run the SQL inside Python, retrieve data in a pandas
DataFrame, and create a visualization inside Jupyter Notebook.

250 | Importing and Exporting Data

All this is automated and there are no other applications involved. There will not
be a need to pass files and clipboards between applications. The following steps
are involved:

1. Open Anaconda Navigator and launch Jupyter Notebook. Create a
new notebook.

2. Run the following code in the first cell. The code imports required libraries into
the Python runtime:

from sqlalchemy import create_engine

import pandas as pd

3. The second cell sets up the matplotlib environment for drawing.
Matplotlib is a Python library that is widely used for data visualization, that
is, drawing charts based on data. It comes together with pandas and should
have already been installed in your environment. Running this command allows
matplotlib to output the visualization directly to Jupyter Notebook:

%matplotlib inline

4. The third cell establishes a connection to the database server. You will need to
adjust this code based on your server's setup:

cnxn_string = (

 "postgresql+psycopg2://{username}:{pswd}@{host}:{port}/
{database}"
)

engine = create_engine(

 cnxn_string.format(

 username="postgres",

 pswd="my_password",

 host="localhost",

 port=5432,

 database="sqlda"

)

)

Using Python with your Database | 251

5. Enter the following query surrounded by triple quotes (triple quotes allow strings
that span multiple lines in Python):

query = """

 SELECT

 city,

 COUNT(1) AS number_of_customers,

 COUNT(NULLIF(gender, 'M')) AS female,

 COUNT(NULLIF(gender, 'F')) AS male

 FROM

 customers

 WHERE

 city IS NOT NULL

 GROUP BY

 1

 ORDER BY

 2 DESC

 LIMIT

 10

"""

For each city, this query calculates the count of customers and calculates the
count for each gender. It also removes customers with missing city information
and aggregates your customer data by the first column (the city). In addition to
this, it sorts the data by the second column (the count of customers) from largest
to smallest (descending). Then, it limits the output to the top 10 (that is, the 10
cities with the highest number of customers).

252 | Importing and Exporting Data

6. Read the query result into a pandas DataFrame with the following command
and execute the cells using Shift + Enter:

top_cities_data = pd.read_sql_query(query, engine)

The pandas read_sql_query method will run a SQL query against the
database server that the engine points to and return the result in a pandas
DataFrame. Here, top_cities_data is the DataFrame that pandas returned.
View the data of top_cities_data by entering this name in a new cell and
simply hitting Shift + Enter. Just as with the Python interpreter, Jupyter Notebook
will display the output value:

Figure 6.25: Storing the result of a query as a pandas DataFrame

You will notice that pandas also numbers the rows by default. In pandas, this
is called an index.

Using Python with your Database | 253

7. Now, plot the number of men and women in each of the top 10 cities. To view
the stats for each city separately, you can use a simple bar plot:

ax = top_cities_data.plot.bar(

 'city',

 y=['female', 'male'],

 title='Number of Customers by Gender and City'

)

The plot() method of the pandas DataFrame will draw a chart in the
notebook. The chart type depends on the submethod that the plot() method
uses. The bar() method will draw a bar chart. You can also choose other
visualization types such as a pie chart (pie()), line chart (line()), and scatter
plot (scatter()). Here is a screenshot of what your resulting output notebook
should look like:

Figure 6.26: Data visualization in the Jupyter notebook

254 | Importing and Exporting Data

The results show that there is no significant difference in the gender of your
customers in the cities that you are considering expanding into.

8. Now, use the following command to save the DataFrame into a database table:

top_cities_data.to_sql(

 'top_cities_data',

 engine,

 index=False,

 if_exists='replace'

)

In addition to the two required parameters, you added two optional parameters
to this function. The index parameter specifies whether you want the index to
be a column in your database table as well (a value of False means that you
will not include it), and the if_exists parameter allows you to specify how
to handle a scenario in which there is already a table with the same name in
the database. In this case, you want to drop that table and replace it with the
new data, so you use the 'replace' option. In general, you should exercise
caution when using the 'replace' option as you can inadvertently lose your
existing data.

9. You can utilize the data using SQL as it is currently saved in the database. You
can query this data from any database client, including pgAdmin. For example,
in the following SQL, you examine the relationship between the number of
customers and the sales:

SELECT

 t.city,

 t.number_of_customers,

 SUM(s.sales_amount)

FROM

 sales s

JOIN

 customers c

 ON s.customer_id = c.customer_id

JOIN

Using Python with your Database | 255

 top_cities_data t

 ON c.city = t.city

GROUP BY

 1, 2

ORDER BY

 2 DESC;

The following is the output of the code:

Figure 6.27: Data created in Python that has now been imported into your database

Note

To access the source code for this specific section, please refer to
https://packt.link/tcTFc.

https://packt.link/tcTFc

256 | Importing and Exporting Data

In this exercise, you were able to read data from your database programmatically and
perform data visualization on the result.

While the to_sql() functionality is simple and works as intended, it uses insert
statements to send data to the database. For a small table of 10 rows, this is fine;
however, for larger tables, the psql \COPY command is going to be much faster.
Next, you will look at how you can write data (such as results from statistical analysis)
back to the database using COPY.

Improving Python Write Speed with COPY

You can use the COPY command in conjunction with Python, SQLAlchemy, and
pandas to deliver the same speed that you get with the COPY command in psql.
For instance, say you define the following function:

import csv

from io import StringIO

def psql_insert_COPY(table, conn, keys, data_iter):

 # gets a DBAPI connection that can provide a cursor

 dbapi_conn = conn.connection

 with dbapi_conn.cursor() as cur:

 s_buf = StringIO()

 writer = csv.writer(s_buf)
 writer.writerows(data_iter)
 s_buf.seek(0)

 columns = ', '.join('"{}"'.format(k) for k in keys)
 if table.schema:
 table_name = '{}.{}'.format(table.schema, table.name)

 else:

 table_name = table.name

 sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(table_name, columns)

 cur.COPY_expert(sql=sql, file=s_buf)

Using Python with your Database | 257

Figure 6.28: Python code for importing data using COPY

You can then leverage the method parameter in to_sql, as shown here:

top_cities_data.to_sql(

 'top_cities_data',

 engine,

 index=False,

 if_exists='replace',

 method=psql_insert_COPY

)

The psql_insert_COPY function defined here can be used without modifications
to any of your PostgreSQL imports from pandas. Here is a breakdown of what this
code does:

1. After performing some necessary imports, you begin by defining the function
using the def keyword followed by the function name (psql_insert_COPY)
and the parameters (table, conn, keys, and data_iter).

2. Next, you establish a connection (dbapi_conn) and a cursor (cur) that you can
use for execution.

258 | Importing and Exporting Data

3. Next, you write all the data in your rows (represented by data_iter) to a string
buffer (s_buf), which is formatted like a CSV file, but exists in memory and not
in a file on your hard drive.

4. Then, you define the column names (columns) and the table name
(table_name).

5. Lastly, you execute the COPY statement by streaming the CSV file contents
through standard input (STDIN).

While it is helpful to read and write directly from the database, or import data
into the database from a file, sometimes you will want to read a file into Python
for preprocessing before the data is sent to your database (for example, if the file
contains errors and cannot be read directly by the database or if the file requires
additional analytics to be appended to it). In these instances, you can leverage Python
to read and write CSV files.

Reading and Writing CSV Files with Python

Until now, you have covered the usage of Python in conjunction with SQL. However,
Python can also process data in other ways.

In addition to reading and writing data to your database, you can use Python to read
and write data from your local file system. The commands for reading and writing
CSV files with pandas are very similar to those used for reading and writing from
your database:

• For writing, pandas.DataFrame.to_csv(file_path, index=False)
would write the DataFrame to your local file system using the supplied file_
path parameter. DataFrame is a property of pandas that temporarily stores
data. The to_ csv() method of DataFrame has the following parameters:
file_path, which is a string representing the path to the output file in a
format specific to the OS, and index, which, if set to true, will write row
numbers into the output data.

• For reading, pandas.read_csv(file_path, dtype={}) would return
a DataFrame representation of the data supplied in the CSV file located at the
file_path.

Using Python with your Database | 259

When reading a CSV file, pandas will infer the correct data type based on the values
in the file. For example, if the column contains only integer numbers, it will create the
column with an int64 data type.

Similarly, it can infer whether a column contains floats, timestamps, or strings.
pandas can also infer whether there is a header for the file, and generally, this
functionality works well. If there is a column that is not read incorrectly (for example,
a five-digit US zip code might be read in as an integer causing the leading zeros to
fall off, meaning "07123" would become "7123" without the leading zeros), you can
specify the column type directly using the dtype parameter. For example, if you
have a zip_code column in your dataset, you could specify that it is a string using
dtype={'zip_code': str}.

Note

There are many ways in which a .csv file might be formatted. While
pandas can generally infer the correct header and data types, many
parameters are provided to customize the reading and writing of a .csv file
for your needs.

Using the top_cities_data dataset in your notebook, you can test out
this functionality:

top_cities_data.to_csv(

 'c:\\Users\\Public\\top_cities_analysis.csv',

 index=False

)

my_data = pd.read_csv(

 'c:\\Users\\Public\\top_cities_analysis.csv'

)

my_data

260 | Importing and Exporting Data

my_data now contains the data that you wrote to a CSV file and then read back in.
You do not need to specify the optional dtype parameter in this case because your
columns could be inferred correctly using pandas. You should see an identical copy
of the data that is in top_cities_data:

Figure 6.29: Checking that you can write and read CSV files in pandas

In this example, you were able to read and write a CSV file from Python using data
you queried from your database. With these skills, you can now import and export
data between a file and your database, between Python and your database, and
between Python and a file.

Best Practices for Importing and Exporting Data

At this point, you have seen several different methods for reading and writing data
between your computer and your database. Each method has its own use case and
purpose. Generally, there are going to be two key factors that should guide your
decision-making process:

• You should try to access the database with the same tool that you will use to
analyze the data. As you add more steps to get your data from the database to
your analytics tool, you increase the ways in which new errors can arise. When
you cannot access the database using the same tool that you will use to process
the data, you should use psql to read and write CSV files to your database.

• When writing data, you can save time by using the COPY or \COPY commands.

Going Passwordless | 261

Going Passwordless
In addition to everything mentioned so far, it is also a good idea to set up a .pgpass
file. A .pgpass file specifies the parameters that you use to connect to your
database, including your password. All of the programmatic methods of accessing
the database discussed in this chapter (using either psql or Python) will allow you
to skip the password parameter if your .pgpass file contains the password for
the matching hostname, database, and username. This not only saves you time but
also increases the security of your database because you can freely share your code
without having to worry about passwords embedded in the code.

On Unix-based systems and macOS, you can create the .pgpass file in your home
directory. On Windows, you can create the file in %APPDATA%\postgresql\
pgpass.conf. %APPDATA% is a Windows system value that points to the current
application data folder. You can get the actual value of it by opening Windows
Explorer, typing the exact word %APPDATA%, into the address bar and hitting Enter.
The folder you are in is the folder this %APPDATA% value points to. The .pgpass file
should contain one line for every database connection that you want to store, and it
should follow this format (customized for your database parameters):

hostname:port:database:username:password

For your setup, the entry should be as follows (with the password properly set):

localhost:5432:sqlda:postgres:my_password

For Unix and Mac users, you will need to change the permissions on the file using the
following command on the command line (in Terminal):

chmod 0600 ~/.pgpass

For Windows users, it is assumed that you have secured the permissions of the file so
that other users cannot access it.

Once you have created the file, you can test that it works by calling psql as follows in
the terminal:

psql -h localhost -p 5432 -d sqlda -U postgres

262 | Importing and Exporting Data

As you can see, there is no prompt for the password. psql directly gets into the
command interface.

Figure 6.30: Passwordless login to psql from the command line

Since the .pgpass file was created successfully, you will not be prompted for
your password.

With this, you can now connect to your database without typing the password, which
both speeds up your development and mitigates the risk that you will accidentally
share a password.

In the following activity, you will use everything you have learned from this chapter to
see how you can discover sales trends by importing new datasets.

Activity 6.01: Using an External Dataset to Discover Sales Trends

In this activity, you are going to use the United States Census data on public
transportation usage by zip code to see whether the level of use of public
transportation shows any correlation to ZoomZoom sales in a given location.
This will allow you to practice the following skills:

• Importing and exporting data to and from your database

• Interacting with your database programmatically (for example, using Python in
conjunction with SQLAlchemy and pandas)

Note

Before you begin, you will need to download the public transportation
statistics by zip code dataset from GitHub: https://packt.link/NdMNL.

https://packt.link/NdMNL

Going Passwordless | 263

This dataset contains three columns:

• zip_code: This is the five-digit United States postal code that is used to identify
a region.

• public_transportation_pct: This is the percentage of the population in a
postal code that has been identified as using public transportation to commute
to work.

• public_transportation_population: This is the raw number of people
in a zip code that use public transportation to commute to work.

Perform the following steps to complete this activity:

1. Copy the data from the public transportation dataset to the ZoomZoom
customer database by importing this data into a new table in the
ZoomZoom database.

2. Find the maximum and minimum values of public_transportation_pct
in this data. Values less than 0 will most likely be missing data.

3. Calculate the average sales amounts for customers that live in high public
transportation usage regions (over 10%) as well as low public transportation
usage regions (less than, or equal to, 10%).

4. Read the data into pandas and plot a histogram of the distribution (Hint: you
can use my_data.plot.hist(y='public_transportation_pct') to
plot a histogram if you read the data into a my_data pandas DataFrame).

5. Using pandas, test using the to_sql function with and without the
method=psql_insert_COPY parameter. How do the speeds compare? (Hint:
in a Jupyter notebook, you can add %time in front of your command to see how
long it takes to execute the code.)

6. Group customers based on their zip code public transportation usage rounded
to the nearest 10% and look at the average number of transactions per
customer. Export this data to Excel and create a scatterplot to better understand
the relationship between public transportation usage and sales.

264 | Importing and Exporting Data

7. Based on this analysis, determine what recommendations you would have for
the executive team at ZoomZoom when considering expansion opportunities.

Note

To access the source code for this specific section, please refer to
https://packt.link/tcTFc.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you learned how to interface your database with other analytical tools
for further analysis and visualization. While SQL is powerful, there will still be those
odd analyses that need to be undertaken in other systems. To solve this problem,
SQL allows you to transfer data in and out of the database for whatever tasks you
may require.

Initially, we looked at how you can use the psql command-line tool to query a
database. From there, we were able to explore the COPY command and the psql-
specific \COPY command, which enabled you to import and export data to and
from the database in bulk. Next, you looked at programmatically accessing the
database using analytical software such as Python. From there, you were able to
explore some of the advanced functionality in Python, including SQLAlchemy and
pandas, which enabled you to perform data manipulation and visualization using a
programming language.

In the next chapter, you will examine data structures that can be used to store
complex relationships in data. You will learn how to mine insights from text data, as
well as looking at the JSON and array data types so that you can make full use of all
the information that is available.

https://packt.link/tcTFc

Overview

This chapter covers how to make the most of your data by analyzing
complex and alternative data types. While data is typically thought of
as numbers, in the real world, it frequently exists in other formats: text,
dates and times, and latitude and longitude. In addition to these specialty
data types, other data types provide the context regarding sequential or
non-predeterministic attributes. The goal of this chapter is to show how
you can use SQL and analytics techniques to produce insights from these
other data types.

By the end of this chapter, you will be able to perform descriptive analytics
on time series data using datetime. You will use geospatial data to
identify relationships, then extract insights from complex data types (that is,
arrays, JSON, and JSONB) and perform text analytics.

Analytics Using Complex Data

Types

7

268 | Analytics Using Complex Data Types

Introduction
In this book, you have learned a lot about SQL's processing power over numbers
and strings. The majority of data analytics tasks are indeed analyzing numbers and
strings. However, in the real world, data is often found in various other formats,
such as words, locations, dates, and, sometimes, complex data structures. This data,
although presented as numbers and strings, has its own domain of operation and
computation instead of simple arithmetic. For example, adding one day to January 31,
2022, will result in February 1, 2022, not January 32, 2022.

In this chapter, you will look at these data types and examine how you can use this
data in your analysis:

• Date and time

• Geospatial

• JSON

• ARRAY

• Text

By the end of the chapter, you will have broadened your analysis capabilities so that
you can leverage just about any type of data available to you.

Date and Time Data types for Analysis
You may be familiar with dates and times, but do you know how these quantitative
measures are represented? They are represented using numbers, but not a single
number. Instead, they are measured with a set of numbers, with one number each
for year, month, day, hour, minute, second, and millisecond.

This is a complex representation, comprising several different components. For
example, knowing the current minute without knowing the current hour does not
serve any purpose. Additionally, there are complex ways of interacting with dates and
times; for example, different points in time can be subtracted from one another. The
current time can be represented differently depending on where you are in the world.

As a result of these intricacies, you need to take special care when working with this
type of data. In fact, PostgreSQL, like most databases, offers special data types that
can represent these types of values. You will start by examining the DATE type.

Date and Time Data types for Analysis | 269

The DATE Data type

Dates can be easily represented using strings or numbers (for example, both
January 1, 2022 and 01/01/2022 clearly represent a specific date), but dates
are a special form of data as they represent a quantitative value that does not always
follow the simple numerical sequence. Adding 1 week to the current date means
adding 7 days, for example. A given date has different properties that you might want
to use in your analysis—for instance, the year or the day of the week that the date
represents. Working with dates is also necessary for time series analysis, which is
one of the most common types of analysis that come up. The SQL standard includes
the DATE data type, and PostgreSQL offers great functionality for interacting with
this data type.

The most common concern about the DATE data type is the display format.
Different regions use different formats to represent the same date. For example,
the date January 14, 2022 is written as 01/14/2022 in some countries but
14/01/2022 in others. You can set your database to display dates in the format that
you are most familiar with. PostgreSQL uses the DateStyle parameter to configure
these settings. To view your current settings, you can use the following command:

SHOW DateStyle;

The following is the output of the preceding query in a system where both the
PostgreSQL server and the pgAdmin client are installed on the same Windows server
whose system locale is set to the United States:

DateStyle

ISO, MDY

(1 row)

The first output specifies the International Organization Standardization (ISO)
output format, which displays the date as Year-Month-Day, and the second output
parameter specifies the ordering for input or output. In this case, since both the
server and client are using a United States locale, Month/Day/Year is used as the
display style. If your PostgreSQL server or client is installed on an operating system
with a different system locale than the one mentioned here, the result of the previous
command may be different. For example, if you wanted to set it to the European
format of Day, Month, Year, you would set DateStyle to 'GERMAN, DMY'. You can
configure the output for your database using the following command:

SET DateStyle='GERMAN, DMY';

270 | Analytics Using Complex Data Types

For this chapter, you will use the ISO display format (Year-Month-Day) and
the Month/Day/Year input format. You can configure this format by using the
preceding command.

Now, start by testing out the DATE format:

SELECT '1/8/2022'::DATE;

The following is the output of the query:

date

 2022-01-08

(1 row)

As you can see, when you input a string, 1/8/2022, using the Month/Day/Year
format, PostgreSQL understands that this is January 8, 2022 (and not August 1,
2022). It displays the date using the ISO format specified previously, in the form
of YYYY-MM-DD.

Similarly, you could use the following formats with dashes and periods to separate
the date components, with the same result:

SELECT '1-8-2022'::DATE;

The following is the output of the query:

date

 2022-01-08

(1 row)

In addition to displaying dates that are input as strings, you can display the current
date by simply using the current_date keyword in PostgreSQL:

SELECT current_date;

The following is the output of the query:

current_date

 2022-06-05

(1 row)

Date and Time Data types for Analysis | 271

The DATE data type is useful. The natural extension of it is the data type representing
the time, such as 10 a.m. or 2 p.m., in a day. The interesting fact is that when people
talk about time, they usually refer to the combination of a day and a time. Simply
referring to a time is not enough to determine the exact moment that something
happens. For example, "the class starts at 6 p.m." very likely implies that the class
starts at 6 p.m. every Monday for this semester. To avoid any confusion, the SQL
standard offers the TIMESTAMP data type, which represents a date and a time,
down to a microsecond, for example, 2022-06-05 13:47:44.472096.

You can see the current timestamp using the NOW() function, and you can specify
your time zone using AT TIME ZONE '<time zone>'. Here is an example of the
NOW() function with the Eastern Standard time zone specified:

SELECT NOW() AT TIME ZONE 'EST';

The following is the output of the query:

timezone

 2022-06-05 13:47:44.472096

(1 row)

You can also use the TIMESTAMP data type without the time zone specified. You can
get the current time zone with the NOW() function:

SELECT NOW();

The following is the output of the query. The -04 at the end of the string indicates the
output time zone:

now

 2022-06-05 13:47:44.472096-04

(1 row)

Note

In general, it is recommended that you use the timestamp with the
time zone specified. If you do not specify the time zone, the value
of the timestamp could be questionable (for example, the time could
be represented in the time zone where the company is located, in
Coordinated Universal Time (UTC) time, or the customer's time zone).

272 | Analytics Using Complex Data Types

The DATE and TIMESTAMP data types are helpful not only because they display
dates in a readable format, but also because they store these values using fewer
bytes than the equivalent string representation (a DATE type value requires only
4 bytes, while the equivalent text representation might be 8 bytes for an eight-
character representation such as '20160101'). Additionally, PostgreSQL provides
special functionalities to manipulate and transform dates. This is particularly useful
for data analytics.

Transforming Date Data types

Often, you will want to decompose your dates into their component parts. For
example, while daily sales are important, you may also be interested in the summary
for each year and month, so that you can review the monthly trend of your sales. You
may see from this trend which month is your bestselling one so that you can prepare
your inventory in advance. To do this, you can use EXTRACT(component FROM
date). Here is an example:

SELECT

 current_date,

 EXTRACT(year FROM current_date) AS year,

 EXTRACT(month FROM current_date) AS month,

 EXTRACT(day FROM current_date) AS day;

The following is the output of the code:

current_date | year | month | day

--------------+------+-------+-----

2022-06-05 | 2022 | 6 | 5

(1 row)

Similarly, you can abbreviate these components as y, mon, and d, and PostgreSQL will
understand what you want:

SELECT

 current_date,

 EXTRACT(y FROM current_date) AS year,

 EXTRACT(mon FROM current_date) AS month,

 EXTRACT(d FROM current_date) AS day;

Date and Time Data types for Analysis | 273

The following is the output of the code:

current_date | year | month | day

--------------+------+-------+-----

2022-06-05 | 2022 | 6 | 5

(1 row)

In addition to the year, month, and day, you will sometimes want additional
components, such as day of the week, week of the year, or quarter. You can
extract these date parts as follows:

SELECT

 current_date,

 EXTRACT(dow FROM current_date) AS day_of_week,

 EXTRACT(week FROM current_date) AS week_of_year,

 EXTRACT(quarter FROM current_date) AS quarter;

The following is the output of the code:

current_date | day_of_week | week | quarter

--------------+-------------+------+---------

2022-06-05 | 0 | 23 | 2

(1 row)

Note

EXTRACT always outputs a number; so, in this case, day_of_week
starts at 0 (Sunday) and goes up to 6 (Saturday). Instead of dow, you can
use isodow, which starts at 1 (Monday) and goes up to 7 (Sunday).

In addition to extracting date parts from a date, you may want to simply truncate
your date or timestamp. For example, say you want to view the year and month
summary for sales, but you only have the date in the sales table. To aggregate the
sales for year/month, you need to remove the day and timestamp from the date and
get the year+month output. This can be done using many functions, such as DATE_
TRUNC(), DATE_PART(), or EXTRACT(), each with a slightly different syntax and
purpose. In the following example, you will use the TO_CHAR() function, which
extracts the designated parts of a date and organizes them into one string, because
it offers maximum flexibility over what information you can get and how you want to
present it:

SELECT NOW(), TO_CHAR(NOW(), 'yyyymm') AS yearmonth;

274 | Analytics Using Complex Data Types

The following is the output of the code:

 now | yearmonth

-------------------------------+------------------------

2022-06-05 19:40:08.691618+00 | 202206

The date part extraction functions such as TO_CHAR() and EXTRACT() are
particularly useful for GROUP BY statements. For example, you can use it to group
sales by year and month and get the monthly sales for the whole year:

SELECT

 TO_CHAR(sales_transaction_date, 'yyyymm') AS yearmonth,

 SUM(sales_amount) AS total_quarterly_sales

FROM

 sales

GROUP BY

 1

ORDER BY

 1 DESC;

The result is as follows:

Figure 7.1: Monthly sales using TO_CHAR

Date and Time Data types for Analysis | 275

Intervals

In addition to representing dates, you can also represent fixed time intervals using
the INTERVAL data type. This data type is useful if you want to analyze how long
something takes. For example, when customers receive a promotional email, they
may not open it immediately. The interval between the date the email is received
and the date the email is opened can indicate how attractive the email is to the
customers. If you want to know how long it takes a customer to open an email after
receiving it, you need to calculate the interval between those two dates.

Here is an example:

SELECT INTERVAL '5 days';

The following is the output of the code:

interval

 5 days

(1 row)

Intervals are useful for measuring the difference between two timestamps by
subtracting these two timestamps. They can also be used to add to/subtract from a
timestamp to get a new timestamp. For example, if you want to measure the length
of February, you can calculate the interval between the first day of February and the
first day of March:

SELECT TIMESTAMP '2022-03-01 00:00:00' - TIMESTAMP '2022-02-01

00:00:00' AS days_in_feb;

The following is the output of the code:

days_in_feb

 28 days

(1 row)

Alternatively, intervals can be used to add the number of days to a timestamp to get a
new timestamp, such as "what is the date 7 days from now?":

SELECT TIMESTAMP '2022-06-05 00:00:00' + INTERVAL '7 days' AS new_date;

276 | Analytics Using Complex Data Types

The following is the output of the code:

new_date

 2022-06-12 00:00:00

(1 row)

While intervals offer a precise method for doing timestamp arithmetic, the DATE
format can be used with integers to accomplish a similar result. In the following
example, you simply add 7 (an integer) to the date to calculate the new date:

SELECT DATE '2022-06-05' + 7 AS new_date;

The following is the output of the code:

new_date

 2022-06-12

(1 row)

Similarly, you can subtract two dates and get an integer result:

SELECT DATE '2022-03-01' - DATE '2022-02-01' AS days_in_feb;

The following is the output of the code:

days_in_feb

28

(1 row)

While the DATE data type offers ease of use, the timestamp with the TIME ZONE
data type offers precision. If you need your date/time field to be precisely the same
as the time at which the action occurred, you should use the timestamp with the time
zone. If not, you can use the DATE field.

Note

All the exercises and activity code for this chapter can also be found on
GitHub: http://packt.link/LpoE0.

http://packt.link/LpoE0

Date and Time Data types for Analysis | 277

Exercise 7.01: Analytics with Time Series Data

ZoomZoom has ramped up its efforts to recruit more customers during the year
2021, hoping that it can sell more vehicles as the number of new customers grows. In
this exercise, you will perform a basic analysis using time series data to gain insight
into whether the sales were affected by the number of new customers. While it
makes sense to have a day-by-day comparison, daily sales/recruitments can fluctuate
significantly. It is generally recommended to start from a longer time span, such as
monthly sales/recruitment, and break down the numbers once you find any patterns.

Perform the following steps to complete the exercise:

1. First, look at the number of monthly sales. You can use the following aggregate
query with the TO_CHAR method:

SELECT

 TO_CHAR(sales_transaction_date, 'yyyymm') AS month_date,

 COUNT(1) AS number_of_sales

FROM

 sales

WHERE

 EXTRACT(year FROM sales_transaction_date) = 2021

GROUP BY

 1

ORDER BY

 1;

278 | Analytics Using Complex Data Types

After running this SQL, you will get the following result:

Figure 7.2: Monthly number of sales

2. Run another query to get the number of new customers joining each month:

SELECT

 TO_CHAR(date_added, 'yyyymm') AS month_date,

 COUNT(1) AS number_of_new_customers

FROM

 customers

WHERE

 EXTRACT(year FROM date_added) = 2021

GROUP BY

 1

ORDER BY

 1;

Date and Time Data types for Analysis | 279

The following is the output of the preceding query:

Figure 7.3: Number of new customer sign-ups every month

You can probably see that the flow of new potential customers is fairly steady and
hovers around 400-500 new customer sign-ups every month, while the number of
sales (as queried in step 1) varies considerably. So, it looks like the effort of signing up
new customers may not be directly related to the sales amount.

Note

To access the source code for this specific section, please refer to
http://packt.link/LpoE0.

http://packt.link/LpoE0

280 | Analytics Using Complex Data Types

In this exercise, you used a PostgreSQL function to extract year and month parts from
a date and used the extracted information to aggregate sales data and customer
recruitment data to form a time series for comparison. In the next section, you will
learn about another data type that has its own domain of operations, geospatial data.

Performing Geospatial Analysis in PostgreSQL
In addition to looking at time series data to better understand trends, you can also
use geospatial information (such as city, country, or latitude and longitude) to better
understand your customers. For example, governments use geospatial analysis to
better understand regional economic differences, while a ride-sharing platform might
use geospatial data to find the closest driver for a customer.

You can represent a geospatial location using latitude and longitude coordinates, and
this will be the fundamental building block for you to begin geospatial analysis.

Latitude and Longitude

Locations are often thought about in terms of the address—the city, state, country, or
postal code that is assigned to the location that you are interested in. This is usually
from an analytics perspective. For example, you can look at the sales volume in the
ZoomZoom sales table by city and come up with meaningful results about which
cities are performing well.

Often, you need to understand geospatial relationships numerically to understand
the distances between two points or relationships that vary based on where you are
on a map. After all, if you live on the border between two cities, it is unlikely that your
spending behavior will suddenly change if you walk across into the other city.

Latitude and longitude allow you to look at the location in a continuous context. This
allows you to analyze the numeric relationships between location and other factors
(for example, sales). Latitude and longitude also enable you to look at the distances
between two locations.

Latitude tells you how far north or south a point is. A point at +90° latitude is at the
North Pole, while a point at 0° latitude is at the equator, and a point at -90° is at the
South Pole. On a map, lines of constant latitude run east and west.

Performing Geospatial Analysis in PostgreSQL | 281

Longitude tells you how far east or west a point is. On a map, lines of constant
longitude run north and south. Greenwich, England, is the point of 0° longitude.
Points can be defined using longitude as west (-) or east (+) of this point and values
range from -180° west to +180° east. These values are equivalent because they both
point to the vertical line that runs through the Pacific Ocean, which is halfway around
the world from Greenwich, England.

Representing Latitude and Longitude in PostgreSQL

In PostgreSQL, you can represent latitude and longitude using two floating-point
numbers. In fact, this is how latitude and longitude are represented in the ZoomZoom
Customers table:

SELECT

 latitude,

 longitude

FROM

 customers

WHERE

 latitude IS NOT NULL

LIMIT

 10;

Here is the output of the preceding query:

Figure 7.4: The latitudes and longitudes of ZoomZoom customers

282 | Analytics Using Complex Data Types

Here, you can see that all the latitudes are positive because the United States is north
of the equator. All the longitudes are negative because the United States is west of
Greenwich, England. You can also notice that some customers do not have latitude
and longitude values filled in, because their location is unknown.

While these values can give you the exact location of a customer, you cannot do much
with that information, because distance calculations require trigonometry and make
simplifying assumptions that the earth is perfectly round.

Thankfully, PostgreSQL has the tools to solve this problem. You can calculate
distances in PostgreSQL using two packages, earthdistance and cube. You can
install these two packages by running the following two commands in pgAdmin:

CREATE EXTENSION cube;

CREATE EXTENSION earthdistance;

These two extensions only need to be installed once by running the two preceding
commands. The earthdistance module depends on the cube module so you
must install the cube module first. Once you install the earthdistance module,
you can define a POINT data type:

SELECT

 POINT(longitude, latitude)

FROM

 customers

WHERE

 longitude IS NOT NULL

LIMIT

 10;

Performing Geospatial Analysis in PostgreSQL | 283

Here is the output of the preceding query:

Figure 7.5: Customer latitude and longitude represented as points in PostgreSQL

Note

A POINT data type is defined as a combination of two numbers enclosed
with parenthesis, with the first number being longitude and the second being
latitude, such as (-90, 38). This is contrary to the convention of latitude
followed by longitude. The rationale behind this is that longitude more
closely represents points along an x axis, latitude more closely represents
points on the y axis, and in mathematics, graphical points are usually noted
by their x coordinate followed by their y coordinate.

The earthdistance module also allows you to calculate the distance between
points in miles:

SELECT

 point(-90, 38) <@> point(-91, 37) AS distance_in_miles;

284 | Analytics Using Complex Data Types

Here is the output of the preceding query:

distance_in_miles

 88.1949338379752

(1 row)

In this example, you defined two points, (38° N, 90° W) and (37° N, 91° W), and
were able to calculate the distance between these points using the <@> operator.
This operator calculates the distance in miles (in this case, these two points are 88.2
miles apart).

In the next exercise, you will see how you can use these distance calculations in a
practical business context.

Exercise 7.02: Geospatial Analysis

In this exercise, you will identify the closest dealership for each customer. ZoomZoom
marketers are trying to increase customer engagement by helping customers find
their nearest dealership. The product team is also interested to know what the typical
distance is between each customer and their closest dealership.

Follow these steps to implement the exercise:

1. Create a table with the longitude and latitude points for every customer:

CREATE TEMP TABLE customer_points AS (

 SELECT

 customer_id,

point(longitude, latitude) AS lng_lat_point

 FROM

customers

 WHERE

longitude IS NOT NULL

 AND

 latitude IS NOT NULL

);

2. Create a similar table for every dealership:

CREATE TEMP TABLE dealership_points AS (

 SELECT

 dealership_id,

 point(longitude, latitude) AS lng_lat_point

Performing Geospatial Analysis in PostgreSQL | 285

 FROM

 dealerships

);

3. Cross-join these tables to calculate the distance from each customer to each
dealership (in miles):

CREATE TEMP TABLE customer_dealership_distance AS (

 SELECT

 customer_id,

 dealership_id,

 c.lng_lat_point <@> d.lng_lat_point AS distance

 FROM

 customer_points c

 CROSS JOIN

 dealership_points d

);

4. Finally, for each customer ID, you select the dealership with the shortest
distance. So far, you have got the location for customers and dealerships and
obtained distances from each customer to each dealership. The next task is to
find the customer-dealership combination that has the shortest distance for the
customer using a DISTINCT ON clause. As discussed in Chapter 6, Importing
and Exporting Data, the DISTINCT ON clause guarantees only the first record
for each unique value of the column in parentheses. In this case, you will get one
record for every customer_id value, and because this is sorted by distance to
dealerships, you will get the dealership that has the shortest distance:

CREATE TEMP TABLE closest_dealerships AS (

 SELECT DISTINCT ON (customer_id)

 customer_id,

 dealership_id,

 distance

 FROM customer_dealership_distance

 ORDER BY customer_id, distance

);

286 | Analytics Using Complex Data Types

5. Now that you have the data to fulfill the marketing team's request, you can
calculate the typical distance from each customer to their closest dealership. You
have learned that there are two common ways to represent the typical value of a
dataset, mean and median. You will get both using the following query:

SELECT

 AVG(distance) AS avg_dist,

 PERCENTILE_DISC(0.5)

 WITHIN GROUP (ORDER BY distance) AS median_dist

FROM

 closest_dealerships;

Here is the output of the preceding query:

Figure 7.6: The average and median distances between
customers and their closest dealership

The result is that the average distance is about 147 miles away, but the median
distance is about 91 miles.

There is a clear difference between the mean and median. As you learned in
Chapter 1, Understanding and Describing Data, both are important indicators of central
tendency, which represents the most typical value of the dataset. But why are these
two typical values for the same dataset so different? What does this tell you about
the data? In Chapter 1, Understanding and Describing Data, you learned that the mean
is more sensitive to outliers. There are apparently some customers whose distance
to the closest dealership is much greater than most customers. As such, the mean is
significantly larger than the median. Generally, it is a good idea to calculate both the
mean and median of a variable. If there is a significant difference in the values of the
mean and the median, then the dataset may have outliers. You need to identify these
outliers for further analysis.

Performing Geospatial Analysis in PostgreSQL | 287

As you identify the issue with this dataset, a question is whether these outliers are
caused by data quality issues or not. As you identify which customers are outliers,
you review their residential data source to confirm that their registered address is
truly their most up-to-date residential address, not the address they lived at 10 years
ago. Once identified, you will use the techniques you learned in previous chapters to
update the information and rerun the analysis, thus forming a loop of data cleansing
and improvement. This is a very common and useful workflow in the data analytics
field. It will also help improve the quality of operational data and reduce unnecessary
waste and mistakes by the operation team.

But what if the data is correct? How will this information be useful to the business?
Always remember that the purpose of data analytics is to provide insight into
the business. Now that you know some customers live further from dealerships
than most customers, what decisions can you make based on this knowledge?
Do you consider the existence of these customers to indicate the need for more
dealerships in their area? These observations and analyses are exactly what the
management team expects the data analysts to do and should be discussed with
the management team.

Note

To access the source code for this specific section, please refer to
http://packt.link/LpoE0.

In this section, you have learned that the calculation of geospatial data requires two
particular packages, together with a specific data type, POINT. In this exercise, you
identified the closest dealership for each customer by creating the POINT value for
each customer and each dealership, calculating the distance between each customer
and every possible dealership using the distance calculation function between points,
identifying the closest dealership for each customer using the DISTINCT ON clause,
and finding the average and median distances to a dealership for your customers.
You were also introduced to some further discussion on what the result data may
bring you, both from a data cleansing perspective and a data analysis perspective.
The result of this analysis could provide management with a fresh idea to expand
the business.

http://packt.link/LpoE0

288 | Analytics Using Complex Data Types

Using Array Data types in PostgreSQL
While the PostgreSQL data types that you have explored so far allow you to store
many different types of data, occasionally you will want to store a series of values in
a table. For example, you might want to store a list of the products that a customer
has purchased or the employee ID numbers associated with a specific dealership. For
this scenario, PostgreSQL offers the ARRAY data type, which allows you to store a list
of values.

Starting with Arrays

PostgreSQL arrays allow you to store multiple values in a field in a table. For
example, consider the following first record in the customers table:

customer_id | 1

title | NULL

first_name | Arlena

last_name | Riveles

suffix | NULL

email | ariveles0@stumbleupon.com

gender | F

ip_address | 98.36.172.246

phone | NULL

street_address | NULL

city | NULL

state | NULL

postal_code | NULL

latitude | NULL

longitude | NULL

date_added | 2019-12-19 00:00:00

Each field contains exactly one value (the NULL value is still a value); however, there
are some attributes that might contain multiple values with an unspecified length. For
instance, say you wanted to have a purchased_products field. This could contain
zero or more values within the field. Imagine the customer purchased the Lemon and
Bat Limited Edition scooters. You could represent that as follows:

purchased_products | {Lemon,"Bat Limited Edition"}

Using Array Data types in PostgreSQL | 289

You can define an array in a variety of ways. One of the ways to get started is simply
by creating an array using the following command:

SELECT

 ARRAY['Lemon', 'Bat Limited Edition'] AS example_purchased_products;

The following is the output of the code:

example_purchased_products

 {Lemon,"Bat Limited Edition"}

PostgreSQL knows that the Lemon and Bat Limited Edition values are of the
TEXT data type, so it creates a TEXT array to store these values.

While you can create an array for any data type, the array is limited to values for that
data type only. So, you could not have an integer value followed by a text value or vice
versa (this would produce an error).

You can also create arrays using the ARRAY_AGG aggregate function. This aggregate
function will create an array of all the values in the group. This is useful when you
want to have a consolidated list of sub-attributes for each value in a parent attribute.
For example, the following query aggregates all the vehicles for each product type:

SELECT

 product_type, ARRAY_AGG(DISTINCT model) AS models

FROM

 products

GROUP BY

 1;

The following is the output of the preceding query, in which all the models of
automobile form an array that corresponds to the automobile product type, and all
the models of scooter form an array that corresponds to the scooter product type:

Figure 7.7: Output of the ARRAY_AGG function

290 | Analytics Using Complex Data Types

You can also specify how to order the elements by including an ORDER BY statement
in the ARRAY_AGG function, as in the following example:

SELECT

 product_type,

 ARRAY_AGG(model ORDER BY year) AS models

FROM

 products

GROUP BY

 1;

This is the output:

Figure 7.8: Output of the ARRAY_AGG function with ORDER BY

But there might be situations where you would want to reverse this operation. This
can be done by using the UNNEST function, which creates one row for every value in
the array:

SELECT UNNEST(ARRAY[123, 456, 789]) AS example_ids;

Here is the output of the preceding query:

example_ids

123

456

789

(3 rows)

You can also create an array by splitting a string value using the STRING_TO_ARRAY
function. A common scenario is that when you use external transaction systems,
many systems these days will generate text outputs containing all the information in
one string. You will need to break the string into multiple parts and parse each part
accordingly. Here is an example:

SELECT STRING_TO_ARRAY('hello there how are you?', ' ');

Using Array Data types in PostgreSQL | 291

In this example, the sentence is split using the second string (' '), and you end up
with the following result:

string_to_array

{hello,there,how,are,you?}

(1 row)

Similarly, you can run the reverse operation and concatenate an array of strings into
a single string:

SELECT

 ARRAY_TO_STRING(

 ARRAY['Lemon', 'Bat Limited Edition'], ', '

) AS example_purchased_products;

In this example, you can join the individual string with the second string using ',':

example_purchased_products

Lemon, Bat Limited Edition

There are other functions that allow you to interact with arrays. Here are a few
examples of the additional array functionalities that PostgreSQL provides:

Figure 7.9: Examples of additional array functionality

In Exercise 7.03, Analyzing Sequences Using Arrays, you will apply these operators and
array functionality to capture sequences of marketing touchpoints.

292 | Analytics Using Complex Data Types

Exercise 7.03: Analyzing Sequences Using Arrays

In this exercise, you will use arrays to analyze sequences. ZoomZoom sends emails
to customers in series. For example, before the December holiday season, they
will send out an email providing a product catalog of all the things they sell. During
the season, they will send out updates on what product is selling well and what
discounts are provided. After the season, they will send out thank you emails and
offer further products and discounts. The marketing team wants you to identify the
three most common email sequences. You will help them to better understand how
different these sequences are by looking at whether these sequences are supersets
of one another:

1. First, create a table that represents the email sequence for every customer:

CREATE TEMP TABLE customer_email_sequences AS (

 SELECT

 customer_id,

 ARRAY_AGG(

 email_subject ORDER BY sent_date

) AS email_sequence

 FROM

emails

 GROUP BY

 1

);

2. Next, identify the three most common email sequences. Given that you already
have the email sequences, you can do this by using ORDER BY with LIMIT
3. As the ORDER BY clause is based on the occurrence of email sequences,
the SELECT statement will yield the sequences with the most frequent
ones first. Then with the LIMIT 3 clause, the statement will return only the
top 3 sequences:

CREATE TEMP TABLE top_email_sequences AS (

 SELECT

 email_sequence,

 COUNT(1) AS occurrences

 FROM

 customer_email_sequences

 GROUP BY

 1

 ORDER BY

Using Array Data types in PostgreSQL | 293

 2 DESC

 LIMIT

 3

);

SELECT

 email_sequence

FROM

 top_email_sequences;

The code will generate three rows. They are too long to display inside one figure
so only the first one is shown below:

Figure 7.10: The first result from email sequences

3. Lastly, you would want to check which of these arrays is a superset of the
other arrays. It is possible that some customers joined later than others, so
they only received a part of the email sequence. You need to identify these
sub-sequences as a part of the complete email sequence. The only issue is that
the email sequence fields are very long and are not intuitive to read through with
human eyes. To help with this, it is helpful to give your rows a numeric ID for
identification:

ALTER TABLE

 top_email_sequences

ADD COLUMN

 id SERIAL PRIMARY KEY;

4. Next, you can cross-join the table to itself, and use the @> operator to
check whether an array containing an email sequence contains another
email sequence:

SELECT

 super_email_seq.id AS superset_id,

 sub_email_seq.id AS subset_id

FROM

 top_email_sequences AS super_email_seq

294 | Analytics Using Complex Data Types

CROSS JOIN

 top_email_sequences AS sub_email_seq

WHERE

 super_email_seq.email_sequence @> sub_email_seq.email_sequence

AND

 super_email_seq.id != sub_email_seq.id;

The following is the output of the code:

Figure 7.11: These results indicate the top email sequences that are supersets of each other

From this, you can gather that the top email sequence contains the second and third
most common email sequences, while the third most common email sequence is a
superset of the second most common sequence. This type of analysis is generally
helpful when looking at what customer touchpoints might lead someone to make a
purchase or not. For example, some customers joining late may not have received the
first email, the holiday season product catalog. But if a similar percentage of these
customers and the customers who have received the first email made a purchase
after receiving the holiday season discount email, you may reasonably suspect that
the holiday season discount email is the main reason for purchase, not the product
catalog. This is also known as attribution modeling.

Note

To access the source code for this specific section, please refer to
http://packt.link/LpoE0.

While arrays are great for lists of values and sequences, the JSON data type can
enable you to manage data in key-value pairs, which you will explore in detail in the
next section.

http://packt.link/LpoE0

Using JSON Data types in PostgreSQL | 295

Using JSON Data types in PostgreSQL
While arrays can be useful for storing a list of values in a single field, sometimes
your data structures can be complex. You might want to store multiple values of
different types in a single field, and you might want data to be keyed with labels
rather than stored sequentially. These are common issues with log-level data, as well
as alternative data. For example, a healthcare patient database may contain a field
called prescription, which contains all the prescriptions of a patient. Some patients
may not have any prescriptions, thus this field may be empty. Other patients may
have multiple prescriptions, and each patient's prescription may be different from
the others. One patient may have a hypertension drug of 10mg per day. Another
may have an insomnia drug of two pills per night. Yet another patient may have both.
It is very hard to store these in a predefined format, so they are usually stored as
key-value pairs using the JSON format.

JavaScript Object Notation (JSON) is an open standard text format for storing data
of varying complexity. It can be used to represent just about anything, such as the
healthcare patient information you saw previously. This is different from the ARRAY
data type, which can store multiple values. The values must be of the same type. A
database table has column names, whereas JSON data has keys. You can use JSON to
represent a record from your customers table easily by storing column names as
keys and row values as values. The row_to_json function transforms rows to JSON:

SELECT row_to_json(c) FROM customers c limit 1;

Here is the output of the preceding query:

Figure 7.12: A row converted to JSON

This is a little hard to read, but you can add the pretty_bool flag to generate a
readable version. In the following query, the second parameter of the row_to_json
function is the pretty_bool flag and it is set to TRUE:

SELECT row_to_json(c, TRUE) FROM customers c limit 1;

296 | Analytics Using Complex Data Types

Here is the output of the preceding query:

Figure 7.13: JSON output from row_to_json

As you can see, once you reformat the JSON output from the query, row_to_json
presents a simple, readable, text representation of your row. The JSON structure
contains keys and values. In this example, the keys are simply the column names,
and the values come from the row values. JSON values can either be numeric values
(integers or floats), Boolean values (True or False), text values (wrapped with
double quotation marks), or simply NULL.

JSON can also include nested data structures. For example, consider a hypothetical
scenario in which you want to include purchased products in the table as well. Say
that there are two purchased products, Lemon and Bat Limited Edition. You
could write your JSON document this way:

{

 "customer_id":1,

 "example_purchased_products":["Lemon", "Bat Limited Edition"]

}

Using JSON Data types in PostgreSQL | 297

Or you could take this example one step further, adding the complete sales records
of these two products to this customer's record:

{

 "customer_id": 7,

 "sales": [

 {

 "product_id": 7,

 "sales_amount": 599.99,

 "sales_transaction_date": "2019-04-25T04:00:30"

 },

 {

 "product_id": 1,

 "sales_amount": 399.99,

 "sales_transaction_date": "2011-08-08T08:55:56"

 },

 {

 "product_id": 6,

 "sales_amount": 65500,

 "sales_transaction_date": "2016-09-04T12:43:12"

 }

],

}

In this example, you have a JSON object with two keys: customer_id and sales.
As you can see, the sales key points to a JSON array of values, but each value is
another JSON object representing one sale. JSON objects that exist within a JSON
object are referred to as nested JSON. In this case, you have represented all the sales
transactions for a customer using a nested array that contains nested JSON objects
for each sale.

While JSON is a universal format for storing data, it is inefficient because everything
is stored as one long text string. To retrieve a value associated with a key, you
would need to first parse the text, and this has a relatively high computational cost
associated with it. If you just have a few JSON objects, this performance overhead
might not be a big deal. However, it might become a burden if you are trying to
perform a JSON operation on a large dataset, such as selecting the JSON object with
"customer_id": 7 from millions of other JSON objects in your database.

In the next section, you will learn about JSONB, a binary JSON format that is optimized
for PostgreSQL. This data type allows you to avoid a lot of the parsing overhead
associated with a standard JSON text string.

298 | Analytics Using Complex Data Types

JSONB: Pre-Parsed JSON

As you saw previously, JSON is stored and transferred as a text string. For the
computer to understand what key it contains and what value corresponds to each
key, the computer must break up the string into key-value pairs. This will increase the
time and resources required to handle JSON data. PostgreSQL provides a data type
called JSONB, which is JSON but stored in pre-parsed format. Upon receiving a JSON
string for a JSONB column, PostgreSQL will decompose the string into binary format.
This is advantageous as there is a significant performance improvement when
querying the keys or values in a JSONB field. This is because the keys and values do
not need to be parsed; they have already been extracted and stored in an accessible
binary format.

Note

JSONB differs from JSON in a few other ways as well. First, in JSONB,
you cannot have more than one key with the same name. Second, the key
order is not preserved. Third, semantically insignificant details, such as
whitespace, are not preserved.

Accessing Data from a JSON or JSONB Field

JSON keys can be used to access the associated value using the -> operator. Here is
an example:

SELECT

 '{

 "a": 1,

 "b": 2,

 "c": 3

 }'::JSON -> 'b' AS data;

In this example, you have a three-key JSON value, and you are trying to access the
value for the b key. The output is a single output: 2. This is because the -> 'b'
operation gets the value for the b key from the preceding JSON format, {"a": 1,
"b": 2, "c": 3}.

Using JSON Data types in PostgreSQL | 299

PostgreSQL also allows more complex operations to access the nested JSON format
by using the #> operator. Look at the following example:

SELECT

 '{

 "a": 1,

 "b": [

 {"d": 4},

 {"d": 6},

 {"d": 4}

],

 "c": 3

 }'::JSON #> ARRAY['b', '1', 'd'] AS data;

On the right side of the #> operator, a text array defines the path to access the
desired value. Its operation can be broken down into three steps:

1. Select the 'b' value, which is a list of nested JSON objects.

2. Select the element in the array denoted by '1', which is a nested JSON object
{"d": 6}. Note that with the suffix '1', the second element is returned
because array indexes start at 0.

3. Select the value associated with the 'd' key, and the output is 6.

These functions work with JSON or JSONB fields (keep in mind that they will run much
faster on JSONB fields). JSONB, however, also enables additional functionality. For
example, you want to filter rows based on a key-value pair, such as filtering on the
customer_id field inside the sales transaction record of the JSON format. You could
use the @> operator, which checks whether the JSONB object on the left contains the
key value on the right. Here is an example:

SELECT

 *

FROM

 customer_sales

WHERE

 customer_json @> '{"customer_id":20}'::JSONB;

The preceding query outputs the corresponding JSONB record:

{"email": "ihughillj@nationalgeographic.com", "phone": null, "sales":
[], "last_name": "Hughill", "date_added": "2012-08-08T00:00:00", "first_
name":"Itch", "customer_id": 20}

300 | Analytics Using Complex Data Types

With JSONB, you can also make your output more readable using the jsonb_
pretty function:

SELECT JSONB_PRETTY(customer_json) FROM customer_sales WHERE customer_
json @> '{"customer_id":20}'::JSONB;

Here is the output of the preceding query:

Figure 7.14: Output from the JSONB_PRETTY function

One issue with JSON format is that it is not accepted by all the data processing
software on the market. To make use of this software, you will need to break JSON
into a relational dataset, which means the result must be a two-dimensional table
with two columns. One column contains the key and the other contains the value.
You can also select just the keys from the JSONB field, and unnest them into multiple
rows using the JSONB_OBJECT_KEYS function. Using this function, you can also
extract the value associated with each key from the original JSONB field using the ->
operator. Here is an example:

SELECT

 JSONB_OBJECT_KEYS(customer_json) AS keys,

 customer_json -> JSONB_OBJECT_KEYS(customer_json) AS values

FROM

 customer_sales

WHERE

 customer_json @> '{"customer_id":20}'::JSONB

;

Using JSON Data types in PostgreSQL | 301

The following is the output of the preceding query:

Figure 7.15: Key-value pairs exploded into multiple rows using
the JSONB_OBJECT_KEYS function

Leveraging the JSON Path Language for JSONB Fields

In addition to the previous functions (such as JSONB_OBJECT_KEYS) and operators
(such as ->), PostgreSQL also offers a special JSON path language that can be
leveraged to query data within a JSONB field. The first of these functions can check
whether a path exists in your JSON object:

SELECT

 jsonb_path_exists(customer_json, '$.sales[0]')

FROM

 customer_sales

LIMIT

 3;

The following is the output of the document:

jsnob_path_exists

t

t

t

(3 rows)

302 | Analytics Using Complex Data Types

The jsonb_path_exists function has two required parameters: the JSONB value
and the JSON path. The JSON path expression uses the JSON path language. Within
this JSON path language, $ represents the root of the JSON value, and the .key
notation is used to access the value for a given key. In this case, you can access the
sales element directly under root using $.sales. The [0] value represents that
you want the first value contained in the sales array. Alternatively, you could have
specified [*] to represent all elements in the sales array. This query simply goes
through the JSON value in each row, checks whether the JSON value contains a sales
field under its root or not, and returns a Boolean value of true or false based on
the result.

You can also add additional filters to this query. For example, you might want to
check whether there are any sales with a sale_amount value of over $400. You can
do this by adding a filter expression, which makes SQL return TRUE only for the
rows containing the path, as well as meeting the filter criteria:

SELECT

 jsonb_path_exists(

 customer_json,

 '$.sales[*].sales_amount ? (@ > 400)'

)

FROM

 customer_sales

LIMIT

 3;

The following is the output of the document:

jsnob_path_exists

t

f

f

(3 rows)

In this altered query, you added another element to the path, .sales_amount,
which gets the sale amount for each sale in the sales array. You also added a filter
expression using the ? operator. In this case, the ? (@ > 400) filter expression
indicates that you only get true for values greater than 400.

In addition to checking whether a JSON path exists (with or without additional filter
criteria), you can also query the result:

Using JSON Data types in PostgreSQL | 303

SELECT

 jsonb_path_query(customer_json, '$.sales[0].sales_amount')

FROM

 customer_sales

LIMIT

 3;

The following is the output of the document:

jsnob_path_query

479.992

314.991

319.992

(3 rows)

In this case, the jsonb_path_query function grabs the first sale using the
positional index, [0], and grabs the value associated with the sales_amount key.
Similar to UNNEST, the jsonb_path_query function will expand a result with more
than one match to multiple rows:

SELECT

 jsonb_path_query('{"test":[1, 2, 3]}', '$.test[*]')

;

The following is the output of the code:

jsnob_path_query

1

2

3

(3 rows)

Note

If a path does not exist that meets the filter criteria (if any), jsonb_
path_query will remove that entire row from the output. This is a bit
counterintuitive because, normally, row filtering can only happen due to
expressions evaluated in the WHERE clause, so this functionality can
produce unexpected results.

304 | Analytics Using Complex Data Types

But what if you want to grab the array of sales amounts in cases where there are
multiple sales or no sales? In the following examples, you might want to instead use
jsonb_path_query_array. In the following example, you return the entire array
of sales amounts that are greater than $400:

SELECT

 jsonb_path_query_array(

 customer_json,

 '$.sales[*].sales_amount ? (@ > 400)'

)

FROM

 customer_sales

LIMIT

 3;

The following is the output of the code:

jsnob_path_query_array

[479.992]

[]

[]

(3 rows)

In this case, the first record contains the $.sales[*].sales_amount path,
and has one sale over the threshold, so the jsonb_path_query_array
function returns the sales value array. The second and third rows had sales in the
$.sales[*].sales_amount path but none of the values are over the threshold.
So, the jsonb_path_query_array function returns the NULL array for both rows.

Creating and Modifying Data in a JSONB Field

You can also add and remove elements from JSONB. For example, to add a new
key-value pair, "c": 2, you can do the following:

select jsonb_insert('{"a":1,"b":"foo"}', ARRAY['c'], '2');

Here is the output of the preceding query:

{"a": 1, "b": "foo", "c": 2}

Using JSON Data types in PostgreSQL | 305

If you wanted to insert values into a nested JSON object, you could do that too:

select jsonb_insert('{"a":1,"b":"foo", "c":[1, 2, 3, 4]}', ARRAY['c',

'1'], '10');

This would return the following output:

{"a": 1, "b": "foo", "c": [1, 10, 2, 3, 4]}

In this example, ARRAY[c, 1] represents the path where the new value should be
inserted. In this case, it first grabs the c key and the corresponding array value, then
inserts the value (10) at position 1.

To remove a key, you can simply subtract the key that you want to remove. Here is
an example:

SELECT '{"a": 1, "b": 2}'::JSONB - 'b';

In this case, you have a JSON object with two keys: a and b. When you subtract b, you
are left with just the a key and its associated value:

{"a": 1}

So far in this section, you have learned the definition of JSON, how to use JSON data
in PostgreSQL, the benefits of the JSONB data type, and how to explore and process
JSONB data using specific functions. In addition to the methodologies described here,
you might want to search through multiple layers of nested objects. You will practice
these skills in the following exercise.

Exercise 7.04: Searching through JSONB

In this exercise, you will identify the values using data stored as JSONB. Many source
systems today will send the transaction information to downstream systems such
as data analytics software in the format of a JSON string. You will need to properly
identify values from JSON strings before many of the downstream systems can
utilize the content. Suppose you want to identify all customers who purchased a
Blade scooter; you can do this using data stored as JSONB. Complete the exercise by
implementing the following steps:

1. In this step, you will explode each sale into its own row using the JSONB_
ARRAY_ELEMENTS function:

CREATE TEMP TABLE customer_sales_single_sale_json AS (

 SELECT

 customer_json,

 JSONB_ARRAY_ELEMENTS(customer_json -> 'sales') AS sale_json

306 | Analytics Using Complex Data Types

 FROM

 customer_sales

 LIMIT

 10

);

2. Filter this output and grab the records where product_name is 'Blade':

SELECT DISTINCT

 customer_json

FROM

 customer_sales_single_sale_json

WHERE

 sale_json ->> 'product_name' = 'Blade';

The ->> operator is similar to the -> operator, except it returns text output
rather than JSONB output. This outputs the following result:

Figure 7.16: Records where product_name is Blade

3. Use the JSONB_PRETTY() function to format the output and make the result
easier to read:

SELECT DISTINCT

 JSONB_PRETTY(customer_json)

FROM

 customer_sales_single_sale_json

WHERE

 sale_json ->> 'product_name' = 'Blade';

Using JSON Data types in PostgreSQL | 307

Here is the output of the preceding query:

Figure 7.17: Format the output using JSONB_PRETTY()

You can now easily read the formatted result after using the JSONB_PRETTY()
function.

4. Perform this same action with the JSON path expressions:

CREATE TEMP TABLE blade_customer_sales AS (

 SELECT

 jsonb_path_query(

 customer_json,

 '$? (@.sales[*].product_name == "Blade")'

) AS customer_json

 FROM

 customer_sales

);

SELECT

 JSONB_PRETTY(customer_json)

FROM

 blade_customer_sales;

308 | Analytics Using Complex Data Types

5. Finally, count the number of customers who purchased a Blade:

SELECT

 COUNT(1)

FROM

 blade_customer_sales;

The following is the output of the code:

Count

986

(1 row)

In this exercise, you identified the values using data stored as JSONB. You used NB_
PRETTY() and JSONB_ARRAY_ELEMENTS() to complete this exercise.

Note

To access the source code for this specific section, please refer to
http://packt.link/LpoE0.

As you learned in Chapter 1, Understanding and Describing Data, data can be
categorized as structured, semi-structured, and unstructured. Relational datasets
are the most common type of structured data, and JSON is one of the most common
types of semi-structured data, which allows you to store complex information using
text. You will also often run into data that is stored in an unstructured format, such as
free speech text. Lots of effort has been put into unstructured text analysis. While it
can be difficult to decode these text fields if there is no predefined structure, you can
often produce meaningful insights from these fields. In the following section, you will
look at various techniques for interacting with text fields, and then examine how you
can produce analytics-based insights from pure text.

http://packt.link/LpoE0

Text Analytics Using PostgreSQL | 309

Text Analytics Using PostgreSQL
In addition to performing analytics using complex data structures within PostgreSQL,
you can also make use of the non-numeric data available. Often, the text contains
valuable insights. For instance, you can imagine a salesperson keeping notes on
prospective clients, such as "Very promising interaction, the customer is looking
to make a purchase tomorrow," is valuable data, as does this note: "The customer
is uninterested. They no longer have a need for the product." While this text can
be valuable for someone to manually read, it can also be valuable in the analysis.
Keywords in these statements, such as "promising," "purchase," "tomorrow,"
"uninterested," and "no," can be extracted using the right techniques to try to identify
top prospects in an automated fashion.

Any block of text can have keywords that can be extracted to uncover trends or make
predictions—for example, in customer reviews, email communications, or sales
notes. In many circumstances, text data might be the most relevant data available,
and you need to use it to create meaningful insights.

In this section, you will look at how you can use some PostgreSQL functionality to
extract keywords that will help you to identify trends. You will also leverage text
search capabilities in PostgreSQL to enable rapid searching.

Tokenizing Text

While large blocks of text (for example, sentences and paragraphs) can provide useful
information to convey to a human reader, there are few analytical solutions that can
draw insights from unprocessed text. In almost all these cases, it is helpful to parse
text into individual words.

Often, the text is broken down into component tokens, where each token is a
sequence of characters that are grouped together to form a semantic unit. Usually,
each token is simply a word in the sentence, although in certain cases (such as the
word "can't"), your parsing engine might parse two tokens: "can" and "not."

Note

Even cutting-edge Natural Language Processing (NLP) techniques
usually involve tokenization before the text can be processed. NLP can be
useful to run an analysis that requires a deeper understanding of the text.

310 | Analytics Using Complex Data Types

Words and tokens are useful because they can be matched across documents in
your data. This allows you to draw high-level conclusions at the aggregate level. For
example, if you have a dataset containing sales notes, and parse out the "interested"
token, you can hypothesize that sales notes containing "interested" are associated
with customers who are more likely to make a purchase. So, when a new customer
comes and makes an initial request, if you see the word "interested" in the note,
you may want to pay more attention to this request, which has a higher potential of
realizing a sale.

PostgreSQL has functionality that makes tokenization easy. You can start by using the
STRING_TO_ARRAY function, which splits a string into an array using a delimiter, for
example, a space:

SELECT STRING_TO_ARRAY('Danny and Matt are friends.', ' ');

The following is the output of the preceding query:

{Danny,and,Matt,are,friends.}

In this example, the sentence 'Danny and Matt are friends.' is split using
the space character.

In this example, the output includes punctuation, which might be better removed.
You can remove punctuation by using the REGEXP_REPLACE function. This
function accepts four arguments: the text you want to modify, the text pattern that
you want to replace, the text that should replace it, and any additional flags (most
commonly, you will add the g flag, specifying that the replacement should happen
globally, or as many times as the pattern is encountered). You can remove the
period using a pattern that matches the punctuation defined in the \!@#$%^&*()-
=_+,.<>/?|[] string and replace it with space or an empty string:

SELECT

 REGEXP_REPLACE(

 'Danny and Matt are friends.',

 '[!,.?-]',

 ' ',

 'g'

);

The following is the output of the preceding query:

Danny and Matt are friends

Text Analytics Using PostgreSQL | 311

As you can see, the punctuation has been removed.

PostgreSQL also includes stemming functionality, which is useful for identifying
the root stem of the token. Stem refers to the base word of a term. For example,
the tokens "run," "ran," and "running" contain the same stem, "run," and are not
that different in terms of their meaning. The TS_LEXIZE function can help you
standardize your text by returning the stem of the word, as demonstrated in the
following example:

SELECT TS_LEXIZE('english_stem', 'running');

The preceding code returns the following:

{run}

You can use these techniques to identify tokens in text. You will learn how to apply
them in the next exercise.

Exercise 7.05: Performing Text Analytics

You probably have visited some e-commerce websites that, after a purchase, ask you
to leave some feedback. From a technical perspective, this feedback is free-form text
containing different words. If you can systematically extract some information, you
can help the business team to improve its process and enhance the user experience.

You have similar data in your ZoomZoom database. In this exercise, you want to
quantitatively identify keywords that correspond with higher-than-average ratings
or lower-than-average ratings using text analytics. In your ZoomZoom database, you
have access to some customer survey feedback, along with ratings for how likely
the customer is to refer their friends to ZoomZoom. These keywords will allow you
to identify key strengths and weaknesses for the executive team to consider in the
future. You can follow these steps to complete the exercise:

1. Query the data from the customer survey table to gain some familiarity with the
dataset. This will help you to understand the columns in the table and the data
inside those columns:

SELECT * FROM customer_survey limit 5;

312 | Analytics Using Complex Data Types

The following is the output of the preceding query:

Figure 7.18: Example customer survey responses in your database

You can see that you have access to two columns, a numeric rating between 1
and 10 and the feedback column in text format.

2. Tokenize the text by parsing it out into individual words and their associated
ratings. This will provide you with the tokens in this text and their frequency of
appearance. They in turn will provide the foundation for contextual analysis. You
can do this using the STRING_TO_ARRAY and UNNEST array transformations:

SELECT

 UNNEST(STRING_TO_ARRAY(feedback, ' ')) AS word,

 rating

FROM

 customer_survey

LIMIT

 10;

Text Analytics Using PostgreSQL | 313

The following is the output of the preceding query:

Figure 7.19: Transformed text output

As you can see from the output in Figure 7.19, there are still some issues with
these tokens that can prevent you from using them in contextual analysis. For
example, you see punctuation such as in It's and capitalization such as in I
and It's. There are also words that do not provide any meaning, such as the
and so, which are called stop words. You need to remove the stop words and
punctuation, convert the capitalization, and remove forms and tenses to get
tokens into their stems. This process is called standardization, which will be
carried out in Step 3.

3. Standardize the text using the TS_LEXIZE function and the English stemmer,
'english_stem'. You will then remove characters that are not letters in the
original text using REGEXP_REPLACE. Adding these functions together with the
original query will output the following:

SELECT

 (

 TS_LEXIZE(

 'english_stem',

 UNNEST(

 STRING_TO_ARRAY(

 REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),

314 | Analytics Using Complex Data Types

 ' '

)

)

)

)[1] AS token,

 rating

FROM

 customer_survey

LIMIT

 10;

The following is the output of the code:

Figure 7.20: Output from TS_LEXIZE and REGEX_REPLACE

Note

When you apply these standardization transformations, the outputs are
called tokens rather than words. Tokens refer to each linguistic unit.

Text Analytics Using PostgreSQL | 315

Now, you have the key tokens and their associated ratings. Note that the output
of the standardization operation produces NULL values for the tokens that have
been removed, so you will need to filter out those rating pairs.

4. Find the average rating associated with each token using a GROUP BY clause:

SELECT

 (

 TS_LEXIZE(

 'english_stem',

 UNNEST(

 STRING_TO_ARRAY(

 REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),

 ' '

)

)

)

)[1] AS token,

 AVG(rating) AS avg_rating

FROM

 customer_survey

GROUP BY

 1

HAVING

 COUNT(1) >= 3

ORDER BY

 2

;

316 | Analytics Using Complex Data Types

In this query, you group by the first expression in the SELECT statement where
you perform the tokenization. You can now take the average rating associated
with each token. This is to make sure that you only take tokens with more than a
couple of occurrences so that you can filter out the noise. In this case, due to the
small sample size of feedback responses, you only require that the token occurs
three or more times (HAVING COUNT(1) >= 3). Finally, you order the results
by the second expression—the average score. The result is shown here:

Figure 7.21: Average ratings associated with text tokens

At one end of the spectrum, you see quite a few results that are negative: pop
probably refers to popping tires, and batteri probably refers to issues with
battery life. On the positive side, you gather that customers respond favorably to
discount, sale, and dealership.

5. Verify the assumptions by filtering survey responses that contain these tokens
using an ILIKE expression. The ILIKE expression allows you to match text
that contains a pattern. In this example, you are trying to find text that contains
the text pop, and the operation is case-insensitive. By wrapping this in %
symbols, you are specifying that the text can contain any number of characters
on the left or right. This is done as follows:

SELECT

 *

FROM

 customer_survey

Text Analytics Using PostgreSQL | 317

WHERE

 feedback ILIKE '%pop%';

The query returns three relevant survey responses:

Figure 7.22: Filtering survey responses using ILIKE

Note

To access the source code for this specific section, please refer to
http://packt.link/LpoE0.

Upon receiving the results of your analysis, you can report the key issues to
your product team to review. You can also report the high-level findings that
the customers like discounts and the feedback have been positive following the
introduction of dealerships.

Note

ILIKE is similar to another SQL expression: LIKE. The ILIKE
expression is case-insensitive, and the LIKE expression is case-
sensitive, so typically, it will make sense to use ILIKE. In situations
where performance is critical, LIKE might be slightly faster.

Performing Text Search

While you can perform text analytics using aggregations, it might be helpful to
instead query your database for relevant posts, similar to how you might query a
search engine.

While you can do this using an ILIKE expression in your WHERE clause, this is not
terribly fast or extensible. For example, what if you wanted to search the text for
multiple keywords, correct searches with misspellings, or handle scenarios where one
of the words might be missing altogether?

For these situations, you can use the text search functionality in PostgreSQL.

http://packt.link/LpoE0

318 | Analytics Using Complex Data Types

This functionality scales up to millions of documents when it is fully optimized.

Note

Documents represent the individual records in a search database. Each
document represents the entity that you want to search for. For example, on
a personal website, this might be a blog post that includes the title, author,
and article for one entry. For a survey, it might include the survey responses
or perhaps the survey response combined with the survey question. A
document can span multiple fields or even multiple tables.

You can start with the to_tsvector function, which will perform a similar function
to the TS_LEXIZE function, but instead of producing a token from a word like
the TS_LEXIZE function, this to_tsvector function will tokenize the entire
document. The output data type from this operation is a tsvector data type, which
is specialized and specifically designed for text search operations. Here is an example:

SELECT

 feedback,

 to_tsvector('english', feedback) AS tsvectorized_feedback

FROM

 customer_survey

LIMIT

 1;

The query produces the following result:

Figure 7.23: The tsvector tokenized representation of the original feedback

In this case, the feedback, I highly recommend the lemon scooter.
It's so fast was converted into a tokenized vector: 'fast':10 'high':2
'lemon':5 'recommend':3 'scooter':6. Like the TS_LEXIZE function,
less meaningful "stop words" were removed, such as I, the, It's, and so. Other
words, such as highly, were stemmed from their root (high). Word order was not
preserved. The to_tsvector function can also take in JSON or JSONB syntax and
tokenize the values (no keys) as a tsvector object.

Text Analytics Using PostgreSQL | 319

Now that you have broken down the text using the tsvector data type with
meaningful tokens and their frequency, you will use a tsquery data type to perform
a search on tsvector. The tsquery data type defines a search query in the form
of a useful data type that PostgreSQL can use to search. For example, suppose you
want to construct a search query with the lemon scooter keywords. You can write
it as follows:

SELECT to_tsquery('english', 'lemon & scooter');

Or, if you do not want to specify the Boolean syntax, you can write this:

SELECT plainto_tsquery('english', 'lemon scooter');

Both queries produce the same result:

plainto_tsquery

'lemon' & 'scooter'

(1 row)

Note

to_tsquery accepts Boolean syntax, such as | for or and & for and. It
also accepts ! for not.

You can also use Boolean operators to concatenate tsquery objects. For example,
the && operator will produce a query that requires the left query and the right query,
while the || operator will produce a query that matches either the left or the right
tsquery object:

SELECT

 plainto_tsquery('english', 'lemon')

 &&

 plainto_tsquery('english', 'bat')

 ||

 plainto_tsquery('english', 'chi');

This produces the following result:

'lemon' & 'bat' | 'chi'

You can query a tsvector object using a tsquery object using the @@ operator.

320 | Analytics Using Complex Data Types

A tsquery data type is often used together with the tsvector data type
for patterned search. For example, you can search all customer feedback for
lemon scooter:

SELECT

 *

FROM

 customer_survey

WHERE

 to_tsvector('english', feedback)

 @@ plainto_tsquery('english', 'lemon scooter');

 This returns the following three results:

Figure 7.24: Search query output using the PostgreSQL search functionality

So far in this section, you have learned how to handle text strings, how to tokenize
and standardize them, and how to search the tokens inside the strings. In the next
section, you will learn how to optimize text search on PostgreSQL.

Optimizing Text Search on PostgreSQL

While the PostgreSQL search syntax in the previous example is quite straightforward,
it needs to convert all text documents into a tsvector object every time a new
search is performed. Additionally, the search engine needs to check every document
to see whether any content in the document matches the query terms. This process
can be tedious. You can improve this in two steps:

1. Store the tsvector objects so that they do not need to be recomputed.

2. Store the tokens and their associated documents in a Generalized Inverted
Index (GIN). This is a specific format of PostgreSQL storage that can help you
store indexes of complex data such as tsvector, similar to how an index in the
back of a book has words or phrases and their associated page numbers so that
you do not have to check each document to see where it matches.

Text Analytics Using PostgreSQL | 321

To do these two things, you will need to precompute and store the tsvector
objects for each document, then create a GIN based on tsvector.

To precompute the tsvector objects, use a materialized view. A materialized view
is defined as a named query, similar to a view. But unlike a regular view, where the
results are queried every time, the results for a materialized view are stored as if it is
a table.

Because a materialized view stores the results in a stored table, it can get out of
sync with the underlying tables that it queries. It might be prudent to refresh it, such
as dropping the materialized view and recreating it before usage. You can create a
materialized view of your survey results using the following query:

DROP MATERIALIZED VIEW IF EXISTS customer_survey_search;

CREATE MATERIALIZED VIEW customer_survey_search AS (

 SELECT

 rating,

 feedback,

 to_tsvector('english', feedback)

 ||

 to_tsvector('english', rating::text) AS searchable

 FROM

 customer_survey

);

You can see that your searchable column is composed of two columns: the
rating and feedback columns. There are many scenarios where you will want to
search on multiple fields, and you can easily concatenate multiple tsvector objects
together with the || operator.

You can test that the view worked by querying a row:

SELECT * FROM customer_survey_search LIMIT 1;

The query produces the following output:

Figure 7.25: A record from your materialized view with tsvector

322 | Analytics Using Complex Data Types

In addition to dropping and recreating, you can also use the following syntax to
refresh the view (for example, after an insert or update):

REFRESH MATERIALIZED VIEW customer_survey_search;

This will recompute the view concurrently while the old copy of the view remains
available and unlocked.

Next, you will add the GIN index with the following syntax, which will help improve
the performance by storing some key information in an organized manner:

CREATE INDEX

 idx_customer_survey_search_searchable

ON

 customer_survey_search

USING GIN(searchable);

With these two operations (creating the materialized view and creating the GIN
index), you can now easily query your feedback table using search terms:

SELECT

 rating,

 feedback

FROM

 customer_survey_search

WHERE

 searchable @@ plainto_tsquery('dealership');

The following is the output of the preceding query:

Figure 7.26: Output from the materialized view optimized for search

While the query time improvement might be small or non-existent for a small table
of 32 rows, these operations greatly improve the speed for large tables (for example,
with millions of rows), and enable users to quickly search their database in a matter
of seconds.

Text Analytics Using PostgreSQL | 323

In the following activity, you will put these ideas into practice by creating a searchable
sales database that will allow you to leverage text queries to find the information that
you need.

Activity 7.01: Sales Search and Analysis

In this activity, you will set up a search materialized view and answer some business
questions using what you have learned in the previous sections. The head of sales
at ZoomZoom has identified a problem: there is no easy way for the sales team to
search for a customer. You volunteered to create a proof-of-concept internal search
engine that will make all customers searchable by their contact information and the
products that they have purchased in the past.

Perform the following steps to complete the activity:

1. Use the customer_sales table and create a searchable materialized view
with one record per customer. This view should be keyed off the customer_id
column and searchable on everything related to that customer: name, email
address, phone number, and purchased products. It is acceptable to include
other fields as well.

2. A salesperson asks you whether you can use your new search prototype to find
a customer by the name of Danny who purchased the Bat scooter. Query your
new searchable view using the Danny Bat keywords. How many rows did
you get?

3. The sales team wants to know how common it is for someone to buy a scooter
and automobile combination. To do that, join the products table to get all
distinct pairs of scooters and automobiles.

4. You can assume that limited-edition releases can be grouped together with
their standard model counterpart (for example, Bat and Bat Limited
Edition can be considered the same scooter). Simply filter out Bat Limited
Edition from the product pairs.

324 | Analytics Using Complex Data Types

5. Using the results from the cross join, create a query that counts how many
customers were found to match each of the product pairs.

Here is the expected output:

Figure 7.27: Customer counts for each scooter and automobile combination

Note

To access the source code for the specific section, please refer to
http://packt.link/LpoE0.

Note

The solution for this activity can be found via this link.

http://packt.link/LpoE0

Summary | 325

In this activity, you searched and analyzed the data using the materialized view.
Then, you learned about the use of SQL keywords such as DISTINCT and JOIN to
transform the query. Lastly, you learned how to query your database using tsquery
objects to get the final output.

Summary
In this chapter, you covered special data types, including date and time, geospatial,
complex data structures, and text data types. For date and time data types, you
explored how to manipulate time series data, extract components, and represent the
information in practical ways that would allow you to build analysis. For geospatial
data types, you learned how to convert latitude and longitude into POINT data types
that allow you to calculate distances between locations.

For complex data types, you explored several powerful data types: arrays, JSON, and
JSONB. For these data types, you learned how to create these values, as well as how
to write complex queries to navigate their structure.

Finally, you learned that text data can be useful in analytics—first in running an
analysis on keywords, and also in the context of text search, which can be a valuable
analytical tool.

As your datasets grow larger and larger, these complex analyses become slower and
slower. In Chapter 8, Performant SQL, you will take an in-depth look at how you can
begin to optimize these queries using an explanation and analysis of the query plan,
as well as additional tools, such as indexes, that can speed up your queries.

Overview

In this chapter, you will learn how to optimize a database to allow queries
to be executed with fewer resources. First, you will look at how a database
engine performs basic queries by developing your understanding of
sequential scans. After that, you will look at optimizing SELECT queries
by creating indexes on database tables, which improve performance.
You will also learn about tools and techniques for terminating inefficient
queries that are consuming your database resources. After all this, you
will explore advanced functionalities by creating custom functions for
special computations and examine how to apply custom constraints to your
database by using triggers.

Performant SQL

8

328 | Performant SQL

Introduction
In Chapter 7, Analytics Using Complex Data Types, you learned the necessary skills to
effectively analyze data within a SQL database. In this chapter, you will turn your
attention to the efficiency of this analysis, investigating how you can increase the
performance of SQL queries. Efficiency and performance are key components of data
analytics. Without considering these factors, physical constraints, such as time and
processing power, can significantly affect the outcome of an analysis.

In this chapter, you will first learn the different ways PostgreSQL performs query
planning, in which the PostgreSQL database evaluates the SQL statement and
underlying physical implementation and decides how to execute this SQL. You will
learn the most basic way of retrieving data, which is scanning by sequence. You will
then learn the concept of an index and the two most common indexes in PostgreSQL,
the B-tree index and the hash index. From there, you will learn how to kill long-
running queries to free up resources and allow other queries to run.

After covering these topics, you will be introduced to functions and triggers. You will
learn the definition of functions and the commands to manipulate them. You will also
learn the concept of a trigger, a special type of function triggered by an event.

The Importance of Highly Efficient SQL
To understand why performance is so important, consider the following scenarios.

You are performing post hoc analysis (that is, analysis after the fact or event). You
have completed a study and collected a large dataset of individual observations of
various factors or features. One such example is described within your ZoomZoom
database, which analyzes the sales data for each customer.

With the data collection process, you want to analyze the data for patterns and
insights as specified by your problem statement. If your dataset is sufficiently large,
you could quickly encounter issues if you do not optimize the queries first; the most
common issue would simply be the time taken to execute the queries. While this does
not sound like a significant issue, unnecessarily long processing times can cause the
following problems:

• Reduction in the depth of the completed analysis: As each query takes a long
time, the practicalities of project schedules may limit the number of queries. So,
the depth and complexity of the analysis may be limited.

The Importance of Highly Efficient SQL | 329

• Limiting the selection of data for analysis: By artificially reducing the dataset
using subsampling, you may be able to complete the analysis in a reasonable
time but would have to sacrifice the number of observations being used. This
may, in turn, lead to bias being accidentally included in the analysis.

• Increase in project cost: The need to use many more resources simultaneously
to complete the analysis in a reasonable time would increase the project cost.

Similarly, another potential issue with suboptimal queries is an increase in the
required system memory and compute power. This can result in either of the
following two scenarios:

• Failure of the analysis due to insufficient resources

• Significant increase in the cost of the project to recruit the required resources

These days, analysis or queries are increasingly becoming a part of a larger service
or product. For instance, when an analysis is being completed as a component of
a bidding website that sets the pricing based on previous transactions, database
queries may need to be completed in real-time, or at least near real-time. In such
cases, optimization and efficiency are key for the product to be a success.

Another such example is a GPS navigation system that incorporates the state of traffic
as reported by other users. For such a system to be effective and provide up-to-
date navigation information, the database must be analyzed at a rate that keeps up
with the speed of the car and the progress of the journey. Any delays in the analysis
that would prevent the navigation from being updated in response to traffic would
significantly impact the application's commercial viability.

After looking at this example, you can see that efficiency is not only important in an
effective and thorough post hoc analysis but also critical when incorporating data
analysis as a component of a separate product or service.

While it is certainly not the job of a data scientist or data analyst to ensure that the
production process and the database are working at optimal efficiency, it is critical
that the queries of the underlying analysis are as effective as possible. If you do not
have an efficient and current database in the first place, further refinements will not
help to improve the performance of the analysis. In the next section, you will learn
the methods for increasing the performance of scans for information throughout
a database.

330 | Performant SQL

Database Scanning Methods
You have learned that all database operations are carried out by database
management systems (DBMSs) such as PostgreSQL. Typically, the DBMS will run
these operations in a server's memory, which stores the data to be processed. The
problem with this approach is that memory storage is not large enough for modern
databases, which are frequently in a scale of gigabytes, if not terabytes. Data in the
majority of modern databases is saved on hard disks and uploaded into memory
when it is used in a database operation. Yet again, a DBMS can only upload a small
part of the database into memory. Whenever it figures that it needs a certain dataset,
it must go to the hard disk to retrieve the unit of storage (which is called a hard disk
block) that has the required data in it. The process that the PostgreSQL server uses to
search through a database is known as scanning.

SQL-compliant databases, such as PostgreSQL, provide several different methods for
scanning, searching, and selecting data. The right scan method to use is dependent
on the use case and the state of the database at the time of scanning. How many
records are in the database? Which fields are you interested in? How many records
do you expect to be returned? How often do you need to execute the query? These
are just some of the questions that you may want to ask when selecting the most
appropriate scanning method.

Throughout this section, you will understand some of the search methods available,
how they are used within SQL to execute scans, and several scenarios where they
should or should not be used.

These topics will be organized into these sections:

• Query Planning

• Index Scanning

• Effective Index Use

• Killing Queries

• Functions and Triggers

Database Scanning Methods | 331

Query Planning

Before investigating the different methods of executing queries, it is useful to
understand how the PostgreSQL server makes various decisions about the types
of queries to be used. SQL-compliant databases possess a powerful tool known
as a Query Planner, which implements a set of features within the server to
analyze a request and decide how to execute the statement. The Query Planner
optimizes different variables within the request with the aim of reducing the overall
execution time.

Note

These variables are described in greater detail in the PostgreSQL
documentation (https://www.postgresql.org/docs/current/runtime-config-
query.html) and include parameters that correspond to the cost of
sequential page fetches, CPU operations, and cache size.

Interpreting the planner is critical if you want to achieve high performance from a
database. Doing so allows you to modify the contents and structure of queries to
optimize performance. Unfortunately, query planning can require some practice to be
comfortable with interpreting the output. Even the PostgreSQL official documentation
notes that plan reading is an art that deserves significant attention. In this chapter,
you will not see the details of how a Query Planner implements its analysis since
there are core technical details involved. However, it is important to understand
how to interpret the plan reported by the Query Planner. You will start with a simple
plan and then work your way through more complicated queries and query plans. In
the following exercise, you will learn about the EXPLAIN command, which displays
the plan for a query before it is executed. When you use the EXPLAIN command
in combination with a SQL statement, the SQL interpreter will not execute the
statement, but rather return the steps that are going to be executed (a query plan) by
the interpreter to return the desired results.

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html

332 | Performant SQL

An example of using the EXPLAIN command is shown in the following exercise.

Note

You have learned how to use the PostgreSQL psql tool and pgAdmin. Query
Planner outputs its plan in pure text format. To better display and analyze
the output of Query Planner, you will use psql in this chapter because it can
display text in a clearer format, but some screenshots that are easier to
read in graphic format will be generated using pgAdmin.

For all exercises and activities in this chapter, please note that query
analysis metrics will vary depending on system configuration. Thus, you
may get outputs that may vary from those presented in the exercises
and activities. The key point is that the outputs provided in this chapter
demonstrate the working of the principles.

All the exercises and activities in this chapter are also available on GitHub
at https://packt.link/PDtJk.

Exercise 8.01: Interpreting the Query Planner

In this exercise, you will interpret a query plan of the emails table of the sqlda
database using the EXPLAIN command. Then, you will employ a more involved
query, searching for dates between two specific values in the clicked_date field.

Follow these steps to complete the exercise:

1. Open the default command-line interface (CMD or Terminal) and connect to the
sqlda database:

C:\> psql -h localhost -p 5432 -d sqlda -U postgres

Upon successful connection, you will be presented with the interface to the
PostgreSQL database:

Type "help" for help

sqlda=#

2. Enter the following command to get the query plan of the emails table:

EXPLAIN SELECT * FROM emails;

https://packt.link/PDtJk

Database Scanning Methods | 333

Information similar to the following will then be presented:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

This information is returned by the Query Planner; while this is the simplest
example possible, there is quite a bit to unpack in the planner information. There
is a lot of information returned in a query plan and being able to comprehend
the output is vital in tuning the performance of your database queries.

So, look through the output step by step. The first aspect of the plan that is
provided is the type of scan executed by the query:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

Extracting data using this SELECT command directly from the database
executes a sequential scan, where the database server traverses through
each record in the database and compares each record to the criteria in the
sequential scan, returning those records that match the criteria, if there is a
WHERE clause.

A sequential scan is the easiest to understand and is guaranteed to work in
every scenario. In some circumstances, the sequential scan is not the fastest or
most efficient option; however, it will always produce the correct result. This is
essentially a brute-force scan and, thus, can always be called upon to execute a
search. In certain situations, a sequential scan is the most efficient method and
will be automatically selected by the PostgreSQL server. This is particularly the
case if any of the following is true:

• The table is quite small.

• The field used in searching contains many duplicates.

• The planner determines that the sequential scan would be equally or more
efficient for the given criteria compared to any other scan.

You will cover more of the scan types later in the chapter, but Seq Scan, or
sequential scan, is a simple yet robust type of query.

Following the Seq Scan keyword and the table of its target are a series of
measurements. The first measurement reported by the planner, as shown here,
is the startup cost:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

334 | Performant SQL

The startup cost is the time expended before the scan starts. This time may be
required to first sort the data or complete other preprocessing applications.
It is also important to note that the time measured is reported in cost units as
opposed to seconds or milliseconds. Often, the cost units are an indication of
the number of disk requests or page fetches made, rather than this being a
measure in absolute terms. The reported cost is typically more useful as a means
of comparing the performance of various queries, rather than as an absolute
measure of time.

The next number in the sequence indicates the total cost of executing the query
if all available rows are retrieved:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

There are some circumstances in which not all the available rows may be
retrieved, but you will learn about that in the Index Scanning section of
this chapter.

The next figure in the plan indicates the total number of rows that are available
to be returned if the plan is completely executed:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

The final figure, as suggested by its name, indicates the width of each row
in bytes:

Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

Note

When executing the EXPLAIN command, PostgreSQL does not actually
implement the query or return the values. It does, however, return a
description, along with the processing costs involved in executing each
stage of the plan.

3. Query plan the emails table and set the limit to 5. This will give you an insight
into how PostgreSQL adjusts its execution plan when the SQL changes. Enter the
following statement in the PostgreSQL interpreter:

EXPLAIN SELECT * FROM emails LIMIT 5;

Database Scanning Methods | 335

This repeats the previous statement, but the result is limited to the first five
records. This query will produce the following output from the planner:

Limit (cost=0.00..0.11 rows=5 width=79)

 -> Seq Scan on emails (cost=0.00..9605.58 rows=418158 width=79)

Referring to the preceding output, you can see that there are two individual
rows in the plan. This indicates that the plan is composed of two separate steps,
with the lower line of the plan being executed first. This lower line is a repeat
of what is shown in step 2. The upper line of the plan is the component that
limits the result to only 5 rows. The Limit process is an additional cost of the
query; however, it is quite insignificant compared to the lower-level plan, which
retrieves approximately 418158 rows at a cost of 9605.58 page requests. The
Limit stage only returns 5 rows at a cost of 0.11 page requests.

Note

The overall estimated cost of a request comprises the time taken to retrieve
the information from the disk and the number of rows that need to be
scanned. The internal parameters seq_page_cost and cpu_tuple_
cost define the cost of the corresponding operations within the tablespace
for the database. While not recommended at this stage, these two variables
can be changed to modify the steps prepared by the planner.

For more information, refer to the PostgreSQL documentation:
https://www.postgresql.org/docs/current/runtime-config-query.html.

4. Now, employ a more involved query, searching for dates between two specific
values in the clicked_date column. Enter the following statement into the
PostgreSQL interpreter:

EXPLAIN

SELECT *

FROM emails

WHERE clicked_date BETWEEN '2011-01-01' and '2011-02-01';

This will produce a query plan similar to this:

Gather (cost=1000.00..9037.59 rows=1 width=79)

 Workers Planned: 2

 -> Parallel Seq Scan on emails (cost=0.00..8037.49 rows=1

 width=79)

https://www.postgresql.org/docs/current/runtime-config-query.html

336 | Performant SQL

 Filter: ((clicked_date >= '2011-01-01 00:00:00'::timestamp

 without time zone) AND (clicked_date <= '2011-02-01

 00:00:00'::timestamp without time zone))

The first aspect of this query plan to note is that it comprises a few different
steps. The lower-level query is similar to the previous query in that it executes
a sequential scan. However, rather than limiting the output, you are filtering it
based on the timestamp strings provided.

Here, the sequential scan is to be completed in parallel, as indicated by the
Parallel Seq Scan. PostgreSQL also indicates that it will use two workers to
execute this scan. Whether PostgreSQL will use a parallel scan or not depends
on the setup of the server, as well as the power of the computer hardware. If
PostgreSQL server feels that parallel scan is too complex for the hardware or
server to handle, it may choose regular sequential scan, like what you saw in the
steps above.

In this example, PostgreSQL believes that parallel scan can provide better
performance and decides to utilize two workers for it. Each individual sequence
scan should return approximately 54 rows, taking a cost of 8037.49 to
complete. The upper level of the plan is a Gather state, which is executed at the
start of the query. You can see here for the first time that the upfront costs are
non-zero (1000) and a total of 9037.59, including the gather and search steps.

Note

To access the source code for this specific section, please refer
to https://packt.link/PDtJk.

In this exercise, you worked with the Query Planner and the output of the EXPLAIN
command. These relatively simple queries highlighted several features of the SQL
Query Planner as well as the detailed information that is provided by it. It will serve
you well in your data science endeavors with a good understanding of the Query
Planner and the rich information returned. Just remember that this understanding
will come with time and practice. Next, you will practice this skill in an activity.

https://packt.link/PDtJk

Database Scanning Methods | 337

Activity 8.01: Query Planning

In this activity, you will query the plan for reading and interpreting the information
returned by the planner. For instance, say you are still dealing with the ZoomZoom
dataset in the sqlda database of customer records and your finance team would like
to implement a system to regularly generate a report of customer activity in a specific
geographical region. To ensure that your report can be run in a timely manner, you
need an estimate of how long the SQL queries will take. You will use the EXPLAIN
command to find out how long some of the report queries will take:

1. Open PostgreSQL with psql and connect to the sqlda database.

2. Use the EXPLAIN command to return the query plan to select all available
records within the customers table.

3. Read the output of the plan and determine the total query cost, the setup cost,
the number of rows to be returned, and the width of each row.

4. Repeat the query from step 2 of this activity, this time limiting the number of
returned records to 15. Review the updated query plan and compare its output
against the output of the previous step, paying special attention to how many
steps are involved in the query plan and what the cost of the limiting step is.

5. Update the SQL to select all rows where customers live within a latitude of 30
and 40 degrees. Generate the query plan. Compare the total plan cost as well as
the number of rows returned by the query to the numbers from previous steps.

Expected output:

Seq Scan on customers (cost=0.00..1785.00 rows=26369 width=140)

 Filter: ((latitude >= '30'::double precision) AND (latitude <=
'40'::double precision))

In this activity, you practiced reading the plans returned by the Query Planner. As
discussed at the very beginning of this section, plan reading requires substantial
practice to master. This activity began this process, and it is strongly recommended
that you frequently use the EXPLAIN command to improve your plan reading.

338 | Performant SQL

You will continue to practice reading query plans throughout this chapter as you look
at different scan types and the methods and their use to improve performance. In the
next section, you will learn how to improve the performance of your queries using
index scans.

Note

The solution for this activity can be found via this link.

Index Scanning

Index scans improve the performance of your database queries. Index scans differ
from sequential scans in that index scans execute a preprocessing step before the
search of database records can occur.

The simplest way to think of an index scan is just like the index of a text or reference
book. When creating a non-fiction book, a publisher parses through the contents
of the book and writes the page numbers corresponding with each alphabetically
sorted topic. Just as the publisher goes to the initial effort of creating an index for the
reader's reference, you can create a similar index within the PostgreSQL database.

This index within the database creates a prepared and organized set or a subset of
references to the data under specified conditions. When a query is executed and
an index is present that contains information relevant to the query, the planner
may elect to use the data that was preprocessed and prearranged within the
index. Without using an index, the database needs to repeatedly scan through all
records, checking each record for the information of interest. Even if all the desired
information is at the start of the database, without indexing, the search will still
scan through all available records. Clearly, this would take a significantly longer time
than necessary.

There are several different indexing strategies that PostgreSQL can use to create
more efficient searches, including B-trees, hash indexes, generalized inverted
indexes (GINs), and generalized search trees (GiSTs). Each of these different
index types has its own strengths and weaknesses and is therefore used in different
situations. One of the most frequently used indexes is the B-tree, which is the default
indexing strategy used by PostgreSQL and is available in almost all database software.
You will first spend some time investigating the B-tree index, looking at what makes it
useful, as well as some of its limitations.

Database Scanning Methods | 339

The B-Tree Index

The B-tree index is a type of extended binary search tree and is characterized by the
fact that it is a self-balancing structure, maintaining its own data structure for efficient
searching. A generic B-tree structure can be found in Figure 8.1, in which you can see
that each node in the tree has no more than two elements (thus providing balance)
and that each node has at most three children. These traits are common among
B-trees, where each node is limited to n components, thus forcing the split into n+1
child nodes. The branches of the trees terminate at leaf nodes, which, by definition,
have no children:

Figure 8.1: Generic B-tree

Using the preceding figure as an example, say you were looking for the number 13
in the B-tree index. You would start at the first node and select whether the number
was less than 5 or greater than 10. This would lead you down the right-hand branch
of the tree, where you would again choose between less than 15 and greater than
20. You would then select less than 15 and arrive at the location of 13 in the index.

You can immediately see that this operation would be much faster than looking
through all available values. You can also see that for performance, the tree must be
balanced to allow for an easy path for traversal. Additionally, there must be sufficient
information to allow splitting because if you had a tree index with only a few possible
values to split on and many samples, you would simply divide the data into a
few groups.

340 | Performant SQL

Considering B-trees in the context of database searching, you would notice that
you require a condition to divide the information (or split) with and need sufficient
information for a meaningful split. You do not need to worry about the logic of
following the tree, as that will be managed by the database itself and can vary
depending on the conditions for searching. Even so, it is important for you to
understand the strengths and weaknesses of the method to allow you to make
appropriate choices when creating the index for optimal performance.

To create an index for a set of data, you use the following syntax:

CREATE INDEX <index name> ON <table name>(table column);

You can also add additional conditions and constraints to make the index
more selective:

CREATE INDEX <index name> ON <table name>(table column) WHERE
[condition];

You can also specify the type of index:

CREATE INDEX <index name> ON <table name> USING TYPE(table column)

PostgreSQL supports multiple index types, such as B-tree, hash, and GiST. For
example, say you execute the following query to create a B-tree type index on
a column:

CREATE INDEX ix_customers ON customers USING BTREE(customer_id);

This outputs the following message:

CREATE INDEX

This indicates that the index was created successfully.

In the next exercise, you will start with a simple plan and work your way through
more complicated queries and query plans, using index scans.

Database Scanning Methods | 341

Exercise 8.02: Creating an Index Scan

In this exercise, you will create a number of different index scans and investigate the
performance characteristics of each of the scans.

Continuing with the scenario from Activity 8.01, Query Planning, say you had completed
your report service but wanted to make the queries faster. You will try to improve this
performance using indexing and index scans. You will recall that you are using a table
of customer information that includes contact details such as name, email address,
phone number, and address information, as well as the latitude and longitude details
of their address. Follow these steps to complete this activity:

1. Open PostgreSQL and connect to the sqlda database:

C:\> psql -h localhost -p 5432 -d sqlda -U postgres

Upon successful connection, you will be presented with the interface to the
PostgreSQL database:

Type "help" for help

sqlda=#

2. Starting with the customers database, use the EXPLAIN command to
determine the cost of the query and the number of rows returned in selecting all
the entries with a state value of FO:

EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code will be similar to the following. Please note
that the actual numbers may vary but the structure will be similar:

Seq Scan on customers (cost=0.00..1660.00 rows=1 width=140)

 Filter: (state = 'FO'::text)

Note that there is only 1 row returned and that the setup cost is 0, but the total
query cost is 1660.

3. Determine how many unique state values there are using the
EXPLAIN command:

EXPLAIN SELECT DISTINCT state FROM customers;

342 | Performant SQL

The output is similar to the following:

HashAggregate (cost=1660.00..1660.51 rows=51 width=3)

 Group Key: state

 -> Seq Scan on customers (cost=0.00..1535.00 rows=50000 width=3)

So, there are 51 unique values within the state column.

4. Create an index called ix_state using the state column of customers:

CREATE INDEX ix_state ON customers(state);

5. Rerun the EXPLAIN statement from step 2:

EXPLAIN SELECT * FROM customers WHERE state='FO';

The output of the preceding code is similar to this:

Index Scan using ix_state on customers (cost=0.29..8.31 rows=1
width=140)
 Index Cond: (state = 'FO'::text)

Notice that an index scan is being used with the index you created in step 4. You
can also see that you have a non-zero setup cost (0.29), but the total cost is
much reduced from the previous 1660 to only 8.31. This shows the power of
the index scan.

Now, consider a slightly different example, looking at the time it takes to return a
search on the gender column.

6. Use the EXPLAIN command to return the query plan for a search for all records
of males within the database:

EXPLAIN SELECT * FROM customers WHERE gender='M';

The output is as follows:

Seq Scan on customers (cost=0.00..1660.00 rows=24957 width=140)

 Filter: (gender = 'M'::text)

As there is no index on the gender column, and the existing index on the
state column is not relevant, PostgreSQL will still use a sequential scan for
this statement.

7. Create an index called ix_gender using the gender column of customers:

CREATE INDEX ix_gender ON customers(gender);

Database Scanning Methods | 343

8. Confirm the presence of the index using \d, which lists all the columns and
indexes for the particular table:

\d customers;

Scrolling to the bottom, you can see the indexes using the ix_prefix, as well
as the column from the table used to create the index:

 Table "public.customers"

 Column | Type | Collation | Nullable |
Default
---------------+---------------------------+-----------+----------+--

customer_id | bigint | | |

title | text | | |

first_name | text | | |

last_name | text | | |

suffix | text | | |

email | text | | |

gender | text | | |

ip_address | text | | |

phone | text | | |

street_address | text | | |

city | text | | |

state | text | | |

postal_code | text | | |

latitude | double precision | | |

longitude | double precision | | |

date_added | timestamp without time zone | | |

Indexes:

 "ix_customers_customer_id" btree (customer_id)

 "ix_gender" btree (gender)

 "ix_state" btree (state)

9. Rerun the EXPLAIN statement from step 6:

EXPLAIN SELECT * FROM customers WHERE gender='M';

344 | Performant SQL

The following is the output of the preceding code:

Bitmap Heap Scan on customers (cost=285.71..1632.67 rows=24957
width=140)
 Recheck Cond: (gender = 'M'::text)

 -> Bitmap Index Scan on ix_gender (cost=0.00..279.47 rows=24957
width=0)
 Index Cond: (gender = 'M'::text)

Notice that the query cost has not changed much, despite the use of the index
scan. This is because there is insufficient information to create a useful tree
within the gender column. There are only two possible values, M and F. The
gender index essentially splits the information in two: one branch for males and
the other for females. The index has not split the data into branches of the tree
well enough to gain any benefit. The planner still needs to scan through at least
half of the data, and so it is not worth the overhead of the index.

10. Use EXPLAIN to return the query plan, searching for latitudes less than 38
degrees and greater than 30 degrees:

EXPLAIN SELECT * FROM customers WHERE (latitude < 38) AND (latitude >
30);

The following is the output of the preceding code:

Seq Scan on customers (cost=0.00..1785.00 rows=17944 width=140)

 Filter: ((latitude < '38'::double precision) AND (latitude >
'30'::double precision))

Notice that the query is using a sequential scan with a filter because there is no
index set on the filter condition, so PostgreSQL has to scan the entire table row
by row. The initial sequential scan returns 17944 before the filter and costs
1785 with 0 startup costs.

11. Now create an index on the filtered column so that PostgreSQL has some
prior knowledge on how data is stored based on latitude. Create an index
called ix_latitude using the latitude column of customers:

CREATE INDEX ix_latitude ON customers(latitude);

Database Scanning Methods | 345

12. Rerun the query of step 10 and observe the output of the plan:

Bitmap Heap Scan on customers (cost=384.22..1688.38 rows=17944
width=140)
 Recheck Cond: ((latitude < '38'::double precision) AND (latitude >
'30'::double precision))
 -> Bitmap Index Scan on ix_latitude (cost=0.00..379.73 rows=17944
width=0)
 Index Cond: ((latitude < '38'::double precision) AND
(latitude > '30'::double precision))

You can see that this plan is more involved than the previous plan, with a bitmap
heap scan and a bitmap index scan being used. A bitmap scan is a frequently
used scanning method in PostgreSQL, in which PostgreSQL determines the exact
way of index processing. It is closely related to the physical implementation of
database storage. As such, explaining the exact details of a bitmap scan is out of
the scope of this book.

Now you can get some more information by adding the ANALYZE command
to EXPLAIN.

13. Use EXPLAIN ANALYZE to query plan the content of the customers table with
latitude values between 30 and 38:

EXPLAIN ANALYZE SELECT * FROM customers WHERE (latitude < 38) AND
(latitude > 30);

The following output will be displayed:

Bitmap Heap Scan on customers (cost=384.22..1688.38 rows=17944
width=140) (actual time=53.413..57.385 rows=17896 loops=1)
 Recheck Cond: ((latitude < '38'::double precision) AND (latitude >
'30'::double precision))
 Heap Blocks: exact=1033

 -> Bitmap Index Scan on ix_latitude (cost=0.00..379.73 rows=17944
width=0) (actual time=53.195..53.195 rows=17896 loops=1)
 Index Cond: ((latitude < '38'::double precision) AND
(latitude > '30'::double precision))
Planning Time: 0.169 ms

Execution Time: 57.981 ms

From the last two rows, you can see that there is 0.169 ms of planning time
and 57.981 ms of execution time, with the index scan taking almost the same
amount of time to execute as the bitmap heat scan takes to start.

346 | Performant SQL

14. Create another index for latitude between 30 and 38 on the
customers table:

CREATE INDEX ix_latitude_less ON customers(latitude) WHERE (latitude
< 38) and (latitude > 30);

15. Re-execute the query in step 10 and compare the query plans:

Bitmap Heap Scan on customers (cost=298.25..1602.41 rows=17944
width=140) (actual time=2.316..7.222 rows=17896 loops=1)
 Recheck Cond: ((latitude < '38'::double precision) AND (latitude >
'30'::double precision))
 Heap Blocks: exact=1033

 -> Bitmap Index Scan on ix_latitude_less (cost=0.00..293.77
rows=17944 width=0) (actual time=2.165..2.165 rows=17896 loops=1)
Planning Time: 0.293 ms

Execution Time: 7.905 ms

When you use a generic column index that includes all the elements in the
column, the planning time was 0.169 ms and the execution time was 57.981
ms. With a more targeted index that only includes a part of the values in the
column, the numbers were 0.293 ms and 7.905 ms, respectively. Using this
more targeted index, you were able to shave 50.076 ms off the execution time
at the cost of an additional 0.124 ms of planning time.

Note

To access the source code for this specific section, please refer
to https://packt.link/PDtJk.

Thus far, you can improve the performance of your query as indexes have made the
searching process more efficient. You may have had to pay an upfront cost to create
the index, but once created, repeat queries can be executed more quickly. Next, you
will practice index scanning in an activity.

https://packt.link/PDtJk

Database Scanning Methods | 347

Activity 8.02: Implementing Index Scans

In this activity, you will determine whether index scans can be used to reduce query
time. After creating your customer reporting system for the marketing department in
Activity 8.01, Query Planning, you have received another request to allow records to be
identified by their IP address or the associated customer names. You know that there
are a lot of different IP addresses, and you need performant searches. Plan out the
queries required to search for records by IP address as well as for certain customers
with the suffix Jr in their name.

Here are the steps to follow:

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with an IP address of 18.131.58.65. How long does the query
take to plan and execute?

2. Create a generic index based on the IP address column.

3. Rerun the query in step 1. How long does the query take to plan and execute?

4. Create a more detailed index based on the IP address column with the condition
that the IP address is 18.131.58.65.

5. Rerun the query in step 1. How long does the query take to plan and execute?
What are the differences between each of these queries?

6. Use the EXPLAIN ANALYZE commands to profile the query plan to search
for all records with a suffix of Jr. How long does the query take to plan
and execute?

7. Create a generic index based on the suffix address column.

8. Rerun the query of step 6. How long does the query take to plan and execute?

Expected output:

Bitmap Heap Scan on customers (cost=5.07..302.60 rows=100 width=140)
(actual time=0.072..0.170 rows=102 loops=1)
 Recheck Cond: (suffix = 'Jr'::text)

 Heap Blocks: exact=98

 -> Bitmap Index Scan on ix_suffix (cost=0.00..5.04 rows=100
width=0) (actual time=0.056..0.056 rows=102 loops=1)
 Index Cond: (suffix = 'Jr'::text)

Planning Time: 0.676 ms

Execution Time: 0.212 ms

348 | Performant SQL

Thus, you can improve the performance of your query as indexes have made the
searching process more efficient. You will learn how the hash index works in the
next section.

Note

The solution for this activity can be found via this link.

The Hash Index

The final indexing type you will cover is the hash index. The hash index has only
recently gained stability as a feature within PostgreSQL, with previous versions
issuing warnings that the feature is unsafe and reporting that the method is typically
not as performant as B-tree indexes. At the time of writing, the hash index feature is
relatively limited in the comparative statements it can run, with equality (=) being the
only one available.

So, given that the feature is only just stable and somewhat limited in options for use,
why would anyone use it? Well, hash indices can describe large datasets (in the order
of tens of thousands of rows or more) using very little data, allowing more of the data
to be kept in memory and reducing search times for some queries. This is particularly
important for databases that are at least several gigabytes in size.

A hash index is an indexing method that utilizes a hash function to achieve its
performance benefits. A hash function is a mathematical function that takes data or
a series of data and returns a unique series of alphanumeric characters depending
upon what information was provided and the unique hash code used.

For instance, say you had a customer named Josephine Marquez. You could pass this
information to a hash function, which could produce a hash result such as 01f38e.
Suppose you also had records for Josephine's husband, Julio; the corresponding hash
for Julio could be 43eb38a. A hash map uses a key-value pair relationship to find data.

You will use the values of a hash function to provide the key, using the data contained
in the corresponding row of the database as the value. As long as the key is unique to
the value, you can quickly access the information you require. This method can also
reduce the overall size of the index in memory if only the corresponding hashes are
stored, thereby dramatically reducing the search time for a query.

Database Scanning Methods | 349

Similar to the syntax for creating a B-tree index, a hash index can be created using the
following syntax:

CREATE INDEX <index name> ON <table name> USING HASH(table column)

The following example shows how to create a hash index on the gender columns in
the customers table:

CREATE INDEX ix_gender ON customers USING HASH(gender);

If there is already an index with the same name existing in the database, you can use
a DROP INDEX <index_name> command to drop and recreate it. In the previous
section, it was mentioned that the Query Planner can ignore the indices created if it
deems them to not be significantly faster or more appropriate for the existing query.
As the hash scan is somewhat limited in use, it may not be uncommon for a different
search to ignore the indices. Now, you will perform an exercise to implement the
hash index. This will also show you the difference in performance between different
index types.

Exercise 8.03: Generating Several Hash Indexes to Investigate Performance

In this exercise, you will generate several hash indexes and investigate the potential
performance increases that can be gained from using them. You will start the
exercise by rerunning some of the queries of previous exercises and comparing the
execution times:

1. Drop all existing indexes using the DROP INDEX command for each of the
indexes that you have created previously (ix_gender, ix_state, and ix_
latitude_less); otherwise, you will run into an issue with the following steps:

DROP INDEX <index name>;

2. Use EXPLAIN and ANALYZE on the customers table where the gender is
male, but without using a hash index:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

An output similar to this will be displayed:

Seq Scan on customers (cost=0.00..1660.00 rows=24957 width=140)
(actual time=0.168..130.498 rows=24956 loops=1)
 Filter: (gender = 'M'::text)

 Rows Removed by Filter: 25044

Planning Time: 0.217 ms

Execution Time: 12.833 ms

350 | Performant SQL

From the output, you can see that the estimated planning time is 0.217 ms
and the execution time is 12.833 ms. Note that you may not have the same
time with this query plan, and the plan may not always produce the same values.
The key here is to compare the values with the values when PostgreSQL uses an
index for execution, not the absolute values.

3. Create a B-tree index on the gender column and repeat the query to determine
the performance using the default index:

CREATE INDEX ix_gender ON customers USING btree(gender);

The following is the output of the preceding code:

Bitmap Heap Scan on customers (cost=285.71..1632.67 rows=24957
width=140) (actual time=1.002..7.162 rows=24956 loops=1)
 Recheck Cond: (gender = 'M'::text)

 Heap Blocks: exact=1035

 -> Bitmap Index Scan on ix_gender (cost=0.00..279.47 rows=24957
width=0) (actual time=0.875..0.875 rows=24956 loops=1)
 Index Cond: (gender = 'M'::text)

Planning Time: 0.173 ms

Execution Time: 8.303 ms

From the output, you can decipher that the Query Planner has selected the
B-tree index, but the costs of the scans do not differ much, although the
planning and execution time estimates have been modified. This is because
there are only two values in the column. Thus the selectivity of this index is
not high.

4. Repeat the following query at least five times manually and observe the time
estimates after each execution:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The results of the five individual queries should be similar to the one shown
previously, just that the planning and execution times differ for each separate
execution of the query.

5. You created a B-tree index called ix_gender in step 3. Now drop the index
so that you can create another index with the same name using HASH in the
next step:

DROP INDEX ix_gender;

Database Scanning Methods | 351

6. Create a hash index on the gender column so that you can compare the hash
index with the B-tree index:

CREATE INDEX ix_gender ON customers USING HASH(gender);

7. Repeat the query from step 4 to see the execution time:

EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The following output will be displayed:

Seq Scan on customers (cost=0.00..1660.00 rows=24957 width=140)
(actual time=0.029..14.028 rows=24956 loops=1)
 Filter: (gender = 'M'::text)

 Rows Removed by Filter: 25044

Planning Time: 0.981 ms

Execution Time: 14.979 ms

PostgreSQL determined that there was no benefit to using the hash index on
the gender column. So the index was not used by the planner. This is because
the gender column could have only two possible values and the selectivity is
very low.

8. Use the EXPLAIN ANALYZE command to profile the performance of the query
that selects all customers where the state is FO:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following output will be displayed:

Seq Scan on customers (cost=0.00..1660.00 rows=1 width=140) (actual
time=13.321..13.321 rows=0 loops=1)
 Filter: (state = 'FO'::text)

 Rows Removed by Filter: 50000

Planning Time: 0.118 ms

Execution Time: 13.338 ms

9. Create a B-tree index on the state column of the customers table and repeat
the query profiling:

CREATE INDEX ix_state ON customers USING BTREE(state);

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

352 | Performant SQL

The following is the output of the preceding code:

Index Scan using ix_state on customers (cost=0.29..8.31 rows=1
width=140) (actual time=0.045..0.045 rows=0 loops=1)
 Index Cond: (state = 'FO'::text)

Planning Time: 0.404 ms

Execution Time: 0.069 ms

Here, you can see a significant performance increase due to the B-tree index
with a slight setup cost. How does the index scan perform? Since the execution
time has dropped from 13.338 ms to 0.069 ms, it is reasonable to accept
that the planning cost has increased by approximately 300%, from 0.118 ms to
0.404 ms.

10. Similar to what you just did to the index on the gender column, create a
hash index for the state column and compare the performance. Drop the ix_
state B-tree index and create a hash index:

DROP INDEX ix_state;

CREATE INDEX ix_state ON customers USING HASH(state);

11. Use EXPLAIN and ANALYZE to profile the performance of the hash scan:

EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

Index Scan using ix_state on customers (cost=0.00..8.02 rows=1
width=140) (actual time=0.032..0.032 rows=0 loops=1)
 Index Cond: (state = 'FO'::text)

Planning Time: 0.359 ms

Execution Time: 0.054 ms

You can see that, for this specific query, a hash index is particularly effective,
reducing both the planning/setup time and cost of the B-tree index, as well as
reducing the execution time to less than 1 ms from 13.338 ms.

Note

To access the source code for this specific section, please refer to
https://packt.link/PDtJk.

https://packt.link/PDtJk

Database Scanning Methods | 353

In this exercise, you used hash indexes to find the effectiveness of a particular query.
You saw how the execution time goes down when using a hash index in a query. You
will practice this skill in the coming activity.

Activity 8.03: Implementing Hash Indexes

In this activity, you will investigate the use of hash indexes to improve performance
using the emails table from the sqlda database. Here is the scenario. You have
received another request from the marketing department. This time, they would like
you to analyze the performance of an email marketing campaign.

Given that the success rate of email campaigns is low, different emails are sent
to multiple customers at a time. Use the EXPLAIN and ANALYZE commands to
determine the planning time and cost, as well as the execution time and cost, of
selecting all rows where the email subject is Shocking Holiday Savings On
Electric Scooters:

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and
cost, as well as the execution time and cost, of selecting all rows where the email
subject is Shocking Holiday Savings On Electric Scooters.

2. Create a hash scan on the email_subject column.

3. Repeat step 1. Compare the output of the Query Planner without the hash index
to the output with the hash index.

4. Create a hash scan on the customer_id column.

5. Use EXPLAIN and ANALYZE to estimate how long it would take to select all
rows with a customer_id value greater than 100. Also, determine the type of
scan used and why.

Expected output:

Seq Scan on emails (cost=0.00..10650.98 rows=417346 width=79)
(actual time=0.067..105.158 rows=417315 loops=1)
 Filter: (customer_id > 100)

 Rows Removed by Filter: 843

Planning Time: 0.548 ms

Execution Time: 117.899 ms

354 | Performant SQL

In this activity, a sequential scan was used in this query rather than the hash scan
created due to the current limitations of hash scan usage. Explaining the exact nature
of this limitation is beyond the scope of this book. At the time of writing, the use of
the hash scan is limited to equality comparisons, which involve searching for values
equal to a given value.

Note

The solution for this activity can be found via this link.

Effective Index Use

So far in this chapter, you have looked at different scanning methods and the use
of both B-trees and hash scans as a means of reducing query times. You have also
seen different examples of where an index was created for a field or condition and
was explicitly not selected by the Query Planner when executing the query as it was
deemed a more inefficient choice.

In this section, you will spend some time learning about the appropriate use of
indexes to reduce query times since, while indexes may seem like an obvious choice
for increasing query performance, this is not always the case.

Consider the following situations:

• The field you have used for your index is frequently changing: In this
situation, where you are frequently inserting or deleting rows in a table, the
index that you have created may quickly become inefficient as it was constructed
for data that is either no longer relevant or has since had a change in value.

Consider the index at the back of this book. If you moved the order of the
chapters around, the index would no longer be valid and would need to be
revised. In such a situation, you may need to periodically re-index the data to
ensure the references to the data are up to date.

In SQL, you can rebuild the data indices by using the REINDEX command,
which leads to a scenario where you will need to consider the cost, means, and
strategy of frequent re-indexing versus other performance considerations, such
as the query benefits introduced by the index, the size of the database, or even
whether changes to the database structure could avoid the problem altogether.

Database Scanning Methods | 355

• The index is out of date and the existing references are either invalid or
there are segments of data without an index, preventing the use of the
index by the Query Planner: In general, PostgreSQL will automatically update
indexes as the underlying table changes. But there are extremely rare cases
when the update may not function properly. In such a situation, the index is so
old that it cannot be used and thus needs to be updated.

• You are frequently looking for records containing the same search criteria
within a specific field: In Exercise 8.02, Creating an Index Scan, you considered
an example similar to this when looking for customers within a database
whose records contained latitude values of less than 38 and greater than 30,
using SELECT * FROM customers WHERE (latitude < 38) and
(latitude > 30).

In this example, it may be more efficient to create a partial index using
a subset of data, like this: CREATE INDEX ix_latitude_less ON
customers(latitude) WHERE (latitude < 38) and (latitude
> 30). In this way, the index is only created using the data you are interested
in, and is thereby smaller in size, quicker to scan, and easier to maintain, and can
also be used in more complex queries.

• The database is not particularly large: In such a situation, the overhead of
creating and using the index may simply not be worth it. Sequential scans,
particularly those using data already in RAM, are quite fast, and if you create an
index on a small dataset, there is no guarantee that the Query Planner will use it
or get any significant benefit from using it.

So far, all the query plans in this chapter have only dealt with single-table queries. As
you can imagine, when the query contains more tables, its query plan will become
more complex. This is especially true when you try to join two or more tables because
at this point, you are not only picking data from the hard disk but also trying to match
data (with a join key) in one table to the data in another. The interpretation and
understanding of these plans are no doubt very important but are way beyond the
scope of this book. If you are interested in learning more about this topic, you should
get yourself familiar with single-table query plans first, then seek further studies on
the official PostgreSQL website.

In the next section, you will learn how to speed up normal query execution by
terminating long-running queries.

356 | Performant SQL

Killing Queries
Sometimes, you have a lot of data or perhaps insufficient hardware resources, and
a query just runs for a very long time. In such a situation, you may need to stop the
query—perhaps so you can implement an alternative query to get the information
you need, but without the delayed response. In this section, you are going to
investigate how you can stop hanging or, at least, extremely long-running queries
using a secondary PostgreSQL interpreter. The following are some of the commands
that you will use to kill queries:

• pg_sleep is a command that allows you to tell the SQL interpreter to
essentially do nothing for a specified period as defined by the input to the
function in seconds.

• The pg_cancel_backend command causes the interpreter to end the query
specified by the process ID (PID). The process will be terminated cleanly,
allowing for appropriate resource cleanup. Clean termination should also be the
first preference as it reduces the possibility of data corruption and damage to
the database.

• The pg_terminate_background command stops an existing process but, as
opposed to pg_cancel_background, forces the process to terminate without
cleaning up any resources being used by the query. The query is immediately
terminated, and data corruption may occur as a result.

To invoke these commands, you need the command to be evaluated, and one
common method is to use a simple select statement, such as the following:

SELECT pg_terminate_background(<PID>);

PID is the process ID of the query you would like to terminate. Assuming this runs
successfully, it would output the following:

pg_terminate_backend

 t

(1 row)

Now that you have learned how to kill a query in both a clean and a forced manner,
you will step through an exercise to kill a long-running query.

Killing Queries | 357

Exercise 8.04: Canceling a Long-Running Query

In this exercise, you will cancel a long-running query to save time when you are stuck
at query execution. You have been lucky enough to receive a large data store and you
decide to run what you originally thought was a simple enough query to get some
basic descriptive statistics of the data. For some reason, however, the query is taking
an extremely long time and you are not even sure that it is running.

You decide it is time to cancel the query, which means you would like to send a stop
signal to the query but allow it sufficient time to clean up its resources gracefully.
As there may be a wide variety of hardware available to you and the data required
to induce a long-running query could be quite a lot to download, you will simulate a
long-running query using the pg_sleep command.

For this exercise, you will require two separate SQL interpreter sessions running in
separate windows, as shown in the following steps:

1. Launch two separate interpreters by running psql sqlda:

C:\> psql -U postgres sqlda

2. In the first terminal, execute the sleep command with a parameter of
1000 seconds:

SELECT pg_sleep(1000);

After pressing Enter, you should notice that the cursor of the interpreter does
not return. Instead, this window seems to be hanging, without responding to any
keyboard or mouse inputs.

3. In the second terminal, select the pid and query columns from the pg_stat_
activity table where state is active:

SELECT pid, query FROM pg_stat_activity WHERE state = 'active';

The following is the output of the preceding code:

 pid | query

------+--

 6452 | SELECT pid, query FROM pg_stat_activity WHERE state =
'active';
 6336 | SELECT pg_sleep(1000);

(2 rows)

358 | Performant SQL

4. In the second terminal, pass the PID of the pg_sleep query to the pg_
cancel_backend command to terminate the pg_sleep query with a graceful
cleanup. Note that the PID (6336) might be different in your environment, so
use whatever PID you got from the previous step:

SELECT pg_cancel_backend(6336);

The following is the output of the preceding code:

pg_cancel_backend

t

(1 row)

5. Observe the first terminal and notice that the sleep command is no longer
executing, as indicated by the return message:

ERROR: canceling statement due to user request

The above output shows an error as the query was canceled after the
user's request.

Note

To access the source code for this specific section, please refer to
https://packt.link/PDtJk.

In this exercise, you learned how to cancel a query that is taking a long time to
execute. In the next section, you will learn how to use functions and triggers in your
SQL queries and analyze data.

Functions and Triggers
So far in this chapter, you have discovered how to quantify query performance via
the Query Planner. In this section, you will construct reusable queries and statements
via functions, as well as automatic function execution via trigger callbacks. The
combination of these two SQL features can be used to not only run queries or
re-index tables as data is added to, updated in, or removed from the database but
also run hypothesis tests and track their results throughout the life of the database.

https://packt.link/PDtJk

Functions and Triggers | 359

Function Definitions

As in almost all other programming or scripting languages, functions in SQL are
contained sections of code that provide a lot of benefits, such as efficient code reuse
and simplified troubleshooting processes. You can use functions to repeat or modify
statements or queries without re-entering the statement each time or searching
for its use throughout longer code segments. One of the most powerful aspects
of functions is that they allow you to break code into smaller, testable chunks. As
the popular computer science expression goes, "If the code is not tested, it cannot
be trusted."

So, how do you define functions in SQL? There is a relatively straightforward syntax,
with the SQL syntax keywords:

CREATE FUNCTION some_function_name (function_arguments)

RETURNS return_type AS $return_name$

DECLARE return_name return_type;

BEGIN

 <function statements>;

RETURN <some_value>;

END; $return_name$

LANGUAGE PLPGSQL;

The following is a short explanation of the functions used in the preceding code:

• some_function_name is the name issued to the function and is used to call
the function at later stages.

• function_arguments is an optional list of function arguments. This could
be empty, without any arguments provided, if you do not need any additional
information to be provided to the function. To provide additional information,
you can use either a list of different data types as the arguments (such as integer
and numeric data types) or a list of arguments with parameter names (such as
the min_val integer and the max_val numeric data type).

• return_type is the data type being returned from the function.

• DECLARE return_name return_type statement is only required
if return_name is provided, and a variable is to be returned from the
function. return_name is the name of the variable to be returned
(optional). If return_name is not required, this line can be omitted from
the function definition.

360 | Performant SQL

• function_statements are the SQL statements to be executed within
the function.

• some_value is the data to be returned from the function.

• PLPGSQL specifies the language to be used in the function. PostgreSQL allows
you to use other languages; however, their use in this context lies beyond the
scope of this book.

For example, you can create a simple function to add three numbers, as follows:

CREATE FUNCTION add_three(a integer, b integer, c integer)

RETURNS integer AS $$

BEGIN

 RETURN a + b + c;

END;

$$ LANGUAGE PLPGSQL;

You can then call it in your queries, as follows:

SELECT add_three(1, 2, 3);

The following is the output of the code:

add_three

 6

(1 row)

Now, you will implement an exercise to create a function without arguments.

Note

The complete PostgreSQL documentation for functions can be found at
https://www.postgresql.org/docs/current/extend.html.

https://www.postgresql.org/docs/current/extend.html

Functions and Triggers | 361

Exercise 8.05: Creating Functions without Arguments

In this exercise, you will create the most basic function—one that simply returns a
constant value—so you can build up a familiarity with the syntax. You will construct
your first SQL function that does not take any arguments as additional information.
This function may be used to repeat SQL query statements that provide basic
statistics about the data within the tables of the sqlda database. These are the steps
to follow:

1. Connect to the sqlda database via psql.

2. Create a function called fixed_val that does not accept any arguments and
returns an integer. This is a multiline process. Enter the following line first:

CREATE FUNCTION fixed_val()

RETURNS integer AS $$

This line starts the function declaration for fixed_val, and you can see
that there are no arguments to the function, as indicated by the open/closed
brackets, (), nor any returned variables.

3. Enter the BEGIN keyword (notice that as you are not returning a variable, the
line containing the DECLARE statement has been omitted):

BEGIN

4. You want to return the value 1 from this function, so enter the
RETURN 1 statement:

RETURN 1;

5. End the function definition:

END; $$

6. Add the LANGUAGE statement, as shown in the following function definition:

LANGUAGE PLPGSQL;

This will complete the function definition.

7. Now that the function is defined, you can use it. As with almost all other SQL
statements you have completed to date, you simply use the SELECT command:

SELECT * FROM fixed_val();

362 | Performant SQL

This will display the following output:

fixed_val

1

(1 row)

Notice that the function is called using the open and closed brackets in the
SELECT statement.

8. Use EXPLAIN and ANALYZE in combination with this statement to characterize
the performance of the function:

EXPLAIN ANALYZE SELECT * FROM fixed_val();

Here is the output of the preceding code:

Function Scan on fixed_val (cost=0.25..0.26 rows=1 width=4) (actual
time=19.138..19.139 rows=1 loops=1)
Planning Time: 0.143 ms

Execution Time: 20.774 ms

Notice that the three rows being referenced in the preceding output refer not
to the result of SELECT * FROM fixed_val(); but rather to the result of
the Query Planner. Looking at the first line of the information returned by the
Query Planner, you can see that only one row of information is returned from
the SELECT statement.

9. So far, you have seen how to create a simple function, but simply returning
a fixed value is not particularly useful. You will now create a function that
determines the number of samples in the sales table. Create a function called
num_samples that does not take any arguments but returns an integer called
total that represents the number of samples in the sales table:

CREATE FUNCTION num_samples() RETURNS integer AS $total$

10. You want to return a variable called total, and thus you need to declare it.
Declare the total variable as an integer:

DECLARE total integer;

11. Enter the BEGIN keyword:

BEGIN

Functions and Triggers | 363

12. Enter the statement that determines the number of samples in the table and
assigns the result to the total variable:

SELECT COUNT(*) INTO total FROM sales;

13. Return the value for total:

RETURN total;

14. End the function with the variable name:

END; $total$

15. Add the LANGUAGE statement, as shown in the following function definition:

LANGUAGE PLPGSQL;

This will complete the function definition, and upon successful creation, the
CREATE_FUNCTION statement will be shown.

16. Use the function to determine how many rows or samples there are in the
sales table:

SELECT num_samples();

Here is the output of the preceding code:

num_samples

37711

(1 row)

You can see that by using the SELECT statement in combination with your SQL
function, there are 37711 records in the sales database.

Note

To access the source code for this specific section, please refer to
https://packt.link/PDtJk.

In this exercise, you have created your first user-defined SQL function and discovered
how to create and return information from variables within the function.

https://packt.link/PDtJk

364 | Performant SQL

In the following activity, you will create a new function that can be called in
your queries.

Activity 8.04: Defining a Largest Sale Value Function

In this activity, you will create a user-defined function so you can calculate the value
of the largest sale in a single function call. You will reinforce your knowledge of
functions as you create a function that determines the value of the largest sale in a
database. At this stage, your marketing department is starting to make a lot of data
analysis requests, and you need to be more efficient in fulfilling them, as they are
currently just taking too long.

Perform the following steps:

1. Connect to the sqlda database.

2. Create a function called max_sale that does not take any input arguments but
returns a numeric value called big_sale.

3. Declare the big_sale variable and begin the function.

4. Insert the value of the largest sale into the big_sale variable.

5. Return the value for big_sale.

6. End the function with the LANGUAGE statement.

7. Call the function to find out what the value of the largest sale in the database is.

Expected output:

Max

115000

(1 row)

In this activity, you created a user-defined function to calculate the largest sale
amount from a single function call using the MAX function. Next, you will create a
function that takes arguments.

Note

The solution for this activity can be found via this link.

Functions and Triggers | 365

Exercise 8.06: Creating Functions with Arguments

In this exercise, you will create a single function that will allow you to calculate
information from multiple tables. Create a function that determines the average
value from the sales amount column with respect to the value of the corresponding
channel. After creating your previous user-defined function to determine the biggest
sale in the database, you have observed a significant increase in the efficiency with
which you fulfill your marketing department's requests.

Perform the following steps to complete the exercise:

1. Connect to the sqlda database.

2. Create a function called avg_sales that takes a text argument input,
channel_type, and returns a numeric output:

CREATE FUNCTION avg_sales(channel_type TEXT)

RETURNS numeric AS $channel_avg$

3. Declare the numeric channel_avg variable and begin the function:

DECLARE channel_avg numeric;

BEGIN

4. Determine the average sales_amount only when the channel value is equal
to channel_type:

SELECT

 AVG(sales_amount)

INTO

 channel_avg

FROM

 sales

WHERE

 channel=channel_type;

5. Return channel_avg:

RETURN channel_avg;

6. End the function and specify the LANGUAGE statement:

END; $channel_avg$

LANGUAGE PLPGSQL;

366 | Performant SQL

7. Determine the average sales amount for the internet channel:

SELECT avg_sales('internet');

Here is the output of the preceding code:

avg_sales

6413.11540412024

(1 row)

8. Now do the same for the dealership channel:

SELECT avg_sales('dealership');

Here is the output of the preceding code:

avg_sales

7939.33132075954

(1 row)

This output shows the average value for sales for a dealership, which is
7939.331.

Note

To access the source code for this specific section, please refer to
https://packt.link/PDtJk.

In this exercise, you were introduced to using function arguments to further modify
the behavior of functions and the outputs they return. Next, you will learn about the
\df and \sf commands.

https://packt.link/PDtJk

Functions and Triggers | 367

The \df and \sf commands

You can use the \df command in PostgreSQL to get a list of the functions available in
memory, including the variables and data types passed as arguments. The following
are the first few rows of this command:

 List of functions

 Schema | Name | Result data type | Argument data
types | Type
--------+--------------------+------------------+------------------------
------------------+------
 public | cube | cube | cube, double precision
| func
 public | cube | cube | cube, double precision,
double precision | func
 public | cube | cube | double precision
| func
 public | cube | cube | double precision,
double precision | func

The \sf function_name command in PostgreSQL can be used to review the
function definition for already-defined functions. For example, in the preceding
section, you created a function called max_sale. In this case, say you execute the
following query:

\sf max_sale

The output will show the definition of that function, as follows:

CREATE OR REPLACE FUNCTION public.max_sale()

 RETURNS integer

 LANGUAGE plpgsql

AS $function$

DECLARE big_sale numeric;

BEGIN

SELECT MAX(sales_amount) INTO big_sale FROM sales;

RETURN big_sale;

END; $function$

368 | Performant SQL

Now that you have walked through several exercises to create functions with and
without arguments, you can apply your knowledge to real-world problems. In the
following activity, you will practice creating functions that take arguments.

Activity 8.05: Creating Functions with Arguments

In this activity, your goal is to create a function with arguments and compute the
output. You will construct a function that computes the average sales amount for
transaction sales within a specific date range. Each date is to be provided to the
function as a text string. These are the steps to follow:

1. Create the function definition for a function called avg_sales_window that
returns a numeric value and takes two DATE values to specify the from and to
dates in the form YYYY-MM-DD.

2. Declare the return variable as a numeric data type and begin the function.

3. Select the average sales amount as the return variable where the sales
transaction date is within the specified date.

4. Return the function variable, end the function, and specify the
LANGUAGE statement.

5. Use the function to determine the average sales value for transactions between
2020-04-12 and 2021-04-12.

Expected output:

avg_sales_window

7663.13305937025

(1 row)

In this activity, you constructed a function that computes the average sales amount
for transaction sales within a specific date range from the database.

Note

The solution for this activity can be found via this link.

Functions and Triggers | 369

In the next section, you will learn how to create and run triggers to automate
database processes. You will also perform an exercise and activity using triggers.

Triggers

Triggers, known as events or callbacks in other programming languages, are useful
features that, as the name suggests, trigger the execution of SQL statements or
functions in response to a specific event. Triggers can be initiated when one of the
following happens:

• A row is inserted into a table.

• A field within a row is updated.

• A row within a table is deleted.

• A table is truncated; that is, all rows are quickly removed from a table.

The timing of the trigger can also be specified to occur:

• Before an insert, update, delete, or truncate operation

• After an insert, update, delete, or truncate operation

• Instead of an insert, update, delete, or truncate operation

Depending upon the context and the purpose of the database, triggers can have a
wide variety of different use cases and applications. For example, in a production
environment where a database is being used to store business information and make
process decisions (such as for a ride-sharing application or an e-commerce store),
triggers can be used before any operation to create access logs to the database.
These logs can then be used to determine who has accessed or modified the
data within the database. Alternatively, triggers could be used to remap database
operations to a different database or table using the INSTEAD OF trigger.

In the context of a data analysis application, triggers can be used to either create
datasets of specific features in real-time (such as for determining the average of data
over time or a sample-to-sample difference), test hypotheses concerning the data, or
flag outliers being inserted or modified in a dataset.

370 | Performant SQL

Given that triggers are used frequently to execute SQL statements in response to
events or actions, you can also see why functions are often written specifically for or
paired with triggers. Self-contained, repeatable function blocks can be used for both
trialing/debugging the logic within the function as well as inserting the actual code
within the trigger. So, how do you create a trigger? Similar to the case of function
definitions, there is a standard syntax; again, they are SQL keywords:

CREATE TRIGGER some_trigger_name

{ BEFORE | AFTER | INSTEAD OF }

{ INSERT | DELETE | UPDATE | TRUNCATE }

ON table_name

FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE function_name (function_arguments)

Looking at this generic trigger definition, you can see that there are a few
individual components:

• You need to provide a name for the trigger in place of some_trigger_name.

• You need to select when the trigger is going to occur, either BEFORE, AFTER, or
INSTEAD OF an event.

• You need to select what type of event you want to trigger on, either INSERT,
DELETE, UPDATE, or TRUNCATE.

• You need to provide the table you want to monitor for events in table_name.

• The FOR EACH statement is used to specify how the trigger is to be fired. You
can fire the trigger for each row that is within the scope of the trigger, or just
once per statement despite the number of rows being inserted into the table.

• Finally, you just need to provide function_name and any relevant/required
function_arguments to provide the functionality that you want to use on
each trigger.

Look at the following example, in which you want to add a check that prevents the
system from accidentally creating a sale for an amount less than half of the base
MSRP. Before you can create a trigger, you need to define a trigger function:

CREATE OR REPLACE FUNCTION check_sale_amt_vs_msrp()

RETURNS TRIGGER AS $$

DECLARE min_allowed_price numeric;

BEGIN

 SELECT

 base_msrp * 0.5

Functions and Triggers | 371

 INTO

 min_allowed_price

 FROM

 products

 WHERE

 product_id = NEW.product_id;

 IF NEW.sales_amount < min_allowed_price THEN

 RAISE EXCEPTION 'Sales amount cannot be less than half of MSRP';

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE PLPGSQL;

Next, you need to create the trigger that will run if a record is added or updated:

CREATE TRIGGER sales_product_sales_amount_msrp

AFTER INSERT OR UPDATE

ON sales

FOR EACH ROW

EXECUTE PROCEDURE check_sale_amt_vs_msrp();

You can test that this works by testing an insertion into the sales table that does not
meet the minimum sales amount criteria:

INSERT INTO sales (

 SELECT

 customer_id,

 product_id,

 sales_transaction_date,

 sales_amount/3.0,

 channel,

 dealership_id

 FROM

 sales

 LIMIT

 1

);

This gives the following output:

ERROR: Sales amount cannot be less than half of MSRP

CONTEXT: PL/pgSQL function check_sale_amt_vs_msrp() line 6 at RAISE

372 | Performant SQL

Now, implement an exercise to create triggers for updating fields.

Note

There are a number of different options available for SQL triggers that lie
outside the scope of this book. For the complete trigger documentation, you
can refer to https://www.postgresql.org/docs/current/sql-createtrigger.html.

Exercise 8.07: Creating Triggers to Update Fields

In this exercise, you will introduce two new tables into the sqlda database, one
called new_products and another called order_info. The new_products
table contains some product information together with their inventory, and the
order_info table contains the orders placed on different products.

For this exercise, you will create a trigger that updates the inventory (also called
stock) value within the new_products table for a product each time that an order is
inserted into a new order_info table. As orders are placed and items are bought,
the triggers will be fired, and the quantity of available stock will be updated. Using
such a trigger, you can update your analysis in real-time as end users interact with
the database. These triggers will remove the need for you to run the analysis for the
marketing department manually; instead, they will generate the results for you.

Here are the steps to perform:

1. Create the required tables in the sqlda database using the following queries:

CREATE TABLE order_info (

 order_id integer,

 customer_id integer,

 product_code text,

 qty integer

);

INSERT INTO order_info VALUES (1618, 3, 'GROG1', 12);

INSERT INTO order_info VALUES (1619, 2, 'POULET3', 3);

INSERT INTO order_info VALUES (1620, 4, 'MON123', 1);

INSERT INTO order_info VALUES (1621, 4, 'MON636', 3);

INSERT INTO order_info VALUES (1622, 5, 'MON666', 1);

CREATE TABLE new_products (

 product_code text,

https://www.postgresql.org/docs/current/sql-createtrigger.html

Functions and Triggers | 373

 name text,

 stock integer

);

INSERT INTO new_products VALUES

('MON636', 'Red Herring', 99);

INSERT INTO new_products VALUES

('MON666', 'Murray"s Arm', 0);

INSERT INTO new_products VALUES

('GROG1', 'Grog', 65);

INSERT INTO new_products VALUES

('POULET3', 'El Pollo Diablo', 2);

INSERT INTO new_products VALUES

('MON123', 'Rubber Chicken + Pulley', 7);

2. Create the required functions in the sqlda database using the Functions.
sql code in the Exercise 8.07 folder, which can be found in the accompanying
source code. It is also available on GitHub: https://packt.link/PDtJk.

You will need to open up a query tool such as pgAdmin and connect to the
sqlda database. Copy and paste the content of the Functions.sql file
into the query tool and run the statements. There are three functions in this
Functions.sql file that you will use, which are as follows:

• The get_stock function takes a product code as a TEXT input and returns the
currently available stock for the specific product code.

• The insert_order function is used to add a new order to the order_info
table and takes customer_id INTEGER, product_code TEXT, and qty
INTEGER as inputs; it will return the order_id instance generated for the
new record.

• The update_stock function will extract the information from the most recent
order and update the corresponding stock information from the products
table for the corresponding product_code.

3. Get a list of the functions using the \df command after loading the function
definitions. This will display the following output:

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+-----------+------------------+---------------------+------

 public | get_stock | integer | text | func

(1 row)

https://packt.link/PDtJk

374 | Performant SQL

4. First, look at the current state of the new_products table:

SELECT * FROM new_products;

Here is the output of the preceding code:

product_code | name | stock

--------------+-------------------------+-------

 MON636 | Red Herring | 99

 MON666 | Murray"s Arm | 0

 GROG1 | Grog | 65

 POULET3 | El Pollo Diablo | 2

 MON123 | Rubber Chicken + Pulley | 7

(5 rows)

For the order_info table, you can write the following query:

SELECT * FROM order_info;

Here is the output of the preceding code:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

 1618 | 3 | GROG1 | 12

 1619 | 2 | POULET3 | 3

 1620 | 4 | MON123 | 1

 1621 | 4 | MON636 | 3

 1622 | 5 | MON666 | 1

(5 rows)

5. Insert a new order using the insert_order function with customer_id 4,
product_code MON636, and qty 10:

SELECT insert_order(4, 'MON636', 10);

Here is the output of the preceding code:

insert_order

1623

(1 row)

Functions and Triggers | 375

6. Review the entries for the order_info table:

SELECT * FROM order_info;

This will display the following output:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

 1618 | 3 | GROG1 | 12

 1619 | 2 | POULET3 | 3

 1620 | 4 | MON123 | 1

 1621 | 4 | MON636 | 3

 1622 | 5 | MON666 | 1

 1623 | 4 | MON636 | 10

(6 rows)

Notice the additional row with order_id 1623.

7. Update the new_products table to account for the newly sold 10 red herrings
using the update_stock function:

SELECT update_stock();

Here is the output of the preceding code:

update_stock

89

(1 row)

This function call will determine how many red herrings are left in the
inventory (after the sale of the 10 additional herrings) and will update the
table accordingly.

8. Review the new_products table and notice the updated stock value for
Red Herring:

SELECT * FROM new_products;

376 | Performant SQL

Here is the output of the preceding code:

product_code | name | stock

--------------+-------------------------+-------

 MON666 | Murray"s Arm | 0

 GROG1 | Grog | 65

 POULET3 | El Pollo Diablo | 2

 MON123 | Rubber Chicken + Pulley | 7

 MON636 | Red Herring | 89

(5 rows)

Updating the stock values manually will quickly become tedious. Create a trigger
to do this automatically whenever a new order is placed.

9. Delete (DROP) the previous update_stock function. Before you can create a
trigger, you must first adjust the update_stock function to return a trigger,
which has the benefit of allowing for some simplified code:

DROP FUNCTION update_stock;

10. Create a new update_stock function that returns a trigger. Note that
the function definition is also contained within the Functions.sql file for
reference or direct loading into the database:

CREATE FUNCTION update_stock()

RETURNS TRIGGER AS $stock_trigger$

DECLARE stock_qty integer;

BEGIN

 stock_qty := get_stock(NEW.product_code) - NEW.qty;

 UPDATE

 new_products

 SET

 stock=stock_qty

 WHERE

 product_code=NEW.product_code;

 RETURN NEW;

END; $stock_trigger$

LANGUAGE PLPGSQL;

Functions and Triggers | 377

Note that in this function definition, you are using the NEW keyword followed by
the dot operator (.) and the product_code (NEW.product_code) and qty
(NEW.qty) field names from the order_info table. The NEW keyword refers
to the record that was recently inserted, updated, or deleted and provides a
reference to the information within the record.

In this exercise, you want the trigger to fire after the record is inserted into
order_info and thus the NEW reference will contain this information. So,
you can use the get_stock function with NEW.product_code to get the
currently available stock for the record and simply subtract the NEW.qty value
from the order record.

11. Finally, create the trigger. You want the trigger to occur after an INSERT
operation on the order_info table. For each row, you want to execute the
newly modified update_stock function to update the stock values in the
product table:

CREATE TRIGGER update_trigger

AFTER INSERT ON order_info

FOR EACH ROW

EXECUTE PROCEDURE update_stock();

12. Now that you have created a new trigger, test it. Call the insert_order
function to insert a new record into the order_info table:

SELECT insert_order(4, 'MON123', 2);

Here is the output of the preceding code:

insert_order

1624

(1 row)

13. Look at the records from the order_info table:

SELECT * FROM order_info;

378 | Performant SQL

This will display the following output:

order_id | customer_id | product_code | qty

----------+-------------+--------------+-----

 1618 | 3 | GROG1 | 12

 1619 | 2 | POULET3 | 3

 1620 | 4 | MON123 | 1

 1621 | 4 | MON636 | 3

 1622 | 5 | MON666 | 1

 1623 | 4 | MON636 | 10

 1624 | 4 | MON123 | 2

(7 rows)

14. Look at the records for the new_products table:

SELECT * FROM new_products;

Here is the output of the preceding code:

product_code | name | stock

--------------+-------------------------+-------

 MON666 | Murray"s Arm | 0

 GROG1 | Grog | 65

 POULET3 | El Pollo Diablo | 2

 MON636 | Red Herring | 89

 MON123 | Rubber Chicken + Pulley | 5

(5 rows)

Our trigger worked. You can see that the available stock for Rubber Chicken
+ Pulley MON123 has been reduced from 7 to 5, in accordance with the
quantity of the inserted order.

Note

To access the source code for this specific section, please refer to
https://packt.link/PDtJk.

https://packt.link/PDtJk

Functions and Triggers | 379

In this exercise, you have successfully constructed a trigger to execute a secondary
function following the insertion of a new record into the database. In the next activity,
you will create a trigger to keep track of the data.

Activity 8.06: Creating a Trigger to Track Average Purchases

Our goal here is to create a trigger for keeping track of the data that is updated. Say
you are working as a data scientist for ZoomZoom. The business is looking at trying
a few different strategies to increase the number of items in each sale. To simplify
your analysis, you decide to add a simple trigger that, for each new order, computes
the average quantity in all the orders and puts the result in a new table along with the
corresponding order_id. Here are the steps to follow:

1. Connect to the sqlda database.

2. Create a new table called avg_qty_log that is composed of an order_id
integer field and an avg_qty numeric field.

3. Create a function called avg_qty that does not take any arguments but
returns a trigger. The function computes the average value for all order
quantities (order_info.qty) and inserts the average value, along with the
most recent order_id, into avg_qty.

4. Create a trigger called avg_trigger that calls the avg_qty function after
each row is inserted into the order_info table.

5. Insert some new rows into the order_info table with quantities of 6, 7, and 8.

6. Look at the entries in avg_qty_log. Is the average quantity of each
order increasing?

Expected output:

order_id | avg_qty

----------+--------------------

 1625 | 4.7500000000000000

 1626 | 5.0000000000000000

 1627 | 5.3000000000000000

(3 rows)

380 | Performant SQL

In this activity, you created a trigger for continuously keeping track of the data that is
updated in the database.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, you have covered a wide variety of topics designed to help you
understand and improve the performance of your SQL queries. The chapter began
with a thorough discussion of the Query Planner, (including the EXPLAIN and
ANALYZE statements) as well as various indexing methods. You discussed different
compromises and considerations that can be made to reduce the time needed
to execute queries. You considered several scenarios where indexing methods
would be of benefit and others where the Query Planner may disregard the index,
thus reducing the efficiency of the query. You then moved on to learn how to kill
long-running queries. You also covered an in-depth look at functions and automatic
function calls using triggers and learned about the \df and \sf commands.

In the next chapter, you will combine all the topics you have covered thus far in a final
case study, applying your SQL knowledge and the scientific method in general, as you
solve a real-world problem.

Overview

By the end of this chapter, you will be able to solve real-world problems
outside of those described within this book by using the scientific method
and critical thinking. You will be able to analyze your data and convert it
into actionable tasks and information. To accomplish these goals, you will
examine an extensive and detailed real-world case study of sales data. This
case study will not only demonstrate the processes used in SQL analysis to
find solutions for actual problems but will also provide you with confidence
and experience in solving such problems.

Using SQL to Uncover the

Truth: A Case Study

9

384 | Using SQL to Uncover the Truth: A Case Study

Introduction
Throughout SQL for Data Analytics, Third Edition, you have learned a range of new skills
(including basic descriptive statistics, SQL commands, and importing and exporting
data in PostgreSQL) as well as more advanced methods to optimize and automate
SQL (such as functions and triggers). In this final chapter of this workshop, you will
combine these new skills with the scientific method and critical thinking to solve a
real-world problem and determine the cause of an unexpected drop in sales.

This chapter provides a case study and will help you build your confidence in applying
your new SQL skillset to your own problem domains. To solve the problem presented
in this case study, you will use the complete range of your newly developed skills,
from using basic SQL searches to filtering out the available information to aggregating
and joining multiple sets of information and using windowing methods to group the
data in a logical manner. By completing case studies such as this, you will refine one
of the key tools in your data analysis toolkit, that is, SQL, to provide a boost to your
data science career.

Case Study
Throughout this chapter, you will work on a case study. The new ZoomZoom Bat
Scooter is now available for sale exclusively through its website. Sales are looking
good, but suddenly, preorders start plunging by 20% after a couple of weeks. What is
going on? As the best data analyst at ZoomZoom, you have been assigned to figure
this out.

The Scientific Method

In this case study, you will be following the scientific method to solve the problem.
Here, you will test guesses (or hypotheses) using objectively collected data. The
scientific method can be decomposed into the following key steps:

1. Define the question to answer, which in this case is what caused the drop in
sales of the Bat Scooter after approximately 2 weeks.

2. Perform complete background research to gather sufficient information to
propose an initial hypothesis for the event or phenomenon.

3. Construct a hypothesis to explain the event or answer the question.

4. Define and execute an objective experiment to test the hypothesis. In an ideal
scenario, all aspects of the experiment should be controlled and fixed, except for
the phenomenon that is being tested under the hypothesis.

Case Study | 385

5. Analyze the data that was collected during the experiment.

6. Report the results of the analysis, which will hopefully explain why there was a
drop in the sale of Bat Scooters.

Note

In this chapter, you are completing a post hoc analysis of the data; that is,
the event has happened, and all the available data has been collected.
Post hoc data analysis is particularly useful when events have been
recorded that cannot be repeated or when certain external factors cannot
be controlled.

You can perform your analysis with the post hoc analysis data. You will also extract
information to support or refute your hypothesis. You will, however, be unable to
definitively confirm or reject the hypothesis without practical experimentation. The
question that will be the subject of this chapter and that you need to answer is this:
why did the sales of the ZoomZoom Bat Scooter drop by approximately 20% after
about 2 weeks?

So, to make the process easier, you will first start with the basic SQL skills for data
collection and processing.

Exercise 9.01: Preliminary Data Collection Using SQL Techniques

In this exercise, you will collect preliminary data using SQL techniques. You have been
told that the preorders for the ZoomZoom Bat Scooter were good, but the orders
suddenly dropped by 20%. The goal of this exercise is to answer some core questions
about Bat Scooter production, such as the following:

• When did production start?

• How much was the Bat Scooter selling for?

• How does the Bat Scooter compare with other types of scooters in terms
of price?

386 | Using SQL to Uncover the Truth: A Case Study

Perform the following steps to complete this exercise:

1. Load the sqlda database using psql.

2. List the model, base_msrp (MSRP stands for manufacturer's suggested
retail price), and production_start_date fields within the product table
for product types matching scooter:

SELECT

 model, base_msrp, production_start_date

FROM

 Products

WHERE

 product_type='scooter'

ORDER BY

 base_msrp;

The following table shows the details of all the products with the scooter
product type:

 model | base_msrp | production_start_date

-----------------------+-----------+-----------------------

 Lemon Zester | 349.99 | 2021-10-01 00:00:00

 Lemon | 399.99 | 2012-10-28 00:00:00

 Lemon | 499.99 | 2015-12-27 00:00:00

 Bat | 599.99 | 2019-06-07 00:00:00

 Blade | 699.99 | 2017-02-17 00:00:00

 Bat Limited Edition | 699.99 | 2019-10-13 00:00:00

 Lemon Limited Edition | 799.99 | 2013-08-30 00:00:00

(7 rows)

Looking at the results from the search, you can see two scooter products with
Bat in the name: Bat and Bat Limited Edition. The Bat Scooter started
production on 2019-06-07 (date format: YYYY-MM-DD), with a suggested
retail price of $599.99, and the Bat Limited Edition Scooter started
production approximately 4 months later, on 2019-10-13, with a price of
$699.99.

Looking at the product information, you can see that the Bat Scooter's price
looks different from the others as it is the only scooter with a suggested retail
price of $599.99. There are others at $699.99 and above, or $499.99 and
below. But Bat Scooter sits right in between.

Case Study | 387

Similarly, if you consider the production start date in isolation, the original Bat
Scooter is again unique as it is the only scooter starting production in the second
quarter, and one of only two in the first half of the year. All other scooters start
production in the second half of the year, with only the Blade Scooter starting
production in February.

Now that you have a basic understanding of the products, you would like to see
how they perform in the market. To use the sales information in conjunction
with the product information available, you also need to get the product ID for
each of the scooters.

3. Extract the model names and product IDs for the scooters available within the
database. You will need this information to reconcile the product information
with the available sales information:

SELECT

 model, product_id

FROM

 Products

WHERE

 product_type='scooter';

The preceding query yields the product IDs shown in the following table:

 model | product_id

-----------------------+------------

 Lemon | 1

 Lemon Limited Edition | 2

 Lemon | 3

 Blade | 5

 Bat | 7

 Bat Limited Edition | 8

 Lemon Zester | 12

(7 rows)

388 | Using SQL to Uncover the Truth: A Case Study

4. In the following steps, you will go through a series of queries for analysis. In the
real world, these analytics will involve a lot of research and experimentation
and a lot of back and forth to find the proper SQL statements. As such, it is a
good habit to save query results that you feel may be helpful, either as a view
or directly into a table. In this step, you will insert the results of the preceding
query into a new table called product_names and then select the newly
inserted content:

SELECT

 model, product_id

INTO

 product_names

FROM

 Products

WHERE

 product_type='scooter';

SELECT

 *

FROM

 product_names;

Inspect the contents of the product_names table, as shown here:

 model | product_id

-----------------------+------------

 Lemon | 1

 Lemon Limited Edition | 2

 Lemon | 3

 Blade | 5

 Bat | 7

 Bat Limited Edition | 8

 Lemon Zester | 12

(7 rows)

Note

To access the source code for this specific section, please refer to
https://packt.link/b3wRQ.

https://packt.link/b3wRQ

Case Study | 389

By completing this preliminary data collection step, you have obtained the
information that is required to collect sales data on the Bat Scooter, as well as other
scooter products for comparison. While Exercise 9.01: Preliminary Data Collection Using
SQL Techniques involved using the simplest SQL commands, it has already yielded
some useful information and should not be underestimated.

In Exercise 9.02: Extracting the Sales Information, you will try to extract the sales
information related to the reduction in sales of the Bat Scooter.

Exercise 9.02: Extracting the Sales Information

In this exercise, you will use a combination of simple SELECT statements as well
as aggregate and window functions to examine the sales data. You can use the
preliminary information at hand to extract the Bat Scooter sales records and
understand what is going on. You have a table, product_names, that contains both
the model names and product IDs. You will need to combine this information with the
sales records and extract only those for the Bat Scooter:

1. Load the sqlda database with psql.

2. To get yourself familiarized with the table, list the available fields in the
sqlda database:

\d sales

The preceding query yields the following fields that are present in the database:

 Table "public.sales"

 Column | Type | Collation |
Nullable | Default
------------------------+-----------------------------+-----------+--
--------+---------
 customer_id | bigint | | |

 product_id | bigint | | |

 sales_transaction_date | timestamp without time zone | | |

 sales_amount | double precision | | |

 channel | text | | |

 dealership_id | double precision | | |

In this result, you can see references to customer and product IDs, as well as the
transaction date, sales information, the sales channel, and the dealership ID.

390 | Using SQL to Uncover the Truth: A Case Study

3. Use an inner join on the product_id columns of both the product_names
table and the sales table. From the result of the inner join, select model,
customer_id, sales_transaction_date, sales_amount, channel,
and dealership_id, and store the values in a separate table called
product_sales:

SELECT

 model,

 customer_id,

 sales_transaction_date::DATE as sales_date,

 sales_amount,

 channel,

 dealership_id

INTO

 products_sales

FROM

 Sales

INNER JOIN

 product_names

ON

 sales.product_id=product_names.product_id;

4. Note that the sales_transaction_date column is cast from TIMESTAMP
data type to a DATE column sales_date. Since you need to determine the
sales drop in terms of days, there is no need to keep the data about time. The
date would suffice.

5. If you get an error, please drop the products_sales table using the following
DROP query and rerun the code:

DROP TABLE IF EXISTS products_sales;

Note

Throughout this chapter, you will be storing the results of queries and
calculations in separate tables as this will allow you to look at the results
of the individual steps in the analysis. In a commercial/production setting,
you would only store the end result in a separate table, depending on the
context of the problem being solved.

Case Study | 391

6. Look at the first five rows of this new table by using the following query:

SELECT

 *

FROM

 products_sales

LIMIT

 5;

The following table lists the top five customers who made a purchase. It shows
the sale amount and the transaction details, such as the date and time:

 model | customer_id | sales_date | sales_amount | channel |
dealership_id
-------+-------------+------------+--------------+----------+--------

 Lemon | 42104 | 2015-01-12 | 319.992 | internet |

 Lemon | 41604 | 2014-11-25 | 399.99 | internet |

 Lemon | 41575 | 2013-02-06 | 319.992 | internet |

 Lemon | 41531 | 2013-05-04 | 399.99 | internet |

 Lemon | 41443 | 2014-01-18 | 399.99 | internet |

(5 rows)

7. Select all the information from the product_sales table that is available for
the Bat Scooter and order the sales information by sales_date in ascending
order. By ordering the data in this way, you can look at the first few days of the
sales records in detail:

SELECT

 *

FROM

 products_sales

WHERE

 model='Bat'

ORDER BY

 sales_date;

392 | Using SQL to Uncover the Truth: A Case Study

The preceding query generates the following output:

model | customer_id | sales_date | sales_amount | channel |
dealership_id
-------+-------------+------------+--------------+------------+------

 Bat | 42213 | 2019-06-07 | 599.99 | internet |

 Bat | 45868 | 2019-06-07 | 599.99 | internet |

 Bat | 11678 | 2019-06-07 | 599.99 | internet |

 Bat | 4319 | 2019-06-07 | 599.99 | internet |

 Bat | 31307 | 2019-06-07 | 599.99 | internet |

 Bat | 40250 | 2019-06-07 | 599.99 | dealership | 4

 Bat | 35497 | 2019-06-07 | 599.99 | dealership | 2

 Bat | 24125 | 2019-06-07 | 599.99 | dealership | 1

 Bat | 4553 | 2019-06-07 | 599.99 | dealership | 11

 Bat | 6322 | 2019-06-08 | 599.99 | internet |

 Bat | 45880 | 2019-06-08 | 599.99 | dealership | 7

 Bat | 47790 | 2019-06-08 | 599.99 | dealership | 20

 Bat | 43477 | 2019-06-08 | 599.99 | internet |

 Bat | 6342 | 2019-06-08 | 599.99 | internet |

 Bat | 46653 | 2019-06-08 | 599.99 | dealership | 6

 Bat | 48809 | 2019-06-09 | 599.99 | internet |

 Bat | 49856 | 2019-06-09 | 599.99 | dealership | 10

 Bat | 39653 | 2019-06-09 | 599.99 | dealership | 7

 Bat | 49226 | 2019-06-09 | 539.991 | internet |

 Bat | 43013 | 2019-06-09 | 599.99 | dealership | 16

 Bat | 42625 | 2019-06-09 | 599.99 | internet |

 Bat | 45256 | 2019-06-09 | 539.991 | dealership | 7

 Bat | 23679 | 2019-06-09 | 539.991 | internet |

 Bat | 9045 | 2019-06-09 | 599.99 | dealership | 19

 Bat | 18602 | 2019-06-09 | 599.99 | internet |

 Bat | 14298 | 2019-06-10 | 599.99 | internet |

 Bat | 21305 | 2019-06-10 | 599.99 | dealership | 19

-- More --

Case Study | 393

8. As you can see, there is one line stating -- More --, which means there are
more rows in the result set than what is displayed by psql. To find out how
many rows are returned in the result set, you will count the number of records
available by using the following query:

SELECT

 COUNT(model)

FROM

 products_sales

WHERE

 model='Bat';

The model count for the Bat model is as follows:

count

7328

(1 row)

So, you have 7328 sales, beginning on 2019-06-07. Check the date of the final
sales record by performing step 8.

9. Determine the last sale date for the Bat Scooter by selecting the maximum
(using the MAX function) for sales_date:

SELECT

 MAX(sales_date)

FROM

 products_sales

WHERE

 model='Bat';

The last sale date is as follows:

max

2022-01-25

The last sale in the database occurred on 2022-01-25.

394 | Using SQL to Uncover the Truth: A Case Study

10. Now that you know the number of rows, as well as the starting and ending dates
of the sales result for the Bat Scooter, you can focus on analyzing its sales
pattern. You will collect the daily sales volume for the Bat Scooter and place it in
a new table called bat_sales to confirm the information provided by the sales
team stating that sales dropped by 20% after the first 2 weeks:

SELECT

 *

INTO

 bat_sales

FROM

 products_sales

WHERE

 model='Bat'

ORDER BY

 sales_date;

11. Now, display the first five records of bat_sales ordered by sales_date:

SELECT

 *

FROM

 bat_sales

ORDER BY

 sales_date

LIMIT

 5;

The following is the output of the preceding code:

model | customer_id | sales_date | sales_amount | channel |
dealership_id
-------+-------------+------------+--------------+----------+--------

 Bat | 45868 | 2019-06-07 | 599.99 | internet |

 Bat | 11678 | 2019-06-07 | 599.99 | internet |

 Bat | 4319 | 2019-06-07 | 599.99 | internet |

 Bat | 31307 | 2019-06-07 | 599.99 | internet |

 Bat | 42213 | 2019-06-07 | 599.99 | internet |

(5 rows)

Case Study | 395

12. Now that you have the individual sales information, you will need to start looking
at the daily sales as this exercise is aimed at researching daily sales patterns.
Create a new table (bat_sales_daily) containing the sales transaction dates
and a daily count of total sales:

SELECT

 sales_date,

 COUNT(sales_date)

INTO

 bat_sales_daily

FROM

 bat_sales

GROUP BY

 sales_date

ORDER BY

 sales_date;

13. Now that you know the daily number of sales, the next few steps will help you
determine/confirm whether there has been a drop in sales. Examine the first
22 records (a little over 3 weeks), as sales were reported to have dropped after
approximately the first 2 weeks:

SELECT

 *

FROM

 bat_sales_daily

ORDER BY

 sales_date

LIMIT

 22;

This will display the following output:

sales_date | count

------------+-------

 2019-06-07 | 9

 2019-06-08 | 6

 2019-06-09 | 10

 2019-06-10 | 10

 2019-06-11 | 5

 2019-06-12 | 10

 2019-06-13 | 14

396 | Using SQL to Uncover the Truth: A Case Study

 2019-06-14 | 9

 2019-06-15 | 11

 2019-06-16 | 12

 2019-06-17 | 10

 2019-06-18 | 6

 2019-06-19 | 2

 2019-06-20 | 5

 2019-06-21 | 6

 2019-06-22 | 9

 2019-06-23 | 2

 2019-06-24 | 4

 2019-06-25 | 7

 2019-06-26 | 5

 2019-06-27 | 5

 2019-06-28 | 3

(22 rows)

You can see a drop in sales after 2019-06-17, since there are 7 days in the first
11 rows that record double-digit sales and none over the next 11 days.

Note

To access the source code for this specific section, please refer to
https://packt.link/b3wRQ.

At this stage, you can confirm that there has been a drop in sales, although you are
yet to precisely quantify the extent of the reduction or the reason for the drop in
sales. Well, you will discover the extent of the reduction in the next activity.

Activity 9.01: Quantifying the Sales Drop

In this activity, you will use your knowledge of the windowing methods that you
learned about in Chapter 4, Aggregate Functions for Data Analysis, and Chapter 5,
Window Functions for Data Analysis. In Exercise 9.02, Extracting the Sales Information,
you identified the occurrence of the sales drop as being approximately 10 days after
launch. Here, you will try to quantify the drop in sales for the Bat Scooter.

https://packt.link/b3wRQ

Case Study | 397

Perform the following steps to complete this activity:

1. Load the sqlda database with psql.

2. Using the OVER and ORDER BY statements, compute the daily cumulative sum
of sales. This provides you with a discrete count of sales over a period of time on
a daily basis. Insert the results into a new table called bat_sales_growth.

3. Compute a seven-day lag of the sum column, and then insert all the columns of
bat_sales_daily and the new lag column into a new table, bat_sales_
daily_delay. This lag column indicates the sales amount a week prior to the
given record, allowing you to compare sales with the previous week.

4. Inspect the first 15 rows of bat_sales_growth.

5. Compute the sales growth as a percentage, comparing the current sales
volume to that of a week prior. Insert the resulting table into a new table called
bat_sales_delay_vol.

6. Compare the first 22 values of the bat_sales_delay_vol table to ascertain
a sales drop.

The expected output is as follows:

 sales_date | count | sum | lag | volume

------------+-------+-----+-----+------------------------

 2019-06-07 | 9 | 9 | |

 2019-06-08 | 6 | 15 | |

 2019-06-09 | 10 | 25 | |

 2019-06-10 | 10 | 35 | |

 2019-06-11 | 5 | 40 | |

 2019-06-12 | 10 | 50 | |

 2019-06-13 | 14 | 64 | |

 2019-06-14 | 9 | 73 | 9 | 7.1111111111111111

 2019-06-15 | 11 | 84 | 15 | 4.6000000000000000

 2019-06-16 | 12 | 96 | 25 | 2.8400000000000000

 2019-06-17 | 10 | 106 | 35 | 2.0285714285714286

 2019-06-18 | 6 | 112 | 40 | 1.8000000000000000

 2019-06-19 | 2 | 114 | 50 | 1.2800000000000000

 2019-06-20 | 5 | 119 | 64 | 0.85937500000000000000

 2019-06-21 | 6 | 125 | 73 | 0.71232876712328767123

 2019-06-22 | 9 | 134 | 84 | 0.59523809523809523810

 2019-06-23 | 2 | 136 | 96 | 0.41666666666666666667

 2019-06-24 | 4 | 140 | 106 | 0.32075471698113207547

398 | Using SQL to Uncover the Truth: A Case Study

 2019-06-25 | 7 | 147 | 112 | 0.31250000000000000000

 2019-06-26 | 5 | 152 | 114 | 0.33333333333333333333

 2019-06-27 | 5 | 157 | 119 | 0.31932773109243697479

 2019-06-28 | 3 | 160 | 125 | 0.28000000000000000000

(22 rows)

Note

The solution for this activity can be found via this link.

Exercise 9.03: Launch Timing Analysis

In this exercise, you will try to identify the causes of a sales drop. Now that you
have confirmed the presence of the sales growth drop, you will try to explain the
cause of the event. You will test the hypothesis that the timing of the scooter launch
is the reason for the reduction in sales. Remember from Exercise 9.01, Preliminary
Data Collection Using SQL Techniques, that the ZoomZoom Bat Scooter launched on
2019-06-07. Perform the following steps to complete this exercise:

1. Load the sqlda database from psql.

2. Examine the other products in the database. To determine whether the launch
date is the reason for the sales drop, you need to compare the ZoomZoom Bat
Scooter to other scooter products according to the launch date. Execute the
following query to check the launch dates:

SELECT * FROM products;

The result shows the launch dates for all the products:

product_id | model | year | product_type | base_msrp
| production_start_date | production_end_date
------------+-----------------------+------+--------------+----------
-+-----------------------+---------------------
 1 | Lemon | 2013 | scooter | 399.99
| 2012-10-28 00:00:00 | 2015-02-03 00:00:00
 2 | Lemon Limited Edition | 2014 | scooter | 799.99
| 2013-08-30 00:00:00 | 2013-11-24 00:00:00
 3 | Lemon | 2016 | scooter | 499.99
| 2015-12-27 00:00:00 | 2021-08-24 00:00:00
 5 | Blade | 2017 | scooter | 699.99
| 2017-02-17 00:00:00 | 2017-09-23 00:00:00
 7 | Bat | 2019 | scooter | 599.99
| 2019-06-07 00:00:00 |
 8 | Bat Limited Edition | 2020 | scooter | 699.99
| 2019-10-13 00:00:00 |

Case Study | 399

 12 | Lemon Zester | 2022 | scooter | 349.99
| 2021-10-01 00:00:00 |
 4 | Model Chi | 2017 | automobile | 115000.00
| 2017-02-17 00:00:00 | 2021-08-24 00:00:00
 6 | Model Sigma | 2018 | automobile | 65500.00
| 2017-12-10 00:00:00 | 2021-05-28 00:00:00
 9 | Model Epsilon | 2020 | automobile | 35000.00
| 2019-10-13 00:00:00 |
 10 | Model Gamma | 2020 | automobile | 85750.00
| 2019-10-13 00:00:00 |
 11 | Model Chi | 2022 | automobile | 95000.00
| 2021-10-01 00:00:00 |
(12 rows)

All the other products were launched outside of the second quarter, unlike the
Bat Scooter, which was launched in June.

3. List all the scooters from the products table, since you are only interested in
comparing scooters:

SELECT

 *

FROM

 products

WHERE

 product_type='scooter';

The result shows all the information for products with the product type
of scooter:

 product_id | model | year | product_type | base_msrp
| production_start_date | production_end_date
------------+-----------------------+------+--------------+----------
-+-----------------------+---------------------
 1 | Lemon | 2013 | scooter | 399.99
| 2012-10-28 00:00:00 | 2015-02-03 00:00:00
 2 | Lemon Limited Edition | 2014 | scooter | 799.99
| 2013-08-30 00:00:00 | 2013-11-24 00:00:00
 3 | Lemon | 2016 | scooter | 499.99
| 2015-12-27 00:00:00 | 2021-08-24 00:00:00
 5 | Blade | 2017 | scooter | 699.99
| 2017-02-17 00:00:00 | 2017-09-23 00:00:00
 7 | Bat | 2019 | scooter | 599.99
| 2019-06-07 00:00:00 |
 8 | Bat Limited Edition | 2020 | scooter | 699.99
| 2019-10-13 00:00:00 |
 12 | Lemon Zester | 2022 | scooter | 349.99
| 2021-10-01 00:00:00 |
(7 rows)

400 | Using SQL to Uncover the Truth: A Case Study

To test the hypothesis that the time of year had an impact on sales performance,
you require a scooter model to use as the control or reference group. In an ideal
world, you could launch the ZoomZoom Bat Scooter in a different location or
region, but just at a different time, and then compare the two. However, this is
not possible here.

Instead, you will choose a similar scooter that was launched at a different
time. There are different options in the product database, each with its own
similarities and differences from the experimental group (ZoomZoom Bat
Scooter). You could choose the Bat Limited Edition Scooter as the control
group and use it for comparison. As you can see from the preceding query
result, it is slightly more expensive, but it was launched only 4 months after the
Bat Scooter.

Looking at its name, the Bat Limited Edition Scooter seems to share most
features with ZoomZoom Bat Scooter except for a few extra features because it
is limited edition.

4. Select the first five rows of the sales database:

SELECT * FROM sales LIMIT 5;

The sales information for the first five customers is as follows:

 customer_id | product_id | sales_transaction_date | sales_amount |
channel | dealership_id
-------------+------------+------------------------+--------------+--
--------+---------------
 27275 | 7 | 2021-03-16 08:40:24 | 539.991 |
internet |
 2017 | 7 | 2019-12-27 07:36:20 | 599.99 |
internet |
 7213 | 7 | 2021-12-04 18:43:30 | 479.992 |
internet |
 13194 | 7 | 2019-10-26 12:16:05 | 539.991 |
internet |
 34454 | 7 | 2020-01-03 04:11:06 | 479.992 |
internet |
(5 rows)

5. Select the model and sales_transaction_date columns from both the
products and sales tables for the Bat Limited Edition Scooter. Store the
results in a table, bat_ltd_sales, ordered by the sales_transaction_
date column, from the earliest date to the latest:

SELECT

 products.model,

Case Study | 401

 sales.sales_transaction_date

INTO

 bat_ltd_sales

FROM

 sales

INNER JOIN

 products

ON

 sales.product_id=products.product_id

WHERE

 sales.product_id=8

ORDER BY

 sales.sales_transaction_date;

Here is the output:

SELECT 5803

6. Select the first five lines of bat_ltd_sales using the following query:

SELECT * FROM bat_ltd_sales LIMIT 5;

The following table shows the transaction details for the first five entries of Bat
Limited Edition:

 model | sales_transaction_date

---------------------+------------------------

 Bat Limited Edition | 2019-10-13 01:49:02

 Bat Limited Edition | 2019-10-13 09:42:37

 Bat Limited Edition | 2019-10-13 10:48:31

 Bat Limited Edition | 2019-10-13 12:22:41

 Bat Limited Edition | 2019-10-13 13:51:34

(5 rows)

7. Calculate the total number of sales for Bat Limited Edition. You can
check this by using the COUNT function:

SELECT COUNT(model) FROM bat_ltd_sales;

Here is the total sales count:

Count

5803

(1 row)

402 | Using SQL to Uncover the Truth: A Case Study

This is compared to the original Bat Scooter, which sold 7,328 units.

8. Check the transaction details of the last Bat Limited Edition sale. You can check
this by using the MAX function:

SELECT MAX(sales_transaction_date) FROM bat_ltd_sales;

The transaction details of the last Bat Limited Edition product are
as follows:

max

2022-01-25 15:08:03

9. Adjust the table to cast the transaction date column as a date, discarding the
time information as you are only interested in the date of the sale, not the date
and time of the sale. To do this, write the following query:

ALTER TABLE

 bat_ltd_sales

ALTER COLUMN

 sales_transaction_date TYPE date;

10. Again, select the first five records of bat_ltd_sales to check that the type of
the sales_transaction_date column is changed to date:

SELECT

 *

FROM

 bat_ltd_sales

LIMIT

 5;

The following table shows the first five records of bat_ltd_sales:

 model | sales_transaction_date

---------------------+------------------------

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

 Bat Limited Edition | 2019-10-13

(5 rows)

Case Study | 403

11. Similar to the standard Bat Scooter, create a count of sales of the Bat
Limited Edition Scooter sale on a daily basis. Insert the results into the
bat_ltd_sales_count table by using the following query:

SELECT

 sales_transaction_date,

 count(sales_transaction_date)

INTO

 bat_ltd_sales_count

FROM

 bat_ltd_sales

GROUP BY

 sales_transaction_date

ORDER BY

 sales_transaction_date;

12. List the sales count of all the Bat Limited products using the following query:

SELECT

 *

FROM

 bat_ltd_sales_count

ORDER BY

 sales_transaction_date;

The sales count contains many rows. Here are the first 17 rows:

 sales_transaction_date | count

------------------------+-------

 2019-10-13 | 6

 2019-10-14 | 2

 2019-10-15 | 1

 2019-10-16 | 4

 2019-10-17 | 5

 2019-10-18 | 6

 2019-10-19 | 5

 2019-10-20 | 4

 2019-10-21 | 6

 2019-10-22 | 2

 2019-10-23 | 2

 2019-10-24 | 2

 2019-10-25 | 4

404 | Using SQL to Uncover the Truth: A Case Study

 2019-10-26 | 4

 2019-10-27 | 5

 2019-10-28 | 1

 2019-10-29 | 3

13. Compute the cumulative sum of the daily sales figures and insert the resulting
table into bat_ltd_sales_growth:

SELECT

 *,

 sum(count) OVER (ORDER BY sales_transaction_date)

INTO

 bat_ltd_sales_growth

FROM

 bat_ltd_sales_count;

14. Select the first 22 days of sales records from bat_ltd_sales_growth:

SELECT

 *

FROM

 bat_ltd_sales_growth

ORDER BY

 sales_transaction_date

LIMIT

 22;

The following table displays the first 22 records of sales growth:

 sales_transaction_date | count | sum

------------------------+-------+-----

 2019-10-13 | 6 | 6

 2019-10-14 | 2 | 8

 2019-10-15 | 1 | 9

 2019-10-16 | 4 | 13

 2019-10-17 | 5 | 18

 2019-10-18 | 6 | 24

 2019-10-19 | 5 | 29

 2019-10-20 | 4 | 33

 2019-10-21 | 6 | 39

 2019-10-22 | 2 | 41

 2019-10-23 | 2 | 43

 2019-10-24 | 2 | 45

Case Study | 405

 2019-10-25 | 4 | 49

 2019-10-26 | 4 | 53

 2019-10-27 | 5 | 58

 2019-10-28 | 1 | 59

 2019-10-29 | 3 | 62

 2019-10-30 | 8 | 70

 2019-10-31 | 4 | 74

 2019-11-01 | 7 | 81

 2019-11-02 | 7 | 88

 2019-11-03 | 8 | 96

(22 rows)

15. Compare this sales record with the one for the original Bat Scooter sales using
the following code. The table is from Activity 9.01, Quantifying the Sales Drop:

SELECT

 *

FROM

 bat_sales_growth

ORDER BY

 sales_date

LIMIT

 22;

The following table shows the sales details for the first 22 records of the
bat_sales_growth table:

 sales_date | count | sum

------------+-------+-----

 2019-06-07 | 9 | 9

 2019-06-08 | 6 | 15

 2019-06-09 | 10 | 25

 2019-06-10 | 10 | 35

 2019-06-11 | 5 | 40

 2019-06-12 | 10 | 50

 2019-06-13 | 14 | 64

 2019-06-14 | 9 | 73

 2019-06-15 | 11 | 84

 2019-06-16 | 12 | 96

 2019-06-17 | 10 | 106

 2019-06-18 | 6 | 112

 2019-06-19 | 2 | 114

406 | Using SQL to Uncover the Truth: A Case Study

 2019-06-20 | 5 | 119

 2019-06-21 | 6 | 125

 2019-06-22 | 9 | 134

 2019-06-23 | 2 | 136

 2019-06-24 | 4 | 140

 2019-06-25 | 7 | 147

 2019-06-26 | 5 | 152

 2019-06-27 | 5 | 157

 2019-06-28 | 3 | 160

(22 rows)

As you can see from the preceding numbers, sales of the Bat Limited
Edition scooter did not reach double digits during the first 22 days, nor did the
daily volume of sales fluctuate as much. In keeping with the overall sales figure,
the Limited Edition scooters sold 64 fewer units over the first 22 days.

16. Compute the seven-day lag function for the sum column and insert the results
into the bat_ltd_sales_delay table:

SELECT

 *,

 lag(sum , 7) OVER (ORDER BY sales_transaction_date)

INTO

 bat_ltd_sales_delay

FROM

 bat_ltd_sales_growth;

17. Compute the sales growth for bat_ltd_sales_delay in a similar manner
that you did in Activity 9.01, Quantifying the Sales Drop. Label the column for the
results of this calculation volume and store the resulting table in bat_ltd_
sales_vol:

SELECT

 *,

 (sum-lag)/lag AS volume

INTO

 bat_ltd_sales_vol

FROM

 bat_ltd_sales_delay;

Case Study | 407

18. Look at the first 22 records of sales in bat_ltd_sales_vol:

SELECT

 *

FROM

 bat_ltd_sales_vol

ORDER BY

 Sales_transaction_date

LIMIT

 22;

The sales volume can be seen as follows:

 sales_transaction_date | count | sum | lag | volume

------------------------+-------+-----+-----+---------------------

 2019-10-13 | 6 | 6 | |

 2019-10-14 | 2 | 8 | |

 2019-10-15 | 1 | 9 | |

 2019-10-16 | 4 | 13 | |

 2019-10-17 | 5 | 18 | |

 2019-10-18 | 6 | 24 | |

 2019-10-19 | 5 | 29 | |

 2019-10-20 | 4 | 33 | 6 | 4.5000000000000000

 2019-10-21 | 6 | 39 | 8 | 3.8750000000000000

 2019-10-22 | 2 | 41 | 9 | 3.5555555555555556

 2019-10-23 | 2 | 43 | 13 | 2.3076923076923077

 2019-10-24 | 2 | 45 | 18 | 1.5000000000000000

 2019-10-25 | 4 | 49 | 24 | 1.0416666666666667

 2019-10-26 | 4 | 53 | 29 | 0.8275862068965517

 2019-10-27 | 5 | 58 | 33 | 0.7575757575757575

 2019-10-28 | 1 | 59 | 39 | 0.5128205128205128

 2019-10-29 | 3 | 62 | 41 | 0.5121951219512195

 2019-10-30 | 8 | 70 | 43 | 0.6279069767441860

 2019-10-31 | 4 | 74 | 45 | 0.6444444444444444

 2019-11-01 | 7 | 81 | 49 | 0.6530612244897959

 2019-11-02 | 7 | 88 | 53 | 0.6603773584905660

 2019-11-03 | 8 | 96 | 58 | 0.6551724137931034

(22 rows)

408 | Using SQL to Uncover the Truth: A Case Study

Looking at the volume column, you can see that the sales growth is more
consistent than for the original Bat Scooter. The growth within the first week is
less than that of the original model, but it is sustained over a longer period. After
22 days of sales, the sales growth of the Limited Edition scooter is 65% compared
to the previous week, as compared with the 28% growth you identified in Activity
9.01, Quantifying the Sales Drop.

Note

To access the source code for this specific section, please refer to
https://packt.link/b3wRQ.

At this stage, you have collected data from two similar products that were launched
at different periods and found some differences in the trajectory of the sales growth
over the first 3 weeks of sales. In a professional setting, you may also consider
employing more sophisticated statistical comparison methods, such as tests for
differences in mean, variance, or survival analysis. These methods lie outside the
scope of this book; therefore, you will only use simple comparison in this chapter.

While you can see that there is a difference in sales between the two Bat Scooters,
you cannot rule out the fact that the sales differences can be attributed to the
difference in the sales price of the two scooters. The Limited Edition scooter is $100
more expensive. In the next activity, you will compare the sales of the Bat Scooter to
the 2016 Lemon, which is $100 cheaper, was launched 3 years prior, is no longer in
production, and started production in the first half of the calendar year.

Activity 9.02: Analyzing the Difference in the Sales Price Hypothesis

In this activity, you are going to investigate the hypothesis that the reduction in sales
growth can be attributed to the price point of the Bat Scooter. Previously in this
chapter, you considered the impact of the launch date. However, there could be
another factor—the sales price included. If you consider the product list of scooters
in Exercise 9.01, Preliminary Data Collection Using SQL Techniques, and exclude the
Bat Scooter, you can see that there are two price categories: $699.99 and above or
$499.99 and below. The Bat Scooter sits exactly between these two groups; perhaps
the reduction in sales growth can be attributed to the different pricing models.

https://packt.link/b3wRQ

Case Study | 409

In this activity, you will test this hypothesis by comparing Bat sales to the 2016
Lemon, whose production started on 2015-12-27:

 model | base_msrp | production_start_date

-----------------------+-----------+-----------------------

 Lemon Zester | 349.99 | 2021-10-01 00:00:00

 Lemon | 399.99 | 2012-10-28 00:00:00

 Lemon | 499.99 | 2015-12-27 00:00:00

 Bat | 599.99 | 2019-06-07 00:00:00

 Blade | 699.99 | 2017-02-17 00:00:00

 Bat Limited Edition | 699.99 | 2019-10-13 00:00:00

 Lemon Limited Edition | 799.99 | 2013-08-30 00:00:00

(7 rows)

Perform the following steps to complete this activity:

1. Load the sqlda database from psql.

2. Select the sales_transaction_date column for 2016 Lemon model sales
and insert the column into a table called lemon_sales.

3. Count the sales records available for the 2016 Lemon model.

4. Display the latest sales_transaction_date column.

5. Convert the sales_transaction_date column into a date type.

6. Count the number of sales per day within the lemon_sales table and insert
the data into a table called lemon_sales_count.

7. Calculate the cumulative sum of sales and insert the corresponding table into a
new table labeled lemon_sales_sum.

8. Compute the seven-day lag function on the sum column and save the result to
lemon_sales_delay.

9. Calculate the growth rate using the data from lemon_sales_delay and store
the resulting table in lemon_sales_growth.

10. Inspect the first 22 records of the lemon_sales_growth table by examining
the volume data.

410 | Using SQL to Uncover the Truth: A Case Study

The expected output is as follows:

sales_transaction_date | count | sum | lag | volume

------------------------+-------+-----+-----+------------------------

 2015-12-27 | 6 | 6 | |

 2015-12-28 | 8 | 14 | |

 2015-12-29 | 4 | 18 | |

 2015-12-30 | 9 | 27 | |

 2015-12-31 | 9 | 36 | |

 2016-01-01 | 6 | 42 | |

 2016-01-02 | 8 | 50 | |

 2016-01-03 | 6 | 56 | 6 | 8.3333333333333333

 2016-01-04 | 6 | 62 | 14 | 3.4285714285714286

 2016-01-05 | 9 | 71 | 18 | 2.9444444444444444

 2016-01-06 | 3 | 74 | 27 | 1.7407407407407407

 2016-01-07 | 4 | 78 | 36 | 1.1666666666666667

 2016-01-08 | 7 | 85 | 42 | 1.0238095238095238

 2016-01-09 | 3 | 88 | 50 | 0.76000000000000000000

 2016-01-10 | 3 | 91 | 56 | 0.62500000000000000000

 2016-01-11 | 4 | 95 | 62 | 0.53225806451612903226

 2016-01-12 | 6 | 101 | 71 | 0.42253521126760563380

 2016-01-13 | 9 | 110 | 74 | 0.48648648648648648649

 2016-01-14 | 6 | 116 | 78 | 0.48717948717948717949

 2016-01-15 | 6 | 122 | 85 | 0.43529411764705882353

 2016-01-16 | 11 | 133 | 88 | 0.51136363636363636364

 2016-01-17 | 8 | 141 | 91 | 0.54945054945054945055

(22 rows)

Now that you have considered both the launch timing and the suggested retail price
of the scooter as possible causes of the reduction in sales, it is time to direct your
efforts to other potential causes, such as the rate of opening marketing emails.
Does the marketing email opening rate influence sales growth throughout the first 3
weeks? You will find out in the next exercise.

Note

The solution for this activity can be found via this link.

Case Study | 411

Exercise 9.04: Analyzing Sales Growth by Email Opening Rate

In this exercise, you will analyze the sales growth using the email opening rate. To
investigate the hypothesis that a decrease in the rate of opening emails impacted
the Bat Scooter sales rate, you will again select the Bat and Lemon Scooters and
compare the email opening rates.

Perform the following steps to complete this exercise:

1. Load the sqlda database from psql.

2. Firstly, look at the emails table to see what information is available. Select the
first five rows of the emails table:

SELECT

 *

FROM

 emails

LIMIT

 5;

The following result displays the email information for the first five rows:

email_id | customer_id | email_subject | opened | clicked
| bounced | sent_date | opened_date | clicked_date
----------+-------------+--------------------------+--------+--------
-+---------+---------------------+-------------+--------------
 175138 | 575 | Like a Bat out of Heaven | f | f
| f | 2019-05-19 15:00:00 | |
 175484 | 1074 | Like a Bat out of Heaven | f | f
| f | 2019-05-19 15:00:00 | |
 177740 | 4229 | Like a Bat out of Heaven | f | f
| f | 2019-05-19 15:00:00 | |
 177826 | 4359 | Like a Bat out of Heaven | f | f
| f | 2019-05-19 15:00:00 | |
 180518 | 8197 | Like a Bat out of Heaven | f | f
| f | 2019-05-19 15:00:00 | |
(5 rows)

412 | Using SQL to Uncover the Truth: A Case Study

To investigate your hypothesis, you need to know whether an email was
opened, when it was opened, as well as who the customer was who opened the
email, and whether that customer purchased a scooter. If the email marketing
campaign was successful in maintaining the sales growth rate, you would expect
a customer to open an email soon before a scooter was purchased. The period
in which the emails were sent, as well as the IDs of customers who received and
opened an email, can help you determine whether a customer who made a sale
may have been encouraged to do so following the receipt of an email.

3. To determine this hypothesis, you need to collect the customer_id column
from both the emails table and the bat_sales table for the Bat Scooter, the
opened, sent_date, opened_date, and email_subject columns from
the emails table, as well as the sales_date column from the bat_sales
table. Since you only want the email records of customers who purchased a Bat
Scooter, you will join the customer_id column in both tables. Then, you will
insert the results into a new table—bat_emails:

SELECT

 emails.email_subject,

 emails.customer_id,

 emails.opened,

 emails.sent_date,

 emails.opened_date,

 bat_sales.sales_date

INTO

 bat_emails

FROM

 emails

INNER JOIN

 bat_sales

ON

 bat_sales.customer_id=emails.customer_id

ORDER BY

 bat_sales.sales_date;

You will obtain the following output:

SELECT 40190

Case Study | 413

4. Select the first 10 rows of the bat_emails table, ordering the results by
sales_date:

SELECT

 *

FROM

 bat_emails

ORDER BY

 sales_date

LIMIT

 10;

The following table shows the first 10 rows of the bat_emails table ordered by
sales_ date:

 email_subject | customer_id | opened
| sent_date | opened_date | sales_date
---+-------------+-------
-+---------------------+---------------------+------------
 Black Friday. Green Cars. | 31307 | f
| 2020-07-21 15:00:00 | | 2019-06-07
 25% off all EVs. It's a Christmas Miracle! | 24125 | f
| 2019-07-23 15:00:00 | | 2019-06-07
 Like a Bat out of Heaven | 42213 | f
| 2019-05-19 15:00:00 | | 2019-06-07
 A New Year, And Some New EVs | 40250 | f
| 2021-09-03 15:00:00 | | 2019-06-07
 Shocking Holiday Savings On Electric Scooters | 24125 | f
| 2016-07-26 15:00:00 | | 2019-06-07
 25% off all EVs. It's a Christmas Miracle! | 42213 | f
| 2019-07-23 15:00:00 | | 2019-06-07
 We Really Outdid Ourselves this Year | 31307 | t
| 2019-09-12 15:00:00 | 2019-09-13 22:03:20 | 2019-06-07
 Save the Planet with some Holiday Savings. | 24125 | f
| 2021-07-20 15:00:00 | | 2019-06-07
 We Really Outdid Ourselves this Year | 4319 | f
| 2019-09-12 15:00:00 | | 2019-06-07
 A Brand New Scooter...and Car | 24125 | f
| 2016-12-31 15:00:00 | | 2019-06-07
(10 rows)

Here, you can see that there are several emails unopened, over a range of sent
dates, and that some customers have received multiple emails. Looking at the
subjects of the emails, some of them do not seem related to the ZoomZoom
scooters at all.

414 | Using SQL to Uncover the Truth: A Case Study

5. Select all rows where the sent_date email predates the sales_date column,
order them by customer_id, and limit the output to the first 22 rows. This
will help you find out which emails were sent to each customer before they
purchased their scooter. Write the following query to do so:

SELECT

 *

FROM

 bat_emails

WHERE

 sent_date < sales_date

ORDER BY

 customer_id

LIMIT

 22;

The following table lists the emails that were sent to customers before the date
in the sales_date column:

 email_subject | customer_id | opened
| sent_date | opened_date | sales_date
---+-------------+-------
-+---------------------+---------------------+------------
 25% off all EVs. It's a Christmas Miracle! | 7 | t
| 2019-07-23 15:00:00 | 2019-07-24 03:55:30 | 2021-12-20
 A Brand New Scooter...and Car | 7 | f
| 2016-12-31 15:00:00 | | 2021-12-20
 We Really Outdid Ourselves this Year | 7 | f
| 2019-09-12 15:00:00 | | 2021-12-20
 Tis' the Season for Savings | 7 | f
| 2018-07-23 15:00:00 | | 2021-12-20
 Save the Planet with some Holiday Savings. | 7 | f
| 2021-07-20 15:00:00 | | 2021-12-20
 Shocking Holiday Savings On Electric Scooters | 7 | f
| 2016-07-26 15:00:00 | | 2021-12-20
 Like a Bat out of Heaven | 7 | f
| 2019-05-19 15:00:00 | | 2021-12-20
 The 2013 Lemon Scooter is Here | 7 | f
| 2015-10-27 15:00:00 | | 2021-12-20
 An Electric Car for a New Age | 7 | t
| 2017-11-26 15:00:00 | 2017-11-27 15:10:55 | 2021-12-20
 We cut you a deal: 20%% off a Blade | 7 | t
| 2017-05-15 15:00:00 | 2017-05-16 15:11:17 | 2021-12-20
 A New Year, And Some New EVs | 7 | f
| 2021-09-03 15:00:00 | | 2021-12-20
 Zoom Zoom Black Friday Sale | 7 | f
| 2017-07-25 15:00:00 | | 2021-12-20
 Black Friday. Green Cars. | 7 | f
| 2020-07-21 15:00:00 | | 2021-12-20

Case Study | 415

 An Electric Car for a New Age | 22 | f
| 2017-11-26 15:00:00 | | 2020-04-10
 The 2013 Lemon Scooter is Here | 22 | f
| 2015-10-27 15:00:00 | | 2020-04-10
 Zoom Zoom Black Friday Sale | 22 | t
| 2017-07-25 15:00:00 | 2017-07-26 11:31:03 | 2020-04-10
 A Brand New Scooter...and Car | 22 | t
| 2016-12-31 15:00:00 | 2017-01-01 13:31:23 | 2020-04-10
 Shocking Holiday Savings On Electric Scooters | 22 | f
| 2016-07-26 15:00:00 | | 2020-04-10
 Like a Bat out of Heaven | 22 | f
| 2019-05-19 15:00:00 | | 2020-04-10
 Tis' the Season for Savings | 22 | f
| 2018-07-23 15:00:00 | | 2020-04-10
 We Really Outdid Ourselves this Year | 22 | f
| 2019-09-12 15:00:00 | | 2020-04-10
 25% off all EVs. It's a Christmas Miracle! | 22 | f
| 2019-07-23 15:00:00 | | 2020-04-10
(22 rows)

6. Delete the rows of the bat_emails table where emails were sent more than
six months prior to production. As you can see, there are some emails that
were sent years before the transaction date. You can easily remove some of
the unwanted emails by removing those sent before the Bat Scooter was in
production. In the products table, the production start date for the Bat
Scooter is 2019-06-07:

DELETE FROM

 bat_emails

WHERE

 sent_date < '2019-06-07';

Note

In this exercise, you are removing information that you no longer require
from an existing table. This differs from the previous exercises, where you
created multiple tables: each with a slightly different information from the
others. The technique you apply will differ, depending on the requirements
of the problem being solved. Do you require a traceable record of analysis,
or are efficiency and reduced storage the key?

416 | Using SQL to Uncover the Truth: A Case Study

7. Delete the rows where the sent date is after the purchase date since they are not
relevant to the sales:

DELETE FROM

 bat_emails

WHERE

 sent_date > sales_date;

8. Delete those rows where the difference between the transaction date and the
sent date exceeds 30 since you only want emails that were sent shortly before
the scooter purchase. An email 1 year before is probably unlikely to influence
a purchasing decision, but one that is closer to the purchase date may have
influenced the sales decision. You will set a limit of 1 month (30 days) before the
purchase. Write the following query to do so:

DELETE FROM

 Bat_emails

WHERE

 sales_date-sent_date > '30 days';

9. Examine the first 22 rows again, ordered by customer_id, by running the
following query:

SELECT

 *

FROM

 bat_emails

ORDER BY

 customer_id

LIMIT

 22;

Case Study | 417

The following table shows the emails where the difference between the
transaction date and the sent date is less than 30 days:

 email_subject | customer_id | opened |
sent_date | opened_date | sales_date
--+-------------+--------+-
--------------------+---------------------+------------
 25% off all EVs. It's a Christmas Miracle! | 129 | t |
2019-07-23 15:00:00 | 2019-07-24 06:31:37 | 2019-07-26
 A New Year, And Some New EVs | 145 | f |
2021-09-03 15:00:00 | | 2021-09-16
 Black Friday. Green Cars. | 150 | f |
2020-07-21 15:00:00 | | 2020-08-15
 Black Friday. Green Cars. | 173 | f |
2020-07-21 15:00:00 | | 2020-08-01
 We Really Outdid Ourselves this Year | 196 | f |
2019-09-12 15:00:00 | | 2019-09-20
 We Really Outdid Ourselves this Year | 319 | f |
2019-09-12 15:00:00 | | 2019-09-26
 25% off all EVs. It's a Christmas Miracle! | 418 | f |
2019-07-23 15:00:00 | | 2019-08-18
 A New Year, And Some New EVs | 560 | t |
2021-09-03 15:00:00 | 2021-09-04 15:56:14 | 2021-09-25
 We Really Outdid Ourselves this Year | 600 | f |
2019-09-12 15:00:00 | | 2019-09-15
 A New Year, And Some New EVs | 660 | t |
2021-09-03 15:00:00 | 2021-09-04 23:37:03 | 2021-09-04
 A New Year, And Some New EVs | 681 | f |
2021-09-03 15:00:00 | | 2021-09-09
 Black Friday. Green Cars. | 806 | t |
2020-07-21 15:00:00 | 2020-07-22 16:59:40 | 2020-07-26
 A New Year, And Some New EVs | 881 | t |
2021-09-03 15:00:00 | 2021-09-04 21:07:28 | 2021-09-18
 25% off all EVs. It's a Christmas Miracle! | 934 | t |
2019-07-23 15:00:00 | 2019-07-24 09:22:45 | 2019-08-21
 25% off all EVs. It's a Christmas Miracle! | 983 | f |
2019-07-23 15:00:00 | | 2019-07-27
 A New Year, And Some New EVs | 1060 | f |
2021-09-03 15:00:00 | | 2021-09-23
 25% off all EVs. It's a Christmas Miracle! | 1288 | f |
2019-07-23 15:00:00 | | 2019-08-08
 25% off all EVs. It's a Christmas Miracle! | 1317 | f |
2019-07-23 15:00:00 | | 2019-08-10
 A New Year, And Some New EVs | 1400 | t |
2021-09-03 15:00:00 | 2021-09-04 15:01:00 | 2021-09-06
 Save the Planet with some Holiday Savings. | 1417 | f |
2021-07-20 15:00:00 | | 2021-07-23
 Save the Planet with some Holiday Savings. | 1433 | f |
2021-07-20 15:00:00 | | 2021-08-19
 Black Friday. Green Cars. | 1529 | f |
2020-07-21 15:00:00 | | 2020-07-25
(22 rows)

418 | Using SQL to Uncover the Truth: A Case Study

At this stage, you have reasonably filtered the available data based on the dates
the email was sent and opened. Looking at the preceding email_subject
column, it also appears that there are a few emails unrelated to the Bat Scooter
(for example, 25% of all EVs. It's a Christmas Miracle! and
Black Friday. Green Cars). These emails seem more related to electric
cars than scooters, so you can remove them from your analysis.

10. Select the distinct value from the email_subject column to get a list of the
different emails that were sent to customers:

SELECT

 DISTINCT(email_subject)

FROM

 bat_emails;

The following table shows a list of distinct email subjects:

 email_subject

--

 A New Year, And Some New EVs

 Save the Planet with some Holiday Savings.

 We Really Outdid Ourselves this Year

 Black Friday. Green Cars.

 25% off all EVs. It's a Christmas Miracle!

(5 rows)

11. Delete all the records that have Black Friday in the email subject. These
emails do not appear to be relevant to the sale of the Bat Scooter:

DELETE FROM

 bat_emails

WHERE

 position('Black Friday' in email_subject)>0;

Note

The position function in the preceding example is used to find any
records where the Black Friday string is anywhere in the email_
subject column. Thus, you are deleting any rows where Black
Friday is in the email subject. For more information on the PostgreSQL
position function, refer to the following documentation regarding string
functions: https://www.postgresql.org/docs/current/functions-string.html.

https://www.postgresql.org/docs/current/functions-string.html

Case Study | 419

12. Delete all rows where 25% off all EVs. It's a Christmas
Miracle! and A New Year, And Some New EVs can be found in the
email_subject column:

DELETE FROM

 bat_emails

WHERE

 position('25% off all EV' in email_subject)>0;

DELETE FROM

 bat_emails

WHERE

 position('Some New EV' in email_subject)>0;

13. At this stage, you have your final dataset of emails that were sent to
customers. Count the number of rows that are left in the sample by writing the
following query:

SELECT

 count(sales_date)

FROM

 bat_emails;

You can see that 319 rows are left in the sample:

count

319

(1 row)

14. Now, you will compute the percentage of emails that were opened relative to
sales. Count the emails that were opened by writing the following query:

SELECT

 count(opened)

FROM

 bat_emails

WHERE

 opened='t';

420 | Using SQL to Uncover the Truth: A Case Study

You can see that 83 emails were opened:

count

83

(1 row)

15. Count the customers who received emails and made a purchase. You can
determine this by counting the number of unique (or distinct) customers that are
in the bat_emails table:

SELECT

 COUNT(DISTINCT(customer_id))

FROM

 bat_emails;

You can see that 314 customers who received an email made a purchase:

count

314

(1 row)

16. Count the unique (or distinct) customers who made a purchase by writing the
following query:

SELECT

 COUNT(DISTINCT(customer_id))

FROM

 bat_sales;

The following is the output of the preceding code:

count

6659

(1 row)

Case Study | 421

17. Calculate the percentage of customers who purchased a Bat Scooter after
receiving an email:

SELECT 314.0/6659.0 AS email_rate;

The output of the preceding query is as follows:

email_rate

0.04715422736146568554

(1 row)

Note

In the preceding calculation, you can see that you included a decimal place
in the figures (for example, 314.0 instead of a simple integer value of
314). This is because the resulting value will be represented as a fraction
that is less than 1. If you excluded these decimal places, the SQL server
would have completed the division operation as integers and the result
would be 0.

Just under 5% of customers who made a purchase received an email regarding
the Bat Scooter. There is a strong argument to be made that actively increasing
the size of the customer base who receive marketing emails could increase
Bat Scooter sales. But how likely is it that this argument is correct? You must
compare this number to the effectiveness of other products' email campaigns,
which is called a control or comparison group. Now that you have examined the
performance of the email marketing campaign for the Bat Scooter, you need a
control or comparison group to establish whether the results were consistent
with that of other products. Without a group to compare against, you simply do
not know whether the email campaign of the Bat Scooter was good, bad, or
neither. You will investigate performance in the next exercise.

Note

To access the source code for this specific section, please refer to
https://packt.link/b3wRQ.

https://packt.link/b3wRQ

422 | Using SQL to Uncover the Truth: A Case Study

Exercise 9.05: Analyzing the Performance of the Email Marketing Campaign

In this exercise, you will investigate the performance of the email marketing campaign
for the Lemon Scooter to allow for a comparison with the Bat Scooter. Your
hypothesis is that if the email marketing campaign's performance of the Bat Scooter
is consistent with another, such as the 2016 Lemon, then the reduction in sales
cannot be attributed to differences in the email campaigns.

Perform the following steps to complete this exercise:

1. Load the sqlda database with psql.

2. In Activity 9.02, Analyzing the Difference in the Sales Price Hypothesis, you tried to
compare the sales of the Lemon Scooter against the Bat Scooter, to find the
impact of pricing. In this exercise, you will compare the sales of the Lemon
Scooter against the Bat Scooter from another angle, which is the effectiveness
of the email campaign. So, first drop the existing lemon_sales table, which
contains information not related to this exercise:

DROP TABLE IF EXISTS lemon_sales;

3. The 2016 Lemon Scooter is product_id=3. Select customer_id and
sales_transaction_date from the sales table for the 2016 Lemon
Scooter. Insert this information into a table called lemon_sales. Here, the
TIMESTAMP column sales_transaction_date is converted into the DATE
column sales_date:

SELECT

 customer_id,

 sales_transaction_date::DATE as sales_date

INTO

 lemon_sales

FROM

 sales

WHERE

 product_id=3;

Case Study | 423

4. Select all the information from the emails database for customers who
purchased a 2016 Lemon Scooter. Place this information in a new table called
lemon_emails:

SELECT

 emails.customer_id,

 emails.email_subject,

 emails.opened,

 emails.sent_date,

 emails.opened_date,

 lemon_sales.sales_date

INTO

 lemon_emails

FROM

 emails

INNER JOIN

 Lemon_sales

ON

 emails.customer_id=lemon_sales.customer_id;

5. Identify the date when the production of the 2016 Lemon Scooter started, to
remove all the emails that were sent before:

SELECT

 production_start_date

FROM

 products

WHERE

 product_id=3;

The following table shows the production_start_date column:

production_start_date

2015-12-27 00:00:00

(1 row)

424 | Using SQL to Uncover the Truth: A Case Study

6. Now that you know the production start date, you can delete the emails that
were sent before the start of production of the 2016 Lemon Scooter:

DELETE FROM

 lemon_emails

WHERE

 sent_date < '2015-12-27';

7. Remove all the rows where the sent date occurred after the date in the sales_
date column:

DELETE FROM

 lemon_emails

WHERE

 sent_date > sales_date;

8. Remove all the rows where the sent date occurred more than 30 days before
the date in the sales_date column:

DELETE FROM

 lemon_emails

WHERE

 (sales_date - sent_date) > '30 days';

9. Remove all the rows from lemon_emails where the email subject is
not related to the Lemon Scooter. Before doing this, you will search for all
distinct emails:

SELECT DISTINCT

 email_subject

FROM

 lemon_emails;

The following table shows the distinct email subjects:

 email_subject

 Tis' the Season for Savings

 25% off all EVs. It's a Christmas Miracle!

 A Brand New Scooter...and Car

 Like a Bat out of Heaven

 Shocking Holiday Savings On Electric Scooters

 Save the Planet with some Holiday Savings.

 We cut you a deal: 20%% off a Blade

Case Study | 425

 An Electric Car for a New Age

 We Really Outdid Ourselves this Year

 Black Friday. Green Cars.

 Zoom Zoom Black Friday Sale

(11 rows)

10. Delete the email subjects not related to the Lemon Scooter using the
DELETE command:

Exercise9.05.sql

1 DELETE FROM
2 lemon_emails
3 WHERE
4 POSITION('25% off all EVs.' in email_subject)>0;
5
6 DELETE FROM
7 lemon_emails
8 WHERE
9 POSITION('Like a Bat out of Heaven' in email_subject)>0;
10
11 DELETE FROM
12 lemon_emails
13 WHERE
14 POSITION('Save the Planet' in email_subject)>0;
15

Please find the complete code at https://packt.link/QNwRU.

11. Now, check how many emails to the lemon_scooter customers were opened:

SELECT

 COUNT(opened)

FROM

 lemon_emails

WHERE

 opened='t';

You can see that 127 emails were opened:

count

127

(1 row)

12. List the number of customers who received emails and made a purchase:

SELECT

 COUNT(DISTINCT(customer_id))

FROM

 lemon_emails;

https://packt.link/QNwRU

426 | Using SQL to Uncover the Truth: A Case Study

The following result shows that 498 customers made a purchase after
receiving emails:

count

498

(1 row)

13. Calculate the percentage of customers who opened the received emails and
made a purchase:

SELECT 127.0/498.0 AS email_rate;

You can see that 25% of customers opened the emails and made a purchase:

email_rate

0.25502008032128514056

(1 row)

14. Calculate the number of unique customers who made a purchase:

SELECT

 COUNT(DISTINCT(customer_id))

FROM

 lemon_sales;

You can see that 13854 customers made a purchase:

count

13854

(1 row)

15. Calculate the percentage of customers who made a purchase having received
an email. This will enable a comparison with the corresponding figure for the
Bat Scooter:

SELECT 498.0/13854.0 AS email_sales;

The preceding calculation generates a 36% output:

email_sales

0.03594629709831095712

(1 row)

Case Study | 427

You can see that 25% of customers who opened an email made a purchase,
which is similar to that figure for the Bat Scooter (83/314=26%). You have also
calculated that about 3.6% of customers who purchased a Lemon Scooter were
sent an email, which is much lower than almost 5% of Bat Scooter customers.

Note

To access the source code for this specific section, please refer to
https://packt.link/b3wRQ.

In this exercise, you investigated the performance of an email marketing campaign
for the Lemon Scooter to allow for a comparison with the Bat Scooter using various
SQL techniques. Now, you will review all the exercises and activities you have done in
this chapter and see whether you can draw some meaningful conclusions.

Conclusions

Now that you have collected a range of information about the timing of the product
launches, the sales prices of the products, and the marketing campaigns, you can
make some conclusions regarding your hypotheses:

• In Exercise 9.03, Launch Timing Analysis, you gathered some evidence to suggest
that launch timing could be related to the reduction in sales after the first 2
weeks, although this cannot be proven.

• There is a correlation between the initial sales rate and the sales price of the
scooter, with a reduced sales price trending with a high sales rate (Activity 9.02,
Analyzing the Difference in the Sales Price Hypothesis).

• The number of units sold in the first 3 weeks does not directly correlate to
the sales price of the product (Activity 9.02, Analyzing the Difference in the Sales
Price Hypothesis).

• There is evidence to suggest that a successful marketing campaign could
increase the initial sales rate, with an increased email opening rate trending with
an increased sales rate (Exercise 9.04, Analyzing Sales Growth by Email Opening
Rate). Similarly, for the customers receiving email trends, there is an increase in
the number with increased sales (Exercise 9.05, Analyzing the Performance of the
Email Marketing Campaign).

https://packt.link/b3wRQ

428 | Using SQL to Uncover the Truth: A Case Study

In-Field Testing

At this stage, you have completed your post hoc analysis (that is, data analysis
completed after an event) and have evidence to support a couple of theories as
to why the sales of the Bat Scooter dropped after the first 2 weeks. However, you
cannot confirm these hypotheses to be true, as you cannot isolate one from the
other, such as pricing difference or email campaign effectiveness.

This is where you need to turn to another tool in your toolkit: in-field testing. As the
name suggests, in-field testing is testing hypotheses in the field (for instance, while a
new product is being launched or existing sales are being made).

One of the most common examples of in-field testing is A/B testing, whereby you
randomly divide your users or customers into two groups (A and B) and provide
them with a slightly modified experience or environment and observe the result.
For example, you randomly assigned customers in group A to a new marketing
campaign and customers in group B to the existing marketing campaign. You could
then monitor sales and interactions to see whether one campaign was better than
the other.

Similarly, if you wanted to test the launch timing, you could launch in Northern
California, for example, in early November, and Southern California in early
December, and observe the differences.

The essence of in-field testing is that unless you test your post hoc data analysis
hypotheses, you will never know whether your hypothesis is true. To test the
hypothesis, you must only alter the conditions to be tested—for example, the
launch date. To confirm your post hoc analysis, you could recommend that the
sales teams apply one or more of the following scenarios and monitor the sales
records in real-time to determine the cause of the reduction in sales:

• Release the next scooter product at different times of the year in two regions
that have a similar climate and equivalent current sales records. This would help
determine whether launch timing had an effect.

• Release the next scooter product at the same time in regions with equivalent
existing sales records at different price points and observe this for differences
in sales.

• Release the next scooter product at the same time and the same price point
in regions with equivalent existing sales records and apply two different email
marketing campaigns. Track the customers who participated in each campaign
and monitor the sales.

Summary | 429

Summary
You have just completed your first real-world data analysis problem using SQL. In this
chapter, you developed the skills necessary to develop hypotheses for problems and
systematically gather the data required to support or reject them. You started this
case study with a reasonably difficult problem of explaining an observed discrepancy
in sales data and discovered two possible sources (launch timing and marketing
campaign) for the difference while rejecting one alternative explanation (sales price).

While being a required skill for any data analyst, being able to understand and apply
the scientific method in your exploration of problems will allow you to be more
effective and find interesting threads of investigation. In this chapter, you used the
SQL skills you have developed throughout this book, from simple SELECT statements
to aggregating complex data types, as well as windowing methods. After completing
this chapter, you will be able to continue and repeat this type of analysis in your own
data analysis projects to help find actionable insights.

You have reached the end of this book. Throughout these chapters, you have learned
about data and how you can find patterns within it. You have also learned how
SQL's powerful functionality can be used to organize data, process it, and identify
interesting patterns. Additionally, you saw how SQL can be connected to other
systems and optimized to analyze at scale. This all culminated in using SQL on a case
study to help improve a business.

However, these skills are only the beginning of your work. Relational databases are
constantly evolving, and new functionality is being developed all the time. There are
also several advanced statistical techniques that this book did not cover. So, while this
book may serve as a guide to data analytics and an invaluable tool in the form of SQL,
it is only the first step in what is hopefully a rewarding journey.

Appendix

432 | Appendix

Chapter 1: Understanding and Describing Data

Activity 1.01: Classifying a New Dataset

Solution:

1. The unit of observation is a car sale.

2. Date and Sales Amount are quantitative, while Make is qualitative.

While there could be many ways to convert Make into numeric data, one commonly
accepted method would be to map each of the Make types to a number. For instance,
Ford could map to 1, Honda could map to 2, Mazda could map to 3, Toyota could
map to 4, Mercedes could map to 5, and Chevy could map to 6.

Activity 1.02: Exploring Dealership Sales Data

Solution:

1. Open Microsoft Excel to a blank workbook.

2. Go to the Data tab and click on Get Data | From File | From Text/CSV.

3. Find the path to the dealerships.csv file and click on Import.

4. In the file import window, click on Load. The following table is what you will see
when the file loads.

Chapter 1: Understanding and Describing Data | 433

Figure 1.38: The dealerships.csv file loaded

434 | Appendix

A histogram of the results may vary a little bit depending on what parameters
are chosen, but it should look similar to Figure 1.38:

Figure 1.39: A histogram showing the number of female employees

5. Calculate the mean and median by following all the steps in Exercise 1.03,
Calculating the Central Tendency of Add-On Sales. The mean sales are calculated to
be $171,603,750.13 and the median sales are calculated to be $170,130,716.50.

6. Using steps similar to those found in Exercise 1.04, Dispersion of Add-On Sales, the
standard deviation of the sales is calculated to be $50,152,290.42.

7. The Boston, MA dealership is an outlier. This can be shown graphically or by
using the IQR method.

8. You should get the following four cut points for quintiles (five-quantiles):

Figure 1.40: Quintiles and their values

9. Removing the outlier of Boston, you should get a correlation coefficient of 0.55.
This value implies that there is a strong correlation between the number of
female employees and the sales of a dealership. While this may be evidence that
having more female employees leads to more revenue, it may also be a simple
consequence of a third effect. In this case, larger dealerships have a larger
number of employees in general, which also means more women will be at these
locations as well. There may be other correlational interpretations as well.

Chapter 2: The Basics of SQL for Analytics | 435

Chapter 2: The Basics of SQL for Analytics

Activity 2.01: Querying the customers Table Using Basic Keywords in a SELECT

Query

Solution:

Here is the solution for Exercise 2.01, Running Your First SELECT Query:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.
Examine the schema for the customers table from the schema drop-down
list. Make sure you are familiar with the names of the columns, just like you did
in Exercise 2.02, Querying the salespeople Table Using Basic Keywords in a SELECT
Query, for the salespeople table.

2. Execute the following query to fetch customers' emails in the state of Florida in
alphabetical order:

SELECT email

FROM customers

WHERE state='FL'

ORDER BY email;

The following is the output of the preceding code:

Figure 2.47: Emails of customers from Florida in alphabetical order

436 | Appendix

3. Execute the following query to pull all the first names, last names, and email
addresses for ZoomZoom customers in New York City, New York. The customers
should be ordered alphabetically, with the last name followed by the first name:

SELECT first_name, last_name, email

FROM customers

WHERE city='New York City' AND state='NY'

ORDER BY last_name, first_name;

The following is the output of the preceding code:

Figure 2.48: Details of customers from New York City in alphabetical order

4. Execute the following query to fetch all customers that have a phone number
ordered by the date the customer was added to the database:

SELECT *

FROM customers

WHERE phone IS NOT NULL

ORDER BY date_added;

Chapter 2: The Basics of SQL for Analytics | 437

The following is the output of the preceding code:

Figure 2.49: Customers with a phone number ordered by the date
the customer was added to the database

The output in Figure 2.30 will help the marketing manager to carry out campaigns and
promote sales.

Activity 2.02: Creating and Modifying Tables for Marketing Operations

Solution:

Here is the solution for Exercise 2.02, Creating and Modifying Tables for
Marketing Operations:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Run the following query to create the table with New York City customers:

CREATE TABLE customers_nyc AS (

SELECT *

FROM customers

WHERE city='New York City'

AND state='NY'

);

3. Run the following code to see the output:

SELECT * FROM customers_nyc;

438 | Appendix

This is the output of the code:

Figure 2.50: Table showing customers from New York City

4. Run the following query statement to delete users with the postal code 10014:

DELETE FROM customers_nyc

WHERE postal_code='10014';

5. Execute the following query to add the new event column:

ALTER TABLE customers_nyc

ADD COLUMN event text;

6. Update the customers_nyc table and set the event column to thank-you
party using the following query:

UPDATE customers_nyc SET

event = 'thank-you party';

7. Run the following code to see the output:

SELECT *

FROM customers_nyc;

Chapter 2: The Basics of SQL for Analytics | 439

The following is the output of the code:

Figure 2.51: The customers_nyc table with event set to thank-you party

8. Delete the customers_nyc table as asked by the manager using
DROP TABLE:

DROP TABLE customers_nyc;

This will delete the customers_nyc table from the database.

440 | Appendix

Chapter 3: SQL for Data Preparation

Activity 3.01: Building a Sales Model Using SQL Techniques

Solution:

1. Open pgAdmin, connect to the sqlda database, and open the SQL
query editor.

2. Use INNER JOIN to join the customers table to the sales table:

FROM sales s

JOIN customers c

ON s.customer_id = c.customer_id

Note that the SQL in Steps 2, 3, and 4 is not complete SQL that you can run in
pgAdmin. They are part of the FROM…JOIN clause on which the full SELECT
statement will be built. They are created to guide you through the process of
forming a complex dataset using JOIN. If you want to test the SQL, you can
make it complete by adding SELECT * at the start.

3. Use INNER JOIN to join the products table to the sales table:

FROM sales s

JOIN customers c

ON s.customer_id = c.customer_id

JOIN products p

 ON s.product_id = p.product_id

4. Use LEFT JOIN to join the dealerships table (right table) to the sales
table (left table):

FROM sales s

LEFT JOIN dealerships d

 ON d.dealership_id = s.dealership_id

JOIN customers c

 ON s.customer_id = c.customer_id

JOIN products p

 ON s.product_id = p.product_id

5. Return all columns of the customers table and the products table:

SELECT

 c.*, p.*

FROM sales s

Chapter 3: SQL for Data Preparation | 441

LEFT JOIN dealerships d

 ON d.dealership_id = s.dealership_id

JOIN customers c

 ON s.customer_id = c.customer_id

JOIN products p

 ON s.product_id = p.product_id;

6. Return the dealership_id column from the sales table, but fill in
dealership_id in sales with -1 if it is NULL:

SELECT

COALESCE(s.dealership_id, -1) sales_dealership,

c.*, p.*

FROM sales s

LEFT JOIN dealerships d

ON d.dealership_id = s.dealership_id

JOIN customers c

ON s.customer_id = c.customer_id

JOIN products p

ON s.product_id = p.product_id;

7. Add a column called high_savings that returns 1 if the sales amount was
500 less than base_msrp or lower. Otherwise, it returns 0. Please make sure
that you perform the query on a joined table:

SELECT

 COALESCE(s.dealership_id, -1) sales_dealership,

 CASE

WHEN sales_amount < base_msrp - 500 THEN 1

 ELSE 0

 END high_savings,

 c.*, p.*

FROM sales s

LEFT JOIN dealerships d

 ON d.dealership_id = s.dealership_id

JOIN customers c

 ON s.customer_id = c.customer_id

JOIN products p

 ON s.product_id = p.product_id;

442 | Appendix

Chapter 4: Aggregate Functions for Data Analysis

Activity 4.01: Analyzing Sales Data Using Aggregate Functions

Solution:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total number of unit sales the company has made:

SELECT

 COUNT(*)

FROM

 sales;

The result is as follows:

Figure 4.29: Result of COUNT(*) for sales units

Note that because each sales transaction contains a product ID, there is no NULL
value in the product_id column. So, COUNT(product_id) will also work.
Similarly, COUNT(sales_amount) will also work.

3. Calculate the total sales amount in dollars for each state:

SELECT

 c.state,

 SUM(s.sales_amount)::DECIMAL(12,2)

FROM

 sales s

JOIN

 customers c

ON

 s.customer_id = c.customer_id

GROUP BY

 c.state

ORDER BY

 1;

Chapter 4: Aggregate Functions for Data Analysis | 443

The result is as follows:

Figure 4.30: Result of sales by state

4. Identify the top five best dealerships in terms of the most units sold (ignore
internet sales).

The most common approach to getting the top/bottom N rows is to run the
SELECT statement with ORDER BY, then use LIMIT to only get the first N
rows. In this activity, you can use LIMIT 5 together with ORDER BY DESC to
generate the top five dealerships. However, if there is a tie between the 5th and
6th elements, LIMIT 5 will cut off between the 5th row and 6th row, regardless
of whether you want both items or not. In the real world, you need to check the
boundary condition carefully, that is, check the value below the limit to make
sure there is no tie.

For this question, if you just aim at getting the dealership ID, the following SQL
is good enough. However, if you would like to have the dealership details, you
need to select the information from the dealerships table, with a filter on the
dealership IDs from the following query:

SELECT

 s.dealership_id,

 COUNT(*)

FROM

 sales s

WHERE

444 | Appendix

 channel <> 'internet'

GROUP BY

 s.dealership_id

ORDER BY

 2 DESC

LIMIT

 5;

Here is the output:

Figure 4.31: Result of top five dealerships by sales

5. Calculate the average sales amount for each channel, as shown in the sales
table, and look at the average sales amount, first by channel sales, then by
product_id, and then both together:

SELECT

 channel,

 product_id,

 AVG(sales_amount)

FROM

 sales

GROUP BY grouping sets (

 (channel),

 (product_id),

 (channel, product_id)

);

Chapter 4: Aggregate Functions for Data Analysis | 445

The result is as follows. Note that in this screenshot (the order of rows in
your result may vary), row 22 and above are grouped by both channel and
product_id. Rows 23 and 24 are grouped by channel only, and row 25 and
beyond are grouped by product_id only. In other words, there are three
different sets here, one is grouped by both channel and product_id, the
other two by one of these two columns respectively, and all three sets are
eventually joined together:

Figure 4.32: Result of GROUPING SETS

6. Calculate the ratio of sales transactions that have a NULL dealership:

SELECT

 1 – COUNT(dealership_id) * 1.0 / COUNT(*)

FROM

 sales

The result is as follows:

Figure 4.33: Ratio of NULL values of dealership in sales

446 | Appendix

7. Calculate the percentage of internet sales the company has made for each year.
Order the year in a timely fashion and you will get time series data. Does this
time series suggest something?

SELECT

 TO_CHAR(sales_transaction_date, 'yyyy'),

 SUM(sales_amount)

FROM

 sales

WHERE

 channel = 'internet'

GROUP BY

 1

ORDER BY

 1;

The result is as follows:

Figure 4.34: Internet sales by year

Chapter 4: Aggregate Functions for Data Analysis | 447

From the result data, you can see that there was a significant increase in sales starting
in 2015. The upward trend is continuing into 2022, which is still at the beginning of
the year at the point of data collection (the last sales transaction date is 2022-01-25).
But does this increase occur in the overall sales of ZoomZoom, or does it only happen
to the internet sales channel? If it is the former, internet sales and non-internet sales
should have a similar amount of increase. There are many ways to measure and
compare these two increases. You will use the simplest form by listing the internet
sales and non-internet sales side by side. The SQL will be as follows:

SELECT

 TO_CHAR(sales_transaction_date, 'yyyy'),

 SUM(

CASE

 WHEN channel = 'internet' THEN sales_amount

 ELSE 0

END

) AS internet_sales,

 SUM(

CASE

 WHEN channel <> 'internet' THEN sales_amount

 ELSE 0

END

) AS non_internet_sales

FROM

 sales

GROUP BY

 1

ORDER BY

 1;

448 | Appendix

The result is as follows:

Figure 4.35: Internet and non-internet sales by year

Chapter 5: Window Functions for Data Analysis | 449

Chapter 5: Window Functions for Data Analysis

Activity 5.01: Analyzing Sales Using Window Frames and Window Functions

Solution:

The solution to this activity is as follows:

1. Open pgAdmin, connect to the sqlda database, and open SQL query editor.

2. Calculate the total sales amount by day for all the days in the year 2021 (that is,
before the date January 1, 2022).

3. The query for this step will be:

SELECT

 sales_transaction_date::date,

 SUM(sales_amount) sales_amount

FROM

 sales

WHERE

 sales_transaction_date::date BETWEEN '20210101' AND '20211231'

GROUP BY

 sales_transaction_date::date;

The result is:

Figure 5.18: Daily Sales of 2021

450 | Appendix

4. Calculate the rolling 30-day average for the daily number of sales deals.
The query for this step will be:

Activity5.01.sql

1 WITH
2 daily_sales as (
3 SELECT
4 sales_transaction_date::date,
5 SUM(sales_amount) sales_amount
6 FROM
7 sales
8 WHERE
9 sales_transaction_date::date BETWEEN '20210101' AND '20211231'
10 GROUP BY
11 sales_transaction_date::date
12)
13 SELECT
14 sales_transaction_date,
15 sales_amount,

You can find the complete code here: https://packt.link/f3bEp

The result is:

Figure 5.19: Daily Sales Moving 30-Day Average

https://packt.link/f3bEp
https://packt.link/f3bEp

Chapter 5: Window Functions for Data Analysis | 451

5. Note that the moving average for 2021-01-01 is NULL here because there are
no daily sales from 2020 in the daily_sales common table expression. So,
the 30-day preceding window is empty. For 2021-01-02, the 30-day preceding
window contains only one row, which is the daily sales for 2021-01-01. As it goes
down the order of dates, more and more days join the window. Eventually, after
2021-01-31, it became a true 30-day preceding window.

This activity intentionally applies the sales_transaction_date::date
BETWEEN '20210101' AND '20211231' filter to the daily_sales
common table expression to provide you with an illustration of what might
happen for the first few rows in the moving average window creation.

In reality, a better way is to include the last 30-day sales of 2020 in the daily_
sales common table expression so that you can still calculate the moving
average properly for days in January 2021 and use a 2021 date range in the
main query to only display the 2021 data.

6. Calculate which decile each date would be in compared to other days based on
their daily 30-day rolling sales amount.

PostgreSQL does not have a DECILE function, but it has a more general
NTILE() function that you can use. NTILE(10) is the equivalent
of DECILE().

7. The query for this step will be:

Activity5.01.sql

1 WITH
2 daily_sales as (
3 SELECT
4 sales_transaction_date::date,
5 SUM(sales_amount) sales_amount
6 FROM
7 sales
8 WHERE
9 sales_transaction_date::date BETWEEN '20210101' AND '20211231'
10 GROUP BY
11 sales_transaction_date::date
12),
13 moving_avg AS (

You can find the complete code here: https://packt.link/f3bEp

https://packt.link/f3bEp
https://packt.link/f3bEp

452 | Appendix

The result is:

Figure 5.20: Dealership Deciles Based on Max Daily Sales Moving 30-Day Average

Chapter 6: Importing and Exporting Data | 453

Chapter 6: Importing and Exporting Data

Activity 6.01: Using an External Dataset to Discover Sales Trends

Solution:

1. Before you can begin the rest of the analysis, you will need to properly load the
dataset into Python and export it to your database. First, download the dataset
from GitHub using the link provided: https://packt.link/l058E. If you are a Linux
user, you can use the wget command like this:

wget https://github.com/PacktPublishing/SQL-for-Data-Analytics-Third-
Edition/blob/main/Datasets/public_transportation_statistics_by_zip_
code.csv

Alternatively, you can navigate to the link via the browser. Once you navigate to
the web page, click on Save Page As… using the menus on your browser:

Figure 6.31: Saving the public transportation .csv file

2. Next, create a new Jupyter notebook. Launch Jupyter Notebook from Anaconda
Navigator. In the browser window that pops up, create a new Python 3
notebook. In the first cell, type in the standard import statements and the
connection information (replacing _X with the appropriate parameter for your
database connection):

from sqlalchemy import create_engine

import pandas as pd

%matplotlib inline

cnxn_string = ("postgresql+psycopg2://{username}:{pswd}@
{host}:{port}/{database}")
print(cnxn_string)

https://packt.link/l058E

454 | Appendix

Here is the output of the code:

postgresql+psycopg2://{username}:{pswd}@{host}:{port}/{database}

In the next cell, type the following code, which will create the
SQLAlchemy engine:

engine = create_engine(

 cnxn_string.format(

 username="postgres",

 pswd="your_password",

 host="localhost",

 port=5432,

 database="sqlda"

)

)

3. Read the data using a command such as the following (replacing the path
specified with the path to the file on your local computer):

data = pd.read_csv(

 "c:\\Users\\Public\\public_transportation_statistics_by_ zip_
code.csv",
 dtype={'zip_code':str}

)

4. Check that the data looks correct by creating a new cell, entering data, and then
hitting Shift + Enter to view the contents of the data. You can also use data.
head() to see only the first five rows:

data.head()

Here is the output of the code:

Figure 6.32: Reading the public transportation data into pandas

Chapter 6: Importing and Exporting Data | 455

5. Next, transfer data to the database using data.to_sql(). Using the psql_
insert_COPY function, you can speed this up considerably; however, it is
not necessary:

Activity6.01.py

1 import csv
2 from io import StringIO
3
4 def psql_insert_COPY(table, conn, keys, data_iter):
5 # gets a DBAPI connection that can provide a cursor
6 dbapi_conn = conn.connection
7 with dbapi_conn.cursor() as cur:
8 s_buf = StringIO()
9 writer = csv.writer(s_buf)
10 writer.writerows(data_iter)
11 s_buf.seek(0)
12
13 columns = ', '.join('"{}"'.format(k) for k in keys)
14 if table.schema:
15 table_name = '{}.{}'.format(table.schema, table.name)

Please find the complete code here: https://packt.link/4RAFd

Alternatively, you could have just performed the slower version of this:

data.to_sql(

 'public_transportation_by_zip',

 engine,

 if_exists='replace'

)

At this stage, you now have your data in your database, ready for querying.

6. Execute the max() function to see the maximum value in the DataFrame. As
explained before, this function will return the maximum values of all columns in
this DataFrame:

data.max()

Figure 6.33: Output of the pandas Data Frame max() method

https://packt.link/4RAFd
https://packt.link/4RAFd

456 | Appendix

7. Execute the min() function to see the minimum value in the DataFrame. As
explained before, this function will return the minimum values of all columns in
this DataFrame:

data.min()

Figure 6.34: Output of the pandas DataFrame min() method

8. To see the range of public_transportation_pct values, you can simply
query this from the database. First, you need to query the database:

engine.execute("""

 SELECT

 MAX(public_transportation_pct) AS max_pct,

 MIN(public_transportation_pct) AS min_pct

 FROM public_transportation_by_zip;

""").fetchall()

You get the following result from your query:

Figure 6.35: Showing the minimum and maximum values

Looking at the maximum and minimum values, you will see something strange:
the minimum value is -666666666. You can assume that the values are
missing, and you can remove them from the dataset.

Chapter 6: Importing and Exporting Data | 457

9. Calculate the requested sales amounts by running a query in your database.
Note that you will have to filter out the erroneous percentages that are less
than 0 based on your analysis. There are several ways to do this; however, the
following solution is a single succinct query:

Activity6.01.py

1 engine.execute("""
2 SELECT
3 (public_transportation_pct > 10) AS 4 is_high_
public_transport,
5 COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT
6 c.customer_id) AS sales_per_customer
7 FROM
8 customers c
9 INNER JOIN
10 public_transportation_by_zip t
11 ON t.zip_code = c.postal_code
12 LEFT JOIN
13 sales s
14 ON s.customer_id = c.customer_id

Please find the complete code here: https://packt.link/4RAFd

Here is an explanation of this query:

• You first identify customers living in an area with public transportation by joining
the customer table and the public transportation table.

• Then, you look at the public transportation data associated with their postal
code. If public_ transportation_pct > 10, then the customer is in a
high usage public transportation area. This expression will either return True or
False for each customer.

• You then group customers by this expression to identify the customers that are
or are not in a high-usage public transportation area. One catch is that you need
to exclude all zip codes where public_transportation_pct is less than 0
so that you exclude the missing data (denoted by -666666666).

• You then look at sales per customer by joining the customers table with the
sales table. You will first count the number of sales from the sales table
(COUNT(s.customer_id)) and divide it by the unique number of customers
(COUNT(DISTINCT c.customer_id)). You want to make sure that you
retain fractional values, so you can multiply by 1.0 to cast the entire expression
to a float: COUNT(s.customer_ id) * 1.0 / COUNT(DISTINCT
c.customer_id). The result is the sales per customer.

https://packt.link/4RAFd
https://packt.link/4RAFd

458 | Appendix

• Now that you know how to calculate both the sales per customer and the high
public transportation flag per customer, you need to join your customer data to
the public transportation data, and then, finally, to the sales data, to calculate
them all in one single query. Once you put them side by side, you can aggregate
the sales per customer by the high transportation flag to see the difference in
customer behavior between different groups of public transportation availability.

Eventually, you end up with the following output:

Figure 6.36: Calculating the requested sales amount

From this, you see that customers in high public transportation usage areas
have 12% more product purchases than customers in low-usage public
transportation areas.

10. Read this data from your database and add a WHERE clause to remove the
outlier values. You can then plot the results from this query:

data = pd.read_sql_query("""

 SELECT

 *

 FROM

 public_transportation_by_zip

 WHERE

 public_transportation_pct > 0

 AND

 public_transportation_pct < 50

""", engine)

data.plot.hist(y='public_transportation_pct')

Chapter 6: Importing and Exporting Data | 459

You will obtain an output similar to the following:

Figure 6.37: Jupyter notebook with an analysis of the public transportation data

11. Rerun your command from Step 5 to get the timing of the standard to_
sql() function:

%time data.to_sql('public_transportation_by_zip', engine, if_
exists='replace', method=psql_insert_COPY)

%time data.to_sql('public_transportation_by_zip', engine, if_
exists='replace')

460 | Appendix

The following is the output of the code:

Figure 6.38: Inserting records with COPY is much faster

12. Group customers based on their zip code public transportation usage rounded
to the nearest 10%, and then look at the average number of transactions
per customer. Export this data into Excel and create a scatterplot to better
understand the relationship between public transportation usage and sales.
For this analysis, you can tweak the query from Step 9:

Activity6.01.py

1 data = pd.read_sql_query("""
2 SELECT
3 10 * ROUND(public_transportation_pct/10) AS 4
public_transport,
5 COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT 6 c.customer_id)
AS sales_per_customer
7 FROM
8 customers c
9 INNER JOIN
10 public_transportation_by_zip t
11 ON t.zip_code = c.postal_code
12 LEFT JOIN
13 sales s
14 ON s.customer_id = c.customer_id

Please find the complete code here: https://packt.link/4RAFd

https://packt.link/4RAFd
https://packt.link/4RAFd

Chapter 6: Importing and Exporting Data | 461

First, you want to put your query results in a Python variable data so that you easily
write the result to a CSV file later.

Next is the tricky part: you want to aggregate the public transportation statistics
somehow. What you can do is round this percentage to the nearest 10%, so 22%
would become 20%, and so on. You can do this by dividing the percentage number
(represented as 0.0-100.0) by 10, rounding off, and then multiplying it back by 10:
10 * ROUND(public_transportation_pct/10).

The logic for the remainder of the query is explained in Step 9.

Next, you open the sales_vs_public_transport_pct.csv file in Excel:

Figure 6.39: Excel workbook containing the data from your query

462 | Appendix

After creating the scatterplot, you get the following result, which shows a
clear positive relationship between public transportation and sales in the
geographical area:

Figure 6.40: Sales per customer versus public transportation usage percentage

Based on all this analysis, you can say that there is a positive relationship between
"geographies with public transportation" and "the demand for electric vehicles."
Intuitively, this makes sense, because electric vehicles could provide an alternative
transportation option to public transport for getting around cities. As a result of
this analysis, you would recommend that ZoomZoom management should consider
expanding in regions with high public transportation usage and in urban areas.

Chapter 7: Analytics Using Complex Data Types | 463

Chapter 7: Analytics Using Complex Data Types

Activity 7.01: Sales Search and Analysis

Solution:

1. First, create the materialized view on the customer_sales table. If a view
with the same name already exists but is not up to date, execute the DROP IF
EXISTS statement prior to the CREATE statement:

DROP MATERIALIZED VIEW IF EXISTS customer_search;

CREATE MATERIALIZED VIEW customer_search AS (

 SELECT

 customer_json -> 'customer_id' AS customer_id,

 customer_json,

 to_tsvector('english', customer_json) AS search_vector

 FROM

 customer_sales

);

This gives you a table of the following format (output shortened for readability):

SELECT * FROM customer_search LIMIT 1;

The following is the output of the code. Note that the output cells are too large
to fit onto a screen so only the first few words are shown in the screenshot:

Figure 7.28: Sample record from the customer_search table

2. You can now search records based on the salesperson's request for a customer
named Danny who purchased a Bat scooter using the following query with the
Danny Bat keywords:

SELECT

 customer_json

FROM

 customer_search

WHERE

 search_vector @@ plainto_tsquery('english', 'Danny Bat');

464 | Appendix

This results in eight matching rows:

Figure 7.29: Resulting matches for your Danny Bat query

3. In this complex task, you need to find customers who match with both a
scooter and an automobile. That means you need to perform a query for each
combination of scooter and automobile. To get every unique combination of
scooter and automobile, you can perform a simple cross join:

SELECT DISTINCT

 p1.model,

 p2.model

FROM

 products p1

CROSS JOIN

 products p2

WHERE

 p1.product_type = 'scooter'

AND

 p2.product_type = 'automobile'

AND

 p1.model NOT ILIKE '%Limited Edition%';

Chapter 7: Analytics Using Complex Data Types | 465

This produces the following output:

Figure 7.30: All combinations of scooters and automobiles

4. Transform the output into a tsquery object:

SELECT DISTINCT

 plainto_tsquery('english', p1.model)

 &&

 plainto_tsquery('english', p2.model)

FROM

 products p1

CROSS JOIN

 products p2

WHERE

 p1.product_type = 'scooter'

AND

 p2.product_type = 'automobile'

AND

 p1.model NOT ILIKE '%Limited Edition%';

466 | Appendix

This produces the following result:

Figure 7.31: Queries for each scooter and automobile combination

5. Query your database using each of these tsquery objects and count the
occurrences for each object:

Activity7.01.sql

1 SELECT
2 sub.query,
3 (
4 SELECT
5 COUNT(1)
6 FROM
7 customer_search
8 WHERE
9 customer_search.search_vector @@ sub.query
10)
11 FROM (
12 SELECT DISTINCT
13 plainto_tsquery('english', p1.model)
14 &&
15 plainto_tsquery('english', p2.model) AS query

Please find the complete code here: https://packt.link/TVvPy

https://packt.link/TVvPy
https://packt.link/TVvPy

Chapter 7: Analytics Using Complex Data Types | 467

The following is the output of the preceding query:

Figure 7.32: Customer counts for each scooter and automobile combination

While there could be a multitude of factors at play here, you see that lemon
scooter and the model sigma automobile is the combination most frequently
purchased together, followed by the lemon and chi models. bat is also fairly
frequently purchased with both of those models, as well as the epsilon model.
The other combinations are much less common, and it seems that customers rarely
purchase the lemon zester, the blade, or the gamma model.

468 | Appendix

Chapter 8: Performant SQL

Activity 8.01: Query Planning

Solution:

1. Open PostgreSQL with psql and connect to the sqlda database.

2. Use the EXPLAIN command to return the query plan for selecting all available
records within the customers table:

EXPLAIN

SELECT *

FROM customers;

3. Read the output of the plan and determine the total query cost, the setup cost,
the number of rows to be returned, and the width of each row.

The output is as follows:

Seq Scan on customers (cost=0.00..1535.00 rows=50000 width=140)

As such, the total query cost is 1535.00, the setup cost is 0.00, the number
of rows to be returned is 50000, and the width of each row is 140. Your
result may have numbers that are slightly different. But the general concept of
measurements should be the same.

4. Repeat the query from step 2 of this activity, this time limiting the number of
returned records to 15. Review the updated query plan and compare its output
against the output of the previous step, paying special attention to how many
steps are involved in the query plan and what the cost of the limiting step is:

EXPLAIN

SELECT *

FROM customers

LIMIT 15;

The output is as follows:

Limit (cost=0.00..0.46 rows=15 width=140)

 -> Seq Scan on customers (cost=0.00..1535.00 rows=50000
width=140)

Chapter 8: Performant SQL | 469

The lower line in this output is the same as the output of step 3, in which the
total query cost is 1535.00, the setup cost is 0.00, the number of rows to
be returned is 50000, and the width of each row is 140. For the upper line,
the total query cost is 0.46, the setup cost is 0.00, the number of rows to be
returned is 15, and the width of each row is 140.

5. Update the SQL to select all rows where customers live within a latitude of 30
and 40 degrees. Generate the query plan. Compare the total plan cost as well as
the number of rows returned by the query to the numbers from previous steps:

EXPLAIN

SELECT *

FROM customers

WHERE latitude BETWEEN 30 AND 40;

The output is as follows:

Seq Scan on customers (cost=0.00..1785.00 rows=26369 width=140)

 Filter: ((latitude >= '30'::double precision) AND (latitude <=
'40'::double precision))

The plan in this output has only one step, in which the total query cost is 1785.00,
the setup cost is 0.00, the number of rows to be returned is 26369, and the width
of the rows is still 140. Since there is additional filtering involved, the total cost
increased but the starting cost remains at zero as there is nothing to prepare in a
sequential scan.

Activity 8.02: Implementing Index Scans

Solution:

Here are the steps to follow:

1. Use the EXPLAIN and ANALYZE commands to profile the query plan to search
for all records with an IP address of 18.131.58.65:

EXPLAIN ANALYZE

SELECT *

FROM customers

WHERE ip_address = '18.131.58.65';

The result is as follows:

Seq Scan on customers (cost=0.00..1660.00 rows=1 width=140) (actual
time=0.098..13.626 rows=1 loops=1)
 Filter: (ip_address = '18.131.58.65'::text)

470 | Appendix

 Rows Removed by Filter: 49999

Planning Time: 0.199 ms

Execution Time: 13.659 ms

Here, the planning and execution times are 0.199 ms and 13.659 ms,
respectively.

2. Create a generic index based on the IP address column:

CREATE INDEX ix_ip ON customers(ip_address);

3. Rerun the query in step 1. How long does the query take to plan and execute?

The result is as follows:

Index Scan using ix_ip on customers (cost=0.29..8.31 rows=1
width=140) (actual time=0.099..0.101 rows=1 loops=1)
 Index Cond: (ip_address = '18.131.58.65'::text)

Planning Time: 0.791 ms

Execution Time: 0.131 ms

Now the planning and execution times are 0.791 ms and 0.131 ms,
respectively.

4. Create a more detailed index based on the IP address column with the condition
that the IP address is 18.131.58.65:

CREATE INDEX ix_ip_less ON customers(ip_address)

WHERE ip_address = '18.131.58.65';

5. Rerun the query in step 1:

Index Scan using ix_ip on customers (cost=0.29..8.31 rows=1
width=140) (actual time=0.026..0.027 rows=1 loops=1)
 Index Cond: (ip_address = '18.131.58.65'::text)

Planning Time: 0.338 ms

Execution Time: 0.055 ms

Now it takes the query 0.338 ms and 0.055 ms to plan and execute. As you
add more and more restraints to the index definition, the time spent on planning
increases because PostgreSQL needs more time to review the index definitions
and determine which index to use. But as indexes are defined with further
details, the execution time became much less.

6. Use the EXPLAIN ANALYZE commands to profile the query plan to search for
all records with a suffix of Jr:

EXPLAIN ANALYZE SELECT * FROM customers WHERE suffix = 'Jr';

Chapter 8: Performant SQL | 471

The result is as follows:

Seq Scan on customers (cost=0.00..1660.00 rows=100 width=140)
(actual time=0.075..10.694 rows=102 loops=1)
 Filter: (suffix = 'Jr'::text)

 Rows Removed by Filter: 49898

Planning Time: 0.191 ms

Execution Time: 10.732 ms

7. Create a generic index based on the suffix address column:

CREATE INDEX ix_suffix ON customers(suffix);

8. Rerun the query in step 6:

Bitmap Heap Scan on customers (cost=5.07..302.60 rows=100 width=140)
(actual time=0.072..0.170 rows=102 loops=1)
 Recheck Cond: (suffix = 'Jr'::text)

 Heap Blocks: exact=98

 -> Bitmap Index Scan on ix_suffix (cost=0.00..5.04 rows=100
width=0) (actual time=0.056..0.056 rows=102 loops=1)
 Index Cond: (suffix = 'Jr'::text)

Planning Time: 0.676 ms

Execution Time: 0.212 ms

Compared to the original execution time of 10.732 ms, this 0.212 ms
execution time is a huge improvement. The increase in plan time from
0.191 ms to 0.676 ms is almost negligible compared to the reduction in
execution time.

Activity 8.03: Implementing Hash Indexes

Solution:

In this activity, you will follow these steps:

1. Use the EXPLAIN and ANALYZE commands to determine the planning time and
cost, as well as the execution time and cost, of selecting all rows where the email
subject is Shocking Holiday Savings on Electric Scooters.

The SQL you use is as follows:

EXPLAIN ANALYZE

SELECT * FROM emails

WHERE email_subject='Shocking Holiday Savings On Electric Scooters';

472 | Appendix

The result is as follows:

Gather (cost=1000.00..10480.81 rows=18789 width=79) (actual
time=237.847..936.473 rows=19873 loops=1)
 Workers Planned: 2

 Workers Launched: 2

 -> Parallel Seq Scan on emails (cost=0.00..7601.91 rows=7829
width=79) (actual time=410.903..633.642 rows=6624 loops=3)
 Filter: (email_subject = 'Shocking Holiday Savings On
Electric Scooters'::text)
 Rows Removed by Filter: 132762

Planning Time: 157.116 ms

Execution Time: 937.329 ms

2. Create a hash scan on the email_subject column:

CREATE INDEX ix_subject ON emails USING HASH(email_subject);

3. Repeat step 1. Compare the output of the Query Planner without the hash index
to the output with the hash index:

Bitmap Heap Scan on emails (cost=605.61..6264.48 rows=18789
width=79) (actual time=1.223..12.319 rows=19873 loops=1)
 Recheck Cond: (email_subject = 'Shocking Holiday Savings On
Electric Scooters'::text)
 Heap Blocks: exact=290

 -> Bitmap Index Scan on ix_subject (cost=0.00..600.92 rows=18789
width=0) (actual time=1.073..1.073 rows=19873 loops=1)
 Index Cond: (email_subject = 'Shocking Holiday Savings On
Electric Scooters'::text)
Planning Time: 0.936 ms

Execution Time: 13.078 ms

The hash index clearly has a positive impact on the performance of the
two queries.

4. Create a hash scan on the customer_id column:

CREATE INDEX ix_customer_id ON emails USING HASH(customer_id);

5. Use EXPLAIN and ANALYZE to estimate how long it would take to select all
rows with a customer_id value greater than 100:

EXPLAIN ANALYZE SELECT * FROM emails WHERE customer_id>100;

Chapter 8: Performant SQL | 473

The result is as follows:

Seq Scan on emails (cost=0.00..10650.98 rows=417346 width=79)
(actual time=0.067..105.158 rows=417315 loops=1)
 Filter: (customer_id > 100)

 Rows Removed by Filter: 843

Planning Time: 0.548 ms

Execution Time: 117.899 ms

You can see that PostgreSQL decided to use a sequential scan instead of a hash
index because a hash index can only be used with the = comparison, not any
other operators.

Activity 8.04: Defining a Largest Sale Value Function

Solution:

Perform the following steps:

1. Connect to the sqlda database.

2. Create a function called max_sale that does not take any input arguments but
returns a numeric value called big_sale:

CREATE FUNCTION max_sale() RETURNS integer AS big_sale

3. Declare the big_sale variable and begin the function:

DECLARE big_sale numeric;

BEGIN

4. Insert the value of the largest sale into the big_sale variable:

 SELECT MAX(sales_amount) INTO big_sale FROM sales;

5. Return the value for big_sale:

 RETURN big_sale;

6. End the function with the LANGUAGE statement:

END; big_sale

LANGUAGE PLPGSQL;

7. Call the function to find out what the value of the largest sale in the database is:

SELECT * FROM max_sale();

474 | Appendix

The output is as follows:

Max

115000

(1 row)

Activity 8.05: Creating Functions with Arguments

Solution:

These are the steps to follow:

1. Create the function definition for a function called avg_sales_window that
returns a numeric value and takes two DATE values to specify the from and to
dates in the form YYYY-MM-DD:

CREATE FUNCTION avg_sales_window(from_date DATE, to_date DATE)

RETURNS numeric AS $sales_avg$

2. Declare the return variable as a numeric data type and begin the function:

DECLARE sales_avg numeric;

BEGIN

3. Select the average sales amount as the return variable where the sales
transaction date is within the specified date:

SELECT AVG(sales_amount)

FROM sales

INTO sales_avg

WHERE sales_transaction_date > from_date

AND sales_transaction_date < to_date;

4. Return the function variable, end the function, and specify the
LANGUAGE statement:

RETURN sales_avg;

END; $sales_avg$

LANGUAGE PLPGSQL;

5. Use the function to determine the average sales values between 2020-04-12 and
2021-04-12:

SELECT avg_sales_window('2020-04-12', '2021-04-12');

Chapter 8: Performant SQL | 475

The output is as follows:

avg_sales_window

7663.13305937025

(1 row)

Activity 8.06: Creating a Trigger to Track Average Purchases

Solution:

Here are the steps to follow for this activity:

1. Connect to the sqlda database.

2. Create a new table called avg_qty_log that is composed of an order_id
integer field and an avg_qty numeric field:

CREATE TABLE avg_qty_log (order_id integer, avg_qty numeric);

3. Create a function called avg_qty that does not take any arguments but returns
a trigger. The function computes the average value for all order quantities
(order_info.qty) and inserts the average value, along with the most recent
order_id, into avg_qty:

CREATE FUNCTION avg_qty() RETURNS TRIGGER AS $_avg$

DECLARE _avg numeric;

BEGIN

 SELECT

 AVG(qty)

 INTO

 _avg

 FROM

 order_info;

 INSERT INTO

 avg_qty_log (order_id, avg_qty)

 VALUES

 (NEW.order_id, _avg);

 RETURN NEW;

END; $_avg$

LANGUAGE PLPGSQL;

476 | Appendix

4. Create a trigger called avg_trigger that calls the avg_qty function after
each row is inserted into the order_info table:

CREATE TRIGGER avg_trigger

AFTER INSERT ON order_info

FOR EACH ROW

EXECUTE PROCEDURE avg_qty();

5. Insert some new rows into the order_info table with quantities of 6, 7, and 8:

SELECT insert_order(3, 'GROG1', 6);

SELECT insert_order(4, 'GROG1', 7);

SELECT insert_order(1, 'GROG1', 8);

6. Look at the entries in avg_qty_log:

SELECT * FROM avg_qty_log;

The result is as follows:

 order_id | avg_qty

----------+--------------------

 1625 | 4.7500000000000000

 1626 | 5.0000000000000000

 1627 | 5.3000000000000000

(3 rows)

You can see that the average quantity is gradually increasing.

Chapter 9: Using SQL to Uncover the Truth: A Case Study | 477

Chapter 9: Using SQL to Uncover the Truth: A Case Study

Activity 9.01: Quantifying the Sales Drop

Solution:

Perform the following steps to complete this activity:

1. Load the sqlda database with psql.

2. Using the OVER and ORDER BY statements, compute the daily cumulative sum
of sales. This provides you with a discrete count of sales over a period of time on
a daily basis. Insert the results into a new table called bat_sales_growth:

SELECT

 *,

 sum(count) OVER (ORDER BY sales_date)

INTO

 bat_sales_growth

FROM

 bat_sales_daily;

3. Compute a seven-day lag of the sum column, and then insert all the columns of
bat_sales_daily and the new lag column into a new table, bat_sales_
daily_delay. This lag column indicates the sales amount a week prior to the
given record, allowing you to compare sales with the previous week:

SELECT

 *,

 lag(sum, 7) OVER (ORDER BY sales_date)

INTO

 bat_sales_daily_delay

FROM

 bat_sales_growth;

478 | Appendix

4. Inspect the first 15 rows of bat_sales_growth:

SELECT

 *

FROM

 bat_sales_daily_delay

ORDER BY

 Sales_date

LIMIT

 15;

The result is as follows:

 sales_date | count | sum | lag

------------+-------+-----+-----

 2019-06-07 | 9 | 9 |

 2019-06-08 | 6 | 15 |

 2019-06-09 | 10 | 25 |

 2019-06-10 | 10 | 35 |

 2019-06-11 | 5 | 40 |

 2019-06-12 | 10 | 50 |

 2019-06-13 | 14 | 64 |

 2019-06-14 | 9 | 73 | 9

 2019-06-15 | 11 | 84 | 15

 2019-06-16 | 12 | 96 | 25

 2019-06-17 | 10 | 106 | 35

 2019-06-18 | 6 | 112 | 40

 2019-06-19 | 2 | 114 | 50

 2019-06-20 | 5 | 119 | 64

 2019-06-21 | 6 | 125 | 73

(15 rows)

5. Compute the sales growth as a percentage, comparing the current sales
volume to that of a week prior. Insert the resulting table into a new table
called bat_sales_delay_vol:

SELECT

 *,

 (sum-lag)/lag AS volume

INTO

Chapter 9: Using SQL to Uncover the Truth: A Case Study | 479

 bat_sales_delay_vol

FROM

 bat_sales_daily_delay;

6. Compare the first 22 values of the bat_sales_delay_vol table to ascertain
a sales drop:

SELECT * FROM bat_sales_delay_vol LIMIT 22;

The result is as follows:

 sales_date | count | sum | lag | volume

------------+-------+-----+-----+------------------------

 2019-06-07 | 9 | 9 | |

 2019-06-08 | 6 | 15 | |

 2019-06-09 | 10 | 25 | |

 2019-06-10 | 10 | 35 | |

 2019-06-11 | 5 | 40 | |

 2019-06-12 | 10 | 50 | |

 2019-06-13 | 14 | 64 | |

 2019-06-14 | 9 | 73 | 9 | 7.1111111111111111

 2019-06-15 | 11 | 84 | 15 | 4.6000000000000000

 2019-06-16 | 12 | 96 | 25 | 2.8400000000000000

 2019-06-17 | 10 | 106 | 35 | 2.0285714285714286

 2019-06-18 | 6 | 112 | 40 | 1.8000000000000000

 2019-06-19 | 2 | 114 | 50 | 1.2800000000000000

 2019-06-20 | 5 | 119 | 64 | 0.85937500000000000000

 2019-06-21 | 6 | 125 | 73 | 0.71232876712328767123

 2019-06-22 | 9 | 134 | 84 | 0.59523809523809523810

 2019-06-23 | 2 | 136 | 96 | 0.41666666666666666667

 2019-06-24 | 4 | 140 | 106 | 0.32075471698113207547

 2019-06-25 | 7 | 147 | 112 | 0.31250000000000000000

 2019-06-26 | 5 | 152 | 114 | 0.33333333333333333333

 2019-06-27 | 5 | 157 | 119 | 0.31932773109243697479

 2019-06-28 | 3 | 160 | 125 | 0.28000000000000000000

(22 rows)

480 | Appendix

While the count and cumulative sum columns are reasonably straightforward, why do
you need the lag and volume columns? That is because to look for a drop in sales
growth, you need to first calculate the growth. Growth is calculated by comparing
the daily sum of sales to the same values 7 days earlier (the lag). By subtracting the
sum and lag values and dividing by the lag, you obtain the volume value and can
determine sales growth compared to the previous week of the sales transaction.
Then, you will observe the trend in growth and identify possible drops.

Notice that the sales volume on 2019-06-14 is 700% greater than the launch
date of 2019-06-07. By 2019-06-17, the volume has doubled compared to the
week prior. As time passes, this relative difference begins to decrease dramatically.
By the end of June, the volume is 28% higher than the week prior. At this stage, you
can observe and confirm the presence of a reduction in sales growth after the first 2
weeks. In the next exercise, you will attempt to explain the causes of the reduction.

Activity 9.02: Analyzing the Difference in the Sales Price Hypothesis

Solution:

Perform the following steps to complete this activity:

1. Load the sqlda database from psql.

2. Select the sales_transaction_date column for 2016 Lemon model sales
and insert the column into a table called lemon_sales:

SELECT

 sales_transaction_date

INTO

 lemon_sales

FROM

 sales

WHERE

 product_id=3;

3. Count the sales records available for the 2016 Lemon model:

SELECT

 count(sales_transaction_date)

FROM

 lemon_sales;

Chapter 9: Using SQL to Uncover the Truth: A Case Study | 481

The result is as follows:

count

 16558

(1 row)

4. Display the latest sales_transaction_date column:

SELECT

 max(sales_transaction_date)

FROM

 lemon_sales;

The result is as follows:

 max

 2021-08-23 19:12:10

(1 row)

5. Convert the sales_transaction_date column into a date type:

ALTER TABLE

 lemon_sales

ALTER COLUMN

 sales_transaction_date TYPE DATE;

6. Count the number of sales per day within the lemon_sales table and insert
the data into a table called lemon_sales_count:

SELECT

 sales_transaction_date,

 COUNT(sales_transaction_date)

INTO

 lemon_sales_count

FROM

 lemon_sales

GROUP BY

 sales_transaction_date

ORDER BY

 sales_transaction_date;

482 | Appendix

7. Calculate the cumulative sum of sales and insert the corresponding table into a
new table labeled lemon_sales_sum:

SELECT

 *,

 sum(count) OVER (ORDER BY sales_transaction_date)

INTO

 lemon_sales_sum

FROM

 lemon_sales_count;

8. Compute the seven-day lag function on the sum column and save the result to
lemon_sales_delay:

SELECT

 *,

 lag(sum, 7) OVER (ORDER BY sales_transaction_date)

INTO

 lemon_sales_delay

FROM

 lemon_sales_sum;

9. Calculate the growth rate using the data from lemon_sales_delay and
store the resulting table in lemon_sales_growth:

SELECT

 *,

 (sum-lag)/lag AS volume

INTO

 lemon_sales_growth

FROM

 lemon_sales_delay;

10. Inspect the first 22 records of the lemon_sales_growth table by examining
the volume data:

SELECT

 *

FROM

 lemon_sales_growth

ORDER BY

Chapter 9: Using SQL to Uncover the Truth: A Case Study | 483

 Sales_transaction_date

LIMIT

 22;

The expected output is as follows:

sales_transaction_date | count | sum | lag | volume

------------------------+-------+-----+-----+------------------------

 2015-12-27 | 6 | 6 | |

 2015-12-28 | 8 | 14 | |

 2015-12-29 | 4 | 18 | |

 2015-12-30 | 9 | 27 | |

 2015-12-31 | 9 | 36 | |

 2016-01-01 | 6 | 42 | |

 2016-01-02 | 8 | 50 | |

 2016-01-03 | 6 | 56 | 6 | 8.3333333333333333

 2016-01-04 | 6 | 62 | 14 | 3.4285714285714286

 2016-01-05 | 9 | 71 | 18 | 2.9444444444444444

 2016-01-06 | 3 | 74 | 27 | 1.7407407407407407

 2016-01-07 | 4 | 78 | 36 | 1.1666666666666667

 2016-01-08 | 7 | 85 | 42 | 1.0238095238095238

 2016-01-09 | 3 | 88 | 50 | 0.76000000000000000000

 2016-01-10 | 3 | 91 | 56 | 0.62500000000000000000

 2016-01-11 | 4 | 95 | 62 | 0.53225806451612903226

 2016-01-12 | 6 | 101 | 71 | 0.42253521126760563380

 2016-01-13 | 9 | 110 | 74 | 0.48648648648648648649

 2016-01-14 | 6 | 116 | 78 | 0.48717948717948717949

 2016-01-15 | 6 | 122 | 85 | 0.43529411764705882353

 2016-01-16 | 11 | 133 | 88 | 0.51136363636363636364

 2016-01-17 | 8 | 141 | 91 | 0.54945054945054945055

(22 rows)

Now that you have collected data to test the two hypotheses of timing and cost, what
observations can you make and what conclusions can you draw?

The first observation that you can make is regarding the total volume of sales for
the three different scooter products. The Lemon Scooter, over its production life
cycle of 4.5 years, sold 16558 units, while the two Bat Scooters, the original and
Limited Edition models, sold 7328 and 5803 units, respectively, and are still currently
in production, with the Bat Scooter launching about 4 months earlier and with
approximately 2.5 years of sales data available.

484 | Appendix

Looking at the sales growth of the three different scooters, you can also make a few
different observations:

• The original Bat Scooter, which launched on 2019-06-07 at a price of
$599.99, experienced a 700% sales growth in its second week of production
and finished the first 22 days with 28% growth and a sales figure of 160 units.

• The Bat Limited Edition Scooter, which launched in 2019-10-13 at a
price of $699.99, experienced 450% growth at the start of its second week of
production and finished with 96 sales and 66% growth over the first 22 days.

• The 2016 Lemon Scooter, which launched in 2015-12-27 at a price of
$499.99, experienced 830% growth in the second week of production and
ended its first 22 days with 141 sales and 55% growth.

Based on this information, you can make different conclusions:

• The initial growth rate starting in the second week of sales correlates to the cost
of the scooter. As the cost increased to $699.99, the initial growth rate dropped
from 830% to 450%.

• The number of units sold in the first 22 days does not directly correlate to the
cost. The $599.99 Bat Scooter sold more than the 2016 Lemon Scooter in that
first period, despite the price difference.

• There is some evidence to suggest that the reduction in sales can be attributed
to seasonal variations, given the significant reduction in growth and the fact
that the original Bat Scooter was the only one released in June. So far, the
evidence suggests that the drop in sales can be attributed to the difference in
launch timing.

Before you draw the conclusion that the difference can be attributed to seasonal
variations and launch timing, ensure that you have extensively tested a range of
possibilities. Perhaps marketing work, such as email campaigns (that is, when the
emails were sent) and the frequency with which the emails were opened, made
a difference.

Hey!

We are Jun Shan, Matt Goldwasser, Upom Malik, and
Benjamin Johnston the authors of this book. We really
hope you enjoyed reading our book and found it useful
for learning SQL.

It would really help us (and other potential readers!)
if you could leave a review on Amazon sharing your
thoughts on SQL for Data Analytics, Third Edition.

Go to the link https://packt.link/r/180181287X.

OR

Scan the QR code to leave your review.

Your review will help us to understand what's worked
well in this book and what could be improved upon for
future editions, so it really is appreciated.

Best wishes,

Jun Shan, Matt Goldwasser, Upom Malik,
and Benjamin Johnston

Jun Shan

Upom Malik

Matt Goldwasser

Benjamin Johnston

https://packt.link/r/180181287X

Index

A
aggfunc: 162-163, 177
aggregate: 65, 149,

151-155, 159-164,
171-172, 174-177,
182-185, 188,
190-192, 199, 203,
214, 273, 277, 280,
289, 310, 389, 396

anaconda: 237-238,
240, 244, 250

B
batteri: 316
battery: 316
bigint: 343, 389
binary: 52, 222, 228,

297-298, 339
bivariate: 1, 5-6,

27, 32-33, 38-40,
42, 46, 169

boolean: 66, 83, 85,
135, 296, 302, 319

b-tree: 328, 338-340,
348-352

b-trees: 338-340, 354

C
cartesian: 124
covariance: 35
cross-join: 285, 293

D
datetime: 83, 85,

144, 267
decile: 212

decimal: 18, 20,
158, 160, 421

delimiter: 12,
228-230, 232, 310

dispersion: 6,
23-26, 46

domain: 2, 219,
246, 268, 280

drop-down: 12, 79,
81, 238, 240

E
epsilon: 399

F
fetchall: 242, 246

G
gigabytes: 330, 348
github: 8, 11, 18, 35,

42, 126, 159, 230,
262, 276, 332, 373

H
hardware: 55,

336, 356-357
hashes: 348
header: 221-225,

227-230, 232, 259
herring: 373-376, 378
histogram: 7,

14, 16, 263
hostname: 219, 261

I
indexes: 299, 320,

325, 327-328,
338, 343, 346,
348-349, 353-355

indexing: 338,
341, 348, 380

indices: 348-349, 354
interface: 56, 58,

60, 219-220, 222,
231, 244, 262,
264, 332, 341

internet: 59, 148,
183-184, 366,
391-392, 394, 400

ipykernel: 240
isodow: 273

J
javascript: 86, 295
joined: 114-115, 123,

125, 146-148, 163,
177, 191, 206, 293

joining: 115, 125,
127-128, 174,
191, 204-205,
278, 294, 384

jupyter: 240-241,
244-245, 247-250,
252-253, 263

K
key-value: 86,

294-295, 298-299,
301, 304, 348

L
lexize: 311,

313-315, 318
libraries: 217-218,

239, 250
library: 237, 250

M
matplotlib:

244-245, 250
median: 20, 22-23,

42-43, 46, 174-175,
286-287

metrics: 16, 332
multiline: 225, 361
multimodal: 21

N
noninteger: 20
nonlinear: 38
non-null: 77, 139,

149, 156, 181, 199
nullable: 343, 389
nullif: 108, 140-141,

149, 185, 188, 251

O
ordinal: 174
outlier: 21, 26, 39, 42
outliers: 1, 21-26,

32, 39, 46, 218,
286-287, 369

P
package: 58, 237-238,

242-243, 245
packages: 237,

242-245, 282, 287
pandas: 217, 242-245,

247-250, 252-253,
256, 258-260,
262-264

parameter: 230, 254,
257-261, 263, 269,
295, 357, 359

parameters: 142,
192, 220, 222-223,
225, 229-231,
241, 246-247, 249,
254, 258-259, 261,
302, 331, 335

parent: 289
partition: 187-188,

191-197, 201,
203-204,
206-207, 214

partitions: 188, 193
performant: 325,

327, 347-348
pgadmin: 56, 58, 60,

78-79, 81, 88, 96,
101-102, 126, 131,
137, 147, 159, 171,
178, 183, 198, 204,
209, 212, 219-220,
237, 242, 254, 269,
282, 332, 373

pgpass: 261-262
plainto: 319-320, 322
plpgsql: 359-361, 363,

365, 367, 371, 376

postgres: 59, 219-220,
238, 241, 246, 250,
261, 332, 341, 357

postgresql: 45, 55-61,
83-84, 90-91,
98-100, 111, 158,
160, 218-220,
223-226, 229-230,
237-238, 242,
244-245, 250, 258,
261, 268-270, 272,
280-283, 288-289,
291, 295, 297-299,
301, 305, 309-311,
317, 319-320,
328, 330-338,
340-342, 344-345,
348, 350-351,
355-356, 360, 367,
372, 384, 418

predefined: 50,
295, 308

prototype: 323
psycopg: 237-239,

241-243,
245-246, 250

python: 7, 214,
217-219, 230,
237-238,
240-244, 246-247,
249-252, 255-258,
260-262, 264

Q
quadratic: 29, 38
quantiles: 6, 16-17,

20, 25, 46
-quantiles: 17, 19, 42

quartile: 17, 22, 25
quartiles: 18-20, 25-27
quintiles: 42

R
rdbmss: 56, 83-84
reindex: 354
reinstall: 238
relational: 45-46,

49-55, 62, 104,
128, 237, 248,
300, 308, 429

S
schema: 56, 59, 79,

81, 91, 227, 230,
256, 367, 373

schemas: 56, 59
semantic: 309
sequence: 66, 72,

269, 292-294, 309,
328, 334, 336

sequences: 291-294
sequential: 267, 327,

331, 333, 336, 338,
342, 344, 354-355

sqlalchemy: 217,
242-247, 249-250,
256, 262, 264

sql-copy: 223
stddev: 153, 159, 171
stdout: 221-223

string: 4, 136, 180-181,
219, 228, 245-247,
250, 258-259,
270-273, 290-291,
297-298, 305,
310, 312-313,
315, 368, 418

stringio: 256
subqueries: 107, 128,

131, 133, 149, 226
subquery: 128,

180, 227
subset: 168-169, 174,

293, 338, 355
subsets: 2, 20,

154, 197
suffix: 120, 122, 141,

288, 299, 343, 347
superset: 293-294
supersets: 292, 294
superuser: 220
syntax: 51, 56, 62,

90-91, 94, 99, 117,
123, 145, 176,
191, 201, 219-220,
224, 226, 242, 273,
318-320, 322, 340,
349, 359, 361, 370

T
toolkit: 242-243,

384, 428
tsquery: 319-320,

322, 325

tsvector: 318-321
tuples: 247

U
unnest: 290, 300,

303, 312-313, 315

V
valuex: 135
varchar: 84, 87
variance: 24-25,

43, 408
variation: 43, 156
vector: 318

W
workflow: 9, 49, 287
workflows: 218

Z
zoomzoom: 18, 35,

42, 56-59, 81-82,
88, 109, 131, 152,
154-155, 159,
170-172, 178-179,
183-184, 189, 191,
198, 204, 207,
212-213, 231-232,
236, 262-264, 277,
280-281, 284, 292,
311, 323, 328,
337, 379, 384-385,
398, 400, 413

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Understanding and Describing Data
	Introduction
	Data Analytics and Statistics
	Activity 1.01: Classifying a New Dataset

	Types of Statistics
	Methods of Descriptive Statistics
	Univariate Analysis
	Data Frequency Distribution

	Exercise 1.01: Creating a Histogram
	Quantiles

	Exercise 1.02: Calculating the Quartiles for Add-On Sales
	Central Tendency

	Exercise 1.03: Calculating the Central Tendency of Add-On Sales
	Dispersion

	Exercise 1.04: Dispersion of Add-On Sales
	Bivariate Analysis
	Scatterplots
	Linear Trend Analysis and Pearson Correlation Coefficient

	Exercise 1.05: Calculating the Pearson Correlation Coefficient for Two Variables
	Interpreting and Analyzing the Correlation Coefficient
	Time Series Data

	Activity 1.02: Exploring Dealership Sales Data

	Working with Missing Data
	Statistical Significance Testing
	Common Statistical Significance Tests

	SQL and Analytics
	Summary

	Chapter 2: The Basics of SQL for Analytics
	Introduction
	The World of Data
	Types of Data

	Relational Databases and SQL
	Advantages and Disadvantages of SQL Databases

	PostgreSQL Relational Database Management System (RDBMS)
	Exercise 2.01: Running Your First SELECT Query
	SELECT Statement
	The WHERE Clause
	The AND/OR Clause
	The IN/NOT IN Clause
	ORDER BY Clause
	The LIMIT Clause
	IS NULL/IS NOT NULL Clause
	Exercise 2.02: Querying the salespeople Table Using Basic Keywords in a SELECT Query
	Activity 2.01: Querying the customers Table Using Basic Keywords in a SELECT Query

	Creating Tables
	Creating Blank Tables

	Basic Data Types of SQL
	Numeric
	Character
	Boolean
	Datetime

	Data Structures: JSON and Arrays
	Column Constraints
	Simple CREATE Statement
	Exercise 2.03: Creating a Table in SQL
	Creating Tables with SELECT

	Updating Tables
	Adding and Removing Columns
	Adding New Data
	Updating Existing Rows
	Exercise 2.04: Updating the Table to Increase the Price of a Vehicle
	Deleting Data and Tables
	Deleting Values from a Row
	Deleting Rows from a Table
	Deleting Tables
	Exercise 2.05: Deleting an Unnecessary Reference Table
	Activity 2.02: Creating and Modifying Tables for Marketing Operations

	SQL and Analytics
	Summary

	Chapter 3: SQL for Data Preparation
	Introduction
	Assembling Data
	Connecting Tables Using JOIN
	Types of Joins
	Inner Joins
	Outer Joins
	Cross Joins

	Exercise 3.01: Using Joins to Analyze a Sales Dealership
	Subqueries
	Unions
	Exercise 3.02: Generating an Elite Customer Party Guest List Using UNION
	Common Table Expressions

	Cleaning Data
	The CASE WHEN Function
	Exercise 3.03: Using the CASE WHEN Function to Get Regional Lists
	The COALESCE Function
	The NULLIF Function
	The LEAST/GREATEST Functions
	The Casting Function

	Transforming Data
	The DISTINCT and DISTINCT ON Functions
	Activity 3.01: Building a Sales Model Using SQL Techniques

	Summary

	Chapter 4: Aggregate Functions for Data Analysis
	Introduction
	Aggregate Functions
	Exercise 4.01: Using Aggregate Functions to Analyze Data

	Aggregate Functions with the GROUP BY Clause
	The GROUP BY Clause
	Multiple-Column GROUP BY
	Exercise 4.02: Calculating the Cost by Product Type Using GROUP BY
	Grouping Sets
	Ordered Set Aggregates

	Aggregate Functions with the HAVING Clause
	Exercise 4.03: Calculating and Displaying Data Using the HAVING Clause

	Using Aggregates to Clean Data and Examine Data Quality
	Finding Missing Values with GROUP BY
	Measuring Data Uniqueness with Aggregates
	Activity 4.01: Analyzing Sales Data Using Aggregate Functions

	Summary

	Chapter 5: Window Functions for Data Analysis
	Introduction
	Window Functions
	The Basics of Window Functions
	Exercise 5.01: Analyzing Customer Data Fill Rates over Time
	The WINDOW Keyword

	Statistics with Window Functions
	Exercise 5.02: Rank Order of Hiring

	Window Frame
	Exercise 5.03: Team Lunch Motivation
	Activity 5.01: Analyzing Sales Using Window Frames and Window Functions

	Summary

	Chapter 6: Importing and Exporting Data
	Introduction
	The COPY Command
	Running the psql Command
	The COPY Statement
	\COPY with psql
	Creating Temporary Views
	Configuring COPY and \COPY
	Using COPY and \COPY to Bulk Upload Data to Your Database
	Exercise 6.01: Exporting Data to a File for Further Processing in Excel

	Using Python with your Database
	Getting Started with Python
	Improving PostgreSQL Access in Python with SQLAlchemy and pandas
	What is SQLAlchemy?
	Using Python with SQLAlchemy and pandas
	Reading and Writing to a Database with pandas
	Writing Data to the Database Using Python
	Exercise 6.02: Reading, Visualizing, and Saving Data in Python
	Improving Python Write Speed with COPY
	Reading and Writing CSV Files with Python
	Best Practices for Importing and Exporting Data

	Going Passwordless
	Activity 6.01: Using an External Dataset to Discover Sales Trends

	Summary

	Chapter 7: Analytics Using Complex Data Types
	Introduction
	Date and Time Data types for Analysis
	The DATE Data type
	Transforming Date Data types
	Intervals
	Exercise 7.01: Analytics with Time Series Data

	Performing Geospatial Analysis in PostgreSQL
	Latitude and Longitude
	Representing Latitude and Longitude in PostgreSQL
	Exercise 7.02: Geospatial Analysis

	Using Array Data types in PostgreSQL
	Starting with Arrays
	Exercise 7.03: Analyzing Sequences Using Arrays

	Using JSON Data types in PostgreSQL
	JSONB: Pre-Parsed JSON
	Accessing Data from a JSON or JSONB Field
	Leveraging the JSON Path Language for JSONB Fields
	Creating and Modifying Data in a JSONB Field
	Exercise 7.04: Searching through JSONB

	Text Analytics Using PostgreSQL
	Tokenizing Text
	Exercise 7.05: Performing Text Analytics
	Performing Text Search
	Optimizing Text Search on PostgreSQL
	Activity 7.01: Sales Search and Analysis

	Summary

	Chapter 8: Performant SQL
	Introduction
	The Importance of Highly Efficient SQL
	Database Scanning Methods
	Query Planning
	Exercise 8.01: Interpreting the Query Planner
	Activity 8.01: Query Planning
	Index Scanning
	The B-Tree Index
	Exercise 8.02: Creating an Index Scan
	Activity 8.02: Implementing Index Scans
	The Hash Index
	Exercise 8.03: Generating Several Hash Indexes to Investigate Performance
	Activity 8.03: Implementing Hash Indexes
	Effective Index Use

	Killing Queries
	Exercise 8.04: Canceling a Long-Running Query

	Functions and Triggers
	Function Definitions
	Exercise 8.05: Creating Functions without Arguments
	Activity 8.04: Defining a Largest Sale Value Function
	Exercise 8.06: Creating Functions with Arguments
	The \df and \sf commands

	Activity 8.05: Creating Functions with Arguments
	Triggers
	Exercise 8.07: Creating Triggers to Update Fields
	Activity 8.06: Creating a Trigger to Track Average Purchases

	Summary

	Chapter 9: Using SQL to Uncover the Truth – a Case Study
	Introduction
	Case Study
	The Scientific Method
	Exercise 9.01: Preliminary Data Collection Using SQL Techniques
	Exercise 9.02: Extracting the Sales Information
	Activity 9.01: Quantifying the Sales Drop
	Exercise 9.03: Launch Timing Analysis
	Activity 9.02: Analyzing the Difference in the Sales Price Hypothesis
	Exercise 9.04: Analyzing Sales Growth by Email Opening Rate
	Exercise 9.05: Analyzing the Performance of the Email Marketing Campaign
	Conclusions
	In-Field Testing

	Summary

	Appendix
	Author Page
	Index

