


Building Neo4j-Powered  
Applications with LLMs

Create LLM-driven search and recommendations applications with 
Haystack, LangChain4j, and Spring AI

Ravindranatha Anthapu
Siddhant Agarwal



Building Neo4j-Powered Applications with LLMs
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, without the prior written permission of the publisher, except in the case of brief 
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express or 
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any 
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products 
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee 
the accuracy of this information.

Portfolio Director: Gebin George

Relationship Lead: Sonia Chauhan

Project Manager: Prajakta Naik

Content Engineer: Vandita Grover

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Indexer: Tejal Soni

Proofreader: Vandita Grover

Production Designer: Alishon Falcon

Growth Lead: Nimisha Dua

First published: June 2025

Production reference: 1230525

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham 

B3 1RB, UK.

ISBN 978-1-83620-623-1

www.packtpub.com

http://www.packtpub.com


I would like to dedicate this book to my lovely wife, Sreevani Rajuru, for all her encouragement and 
patience during this journey.

– Ravi Anthapu

I would like to first and foremost thank my loving and patient wife, Rashi, for her unwavering support, 
encouragement, and endless patience throughout the long journey of writing this book. To my wonderful 
parents—thank you for your constant belief in me and for being my lifelong pillars of strength. I’m also 
deeply grateful to my incredible colleagues whose camaraderie, insights, and inspiration pushed me to 
keep going. A heartfelt thank you to the Neo4j team and community for fostering an environment of 
innovation and collaboration—your support made this book possible.

– Sid Agarwal



Forewords

For much of my career, AI has been in a kind of nuclear winter, a stasis from which we were told 

amazing things would emerge in the next 10 years. That winter began to ever-so-slightly thaw 

with practical applications of machine learning over the last decade but with truly amazing things 

still a perpetual 10 years away.

And then ChatGPT changed everything.

Today, AI is no longer the preserve of academic journals and ambitious conference talks. It has 

taken center stage in the IT world and is reshaping entire industries and economies. For technology 

professionals, it has redefined what it means to build software in the modern era.

The shift has been swift and dizzying. We have all marveled at GenAI-powered chatbots, but amid 

the excitement and innovation, a serious question has lingered: how can we use AI dependably? 

Dependability is an important characteristic of systems. It encompasses aspects such as avail-

ability and reliability but of particular importance in a world built on AI, it also covers safety, 

security, and trustworthiness. 

It is in the ability to help systems developers make AI trustworthy that Sid and Ravi as authors, 

make their mark.

This book is a thoughtful, well-written guide from authors with real experience in contemporary 

graph and AI systems. The authors know the terrain, including theory and architecture as well as 

code and the deployment pipeline. They have accumulated wisdom that is very worthy of sharing.



The book builds on a classic RAG approach, where retrieval from external data sources meets 

generation to produce grounded, useful responses. From there, the reader is gently guided into 

the more sophisticated and powerful world of GraphRAG, where Neo4j and knowledge graphs 

play a central role in helping foundational models to produce trustworthy results. Along the 

way, readers are acquainted with examples using modern AI middleware, such as Neo4j’s GenAI 

framework, with a focus on Haystack, LangChain4j, and Spring AI. This middleware helps us to 

rapidly build and deploy (including on the cloud) coherent, dependable systems supported by 

knowledge graphs.

The authors write with clarity and authority that reflects their experience. They understand both 

how to make knowledge graphs and GenAI systems work and how to explain them in a way that’s 

accessible and engaging. But what makes this book particularly outstanding is its developer-first 

sensibility. There’s no hand-waving or marketing speak—just clear, pragmatic advice, and a 

collection of crisply written technical examples. It is the sort of material that’s empowering for 

developers who are tasked with putting dependable AI systems into production.

Dr. Jim Webber

Chief Scientist, Neo4j



My journey with Neo4j began in 2016 during my master’s thesis, where I used it to traverse citation 

graphs between scientific papers and patents to recommend cross-collection references. Coming 

from a background of natural language processing, and having worked mostly with unstructured 

data, I was struck by the clarity of graph traversal and the elegance of the Cypher query language.

Two years later, in 2018, deepset was founded, and the foundations of the open source AI frame-

work Haystack were soon built. Designed for building modern, compound AI systems with a 

focus on production readiness, the framework quickly gained a vibrant community and with it a 

growing variety of use cases and deployed solutions. Fast forward to today, and the integration 

of Haystack and Neo4j feels not just natural but like the next logical step in building smarter, 

context-aware AI applications.

As one of the maintainers of Haystack, I am particularly excited about this book. It doesn’t just 

present a theoretical case for using knowledge graphs with LLMs. It is a hands-on, pragmatic 

guide to building RAG-based applications with Neo4j’s powerful graph model and Haystack’s 

flexible pipeline architecture with its highly customizable components. As Sergey Bondarenco, 

who worked on the integration, put it well: “Haystack pipelines are also graphs.” Each compo-

nent is a node, each connection an edge, you can have branches and loops, and when you run a 

pipeline, information flows from one component to the next. With Neo4j’s integration, you can 

now filter metadata through Cypher, combine vector and structured search in a single query, and 

enhance context windows of LLMs with structured information.

In a field moving as fast as GenAI, it is refreshing to see a book that is grounded in well-established, 

robust technology. Ravi and Sid have written a guide that embraces the best of both worlds: the 

structure and interpretability of graphs, and the flexibility and reasoning capabilities of LLMs. 

Whether you are just starting with RAG or looking to level up your graph-driven GenAI applica-

tions, this book will meet you where you are and take you further.

 

Dr. Julian Risch

Team Lead (Open Source Engineering), deepset



Contributors

About the authors
Ravindranatha Anthapu has more than 25 years of experience in working with W3C standards and 

building cutting-edge technologies, including integrating speech into mobile applications in the 2000s. 

He is a technology enthusiast who has worked on many projects, from operating system device drivers 

to writing compilers for C language and modern web technologies, transitioning seamlessly and bring-

ing experience from each of these domains and technologies to deliver successful solutions today. As 

a principal consultant at Neo4j today, Ravindranatha works with large enterprise customers to make 

sure they are able to leverage graph technologies effectively across various domains.

Siddhant Agarwal is a seasoned DevRel professional with over a decade of experience in cultivat-

ing innovation and scaling developer ecosystems globally. Currently leading developer relations 

across APAC at Neo4j and recognized as a Google Developer Expert in GenAI, Sid transforms local 

developer initiatives into global success stories with his signature “Local to Global” approach. 

Previously working at Google managing flagship developer programs, he has shared his technical 

expertise at diverse forums worldwide, fueling inspiration and innovation. Learn more about him 

and his work, visit,  meetsid.dev (https://meetsid.dev/).

https://meetsid.dev/


About the reviewers
Fernando Aguilar Islas is a senior solutions consultant at Enterprise Knowledge, leading the de-

sign and implementation of AI and graph-based solutions for global organizations. He specializes 

in semantic solutions, LLMs, graph data science, knowledge graphs, and machine learning. His 

work spans diverse use cases, including identity resolution with graphs, AI-augmented human-in-

the-loop frameworks, and graph-based recommenders. Fernando holds an MS in applied statistics 

from Penn State and is a certified Neo4j Professional and AWS Solutions Architect Associate. He 

is passionate about building intelligent systems that drive measurable business impact through 

advanced analytics, semantics, and graph technologies.

Manisha Mittal is a machine learning engineer with nearly a decade of experience in delivering 

enterprise-grade solutions at leading technology companies such as SAP and Visa. She special-

izes in GenAI-based RAG (embeddings and GraphRAG) applications, agentic workflows, and 

evaluation frameworks, along with in-depth knowledge of LLMs. She has deep expertise across 

a wide tech stack, including Java, Python, SQL, Hive, Neo4j, React, Node.js, Airflow, and Hadoop. 

Manisha holds a B.Tech. degree in information technology from the Indian Institute of Informa-

tion Technology, Allahabad, India, with a strong foundation in scalable application development 

and AI-driven systems. 

Mihir Arya is a UCLA mathematics graduate currently working at Visa as a senior software en-

gineer. His team works heavily in the GenAI space, in the domains of building agentic user ap-

plications and GenAI evaluation frameworks, in addition to building and promoting knowledge 

graphs as a revolutionary alternative to traditional vector RAG among internal developers.



Acknowledgement
The authors are grateful to the grouplens team and the Kaggle team for making available the Movies dataset, 

a derivative of the Movie Lens Datasets.

(F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM 

Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19. https://doi.org/10.1145/2827872).

The authors are grateful to H&M Group and the Kaggle team for making available the H&M Personalized 

Fashion Recommendations dataset.

(Carlos García Ling, ElizabethHMGroup, FridaRim, inversion, Jaime Ferrando, Maggie, neuraloverflow, 

and xlsrln. H&M Personalized Fashion Recommendations. 2022. Kaggle. https://kaggle.com/

competitions/h-and-m-personalized-fashion-recommendations)

https://doi.org/10.1145/2827872
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://kaggle.com/competitions/h-and-m-personalized-fashion-recommendations


Join our communities on Discord and Reddit 
Have questions about the book or want to contribute to discussions on Generative AI and LLMs?

Join our Discord server at https://packt.link/4Bbd9 and our Reddit channel at https://packt.

link/wcYOQ to connect, share, and collaborate with like-minded enthusiasts.

           

https://packt.link/4Bbd9
https://packt.link/wcYOQ
https://packt.link/wcYOQ


Table of Contents

Preface �  xix

Part I: Introducing RAG and Knowledge Graphs for LLM 
Grounding �  1
Stay tuned ���������������������������������������������������������������������������������������������������������������������������� 2

Chapter 1: Introducing LLMs, RAGs, and Neo4j Knowledge Graphs �  3

Outlining the evolution of GenAI through the lens of LLMs ������������������������������������������������� 4

Introducing LLMs • 4

Understanding GenAI’s pitfalls and ethical concerns • 6

Understanding the importance of RAGs and knowledge graphs in LLMs �����������������������������  6

The role of knowledge graphs in LLMs • 7

Introducing Neo4j knowledge graphs ���������������������������������������������������������������������������������� 8

Using Neo4j knowledge graphs with LLMs • 9

Summary ���������������������������������������������������������������������������������������������������������������������������  10

Chapter 2: Demystifying RAG �  11

Technical requirements ������������������������������������������������������������������������������������������������������  11

Understanding the power of RAG ���������������������������������������������������������������������������������������� 13

Deconstructing the RAG flow ���������������������������������������������������������������������������������������������� 17

Retrieving external information for your RAG ��������������������������������������������������������������������  23

Understanding retrieval techniques and strategies • 23

Vector similarity search  • 24

Keyword matching  • 25

Passage retrieval  • 27

Integrating the retrieved information • 29



Table of Contentsxii

Building an end-to-end RAG flow �������������������������������������������������������������������������������������� 30

Summary ���������������������������������������������������������������������������������������������������������������������������  35

Chapter 3: Building a Foundational Understanding of Knowledge Graph for 
Intelligent Applications �  37

Technical requirements �����������������������������������������������������������������������������������������������������  38

Understanding the importance of graph data modeling ����������������������������������������������������  39

RDBMS data modeling • 41

Graph data modeling: basic approach • 45

Graph data modeling: advanced approach • 49

Combining the power of RAG and Neo4j knowledge graphs with GraphRAG ���������������������  57

GraphRAG: enhancing RAG models with Neo4j • 58

Building a knowledge graph for RAG integration • 59

Python code example: Setting up a knowledge graph in Neo4j • 60

Integrating RAG with your Neo4j knowledge graph • 63

Enhancing knowledge graphs �������������������������������������������������������������������������������������������� 66

Summary ���������������������������������������������������������������������������������������������������������������������������  67

Part II: Integrating Haystack with Neo4j: A Practical Guide  
to Building AI-Powered Search �  69
Stay tuned �������������������������������������������������������������������������������������������������������������������������� 70

Chapter 4: Building Your Neo4j Graph with Movies Dataset �  71

Technical requirements �����������������������������������������������������������������������������������������������������  72

Design considerations for a Neo4j graph for an efficient search �����������������������������������������  73

Considerations while defining node and relationship types • 73

Applying indexing and constraints on search performance • 74

Utilizing a movies dataset ��������������������������������������������������������������������������������������������������  77

Why normalize and clean data? • 77

Cleaning and normalizing the CSV files • 78

Building your movie knowledge graph with code examples ���������������������������������������������� 86



Table of Contents xiii

Setting up your AuraDB free instance • 86

Importing your data into AuraDB • 87

Beyond the basics: advanced Cypher techniques for complex graph structures ����������������� 90

Summary ���������������������������������������������������������������������������������������������������������������������������  93

Chapter 5: Implementing Powerful Search Functionalities with Neo4j 
and Haystack �  95

Technical requirements �����������������������������������������������������������������������������������������������������  96

Initializing Haystack and OpenAI for embeddings • 98

Generating embeddings for movie plots • 99

Connecting Haystack to Neo4j for advanced vector search ����������������������������������������������  102

Creating a vector search index in Neo4j • 102

Performing similarity search with Haystack and a Neo4j vector index • 103

Running a vector search query with Haystack and Neo4j • 104

Running a vector search query using Cypher and Haystack • 105

Example use case • 107

Building a search-driven chatbot with Gradio and Haystack �������������������������������������������  109

Setting up a Gradio interface • 109

Integrating with Haystack and Neo4j • 110

Connecting Gradio to the full pipeline • 111

Running the chatbot • 112

Fine-tuning your Haystack integration �����������������������������������������������������������������������������  112

Experimenting with different embedding models • 113

Optimizing Neo4j for faster queries • 113

Indexing additional properties • 113

Logging and analyzing queries • 114

Summary ��������������������������������������������������������������������������������������������������������������������������  115

Chapter 6: Exploring Advanced Knowledge Graph Capabilities with Neo4j � 117

Technical requirements ����������������������������������������������������������������������������������������������������  118

Exploring advanced Haystack functionalities for knowledge exploration ������������������������  119



Table of Contentsxiv

Context-aware search • 119

Dynamic search queries with flexible search filters • 121

Search optimization: tailoring search for specific use cases • 123

Graph reasoning with Haystack ���������������������������������������������������������������������������������������� 124

Traversing multiple relationships to reveal hidden insights • 124

Unlocking insights through path queries • 125

Scaling your Haystack and Neo4j integration ��������������������������������������������������������������������  127

Optimizing Neo4j queries for large graphs • 127

Caching embeddings and query results • 128

Efficient use of vector indexing • 129

Load balancing and horizontal scaling • 129

Best practices for maintaining and monitoring your AI-powered search system ��������������  131

Monitoring Neo4j and Haystack performance • 131

Setting up alerts for critical issues • 132

Implementing a logging strategy • 132

Establishing a regular maintenance routine • 132

Summary �������������������������������������������������������������������������������������������������������������������������� 133

Part III: Building an Intelligent Recommendation System  
with Neo4j, Spring AI, and LangChain4j  �  135
Stay tuned ������������������������������������������������������������������������������������������������������������������������� 136

Chapter 7: Introducing the Neo4j Spring AI and LangChain4j Frameworks for 
Building Recommendation Systems   �  137

Technical requirements ���������������������������������������������������������������������������������������������������  138

Understanding extended Neo4j capabilities to build intelligent applications ������������������  138

Personalizing recommendations  �������������������������������������������������������������������������������������  140

Limitations of traditional approaches • 141

Introducing Neo4j’s LangChain4j and Spring AI frameworks ������������������������������������������� 142

LangChain4j  • 142

Spring AI • 143



Table of Contents xv

Why Java-based frameworks? • 144

Overview of an intelligent recommendation system in Neo4j GenAI ecosystem ��������������� 145

Summary �������������������������������������������������������������������������������������������������������������������������  146

Chapter 8: Constructing a Recommendation Graph with H&M  
Personalization Dataset �  147

Technical requirements ���������������������������������������������������������������������������������������������������  148

Modeling the recommendation graph with the H&M personalization dataset ����������������  148

Building your recommendation graph • 149

Loading the customer data • 150

Loading the article data • 151

Loading the transaction data • 154

Final graph • 155

Optimizing for recommendations: best practices in graph modeling ������������������������������� 156

Summary �������������������������������������������������������������������������������������������������������������������������  160

Chapter 9: Integrating LangChain4j and Spring AI with Neo4j �  161

Technical requirements ���������������������������������������������������������������������������������������������������� 162

Setting up LangChain4j and Spring AI �����������������������������������������������������������������������������  164

Building your recommendation engine with LangChain4j ����������������������������������������������  166

LangChain4j: updating the project dependencies • 168

LangChain4j: updating the application properties • 169

LangChain4j: Neo4j integration • 170

LangChain4j: OpenAI chat integration • 175

LangChain4j: OpenAI embedding model integration • 178

LangChain4j: final application • 179

Building your recommendation engine with Spring AI ����������������������������������������������������  186

Spring AI: updating the project dependencies • 187

Spring AI: updating the application properties • 187

Spring AI: Neo4j integration • 188

Spring AI: OpenAI chat integration • 188



Table of Contentsxvi

Spring AI: OpenAI embedding model integration • 191

Spring AI: final application • 192

Fine-tuning your recommendation system ����������������������������������������������������������������������� 193

Summary ������������������������������������������������������������������������������������������������������������������������� 203

Chapter 10: Creating an Intelligent Recommendation System �  205

Technical requirements ���������������������������������������������������������������������������������������������������  205

Setting up the environment • 206

Getting the database ready • 207

Improving recommendations with GDS algorithms ��������������������������������������������������������  207

Computing similarity with the KNN algorithm • 207

Detecting communities with the Louvain algorithm • 210

Understanding the power of communities ����������������������������������������������������������������������� 213

Combining collaborative filtering and content-based approaches ������������������������������������ 219

Scenario 1: Filtering articles that belong to other communities • 219

Scenario 2: Filtering articles by characteristics and belonging to other communities • 223

Summary �������������������������������������������������������������������������������������������������������������������������  227

Part IV: Deploying Your GenAI Application in the Cloud  � 229
Stay tuned ������������������������������������������������������������������������������������������������������������������������ 230

Chapter 11: Choosing the Right Cloud Platform for GenAI Applications �  231

Understanding cloud computing options for GenAI applications ������������������������������������  232

The cloud: an indispensable foundation of GenAI • 232

Specialized AI services by different cloud providers • 233

Picking a cloud platform for GenAI applications — key considerations ���������������������������  234

Scalability and performance • 234

Cost and pricing models • 236

Security and compliance • 239

Best practices for security and compliance in GenAI deployments • 245

Key takeaways • 246



Table of Contents xvii

Making the right choice: a decision-making framework for selecting your  

cloud platform �����������������������������������������������������������������������������������������������������������������  247

Summary �������������������������������������������������������������������������������������������������������������������������  249

Chapter 12: Deploying Your Application on the Google Cloud �  251

Technical requirements ���������������������������������������������������������������������������������������������������  252

Preparing your Haystack chatbot for deployment ������������������������������������������������������������  252

Containerizing the application with Docker ��������������������������������������������������������������������  254

Setting up a Google Cloud project and services ����������������������������������������������������������������  255

Creating a project • 256

Launching Google Cloud Shell • 256

Setting your active project • 256

Enabling the required services • 257

Adding your project files to Cloud Shell • 257

Deploying to Google Cloud Run ���������������������������������������������������������������������������������������  258

Testing and verifying the deployment on Google Cloud ��������������������������������������������������� 260

Deploying the chatbot to other clouds • 261

Preparing for deployment in production: key considerations ������������������������������������������  262

Initial data load • 263

Incremental data load • 264

Graph augmentation • 264

Summary �������������������������������������������������������������������������������������������������������������������������  265

Chapter 13: Epilogue �  267

The combined power of GenAI and Neo4j ������������������������������������������������������������������������  267

GraphRAG for search applications • 268

GraphRAG for recommendations • 268

Choosing your cloud platform • 269

Beyond the book: exploring resources for continued learning �����������������������������������������  269



Table of Contentsxviii

Closing remarks ���������������������������������������������������������������������������������������������������������������  269

Stay tuned ������������������������������������������������������������������������������������������������������������������������  270

Why subscribe? �����������������������������������������������������������������������������������������������������������������  271

Other Books You May Enjoy �  273

Index �  277



Preface

We’re living through a GenAI revolution—where AI is no longer just a backend component but 

a copilot, content creator, and decision-maker. And yet, many GenAI applications still struggle 

with hallucinations, lack of contextual understanding, and opaque reasoning. That’s where this 

book comes in.

This book was born out of a core belief: knowledge graphs are the missing link between GenAI 

power and real-world intelligence. By combining the strengths of Large Language Models (LLMs) 

with the structured, connected data of Neo4j, and enhancing them with Retrieval-Augmented 

Generation (RAG) workflows, we can build systems that are not only smart but also grounded, 

contextual, and transparent.

We wrote this book because we’ve spent the last few years building and showcasing intelligent 

applications that go far beyond basic chatbot use cases. From developing AI-powered recommen-

dation engines to integrating frameworks such as Haystack, LangChain4j, and Spring AI with 

Neo4j, we saw a growing need for a practical, hands-on guide that bridges GenAI concepts with 

production-ready knowledge graph architectures.

The vision for this book is to equip developers, architects, and AI enthusiasts with the tools, 

concepts, and real-world examples they need to design search and recommendation systems 

that are explainable, accurate, and scalable. You won’t just learn about LLMs or graphs in isola-

tion—you’ll build end-to-end applications that bring these technologies together across cloud 

platforms, vector search, graph reasoning, and more.

As you journey through the chapters, you’ll go from understanding foundational concepts to 

implementing advanced techniques such as embedding-powered retrieval, graph reasoning, and 

cloud-native GenAI deployments using Google Cloud, AuraDB, and open source tools.

Whether you’re a data engineer, AI developer, or just someone curious about the future of in-

telligent systems, this book will help you build applications that are not only smarter but also 

produce better answers.



Prefacexx

Who this book is for
This book is for database developers and data scientists who want to learn and use knowledge 

graphs using Neo4j and its vector search capabilities to build intelligent search and recommenda-

tion systems. To get started, working knowledge of Python and Java is essential. Familiarity with 

Neo4j, the Cypher query language, and fundamental concepts of databases will come in handy.

What this book covers
Chapter 1 , Introducing LLMs, RAGs, and Neo4j Knowledge Graphs, introduces the core concepts of 

LLMs, RAG, and how Neo4j knowledge graphs enhance LLM performance by adding structure 

and context.

Chapter 2, Demystifying RAG, breaks down the RAG architecture, explaining how it augments LLMs 

with external knowledge. It covers key components such as retrievers, indexes, and generators 

with real-world examples.

Chapter 3, Building a Foundational Understanding of Knowledge Graph for Intelligent Applications, ex-

plains the basics of knowledge graphs and how they model real-world relationships. It highlights 

Neo4j’s property graph model and its role in powering intelligent, context-aware applications.

Chapter 4, Building Your Neo4j Graph with the Movies Dataset, walks through constructing a Neo4j 

knowledge graph using a real-world movies dataset. It covers data modeling, Cypher queries, 

and importing structured data for graph-based search and reasoning.

Chapter 5, Implementing Powerful Search Functionalities with Neo4j and Haystack, shows how to in-

tegrate Neo4j with Haystack to enable semantic and keyword-based search. It covers embedding 

generation, indexing, and retrieving relevant results using vector search.

Chapter 6, Exploring Advanced Knowledge Graph Capabilities, dives into multi-hop reasoning, con-

text-aware search, and leveraging graph structure for deeper insights. It showcases how Neo4j 

enhances intelligent retrieval beyond basic keyword or vector search.

Chapter 7, Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommenda-

tion Systems, introduces the Spring AI and LangChain4j frameworks to build LLM applications 

with Neo4j.



Preface xxi

Chapter 8, Constructing a Recommendation Graph with the H&M Personalization Dataset, follows 

from the data modeling approaches discussed in  , to load the H&M personalization dataset into 

a graph to build a better recommendation system. 

Chapter 9, Integrating LangChain4j and Spring AI with Neo4j, provides a step-by-step guide to 

building Spring AI and LangChain4j applications to augment the graph by leveraging LLM chat 

APIs and the GraphRAG approach. It also covers embedding generation and adding these embed-

dings to a graph for machine learning purposes.

Chapter 10, Creating an Intelligent Recommendation System, explains how we can leverage Graph 

Data Science algorithms to further enhance the knowledge graph to provide better recommenda-

tions. It also discusses vector search and why it is not enough to provide good recommendations, 

as well as how leveraging KNN similarity and community detection gives us better results.

Chapter 11, Choosing the Right Cloud Platform for GenAI Application, compares major cloud platforms 

for deploying GenAI applications, focusing on scalability, cost, and AI/ML capabilities. It guides 

you in selecting the best-fit environment for your use case.

Chapter 12, Deploying Your Application on Google Cloud, provides a step-by-step guide to deploying 

your GenAI application on Google Cloud. It covers services such as Vertex AI, Cloud Functions, 

and Firebase for scalable and efficient deployment.

Chapter 13, Epilogue, reflects on the journey of building intelligent applications with GenAI and 

Neo4j. It summarizes key takeaways and highlights future opportunities in the evolving AI eco-

system.

To get the most out of this book
To fully benefit from this book, you should have a basic understanding of databases, familiar-

ity with Neo4j and its Cypher query language, and a working knowledge of LLMs and GenAI 

concepts. Prior experience with Python and Java will also be helpful for implementing the code 

examples and working with frameworks such as Haystack, as well as LangChain4j and Spring 

AI for Java-based applications.

You’ll be guided through building and deploying intelligent applications, so you may need to 

create free accounts on platforms such as Neo4j AuraDB, Google Cloud Platform (GCP), and 

OpenAI (or equivalent embedding providers). While no special hardware is required, a machine 

with at least 8 GB RAM and internet access is recommended for smooth development and testing.



Prefacexxii

Download the example code files and database dump
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Building-Neo4j-Powered-Applications-with-LLMs. We also have other code bundles from 

our rich catalog of books and videos available at https://github.com/PacktPublishing. Check 

them out!

You can download the database dump from this link https://packt-neo4j-powered-
applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with

+LLMs+Database+Dump+files.zip.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. 

You can download it here: https://packt.link/gbp/9781836206231.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and X (Twitter) handles. For example: “Install 

the Hugging Face Transformers library for handling model-related functionalities: pip install 

transformers.”

A block of code is set as follows:

documents = [

    "The IPL 2024 was a thrilling season with unexpected results.",

.....

    "Dense Passage Retrieval (') is a state-of-the-art technique for 
information retrieval."

]

When we wish to draw your attention to a particular part of a code block, the relevant lines or 

items are set in bold:

tokenizer = T5Tokenizer.from_pretrained('t5-small', legacy=False)

model = T5ForConditionalGeneration.from_pretrained('t5-small')

Any command-line input or output is written as follows:

pip install numpy==1.26.4 neo4j transformers torch faiss-cpu datasets

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs
https://github.com/PacktPublishing
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt.link/gbp/9781836206231


Preface xxiii

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, 

words in menus or dialog boxes appear in the text like this. For example: “Artificial Intelligence 

(AI) is evolving beyond niche and specialized fields to become more accessible and able to assist 

with day-to-day tasks.”

Declaration
The authors acknowledge the use of cutting-edge AI, such as ChatGPT, with the sole aim of en-

hancing the language and clarity within the book, thereby ensuring a smooth reading experience 

for readers. It’s important to note that the content itself has been crafted by the authors and edited 

by a professional publishing team.

Get in touch
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://packt.link/Q5UyU


Prefacexxiv

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

Share your thoughts
Once you’ve read Building Neo4j-Powered Applications with LLMs, we’d love to hear your thoughts! 

Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
https://packt.link/r/1836206232


Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836206231

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836206231




Part 1
Introducing RAG and 
Knowledge Graphs for 

LLM Grounding
This first part of the book sets the stage for building grounded, context-aware AI applications. We 

will start by introducing the fundamentals of Large Language Models (LLMs), the challenges they 

face around factuality, and how Retrieval-Augmented Generation (RAG) helps address those 

limitations. Next, we break down RAG architectures with practical insights and implementation 

guidance. We conclude by establishing a foundational understanding of knowledge graphs—

highlighting how Neo4j enables structured, semantically rich representations that enhance the 

grounding and reasoning capabilities of LLMs.

This part of the book includes the following chapters:

•	 Chapter 1, Introducing LLMs, RAGs, and Neo4j Knowledge Graphs

•	 Chapter 2, Demystifying RAG

•	 Chapter 3, Building a Foundational Understanding of Knowledge Graph for Intelligent 

Applications



Stay tuned
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

 

https://packt.link/Q5UyU


1
Introducing LLMs, RAGs, and 
Neo4j Knowledge Graphs

Artificial Intelligence (AI) is evolving beyond niche and specialized fields to become more acces-

sible and able to assist with day-to-day tasks. One of the best examples is the explosive advent 

of Generative AI (GenAI). In the last few years, GenAI has created a lot of excitement both for 

technology builders and regular users with its ease of use and ability to understand and answer 

questions the way humans can. The breakthroughs in Large Language Models (LLMs) have pro-

pelled GenAI to the forefront. This has opened up a lot of opportunities for businesses to change 

how they interact with their customers. Customers can ask a question in natural language and get 

an answer without needing a human to be available to understand the question or understand 

the data to extract intelligence from it. While GenAI has taken big strides in different fields with 

different modalities, such as text, audio, and video, our focus throughout this book remains on 

LLMs and their applications in business and industry use cases.

In this chapter, we will take a look at GenAI through the lens of LLMs, its impact, pitfalls, and 

ethical concerns. To set the stage for this book, we will briefly introduce techniques that can 

augment LLMs to make them more effective.

In this chapter, we are going to cover the following main topics:

•	 Outlining the evolution of GenAI through the lens of LLMs

•	 Understanding the importance of RAGs and knowledge graphs in LLMs

•	 Introducing Neo4j knowledge graphs



Introducing LLMs, RAGs, and Neo4j Knowledge Graphs4

Outlining the evolution of GenAI through the lens of 
LLMs
In late 2022, OpenAI took the world by storm by releasing an AI engine called ChatGPT that 

could understand language like humans and interact with users in natural language. This was 

the best representation of GenAI in a long time. AI concepts started as rules-based systems and 

evolved into machine learning algorithms in the ‘90s. With the rise of deep learning and LLMs, 

the concept of GenAI became more popular. These AI systems could generate new content after 

being trained using existing content. OpenAI’s GPT-3 LLM model was one of the first LLMs that 

captured the interest of the masses. GenAI can be used to get answers in a manner that feels like 

human interaction and it can also be used to generate images by providing a text description, 

describe an image as text content, generate videos using text content, and many other things. It 

can enhance creativity, accelerate research and development, enable a simple understanding of 

complex concepts, and improve personalization.

The evolution of LLMs is at the heart of GenAI’s popularity. Let’s take a look at LLMs and how 

they have propelled GenAI.

Introducing LLMs
An LLM is a machine learning model that is built for natural language processing and can under-

stand language constructs and generate content in that language based on the training.

Before the popularity of GPT-3, a considerable amount of research had been conducted on LLMs 

fover several years. Some of the notable works that pioneered LLMs include Google’s Bidirectional 

Encoder Representations from Transformers (BERT (https://github.com/google-research/

bert)) and Generative Pre-trained Transformer (GPT) from OpenAI. LLM training requires a 

lot of parameters and computing power.

At their core, LLMs are a type of Recurrent Neural Network (RNN) architecture. Traditional RNNs 

struggle with long-term dependencies in sequential data. To address this, LLMs often leverage 

architectures such as Long Short-Term Memory (LSTM) networks or transformers. These ar-

chitectures allow the model to learn complex relationships between words, even words that are 

separated by large distances within the training text.



Chapter 1 5

Here is a simple illustration of a basic LLM architecture:

Figure 1.1 — Flowchart explaining a basic LLM architecture

Let’s dissect this architecture

•	 Input layer: This layer receives the initial text prompt or sequence

•	 Embedding layer: Words in the input sequence are converted into numerical vectors, 

capturing their semantic meaning

•	 Encoder: This is a multi-layered RNN (e.g., LSTM) or transformer that processes the 

sequence of embedded words, capturing contextual information

•	 Decoder: The decoder utilizes the encoded representation to generate the output sequence 

one word at a time

You can read more about LLMs in this paper: https://arxiv.org/pdf/2307.06435.

Building an LLM requires a lot of effort and resources. Let’s look at the number of parameters 

used by OpenAI to train each GPT model:

•	 GPT-1: This is the first model and used 117 million parameters.

•	 GPT-2: This model used 1.5 billion parameters to train.

•	 GPT-3: This model was the first general-purpose model released. 175 billion parameters 

were used to train this model.

•	 GPT-4 series: This is the latest model released by OpenAI. 170 trillion parameters were 

used to train this model.

These training figures demonstrate that with each new version, the number of parameters in-

creased by several orders of magnitude. This means more and more computing power is needed 

to train these models. Similar training numbers can be observed for other LLM models too.



Introducing LLMs, RAGs, and Neo4j Knowledge Graphs6

While GenAI is a great technology, there are pitfalls as well as legal and ethical concerns about 

the application of this technology. We will take a look at them next.

Understanding GenAI’s pitfalls and ethical concerns
While LLMs are great at summarizing, generating context, and other use cases, they still do not 

understand the language per se. They recognize patterns based on the training text to generate 

new text. They also don’t understand facts or understand emotions or ethics. They are simply 

predicting the next token and generating text. Because of these pitfalls, content generated by 

GenAI can have huge consequences.

To understand and address these aspects, we need to first identify any harmful or inaccurate 

content that is being generated and address it either by retraining the model or adding separate 

checks and balances to make sure this content is not used as output.

For example, there have been recent cases about using LLMs to generate legal briefs, where LLMs 

have created non-existent cases and generated a legal brief based on these cases. While techni-

cally it might have generated a solution that is requested, this is legally not correct. There have 

also been cases where LLMs are used to generate offensive images and videos and shared on 

the internet. Since it is difficult to identify content generated by AI, it is easy to be fooled by this 

content. This is neither socially, legally, or ethically acceptable. There are quite a few examples 

where LLMs simply make up facts.

This tutorial on the Microsoft site (https://learn.microsoft.com/en-us/training/modules/

responsible-ai-studio/) provides a detailed explanation of these concerns and how we can 

identify them.

Retrieval-Augmented Generation (RAG) and knowledge graphs together can help address these 

issues, which we discuss next.

Understanding the importance of RAGs and 
knowledge graphs in LLMs
To address the pitfalls of GenAI, we can either fine-tune the model or ground the responses using 

other sources.

Fine-tuning involves training an existing model with additional information, which can result 

in high-quality responses. But this can be a complex and time-consuming process.



Chapter 1 7

The RAG approach involves providing extra information when we are asking the LLM a question. 

With this approach, you can integrate knowledge repositories into the generative process. In 

this scenario, LLM can leverage the extra information retrieved from other sources and tune the 

response to match the information provided, thus grounding the results.

These repositories and sources can include the following:

•	 Publicly available structured datasets (e.g., scientific databases such as PubMed or pub-

licly accessible encyclopedic resources such as Wikipedia)

•	 Enterprise knowledge bases (e.g., internal company documentation, product catalogs, 

or compliance-related content with strict privacy and security requirements)

•	 Domain-specific sources (e.g., legal case records, medical guidelines, or technical manuals 

tailored to specific industries)

By incorporating relevant information from these repositories and sources, RAG empowers LLMs 

to generate output that is not only factually accurate but also contextually aligned with the task 

at hand. Unlike the static knowledge encoded in the LLM’s training data, these additional data 

sources allow real-time retrieval of up-to-date and specialized information, addressing challenges 

such as data freshness, accuracy, and specificity. We will cover RAG in detail in Chapter 2.

Another source of information to enable RAG is knowledge graphs. Let’s briefly talk about them 

and their role in the LLM landscape.

The role of knowledge graphs in LLMs
Knowledge graphs play a huge role in generating creative and contextually rich content for LLMs. 

They provide a structured, interconnected foundation and make information retrieval more  

relevant and insightful by grounding the AI results in a complex and multi-layered understanding 

of the data.

Representing the data as a graph opens up more avenues to understand the data. At the same 

time, a knowledge graph cannot be a static entity that represents data in only one dimension 

that’s fixed. Its true power lies in its ability to be dynamic and multi-dimensional. It can capture 

temporal, spatial, or contextual information in real time through live data feeds.

Apart from being an important tool for storing information, knowledge graphs are the backbone 

of intelligent, context-aware AI.



Introducing LLMs, RAGs, and Neo4j Knowledge Graphs8

There are several reasons why knowledge graphs are essential for GenAI:

•	 Enhanced contextual understanding: Knowledge graphs allow GenAI systems to retrieve 

relevant information based on relationships, not just isolated facts. For example, in health-

care, a knowledge graph could link symptoms, diseases, and treatments, enabling GenAI 

to suggest more accurate diagnostic insights based on interconnected medical knowledge.

•	 Efficient data retrieval: Unlike traditional databases, knowledge graphs allow multi-hop 

reasoning, from which GenAI can draw insights across several degrees of separation. This 

is invaluable in fields such as finance, where GenAI can use knowledge graphs to reveal 

hidden relationships between entities such as customers, transactions, and market trends.

•	 Integration of vector embeddings: When combined with vector embeddings, knowledge 

graphs enable GenAI to understand and respond to more nuanced queries. Vector embed-

dings capture semantic similarities between data points, which knowledge graphs then 

contextualize, creating a powerful blend of accuracy and relevance in responses.

•	 Real-world impact: Major organizations are already harnessing the power of knowl-

edge graphs to enhance GenAI applications. For instance, companies in e-commerce use 

knowledge graphs to provide product recommendations that are not just relevant but 

contextually rich, drawing from diverse data sources such as customer reviews, purchase 

history, and product features.

By integrating knowledge graphs, GenAI models transcend traditional data limitations, helping 

to create smarter, more reliable applications across different fields.

Let’s now talk about Neo4j knowledge graphs.

Introducing Neo4j knowledge graphs
A knowledge graph is dynamic and continues to evolve based on how data and relationships 

within the data evolve with time. 

Neo4j is a database that excels with its ability to store data in graphs. For example, in a store, most 

products are laid out in a certain grouping and stay in those groups. But there is an exception to 

this arrangement. When a store wants to promote some products, they are placed at the front 

of the store. This kind of flexible thought process should be adapted for our knowledge graph 

implementation. As the semantics of data evolves the knowledge graph should be able to capture 

this change.



Chapter 1 9

Neo4j, with its multiple labels for nodes and its optional schema approach, makes it easy to keep 

our graph relevant by helping us to persist (retain) our understanding of data as an extra label 

on the node, or a specific relationship that provides more relevant context between the nodes. 

We will take a deeper look at how we can build a Neo4j knowledge graph from the ground up in 

the upcoming chapters.

For now, let’s see how a Neo4j knowledge graph works to enhance an LLM’s response.

Using Neo4j knowledge graphs with LLMs
Suppose there is an LLM-based chatbot integrated with a Neo4j knowledge graph. This GenAI 

chatbot is designed to answer medical queries. Figure 1.2 illustrates how a Neo4j knowledge graph 

can enhance this chatbot’s medical reasoning by linking structured patient symptom records 

with unstructured insights from medical research papers and clinical trials.

The unstructured text undergoes embedding-based processing using models from providers such 

as Ollama, OpenAI, and Hugging Face, followed by Named Entity Recognition (NER), to extract 

key entities such as symptoms and treatments. This data is integrated into a Neo4j knowledge 

graph, where documents mention symptoms and treatments, patients show symptoms, and 

symptoms are linked to potential treatments. This enables multi-hop reasoning, allowing a 

chatbot to efficiently answer complex queries such as the following:

Which patients are showing symptoms similar to flu and also showed symptoms of COVID-19 in the past?

Figure 1.2 — Neo4j knowledge graph driven Gen-AI for healthcare



Introducing LLMs, RAGs, and Neo4j Knowledge Graphs10

To retrieve the result of this query, a multi-hop knowledge graph query path (Figure 1.2) will 

be followed in this order:

1.	 Retrieve symptoms linked to flu from research documents.

2.	 Identify patients currently showing those symptoms.

3.	 Cross-reference past patient records for COVID-19 symptoms.

4.	 Return patients who match both conditions with supporting document sources.

With this approach, the LLM response can be grounded to generate factually correct, relevant, 

and up-to-date results to support medical decision-making.

A similar approach can be used to augment LLMs that support other applications.

We have now looked at how knowledge graphs enhance GenAI’s ability to provide contextually 

rich, accurate insights. But how does this transformative power translate into concrete benefits 

in real life? We will continue this journey in the rest of the book.

Summary
In this chapter, we discussed the evolution of GenAI in the context of LLMs. We also looked at how 

RAG and knowledge graphs are key enablers of this transformation and help provide structure 

and context, improving an LLM’s accuracy and reasoning.

Looking ahead, the next chapter dives deep into RAG — a technique that significantly enhances 

GenAI’s accuracy by grounding responses in retrieved, verified information.



2
Demystifying RAG

In the previous chapter, we explored the evolution of LLMs and how they have changed the 

GenAI landscape. We also discussed some of their pitfalls. We will explore how we can avoid 

these pitfalls using Retrieval-Augmented Generation (RAG) in this chapter. We will take a look 

at what RAG means, what its architecture is, and how it fits into the LLM workflow in building 

improved intelligent applications.

In this chapter, we are going to cover the following main topics: 

•	 Understanding the power of RAG

•	 Deconstructing the RAG flow

•	 Retrieving external information for your RAG

•	 Building an end-to-end RAG flow

Technical requirements
This chapter requires familiarity with the Python programming language (version 3.6 or higher 

is recommended) and basic concepts of deep learning. 

We will be leveraging popular AI toolkits such as Hugging Face’s Transformers library (https://

huggingface.co/docs/transformers/en/index) to build and experiment with RAG. While not 

mandatory, having a basic understanding of Git version control can be helpful. 

https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index


Demystifying RAG12

Git allows you to easily clone the code repository for this chapter and track any changes you 

make. Do not worry about finding or typing the code yourself! We have created a dedicated pub-

lic repository on GitHub, https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/tree/main/ch2, allowing you to easily clone it and follow along with 

the chapter’s hands-on exercises.

This repository contains all the necessary scripts, files, and configurations required to implement 

the RAG model and integrate Neo4j with advanced knowledge graph capabilities.

To follow along, make sure you have the following Python libraries installed in your environment:

•	 Transformers: Install the Hugging Face Transformers library for handling model-related 

functionalities: pip install transformers.

•	 PyTorch: Install PyTorch as the backend for computation. Follow the instructions at 

https://pytorch.org/get-started/locally/ to install the appropriate version for 

your system.

•	 scikit-learn: For similarity calculations, install scikit-learn using the pip install 

scikit-learn command.

•	 NumPy: Install NumPy for numerical operations: pip install numpy.

•	 SentencePiece: SentencePiece is required for text tokenization with certain models. You 

can install it using the instructions provided in the official GitHub repository: https://

github.com/google/sentencepiece#installation. For most Python environments, in-

stall it via pip: pip install sentencepiece.

•	 rank_bm25: The rank_bm25 library is required to implement the BM25 algorithm for 

keyword-based retrieval. You can install it using pip: pip install rank_bm25.

•	 datasets: The datasets library from Hugging Face provides efficient tools for loading, 

processing, and transforming datasets. It supports large-scale datasets with minimal 

memory usage. You can install it using pip install datasets.

•	 pandas: pandas is a powerful data analysis library in Python, used for manipulating tabular 

data. In this example, it helps preprocess the dataset by converting it into a DataFrame 

for easier manipulation. Install it using pip install pandas.

•	 faiss-CPU: faiss-cpu is a library for efficient similarity search and clustering of dense vec-

tors. It is used in this example for building a retriever that fetches relevant passages during 

inference. Visit the Faiss GitHub repository (https://github.com/facebookresearch/

faiss) for documentation and examples. Install it using pip: pip install faiss-cpu.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch2
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch2
https://pytorch.org/get-started/locally/
https://github.com/google/sentencepiece#installation
https://github.com/google/sentencepiece#installation
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


Chapter 2 13

•	 Accelerate: Accelerate is a library by Hugging Face that simplifies distributed training and 

inference. It ensures optimal hardware utilization across CPUs, GPUs, and multi-node 

setups. Install it using pip install accelerate.

By ensuring your environment is configured with these tools, you can seamlessly explore the 

hands-on exercises provided in this chapter.

Understanding the power of RAG
RAG was introduced by Meta researchers in 2020 (https://arxiv.org/abs/2005.11401v4) as a 

framework that allows GenAI models to leverage external data that is not part of model training 

to enhance the output. 

It is a widely known fact that LLMs suffer from hallucinations. One of the classic real-world exam-

ples of LLMs hallucinating is the case of Levidow, Levidow & Oberman, the New York law firm that 

was fined for submitting a legal brief containing fake citations generated by OpenAI’s ChatGPT 

in a case against Colombian airline Avianca. They were subsequently fined thousands of dollars, 

and they are likely to have lost more in reputational damage. You can read more about it here: 
https://news.sky.com/story/lawyers-fined-after-citing-bogus-cases-from-chatgpt-

research-12908318.

LLM hallucinations can arise from several factors, such as the following:

•	 Overfitting to training data: During training, the LLM might overfit to statistical patterns 

in the training data. This can lead the model to prioritize replicating those patterns over 

generating factually accurate content.

•	 Lack of causal reasoning: LLMs excel at identifying statistical relationships between 

words but may struggle to understand cause-and-effect relationships. This can lead to 

outputs that are grammatically correct but factually implausible.

Note

All the sections in this chapter focus on the relevant code snippets. For the  

complete code, please refer to the book’s GitHub repository: https://github.com/
PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/

main/ch2.

https://arxiv.org/abs/2005.11401v4
https://news.sky.com/story/lawyers-fined-after-citing-bogus-cases-from-chatgpt-research-12908318
https://news.sky.com/story/lawyers-fined-after-citing-bogus-cases-from-chatgpt-research-12908318
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch2
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch2
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch2


Demystifying RAG14

•	 Temperature configuration: LLMs can be configured with a parameter called tempera-

ture, a number between 0 and 1 that controls the randomness in text generation. Higher 

temperatures increase creativity but also the likelihood of hallucinations as the model 

deviates from expected responses.

•	  Missing information: If the information required to generate an accurate response is not 

included in the training data, the model might generate plausible sounding but incorrect 

answers.

•	 Flawed or biased training data: The quality of the training process plays a significant 

role. If the dataset contains biases or inaccuracies, the model may perpetuate these issues, 

leading to hallucinations.

While hallucinations are a significant challenge, several methods can help mitigate them to 

some extent:

•	 Prompt engineering: This involves carefully crafting and iteratively refining the instruc-

tions or queries given to the LLM to elicit consistent and accurate responses. For instance, 

asking an LLM

 List five key benefits of Neo4j for knowledge graphs 

provides more structure and precision compared to the broad query like:

Tell me about Neo4j 

The former query specifies the expected output, leading the model to focus on a concise 

and relevant list of benefits, while the latter might yield a verbose or tangential response. 

Prompt engineering helps guide the model to stay within the desired scope of information 

and reduces the chances of it producing irrelevant or fabricated outputs. For a detailed 

exploration of prompt engineering techniques and best practices, check out this guide: 

https://cloud.google.com/discover/what-is-prompt-engineering.

•	 In-context learning (few-shot prompting): In this method, examples are included within 

the prompt to guide the LLM toward accurate, task-specific responses. For instance, when 

asking for a product comparison, providing a few examples of properly structured compar-

isons within the prompt helps the model mimic the pattern. This approach leverages the 

model’s capability to infer context and adjust its responses based on the given examples, 

making it effective for domain-specific tasks.

https://cloud.google.com/discover/what-is-prompt-engineering


Chapter 2 15

•	 Fine-tuning: This involves training an already pre-trained LLM further on a specific data-

set to adapt it to specialized domains or tasks. This process enhances the model’s ability 

to generate domain-specific, relevant, and accurate responses. One popular method for 

fine-tuning is Reinforcement Learning with Human Feedback (RLHF), where human 

evaluators guide the model by scoring its outputs. These scores are used to adjust the 

model’s behavior, aligning it with human expectations. For example, fine-tuning an LLM 

on a company’s internal documentation ensures it produces accurate and relevant outputs 

tailored to the organization’s specific needs. If prompted with

Explain the onboarding process for new hires

a fine-tuned model might provide a detailed explanation consistent with the company’s 

policies, whereas a general model might offer a vague or unrelated response. Let us take 

another example scenario to understand how using RLHF, you can improve responses. 

Suppose the LLM was initially asked:

What are the benefits of using XYZ software? 

The response might include generic benefits that do not align with the software’s unique 

features. With RLHF, human evaluators score the response based on accuracy, relevance, 

and completeness. For instance, the initial response could be:

XYZ software improves productivity, enhances collaboration, and 
reduces costs.

The feedback may be:

Too generic; lacks specifics about XYZ software.

After fine-tuning with human feedback, the result could be a more accurate and tailored 

response, as follows:

XYZ software offers real-time data synchronization, customizable 
workflows, and advanced security features, making it ideal for 
enterprise resource planning.

RLHF is especially valuable in reducing hallucinations because it emphasizes learning 

from human-curated feedback.



Demystifying RAG16

While these methods provide significant improvements, they still fall short in one critical area: en-

abling organizations to use domain-specific knowledge to rapidly build accurate, contextual, and 

explainable GenAI applications. The solution lies in grounding – a concept that ties the model’s 

responses to real-world facts or data. This approach forms the foundation of a new paradigm in 

text generation called RAG. By dynamically retrieving factual information from reliable knowledge 

sources, RAG ensures outputs are both accurate and contextually aligned. RAG tries to address 

LLM hallucinations by incorporating relevant information from factual knowledge repositories. 

The term retrieval-augmented generation, or RAG for short, was first introduced by researchers at 

Facebook AI Research (FAIR) in a paper titled Retrieval-Augmented Generation for Knowledge-In-

tensive NLP Tasks: https://arxiv.org/abs/2005.11401, submitted in May 2020.

The paper proposed RAG as a hybrid architecture (refer to Figure 2.1) that combines a neural re-

triever with a sequence-to-sequence generator. The retriever fetches relevant documents from 

an external knowledge base, which are then used as context for the generator to produce outputs 

grounded in factual data. This approach was shown to significantly improve performance on 

knowledge-intensive NLP tasks, such as open-domain question-answering and dialogue systems, 

by reducing the reliance on the model’s internal knowledge and enhancing factual accuracy. RAG 

addresses the previously mentioned shortcomings of LLMs by introducing a critical element: 

the ability to retrieve relevant knowledge from supplementary or domain-specific data sources.

Figure 2.1 — RAG architecture proposed in the Retrieval-Augmented Generation for Knowledge-Intensive NLP 
Tasks research paper by FAIR

Additionally, RAG pipelines offer the potential to reduce model size while maintaining accuracy. 

Instead of embedding all knowledge within the model’s parameters—which would require ex-

tensive resources—RAG allows the model to retrieve information dynamically, keeping it light-

weight and scalable.

https://arxiv.org/abs/2005.11401


Chapter 2 17

The next section in this chapter will delve deeper into the inner workings of RAG, exploring how 

it bridges the gap between raw generation and knowledge-grounded text production.

Deconstructing the RAG flow
Let us now deconstruct the building blocks of a RAG model and help you understand how it 

functions.

First, we will take a look at the regular LLM application flow. Figure 2.2 illustrates this basic flow.

Figure 2.2 — The basic flow of information in a chat application with an LLM

Here is what happens when a user prompts an LLM

1.	 User sends a prompt: The process begins with a user sending a prompt to an LLM chat 

API. This prompt could be a question, an instruction, or any other request for information 

or content generation.

2.	 LLM API processes the prompt: The LLM chat API receives the user’s prompt and trans-

mits it to an LLM. LLMs are AI models trained on massive amounts of text data, allow-

ing them to communicate and generate human-like text in response to a wide range of 

prompts and questions.

3.	 LLM generates a response: The LLM then processes the prompt and formulates a response. 

This response is sent back to the LLM chat API, which then transmits it to the user.

From this flow, we can see that the LLM is responsible for providing the answer and there is no oth-

er process in between. This is the most common usage without RAG in the request-response flow. 



Demystifying RAG18

Now let us take a look at where RAG fits into this workflow. 

Figure 2.3 — The flow of information in a chat application with the RAG model

We can see from Figure 2.3 that we have an intermediate data source before the actual LLM service 

invocation that can provide the context for the LLM request: 

1.	 User sends prompt: The process starts with the user sending a prompt or question through 

a chat interface. This prompt could be anything the user wants information about or 

needs help with.

2.	 RAG model processes prompt: The prompt is received by a chat API, which then relays 

it to the RAG model. The RAG model has two main components working together: the 

retriever (discussed in Step 3) and the encoder-decoder (discussed in Step 4).

3.	 Retriever: This component searches through a knowledge repository, which may include 

unstructured documents, passages, or structured data such as tables or knowledge graphs. 

Its role is to locate the most relevant information needed to address the user’s prompt.

We will cover a simple example of the retriever component. You can review the full 

code available at https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch2/dpr.py

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/dpr.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/dpr.py


Chapter 2 19

The following code snippet initializes a context encoder model and tokenizer from Hugging 

Face’s Transformers library:

1.	 Let us define a set of documents that we want to store in a document store. We 

are using a few predefined sentences here for demonstration purposes:

documents = [

    "The IPL 2024 was a thrilling season with unexpected 
results.",

.....

    "Dense Passage Retrieval (') is a state-of-the-art 
technique for information retrieval."

]

2.	 Next, we will store the content defined previously in a content store. Then we will 

generate an embedding for each of the documents and store them in the content 

store:

def encode_documents(documents):

    inputs = tokenizer(

        documents, return_tensors='pt', 

        padding=True, truncation=True)

    with torch.no_grad():

        outputs = model(**inputs)

    return outputs.pooler_output.numpy()

 

document_embeddings = encode_documents(documents)

3.	 Now, let us define a method that retrieves the content from the document store 

based on query input. We will generate an embedding of the request and query 

the content store to retrieve the relevant result. We are leveraging vector search 

here to get the relevant results:

def retrieve_documents(query, num_results=3):

    inputs = tokenizer(query, return_tensors='pt', 

        padding=True, truncation=True)

    with torch.no_grad():

        query_embedding = model(**inputs).pooler_output

                                         .numpy()

    similarity_scores = cosine_similarity(



Demystifying RAG20

        query_embedding, document_embeddings).flatten()

    top_indices = similarity_scores.argsort()[-num_results:]

        [::-1]

    top_docs = [

        (documents[i], similarity_scores[i]) 

        for i in top_indices]

    return top_doc

We can see for a given query what kind of output we would receive as an example.

The following is sample input:

Query: What is Dense Passage Retrieval?

And here is the sample output:

Top Results:

Score: 0.7777, Document: Dense Passage Retrieval (') is a state-of-
the-art technique for information retrieval.

...

4.	 Encoder-decoder/augmented generation: The encoder part of this component processes 

the prompt along with the retrieved information—whether structured or unstructured—

to create a comprehensive representation. The decoder then uses this representation to 

generate a response that is accurate, contextually rich, and tailored to the user’s prompt.

This involves invoking the LLM API with the input query and context information. Let us take 

a look at an example of how this works. The following example shows how we can invoke a 

query with contextual information. This example showcases the use of T5Tokenizer model: 

1.	 Let us define an LLM first. We will be using the T5 model from Hugging Face: 

tokenizer = T5Tokenizer.from_pretrained('t5-small', 

    legacy=False)

Note

Retriever implementations can be quite complex. They could involve  

using efficient search algorithms such as BM25, TF-IDF, or neural retrievers  

such as Dense Passage Retrieval. You can read more about it at https://

github.com/facebookresearch/.

https://github.com/facebookresearch/
https://github.com/facebookresearch/


Chapter 2 21

model = T5ForConditionalGeneration.from_pretrained(

    't5-small')

2.	 Define the query and documents for the RAG flow. Normally, we leverage a re-

triever for the RAG flow. We are going to use hardcoded values for demonstration 

purposes here:

query = "What are the benefits of solar energy?"

retrieved_passages = """

Solar energy is a renewable resource and reduces electricity 
bills.

......

"""

3.	 We will define a method that takes the input query and the retrieved passages to 

use the LLM API to demonstrate the RAG approach: 

def generate_response(query, retrieved_passages):

        input_text = f"Answer this question based on the 
provided context: {query} Context: {retrieved_passages}" 

    inputs = tokenizer(input_text, return_tensors='pt', 

        padding=True, 

        truncation=True, max_length=512

    ).to(device)

    with torch.no_grad():

        outputs = model.generate(

            **inputs,

            max_length=300,  # Allow longer responses

            num_beams=3,     # Use beam search for better 
results

            early_stopping=True

        )

    return tokenizer.decode(outputs[0], 

        skip_special_tokens=True)



Demystifying RAG22

Now, let us invoke this method and review the response.

5.	 Chat API delivers response: The following code will invoke the generate_response meth-

od and deliver the chat response for the input query: 

response = generate_response(query, retrieved_passages) 

print("Query:", query) 

print("Retrieved Passages:", retrieved_passages) 

print("Generated Response:", response)

When we run this example, the outcome is as follows. 

The following is sample input:

Query: What are the benefits of solar energy?

The retrieved passages are as follows: 

Solar energy is a renewable resource and reduces electricity bills.

......

The following is the sample output:

Generated Response: it is environmentally friendly and helps combat 
climate change

You can find the full code for this example at https://github.com/PacktPublishing/
Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/augmented_

generation.py. 

 Note

We are employing the T5 model’s beam search decoding to produce an  

accurate and contextually relevant response. Beam search decoding is a 

search algorithm used to find the most likely sequence of tokens (words) 

during text generation. Unlike greedy decoding, which selects the most  

probable token at each step, beam search maintains multiple potential  

sequences (called beams) and explores them simultaneously. This  

increases the chances of finding a high-quality result, as it avoids committing 

to suboptimal choices too early in the generation process. You can learn more 

about beam search in Transformers in this article: https://huggingface.

co/blog/constrained-beam-search.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/augmented_generation.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/augmented_generation.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/augmented_generation.py
https://huggingface.co/blog/constrained-beam-search
https://huggingface.co/blog/constrained-beam-search


Chapter 2 23

6.	 Integration and fine-tuning: Now let us look at a code snippet that combines the retriever 

and the LLM invocation as the full RAG flow. The following code demonstrates this:

def rag_pipeline(query):

    retrieved_docs = retrieve_documents(query)

    response = generate_response(query, retrieved_docs)

    return response

 

query = "How does climate change affect biodiversity?"

generated_text = rag_pipeline(query)

print("Final Generated Text:", generated_text)

From the code, we can see that the flow is simple. We retrieve the documents needed to leverage 

the RAG flow using the retriever and pass the input query and the retrieved documents to the 

LLM API invocation.

In this deep dive into the RAG architecture, we focused on its mechanics and demonstrated the 

functioning of its core components. By combining efficient information retrieval with advanced 

language generation models, RAG produces contextually appropriate and knowledge-enriched 

responses. As we transition to the next section, we will discuss the retrieval process. 

Retrieving external information for your RAG
Understanding how RAG leverages external knowledge is crucial for appreciating its ability to 

generate factually accurate and informative responses. This section discusses various retrieval 

techniques, strategies for integrating retrieved information, and practical examples to illustrate 

these concepts.

Understanding retrieval techniques and strategies
The success of a RAG model hinges on its ability to retrieve relevant information from a vast 

external knowledge base using one of the commonly used retrieval techniques. These retrieval 

methods are essential for sourcing relevant information from large datasets. Common techniques 

include traditional methods such as BM25 and modern neural approaches such as DPR. Broadly 

speaking, these techniques can be classified into three categories: vector similarity search, key-

word matching, and passage retrieval. We will discuss each of them in the following subsections.



Demystifying RAG24

Vector similarity search 
The text or query you pass to the LLM is converted into a vector representation called an em-

bedding. The vector similarity search compares the vector embeddings to retrieve the closest 

match. The idea is that related and similar text will have similar embeddings. This technique 

works as follows:  

1.	 Build an embedding of the input query. We tokenize the input query and generate the 

vector embedding representation of it: 

query_inputs = question_tokenizer(query, return_tensors="pt")

with torch.no_grad():

  query_embeddings = question_encoder(

        **query_inputs

    ).pooler_output

2.	 Build the embeddings of the documents. We generate an embedding for each document 

using the tokenizer and associate each embedding with its document: 

for doc in documents:

    doc_inputs = context_tokenizer(doc, return_tensors="pt")

    with torch.no_grad():

        doc_embeddings.append(

            context_encoder(**doc_inputs).pooler_output)

doc_embeddings = torch.cat(doc_embeddings)

3.	 Find similar documents using dot product calculation. This step uses the input query 

embedding and searches the document embeddings for results similar to the input query:

scores = torch.matmul(query_embeddings, doc_embeddings.T).squeeze()

4.	 Sort the documents by the relevancy score and return the results. The results contain the 

matching documents along with a score representing how similar it is to the input query. 

We will order the results in the order we want, most similar to least similar:

ranked_docs = sorted(

    zip(documents, scores), key=lambda x: x[1], reverse=True)

Let us run this example to see what the results would look like. 

The following is a sample input query:

What are the benefits of solar energy?



Chapter 2 25

The following is the sample output (ranked documents):

Document: Solar energy is a renewable source of power., Score: 80.8264

....

Document: Graph databases like Neo4j are used to model complex 
relationships., Score: 52.8945

The preceding code demonstrates how to use DPR to encode a query and a set of documents into 

high-dimensional vector representations. By computing similarity scores, such as the dot product 

between the query vector and document vectors, the model evaluates the relevance of each docu-

ment to the query. The documents are then ranked based on their similarity scores, with the most 

relevant ones appearing at the top. This process highlights the power of vector-based retrieval in 

effectively identifying contextually relevant information from a diverse set of documents, even 

when they include a mix of related and unrelated content.

The full version of this example is available in the GitHub repository: https://github.com/
PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/

vector_similarity_search.py.

Keyword matching 
Keyword matching is a simpler approach that identifies documents containing keywords present 

in the user prompt. While efficient, it can be susceptible to noise and misses documents with 

relevant synonyms. BM25 is a keyword-based probabilistic retrieval function that scores docu-

ments based on the query terms appearing in each document, considering term frequency and 

document length. The flow of this approach looks as follows:

1.	 Build the BM25 corpus using the documents. We will tokenize documents and build a 

corpus from this. We will build the BM25 corpus: 

tokenized_corpus = [doc.split() for doc in corpus]

# Initialize BM25 with the tokenized corpus

bm25 = BM25Okapi(tokenized_corpus, k1=1.5, b=0.75)

2.	 Tokenize the query to search using it: 

tokenized_query = query.split()

3.	 Query the BM25 corpus using the tokenized query. This returns the scores for matching 

documents:

scores = bm25.get_scores(tokenized_query)

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/vector_similarity_search.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/vector_similarity_search.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/vector_similarity_search.py


Demystifying RAG26

4.	 We will take these scores, order the documents in the required order, and return them: 

ranked_docs = sorted(zip(corpus, scores), key=lambda x: x[1], 

    reverse=True)

When we run this example, the results would look like this for the given input.

The following is a sample input query:

quick fox

The following is the sample output:

Ranked Documents:

Document: The quick brown fox jumps over the lazy dog., Score: 0.6049

.....

Document: Artificial intelligence is transforming the world., Score: 
0.0000

The BM25 algorithm ranks documents based on their relevance to a query. It relies on the term 

frequency (how often a keyword appears in a document) and document length, applying a prob-

abilistic scoring function to evaluate relevance. Unlike vector similarity search, which represents 

both queries and documents as dense numerical vectors in high-dimensional space and mea-

sures similarity using mathematical functions such as the dot product, BM25 operates directly 

on discrete word matches. This means BM25 is efficient and interpretable but can struggle with 

semantic relationships, as it cannot recognize synonyms or contextual meanings. In contrast, 

vector similarity search, such as DPR, excels in identifying conceptual similarities even when exact 

keywords differ, making it more suitable for tasks requiring deep semantic understanding. This 

snippet illustrates BM25’s utility for straightforward keyword-matching tasks where efficiency 

and explainability are critical.

The complete example is available in the GitHub repository: https://github.com/
PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/

keyword_matching.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/keyword_matching.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/keyword_matching.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/keyword_matching.py


Chapter 2 27

Passage retrieval 
Instead of retrieving entire documents, RAG can focus on specific passages within documents that 

directly address the user’s query. This allows for more precise information extraction. The initial 

flow of this approach is very similar to the vector search approach. We get the ranked documents 

using the approach shown in vector search and then extract relevant passages as shown in the 

following code snippet:

# Extract passages for the reader

passages = [doc for doc, score in ranked_docs]

 

# Prepare inputs for the reader

inputs = reader_tokenizer(

    questions=query,

    titles=["Passage"] * len(passages),

    texts=passages,

    return_tensors="pt",

    padding=True,

    truncation=True

)

# Use the reader to extract the most relevant passage

with torch.no_grad():

    outputs = reader(**inputs)

# Extract the passage with the highest score

max_score_index = torch.argmax(outputs.relevance_logits)

most_relevant_passage = passages[max_score_index]

When we run this example for the given input query, the results look as follows.

The following is a sample input query:

What are the benefits of solar energy?

The following is the sample output:

Ranked Documents:

Document: Solar energy is a renewable source of power., Score: 80.8264

.....



Demystifying RAG28

Document: It has low maintenance costs., Score: 57.9905

 

Most Relevant Passage: Solar panels help combat climate change and reduce 
carbon footprint.

The preceding example illustrates the passage-retrieval approach, which is more granular than 

document-level retrieval, focusing on extracting specific passages that directly address the us-

er’s query. By leveraging a reader model in combination with a retriever, this approach enhances 

relevance and specificity, as it identifies not only the most relevant document but also the exact 

passage within it that best answers the query. 

Even if a passage has a slightly lower retriever score, the reader may prioritize it because it eval-

uates relevance more precisely at the word and span levels, considering contextual nuances. The 

retriever typically calculates a similarity score using the dot product of the query and passage 

embeddings:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑞𝑞𝑞 𝑞𝑞𝑖𝑖) = 𝑞𝑞𝑞 𝑞𝑞𝑖𝑖 =  ∑ 𝑞𝑞𝑗𝑗𝑝𝑝𝑖𝑖𝑖𝑖𝑑𝑑
𝑗𝑗𝑗𝑗 

Here, 𝑞 is the query embedding, 𝑝𝑝𝑖𝑖  is the passage embedding for the 𝑖𝑖𝑡𝑡𝑡 passage, and 𝑑 is the 

dimensionality of the embeddings.

The reader, however, refines this further by analyzing the text content of each passage. It assigns 

a relevance score or logit (also known as confidence score) based on the likelihood that a given 

passage contains the answer. This relevance score is computed from the raw outputs (logits) of 

the reader model, which considers word-level and span-level interactions between the query and 

the passage. The formula for the relevance score can be expressed as follows:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖))

Here, we have the following:

•	 logits(𝑝𝑝𝑖𝑖 ) refers to the raw scores assigned to the passage, 𝑝𝑝𝑖𝑖 , by the reader

•	 softmax converts these raw scores into probabilities, emphasizing the passage most like-

ly to be relevant (https://pytorch.org/docs/stable/generated/torch.nn.Softmax.

html)

By combining both stages, the system can identify passages that are not only semantically similar 

(retriever stage) but also contextually aligned with the query’s intent (reader stage). 

https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html


Chapter 2 29

This dual-stage process highlights the strength of passage retrieval in generating highly targeted 

responses in information retrieval pipelines.

The complete example is available in the GitHub repository: https://github.com/
PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/

passage_retrieval.py.

Integrating the retrieved information
For the last step in the RAG flow, let us look at how we can combine the retriever information with 

the generation model in a way that synthesizes contextually relevant and coherent responses. 

Unlike earlier examples, this approach explicitly integrates multiple retrieved passages with the 

query. By doing so, it creates a single input for the generation model. This allows the model to 

synthesize a unified and enriched response that goes beyond merely selecting or ranking passages:

def integrate_and_generate(query, retrieved_docs):

    # Combine query and retrieved documents into a single input

    input_text = f"Answer this question based on the following context: 
{query} Context: {' '.join(retrieved_docs)}"

    

    # Tokenize input for T5

    inputs = t5_tokenizer(input_text, return_tensors="pt", 

        padding=True, truncation=True, max_length=512)

    

    # Generate a response

    with torch.no_grad():

        outputs = t5_model.generate(**inputs, max_length=100)

    

    # Decode and return the generated response

    return t5_tokenizer.decode(outputs[0], skip_special_tokens=True)

The following is a sample input query:

What are the benefits of solar energy?

The following is the sample output:

Ranked Documents:

Document: Solar energy is a renewable source of power., Score: 80.8264

....

Document: It has low maintenance costs., Score: 57.9905

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/passage_retrieval.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/passage_retrieval.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/passage_retrieval.py


Demystifying RAG30

 

Most Relevant Passage: Solar panels help combat climate change and reduce 
carbon footprint.

The preceding code snippet demonstrates how to integrate retrieved documents with a T5 model 

to generate a synthesized response. The generate() function processes the combined input (que-

ry and passages) through the encoder to produce contextual embeddings, ℎ. These embeddings 

are then used by the decoder, which generates each token sequentially based on probabilities:𝑃𝑃𝑃𝑃𝑃𝑡𝑡  ∣  𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤 𝑤𝑤 𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤𝑡𝑡 )

Here, 𝑤𝑤𝑡𝑡 is the token at position 𝑡𝑡, ℎ𝑡𝑡 is the hidden state, and 𝑊𝑊 is the model’s weight matrix. Beam 

search ensures the selection of the most likely sequence by maximizing the overall probability 

across tokens. Unlike previous examples where individual passages were selected or ranked, this 

code explicitly combines multiple retrieved documents into a single input alongside the query. 

This enables the T5 model to process the combined context holistically and produce a coherent 

response that incorporates information from multiple sources, making it particularly effective 

for queries requiring synthesis or summarization across multiple passages.

To refer to the full version of this code, please refer: https://github.com/PacktPublishing/Building-

Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/integrate_and_generate.py

By exploring various retrieval techniques and their integration with generation models, we have 

seen how RAG architectures leverage external knowledge to produce accurate and informative 

responses. 

In the next section, let us look at the holistic flow from reading input documents from a source 

and leveraging those documents for a retriever flow, instead of the simple hardcoded sentences 

we looked at in the examples in this section.

Building an end-to-end RAG flow
In the previous sections, we delved into the various steps in the RAG flow individually with simple 

data to demonstrate the usage. It would be a good idea to take a step back and use a real-world 

dataset, albeit a simple one, to complete the whole flow. For this, we will use the GitHub issues 

dataset (https://huggingface.co/datasets/lewtun/github-issues). We will look at how we 

can read this data and use it in the RAG flow. This would lay the foundation for the full end-to-

end RAG flow implementation in later chapters. 

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/integrate_and_generate.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/integrate_and_generate.py
https://huggingface.co/datasets/lewtun/github-issues


Chapter 2 31

In this example, we will load GitHub comments to be able to answer questions, such as how 

we can load data offline. We need to follow these steps to load the data and set up the retriever:

1.	 Preparing the data: First, we need to prepare our dataset. We will use the Hugging Face 

datasets library:

# Load the GitHub issues dataset

issues_dataset = load_dataset("lewtun/github-issues", split="train")

 

# Filter out pull requests and keep only issues with comments

issues_dataset = issues_dataset.filter(

    lambda x: not x["is_pull_request"] and len(x["comments"]) > 0)

2.	 Select the relevant columns: Keep only the columns required for analysis:

# Define columns to keep

columns_to_keep = ["title", "body", "html_url", "comments"]

columns_to_remove = set(issues_dataset.column_names) - \ 

                    set(columns_to_keep)

# Remove unnecessary columns

issues_dataset = issues_dataset.remove_columns(columns_to_remove)

3.	 Convert the dataset into a pandas DataFrame: Convert the dataset into a pandas Data-

Frame for easier manipulation:

# Set format to pandas and convert the dataset

issues_dataset.set_format("pandas")

df = issues_dataset[:]

4.	 Explode comments, convert them back into a dataset, and process: Flatten the com-

ments into individual rows, convert the DataFrame back into a dataset, and compute the 

length of each comment. This step makes this data amenable to use with the retriever flow:

# Explode comments into separate rows

comments_df = df.explode("comments", ignore_index=True) 

# Convert the DataFrame back to a Dataset

comments_dataset = Dataset.from_pandas(comments_df)

  

# Compute the length of each comment

comments_dataset = comments_dataset.map(



Demystifying RAG32

    lambda x: {"comment_length": len(x["comments"].split())}, 

    num_proc=1)

# Filter out short comments

comments_dataset = comments_dataset.filter(

    lambda x: x["comment_length"] > 15)

5.	 Concatenate text for embeddings: Let us prepare the document text by concatenating the 

relevant text fields. We will take individual fields from each row and prepare the text that 

represents the document text for that row. These documents are stored in an embedding 

store for retriever usage purposes:

# Function to concatenate text fields

def concatenate_text(examples):

    return {

       "text": examples["title"] + " \n " + 

               examples["body"] + " \n " + 

               examples["comments"]

    }

# Apply the function to create a text field

comments_dataset = comments_dataset.map(concatenate_text, 

    num_proc=1)

6.	 Load model and tokenizer: Let us load the LLM that we will use to convert the documents 

into the embeddings and store them in an embedding store for the retriever flow: 

# Load pre-trained model and tokenizer

model_ckpt = "sentence-transformers/all-MiniLM-L6-v2"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = AutoModel.from_pretrained(model_ckpt).to("cpu")

7.	 Define the embedding function: Define the embedding function that leverages the model 

we defined previously to generate the embedding. We can invoke this method iteratively 

to generate the embeddings for all the documents we have, one document at a time:

# Function to get embeddings for a list of texts

def get_embeddings(text_list):

    encoded_input = tokenizer(text_list, padding=True, 

        truncation=True, return_tensors="pt").to("cpu")



Chapter 2 33

    with torch.no_grad():

        model_output = model(**encoded_input)

    return cls_pooling(model_output).numpy()

8.	 Compute embeddings: Compute embeddings for the dataset. Now that we have the 

embedding function defined, let us call it for all the documents we have in our comments 

dataset. Note that we are storing the embedding in a new column named embedding in 

the same dataset:

# Compute embeddings for the dataset

comments_dataset = comments_dataset.map(

    lambda batch: {"embeddings": [get_embeddings([text])[0] 

        for text in batch["text"]]},

    batched=True,

    batch_size=100,

    num_proc=1

)

9.	 Perform semantic search: Let us perform the retriever flow for the question. This will 

retrieve all the questions related to the question we have asked. We can use these docu-

ments to refine the response as needed: 

# Define a query

question = "How can I load a dataset offline?"

# Compute the embedding for the query

query_embedding = get_embeddings([question]).reshape(1, -1) 

# Find the nearest examples

embeddings = np.vstack(comments_dataset["embeddings"])

similarities = cosine_similarity(

    query_embedding, embeddings

).flatten()

# Display the results

top_indices = np.argsort(similarities)[::-1][:5]

for idx in top_indices:

    result = comments_dataset[int(idx)]  # Convert NumPy integer to 
native Python integer

    print(f"COMMENT: {result['comments']}")



Demystifying RAG34

    print(f"SCORE: {similarities[idx]}")

    print(f"TITLE: {result['title']}")

    print(f"URL: {result['html_url']}")

    print("=" * 50)

The preceding code showcases the complete flow, from how we load the data into a data store, 

which can form the basis for the retriever, to retrieving documents, which can be used to provide 

more context for the LLM when it is generating the answer.

Now let us see how the output looks when we run this application. We have the question hard-

coded in the example code, and it is:

How can I load a dataset offline?.

The following is the sample output:

COMMENT: Yes currently you need an internet connection because the lib 
tries to check for the etag of the dataset script ...

SCORE: 0.9054292969045314

TITLE: Downloaded datasets are not usable offline

URL: https://github.com/huggingface/datasets/issues/761

==================================================

COMMENT: Requiring online connection is a deal breaker in some cases ...

SCORE: 0.9052456782359709

TITLE: Discussion using datasets in offline mode

URL: https://github.com/huggingface/datasets/issues/824

==================================================

This hands-on example demonstrated the practical application of an end-to-end RAG architecture, 

leveraging powerful retrieval techniques to enhance language generation. The preceding code 

is adapted from the Hugging Face NLP course, available at https://huggingface.co/learn/

nlp-course/chapter5/6?fw=tf.

The complete Python file, along with a detailed explanation of how to run it, is available at 
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/

blob/main/ch2/full_rag_pipeline.py. 

https://huggingface.co/learn/nlp-course/chapter5/6?fw=tf
https://huggingface.co/learn/nlp-course/chapter5/6?fw=tf
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/full_rag_pipeline.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch2/full_rag_pipeline.py


Chapter 2 35

Summary
In this chapter, we deep-dived into the world of RAG models. We started by understanding the 

core principles of RAG and how they differ from traditional generative AI models. This founda-

tional knowledge is crucial as it sets the stage for appreciating the enhanced capabilities that 

RAG brings to the table. 

Next, we took a closer look at the architecture of RAG models, deconstructing their components 

through detailed code examples. By examining the encoder, retriever, and decoder, you gained 

insights into the inner workings of these models and how they integrate retrieved information 

to produce more contextually relevant and coherent outputs. 

We then explored how RAG harnesses the power of information retrieval. These techniques help 

RAG effectively leverage external knowledge sources to improve the quality of a generated text. 

This is particularly useful for applications requiring high accuracy and context awareness. You also 

learned how to a simple RAG model using popular libraries such as Transformers and Hugging Face.

As we move forward to the next chapter, Chapter 3, we will build on this foundation. You will learn 

about graph data modeling and how to create knowledge graphs with Neo4j.





3
Building a Foundational 
Understanding of Knowledge 
Graph for Intelligent Applications

In the previous chapter, we looked at what RAG is and at a few simple examples of how we can 

implement RAG flow, along with LLMs. In this chapter, we will take a look at what knowledge 

graphs are and how graphs can make Retrieval-Augmented Generation (RAG) more effective. 

We will explore how to model knowledge graphs and how Neo4j can be used for this purpose. We 

will look at how data modeling with the Neo4j data persistence approach can help build more 

powerful knowledge graphs. We will also look at data store persistence approaches, from Rela-

tional Database Management Systems (RDBMSs) to Neo4j knowledge graphs, to get a better 

understanding of data using various data models.

We will embark on an exciting journey to understand how the fusion of RAG models and Neo4j’s 

robust graph database capabilities enables the creation of intelligent applications that leverage 

structured knowledge bases for enhanced performance and results.

In this chapter, we are going to cover the following main topics:

•	 Understanding the importance of graph data modeling

•	 Combining the power of RAG and Neo4j knowledge graphs with GraphRAG

•	 Enhancing knowledge graph



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications38

Technical requirements
Before we dive into the practical aspects of building a knowledge graph for RAG integration 

with Neo4j, it is essential to set up the necessary tools and environments. Here are the technical 

requirements for this chapter:

•	 Neo4j database: You can use Neo4j Desktop for a local setup or Neo4j Aura for a cloud-

based solution. Download Neo4j Desktop from the Neo4j download center: https://

neo4j.com/download/. For Neo4j Aura, visit Neo4j Aura: https://neo4j.com/product/

neo4j-graph-database/. Neo4j offers two primary cloud-based services – AuraDB and 

AuraDS:

•	 AuraDB is a fully managed graph database service tailored for developers building 

intelligent applications. It supports flexible schemas, native storage of relation-

ships, and efficient querying with the Cypher language. AuraDB offers a free tier, 

enabling users to explore graph data without incurring costs. Learn more about 

AuraDB at https://neo4j.com/product/auradb/.

•	 AuraDS is a fully managed Neo4j Graph Data Science instance that can be used 

to build data science applications. You can learn more about it at https://neo4j.

com/docs/aura/graph-analytics/.

•	 DB Browser for SQLite: This tool is used to query SQLite databases easily https://

sqlitebrowser.org/.

•	 Cypher query language: Before starting with this chapter, you will need to familiarize 

yourself with Cypher, Neo4j’s query language. Neo4j provides excellent Cypher tutorials. 

If you are unfamiliar with Cypher, Neo4j provides excellent tutorials and fundamental 

courses on GraphAcademy (https://graphacademy.neo4j.com/) to help you get started. 

You can also read this book to learn about Cypher in detail: Graph Data Processing with 

Cypher (https://www.packtpub.com/en-us/product/graph-data-processing-with-

cypher-9781804611074).

•	 Python environment: Python 3.8 or higher is recommended. Ensure you have it in-

stalled. You can download it from the official Python website https://www.python.org/

downloads/.

•	 Neo4j Python Driver: This allows you to interact with your Neo4j database from Python. 

Install it using pip:

pip install neo4j-driver

https://neo4j.com/download/
https://neo4j.com/download/
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/auradb/
https://neo4j.com/docs/aura/graph-analytics/
https://neo4j.com/docs/aura/graph-analytics/
https://sqlitebrowser.org/
https://sqlitebrowser.org/
https://graphacademy.neo4j.com/
https://www.packtpub.com/en-us/product/graph-data-processing-with-cypher-9781804611074
https://www.packtpub.com/en-us/product/graph-data-processing-with-cypher-9781804611074
https://www.python.org/downloads/
https://www.python.org/downloads/


Chapter 3 39

•	 GitHub repository: All the code and resources for this chapter are available in the following GitHub 

repository: https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-

with-LLMs. Navigate to the ch3 folder for the specific content related to this chapter.

Ensure you have all these tools and libraries installed and configured before proceeding. This 

setup will enable you to follow along with the examples and exercises seamlessly.

Understanding the importance of graph data modeling
Before we go ahead with looking at how GraphRAG flow works with Neo4j, let us take a step back 

and understand how we can model knowledge graphs. We will take some simple data and try 

to look at how we model that data in RDBMSs and graphs. We will also see how this modeling 

differs depending on how we see that data.

Graphs force us to think in different ways and see the data from different perspectives depending 

on what we are trying to solve. While this might seem like a problem, it is actually opens a lot of 

doors. For a long time, we have been taught to think of the RDBMS storage approach in terms of 

Entity-Relationship (ER) diagrams. This approach was good for representing/persisting data 

when there were limitations in the technology, and storage costs were very high. With technol-

ogies evolving and hardware becoming cheaper, new avenues have opened and new approaches 

to model data are possible. Graphs are well suited to take advantage of this.

To think about new ways of modeling data, we might have to unlearn some of the ways we are 

used to representing data using ER diagrams. While this seems simple, in reality, it might be a bit 

difficult. The learning and unlearning process is similar to in the neural plasticity prism goggles 

experiment, depicted in the following figure.

Figure 3.1 — Neural plasticity prism goggles experiment

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs


Building a Foundational Understanding of Knowledge Graph for Intelligent Applications40

The experiment involves wearing prism goggles to perform a simple task. It takes some time for 

the mind to adjust to the shift in vision to perform the task correctly. When the participant takes 

off the goggles, it takes some time to be able to perform the same task again. It is the same with 

data modeling. We might have to unlearn a few of the approaches we used to rely on before we 

can build a better graph data model. You can read more about this experiment at https://sfa.

cems.umn.edu/neural-plasticity-prism-goggle-experiment.

We will take a look at how we consume data in real life to understand whether there are any other 

approaches that can help us in building a good graph data model.

For example, let us consider a library or a bookstore to understand how our data or information 

consumption drives how the books are laid out. In a library, the books are laid out by category and 

last name of the author. This is similar to how we leverage indexes to find data. But there may be 

other sections at the entrance of the library that highlight new releases and popular books. This 

is done to make sure people can find these quickly. Trying to model these aspects in an RDBMS 

is difficult. But the graph database approach in Neo4j makes it quite easy to do this by leverag-

ing multiple labels. This enables graph databases to help us build a data model that helps with 

the easy and efficient consumption of data. With graphs, we might have to try and change our 

thought process and try a few different data modeling approaches. Our initial approaches may 

not be completely correct, but we need to keep adjusting the data models to get to an acceptable 

data model that works for us. With RDBMSs and other technologies, the data model is rigid, and 

not getting it right can have a huge impact. This is where Neo4j stands out. Its optional flexible 

schema approach helps us get started with a data model that might not be optimal in the begin-

ning, but we can tune it incrementally without needing to start from scratch.

We will take some small, simple data and look at data modeling with an RDBMS and graph. The 

data we will be trying to model looks as follows:

•	 A person with the following required details:

firstName

lastName

•	 Five rentals the person has lived at, in the following format:

Address line 1

City

State

zipCode

https://sfa.cems.umn.edu/neural-plasticity-prism-goggle-experiment
https://sfa.cems.umn.edu/neural-plasticity-prism-goggle-experiment


Chapter 3 41

fromTime

tillTime

While this seems simple, it is enough for us to understand the nuances of how this data can be 

represented in an RDBMS and graph.

These are the questions we would like to answer using this data:

•	 What is the latest address the person named John Doe is living at?

•	 What is the first address the person named John Doe lived at?

•	 What is the third address the person named John Doe lived at?

Let’s take a look at how this data can be modeled in an RDBMS.

RDBMS data modeling
In this section, we will take a look at the RDBMS data modeling aspects of the sample data we 

defined previously. The following figure represents the data model as an ER diagram:

Figure 3.2 — ER diagram

There are three tables in this data model. The Person table contains the person details. The Address 

table contains the address details. The Person_Address table contains the rental details along 

with references to the Person and Address tables. We use this join table to represent the rental 

details, to avoid duplicating the data of Person or Address entities. We need to be extra sure of the 

details when we are building these data models, as changing them can be quite time-consuming, 

depending on how much we are changing. If we are splitting a table into multiple tables, then 

the data migration can be quite a task.

You can use this tutorial to create the SQLite database: https://datacarpentry.org/sql-

socialsci/02-db-browser.html. We will use that SQLite database to load the data and validate 

queries to answer the questions we defined before.

https://datacarpentry.org/sql-socialsci/02-db-browser.html
https://datacarpentry.org/sql-socialsci/02-db-browser.html


Building a Foundational Understanding of Knowledge Graph for Intelligent Applications42

The following SQL script creates the tables:

-- Person Table definition

CREATE TABLE IF NOT EXISTS person (

    id INTEGER PRIMARY KEY,

    name varchar(100) NOT NULL,

    gender varchar(20) ,

    UNIQUE(id)

) ;

-- Address table definition

CREATE TABLE IF NOT EXISTS address (

    id INTEGER PRIMARY KEY,

   line1 varchar(100) NOT NULL,

    city varchar(20) NOT NULL,

    state varchar(20) NOT NULL,

    zip varchar(20) NOT NULL,

    UNIQUE(id)

) ;

-- Person Address table definition

CREATE TABLE IF NOT EXISTS person_address (

    person_id INTEGER NOT NULL,

    address_id INTEGER NOT NULL,

    start varchar(20) NOT NULL,

    end varchar(20) ,

    FOREIGN KEY (person_id) REFERENCES person (id)

        ON DELETE CASCADE ON UPDATE NO ACTION,

    FOREIGN KEY (address_id) REFERENCES address (id)

        ON DELETE CASCADE ON UPDATE NO ACTION

) ;



Chapter 3 43

The next SQL script inserts the data into the tables:

-- Insert Person Record

INSERT INTO person (id, name, gender) values (1, 'John Doe', 'Male') ;

-- Insert Address Records

INSERT INTO address (id, line1, city, state, zip) values (1, '1 first ln', 
'Edison', 'NJ', '11111') ;

INSERT INTO address (id, line1, city, state, zip) values (2, '13 second 
ln', 'Edison', 'NJ', '11111') ;

INSERT INTO address (id, line1, city, state, zip) values (3, '13 third 
ln', 'Edison', 'NJ', '11111') ;

INSERT INTO address (id, line1, city, state, zip) values (4, '1 fourth 
ln', 'Edison', 'NJ', '11111') ;

INSERT INTO address (id, line1, city, state, zip) values (5, '5 other ln', 
'Edison', 'NJ', '11111') ;

-- Insert Person Address (Rental) Records

INSERT INTO person_address (person_id, address_id, start, end) values 
(1,1,'2001-01-01', '2003-12-31') ;

INSERT INTO person_address (person_id, address_id, start, end) values 
(1,2,'2004-01-01', '2008-12-31') ;

INSERT INTO person_address (person_id, address_id, start, end) values 
(1,3,'2009-01-01', '2015-12-31') ;

INSERT INTO person_address (person_id, address_id, start, end) values 
(1,4,'2016-01-01', '2020-12-31') ;

INSERT INTO person_address (person_id, address_id, start, end) values 
(1,5,'2021-01-01', null) ;



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications44

Once we load the data, it will look like this.

Figure 3.3 — Data stored in an RDBMS

We will now see how we can query data from the RDBMS:

•	 Query 1 – Get the latest address

Let’s take a look at the following SQL query to answer the first question:

SELECT line1, city, state, zip from

person p, person_address pa, address a

WHERE p.name = 'John Doe'

    and pa.person_id = p.id

    and pa.address_id = a.id

    and pa.end is null

From the query, we can see that we are relying on the end column value to be null to de-

termine which is the latest address. This is the logic to determine what the last address 

is in the SQL query.



Chapter 3 45

•	 Query 2 – Get the first address

We will take a look at the SQL query to answer the second question:

SELECT line1, city, state, zip from

person p, person_address pa, address a

WHERE p.name = 'John Doe'

    and pa.person_id = p.id

    and pa.address_id = a.id

ORDER BY pa.start ASC

LIMIT 1

From the query, we can see that we are relying on the search-sort-filter pattern to get to 

the data we want, with the logic in the SQL query.

•	 Query 3 – Get the third address

We will take a look at SQL query to answer the third question:

SELECT line1, city, state, zip from

person p, person_address pa, address a

WHERE p.name = 'John Doe'

    and pa.person_id = p.id

    and pa.address_id = a.id

ORDER BY pa.start ASC

LIMIT 2, 1

Again, in this query also we can see that we are relying on the pattern Search-Sort-Filter 

to get to the data we wanted.

We will now look at how this data can be modeled with graphs.

Graph data modeling: basic approach
For illustration purposes, we will use the most common and simplest way to model this data in 

a graph.

Figure 3.4 — Basic graph data model



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications46

This aligns with how we normally express the information in English:

Person lives at Address

In this sentence, the nouns are represented as nodes, and the verb is represented as a relationship. 

This data model approach is pretty simple and almost resembles the ER diagram of the RDBMS 

data model. The only difference here is that the join table that represents the rental is modeled as a 

relationship. The advantage of this type of data persistence is that it reduces the index lookup cost. 

In RDBMSs, the biggest cost in terms of data retrieval is the join table’s index lookup cost. As the 

data size increases, that lookup cost keeps on increasing. We can reduce that cost with this approach.

Let’s look at the following graph queries to understand this.

The following Cypher script sets up the indexes for faster data load and retrieval. This can be 

thought of as a schema:

CREATE CONSTRAINT person_id_idx FOR (n:Person) REQUIRE n.id IS UNIQUE ;

CREATE CONSTRAINT address_id_idx FOR (n:Address) REQUIRE n.id IS UNIQUE ;

CREATE INDEX person_name_idx FOR (n:Person) ON n.name ;

This Cypher script creates two unique constraints to make sure we don’t have duplicate Person 

and Address nodes. We also added an index to speed up the person lookup using the name.

Once the schema is set up, we can use this Cypher script to load the data into Neo4j:

CREATE (p:Person {id:1, name:'John Doe', gender:'Male'})

CREATE (a1:Address {id:1, line1:'1 first ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a2:Address {id:2, line1:'13 second ln', city:'Edison', state:'NJ', 

 Note

You can use this tutorial to create the Neo4j database if you are using Neo4j  

Desktop: https://neo4j.com/docs/desktop-manual/current/operations/

create-dbms/.

Alternatively, you can use this tutorial to create a database in the cloud: https://neo4j.

com/docs/aura/auradb/getting-started/create-database/. There is a free option 

available. This would be optimal for those who may not or do not want to install Neo4j 

Desktop locally. Neo4j Aura is a fully managed graph-database-as-a-service solution.

https://neo4j.com/docs/desktop-manual/current/operations/create-dbms/
https://neo4j.com/docs/desktop-manual/current/operations/create-dbms/
https://neo4j.com/docs/aura/auradb/getting-started/create-database/
https://neo4j.com/docs/aura/auradb/getting-started/create-database/


Chapter 3 47

zip:'11111'})

CREATE (a3:Address {id:3, line1:'13 third ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a4:Address {id:4, line1:'1 fourth ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a5:Address {id:5, line1:'5 other ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (p)-[:HAS_ADDRESS {start:'2001-01-01', end:'2003-12-31'}]->(a1)

CREATE (p)-[:HAS_ADDRESS {start:'2004-01-01', end:'2008-12-31'}]->(a2)

CREATE (p)-[:HAS_ADDRESS {start:'2009-01-01', end:'2015-12-31'}]->(a3)

CREATE (p)-[:HAS_ADDRESS {start:'2016-01-01', end:'2020-12-31'}]->(a4)

CREATE (p)-[:HAS_ADDRESS {start:'2021-01-01'}]->(a5)

Once we load the data, it looks like this in the graph.

Figure 3.5 — Representation of Person Rentals using graph data modeling, basic approach



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications48

Now, we will create the Cypher queries analogous to the retrievals we performed  with the RDBMS 

queries in the previous section:

•	 Query 1 – Get the latest address

The following Cypher query gets us the latest address:

MATCH (p:Person {name:'John Doe'})-[r:HAS_ADDRESS]->(a)

WHERE r.end is null

RETURN a

If we look at this query, it is much simpler than the SQL query we saw earlier. Still, the 

result depends on how we mark the last address, by not having the end property set on 

the relationship. So, the logic to know what the last address is still part of the query, like 

in the SQL query. We can see that we are checking the values in the relationship and trying 

to use indexes, as shown in the following code, on the join table:

and pa.person_id = p.id

and pa.address_id = a.id

Just avoiding these indexes itself can get us better performance.

•	 Query 2 – Get the first address

This Cypher fetches us the first address:

MATCH (p:Person {name:'John Doe'})-[r:HAS_ADDRESS]->(a)

WITH r, a

ORDER BY r.start ASC

WITH r,a

RETURN a

LIMIT 1

From the query, we can see that we are relying on the search-sort-filter pattern to get to 

the data we want, similar to the SQL query. The logic to determine what the first address 

is part of the Cypher query.

•	 Query 3 – Get the third address

This Cypher gets us the third address:

MATCH (p:Person {name:'John Doe'})-[r:HAS_ADDRESS]->(a)

WITH r, a

ORDER BY r.start ASC



Chapter 3 49

WITH r,a

RETURN a

SKIP 2

LIMIT 1

Similar to the previous query, we had to rely on search-sort-filter to get to the data we 

wanted. The logic to determine what the third address is part of the Cypher query.

Next, we will dive into a more nuanced approach to graph data modeling.

Graph data modeling: advanced approach
We will look at this data differently and build a data model. This model is influenced by how we 

consume the data.

Figure 3.6 — Representation of Person Rentals using graph data modeling, consumption 
approach

At first look, this looks closer to the RDBMS ER diagram. We have Person, Address, and Rental 

nodes. That’s where the similarity ends. We can see that Person is connected to the Rental node 

via a FIRST or LATEST relationship. Rental may have a NEXT relationship to another Rental node. 

The Rental node is connected to an Address, too. The model might look a bit complex. Once we 

load the data and see how it is connected, it makes more sense.

This Cypher script sets up the indexes for faster data load and retrieval:

CREATE CONSTRAINT person_id_idx FOR (n:Person) REQUIRE n.id IS UNIQUE ;

CREATE CONSTRAINT address_id_idx FOR (n:Address) REQUIRE n.id IS UNIQUE ;

CREATE INDEX person_name_idx FOR (n:Person) ON n.name ;



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications50

We can see the indexes are the same as in the previous model. We have not added any indexes or 

constraints to the Rental node.

This Cypher script loads the data into Neo4j:

CREATE (p:Person {id:1, name:'John Doe', gender:'Male'})

CREATE (a1:Address {id:1, line1:'1 first ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a2:Address {id:2, line1:'13 second ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a3:Address {id:3, line1:'13 third ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a4:Address {id:4, line1:'1 fourth ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (a5:Address {id:5, line1:'5 other ln', city:'Edison', state:'NJ', 
zip:'11111'})

CREATE (p)-[:FIRST]->(r1:Rental {start:'2001-01-01', end:'2003-12-31'})-
[:HAS_ADDRESS]->(a1)

CREATE (r1)-[:NEXT]->(r2:Rental {start:'2004-01-01', end:'2008-12-31'})-
[:HAS_ADDRESS]->(a2)

CREATE (r2)-[:NEXT]->(r3:Rental {start:'2009-01-01', end:'2015-12-31'})-
[:HAS_ADDRESS]->(a3)

CREATE (r3)-[:NEXT]->(r4:Rental {start:'2016-01-01', end:'2020-12-31'})-
[:HAS_ADDRESS]->(a4)

CREATE (r4)-[:NEXT]->(r5:Rental {start:'2021-01-01'})-[:HAS_ADDRESS]->(a5)

CREATE (p)-[:LATEST]->(r5)

Once the data is loaded, it will look like this in the graph (Figure 3.7).



Chapter 3 51

Figure 3.7 — Representation of Person Rentals with a Rental sequence graph

We can see that the data stored in the graph is way different from before. Person is connected to only 

the first and last rentals. Each of those rentals from first to last is connected via a NEXT relationship:

•	 Query 1 – Get the latest address

This Cypher query gets us the latest address:

MATCH (p:Person {name:'John Doe'})-[:LATEST]->()-[:HAS_ADDRESS]->(a)

RETURN a

We can see that this query is very different from the previous graph and SQL queries. In the 

previous graph model, the Cypher query was similar to the SQL query in determining what 

the last address is. Here, the query looks similar to a sentence in English (Person’s latest address).



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications52

While the query looks simpler and easier to understand for most people, is it worth rep-

resenting the data in this way? In this scenario, we will use more storage to be able to 

represent data in an elaborate manner. Let’s profile the queries from the initial graph data 

model to this data model and see whether there is any advantage.

Figure 3.8 — Basic graph model versus advanced graph model – query 1 profiles



Chapter 3 53

From the query profiles, we can see the initial graph data model took 18 db hits (accesses) 

and 312 bytes of memory to perform the operation. The current graph data model took 12 

db hits and 312 bytes of memory to perform the operation. We can see the new data model 

is able to perform this query more optimally. As the data grows, the previous graph data 

model will take more time to perform the operation and the db hits will grow linearly 

with the number of relationships the person has. With the current data model, it would 

stay relatively constant.

Now let us look at query 2.

•	 Query 2 – Get the first address

This Cypher query gets us to the first address:

MATCH (p:Person {name:'John Doe'})-[:FIRST]->()-[:HAS_ADDRESS]->(a)

RETURN a

We can see that this query looks exactly like the previous one, except for the relationship 

we are traversing. We are not using the search-sort-filter pattern anymore here. This is the 

biggest advantage of this data model. This model also makes it easy for us to use a graph 

as a structure to retrieve the data. Also, it means the logic to determine what data we are 

looking at is not coded into the query in the form of some property comparisons. Let us 

compare the query profiles to see whether this gives us any advantage.



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications54

Figure 3.9 — Basic graph model versus advanced graph model – query 2 profiles



Chapter 3 55

We can see the query execution plan for the initial graph data model is larger and more 

complex than the current data model. With the initial graph data model, it took 19 db hits 

and 1,020 bytes of memory to perform the operation. With the current data model, the 

plan is almost similar to query 1. It took 12 db hits and 312 bytes of memory. We can see 

that the ordering is causing us to use more memory and will consume more CPU cycles. 

As Person is connected to more addresses, the initial graph data model will take more 

memory and db hits as performance will slowly degrade. With the current data model, 

the performance will remain relatively constant.

•	 Query 3 – Get the third address

This Cypher query gets us the third address:

MATCH (p:Person {name:'John Doe'})-[:FIRST]->()-[:NEXT*2..2]->()-
[:HAS_ADDRESS]->(a)

RETURN a

We can see from the query that the way it is written is to traverse to the first rental and 

skip the next rental to get to the third rental. This is how we normally look at data and it 

feels natural to express the query this way to retrieve the data. Again, we are not relying 

on the search-sort-filter pattern. Let us compare the query profiles to see whether this 

gives us any advantage.



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications56

Figure 3.10 — Basic graph model versus advanced graph model – query 3 profiles



Chapter 3 57

We can see from these profiles that the current data model query profile is a bit more involved than 

the previous queries. The initial graph data model took 19 db hits and 1,028 bytes to perform the 

operation. The current graph data model took 16 db hits and 336 bytes to perform the operation.

From analyzing the queries and data models, we can see that taking a fresher look at how the 

data models are defined can have a huge impact in terms of performance and cost to perform 

the same operations.

Another advantage of the current data model is that if we do want to track how the rentals are 

working from an address perspective, we can add just another relationship, say, NEXT_RENTAL, 

between the rentals for the same address. This would give us a different perspective of the same 

data. Trying to represent the data like this in an RDBMS or other data persistence layers would 

be difficult. This is where Neo4j with its flexibility to be able to persist relationships to avoid the 

join index cost and optional schema is better suited to build knowledge graphs.

A good graph data model makes the retriever in RAG flow more effective. It makes retrieving 

relevant data faster and easier, as we have explored here.

We will take a look at how we can use knowledge graphs as part of RAG flow next.

Combining the power of RAG and Neo4j knowledge 
graphs with GraphRAG
In the previous chapter, we looked at the retriever, which is the heart of RAG flows. The retriever 

leverages data stores to retrieve relevant information to provide to LLMs to get the best response 

to our question. Retrievers can work with various data stores as needed. The data store capabilities 

can greatly determine how useful, quick, and effective the information retrieved is. This is where 

graphs play a great role. That’s how GraphRAG came into being.

Note

Query profiling is the best way to understand how the query works.  If we are not 

happy with the query performance, profiling helps us understand which areas of 

the query execution we want to improve or change for better performance. You can 

read more about this at https://neo4j.com/docs/cypher-manual/current/

planning-and-tuning/.

https://neo4j.com/docs/cypher-manual/current/planning-and-tuning/
https://neo4j.com/docs/cypher-manual/current/planning-and-tuning/


Building a Foundational Understanding of Knowledge Graph for Intelligent Applications58

The Neo4j graph database excels at persisting the data as a property graph with nodes and re-

lationships. This makes it easy to store and retrieve data in an intuitive manner and serves the 

data stores for RAG retrievers. This approach allows for more accurate, contextually aware, and 

reliable AI-driven applications.

We will now build a GraphRAG flow that combines the power of RAG and knowledge graphs for 

improved LLM responses.

GraphRAG: enhancing RAG models with Neo4j
In the previous chapter, we discussed the flow of information in a chat application with a RAG 

model (refer to Figure 3.5).

Now we will see how this workflow can be augmented to generate improved responses for the 

chat application. Figure 3.11 shows the workflow of GraphRAG, where a user’s prompt is processed 

through an LLM API, retrieving relevant information from Neo4j, and then combined with the 

prompt before being sent to an LLM API.

Note

You can read more about GraphRAG and how it is effective at https://www.

microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-

on-narrative-private-data/ and https://microsoft.github.io/graphrag/. 

For a comprehensive understanding of GraphRAG, you can refer to Microsoft’s research 

paper titled From Local to Global: A Graph RAG Approach to Query-Focused Summariza-

tion (https://arxiv.org/abs/2404.16130). Additionally, Microsoft has made the 

GraphRAG project available on GitHub (https://github.com/microsoft/graphrag), 

providing resources and tools for implementing this approach.

https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-narrative-private-data/
https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-narrative-private-data/
https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-narrative-private-data/
https://microsoft.github.io/graphrag/
https://arxiv.org/abs/2404.16130
https://github.com/microsoft/graphrag


Chapter 3 59

Figure 3.11 — Workflow of GraphRAG

The LLM API generates a response using both the prompt and the relevant information from the 

Neo4j knowledge graph, providing the user with accurate and contextually enriched results. By 

combining the capabilities of Neo4j and RAG models, GraphRAG enhances relevance with more 

domain context.

Let us build a simple graph to showcase this GraphRAG flow.

Building a knowledge graph for RAG integration
For this example, we will use limited data for demonstration purposes to build the graph, focusing 

on movies and their plots.



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications60

Python code example: Setting up a knowledge graph in Neo4j
By following along with the provided code example, you will learn how to set up a Neo4j database, 

define nodes and relationships, and perform basic queries using Cypher:

1.	 Set up the Neo4j database: Before running the code, ensure you have access to a Neo4j 

database. You can use either of the following:

•	 Neo4j Desktop: Install and run it locally (download Neo4j Desktop: https://

neo4j.com/download/)

•	 Neo4j AuraDB: This is a cloud-hosted option (learn more about AuraDB at 

https://neo4j.com/product/auradb/)

2.	 Start your database instance and note the connection credentials (e.g., URI, username, 

and password).

3.	 Install the necessary Python libraries: You will need the following Python libraries:

•	 Neo4j Python Driver: To interact with the database

•	 Pandas: For handling data structures and analysis

•	 Install these libraries using the following command:

pip install neo4j pandas

4.	 Connect to the database and set up the knowledge graph: Once your Neo4j database is 

running and the required Python libraries are installed, you can use the following Python 

script to set up a simple knowledge graph. In this example, we will create a graph for 

IMDb movies and their plots, with nodes representing movies and plots and relationships 

indicating which plot belongs to which movie.

Note

We will not be using any external dataset, rather, we will be using a hardcod-

ed data set to showcase the graph model and the GraphRAG flow. We will 

be exploring full-fledged data loading and the GraphRAG flow in Chapters 4 

and 5. This example is to showcase the GraphRAG flow aspects only.

https://neo4j.com/download/
https://neo4j.com/download/
https://neo4j.com/product/auradb/


Chapter 3 61

We will first build a simple graph. We will be using this simple graph to showcase where and 
how Neo4j fits in the GraphRAG flow:

1.	 Import the GraphDatabase library and define Neo4j connectivity and credentials:

from neo4j import GraphDatabase

uri = "bolt://localhost:7687"  # Replace with your Neo4j URI

username = "neo4j"             # Replace with your Neo4j username

password = "password"          # Replace with your Neo4j password

2.	 Let us create a few nodes:

def create_graph(tx):

    tx.run("CREATE (m:Movie {title: 'The Matrix', year: 1999})")

    ....

    # Create plot nodes

    tx.run("CREATE (p:Plot {description: 'A computer hacker learns 
from mysterious rebels about the true nature of his reality and his 
role in the war against its controllers.'})")

3.	 The next step is to create relationships:

    tx.run("""

    MATCH (m:Movie {title: 'The Matrix'}),

          (p:Plot {description: 'A computer hacker learns from 
mysterious rebels about the true nature of his reality and his role 
in the war against its controllers.'})

    CREATE (m)-[:HAS_PLOT]->(p)

    """)

4.	 If we visualize the data that we created, it would look as shown in Figure 3.12:

MATCH p=(:Movie)-[:HAS_PLOT]->()

RETURN p

LIMIT 5



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications62

Figure 3.12 — Sample graph showing movies and plots

5.	 We will now retrieve the data using a Cypher query:

def query_graph(tx):

    # Query to retrieve movies and their plots

    result = tx.run("""

    MATCH (m:Movie)-[:HAS_PLOT]->(p:Plot)

    RETURN m.title AS movie, m.year AS year, p.description AS plot

    """)

    # Print the results

    for record in result:

        print(f"Movie: {record['movie']} ({record['year']}) - Plot: 
{record['plot']}")

6.	 If we run this, we can see the output as shown here:

Movie: The Matrix (1999) - Plot: A computer hacker learns from 
mysterious rebels about the true nature of his reality and his role 
in the war against its controllers.

You can find the complete code at https://github.com/PacktPublishing/Building-Neo4j-

Powered-Applications-with-LLMs/blob/main/ch3/imdb_kg.py.

Now that we have built the basic graph, let us use it in the GraphRAG flow.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch3/imdb_kg.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch3/imdb_kg.py


Chapter 3 63

Integrating RAG with your Neo4j knowledge graph
To integrate RAG models with Neo4j, you need to configure the models to query the graph database. 

This typically involves setting up an API or a middleware layer that facilitates communication 

between the RAG models and Neo4j.

An example integration workflow is provided here:

1.	 User input: The user provides a prompt. In the following code example, the prompt is 

predefined in the script as an example ("The Matrix"). Users can modify this to test other 

movies or prompts:

prompt = "The Matrix"

2.	 Query generation: The prompt is processed, and a Cypher query is generated to retrieve 

relevant information from Neo4j. For example, the query might fetch the plot of the movie 

mentioned in the prompt:

"""

    Fetch relevant data (plots) for movies that match the user's 
prompt.

    """

    query = f"""

    MATCH (m:Movie)-[:HAS_PLOT]->(p:Plot)

    WHERE m.title CONTAINS '{prompt}'

    RETURN m.title AS title, m.year AS year, p.description AS plot

    """

3.	 Data retrieval: The Cypher query is executed, and the relevant data (e.g., the plot of The 

Matrix) is fetched from the knowledge graph:

    with driver.session() as session:

        result = session.run(query)

        records = [

            {

                "title": record["title"],

                "year": record["year"],

                "plot": record["plot"],

            }

            for record in result if record["plot"] is not None



Building a Foundational Understanding of Knowledge Graph for Intelligent Applications64

        ]

        print(f"Retrieved Records: {records}")  # Debugging line

        return records

4.	 RAG model processing: The retrieved data is combined with the original prompt and 

passed to the RAG model for further processing, allowing the model to generate a richer 

and context-aware response:

"""

    Combine the user's prompt with relevant data from the graph

    and generate a focused, non-repetitive response using the RAG 
model.

    """

    relevant_data = get_relevant_data(prompt)

    if not relevant_data:

        return "No relevant data found for the given prompt."

    # Combine dictionaries in relevant_data into a single string

    combined_input = (

      f"Provide detailed information about: {prompt}. " + 

      " ".join([

          f"{data['title']} ({data['year']}): {data['plot']}" 

          for data in relevant_data

    ])

    print(f"Combined Input: {combined_input}")

    if not combined_input.strip():

        return "No relevant data to process for this prompt."

    # Tokenize the combined input with truncation

    max_input_length = 512 - 50  # Leave space for output

    tokenized_input = tokenizer(combined_input, truncation=True, 

        max_length=max_input_length, return_tensors="pt")



Chapter 3 65

5.	 Response generation: The RAG model generates a response using the enriched prompt 

(e.g., “The plot of The Matrix is: ‘A computer hacker learns from mysterious rebels about 

the true nature of his reality and his role in the war against its controllers.’”):

# Generate response with tuned parameters

    outputs = model.generate(

        **tokenized_input,

        max_length=150,

        temperature=0.7,

        top_k=50,

        top_p=0.9,

        num_beams=5,

        no_repeat_ngram_size=3,

        early_stopping=True

    )

    # Decode the response with improved formatting

    response = tokenizer.decode(outputs[0], 

        skip_special_tokens=True, 

        clean_up_tokenization_spaces=True)

    return response

The following is a sample output:

Prompt: The Matrix

Response: : the matrix ( 1999 ) : a computer hacker learns from 
mysterious rebels about the true nature of his reality and his role 
in the war against its controllers.

The full version of the code in this chapter is placed at: https://github.com/PacktPublishing/

Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch3/neo4j_rag.py.

This code snippet works only on numpy versions < 2. If you are running numpy versions > 2, use the 

following commands on the terminal to create a clean virtual environment to isolate the issue:

python3 -m venv my_env

source my_env/bin/activate

pip install numpy==1.26.4 neo4j transformers torch faiss-cpu datasets

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch3/neo4j_rag.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch3/neo4j_rag.py


Building a Foundational Understanding of Knowledge Graph for Intelligent Applications66

With an understanding of how to build and query a basic knowledge graph, as well as how to 
integrate RAG models with Neo4j, you are now equipped with the foundational skills needed to 
create intelligent, context-aware applications. Next, we will take a look at a few approaches to 
enhance knowledge graphs. We will just be introducing these concepts here and will be exploring 
them in more detail upcoming chapters for building intelligent applications.

Enhancing knowledge graphs
We looked at building a graph and GraphRAG flow in the previous section. What we have looked 

at is a simple graph. There are a few approaches we can follow to make knowledge graphs more 

effective. Let us take a look at these approaches. We will be using these approaches to enhance 

our knowledge graphs in the upcoming chapters:

•	 Ontology development: An ontology can define the structure and the content of the graph. 

By having the ontology persisted in the graph, we might be able to explain the data and 

its connectivity in a more intuitive way. This ensures that the graph follows best practices 

and aligns with your domain-specific needs. Ontologies also help in maintaining uni-

formity across different datasets and in extending the graph over time. In Chapter 5, we 

would be enhancing the simple movie knowledge graph we created in this chapter   If you 

want to learn more about ontologies, you can take a look at https://neo4j.com/blog/

ontologies-in-neo4j-semantics-and-knowledge-graphs/.

•	  Graph Data Science (GDS): While data loaded as a graph can be effective as a knowledge 

graph, there are a few other approaches that can make this graph much more effective. 

For example, we can perform some link prediction or perform community detection to 

create additional relationships between nodes that are inferred based on the existing 

data in the graph. This can help us enhance the intelligence stored in the graph to give us 

better answers when querying. We will be leveraging the KNN similarity and community 

detection algorithms in Chapter 10 to enhance the graph to get more intelligence.

We have looked at a few approaches to enhance knowledge graphs. Let us now summarize our 

understanding of the concepts we have looked at.

https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/
https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/


Chapter 3 67

Summary
In this chapter, we explored the foundational aspects of building a knowledge graph for RAG 

integration using Neo4j. We began by understanding the importance of Neo4j knowledge graphs 

and their role in GraphRAG. We also set up a Neo4j database, created nodes and relationships, 

and performed queries to retrieve relevant information.

We also covered the integration workflow of RAG models with Neo4j. You are now ready to move 

on to Part 2, Integrating Haystack with Neo4j: A Practical Guide to Building AI-Powered Search. In the 

next part, we will build on the foundation laid in this chapter and explore how to integrate Hay-

stack with Neo4j to create powerful, AI-driven search capabilities. This next step will naturally 

extend your knowledge and skills, enabling you to develop sophisticated search applications that 

leverage the strengths of both Haystack and Neo4j.





Part 2
Integrating Haystack with 
Neo4j: A Practical Guide 
to Building AI-Powered 

Search
In the second part of the book, we move from concepts to hands-on implementation. We begin by 

modeling a real-world dataset—movies—into a well-structured Neo4j knowledge graph, preparing 

it for intelligent querying. Then, we integrate the Haystack framework with Neo4j to enable pow-

erful, hybrid search experiences that combine semantic understanding with graph-based context. 

The final chapter takes this further by exploring advanced capabilities such as multi-hop reasoning 

and context-aware search, showcasing how to unlock deeper insights from your knowledge graph.

This part of the book includes the following chapters:

•	 Chapter 4, Building Your Neo4j Graph with the Movies Dataset

•	 Chapter 5, Implementing Powerful Search Functionalities with Neo4j and Haystack

•	 Chapter 6, Exploring Advanced Knowledge Graph Capabilities



Stay tuned
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

 

https://packt.link/Q5UyU


4
Building Your Neo4j Graph 
with Movies Dataset

In the previous chapters, we learned how knowledge graphs have emerged as a transformative 

tool, offering a structured way to connect diverse data points, enabling smarter search, recom-

mendations, and inference capabilities across a wide range of domains.

Knowledge graphs excel at capturing complex relationships between entities, making them in-

dispensable for applications that require deep contextual understanding.

Neo4j, with its state-of-the-art graph database technology, stands out as a leading platform for 

building and managing knowledge graphs. As we saw in the previous chapter, unlike traditional 

relational databases, Neo4j is designed to handle highly connected data with ease, allowing for 

more intuitive querying and faster retrieval of insights. This makes it an ideal choice for devel-

opers and data scientists looking to transform raw, unstructured data into meaningful insights 

that can drive AI-powered applications.

In this chapter, we are going to cover the following main topics:

•	 Design considerations for a Neo4j graph for an efficient search

•	 Utilizing a movies dataset

•	 Building your movie knowledge graph with code examples

•	 Beyond the basics: advanced Cypher techniques for complex graph structures



Building Your Neo4j Graph with Movies Dataset72

Technical requirements
To successfully work through the exercises in this chapter, you will need the following tools:

•	 Neo4j AuraDB: You can use Neo4j AuraDB, the cloud version of Neo4j, available at https://

neo4j.com/aura.

•	 Cypher query language: Familiarity with the Cypher query language is essential, as we 

will be using Cypher extensively to create and query the graph. You can find out more 

about Cypher syntax in the Cypher query language documentation: https://neo4j.com/

docs/cypher/.

•	 Python: You will need Python 3.x installed on your system. Python is used for scripting and 

interacting with the Neo4j database. You can download Python from the official Python 

website: https://www.python.org/downloads/.

•	 Python libraries:

•	 Neo4j Driver for Python: Install the Neo4j Python driver to connect to the Neo4j 

database using Python. You can install it via pip:

pip install neo4j

•	 pandas: This library will be used for data manipulation and analysis. Install it 

via pip:

pip install pandas

•	 Integrated Development Environment (IDE): An IDE such as PyCharm, VS Code, or Ju-

pyter Notebook is recommended for writing and managing your Python code efficiently.

•	 Git and GitHub: Basic knowledge of Git is required for version control. You will also need 

a GitHub account to access the code repository for this chapter.

•	 Movies dataset: The Movie Database (TMDb) is required, available on Kaggle: https://

www.kaggle.com/datasets/rounakbanik/the-movies-dataset/.

•	 This dataset is a derivative of the Movie Lens Datasets (F. Maxwell Harper and Joseph 

A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on 

Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19.https://doi.org/10.1145/2827872).

•	 Some of the data files, such as credits.csv and ratings.csv, may not be available on 

GitHub due to storage constraints. However, you can access all the raw data files from a 

GCS bucket.

https://neo4j.com/aura
https://neo4j.com/aura
https://neo4j.com/docs/cypher/
https://neo4j.com/docs/cypher/
https://www.python.org/downloads/
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset/
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset/
https://doi.org/10.1145/2827872


Chapter 4 73

All the code for this chapter is available in the following GitHub repository: https://github.

com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch4.

The folder includes all the necessary files and scripts to help you build your Neo4j graph using 

the movies dataset and Cypher code.

Make sure to clone or download the repository to follow along with the code examples provided 

in this chapter.

The GitHub repository contains the path to GCS to access the raw data files.

Design considerations for a Neo4j graph for an 
efficient search
A well-designed Neo4j graph ensures that your search functionality is not only accurate but also 

efficient, enabling the quick retrieval of relevant information. The way data is organized in a graph 

directly impacts the performance and relevance of search results, making it crucial to understand 

the principles of effective graph modeling.

This section will delve into the importance of structuring your Neo4j graph correctly, how it in-

fluences the search process, and the key considerations you need to keep in mind while designing 

your graph model.

Considerations while defining node and relationship types
Recall from Chapter 3 that the foundation of any Neo4j graph is built upon nodes and relationships. 

Nodes represent entities, such as movies or people (e.g., actors or directors), while relationships 

define how these entities are connected. The types of nodes and relationships you choose play a 

crucial role in determining the effectiveness of your search queries.

In a movies dataset, nodes could traditionally represent distinct entities such as Movies, Actors, 

Directors, and Genres. Relationships would then define how these nodes interact, such as 

ACTED_IN, DIRECTED, or BELONGS_TO. However, there is an alternative and often more efficient 

approach—consolidating similar entities under a single node type.

Instead of creating separate nodes for Actors and Directors, you can create a single Person 

node. The characteristic of each Person node—whether they are an actor, a director, or both—is 

then defined by the type of relationship it has with the Movie node. For example, a Person node 

connected to a Movie node by an ACTED_IN relationship signifies that the person is an actor in 

that movie. Similarly, a DIRECTED relationship indicates that the person directed the movie. We 

will be creating the complete graph in upcoming sections.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch4
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch4


Building Your Neo4j Graph with Movies Dataset74

But first, let’s talk about why this approach is better. As we demonstrated in Chapter 3, this ap-

proach results in the following:

•	 Simplified data model: By using a single Person node to represent both actors and di-

rectors, your data model becomes more streamlined. This reduces the complexity of the 

graph and makes it easier to understand and manage.

•	 Enhanced query performance: With fewer node types, the graph database can more 

efficiently traverse relationships during queries. This is because the database engine has 

fewer distinct entities to differentiate between, leading to faster query execution times.

•	 Reduced redundancy: A unified Person node eliminates the need to duplicate information. 

In cases where a person is both an actor and a director, you avoid creating two separate 

nodes with overlapping data, thus minimizing redundancy, and saving storage space.

•	 Flexible relationship definitions: This approach allows for more flexible and granular 

relationship definitions. If a person has multiple roles in different movies (e.g., acting in 

one and directing another), the relationships can clearly distinguish these roles without 

needing to create multiple nodes.

•	 Easier maintenance and scalability: As your dataset grows, maintaining a simpler node 

structure becomes increasingly important. Adding new roles or relationships becomes 

more straightforward when you are working with a unified node type.

By carefully selecting and defining these types and relationships, you create a graph structure 

that mirrors real-world connections. This makes your search queries more intuitive, the results 

more meaningful, and the overall system more efficient.

Applying indexing and constraints on search performance
As your Neo4j graph grows, the importance of indexing and applying constraints becomes para-

mount. Indexes allow Neo4j to quickly locate the starting points for queries, drastically improving 

search performance, especially in large datasets. Constraints, however, ensure data integrity by 

preventing the creation of duplicate nodes or invalid relationships.

In the context of our movies dataset, where we use a unified Person node for both actors and 

directors, indexing becomes even more crucial. You might index nodes based on properties such 

as person_name or role, ensuring that searches for specific people or their roles in movies return 

results swiftly. For example, you could index the role property on the relationships (e.g., ACTED_IN 

or DIRECTED) to quickly filter people by their involvement in a particular movie.



Chapter 4 75

Constraints are also essential to maintaining the integrity of your graph. Let’s look at some of 

these constraints. The constraints should be carefully designed based on the nature of your dataset 

and application requirements—they are not a one-size-fits-all solution.

The following are some example statements that demonstrate how to create constraints and in-

dexes tailored for a movie dataset. These examples include common scenarios such as ensuring 

the uniqueness of person identifiers and optimizing search performance across node and rela-

tionship properties. Depending on your specific use case and data quality, you can adapt these 

patterns to enforce data integrity and improve query speed:

•	 Unique constraint on person_name (for a simplified use case). In many cases—such as 

our movie dataset, where we assume each person has a unique name—you might en-

force a unique constraint on the person_name property to ensure that each individual is 

represented by a single node, even if they take on multiple roles (e.g., actor and director) 

across different movies. Here is how you can do this:

CREATE CONSTRAINT unique_person_name IF NOT EXISTS

FOR (p:Person)

REQUIRE p.person_name IS UNIQUE;

This helps prevent the accidental creation of duplicate nodes and keeps your graph clean 

and efficient.

•	 Unique constraint on a more reliable ID (e.g., person_id). The uniqueness constraint in 

the previous scenarios is based on assumptions about your data. In real-world scenarios, 

it is common to encounter different individuals with the same name.

In such cases, you should use a more reliable identifier, such as a person_id value from an 

external source (e.g., Internet Movie Database (IMDb) or TMDb) to enforce uniqueness. 

The following Cypher code shows how to achieve this:

CREATE CONSTRAINT unique_person_id IF NOT EXISTS

FOR (p:Person)

REQUIRE p.person_id IS UNIQUE;



Building Your Neo4j Graph with Movies Dataset76

•	 Index on person_name (for faster lookup if uniqueness is not enforced). If you’re not enforc-

ing uniqueness but still frequently search for people by name, an index on the person_name 

property can significantly improve query performance. This allows Neo4j to quickly locate 

Person nodes based on their names:

CREATE INDEX person_name_index IF NOT EXISTS

FOR (p:Person)

ON (p.person_name);

•	 Index on the title property of Movie. Movies are often queried by title—especially in 

recommendation systems or search functionalities. Indexing the title property ensures 

quick lookups when users search for specific movies:

CREATE INDEX movie_title_index IF NOT EXISTS

FOR (m:Movie)

ON (m.title);

•	 Index on the role property in the ACTED_IN relationship. If your application requires 

filtering actors by their specific roles in movies (e.g., lead or cameo), indexing the role 

property on the ACTED_IN relationship helps speed up those queries by avoiding full scans 

of all relationships:

CREATE INDEX acted_in_role_index IF NOT EXISTS

FOR ()-[r:ACTED_IN]-()

ON (r.role);

Properly implemented indexing and constraints make your graph more resilient and your search 

processes faster and more reliable. This not only enhances the user experience but also reduces 

the computational load on your system, allowing for more scalable solutions.

In the next section, we will explore how to harness the power of open data by utilizing a movies 

dataset to build your graph.

Note

Neo4j only supports relationship property indexes in version 5.x and above.



Chapter 4 77

Utilizing a movies dataset
In this section, we will focus on utilizing TMDb, a comprehensive collection of metadata made 

available on Kaggle: https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset/. 

This dataset includes a wide range of information about movies, such as titles, genres, cast, crew, 

release dates, and ratings. With over 45,000 movies and detailed information about the people 

involved in their creation, this dataset provides a robust foundation for building a Neo4j graph 

that captures the complex relationships within the film industry.

You will use this dataset to model the data as a knowledge graph, learning about data integration 

in a practical context. You will learn how to source, prepare, and import this data into Neo4j.

When working with large datasets such as TMDb, it is crucial to ensure that the data is clean, 

consistent, and properly structured before integrating it into your Neo4j graph. Raw data, while 

rich in information, often contains inconsistencies, redundancies, and complex structures that 

can hinder the performance and accuracy of your knowledge graph. This is where data normal-

ization and cleaning come into play.

Why normalize and clean data?
Maintaining a clean and normalized dataset is crucial when building a Neo4j graph, as it directly 

impacts the quality and performance of your application. By normalizing and cleaning your data, 

you ensure consistency, improve efficiency, and create a scalable foundation for analysis. Here is 

why each of these steps matters:

•	 Consistency: Raw data can come with variations in how similar information is recorded. 

For example, movie genres might be listed in different formats or contain duplicates. Nor-

malizing data ensures that similar data points are recorded in a consistent format, making 

it easier to query and analyze. However, tackling these issues in real-world datasets can 

be challenging. Neo4j helps address problems such as entity linkage and deduplication 

through powerful features such as Cypher pattern matching, APOC procedures for merging 

nodes and cleaning up duplicates, and the Graph Data Science library, which includes 

node similarity algorithms to identify and consolidate related entities. These capabilities 

enable you to build a clean, reliable graph that reflects the true structure of your data.

•	 Efficiency: Normalizing data reduces redundancy, which can improve the efficiency of 

your Neo4j graph. By organizing data into a standardized format, you minimize the storage 

requirements and optimize the performance of your queries.

https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset/


Building Your Neo4j Graph with Movies Dataset78

•	 Accuracy: Cleaning data involves removing or correcting inaccurate records. This step is 

essential to ensure that the insights derived from your graph are based on accurate and 

reliable data.

•	 Scalability: A clean and normalized dataset is easier to scale. As your dataset grows, main-

taining a standardized structure ensures that the graph remains manageable and performs 

well under increasing loads.

Let us move on to cleaning and normalizing CSV files next.

Cleaning and normalizing the CSV files
Now, we will clean and normalize each CSV file included in TMDb. The available CSV files in our 

dataset are as follows:

•	 credits.csv: This file contains detailed information about the cast and crew for each 

movie in our dataset, presented as a stringified JSON object. For our purposes, we will 

focus specifically on extracting the relevant details related to characters, actors, directors, 

and producers:

# Load the CSV file

df = pd.read_csv('./raw_data/credits.csv')

# Function to extract relevant cast information

def extract_cast(cast_str):

    cast_list = ast.literal_eval(cast_str)

    return [

        {

            'actor_id': c['id'],

            'name': c['name'],

            'character': c['character'],

            'cast_id': c['cast_id']

        }

        for c in cast_list

    ]

# Function to extract relevant crew information

def extract_crew(crew_str):

    crew_list = ast.literal_eval(crew_str)

    relevant_jobs = ['Director', 'Producer']



Chapter 4 79

    return [

        {

            'crew_id': c['id'],

            'name': c['name'],

            'job': c['job']

        }

        for c in crew_list if c['job'] in relevant_jobs

    ]

# Apply the extraction functions to each row

df['cast'] = df['cast'].apply(extract_cast)

df['crew'] = df['crew'].apply(extract_crew)

# Explode the lists into separate rows

df_cast = df.explode('cast').dropna(subset=['cast'])

df_crew = df.explode('crew').dropna(subset=['crew'])

# Normalize the exploded data

df_cast_normalized = pd.json_normalize(df_cast['cast'])

df_crew_normalized = pd.json_normalize(df_crew['crew'])

# Reset index to avoid duplicate indices

df_cast_normalized = df_cast_normalized.reset_index(drop=True)

df_crew_normalized = df_crew_normalized.reset_index(drop=True)

# Drop duplicate rows if any

df_cast_normalized = df_cast_normalized.drop_duplicates()

df_crew_normalized = df_crew_normalized.drop_duplicates()

# Add the movie ID back to the normalized DataFrames

df_cast_normalized['tmdbId'] = df_cast.reset_index(drop=True)['id']

df_crew_normalized['tmdbId'] = df_crew.reset_index(drop=True)['id']

# Save the normalized data with the updated column names

df_cast_normalized.to_csv(

    os.path.join(output_dir, 'normalized_cast.csv'),

    index=False



Building Your Neo4j Graph with Movies Dataset80

)

df_crew_normalized.to_csv(

    os.path.join(output_dir, 'normalized_crew.csv'),

    index=False

)

# Display a sample of the output for verification

print("Sample of normalized cast data:")

print(df_cast_normalized.head())

print("Sample of normalized crew data:")

print(df_crew_normalized.head())

•	 keywords.csv: This file contains the movie plot keywords for each movie in the dataset. 

The keywords are essential for categorizing and identifying thematic elements within 

the movies, which can be used for various purposes, such as search, recommendation, 

and content analysis:

# Load the CSV file

df = pd.read_csv('./raw_data/keywords.csv')  # Update the path as 
necessary

# Function to extract and normalize keywords

def normalize_keywords(keyword_str):

    if pd.isna(keyword_str) or not isinstance(keyword_str, str):  # 
Check if the value is NaN or not a string

        return []

    # Convert the stringified JSON object into a list of 
dictionaries

    keyword_list = ast.literal_eval(keyword_str)

    # Extract the 'name' of each keyword and return them as a list

    return [kw['name'] for kw in keyword_list]

# Apply the normalization function to the 'keywords' column

df['keywords'] = df['keywords'].apply(normalize_keywords)

# Combine all keywords for each tmdbId into a single row



Chapter 4 81

df_keywords_aggregated = df.groupby('id', as_index=False).agg({

    'keywords': lambda x: ', '.join(sum(x, []))

})

# Rename the 'id' column to 'tmdbId'

df_keywords_aggregated.rename(

    columns={'id': 'tmdbId'}, inplace=True

)

# Save the aggregated DataFrame to a new CSV file

df_keywords_aggregated.to_csv(

    os.path.join(output_dir, 'normalized_keywords.csv'),

    index=False

)

# Display the first few rows of the aggregated DataFrame for 
verification

print(df_keywords_aggregated.head())

•	 links.csv: This file contains essential metadata that links each movie in the full Mov-

ieLens dataset to its corresponding entries in both TMDb and IMDB. This file serves as 

a crucial bridge for connecting the MovieLens dataset with external movie databases, 

enabling enriched data integration and further analysis. However, for this use case, we 

skipped processing the links.csv file, as it is not essential to our current analysis. Our 

focus will remain on other CSV files more directly relevant to our project’s objectives. The 

data contained in links.csv can still be useful for future projects that require integration 

with external databases, but it will not be utilized in this instance.

•	 links_small.csv: This file contains the TMDb and IMDb IDs for a small subset of 9,000 

movies from the full MovieLens dataset. While this file provides a streamlined version of 

the links for a smaller selection of movies, we will not be using this file, as we are already 

utilizing the full dataset from Kaggle, which includes all available movies. This file is 

typically useful for scenarios where a more manageable, smaller dataset is needed, but 

for our purposes, the full data set is preferred for comprehensive analysis and integration.

•	 movies_metadata.csv: This file is a comprehensive dataset containing detailed informa-

tion on 45,000 movies featured in the full MovieLens dataset. This file includes various 

features such as posters, backdrops, budgets, revenue, release dates, languages, production 

countries, and companies, among others. To efficiently organize and analyze this data, we 



Building Your Neo4j Graph with Movies Dataset82

will normalize the movies_metadata.csv file into multiple CSV files, each representing 

a relevant node in our dataset. These nodes include genres, production companies, pro-

duction countries, and spoken languages. By breaking down the data into these separate 

files, we can more easily manage and utilize the rich information contained within this 

dataset. Let’s see how.

1.	 Begin with necessary imports.

import pandas as pd

import ast

# Load the CSV file

df = pd.read_csv('./raw_data/movies_metadata.csv')  # Update 
the path as necessary

2.	 Extract and normalize genres, production companies, countries, and spoken lan-

guages. We will demonstrate this step for genres and production companies. The 

rest of the code is available on https://github.com/PacktPublishing/Building-
Neo4j-Powered-Applications-with-LLMs/tree/main/ch4.

# Function to extract and normalize genres

def extract_genres(genres_str):

    if pd.isna(genres_str) or not isinstance(

        genres_str, str

    ):

        return []

    genres_list = ast.literal_eval(genres_str)

    return [

        {'genre_id': int(g['id']), 'genre_name': g['name']}

        for g in genres_list

    ]

# Function to extract and normalize production companies

def extract_production_companies(companies_str):

    if pd.isna(companies_str) or not isinstance(

        companies_str, str

    ):

        return []

    companies_list = ast.literal_eval(companies_str)

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch4
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch4
https://github.com/PacktPublishing/Gen-AI-with-Neo4j-Knowledge-Graphs-Vector-Search/tree/main/ch4



Chapter 4 83

    if isinstance(companies_list, list):

        return [

            {'company_id': int(c['id']),

                'company_name': c['name']

            }

            for c in companies_list

        ]

    return []

3.	 Apply the extraction functions.

df['genres'] = df['genres'].apply(extract_genres)

df['production_companies'] = \

    df['production_companies'].apply(

        extract_production_companies

    )

df['production_countries'] = \

    df['production_countries'].apply(

        extract_production_countries

    )

df['spoken_languages'] = df['spoken_languages'].apply(

    extract_spoken_languages

)

# Explode lists into rows

df_genres = df.explode('genres').dropna(subset=['genres'])

df_companies = df.explode('production_companies').dropna(

    subset=['production_companies']

)

df_countries = df.explode('production_countries').dropna(

    subset=['production_countries']

)

df_languages = df.explode('spoken_languages').dropna(

    subset=['spoken_languages']

)

4.	 Normalize the exploded data. Let’s do this for genres.

df_genres_normalized = pd.json_normalize(df_genres['genres'])

# Reset index to avoid duplicate indices



Building Your Neo4j Graph with Movies Dataset84

df_genres_normalized = \

    df_genres_normalized.reset_index(drop=True)

# Add the movie ID back to the normalized DataFrames as 
'tmdbId'

df_genres_normalized['tmdbId'] = df_genres.reset_index(

    drop=True

)['id']

# Ensure that 'company_id' and similar fields are treated as 
integers

df_genres_normalized['genre_id'] = \

    df_genres_normalized['genre_id'].astype(int)

# Save the normalized data with the updated column names

df_genres_normalized.to_csv(

    os.path.join(output_dir, 'normalized_genres.csv'),

    index=False

)

5.	 Next up, extract the collection name.

# For the movies, including "Belongs to Collection" within 
the same CSV

# Extract only the "name" from "belongs_to_collection" and 
include additional fields

def extract_collection_name(collection_str):

    if isinstance(collection_str, str):

        try:

            collection_dict = \

                ast.literal_eval(collection_str)

            if isinstance(collection_dict, dict):

                return collection_dict.get('name', "None")

        except (ValueError, SyntaxError):  # Handle cases 
where string parsing fails

            return "None"

    return "None"

df_movies = df[

    [

        'id', 'original_title', 'adult', 'budget', 'imdb_id',



Chapter 4 85

        'original_language', 'revenue', 'tagline', 'title',

        'release_date', 'runtime', 'overview',

        'belongs_to_collection'

    ]

].copy()

df_movies['belongs_to_collection'] = \

    df_movies['belongs_to_collection'].apply(

        extract_collection_name

    )

df_movies['adult'] = df_movies['adult'].apply(

    lambda x: 1 if x == 'TRUE' else 0

)  # Convert 'adult' to integer

# Rename 'id' to 'tmdbId'

df_movies.rename(columns={'id': 'tmdbId'}, inplace=True)  # 
Rename 'id' to 'tmdbId'

# Save the movies to a separate CSV, including the extracted 
fields

df_movies.to_csv(

    './normalized_data/normalized_movies.csv', index=False

)

•	 ratings.csv: This file is the full MovieLens dataset, consisting of 26 million ratings and 

750,000 tag applications from 270,000 users on all 45,000 movies in this dataset. This 

comprehensive dataset provides detailed user interaction data, which we will use directly 

without the need for normalization. However, for this use case, we have decided to skip 

processing the ratings.csv file. While it provides extensive user interaction data, it is not 

essential to our current analysis and objectives. We are focusing on other CSV files that 

are more directly relevant to our project. The data in ratings.csv can still be valuable 

for future projects that require a deep dive into user ratings and interactions, but it will 

not be utilized in this instance.

•	 ratings_small.csv: This file is a smaller subset of the ratings.csv file, containing 

100,000 ratings from 700 users on 9,000 movies. We will be using ratings_small.csv 

instead of focusing on the full dataset provided in ratings.csv.



Building Your Neo4j Graph with Movies Dataset86

Through this process, we have learned how to transform raw, unstructured data into clean, nor-

malized datasets that are now primed for integration into your Neo4j graph. This preparation 

paves the way for constructing a robust, efficient, and effective AI-powered search and recom-

mendation system. In the next section, we will take these normalized CSV files and use Cypher 

code to build a knowledge graph, unlocking the full potential of our dataset.

Building your movie knowledge graph with code 
examples
In this section, we will import your normalized datasets into Neo4j and transform them into a 

fully functional knowledge graph.

Setting up your AuraDB free instance
To start building your knowledge graph with Neo4j, you will first need to set up an AuraDB Free 

instance. AuraDB Free is a cloud-hosted Neo4j database that allows you to quickly get started 

without worrying about local installations or infrastructure management.

Follow these steps to create your instance:

1.	 Visit https://console.neo4j.io.

2.	 Log in with your Google account or with email.

3.	 Click Create Free Instance.

4.	 While the instance is being provisioned, a pop-up window will appear showing the con-

nection credentials for your database.

Make sure to download and securely save the following details from the popup—these are es-

sential for connecting your application to Neo4j:

NEO4J_URI=neo4j+s://<your-instance-id>.databases.neo4j.io

NEO4J_USERNAME=neo4j

NEO4J_PASSWORD=<your-generated-password>

AURA_INSTANCEID=<your-instance-id>

AURA_INSTANCENAME=<your-instance-name>

With your AuraDB Free instance set up, you are now ready to import your normalized datasets 

and start building your knowledge graph using Cypher code. In the following section, we will 

guide you through importing data and constructing relationships within your graph.

https://console.neo4j.io


Chapter 4 87

Importing your data into AuraDB
Now that your AuraDB Free instance is up and running, it is time to import your normalized datasets 

and build your knowledge graph. In this section, we will walk through preparing your CSV files, setting 

up indexes and constraints, importing data, and creating relationships—all through a Python script:

1.	 Prepare your CSV files for import.

2.	 Ensure that the CSV files you generated (e.g., normalized_movies.csv, normalized_

genres.csv, etc.) are ready for import. These files should be clean, well structured, and 

hosted at accessible URLs. In this case, the graph_build.py script fetches files from 

public cloud storage (for example, https://storage.googleapis.com/movies-packt/

normalized_movies.csv), so you do not need to upload them manually anywhere.

3.	 Add indexes and constraints to optimize graph query retrieval.

Before loading data, it is critical to create unique constraints and indexes to ensure in-

tegrity and optimize query performance. The script includes Cypher commands to do 

the following:

•	 Ensure uniqueness on IDs such as tmdbId, movieId, and company_id

•	 Create indexes on properties such as actor_id, crew_id, and user_id

Here is how you can create indexes and constraints:

"CREATE CONSTRAINT unique_tmdb_id IF NOT EXISTS FOR (m:Movie) 
REQUIRE m.tmdbId IS UNIQUE;",

"CREATE CONSTRAINT unique_movie_id IF NOT EXISTS FOR (m:Movie) 
REQUIRE m.movieId IS UNIQUE;",

"CREATE CONSTRAINT unique_prod_id IF NOT EXISTS FOR 
(p:ProductionCompany) REQUIRE p.company_id IS UNIQUE;",

"CREATE CONSTRAINT unique_genre_id IF NOT EXISTS FOR (g:Genre) 
REQUIRE g.genre_id IS UNIQUE;",

"CREATE CONSTRAINT unique_lang_id IF NOT EXISTS FOR 
(l:SpokenLanguage) REQUIRE l.language_code IS UNIQUE;",

"CREATE CONSTRAINT unique_country_id IF NOT EXISTS FOR (c:Country) 
REQUIRE c.country_code IS UNIQUE;",

"CREATE INDEX actor_id IF NOT EXISTS FOR (p:Person) ON (p.actor_
id);",

"CREATE INDEX crew_id IF NOT EXISTS FOR (p:Person) ON (p.crew_id);",

"CREATE INDEX movieId IF NOT EXISTS FOR (m:Movie) ON (m.movieId);",

"CREATE INDEX user_id IF NOT EXISTS FOR (p:Person) ON (p.user_id);"

https://storage.googleapis.com/movies-packt/normalized_movies.csv
https://storage.googleapis.com/movies-packt/normalized_movies.csv


Building Your Neo4j Graph with Movies Dataset88

4.	 Import data and create nodes.

After adding constraints and indexes, the script loads the nodes from their respective CSVs:

•	 load_movies() adds all movie metadata

•	 load_genres(), load_production_companies(), load_countries(), and oth-

ers create related nodes, such as Genre, ProductionCompany, Country, and 
SpokenLanguage

•	 Person-related data is added using load_person_actors() and load_person_
crew()

Additional properties are added via load_links(), load_keywords(), and load_ratings()

Take the following example:

graph.load_movies('https://storage.googleapis.com/movies-packt/
normalized_movies.csv', movie_limit)

5.	 Create relationships.

As each loader function runs, it not only creates nodes but also establishes meaningful 

relationships:

•	 HAS_GENRE between Movie and Genre

•	 PRODUCED_BY between Movie and ProductionCompany

•	 HAS_LANGUAGE between Movie and SpokenLanguage, PRODUCED_IN between Movie 

and Country, ACTED_IN, DIRECTED, PRODUCED between Movie and Person, and RATED 

between Movie and User, among others.

6.	 Run the full script.

Before running the script, ensure you have the Neo4j Python driver installed. You can 

install it using pip.

 pip install neo4j

To run the entire graph-building process, simply execute the following:

python graph_build.py

This script performs the following, in order:

•	 Connects to your AuraDB instance using credentials from the .env file

•	 Cleans up the database



Chapter 4 89

•	 Adds indexes and constraints

•	 Loads all node data and relationships in bulk using hosted CSVs

Please refer to the complete script available here: https://github.com/PacktPublishing/

Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py.

Once complete, verify your import using Neo4j Browser:

MATCH (m:Movie)-[:HAS_GENRE]->(g:Genre)

RETURN m.title, g.genre_name

LIMIT 10;

Figure 4.1 illustrates a connected movie graph with over 90K nodes and 320K+ relationships. 

Nodes such as Movie, Genre, Person, and ProductionCompany are represented with distinct col-

ors, while relationships such as ACTED_IN, HAS_GENRE, and PRODUCED_BY showcase the web of 

interconnected metadata.

Figure 4.1 — Neo4j graph of movies dataset

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py


Building Your Neo4j Graph with Movies Dataset90

With your data successfully imported and your knowledge graph fully constructed using Python 

and Cypher, you are now ready to dive into building a GenAI-powered search application in the 

next chapter. In the following section, we will dive into advanced Cypher techniques that empower 

you to handle intricate relationships and derive deeper insights from your data.

Beyond the basics: advanced Cypher techniques for 
complex graph structures
As your knowledge graph grows in size and complexity, so do the demands on your querying 

and data management capabilities. Cypher, Neo4j’s powerful query language, offers a range of 

advanced features designed to handle complex graph structures and enable more sophisticated 

data analysis. In this section, we will explore these advanced Cypher techniques, including path 

patterns, variable-length relationships, subqueries, and graph algorithms. Understanding these 

techniques, will help you efficiently manage intricate relationships, perform deeper analyses, and 

unlock the full potential of your knowledge graph for advanced use cases.

Let us explore these key advanced Cypher techniques:

•	 Variable-length relationships:   Variable-length relationships in Cypher allow you to 

match paths of varying lengths between nodes. This is particularly useful when exploring 

hierarchical structures or networks with multiple degrees of separation. An example is 

finding all movies connected to a specific actor within three degrees of separation:

MATCH (a:Actor {name: 'Tom Hanks'})-[:ACTED_IN*1..3]-(m:Movie)

RETURN DISTINCT m.title;

•	 Here, *1..3 specifies that the relationship path can be between 1 and 3 steps long.

•	 Use cases: Variable-length relationships are ideal for scenarios such as social 

network analysis, where you want to find all people within a certain degree of 

connection, or in hierarchical datasets where you want to explore parent-child 

relationships across multiple levels.



Chapter 4 91

•	 Pattern matching with path patterns: You can create named path patterns as well as 

chain the paths in Neo4j.

•	 Defining path patterns: Cypher allows you to define named path patterns that 

can be reused throughout your queries. This makes your queries more readable 

and allows you to encapsulate complex relationships in a single pattern. Take the 

following example:

MATCH path = (a:Actor)-[:ACTED_IN]->(m:Movie)

RETURN path;

Here, path is a named path pattern that can be reused in subsequent operations 

or subqueries.

•	 Chaining path patterns: Cypher allows you to combine multiple path patterns 

to perform complex traversals within the graph. This is especially useful when 

trying to uncover indirect relationships or discover multiple paths that satisfy 

specific criteria.

An example is exploring collaborations in the movies dataset.

Let’s say we want to find movies where an actor has worked with a director they’ve 

previously collaborated with, possibly through another movie. This involves chain-

ing paths from an actor to a movie, then to a director, and seeing whether there’s 

another movie connecting the same actor-director pair:

MATCH (a:Actor {name: "Tom Hanks"})-[:ACTED_IN]->(m1:Movie)<-
[:DIRECTED_BY]-(d:Director) MATCH (a)-[:ACTED_IN]-
>(m2:Movie)<-[:DIRECTED_BY]-(d)

WHERE m1 <> m2

RETURN a.name AS actor, d.name AS director, collect(DISTINCT 
m1.title) + collect(DISTINCT m2.title) AS movies

This kind of pattern chaining is extremely helpful in identifying professional re-

lationships, recurring collaborations, or analyzing indirect influence in networks.



Building Your Neo4j Graph with Movies Dataset92

•	 Subqueries and procedural logic: You can use subqueries and procedures to process 

complex queries. Here is how:

•	 Using subqueries for modular queries: Subqueries in Cypher allow you to break 

down complex queries into modular, reusable components. This is particularly 

helpful when dealing with large graphs or when you need to perform multiple 

operations on the same dataset. Take the following example:

CALL {

  MATCH (m:Movie)-[:HAS_GENRE]->(g:Genre {name: 'Action'})

  RETURN m

}

MATCH (m)-[:DIRECTED_BY]->(d:Director)

RETURN d.name, COUNT(m) AS action_movies_directed;

Here, the subquery retrieves all action movies, and the outer query matches these 

movies to their directors.

•	 Procedural logic with CALL: The CALL clause in Cypher allows you to invoke 

procedures and use the results in further queries. This is essential for advanced 

data processing, such as running graph algorithms or invoking custom procedures.

We’ve already applied this in our own implementation in the graph_build.py 

file, specifically in the load_ratings() function. Here, we use the CALL { ... } 

IN TRANSACTIONS pattern to efficiently load large datasets by processing them in 

chunks of 50,000 rows:

LOAD CSV WITH HEADERS FROM $csvFile AS row

CALL (row) {

  MATCH (m:Movie {movieId: toInteger(row.movieId)})

  WITH m, row

  MERGE (p:Person {user_id: toInteger(row.userId)})

  ON CREATE SET p.role = 'user'

  MERGE (p)-[r:RATED]->(m)

  ON CREATE SET r.rating = toFloat(row.rating), r.timestamp = 
toInteger(row.timestamp)

} IN TRANSACTIONS OF 50000 ROWS;

This approach allows us to handle massive CSV imports while maintaining per-

formance and transactional integrity—just one of the many powerful use cases 

for CALL in real-world graph applications.



Chapter 4 93

•	 Working with nested queries: In complex graph structures, you might need to combine 

results from multiple queries. Cypher allows you to nest queries, passing results from 

one query into another, which is useful for filtering or refining results based on multiple 

criteria. Take the following example:

MATCH (m:Movie)

WHERE m.revenue > 100000000

CALL {

  WITH m

  MATCH (m)-[:HAS_GENRE]->(g:Genre)

  RETURN g.name AS genre

}

RETURN m.title, genre;

Here, the nested query refines the results by filtering movies based on revenue and then 

finding their associated genres.

These Cypher techniques empower you to tackle complex graph structures, enabling deeper 

insights and more sophisticated analyses. You can refer to https://neo4j.com/docs/cypher-

manual/current/appendix/tutorials/advanced-query-tuning/ to explore some of these tech-

niques further.

Summary
In this chapter, we worked on transforming raw, semi-structured data into clean, normalized 

datasets, ready for integration into our knowledge graph. We then explored the best practices in 

graph modeling, focusing on how to structure your nodes and relationships to enhance search 

efficiency and ensure your graph remains scalable and performant. Following this, we tackled other 

Cypher techniques, equipping you with the skills to handle variable-length relationships, pattern 

matching, subqueries, and graph algorithms. You are now well prepared to build a knowledge 

graph-driven search that can handle even the most intricate data relationships.

In the next chapter, we will take a step further by exploring how to integrate Haystack into Neo4j. 

This practical guide will show you how to build powerful search functionalities within your 

knowledge graph, allowing you to leverage the full potential of both Neo4j and Haystack for 

intelligent search solutions.

https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/advanced-query-tuning/
https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/advanced-query-tuning/




5
Implementing Powerful Search 
Functionalities with Neo4j and 
Haystack

In this chapter, we embark on a journey to integrate Haystack with Neo4j, combining the ca-

pabilities of LLMs and graph databases to build an AI-powered search system. Haystack is an 

open-source framework that enables developers to create AI-powered applications by leveraging 

modern NLP techniques, machine learning models, and graph-based data. For our intelligent 

search, Haystack will serve as a cohesive platform for orchestrating LLMs, search engines, and 

databases, delivering highly contextualized and relevant search results.

Building upon the work from the previous chapter—where we cleaned and structured our Neo4j 

data—we will start by generating embeddings using OpenAI’s GPT models. These embeddings 

will enrich the graph, making it more powerful and capable of handling nuanced, context-aware 

search queries. Haystack will serve as the bridge between OpenAI’s models and the Neo4j graph 

database, allowing us to combine the strengths of both.

In this chapter, you will learn how to set up and configure Haystack for seamless integration with 

Neo4j. We will walk you through building powerful search functionalities and finally deploying 

this fully functional search system, using Gradio on Hugging Face Spaces.



Implementing Powerful Search Functionalities with Neo4j and Haystack96

In this chapter, we are going to cover the following main topics:

•	 Generating embeddings with Haystack to enhance your Neo4j graph

•	 Connecting Haystack to Neo4j for advanced vector search

•	 Building powerful search experiences

•	 Fine-tuning your Haystack integration

Technical requirements
To successfully implement the integration of Haystack and Neo4j, and to build an AI-powered 

search system, you will need to ensure that your environment is properly set up. Here is a list of 

the technical requirements for this chapter:

•	 Python: You will need Python 3.11 installed on your system. Python is used for scripting 

and interacting with the Neo4j database. You can download Python from the official 

Python website: https://www.python.org/downloads/.

•	 Neo4j AuraDB or local Neo4j instance: You will need access to a Neo4j database to 

store and query your graph data. This can be either a locally installed Neo4j instance 

or a cloud-hosted Neo4j AuraDB instance. If you are following along from the previ-

ous chapter, where we talked about the graph_build.py script (https://github.com/
PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/

ch4/graph_build.py), you can continue using the same Neo4j instance that was set up 

and populated with data. This ensures continuity and allows you to build on top of the 

structured data that has already been imported.

•	 Cypher query language: Familiarity with the Cypher query language is essential, as we 

will be using Cypher extensively to create and query the graph. You can find out more 

about Cypher syntax in the Cypher query language documentation: https://neo4j.com/

docs/cypher/.

•	 Neo4j Python driver: Install the Neo4j Python driver to connect to the Neo4j database 

using Python. You can install it via pip:

pip install neo4j

•	 Haystack: We will be using Haystack v2.5.0.

Install Haystack using pip:

pip install haystack-ai

https://www.python.org/downloads/
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch4/graph_build.py
https://neo4j.com/docs/cypher/
https://neo4j.com/docs/cypher/


Chapter 5 97

•	 OpenAI API key: To successfully generate embeddings using GPT-based models, you will 

need an OpenAI API key.

Obtain the API key by signing up for an account at OpenAI (https://platform.openai.

com/signup) if you do not have one. 

Once you are logged in, navigate to the API keys section (https://platform.openai.com/

api-keys) in your OpenAI dashboard and generate a new API key.

You also need to install the OpenAI package using pip. Run the following command in 

your terminal:

pip install openai

•	 Gradio: Gradio will be used to create a user-friendly chatbot interface. Install Gradio 

using pip:

pip install gradio

•	 Hugging Face account: To host your chatbot on Hugging Face Spaces, you will need 

a Hugging Face account. If you do not have one, sign up on the Hugging Face website: 

https://huggingface.co/.

•	 Google Cloud Storage (optional): If you are storing your CSV files on Google Cloud Storage, 

ensure that your file paths are properly configured in the script.

•	 python-dotenv package: Make sure to install the python-dotenv package to manage 

environment variables in your project:

pip install python-dotenv

All the code for this chapter is available in the following GitHub repository: https://github.com/

PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs.

Note

A free-tier API key will not work for most use cases in this project. You will 

need an active paid OpenAI subscription to access the necessary endpoints 

and usage limits.

https://platform.openai.com/signup
https://platform.openai.com/signup
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://huggingface.co/
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs


Implementing Powerful Search Functionalities with Neo4j and Haystack98

Inside this repository, navigate to the folder named ch6 to access the code examples and resources 

related to this chapter. This folder contains all the necessary scripts, files, and configurations re-

quired to implement the Neo4j and Haystack integration, as well as build the AI-powered search 

system using the movies dataset.

Make sure to clone or download the repository so you can follow along with the code examples 

throughout this chapter.

Generating embeddings with Haystack to enhance your 
Neo4j graph
In this section, we will focus on generating embeddings for the movie plots that we added to our 

Neo4j graph in the previous chapter. Embeddings are a critical part of modern search systems, 

as they convert text into high-dimensional vectors that enable similarity search. This enables the 

search engine to understand the contextual relationships between words and phrases, improving 

the accuracy and relevance of search results.

We will integrate Haystack with OpenAI’s GPT-based models to generate these embeddings 

and store them in your Neo4j graph. This will enable a more accurate and context-aware search 

functionality.

Initializing Haystack and OpenAI for embeddings
Before generating embeddings, you will need to ensure that Haystack is set up and integrated 

with OpenAI’s API to retrieve embeddings from their GPT-based models. Follow these steps to 

set up Haystack:

1.	 Install the required libraries (if you have not already) by using the following command:

pip install haystack haystack-ai openai neo4j-haystack

2.	 Next, configure your OpenAI API key and ensure that it is set up in your .env file:

makefile

OPENAI_API_KEY=your_openai_api_key_here

3.	 Initialize Haystack with OpenAI embeddings by creating a Python script that initializes 

Haystack and connects to OpenAI to generate the embeddings:

# Initialize Haystack with OpenAI for text embeddings

def initialize_haystack():



Chapter 5 99

    # Initialize document store (In-memory for now, but you can 
configure other stores)

    document_store = InMemoryDocumentStore()

    # Initialize OpenAITextEmbedder to generate text embeddings

    embedder = OpenAITextEmbedder(

        api_key=Secret.from_env_var("OPENAI_API_KEY"),

        model="text-embedding-ada-002"

    )

    return embedder

This configuration initializes Haystack with an in-memory document store and sets up the re-

triever using OpenAI embeddings.

Generating embeddings for movie plots
Next, we will generate embeddings for the movie plots stored in the Neo4j graph. The goal is to 

retrieve the plot descriptions, generate embeddings for them, and link these embeddings back 

to the respective movie nodes:

1.	 Query movie plots from Neo4j: First, you will need to query the movie plots from Neo4j. 

Use the following Cypher query to retrieve movie titles and plot summaries:

# Retrieve movie plots and titles from Neo4j

def retrieve_movie_plots():

    # The query retrieves the "title", "overview", and "tmdbId" 
properties of each Movie node

    query = """

    MATCH (m:Movie)

    WHERE m.embedding IS NULL

    RETURN m.tmdbId AS tmdbId, m.title AS title, m.overview AS 
overview

    """

    with driver.session() as session:

        results = session.run(query)

        # Each movie's title, plot (overview), and ID are retrieved 
and stored in the movies list

        movies = [

            {

                "tmdbId": row["tmdbId"],



Implementing Powerful Search Functionalities with Neo4j and Haystack100

                "title": row["title"],

                "overview": row["overview"]

            }

            for row in results

        ]

    return movies

This will return the tmdbId value and overview (that is, the plot summary) for each movie 

in the graph.

2.	 Generate embeddings using OpenAI and Haystack: Once the plot summaries are retrieved, 

generate embeddings using Haystack’s OpenAITextEmbedder:

#Parallel embedding generation with ThreadPoolExecutor

def generate_and_store_embeddings(embedder, movies, max_workers=10): 

    results_to_store = []

    def process_movie(movie):

        title = movie.get("title", "Unknown Title")

        overview = str(movie.get("overview", "")).strip()

        tmdbId = movie.get("tmdbId")

        if not overview:

            print(f"Skipping {title} — No overview available.")

            return None

        try:

            print(f"Generating embedding for: {title}")

            embedding_result = embedder.run(overview)

            embedding = embedding_result.get("embedding")

            if embedding:

                return (tmdbId, embedding)

            else:

                print(f"No embedding generated for: {title}")

        except Exception as e:

            print(f"Error processing {title}: {e}")

        return None



Chapter 5 101

3.	 Store embeddings in Neo4j: With the embeddings generated, the next step is to store 

them in your Neo4j graph. Each movie node will be updated with a property that stores 

its embedding:

# Store the embeddings back in Neo4j

def store_embedding_in_neo4j(tmdbId, embedding):

    query = """

    MATCH (m:Movie {tmdbId: $tmdbId})

    SET m.embedding = $embedding

    """

    with driver.session() as session:

        session.run(query, tmdbId=tmdbId, embedding=embedding)

    print(f"Stored embedding for TMDB ID: {tmdbId}")

This will store the embeddings as a property called embedding in each Movie node in the 

Neo4j graph.

4.	 Verify the embedding storage in Neo4j: Once the embeddings are stored, you can verify 

their presence in Neo4j by querying a few nodes to check the embedding property:

# Verify embeddings stored in Neo4j

def verify_embeddings():

    query = """

    MATCH (m:Movie)

    WHERE exists(m.embedding)

    RETURN m.title, m.embedding

    LIMIT 10

    """

    with driver.session() as session:

        results = session.run(query)

        for record in results:

            title = record["title"]

            embedding = np.array(record["embedding"])[:5]

            print(f" {title}: {embedding}...")

This query will return the titles and embeddings for a few movies, allowing you to verify that the 

embeddings were successfully stored.



Implementing Powerful Search Functionalities with Neo4j and Haystack102

We have now enriched our graph with these embeddings and thus added similarity search, which 

will allow us to perform more context-aware and intelligent queries. This step is crucial for en-

hancing the search experience and enabling advanced retrieval operations based on the meaning 

of text, rather than simple keyword matching.

Now that our Neo4j graph has been enriched with vector embeddings, the next step is to connect 

Haystack to Neo4j for advanced vector search. In the upcoming section, we will focus on how to 

use these embeddings to perform efficient and accurate vector searches within Neo4j, enabling 

us to retrieve movies or nodes based on their vector similarity.

Connecting Haystack to Neo4j for advanced vector 
search
With the movie embeddings now stored in Neo4j, we need to configure a vector index on the 

embedding property, which will allow us to efficiently search for movies based on their vector 

similarity. By creating a vector index in Neo4j, we enable rapid retrieval of nodes that are close 

in the high-dimensional embedding space, making it possible to perform sophisticated queries, 

such as finding movies with similar plot summaries.

Once the vector index has been created, it will be integrated with Haystack to perform vector-based 

retrieval from Neo4j. This search will be based on vector similarity mechanisms such as cosine 

similarity.

Creating a vector search index in Neo4j
You will first want to drop any existing vector index on the embedding property (if one exists) and 

then create a new one for performing vector searches. This is how you can do that using Cypher 

queries in your Python script:

def create_or_reset_vector_index():

    with driver.session() as session:

        try:

            # Drop the existing vector index if it exists

 Note

These are just the snippets of the code. The full version is available in the GitHub 

repository: https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch5/generate_embeddings.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/generate_embeddings.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/generate_embeddings.py


Chapter 5 103

            session.run("DROP INDEX overview_embeddings IF EXISTS ")

            print("Old index dropped")

        except:

            print("No index to drop")

        # Create a new vector index on the embedding property

        print("Creating new vector index")

        query_index = """

        CREATE VECTOR INDEX overview_embeddings IF NOT EXISTS

        FOR (m:Movie) ON (m.embedding)

        OPTIONS {indexConfig: {

            `vector.dimensions`: 1536,

            `vector.similarity_function`: 'cosine'}}

        """

        session.run(query_index)

        print("Vector index created successfully")

Performing similarity search with Haystack and a Neo4j 
vector index
After creating a vector index on the Neo4j graph, you can leverage Haystack to perform similarity 

search queries based on movie plot embeddings. This approach allows you to compare the simi-

larity between a given movie plot or any text query and existing movie overviews, returning the 

most relevant results based on their embeddings. In this example, we use the OpenAITextEmbedder 

model from the Haystack library to convert the text query into an embedding and then use it to 

search the Neo4j graph for movies with similar plots.

This is how you generate the query embedding and perform the similarity search:

    text_embedder = OpenAITextEmbedder(

        api_key=Secret.from_env_var("OPENAI_API_KEY"),

        model="text-embedding-ada-002"

    )

    # Step 1: Create embedding for the query

    query_embedding = text_embedder.run(query).get("embedding")

  

    if query_embedding is None:

        print("Query embedding not created successfully.")



Implementing Powerful Search Functionalities with Neo4j and Haystack104

        return

  

    print("Query embedding created successfully.")

Running a vector search query with Haystack and Neo4j
Once the vector index has been created and the embeddings are stored in Neo4j, you can perform 

a vector-based search by passing a query or a sample movie plot. The system will generate an 

embedding for the query, compare it with the embeddings stored in Neo4j, and return the most 

related results.

Here is an example of a vector search using Haystack that displays the most similar movie plots 

without Cypher:

# Step 2: Search for similar documents using the query embedding

    similar_documents = document_store.query_by_embedding(

        query_embedding, top_k=3

    )

    if not similar_documents:

        print("No similar documents found.")

        return

    print(f"Found {len(similar_documents)} similar documents.")

    print("\n\n")

    # Step 3: Displaying results

    for doc in similar_documents:

        title = doc.meta.get("title", "N/A")

        overview = doc.meta.get("overview", "N/A")

        score = doc.score

        print(

             f"Title: {title}\nOverview: {overview}\n"

             f"Score: {score:.2f}\n{'-'*40}"

        )

    print("\n\n")

Now, we will integrate Neo4j Cypher queries with Haystack to run a vector search, enabling the 

retrieval of similar movie plots.



Chapter 5 105

Running a vector search query using Cypher and Haystack
To run a vector search, we will use Cypher’s graph querying capabilities while performing simi-

larity searches using vector embeddings generated by OpenAITextEmbedder.

Unlike directly querying the vector index using Haystack, this approach combines Cypher’s flex-

ibility to return more complex data, such as movie metadata (e.g., cast and genres), along with 

embeddings, while still maintaining the efficiency of vector similarity search.

Here are the steps involved in this process:

1.	 Embed the query using OpenAITextEmbedder: Convert the user’s text query (e.g., a 

movie plot) into a high-dimensional vector embedding.

2.	 Search using Neo4j and Cypher: Use Cypher to retrieve similar movies by comparing the 

query embedding with movie plot embeddings stored in Neo4j’s vector index.

3.	 Return enriched data: Fetch additional movie information, such as the title, overview, 

cast, genres, and score (similarity), for each result.

This is how you implement vector search:

1.	 Define the Cypher query: We start by defining a Cypher query that searches the Neo4j 

vector index (overview_embeddings) to retrieve the top_k most similar movies based on 

the cosine similarity between the query embedding and movie embeddings:

cypher_query = """

    CALL db.index.vector.queryNodes("overview_embeddings", $top_k, 
$query_embedding)

    YIELD node AS movie, score

    MATCH (movie:Movie)

    RETURN movie.title AS title, movie.overview AS overview, score

"""

2.	 Generate the query embedding: Using OpenAITextEmbedder, we convert the user’s input 

query (e.g., a movie plot) into an embedding. This embedding will be passed to the Neo4j 

vector index for comparison with the stored movie embeddings:

text_embedder = OpenAITextEmbedder(

    api_key= Secret.from_env_var("OPENAI_API_KEY"),

    model="text-embedding-ada-002"

)



Implementing Powerful Search Functionalities with Neo4j and Haystack106

3.	 Run the vector search using the Haystack pipeline: We set up the Haystack pipeline to 

manage the Haystack components:

•	 query_embedder generates embeddings from the user query

•	 retriever runs the Cypher query on Neo4j using the query embedding and returns 

the most similar movies:

retriever = Neo4jDynamicDocumentRetriever(

    client_config=client_config,

    runtime_parameters=["query_embedding"],

    compose_doc_from_result=True,

    verify_connectivity=True,

)

pipeline = Pipeline()

pipeline.add_component("query_embedder", text_embedder)

pipeline.add_component("retriever", retriever)

pipeline.connect(

    "query_embedder.embedding", "retriever.query_embedding"

)

result = pipeline.run(

    {

        "query_embedder": {"text": query},

        "retriever": {

            "query": cypher_query,

            "parameters": {

                "index": "overview_embeddings", "top_k": 3

            },

        },

    }

)

4.	 Display the results: Once the search is complete, we extract the results from the Neo4j 

graph and display the movie title, overview, and similarity score:

# Extracting documents from the retriever results

documents = result["retriever"]["documents"]



Chapter 5 107

for doc in documents:

    # Extract title and overview from document metadata

    title = doc.meta.get("title", "N/A")

    overview = doc.meta.get("overview", "N/A")

    # Extract score from the document

    score = getattr(doc, "score", None)

    score_display = f"{score:.2f}" if score is not None else "N/A"

    # Print the title, overview, and score (or N/A for missing 
score)

    print(

         f"Title: {title}\nOverview: {overview}\n"

         f"Score: {score_display}\n{'-'*40}\n"

    )

Using Cypher and Haystack offers several benefits, including the following:

•	 Cypher’s flexibility: By combining Cypher with Haystack, we can not only query the 

embeddings but also retrieve additional graph-based information such as cast, genres, 

and relationships between entities.

•	 Enriched results: In addition to retrieving the most similar movies, you can easily extend 

the query to fetch related metadata (e.g., actors, genres, ratings) or refine the search with 

additional filtering conditions (e.g., release year, genre).

•	 Optimized for large graphs: Neo4j’s vector index allows efficient querying of large data-

sets with complex relationships, while Haystack’s embedding models provide an accurate 

understanding of movie plots.

Let’s take a look at an example use case next.

Example use case
Consider finding movies with plots such as A hero must save the world from destruction. By using 

the pipeline we just created, you can retrieve relevant results:

Title: The Matrix

Overview: A computer hacker learns from mysterious rebels about the true 
nature of his reality and his role in the war against its controllers.

Score: 0.98

----------------------------------------



Implementing Powerful Search Functionalities with Neo4j and Haystack108

Title: Inception

Overview: A thief who steals corporate secrets through dream-sharing 
technology is given the inverse task of planting an idea into the mind of 
a CEO.

Score: 0.96

----------------------------------------

Title: The Dark Knight

Overview: Batman raises the stakes in his war on crime, with the help of 
Lieutenant Jim Gordon and District Attorney Harvey Dent.

Score: 0.94

----------------------------------------

This pipeline combines the best of both worlds—similarity search through vector embeddings and 

the rich data capabilities of graph querying with Cypher—allowing powerful, flexible searches 

over large datasets such as movies.

We have now connected Haystack to Neo4j and enabled advanced vector search functionality. 

With the vector index in place, Neo4j can now efficiently search for similar movie nodes based 

on their embeddings similarity. Haystack’s integration allows you to seamlessly perform these 

searches using Neo4jDynamicDocumentRetriever. This retriever performs a search for similar 

items in your graph by leveraging vector embeddings and Neo4j’s graph capabilities.

In the next section, we will explore how to build a search-driven chatbot that leverages the power 

of Haystack and Neo4j to deliver rich, context-aware responses. Using Gradio, we will create an 

intuitive chatbot interface that can interact with users and perform advanced searches through 

natural language queries. This will bring together the strengths of LLMs, vector search, and Neo4j 

to create a user-friendly, AI-powered search experience.

 Note

These are just the snippets of the code. The full version is available in the GitHub 

repository: https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch5/vector_search.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/vector_search.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/vector_search.py


Chapter 5 109

Building a search-driven chatbot with Gradio and 
Haystack
In this section, we will integrate Gradio to build an interactive chatbot interface powered by Haystack 

and Neo4j. Gradio makes it easy to create a web-based interface for interacting with your chatbot. 

The chatbot will allow users to input queries, which will then trigger a vector-based search of movie 

embeddings stored in Neo4j. The chatbot will return detailed responses, including the movie titles, 

overviews, and similarity scores, providing an informative and user-friendly experience.

Setting up a Gradio interface
If you have not installed Gradio yet, do so by running the following:

pip install gradio

Next, we will set up a basic Gradio interface that triggers our search pipeline and displays the 

results:

import gradio as gr

# Define the Gradio chatbot interface

def chatbot(user_input):

    return perform_vector_search_cypher(user_input)

# Create Gradio interface

chat_interface = gr.Interface(

    fn=chatbot,

    inputs=gr.Textbox(

        placeholder="What kind of movie would you like to watch?",

        lines=3,

        label="Your movie preference"

    ),

    outputs=gr.Textbox(

        label="Recommendations",

        lines=12

Note

The script in this chapter works fine with Gradio v 5.23.1.



Implementing Powerful Search Functionalities with Neo4j and Haystack110

    ),

    title="AI Movie Recommendation System",

    description="Ask me about movies! I can recommend movies based on your 
preferences.",

    examples=[

        ["I want to watch a sci-fi movie with time travel"],

        ["Recommend me a romantic comedy with a happy ending"],

        ["I'm in the mood for something with superheroes but not too 
serious"],

        ["I want a thriller that keeps me on the edge of my seat"],

        ["Show me movies about artificial intelligence taking over the 
world"]

    ],

    flagging_mode="never"

This interface allows users to input text queries, and the chatbot will use the perform_vector_

search_cypher() function to search for the most relevant movies.

Integrating with Haystack and Neo4j
To power the chatbot, we will connect it to Haystack’s embedding generation and Neo4j’s vector 

search capabilities. We will be using OpenAITextEmbedder to generate the embeddings for both 

the queries and the movie plots stored in Neo4j. The movie embeddings are stored in a vector 

index inside Neo4j, which we query for the most similar movies.

This is how to integrate our chatbot with the previous Haystack setup:

# Conversational chatbot handler using Cypher-powered search and Haystack

def perform_vector_search(query):

    print("MESSAGES RECEIVED:", user_input)

    cypher_query = """

        CALL db.index.vector.queryNodes("overview_embeddings", $top_k, 
$query_embedding)

        YIELD node AS movie, score

        MATCH (movie:Movie)

        RETURN movie.title AS title, movie.overview AS overview, score

    """

    # Embedder



Chapter 5 111

    embedder = OpenAITextEmbedder(

        api_key=Secret.from_env_var("OPENAI_API_KEY"),

        model="text-embedding-ada-002"

    )

    # Retriever

    retriever = Neo4jDynamicDocumentRetriever(

        client_config=client_config,

        runtime_parameters=["query_embedding"],

        compose_doc_from_result=True,

        verify_connectivity=True,

    )

    # Pipeline

    pipeline = Pipeline()

    pipeline.add_component("query_embedder", embedder)

    pipeline.add_component("retriever", retriever)

    pipeline.connect(

        "query_embedder.embedding", "retriever.query_embedding"

    )

Connecting Gradio to the full pipeline
Now, connect this Gradio chatbot with the Haystack and Neo4j pipeline you have already set up. 

The Gradio interface will call the perform_vector_search_cypher() function, which in turn 

utilizes Neo4jDynamicDocumentRetriever to search for similar movies based on the user’s query.

Update the main() function to initialize the chatbot:

# Main function to orchestrate the entire process

def main():

    # Step 1: Create or reset vector index in Neo4j AuraDB

    create_or_reset_vector_index()

    # Step 2: Launch Gradio chatbot interface

    chat_interface.launch()

if __name__ == "__main__":

    main()



Implementing Powerful Search Functionalities with Neo4j and Haystack112

Running the chatbot
To run the chatbot, simply execute your Python script. The Gradio interface will be launched in 

your browser, allowing you to interact with the chatbot in real time:

python search_chatbot.py

A Gradio interface will launch in your browser, allowing you to interact with the chatbot in real 

time. You can enter queries such as this:

"Tell me about a hero who saves the world."

The chatbot will return movie plots that are similar to this query based on the vector search.

As we come to the end of this section, we have built a fully functional search-driven chatbot using 

Gradio, Haystack, and Neo4j. The chatbot leverages the embeddings stored in Neo4j to perform 

advanced vector-based searches, returning contextually relevant results to the user in the form 

of retrieving meaningful movie titles and actors from Neo4j in response to user queries.

However, this is just the beginning. In the next section, we will dive deeper into fine-tuning your 

Haystack integration and also explore advanced techniques such as optimizing search performance, 

adjusting retrieval models, and refining the chatbot’s responses to create an even more seamless 

and efficient search-driven experience.

Fine-tuning your Haystack integration
It is now time to explore how to fine-tune this integration for improved performance and user 

experience. While the current setup provides rich, contextually aware responses, there are sev-

eral advanced techniques, you can implement to optimize the search process, improve retrieval 

accuracy, and make the chatbot’s interactions more seamless.

In this section, we will focus on adjusting key components of Haystack, including experimenting 

with different embedding models, optimizing Neo4j queries for faster results, and improving how 

the chatbot displays its responses. These enhancements will help you scale your chatbot to handle 

more complex queries, improve response times, and deliver even more relevant search results.

Note

These are just the snippets of the code. The full version is available in the GitHub 

repository: https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch5/search_chatbot.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/search_chatbot.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch5/search_chatbot.py


Chapter 5 113

Experimenting with different embedding models
Currently, we are using OpenAI’s text-embedding-ada-002 model to generate embeddings. While 

this model has served as a reliable and performant choice across a wide range of tasks since 

its release, it’s worth noting that OpenAI has recently introduced new models—such as text-

embedding-3-small and text-embedding-3-large—that offer significant improvements in both 

performance and cost-efficiency. For example, text-embedding-3-small achieves better results in 

multilingual and English-language tasks, while also being up to five times more cost-effective than 

text-embedding-ada-002. Although we have not switched models in this project for consistency, 

readers who are implementing similar pipelines may consider using text-embedding-3-small 

to improve efficiency without compromising performance—especially if embedding generation 

is a frequent or large-scale operation.

However, Haystack supports various other models, and you can experiment with different ones 

to see which provides the most accurate or relevant results for your specific use case. For instance, 

you could switch to a more sophisticated OpenAI model with higher dimensions or try another 

embedding service supported by Haystack.

This is how you can easily switch to a different model:

embedder = OpenAITextEmbedder(

    api_key=Secret.from_env_var("OPENAI_API_KEY"),

    model="text-embedding-babbage-001"  # Experiment with different models

)

You can also explore other models from OpenAI or even integrate different embedding services 

to see which performs best for your movie chatbot.

Optimizing Neo4j for faster queries
While Neo4j is already efficient at handling graph-based queries, there are several optimizations 

you can apply, especially for large datasets. You can index additional properties to improve query 

performance.

Indexing additional properties
In addition to the vector index on the embedding property, you can index other frequently que-

ried properties, such as title or tmdbId, to speed up retrieval. This will ensure that whenever 

you filter or retrieve movies based on these properties, the search is quicker and more efficient:

def create_additional_indexes():

    with driver.session() as session:



Implementing Powerful Search Functionalities with Neo4j and Haystack114

        session.run("CREATE INDEX IF NOT EXISTS movie_title_index FOR 
(m:Movie) ON (m.title)")

        session.run("CREATE INDEX IF NOT EXISTS movie_tmdbId_index FOR 
(m:Movie) ON (m.tmdbId)")

        print("Additional indexes created successfully")

By indexing these properties, you can optimize lookups when the search is not solely based on 

embeddings, such as when filtering by title or retrieving a specific movie.

To continuously improve the chatbot’s search experience, you can log user queries and analyze 

them over time. Let’s talk about this in detail.

Logging and analyzing queries
Logging helps you track the most common search patterns. Based on logs of user queries and their 

analysis, you can adjust the indexing strategy, optimize the retriever, or tweak the embedding 

model for better accuracy.

This is how to implement a simple logging mechanism:

import logging

logging.basicConfig(filename='chatbot_queries.log', level=logging.INFO)

def log_query(query):

    logging.info(f"User query: {query}")

Every time a user inputs a query, it will be logged for future analysis. You can then analyze these 

logs to make informed adjustments to the system, ensuring that it becomes more responsive and 

accurate over time.

These techniques can help you significantly enhance the performance, accuracy, and user ex-

perience of your search-driven chatbot. Whether it is experimenting with different embedding 

models, optimizing Neo4j queries, or improving how the results are formatted, each adjustment 

brings you closer to a seamless and powerful user interaction.

These advanced techniques allow your chatbot to scale effectively, handle more complex queries, 

and return even more relevant and engaging results.



Chapter 5 115

Summary
In this chapter, we successfully built a fully functional search-driven chatbot by integrating 

Gradio, Haystack, and Neo4j. We began by enriching our Neo4j graph with movie embeddings 

generated by OpenAI’s models, enabling advanced vector-based search functionality. From there, 

we connected Haystack to Neo4j, allowing us to perform similarity searches on the embeddings 

stored in the graph. Finally, we wrapped it all up by creating a user-friendly chatbot interface with 

Gradio, which dynamically retrieves movie details such as titles and actors based on user queries.

In the next chapter we will focus on advanced search capabilities and search optimization with 

Haystack. We will also discuss query optimization for large graphs.





6
Exploring Advanced Knowledge 
Graph Capabilities with Neo4j

By building on the foundational knowledge from the previous chapter, where we introduced 

basic search functionalities, we will now explore more sophisticated techniques for knowledge 

exploration, graph reasoning, and performance optimization. In this chapter, we will utilize the 

advanced capabilities of Neo4j, focusing on integrating these capabilities with Haystack to create 

a more intelligent, AI-powered search system.

By the end of this chapter, you will be able to unlock deeper insights from your knowledge graph, 

leverage advanced search functionalities, and ensure your AI-powered search system is both 

performant and sustainable.

In this chapter, we are going to cover the following main topics: 

•	 Exploring advanced Haystack functionalities for knowledge exploration

•	 Graph reasoning with Haystack

•	 Scaling your Haystack and Neo4j integration

•	 Best practices for maintaining and monitoring your AI-powered search system



Exploring Advanced Knowledge Graph Capabilities with Neo4j118

Technical requirements
Before diving into this chapter, ensure that your development environment is set up with the 

necessary technologies and tools. Also, your Neo4j instance should be loaded with the data from 

Ch4 and embeddings from Ch5. Here are the technical requirements for this chapter:

•	 Neo4j (v5.x or higher): You will need Neo4j installed and running on your local machine 

or server. You can download it from https://neo4j.com/download/.

•	 Haystack (v1.x): We will be using the Haystack framework for integrating AI-powered 

search capabilities. Make sure to install Haystack by following the instructions at https://

docs.haystack.deepset.ai/docs/installation.

•	 Python (v3.8 or higher): Ensure that you have Python installed. You can download it 

from https://www.python.org/downloads/.

•	 OpenAI API key: To successfully generate embeddings using GPT-based models, you will 

need an OpenAI API key:

•	 Obtain the API Key by signing up for an account at OpenAI (https://platform.

openai.com/signup) if you do not have one

•	 Once logged in, navigate to the API Keys section (https://platform.openai.com/

api-keys) in your OpenAI dashboard and generate a new API key

If you have followed the setup from the previous chapters, you can skip these requirements, as 

they will have already been installed.

All the code for this chapter is available in the following GitHub repository: https://github.

com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch6.

This folder contains all the necessary scripts, files, and configurations required to implement the 

Neo4j and Haystack integration with advanced knowledge graph capabilities.

Make sure to clone or download the repository so you can follow along with the code examples 

throughout this chapter.

Note

A free-tier API key will not work for most use cases in this project. You will 

need an active paid OpenAI subscription to access the necessary endpoints 

and usage limits.

https://neo4j.com/download/
https://docs.haystack.deepset.ai/docs/installation
https://docs.haystack.deepset.ai/docs/installation
https://www.python.org/downloads/
https://platform.openai.com/signup
https://platform.openai.com/signup
https://platform.openai.com/api-keys
https://platform.openai.com/api-keys
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch6
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch6


Chapter 6 119

Exploring advanced Haystack functionalities for 
knowledge exploration
In this section, we will dive into more advanced search capabilities using Haystack. You integrated 

embeddings into your Neo4j graph in Chapter 5. It is now time to explore how to enhance search 

beyond basic similarity matching. The goal here is to move from simple retrieval-based embed-

dings to a more nuanced, multi-layered exploration of knowledge in your graph.

We will explore techniques such as context-based reasoning and optimizing your search func-

tionalities for specific use cases to deliver highly relevant and intelligent results.

Let us first talk about context-based reasoning.

Context-aware search
Now, we will build on the embedding-based approach in the Connecting Haystack to Neo4j for 

advanced vector search section of the previous chapter, by integrating multi-hop reasoning across 

the Neo4j graph with Haystack’s similarity search capabilities. This approach allows the search 

engine to traverse multiple relationships between nodes while utilizing advanced AI-based re-

trieval methods. Instead of simply retrieving nodes or documents based on direct matches, we 

will leverage Haystack to explore paths between related nodes, adding layers of context and 

uncovering deeper insights. This combination of graph-based reasoning and similarity under-

standing enables more intelligent and relevant search results.

In the following code snippet, the query attempts to retrieve all movies directed by the same 

director who directed the movie Inception.

After retrieving these related movies, Haystack is used to analyze and rank the results based on a 

similar query, demonstrating a multi-hop search that combines graph-based relationships with 

advanced similarity retrieval:

def fetch_multi_hop_related_movies(title):

    query = """

    MATCH (m:Movie {title: $title})<-[:DIRECTED]-(d:Director)-[:DIRECTED]-
>(related:Movie)

    RETURN related.title AS related_movie, related.overview AS overview

Note

The title is being passed as the value of the title variable in the main program.



Exploring Advanced Knowledge Graph Capabilities with Neo4j120

    """

    with driver.session() as session:

        result = session.run(query, title=title)

        documents = [

            {

                "content": record["overview"],

                "meta": {"title": record["related_movie"]}

            }

            for record in result

        ]

    return documents

def perform_similarity_search_with_multi_hop(query, movie_title):

    # Fetch multi-hop related movies from Neo4j

    multi_hop_docs = fetch_multi_hop_related_movies(movie_title)

    if not multi_hop_docs:

        print(f"No related movies found for {movie_title}")

        return

    # Write these documents to the document store

    document_store.write_documents(multi_hop_docs)

    # Generate embedding for the search query (e.g., "time travel")

    query_embedding = text_embedder.run(query).get("embedding")

    if query_embedding is None:

        print("Query embedding not created successfully.")

        return

    # Perform vector search only on the multi-hop related movies

    similar_docs = document_store.query_by_embedding(

        query_embedding, top_k=3

    )

    if not similar_docs:

        print("No similar documents found.")



Chapter 6 121

        return

    for doc in similar_docs:

        title = doc.meta.get("title", "N/A")

        overview = doc.meta.get("overview", "N/A")

        score = doc.score

        print(

            f"Title: {title}\nOverview: {overview}\n"

            f"Score: {score:.2f}\n{'-'*40}"

        )

    print("\n\n")

However, since we imported only a fraction of the original dataset, it does not have one-to-many 

relationships. Where a director has directed multiple movies, the search will likely result in output 

such as No related movies found for Inception.

You may try updating the script to import the entire dataset (after upgrading from AuraDB Free 

to AuraDB Professional or AuraDB Business Critical or in the Neo4j Desktop version) and see how 

multi-hop reasoning is performed.

Dynamic search queries with flexible search filters
One of the strengths of a knowledge graph is the ability to apply filters dynamically during search 

queries.

In the following code snippet, we will demonstrate how to incorporate filters and constraints into 

your Haystack queries, allowing users to refine search results based on specific parameters (e.g., 

time range, categories, or relationships between entities). This flexibility is crucial for building 

more interactive and contextually rich search systems:

def perform_filtered_search(query):

    pipeline = Pipeline()

    pipeline.add_component("query_embedder", text_embedder)

    # pipeline.add_component("retriever", retriever)

    pipeline.add_component(

        "retriever", 

        Neo4jEmbeddingRetriever(document_store=document_store)

    )

    pipeline.connect(

        "query_embedder.embedding", "retriever.query_embedding"



Exploring Advanced Knowledge Graph Capabilities with Neo4j122

    )

    result = pipeline.run(

        data={

            "query_embedder": {"text": query},

            "retriever": {

                "top_k": 5,

                "filters": {

                    "field": "release_date", "operator": ">=", 

                    "value": "1995-11-17"

                },

            },

        }

    )

    # Extracting documents from the retriever results

    documents = result["retriever"]["documents"]

    for doc in documents:

        # Extract title and overview from document metadata

        title = doc.meta.get("title", "N/A")

        overview = doc.meta.get("overview", "N/A")

        # Extract score from the document (not from meta)

        score = getattr(doc, "score", None)

        # Format score if it exists, else show "N/A"

        score_display = f"{score:.2f}" if score is not None else "N/A"

        # Print the title, overview, and score (or N/A for missing score)

        print(

            f"Title: {title}\nOverview: {overview}\n"

            f"Score: {score_display}\n{'-'*40}\n"

        )

This snippet demonstrates how to apply dynamic filters, such as release_date, to refine search 

results. By incorporating these filters, you can add constraints on specific fields—for instance, 

showing only documents from a certain date onward or filtering by specific attributes such as 

category or rating. This capability allows you to narrow down results to what is most relevant to 

them, effectively enhancing the search functionality. Using this approach, you can easily extend 

or modify filters to suit different needs, offering a flexible and powerful way to interact with data 

in the knowledge graph.



Chapter 6 123

Search optimization: tailoring search for specific use cases
Not all search systems are built the same. Whether you are building a recommendation engine 

or a domain-specific search tool, different optimizations are required. In this section, we will 

explore how to tailor Haystack’s search configuration for your unique use case, ensuring the best 

performance and relevance for your specific data. We will also cover the importance of tuning 

models and indexing for high-scale environments.

Have a look at the following code block:

def perform_optimized_search(query, top_k):

       optimized_results = document_store.query_by_embedding(

            query_embedding=text_embedder.run(query).get("embedding"), 

            top_k=top_k

        )

    for doc in optimized_results:

        title = doc.meta["title"]

        overview = doc.meta.get("overview", "N/A")

        print(f"Title: {title}\nOverview: {overview}\n{'-'*40}")

This code shows how to adjust parameters, such as top_k, to fine-tune the number of top results 

returned by the search query —not the model itself. The top_k parameter determines how many 

top results are retrieved based on vector similarity.

With Haystack’s similarity retrieval capabilities (such as context-aware search methods to dy-

namic filtering), you can now create more accurate AI-powered search systems and better search 

optimization. However, search is just the beginning.

In the next section, we will move beyond search to graph-based reasoning by utilizing the rea-

soning power of Haystack and relationships within the Neo4j knowledge graph.

Note

These are just the snippets of the code. The full version is available in the GitHub 

repository: https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch6/beyond_basic_search.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch6/beyond_basic_search.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch6/beyond_basic_search.py


Exploring Advanced Knowledge Graph Capabilities with Neo4j124

Graph reasoning with Haystack
In this section, we will explore how to extend Haystack’s capabilities beyond basic search by inte-

grating it with the powerful graph reasoning features of Neo4j. While traditional search methods 

retrieve results based on text similarity, graph reasoning allows you to uncover deeper insights 

by leveraging the rich relationships between entities in your knowledge graph. By combining 

the similarity understanding of Haystack with the structured data in Neo4j, you can perform 

more complex queries that traverse multiple connections, reveal hidden patterns, and unlock 

contextually enriched insights.

This section will guide you through the process of building these advanced reasoning capabilities, 

transforming your search system into an intelligent, knowledge-driven tool.

Traversing multiple relationships to reveal hidden insights
While graph traversal helps discover connections between entities, traversing across multiple 

relationships and different types of relationships can reveal hidden patterns in your knowledge 

graph. By moving across various paths in Neo4j—whether it is between movies, actors, directors, 

or genres—you can generate deeper insights that go beyond direct relationships. This multi-step 

traversal allows you to explore data in ways that basic search cannot, revealing connections that 

might otherwise be overlooked.

We will now explore how to use multiple relationship types and multi-hop queries to retrieve 

more complex results. We will then combine them with Haystack’s similarity search capabilities 

for refinement and ranking.

Here is an example; you want to find movies that have both the same actors and director as Ju-

rassic Park, allowing you to uncover not just direct collaborations but also indirect connections:

def fetch_multi_hop_related_movies(title):

    query = """

    MATCH (m:Movie {title: $title})<-[:ACTED_IN|DIRECTED]-(p)-

        [:ACTED_IN|DIRECTED]->(related:Movie)

    WITH related.title AS related_movie, p.name AS person,

         CASE

            WHEN (p)-[:ACTED_IN]->(m) AND (p)-[:ACTED_IN]->(related) THEN 
'Actor'

            WHEN (p)-[:DIRECTED]->(m) AND (p)-[:DIRECTED]->(related) THEN 
'Director'

            ELSE 'Unknown Role'



Chapter 6 125

         END AS role,

         related.overview AS overview, related.embedding AS embedding

     RETURN related_movie, person, role, overview, embedding

    """

    with driver.session() as session:

        result = session.run(query, title=title)

        documents = []

        for record in result:

            documents.append(

                Document(

                    content=record.get("overview", "No overview 
available"),  # Store overview in content

                    meta={

                        "title": record.get("related_movie", "Unknown 
Movie"),  # Movie title

                        "person": record.get("person", "Unknown 
Person"),       # Actor/Director's name

                        "role": record.get("role", "Unknown 
Role"),              # Actor or Director

                        "embedding": record.get("embedding", "No embedding 
available")  # Retrieve the precomputed embedding

                    },

                )

            )

    return documents

Unlocking insights through path queries
Another powerful feature of graph reasoning is the ability to query for specific paths between 

nodes. For instance, finding out how two movies are connected through a series of collaborations 

can reveal surprising insights.

Have a look at the following query:

MATCH path = (m1:Movie {title: "Inception"})-[:ACTED_IN*3]-(m2:Movie)

RETURN m1.title, m2.title, path



Exploring Advanced Knowledge Graph Capabilities with Neo4j126

This query finds how Inception and another movie are connected by shared actors, spanning three 

levels of relationships.

Figure 6.1 — Illustration of a three-hop path traversal in a movie graph

The illustration in this figure shows a three-hop path traversal in a movie graph, starting from 

the movie Inception and reaching Movie C through a chain of actor collaborations. This path is the 

result of a Cypher query that explores connections between movies using the ACTED_IN relation-

ship repeated three times. In the depicted example, Inception is connected to Movie B via Actor A, 

and Movie B is further linked to Movie C through Actor B. Each hop represents a transition from 

a movie to an actor, or vice versa, forming a three-hop undirected traversal. This visualization 

highlights how multi-hop reasoning in Neo4j can uncover deeper, indirect relationships—valu-

able for applications such as content discovery, recommendation systems, and collaboration 

network analysis.

 Note

These are just the snippets of the code. The full version is available in the GitHub re-

pository at https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/blob/main/ch6/graph_reasoning.py.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch6/graph_reasoning.py
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/blob/main/ch6/graph_reasoning.py


Chapter 6 127

By combining Neo4j’s graph reasoning and Haystack’s similarity understanding, we have been able 

to capture meaningful connections in our data, such as relationships between movies and actors, 

understanding multi-hop director collaborations, and uncovering complex paths between entities.

Next, we will explore how to optimize these processes to ensure high performance as your graph 

grows in complexity and scale.

Scaling your Haystack and Neo4j integration
As your system scales, so do the demands on both Haystack and Neo4j. Optimizing performance 

becomes crucial, especially when dealing with larger datasets, more complex graph structures, 

and advanced search capabilities.

In this section, we will focus on best practices and techniques to ensure that your Haystack and 

Neo4j integration can handle increased loads efficiently. We will look into query optimization, 

caching strategies, indexing improvements, and techniques for scaling out your infrastructure 

to meet performance needs without sacrificing speed or accuracy in the following subsections.

Optimizing Neo4j queries for large graphs
As your Neo4j graph grows in size and complexity, query performance can degrade, especially 

when traversing multiple relationships or working with large datasets. Here are a few techniques 

to improve the performance of your Neo4j queries:

•	 Use indexes and constraints: Ensure that frequently queried properties such as title and 

name are indexed. Indexing speeds up node lookups and makes traversal more efficient:

CREATE INDEX FOR (m:Movie) ON (m.title);

CREATE INDEX FOR (p:Person) ON (p.name);

•	 Profile and optimize queries: Use Neo4j’s PROFILE or EXPLAIN keywords to analyze the 

performance of your queries. This helps you understand which parts of the query are 

slowing down and where you can optimize:

PROFILE MATCH (m:Movie {title: "Inception"}) RETURN m;

•	 Limit Results Early: If you are dealing with large result sets, limit the number of returned 

nodes early in the query to avoid over-fetching data:

MATCH (m:Movie)-[:ACTED_IN]->(a:Actor) RETURN m.title LIMIT 10;



Exploring Advanced Knowledge Graph Capabilities with Neo4j128

Caching embeddings and query results
When scaling Haystack and Neo4j, caching can help reduce redundant computations and network 

calls, significantly boosting performance. By caching both embeddings and query results, you can 

enhance the efficiency of your search system, especially when handling high volumes of queries. 

Here is how these caching strategies can make a difference:

•	 Cache embeddings: Store embeddings generated by Haystack in Neo4j or a separate 

cache layer (such as Redis). By caching embeddings, you avoid recomputing them for 

frequently asked queries:

# Example of caching embeddings

embedding_cache = {}  # Simple in-memory cache, replace with Redis 
for larger setups

def get_cached_embedding(query):

    if query in embedding_cache:

        return embedding_cache[query]

    else:

        embedding = text_embedder.run(query).get("embedding")

        embedding_cache[query] = embedding

        return embedding

•	 Cache query results: For frequently executed Neo4j queries, consider caching query results 

in memory or using a cache such as Redis or Memcached. This reduces the load on Neo4j 

by returning cached results for popular queries:

# Example using a Redis cache for Neo4j query results

import redis

cache = redis.Redis()

def get_cached_query_result(query):

    cached_result = cache.get(query)

    if cached_result:

        return cached_result

    else:

        # Run the query against Neo4j

        result = run_neo4j_query(query)

        cache.set(query, result)

        return result



Chapter 6 129

Efficient use of vector indexing
As your vector-based search capabilities expand, optimizing vector indexes in Neo4j is critical for 

maintaining performance. You can do this as follows:

•	 Configure vector indexes for high performance: Ensure that your vector index in Neo4j 

is configured optimally, based on your embedding dimensions and search requirements:

CREATE VECTOR INDEX overview_embeddings IF NOT EXISTS

FOR (m:Movie) ON (m.embedding)

OPTIONS {

    indexConfig: {

        `vector.dimensions`: 1536, 

        `vector.similarity_function`: 'cosine'

    }

}

•	 Batch write operations: When writing many embeddings into Neo4j, use batch operations 

to reduce the overhead of individual writes:

document_store.write_documents(embeddings_list, batch_size=100)  

# Batch size optimized for performance

Load balancing and horizontal scaling
To handle increased traffic and load on both Haystack and Neo4j, horizontal scaling and load 

balancing are essential. By implementing load balancing and horizontal scaling, you can ensure 

your system remains responsive and resilient under heavy traffic. Here is how each approach 

contributes to scalability:

•	 Scale Neo4j: Leveraging Neo4j AuraDB or a Neo4j cluster enables you to distribute your 

database workload across multiple instances, enhancing read and write capabilities. This 

is especially beneficial for applications requiring fast data retrieval and processing at scale.

•	  Load balance Haystack: Distributing incoming search queries across multiple Haystack 

instances with a load balancer prevents any single instance from being overwhelmed. 

This approach maintains consistent performance and ensures high availability, even as 

the demand grows.



Exploring Advanced Knowledge Graph Capabilities with Neo4j130

•	 Use Kubernetes: Deploying Haystack on Kubernetes with containerized instances allows 

you to scale effortlessly by adjusting the number of replicas based on traffic. Kubernetes 

orchestrates these replicas dynamically, ensuring that resources align with demand and 

that your system can efficiently handle peaks in usage. Here is an example of a Kuberne-

tes deployment configuration to scale Haystack, where multiple replicas are created to 

handle increased traffic efficiently:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: haystack-deployment

spec:

  replicas: 3  # Number of replicas to scale based on traffic

  selector:

    matchLabels:

      app: haystack

  template:

    metadata:

      labels:

        app: haystack

    spec:

      containers:

      - name: haystack

        image: haystack:latest

By implementing these optimization strategies, you can ensure that your Haystack and Neo4j 

integration remains performant and scalable as your data and query complexity grow. Whether 

through caching, efficient indexing, or scaling infrastructure horizontally, these techniques will 

help you maintain speed and accuracy under increasing loads. As your system grows, optimizing 

performance is essential, but maintaining and monitoring the health of your AI-powered search 

system is just as critical.

Note

Interested in understanding how Neo4j achieves industry-leading speed and scalabil-

ity, especially as your data and query complexity grow? Explore this blog post: Achieve 

Unrivaled Speed and Scalability with Neo4j (https://neo4j.com/blog/machine-

learning/achieve-unrivaled-speed-and-scalability-neo4j/).

https://neo4j.com/blog/machine-learning/achieve-unrivaled-speed-and-scalability-neo4j/
https://neo4j.com/blog/machine-learning/achieve-unrivaled-speed-and-scalability-neo4j/


Chapter 6 131

In the next section, we will explore best practices for keeping your system running smoothly over 

time, focusing on how to monitor performance, set up alerts, and ensure long-term stability and 

reliability beyond the code.

Best practices for maintaining and monitoring your 
AI-powered search system
Building a powerful AI-driven search system is only the beginning. To ensure its long-term success, 

you need to go beyond the initial setup and focus on maintaining and monitoring your system 

over time. Regular performance checks, proactive monitoring, and a solid logging strategy are 

essential for identifying bottlenecks, preventing system failures, and optimizing resource usage.

We now talk about the best practices for keeping your Haystack and Neo4j integration running 

smoothly, including monitoring key performance metrics, setting up alerts for critical issues, 

and implementing a sustainable maintenance routine to ensure that your search system remains 

reliable and efficient, even as it scales.

Performance optimization is not a one-time activity. We need to continuously monitor and collect 

metrics to identify bottlenecks and areas for improvement. Let us see how we can achieve this.

Monitoring Neo4j and Haystack performance
Regularly tracking query response times, database performance, and overall system health is es-

sential for maintaining an AI-powered search system. Set up monitoring for Neo4j and Haystack 

to track key metrics, identify bottlenecks, and ensure smooth operation:

•	 Neo4j monitoring: Leverage Neo4j’s built-in metrics and integration with tools such as 

Prometheus and Grafana to visualize query performance and monitor system load.

•	 Haystack monitoring: Use Grafana and Prometheus to monitor query throughput, latency, 

and response times in Haystack.

Here is an example of monitoring the query response time:

# Example: Monitor response time of a query in Haystack

import time

start_time = time.time()

result = retriever.retrieve(query)



Exploring Advanced Knowledge Graph Capabilities with Neo4j132

end_time = time.time()

response_time = end_time - start_time

print(f"Query response time: {response_time} seconds")

Setting up alerts for critical issues
Setting up automated alerts ensures you are notified when performance or system failures occur. 

By using Prometheus with Alertmanager or Grafana, you can set threshold-based alerts for slow 

queries, failed searches, or increased load.

For instance, you can create alerts that trigger when Neo4j query response times exceed a certain 

threshold or when Haystack’s search latency increases beyond acceptable limits.

You can read more on Neo4j monitoring and alerts here: https://neo4j.com/docs/operations-

manual/current/monitoring/.

Implementing a logging strategy
Detailed logs help troubleshoot issues and understand the root cause of failures or performance 

degradation. Implement logging in both Haystack and Neo4j, including logging query execution 

times, failures, and system resource usage.

Read more on Neo4j logging at https://neo4j.com/docs/operations-manual/current/

logging/. For more on Haystack logging and debugging, visit https://docs.haystack.deepset.

ai/docs/debug.

Establishing a regular maintenance routine
Regularly scheduled maintenance ensures your AI-powered search system continues to perform 

optimally over time. This includes the following:

•	 Neo4j: Perform regular index rebuilding, data consistency checks, and disk space moni-

toring. Read more on Neo4j maintenance here: https://neo4j.com/docs/operations-

manual/current/backup-restore/maintenance/.

•	 Haystack: Monitor embedding quality, update models as needed, and manage document 

store growth to avoid performance degradation. Read more on Haystack optimization and 

maintenance here: https://docs.haystack.deepset.ai/docs/pipelineoptimization.

https://neo4j.com/docs/operations-manual/current/monitoring/
https://neo4j.com/docs/operations-manual/current/monitoring/
https://neo4j.com/docs/operations-manual/current/logging/
https://neo4j.com/docs/operations-manual/current/logging/
https://docs.haystack.deepset.ai/docs/debug
https://docs.haystack.deepset.ai/docs/debug
https://neo4j.com/docs/operations-manual/current/backup-restore/maintenance/
https://neo4j.com/docs/operations-manual/current/backup-restore/maintenance/
https://docs.haystack.deepset.ai/docs/pipelineoptimization


Chapter 6 133

By implementing these best practices, you ensure that your AI-powered search system remains 

robust, reliable, and adaptable to changing demands. Proactive monitoring, effective logging, 

and regular maintenance allow you to identify issues before they impact performance and ensure 

smooth operation as your data and query loads grow. These strategies not only prevent downtime 

and inefficiencies but also allow your system to evolve and scale seamlessly. As you continue to 

build and refine your AI-driven search, ongoing attention to monitoring and maintenance will 

be the key to sustaining its long-term success.

Summary
In this chapter, we explored how to optimize the performance of your Haystack and Neo4j inte-

gration and established best practices for maintaining and monitoring your AI-powered search 

system. You learned about key strategies for caching, efficient indexing, query optimization, and 

scaling your infrastructure to handle growing data and query loads. We also emphasized the 

importance of monitoring system performance, setting up alerts, and implementing a solid log-

ging strategy to keep your system running smoothly over time. This knowledge is a crucial first 

step to creating a fast, reliable, and scalable search system as your data and complexity increase.

As we wrap up the Haystack portion of this journey, the next part of this book will shift focus to 

integrating Spring AI frameworks and LangChain4j with Neo4j. In the following chapters, you 

will explore how these technologies can come together to build sophisticated recommendation 

systems, further enhancing the capabilities of your AI-powered applications.





Part 3
Building an Intelligent 

Recommendation System 
with Neo4j, Spring AI, 

and LangChain4j 
In this third part of the book, we’ll look at building a recommendation application using the 

Spring AI and LangChain4j frameworks. We will look at leveraging LLMs and GraphRAG to en-

hance the graph to lay the foundation for building better recommendation applications. We will 

further enhance the graph by leveraging Graph Data Science algorithms such as KNN similarity 

and community detection to augment the graph to deliver better recommendations. We will also 

take a look at how using these algorithms is the better approach over basic vector search. This 

part of the book includes the following chapters:

This part of the book includes the following chapters:

•	 Chapter 7, Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Rec-

ommendation Systems

•	 Chapter 8, Constructing a Recommendation Graph with the H&M Personalization Dataset

•	 Chapter 9, Integrating LangChain4j and Spring AI with Neo4j

•	 Chapter 10, Creating an Intelligent Recommendation System



Stay tuned
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

 

https://packt.link/Q5UyU


7
Introducing the Neo4j 
Spring AI and LangChain4j 
Frameworks for Building 
Recommendation Systems  

We looked at Haystack and Python-based intelligent applications in the previous chapters. While 

Python is the favored language framework of data scientists, there are scenarios where we might 

need other frameworks to build solutions. One other popular language framework that comes to 

mind is Java. Java is faster than Python, provides integration to various data sources in a seamless 

manner, and is the most used language to build web-based applications along with the Spring 

Framework. For this purpose, we will look at how we can build intelligent applications based on 

Large Language Models (LLMs) and Neo4j in the next few chapters. 

Also, we have been concentrating on leveraging LLM capabilities to build intelligent search ap-

plications. This is just one aspect, though; LLMs can also be great tools in building and using 

knowledge graphs to power better recommendation systems. In this chapter, we will understand 

recommendation systems and why personalized recommendations are important. We will brief-

ly touch upon the traditional rule-based approach for recommendation systems and also talk 

about some of their shortcomings. We will then introduce you to the LangChain4j and Spring 

AI frameworks and how they can support you in building intelligent recommendation systems.



Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  138

 In this chapter, we are going to cover the following main topics:

•	 Understanding extended Neo4j capabilities to build intelligent applications

•	 Personalizing recommendations

•	 Introducing Neo4j’s LangChain4j and Spring AI frameworks

•	 Overview of an intelligent recommendation system in Neo4j GenAI ecosystem

Technical requirements
While this chapter focuses on personalized recommendations and introduces the LangChain4j 

and Spring AI frameworks, there are no specific technical requirements for this section.

However, if you are new to Spring applications, you can follow the documentation available at 

https://spring.io/guides/gs/spring-boot to get yourself warmed up with Spring Boot. We 

will be using a Spring Boot application with a built-in web framework in the upcoming chapters. 

You also need Java installed on your system. Java 17 or 19 is recommended for the coming chapters. 

Understanding extended Neo4j capabilities to build 
intelligent applications
In earlier chapters, we looked at using LLMs and Neo4j to build good search applications. While 

knowledge graphs provide great context for building intelligent search applications, they can also 

be a great foundation for building personalized recommendation applications. 

To extract intelligence from the data and build better, more intelligent applications that go beyond 

basic flow-based analytics, we would need more than graph database capabilities. This is where 

Neo4j’s capabilities as a database can help with building better applications. 

Some of these capabilities are listed here:

•	 Scalability: Neo4j enables us to build large graphs, using sharding to build federated graphs to 

handle large datasets. It can scale to meet data growth and business needs while minimizing 

costs. You can read more about these capabilities at https://neo4j.com/docs/operations-
manual/current/database-administration/composite-databases/concepts/.

•	 Security: Neo4j, by leveraging roles, enables data security. There are roles that enable 

security at a high level, such as who can read or write to the database. It also provides 

more granular security controls defining what data can be read based on the roles. Us-

ing this approach, one user might be looking at one part of the graph and another user 

https://spring.io/guides/gs/spring-boot
https://neo4j.com/docs/operations-manual/current/database-administration/composite-databases/concepts/
https://neo4j.com/docs/operations-manual/current/database-administration/composite-databases/concepts/


Chapter 7 139

looking at a different part of the graph based on the roles they are assigned. You can read 

more about these capabilities at https://neo4j.com/docs/operations-manual/current/

authentication-authorization/.  

•	 Flexible deployment architecture: Neo4j’s clustering architecture provides multiple 

options that can be deployed to scale horizontally to handle a higher volume of reads and 

localize reads to different servers, to minimize the cost of ownership even as data grows. 

You can read more about Neo4j’s clustering capabilities at https://neo4j.com/docs/

operations-manual/current/clustering/introduction/. 

•	 Graph Data Science algorithms: Neo4j Graph Data Science algorithms unlock hidden in-

sights from the connected data. These algorithms range from pathfinding, node similarity, 

centrality, and community detection to machine learning aspects such as link prediction 

and node classifications. You can read more about Neo4j Graph Data Science’s capabilities 

at https://neo4j.com/docs/graph-data-science/current/. 

•	 Vector indexes: Neo4j provides vector index capabilities, to index embeddings to be able 

to look up similar nodes and then leverage graph traversal to provide more accurate re-

sults. You can read more about its vector index capabilities at https://neo4j.com/docs/

cypher-manual/current/indexes/semantic-indexes/vector-indexes/. 

Neo4j as a graph database makes it easy to work with connected data easily, and the preceding 

capabilities go beyond connected data to help us build intelligent applications that are scalable 

and complex.

We will utilize Neo4j capabilities to build an intelligent recommendation system in upcoming 

chapters. Before that, let’s discuss what a recommendation engine is and how personalization 

can help create intelligent recommendation systems.

Note

If you want to read more about how search and recommendation systems  

differ, these articles may be helpful:

What’s the difference between search and recommendation: https://medium.com/
understanding-recommenders/whats-the-difference-between-search-and-

recommendation-c32937506a29 

How are search and recommendations the same, and how are they different?: 

https://gist.github.com/veekaybee/2cf54ebcbd72aa73bfe482f20866c6ef

https://neo4j.com/docs/operations-manual/current/authentication-authorization/
https://neo4j.com/docs/operations-manual/current/authentication-authorization/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/vector-indexes/
https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/vector-indexes/
https://medium.com/understanding-recommenders/whats-the-difference-between-search-and-recommendation-c32937506a29
https://medium.com/understanding-recommenders/whats-the-difference-between-search-and-recommendation-c32937506a29
https://medium.com/understanding-recommenders/whats-the-difference-between-search-and-recommendation-c32937506a29
https://gist.github.com/veekaybee/2cf54ebcbd72aa73bfe482f20866c6ef


Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  140

Personalizing recommendations 
A recommendation system is an application that recommends products to users based on their 

buying and search preferences. This aspect is not limited to just product placement but is also used 

in medical diagnostics and treatment. For example, recommendations may help with understand-

ing how patients respond to medication and what kind of treatment sequence is more effective.

As the data grows and the number of products available increases, the ability to understand user 

behavior and provide the most personal recommendations becomes more and more important. 

These strategies can be used to build personalized experiences. Some of these strategies are 

mentioned here:

•	 Building user profiles: We can build custom user profiles by understanding user behavior. 

Behavior patterns can include the order of transactions made by users for a given time 

period or outcomes of events that occurred, along with other attributes such as age, race, 

and gender. We can use these aspects to segment users into various groups and create 

profiles for each of the groups.

•	 Provide contextual support: Once the user profiles are available, we should be able to 

provide more meaningful and contextual support to users. This can be a recommendation 

to buy a product based on the last product bought or the next medication based on the 

current treatment level and current symptoms being experienced. These recommendations 

not only consider the last event that occurred but can also take other user attributes into 

account to provide more direct support.

•	 Provide self-service experiences: Along with contextual support as needed, it is also 

possible to use the recommendations to provide more satisfactory self-service experiences. 

Users should be able to change the characteristics to be considered for recommendations, 

thus providing a system that adjusts how it responds to events for the user. 

•	 Incorporating feedback: Using all the preceding strategies, it is possible to incorporate 

both positive and negative feedback so that the system can adapt to individual users’ 

requirements as needed. 

Personalized recommendations offer numerous advantages, including suggesting the next 

products based on current views, providing incentives based on user behavior, enhancing brand 

reputation, optimizing treatment regimens for patients, marketing new drugs more efficiently, 

improving supply chain processes, and determining optimal delivery routes. These tailored sug-

gestions enable businesses to deliver more relevant and impactful experiences to their customers.



Chapter 7 141

These are some of the ways the recommendations can be used. Some other interesting use cas-

es of recommendation systems could be to boost sales (https://neo4j.com/developer-blog/

graphs-acceleration-frameworks-recommendations/), manage the supply chain (https://

neo4j.com/developer-blog/supply-chain-neo4j-gds-bloom/), and carry out patient journey 

mapping (https://www.graphable.ai/blog/patient-journey-mapping/).

Let’s take a look at the traditional rule-based approach for recommendation systems and why 

this approach is not sufficient for building intelligent and personalized recommendation systems. 

Limitations of traditional approaches
Traditionally, recommendation systems used rule-based systems. A rule-based system is one 

where the decision is made by executing a set of rules based on the data input provided. The 

logic can be simple, or it can be very complex based on the need. For example, any credit card 

transaction that is more than $1,000 in certain regions will be denied automatically. A slightly 

more complex rule can be to deny a transaction when a small transaction is successfully carried 

out and then a bigger transaction is attempted. 

Rule-based systems usually apply two kinds of rules:

•	 Static rules: Here, rules are configured manually. Once these rules are in place, they work 

very efficiently and the system can execute them faithfully. They are good when you re-

quire fast responses with the least number of resources consumed. They can be as simple 

as case statements returning a value based on input.

•	 Dynamic rules: These are sophisticated rule engines. In these scenarios, the next deci-

sion made can be dependent on in which state the current decision tree lies and the next 

data input.

 Some of the benefits of using rule-based systems are as follows:

•	 Consistency: They are consistent in their behavior and guarantee that for a given input 

or set of inputs, the output is the same.

•	 Scaling: These systems can scale very well to handle data and complexity with ease. 

•	 Efficient: These are very efficient in terms of resources consumed and the cost of the system. 

•	 Maintenance and management: These are easier to build and maintain. This in turn 

makes it easy to manage these systems.

https://neo4j.com/developer-blog/graphs-acceleration-frameworks-recommendations/
https://neo4j.com/developer-blog/graphs-acceleration-frameworks-recommendations/
https://neo4j.com/developer-blog/supply-chain-neo4j-gds-bloom/
https://neo4j.com/developer-blog/supply-chain-neo4j-gds-bloom/
https://www.graphable.ai/blog/patient-journey-mapping/


Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  142

Typically, use cases of these systems are fraud prevention and cybersecurity. While these systems 

are simple and easy to build, there are limitations to them. Some are listed here:

•	 Complexity: They can grow to be pretty complex as the business needs increase, if not han-

dled correctly. With the added complexity, most of the benefits will slowly start to vanish. 

•	 Rigidness: The system is too rigid to adapt to new types of data and scenarios. Even when we 

identify new scenarios, coding and configuring them might take too long for them to be effective. 

•	 Business needs adaptability: It might take too much effort to adapt these systems to the 

growing business needs and requirements.

As we can see, as business needs evolve, we are stuck with limited options when relying on rule-

based systems. It becomes more important to build an intelligent application that can adapt to 

the new data points as well as data complexity to provide better context to give good recommen-

dations. These systems should be more adaptable to changing environments, data, as well as new 

requirements in a quick fashion. 

This is where Neo4j as a graph database and the surrounding technology stack help us to build 

intelligent recommendation systems. Let’s find out how.

Introducing Neo4j’s LangChain4j and Spring AI 
frameworks
To build intelligent applications, we can utilize multiple frameworks available around Neo4j. 

For the specific use case of intelligent recommendation systems, we will take a look at the Java 

frameworks Spring AI and LangChain4j. 

LangChain4j 
LangChain4j (https://github.com/langchain4j/) is a Java framework inspired by the popular 

Python LangChain framework to build LLM applications in Java. Its goal is to simplify integrat-

ing LLM APIs into Java applications. Toward that, it builds an API that is a blend of LangChain, 

Haystack, LlamaIndex, and other concepts and adds its own flavor to build complex applications. 

This is how it achieves these objectives.

The following list helps us understand how it achieves these objectives:

•	 Unified APIs: All the LLM providers, such as Open AI and Google Gemini, have their own 

proprietary APIs to build applications. Vector stores such as Neo4j, Pinecone, and Milvus 

also provide their own APIs to store and retrieve the embeddings. LangChain4j provides 

a unified API to hide the complexity of all these APIs to make development easier. 

https://github.com/langchain4j/


Chapter 7 143

•	 Comprehensive toolbox: The LangChain community has identified various patterns, ab-

stractions, and techniques to build numerous LLM applications and examples in ready-to-

use packages to jumpstart development. Its toolbox includes examples of low-level prompt 

templates, chat memory management, AI services, and RAG. Most of these examples are 

ready for easy integration into other applications.

LangChain4j provides the following features that help us in building intelligent applications: 

•	 More than 15 LLM providers: LangChain4j provides a simple API to integrate the LLM 

providers into an application and use them easily. You can read more about the language 

model integrations at https://docs.langchain4j.dev/category/language-models. 

•	 More than 20 vector stores: The vector store API allows storing the embeddings gen-

erated and querying them. Here is the vector store API for you to look at: https://docs.

langchain4j.dev/tutorials/embedding-stores. 

•	 AI services: LangChain4j has low-level APIs, such as those that directly interact with LLM 

providers and vector stores. But that might be too low level for some scenarios. To make 

things simple, it also provides more high-level API flows to integrate LLMs, vector stores, 

embedding models, and RAG as a pipeline. These are called AI services (https://docs.

langchain4j.dev/tutorials/ai-services). We will use AI Services in the upcoming 

chapters.

•	 RAG: LangChain4j provides support for the RAG indexing, as well as RAG retrieval, stage. 

It has a simple Easy RAG feature that makes it easy to get started with RAG features. You 

can read more about the RAG capabilities provided by LangChain4j at https://docs.

langchain4j.dev/tutorials/rag.

LangChain4j has good integration with the Spring Framework. But the Apache Spring framework 

has also built a separate AI integration framework similar to LangChain4j, called Spring AI. We 

will take a look at this framework next.

Spring AI
Spring AI is inspired by LangChain4j and LlamaIndex. While LangChain4j supports simple Java 

applications as well as Spring applications, Spring AI is optimized to work with Spring Framework. 

This means those who are well versed in the Spring Framework can develop LLM applications 

faster and easier. 

https://docs.langchain4j.dev/category/language-models
https://docs.langchain4j.dev/tutorials/embedding-stores
https://docs.langchain4j.dev/tutorials/embedding-stores
https://docs.langchain4j.dev/tutorials/ai-services
https://docs.langchain4j.dev/tutorials/ai-services
https://docs.langchain4j.dev/tutorials/rag
https://docs.langchain4j.dev/tutorials/rag


Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  144

Since the Spring Framework provides multiple modules to connect to various databases and cod-

ing patterns that are well defined and used by a lot of developers, this new feature makes it very 

easy for developers to adopt and build AI applications quickly. Some of the Spring AI capabilities 

that can help us in building intelligent applications are as follows: 

•	 LLM prompt templates: LLM prompt templates provide a simple API to integrate LLMs 

easily. 

•	 Embedding models: Spring AI can integrate various embedding model engines using 

configuration to generate vector embeddings. 

•	 Vector stores: Spring AI also provides simple APIs to store and query vector stores. It 

provides easy, configuration-based integration to connect to various vector stores, such 

as Neo4j, Pinecone, and Milvus. 

•	 RAG: You can also chain LLM prompt templates, embedding models, and vector stores to 

build effective RAG applications with Spring AI. 

Both the LangChain4j and Spring AI frameworks provide core APIs to integrate with LLM chat 

models, prompt templates, embedding models, and vector stores. Along with providing the 

low-level APIs to talk with those systems, they also make it easy to build more sophisticated 

applications using higher-level APIs, such as RAG framework APIs.

Why Java-based frameworks?
There are a lot of frameworks in Python that can work with Neo4j. But there are a lot of applica-

tions that use Java frameworks. These frameworks provide a means to connect to various data 

sources, leveraging various packages available to build complex applications. 

These frameworks support various vector stores, such as Neo4j, and multiple LLM providers, 

such as Amazon Bedrock, Azure OpenAI, Google Gemini, Hugging Face, and OpenAI. They offer 

high-level AI capabilities, from simple tasks such as formatting inputs and parsing outputs for 

LLMs to more complex features such as chat memory, tools, and RAG.

By combining these capabilities with Neo4j, these frameworks make it easier to build more com-

plex applications, such as generating embeddings for graph features (paths, etc.) using LLMs, 

which can form the basis for enhancing the graph using similarity and community detection 

algorithms to group nodes into segments. This segmentation can provide the basis for next-lev-

el recommendations and other aspects. You can read more about Neo4j’s GenAI ecosystem at 

https://neo4j.com/labs/genai-ecosystem/.

https://neo4j.com/labs/genai-ecosystem/


Chapter 7 145

Overview of an intelligent recommendation system in 
Neo4j GenAI ecosystem
Let us look at how recommendation systems that are built on LLM/RAG principles would function 

in the Neo4j GenAI ecosystem (Figure 7.1).

Figure 7.1 — Neo4j RAG recommendation architecture

We can leverage the features of these frameworks to build RAG applications backed by knowledge 

graphs. In this architecture, we are leveraging the Spring AI app to augment the graph to be able 

to provide more personal recommendations. 

Also, for RAG, this architecture can leverage the vector indices as well as graph traversal to aug-

ment the response, to get the best of both worlds to get more accurate responses. This concept 

is called Graph RAG.  Knowledge graphs can bring more accurate responses, rich context, and 

explainability for AI model interactions. Neo4j can integrate into LangChain4j and Spring AI to 

act as a vector store as well as a graph database to augment the LLM responses.



Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  146

Summary
In this chapter, we looked at the capabilities of Neo4j that help us build intelligent applications, 

why the personalization that these applications can provide is useful, and how they are different 

from the existing rule-based applications. We looked at what Spring AI and LangChain4j are and 

their capabilities to build intelligent applications.  

In the next chapter, Chapter 8, we will build a graph data model to support intelligent and person-

alized recommendations with the H&M dataset and see how this data can be loaded into a graph 

data model with the aim of providing recommendations. Chapter 9 of this book will enable you to 

integrate this intelligent recommendation system with the Spring AI and LangChain4j frameworks. 



8
Constructing a 
Recommendation Graph with 
H&M Personalization Dataset

While Neo4j is great for building knowledge graphs, it would be prudent to look at how we model 

the data. A good data persistence model can make data retrieval optimal and handle large loads 

better. In this chapter, we will take a step back to look at what constitutes a knowledge graph 

and how a different look at data modeling with a Neo4j data persistence approach can help build 

more powerful knowledge graphs. You might need to revisit the approaches defined in Chapter 3, 

which will enable you to build a knowledge graph with Personalized Fashion Recommendations 

(H&M personalization) data.

We will cover these topics in this chapter as we tackle data modeling evolution:

•	 Modeling a recommendation graph with the H&M Personalization dataset

•	 Optimizing for recommendations: Best practices in graph modeling



Constructing a Recommendation Graph with H&M Personalization Dataset148

Technical requirements
You will need to be familiar with SQL and Cypher. We will be using SQLite and Neo4j to understand 

the various aspects of data modeling. We will use the following tools in this chapter:

•	 Neo4j Desktop (https://neo4j.com/docs/desktop-manual/current/) or Neo4j Aura 

(https://neo4j.com/docs/aura/)

•	 The H&M dataset to create the recommendation system: This dataset is available at https://

www.kaggle.com/c/h-and-m-personalized-fashion-recommendations/overview (Carlos 

García Ling, ElizabethHMGroup, FridaRim, inversion, Jaime Ferrando, Maggie, neuralover-

flow, and xlsrln. H&M Personalized Fashion Recommendations. 2022. Kaggle)

Remember from Chapter 3 that a good graph data model makes the retrieval part of RAG 

flow more effective. It makes retrieving relevant data faster and easier. You may revisit 

Chapter 3 for a quick recap of graph data modeling. In this chapter, we model the data 

with time as a dimension. The chain of transactions with the time as a dimension makes 

data retrieval very efficient and performant. 

Modeling the recommendation graph with the H&M 
personalization dataset
In this section, we will create a graph data model with the real-life large-scale H&M Personal-

ization dataset. This graph data model will enable us to power up the recommendation engine 

that we will create in upcoming chapters.

In 2022, H&M posted customer transaction data along with other metadata related to customers, 

products, and so on, as part of a competition to build a recommendation engine. This dataset 

contains data from previous transactions, as well as from customer and product metadata. The 

available metadata spans simple data, such as garment type and customer age, to text data from 

product descriptions, to image data from garment images.

We will discuss the dataset’s characteristics and load the data into a knowledge graph as we go, 

step by step.

We will take a look at the data available in this dataset:

•	 images/: This contains the images for a given article_id. Not all articles in the dataset 

may have images associated with them. We will not be using this data to build the graph. 

Storing the images in a graph would not only be inefficient, but it is not necessary for the 

graph flow we are building.

https://neo4j.com/docs/desktop-manual/current/
https://neo4j.com/docs/aura/
https://www.kaggle.com/c/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/c/h-and-m-personalized-fashion-recommendations/overview


Chapter 8 149

•	 articles.csv: This file contains the metadata for each article available for purchase. 

Each row represents one unique article with metadata such as the product family, color, 

style, section the article belongs to, and department.

•	 customers.csv: This file contains the metadata for each customer in the dataset, in-

cluding customer ID, age, fashion news frequency, active flag, H&M club member status, 

and postal code.

•	 transactions_train.csv: This file contains the transactions made by customers. If a 

customer made multiple purchases of the same item, that data might come as multiple 

rows – one row for each item purchased, with the transaction date, article ID, customer 

ID, price, and sales channel.

We will take a look at the graph data model of this data in the next section and load the data for 

that model. When we build the knowledge graph for the H&M personalization dataset recom-

mendations, we will have a list of transactions made by customers, and representing these as a 

chain of transactions with time as a dimension might work very well for us. By adding our under-

standing of the data into the graph data model can make our recommendations more valuable. 

For instance, the transactions are a sequence of events; hence modeling them as a sequence makes 

more sense. Unlike traditional databases, Neo4j makes it possible to store these transactions as 

a graph that is connected sequentially using relationships.

We can say, we are persisting our knowledge of data into the graph, thus creating a knowledge 

graph.

Building your recommendation graph
To build the recommendation model graph, we will take a look at the data within each of the 

files in the dataset and how they contribute to the graph. We will apply the process we discussed 

previously, in Chapter 3, to build the graph. Before loading the data, we need to use Neo4j Desktop 

and perform these steps:

1.	 Create a local database. You can follow the instructions at https://neo4j.com/docs/

desktop-manual/current/operations/create-dbms/ to perform this operation.

2.	 Copy the CSV files from the H&M recommendation dataset to the import directory of 

this database. If you are not sure how to do this, please visit https://community.neo4j.

com/t/where-is-neo4j-home/6488/5 for reference.

Now let us load the data into the graph database.

https://neo4j.com/docs/desktop-manual/current/operations/create-dbms/
https://neo4j.com/docs/desktop-manual/current/operations/create-dbms/
https://community.neo4j.com/t/where-is-neo4j-home/6488/5
https://community.neo4j.com/t/where-is-neo4j-home/6488/5


Constructing a Recommendation Graph with H&M Personalization Dataset150

Loading the customer data
The customer data contains these elements: customer ID, age, fashion news frequency, active 

flag, H&M club member status, and postal code.

The customer ID is the unique ID of the customer. To make sure we have unique nodes repre-

senting the customer, we need to have a UNIQUE constraint. Also, we will make the postal code a 

node, as we might want to segregate customers by postal code easily.

Before loading this data, we need to create these unique constraints, by connecting to the Neo4j 

database we created:

CREATE CONSTRAINT customer_id_idx FOR (n:Customer) REQUIRE n.id IS UNIQUE 
;

CREATE CONSTRAINT postal_code_idx FOR (n:PostalCode) REQUIRE n.code IS 
UNIQUE ;

Once unique constraints are created, we can use this Cypher to load the data into the database:

LOAD CSV WITH HEADERS FROM "file:///customers.csv" as row

WITH row

CALL {

    WITH row

    MERGE (c:Customer {id:row.customer_id})

    SET c.age = row.age

    FOREACH( ignoreME in CASE WHEN row.fashion_news_frequency = 
'Regularly'  THEN [1] ELSE [] END |

        SET c:FN_REGULAR

    )

    FOREACH( ignoreME in CASE WHEN row.club_member_status = 'ACTIVE'  THEN 
[1] ELSE [] END |

        SET c:CLUB_ACTIVE

    )

    FOREACH( ignoreME in CASE WHEN row.club_member_status = 'PRE-
CREATE'  THEN [1] ELSE [] END |

Note

For the LOAD CSV queries, we need to prefix them with auto to be able to run them 

in Neo4j Browser.



Chapter 8 151

        SET c:CLUB_PRE_CREATE

    )

    FOREACH( ignoreME in CASE WHEN row.Active <> 'ACTIVE'  THEN [1] ELSE 
[] END |

        SET c:INACTIVE

    )

    MERGE(p:PostalCode {code:row.postal_code})

    MERGE(c)-[:LIVES_IN]->(p)

} IN TRANSACTIONS OF 1000 ROWS

This script loads the customer data into the database, using 1,000 rows as one batch to commit. 

In this script, we can notice a couple of things:

•	 We have only one property, named age, on the Customer node, apart from the unique ID, 
customer_id

•	 We map the other properties of the customer data as labels on the Customer node

This approach follows the consumption-based approach to data modeling we discussed previously. 

Say we want to understand how the customers who are regular fashion news subscribers behave 

– this gives us an easy way to retrieve this information. Neo4j optimizes this type of retrieval using 

a label-based approach. We could make this customer behavior (fashion news subscription) a 

property and create an index to retrieve this data, but that would require more storage, as well 

as having an index lookup cost. Say we want to use the customers who are active club members 

and are regular fashion news consumers – this label-based approach gives us an edge to retrieve 

this information more effectively when compared to storing it as a property. Also, when we dis-

play this information as a graph, users can easily see the information in the labels, rather than 

looking for a property. It feels more natural to consume the data in this manner and queries also 

look more natural.

Next, we will load the article data.

Loading the article data
The article data contains other categories that describe the article, apart from the unique article 

ID and description. We will make other attributes that describe articles nodes themselves.



Constructing a Recommendation Graph with H&M Personalization Dataset152

For this purpose, we need to create these unique constraints:

CREATE CONSTRAINT product_code_idx FOR (n:Product) REQUIRE n.code IS 
UNIQUE ;

CREATE CONSTRAINT article_id_idx FOR (n:Article) REQUIRE n.id IS UNIQUE ;

CREATE CONSTRAINT product_type_id_idx FOR (n:ProductType) REQUIRE n.id IS 
UNIQUE ;

CREATE CONSTRAINT colour_group_idx FOR (n:ColorGroup) REQUIRE n.id IS 
UNIQUE ;

CREATE CONSTRAINT product_group_name_idx FOR (n:ProductGroup) REQUIRE 
n.name IS UNIQUE ;

CREATE CONSTRAINT graphical_appearance_id_idx FOR (n:GraphicalAppearance) 
REQUIRE n.id IS UNIQUE ;

CREATE CONSTRAINT perceived_colour_id_idx FOR (n:PerceivedColor) REQUIRE 
n.id IS UNIQUE ;

CREATE CONSTRAINT department_id_idx FOR (n:Department) REQUIRE n.id IS 
UNIQUE ;

CREATE CONSTRAINT section_id_idx FOR (n:Section) REQUIRE n.id IS UNIQUE ;

CREATE CONSTRAINT garment_group_id_idx FOR (n:GarmentGroup) REQUIRE n.id 
IS UNIQUE ;

CREATE CONSTRAINT article_index_id_idx FOR (n:Index) REQUIRE n.id IS 
UNIQUE ;

CREATE CONSTRAINT article_index_group_id_idx FOR (n:IndexGroup) REQUIRE 
n.id IS UNIQUE ;

We can see that we have converted most of the attributes of the articles into nodes. This sort 

of normalizes the data represented in the graph. This Cypher will load the data into the graph:

LOAD CSV WITH HEADERS FROM "file:///articles.csv" as row

WITH row

CALL {

    WITH row

For each row, create an article, product, and product group and associate them:

    MERGE(a:Article {id:row.article_id})

    SET a.desc = row.detail_desc

    MERGE(p:Product {code:row.product_code})

    SET p.name = row.prod_name

    MERGE(a)-[:OF_PRODUCT]->(p)

    MERGE(pt:ProductType {id:row.product_type_no})



Chapter 8 153

    SET pt.name = row.product_type_name

    MERGE(p)-[:HAS_TYPE]->(pt)

    WITH row, a, p

    MERGE(pg:ProductGroup {name:row.product_group_name})

    MERGE(p)-[:HAS_GROUP]->(pg)

Now add the graphical appearance and colors associated with the article:

    WITH row, a

    MERGE(g:GraphicalAppearance {id:row.graphical_appearance_no})

    SET g.name = row.graphical_appearance_name

    MERGE (a)-[:HAS_GRAPHICAL_APPEARANCE]->(g)

    WITH row, a

    MERGE (c:ColorGroup {id: row.colour_group_code})

    SET c.name = row.colour_group_name

    MERGE (a)-[:HAS_COLOR]->(c)

    WITH row, a

    MERGE (pc:PerceivedColor {id: row.perceived_colour_value_id})

    SET pc.name = row.perceived_colour_value_name

    MERGE (a)-[:HAS_PERCEIVED_COLOR]->(pc)

    MERGE (pcm:PerceivedColor {id: row.perceived_colour_master_id})

    SET pcm.name = row.perceived_colour_master_name

    MERGE (pc)-[:HAS_MASTER]->(pcm)

Now let us connect the department associated with it:

    WITH row, a

    MERGE (d:Department {id:row.department_no})

    SET d.name = row.department_name

    MERGE (a)-[:HAS_DEPARTMENT]->(d)

    WITH row, a

    MERGE (i:Index {id: row.index_code})

    SET i.name = row.index_name

    MERGE (a)-[:HAS_INDEX]->(i)

    MERGE (ig:IndexGroup {id: row.index_group_no})

    SET ig.name = row.index_group_name

    MERGE (i)-[:HAS_GROUP]->(ig)



Constructing a Recommendation Graph with H&M Personalization Dataset154

Finally, let us connect the section the article belongs to and the garment group:

    WITH row, a

    MERGE (s:Section {id: row.section_no})

    SET s.name = row.section_name

    MERGE (a)-[:HAS_SECTION]->(s)

    WITH row, a

    MERGE (gg:GarmentGroup {id: row.garment_group_no})

    SET gg.name = row.garment_group_name

    MERGE (a)-[:HAS_GARMENT_GROUP]->(gg)

} IN TRANSACTIONS OF 1000 ROWS

From the Cypher query, we can see that, in the graph, we are persisting the normalized data, 

without duplicating values for various aspects that describe the article.

We will load the transactions next.

Loading the transaction data
The transaction_train.csv data is in the order transactions have occurred. This makes it possi-

ble to load the data and preserve the sequence in the graph in an easy manner. We have this data 

in each row for transactions: transaction date, article ID, customer ID, price, and sales channel.

We can use this Cypher to load the data:

LOAD CSV WITH HEADERS FROM "file:///transactions_train.csv" as row WITH 
row

CALL {

    WITH row

    MATCH (c:Customer {id:row.customer_id})

    MATCH (a:Article {id:row.article_id})

    WITH a, c, row

    CREATE (t:Transaction {date: row.t_dat, price: row.price, 
salesChannel: row.sales_channel_id})

    CREATE (t)-[:HAS_ARTICLE]->(a)

Note

We don’t have a unique ID for each of the transactions.



Chapter 8 155

    WITH c, t

    CALL {

        WITH c, t

        WITH c, t

        WHERE exists((c)-[:START_TRANSACTION]->()) OR exists((c)-
[:LATEST]->())

        MATCH (c)-[r:LATEST]->(lt)

        DELETE r

        CREATE (lt)-[:NEXT]->(t)

        CREATE (c)-[:LATEST]->(t)

        UNION

        WITH c, t

        WITH c,t

        WHERE NOT ( exists((c)-[:START_TRANSACTION]->()) OR exists((c)-
[:LATEST]->()) )

        CREATE (c)-[:START_TRANSACTION]->(t)

        CREATE (c)-[:LATEST]->(t)

    }

} IN TRANSACTIONS OF 1000 ROWS

From this Cypher, we can see that we take the first transaction we find for a given customer and 

connect it to the customer using a START_TRANSACTION relationship. We use a LATEST relation-

ship to track the last transaction the customer made. As we keep getting more transactions for the 

customer, we keep moving the LATEST relationship to the newest transaction. We connect the 

earlier transaction that was connected using a LATEST relationship and the new transaction with 

a NEXT relationship. So, in this graph, we are representing the transactions made by customers 

as a transaction train, true to the name of the dataset file transaction_train.csv.

Final graph
After loading all the data, our graph model will look as shown in Figure 8.1.



Constructing a Recommendation Graph with H&M Personalization Dataset156

Figure 8.1 — Graph data model after loading the H&M data

We can see from this graph that the article attributes are fanned out into various individual nodes. 

The Customer node is connected to the postal code and first and last transactions. Transaction 

is associated with Article. The Transaction nodes are also connected to any next transactions 

available for a given customer.

Now that we have loaded the data, let us explore how we can further enhance the graph from 

this data, to add our own understanding of the data and ideas into the graph.

Optimizing for recommendations: best practices in 
graph modeling
We have a graph now, with data loaded the way we want to consume it and representing the 

context of the data. Still, the graph represents only the original context provided. Say we want to 

consume the data by season and year – we still need to build queries to retrieve it. Since Neo4j is 

schema optional, maybe we can do some post-processing and add extra relationships to consume 

the data in that way.



Chapter 8 157

In this Cypher script, we are creating seasonal relationships:

1.	 For each customer, iterate through the transactions and assign a season value based on 

month and year:

MATCH (c:Customer)

WITH c

CALL {

    WITH c

    MATCH (c)-[:START_TRANSACTION]->(s)

    MATCH (c)-[:LATEST]->(e)

    WITH c,s,e

    MATCH p=(s)-[:NEXT*]->(e)

    WITH c, nodes(p) as nodes

    UNWIND nodes as node

2.	 For example, if the month is 1 and the year is 2020, we assign WINTER_2019 as the season 

name for that transaction as the context:

    WITH c, node, node.date as d

    WITH c, node, toInteger(substring(d, 0,4)) as year, substring(d, 
5,2) as month

    WITH c, node,

        CASE WHEN month="12" THEN year

             WHEN month="01" OR month="02" THEN year-1

            ELSE

                year

        END as year,

3.	 Collect transactions for each season value:

        CASE WHEN month="12" OR month="01" OR month="02" THEN 
"WINTER"

             WHEN month="03" OR month="04" OR month="05" THEN 
"SPRING"

             WHEN month="06" OR month="07" OR month="08" THEN 
"SUMMER"



Constructing a Recommendation Graph with H&M Personalization Dataset158

             WHEN month="09" OR month="10" OR month="11" THEN "FALL"

        END as season

    WITH c, node, season+'_'+year as relName

4.	 Get the first record of the collection for each season value:

    WITH c, relName, head(collect(node)) as start

    WHERE relName is not null

5.	 Create a relationship between the customer and that transaction with the season value 

as the relationship name. We are using the apoc method to create the relationship as the 

relationship name is dynamic:

CALL apoc.create.relationship(c, relName, {}, start) YIELD rel

    WITH 1 as out

    return DISTINCT out

} IN TRANSACTIONS OF 1000 ROWS

WITH 1 as r

RETURN DISTINCT r

Do note that this is a very basic approach. This shows we can create extra context in the graph 

based on our understanding of the data. These approaches make Neo4j very suitable for building 

knowledge graphs. When we make it easy to access data in this way, it can open up more ideas 

on how we can look at the same data differently to extract more intelligence in a simple manner 

that’s traceable and understandable at the same time.

If you do not want to load the data manually, you can download the database snapshot from the 

following URL:  https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/
Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip

We have now added more context to the data. Let’s look at the graph data model next.

https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip


Chapter 8 159

Figure 8.2 — H&M graph data model after enhancing with seasonal relationships

Let us use our understanding of the data to write a query to get articles bought by a random 

customer in the summer of 2019:

MATCH (c:Customer)-[:SUMMER_2019]->(start), (c)-[:FALL_2019]->()<-[:NEXT]-
(end)

WITH c, start, end SKIP 100 LIMIT 1

MATCH p=(start)-[:NEXT*]->(end)

WITH nodes(p) as nodes, relationships(p) as rels

UNWIND nodes as node

MATCH p=(node)-[:HAS_ARTICLE]->(a)

RETURN a.desc as article

With this query, we find customers who bought items both in the summer and fall of 2019, pick 

one customer from that list, and retrieve the article descriptions.



Constructing a Recommendation Graph with H&M Personalization Dataset160

The output of the query will look like this:

Figure 8.3 — Cypher query to retrieve SUMMER_2019 purchases for a customer

By looking at the query, it is easy to understand what the query is doing. We use SUMMER_2019 as 

the starting point and a transaction before FALL_2019 relationship as the endpoint, traverse from 

the start point to the endpoint, and retrieve the articles of those transactions.

We can see that we are completely relying on the graph traversals instead of property-based 

filters, which makes executing this query very efficient. Neo4j is built to execute these kinds of 

queries very efficiently.

Summary
In this chapter, we looked at how to look at a graph data model and how building a model based 

on how we consume it makes it easier to retrieve the data efficiently. We looked at the H&M 

recommendations dataset and loaded it using those principles, and also augmented it using 

the properties and our understanding of that data. This added more context to the graph and 

also made it simple to query the data – queries are more readable and explainable to others in a 

simpler way.

In the next chapter, we will build on this data, using an LLM to enhance it further, and will see 

how LLMs can provide us with more capable knowledge graphs.



9
Integrating LangChain4j and 
Spring AI with Neo4j

Now that we have loaded the data into a graph, in this chapter, we will look at how we can use 

LangChain4j or Spring AI to augment the graph to enhance its capabilities and build a knowledge 

graph. We will look into integrating the graph with LLMs to generate a summary of customer 

purchases and create an embedding of that summary to represent the customer purchase history. 

These embeddings are crucial for enabling machine learning and graph algorithms to understand 

and process graph data. These embeddings can help us build a knowledge graph to provide more 

personal recommendations for customers by understanding purchase behaviors. We will also 

look at how to create embeddings of the detailed description of each article present in the dataset.

In this chapter, we are going to cover the following main topics:

•	 Setting up LangChain4j and Spring AI

•	 Building your recommendation engine with LangChain4j

•	 Building your recommendation engine with Spring AI

•	 Fine-tuning your recommendation system



Integrating LangChain4j and Spring AI with Neo4j162

Technical requirements
We will be using a Java IDE environment to work with the LangChain4j and Spring AI projects. 

You need to have these installed and know how to work with them. You will need the following 

to get started:

•	 Maven will be used to build a project and manage dependencies. If you are going to use 

the IntelliJ IDE (or IntelliJ IDEA), then Maven will be installed along with it, and you need 

not install it separately. If you are new to Maven, you can read more about it at https://

maven.apache.org/.

•	 Java 17.

•	 IntelliJ – These examples are built and tested with the IntelliJ IDE. You can use your pre-

ferred IDE, however. We will be using the IntelliJ IDEA tool to build and run our projects. 

You can download the tool from https://www.jetbrains.com/idea/. You can download 

the Community Edition to run the examples in this chapter. You can read more about us-

ing this IDE to build Spring applications at https://www.jetbrains.com/idea/spring/.

•	 Spring Boot – If you are new to Spring Boot, you can go to https://spring.io/projects/

spring-boot to learn more about it.

•	 Neo4j Desktop with the following plugins installed. We will be starting from the graph 

database we built in the last chapter. You can download Neo4j Desktop from https://

neo4j.com/download/. If you are new to Neo4j Desktop, you can learn more about it at 

https://neo4j.com/docs/desktop-manual/current/. The code is tested with the 5.21.2 

version of the database. The following are the plugins required:

•	 APOC plugin – 5.21.2

•	 Graph Data Science library – 2.9.0

The following figure shows how to install these plugins for a DBMS.

https://maven.apache.org/
https://maven.apache.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/spring/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://neo4j.com/download/
https://neo4j.com/download/
https://neo4j.com/docs/desktop-manual/current/


Chapter 9 163

Figure 9.1 — Install plugins on Neo4j Desktop

When you select the DBMS on Neo4j Desktop, on the right side, it shows its details. Click on 

the Plugins tab and select the plugins you require. On the details pane, click on the Install and 

Restart button.

We will start with setting up the LangChain4j and Spring AI projects.

 Note

You can find all the code you need at https://github.com/PacktPublishing/

Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9. These 

are complete projects and ready to run in an IDE. We will only show snippets of the 

code in this chapter to showcase the usage. So, it might be a good idea to download 

the code to follow the steps in this chapter.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9


Integrating LangChain4j and Spring AI with Neo4j164

Setting up LangChain4j and Spring AI
We will take a look at setting up the Spring AI and LangChain4j projects using the spring initializr 

website (https://start.spring.io/).

We will look at each of these technologies independently. LangChain4j and Spring AI are both 

options to perform the same tasks. We need only one of these frameworks to build GenAI projects. 

LangChain4j has been available for a bit longer than Spring AI. Both of them work pretty similarly 

in terms of the API and integrations. We will build the same application with both frameworks 

and see how similar they are. We will also identify the differences.

The following are the steps we need to follow to create the starter projects:

1.	 Setting up the LangChain4j project:

a.	 Go to the website, https://start.spring.io/.

b.	 Select Maven under the Project section.

c.	 Select Java under the Language section.

d.	 In the Project Metadata section, fill in the following values:

•	 Group: com.packt.genai.hnm.springai

•	 Artifact: springai _graphaugment

•	 Name: springai _graphaugment

•	 Description: Graph Augmenting with Spring AI

•	 Package Name: com.packt.genai.hnm.springai.graphaugment

•	 Packaging: Jar

•	 Java: 17

e.	 In the Dependencies section, click on the Add Dependencies button and select 

the Spring Web dependency.

•	 There are no other dependencies that are currently listed by the initializer 

to add to the project. We will add LangChain4j dependencies manually 

to the project.

f.	 Download and save the ZIP file that is generated.

https://start.spring.io/
https://start.spring.io/


Chapter 9 165

2.	 Setting up the Spring AI project:

a.	 Go to the website, https://start.spring.io/.

b.	 Select Maven under the Project section.

c.	 Select Java under the Language section.

d.	 In the Project Metadata section, fill in the following values:

•	 Group: com.packt.genai.hnm.langchain

•	 Artifact: langchain_graphaugment

•	 Name: langchain_graphaugment

•	 Description: Graph Augmenting with Langchain4J

•	 Package Name: com.packt.genai.hnm.langchain.graphaugment

•	 Packaging: Jar

•	 Java: 17

e.	 In the Dependencies section, click on the Add Dependencies button to select the 

following dependencies:

•	 Spring Web

•	 OpenAI

•	 Neo4j Vector Database

f.	 Download and save the ZIP file that is generated.

This will only give us a skeleton project with which we will build the application. The skeleton 

project gives us a basic structure upon which we can add more logic.

Let us look at what we want out of our application before we go ahead and build it. We loaded 

the H&M transaction data into the graph database in the previous chapter. Currently, it holds 

the customers, articles, and transactions along with some helper relationships that mark the first 

transaction in a given season and year. As we want to build a personal recommendation system, 

we want to enhance the graph to understand customer behavior and provide recommendations. 

For this purpose, we will be taking the following approach:

1.	 Select a season for which to understand the purchase behavior. For example, say we want 

to find the customers who made purchases in summer 2019 and fall 2019 and use the 

transactions between those seasons to understand customer behavior. Note that there 

might be some customers who did not make any transactions in the fall of 2019, even 

https://start.spring.io/


Integrating LangChain4j and Spring AI with Neo4j166

though they might have made transactions in the summer of 2019. We are ignoring those 

customers for this exercise, to make things a bit simpler.

2.	 Retrieve the articles purchased during these transactions. The articles should match the 

condition (purchases made in the summer and fall of 2019) in the order they are purchased. 

We will then use an LLM to summarize these purchases. This summarization preserves the 

order of the articles purchased.

3.	 Use the LLM to generate embedding for this summary text. We will be leveraging an 

OpenAI LLM for this part.

4.	 Store these embeddings. We will be storing them on the season relationship for which 

these embeddings are generated. For example, if we are generating a summary for the 

summer of 2019, we will store the resulting embeddings on the SUMMER_2019 relationship. 

An OpenAI LLM is used to generate the embeddings.

In the next section, we will take a look at building an application that performs the functions we 

described previously using LangChain4j.

Building your recommendation engine with 
LangChain4j
In this section, we will look at building a graph augmentation application that leverages LangChain4j. 

In this project, we will be using the GraphRAG approach to generate embeddings for a transaction 

chain that meets our requirements. We will be using the Neo4j graph retriever to retrieve the trans-

action chain that meets our requirements, as well as an LLM to generate a summary of those trans-

actions to describe the customer purchase behavior and generate an embedding. The embedding 

generated will be a vector representation that describes the text summary in a manner that can be 

leveraged by machine learning or Graph Data Science algorithms. It can also be leveraged for vector 

search purposes. This article explains embeddings in the context of LLMs well: https://ml-digest.

com/architecture-training-of-the-embedding-layer-of-llms/. We will start with the ZIP file 

downloaded in the last section. We need to unzip the file we have downloaded. Once it is unzipped, 

we will load the project into the IntelliJ platform using these steps:

1.	 Launch the IntelliJ IDE.

2.	 Click on File | New | Project from Existing Sources….

https://ml-digest.com/architecture-training-of-the-embedding-layer-of-llms/
https://ml-digest.com/architecture-training-of-the-embedding-layer-of-llms/


Chapter 9 167

Figure 9.2 — Create a new project

3.	 Select the pom.xml file from the directory we unzipped.

Figure 9.3 — Select pom.xml

4.	 Click on Trust Project to load the project.

Figure 9.4 — Trust Project

5.	 Select New Window when prompted.

Figure 9.5 — Select New Window

6.	 Once the project is loaded, you can continue to the next section.

In the next section, we will update the project dependencies.



Integrating LangChain4j and Spring AI with Neo4j168

LangChain4j: updating the project dependencies
When we used the Spring starter to prepare the starter project, we could only add the dependencies 

identified by that tool. We need to edit the pom.xml file to add the dependencies.

The following are the dependencies we need to add to the project:

•	 LangChain4j Spring Boot starter – This dependency provides the Spring Boot integration 

of LangChain4j:

<!-- Langchain Springboot integration -->

<dependency>

    <groupId>dev.langchain4j</groupId>

    <artifactId>langchain4j-spring-boot-starter</artifactId>

    <version>0.36.0</version>

</dependency>

•	 LangChain4j OpenAI integration – This dependency provides the OpenAI integration:

<!-- Open AI integration -->

<dependency>

    <groupId>dev.langchain4j</groupId>

    <artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>

    <version>0.36.0</version>

</dependency>

•	 LangChain4j Neo4j integration – This dependency provides the Neo4j integration:

<!-- Neo4j Vector Store integration -->

<dependency>

    <groupId>dev.langchain4j</groupId>

    <artifactId>langchain4j-neo4j</artifactId>

    <version>0.35.0</version>

</dependency>

•	 LangChain4j LLM embeddings integration – This dependency provides the LLM embed-

dings API:

<dependency>

    <groupId>dev.langchain4j</groupId>

    <artifactId>langchain4j-embeddings-all-minilm-l6-v2</artifactId>



Chapter 9 169

    <version>0.35.0</version>

</dependency>

The latest integration options and details can be found at https://docs.langchain4j.dev/

category/integrations.

Now that we have added the project dependencies, we need to update the configuration proper-

ties that are required for the application. In the next section, we will be looking at updating the 

application properties.

LangChain4j: updating the application properties
In this section, we need to update the application properties for the dependencies we added in the 

last section to be able to leverage the APIs. We need to add this configuration to the application.

properties file in the project. Since we will be using the OpenAI LLM for the chat model and em-

beddings, we need to acquire an API key for this purpose. We need to visit the following website 

to acquire an API key for this purpose: https://platform.openai.com/docs/overview.

These are the configuration properties we need to add:

•	 OpenAI chat model integration – We need to add this configuration to application.

properties:

# Open AI LLM Integration for Generating Summary using Chat Model.

langchain4j.open-ai.chat-model.api-key=<OPEN_AI_KEY>

langchain4j.open-ai.chat-model.model-name=gpt-4o-mini

langchain4j.open-ai.chat-model.log-requests=true

langchain4j.open-ai.chat-model.log-responses=true

 Note

When you have made changes to the pom.xml file, you might have to reload the  

project for the IDE to update all the dependencies correctly. You can learn more about 

how to work with Maven projects with IntelliJ IDEA at https://www.jetbrains.
com/help/idea/delegate-build-and-run-actions-to-maven.html#maven_

reimport.

https://docs.langchain4j.dev/category/integrations
https://docs.langchain4j.dev/category/integrations
https://platform.openai.com/docs/overview
https://www.jetbrains.com/help/idea/delegate-build-and-run-actions-to-maven.html#maven_reimport
https://www.jetbrains.com/help/idea/delegate-build-and-run-actions-to-maven.html#maven_reimport
https://www.jetbrains.com/help/idea/delegate-build-and-run-actions-to-maven.html#maven_reimport


Integrating LangChain4j and Spring AI with Neo4j170

•	 OpenAI embeddings integration – We need to add this configuration to application.

properties:

# Open AI LLM Integration for Generating Embeddings

langchain4j.open-ai.embedding-model.api-key=<OPEN_AI_KEY>

langchain4j.open-ai.embedding-model.model-name=text-embedding-3-
large

•	 Neo4j integration – We will add basic Neo4j integration this time, not the Neo4j vector 

database-related integration:

# Neo4j Integration

neo4j.uri=bolt://localhost:7687

neo4j.user=neo4j

neo4j.password=test1234

neo4j.database=hmreco

config.batchSize=5

Now that we have looked at the configuration properties, let us start building the application. We 

will start with Neo4j database integration, and then add chat model integration to summarize the 

transactions and generate embeddings for the summary. Finally, we will take a look at building 

a REST endpoint to invoke those requests as needed.

LangChain4j: Neo4j integration
We will take a look at Neo4j integration first. We will look at this first as we need a means to 

integrate with the database to perform these tasks:

1.	 Set up connectivity to be able to perform read and write transactions.

2.	 Read the articles for the transactions that occurred for the specified season.

3.	 Persist (save) the embeddings once they are generated.

Before we can build this logic, we need to create a configuration bean for Neo4j connectivity. We 

can define that bean like this to read from application.properties:

@ConfigurationProperties(prefix = "neo4j")

public class Neo4jConfiguration { 

    private String uri; 

    private String user ; 



Chapter 9 171

    private String password ; 

    private String database ; 

   /** Getter/Setters **/

}

The ConfigurationProperties annotation on top of the class definition will read application.

properties and initialize the properties in the bean. The prefix option tells us to read only the 

properties that start with that prefix. For example, if we want the uri field to be populated, then 

we need to add the neo4j.uri property to the configuration. We have not included all the getter 

and setter code that is required to read the properties from this bean here.

Now, we will define a service to provide integration with the Neo4j database to read the articles 

and customer transactions data and update the embeddings as needed:

1.	 Define the service class using @Service annotation. We also need to inject 

Neo4JConfiguration here:

@Service

@Configuration

@EnableConfigurationProperties(Neo4jConfiguration.class)

public class Neo4jService {

    @Autowired

    private Neo4jConfiguration configuration ;

    private Driver driver ;

2.	 Add the setup method to initialize the connection to the Neo4j database:

    public synchronized void setup() {

        if( driver == null ) {

            driver = GraphDatabase.driver(

                    configuration.getUri(),

                    AuthTokens.basic(

                            configuration.getUser(),

                            configuration.getPassword()));

            driver.verifyConnectivity();

        }

    }



Integrating LangChain4j and Spring AI with Neo4j172

3.	 Add the method to get the customer transactions data for given start- and end-of-season 

values. Based on the start- and end-of-season values provided, it retrieves the elementId 

value of the start-of-season value and the article description in the sequence they are 

purchased. We need this elementId value to save the embeddings later. We can see that 

we are trying to get more related data from the article attributes instead of just the de-

scription. This way, we can include more attributes, such as color, as part of the summary, 

so that we can represent them as embeddings more accurately:

public List<EncodeRequest> getDataFromDB(String startSeason, String 
endSeason) {

    setup();

    String cypherTemplate = """

        --- Cypher query to get the transactions

    """;

    String cypher = String.format(cypherTemplate, startSeason, 
endSeason);

    SessionConfig config = SessionConfig.builder()

        .withDatabase(configuration.getDatabase())

        .build();

    try (Session session = driver.session(config)) {

        List<EncodeRequest> data = session.executeRead(tx -> {

            List<EncodeRequest> out = new ArrayList<>();

            var records = tx.run(cypher);

            while (records.hasNext()) {

                var record = records.next();

                String id = record.get("elementId").asString();

                String articles = record.get("articles").asString();

                out.add(new EncodeRequest(articles, id));

            }

            return out;

        });

        return data;



Chapter 9 173

    } catch (Exception e) {

        e.printStackTrace();

    }

    return null;

}

4.	 Add the method to get the articles from the database:

public List<EncodeRequest> getArticlesFromDB() {

    setup();

    String cypherTemplate = """

        -- Cypher query to get the articles.

    """;

    SessionConfig config = SessionConfig.builder()

        .withDatabase(configuration.getDatabase())

        .build();

    try (Session session = driver.session(config)) {

        List<EncodeRequest> data = session.executeRead(tx -> {

            List<EncodeRequest> out = new ArrayList<>();

            var records = tx.run(cypherTemplate);

            while (records.hasNext()) {

                var record = records.next();

                String id = record.get("elementId").asString();

                String article = record.get("article").asString();

                out.add(new EncodeRequest(article, id));

            }

            return out;

        });

        return data;

    } catch (Exception e) {

        e.printStackTrace();

    }



Integrating LangChain4j and Spring AI with Neo4j174

    return null;

}

5.	 Add a method to save the embeddings for the selected season of a customer. We are keep-

ing the summary in the graph to understand what the embedding represents. Once we 

understand this aspect, we don’t need to store the summary in the database:

public void saveEmbeddings(List<Map<String, Object>> embeddings) {

    setup();

    String cypher = """

        UNWIND $data as row

        WITH row

        MATCH ()-[r]->()

        WHERE elementId(r) = row.id

        SET r.summary = row.summary

        WITH row, r

        CALL db.create.setRelationshipVectorProperty(r, 'embedding', 
row.embedding)

    """;

    SessionConfig config = SessionConfig.builder()

        .withDatabase(configuration.getDatabase())

        .build();

    try (Session session = driver.session(config)) {

        session.executeWriteWithoutResult(tx -> {

            tx.run(cypher, Map.of("data", embeddings));

        });

    } catch (Exception e) {

        e.printStackTrace();

    }

}

6.	 Add a method to save the embeddings for the Article text on an Article node:

public void saveArticleEmbeddings(List<Map<String, Object>> 
embeddings) {

    setup();



Chapter 9 175

    String cypher = """

        UNWIND $data as row

        WITH row

        MATCH (a:Article)

        WHERE elementId(a) = row.id

        CALL db.create.setNodeVectorProperty(a, 'embedding', row.
embedding)

    """;

    SessionConfig config = SessionConfig.builder()

        .withDatabase(configuration.getDatabase())

        .build();

    try (Session session = driver.session(config)) {

        session.executeWriteWithoutResult(tx -> {

            tx.run(cypher, Map.of("data", embeddings));

        });

    } catch (Exception e) {

        e.printStackTrace();

    }

}

From the code, we can see that this service depends on Neo4jConfiguration and provides these 

methods.

The code flow here is simple and provides utility methods to interact with a Neo4j database. The 

methods to get and save data have Cypher queries embedded into the code here.

Next, we will take a look at an OpenAI chat model integration that can generate a summary for 

the list of articles.

LangChain4j: OpenAI chat integration
To integrate the chat, we need to define AiService. This is the API exposed by Langchain4J to 

build Java applications.



Integrating LangChain4j and Spring AI with Neo4j176

Let’s see how we can do this:

1.	 When we define AiService, the LangChain4j Spring Framework provides the implemen-

tation under the covers to make it very easy to invoke the chat service. Let’s look at how 

this can be defined:

@AiService

public interface ChatAssistant {

    @SystemMessage("""

2.	 We set a role for the LLM chat engine. This sets the context for the engine on what guide-

lines to use to handle the data:

             ---Role---

           

             You are an helpful assistant with expertise in fashion 
for a clothing company.

3.	 We set a goal for the LLM engine here on how it should process the data. This describes 

what the input data is and how it is structured:

           

             ---Goal---

           

            Your goal is to generate a summary of the products 
purchased by the customers and descriptions of each of the 
products.\s

            Your summary should contain two sections -\s

            Section 1 - Overall summary outlining the fashion 
preferences of the customer based on the purchases. Limit the 
summary to 3 sentences

            Section 2 - highlight 3-5 individual purchases.

          

            You should use the data provided in the section below as 
the primary context for generating the response.\s

            If you don't know the answer or if the input data tables 
do not contain sufficient information to provide an answer, just say 
so.\s

            Do not make anything up.

          



Chapter 9 177

            Data Description:

            - Each Customer has an ID. Customer ID is a numeric 
value.

            - Each Customer has purchased more than one clothing 
articles (products). Products have descriptions.

            - The order of the purchases is very important. You 
should take into account the order when generating the summary.

          

4.	 The response directive for the LLM gives directions on how the response should be struc-

tured:

            Response:

            ---

            # Overall Fashion Summary:

          

            \\n\\n

          

            # Individual Purchase Details:

          

            --

          

5.	 The Data section has the {text} variable defined, which is substituted with the input 

the method receives:

            Data:

            {text}

    """)

    String chat(String text);

}

Here, we are defining an interface with an @AiService annotation. In this service, we need to de-

fine a chat method. We will be using a simple AI chat service with a System Message option here. 

To read about the common operations and advanced operations that AIServices offers, please 

read the documentation at https://docs.langchain4j.dev/tutorials/ai-services/. Here, 

we are asking the LLM to act like a fashion expert and give us a summary of customer fashion 

preferences and highlight the top purchases, keeping the order of purchases in mind. The input 

parameter from the text is used as input data to the chat assistant.

https://docs.langchain4j.dev/tutorials/ai-services/


Integrating LangChain4j and Spring AI with Neo4j178

Now we will take a look at how we can invoke this chat request:

@Service

public class OpenAIChatService

    private ChatAssistant assistant ;

    public OpenAIChatService(ChatAssistant assistant) {

        this.assistant = assistant;

    }

    public String getSummaryText(String input) {

        String out = assistant.chat(input) ;

        return out ;

    }

}

We can see from this code snippet that usage is pretty simple. The chat assistant is bound to this 

service via Spring initialization, and the getSummaryText method invokes the chat request. It is 

as simple as that to integrate the chat services into the application.

We will take a look at embedding model integration next.

LangChain4j: OpenAI embedding model integration
Embedding model integration is pretty simple since we have already enabled AiService for the 

chat service. The embedding model usage looks as shown in the following code:

@Service

public class OpenAIEmbeddingModelService {

    EmbeddingModel embeddingModel ;

    public OpenAIEmbeddingModelService(EmbeddingModel embeddingModel) {

        this.embeddingModel = embeddingModel;

    }

    Embedding generateEmbedding(String text) {

        Response<Embedding> response = embeddingModel.embed(text) ;

        return  response.content() ;



Chapter 9 179

    }

}

We can see from the code that it is as simple as adding EmbeddingModel to the class and initializ-

ing it using a constructor. When the Spring Boot application starts, the appropriate embedding 

model implementation based on properties is instantiated and assigned to this variable. This 

service provides a method to generate the embedding for a given text.

Now that we have looked at all the services defined, let us look at how we can use all of these to 

build the application to augment a customer transactions graph.

LangChain4j: final application
For the final application, we will build a REST endpoint to issue the request to perform the aug-

mentation. Since the process itself can take time, it is split into two parts:

1.	 Issue a request to start the augmentation process. This returns a request ID.

2.	 We can use the request ID returned in step 1 to check the progress of the request.

Let us look at the REST controller first to issue requests:

1.	 We need to create a REST controller to handle the HTTP requests:

@Configuration

@EnableConfigurationProperties(RunConfiguration.class)

@RestController

public class LangchainGraphAugmentController {

2.	 Inject the individual services defined using the Autowired directive:

    @Autowired

    private OpenAIEmbeddingModelService embeddingModelService ;

    @Autowired

    private Neo4jService neo4jService ;

    @Autowired

    private OpenAIChatService chatService ;

    @Autowired



Integrating LangChain4j and Spring AI with Neo4j180

    private RunConfiguration configuration ;

3.	 Define the global variable to hold the current processing requests:

    private HashMap<String, IRequest> currentRequests = new 
HashMap<>() ;

4.	 Add the method to start the customer transactions augmenting process. This method 

takes the start- and end-of-season values and creates a ProcessRequest object. It starts 

a process thread that requests and returns a UUID for this request. We keep the UUID and 

ProcessRequest mapping so that we can provide the status when requested:

    @GetMapping("/augment/{startSeason}/{endSeason}")

    public String processAugment(

            @PathVariable (value="startSeason") String startSeason,

            @PathVariable (value="endSeason") String endSeason

    ) {

        String uuid = UUID.randomUUID().toString() ;

        ProcessRequest request = new ProcessRequest(

                chatService,

                embeddingModelService,

                neo4jService,

                configuration,

                startSeason,

                endSeason

        ) ;

        currentRequests.put(uuid, request) ;

        Thread t = new Thread(request) ;

        t.start();

        return uuid ;

    }

5.	 Add the method to start the article text augmentation process:

    @GetMapping("/augmentArticles")

    public String processAugmentArticles() {



Chapter 9 181

        String uuid = UUID.randomUUID().toString() ;

        ProcessArticles request = new ProcessArticles(

                embeddingModelService,

                neo4jService,

                configuration

        ) ;

        currentRequests.put(uuid, request) ;

        Thread t = new Thread(request) ;

        t.start();

        return uuid ;

    }

6.	 Add a method to get the status of the specified request ID:

    @GetMapping("/augment/status/{requestId}")

    public String getStatus(

            @PathVariable (value="requestId") String requestId) {

        IRequest request = currentRequests.get(requestId) ;

        if( request != null ) {

            if( request.isComplete() ) {

                currentRequests.remove(requestId) ;

            }

            return request.getCurStatus() ;

        } else {

            return "Request Not Found." ;

        }

    }

}

Note

The graph augmenting process can take a lot of time. In particular, the summary 

generation part using the LLM chat API can be time-consuming and it can take 

quite a lot of time to augment all the customers that match the requirements, say, 

the summer of 2019 purchases. For that reason, the database dump that has the 

complete augmentation only covers around 10,000 customers.



Integrating LangChain4j and Spring AI with Neo4j182

Now, let us look at the process request implementation. This is where we tie in all the various 

APIs to perform the required process:

1.	 We need to define a class ProcessRequest that implements the Runnable interface. We 

will start a thread as these requests are long-running ones. The chat service, embedding 

model service, Neo4j service, and other parameters are passed as input when we create 

this request. This class keeps track of the current processing status:

public class ProcessRequest implements Runnable, IRequest {

    private OpenAIChatService chatService ;

    private OpenAIEmbeddingModelService embeddingModelService ;

    private Neo4jService neo4jService ;

    private RunConfiguration configuration ;

    private String startSeson ;

    private String endSeason ;

    private String curStatus = "0 %" ;

    private boolean isComplete = false ;

    public ProcessRequest(

            OpenAIChatService chatService,

            OpenAIEmbeddingModelService embeddingModelService,

            Neo4jService neo4jService,

            RunConfiguration configuration,

            String startSeson,

            String endSeason) {

        this.chatService = chatService;

        this.embeddingModelService = embeddingModelService;

        this.neo4jService = neo4jService;

        this.configuration = configuration ;

        this.startSeson = startSeson ;

        this.endSeason = endSeason ;

    }

    public String getCurStatus() {



Chapter 9 183

        return curStatus ;

    }

    public boolean isComplete() {

        return isComplete;

    }

The run method implements the actual process:

    @Override

    public void run() {

        try {

2.	 Retrieve the customer transactions data from the Neo4j database. The output is a list, 

where each record contains the relationship ID for the start season as the context and the 

description of the articles in the order in which they were purchased:

            System.out.println("Retrieving Data from Graph");

            List<EncodeRequest> dbData = neo4jService.
getDataFromDB(startSeson, endSeason);

            System.out.println("Retrieved Data from Graph");

            int i = 0;

            int processingSize = dbData.size();

            List<Map<String, Object>> embeddings = new 
ArrayList<>();

            for( EncodeRequest request: dbData ) {

Once you reach the required batch size of results collected, save the data to the Neo4j 

database:

                if (i > 0 && i % configuration.getBatchSize() == 0) 
{

                    System.out.println("Saving Embeddings to Graph : 
" + i);

                    neo4jService.saveEmbeddings(embeddings);

                    embeddings.clear();

                    curStatus = ( ( i * 100.0 ) / processingSize ) + 
" %";

                }



Integrating LangChain4j and Spring AI with Neo4j184

                i++;

                Map<String, Object> embedMap = new HashMap<>();

3.	 Retrieve the customer purchase summary from the LLM chat service by passing the list 

of transactions retrieved from the graph:

                String id = request.getId();

                System.out.println("Retrieving Summary");

                String summary = chatService.getSummaryText(request.
getText());

                System.out.println("Retrieving embedding");

4.	 For the summary we get from the LLM chat service, create an embedding by leveraging 

the embedding service:

                Embedding embedding = embeddingModelService.
generateEmbedding(summary);

5.	 Save the summary and embedding along with the relationship context ID into a record 

and then save it into a batch:

                embedMap.put("id", id);

                embedMap.put("embedding", embedding.vector());

                embedMap.put("summary", summary);

                embeddings.add(embedMap);

            }

6.	 If any data is left in the batch, save that data to the Neo4j database:

            if( embeddings.size() > 0 ) {

                System.out.println("Saving Embeddings to Graph");

                neo4jService.saveEmbeddings(embeddings);

                embeddings.clear();

            }

            curStatus = "100 %";

        }catch (Exception e) {

            e.printStackTrace();

        }

        isComplete = true;



Chapter 9 185

    }

}

With this approach, we can augment the graph to perform the next steps to understand customer 

purchase behavior to be able to provide them with better recommendations.

The following code can process the article augmentation. The code is pretty much similar to the 

ProcessRequest class. We will look at only the differences here:

public class ProcessArticles implements Runnable, IRequest {  

The run method reads the data from Neo4j and splits it into batches before invoking the batch 

embedding request:

    @Override

    public void run() {

      

            List<EncodeRequest> dbData = neo4jService.getArticlesFromDB();

          

            for( EncodeRequest request: dbData ) {

                if (i > 0 && i % batchSize == 0) {

Once the batch of article texts is collected, we will pass that batch to the embedding service to 

get the embeddings. We will save the embeddings generated to the Neo4j database:

                                       List<Embedding> embedList = 
embeddingModelService.generateEmbeddingBatch(inputData);

                                                            neo4jService.
saveArticleEmbeddings(embeddings);

                                    }

                                i++;

            }

Generate the embeddings for any of the remaining article texts and save them to the Neo4j da-

tabase:

            if( inputData.size() > 0 ) {

                                List<Embedding> embedList = 
embeddingModelService.generateEmbeddingBatch(inputData);

                 neo4jService.saveArticleEmbeddings(embeddings);



Integrating LangChain4j and Spring AI with Neo4j186

                            }

            curStatus = "100 %";

        }catch (Exception e) {

            e.printStackTrace();

        }

    }

}

The flow of the operation is similar to the one in the ProcessRequest class. While we used a single 

request mode for season purchase embeddings, for article embeddings, we are using the batch 

mode. With the single request mode (using the API), we could generate only one summary at a 

time. However, with the batch mode, it is much faster to generate embeddings.

You can download the latest project from https://github.com/PacktPublishing/Building-

Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/langchain_graphaugment instead 

of building it from scratch if you would like to play with it.

To run the project, you can right-click on the LangchainGraphaugmentApplication.java file and 

select the Run menu option.

In the next section, we will take a look at how we can build the same recommendation engine 

using Spring AI.

Building your recommendation engine with Spring AI
In this section, we will look at building the graph augmentation application leveraging Spring AI. 

This project approach is similar to what we built using LangChain4j. We will be leveraging the 

GraphRAG approach to generate embeddings for a transaction chain that meets our requirements. 

We will start with the ZIP file downloaded in the last section. We need to unzip the file we have 

downloaded. Once it is unzipped, we will load the project into the IntelliJ platform using these 

steps. This is similar to what we did in the previous section. Please follow the steps listed at the 

start of the Building your recommendation engine with LangChain4j section to import the project.

Note

If you are interested in customizing the run options and other aspects, then you 

can use the Run/Debug configurations provided by the IDE. To learn more about 

these aspects, please visit https://www.jetbrains.com/help/idea/run-debug-

configuration-java-application.html.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/langchain_graphaugment
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/langchain_graphaugment
https://www.jetbrains.com/help/idea/run-debug-configuration-java-application.html
https://www.jetbrains.com/help/idea/run-debug-configuration-java-application.html


Chapter 9 187

In contrast to LangChain4j, there are no significant steps to update Spring AI project dependen-

cies. Let’s see why.

Spring AI: updating the project dependencies
Unlike the LangChain4j project, we don’t need to update any dependencies. We were able to add 

all the required dependencies from the Spring starter project. We will take a look next at updating 

the application properties.

Spring AI: updating the application properties
In this section, we need to update the application properties to be able to leverage the APIs. We 

need to add this configuration to the application.properties file in the project. Since we will 

be using an OpenAI LLM for the chat model and embeddings, we need to acquire an API key for 

this purpose, which we can do by visiting https://platform.openai.com/docs/overview.

These are the configuration properties we need to add:

•	 OpenAI chat model integration – We need to add this configuration to application.

properties. We only need to add the OpenAI API key:

# Open AI LLM Integration for Generating Summary using Chat Model.

spring.ai.openai.api-key=<OPEN_AI_KEY>

•	 OpenAI embeddings integration – We need to add this configuration to application.

properties. We don’t need to add the OpenAI API key again, as it uses the same config-

uration as the LLM chat configuration:

# Open AI LLM Integration for Generating Embeddings

spring.ai.openai.embedding.options.model=text-embedding-3-large

•	 Neo4j integration – We will add basic Neo4j integration, not the Neo4j vector database-re-

lated integration:

# Neo4j Integration

neo4j.uri=bolt://localhost:7687

neo4j.user=neo4j

neo4j.password=test1234

neo4j.database=hmreco

config.batchSize=5

https://platform.openai.com/docs/overview


Integrating LangChain4j and Spring AI with Neo4j188

Now that we have looked at the configuration properties, let us start building the application. 

We will start with Neo4j database integration first, then add chat model integration for summa-

rizing the transactions and generating embeddings for the summary. Finally, we will take a look 

at building a REST endpoint to invoke those requests as needed.

Spring AI: Neo4j integration
We are looking at Neo4j integration first as we need a means to integrate with the database to 

perform the following tasks:

1.	 Set up connectivity to be able to perform read and write transactions.

2.	 See the articles for the transactions that occurred for the specified period.

3.	 Persist the embeddings once they are generated.

The implementation here is exactly the same as the LangChain4j project discussed in the Lang-

chain4J – Neo4j integration part of the previous section. We will take a look at an OpenAI chat 

model integration that can generate a summary for the list of articles.

Spring AI: OpenAI chat integration
To integrate the chat, it is a bit different from LangChain4j. We need to define Service and ini-

tialize ChatClient. We need to leverage this client and use chat APIs to make the request. It is 

not abstracted as it is with LangChain4j. Let us take a look at this service:

@Service

public class OpenAIChatService {

    private final ChatClient chatClient;

Let’s now look at the steps to integrate OpenAI chat:

1.	 We have to provide the prompts for the LLM slightly differently in the Spring AI framework. 

In the LangChain4j framework, we had a single system message that defined the role the 

LLM is playing, the goal for the response, and data as a parameter in a single message. 

Here, we have to split the role and goal into a system prompt template, while the data 

parameter is passed into the user message. The outcome is the same in both cases:

    private final String SYSTEM_PROMPT_TEMPLATE = """



Chapter 9 189

2.	 We are setting a role for the LLM chat engine. This sets the context for the engine on what 

guidelines to use to handle the data:

             ---Role---

           

             You are an helpful assistant with expertise in fashion 
for a clothing company.

           

3.	 We are setting a goal for the LLM engine here on how it should process the data. This 

describes what the input data is and how it is structured:

             ---Goal---

           

            Your goal is to generate a summary of the products 
purchased by the customers and descriptions of each of the 
products.\s

            Your summary should contain two sections -\s

            Section 1 - Overall summary outlining the fashion 
preferences of the customer based on the purchases. Limit the 
summary to 3 sentences

            Section 2 - highlight 3-5 individual purchases.

          

            You should use the data provided in the section below as 
the primary context for generating the response.\s

            If you don't know the answer or if the input data tables 
do not contain sufficient information to provide an answer, just say 
so.\s

            Do not make anything up.

          

             Data Description:

            - Each Customer has an ID. Customer ID is a numeric 
value.

            - Each Customer has purchased more than one clothing 
articles (products). Products have descriptions.

            - The order of the purchases is very important. You 
should take into account the order when generating the summary.

      



Integrating LangChain4j and Spring AI with Neo4j190

4.	 The response directive for the LLM gives directions on how the response should be struc-

tured:

            Response:

            ---

            # Overall Fashion Summary:

      

            \\n\\n

      

            # Individual Purchase Details:

    --

    """ ;

5.	 The data is passed as a user message here. It has the {text} variable defined, which is the 

property that is substituted with the input the method receives:

    private final String userMessage = """

            Data:

            {text}

            """ ;

6.	 We need to initialize the chat client using ChatClient.Builder, which is injected by the 

Spring Framework into the constructor:

    public OpenAIChatService(ChatClient.Builder chatClientBuilder) {

        this.chatClient = chatClientBuilder.build();

    }

    public String getSummaryText(String input)



Chapter 9 191

7.	 We can see that the usage is different from the LangChain4j framework. Here, we need 

to create a prompt with a system template, pass the user message with data replacement, 

and invoke the chatResponse method:

        ChatResponse response = chatClient

                .prompt()

                .system(SYSTEM_PROMPT_TEMPLATE)

                .user(p -> p.text(userMessage).param("data", input))

                .call()

                .chatResponse() ;

        return response.getResult().getOutput().getContent() ;

    }

}

We will take a look at embedding model integration next.

Spring AI: OpenAI embedding model integration
Embedding model integration is pretty simple. We can use Autowired to initialize the embedding 

model instance. The embedding model usage looks as shown in the following code:

@Service

public class OpenAIEmbeddingModelService {

    private EmbeddingModel embeddingModel ;

    @Autowired

    public OpenAIEmbeddingModelService(EmbeddingModel embeddingModel) {

        this.embeddingModel = embeddingModel;

    }

    float[] generateEmbedding(String text) {

        float[] response = embeddingModel.embed(text) ;

        return  response ;

    }

    List<float[]> generateEmbeddingBatch(List<String> textList) {



Integrating LangChain4j and Spring AI with Neo4j192

        List<float[]> responses = embeddingModel.embed(textList) ;

        return responses ;

    }

}

From the code, we can see it is as simple as adding EmbeddingModel to the class and initializing it 

using a constructor. When the Spring Boot application starts, the appropriate embedding model 

implementation based on properties is instantiated and assigned to this variable. This service 

provides a method to generate the embedding for a given text.

Now that we have looked at all the services defined, let us look at how we can use all of these to 

build a graph augment application.

Spring AI: final application
The application flow is pretty much the same as the LangChain4j application we discussed in 

the LangChain4j – final application section. The code is similar, so we will not be adding that code 

here. The only difference would be the Java package names. For posterity, let us take a look at 

the application flow.

The REST endpoint is built to issue the request to perform the augmentation. Since the process 

itself can take time, this process is split into two parts:

1.	 Issue a request to start the augmentation process. This returns a request ID.

2.	 Use the request ID returned in step 1 to check the progress of the request.

The first step starts a thread and initiates processing the whole data. The request process follows 

these steps:

1.	 Retrieve the relationship ID for the start season as the context, and the description of the 

articles in the order in which they were purchased. We return a list of records as a response.

2.	 For each record we retrieved from Neo4j, we perform the following steps:

1.	 Execute the chat request to generate the summary.

2.	 For the summary returned from the chat request, generate an embedding using 

an LLM embedding API.

3.	 Save the relationship ID, summary, and embedding to a map to build a batch.

4.	 Once the batch size reaches the size specified in the configuration, write the sum-

mary and embedding to the relationship identified by the relationship ID.



Chapter 9 193

With this approach, we can augment the graph to perform the next steps to understand customer 

purchase behavior to be able to provide customers with better recommendations.

You can download the latest project from https://github.com/PacktPublishing/Building-

Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/springai_graphaugment instead 

of building it from scratch if you would like to play with it.

To run the project, you can right-click on the SpringaiGraphAugmentApplication.java file and 

select the Run menu option.

Let’s now see how we can use this application we built to augment the graph and take a look at 

how we can provide recommendations from this.

Fine-tuning your recommendation system
Now that the project is ready, we can either run the application in the IDE or build a runnable 

JAR file. Here, we will run it from the IDE directly. We will be using a LangChain4j application 

for testing here. A Spring AI application would follow the same principles. We will be starting 

from the database we created in the previous chapter. If you do not want to start from scratch, 

you can download the database dump from https://packt-neo4j-powered-applications.
s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Databas

e+Dump+files.zip and create a database from it.

You can double-click on the LangchainGraphaugmentApplication.java file to load it into the 

IDE. Once it is loaded, you can right-click on the class name to run the application. Figure 9.6 

shows how we can do this.

Note

If you are interested in customizing the run options and other aspects, then you 

can use the Run/Debug configurations provided by the IDE. To learn more about 

these aspects, please visit https://www.jetbrains.com/help/idea/run-debug-

configuration-java-application.html.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/springai_graphaugment
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch9/springai_graphaugment
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://www.jetbrains.com/help/idea/run-debug-configuration-java-application.html
https://www.jetbrains.com/help/idea/run-debug-configuration-java-application.html


Integrating LangChain4j and Spring AI with Neo4j194

Figure 9.6 — Run the application from the IDE

Once you’ve right-clicked on the class name, click on the Run menu item to start the application. 

Once the application is ready, you should see this in the IDE console:

2024-12-12T14:52:30.075+05:30  INFO 5296 --- [langchain_graphaugment] 
[           main] w.s.c.ServletWebServerApplicationContext : Root 
WebApplicationContext: initialization completed in 1271 ms

2024-12-12T14:52:31.347+05:30  INFO 5296 --- [langchain_graphaugment] 
[           main] o.neo4j.driver.internal.DriverFactory    : Direct driver 
instance 1567253519 created for server address localhost:7687

2024-12-12T14:52:31.388+05:30  INFO 5296 --- [langchain_graphaugment] 
[           main] o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat 
started on port 8080 (http) with context path '/'

2024-12-12T14:52:31.398+05:30  INFO 5296 --- [langchain_graphaugment] 
[           main] g.h.l.g.LangchainGraphaugmentApplication : Started 
LangchainGraphaugmentApplication in 3.146 seconds (process running for 
3.746)



Chapter 9 195

Once the application is up and running, we can open a browser and enter the URL http://

localhost:8080/augment/SUMMER_2019/FALL_2019 to start the augmentation process for 

the SUMMER_2019 purchases of customers. When we issue this request, we get a UUID such as 

aff867bd-08fb-42fb-8a27-3917e0ce83d1 as a response. While the process is running, we can 

inquire about the current completion percentage by entering the URL http://localhost:8080/

augment/status/aff867bd-08fb-42fb-8a27-3917e0ce83d1 in the browser.

Generating a summary and embedding will take time. Once this process is complete, we should 

create embeddings on articles next. The process is similar to the previous step. We need to enter 

the URL http://localhost:8080/augmentArticles in the browser. It will also provide us with 

a UUID as a response. We need to keep checking the completion percentage until it is complete.

If you do not want to wait for this whole process to complete, you can download the data-

base from https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/

Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip.

Now, that we have performed the augmentation, let us take a look at how good these embeddings 

are and how they can help us provide recommendations. For this purpose, we can further enhance 

the graph by creating vector indexes for the embeddings we created.

You can execute this Cypher query to create a vector index for embeddings on articles:

CREATE VECTOR INDEX `article-embeddings` IF NOT EXISTS

FOR (a:Article)

ON a.embedding

OPTIONS { indexConfig: {

 `vector.dimensions`: 3072,

 `vector.similarity_function`: 'cosine'

}}

This creates a vector index on Article nodes named article-embeddings.

Note

Note that the UUID value of  aff867bd-08fb-42fb-8a27-3917e0ce83d1 mentioned 

previously is a dynamic one. It is not guaranteed that you will get the same UUID 

as shown in the preceding text. This UUID is specific to the run in this example. You 

would need to take a look at the UUID returned by the request for your run and use 

it to check the status.

https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip


Integrating LangChain4j and Spring AI with Neo4j196

The following Cypher code can be used to create a vector index on the summer 2019 purchases 

embedding:

CREATE VECTOR INDEX `summer-2019-embeddings` IF NOT EXISTS

FOR ()-[r:SUMMER_2019]->() ON (r.embedding)

OPTIONS { indexConfig: {

 `vector.dimensions`: 3072,

 `vector.similarity_function`: 'cosine'

}}

This creates a vector index on the SUMMER_2019 relationship named summer-2019-embeddings.

Let us take a look at using the Article vector index first. This Cypher tries to find the top five 

matches for an article with an ID of 0748579001:

MATCH (a:Article {id:'0748579001'})

WITH a

CALL db.index.vector.queryNodes('article-embeddings', 5, a.embedding)

YIELD node, score

RETURN score, node.id as id, node.desc as desc

From the results (Figure 9.7), we can see that the first match is the best match and it is the Article 

node we looked for:

Score Id Desc

1.0 “0748579001” “Ankle-length, A-line beach dress in an airy, patterned weave with a 

deep V-neck with gold-coloured studs, and long dolman sleeves with 

elastication and a decorative drawstring at the cuffs. Unlined.”

0.882 “0748033001” “Long beach dress in airy, crinkled chiffon with narrow, tie-top shoulder 

straps and an opening at the back of the neck. Unlined.”

0.873 “0748582008” “Short beach dress in an airy cotton weave with broderie anglaise. 

V-neck front and back with a crocheted lace trim, horizontal, tasselled 

straps at the back of the neck, dropped shoulders and short sleeves. 

Seam at the waist and a gently flared skirt. Unlined.”

0.866 “0748025004” “Kaftan in an airy weave with buttons down the front and high slits in 

the sides.”

0.866 “0747737004” “Sarong in an airy weave. Size 130x150 cm.”

Figure 9.7 — Similar articles for a given article



Chapter 9 197

Also, we can see that the articles that are less similar to each other have lower score values. From 

this result, let us take Article with an ID of 0748582008 and see what we can find:

MATCH (a:Article {id:'0748582008'})

WITH a

CALL db.index.vector.queryNodes('article-embeddings', 5, a.embedding)

YIELD node, score

RETURN score, node.id as id, node.desc as desc

When we run the Cypher, we can see these results:

Score Id Desc

1.0 “0748582008” “Short beach dress in an airy cotton weave with broderie anglaise. 

V-neck front and back with a crocheted lace trim, horizontal, tasselled 

straps at the back of the neck, dropped shoulders and short sleeves. 

Seam at the waist and a gently flared skirt. Unlined.”

0.969 “0748582001” “Short beach dress in an airy cotton weave with broderie anglaise. 

V-neck front and back with a crocheted lace trim, horizontal, tasselled 

straps at the back of the neck, dropped shoulders and short sleeves. 

Seam at the waist and a gently flared skirt. Unlined.”

0.893 “0848082001” “Short beach kaftan in an airy weave with lace trims. Short, wide sleeves, 

and a drawstring at the waist.”

0.884 “0854784001” “Short beach dress in an airy cotton weave containing glittery threads. 

Round neckline with a V-neck opening and narrow ties at the front, 

dropped shoulders and long balloon sleeves with narrow, buttoned 

cuffs. Gathered tiers at the hem for added width.”

0.884 “0850893001” “Calf-length lace kaftan with a crocheted trim around the opening, a 

drawstring and twisted ties at the waist, and long sleeves. Scalloped 

trim around the cuffs and hem.”

Figure 9.8 — Similar articles for a given article

From the results, we can see that when the score is closer to 0.9, the articles are pretty similar. 

We can use this information to provide similar articles as recommendations, based on the articles 

customers have already purchased.



Integrating LangChain4j and Spring AI with Neo4j198

Now, let us look at the customer summer purchase behaviors for a customer whose ID ends in 

92f0. Let’s call this customer, A:

MATCH (c:Customer)-[r:SUMMER_2019]->() WHERE 
c.id='0002b7a7ab270a638fcb2eb5899c58696db24d9d954ddb43683dd6b0ffa292f0'

WITH r

CALL db.index.vector.queryRelationships('summer-2019-embeddings', 5, 
r.embedding)

YIELD relationship, score

MATCH (oc)-[relationship]->()

WITH oc, score, relationship

WITH oc, score, split(relationship.summary, '\n') as s

WITH oc, score, CASE when s[2] <> '' THEN s[2] ELSE s[3] end as desc

WITH score, oc.id as id, desc

RETURN round(score,3) as score, 
substring(id,0,4)+".."+substring(id,size(id)-4) as id, desc

When we run this Cypher, we can see these results:

Score Id Desc

1.0 “0002..92f0” “The customer exhibits a strong preference for vibrant colors and 

comfortable, casual styles, particularly in swimwear and denim. Their 

purchases suggest a love for playful yet practical clothing, suitable for both 

beach outings and everyday wear. The mix of swimwear, shorts, and casual 

tops indicates a versatile wardrobe focused on both style and comfort.”

0.968 “044d..d47e” “The customer exhibits a strong preference for swimwear, particularly in 

vibrant colors like light orange and dark red, indicating a fun and playful 

style. Their choices also reflect an inclination towards high-waisted 

designs and supportive tops, suggesting a desire for both comfort and 

fashion. Additionally, the purchase of a versatile playsuit and tailored 

jacket indicates an appreciation for stylish yet practical everyday wear.”

0.967 “07fe..a87f” “The customer exhibits a strong preference for swimwear, particularly 

in vibrant colors like orange and black, indicating a love for beach and 

poolside activities. There is also a notable inclination towards basic 

wardrobe staples, such as tank tops and shorts, suggesting a desire for 

comfortable yet stylish casual wear. The blend of swimwear and basic 

clothing reflects a versatile fashion sense suitable for both leisure and 

everyday wear.”



Chapter 9 199

0.966 “0247..74b3” “The customer demonstrates a preference for vibrant colors and versatile 

clothing items suitable for various occasions, including casual wear and 

swimwear. The repeated purchases of swimwear suggest a keen interest 

in beach or poolside activities. Additionally, the inclusion of dresses and 

accessories indicates a desire for stylish yet comfortable outfits.”

0.965 “0686..5220” “The customer displays a strong preference for vibrant colors, particularly 

orange and white, as seen in their selection of swimwear and casual attire. 

Their purchases indicate a blend of comfort and style, with a focus on 

versatile pieces that can be worn for various occasions. The inclusion of 

both swimwear and everyday clothing suggests a lifestyle that appreciates 

both leisure and fashion.”

Figure 9.9 — Purchase summaries for other customers similar to the given customer

From the basic summary, we can see that the customer purchase behaviors are pretty similar. Let 

us pick another customer (say, customer B) from this list to see whether the same customers are 

returned when we run the same query. We will pick the customer ID ending in 74b3:

MATCH (c:Customer)-[r:SUMMER_2019]->() WHERE c.id=' 
0247b7b564909181b2e552fe3d5cec01056ebc1b3d61d38f1ff0658db69174b3'

WITH r

CALL db.index.vector.queryRelationships('summer-2019-embeddings', 5, 
r.embedding)

YIELD relationship, score

MATCH (oc)-[relationship]->()

WITH oc, score, relationship

WITH oc, score, split(relationship.summary, '\n') as s

WITH oc, score, CASE when s[2] <> '' THEN s[2] ELSE s[3] end as desc

WITH score, oc.id as id, desc

RETURN round(score,3) as score, 
substring(id,0,4)+".."+substring(id,size(id)-4) as id, desc



Integrating LangChain4j and Spring AI with Neo4j200

Let us look at the results when we run this query:

Score Id Desc

1.0 “0247..74b3” “The customer demonstrates a preference for vibrant colors and versatile 

clothing items suitable for various occasions, including casual wear and 

swimwear. The repeated purchases of swimwear suggest a keen interest 

in beach or poolside activities. Additionally, the inclusion of dresses and 

accessories indicates a desire for stylish yet comfortable outfits.”

0.968 “05de..29df” “The customer’s fashion preferences indicate a strong inclination 

towards swimwear and dresses, particularly in vibrant and playful colors 

such as pink, orange, and blue. The selection of both swimwear and 

dresses suggests a versatile style that embraces both casual beachwear 

and stylish everyday attire. Additionally, the repeated purchases of 

high-waisted bikini bottoms showcase a preference for flattering and 

functional swimwear options.”

0.967 “0322..3e92” “The customer exhibits a strong preference for swimwear, as evidenced 

by multiple purchases of bikini tops and bottoms, showcasing a desire 

for stylish beach attire. Additionally, the selection of dresses and blouses 

reflects an inclination towards fashionable yet comfortable everyday 

wear. The use of vibrant colors and unique design elements indicates a 

taste for contemporary and eye-catching pieces.”

0.966 “0002..92f0” “The customer exhibits a strong preference for vibrant colors and 

comfortable, casual styles, particularly in swimwear and denim. Their 

purchases suggest a love for playful yet practical clothing, suitable for 

both beach outings and everyday wear. The mix of swimwear, shorts, 

and casual tops indicates a versatile wardrobe focused on both style and 

comfort.”

0.965 “0863..c454” “The customer displays a strong preference for swimwear, particularly 

in vibrant colors like dark red and orange, indicating a fondness for 

beachwear and summer styles. Additionally, their choices in everyday 

clothing, such as airy dresses and denim skirts, suggest an inclination 

towards comfortable yet stylish casual wear. The repetition of specific 

items also reflects a desire for consistency and reliability in their fashion 

selections.”

Figure 9.10 — Purchase summaries for other customers similar to the given customer



Chapter 9 201

We can see that the top five matches for customer B are very different from those of customer A, 

even though customer B’s purchase summary was in the top five similar customer purchases of 

customer A.

We can use this approach to recommend articles to purchase based on customer purchase be-

havior. We are capturing the order of the purchases, but how the summary of these purchases is 

captured by an embedding defines who will be considered a similar customer. Let us see what 

this query would look like:

MATCH (c:Customer)-[r:SUMMER_2019]->() WHERE 
c.id='0247b7b564909181b2e552fe3d5cec01056ebc1b3d61d38f1ff0658db69174b3'

WITH c, r

We want to find other customers similar to this customer based on purchases. We will use the 

vector index to get the top five similar customers:

CALL db.index.vector.queryRelationships('summer-2019-embeddings', 5, 
r.embedding)

YIELD relationship, score

MATCH (oc)-[relationship]->()

WITH c, collect(oc) as others

CALL {

Collect the articles purchased by the customer:

    WITH c

    MATCH (c)-[:SUMMER_2019]->(start)

    MATCH (c)-[:FALL_2019]->(end)

    WITH start, end

    MATCH p=(start)-[:NEXT*]->(end)

    WITH p

    WITH nodes(p) as txns

    UNWIND txns as tx

    MATCH (tx)-[:HAS_ARTICLE]->(a)

    RETURN collect(a) as customerPurchases

}

WITH others, customerPurchases

CALL {



Integrating LangChain4j and Spring AI with Neo4j202

Collect the articles purchased by the other customers who are similar to the first customer:

    WITH others

    UNWIND others as a

    MATCH (a:Customer)-[:SUMMER_2019]->(start)

    MATCH (a)-[:FALL_2019]->(end)

    WITH start, end

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as tx

    MATCH (tx)-[:HAS_ARTICLE]->(a)

    WITH DISTINCT a

    RETURN collect(a) as otherPurchases

}

WITH customerPurchases, otherPurchases

Remove the articles purchased by the original customer from the articles purchased by similar 

customers:

WITH apoc.coll.subtract(otherPurchases, customerPurchases) as others

UNWIND others as other

RETURN other.id as id, other.desc as desc

LIMIT 10

This Cypher first collects the purchases made by the customer, finds other customers who have 

similar purchase behavior, retrieves the purchases made by those customers, and recommends 

10 articles to the original customer that they haven’t previously purchased. The output of this 

query looks like this:

Id Desc

“0471714036” “Knee-length shorts in a cotton weave with a button fly, side pockets and a welt 

back pocket with a button.”

“0699923078” “T-shirt in soft, printed cotton jersey.”

“0786663001” “Short, off-the-shoulder dress in an airy, plumeti weave with elastication and 

a small frill trim at the top. Long sleeves with elastication at the cuffs, an 

elasticated seam at the waist and a flounce at the hem. Jersey lining.”

“0728473001” “Triangle bikini top with laser-cut scalloped edges and lightly padded cups with 

removable inserts. Narrow, adjustable shoulder straps that can be fastened in 

different ways and an adjustable metal hook fastening at the back.”



Chapter 9 203

“0689040001” “Fully lined bikini bottoms with a mid waist, wide sides, a wide tie at one side 

and medium coverage at the back.”

“0736046001” “Metal hoop earrings in different sizes, three with charms in various designs. 

Diameter 1-2 cm.”

“0713200006” “Fully lined, waist-high bikini bottoms with wide sides and medium coverage at 

the back.”

“0674606026” “Short, A-line skirt with a high waist and buttons down the front.”

“0562245064” “5-pocket jeans in washed, superstretch denim with a regular waist, zip fly and 

button, and skinny legs.”

“0557247005” “Oversized top in sturdy sweatshirt fabric with dropped shoulders and ribbing 

around the neckline, cuffs and hem. Soft brushed inside.”

Figure 9.11 — Recommendations for a customer based on purchases made by similar cus-
tomers

By following the steps explained to fine-tune your graph, we can now provide recommendations 

based on customer purchase behavior by finding similar customers and their purchases or similar 

articles based on what customers bought. This approach is simple and works well. But we are 

determining who similar customers are, and so on. We might want to use Graph Data Science 

algorithms or machine learning to group customers better so that we can provide better recom-

mendations. We will take a look at that aspect in the next chapter.

Summary
In this chapter, we looked at how to build intelligent applications by leveraging LangChain4j 

and Spring AI. We used these applications to augment the H&M transactions graph we loaded 

in the previous chapter, by leveraging LLM chat and embedding capabilities. Once the graph 

was augmented, we further enhanced the graph by leveraging vector indexes and saw how these 

indexes help us find similar articles or customers based on their purchases.

In the next chapter, we will step into Graph Data Science algorithms to see how we can further 

enhance these recommendations.





10
Creating an Intelligent 
Recommendation System

Now that we have loaded the data into a graph, and looked at how we can augment the graph 

using Langchain4j and Spring AI, along with generating recommendations, we will look at how 

we can go further to improve the recommendations by leveraging Graph Data Science (GDS) 

algorithms and machine learning. We will review the GDS algorithms provided by Neo4j to go 

beyond the recommendation system we created in the previous chapter. We will also learn how 

to use the GDS algorithms to build collaborative filtering as well as content-based approaches 

to provide recommendations. We will also take a look at the results after we run the algorithms 

to review how our approach is working and whether we are on the right path to build a better 

recommendation system. We will try to understand why these algorithms are better than the 

approach we implemented in the previous chapter.

In this chapter, we are going to cover the following main topics:

•	 Improving recommendations with GDS algorithms

•	 Understanding the power of communities

•	 Combining collaborative filtering and content-based approaches

Technical requirements
We will be using a Java IDE environment to work with the Langchain4j and Spring AI 

projects. You will need to have these installed and know how to work with them.



Creating an Intelligent Recommendation System206

Setting up the environment
We will be starting from the graph database we built in the last chapter. The code is tested with 

the Neo4j 5.21.2 version of the database.

To set up the environment, you will need

•	 Neo4j Desktop with the following plugins installed. :

•	 APOC plugin – 5.21.2

•	 Graph Data Science library – 2.9.0

Figure 10.1 shows how to install these plugins for a DBMS.

Figure 10.1 — Install plugins in Neo4j Desktop

When you select the DBMS in Neo4j Desktop, on the right side, it shows its details. Click on the 

Plugins tab and select the plugins. Once that is expanded, click on the Install and Restart button.

Next, we will look at the database dump required for this chapter.



Chapter 10 207

Getting the database ready
Before you begin, you will need to create the communities. It will take some time for the similar-

ity and community detection algorithms to complete. Thus, it is recommended to download the 

database dump from https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.

com/hmreco_post_augment_with_summary_communities.dump and use it to create a database in 

Neo4j Desktop. You can use these instructions to load this dump into Neo4j Desktop: https://

neo4j.com/docs/desktop-manual/current/operations/create-from-dump/. 

This database dump has all the SUMMER_2019_SIMILAR relationships created and the communities 

are identified.

Let’s start with using the GDS algorithms to enhance our knowledge graph for improved rec-

ommendations.

Improving recommendations with GDS algorithms
In this section, we will look at how we can enhance the graph further to gain more insights 

into the graph to build a better recommendation system. We will start with the graph database 

we created in the last chapter. For reference, you can download it from https://packt-neo4j-
powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applicati

ons+with+LLMs+Database+Dump+files.zip.

The Neo4j GDS algorithms (https://neo4j.com/docs/graph-data-science/current/) will 

help us enhance the graph. This process includes the following steps:

1.	 Calculate the similarity between customers based on the embeddings we have created 

and create a similar relationship between these customers. For this purpose, we will 

leverage the K-Nearest Neighbors (KNN) algorithm (https://neo4j.com/docs/graph-

data-science/current/algorithms/knn/).

2.	 Run the community detection algorithm to group the customers based on similar rela-

tionships. For this purpose, we will leverage the Louvain community detection algorithm 

(https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/).

First, we will utilize the KNN algorithm to enhance the graph.

Computing similarity with the KNN algorithm
The K-Nearest Neighbors (KNN) algorithm collects node pairs, computes a distance value between 

a node and its neighbors, and creates a relationship between the node and its top K neighbors. 

The distance is calculated based on node properties. We need to provide a homogeneous graph 

https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/hmreco_post_augment_with_summary_communities
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/hmreco_post_augment_with_summary_communities
https://neo4j.com/docs/desktop-manual/current/operations/create-from-dump/
https://neo4j.com/docs/desktop-manual/current/operations/create-from-dump/
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://packt-neo4j-powered-applications.s3.us-east-1.amazonaws.com/Building+Neo4j-Powered+Applications+with+LLMs+Database+Dump+files.zip
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/algorithms/knn/
https://neo4j.com/docs/graph-data-science/current/algorithms/knn/
https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/


Creating an Intelligent Recommendation System208

for this algorithm. When all the nodes and relationships are the same, it is called a homogeneous 

graph. The node pairs we provide to the KNN algorithm do not need any node labels or relation-

ship types.  The KNN algorithm just needs node pairs that are connected and an optional property 

that can be used as the context of the relationship between them. You can read more about this 

at https://neo4j.com/docs/graph-data-science/current/algorithms/knn.

To use this algorithm, we need to follow this process:

1.	 Project graph of interest to apply the algorithm.

2.	 Invoke the algorithm with the appropriate configuration. There are three modes of this 

algorithm:

•	 Stream: This applies the algorithm to the in-memory graph and streams the results. 

You can use the stream mode to inspect the results and see if they are what we want.

•	 Mutate: This applies the algorithm to the in-memory graph and writes the data 

back to the in-memory graph. The actual database does not change. The mutate 

method is used when we want to update the in-memory graph and want to process 

it later for different purposes.

•	 Write: This applies the algorithm to the in-memory graph and writes the rela-

tionships back to the actual database. This mode is used when we are sure of the 

process and want to write the results back to the graph immediately.

We will start with graph projection. Since we have written the embeddings on the SUMMER_2019 

relationships, we will use those for processing.

This Cypher projects the graph in memory to be able to invoke this algorithm:

  MATCH (c:Customer)-[sr:SUMMER_2019]->()

  WHERE sr.embedding is not null

  RETURN gds.graph.project(

    'myGraph',

    c,

    null,

    {

      sourceNodeProperties: sr { .embedding },

      targetNodeProperties: {}

    }

  )

https://neo4j.com/docs/graph-data-science/current/algorithms/knn


Chapter 10 209

Normally, we will use the properties on the node to build a projection. Here, we have written the 

embedding value on a relationship, as this embedding is created to represent the summer 2019 

season purchases. If we had written that embedding on the Customer node, then if we wanted to 

understand the customer purchase behavior for various scenarios, we would need to use some 

clever naming to write those to only the Customer node. By writing that embedding on the rela-

tionship, we are preserving the context of the embedding in the graph.

We can see from the preceding Cypher that we are retrieving the embedding from the relationship 

and adding it as a source node property in the projection. Now, let us invoke the algorithm to 

write back similar relationships to the graph.

This Cypher invokes the algorithm to write back the results:

CALL gds.knn.write('myGraph', {

    writeRelationshipType: 'SUMMER_2019_SIMILAR',

    writeProperty: 'score',

    topK: 5,

    nodeProperties: ['embedding'],

    similarityCutoff: 0.9

})

YIELD nodesCompared, relationshipsWritten

From the Cypher, we can see we are invoking the write mode of the algorithm. The algorithm 

will calculate the similarity between Customers by using cosine similarity on the embeddings, 

with a cut-off score of 0.9, pick the top 5 neighbors in the order of similarity score, and write a 

relationship named SUMMER_2019_SIMILAR between those customers. 

Similar scores can be between 0 and 1. If the score is closer to 0 between 2 entities, then they 

are not similar to each other. If it is close to 1, then they are more similar. We are using 0.9 as 

the similarity cutoff as we are generating embeddings based on the summary text generated – 

customers might have a higher similarity score. We don’t want a similar relationship between 

Note

Cosine similarity calculates the angle between two vectors. So, if the vectors are 

farther apart, then the similarity value will be close to 0. If they are closer to each 

other, then the similarity value will be close to 1. If you want to read more about it, 

you can read at https://en.wikipedia.org/wiki/Cosine_similarity. 

https://en.wikipedia.org/wiki/Cosine_similarity


Creating an Intelligent Recommendation System210

customers because there are some keywords that are similar. We will validate this assumption 

in later steps. We are limiting ourselves to the top five (k =5) similar customer behaviors, to get 

closer recommendations.

Once the algorithm is invoked, we need to remove the graph projection. Otherwise, it will keep 

using the memory in the database server:

CALL gds.graph.drop('myGraph')

This Cypher will drop the graph and clear the memory used by the graph projection.

We will take a look at community detection next, based on the SUMMER_2019_SIMILAR relationship.

For this, we will be leveraging the Louvain community detection algorithm, which is the most 

popular community detection algorithm.

Detecting communities with the Louvain algorithm
The Louvain algorithm relies on the similarity scores between entities and groups them into 

communities. It takes large, networked data and groups it into smaller, tighter-knit communi-

ties by looking at the neighbors and their relationships.  This hierarchical clustering algorithm 

recursively merges communities into a single node and executes the modularity clustering on 

the condensed graphs. It maximizes a modularity score for each community, evaluating how 

much more densely connected the nodes within a community are compared to how connected 

they would be in a random network. We want to group our customers in more tight-knit groups 

in a more automated way to provide broader recommendations. You can read more about this at 

https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/.

Note

Please note that the KNN algorithm is a non-deterministic algorithm by default. This 

means that different runs might give different results. You can learn more about this 

at https://neo4j.com/docs/graph-data-science/2.14/algorithms/knn/. If 

you want deterministic results, then you must ensure that the concurrency parameter 

is set to one and the randomSeed parameter is explicitly set.

https://neo4j.com/docs/graph-data-science/current/algorithms/louvain/
https://neo4j.com/docs/graph-data-science/2.14/algorithms/knn/


Chapter 10 211

The approach is very similar to how we invoked the KNN algorithm. To use this algorithm, we 

need to follow this process.

1.	 Project graph of interest to apply the algorithm.

2.	 Invoke the algorithm with the appropriate configuration. There are three modes of this 

algorithm.

•	 Stream: This applies the algorithm to the in-memory graph and streams the results. 

You can use the stream mode to inspect the results and see if they are what we want.

•	 Mutate: This applies the algorithm to the in-memory graph and writes the data 

back to the in-memory graph. The actual database has not changed. The mutate 

method is used when we want to update the in-memory graph and want to process 

it later for different purposes.

•	 Write: This applies the algorithm to the in-memory graph and writes the rela-

tionships back to the actual database. This mode is used when we are sure of the 

process and want to write the results back to the graph immediately.

Let’s start with graph projection. We will use the SUMMER_2019_SIMILAR relationship and the 

score value saved on that relationship to perform community detection:

MATCH (source:Customer)-[r:SUMMER_2019_SIMILAR]->(target)

RETURN gds.graph.project(

  'communityGraph',

  source,

  target,

  {

    relationshipProperties: r { .score }

  },

  { undirectedRelationshipTypes: ['*'] }

)

The preceding Cypher creates an in-memory projection named communityGraph. It takes the source 

node, target node, and the score on the SUMMER_2019_SIMILAR relationship to build the projection.

Once the projection is built, we can use this Cypher to perform community detection:

CALL gds.louvain.write('communityGraph', { writeProperty: 'summer_2019_
community' })

YIELD communityCount, modularity, modularities



Creating an Intelligent Recommendation System212

This Cypher performs the community detection and writes back the community ID as a property 

named summer_2019_community on the Customer node.

Once the community detection is complete, we need to drop the graph projection.

CALL gds.graph.drop('communityGraph')

This Cypher will drop the graph and clear the memory used by the graph projection.

We can use this Cypher to inspect how many communities are created:

MATCH (c:Customer) WHERE c.summer_2019_community IS NOT NULL

RETURN c.summer_2019_community, COUNT(c) as count

ORDER BY count DESC

This Cypher gives all communities, in the order of how many customers belong to that community. 

The response would look as shown in Figure 10.2.

Figure 10.2 — Communities with customer counts

Note:

Please note that the Louvain community detection algorithm is a non-determin-

istic algorithm by default. This means that different runs might give different re-

sults. You can learn more about this at https://neo4j.com/docs/graph-data-

science/2.14/algorithms/louvain/.

https://neo4j.com/docs/graph-data-science/2.14/algorithms/louvain/
https://neo4j.com/docs/graph-data-science/2.14/algorithms/louvain/


Chapter 10 213

Now that we have built communities, let us take a look at the communities generated. In the next 

section, we will inspect a few of these communities to observe whether they group customers 

based on their purchase behavior.

Understanding the power of communities
Previously, in Chapter 9, we looked at finding similar customers using vector similarity and how 

to provide recommendations for a customer. Let’s revisit Figure 9.10 and Figure 9.11. Figure 9.10 

displays the purchase history of customers similar to a particular customer. Figure 9.11 shows 

the recommendations for a customer based on the purchases of similar customers. The purchase 

history and customer recommendations are a result of the Cypher queries we worked on in the 

Fine-tuning your recommendations section to understand vector similarity usage.

In this section, we will take a deeper look at communities and see why they might be better than 

leveraging simple vector similarity to find similar customers.

From the Cypher we ran in the last section, Detecting communities with the Louvain  algorithm, let 

us pick a community that has a good number of customers in it. We will take a look at the com-

munity with ID 133, which has around 1,242 customers in it.

The following Cypher displays the customer purchase summary without the article details for 

the first five customers:

MATCH (c:Customer)-[r:SUMMER_2019]->()

WHERE c.summer_2019_community=133

WITH split(r.summary, '\n') AS s

WITH CASE WHEN s[2] <> '' THEN s[2] ELSE s[3] END AS d

return d LIMIT 5

When we run community detection, the community IDs generated can be different for each run. 

So, if you have run your own Cypher script to create the customer communities, you need to take 

a look at the communities and use those IDs to validate the data.

Note

The following Cyphers are related to the database shared in the Technical  

requirements section.



Creating an Intelligent Recommendation System214

When we run the preceding Cypher script, the output looks like this:

The customer demonstrates a preference for stylish and modern pieces, 
particularly favoring dresses and lingerie that offer both comfort and 
elegance. The consistent choice of midi and short dresses paired with a 
variety of non-wired bras suggests a desire for chic yet relaxed fashion 
options. Additionally, the inclusion of tailored blouses and fashionable 
outerwear indicates an appreciation for versatile styles suitable for 
various occasions.

The customer exhibits a preference for comfortable yet stylish clothing, 
favoring light and soft colors such as light pink and light blue. Their 
purchases reflect a blend of casual and lingerie items, indicating a focus 
on both everyday wear and intimate apparel. The selection features a mix 
of high-waisted denim and lace detailing, suggesting an appreciation for 
modern, flattering silhouettes.

The customer demonstrates a strong preference for versatile and stylish 
pieces, favoring bold colors like pink and orange while incorporating 
comfortable fabrics such as jersey and cotton. Their purchases include 
a mix of casual wear, activewear, and lingerie, suggesting a balanced 
lifestyle that values both comfort and aesthetics. The frequent selection 
of shorts and dresses indicates a preference for easy-to-wear, fashionable 
items suitable for various occasions.

The customer demonstrates a preference for comfortable and stylish 
lingerie, favoring soft materials with unique design details such as lace 
trims and laser-cut edges. Additionally, their choice of everyday wear 
leans towards light and airy fabrics, showcasing a blend of casual and 
chic styles suitable for various occasions. The color palette reflects 
a soft and neutral aesthetic, with light pinks, beiges, and whites 
dominating their selections.

The customer exhibits a preference for comfortable and functional 
clothing, particularly in the realm of casual and lingerie wear. There is 
a clear inclination towards basic styles in neutral colors such as black 
and white, complemented by playful accents in perceived colors like orange 
and pink. The focus on versatile pieces suggests a desire for practicality 
combined with style.

From the summary descriptions, we can see the customers in this community prefer to buy casual 

and lingerie clothing together.



Chapter 10 215

Let’s take a look at the articles purchased by these customers:

MATCH (c:Customer)

WHERE c.summer_2019_community=133

WITH c LIMIT 10

MATCH (c)-[:SUMMER_2019]->(start)

MATCH (c)-[:FALL_2019]->(end)

WITH c, start, end

CALL {

    WITH start, end

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as nodes

    UNWIND nodes as n

    MATCH (n)-[:HAS_ARTICLE]->(a)

    WITH a LIMIT 3

    RETURN collect(a.desc) as articles

}

WITH c, articles

RETURN articles

This Cypher gives this output:

["Calf-length dress in a crinkled weave with a V-neck, wrapover front 
with ties at the waist and short sleeves with a slit and ties. Unlined.", 
"Calf-length dress in a crinkled weave with a V-neck, wrapover front with 
ties at the waist and short sleeves with a slit and ties. Unlined.", 
"Soft, non-wired bras in cotton jersey with moulded, padded triangular 
cups for a larger bust and fuller cleavage. Adjustable shoulder straps 
that cross at the back and lace at the hem. No fasteners."]

["High-waisted jeans in washed superstretch denim with hard-worn details, 
a zip fly and button, back pockets and skinny legs.", "Lace push-up 
bra with underwired, moulded, padded cups for a larger bust and fuller 
cleavage. Adjustable shoulder straps and a hook-and-eye fastening at the 
back.", "Lace push-up bra with underwired, moulded, padded cups for a 
larger bust and fuller cleavage. Adjustable shoulder straps and a hook-
and-eye fastening at the back."]

["Vest top in cotton jersey with a print motif.", "Soft, non-wired bras in 
microfibre with padded cups that shape the bust and provide good support. 
Adjustable shoulder straps and a hook-and-eye fastening at the back.", 
"Chino shorts in washed cotton poplin with a zip fly, side pockets, welt 



Creating an Intelligent Recommendation System216

back pockets with a button and legs with creases."]

["Microfibre Brazilian briefs with laser-cut edges, a low waist, lined 
gusset, wide sides and half-string back.", "Hipster briefs in microfibre 
with lace trims, a low waist, lined gusset and cutaway coverage at the 
back.", "Blouse in an airy weave with a V-neck, covered buttons down the 
front, short dolman sleeves and a tie detail at the hem."]

["Round-necked T-shirt in soft cotton jersey.", "Round-necked T-shirt in 
soft cotton jersey.", "Thong briefs in cotton jersey and lace with a low 
waist, lined gusset, wide sides and string back."]

We are limiting ourselves to the first three articles so that we won’t look at a lot of data here. We 

can see from the articles purchased that the summaries summarize the customer’s purchase 

behavior well.

Let us look at how the customer age group to communities’ correlation exists.

The following Cypher gives us the most frequently occurring age group in a community age 

group in a community:

MATCH (c:Customer) where c.summer_2019_community is not null

WITH  c.summer_2019_community as community, toInteger(c.age) as age,  c

WITH community,

    CASE WHEN age < 10 THEN "Young"

         WHEN 10 < age < 20 THEN "Teen"

         WHEN 20 < age < 30 THEN "Youth"

         WHEN 30 < age < 50 THEN "Adult"

         ELSE "Old"

    END as ageGroup,

    C

WITH community, ageGroup, count(*) as count

CALL {

    WITH community

    MATCH (c:Customer) where c.summer_2019_community=community

    RETURN count(*) as totalCommunity

}

WITH community, ageGroup,count, totalCommunity

WITH community, ageGroup, round(count*100.0/totalCommunity, 2) as ratio

WITH community, collect({ageGroup: ageGroup, ratio:ratio}) as data

CALL {

    WITH community, data



Chapter 10 217

    UNWIND data as d

    WITH community, d

    ORDER BY d.ratio DESC

    RETURN community as c, d.ageGroup as a, d.ratio as r

    LIMIT 1

}

RETURN c as community, a as ageGroup, r as ratio

ORDER BY r DESC

The results will look as shown in Figure 10.3.

Community Age Group Ratio

1899 “Youth” 60.87

5823 “Adult” 56.68

770 “Youth” 47.9

1729 “Youth” 46.92

4602 “Youth” 45.71

133 “Youth” 44.61

921 “Youth” 44.17

3444 “Youth” 41.73

649 “Youth” 41.62

1881 “Youth” 41.26

1696 “Old” 41.06

2381 “Old” 40.94

6010 “Old” 37.67

713 “Youth” 37.64

760 “Youth” 36.09

1875 “Old” 35.09

2778 “Youth” 34.47

Figure 10.3 — Most frequently occurring age group and its ratio in every community

We can see most communities are dominated by the Age Group, Youth, who are aged between 

20 and 30. Let us look at one of the communities where the Youth age group is not dominant. 

Let us look at community 5823.



Creating an Intelligent Recommendation System218

This Cypher gives us the first five customers’ purchase summary of community 5823:

MATCH (c:Customer)-[r:SUMMER_2019]->()

WHERE c.summer_2019_community=5823

WITH c, split(r.summary, '\n') AS s

WITH c, CASE WHEN s[2] <> '' THEN s[2] ELSE s[3] END AS d

RETURN d LIMIT 5

When you perform a similarity search for a specific customer using their vector embedding, the 

results will primarily be other individual customers whose vector representations are close to the 

target customer’s vector. You may observe a degree of heterogeneity. An important caveat is that 

when we solely rely on finding similar customers to a target customer, based on vector distance, 

we might miss out on potentially relevant recommendations.

Take a look at the following results:

The customer demonstrates a strong preference for versatile and stylish 
pieces, with a notable inclination towards swimwear and casual skirts, 
reflecting an active and chic lifestyle. The selection features a mix of 
practical and trendy items, highlighting an appreciation for both comfort 
and aesthetics. The color palette leans towards soft tones and earthy 
shades, suggesting a preference for understated elegance.

The customer exhibits a preference for stylish yet comfortable footwear 
and swimwear, favoring pieces that blend functionality with trendy 
elements. The consistent use of white and orange in swimwear suggests a 
bold and lively aesthetic, while the choice of soft organic cotton for 
kids' basics indicates an appreciation for quality and sustainability. 
Overall, there is a clear inclination towards versatile and fashionable 
pieces suitable for both leisure and casual settings.

The customer's fashion preferences indicate a strong inclination towards 
relaxed and comfortable styles, particularly in children's denim wear. 
The consistent choice of blue tones across multiple purchases suggests a 
preference for classic and versatile colors. Additionally, the inclusion 
of a dress with a structured yet casual design highlights an appreciation 
for both practicality and style in their wardrobe choices.

The customer exhibits a preference for versatile and comfortable clothing, 
with a notable inclination towards knitwear and soft fabrics. Their 
choices reflect a balance of casual and practical styles suitable for 
everyday wear, particularly in hues of black, dark orange, and grey, 
complemented by accents of pink. The selected items also indicate a focus 
on functionality, especially with the inclusion of nursing bras.



Chapter 10 219

The customer demonstrates a preference for versatile and stylish pieces 
that blend comfort with contemporary design. They appreciate a mix of 
youthful and sophisticated styles, as seen in their selection of both 
kids' dresses and women's wear. The choice of colors suggests a fondness 
for neutral tones with pops of color, reflecting both playful and elegant 
aesthetics.

These summaries show this community leans toward people who have kids. After observing the 

communities and a few customer summaries in those communities, we are able to understand 

the purchase behaviors better than just going by vector similarity.

Our next step is to combine collaborative filtering and content-based approaches to give better 

recommendations.

Combining collaborative filtering and content-based 
approaches
Collaborative filtering involves providing recommendations based on customer similarity based 

on their purchases, using which we have built customer communities, or using article similarity 

based on their characteristics. Content-based filtering allows providing recommendations based 

on article attributes or characteristics. We will take a look at how we can combine both of these 

approaches to provide better recommendations.

We will try these scenarios:

•	 Scenario 1: Filtering articles that belong to other communities

•	 Scenario 2: Filtering articles by characteristics and belonging to other communities

Let’s discuss Scenario 1 first.

Scenario 1: Filtering articles that belong to other 
communities
In this scenario, we will first find all the articles purchased by all the customers in the same 

community. Next, we will find the articles purchased by customers who belong to other com-

munities.  The articles that belong to other communities will then be removed. This is followed 

by filtering out (removing) these articles (belonging to other communities).



Creating an Intelligent Recommendation System220

For this scenario, we will pick the customer identified by 000ae8a03447710b4de81d85698dfc05

59258c93136650efc2429fcca80d699a from community 1696.

1.	 Let us look at the purchase summary for this customer:

MATCH (c:Customer)-[r:SUMMER_2019]->()

WHERE

.id='000ae8a03447710b4de81d85698dfc0559258c93136650efc2429fcca80d699

'

WITH c, split(r.summary, '\n') AS s

WITH c, CASE WHEN s[2] <> '' THEN s[2] ELSE s[3] END AS d

RETURN d

This Cypher gives us this output:

"The customer's fashion preferences indicate a strong inclination 
towards comfortable yet stylish pieces, often favoring soft fabrics 
and relaxed fits. The choices reflect a taste for versatile items 
that can be dressed up or down, particularly in a palette that 
leans towards darker shades with hints of pink. Overall, there is 
a notable emphasis on casual wear that combines simplicity with a 
touch of elegance."

2.	 Now let us get recommendations for this customer – the articles that they have not pur-

chased earlier, using the following Cypher:

MATCH (c:Customer {id:'000ae8a03447710b4de81d85698dfc-
0559258c93136650efc2429fcca80d699a'})

WITH c

CALL {

3.	 Get the articles purchased by this customer:

    WITH c

    MATCH (c)-[:SUMMER_2019]->(start)

    MATCH (c)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)

    WITH DISTINCT a

    RETURN collect(a) as articles



Chapter 10 221

}

WITH c, articles, c.summer_2019_community as community

CALL {

4.	 Get the articles purchased by customers in the same community as the original customer:

    WITH community

    MATCH (inc:Customer) WHERE inc.summer_2019_community = community

    MATCH (inc)-[:SUMMER_2019]->(start)

    MATCH (inc)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)

    WITH DISTINCT a

    RETURN collect(a) as inCommunityArticles

}

WITH c, articles,  community, inCommunityArticles

CALL {

5.	 Get the articles purchased by customers that are not in the same community as the orig-

inal customer:

    WITH community

    MATCH (outc:Customer) WHERE outc.summer_2019_community is not

ull and outc.summer_2019_community <> community

    MATCH (outc)-[:SUMMER_2019]->(start)

    MATCH (outc)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)

    WITH DISTINCT a

    RETURN collect(a) as outCommunityArticles

}

WITH c, articles,  community, inCommunityArticles,

utCommunityArticles



Creating an Intelligent Recommendation System222

6.	 Remove the articles purchased by customers outside the community the original customer 

belongs to:

WITH c, articles, apoc.coll.subtract(inCommunityArticles, 
outCommunityArticles) as onlyInCommunity

7.	 Remove the articles purchased by the original customer from the onlyInCommunityArticles:

WITH c, apoc.coll.subtract(onlyInCommunity, articles) as 
notPurchasedButInCommunity

8.	 Provide 10 recommended articles from the remaining list. We are limiting this to 10 arti-

cles for simplicity and demonstration purposes. We can look at all the articles and maybe 

group them by other aspects and provide different recommendations:

UNWIND notPurchasedButInCommunity as article

RETURN article.id as id, article.desc as desc

LIMIT 10

Here, we get the articles purchased by the customer first. Then, we retrieve all the articles 

of the community the customer belongs to. After that, we get all the articles customers 

belonging to other communities purchased. We get the subset of the articles purchased 

only by customers in the community. From this set, we remove the articles the customer 

purchased and provide the articles as recommendations.

The output of this query would look as shown in Figure 10.4. 

Id Desc

0708679001 Slim-fit, ankle-length jeans in washed, superstretch denim with a high waist, 

zip fly, fake front pockets and real back pockets.

0834749001 Oversized jumper in a soft rib knit containing some wool with a polo neck, low 

dropped shoulders, long, voluminous sleeves, and wide ribbing at the cuffs and 

hem. The polyester content of the jumper is recycled.

0513701002 V-neck T-shirts in organic cotton jersey.

0522374003 Jumper in a soft, fine knit with dropped shoulders, long sleeves and gently 

rounded hem.

0522374001 Jumper in a soft, fine knit with dropped shoulders, long sleeves and gently 

rounded hem.

0687041002 Long-sleeved, fitted top in soft, organic cotton jersey with a deep neckline, 

buttons at the top and a rounded hem.



Chapter 10 223

0724567004 Pyjamas with a strappy top and shorts in soft satin with lace details. Top with a 

V-neck and narrow adjustable shoulder straps. Shorts with narrow elastication 

at the waist.

0785086001 Short satin nightslip with a V-neck, lace trims at the top and hem, and 

adjustable spaghetti shoulder straps.

0725353002 Bell-shaped, knee-length skirt in woven fabric with a high waist and a concealed 

zip and hook-and-eye fastening in one side. Lined.

0604655007 Pyjamas in printed cotton jersey. Short-sleeved top with a round neck. Bottoms 

with an elasticated waist and wide, gently tapered legs with ribbed hems.

Figure 10.4  — Recommendations by filtering out the articles purchased by a customer and 
by customers outside the community

These recommendations do seem to fit into the customer purchase summary.

Now let us look at scenario 2.

Scenario 2: Filtering articles by characteristics and 
belonging to other communities
In this scenario, we want to add article characteristics to the query. This means, for a customer, 

we will first find all the articles purchased by the community with certain characteristics. Then 

we will find the communities these articles belong to and remove the articles that belong to other 

communities.

For this purpose, we will choose community 5823 and the customer with ID 00281c683a8eb0942

e22d88275ad756309895813e0648d4b97c7bc8178502b33. Let us look at this customer’s purchases.

1.	 This Cypher gives us this information:

MATCH (c:Customer) where c.id='00281c683a8eb0942e22d88275ad-
756309895813e0648d4b97c7bc8178502b33'

WITH c

CALL {

    WITH c

    MATCH (c)-[:SUMMER_2019]->(start)

    MATCH (c)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as txn



Creating an Intelligent Recommendation System224

    MATCH (txn)-[:HAS_ARTICLE]->(a)-[:HAS_SECTION]->(s)

    WITH DISTINCT a,s

    RETURN collect({section:s.name, article:a.desc}) as articles

}

return articles

Based on the preceding Cypher we get this output:

{

  "article": "5-pocket jeans in washed stretch denim in a relaxed 
fit with an adjustable elasticated waist, zip fly and press-stud and 
tapered legs.",

  "section": "Kids Boy"}

,

{

  "article": "5-pocket jeans in washed stretch denim with hard-worn 
details in a relaxed fit with an adjustable elasticated waist, zip 
fly and press-stud, and tapered legs.",

  "section": "Kids Boy"

}

,

{

  "article": "Short dress in woven fabric with a collar, buttons 
down the front and a yoke at the back. Narrow, detachable belt at 
the waist and long sleeves with buttoned cuffs. Unlined.",

  "section": "Divided Collection"

}

,

{

  "article": "Dungarees in washed stretch denim with a three-part 
chest pocket, adjustable straps with metal fasteners, and front and 
back pockets. Fake fly, press-studs at the sides, jersey-lined legs 
and a lining at the hems in a patterned weave.",

  "section": "Kids Boy"

}

Since this customer is buying clothing from the "Kids Boy" section, let us retrieve rec-

ommendations that belong to this section.



Chapter 10 225

2.	 This Cypher gives us recommendations by adding this section’s details to the earlier query. 

Let us get the Customer with ID: 00281c683a8eb0942e22d88275ad756309895813e0648d

4b97c7bc8178502b33 and the section named Kids Boy:

MATCH (c:Customer {id:'00281c683a8eb0942e22d88275ad-
756309895813e0648d4b97c7bc8178502b33'})

MATCH (s:Section) WHERE s.name='Kids Boy'

WITH c,s

CALL {

3.	 Get the articles purchased by this customer that belong to the section of importance:

    WITH c,s

    MATCH (c)-[:SUMMER_2019]->(start)

    MATCH (c)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)-[:HAS_SECTION]->(s)

    WITH DISTINCT a

    RETURN collect(a) as articles

}

WITH c, articles,s, c.summer_2019_community as community

CALL {

4.	 Get the articles that belong to the section of importance purchased by customers in the 

same community as the original customer:

    WITH community, s

    MATCH (inc:Customer) WHERE inc.summer_2019_community = community

    MATCH (inc)-[:SUMMER_2019]->(start)

    MATCH (inc)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns, s

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)-[:HAS_SECTION]->(s)

    WITH DISTINCT a

    RETURN collect(a) as inCommunityArticles



Creating an Intelligent Recommendation System226

}

WITH c, articles,  community, inCommunityArticles, s

CALL {

5.	 Get the articles that belong to the section of importance purchased by customers in the 

communities outside the one the original customer belongs to:

    WITH community, s

    MATCH (outc:Customer) WHERE outc.summer_2019_community is not

ull and outc.summer_2019_community <> community

    MATCH (outc)-[:SUMMER_2019]->(start)

    MATCH (outc)-[:FALL_2019]->(end)

    MATCH p=(start)-[:NEXT*]->(end)

    WITH nodes(p) as txns, s

    UNWIND txns as txn

    MATCH (txn)-[:HAS_ARTICLE]->(a)-[:HAS_SECTION]->(s)

    WITH DISTINCT a

    RETURN collect(a) as outCommunityArticles

}

WITH c, articles,  community, inCommunityArticles,

utCommunityArticles

6.	 Remove the articles purchased by customers outside the community from the articles 

purchased by customers in the community of the original customer:

WITH c, articles, apoc.coll.subtract(inCommunityArticles, 
outCommunityArticles) as onlyInCommunity

7.	 Remove the articles purchased by the original customer from the list of articles we got 

in the previous step:

WITH c, apoc.coll.subtract(onlyInCommunity, articles) as 
notPurchasedButInCommunity

8.	 Provide 10 of these articles as recommendations:

UNWIND notPurchasedButInCommunity as article

RETURN article.id as id, article.desc as desc

LIMIT 10



Chapter 10 227

When we run this query, we will see the output shown in Figure 10.5:

Id Desc

0505507003 5-pocket slim-fit jeans in washed stretch denim with an adjustable elasticated 

waist and zip fly.

0704150011 Long-sleeved top in sweatshirt fabric with a motif on the front and ribbing 

around the neckline, cuffs and hem.

0701969005 Shorts in soft, patterned cotton twill with an elasticated drawstring waist, fake 

fly and side pockets.

0595548001 Shorts in soft, washed denim with an elasticated drawstring waist and a back 

pocket.

0704150006 Long-sleeved top in sweatshirt fabric with a motif on the front and ribbing 

around the neckline, cuffs and hem.

0626380001 Top in soft, patterned cotton jersey with long sleeves, an open chest pocket and 

slits at the hem. Slightly longer at the back.

0701972005 Shorts in woven fabric with an adjustable elasticated waist and decorative 

drawstring. Zip fly and button, diagonal side pockets and welt back pockets.

0771489001 T-shirts in airy cotton jersey with a chest pocket and short slits in the sides. 

Longer at the back.

0705911001 Vest top in cotton jersey with a print motif and a ribbed trim around the 

neckline and armholes.

0666327011 T-shirt in soft cotton jersey with a motif on the front.

Figure 10.5 — Recommendations that consider purchases and article attributes by filtering 
out the articles purchased by the customer and by customers outside the community

The demonstrations in this chapter showed how, by using these approaches, we can provide 

different types of recommendations based on similar purchases by other customers.

Summary
In this chapter, we looked at how to go beyond a basic recommendation application and leverage 

graph algorithms to enhance the graph and provide more appropriate recommendations. We 

explored how we can use the KNN similarity algorithm and community detection to gain hidden 

insights into the data.

In the upcoming chapters, we will take a look at how we can deploy these applications in the 

cloud and what best practices we can follow for deployment.





Part 4
Deploying Your GenAI 

Application in the Cloud 
In this last part of the book, we focus on taking your GenAI application from development to 

production. We start by evaluating key factors in selecting the right cloud platform for deploying 

GenAI workloads, including scalability, cost, and service integrations. Then, we walk through the 

practical steps of deploying your application on Google Cloud, covering essential services and 

best practices to ensure a smooth and reliable launch. Whether you’re a developer, architect, or AI 

practitioner, this section equips you with the knowledge to operationalize your GenAI solutions 

in real-world cloud environments.

This part of the book includes the following chapters:

•	 Chapter 11, Choosing the Right Cloud Platform for GenAI Applications

•	 Chapter 12, Deploying Your Application on Google Cloud

•	 Chapter 13, Epilogue



Stay tuned
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

 

https://packt.link/Q5UyU


11
Choosing the Right Cloud 
Platform for GenAI Applications

When you begin to deploy your GenAI application, one of the most critical decisions you will make 

is choosing the right cloud platform. The cloud landscape is vast and diverse, offering a range of 

options tailored to diverse needs, budgets, and technical requirements. However, selecting the 

best platform for your specific GenAI use case can be overwhelming without a clear framework 

to guide your decision. While this book focused on intelligent LLM applications, the learnings 

from this chapter will enable you to pick a cloud platform for any GenAI use case.

This chapter provides a comprehensive overview of the key factors to consider when evaluating 

cloud platforms. We will explore the unique features, strengths, and pricing models of leading 

providers, enabling you to make an informed decision based on your requirements—whether it 

is scalability, specialized AI services, or cost-effectiveness.

In this chapter, we are going to cover the following main topics:

•	  Understanding cloud computing options for GenAI

•	 Picking a cloud platform for GenAI applications: key considerations

•	 Making the right choice: a decision-making framework for selecting your cloud platform



Choosing the Right Cloud Platform for GenAI Applications232

Understanding cloud computing options for GenAI 
applications
The cloud has become the backbone of modern GenAI applications, providing the infrastructure 

and tools required to handle their demanding computational requirements. While traditional 

discussions about the cloud often focus on service models (IaaS, PaaS, and SaaS) and deployment 

types (public, private, and hybrid), this section shifts the focus to the unique role cloud providers 

play in supporting specialized AI services and why the cloud is indispensable for GenAI.

The cloud: an indispensable foundation of GenAI
GenAI applications are resource intensive, requiring vast amounts of computational power, storage, 

and scalability. The cloud offers several distinct advantages that make it essential for deploying 

GenAI solutions:

•	 Scalability for growing workloads: GenAI models can require thousands of GPUs or TPUs 

to train and deploy. Cloud platforms allow you to scale resources dynamically to meet 

these demands without upfront infrastructure investments.

•	 Cost efficiency: With pay-as-you-go pricing, you only pay for the resources you use, mak-

ing the cloud a cost-effective choice compared to maintaining on-premises infrastructure.

•	 Global accessibility: Cloud platforms provide geographically distributed data centers, 

ensuring low-latency access to AI services and deployment flexibility across regions.

•	 Reliability and security: Cloud providers offer enterprise-grade security and high avail-

ability, ensuring that your GenAI applications are both safe and resilient.

•	 Collaboration and integration: GenAI workflows often involve cross-functional teams. 

The cloud provides collaborative environments and integrations with popular develop-

ment tools, streamlining the process.

With the cloud, businesses can overcome the barriers of high infrastructure costs and complex-

ity, focusing instead on building innovative, AI-driven solutions that deliver real-world impact.

Let’s talk about some of the specialized AI services that leading cloud providers offer to support 

GenAI applications.



Chapter 11 233

Specialized AI services by different cloud providers
Leading cloud providers offer more than just computing power; they provide an ecosystem of 

specialized AI and machine learning services tailored to the unique demands of GenAI. These 

services enable faster, more efficient development of AI applications by providing the following:

•	 Pre-trained models and APIs: Access to ready-to-use AI capabilities, such as text gen-

eration, speech recognition, and image analysis, eliminating the need to train models 

from scratch

•	 Custom AI training services: Tools for training and fine-tuning models on custom datasets, 

making it easier to build domain-specific AI applications

•	 Managed AI workflows: Automated tools for data preprocessing, model training, evalu-

ation, and deployment, reducing the complexity of the development process

•	 Integration with data services: Seamless connectivity with storage and database solu-

tions for managing the massive datasets required by GenAI

GenAI applications benefit from a rich ecosystem of pre-trained models, training services, man-

aged AI workflows, and data integration tools provided by cloud platforms. The following figure 

outlines how major providers support these capabilities, helping developers accelerate AI devel-

opment and deployment.

Capability Google Cloud (Vertex 

AI)

Amazon Web Services 

(AWS SageMaker)

Microsoft Azure (Azure 

AI and ML)

Pre-trained 

models and APIs

Gemini models and 

Model Garden (open 

source and proprietary 

foundation models); 

AI APIs for NLP, speech, 

vision, and structured 

data tasks

AWS Bedrock (supports 

multiple foundation 

models, such as 

Anthropic Claude, Meta 

Llama, and AI21); AI 

APIs for text, image, 

video, and speech

Azure AI Model Catalog 

with diverse open source 

and proprietary models 

(e.g., OpenAI GPT-4 and 

Meta Llama); Cognitive 

Services APIs for NLP, 

vision, and speech

Custom AI 

training services

Vertex AI custom 

model training with 

AutoML and fine-

tuning; supports 

PyTorch, TensorFlow, 

and JAX

SageMaker AI with 

pre-trained models as 

well as custom training 

Docker images

Azure ML with AutoML, 

fine-tuning capabilities, 

and built-in ML 

pipelines



Choosing the Right Cloud Platform for GenAI Applications234

Managed AI 

workflows

Vertex AI pipelines for 

MLOps automation 

(preprocessing, 

training, evaluation, 

and deployment)

SageMaker pipelines 

for full ML lifecycle 

automation; Amazon 

Step Functions for 

workflow orchestration

Azure ML pipelines for 

automated AI workflows 

and integration with 

data engineering tools

Integration with 

data services

BigQuery ML for in-

database ML, Cloud 

Storage, and Dataflow 

for scalable AI data 

pipelines

AWS S3, Redshift ML, 

and Glue for ETL and 

AI-driven analytics

Azure Synapse, Data 

Lake, and Databricks 

for AI-powered data 

analytics and processing

Figure 11.1 — Comparison of AI capabilities of various cloud providers

Utilizing these capabilities, businesses can streamline AI model development, from using pre-

trained models to custom fine-tuning and large-scale AI deployments.

In the next section, we will explore the critical considerations that can help you align your plat-

form choice with your project’s technical and business requirements.

Picking a cloud platform for GenAI applications: key 
considerations
Selecting the right cloud platform for your GenAI application involves more than just comparing 

features and pricing. Each platform has unique strengths and trade-offs, and understanding them 

is vital to ensure the platform aligns with your project’s goals, budget, and operational needs.

Selecting a cloud platform for GenAI deployment involves weighing several technical and busi-

ness factors. Here, we explore the most critical aspects to guide your decision-making process.

Scalability and performance
GenAI applications are inherently resource-intensive, requiring substantial computational pow-

er and the flexibility to handle diverse workloads. Whether you are training massive language 

models, running inference on large datasets, or serving real-time predictions, the scalability and 

performance of your chosen cloud platform are critical to your application’s success.

The ability to scale resources dynamically ensures that your system can handle spikes in demand, 

such as during model training or high-traffic periods, without over-provisioning and incurring 

unnecessary costs. At the same time, high-performance infrastructure, including access to spe-

cialized hardware such as GPUs and TPUs, is essential for speeding up model training and opti-



Chapter 11 235

mizing inference times. Apart from this, low-latency data processing capabilities are crucial for 

real-time applications, such as chatbots or recommendation engines, where even slight delays 

can negatively impact user experience.

Therefore, by focusing on these factors, you can ensure that your GenAI application operates 

efficiently and reliably, even as your needs evolve over time.

Some of the important considerations for scalability and performance are as follows:

•	 Elastic scaling: Look for platforms that support autoscaling to adjust resources automat-

ically based on workload intensity. This ensures you are not paying for unused resources 

during low activity periods while still meeting peak demands.

•	 High-performance hardware: Evaluate the availability of GPUs, TPUs, or FPGAs that can 

significantly accelerate training and inference tasks. Platforms such as Google Cloud, AWS, 

and Azure provide extensive support for such hardware.

•	 Regional availability and latency: For applications serving users globally, ensure the 

platform has a wide network of data centers to minimize latency and provide consistent 

performance across regions.

•	 Batch and real-time processing: Consider whether the platform can efficiently handle 

both batch processing tasks (e.g., bulk training jobs) and real-time requirements (e.g., 

generating chatbot responses).

The following figure highlights the key scalability and performance capabilities of the leading 

cloud providers, with an overview of their unique strengths in handling GenAI workloads.

Factor Google Cloud (Vertex 

AI)

Amazon Web Services 

(AWS SageMaker)

Microsoft Azure 

(Azure AI and ML)

Elastic scaling AutoML and AI 

Platform scale 

automatically 

based on workload 

and integrate with 

Kubernetes (GKE) for 

containerized scaling.

AutoScaling Groups 

and SageMaker 

automate scaling for 

training and inference 

workloads.

Virtual Machine 

Scale Sets and Azure 

Machine Learning 

Autoscale for AI/ML 

workloads.

High-performance 

hardware

TPUs, NVIDIA GPUs 

(A100, H100), custom 

AI chips (Axion)

AWS Inferentia, 

NVIDIA GPUs, 

Trainium for deep 

learning acceleration

NVIDIA GPUs, FPGAs, 

AMD-based virtual 

machines



Choosing the Right Cloud Platform for GenAI Applications236

Latency and regional 

availability

Data centers in 

35+ regions; strong 

presence in North 

America, Europe, and 

Asia-Pacific

Widest global 

footprint (32+ 

regions); high-

speed inter-region 

networking

Data centers in 60+ 

regions; strong hybrid 

cloud options

Batch processing Supports batch 

inference via Vertex 

AI pipelines and AI 

platform jobs

Managed batch 

transform jobs 

for large-scale ML 

inference

Azure ML pipelines 

support batch 

predictions and large 

dataset processing.

Real-time processing Low-latency 

predictions via Vertex 

AI Endpoints

SageMaker Real-Time 

Inference with auto-

scaling

Azure ML Endpoints 

for low-latency model 

serving

Figure 11.2 — GenAI workload processing capabilities of various cloud platforms

To choose a cloud provider, you should factor in scalability and performance but also ensure you 

account for efficiency, cost-effectiveness, and responsiveness to user needs.

Cost and pricing models
Cost is often a decisive factor when selecting a cloud platform for GenAI applications, as the re-

source-intensive nature of AI workloads can quickly escalate expenses if they are not managed 

carefully. Cloud providers offer various pricing models and cost management tools, but under-

standing and selecting the right combination of services to fit your budget is critical.

From training large models on GPUs and TPUs to managing vast datasets and serving real-time 

inferences, GenAI applications incur costs across multiple dimensions. These include compute 

power, storage, data transfer, and additional charges for specialized AI services. Selecting the 

right pricing model and utilizing cost-saving strategies can also provide a competitive advantage, 

ensuring that you stay within budget while scaling your AI capabilities.

There are a variety of cost and pricing considerations that may impact your choice of cloud pro-

vider:

•	 Pay-as-you-go pricing: Cloud platforms typically charge on a usage basis, where you only 

pay for the resources you consume. This is ideal for dynamic workloads where resource 

requirements fluctuate, as it eliminates the need for upfront infrastructure investment. For 

example, AWS On-Demand Instances and Google Cloud Compute Engine offer pay-as-

you-go pricing for compute and storage services. Consider an e-commerce company that 



Chapter 11 237

uses GenAI to generate personalized recommendations; it may experience higher traffic 

during holidays and sales events. With pay-as-you-go pricing, they can scale up com-

pute resources during peak periods (e.g., Black Friday) and scale down during low-traffic 

months, optimizing costs.

Provider Pricing Details Pricing Link

Google Cloud Compute Engine and AI services billed per 

second/minute/hour. Supports autoscaling.

https://cloud.google.com/
pricing/

AWS EC2 On-Demand Instances charge per 

second/minute. Supports dynamic scaling.

https://aws.amazon.com/
pricing/

Azure Virtual Machines and AI services are billed 

based on per-second usage.

https://azure.microsoft.
com/en-in/pricing

Figure 11.3 — Pay-as-you-go pricing options

•	 Reserved instances and discounts: Many platforms offer significant discounts (up to 75%) 

if you commit to a long-term usage plan (e.g., 1 or 3 years). Reserved instances are a good 

option if you have predictable workloads, such as hosting an inference model with consis-

tent traffic. For instance, Azure Reserved VM instances provide predictable cost savings 

for steady-state usage. Consider a hospital AI system that processes radiology images for 

diagnostics, which has consistent demand year-round. Committing to a reserved instance 

for GPU/TPU workloads significantly reduces costs compared to on-demand pricing.

•	 Spot instances for cost-sensitive workloads: Spot instances offer unused compute capac-

ity at significantly lower prices but can be interrupted if the platform needs the resources 

for higher-priority tasks. These are ideal for non-critical or batch processes, such as model 

training jobs that can tolerate interruptions. Consider AWS Spot Instances and Google 

Preemptible VMs, which provide up to 90% savings compared to on-demand pricing.

•	 Data storage costs: GenAI applications often rely on large datasets for training and in-

ference. Understand the storage options available, including hot (frequently accessed), 

warm, and cold (archival) tiers. Evaluate the costs associated with storing and retrieving 

data, as they can vary significantly depending on usage patterns. For example, Amazon 

S3 and Google Cloud Storage offer tiered pricing to optimize costs based on access fre-

quency. In the case of a video streaming service, for example, that uses AI to recommend 

content, it needs frequent access to trending videos (hot storage) while archiving older 

videos in cold storage. Choosing the right storage tier ensures cost-effectiveness while 

maintaining performance.

https://cloud.google.com/pricing/
https://cloud.google.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://azure.microsoft.com/en-in/pricing
https://azure.microsoft.com/en-in/pricing


Choosing the Right Cloud Platform for GenAI Applications238

•	 Data transfer costs: Moving data between regions, services, or platforms can incur sig-

nificant expenses. Ensure you understand these charges, especially for distributed appli-

cations. For instance, egress costs (data transferred out of the cloud) can add up quickly 

for applications serving large volumes of data to end-users globally. Consider a financial 

services company analyzing transactions worldwide that needs real-time fraud detection 

powered by AI. Frequent cross-region data transfers between Europe and the US can be 

costly, and also, understanding egress costs helps optimize traffic routing and minimize 

expenses.

Provider Pricing Details Pricing Link

Google Cloud Charges vary by region, with free 

in-region transfers

https://cloud.google.com/storage-
transfer/pricing

AWS Charges for inter-region and 

internet data transfers

https://aws.amazon.com/ec2/pricing/
on-demand/#Data_Transfer

Azure Egress charges apply beyond 

free limits

https://azure.microsoft.com/en-us/
pricing/details/bandwidth/

Figure 11.4 — Data transfer costs

•	 Cost management and monitoring tools: Cloud platforms provide cost calculators and 

monitoring tools to help you estimate and manage expenses effectively:

•	 AWS Cost Explorer: Tracks usage patterns and identifies cost-saving opportunities.

•	 Google Cloud Billing Reports: Offers real-time insights into spending across 

projects.

•	 Azure Cost Management: Allows for forecasting and budget allocation.

•	 Free tiers and trial credits: Many platforms provide free-tier services or trial cred-

its, enabling you to experiment with features without incurring immediate costs. 

For example, Google Cloud Free Tier and AWS Free Tier offer limited resources 

for new users to explore their services.

While understanding pricing models is essential, proactively optimizing costs is equally import-

ant to ensure sustainable cloud spending. Cloud resources can quickly become expensive if not 

managed effectively, especially for GenAI workloads that require substantial compute power, 

storage, and data processing.

https://cloud.google.com/storage-transfer/pricing
https://cloud.google.com/storage-transfer/pricing
https://aws.amazon.com/ec2/pricing/on-demand/#Data_Transfer
https://aws.amazon.com/ec2/pricing/on-demand/#Data_Transfer
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/


Chapter 11 239

Therefore, to manage and optimize costs, you should consider the following:

•	 Right-sizing resources: Continuously monitor your usage and scale resources appropri-

ately to avoid paying for idle capacity. This can be achieved using cloud-native monitoring 

tools such as Google Cloud Recommender, AWS Compute Optimizer, and Azure Advisor, 

which analyze usage patterns and suggest optimizations. Implementing autoscaling pol-

icies (e.g., AWS Auto Scaling, Google Managed Instance Groups, and Azure Scale Sets) 

ensures resources adjust dynamically to workload demands. Choosing the right instance 

type based on performance needs prevents over-provisioning, while serverless comput-

ing (AWS Lambda, Google Cloud Functions, and Azure Functions) and containerized 

workloads (Kubernetes) further optimize costs by allocating resources only when needed.

•	 Data lifecycle management: Use appropriate storage tiers to optimize costs for infre-

quently accessed data.

•	 Centralized billing: Consolidate multiple accounts or projects under one billing system 

to simplify tracking and optimize bulk pricing.

By understanding the cost structures and leveraging pricing strategies, you can significantly re-

duce the expenses associated with deploying and running GenAI applications in the cloud. This 

will help you achieve a balance between performance and cost-effectiveness.

With an increasing reliance on cloud-based GenAI applications, we must ensure robust security 

and regulatory compliance mechanisms. In the next section, we will explore key security consid-

erations, identity and access management strategies, and regulatory compliance requirements 

that ensure your GenAI deployment remains secure, resilient, and legally compliant.

Security and compliance
Security and compliance are critical considerations when deploying GenAI applications in the 

cloud. These applications often handle sensitive data, such as proprietary datasets, user informa-

tion, or industry-specific records, making security an essential feature. Furthermore, compliance 

with legal and regulatory standards is a non-negotiable requirement for businesses operating in 

regulated industries, such as healthcare or finance, and diverse geo-political locations.

Understanding the security and compliance capabilities of a cloud platform allows you to pro-

tect your data, build trust with users, and avoid costly legal or reputational risks. While leading 

cloud providers—Google Cloud, AWS, and Azure—offer robust security features, it is the user’s 

responsibility to configure many of them properly based on their use cases.



Choosing the Right Cloud Platform for GenAI Applications240

Some security features, such as basic encryption at rest and identity management, are enabled 

by default, while others, such as custom role-based access control (RBAC) and compliance con-

figurations, require manual setup. To ensure proper configuration, cloud providers offer detailed 

documentation and best practices:

•	 Google Cloud security best practices: https://cloud.google.com/security/best-
practices?hl=en

•	 AWS security best practices: https://aws.amazon.com/security/

•	 Azure security best practices: https://learn.microsoft.com/en-us/security/

In general, you need to focus on some of the key security considerations and configurations:

•	 Data encryption: Ensures that sensitive information remains protected both in transit and 

at rest. Cloud providers offer built-in encryption features, but additional configurations 

may be required, depending on your security and compliance needs:

•	 In transit: Data moving between systems or services should use secure protocols 

such as TLS/SSL. This requires manual setup in some cases, such as forcing TLS/

SSL connections for data movement between services.

•	 At rest: Data stored in databases, filesystems, or object storage should be encrypted 

using robust algorithms such as AES-256, which is enabled by default for most 

cloud storage services. However, users can configure custom encryption keys for 

enhanced security.

This table details configuring encryption in Google Cloud, AWS, and Azure:

Cloud 

Provider

Encryption at Rest Encryption in Transit Documentation

Google 

Cloud

Default encryption using 

Google-managed keys; users 

can configure Customer-

Managed Encryption Keys 

(CMEKs) with Cloud KMS

Uses TLS/SSL by 

default; additional 

encryption options for 

APIs and databases are 

available

https://cloud.google.
com/docs/security/
overview/whitepaper

AWS AWS S3, RDS, and EBS 

encryption enabled by 

default; AWS KMS allows 

customer-managed key 

encryption

Enforced using AWS 

Certificate Manager 

and TLS settings

https://docs.aws.
amazon.com/whitepapers/
latest/logical-
separation/encrypting-
data-at-rest-and--in-
transit.html

https://cloud.google.com/security/best-practices?hl=en
https://cloud.google.com/security/best-practices?hl=en
https://aws.amazon.com/security/
https://learn.microsoft.com/en-us/security/
https://cloud.google.com/docs/security/overview/whitepaper
https://cloud.google.com/docs/security/overview/whitepaper
https://cloud.google.com/docs/security/overview/whitepaper
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html
https://docs.aws.amazon.com/whitepapers/latest/logical-separation/encrypting-data-at-rest-and--in-transit.html


Chapter 11 241

Azure Encryption at rest enabled for 

Blob Storage, SQL, and Disks; 

Customer-Managed Keys 

(CMKs) available via Azure 

Key Vault

Uses TLS/SSL for 

in-transit encryption; 

additional network 

encryption settings 

are available

https://learn.
microsoft.com/en-
us/azure/security/
fundamentals/
encryption-overview

Figure 11.5 — Data security options

•	 Identity and access management (IAM): IAM is essential for controlling who can access 

cloud resources and ensuring that only authorized users or services have the required 

permissions. Cloud providers offer built-in IAM frameworks that allow organizations to 

manage access securely:

•	 Role-Based Access Controls (RBAC): IAM enables fine-grained permissions by 

assigning roles (e.g., Admin, Developer, and Viewer) to users and services, ensuring 

that access is granted only as needed.

•	 Multi-Factor Authentication (MFA): Enhances security by requiring users to 

verify their identity through an additional authentication factor (e.g., SMS or au-

thenticator apps) beyond passwords.

•	 Integration with enterprise identity providers: Single sign-on (SSO) and fed-

erated authentication using Azure Active Directory (AAD), AWS IAM Identity 

Center, and Google Cloud IAM.

•	 For example: AAD and AWS IAM provide granular control over user roles and 

permissions, allowing organizations to enforce least privilege access and secure 

authentication methods for sensitive cloud workloads.

•	 Network security: Enables protection of cloud workloads from unauthorized access, data 

breaches, and cyber threats. Cloud providers offer a range of network security tools to 

create secure perimeters, restrict access, and monitor traffic:

•	 Virtual private clouds (VPCs): Allow users to create isolated network environ-

ments within the cloud infrastructure, ensuring controlled access to sensitive 

resources.

•	 Firewalls and private endpoints: Cloud-native firewalls and private connectivity 

options (e.g., AWS PrivateLink, Azure Private Link, and Google Private Service 

Connect) secure internal traffic while limiting exposure to public networks.

https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://learn.microsoft.com/en-us/azure/security/fundamentals/encryption-overview


Choosing the Right Cloud Platform for GenAI Applications242

•	 Logging and monitoring: Security tools such as Google Cloud VPC Service Con-

trols, AWS VPC Flow Logs, and Azure Network Watcher detect and respond to 

suspicious activities in real time.

•	 For example, Google Cloud VPC Service Controls allow organizations to define 

secure perimeters around sensitive workloads, restricting data movement across 

cloud services while preventing unauthorized access.

•	 Threat detection and incident response: Crucial for identifying security threats in real 

time and mitigating risks before they escalate. Cloud providers offer AI-driven security 

tools to detect anomalies, prevent intrusions, and automate security responses.

•	 Anomaly detection and intrusion prevention: Built-in security tools use machine 

learning to identify suspicious activity, unauthorized access, and potential threats 

before they impact workloads.

•	 Automated incident response: Cloud providers offer automated remediation 

services that contain security threats, reducing the need for manual intervention.

•	 Security event logging: Threat intelligence services collect, analyze, and respond 

to security events, integrating with security information and event management 

(SIEM) platforms for advanced monitoring.

•	 For example, AWS GuardDuty and Azure Security Center use AI-driven threat 

detection to identify security risks, analyze anomalous activity, and trigger auto-

mated alerts to security teams, enabling a rapid response to potential breaches.

Ensuring compliance with industry regulations and data protection laws is critical when deploying 

GenAI applications in the cloud. While major cloud providers—Google Cloud, AWS, and Azure—

offer built-in compliance frameworks, most regulatory settings require user configuration based 

on business needs, industry standards, and data residency requirements.

•	 Some compliance measures, such as default encryption and security logs, are pre-con-

figured.

•	 Other settings, such as data residency controls, auditing tools, and regulatory adherence 

(such as HIPAA, the GDPR, and SOC 2), require manual setup during cloud resource con-

figuration.

•	 Cloud providers often prompt users during setup to configure compliance settings, but 

businesses must ensure they align with specific legal and operational requirements.



Chapter 11 243

Some of the key compliance and regulatory requirements are as follows:

•	 Regulatory standards: Cloud providers comply with multiple industry standards but 

require manual setup to ensure business-specific adherence.

•	 Health Insurance Portability and Accountability Act (HIPAA): For healthcare-re-

lated applications handling protected health information (PHI)

•	 The General Data Protection Regulation (GDPR): Governs how businesses handle 

the personal data of EU citizens and requires explicit user consent mechanisms

•	 Service Organization Control 2 (SOC 2): Ensures cloud services follow strict data 

security and privacy controls for handling customer data.

•	 For example, Azure Compliance Manager provides pre-configured templates to 

help align workloads with regulatory standards.

•	 Data residency and sovereignty: Data sovereignty laws require businesses to store and 

process data within specific geographic regions to comply with local regulations. This is 

not pre-configured; cloud providers offer regional data storage options, but businesses 

must manually select data residency settings. For example, Google Cloud Regional Ser-

vices and AWS Regions allow users to choose data storage locations to meet regulatory 

requirements.

•	 Auditability: Audit logging is partially enabled by default but requires manual configu-

ration for custom compliance needs:

•	 Ensure that the platform provides tools for auditing access and actions taken on 

sensitive data.

•	 Maintain logs and records of all data interactions to demonstrate compliance 

during audits.

•	 For example, AWS CloudTrail and Azure Monitor Logs enable comprehensive 

auditing capabilities.



Choosing the Right Cloud Platform for GenAI Applications244

•	 Certifications and trust programs: Cloud providers participate in external certifications 

and trust programs to validate their compliance with industry security and regulatory 

standards. These certifications help businesses meet legal and security requirements for 

data protection, privacy, and governance. All three major cloud providers—Google Cloud, 

AWS, and Azure—comply with global certifications, but organizations must ensure their 

cloud configurations align with compliance needs based on their specific use case.

Certification Google Cloud AWS Azure

ISO 27001 (information 

security management)

✅ Compliant ✅ Compliant ✅ Compliant

Payment Card Industry 

Data Security Standard 

(PCI DSS)

✅ Compliant ✅ Compliant ✅ Compliant

FedRAMP (US 

Government Security 

Compliance)

✅ Compliant 

(FedRAMP High for 

select services)

✅ Compliant 

(FedRAMP High for 

GovCloud)

✅ Compliant 

(FedRAMP High for 

government services)

SOC 2 (secure handling of 

customer data)

✅ Compliant ✅ Compliant ✅ Compliant

HIPAA (healthcare data 

protection)

✅ Compliant 

(requires manual 

setup)

✅ Compliant 

(requires manual 

setup)

✅ Compliant 

(requires manual 

setup)

General Data Protection 

Regulation (GDPR) for 

EU data

✅ Compliant ✅ Compliant ✅ Compliant

Figure 11.6 — Compliance certifications available

Implementing security and compliance measures is only the first step—maintaining them ef-

fectively is just as crucial. With evolving cybersecurity threats and ever-changing regulatory 

landscapes, a proactive approach to security and compliance is necessary to protect your GenAI 

applications from vulnerabilities.

Let’s now explore some of the best practices that help maintain a secure and legally compliant 

GenAI deployment.



Chapter 11 245

Best practices for security and compliance in GenAI deployments
Ensuring robust security and compliance is essential for the successful deployment of GenAI 

applications, especially when dealing with sensitive data or operating in regulated industries. 

Adopting best practices helps mitigate risks, maintain regulatory alignment, and build trust with 

users, ensuring your application is both secure and reliable:

•	 Regular security audits: Periodically review and update your security configurations to 

address new threats.

•	 Automated compliance checks: Use cloud-native tools to continuously monitor and 

enforce compliance requirements.

•	 Shared responsibility model: Understand the division of responsibility between you and 

the cloud provider—while the provider secures the infrastructure, you are responsible 

for securing applications and data.

•	 Data minimization: Store only the data necessary for your application to reduce exposure 

to security risks.

While best practices provide a foundation, selecting the right cloud provider requires understand-

ing which platforms best support security and compliance needs. The following figure outlines 

how Google Cloud, AWS, and Azure address these key areas:

Best Practice Google Cloud AWS Azure

Security 

Audits

Security Command 

Center, Cloud Audit Logs

AWS Security Hub, 

AWS Inspector

Microsoft Defender for Cloud, 

Azure Security Center

Automated 

Compliance 

Checks

Assured Workloads, 

Policy Intelligence

AWS Config, Audit 

Manager, AWS 

Artifact

Azure Policy, Compliance 

Manager

Shared 

Responsibility 

Model

Documentation on 

shared security best 

practices

Clear AWS shared 

security model

Azure’s shared security 

responsibility guide

Data  

Minimization

Data Loss Prevention 

(DLP) API, cloud storage 

life cycle policies

Amazon Macie (DLP 

for S3), IAM data 

access policies

Azure Purview (data 

governance), DLP

Compliance 

Frameworks

HIPAA, GDPR, FedRAMP, 

ISO 27001, PCI DSS 

(certified)

HIPAA, GDPR, 

FedRAMP, ISO 27001, 

PCI DSS (certified)

HIPAA, GDPR, FedRAMP, ISO 

27001, PCI DSS (certified)

Figure 11.7 — Security compliance availability



Choosing the Right Cloud Platform for GenAI Applications246

For further evaluation, you can explore the official security and compliance documentation pro-

vided by each cloud provider:

•	 Google Cloud security and compliance: https://cloud.google.com/compliance?hl=en

•	 AWS security and compliance: https://aws.amazon.com/compliance/

•	 Azure security and compliance: https://learn.microsoft.com/en-us/compliance/

If you are looking for detailed comparisons of cloud provider security frameworks, the Cloud 

Security Alliance (CSA) maintains a publicly accessible database of security assessments at 

https://cloudsecurityalliance.org/star.

This resource lists cloud providers’ security controls, compliance certifications, and third-party 

risk assessments, helping you evaluate which platform best meets your needs.

It is important to prioritize security and compliance, to help safeguard sensitive data, adhere 

to regulatory standards, and build a trustworthy GenAI application. This not only protects your 

organization from potential threats and legal issues but also fosters user confidence in the reli-

ability and safety of your solution.

By carefully evaluating these factors, you can select a cloud platform that not only meets your 

technical and operational needs but also ensures long-term scalability, cost efficiency, and com-

pliance for your GenAI project. While implementing best practices for security and compliance 

lays a solid foundation for your GenAI deployment, understanding the offerings of leading cloud 

providers is equally critical.

Key takeaways
Summarizing the analysis of leading cloud providers, these key takeaways highlight the unique 

strengths and ideal use cases for each platform. Here is a quick reference to help you align your 

GenAI deployment needs with the most suitable cloud solution.

•	 Google Cloud excels in AI analytics and end-to-end machine learning workflows, with 

strong data integration capabilities.

•	 AWS offers unparalleled scalability and cost-saving options, making it ideal for high-vol-

ume and flexible workloads.

•	 Microsoft Azure stands out for its hybrid cloud support and enterprise-grade AI services, 

catering to businesses with diverse infrastructure needs.

https://cloud.google.com/compliance?hl=en

https://aws.amazon.com/compliance/
https://learn.microsoft.com/en-us/compliance/
https://cloudsecurityalliance.org/star


Chapter 11 247

As you process and understand the unique strengths of each platform, you can align your choice 

with your project’s requirements, ensuring the success of your GenAI deployment. This includes 

carefully analyzing the features and pricing of leading cloud providers and checking that they are 

in alignment with your goals and constraints.

In the next section, we will introduce a decision-making framework to help you select the cloud 

platform that best meets the needs of your GenAI application.

Making the right choice: a decision-making 
framework for selecting your cloud platform
Choosing the right cloud platform for your GenAI application is a multifaceted decision that de-

pends on your project’s unique requirements, priorities, and constraints. A structured framework 

simplifies this process by providing a clear methodology to evaluate platforms based on factors 

such as scalability, cost, specialized features, and compliance.

Let’s look at a step-by-step decision-making process to help you balance technical and business 

considerations effectively. Whether you are focused on optimizing performance, controlling 

costs, or leveraging specialized AI tools, this framework ensures that your choice aligns with both 

short-term goals and long-term scalability.

•	 Define your requirements and priorities: Start by identifying the specific needs of your 

GenAI application. This step helps you focus on platforms that align with your priorities 

and ignore unnecessary features.

•	 Performance needs: Assess your compute and storage requirements. Do you need 

access to GPUs, TPUs, or high-performance storage?

•	 Scalability requirements: Consider whether your workload is steady or fluctuates 

significantly, as this will impact your need for dynamic scaling.

•	 AI-specific features: Identify essential AI tools or services, such as pre-trained 

models, APIs, or custom model training capabilities.

•	 Budget constraints: Set a clear budget and determine how much flexibility you 

have for unexpected costs.

•	 Compliance and security: Ensure your chosen platform adheres to industry reg-

ulations (e.g., HIPAA and the GDPR) and provides robust security measures.



Choosing the Right Cloud Platform for GenAI Applications248

•	 Shortlist potential providers: Based on your defined requirements, narrow down your 

options to a few cloud providers that align with your needs. Use the following criteria to 

create your shortlist:

•	 AI services and tools: Evaluate platforms such as Google Cloud (Vertex AI), AWS 

(SageMaker), and Azure (Cognitive Services) for their GenAI offerings.

•	 Cost models: Compare pricing structures, including pay-as-you-go, reserved in-

stances, and spot instances.

•	 Integration and ecosystem: Consider compatibility with your existing tools, 

frameworks, and workflows (e.g., TensorFlow, PyTorch, or data services).

•	 Regional availability: Ensure the provider has data centers in regions that are 

critical to your application’s performance and compliance.

•	 Evaluate trade-offs: Compare the shortlisted providers by analyzing their trade-offs in 

key areas:

•	 Performance versus cost: Does the provider offer the performance you need at a 

price point that is within your budget?

•	 Flexibility versus specialization: Are you prioritizing flexibility across a range of 

tasks, or do you need highly specialized tools for GenAI?

•	 Support and reliability: Assess the provider’s support offerings and track record 

for reliability, especially for critical workloads.

•	 Leverage decision-making tools: Many cloud providers offer tools to assist with selection 

and planning:

•	 Cost calculators: Use tools such as AWS Pricing Calculator, Google Cloud Pricing 

Estimator, or Azure Cost Management to predict expenses.

•	 Trials and free tiers: Take advantage of free-tier offerings or trial credits to test 

services before committing.

•	 Performance benchmarks: Review publicly available benchmarks or run your 

own tests on model training, inference, and data transfer tasks.



Chapter 11 249

•	 Future-proof your decision: Think beyond your immediate needs to ensure scalability 

and adaptability for future growth:

•	 Long-term cost efficiency: Evaluate options such as reserved instances or hybrid 

models to control long-term costs.

•	 Evolving AI needs: Consider whether the platform can support emerging AI tech-

nologies or scaling requirements as your project grows.

•	 Vendor lock-in risks: Assess the portability of your application and whether 

switching providers in the future would be feasible.

•	 Make a data-driven decision: Consolidate your findings into a comparison matrix, scor-

ing each provider on key criteria such as cost, performance, scalability, compliance, and 

feature support. Assign weights to each criterion based on its importance to your project, 

then use the scores to identify the best-fit platform.

This decision-making framework ensures that your cloud platform choice is strategic, data-driven, 

and aligned with your GenAI project’s unique requirements. By carefully defining your priorities, 

evaluating trade-offs, and planning for the future, you can select a platform that maximizes the 

success of your GenAI deployment.

Summary
In this chapter, we explored the essential considerations for deploying GenAI applications in the 

cloud, equipping you with the knowledge to make informed decisions. We began by emphasizing 

the importance of specialized AI services and the cloud’s role in supporting the scalability and 

performance needs of GenAI. We then discussed the key factors for evaluating cloud platforms, 

such as cost, security, compliance, and feature offerings. A detailed analysis of leading cloud 

providers—Google Cloud, AWS, and Microsoft Azure—helped highlight their unique strengths, 

pricing models, and suitability for different use cases. Finally, we introduced a structured deci-

sion-making framework to help you choose the best platform tailored to your specific requirements.

In the next chapter, we will take a hands-on approach to deploying your GenAI application. Build-

ing on the foundational knowledge from this chapter, we will guide you through implementing 

a practical deployment workflow on Google Cloud.





12
Deploying Your Application on 
the Google Cloud

You have come a long way in designing and developing your GenAI application. Now, it is time 

to take that next crucial step—deployment. While a true production-grade deployment involves 

various complexities such as CI/CD pipelines, scalability considerations, observability, cost opti-

mization, and security hardening, this chapter is designed to give you a foundational, hands-on 

introduction to cloud deployment using Google Cloud Run. Cloud Run by Google Cloud provides 

a powerful yet developer-friendly way to deploy containerized applications without managing 

infrastructure, making it ideal for rapid prototyping and small-scale production use cases.

The deployment steps and services may vary slightly across other cloud platforms, such as AWS 

or Microsoft Azure, but we will focus on Google Cloud for brevity. However, once you are com-

fortable with the core concepts here, you are encouraged to experiment with similar workflows 

on other providers to broaden your cloud deployment expertise.

We will walk through the process of deploying the Haystack chatbot you built in Chapter 5 as a 

serverless application on Google Cloud. The process of deploying the intelligent recommendation 

system using Spring AI is mentioned later in the chapter with the links to the resources to follow 

the steps. By the end of this chapter, you will have a working chatbot live on the cloud and the 

confidence to build on this foundation for more advanced deployments.



Deploying Your Application on the Google Cloud252

In this chapter, we are going to cover the following main topics:

•	 Preparing your search chatbot using Haystack for deployment

•	 Containerizing the application with Docker

•	 Setting up a Google Cloud project and services

•	 Deploying to Google Cloud Run

•	 Testing and verifying the deployment

Technical requirements
To deploy your Haystack chatbot using Google Cloud Run, you need the following:

•	 An active Google Cloud account with billing enabled. If you are new to Google Cloud, you 

can start by creating an account at   https://console.cloud.google.com/ and take 

advantage of the free tier and credits offered for new users.

•	 Access to a Neo4j database:

•	 If you are using a local Neo4j instance, you must expose it publicly using ngrok or 

a similar tool, so that the deployed chatbot can connect to it. Here is an example 

to expose Neo4j’s bolt port:

ngrok tcp 7687

•	 Update your .env with the ngrok public URL:

NEO4J_URI=bolt://0.tcp.ngrok.io:XXXXX

•	 If you are using AuraDB Free, the preceding step can be ignored.

Preparing your Haystack chatbot for deployment
We will be deploying our application on Google Cloud. The approach we will be talking about is 

similar from a deployment perspective on all the popular cloud environments. We will be looking 

at building a docker compose and running it in the cloud. Google Cloud was chosen because it is 

convenient rather than having any technical advantage as such. Once we deploy and run the appli-

cation on Google Cloud, the official documentation links for other clouds to deploy the same docker 

compose will be provided. Just repeating those steps in the book will not make much of a difference. 

Before jumping into containerization and deployment, it is important to ensure that your Hay-

stack chatbot code is organized in a way that is compatible with serverless deployment. In this 

section, you will structure your code base appropriately and prepare the essential configuration 

files needed for deploying to Google Cloud Run.

 https://console.cloud.google.com/


Chapter 12 253

We will be reusing the working search chatbot from Chapter 5 by creating a copy of the main 

script (search_chatbot.py), renaming it app.py (as this is the default entry point many cloud 

services expect when serving a Python web application), and placing it in a simplified folder ready 

for containerization. Since the chatbot logic is already functional, we will skip local testing and 

move directly to packaging and deploying it to the cloud.

Next, prepare a requirements.txt file that lists all the necessary Python dependencies your 

chatbot needs to run. This file allows the container to install the required packages during the 

build process. The content of this file will look something like this:

haystack-ai==2.5.0

openai==1.67.0

gradio==4.44.1

python-dotenv>=1.0.0

neo4j==5.25.0

neo4j-haystack==2.0.3

To manage sensitive credentials and environment-specific configurations securely, it is recom-

mended to use a .env file. In the ch12 directory of the GitHub repo, you will find a file named 

example.env that serves as a template. This file includes placeholders for key variables such as 

your OpenAI API key and Neo4j database credentials. To use it, simply create a copy of this file, 

rename it .env, and populate it with your actual values. The application leverages the python-

dotenv library to load these variables at runtime, keeping secrets out of your code base while still 

making them accessible to your application:

OPENAI_API_KEY=<insert-your-openai-api-key>

NEO4J_URI=<insert-your-neo4j-uri>

NEO4J_USERNAME=neo4j

NEO4J_PASSWORD=<insert-your-neo4j-password>

 Note

These steps to help you containerize and deploy your Haystack chatbot to Goo-

gle Cloud Run are also presented in the README.md file in the book’s GitHub 

repo at https://github.com/PacktPublishing/Building-Neo4j-Powered-

Applications-with-LLMs/tree/main/ch12.

https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch12
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs/tree/main/ch12


Deploying Your Application on the Google Cloud254

At this point, you have set up the core components needed for deployment—your application 

script, dependencies, and environment variables. To ensure everything is organized correctly 

for containerization and deployment, your project directory should now follow this structure:

haystack-cloud-app/

├── app.py                  # Renamed chatbot server file (originally 
search_chatbot.py)

├── requirements.txt        # Python dependencies

├── Dockerfile              # Will be created in the next step

├── .env                    # For storing configuration variables

├── example.env             # Template file for environment variables

The example.env file acts as a reference for users to create their own .env file with valid credentials 

and configuration values. With all the core components now in place—including your application 

script, dependencies, and environment setup—you are ready to containerize your application 

for deployment.

Let us move on to the next step, which is to containerize your application with Docker.

Containerizing the application with Docker
Before deploying your Haystack chatbot to Google Cloud Run, the application must be packaged 

into a Docker container. Containerization allows you to bundle your code, dependencies, and 

environment into a single, portable unit that runs consistently across different systems—in-

cluding the cloud.

In this section, you will create a Dockerfile, which defines the steps required to build a Docker 

image of your chatbot. This image will then be deployed to Cloud Run as a serverless web service.

Here is the Dockerfile used to containerize your Haystack chatbot:

FROM python:3.11

EXPOSE 8080

WORKDIR /app

COPY . ./

RUN pip install -r requirements.txt

CMD ["python", "app.py"]



Chapter 12 255

Let us break down what each line does:

•	 FROM python:3.11: This sets the base image to Python 3.11, which includes everything 

needed to run Python applications.

•	 EXPOSE 8080: Cloud Run expects the application to listen on port 8080. This line docu-

ments the port that the container will expose at runtime.

•	 WORKDIR /app: This sets the working directory inside the container to /app. All subsequent 

commands will run from this directory.

•	 COPY . ./: This copies the entire contents of your local project directory into the con-

tainer’s /app directory.

•	 RUN pip install -r requirements.txt: This installs all Python dependencies listed in 

your requirements.txt file.

•	 CMD ["python", "app.py"]: This specifies the command to run when the container 

starts—in this case, it runs your chatbot application using app.py.

Once your Dockerfile is in place, you now have a fully containerized version of your Haystack 

chatbot, ready to be deployed to the cloud. The next step is to configure your Google Cloud envi-

ronment so that you can push your container and run it using Cloud Run.

Let us move on to setting up your Google Cloud project and services.

Setting up a Google Cloud project and services
Google Cloud provides a robust, developer-friendly platform for deploying modern applications, 

including GenAI-powered solutions. With tools such as Cloud Run, Artifact Registry, and Cloud 

Build, Google Cloud enables you to go from code to scalable, serverless deployment with minimal 

operational overhead.

Although your Haystack chatbot uses OpenAI for language processing, Google Cloud plays a crit-

ical role in hosting the application, managing container builds, and securely storing your Docker 

images. In this section, you will configure your Google Cloud project, enable only the necessary 

services (such as Cloud Run, Cloud Build, and Artifact Registry), and prepare your environment 

for deployment.

By the end of this section, your project will be cloud-ready, with all the services and permissions 

in place to deploy your chatbot using Google Cloud’s serverless infrastructure.

Let us get started by setting up your project and enabling the required APIs.



Deploying Your Application on the Google Cloud256

Creating a project
In the Google Cloud console (https://console.cloud.google.com/), on the project selector 

page, select or create a Google Cloud project (https://cloud.google.com/resource-manager/

docs/creating-managing-projects).

Make sure that billing is enabled for your Cloud project. Learn how to check whether billing is 

enabled on a project at https://cloud.google.com/billing/docs/how-to/verify-billing-

enabled.

Launching Google Cloud Shell
To simplify the setup and avoid installing any tools locally, we will use Google Cloud Shell, which 

comes pre-installed with Docker, the gcloud CLI, and Git. Here is how to get started:

1.	 Go to the Google Cloud console (https://console.cloud.google.com/).

2.	 Click the Cloud Shell icon in the top-right corner of the navigation bar (the terminal icon).

A terminal window will open at the bottom of your screen. This is a fully functional shell with 

access to your Google Cloud project and services.

Setting your active project
Make sure you are working on the right Google Cloud project. You can either create a new one or 

use an existing one. Set it using the following:

gcloud config set project YOUR_PROJECT_ID

You can verify the active project with the following:

gcloud config list project

Note

Cloud Shell provisions a temporary VM with 5 GB of persistent storage—more than 

enough for this walkthrough.

https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/billing/docs/how-to/verify-billing-enabled
https://cloud.google.com/billing/docs/how-to/verify-billing-enabled
https://console.cloud.google.com/


Chapter 12 257

Enabling the required services
Now, enable the Google Cloud services required for deploying your container:

gcloud services enable cloudresourcemanager.googleapis.com \

                       servicenetworking.googleapis.com \

                       run.googleapis.com \

                       cloudbuild.googleapis.com \

                       cloudfunctions.googleapis.com

On successful execution of the command, you should see a message similar to the one shown here:

Operation "operations/..." finished successfully.

The alternative to the preceding gcloud command is through the console by searching for each 

product. If any API is missed, you can enable it during the implementation. Refer to the documen-

tation for gcloud commands and usage: https://cloud.google.com/sdk/gcloud/reference/

config/list.

Adding your project files to Cloud Shell
Before continuing with the deployment steps, make sure your Haystack chatbot files are available 

in your Google Cloud Shell environment.

 You have two options to do this:

1.	 Upload your existing files: If you have been developing the project locally (e.g., as part of 

earlier chapters), you can upload your working directory to Cloud Shell using the Upload 

option in the Cloud Shell editor. Just click the Open Editor button (pencil icon), then use 

File | Upload Files or drag and drop your folder directly into the editor.

2.	  Clone from GitHub (recommended for clean setup): Alternatively, you can clone the 

Chapter 12 code directly from the official book repository using the following command:

git clone https://github.com/PacktPublishing/Building-Neo4j-Powered-
Applications-with-LLMs.git

cd Building-Neo4j-Powered-Applications-with-LLMs/ch12

Once you are inside the ch12 folder, you will find all the necessary files—app.py, 

requirements.txt, Dockerfile, and example.env.

https://cloud.google.com/sdk/gcloud/reference/config/list
https://cloud.google.com/sdk/gcloud/reference/config/list
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs.git
https://github.com/PacktPublishing/Building-Neo4j-Powered-Applications-with-LLMs.git


Deploying Your Application on the Google Cloud258

If you decide to clone the repo, make sure to follow the step mentioned earlier to generate the 

.env file. Now that your project files are in place and ready inside Cloud Shell, it is time to move 

on to the final stage—deploying your Haystack chatbot to Google Cloud Run.

Deploying to Google Cloud Run
In this section, you will walk through the full deployment workflow—from setting environment 

variables and configuring Artifact Registry to building your container and deploying it live using 

Cloud Run. Let us break it down step by step:

1.	 Set up environment variables. Begin by exporting the key environment variables for your 

Google Cloud project and deployment region. Replace the placeholders with your actual 

values:

# Set your Google Cloud project ID

export GCP_PROJECT='your-project-id'  # Replace with your actual

roject ID

# Set your preferred deployment region

export GCP_REGION='us-central1'       # You can choose a different 
supported region

2.	 Create an Artifact Registry instance and build the container. Configure your Artifact Reg-

istry repository and build your container image using Cloud Build:

# Set Artifact Registry repo name and Cloud Run service name

export AR_REPO='your-repo-name'       # Choose a name like 'genai-
chatbot'

export SERVICE_NAME='movies-chatbot'  # Or any descriptive name

a.	 Create the Docker repository:

 gcloud artifacts repositories create "$AR_REPO" \

  --location="$GCP_REGION" \

  --repository-format=Docker

b.	 Authenticate Docker with Artifact Registry:

gcloud auth configure-docker "$GCP_REGION-docker.pkg.dev"



Chapter 12 259

c.	 Then, build and push your container image:

gcloud builds submit \

  --tag "$GCP_REGION-docker.pkg.dev/$GCP_PROJECT/$AR_
REPO/$SERVICE_NAME"

This command uses your Dockerfile to package the app and pushes the resulting container 

image to Artifact Registry.

3.	 Deploy to Cloud Run. Before deploying, make sure your .env file contains all the required 

environment variables, such as OPENAI_API_KEY, NEO4J_URI, and any project-specific 

configuration.

To pass these variables during deployment, convert your .env file into a format compatible 

with the --set-env-vars flag:

ENV_VARS=$(grep -v '^#' .env | sed 's/ *= */=/g' | xargs -I{} echo 
-n "{},")

ENV_VARS=${ENV_VARS%,}

•	 Now, deploy your application to Cloud Run:

gcloud run deploy "$SERVICE_NAME" \

  --port=8080 \

  --image="$GCP_REGION-

docker.pkg.dev/$GCP_PROJECT/$AR_REPO/$SERVICE_NAME" \

  --allow-unauthenticated \

  --region=$GCP_REGION \

  --platform=managed \

  --project=$GCP_PROJECT \

  --set-env-vars="GCP_PROJECT=$GCP_PROJECT,GCP_REGION=$GCP_
REGION,$ENV_VARS"

Once complete, Google Cloud Run will return a URL where your chatbot is live and accessible 

via the web.

Congratulations—your Haystack chatbot is now successfully deployed and running as a serverless 

application on Google Cloud!

Let us move on to the final step: testing and verifying the deployment to ensure everything works 

as expected.



Deploying Your Application on the Google Cloud260

Testing and verifying the deployment on Google 
Cloud
Once your deployment is complete, Google Cloud Run will return a public service URL, typically 

in the following format:

https://movies-chatbot-[UNIQUE_ID].${GCP_REGION}.run.app

Open this URL in your browser. You should see your Gradio-powered chatbot interface live on 

the web—identical in functionality to your local version. You can now interact with the chatbot, 

submit queries, and receive movie recommendations just as before, but this time, it is running 

fully in the cloud.

If something does not work as expected, keep the following checklist ready for troubleshooting:

•	 Dependency check: Make sure your Dockerfile correctly installs all dependencies using 

pip install -r requirements.txt. Missing dependencies can result in build or runtime 

errors on Cloud Run.

•	 Cloud Shell versus local environment: If you are not using Google Cloud Shell, ensure 

your local environment is authenticated with Google Cloud using a service account that 

has appropriate permissions for Cloud Run, Artifact Registry, and (if applicable) Vertex AI.

•	 Monitor logs and metrics: You can monitor your service’s logs, request history, and perfor-

mance metrics directly from the Google Cloud console under Cloud Run. This is especially 

useful for debugging and performance tuning.

•	 Cloud Run service management: Navigate to Cloud Run in the Cloud console, where you 

will see a list of deployed services. Your chatbot (e.g., movies-chatbot) should appear 

here. Clicking on the service name will give you access to the following:

•	 The public service URL

•	 Deployment history

•	 Container configuration

•	 Environment variables

•	 Logs and error reports

This visibility makes it easy to track and manage your application post-deployment.

With your chatbot now live, deployed on a scalable serverless platform, and publicly accessible, 

you have successfully completed the deployment journey. Your GenAI-powered movie recom-

mendation chatbot is now ready to be used, shared, and further enhanced.



Chapter 12 261

Deploying the chatbot to other clouds
As mentioned in the initial section, once you have docker compose prepared, you can follow the 

instructions provided to deploy the same application to other clouds:

•	 Azure deployment: Please follow the instructions provided at this link:   https://
techcommunity.microsoft.com/blog/appsonazureblog/how-to-deploy-a-local-

docker-container-to-azure-container-apps/3583888.

•	 AWS deployment: Docker provides a clear guide on deploying docker compose files to 

AWS. Please follow this link for more details: https://www.docker.com/blog/docker-

compose-from-local-to-amazon-ecs/.

When you follow the instructions in these links, you can see the similarity with the deployment 

approach when we chose to containerize the applications.

There is a lot of information available in each cloud’s official documentation to deploy Spring Boot 

applications to the cloud. For example, if you are looking to run the application we created in Chap-

ters 9 and 10, you can follow the steps in the documentation provided by various cloud vendors:

•	 Google Cloud: This article (https://cloud.google.com/run/docs/quickstarts/build-

and-deploy/deploy-java-service) lists detailed steps to deploy on Google Cloud Run

•	 Azure: This article (https://learn.microsoft.com/en-us/azure/spring-apps/basic-

standard/how-to-maven-deploy-apps) shows how to deploy the Spring Boot application 

on Azure

•	 AWS: For Azure here are some articles for your reference.

•	 This article (https://community.aws/content/2qk6oFuOPiA4G0N83ocU0REbtdN/
step-by-step-guide-to-deploying-a-spring-boot-application-on-aws-ec2-

with-best-practices) shows us how to deploy the Spring Boot application on 

AWS EC2

•	 This article (https://www.geeksforgeeks.org/deploy-a-spring-boot-

application-with-aws/) shows how to deploy the Spring Boot application using 

AWS Elastic Beanstalk

These articles are good enough to guide you through deploying our GenAI application as, at its 

heart, it is a simple application that does not need scaling as such since it only performs the 

augmentation—that, too, as a batch process.

The production deployment of these applications is a more complex procedure that requires you 

to focus on various supporting elements, such as database, monitoring, and so on. Discussing 

https://techcommunity.microsoft.com/blog/appsonazureblog/how-to-deploy-a-local-docker-container-to-azure-container-apps/3583888
https://techcommunity.microsoft.com/blog/appsonazureblog/how-to-deploy-a-local-docker-container-to-azure-container-apps/3583888
https://techcommunity.microsoft.com/blog/appsonazureblog/how-to-deploy-a-local-docker-container-to-azure-container-apps/3583888
https://www.docker.com/blog/docker-compose-from-local-to-amazon-ecs/
https://www.docker.com/blog/docker-compose-from-local-to-amazon-ecs/
https://cloud.google.com/run/docs/quickstarts/build-and-deploy/deploy-java-service
https://cloud.google.com/run/docs/quickstarts/build-and-deploy/deploy-java-service
https://learn.microsoft.com/en-us/azure/spring-apps/basic-standard/how-to-maven-deploy-apps
https://learn.microsoft.com/en-us/azure/spring-apps/basic-standard/how-to-maven-deploy-apps
https://community.aws/content/2qk6oFuOPiA4G0N83ocU0REbtdN/step-by-step-guide-to-deploying-a-spring-boot-application-on-aws-ec2-with-best-practices
https://community.aws/content/2qk6oFuOPiA4G0N83ocU0REbtdN/step-by-step-guide-to-deploying-a-spring-boot-application-on-aws-ec2-with-best-practices
https://community.aws/content/2qk6oFuOPiA4G0N83ocU0REbtdN/step-by-step-guide-to-deploying-a-spring-boot-application-on-aws-ec2-with-best-practices
https://www.geeksforgeeks.org/deploy-a-spring-boot-application-with-aws/
https://www.geeksforgeeks.org/deploy-a-spring-boot-application-with-aws/


Deploying Your Application on the Google Cloud262

the whole deployment is out of the scope of this book, but we will highlight the deployment 

architecture and key considerations to deploy your applications in production in the next section.

Preparing for deployment in production: key 
considerations
In this section, we will look at a typical architecture deployment for intelligent applications. 

There are a lot of other aspects we need to keep in mind when we are moving to production. For 

simplicity, we will refer to the augmentation application we built in Chapters 9 and 10.

Let us look at all the tasks we did from loading data to reviewing the results: 

1.	 We loaded the data into a graph.

2.	 The graph was enhanced with seasonal relationships. We augmented the graph using the 

augmentation application—articles as well as customer behavior aspects.

3.	 We also utilized KNN similarity and community detection algorithms to enhance the 

graph and reviewed how this approach gives us better results.

In a production deployment, all of these aspects may need to be automated and deployed as 

individual applications. Let us take a brief look at all of these aspects that we need to take care of.

When we are deploying intelligent applications to production, we need to make sure we take 

care of data ingestion, data consumption, the LLM or ML pipeline to augment the graph, and the 

graph database deployment architecture for scale.

Let’s first take a look at the deployment architecture in Figure 12.1.

Figure 12.1 — Deployment architecture of Neo4j intelligent applications



Chapter 12 263

We can see there are two different Neo4j databases shown here. In Neo4j for regular interaction, 

we will have Primary, which can perform both READ and WRITE capabilities. For analytical, Graph 

Data Science (GDS), and other uses, we will use Secondary, which provides only the READ capa-

bility. We can have more than one Primary database to provide high availability and more than 

one Secondary database to provide horizontal scalability. We can see from the diagram that all 

the regular interactions, including data ingestion and data consumption, are handled by Primary 

and the analytical workload that augments the graph is handled by Secondary.

This type of deployment architecture also makes it easy to maintain and monitor the system. 

The Neo4j database comes with Neo4j Ops Manager (https://neo4j.com/docs/ops-manager/

current/) for deploying and monitoring Neo4j servers. It provides dashboards to monitor the 

current health of the system as well as to set up alerts to be notified in case of errors. 

For the other applications, we need to have similar monitoring, especially for data ingestion and 

augmentation applications. When they fail in the middle, we should be able to restart from where 

we have failed. The augmentation application is built to handle the data that way.

When we are building the ingestion pipeline, we need to keep in mind these aspects: 

•	 What is our initial data size?

•	 What are our day-to-day changes (incremental data changes) and their size?

•	 How does incremental data come? Is it coming in near-real time, as a batch at regular inter-

vals, a big batch at the end of the day, or interactive changes made by end users via the UI?

We will look at best practices for these scenarios. 

Initial data load
If we are migrating from another data source or database, we might have to move the data into 

Neo4j for the first time. Depending on this data size, we must decide whether we can take a 

transactional approach to load the data or leverage the offline data import approach called neo4j-

admin import. 

In Chapter 9, we used a transactional approach to load the data. If the amount of data we are load-

ing is under a few million records, say 100 million, we can load this data in a reasonable amount 

of time. When we load the data transactionally, the Neo4j database needs to update the indexes 

and keep transaction logs apart, committing the data to the database. This adds a good amount of 

overhead to the process. But this approach gives us more flexibility and reusable code to use with 

incremental data loading. If we are loading data into a cluster, we can use this approach to make 

https://neo4j.com/docs/ops-manager/current/
https://neo4j.com/docs/ops-manager/current/


Deploying Your Application on the Google Cloud264

sure the data is available across the cluster, as the Neo4j database server makes sure the changes 

are replicated across the cluster. We have used the LOAD CSV option to load the data. You can 

read more about this at https://neo4j.com/docs/cypher-manual/current/clauses/load-csv/.

This approach is fine for proofs of concept and ad hoc data load purposes, but for production 

systems, the data ingestion should be performed using a client by connecting to the database 

using the Neo4j protocol. While the LOAD CSV option is simple and attractive, it uses up the 

database heap to load the data and perform the data ingestion, which might not be desirable. A 

basic Python client application that can ingest data into a graph can be found at https://github.

com/neo4j-field/pyingest. Note that this is a sample client, and you need to build one that 

suits your production needs.

If the data sizes are bigger, then using the Neo4j Admin Import process would be best. For this 

purpose, we need to prepare CSV files for nodes and relationships in a specific format and use 

the neo4j-admin tool to prepare the database. You can read more about the CSV file formats 

and examples at https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/

neo4j-admin-import/.

Incremental data load
The approaches for incremental data loading depend on the framework we will use to load the 

data. If there is a lot of streaming data, then leveraging a framework such as Apache Kafka might 

be a good idea. Also, it is easy to build applications to interact with databases to ingest the data 

using language frameworks such as Java, JavaScript, .NET, or Python.

You can read about building client applications for Neo4j at https://neo4j.com/docs/create-

applications/. One thing we need to keep in mind is to leverage the managed transactional 

functions so that the driver can retry the transactions as needed in a cluster when the cluster 

topology changes due to network failures or server failures. You can read more about this at 

https://neo4j.com/docs/java-manual/current/transactions/. This link points to Java usage, 

but the same feature is available for all supported language frameworks.

Graph augmentation
While we have built the article augmentation and customer augmentation as a Spring Boot appli-

cation, there are other aspects that we have not investigated automating. After we generated em-

beddings for a specified season for the customer, we ran the ML aspects as individual commands 

such as KNN similarity and community detection. We might have to automate these aspects, too. 

Whenever new data is ingested into the graph, we might have to trigger the augmentation appli-

https://neo4j.com/docs/cypher-manual/current/clauses/load-csv/
https://github.com/neo4j-field/pyingest
https://github.com/neo4j-field/pyingest
https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/neo4j-admin-import/
https://neo4j.com/docs/operations-manual/current/tools/neo4j-admin/neo4j-admin-import/
https://neo4j.com/docs/create-applications/
https://neo4j.com/docs/create-applications/
https://neo4j.com/docs/java-manual/current/transactions/


Chapter 12 265

cation to generate the embeddings to adapt to the new data we have loaded, and then trigger the 

GDS algorithms after that is completed. Note that the ML pipeline we looked at is simple chaining 

of KNN similarity and community detection; they can be much more complex based on the needs.

If you want to read more about ML pipelines with Neo4j, you can visit https://neo4j.com/docs/

graph-data-science/current/machine-learning/machine-learning/.

We explored how to look at recommendations as Cypher queries as part of analysis and validation. 

Once we are satisfied with queries, we might have to build an application to provide recommen-

dations as needed on demand. 

We have built our application on the Spring Framework, which provides various capabilities 

and options to build a production-grade application that makes it easier to deploy and monitor 

applications. You can read more about how we can package the Spring applications for produc-

tion deployment at https://docs.spring.io/spring-boot/reference/packaging/index.html. 

You can read more about the production-level features that help us monitor the application at 

https://docs.spring.io/spring-boot/reference/actuator/index.html.

These are the key principles and considerations for deployment; for production deployment, 

multiple aspects need to be considered, including a proper deployment architecture along with 

application development. Several processes need to be deployed for monitoring and performance 

evaluation to make sure the application scales with usage as data and traffic grows.

Summary
In this concluding chapter, you learned how to take your Haystack-powered GenAI chatbot from 

local development to a fully deployed, cloud-hosted application using Google Cloud Run. We 

walked through preparing your project structure, containerizing your application with Dock-

er, configuring essential Google Cloud services, and deploying your chatbot in a scalable and 

serverless environment. You also learned how to verify the deployment, monitor performance, 

and troubleshoot common issues—equipping you with practical skills that extend far beyond 

just this project.

More importantly, this chapter brought everything full circle. From understanding knowledge 

graphs and vector search to integrating GenAI workflows using Haystack and Neo4j and, finally, 

deploying your application to the cloud—you now have a complete end-to-end blueprint for 

building intelligent, scalable, and production-ready GenAI applications.

We’ve now wrapped up our journey of building Neo4j-powered apps with LLMs. Up next, we’ll 

take a quick look at the key takeaways of this journey.

https://neo4j.com/docs/graph-data-science/current/machine-learning/machine-learning/
https://neo4j.com/docs/graph-data-science/current/machine-learning/machine-learning/
https://docs.spring.io/spring-boot/reference/packaging/index.html
https://docs.spring.io/spring-boot/reference/actuator/index.html




13
Epilogue

We have looked at quite a few topics and explored how to build intelligent applications. Now, we 

will revisit what we learned in the earlier chapters and look at the next steps in our journey. We 

will review how Neo4j is best suited to build knowledge graphs and how it integrates with the 

GenAI ecosystem to build intelligent search and recommendation applications with ease. We 

will cover the following topics:

•	 The combined power of GenAI and Neo4j

•	 Beyond the book: exploring advanced techniques and resources for continued learning

•	 Closing remarks

The combined power of GenAI and Neo4j
In Chapters 1–3, we looked at how GenAI and the evolution of LLMs came into the picture and 

how they jumpstarted technology, enabling natural interactions and ease of use. We also looked 

at how these same capabilities, because of the way they work, can provide information that is 

believable but might actually be false, as well as information that might not exist, which is re-

ferred to as hallucinations. We looked at how RAG can help with reducing these hallucinations.

We looked into knowledge graphs and how we can model them effectively to participate in RAG 

flows, called GraphRAG approaches. GraphRAG can be more effective and accurate than tradi-

tional RAG by integrating evolving knowledge graphs, which can ground LLMs with ease of use.



Epilogue268

GraphRAG for search applications
In Chapters 4–6, we embarked on a hands-on journey to build a powerful and intelligent search 

experience using a movie knowledge graph. Starting with structured data, we modeled and 

constructed the graph using Python and enriched it with vector embeddings generated through 

the Haystack framework. These embeddings, stored directly in the graph, helped us achieve a 

similarity search for our GraphRAG pipeline.

Using vector search with the power of knowledge graphs, we created a hybrid retrieval system 

capable of answering not just simple keyword queries but also complex questions that might 

require multi-hop traversal to retrieve results. Through the integration of LLMs and GraphRAG, 

we moved on to intelligent search, which is capable of both document retrieval and context-aware 

understanding.

These chapters demonstrated the real-world potential of combining structured knowledge from 

graphs with the expressive power of LLMs.

GraphRAG for recommendations
In Chapters 7–10, we looked at building a recommendations application by leveraging GraphRAG. 

We leveraged Langchain4J and Spring AI to understand how we can build GraphRAG applica-

tions using Java and the Spring framework. We followed numerous steps to build an intelligent 

recommendation application. The first one was building a knowledge graph by loading H&M 

customer transaction data. The next important step was to augment the graph by adding sea-

sonal relationships, which helped consume the data in a more granular fashion. We then used 

these seasonal relationships as part of the GraphRAG flow to generate a summary of customer 

purchases for a given season, along with embeddings to enrich the graph with more context. 

These embeddings and graph data science algorithms captured relationships between similar 

customers, with the help of the KNN algorithm. Upon creating similarity relationships, community 

detection algorithms were utilized to group the customers into communities to provide better 

recommendations. We also looked at why this pipeline gives us better recommendations than 

relying on a simple vector search itself.

When we built this application, we used GraphRAG not to generate text for end user consump-

tion but to enrich the knowledge graph, to provide better recommendations. This showed how 

LLMs can play a part not just as chatbots but also in enriching the data to understand it better 

and in a new light.



Chapter 13 269

Choosing your cloud platform
Chapters 11–12 focused on various available cloud services. We drew a detailed comparison to 

help you select a cloud for your GenAI applications. In the last chapter, we demonstrated how to 

deploy your application to the Google Cloud.

Next up, we will talk about how we can go beyond what we have discussed in this book.

Beyond the book: exploring resources for continued 
learning
While we have discussed, with simple examples, the importance of graph data modeling and 

looked at two specific graph data model examples, it would be prudent to understand how Neo4j 

helps in building better graphs and how its architecture can assist with building knowledge 

graphs in a scalable manner. Neo4j provides the following resources to learn more about Neo4j, 

knowledge graphs, and GraphRAG implementations:

•	 Neo4j Graph Academy: You can find Neo4j Graph Academy at https://graphacademy.neo4j.

com/. This contains a wealth of resources to understand Neo4j concepts and build knowledge 

graphs. For example, the course at https://graphacademy.neo4j.com/courses/genai-

workshop-graphrag/ provides an easy-to-follow workshop to understand GraphRAG principles.

•	 Neo4j GraphRAG Python package: Neo4j provides a simple-to-use GraphRAG Python 

package. You can read more about it at https://neo4j.com/docs/neo4j-graphrag-

python/current/index.html.

•	 Neo4J GenAI ecosystem: You can read more about the GenAI ecosystem integrations at 

https://neo4j.com/labs/genai-ecosystem/. This link contains documentation about 

the integration with Haystack, LangChain, Spring AI, and other frameworks.

Let’s head over to the closing remarks.

Closing remarks
We have looked at various aspects of emerging LLM frameworks and how we can build better 

solutions using these frameworks. While this technology is exciting and opening new doors for 

how we look at and solve problems, it is still in its nascent stages. It requires a lot of processing 

power and may not have the service-level agreement (SLA) response times we might be looking 

for. While we might get excited about solving all the problems using this approach, it’s important 

to evaluate whether trying to solve a given problem really needs to leverage these technologies 

or whether we can solve them more reasonably and effectively. For example, many people are 

https://neo4j.com/docs/neo4j-graphrag-python/current/index.html
https://neo4j.com/docs/neo4j-graphrag-python/current/index.html
https://neo4j.com/labs/genai-ecosystem/


Epilogue270

excited about LLM capabilities and trying to generate data models (be it graphs, SQL, or other) by 

describing a problem. This can be a double-edged sword. If we are not familiar with the data we 

are working with, we may not be able to validate the model generated. If we are very familiar with 

the data, we might have better context and nuances of the data that LLMs might be missing. So, 

we might not benefit as much when we try to solve the problems in this manner. So, keep in mind 

that this might be a surgical knife to solve the problems effectively, not an axe, so use it effectively.

While this book concludes here, your journey does not have to. Armed with the foundational 

knowledge, tools, and working examples, you are now ready to experiment, expand, and elevate 

your own GenAI solutions. Whether you are building smart assistants, contextual search engines, 

or personalized recommender systems, the future of intelligent applications is now in your hands.

Keep building. Keep exploring. And most importantly, keep connecting ideas, data, and people 

through the power of knowledge graphs and generative AI.

Stay tuned
To keep up with the latest developments in the fields of Generative AI and LLMs, subscribe to our 

weekly newsletter, AI_Distilled, at https://packt.link/Q5UyU.

 

Have questions about the book or want to contribute to discussions on Generative AI and LLMs?

Join our Discord server at https://packt.link/4Bbd9 and our Reddit channel at https://packt.

link/wcYOQ to connect, share, and collaborate with like-minded enthusiasts.

           

https://packt.link/Q5UyU
https://packt.link/4Bbd9
https://packt.link/wcYOQ
https://packt.link/wcYOQ


packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 

industry leading tools to help you plan your personal development and advance your career. For 

more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 

industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 

available? You can upgrade to the eBook version at packtpub.com and as a print book customer, 

you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.

com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com




Other Books You May Enjoy 273

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Generative AI with Python and PyTorch

Joseph Babcock, Raghav Bali

ISBN: 978-1-83588-444-7

•	 Grasp the core concepts and capabilities of LLMs

•	 Craft effective prompts using chain-of-thought, ReAct, and prompt query language to 

guide LLMs toward your desired outputs

•	 Understand how attention and transformers have changed NLP

•	 Optimize your diffusion models by combining them with VAEs

•	 Build text generation pipelines based on LSTMs and LLMs

•	 Leverage the power of open-source LLMs, such as Llama and Mistral, for diverse  

applications

https://packt.link/1835884458


Other Books You May Enjoy

LLM Engineer’s Handbook

Paul Iusztin, Maxime Labonne

ISBN: 9781836200079

•	 Implement robust data pipelines and manage LLM training cycles

•	 Create your own LLM and refine it with the help of hands-on examples

•	 Get started with LLMOps by diving into core MLOps principles such as orchestrators  

and prompt monitoring

•	 Perform supervised fine-tuning and LLM evaluation

•	 Deploy end-to-end LLM solutions using AWS and other tools

•	 Design scalable and modular LLM systems

•	 Learn about RAG applications by building a feature and inference pipeline

https://packt.link/1836200072


Other Books You May Enjoy 275

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 

apply today. We have worked with thousands of developers and tech professionals, just like you, 

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Building Neo4j-Powered Applications with LLMs, we’d love to hear your 

thoughts! If you purchased the book from Amazon, please click here to go straight to the 

Amazon review page for this book and share your feedback or leave a review on the site that you 

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1836206232
https://packt.link/r/1836206232




Index

A
Accelerate  13
advanced Cypher techniques, complex graph 

structures
nested queries  93
pattern matching, with path patterns  91
procedural logic  92
subqueries  92
variable-length relationships  90

advanced vector search
Haystack, connecting to Neo4j  102

AI-powered search system
alerts, setting up for critical issues  132
best practices, for maintaining and 

monitoring  131
logging strategy, implementing  132
Neo4j and Haystack performance, 

monitoring  131
regular maintenance routine,  

establishing  132
AI services

by cloud providers  233, 234
reference link  143

application
containerizing, with Docker  254, 255

articles
filtering, by characteristics  223-227
filtering, that belong to other  

communities  219-227
AuraDB

reference link  38

AuraDB Free  86
data, importing into  87-89
instance, setting up  86

AuraDS
reference link  38

AWS
reference link, for security and  

compliance  246
reference link, for security best  

practices  240
AWS Regions  243
Azure

reference link, for security and  
compliance  246

reference link, for security best  
practices  240

Azure Active Directory (AAD)  241

B
beam search decoding  22
Bidirectional Encoder Representations from 

Transformers (BERT)
reference link  4

C
cache embeddings  128
cache query results  128
chaining path patterns  91
chatbot

deploying, to other clouds  261



Index278

ChatGPT  4
cloud

advantages, for deploying GenAI  
solutions  232

cloud computing options
for GenAI applications  232

cloud platform
decision-making framework, for  

selection  247-249
selecting  269

cloud platform, for GenAI applications
cost  236-239
key considerations  234
performance  234-236
pricing models  236-239
scalability  234-236
security and compliance  239-244

cloud providers
specialized AI services  233, 234

Cloud Security Alliance (CSA)
reference link  246

collaborative filtering  219
communities  213-219

detecting, with Louvain algorithm  210-212
constraints  74, 75
container

deploying, to Google Cloud Run  258, 259
containerization  254
content-based filtering  219
context-aware search  119-121
cosine similarity  209

reference link  209
CSV files

cleaning  78-85
normalizing  78-85

Customer-Managed Encryption Keys  
(CMEKs)  240

Customer-Managed Keys (CMKs)  241
Cypher

reference link  38

D
data cleaning

need for  77, 78
data encryption  240

at rest  240
in transit  240

Data Loss Prevention (DLP) API  245
data normalization

need for  77, 78
datasets library  12
Dense Passage Retrieval  20
deployment

Haystack chatbot, preparing for  252-254
deployment, in production

graph augmentation  264, 265
incremental data load  264
initial data load  263, 264
key considerations  262, 263

Docker
application, containerizing  254, 255

dynamic search queries
with flexible search filters  121, 122

E
Easy RAG feature  143
embedding models  113
embeddings  24, 98

generating, for movie plots  99-101



Index 279

embeddings, in context of LLMs
reference link  166

embedding stores
reference link  143

end-to-end RAG flow
building  30-34

Entity-Relationship (ER) diagrams  39
extended Neo4j capabilities

reference link  138, 139
used, for building intelligent  

applications  138, 139

F
Facebook AI Research (FAIR)  16
faiss-cpu  12

reference link  12
fine-tuning  6, 15

G
GenAI

and Neo4j combination  267
pitfalls and ethical concerns  6

GenAI applications
cloud computing options  232

GenAI deployments
best practices, for security and  

compliance  245, 246
GenAI ecosystem

reference link  144
General Data Protection Regulation  

(GDPR)  243
Generative Pre-trained Transformer (GPT)  4
Google Cloud

active project, setting  256
deployment, testing  260

deployment, verifying  260
project, creating  256
reference link, for security and  

compliance  246
reference link, for security best  

practices  240
services, enabling  257

Google Cloud Regional Services  243
Google Cloud Run

container, deploying to  258, 259
Google Cloud Shell

launching  256
project files, adding  257

Google Cloud VPC Service Controls  242
GPT model

training, with OpenAI parameters  5
GraphAcademy

reference link  38
graph data model  149
graph data modeling

advanced approach  49-57
basic approach  45-48
need for  39-41
RDBMS data modeling  41-45

Graph Data Science (GDS)  66
Graph Data Science (GDS) algorithms  205

recommendations, improving  207
graph modeling

best practices  156-160
Graph RAG  58, 59, 145

flow  39
for recommendations  268
for search applications  268



Index280

graph reasoning, Haystack  124
insights, unlocking through path  

queries  125, 126
multiple relationships, traversing to reveal 

hidden insights  124
grounding  16

H
Haystack  95

initializing  98, 99
Haystack chatbot

preparing, for deployment  252-254
Haystack integration

fine-tuning  112
Haystack logging and debugging

reference link  132
Haystack optimization and maintenance

reference link  132
Health Insurance Portability and 

Accountability Act (HIPAA)  243
H&M personalization dataset

recommendation graph, modeling  
with  148-156

homogeneous graph  208
horizontal scaling  129, 130

I
identity and access management (IAM)  241
incident response  242
in-context learning  14
indexes  74-76

J
Java-based frameworks  144, 145

K
keyword matching  23, 25, 26
K-Nearest Neighbors (KNN) algorithm  207

reference link  207
similarity, computing  208-210

knowledge graphs  8, 147
building, for RAG integration  59
enhancing  66
Graph Data Science (GDS)  66
importance, in LLMs  6, 7
ontology development  66
role, in LLMs  7, 8
setting up, in Neo4j  60-62
using, with LLMs  9, 10

L
LangChain4j  142

comprehensive toolbox  143
features  143
reference link  142
setting up  164-166
unified APIs  142

language models
reference link  143

Large Language Models (LLMs)  4-6, 137
GenAI evolution, outlining through  4
hallucinations, factors  13, 14
importance of knowledge graphs  6, 7
importance of RAGs  6, 7
knowledge graphs, role  7, 8
knowledge graph, using with  9, 10

load balancing  129, 130
logit  28
Long Short-Term Memory (LSTM)  4



Index 281

Louvain algorithm  210
communities, detecting  210-212
reference link  210

M
movie knowledge graph

building  86
movies dataset

utilizing  77
Multi-Factor Authentication (MFA)  241
multi-hop knowledge graph query path  10
multi-hop reasoning  9

N
Named Entity Recognition (NER)  9
named path patterns  91
Neo4j

knowledge graph, setting up  60-62
used, for enhancing RAG models  58, 59
vector search index, creating  102

Neo4j Aura
reference link  38

Neo4j AuraDB
reference link  60

Neo4j Desktop
reference link  38

Neo4j GDS algorithms
reference link  207

Neo4j graph
design considerations, for efficient  

search  73-76
Neo4j knowledge graph

RAG, integrating with  63-65
with GraphRAG  57, 58

Neo4j logging
reference link  132

Neo4j maintenance
reference link  132

Neo4j monitoring and alerts
reference link  132

Neo4j, optimizing
additional properties, indexing  113, 114
queries, analyzing  114
queries, logging  114

Neo4j Python Driver  38
Neo4j queries

optimizing, for large graphs  127
nested queries  93
network security  241
nodes  73
NumPy  12

O
ontologies

reference link  66
ontology development  66
OpenAI

initializing  98, 99

P
pandas  12
passage retrieval  23, 27, 28
path patterns  90
personalized experiences

building, strategies  140
procedural logic  92
prompt engineering  14

reference link  14



Index282

protected health information (PHI)  243
Python

reference link  38
PyTorch

reference link  12

Q
query profiling  57

R
RAG approach  7
RAG capabilities

reference link  143
RAG integration

used, for building knowledge graph  59
RAG models

enhancing, with Neo4j  58, 59
rank_bm25 library  12
RDBMS data modeling  41-45
recommendation engine, LangChain4j

application properties, updating  169, 170
building  166, 167
final application  179-186
Neo4j integration  170-175
OpenAI chat integration  175-178
OpenAI embedding model  

integration  178, 179
project dependencies, updating  168, 169

recommendation engine, Spring AI
application properties, updating  187
building  186, 187
final application  192, 193
Neo4j integration  188
OpenAI chat integration  188-191

OpenAI embedding model  
integration  191, 192

project dependencies, updating  187
recommendation graph

article data, loading  151-154
building  149
customer data, loading  150, 151
final graph  155, 156
modeling, with H&M personalization  

dataset  148-156
transaction data, loading  154, 155

recommendations
improving, with GDS algorithms  207

recommendation system  140
fine-tuning  193-203
references  141

Recurrent Neural Network (RNN)  4
Reinforcement Learning with Human 

Feedback (RLHF)  15
Relational Database Management Systems 

(RDBMSs)  37
relationships  73
relevance score  28
Retrieval-Augmented Generation  

(RAG)  11, 13, 37
architecture  16
flow, deconstructing  17-23
importance, in LLMs  6, 7
integrating, with Neo4j knowledge  

graph  63-65
retrieval process  23
retrieval techniques and strategies  23

keyword matching  25, 26
passage retrieval  27, 28
vector similarity search  24, 25

retrieved information
integrating  29, 30



Index 283

retriever  16
Role-Based Access Controls (RBAC)  240, 241
rule-based systems  141

benefits  141
dynamic rules  141
limitations  142
static rules  141

S
scikit-learn  12
search and recommendation systems, 

differences
reference link  139

search-driven chatbot
building, with Gradio and Haystack  109
Gradio, connecting to full pipeline  111
Gradio interface, setting up  109, 110
integrating, with Haystack and Neo4j  110
running  112

search optimization  123
security information and event management 

(SIEM)  242
SentencePiece

reference link  12
Service Organization Control 2 (SOC 2)  243
similarity

computing, with K-Nearest Neighbors  
(KNN)  208-210

similarity search
performing, with Haystack and Neo4j vector 

index  103
single sign-on (SSO)  241
Spring AI  143

capabilities  144
setting up  164-166

spring initializr
reference link  164

SQLite databases
reference link  38

subqueries  92

T
threat detection  242
top K neighbors  207
Transformers library  12

reference link  11

V
variable-length relationships  90
vector indexing  129
vector search index

creating, in Neo4j  102
vector search query

running, with Cypher and Haystack  105-107
running, with Haystack and Neo4j  104

vector similarity search  23-25
virtual private clouds (VPCs)  241



Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free 

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836206231

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836206231



	Cover
	Title Page
	Copyright Page
	Dedication
	Forward
	Contributors
	Acknowledgement

	Table of Contents
	Preface
	Part 1: Introducing RAG and Knowledge Graphs for LLM Grounding
	Stay tuned

	Chapter 1: Introducing LLMs, RAGs, and Neo4j Knowledge Graphs
	Outlining the evolution of GenAI through the lens of LLMs
	Introducing LLMs
	Understanding GenAI’s pitfalls and ethical concerns

	Understanding the importance of RAGs and knowledge graphs in LLMs
	The role of knowledge graphs in LLMs

	Introducing Neo4j knowledge graphs
	Using Neo4j knowledge graphs with LLMs

	Summary

	Chapter 2: Demystifying RAG
	Technical requirements
	Understanding the power of RAG
	Deconstructing the RAG flow
	Retrieving external information for your RAG
	Understanding retrieval techniques and strategies
	Vector similarity search 
	Keyword matching 
	Passage retrieval 

	Integrating the retrieved information

	Building an end-to-end RAG flow
	Summary

	Chapter 3: Building a Foundational Understanding of Knowledge Graph for Intelligent Applications
	Technical requirements
	Understanding the importance of graph data modeling
	RDBMS data modeling
	Graph data modeling: basic approach
	Graph data modeling: advanced approach

	Combining the power of RAG and Neo4j knowledge graphs with GraphRAG
	GraphRAG: enhancing RAG models with Neo4j
	Building a knowledge graph for RAG integration
	Python code example: Setting up a knowledge graph in Neo4j
	Integrating RAG with your Neo4j knowledge graph


	Enhancing knowledge graphs
	Summary

	Part 2: Integrating Haystack with Neo4j: A Practical Guide to Building AI-Powered Search
	Stay tuned

	Chapter 4: Building Your Neo4j Graph with Movies Dataset
	Technical requirements
	Design considerations for a Neo4j graph for an efficient search
	Considerations while defining node and relationship types
	Applying indexing and constraints on search performance

	Utilizing a movies dataset
	Why normalize and clean data?
	Cleaning and normalizing the CSV files

	Building your movie knowledge graph with code examples
	Setting up your AuraDB free instance
	Importing your data into AuraDB

	Beyond the basics: advanced Cypher techniques for complex graph structures
	Summary

	Chapter 5: Implementing Powerful Search Functionalities with Neo4j and Haystack
	Technical requirements
	Initializing Haystack and OpenAI for embeddings
	Generating embeddings for movie plots

	Connecting Haystack to Neo4j for advanced vector search
	Creating a vector search index in Neo4j
	Performing similarity search with Haystack and a Neo4j vector index
	Running a vector search query with Haystack and Neo4j
	Running a vector search query using Cypher and Haystack
	Example use case

	Building a search-driven chatbot with Gradio and Haystack
	Setting up a Gradio interface
	Integrating with Haystack and Neo4j
	Connecting Gradio to the full pipeline
	Running the chatbot

	Fine-tuning your Haystack integration
	Experimenting with different embedding models
	Optimizing Neo4j for faster queries
	Indexing additional properties
	Logging and analyzing queries


	Summary

	Chapter 6: Exploring Advanced Knowledge Graph Capabilities with Neo4j
	Technical requirements
	Exploring advanced Haystack functionalities for knowledge exploration
	Context-aware search
	Dynamic search queries with flexible search filters
	Search optimization: tailoring search for specific use cases

	Graph reasoning with Haystack
	Traversing multiple relationships to reveal hidden insights
	Unlocking insights through path queries

	Scaling your Haystack and Neo4j integration
	Optimizing Neo4j queries for large graphs
	Caching embeddings and query results
	Efficient use of vector indexing
	Load balancing and horizontal scaling

	Best practices for maintaining and monitoring your AI-powered search system
	Monitoring Neo4j and Haystack performance
	Setting up alerts for critical issues
	Implementing a logging strategy
	Establishing a regular maintenance routine

	Summary

	Part 3: Building an Intelligent Recommendation System with Neo4j, Spring AI, and LangChain4j 
	Stay tuned

	Chapter 7: Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems  
	Technical requirements
	Understanding extended Neo4j capabilities to build intelligent applications
	Personalizing recommendations 
	Limitations of traditional approaches

	Introducing Neo4j’s LangChain4j and Spring AI frameworks
	LangChain4j 
	Spring AI
	Why Java-based frameworks?

	Overview of an intelligent recommendation system in Neo4j GenAI ecosystem
	Summary

	Chapter 8: Constructing a Recommendation Graph with H&M Personalization Dataset
	Technical requirements
	Modeling the recommendation graph with the H&M personalization dataset
	Building your recommendation graph
	Loading the customer data
	Loading the article data
	Loading the transaction data
	Final graph

	Optimizing for recommendations: best practices in graph modeling
	Summary

	Chapter 9: Integrating LangChain4j and Spring AI with Neo4j
	Technical requirements
	Setting up LangChain4j and Spring AI
	Building your recommendation engine with LangChain4j
	LangChain4j: updating the project dependencies
	LangChain4j: updating the application properties
	LangChain4j: Neo4j integration
	LangChain4j: OpenAI chat integration
	LangChain4j: OpenAI embedding model integration
	LangChain4j: final application

	Building your recommendation engine with Spring AI
	Spring AI: updating the project dependencies
	Spring AI: updating the application properties
	Spring AI: Neo4j integration
	Spring AI: OpenAI chat integration
	Spring AI: OpenAI embedding model integration
	Spring AI: final application

	Fine-tuning your recommendation system
	Summary

	Chapter 10: Creating an Intelligent Recommendation System
	Technical requirements
	Setting up the environment
	Getting the database ready

	Improving recommendations with GDS algorithms
	Computing similarity with the KNN algorithm
	Detecting communities with the Louvain algorithm

	Understanding the power of communities
	Combining collaborative filtering and content-based approaches
	Scenario 1: Filtering articles that belong to other communities
	Scenario 2: Filtering articles by characteristics and belonging to other communities

	Summary

	Part 4: Deploying Your GenAI Application in the Cloud 
	Stay tuned

	Chapter 11: Choosing the Right Cloud Platform for GenAI Applications
	Understanding cloud computing options for GenAI applications
	The cloud: an indispensable foundation of GenAI
	Specialized AI services by different cloud providers

	Picking a cloud platform for GenAI applications — key considerations
	Scalability and performance
	Cost and pricing models
	Security and compliance
	Best practices for security and compliance in GenAI deployments
	Key takeaways


	Making the right choice: a decision-making framework for selecting your cloud platform
	Summary

	Chapter 12: Deploying Your Application on the Google Cloud
	Technical requirements
	Preparing your Haystack chatbot for deployment
	Containerizing the application with Docker
	Setting up a Google Cloud project and services
	Creating a project
	Launching Google Cloud Shell
	Setting your active project
	Enabling the required services
	Adding your project files to Cloud Shell

	Deploying to Google Cloud Run
	Testing and verifying the deployment on Google Cloud
	Deploying the chatbot to other clouds

	Preparing for deployment in production: key considerations
	Initial data load
	Incremental data load
	Graph augmentation

	Summary

	Chapter 13: Epilogue
	The combined power of GenAI and Neo4j
	GraphRAG for search applications
	GraphRAG for recommendations
	Choosing your cloud platform

	Beyond the book: exploring resources for continued learning
	Closing remarks
	Stay tuned
	Why subscribe?

	Other Books You May Enjoy
	Index



