ULTIMATE

Elastic Stack for
Observability and
Real-Time Analytics

Design, Build, Secure and Optimize
Elastic Stack Environments for
Data Analytics, Monitoring and
Real-Time Search Across

Modern Infrastructures

AVA

Elastic Stack for
Observability and
Real-Time Analytics

Design, Build, Secure and Optimize
Elastic Stack Environments for
Data Analytics, Monitoring and
Real-Time Search Across

Modern Infrastructures

Agus Kurniawan

Ultimate Elastic Stack
for Observability and
Real-Time Analytics

Design, Build, Secure and Optimize Elastic
Stack Environments for Data Analytics,
Monitoring and Real-Time Search
Across Modern Infrastructures

Agus Kurniawan

AVA

www.orangeava.com

http://www.orangeava.com/

Copyright © 2025 Orange Education Pvt Ltd, AVA ®

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capital. However, Orange
Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive
names, registered names, trademarks, service marks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

First Published: October 2025
Published by: Orange Education Pvt Ltd, AVA ®
Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,
N1 7AA, United Kingdom

ISBN (PBK): 978-81-97396-65-6
ISBN (E-BOOK): 978-81-97396-62-5

Scan the QR code to explore our entire catalogue

www.orangeava.com

http://www.orangeava.com/

Dedicated To

My Wife, Ela Juitasari
And
My Children, Thariq and Zahra

About the Author

Agus Kurniawan stands out as an emblem of dedication and innovation in
the world of Information Technology (IT). Boasting an illustrious career as
an IT consultant, advisor, trainer, and author, he has carved a niche for
himself as a beacon of knowledge and expertise.

Recognized for his exceptional contributions, he was honored with the
prestigious Microsoft MVP Award continuously from 2004 to 2022. Such
an accolade speaks volumes about his commitment to excellence, and his
prowess in the realm of technology.

Specializing in Software Engineering, Agus's interests are diverse and
encompassing. He has ventured deep into the avenues of Machine Learning
(ML), exploring its endless possibilities, and bringing innovations to life.
His intrigue does not stop there, as the domains of Internet of Things (IoT)
and Cloud Computing have also seen his pioneering touch. As the digital
era evolves, Agus has continually emphasized the importance of DevOps,
ensuring streamlined operations in IT projects.

Beyond his technical pursuits, he is an advocate for continuous learning.
His belief that adaptability and knowledge are the pillars of success in the
tech landscape shines through in his role as a trainer. Through his courses,
he empowers individuals, from novices to seasoned professionals, ensuring
that they are well-equipped with the latest skills and knowledge.

In personal spheres, he enjoys exploring the technological advancements of
the modern age, while valuing the lessons of the past. His approach to
technology i1s holistic, viewing it as a tool to bridge gaps, connect cultures,
and pave the way for a brighter, more integrated future.

About the Technical Reviewers

Saravanan Shanmugam is a product-driven technology leader with 13+
years of experience delivering scalable infrastructure, observability, and
DevOps solutions aligned with business goals. With expertise spanning
product management and deep technical execution, he builds platforms that
enhance operational efficiency, developer productivity, and customer
outcomes.

Saravanan’s product leadership is rooted in collaboration with engineering,
operations, and business teams. He excels at defining strategic roadmaps,
prioritizing features, and delivering infrastructure and observability
products that drive measurable value.

He brings strong expertise in Linux systems, automation, and scripting with
Shell and Python, and has designed highly available, cloud-native
environments. With eight years in observability and data platforms, he’s
built end-to-end pipelines for ingestion, processing, and analytics,
specializing in Elasticsearch for scalable search and real-time insights. An
advocate of CNCF and open source, he has implemented Kubernetes,
Prometheus, and Fluentd to build resilient, automated systems that reduce
downtime, accelerate releases, and improve services.

Rahul Shriram Funde is a seasoned software engineer and technical
consultant with 9+ years of experience designing and delivering scalable
software systems across industries including hospitality, GPS tracking,
CRM, legal tech, and telecommunications. He specializes in building
tailored solutions that solve complex business challenges.

Rahul is a full-stack developer skilled in Angular, Node.js, TypeScript, and
Couchbase, with expertise in backend API design, Linux (CentOS), and
Hyper-V virtualization. His DevOps experience with Chef, Docker,
Grafana, Prometheus, and the ELK Stack enables him to build reliable,
observable systems. As a Technical Reviewer for Ultimate Elastic Stack for
Observability and Real-Time Analytics published by Orange Education Pvt
Ltd, he contributes expert insights on log analytics and enterprise
observability. Having worked on fleet tracking, CRM, and telecom

backends, Rahul combines versatility with a passion for clean code,
mentoring, and continuous learning.

Acknowledgements

I would like to express my sincere gratitude to the vibrant Elastic
community whose contributions, discussions, and shared experiences have
been invaluable in shaping this handbook. Special thanks to the Elastic
team for creating such powerful and innovative tools that continue to
transform how we handle data at scale.

My appreciation extends to the system administrators, developers, and data
analysts who shared their real-world challenges and solutions, providing the
practical insights that make this book truly useful. Their feedback during
the writing process helped ensure that the content addresses the genuine
needs in the field.

I am grateful to the technical reviewers who meticulously examined each
chapter, offering constructive feedback that significantly improved the
accuracy and clarity of the content. Their expertise in various aspects of the
Elastic Stack was instrumental in creating a comprehensive and reliable
resource.

Finally, I want to thank my family and colleagues for their patience and
support throughout this writing journey. Their encouragement made it
possible to dedicate the time and energy necessary to create a handbook that
truly serves the Elastic Stack community.

Preface

The Elastic Stack has revolutionized the way organizations collect, store,
search, and analyze their data. What began as a simple search engine has
evolved into a comprehensive platform capable of handling everything from
application logs and system metrics to complex business analytics and
security monitoring. This handbook represents a culmination of years of
hands-on experience, community insights, and practical implementations
across diverse industries and use cases.

In today's data-driven world, the ability to quickly ingest, process, and gain
insights from vast amounts of information is not just an advantage—it is a
necessity. The FElastic Stack, comprising Elasticsearch, Logstash, and
Kibana, along with the broader ecosystem of Beats, APM, and other Elastic
products, provides the tools to meet these challenges. However, mastering
these tools requires more than just understanding their individual
capabilities; it demands knowledge of how they work together, how to
deploy them effectively, and how to optimize them for real-world scenarios.

Ultimate Elastic Stack for Observability and Real-Time Analytics bridges
the gap between basic tutorials and enterprise-level implementations.
Hence, whether you are just starting your journey with the Elastic Stack or
looking to enhance your existing knowledge with advanced techniques, this
book provides practical guidance based on real-world experience.

Rather than focusing solely on theoretical concepts, this handbook
emphasizes practical application. Each chapter builds upon the previous
one, creating a comprehensive learning path that takes you from initial
setup to advanced deployment strategies. The inclusion of real-world case
studies demonstrates how organizations across various industries have
successfully leveraged the Elastic Stack to solve complex challenges.

The book covers not just the traditional ELK stack, but also explores the
broader Elastic ecosystem, including Beats for data shipping, Elastic APM
for application performance monitoring, and advanced features like
machine learning and security. This comprehensive approach ensures that
readers gain a complete understanding of what 1s possible with modern
Elastic deployments.

This handbook is designed to be both a learning guide and a reference
resource. If you are new to the Elastic Stack, start with Chapter 1, and work
through sequentially. Each chapter builds upon concepts from previous
sections, creating a solid foundation of knowledge.

For experienced users, individual chapters can serve as focused deep-dives
into specific topics. The extensive table of contents and cross-references
make it easy to find information about particular features or implementation
strategies.

The case studies in Chapter 9 are particularly valuable for understanding
how theoretical concepts translate into practical solutions. These real-world
examples demonstrate the decision-making process behind successful
Elastic Stack implementations, and can serve as templates for your own
projects.

The Elastic Stack continues to evolve rapidly, with new features and
capabilities being added regularly. While this book focuses on stable,
production-ready features, the principles and best practices covered will
remain relevant as the platform continues to grow. The foundation you
build with this handbook will serve you well as you explore new
developments in the Elastic ecosystem.

So, welcome to your journey into the world of the Elastic Stack! Whether
you are building your first search application, implementing enterprise-wide
logging, or creating sophisticated analytics platforms, this handbook will be
your trusted companion in unlocking the full potential of these powerful
tools.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is
incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if
you could take a moment to leave a short review with a 5 star rating on
Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book,
and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

Here's how:
Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to
info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within
24 hours.

Thank you so much for your support - it means a lot to us!

http://www.orangeava.com/
http://www.orangeava.in/
mailto:info@orangeava.com

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-
education/Ultimate-Elastic-Stack-for-
Observability-and-Real-Time-Analytics

The code bundles and images of the book are also hosted on
https://rebrand.ly/bfb068

https://github.com/ava-orange-education/Ultimate-Elastic-Stack-for-Observability-and-Real-Time-Analytics
https://rebrand.ly/bfb068

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and
follow best practices to ensure the accuracy of our content to provide an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To
let us maintain the quality and help us reach out to any readers who might
be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

mailto:errata@orangeava.com

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of
every book published, with PDF and ePub files available? You can
upgrade to the eBook version at www.orangeava.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: info@orangeava.com for more details.

At www.orangeava.com , you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on AVA ® Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at info@orangeava.com
with a link to the material.

ARE YOU INTERESTED IN AUTHORING
WITH US?

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please write to us at
business@orangeava.com . We are on a journey to help developers and
tech professionals to gain insights on the present technological
advancements and innovations happening across the globe and build a
community that believes Knowledge is best acquired by sharing and
learning with others. Please reach out to us to learn what our audience
demands and how you can be part of this educational reform. We also
welcome 1deas from tech experts and help them build learning and
development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

can then see and use your unbiased opinion to make purchase decisions.
We at Orange Education would love to know what you think about our
products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit
WWW.orangeava.com .

http://www.orangeava.com/

Table of Contents

1. Introduction and Initial Setup
Introduction
Structure
Overview and Evolution of the Elastic Stack
Elasticsearch: The Heart of Elastic Stack
Logstash: The Data Processing Pipeline
Kibana: The Window to Your Elastic Data
Beats: The Data Shippers of the Elastic Stack
Benefits and Use Cases
System Requirements: Hardware, Software, and Cluster Considerations

Bare Metal
Virtual Machines (VMs)
Cloud Services
Docker and Containerization
Setting up Lab Environment
Hands-On Lab: Building Elasticsearch and Kibana on Ubuntu
Server 22.04 LTS
Steps to Install Elasticsearch Server
Steps to Install Kibana Server
Steps to Connect Kibana to Elasticsearch
Verifying Your Installation
Checking Elasticsearch and Kibana Status using Bash Script
Checking Elasticsearch and Kibana Status Using PowerShell Script
Conclusion
Points to Remember
Multiple Choice Questions
Answers
Questions
Key Terms

2. Deep Dive: Elasticsearch
Introduction

Structure

Elasticsearch Dev Tools on Kibana
Introduction to Dey Tools
Getting Started with Dev Tools
HTTP Request Methods in Elasticsearch’s Dev Tools
GET
PUT
POST
HEAD
DELETE
PATCH (less common in Elasticsearch)
Iips for Effective Use of Dev Tools
Summary

Index Lifecycle Management
Creation and Ingestion
Rollover and Growth
Hot-Warm-Cold-Frozen Phases
Retention and Deletion
Snapshot and Restore

Hands-On Lab: Index Lifecycle Management in Elasticsearch Using
Kibana Dev Tools
Prerequisites
Part 1: Creation and Ingestion
Part 2: Rollover and Growth
Part 3: Hot-Warm-Cold-Frozen Phases
Part 4: Retention and Deletion
Part 5: Snapshot Lifecycle Management
Part 6: Restore from Snapshot
Wrap-Up

Understanding Document IDs in Elasticsearch
Auto-generated IDs
Custom IDs
When to Use Custom IDs
When to Use Auto-generated IDs
Best Practices
Summary,

Boolean Queries
must
should
must not
filter
Example of a Boolean Query,
Full-text Search Enhancements
Aggregation for Data Analysis
Scoring and Relevance Tuning
Autocomplete and Suggestions
Geo-Searches and Proximity Queries
Joining Queries
Cross-Cluster Search

Hands-On Lab: Uploading NDJSON File to Elasticsearch Using Dev
Tools
Understanding NDJSON Format
Prerequisites
Step-by-Step Guide
Summary,

Lab Steps

Summary,

Hands-On Lab: Simulating Joining Queries in Elasticsearch
Prerequisites
Step 1. Create Index with Relationship Mapping
Step 2. Indexing Parent and Child Documents
Step 3. Perform Joining Queries
Summary,
Next Steps

Optimizing for Search Speed and Relevance
Optimizing for Speed
Optimizing for Relevance
Balancing Speed and Relevance
Monitoring and Iterative Improvements

Data Modeling and Schema Design
Understanding Elasticsearch Data Modeling
Best Practices in Schema Design

Strategies for Schema Evolution
Data Modeling for Specific Use Cases
Validation and Testing
Summary,
Hands-On Lab: Data Modeling and Schema Design in Elasticsearch
Part 1: Understanding Requirements
Part 2: Designing the Index Mapping
Part 3: Indexing Documents
Part 4: Querying the Data
Part 5: Updating Like Counts
Part 6. Analyzing and Reporting
Part 7: Cleanup (Optional)
Summary
Understanding Elasticsearch Geolocation Data
Geolocation Data Types
Indexing Geolocation Data
Geo-Queries
Geo-Aggregations
Example Use Cases
Challenges with Geolocation Data
Summary
Hands-On Lab: Working with Geolocation Data in Elasticsearch
Prerequisites
Step 1. Set Up a Geolocation-Enabled Index
Step 2. Indexing Geolocation Data
Step 3: Basic Geo-Queries
Step 4: Advanced Geo-Queries
Step 5. Aggregations with Geo-Data
Summary
Working with Binary Data in Elasticsearch
Understanding the Binary, Field Type
Use Cases for Binary Data in Elasticsearch
Steps to Index the Binary Data
Example
Considerations
Conclusion
Points to Remember

Multiple Choice Questions
Answers

Questions

Key Terms

3. Deep Dive: Integrations

Introduction

Structure

Selecting Elastic Integrations

Logstash
Qverview and Core Concepts
Advantages and Disadvantages
Use Cases and Applications
Architecture and Components
Setting Up Logstash

Hands-On Lab: Setting Up Logstash for Data Ingestion with User
Permissions
Prerequisites
Summary,
Hands-on Lab: My First Logstash Pipeline
Prerequisites
Lab Steps
Hands-On Lab Notes
How to Test the Setup
Summary
Hands-on Lab: Running My First Logstash Pipeline as Service
Plugins, Filters,_and Codecs
Plugins
Filters
Codecs
Hands-On Lab: Building a Comprehensive Logstash Pipeline
QObjectives
Prerequisites
Summary
Advanced Pipelines and Data Processing
Handling Large Datasets and Scalability,

Elastic Agent
Understanding Elastic Agent: Benefits and Architecture
Benefits of Elastic Agent
Architecture of Elastic Agent
Deploving and Configuring Elastic Agent
Deploying Elastic Agent

Integrating with Beats and Endpoints
Understanding Beats and Endpoints
Integrating Beats with Elastic Agent
Integrating Endpoint Security,
Hands-On Lab: Monitoring Ubuntu System with Elastic Agent
Objective
Requirements
Lab Steps
Hands-On Lab: Monitoring Windows System with Elastic Agent
Objective
Requirements
Lab Steps
Troubleshooting and Best Practices
Troubleshooting Elastic Agent
Best Practices for Elastic Agent
Web Crawler
Introduction to Web Crawling with Elastic
Key Components of Elastic for Web Crawling
Setting Up a Web Crawler with Elastic
Use Cases of Web Crawling with Elastic
Data Connectors
Understanding Pre-built Connectors
Key Features of Pre-built Connectors
Common Types of Pre-built Connectors
Utilizing Pre-built Connectors
Set Up Data Connectors
API Integrations
Basics of Elastic Stack APIs
Working with Elasticsearch APIs
Using Kibana APIs

Best Practices for API Integration
Hands-On Lab: CRUD Operations with Elasticsearch API
Objective
Requirements
Setup Steps
Lab Exercises
Advanced Features and Bulk Operations
Understanding Bulk Operations
Key Features of Bulk API
Sample Bulk Operation Using curl
Advanced API Features
Notes
Securing and Monitoring Your API Calls
Securing API Calls
Monitoring API Calls
Notes
Elastic Language Clients

Features of Elastic Language Clients
Best Practices for Using Elastic Language Clients
Hands-On Lab: CRUD Operations in Elasticsearch Using Python Client
Objective
Requirements
Setup Steps
Lab Exercise
Conclusion
Points to Remember
Multiple Choice Questions
Answers
Questions
Key Terms

4. Deep Dive: Kibana
Introduction
Structure
Practical Use Cases and Scenarios for Kibana

Introduction to Kibana Visualization
Kibana Lens
Time Series Visual Builder (TSVB)
Aggregation-Based Visualizations
Kibana Maps
Custom Visualizations
Hands-On Lab: Basic Data Visualization Using Kibana
Objective
Prerequisites
Additional Exercises
Summary
Developing Custom Visualizations
Introduction to Vega Visualizations in Kibana
Getting Started with Vega in Kibana
Vega in Kibana
Vega-Lite in Kibana
Choosing Between Vega and Vega-Lite
Hands-On Lab: Hello World in Kibana with Vega and Vega-Lite
Part 1. Hello World with Vega in Kibana
Part 2: Hello World with Vega-Lite in Kibana
Summary
Hands-On Lab: Developing Custom Visualizations
Summary
Overview of Kibana Dashboard
Components of a Kibana Dashboard
Creating and Managing Dashboards
Use Cases for Kibana Dashboards
Hands-On Lab: Building a Kibana Dashboard
Objective
Prerequisites
Summary
Using Canvas Features
Exploring Canvas in Kibana
Canvas vs. Visualize Library,
Canvas in Kibana
Visualize Library in Kibana
Comparison

Hands-On Lab: Creating a Simple Canvas in Kibana
Objective
Prerequisites
Summary,
Alerting and Reporting
Understanding Alerting in Kibana
Exploring Reporting in Kibana
Best Practices for Alerting and Reporting
Hands-On Lab: Creating Basic Alerts
Objective
Prerequisites
Summary,
Conclusion
Points to Remember
Multiple Choice Questions
Answers
Questions
Key Terms

S. Developing for the Elastic Stack

Introduction

Structure

Building Custom Elasticsearch Plugins
Introduction to Elasticsearch Plugins
Setting Up the Development Environment
Creating Your First Plugin
lesting and Deployment
Advanced Topics
Best Practices and Common Pitfalls

Hands-On Lab: Building Elasticsearch Plugins
Objective
Prerequisites
Lab Steps
Summary

Extending Logstash with Ruby

Hands-On Lab: Extending L.ogstash with Ruby
Summary,

Kibana Plugin Development

Conclusion

Points to Remember

Multiple Choice Questions
Answers

Questions

Key Terms

6. Troubleshooting and Best Practices
Introduction
Structure
Common Pitfalls and Their Solutions
Inadequate Planning and Configuration
Ignoring Security Best Practices
Poor Data Modeling
Neglecting Log and Error Monitoring
Qverlooking Hardware and Infrastructure Needs
Complex Scaling without Strategy,
Inefficient Query, Design
Lack of Regular Maintenance and Optimization
Optimizing for Large-Scale Deployments
Hardware Optimization
Cluster and Index Design
Data Modeling and Management
Caching and Memory Management
Query, Optimization
Monitoring and Alerting
Scalability Planning
Security Considerations
Maintenance and Continuous Improvement
ELK Stack Security Best Practices
Use Built-in Security Features
Data Encryption
Access Control
Audit Logging
Regularly Update and Patch
Network Security,

Secure Kibana
Backup and Recovery,
Incident Response Plan
Security, Monitoring and Anomaly Detection
Secure Integration and API Use
Maintenance and Upgrades
Routine Maintenance
Version Upgrades
Plugin Management
Index Management and Optimization
Backup and Recovery Planning
Hardware and Infrastructure Monitoring
Performance Tuning
Security Audits and Updates
Documentation and Change Management
Community, and Support Engagement
Hands-On Lab: Maintenance and Upgrades for Elasticsearch and
Kibana
Part 1: Maintenance of Elasticsearch
Part 2: Upgrading Elasticsearch
Part 3: Maintenance of Kibana
Part 4: Upgrading Kibana
Part 5: Upgrade Assistant
Summary
Conclusion
Points to Remember
Multiple Choice Questions
Answers
Questions
Key Terms

7. High Availability, Fault Tolerance, and Security
Introduction
Structure
Strategies for High Availability and Fault Tolerance
Cluster Architecture Design
Replication and Sharding

Cross-Cluster Replication (CCR)
Snapshots and Restore
Monitoring and Alerting
Load Balancing
Failure Testing and Chaos Engineering
Security Measures
Elasticsearch Cluster Management for HA
Node Configuration
Dedicated Node Roles
Shard Allocation and Replication
Cluster Configuration
Discovery and Coordination
Cluster State Management
Resource Management
Hardware and Infrastructure
Load Balancing
Monitoring and Maintenance
Monitoring Tools
Backup and Recovery,

Hands-On Lab: Building an Elasticsearch Cluster with Docker

Compose
Prerequisites
Step 1. Setup Docker Compose File
Step 2: Launch the Cluster
Step 3. Verify the Cluster
Step 4: Access Elasticsearch
Step 5: Scaling the Cluster
Step 6: Cleanup
Summary
Security and Access Control
Role-Based Access Control (RBAC)

Encryption at Rest
Security Monitoring and Alerts

Backup and Restore for Disaster Recovery
Understanding Snapshots in Elasticsearch
Configuring Snapshot Repositories

Creating Snapshots
Restoring Snapshots
Best Practices for Backup and Restore
Disaster Recovery Plan
Conclusion
Points to Remember
Multiple Choice Questions
Answers
Questions
Key Terms

8. Advanced Deployment Strategies
Introduction
Structure
Pre-deployment Planning; Sizing, Capacity, and Topology
Sizing
Capacity Planning
Topology, Design
Cloud Deployments
Deploying on Elastic Cloud
AWS: Using Amazon Elasticsearch Service
GCP: Leveraging Google Cloud Platform § Services
Azure: Integrating with Azure's Elasticsearch Solutions
Docker and Kubernetes Deployments
Dockerizing Elastic Stack Components
Helm Charts and Kubernetes Operators for Elastic Stack
Helm Charts for Elasticsearch
Kubernetes Operators for Elasticsearch

Benefits of Hybrid Deployments
Strategies for Hybrid Elasticsearch Deployment
Scaling Strategies: Horizontal vs. Vertical Scaling
Horizontal Scaling
Vertical Scaling
Performance Tuning and Optimization
Key Areas for Performance Tuning
Conclusion

Points to Remember

Multiple Choice Questions
Answers

Questions

Key Terms

9. Case Studies

Introduction

Structure

Logs: Real-time Log Analysis for E-commerce
Challenge Overview
Solution Architecture
Benefits and Qutcomes

Metrics: Monitoring System Performance for a Global SaaS Platform
Challenge Qverview
Solution Architecture
Benefits and Qutcomes

Application Performance Monitoring (APM): Enhancing User

Challenge Overview
Solution Architecture
Benefits and Qutcomes
Uptime: Ensuring 99.999% Availability for a Healthcare Portal
Challenge Overview
Solution Architecture
Benefits and Qutcomes
SIEM (Security Information and Event Management): Proactive Threat
Detection for a Large Enterprise Network
Challenge Overview
Solution Architecture
Benefits and Qutcomes

Challenge Overview
Solution Architecture
Benefits and Qutcomes
Conclusion
Points to Remember

Multiple Choice Questions
Answers

Questions

Key Terms

10. Beyond ELK: Integrating Other Elastic Products

Introduction

Structure

Introduction to Beats

Beats vs. Logstash: Understanding the Differences
Lightweight vs. Heavyweight Data Ingestion
Data Transformation and Enrichment
Scalability and Resource Usage
Deployment and Configuration
Choosing between Beats and Logstash
Combining Beats and Logstash

Using APM for Application Performance Monitoring

Best Practices for Using APM for Application Performance Monitoring
Deploy APM Agents Strategically,
Define Key Performance Indicators (KPIs)
Optimize Sampling for Performance Efficiency,
Leverage Distributed Tracing
Monitor Errors and Exceptions
Analyze and Optimize Slow Transactions
Integrate APM with Logging and Metrics
Regularly Review and Tune APM Settings
Secure APM Data and Access
Use Kibana Dashboards for Visualization

Exploring Elastic Enterprise Search

Conclusion

Points to Remember

Multiple Choice Questions
Answers

Questions

Key Terms

Index

C HAPTER 1

Introduction and Initial Setup

Introduction

Welcome to the “ Ultimate Elastic Stack Handbook ,” your comprehensive guide
to mastering Elastic Stack, a powerful trio of tools for searching, analyzing, and
visualizing data in real-time. Whether you are a system administrator, a developer,
a data analyst, or just an enthusiast looking to extract valuable insights from your
data, this handbook is designed to take you from the basics to advanced
implementations of the Elastic Stack.

In this first chapter, we will start by laying the groundwork for your Elastic Stack
journey. We will cover the overview and evolution of the Elastic Stack, discuss its
benefits and various use cases, detail the system requirements you will need to get
started, walk through the installation and configuration of Elasticsearch, Logstash,
and Kibana, and finally, show you how to verify your installation to ensure that
you are ready to proceed.

By the end of this chapter, you will have a strong foundational understanding of
what the Elastic Stack is, and how it can be a game-changer for your data needs.
You will also have a fully functioning Elastic Stack environment set up, and ready
for action. So, let us dive in!

Structure

In this chapter, we will discuss the following topics:

¢ Overview and Evolution of the Elastic Stack

Benefits and Use Cases

System Requirements: Hardware, Software, and Cluster Considerations

Installing and Configuring: Elasticsearch, Logstash, and Kibana

Setting up Lab Environment

Verifying Your Installation

Overview and Evolution of the Elastic Stack

The Elastic Stack — formerly known as the ELK Stack — comprises three open-
source projects: Elasticsearch, Logstash, and Kibana, often complemented by
Beats, a collection of lightweight, single-purpose data shippers. It is a robust suite
of tools that allows for the ingestion, storage, analysis, and visualization of data.

[Beats

Figure 1.1 provides a simplistic representation of the core components of the
Elastic Stack, often referred to as the ELK stack. At the center, we have
Elasticsearch , the heart of the system, responsible for indexing and querying
data. Logstash is positioned on the left, emphasizing its role as a data processing
and ingestion pipeline that feeds data into Elasticsearch. On the right, Kibana
stands as the visualization and user interface tool, enabling users to create
dashboards, and visualize the data stored in Elasticsearch. Lastly, at the bottom,
Beats acts as lightweight data shippers that collect and send data directly to either
Elasticsearch or Logstash, showcasing its role as the foundation for data
collection in the stack. Together, these components form a cohesive and powerful
ecosystem for data analysis and visualization.

Figure 1.1: Relationship between the Elastic Stack Components

Elasticsearch: The Heart of Elastic Stack

Elasticsearch is much more than just a search engine; it is a versatile, distributed
data store that allows for the storage, retrieval, and analysis of large volumes of
data in near real-time. At its core, Elasticsearch is built on the Apache Lucene
library, which provides robust, reliable full-text search capabilities. However,
Elasticsearch enhances Lucene with distribution features, RESTful API, and a
JSON-based query DSL (Domain-Specific Language), making it both powerful
and user-friendly.

The distributed nature of Elasticsearch means it is inherently scalable. You can
start with a single node on your laptop, and scale out to hundreds of nodes,
handling petabytes of data seamlessly. This scalability is managed by dividing

each index into shards which can be distributed across the cluster of nodes. Each
shard can have zero or more replicas, providing high availability and redundancy.
This design allows Elasticsearch to handle large-scale operations, without
compromising performance.

Elasticsearch is schema-less, which means that documents can be indexed without
predefining the structure of the data. When a document is indexed, Elasticsearch
automatically infers the data structure, creates an index if necessary, and adds the
document to the index. This dynamic mapping makes it easy to get started with
Elasticsearch, but it also offers the power and flexibility of defining custom
mappings to optimize your data storage and search capabilities.

The search capabilities of Elasticsearch are one of its most powerful features. It is
not limited to simple full-text searches, but also supports structured searches,
filters, geospatial searches, and many more. It offers complex query combinations
and aggregations, providing the ability to perform advanced analytics and
summaries of your data directly within the search engine.

To demonstrate making a request to an Elasticsearch server, let us imagine you
have an Elasticsearch cluster running, and want to index a new document into the
products index. You would issue an HTTP POST request with a JSON body
representing the document:

POST /products/_doc/
{

"name": "Ultimate Elastic Stack Handbook",
"description": "A comprehensive guide to mastering the Elastic
Stack.",

"price": 42.00,
"in stock": true

}

This request can be made using tools like curl , Postman, or any HTTP client in
a programming language of your choice. Elasticsearch will then respond with a
JSON object indicating the successful creation of the document, including a
generated ID, if one was not specified.

For a search example, if you want to find products with the word Elastic in their
name, your HTTP request would look like this:

GET /products/ search
{
"query": {
"match": {

"name": "Elastic"

}

This search request tells Elasticsearch to look into the products index for any
documents where the name field contains the word, Elastic . The response will
be a JSON object containing the search results, including the document itself, and
metadata such as the document’s _id .

Elasticsearch’s real-time analytics and full-text search capabilities are
revolutionizing the way companies approach their data. From log and event data
analysis to full-blown search engines, the application possibilities are nearly
limitless which has solidified Elasticsearch’s role as the heart of the Elastic Stack.

Logstash: The Data Processing Pipeline

Logstash is a powerful open-source data processing pipeline that ingests data
from a multitude of sources simultaneously, transforms it, and then sends it to a *
stash ” like Elasticsearch. It is an integral part of the Elastic Stack, providing the
muscle to handle data intake and filtration, before it is indexed into
Elasticsearch .

Designed with an emphasis on versatility and performance, Logstash has a
pluggable framework featuring over 200 plugins to connect with various types of
inputs, filters, and outputs. This flexibility allows Logstash to unify data
processing across different databases, applications, and log files. For instance, it
can ingest data from sources such as log files, metrics, web applications, data
stores, and various AWS services, apply sophisticated transformations, and then
send it to Elasticsearch for indexing.

The configuration files for Logstash are separated into three parts: Input, filter,
and output. The input plugins consume data from various sources, the filter
plugins modify the data as you specify, and the output plugins write the data to a
destination, often FElasticsearch. Logstash filters can perform numerous
transformations and enhancements to the data, such as geo-enrichment,
anonymization, splitting, and grokking to structure the unstructured log data.

Logstash’s pipeline is capable of buffering the incoming data, and applying back-
pressure when the system is processing at peak volumes, which is critical for
maintaining the integrity of a system under load. It is also fault-tolerant, with a
number of features designed to ensure that data processing can continue without
loss, even when there are network or hardware failures.

The power of Logstash lies not just in its ability to process large volumes of data,
but also in its rich ecosystem of input and output plugins that can be easily mixed
and matched to create a customized data processing pipeline that suits any
requirement.

Here is an example of how you could send data to Elasticsearch using Logstash.
Assume that you have a simple log file, weblogs.log , which you want to parse
and send to FElasticsearch. You would create a Logstash configuration file,
logstash.conf , with the following content:

input {
file {
path => "/path/to/your/weblogs.log"
start position => "beginning"
}
}

filter {
grok {
match => { "message" => "${COMBINEDAPACHELOG}" }

}

date {
match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]

}

geoip {
source => "clientip"
}
}

output {
elasticsearch {
hosts => ["http://localhost:9200"]
index => "weblogs-%{+YYYY.MM.dd}"
}
}

In this configuration:

e The input section defines the path to the log file.

e The filter section uses the grok plugin to parse and structure the log data,
the * date ' plugin to parse the timestamp, and the geoip plugin to add
geographical information about the IP addresses found in the logs.

e The output section specifies that the processed data should be sent to an
Elasticsearch server running on localhost, and indexing the data into
daily indices named weblogs-YYYY.MM.dd .

To run Logstash with this configuration, and start processing the data, you would
use the following command:

bin/logstash -f path/to/your/logstash.conf

Upon execution, Logstash reads the log file, processes each line using the
specified filters, and sends the transformed data to the Elasticsearch server, where
it is indexed and stored. This setup allows for real-time monitoring and analysis
of log data through Elasticsearch and Kibana, demonstrating just one of the many
powerful capabilities of Logstash within the Elastic Stack.

Kibana: The Window to Your Elastic Data

Kibana is the visualization layer of the Elastic Stack that allows users to create
powerful visualizations and dashboards from their Elasticsearch data. It provides
a user-friendly web interface that enables users to explore, analyze, and visualize
the data stored in Elasticsearch indices. By translating the complexities of raw
data into graphical representations, Kibana facilitates a better understanding of the
data patterns, trends, and anomalies.

The strength of Kibana lies in its ability to provide real-time summary and
analysis of large datasets in a coherent and user-friendly manner. It supports a
variety of charts, tables, and maps which can be combined to create
comprehensive dashboards that provide actionable insights. These dashboards are
dynamic, easily shareable among team members, and can be customized to the
unique requirements of each user.

One of Kibana’s key features is its deep integration with Elasticsearch. All the
visualizations and searches in Kibana are made possible through Elasticsearch’s
aggregation capabilities which can handle complex queries and aggregations at
scale. This tight integration ensures that Kibana can provide a fast and responsive
experience, even when working with large data sets and complex queries.

Kibana also offers features like machine learning, graph exploration, and log and
infrastructure monitoring out of the box. These advanced features empower users
to detect anomalies, build relevant relationships in data, and monitor their
infrastructure and applications, all within the same tool. Moreover, with the
addition of Canvas, users can create pixel-perfect infographics and presentations
that pull the live data directly from Elasticsearch.

The continuous development and integration of new features keep Kibana at the
forefront of data visualization tools. Elastic’s commitment to enhancing user
experience is evident in features like Lens, which simplifies the process of
creating complex visualizations through a more intuitive interface, and the
introduction of *“ Spaces ”, which allows for better organization and management
of dashboards and visualizations across different teams within an organization.

Kibana has evolved from a simple visualization tool to a powerful application
capable of handling a variety of use cases, from simple log data visualizations to
complex business analytics. It stands out not only for its ability to visualize data,
but also for its role in the operational management of the Elastic Stack, including
features for managing indices, users, and advanced settings. Kibana’s versatility,
ease of use, and extensive customization options make it an indispensable tool for
anyone working with the Elastic Stack.

Welcome home

Search Observability Security Analytics
Ereate search sperances with 2 Cansaldaie your logs, maircs, Prassant, colact, dstact, and respond Explore, vissalze, and analyze your
relined ol o ARls and ioois ARCRCA i FRCHL, AN Sy IR Wy AR 10 Lnified DrODBCTion data using a poweriul suibe of
vty with Purpose-bull Ui across your infrasirectuse. SR 100k B B o

Get started by adding integrations Try mansged Elastic

Capizy, Bcala. and upgrads your
sinck lasier with Flasiic Cloud. We'l
PR YO QUICKDY T YOur CA.

.
T Start working with jour Bata, Lite ane of GUF many ingest apticns. Collect L
it B 4 800 oF Bervics, of Uplend 3 ke, 1T you're Aot ready 16 utl your
own data, play with a campds data cot.

Figure 1.2: Kibana Portal

Wowe o Elstc Cloud

Figure 1.2 showcases the initial landing page of the Kibana web portal which is a
part of the Elastic Stack offering a visual interface for users to manage their
Elasticsearch data. Upon successful setup and access configuration, users are
greeted with this home screen that provides a user-friendly dashboard for
navigating the platform’s features. The portal is divided into sections such as
Search, Observability, Security, and Analytics, each representing a core capability
of the Elastic Stack. Search offers tools to create search experiences,
Observability consolidates various data points for system monitoring, Security
aids in threat detection and infrastructure protection, and Analytics provides tools

for data visualization and analysis. The homepage also prompts users to get
started by adding data integrations, uploading files, or experimenting with sample
datasets, making it straightforward for newcomers to begin exploring the full
potential of Elastic services. The interface’s clean and structured layout, with
clear call-to-action buttons such as ' Add Integrations ' and 'Try sample
data' , illustrate Kibana’s focus on the ease of use, and swift user onboarding.

Beats: The Data Shippers of the Elastic Stack

Beats form the collection layer of the Elastic Stack, a suite of lightweight, single-
purpose data shippers that can be installed on servers to capture all sorts of
operational data from logs, metrics, network packet data, to runtime metrics, and
ship them directly into Elasticsearch or Logstash for further processing. As the
agents on the ground, Beats are responsible for the initial collection of data points
that form the foundation of the stack’s powerful analytics capabilities.

Each Beat is designed to be lean and performant, with a small footprint which
ensures that they can efficiently collect the data, without impacting the system
performance. This design philosophy makes Beats an ideal solution for a
decentralized data collection strategy where data is generated across multiple
servers, containers, and even cloud environments. With various types of Beats
available, such as Filebeat for log files, Metricbeat for metrics, Packetbeat for
network data, and many more, users can choose the specific Beat that fits their
data collection needs.

Beats are incredibly easy to deploy and manage which is a significant advantage
for operation teams. They come with a range of modules that can be enabled with
minimal configuration, allowing for the automatic setup of data collection,
parsing, and visualization for common log formats and systems. This modularity
and ease of configuration mean that Beats can start sending the relevant data to
Elasticsearch or Logstash within minutes of installation, greatly simplifying the
operational overhead, typically associated with data shippers.

The versatility of Beats is further enhanced by their extensibility. If the existing
Beats do not cover a specific use case, developers can create custom Beats, using
the libbeat framework. This developer-friendly aspect allows for the creation of
custom data shippers tailored to unique requirements, ensuring that the Elastic
Stack can be extended to cover practically any data collection scenario that might
arise.

Beats play a crucial role in securing and monitoring data flows as well. With the
addition of features like SSL encryption for data in transit, and integration with
Elasticsearch security features, they ensure that the sensitive data is protected

from the endpoint to Elasticsearch. Moreover, Beats come with built-in
monitoring and diagnostic features that provide insights into their operational
health, ensuring that any issues can be identified and rectified quickly.

In the context of the Elastic Stack, Beats are not just the first step in the data
pipeline, but are also key to providing the granularity and specificity required for
advanced data analysis and insight. They are often the unsung heroes of the stack,
quietly and efficiently collecting and delivering the data that drives analysis,
visualization, and decision-making in Kibana. The evolution of Beats continues to
reflect the broader trends in data collection and monitoring, focusing on the ease
of use, automation, and integration with the ever-growing ecosystem of
technologies in the IT landscape.

The evolution of the Elastic Stack has been marked by its transformation from a
set of independent products into a tightly integrated platform. The continuous
addition of new features and tools, such as Elastic APM for application
performance monitoring, Elastic SIEM for security information and event
management, and various other solutions, are a testament to its expanding
capabilities and adaptability to modern data needs.

Benefits and Use Cases

The Elastic Stack has a myriad of benefits, making it an invaluable tool across
various industries. Its real-time data processing capabilities, powerful search
functions, and flexible data ingestion options make it suitable for numerous
applications. It shines in situations such as log and event data management,
security analytics, performance monitoring, and many more.

Some of the key use cases include:

* Log Analysis : Centralizing logs from various systems and applications to
detect anomalies, track events, and troubleshoot issues.

e Security Information and Event Management (SIEM) : Providing
insights into security-related data for real-time analysis of security events.

e Application Performance Monitoring (APM) : Capturing data about
application performance and errors, helping developers and operation teams
understand the performance of their software.

e Full-Text Search : Enabling sophisticated search functionalities across
diverse sets of documents.

e Data Visualization : Allowing businesses to visualize their data in various
formats to extract business intelligence.

System Requirements: Hardware, Software, and
Cluster Considerations

Before diving into the setup of the Elastic Stack, it is crucial to understand the
system requirements needed to run the software efficiently. These requirements
vary, based on the scale at which you plan to operate.

e Hardware : Depending on your data volume, you will need to consider the
CPU, memory, and disk space. Elastic provides guidelines for hardware
sizing to help make the right choices.

» Software : Elasticsearch and Kibana are Java applications, so you will need
a supported Java Runtime Environment (JRE). Logstash and Beats have
specific requirements, depending on the operating system.

e Cluster Considerations : For production environments, you will need to
consider the setup of an Elasticsearch cluster to ensure high availability and
failover capabilities.

The Elastic Cloud Enterprise, commonly known as the ELK Stack, is a robust and
scalable platform designed for comprehensive data search, analysis, and
visualization. To ensure optimal performance and reliability, specific hardware
prerequisites must be met. The following is a concise list of these requirements:

e Physical Memory (RAM) : At least 64GB, with half or more dedicated to
the Elastic Stack.

e CPU Cores : A minimum of 16 cores.

e Disk Space : Fast storage with at least 1TB SSDs. It is advised to use RAID
0 and NVMe storage.

e Network : 10GbE network recommended. High bandwidth and low latency
internal networks are crucial for efficient node-to-node communication.

e Operating System : Elastic Cloud Enterprise supports various Linux
distributions.

e Other Considerations : Hardware isolation is vital. It is advisable to run
Elastic Cloud Enterprise on dedicated hosts, and not share with other
services. This ensures optimal performance.

For further details and considerations, refer to the official website for Elastic
Cloud Enterprise Hardware Requirements,
https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-
prereq.html .

https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-prereq.html

Installing and Configuring: Elasticsearch, Logstash,
and Kibana

When diving into the installation and configuration of the Elastic Stack, it is
paramount to consider the variety of hosting and deployment options available.
Your choice will significantly influence performance, scalability, and
management complexity. Hence, whether you are looking to leverage the raw
power of dedicated hardware, the flexibility of cloud services, or the
reproducibility of containerized environments, each option has its distinct
advantages and trade-offs. Let us now delve into the most popular installation
avenues for the Elastic Stack (Elasticsearch, Logstash, and Kibana) and explore
the pros and cons of each.

Bare Metal

Installing the Elastic Stack directly onto physical hardware means that there is no
virtualization layer in between the software and the machine’s resources. This
method harks back to traditional computing setups where software applications
had direct access to server hardware. Opting for a bare-metal installation is often
a choice for those who prioritize performance, and seek the fullest control over
their environment, ensuring that there is no additional layer potentially inhibiting
the software’s operations. While it offers raw power and extensive customization
options, it requires a careful selection of hardware components, and a more
hands-on approach to management.

e Method : Installing the Elastic Stack directly on physical hardware, without
any virtualization layers.

e Pros:

o Maximum performance due to no virtualization overhead.

o

Full control over hardware specifications and configurations.

o

Better resource utilization as there is no intermediary layer.

(e]

Extended customization possibilities tailored to specific needs.

(o]

Often results in predictable performance metrics.
e Cons:

o Scaling requires significant manual intervention.
o Higher upfront costs due to hardware investments.

o Physical failures can lead to longer downtimes.

o More complex disaster recovery scenarios.
o Potentially underutilized resources, if not managed efficiently.

Virtual Machines (VMs)

Virtual Machines have revolutionized IT infrastructures by allowing multiple
operating systems to run on a single physical server. By using hypervisors, VMs
abstract the Elastic Stack from the underlying hardware, offering flexibility and
efficiency. This method is like having several computers operating within one
physical machine. Each VM has its own dedicated resources, and runs
independently, ensuring isolation from others. It is a preferred choice for
organizations that seek a balance between performance, scalability, and resource
management, allowing for more dynamic IT operations.

(LK Stack

LTS ;

|
B ELK Stack

Figure 1.3: Deploying ELK Stack on VMWare

Figure 1.3 showcases a virtual machine environment for deploying the Elastic
Stack. The author has opted for VMWare for running instances of Elasticsearch
and Kibana. While VMWare is a robust solution for virtualization, allowing fine
control over resource allocation and offering strong isolation, it is important to
note that there are other viable options for setting up your Elastic Stack. You can

use VirtualBox, Hyper-V, or any other virtualization software of your choice.
These alternatives include running on bare metal for performance-critical
applications, leveraging containerization with Docker for portability, or utilizing
cloud services for their elasticity and managed services.

e Method : Installing on virtual machines that run on hypervisors.

e Pros:

o

Enhanced scalability by easily creating or cloning VMs.

o

Effective resource isolation, ensuring smooth operations.

o

Snapshots make backup and recovery simpler.

o

Migration between hardware becomes feasible.

o

Hardware maintenance, without affecting the virtual environment.
e Cons:

Performance overhead because of virtualization.

o

o

Additional licensing costs for hypervisor software.

o

Requires robust hardware for optimal performance.

o

VM sprawl can lead to management challenges.

o

Dependencies on the underlying host system.

Cloud Services

The evolution of cloud computing has brought about a paradigm shift in how
software is hosted and accessed. Leveraging cloud services for the Elastic Stack
means utilizing the infrastructure of providers such as AWS, Azure, or GCP.
Instead of investing in and maintaining physical hardware, organizations can rent
resources on-demand, making it easier to scale as needs change. Cloud-based
installations offer a blend of convenience, scalability, and managed services, ideal
for businesses that want to focus more on their core operations, and less on
infrastructure management.

Figure 1.4: Deploying ELK Stack on Cloud Services

Figure 1.4 showcases a cloud-based environment for deploying the Elastic Stack.
The author has opted for the GCP for running instances of Elasticsearch and
Kibana. While GCP is a robust solution for cloud computing, allowing fine
control over resource allocation, and offering strong isolation, it is important to
note that there are other viable options for setting up your Elastic Stack. You can
use Azure, GCP, or any other cloud services of your choice. These alternatives
include running on bare metal for performance-critical applications, leveraging
containerization with Docker for portability, or utilizing virtual machines for their
flexibility and resource management.

e Method : Using cloud providers like AWS, Azure, or GCP to host the
Elastic Stack.

e Pros:

o Seamless scalability in tune with demands.

o OQOutsourcing of hardware and software management.

(¢]

Potential cost savings with pay-as-you-go models.

(0]

Geographical distribution for better user experiences.

(o]

Managed services often include updates and security patches.
e Cons:

o Costs can surge if not properly managed.

(o]

Data transfer fees can add up.

o

Limited control over the underlying infrastructure.

(o]

Vendor lock-in may dictate future technical decisions.

o

Potential concerns around data privacy and sovereignty.

Docker and Containerization

Containerization with Docker being a prime example, is an approach that
packages software and all of its dependencies into a standardized unit for software
development. By deploying the Elastic Stack in containers, you achieve an
unparalleled level of consistency and speed in deployment. Unlike traditional
VMs, containers share the host system’s kernel, rather than emulating an entire
operating system. This lightweight nature means faster start-up times, and
efficient resource utilization. Adopting a containerized approach is well-suited for
organizations that lean towards microservices architectures, and seek agility in
their development and deployment processes.

e Method : Deploying Elastic Stack components within Docker containers, or
using orchestration tools like Kubernetes.

e Pros:

(0]

Rapid and consistent deployments.

o

Isolated environments reducing conflicts and dependencies.
Efficient use of resources with shared OS kernels.

o

o

Portability across different platforms and environments.

o

Microservices architecture aligns well with containerization.

e Cons:

(o]

Steeper learning curve for container orchestration.

o

Complexity in managing stateful applications.

o

Overhead and potential security concerns with container runtime.

o

Networking complexities in distributed environments.

o Resource contention, if not properly configured.

The choice of the right method should be grounded in the specific requirements of
your project, budgetary considerations, and available technical expertise. Each
approach offers unique benefits and potential challenges. For instance, bare metal
deployments provide maximum performance and control, but require significant

upfront investment and manual management. On the other hand, cloud services
offer high scalability and flexibility, but can be costly and might not be suitable
for all use cases. Docker and containerization provide a middle ground, offering
rapid deployment and scalability, but they require a solid understanding of
containerization principles and tools.

Installing the Elastic Stack can be an adventure in its own right. Here, we will
provide step-by-step instructions for installing FElasticsearch, Logstash, and
Kibana on your system, as well as some initial configurations to get you started.

o Elasticsearch : From downloading the package to setting up the initial
cluster.

e Logstash : Installing the correct version, and configuring your first pipeline.

e Kibana : Setting up Kibana to connect to your Elasticsearch cluster and
basic configuration.

Next, we will walk you through the installation and configuration of the Elastic
Stack components. We will cover the installation of Elasticsearch and Kibana on
Ubuntu Server 22.04 LTS, as well as some initial configurations to get you
started.

Setting up Lab Environment

In this lab setup for the *“ Ultimate Elastic Stack Handbook ,” the author has opted
for VMWare for running instances of Elasticsearch and Kibana. While VM Ware
is a robust solution for virtualization, allowing fine control over resource
allocation, and offering strong isolation, it is important to note that there are other
viable options for setting up your Elastic Stack. You can use VirtualBox, Hyper-V,
or any other virtualization software of your choice. These alternatives include
running on bare metal for performance-critical applications, leveraging
containerization with Docker for portability, or utilizing cloud services for their
elasticity and managed services.

For readers looking to replicate a similar environment, VMWare is an excellent
tool! So, feel free to explore these other options, based on your preferences,
requirements, and available resources.

Hands-On Lab: Building Elasticsearch and Kibana on
Ubuntu Server 22.04 LTS

Now, let me guide you through a hands-on lab to build and run Elasticsearch as
well as Kibana as daemons on Ubuntu Server 22.04 LTS. The lab environment is

shown in Figure 1.5 .

!l
Kibana
IP: 192.168.199.143
o

Elasticsearch
IP: 192.168.199.142

LAN MNetwork

Figure 1.5: Lab Environment
Prerequisites:

1. Ubuntu Server 22.04 LTS installed on a VM or physical machine.

2. Sudo privileges or root access.

3. Internet access for downloading packages.
When this book was written, the latest version of Elasticsearch was 8.10.4, and
Kibana was 8.10.4. You can check the latest version of Elasticsearch and Kibana

at https://www.elastic.co/downloads/elasticsearch and
https://www.elastic.co/downloads/kibana .

Steps to Install Elasticsearch Server

The following steps will guide you through the installation of Elasticsearch on
Ubuntu Server 22.04 LTS:
1. Log into Elasticsearch Server Machine

Use the VMWare console or SSH to connect to the Elasticsearch Server
Machine.

2. Install Java Runtime Environment (JRE)

Since we are using Elasticsearch and Kibana 8.x, there is no need to install
the Java Runtime Environment (JRE). Elasticsearch and Kibana both come
bundled with JRE 11.0.12. However, if you are using Elasticsearch and
Kibana 7.x, you will need to install JRE 11.0.12.

If you want to install the default JRE, you can use the following command:

sudo apt update
sudo apt install default-jre

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana

3. Import Elasticsearch PGP Key
Securely download and install the signing key:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch |
sudo gpg --dearmor -o /usr/share/keyrings/elasticsearch-
keyring.gpg

4. Add Elasticsearch Repository

You may need to install the apt-transport-https package on Debian before
proceeding:

sudo apt update
sudo apt-get install apt-transport-https

Save the repository definition to /etc/apt/sources.list.d/elastic-
8.x.list :

echo "deb [signed-by=/usr/share/keyrings/elasticsearch-
keyring.gpg] https://artifacts.elastic.co/packages/8.x/apt
stable main" | sudo tee /etc/apt/sources.list.d/elastic-
8.x.list

Make sure you do not have issues with unsigned repositories. Please check
that your Elasticsearch PGP Key is imported correctly.

5. Install Elasticsearch

Update your package lists, and install Elasticsearch using the following
command:

sudo apt update

sudo apt install elasticsearch

During the installation, you will use security configurations that include a
generated password for the superuser ‘elastic’, as shown in Figure 1.6 .
Save this password to sign in to Elasticsearch and Kibana later. You can
change the password later.

B sgusk@elasticOt: - ® B agusk@kibanadl: = X kv - 8 X
--------------------------- Security autoconfiguration information —-—---=--=--—--—e——————— e ————
Authentication and authorization are enabled.

TLS for the transport and HTTP layers iz enabled and configured. /
The generated password for the elastic built-in superuser is : XkUVS52kblmbljiwpVqXGR
If this node should join an existing cluster, you can reconfigure this with

' fusr/share/elasticsearch/bin/elasticsearch-reconfigure-node --enrollment-token <token-here>'
after creating an enrollment token on your existing cluster.

You can complete the following actions at any time:

Reset the password of the elastic built-in superuser with
'Jusr/sharefelasticsearch/bin/elasticsearch-reset-password -u elastic’'.

Generate an enrollment token for Hibama instances with
" fusrfsharefelasticsearch/binfelasticsearch-create-enrollment-token =s kibana'.

Generate an enrollment token for Elasticsearch nodes with
' fusr/sharefelasticsearch/bin/elasticsearch-create-enrollment-token -s node'.

NOT starting on installation, please execute the following statements to configure elasticsearch servic
e to start automatically using systemd

sudo systemctl daemon-reload

sudo systemctl enable elasticsearch.service
#8#% You can start elasticsearch service by executing

sudo systemctl start elasticsearch.service
Scanning processes. ..
Scanning linux images...

Running kernel seems to be up-to-date.

Figure 1.6: Displaying Passing during Elasticsearch Installation

6. Start and Enable Elasticsearch Service

Enable Elasticsearch to start on boot, and then start the service using
systemd:

sudo systemctl enable elasticsearch.service

sudo systemctl start elasticsearch.service
To check the status of the Elasticsearch service, run:

sudo systemctl status elasticsearch.service

n "

If you see , it means Elasticsearch is

running.

Active: active (running)..

Steps to Install Kibana Server

The following steps will guide you through the installation of Kibana on Ubuntu
Server 22.04 LTS.
1. Log into Kibana Server Machine.
Use the VM Ware console or SSH to connect to the Kibana Server Machine.
2. Install Prerequisites.

Following the same steps as in Elasticsearch, specifically steps 3 and 4.
. Install Kibana

Still using the same repository, install Kibana using the following
command:

sudo apt update

sudo apt install kibana
. Configure Kibana

By default, Kibana listens on localhost only. To allow external access, you
need to configure Kibana to listen on all interfaces.

Edit the Kibana configuration file on /etc/kibana/kibana.yml
sudo nano /etc/kibana/kibana.yml

Uncomment and set the server.host configuration to 0.0.0.0
server.host: "0.0.0.0"

. Start and Enable Kibana Service

Enable Kibana to start on boot, and then start the service:

sudo systemctl enable kibana.service

sudo systemctl start kibana.service
To check the status of the Kibana service, run:
sudo systemctl status kibana.service

If you see " Active: active (running).. ", it means Kibana is running,
as shown in Figure 1.7 . You can see a code (. .?code=xxxx) that you need
to enter on Kibana configuration later. Keep this code for later use.

W aguskdelasticOn: - ® apusk@kibanadt - *x W Command PFrompt ® + w = [m] x

kibana.service - Kibana
Loaded: Lloaded (/lib/systemd/system/kibana.service; enabled; vendor preset: enabled)
Active: since Sat 2823-11-64 85:87:15 UTC; 4min U6s ago
Docs: https://www.elastic.co
Main PID: 3384 (node)
Tasks: 11 (limit: 4516)
Memory: 297.5M
CPU: 15.641s
CGroup: /fsystem.slice/kibana.service
L3384 fusr/share/kibana/bin/../node/bin/node fusr/share/kibana/bin/../src/clifdist

Nov 8d 85:87:27 kibana®l kibana[3300]: [2023-11-84T85:87:27.007+80:00][INFO][plugins-service] Plugin "sec
Nov 84 85:07:27 kibana®l kibana[3304]: [2023-11-04T05:07:27.008+00:00][INFO][plugins-service] Plugin “"se
HNov 64 ©5:87:27 kibana®l kibana[3304]: [2023-11-84T85:07:27.008+80:00]1[INFO J[plugins-service] Plugin "se
Nov B4 85:87:27 kibana®l kibana[3384]: [2023-11-84T85:87:27.008+80:80][INFO][plugins-service] Plugin "se;
Nov 84 B85:87:27 kibana®l kibana[338u4]: [2023-11-64TA5:87:27.2u1+88:80][INFO][http.server.Preboot] http se
Nov 84 @5:87:27 kibana®l kibana[3304]: [2023-11-84T05:07:27.567+00:00]1[INFO][plugins-system.preboot] Sett
Nov 84 85:87:27 kibana®l kibana[3384]: [2023-11-84T05:87:27.569+00:00][INFO][preboot] "interactiveSetup"”
MNov B4 85:87:27 kibana®l kibana[3364]: [20623-11-84T85:87:27.586+80:88][INFO][root] Holding setup until p

Nov 84 85:87:27 kibana®l kibana[3384]:
Nov 64 85:07:27 kibana®l kibana[3304]:|Go te http://0.08.8.0:5601/?code=183172 to get started.

T

Figure 1.7: Kibana Service is Running and Displaying a Code

Steps to Connect Kibana to Elasticsearch

In this section, you will connect Kibana to Elasticsearch. You will need to
generate a token from Elasticsearch, and use it to connect to Kibana. The
following steps will guide you through the process:

1. Log into Kibana Server Machine: Use the VMWare console or SSH to
connect to the Kibana Server Machine.

2. Access Kibana: Once both services are running, you can access Kibana by
navigating to http://<kibana-server-ip>:5601 from a web browser. You
will see the Kibana login page, as shown in Figure 1.8 . Enter the token
generated by Elasticsearch. You can generate the token by running the
following command on the Elasticsearch server:

sudo /usr/share/elasticsearch/bin/elasticsearch-create-

enrollment-token -s kibana

&
.‘

Configure Elastic to get started

Enrelimant tokesn

8 Configure manually Configure Elastic

Figure 1.8: Configuring Elasticsearch on Kibana

3. Code Confirmation: You may be asked to enter a code from Kibana, as
shown in Figure 1.9 . You can obtain the code by checking messages from
the Kibana server service, as demonstrated in Figure 1.7 .

@

Verification required

Copy the code from the Kibana server or run bin\kibana-
verification-code.bat 1o retrieve it

Figure 1.9: Enter a Code from Kibana for Confirmation

4. Finished: After completion, you will be redirected to the Kibana home.
Enter the username and password for the * elastic " user. You can find the
password in step 5 of the Elasticsearch installation. You can change the
password later.

By following these steps, you will have a basic Elastic Stack setup running on
Ubuntu Server 22.04 LTS. Remember, this is a starting point, and for production
environments, you should consider additional configurations for security,
scalability, and performance tuning.

Verifying Your Installation

Once installation is complete, we must ensure that all the components of the
Elastic Stack are communicating correctly, and are ready for use. We will cover
how to check each component’s status, and some initial tests to confirm that the
data is being ingested and indexed.

We will also explore these sub-sections in greater detail in the following pages,
providing you with the knowledge and tools to set up your Elastic Stack
effectively. So, let us get started on your path to mastering the Elastic Stack.

Before we dive into the script, it is important to understand what we are trying to
accomplish. In the realm of network services and web applications, ensuring that
critical services such as Elasticsearch and Kibana are operational is key to

maintaining system reliability and availability. For those who administer these
services, particularly in a Windows environment, PowerShell provides a robust
and versatile toolset for system management. The following PowerShell script is
designed to check the health and accessibility of Elasticsearch and Kibana
services. It sends a simple HTTP request to the respective service endpoints, and
checks the response. If the service is active and responsive, you will receive a
confirmation message; if not, the script will provide a status indicating that the
service is not accessible, or is experiencing issues. This proactive monitoring step
can be a fundamental part of a larger automation strategy, ensuring that
administrators are alerted to potential issues as soon as they occur, thus allowing
for swift remediation.

Next, we create Bash and PowerShell scripts to check Elasticsearch and Kibana
status.

Checking Elasticsearch and Kibana Status using Bash
Script

Here is a simple Bash script that checks if Elasticsearch and Kibana are up by
making an HTTP request to each service. This script uses ' curl " to send a
request, and then checks the HTTP status code to see if the service is responding
correctly.

Make sure to replace elasticsearch-server-ip with the IP address of your
Elasticsearch server and kibana-server-ip with the IP address of your Kibana
server. The default ports are used in this script (9200 for Elasticsearch and 5601
for Kibana), but you can change them, if your setup uses different ports.

#!/bin/bash

Elasticsearch variables

ELASTICSEARCH IP="elasticsearch-server-ip"

ELASTICSEARCH PORT="9200"
ELASTICSEARCH_URL="http://${ELASTICSEARCH_IP}:${ELASTICSEARCH_PORT}"

Kibana variables

KIBANA IP="kibana-server-ip"

KIBANA PORT="5601"

KIBANA URL="http://${KIBANA IP}:S{KIBANA PORT}"

Timeout in seconds
TIMEOUT=5

Function to check service status

check service () {

response=$ (curl -k -m STIMEOUT -s -o /dev/null -w 'S{http code}' -
I $1)

if ["Sresponse" == "000"]; then
echo "HTTP service at $1 did not respond."
elif ["Sresponse" == "401"]; then

echo "HTTP service at $1 is running (authentication required)."
elif ["Sresponse" -ge 200] && ["Sresponse”™ -1t 300]; then
echo "HTTP service at $1 is reachable and running."
else
echo "HTTP service at $1 returned status code S$response."
fi
}
Check Elasticsearch (with self-signed certificate)
check service $ELASTICSEARCH_URL

Check Kibana
check service S$KIBANA URL

Save this script to a file, for example, check elk services.sh , give it execute
permission using chmod +x check_elk services.sh , and run it with
./check_elk_services.sh . You should see the output as shown in Figure 1.10 .

B aguski@elastionn: ~ * + v = o x

:~$./check_elk_services.sh
HTTP service at https://192.168.199.142:9280 is running (authentication required).
HTTP service at http://192.168.199.143:5608]1 returned status code 382.

s

Figure 1.10: Checking ELK Service Using Bash Scripts

Checking Elasticsearch and Kibana Status Using
PowerShell Script

Here is a simple PowerShell script that checks if Elasticsearch and Kibana are up
by making an HTTP request to each service. This script uses Invoke-WebRequest
to send a request, and then checks the HTTP status code to see if the service is

responding correctly.

URLs for Elasticsearch and Kibana

SElasticsearchUrl = "elasticsearch-server-ip"

$KibanaUrl = "kibana-server-ip" # include port

Check if the TrustAllCertsPolicy class has already been defined

if (-not

([System.Management.Automation.PSTypeName] 'TrustAllCertsPolicy') .Typ

e) {
add-type Q@"
using System.Net;
using System.Security.Cryptography.X509Certificates;
public class TrustAllCertsPolicy : ICertificatePolicy {
public bool CheckValidationResult (
ServicePoint srvPoint, X509Certificate certificate,
WebRequest request, int certificateProblem) {
return true;
}
}
"

}
Apply the TrustAllCertsPolicy

[System.Net.ServicePointManager]::CertificatePolicy = New-Object
TrustAllCertsPolicy

Function to check service status
function Check-Service {
param (
[string] $url
)

try |
Sresponse = Invoke-WebRequest -Uri $url -Method Head -
UseBasicParsing -TimeoutSec 30 -ErrorAction Stop
if (Sresponse.StatusCode -eqg 401) {
Write-Host "HTTP service at Surl is running (authentication
required) ."
} elseif (Sresponse.StatusCode -ge 200 -and
Sresponse.StatusCode -1t 300) {
Write—-Host "HTTP service at $url is reachable and running."
} else {
Write-Host "HTTP service at Surl returned status code
$ (Sresponse.StatusCode) . "
}
} catch [Net.WebException] {

Output more detailed error info
if ($_.Exception.Response.StatusCode -eq 401) {
Write-Host "HTTP service at Surl is running (authentication
required) ."
} else {
Write-Host "A WebException occurred: $ "
Write-Host "The error message was: $(S_.Exception.Message)"
}
} catch {
Write-Host "An unexpected error occurred: S "
}
}
Check Elasticsearch
Check-Service -url $ElasticsearchUrl

Check Kibana

Check-Service -url $KibanaUrl

Now, make sure to replace elasticsearch-server-ip and kibana-server-ip
with the actual IP addresses for your Elasticsearch and Kibana instances.

To run this script, you can save it with a .psl extension, for instance,
CheckElkServices.psl . You may need to adjust your PowerShell execution
policy to run the script. You can do this by running PowerShell as an
administrator, and executing the following command:

Set-ExecutionPolicy RemoteSigned

Or, if you want to run the script with your current user policy, you can run it with
the following command:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

After that, you can run the script by navigating to the directory containing the
script and running:

.\CheckElkServices.psl

You should see the output as shown in Figure 1.11 :

Figure 1.11: Checking ELK Service Using PowerShell Scripts

Be aware that if your services require authentication or use non-default ports, you
will need to modify the URLSs, and potentially add headers or other options to the
Invoke-WebRequest calls to handle those requirements.

In closing our journey through the initial setup and configuration of Elasticsearch
and Kibana, has been both challenging and enlightening. We have traversed the
nuances of establishing a working environment, learned to adapt our tools to the
specifics of network and security settings, and developed a troubleshooting
acumen that will undoubtedly serve us in future endeavors. As we prepare to
move forward, the experiences documented in this chapter will provide a sturdy
foundation from which we can expand our understanding and mastery of these
robust search and analytics platforms. Now, we stand on the threshold of deeper
discovery, ready to delve into the advanced functionalities that lie in the chapters

ahead.

Conclusion

As we reach the conclusion of our first chapter, you have laid down the first
stones of your Elastic Stack foundation. We have traveled through the rich history
and evolution of this powerful suite of tools which has grown from a simple
search engine into an expansive ecosystem capable of handling complex, real-
time data processing, and analysis tasks.

You have discovered the key benefits and use cases of the Elastic Stack which are
as varied as the industries it serves. From processing and visualizing log data to
powering search engines, from monitoring application health to safeguarding
networks as part of an SIEM system, the versatility of the Elastic Stack is clear.

We have also navigated the critical preparatory steps, detailing the hardware,
software, and cluster configurations necessary to get you started. Thus, whether
you are planning a small deployment, or gearing up for a large-scale, distributed
environment, you now have the knowledge to plan appropriately.

Following the systematic installation and configuration instructions, you should
now have a working Elastic Stack environment. Your FElasticsearch is quietly
humming, ready to index the data; Logstash is prepared to process and filter the
incoming data stream; and Kibana is waiting to cast your data in visual splendor.

Finally, we have looked at how to verify your installation, ensuring that all the
systems are go, and you are ready to take the next steps into the world of data
exploration with Elastic.

In the upcoming chapter, we are going to take a comprehensive look under the
hood of Elasticsearch, the core engine of the Elastic Stack. Chapter 2, Deep Dive:
Elasticsearch , will equip you with a robust understanding of its distributed
nature, exploring essential concepts such as indexing, search, data modeling, and
cluster management. You will also learn the best practices for scaling your setup,
ensuring high availability, and securing your data. Hence, whether it is fine-tuning
performance or harnessing advanced features for complex queries, the next
chapter is your guide to becoming proficient with the powerhouse, that is
Elasticsearch ™.

Points to Remember

o Installation Options : Elasticsearch and Kibana can be installed on various
platforms such as bare metal servers, virtual machines, or cloud services.
Each option comes with its own set of advantages and limitations.

e Hardware Requirements : It is important to consider the hardware
prerequisites for running an Elastic Stack, which include sufficient CPU,
memory, and storage to ensure performance and stability.

e Virtualization Platforms : The lab setup demonstrated uses a virtual
machine environment which is a common and versatile approach for setting
up an Elastic Stack. Various virtualization platforms such as VMware,
VirtualBox and Hyper-V can be employed, each with its specific
configurations and features, to host Ubuntu Server 22.04 LTS instances for
running Elasticsearch and Kibana. The choice of virtualization software can
be tailored as per the user’s preference, system compatibility, and
performance considerations.

o Network Configuration : Proper network settings, including NAT port
forwarding in VMware, are crucial to ensure that the services are accessible
from the host machine or external networks.

e Ubuntu Firewall Settings : On the Ubuntu Server, configuring the firewall
(UFW) to allow traffic on the ports used by Elasticsearch (default 9200) and
Kibana (default 5601) is necessary for remote connectivity.

o Kibana Configuration : To enable remote access to Kibana, modifying the
kibana.yml file to set the server.host to " 0.0.0.0 ", allows it to listen
on all interfaces, not just " 1ocalhost "

e Service Management : Both Elasticsearch and Kibana should be set up to
run as services (daemons), ensuring they start on boot, and can be managed
with systemd commands.

e Security Considerations : While enabling remote access, it is crucial to
consider security implications and implement measures such as secure
passwords, encryption (SSL/TLS), and access control.

o Testing Connectivity : After configuration, verifying that Elasticsearch and
Kibana are correctly installed and accessible through their respective IP
addresses as well as ports is essential to confirm a successful setup.

e Lab Documentation : Documenting the steps taken during the installation
and configuration processes in a lab environment, as shown in Figure 1.2 ,
can help in troubleshooting and replicating the setup in future scenarios.

e Interface Familiarity : Understanding the layout and capabilities of the
Kibana interface, as displayed in Figure 1.2 , is beneficial for efficient
navigation, and making the most of the Elastic Stack’s features.

Multiple Choice Questions

1. What is the primary function of Elasticsearch in the ELK stack?

a. To visualize data.
b. To process and transform data.
c. To index, search, and analyze data.
d. To collect logs from various sources.
2. Which Ubuntu version was recommended for setting up Elasticsearch and
Kibana in the lab environment?
a. Ubuntu 20.04 LTS
b. Ubuntu 18.04 LTS
c. Ubuntu 22.04 LTS
d. Ubuntu 16.04 LTS

3. What is the correct way to configure Kibana to enable remote access?

"

a. Change the server.host configuration to " localhost
b. Change the server.host configurationto" 0.0.0.0 ".
c. Change the server.host configuration to the specific hostname.
d. Remote access is enabled by default.

4. When configuring the network on VMware to allow external access to a
virtual machine, what feature needs to be set up?

a. DHCP Reservation

b. NAT Port Forwarding
c. Bridge Networking

d. VLAN Tagging

5. Before running Elasticsearch and Kibana as daemons, what step is

important to ensure that they can communicate over the network?

a. Installing a web server.

b. Configuring the virtual machines with static IP addresses.
c. Setting the time zone on the server.

d. Opening the necessary ports on the Ubuntu firewall.

Answers

1.

C

2.¢c
3.b
4.b
5.d

Questions

1.

Describe the process of setting up Elasticsearch on an Ubuntu 22.04 LTS
virtual machine. What are the key steps involved from installation to
running it as a daemon?

. How does Kibana integrate with Elasticsearch, and what are the necessary

configurations needed to ensure that they communicate effectively in a
virtualized lab environment?

. Discuss the advantages and potential drawbacks of using virtual machines

such as VMware, VirtualBox, or Hyper-V, for deploying an ELK stack,
compared to using bare-metal installations.

. Explain the importance of Network Address Translation (NAT) when

configuring a virtual machine to host parts of the ELK stack. How does
NAT facilitate access to the services from outside the host machine?

. What considerations should be taken into account, when opening ports in

the Ubuntu firewall for Elasticsearch and Kibana? Provide a rationale for

10.

the importance of each consideration.

. Can you describe how to enable remote access to Kibana in a virtualized

environment? Why is it necessary to change certain configurations for
remote access?

. Illustrate the steps necessary to ensure that both Elasticsearch and Kibana

are set to start on boot within an Ubuntu virtual machine. Why is this step
crucial for maintaining the availability of the ELK stack?

. What role does the server.host configuration play in Kibana, and what are

the implications of setting itto " 0.0.0.0 "?

. Compare and contrast the benefits of using a virtualized environment for the

ELK stack against deploying it in a cloud environment. What are the key
factors that would influence a decision between these two options?

Reflect on the process of setting up port forwarding in a virtual
environment. Why is this step necessary, and what could be the potential
security implications of misconfiguring port forwarding?

Key Terms

ELK Stack : A collection of three open-source products — Elasticsearch,
Logstash, and Kibana — used for searching, analyzing, and visualizing log
data in real-time.

Elasticsearch : A distributed, RESTful search and analytics engine capable
of addressing a growing number of use cases.

Kibana : A visualization dashboard for Elasticsearch designed to allow
users to create bar graphs, pie charts, and histograms.

Ubuntu Server 22.04 LTS : A long-term support version of Ubuntu,
tailored for servers and cloud environments.

Virtual Machine (VM) : A software computer that, like a physical
computer, runs an operating system and applications.

VMware : A virtualization and cloud computing software provider, known
for products such as VMware Workstation and ESXi.

VirtualBox : Oracle’s free, open-source virtualization software that allows
you to run multiple guest operating systems.

Hyper-V : A virtualization product from Microsoft allowing users to create
virtual machines on x86-64 systems.

Daemon : A background process that runs on the system, often without
direct user interaction.

NAT (Network Address Translation) : A method of remapping IP
addresses by modifying network address information.

Firewall : A network security system that monitors and controls incoming
and outgoing network traffic, based on predetermined security rules.

Remote Access : The ability to get access to a computer or a network from
a remote distance.

Server.host : A configuration setting in Kibana that specifies the host to
which the server will bind.

Port Forwarding : A technique used to redirect a communication request
from one address, and port number combination to another.

IP Address : A numerical label assigned to each device connected to a
computer network that uses the Internet Protocol for communication.

Daemon Service : A type of daemon that starts up during the boot process,
and runs in the background, performing tasks without user intervention.

Configuration File : A software file used to configure the settings and
parameters of a specific program or hardware device.

Bare Metal : Physical servers with no need for underlying virtualization.

Cloud Environment : A set of hardware, networks, storage, services, and
interfaces that combine to deliver aspects of computing as a service over the
Internet.

C HAPTER 2

Deep Dive: Elasticsearch

Introduction

As we venture into the heart of the Elastic Stack, Elasticsearch stands as the
cornerstone of this powerful suite of tools. This chapter will take a granular look
at Elasticsearch, unraveling its intricate design, and showcasing the robust
features that have made it an indispensable asset in the realms of search and data
analytics. Hence, whether you are a developer, a data scientist, or an IT
professional, understanding the mechanics and capabilities of Elasticsearch is
pivotal for harnessing the full potential of the Elastic Stack.

Elasticsearch is more than a mere search engine; it is a distributed, RESTful
search and analytics engine capable of addressing a multitude of use cases. Its
versatility stems from the underlying architecture that balances performance with
simplicity. As we delve deeper, you will uncover the principles of its distributed
nature, learn how it ensures high availability, and how it scales to handle
petabytes of data, while maintaining lightning-fast search responses.

At its core, Elasticsearch operates on the concept of indexing documents, and
providing near real-time search capabilities. The beauty of this system lies in its
ability to not just search text, but also to analyze and aggregate vast amounts of
diverse data. This chapter will decode the complex, yet elegant way Elasticsearch
processes data — starting with the basics of indexing, and moving through to the
nuanced intricacies of text analysis, field mappings, and query DSL.

Moreover, the operational aspect of Elasticsearch cannot be overlooked. We will
explore the practical side of managing an Elasticsearch cluster, covering critical
topics such as shard allocation, cluster health monitoring, and backup strategies.
By equipping you with this knowledge, you will be able to not only implement
Elasticsearch solutions, but also ensure their resilience and stability.

As we begin our deep dive, keep in mind that Elasticsearch is continually
evolving, with a vibrant community and a dedicated team of developers
contributing to its growth. The concepts and techniques you learn here will lay the
groundwork for your mastery of this powerful search engine, enabling you to
build, manage, and optimize systems that can transform the way organizations
handle, and gain insights from their data. So, let us embark on this intellectual

journey into Elasticsearch, the engine that drives the Elastic Stack’s capabilities to
new heights.

Structure

In this chapter, we will discuss the following topics:

¢ Elasticsearch Dev Tools on Kibana
e Index Lifecycle Management

e Hands-On Lab: Index Lifecycle Management in Elasticsearch Using Kibana
Dev Tools

e Understanding Document IDs in Elasticsearch

e Advanced Querying Techniques

e Hands-On Lab: Uploading NDJSON File to Elasticsearch Using Dev Tools
e Hands-On Lab: Elasticsearch Querying Techniques Using Dev Tools
¢ Hands-On Lab: Simulating Joining Queries in Elasticsearch

e Optimizing for Search Speed and Relevance

e Data Modeling and Schema Design

e Hands-On Lab: Data Modeling and Schema Design in Elasticsearch
e Understanding Elasticsearch Geolocation Data

e Hands-On Lab: Working with Geolocation Data in Elasticsearch

¢ Working with Binary Data in Elasticsearch

Elasticsearch Dev Tools on Kibana

Elasticsearch Dev Tools in Kibana offers a powerful interface for interacting with
your Elasticsearch cluster. It provides capabilities for running searches, executing
administrative operations, and debugging issues, all from within a user-friendly
console. This hands-on lab will guide you through the basics of getting started
with Dev Tools, and executing a few fundamental operations.

Introduction to Dev Tools

Dev Tools in Kibana leverages the Console, a feature resembling a command-line
interface that accepts Elasticsearch queries in the form of RESTful requests. It
provides auto-completion of commands and indices, syntax highlighting, and
direct execution of queries with quick access to documentation.

Getting Started with Dev Tools
Step 1: Accessing Dev Tools

1. Open your Kibana interface in a web browser.

2. Click the " pev Tools " icon on the left-hand navigation panel as shown in
Figure 2.1 .

3. You will see two panels: The left panel is where you type your requests, and
the right panel displays the responses from Elasticsearch. You can see an
example in Figure 2.2 .

) Home n

Dashboards »me home

Rules !

Alerts '

Findings |)

Cases !

Timelines

Intelligence

Explore Search Observability

Manage arch experiences with a Consolidate your logs, metrics,
set of APls and tools. application traces, and system

availability with purpose-built Uls.

{5} Management v

Dev Tools W

Integrations

Fleet . .)
‘ed by adding integrations

Osquery

Stack Monitoring king with your data, use one of our many ingest options. Collect

Stack Management 1 app or service, or upload a file. If you're not ready to use your
ay with a sample data set.

© Add integrations

m Try sampledata ¢y Upload a file

|

Figure 2.1: Dev Tools Menu on Kibana Portal

= B oot towk

Console SsarchProfiler Grok Debugger PainlessLab mw . %
— Send requests with Console
Hindory Seflings Viables Help
1 EF lesagiorarabtan] 11 saers e,
[Corsole understands commands in 8 cURL-Bke
bt :...[eVariabbez}: [} 17 watch_all syritax. Here is a request to the Elasticsearch
ol Search APL

Tir 3600 3 rEQUEST 10 & KIDana AP, plefic 1he
path with kbn:

Send multiple requests

Select multiphs rquosts and sand thism
USGEET, Yeu T G4t FASEansas 1 all yaur
segquests, regardless of whethes they succesd
of fail

Figure 2.2: A Form of Dev Tools Application

Step 2: Basic Commands

Before running complex queries, familiarize yourself with a few basic commands:

e To get information about your Elasticsearch cluster:

GET /

1. Click the green triangle (play) button to execute the command. You can
also press Ctrl + Enter (Cmd + Enter on Mac) to execute the command.

2. After executing the command, you will see the response in the right panel.
The response will look similar to Figure 2.3 .

= B onte Cowk

Console SearchProfiler Grok Debugger Painless Lab mm

Hivlory Sefings WVarisblew Felp EO-OK 87
1 T/ oy

Figure 2.3: Getting Elasticsearch Cluster Information
Next, let us try a few more commands.

e To list all indices in your cluster:
GET / cat/indices

¢ To check the health of your cluster:
GET / cluster/health

Run these commands in the left panel, and press the green triangle (play) button
to execute.

HTTP Request Methods in Elasticsearch’s Dev Tools

When interfacing with Elasticsearch through Kibana’s Dev Tools, understanding
the purpose and use of different HTTP request methods is crucial. Following is an
explanation of each request method, and its relevance in the context of
Elasticsearch operations:

GET

The GeT method is used to retrieve information from an Elasticsearch cluster. It is
a read-only operation, which means it does not change any data in the cluster. In
Dev Tools, you would use GeT to fetch data from an index, check the status of
nodes, retrieve cluster health, or see the details of a specific document.

Example:

GET / cat/indices

This request would list all indices in the cluster.

PUT

The pur method is used to create new resources, or replace the existing ones. In
Elasticsearch, put is often used to create a new index, update index settings, or
create/update a document in an index.

Example:

PUT /my-index-000001
{
"settings": {
"number of shards": 1
}
}

This would create a new index with the specified settings.

POST

The posT method is typically used to perform operations that can change the state
of the server. In Elasticsearch, posT 1is used to add a new document to an index,
when you do not specify an ID (Elasticsearch will auto-generate an ID), update a
document, or perform searches.

Example:

POST /my-index-000001/ doc

{
"title": "Ultimate Elastic Stack Handbook"

}

This would add a new document to my-index-000001 .

You can verify that the document was added by running the following command:
GET /my-index-000001/ search

You should see the document you just added in the response, along with the auto-
generated ID (_id) for the document. For instance, if the document ID is
7i18sYsBBDr4QfYX4Kdm , we can retrieve the document by running the following
command:

GET /my-index-000001/ doc/7i18sYsBBDr4QfYX4Kdm

= . Dev Tools Console

Console Search Profiler Grok Debugger Painless Lab sem

History Settings Variables Help
2 [1-
21 GET /my-tindex- 066001/ doc/Ti18sYsBBDr40FYX4Kdn 2 index": “my-index-000001°
2é 1d": “TL18sYsBEDrAQFYXAKdR" ,
& ! version ; 1,
q_no": B,
ry_term™; 1
true,

5

rd i
: title”: "Ultimate Elastic Stack Handbook

Figure 2.4: Getting a Document by ID

HEAD

The HEAD method is used to retrieve the headers from a given endpoint. It is like
GET , but it does not return the body of the response. It is mainly used to check for
the existence of a resource (such as an index or a document) without retrieving
the actual data.

Example:
HEAD /my-index-000001/ doc/1

This would check if a document with the ID 1 exists in my-index-000001 . If no
document exists with that ID, the response will have a status code of 404 (Not
Found). If a document exists, the response will have a status code of 200 (OK).

In our previous example, we created a document with the ID
7i18sYsBBDr4Qfyx4kdm . If we run the following command, we will get a
response with the status code 200, and the headers for the document:

HEAD /my-index-000001/ doc/7i118sYsBBDr4QfYX4Kdm

DELETE

The pELETE method removes resources from the cluster. In the context of
Elasticsearch, bELETE is used to delete indices, remove documents from an index,
or delete an entire index.

Example:
DELETE /my-index-000001

This request would delete the index named my-index-000001 .

PATCH (less common in Elasticsearch)

The parcu method is used to apply partial modifications to a resource. However,
it is not commonly used in Elasticsearch because this typically uses the posT
method to perform partial updates to documents.

In essence, these HTTP methods are integral to RESTful operations within
Elasticsearch, enabling developers and administrators to interact with the cluster’s
data and configuration in a standardized way. Proper use of each method ensures
the cluster’s data integrity and efficient operation.

Tips for Effective Use of Dev Tools

e Use Auto-Complete : Dev Tools provides suggestions for fields and
commands as you type.

e Reference the Documentation : Direct links to Elasticsearch
documentation are available in Dev Tools for quick reference.

e Save Your Work : You can save commands; you might want to reuse later.

Summary

The Dev Tools Console in Kibana is a versatile and indispensable tool for anyone
working with Elasticsearch. By following this hands-on lab, you now have the
basic knowledge to create indices, index documents, execute searches, and
perform clean-up operations. As you become more comfortable with these
foundations, you can explore more complex queries and Elasticsearch
functionalities, making Dev Tools an integral part of your Elasticsearch journey.

In this book, we will use Dev Tools to demonstrate various Elasticsearch concepts
and techniques. The following chapters will delve into the details of Elasticsearch,
providing you with the knowledge to build robust and efficient search as well as
analytics solutions.

Index Lifecycle Management

At the heart of Elasticsearch’s robustness and efficiency in handling data lies a
critical feature: Index Lifecycle Management (ILM). This powerful component
ensures that your indices are optimized, managed, and stored -effectively
throughout their existence. The lifecycle of an index in Elasticsearch is a journey
through various stages — each with its own purpose and management strategies.
Understanding ILM is essential for anyone looking to utilize Elasticsearch to its

fullest potential, whether you are maintaining a lean search architecture or
orchestrating a vast data lake for complex analytics.

We can manage the lifecycle of an index in Elasticsearch through the ILM API.
This API allows us to define policies that automate the transition of an index
through its various stages. These policies can be applied to multiple indices,
allowing for centralized management of the entire cluster. Figure 2.5 illustrates
the lifecycle of an index in Elasticsearch.

We can use Kibana to manage the lifecycle of an index in Elasticsearch. You can
access the ILM feature in Kibana by clicking the “Index Management” icon on
the left-hand navigation panel, as shown in Figure 2.5 .

[
=)
¥
i

) Wemegwment Index Management £ ince ans sgament dcs
ingast
indices DataStreams index Comp
Inpasi Pipslines.
Duts Update your Elasticseanch indices indhvidualy of in Dulk, Learn mode: B wouos folup indkoes B wiciuoe nidsen ingkces
inediex Manaperent
) ¥ 5 SEELE v L e - 1

Index Lifwcycie Policies 0 Lifecyche SELS LifeyCie s Forhoad ncies
SPapEhot sna Restons

Wy [T ST [[T [Sasgasty Ewts ane -
Rollep Jobs
Transforme : e 1 [} LRk
Berrotn Cleaters

¥

(L]

Aleris and Insighis
Bubes

(=

Conracion

Raparting

Machine Learmirg
igintanancs Windows

Sty

Figure 2.5: Managing Elasticsearch Index via Kibana Portal

Creation and Ingestion

The lifecycle begins with the creation of an index, which is typically designed to
store a specific type of document, such as logs, product listings, or customer data.
During the ingestion phase, documents are indexed — meaning that they are
processed, stored, and made searchable. It is a time of growth, where the
emphasis is on the rapid and efficient handling of the incoming data. Here, you
will learn how to define index settings and mappings to optimize the indexing
process, and ensure that your data is structured in a way that supports your search
and analysis needs.

Rollover and Growth

As indices grow in size and age, their performance and cost-effectiveness can
wane. To maintain efficiency, Elasticsearch’s ILM introduces the concept of
rollover — a process that creates a new index, when the current one reaches a
specified size, age, or document count. This strategy keeps indices at an optimal
size for search performance, and helps with segmentation, making data
management more practicable. This section will guide you through setting up
rollover criteria, and initiating the rollover process, an essential technique for
handling time-series data like logs or metrics.

Hot-Warm-Cold-Frozen Phases

After the rollover, indices are often moved through the hot-warm-cold-frozen
phase model, each representing a different storage and accessibility profile. ' Hot '
indices are actively written to, and frequently accessed. ' warm ' indices are less
frequently accessed, but still need to be searchable. ' co1d ' indices are rarely
accessed, and can be stored on less expensive hardware. Finally, ' frozen
indices are seldom queried, and are archived in a highly compressed format,
minimizing costs. Here, we will dissect how to automate the transition between
these phases, aligning with your organization’s access patterns and budget
constraints.

Retention and Deletion

Data retention policies play a vital role in ILM, determining how long data
remains in the system before it is deleted or archived. In this part of the lifecycle,
it is important to balance the value of historical data against the cost and
performance of storage. Elasticsearch provides tools to automate data retention
according to your policies. This segment will delve into configuring and applying
retention policies that automatically delete or archive data to comply with storage
limitations, legal requirements, and business needs.

Snapshot and Restore

While not strictly a phase, snapshotting is an integral part of ILM. Snapshots
provide a means to backup and restore data, ensuring that you can recover from
hardware failure, data corruption, or user error. In this section, we will look at
how to create snapshots of your indices, and how to restore from a snapshot as
well as strategies for snapshot lifecycle management, which coordinates the
creation and deletion of snapshots according to a schedule.

In summary, Index Lifecycle Management in Elasticsearch is a multifaceted
toolset that helps manage the flow of data from ingestion to deletion. Through
ILM, Elasticsearch empowers users to automate the mundane yet critical tasks of
index administration, ensuring that performance is maintained, costs are
controlled, and data remains compliant and secure. The following subsections will
delve into each stage of ILM in detail, providing you with the knowledge to
implement a robust data lifecycle strategy.

Hands-On Lab: Index Lifecycle Management in
Elasticsearch Using Kibana Dev Tools

In this lab, you will learn how to use Elasticsearch’s ILM feature to automate
index management tasks such as creating, ingesting data into, rolling over, and
eventually, deleting indices. We will cover the lifecycle from hot to warm, cold,
and frozen phases, and how to set up policies that dictate the transition and
retention of data through these stages.

We will continue from where we left off in the previous ILM setup, and now
integrate snapshot as well as restore operations into our index management
process.

Prerequisites

e Running Elasticsearch cluster.
e Kibana installed, and connected to the Elasticsearch cluster.

e Basic familiarity with Elasticsearch, and Kibana’s Dev Tools console.

Part 1: Creation and Ingestion
Step 1: Define an Index Template

An index template in Elasticsearch is a way to tell the cluster how to configure
new indices, when they are created. Templates are necessary for managing
settings, mappings, and other index-specific configurations in a reusable manner.
When an index is created, Elasticsearch will apply the template that matches the
index pattern, thereby ensuring that all new indices conform to a predefined set of
rules.

Templates are particularly useful, when working with time-series data, logs, or
any situation where indices are created regularly, and need a consistent
configuration. Without templates, you would have to manually set up mappings,
settings, and aliases, each time you create a new index, which is prone to errors
and inconsistencies.

The goals for defining an index template are as follows:

1. Consistency : Ensure that all indices matching the pattern have the same
structure, settings, and behaviors. This is crucial for systematic querying,
aggregation, and analysis across similarly structured data.

2. Automated Configuration : Automate the process of index creation with
the desired settings such as the number of shards and replicas, refresh
intervals, and mappings. This saves time, and reduces manual overhead as
well as the potential for configuration errors.

3. Optimized Mapping : Define mappings in the template to control how
different fields are indexed and stored. This can include data types, analyzer
settings for text fields, and format definitions for dates and numbers.

4. Scalability and Performance : Establish index settings that are tuned for
the scale and performance needs of the application, like specifying shard
and replica counts, which can improve search performance, and increase
resilience to failures.

5. Maintenance and Evolution : Manage the evolution of the index structure
more easily. If you need to change the configuration, you can update the
template and all new indices will inherit the changes, ensuring gradual and
manageable schema evolution.

By achieving these goals, you set a solid foundation for your indices, allowing
you to focus on the more complex tasks of data ingestion, search optimization,

and query design, with the confidence that your underlying index structures are
set up consistently and efficiently.

Let us walk through the process of defining an index template in Elasticsearch:

1. Open Kibana, and navigate to Dev Tools.

2. Create an index template that includes settings and mappings necessary for
your data:

PUT index template/lab index template
{
"index patterns": ["lab-data-*"],
"template": {

"settings": {
"number of shards": 1,
"number of replicas": 1

br

"mappings": {

"properties": {
"timestamp": {
"type": "date"
bo
"value": {
"type": "double"
}
// Define other properties relevant to your data
}
}
}
}

Step 2: Create an ILM Policy

In this step, you will create an ILM policy, a set of rules that automate the
management of indices through their life from inception to deletion. The ILM
policy defines how indices should be handled as they grow and age; it specifies
when they should roll over to a new index, move to less expensive storage, or be
deleted to conserve resources. The policy is composed of phases — Hot, Warm,
Cold, and Delete — each configured with actions and triggers, based on the
index’s age, size, or other custom criteria. Creating an ILM policy helps in
managing data systematically, optimizing storage, and ensuring that data retention
conforms to compliance and business requirements.

Let us define an ILM policy that specifies the lifecycle of your indices:

PUT ilm/policy/lab data policy
{
"policy": {
"phases": {
"hot": {
"min age": "Oms",
"actions": {
"rollover": {
"max age": "7d",

"max size": "5GB"

}
}y

"warm": {
"min age": "10d4d",
"actions": {

"readonly": {}

}
by
"cold": {
"min age": "30d",
"actions": {
"freeze": {}
}
by
"delete": {

"min_age": "90d",
"actions": {
"delete": {}

Part 2: Rollover and Growth

Step 3: Apply the ILM Policy to an Index

In this crucial step, you will link the previously defined ILM policy to an index,
or an index alias. Applying the ILM policy to an index automates the execution of
the lifecycle rules, you have set out in your policy, dictating how and when the
index should transition through various phases — hot, warm, cold, and delete.
This process effectively binds the index to a set of behaviors that will manage its
life cycle such as rollovers, shrinkage, freezing, and eventual deletion. This step is
fundamental to ensuring that your indices are optimized for performance and cost
throughout their existence, and are cleaned up in accordance with your data
governance standards.

Let us create an initial index, and apply the ILM policy:

PUT /lab-data-000001
{

"aliases": {
"lab-data": {
"is write index": true
}
by
"settings": {
"index.lifecycle.name": "lab data policy",
"index.lifecycle.rollover alias": "lab-data"

}
}

Step 4: Index Some Documents
Simulate data ingestion by indexing some documents:

POST /lab-data/ doc

{
"timestamp": "2023-11-05T12:00:002z",

"value": 100
}
Repeat the preceding POST request as necessary to simulate continuous data
ingestion.
To verify that the documents are indexed, run the following command:

GET /lab-data/ search

Figure 2.6 shows the response from Elasticsearch, after indexing a few
documents.

= [ovevtoss consce
Console Search Profiler Grok Debugger Painless Lab sera

Hisiory Settings Variables Help

65 } 1= K

TE 2 t

71 POST flab-data/ doc i -

T 4

T3 timestang' 20F3-11-85T12 00 002", 3

T4 “walue": 166 B

5=} 7

Tt 8

7T GET [lab-dataf_search L L% 9 .

18 “hits™: {

11 total™: {

L 12 “value®: 32,

(1] 131 relation™: “eq

a2 14+ s

B3 15 MaX_SCOre”

B4 16 hits®: [

85 17 {

Be 18 = _Undex”™: "Lab-data- 60006817

L 19 s TwWTThrosBTNGPHUSS_ 1nD" .

88 L] 0 score”: 1

o 22 Y- 11 -85T12 800827,

a7 24 }

25 |

T [

27 " _index”™: "Lab-data-000081°,

28 s Cw)TurosBTNGPHUSASFLE® |

7 20 " _Score™: 1,

G 30 =_source™: |

Ly timestang’ 20Z3-11-05T12 00 :001",

16 12 “value™: 180

184 33
15
1 “Lab-data- HO0GE1",
37 TirosBTNGPHUSAS1NT" |
L1} s

1 £L] I

Figure 2.6: Getting Documents

Part 3: Hot-Warm-Cold-Frozen Phases
Step 5: Monitoring the Transition

Monitor the index as it transitions through the lifecycle phases:

GET lab-data-*/ ilm/explain

& elastic

= . Dav Tools Console

Console Search Profiler Grok Debugger Painless Lab wems

History Settings Variables Help
6~ } 14
05T [lab-data/_doc .

T "B23-11-85T12:86:8827,
i)

T GET flab-dataf_search

) GET lab-data-*/_1ilm/explain [3 EE-) :
1111s™: 1699446624381,

s* 1699446024381,
er-ready”
15" 1699446824381,

on”:
Lab_data_policy”,
inition™: {

ons”

Figure 2.7: Getting ILM Information

After sending the request, you will see the response in the right panel. The
response will look similar to Figure 2.7 . The response you received from the
Elasticsearch cluster is an explanation of the current status of the index 1ab-data-

000001 with regard to its ILM. Here is a breakdown of the key components of the
response:

e "indices ": This is a list of the indices that the ILM explain API call has
information about.

e " lab-data-000001 ": This is the name of the index for which the ILM
status is being reported.

'

e " managed ": This is set to true , indicating that the index is under the

management of an ILM policy.

" policy ": This indicates the name of the ILM policy (1ab_data_policy)
that is applied to the index.

" index_creation_date millis ": This represents the timestamp in
milliseconds, since the epoch when the index was created. The index was

created on this cluster approximately 4.57 minutes ago.

" time since_index creation ": This is a human-readable format of the
time elapsed, since the index was created again, stating it has been
approximately 4.57 minutes.

'

" lifecycle date millis ": This represents the start time of the index
lifecycle in milliseconds since the epoch, which is essentially the same as
the index creation time.

"

age ": This is a human-readable format of the time elapsed since the
lifecycle of the index began, which is the same as the time since the index
was created.

" phase ": This indicates the current phase of the ILM policy that the index
is in. “hot” is the phase intended for new and actively updated data.

'

' phase time millis ": This is the timestamp in milliseconds, when the
index entered the current phase.

"

action ": This represents the current action that is being performed as
part of the lifecycle policy. The " rollover " action indicates that
Elasticsearch is evaluating, whether the conditions to rollover the index
have been met or not.

action time millis ": This is the timestamp in milliseconds, when the
current action began.

"

step ": This indicates the specific step within the action that is currently
being executed, which is " check-rollover-ready " in this case. This step
1s where Elasticsearch checks, if the index meets the criteria defined for a
rollover (like max_age Ol max_size).

"n

step_time millis ": This is the timestamp in milliseconds, when the
current step began.

'

' phase_execution ": This provides details about the execution of the
current phase, including:

",

"policy ": The name of the policy being executed.

' phase definition ": The specific configuration for the current phase
(here, it specifies that rollover should happen after 7 days, or if the index
size exceeds 5 GB).

e "version ": The version of the ILM policy.

* "modified date in millis ": The last modification date and time of the
[LM policy.

In summary, this response tells you that the index 1ab-data-000001 is managed
by an ILM policy named 1ab_data policy . The index is currently in the “hot”
phase, and the rollover action is being evaluated to determine, if the index should
be rolled over, based on its age or size.

Part 4: Retention and Deletion
Step 6: Verify Deletion Policy

After the time has passed, verify indices are deleted according to the policy:
GET / cat/indices/lab-data-*?v&s=index

This command lists the indices, and you should not see any indices older than the
deletion phase’s min_age .

Certainly! We will incorporate steps for Snapshot, and Restore in the context of
the ILM process in Elasticsearch using Kibana Dev Tools.

Part S: Snapshot Lifecycle Management
Step 7: Define a Snapshot Lifecycle Policy

You need to define a snapshot repository in Elasticsearch with the name
my snapshot_repo . This is where the snapshots created by the SLM policy will
be stored. The repository could be a shared filesystem, an S3 bucket, Azure Blob
Storage, Google Cloud Storage, or any other supported type.

To create the repository, you would send a pur request to Elasticsearch with the
necessary settings for the chosen repository type. For example, to create a
filesystem repository, you would use a request like this:

PUT / snapshot/my snapshot repo
{
"type": "fs",
"settings": {
"location": "/path/to/your/backup"
}
}

Replace "/path/to/your/backup"” with the actual file path to your backup
directory.

On Ubuntu, you would typically use a path that resides within a directory where
Elasticsearch has permission to read and write data. For instance, you might use a
subdirectory within /var/lib/elasticsearch , which is a common location for
Elasticsearch data, or you could create a new directory specifically for snapshots.

Here is an example of how you might set up a snapshot directory:

1. Create a New Directory : Open your terminal, and run the following
command to create a new directory:

sudo mkdir -p /var/lib/elasticsearch/snapshots

2. Set Appropriate Permissions : Make sure that the Elasticsearch user has
read and write permissions for this directory. You can set the ownership to
the Elasticsearch user with:

sudo chown -R elasticsearch:elasticsearch

/var/lib/elasticsearch/snapshots

This command changes the ownership of the directory to the
elasticsearch user and group which should be the user running the
Elasticsearch service.

3.

Configure path.repo on Elasticsearch : Next, you need to configure the
path.repo setting in Elasticsearch to allow the use of this directory as a
snapshot repository. Open the Elasticsearch configuration file in a text
editor:

sudo nano /etc/elasticsearch/elasticsearch.yml
Add the following line to the end of the file:

path.repo: ["/var/lib/elasticsearch/snapshots"]
Save and close the file.
You may restart Elasticsearch to apply the changes:

sudo systemctl restart elasticsearch.service

. Configure the Elasticsearch Repository Path : When creating your

snapshot repository in Elasticsearch, you would then specify the path as:

PUT / snapshot/my snapshot repo
{
"type": "fs",
"settings": {
"location": "/var/lib/elasticsearch/snapshots"
}
}

Make sure to execute these commands with appropriate permissions, and double-
check that your Elasticsearch configuration allows for this directory to be used as
a snapshot repository.

After setting up the directory, and ensuring the correct permissions, you can then
use the preceding PUT request to define the snapshot repository in Elasticsearch.

Next, we will define a policy that automatically creates snapshots of our indices,
before the deletion phase:

PUT slm/policy/lab data snapshot policy
{

"schedule": "0 30 1 * * 2",

"name": "<lab-data-snap-{now/d}>",

"repository": "my snapshot repo",

"config": {

"indices": ["lab-data-*"]
by
"retention": {

"expire after": "30d",

"min count": 5,
"max count": 50
}
}

This request configures an SLM policy named lab data snapshot policy to
automatically create daily snapshots of indices matching the pattern 1ab-data-*
at 1:30 AM, and store them in the my snapshot_repo repository. The snapshots
are named with a date-stamped pattern for easy identification. The policy ensures
a minimum of 5 snapshots that are always retained, while capping the maximum
at 50, with any snapshots older than 30 days’ subject to deletion, unless this
would drop the total below 5.

To retrieve information about an existing Snapshot Lifecycle Management (SLM)
policy in Elasticsearch, you can use the GET API to request details about the
policy. For your specific lab data snapshot policy , you would issue the
following request in the Kibana Dev Tools console or via any tool that can send
requests to the Elasticsearch REST API:

GET slm/policy/lab data snapshot policy

This will return information about the specified SLM policy, including its
configuration details, and the current status.

The response you receive should contain data about when the policy was last
executed, any snapshots that have been taken according to this policy, and the
next scheduled execution time, among other details. You can see an example of
this response in Figure 2.8 .

& elastic

Console Search Profiler Grok Debugger Painless Lab sema

. Dev Tools Conscle

History Settings Variables Help
L —
185«] 1 { ot

5" : 1699485533192,

111 GET _sinfpolicy/lab_dath_snapshot_policy 9

"<lab-data-snap- {now/d}>".
CE R

113
: 8 “repository™: "my_snapshot_repo”,
116 “config™:
S “indices”: [
358 11 "lab-data-*"
11 12 -
126 i3 = 1)
_.f. "retention”: {
122 “explre_after™: “384%,
:H.‘ “min_count™: 5,
:t".- “Rax_count”: 58
125 }
126 1 1
I ze next_execution millis™: 1699493400060,
128 21 “stats”
:'J,_I 22 = “lab_data_snapshot_policy”,
138 21 =
25 °5
26 "5 L
27 1
28 - 1

Figure 2.8: Getting Snapshot Policy Information

Step 8: Execute Snapshot Lifecycle Policy
Execute the snapshot policy to ensure that it is correctly set up:
POST slm/policy/lab data snapshot policy/ execute

Figure 2.9 shows the response you should receive from the Elasticsearch cluster.
The response indicates that the snapshot policy was executed successfully, and
that a snapshot named 1ab_data snapshot policy was created.

Console Search Profiler Grok Debugger Painless Lab s

History Settings \Variables Help

& "snapshot_name”: “lab-data-snap-2023.11.08- jdehoywrsigwetykediiulg”

&

114 POST _slmfpolicy/lab_data_snapshot_policy
[_execute

Figure 2.9: Executing an SLM on Elasticsearch

Step 9: Update ILM Policy to Include Snapshot before Deletion

We refine our existing ILM policy to add a crucial data protection step. This
enhancement instructs Elasticsearch to automatically create a backup snapshot of

an index, just before it is scheduled to be deleted as part of the [LM’s " delete "
phase. Thus, by integrating snapshot creation into our ILM policy, we ensure that
a recoverable copy of the data is preserved, allowing us to safeguard against
accidental data loss, and providing a point of recovery if the data needs to be
restored in the future. This step is vital for maintaining data durability, and adds a
layer of resilience to our data retention strategy.

Let us modify the existing ILM policy to include a snapshot step, before the
delete action:

PUT ilm/policy/lab data policy
{

"policy": {
"phases™: {
"hot": {
"min age": "Oms",
"actions": {
"rollover": {
"max age": "7d",
"max size": "5GB"
}
}
by
"warm": {
"min age": "10d4d",
"actions": {

"readonly": {}
}
by

"cold": {
"min_age": "30d",
"actions": {
"freeze": {}
}
bo
"delete": {
"min age": "90d",
"actions": {
"wait for snapshot™: ({

"policy": "lab data snapshot policy"
by

"delete": {}

}
Step 10: Verify the Snapshot Creation
Check the snapshots created by the SLM policy:

GET / snapshot/my snapshot repo/ all

After sending the request, you will see the response in the right panel. The
response will look similar to Figure 2.10 . You can see that the snapshot named
lab-data-snap-<snapshot> was created by the SLM policy. Keep in mind that
the snapshot name will be different in your case. Save the snapshot name for the
next step. For instance, our snapshot name is lab-data-snap-2023.11.08-
jdehxywrsiqwetykxk3ulqg .

& elastic

= . Dav Tools Console

Console Search Profiler Grok Debugger Painless Lab wema

History Settings Variables Help

155 CET f_snapshot/my_snapshot_repof_all [2 { "snapshots™: [
¥ {
“snapshot™: “lab-data-snop-2023.11.08- jdehxywr sigwetylodiulg”™,
“uuid “"MgzgSBpnRkKapDLSM2Sd19" ,
“repository”: “my_snapshot_repo”,
"version_d": 169499,
1 B "version”: TE1084997,
162 g- “indices™: [
163 1€ “.kibana_security_solution_8.10.4 _081°,
" .kibana_task manager 8.10.4 0817,
" Lsecurity-TT,
" .transform-notifications -800002",
" .kibana_analytics_B.18.4 881",
" .kibana_security_session_17,
" security-profile-8°
" . apm-agent - configuration™,
171 18 ©.apn-custon-Link™,
172 " _kibana_alerting_cases_8.18.4_881°,
173 (| " “Lab-data- 9000681~ ,
4 1 “.kibana_8.16.4_061",
'3 “.kibana_ingest_8.10.4 9817,
.:: " transform-internal -887"
: 1.
"data_streams™: [].
? “include_global_state™: true,
ot "‘metadata™: {
:-a “policy™: “lab_data_snapshot_policy”
a3 "state”: "SUCCESS",
&4 i “start_time 2023-11-88T23:-34:43_4247"
T start_time_tn_mpillis™: 1699486483424,
3 “end_time”: “2823-11-88T 34:43 8241°,
14 "end time in millis 1699486483824,
“duration_tn_millis™: 469,
“fatlures™: []
"shards™: {

“total”: 14,
"Fatled™ A

Figure 2.10: Getting a Snapshot Repo on Elasticsearch

Part 6: Restore from Snapshot
Step 11: Restoring Data

To simulate a restore process, first manually delete an index (preferably in a safe,
controlled environment):

DELETE /lab-data-000001
Next, verify that the index is deleted:

GET / cat/indices/lab-data-*
You should see a response, indicating that the index is no longer present.
Then, restore the index from a snapshot:

POST / snapshot/my snapshot repo/lab-data-snap-<snapshot>/ restore
{

"indices": "lab-data-000001",

"include global state": false

}

Make sure to replace <snapshot> with the actual snapshot name that contains the
index you want to restore. Since our snapshot name is lab-data-snap-
2023.11.08-jdehxywrsiqwetykxk3ulg , we would use lab-data-snap-
2023.11.08-jdehxywrsiqwetykxk3ulqg in the preceding request:
POST / snapshot/my snapshot repo/lab-data-snap-2023.11.08-
jdehxywrsigwetykxk3ulqg/ restore
{

"indices": "lab-data-000001",

"include global state": false

}

After sending the request, you can verify that the index is restored by running the
following command:

GET / cat/indices/lab-data-*

You should see a response, indicating that the index is present.

Wrap-Up

In this lab, you have walked through setting up an ILM policy for managing the
lifecycle of indices in Elasticsearch. You have also learned how to:

¢ Define an index template with settings and mappings.

e Create an ILM policy with hot, warm, cold, and delete phases.

e Apply the ILM policy to an index.

e Ingest data into the index.

e Monitor the index as it transitions through the lifecycle stages.

o Verify that the policy is appropriately deleting indices.

e Create a snapshot lifecycle policy.

e Execute the snapshot lifecycle policy.

e Update the ILM policy to include a snapshot step, before deletion.

e Verify that the snapshots are created.

e Restore an index from a snapshot.

e Verify that the index is restored.

o Verify that the index is deleted, after the retention period.
To get the most out of this lab, it is encouraged to adjust the min_age settings for
each phase to shorter intervals to observe the transitions quickly, as waiting for
days or months is not practical in a learning environment. Also, repeat the data

ingestion step multiple times, or automate it to better simulate a production
environment’s continuous data flow.

Remember to monitor the snapshot repository’s storage, as it will grow with each
snapshot. Adjust retention settings as needed to balance between having sufficient
backups, and managing disk space.

Keep in mind that taking snapshots, and restoring from them can be resource-
intensive operations. Schedule them during low-usage times when possible, and
monitor your cluster’s performance during these operations.

Understanding Document IDs in Elasticsearch

Elasticsearch provides a unique identifier for each document stored in an index.
This identifier is known as the Document ID. When you index a document, you
can either provide your own custom ID, or let Elasticsearch generate one for you.
The choice between using a custom ID, or an auto-generated ID has implications
for performance, indexing, and application design.

Auto-generated IDs

e Elasticsearch generates a unique ID : When a document is indexed
without specifying an ID, Elasticsearch will automatically generate a

random 20-character string as the document ID.

e High performance : Auto-generated IDs are optimized for performance in
Elasticsearch because they are guaranteed to be unique across the cluster,
and are generated in a way that is friendly to the underlying Lucene
segments.

e Use case : Auto-generated IDs are ideal, when the uniqueness of the
document is defined by its content, rather than an external identifier, or
when you do not have a natural document identifier.

Custom IDs

o User-defined uniqueness : When you index a document, you have the
option to specify your own ID. This can be any string that uniquely
identifies the document such as a UUID or a natural key derived from the
document’s content.

o Potential for collisions : When using custom IDs, it is the developer’s
responsibility to ensure that they are unique. If you index a document with
an ID that already exists, the new document will overwrite the existing one.

e Impact on indexing speed : Indexing with custom IDs can be slower than
using auto-generated IDs because Elasticsearch must first check if a
document with that ID already exists in the index.

e Use case : Custom IDs are suitable when you want to maintain consistency
with an external system that uses a specific ID scheme or when documents
are naturally identified by certain attributes, such as a social security
number or an email address.

When to Use Custom IDs

e Integration with external systems : When documents are associated with
IDs from an external database or system, it makes sense to use these IDs
within Elasticsearch to keep the systems synchronized.

e Document updates and upserts : If you need to frequently update or upsert
documents, having a custom ID allows you to easily reference the
document, without needing to look up an auto-generated ID.

e Deterministic behavior : Custom IDs allow you to reindex the same data,
and get the exact same document IDs, which is not possible with auto-
generated IDs.

When to Use Auto-generated IDs

e No natural identifier : If there is no obvious attribute that can serve as a
unique identifier for your documents, it is simpler and more efficient to let
Elasticsearch handle ID generation.

e Best performance : When maximum write performance is a priority, and
there are no external constraints requiring a specific ID scheme, auto-
generated IDs will provide the best indexing performance.

Best Practices

e Decide early : Choose between custom and auto-generated IDs early in the
design of your application, as changing the scheme later can be complex.

e Consistency : Use the same ID generation strategy consistently across all
documents in an index to avoid confusion and errors.

e Avoid unnecessary updates : Be aware that using custom IDs can lead to
unintended overwrites, if the uniqueness of IDs is not properly managed.

Summary

Whether to use custom or auto-generated IDs in Elasticsearch depends on your
specific requirements and use cases. Auto-generated IDs offer the best
performance, and are ideal when no external systems influence the ID scheme.
Custom IDs provide control and consistency with external identifiers, but require
careful management to ensure uniqueness, and can impact indexing performance.

Advanced Querying Techniques

Elasticsearch’s querying capabilities are what truly set it apart as a search and
analytics engine. Beyond the basic match queries, a rich landscape of advanced
querying techniques allows for nuanced data interrogation and complex search
operations. This section dives into the advanced querying techniques that enable
users to extract precise information, identify patterns, and derive insights from
their data in Elasticsearch.

Boolean Queries

At the core of advanced querying lies the Boolean Query. It allows for the
combination of multiple queries using boolean logic — such as must , should ,

must not , and filter . This gives you the precision to construct queries that
can match various criteria simultaneously, boosting relevant documents, or
excluding the irrelevant ones. We will explore the balance between query
precision and performance, teaching you how to construct complex Boolean
queries that are both efficient and effective.

In Elasticsearch, Boolean queries allow you to combine multiple queries in a
logical manner. Here is a summary of the different types of Boolean queries, and
their purposes:

must

Purpose : The must clause behaves like a logical AND. All queries within this
clause must match for the document to be included in the results. It contributes to
scoring.

should

Purpose : The should clause is equivalent to a logical OR. At least one of the
should queries must match for the document to be included in the results. If there
are also must clauses, then they should clauses act as optional constraints that
influence scoring, but are not mandatory for matching.

must not

Purpose : The must_not clause is used to exclude documents that match the
specified query. It behaves like a logical NOT. The queries in this clause must not
match for the document to be included in the results. This clause does not
contribute to scoring.

filter

Purpose : The filter clause is used to filter the results, without affecting the
score. It behaves like a logical AND. All queries within this clause must match,
but they do not influence scoring, which makes filter faster and cacheable.

Example of a Boolean Query

Here is an example of a Boolean Query that combines these clauses:

GET /_ search
{
"query": {

"bool": {

"must": [

{ "match": { "title": "Elasticsearch" }}
1y
"should": [

{ "term": { "tag": "search" }},

{ "term": { "tag": "distributed" }}

I
"must not": [
{ "range": { "date": { "gte": "2023-01-01" }}}
1y
"filter": [
{ "term": { "status": "published" }}

}

In this example, documents must match the titlie query, should match at least
one of the tag queries, must not be dated on or after 2023-01-01 , and must have
a status of published . The must and should clauses will influence the
relevancy score of the documents, while the must not and filter clauses will
not.

Full-text Search Enhancements

Elasticsearch provides a full-text search capability that goes well beyond simple
keyword matching. Techniques such as phrase matching, proximity searches, and
the use of synonyms expand the matching criteria to understand the context and
closeness of terms within the text. Additionally, we will delve into the use of
analyzers and tokenizers that break down complex text into searchable elements,
enhancing the quality of the search results.

Aggregation for Data Analysis

Querying in FElasticsearch is not only about finding documents; it is also about
summarizing your data. Aggregations are a powerful way to process and analyze
your data, providing capabilities for building summaries or extracting statistics.
From simple count operations to advanced bucketing and metrics, aggregations
help turn your data into actionable insights. This section will cover a range of
aggregation techniques, including terms, histograms, and significant terms, and

will demonstrate how to nest these aggregations to perform sophisticated data
analysis.

Scoring and Relevance Tuning

Understanding how Elasticsearch scores and ranks query results is vital for fine-
tuning relevance. Scoring algorithms such as TF/IDF and BM25, determine how
closely results match the query terms. This section will dive into the mechanics of
scoring, and how to influence it with functions such as field-level boosts, the
function_score query, and the script score query which allow for custom
scoring models, based on your specific requirements.

Autocomplete and Suggestions

Real-time search experiences often require features such as autocomplete and
search suggestions to enhance user interaction. Elasticsearch facilitates this
through features like the completion suggester and search _as_you_type field
types. Here, we will discuss implementing intelligent autocomplete systems that
can provide feedback to users as they type, leveraging Elasticsearch’s fast and
efficient suggestion capabilities.

Geo-Searches and Proximity Queries

Location-based data can be critical for many applications, and Elasticsearch
supports geo-queries out of the box. Whether you are searching for documents
within a certain distance from a point or within a geographic shape like a polygon,
Elasticsearch has you covered. This subsection will explain how to index geo-
points and geo-shapes, and how to use geo-queries to find results based on
location.

Joining Queries

While Elasticsearch is not a relational database, it does provide mechanisms to
perform join-like operations. Parent-child relationships and nested document
structures can be queried in ways that approximate SQL joins. We will guide you
through the process of setting up parent-child relationships and nested objects as
well as crafting queries that can efficiently retrieve related data across different
document types.

Cross-Cluster Search

For organizations operating in multi-cluster environments, cross-cluster search is
a critical capability. This feature allows a query to span across multiple
Elasticsearch clusters, treating them as a single unified data source. This segment
will explore how to configure and execute cross-cluster searches, providing
strategies for querying and aggregating data across geographically distributed
clusters.

By mastering these advanced querying techniques, you will be able to leverage
the full power of Elasticsearch to answer complex questions and perform intricate
search tasks. The following subsections will provide a deep dive into each of
these techniques, complete with practical examples and best practices to enhance
your querying skills.

Hands-On Lab: Uploading NDJSON File to
Elasticsearch Using Dev Tools

Before we dive into querying practices in Elasticsearch, it is imperative that we
populate our Elasticsearch cluster with relevant data. For the upcoming exercises,
we will use a dataset containing product information. This dataset is formatted as
an NDJSON (Newline Delimited JSON) file, product data.ndjson , which will
be provided in the source code of the book. Uploading this data will set the stage
for the next lab, where we will perform a variety of search and query operations.

Understanding NDJSON Format

NDJSON stands for Newline Delimited JSON . It is a convenient format for
storing or streaming structured data that may be processed one record at a time.
Each line in an NDJSON file is a valid JSON object, but unlike regular JSON,
line breaks are used to separate objects, not commas or array brackets. This
format is especially useful for bulk operations in Elasticsearch.

Prerequisites

e Have Elasticsearch and Kibana installed and running.

e Ensure that you have the product data.ndjson file which contains the

product data to be uploaded. This file is available in the source code of the
book.

Step-by-Step Guide

1. Access Kibana Dev Tools :

a. Open your browser, and navigate to the Kibana interface.

b. Click the " pev Tools " icon on the left-hand navigation bar.

2. Prepare the Data :
a. Locate the product data.ndjson file from the source code of the
book.
b. Open the file with a text editor to review the data structure.
c. Make sure that the data is in the correct NDJSON format:
d. Each JSON object should be in a single line.
e. There should be no commas between objects.

f. Ensure that no trailing commas are within any JSON objects.

3. Upload the NDJSON File:
a. In Kibana Dev Tools, you will utilize the bulk API endpoint to upload
your data.

b. Copy the content of your product data.ndjson file.

c. In the Dev Tools console, enter the following command:
POST /_ bulk

{paste the copied content here}

e Paste the NDJSON content after posT / bulk , as shown in Figure
2.11 .

e Press the " p1ay " button or Ctrl + Enter to execute the request.

a. After the bulk operation, Elasticsearch will return a response,

b. To check if the data was correctly indexed, perform a search query:

This will return a subset of the documents from the products index.

o [f there are errors in the response, check the NDJSON file for

Dew Tools Console

Console Search Profiler Grok Debugger Painless Lab
History Settings Variables Help

.?/.J] 1

223 1 2

224)]

225=) 4

226 S

227 POST [bulk [3 6

228 {“index™: {"_index”: “products®, " _1d": T

“53bceadd- TFT0-4555-a11a-327F67daddc 5]) -]

229 [“name”: “Follew"™, “description”: “Kitchen lecal 2

recent agree keep night. \nCar discover 18

important at economic person. Finish actually 11~

raise h‘hr\n News suggest deciston wide.™, iz

“price”: 636.77. "in_stock”: false, “category” 13

"Homeware” . Trating®: 2.5, "created_at": 14

“2623-93-168T86: 44 !5 1 15=

238 ["index™: {"_index": "products™, = 1d" 16

“foB9Geat- 35fd- 4506- an.-ﬁ!' e!&!flfiﬂduﬂ N 17

231 [“name™: TOLd", “description”: “About wear 18

president thu}e brother gas government. Even 19«

throw understand hospital bring.\nDemocrat Il 208 =

month Full structure situation. Hear property 21~

person space. \nCost officilal record culture 22

mention.”, “price”: 67932, “in_stock™: false, 23

"category” 'Hoﬂd'u.\rq"_ “rating™: 3.4, 24

“created at” 2523 B_‘n B2T11:38: lﬂl} 25

232 ["tndex™: {"_index™: "products”, - id" 6

86210&23 Ab17-462F - dSBQ Ffﬂﬂ'l]CLS_‘,DE 1)} 27 -

23 {"name™: "HWay", "description”: "Station city 8

green everyone amount. System clearly nation. 29

Week six view standard spend present. \nThat 38

dog response hope term. Economy see reduce 31

order tree.”, "price”: 358,42, "in_stock™: 12

false, “category™: “Clothing™. “rating™: 3.4, 33

“created_at” flJ-‘! EI.’ J'&I.’H 4| I'I } 4

234 {“index™: {'. index” : 35

"AdbATF34-ddel- 4676 ¢h|‘d - aqﬂddsr ci'$ 11 36 =

235 {“name”: “Material®, “description”: “Else wish

high. Serve Ft‘dcral culture whether . \nCentury 35 -

oity Foll Lo imonrtant Rlise whebher Fear el]

BETA

=it

1.
{

).
{

“Errors":
“toak”
“LhtemsT

251,
[

“index”

}

"t -

{

falze,

* wersiaa® 1,
“result”
5"

* _shard

“total™

“products”,
“530ceadd-TFT0-4555-a11a-32TF6Tdaddc 5™,

“created”,

: 2

“successful®:
"falled": @

" seq no;
ry

" _prima

“status”

“index”

}

2 Lmlut :

“tota

{

T

a,

281

{
2,

“suceessful *:
“failed": 8

" _seq_no”

1,

tern®: 1,

“products™

f{!ﬂf?'el 38Fd- 4556 - pebS-e162F1F58dd4",

"_primary_term": 1,
“status”

“index”
* index®- "nrodir

{

281

Figure 2.11: Uploading NDJSON Content

4. Verify Upload :

indicating success or failure for each document.

GET /products/ search

{
"query": |
"match all": {}

}

5. Error Handling :

formatting issues.

e Correct any errors in the file, and repeat the upload process.

6. Clean Up (Optional):

e [f this was a test, and you want to remove the data, you can delete the
index:

DELETE /products

e Execute the preceding command in the Dev Tools console to delete the
products index.

Summary

You have now completed the hands-on lab for uploading an NDJSON file to
Elasticsearch, using Kibana Dev Tools. This process is essential for managing
bulk data operations, and is a foundational skill for any Elasticsearch practitioner.

Hands-On Lab: Elasticsearch Querying Techniques
Using Dev Tools

Having successfully uploaded our product data.ndjson in the previous lab, we
are now equipped to explore a range of Elasticsearch querying techniques. This
hands-on lab will guide you through the execution of Boolean Queries, Full-Text
Search, Aggregations, and Techniques for Scoring and Relevance Tuning.

Lab Steps

1. Boolean Queries

¢ Objective : Combine multiple queries in a logical fashion (AND, OR,
NOT).

e Task : In Dev Tools, execute a Boolean query to find products that
have a price greater than 20, and are in the electronics category.

* Request :

GET /products/ search
{
"query": {
"bool": {
"must": |
{ "term": { "category": "electronics" } 1},
{ "range": { "price": { "gt": 20 } } }
]
}
}

}

Another example of a Boolean Query is as follows. This hypothetical query
searches for products within the " Electronics " category, with a price
greater than or equal to 500, that are not out of stock, and preferably with a
rating of 2 or more. Adjust the fields and values in the query to suit your
actual data, and what you wish to search for.

GET /products/ search
{
"query": {
"bool": {
"must": [
{ "match": { "category": "Electronics" } 1},
{ "range": { "price": { "gte": 500 } } }
I
"must not": [
{ "term": { "in stock": false } }
I
"should": [
{ "range": { "rating": { "gte": 2 } } }

}
2. Full-text Search

e Objective : Perform a search on text fields that will analyze the query
string.
e Task : Search for products that have a description containing the word,

" . "
education .

e Request :

GET /products/_ search
{
"query": {
"match": {
"description": "education"
}
}
}

You can see the response output in Figure 2.12 .

= [l oo Comok

Console SearchProfiler Orok Debugger Painless Lab s

History Semings Varables Help

Figure 2.12: Response O utput for F ull-text S earch
3. Aggregation

e Objective : Summarize your data as metrics, statistics, or other
analytics.

e Task : Aggregate products by category, and get the average price per
category.

e Request :

GET /products/ search

{
"size": O,
"aggs": {
"categories": {
"terms": { "field": "category.keyword" 1},
"aggs": {
"average price": {
"avg": { "field": "price" }
}
}
}

4. Scoring and Relevance Tuning

e Objective : Adjust the relevance score of search results.

e Task : Search for products using a match query that boosts the
relevance score for products in the electronics category.

e Request :

GET /products/ search
{
"query": |
"bool": {
"should": [
{ "match": { "description": "smartphone" } },
{ "boosting": {
"positive": { "term": { "category": "electronics" }
bo
"negative": { "term": { "category": "clothing" } 1},
"negative boost": 0.5

H}

Summary

In this lab, you have learned how to execute complex queries in Elasticsearch
using Kibana’s Dev Tools. You have combined conditions with Boolean logic,
performed a full-text search, aggregated data for insights, and tuned the relevance
of your search results. These querying techniques are crucial for making the most
of Elasticsearch’s powerful search capabilities, and for gaining actionable insights
from your data. Remember, the actual queries you run may vary depending on the
structure of your product _data.ndjson, and the precise nature of your data.

Hands-On Lab: Simulating Joining Queries in
Elasticsearch

Introduction

In this lab, we will simulate the joining queries in Elasticsearch by creating a
parent-child relationship between two types of documents: product and review .

We will define the mappings to establish the relationship, index some sample
documents, and then perform queries that demonstrate how to retrieve data from
this relational structure using Elasticsearch’s join capabilities.

Prerequisites

¢ Elasticsearch and Kibana are installed and running.

e Basic familiarity with Elasticsearch and Kibana Dev Tools.

Step 1: Create Index with Relationship Mapping

First, we will create a new index with a mapping that includes a join field to
establish the parent-child relationship.

1. Define the mapping for the index :

PUT /product reviews

{
"mappings": {

"properties": {

"name": { "type": "text" 1},
"description": { "type": "text" },
"price": { "type": "float" 1},
"category": { "type": "keyword" },
"rating": { "type": "float" },
"created at": { "type": "date" },
"relationship": {

"type": "Jjoin",

"relations": {

"product": "review"

2. Execute the preceding mapping in Kibana Dev Tools to create the index.

Step 2: Indexing Parent and Child Documents

Now, let us index some parent product documents and child review documents.

1. Index a parent document :

POST /product reviews/ doc
{
"name": "Amazing Gadget",
"category": "Electronics",
"price": 99.99,
"created at": "2023-11-04T06:15:32",
"relationship": { "name": "product" }

}
Then, retrieve the documents to verify that they were indexed correctly:

GET /product reviews/ search

Copy a document ID from the response, and use it to index a child
document in the next step.

2. Index a child document :

e Note : To index a child document, you need to specify the ID of the
parent document in the routing parameter. For instance, if the ID of the
parent document is 1 , you would use routing=<parent_doc_id> In
the request.

POST /product reviews/ doc?routing=<parent doc id>

{

"review": "This is a great product!",
"rating": 4.5,
"created at": "2023-11-05T10:00:00",
"relationship": {

"name": "review",

"parent": "<parent doc id>"

}

Step 3: Perform Joining Queries

After indexing the documents, we can use the has child and has parent
queries to retrieve related documents.

1. Query products with reviews (has _child):

GET /product reviews/ search
{

"query": {

"has child": {
"type": "review",
"query": {

"match all": ({}
}

}

2. Query reviews and include the related product information (
has parent)

GET /product reviews/ search
{
"query": {
"has parent": {
"parent type": "product",
"query": {
"match all": ({}
}

}

After sending the requests, you should see responses similar to those shown in
Figure 2.13 .

Console Search Profiler Grok Debugger PainlessLab s

History Settings Variables Help

Figure 2.13: Querying Reviews Included Its Parent

Summary

This lab demonstrated how to create parent-child relationships within a single
index in FElasticsearch, and how to perform queries that simulate joins by
retrieving documents, based on these relationships. These querying techniques are
necessary for applications that require relational data structures within a NoSQL
environment like Elasticsearch.

Next Steps

Explore further by indexing more documents and experimenting with different
types of join queries. Try using more complex queries within the has_child and
has_parent clauses, and observe how Elasticsearch handles these relational
queries.

Optimizing for Search Speed and Relevance

The performance of an Elasticsearch cluster is measured not just by the speed
with which it returns results, but also by the relevance of those results to the
user’s query. Optimizing for both speed and relevance requires a nuanced
understanding of FElasticsearch’s internals, and the careful tuning of various

components. This section outlines the strategies for achieving peak performance
in both areas.

Optimizing for Speed
Efficient Indexing

e Selective Indexing : Only index the data you need. Carefully consider each
field’s index setting to determine, if it should be searchable.

e Sharding Strategy : Optimize the number of shards for your index. Too
few can lead to hotspots; too many can increase overhead. The " "
and " sp1it " index APIs can adjust the shard count post-creation.

shrink

e Index Templates : Use index templates to ensure that settings and
mappings are consistently applied to new indices.

Query Performance Tuning
e Filtered Context : Use a filtered context for queries that do not require

scoring to improve cache utilization.

e Search Types : Use the most appropriate search type for your use case (for
exanqﬂe,query_then_fetch VS. dfs_query then fetch)

e Source Filtering : Limit the source field returned by the query to only the
fields you need.
Performance Monitoring and Tools

* Slow Log : Monitor slow query logs to identify and optimize slow queries.

* Profile API : Use the Profile API to understand how queries are executed,
and identify performance bottlenecks.

Optimizing for Relevance

Fine-Tuning Text Analysis
e Custom Analyzers : Design custom analyzers to improve text analysis and
search quality.

e Synonyms : Use synonyms to capture the variety of expressions that mean
similar things.

e Stop Words : Define stop words to exclude common words that carry less
meaning in search.

Scoring and Ranking
» Field-Level Boosts : Use field-level boosts to give more weightage to
matches in more important fields.

e Custom Scoring : Employ the function score query to incorporate
custom scoring logic, based on your application’s needs.

o« BM25 Parameters : Adjust the BM25 algorithm parameters to better suit
the nature of your content and search requirements.
Result Set Refinement
e Highlighting : Use highlighting to show users why a document was
matched.
e Rescoring : Implement rescoring to refine the top N search hits.

e Search Templates : Leverage search templates to maintain complex
queries, and improve maintainability.

Balancing Speed and Relevance

Query Optimization

e Multi-Search API (msearch) : Combine multiple search requests into a
single API call to reduce round-trip times.

e Bool Query Optimization : Simplify boolean queries to avoid deep nesting
which can slow down query performance.
Caching Strategies
e Shard Request Cache : Enable the shard request cache for frequent
identical searches.
e Query Cache : Use the query cache wisely for static data or slow-changing
indices to improve performance.
Infrastructure Considerations
e Hardware : Choose the right balance of CPU, RAM, and I/O capacity to
support both fast querying and relevance calculations.

e Elasticsearch Version : Stay updated with the latest version of
Elasticsearch as performance improvements, and new features are
continuously added.

Monitoring and Iterative Improvements

Optimization is not a one-off task, but a continuous process. Regularly monitor
your cluster’s performance using Kibana’s monitoring features, tweak your
configurations, and keep abreast of new Elasticsearch features that can offer
additional performance benefits. Regularly revisiting the indexing strategy, query
patterns, and relevance feedback mechanisms will ensure that your Elasticsearch
cluster remains both fast and precise, providing users with the best possible search
experience.

Data Modeling and Schema Design

Data modeling and schema design are foundational to effectively leveraging
Elasticsearch. The way data is modeled and the schema is designed can
significantly influence both the performance of the Elasticsearch cluster, and the
relevance of search results. In this section, we delve into the best practices for
structuring your data, and crafting your schema in Elasticsearch to ensure optimal
efficiency and searchability.

Understanding Elasticsearch Data Modeling

Elasticsearch, being a NoSQL database, does not enforce strict schemas like
relational databases. However, thoughtful data modeling is crucial for maintaining
performance, and achieving precise search results.

Document-Oriented Modeling

* Denormalization : Elasticsearch operates most efficiently on denormalized
data. While relational databases normalize data across tables, Elasticsearch
prefers consolidating related data into a single document.

e Nested Objects : When modeling relationships, use nested types to preserve
the connection between elements that belong together, while taking
advantage of Elasticsearch’s ability to index nested objects and arrays.

Schema Design Considerations
o Explicit Mappings : Define explicit mappings for your data to control how

Elasticsearch interprets the type of each field.

e Field Types : Choose appropriate field types (text , keyword , date ,
geo_point , and more) based on the content, and how users will search.

e Analyzers and Tokenizers : Select or create custom analyzers and
tokenizers that accurately process your text data for search.

Best Practices in Schema Design
Index Design

e Single vs. Multiple Indices : Decide whether to use a single index for all
documents or multiple indices, based on access patterns, security, and
scaling needs.

e Sharding and Replicas : Determine the number of primary shards and
replicas for your indices, based on data volume and query load.
Optimizing Field Mappings
e Avoid Unnecessary Fields : Do not index fields that you will not search or
aggregate.
e Multi-Fields : Use multi-fields to index a field in different ways (for
example, raw and analyzed text).

Performance Considerations

e Index Time vs. Query Time : Strike the right balance between what you
compute at index time (for example, analyzers and normalizers) versus
query time (for example, scripts).

e Compression and Storage : Utilize index settings for compression to
optimize storage, especially for logging or time-series data.

Strategies for Schema Evolution

Your schema is not set in stone. As your application evolves, your Elasticsearch
schema might need to evolve as well.

Reindexing

e Reindex API : Use the Reindex API to migrate data to a new index with an
updated schema.

Alias Management

e Index Aliases : Employ index aliases to seamlessly transition between old
and new index versions without downtime.

Data Modeling for Specific Use Cases

Elasticsearch is versatile, and can support a variety of use cases, each with its own
data modeling needs.

e Text Search : Focus on text analysis, considering the use of synonyms,
stemming, and custom analyzers.

e Aggregations : Optimize numeric and keyword fields for aggregation
operations, and understand the memory implications.

e Geo-Search : Model geo data using geo point and geo shape types for
efficient geo-queries.

e Time-Series Data : Use the rollover pattern for time-series data to maintain
performance over time.

Validation and Testing

Once your data model and schema are designed, validation and testing are vital.

e Automated Testing : Implement automated testing to validate the schema
against a subset of your data.

e Real-World Query Performance : Test with real-world queries and data
volumes to ensure that the schema performs under the expected conditions.

Summary

Data modeling and schema design in Elasticsearch are as much an art as a
science. The flexibility of Elasticsearch demands a thoughtful approach to how
data is structured, and how the schema is crafted. By applying the principles
outlined in this section, you can build a robust Elasticsearch schema that scales
efficiently, handles your search requirements, and provides a foundation for
powerful and fast search experiences. Keep in mind that as your data and
requirements evolve, your schema may need to be revised, demanding continuous
monitoring and adjustments.

Hands-On Lab: Data Modeling and Schema Design in
Elasticsearch

Data modeling and schema design are critical when working with Elasticsearch to
ensure efficient query performance and relevancy. This hands-on lab will guide
you through the process of designing a schema for an Elasticsearch index tailored
to specific querying needs.

Objective : Create an Elasticsearch index with an optimized schema for a
blogging platform where users can post articles, comment on them, and like them.

Prerequisites:

e Access to an Elasticsearch cluster.
e Kibana or another interface to interact with Elasticsearch.

Part 1: Understanding Requirements

e Articles can be written by authors that contain a title, content, a list of tags,
and a publication date.

e Comments can be added to articles by users, and include the comment text
as well as the user’s details.

e Users can like an article, but the count of likes needs to be updated
frequently.

Part 2: Designing the Index Mapping

Create the blog index with the appropriate mappings:

e Define properties for article fields: title , content , tags , and
publication_date .

e Use nested objects for comments to keep them within the context of an
article.

e Use a simple integer field for likes to facilitate easy updates.

PUT /blog
{

"mappings": {

"properties": {
"title": { "type": "text" },
"content": { "type": "text" 1},
"tags": { "type": "keyword" },
"publication date": { "type": "date" },
"likes": { "type": "integer" },
"comments": {
"type": "nested",
"properties": {
"user": {
"properties": {
"name": { "type": "text" },
"id": { "type": "keyword" }
}
by
"comment text": { "type": "text" },

"comment date": { "type": "date" }

}

Part 3: Indexing Documents

Index an example article with comments and likes:

We will use the following document as an example to index into the blog index.
You can use the Dev Tools console in Kibana to execute the request:

POST /blog/ doc
{
"title": "The Importance of Data Modeling",
"content": "In this article, we will explore the importance of
data modeling..",
"tags": ["Data", "Modeling", "Elasticsearch"],
"publication date": "2023-11-05T12:00:00",
"likes": 150,
"comments": |
{
"user": {
"name": "Jane Doe",
"id": "user 123"
bo
"comment text": "Great article, very informative!",
"comment date": "2023-11-06T08:00:00"

Part 4: Querying the Data

Search for articles by tag:

We will use the following query to search for articles that contain the tag,
“Elasticsearch”. You can use the Dev Tools console in Kibana to execute the
request:

GET /blog/ search

{
"query": {
"match": {

"tags": "Elasticsearch"

}

}
Copy the document ID from the response, and use it in the next query.

Part S: Updating Like Counts

Update the likes count for an article:

Change the doc_1p to the ID of the document you indexed in Part 3.

POST /blog/ update/<doc ID>
{

"script" : {
"source": "ctx. source.likes += params.count",
"lang": "painless",
"params" : {

"count" : 1

}

Part 6: Analyzing and Reporting

Create a query to list articles with the most likes:

GET /blog/ search
{

"size": 5,
"sort": |
{
"likes": {

"order": "desc"
}
}
]
}

Part 7: Cleanup (Optional)

Delete the blog index after the lab (optional):

DELETE /blog

Summary

In this lab, you designed and implemented an Elasticsearch schema for a blogging
platform, indexed a sample document, and performed various queries. This
practice illustrated the importance of understanding the data, and how it will be
queried to design an effective schema for Elasticsearch.

Understanding Elasticsearch Geolocation Data

Elasticsearch provides powerful features to handle geolocation data, allowing
users to perform location-based searches and analyses. This capability is widely
used in applications ranging from mapping services to location-aware
recommendations.

Geolocation Data Types

Elasticsearch offers two primary data types for geolocation:

* geo point : This type is used to represent a geographic location, using
latitude and longitude values.

* geo_shape : This type is for more complex geometries such as polygons,
multipolygons, and other shapes.

Indexing Geolocation Data

Before you can query geolocation data, you must index it properly with the
correct data type.

PUT /my locations
{
"mappings": {
"properties": {
"position": {
"type": "geo point"
by

"area": {
"type": "geo shape"
}
}
}
}

Geo-Queries

Elasticsearch provides several types of geo-queries:

e Geo-Point Queries : These include geo_distance (finds documents within
a certain radius of a point), geo_bounding box (finds documents within a
rectangle), and geo_polygon (finds documents within a polygon).

e Geo-Shape Queries : These are used for querying geo_shape fields, and
can handle more complex shapes and relations like intersects , contains
, and disjoint .

Geo-Aggregations

Aggregations can be used to group documents by geolocation, for example, to
create buckets of documents that fall within certain distances from a point.

Example Use Cases

e Local Search : Finding businesses within a certain radius of a user’s
location.

e Mapping : Displaying a set of geographic points on a map.

o Logistics : Tracking and querying the locations of vehicles or shipments.

Challenges with Geolocation Data

Handling geolocation data comes with its set of challenges, such as:

e Precision : Geolocation data requires high precision, and there are trade-
offs between precision as well as storage requirements.

e Query Performance : Geo-queries can be resource-intensive, especially for
large datasets and complex shapes.

e Data Normalization : Ensuring consistency in the representation of
location data.

Summary

Geolocation data in Elasticsearch opens up numerous possibilities for location-
based searching and analysis. By using geo_point and geo_shape types, as well
as the various geo-queries and aggregations provided by Elasticsearch, developers
can build sophisticated location-aware applications.

Hands-On Lab: Working with Geolocation Data in
Elasticsearch

Introduction

Elasticsearch supports various geo data types, and one of the common use cases is
to store, index, and query the geolocation data. This hands-on lab will guide you
through the process of indexing geolocation data, and running geo-queries to find
documents based on location.

Prerequisites

» Elasticsearch cluster up and running.

e Kibana or another tool to interact with Elasticsearch (such as cURL or
Postman)

Step 1: Set Up a Geolocation-Enabled Index

First, you will need an index that can store geolocation data. Then you will define
a geo_point field in your index mapping.

PUT /places
{

"mappings": {
"properties": {
"name": {
"type": "text"
}y
"location": {

"type": "geo point"
}
}

Step 2: Indexing Geolocation Data

Index some documents with geolocation data. The location field must contain
latitude and longitude values.

POST /places/ doc/1
{
"name": "Brandenburger Tor",
"location": { "lat": 52.516274, "lon": 13.377704 }
}
POST /places/ doc/2
{
"name": "Franzdsischer Dom",
"location": { "lat": 52.5145, "lon": 13.3921 }

Step 3: Basic Geo-Queries

Perform a query to find places within a certain distance of a point. This example
finds places within 10km of Branden burger Tor.

GET /places/ search
{

"query": {
"geo distance": {
"distance": "10km",

"location": { "lat": 52.516274, "lon": 13.377704 }
}

Step 4: Advanced Geo-Queries

Elasticsearch also supports more advanced geo-queries such as finding documents
within a bounding box or a polygon.

Bounding Box Query:
Find documents within a rectangular area.

GET /places/ search

{
nqueryn: {
"geo bounding box": {

"location": {
"top_ left": { "lat": 52.6, "lon": 13.3 },
"bottom right": { "lat": 52.4, "lon": 13.2 }
}

}

Polygon Query : Find documents within a custom polygon shape. We can use the
geo_shape query to find documents within a polygon shape. The polygon must
be closed, meaning the last point should be the same as the first point.

GET /places/ search
{

"query": {
"geo shape": {
"location": {
"shape": {
"type": "polygon",
"coordinates": [

13.377, 52.516
13.378, 52.516

[
[1, // Point west of Brandenburg Gate
[]
[13.378, 52.5177, // Point northeast of Brandenburg Gate
[]
[]

, // Point east of Brandenburg Gate

13.377, 52.517
13.377, 52.516

, // Point northwest of Brandenburg Gate
// Closing the polygon with the initial

s

"relation": "within"

Step 5: Aggregations with Geo-Data

You can also perform aggregations based on geolocation data such as grouping
places by geographical areas.

GET /places/ search
{

"size": O,

"aggS": {

"berlin": {
"geo distance": {
"field": "location",
"origin": { "lat": 52.516274, "lon": 13.377704 1},
"ranges": [

{ "to": 5000 1},
{ "from": 5000, "to": 10000 },
{ "from": 10000 }

Summary

This lab walked you through setting up a geolocation-capable index, indexing
geolocation data, running basic and advanced geo-queries, as well as performing
geo-aggregations. You can expand on these basics to build complex location-
based applications and services.

Remember to clean up any resources you have used during the lab, if they are no
longer needed.

Working with Binary Data in Elasticsearch

Elasticsearch does not inherently store binary files; however, it can index binary
content that has been encoded as a Base64 string. This is primarily done using the
binary field type in an Elasticsearch index.

Here is a basic guide for handling binary data in Elasticsearch:

Understanding the Binary Field Type

Elasticsearch includes a binary field type which is a Base64 encoded string. This
field type is not stored by default which means it will not be retrievable from
_source. To store the binary data, your application will need to convert it into a
Base64 encoded string, before sending it to Elasticsearch.

Use Cases for Binary Data in Elasticsearch

e Storing encoded files : Small files like thumbnails, can be encoded to
Base64, and stored directly in Elasticsearch. This is not recommended for
large files due to performance and size constraints.

e Ingest attachment plugin : This plugin is used for extracting file contents
(such as PDFs, and Office documents) and indexing those contents as text.
The binary file itself is not stored, but its contents are extracted and indexed.

Steps to Index the Binary Data

1. Convert to Base64 : Convert your binary data into a Base64 encoded
string, using your preferred programming language.

2. Mapping : Define a field in your Elasticsearch index mapping as a binary
type.

3. Indexing : Send the Base64 encoded string to Elasticsearch as the value for
the binary field.

4. Retrieval : When retrieving the document, you will get the Base64 encoded
string back which your application will then need to decode, if you want to
use the original binary format.

Example

Here is a quick example of how you might define a mapping with a binary field,
and then index a document:

1. Define the mapping:

PUT /my binary index
{
"mappings": {
"properties": {
"my binary field": {
"type": "binary"
}
}
}
}

2. Index a document:

PUT /my binary index/ doc/1

{
"my binary field": "U29tZSBiYXNINJjQgYmluYXJ5IGJsb2I="

}

The Base64 string here is just an example, and would correspond to the Base64
representation of your binary data.

To retrieve the document, you would use the following request:

GET /my binary index/ doc/1

Considerations

e Performance : Encoding, decoding, and transferring large binary files can
be resource-intensive.

e Size : Elasticsearch has a default maximum field size of 100KB for Base64
encoded fields, which you can increase by setting
index.mapping.total fields.limit In your index settings. Still, large
binary files are not ideal for storage in Elasticsearch.

e Use Case Fit : Consider whether Elasticsearch is the right tool for storing
binary data. In many cases, it is better to store actual binary files in a
dedicated file store like Amazon S3, while using Elasticsearch to index
metadata and textual content related to those files.

For actual binary file storage and full-text search on file contents, it is common to
use a workflow where files are stored in a dedicated service (like a blob store) and
only metadata as well as extracted text are indexed in Elasticsearch. The Ingest
Attachment Processor plugin can automatically extract text from binary
documents at the index time.

Conclusion

Throughout Chapter 2 , we have taken a comprehensive journey through the
various facets of Elasticsearch, gaining a deeper understanding of its core
functionalities, and how to effectively work with data within this powerful search
and analytics engine.

We began by setting up and configuring Elasticsearch, ensuring a proper
understanding of index creation, data insertion, and snapshot repositories for
backup and recovery. As we progressed, we delved into the nuances of document
and index management, mastering the art of CRUD operations, and learning how
to handle common errors and exceptions.

Our exploration included a detailed look at the Elasticsearch query DSL, where
we exercised a range of queries — from Boolean to full-text search, aggregations,

and even geospatial queries — gaining insights into the intricacies of data
retrieval and analytics. Alongside this, we investigated the subtleties of data
modeling and schema design, appreciating the significance of creating efficient
mappings, and understanding the impacts on performance and relevance.

One of the highlights was the practical application of these concepts, where we
generated and manipulated random data sets using Python, employed bulk
operations for data ingestion, and conducted various searches and aggregations,
using the Dev Tools in Kibana.

Error diagnosis and resolution played a crucial role in our discussions, as we
navigated through potential pitfalls, and learned to interpret Elasticsearch’s error
messages to fine-tune our queries and index operations.

Through hands-on exercises, we became familiar with Elasticsearch’s robust
capabilities, including handling nested and relational data structures, which
mimicked the behavior of traditional SQL joins through parent-child relationships
and nested queries.

As we conclude this chapter, we take with us a solid foundation in Elasticsearch’s
capabilities for data handling and querying, equipped with the knowledge to apply
these skills in real-world scenarios.

In the upcoming chapter, we will embark on an exciting exploration of the various
integrations available with Elasticsearch. Chapter 3,_Deep Dive: Integrations |,
will open up a new dimension of possibilities as we learn how to enhance and
extend the capabilities of Elasticsearch by integrating it with different tools and
platforms.

Stay tuned as we dive into the next chapter, where the convergence of
Elasticsearch with other technologies enables us to create comprehensive and
sophisticated systems tailored to a wide array of use cases.

Points to Remember

When working with Elasticsearch and related technologies, here are some key
points to remember:

¢ Index Structure: Understand the relationship between an index, type, and
document, and how indexing works in Elasticsearch.

e Data Types and Mapping : Familiarize yourself with various data types,
and the importance of mapping in indexing performance as well as search
relevance.

CRUD Operations : Master the Create, Read, Update, and Delete
operations, as they are fundamental to working with documents in
Elasticsearch.

Query DSL : Deepen your knowledge of the Elasticsearch Query Domain
Specific Language for performing and optimizing various search operations.

Boolean Logic : Boolean queries are powerful in combining multiple search
criteria. Understand how to use must , should , must not , and filter
clauses.

Full-Text Search Capabilities : Utilize full-text search features such as
match, multi-match, and query string queries to exploit the full potential of
Elasticsearch’s search capabilities.

Aggregations : Leverage the aggregation framework to summarize data,
and extract insights from your documents.

Analyzers and Tokenizers : Analyzers and tokenizers are crucial for text
processing and search; know when and how to use them effectively.

Handling Relationships : Learn how to handle relationships within
documents, using nested queries and parent-child relationships.

Bulk Operations : Use bulk API for batch operations to efficiently index or
delete multiple documents in a single request.

Snapshot and Restore : Understand how to implement snapshot, and
restore functionality for backup and disaster recovery.

Error Handling : Practice reading and understanding error messages to
troubleshoot and resolve issues quickly.

Performance Tuning : Monitor performance metrics, and optimize
indexing as well as search performance accordingly.

Security : Implement security best practices, including authentication,
authorization, and encryption where necessary.

Elasticsearch Integrations : Explore how to integrate Elasticsearch with
other tools in the Elastic Stack such as Kibana for visualization, Logstash
for data processing, and Beats for data shipping.

Updates and Migrations : Stay informed about updates to Elasticsearch,
and how to handle migrations.

Geospatial Data : Utilize the geo-capabilities of Elasticsearch to handle and
query geospatial data effectively.

Scripting : Use Elasticsearch’s scripting capabilities for custom scoring,
filtering, and more complex operations.

e Cluster Health and Management : Regularly check the health of your
Elasticsearch cluster, and understand the importance of settings like shard
allocation, node roles, and cluster scaling.

e Documentation : Always refer to the official Elasticsearch documentation
for the most up-to-date and accurate information.

Keeping these points in mind will help you to work more effectively with
Elasticsearch, and build robust, scalable search as well as analytics solutions.

Multiple Choice Questions

1. What does CRUD stand for in Elasticsearch?

a. Create, Read, Update, and Delete.

b. Connect, Retrieve, Unlink, and Detach.
c. Cluster, Replica, Update, and Distribute.
d. Create, Report, Update, and Deploy.

2. Which of the following is NOT a core component of the Elastic Stack?
a. Elasticsearch
b. Logstash

c. Kibana
d. Spark

3. Which query will you use to find documents that contain terms within a
certain range in Elasticsearch?
a. Term Query
b. Match Query
c. Range Query
d. Boolean Query

4. What is the purpose of an analyzer in Elasticsearch?

a. To optimize the cluster performance.
b. To convert text into tokens or terms.
c. To store data in a compressed format.

d. To secure the Elasticsearch cluster.

5. Which of the following is a correct use of the bulk API in Elasticsearch?

a. To search for multiple documents in a single request.
b. To perform multiple indexing, or delete operations in a single request.
c. To increase the number of shards of an index.

d. To monitor the health of the Elasticsearch cluster.

Answers

l.

a

2.d
3.c
4.b
5.b

Questions

1.

. Discuss the

Explain the process of setting up a snapshot repository in Elasticsearch, and
discuss the importance of snapshots in data backup strategies.

. Describe the steps involved in creating a Snapshot Lifecycle Management

(SLM) policy in Elasticsearch, and its role in automating snapshot creation.

" n

puT " and " pDELETE " HTTP methods in the context of
Elasticsearch’s REST API. Provide examples of how they are used to
manage indices.

. Summarize the concept of Boolean Queries in Elasticsearch. How do they

enhance searching capabilities, and what are some common Boolean
operators?

. Describe the process of generating and uploading JSON-formatted data into

Elasticsearch using Python scripts. Why is the NDJSON format preferred
for bulk operations?

. Elaborate on the importance of data modeling and schema design in

Elasticsearch. How does it affect indexing performance and query
efficiency?

. Discuss the role of document IDs in Elasticsearch. What are the trade-offs

between using auto-generated IDs and custom IDs?

. Explain the use of geolocation data in Elasticsearch. How can geospatial

queries enhance data analytics?

9. Evaluate the challenges and limitations, when working with geo-polygon

"

queries in Elasticsearch. How has the shift to the
addressed these issues?

geo_shape " query

10. Reflect on the content of Chapter 2 , and discuss the key points that should

be remembered when working with Elasticsearch. How do these points
prepare a user for the integrations discussed in Chapter 3 ?

Key Terms

Here is a list of key terms that encapsulate the main concepts and tools discussed
in this chapter:

Elasticsearch : A distributed, RESTful search and analytics engine capable
of addressing a growing number of use cases.

Snapshot : A backup taken from a running Elasticsearch cluster.

Snapshot Repository : A location that stores Elasticsearch snapshots such
as a shared file system or remote storage services.

Snapshot Lifecycle Management (SLM) : A feature in Elasticsearch that
automates the creation, deletion, and management of snapshots.

Index Lifecycle Management (ILM) : Elasticsearch’s feature for
automating index management according to user-defined policies.

HTTP Methods (GET , PUT , POST , DELETE) : The operations used for
interacting with the Elasticsearch API to perform actions such as reading,
creating, updating, and deleting data.

Boolean Queries : Search queries that use Boolean logic to combine several
queries (like must , should ,must_not), providing a powerful way to find
a precise set of documents.

NDJSON (Newline Delimited JSON) : A convenient format for streaming
JSON records, used to bulk import data into Elasticsearch.

Data Modeling : The process of structuring and organizing data which in
Elasticsearch helps to define indexes and mappings that affect performance
and relevance.

Schema Design : Designing the structure of data within Elasticsearch,
including fields and data types.

Document ID : The unique identifier for a document in an Elasticsearch
index which can be auto-generated or user-defined.

Geolocation Data : Data that is used to represent geographic locations,
utilized in Elasticsearch for spatial search queries.

Geo-Polygon Query : A type of query that finds documents within a
geographic area defined by a polygon.

Geo-Shape Query : The improved method in Elasticsearch for querying
documents, based on more complex shapes like polygons, circles, and lines.

Dev Tools (Kibana Dev Tools Console) : An interface within Kibana that
allows for direct interaction with the Elasticsearch API through a console.

Aggregation : A feature in Elasticsearch that provides the capability to
group and extract statistics from your data.

Relevance Scoring : The method Elasticsearch uses to calculate how well a
document matches a query.

Data Ingestion : The process of importing or loading data into
Elasticsearch.

Mapping : The schema definition for the fields in an index in Elasticsearch.

Nested Objects : A type of field in Elasticsearch mappings that allows
documents to contain nested lists of objects.

Parent-Child Relationship : A specialized way to model relationships
between connected documents in different indexes.

Geo-Distance Query : A query that finds documents within a certain radius
of a central geolocation point.

C HAPTER 3

Deep Dive: Integrations

Introduction

In the ever-evolving landscape of data management and analysis, the Elastic Stack has
emerged as a powerful toolset for handling vast and varied data in real-time. While the
previous chapters laid the foundational knowledge of Elastic Stack’s core components
—FElasticsearch, Logstash, and Kibana—this chapter ventures into the integrative
capabilities of the Elastic Stack, a crucial aspect for leveraging its full potential.

Integrations are at the heart of the Elastic Stack’s versatility. They enable the stack to
connect with various data sources, applications, and platforms, thereby expanding its
utility beyond its native environment. In this chapter, we will embark on a
comprehensive exploration of Elastic Stack’s integration mechanisms. We will delve
into how these integrations enhance data ingestion, processing, and visualization
capabilities, making the Elastic Stack not just a tool, but a comprehensive solution for
diverse data challenges.

Our journey through this chapter will uncover the practicalities of integrating the
Elastic Stack with popular databases, cloud services, and log management tools. We
will explore case studies and examples that illustrate the transformative impact of these
integrations in real-world scenarios. This will not only provide a deeper understanding
of each integration’s technical aspects, but also offer insights into their strategic
applications.

Furthermore, we will address the challenges and best practices in implementing these
integrations. From ensuring seamless data flow to maintaining system integrity and
security, the nuances of successful integration strategies are vital for any IT
professional working with the Elastic Stack.

As we proceed, keep in mind that the power of the Elastic Stack lies not just in its
individual components, but in how effectively they can be integrated to work as a
cohesive, dynamic system. This chapter aims to equip you with the knowledge and
skills to harness this power, paving the way for innovative and efficient data solutions.

Structure

In this chapter, we will discuss the following topics:

e Logstash

e Hands-On Lab: Setting Up Logstash for Data Ingestion with User Permissions
e Hands-on Lab: My First Logstash Pipeline

e Hands-on Lab: Running My First Logstash Pipeline as Service

e Hands-On Lab: Building a Comprehensive Logstash Pipeline

e FElastic Agent

e Hands-On Lab: Monitoring Ubuntu System with Elastic Agent

¢ Hands-On Lab: Monitoring Windows System with Elastic Agent

e Web Crawler

e Data Connectors

e API Integrations

e Hands-On Lab: CRUD Operations with Elasticsearch API

e Elastic Language Clients

¢ Hands-On Lab: CRUD Operations in Elasticsearch Using Python Client

Selecting Elastic Integrations

Elastic Integrations is a powerful toolset that enables the Elastic Stack to connect with
a wide range of data sources, applications, and platforms. This chapter will explore the
various integration points of Elastic Integrations, providing a comprehensive overview
of its capabilities and applications. We will also discuss the best practices for selecting
and implementing Elastic Integrations, ensuring seamless data flow and optimal
performance.

Elastic

Client Logstash
Inte ﬁ;g;iuns Ints l?:?igns » Electric
’ g Agent
Data Web
Connector Crawler

Figure 3.1: Solution Options for Elastic Integrations

Figure 3.1 appears to be a diagram illustrating the different components that can be
integrated with Elastic Integrations, which is highlighted in green and placed at the
center, indicating its central role in the integration process. Surrounding Elastic
Integrations are six nodes, each representing a different integration point or component
that can connect with Elastic Integrations:

Elastic Client : This suggests a client interface for Elastic Stack, potentially
indicating tools or applications that interact with Elasticsearch or other Elastic
products.

Logstash : A core component of the Elastic Stack, Logstash is shown as a
separate entity that can be integrated, highlighting its role in data processing and
pipeline management within the ecosystem.

API Integrations : This likely refers to various APIs that Elastic Integrations
can connect with, allowing for data exchange and functionality expansion
through third-party services or applications.

Electric Agent : This might be a typo or a specific agent within the user’s
context. Typically, it could be referring to the Elastic Agent, a single, unified
way to add monitoring for logs, metrics, and other types of data to each host.

Data Connector : This represents tools or services that facilitate the transfer of
data into the Elastic Stack from various sources, emphasizing the versatility of
Elastic Integrations in connecting with different data providers.

e Web Crawler : This node indicates the capability of Elastic Integrations to work
with tools that automatically browse the web which can be used for indexing and
searching web content.

Each of these nodes is a point of interaction or a way in which Elastic Integrations can
extend the functionality of the Elastic Stack, implying a network of possible
configurations and uses within the broader ecosystem. This figure would be a part of a
subsection focused on selecting appropriate Elastic Integrations, guiding the reader
through the options available for enhancing their Elastic Stack setup.

Logstash

Logstash is a data processing pipeline that can collect, enrich, and transport data from
a myriad of sources to various destinations, all in real-time. This chapter will explore
Logstash’s core concepts and functionalities, providing insights into its mechanisms,
and how they interplay to create powerful data processing pipelines. We will also delve
into some of the most commonly used plugins, and demonstrate how they can be
leveraged to enhance Logstash’s functionality.

Overview and Core Concepts

In the realm of the Elastic Stack, Logstash stands as a pivotal component, orchestrating
the flow of data between the source and the Elasticsearch cluster. This chapter delves
into the world of Logstash, providing an extensive overview and elucidating its core
concepts. Logstash is more than just a data processing tool; it is a powerful pipeline
that can collect, enrich, and transport data from a myriad of sources to various
destinations, all in real-time.

Logstash’s ability to unify data from disparate sources is a key aspect of its
functionality. It seamlessly integrates with a multitude of data formats and sources,
ranging from simple log files to complex data streams from databases and cloud
services. This flexibility makes it an indispensable tool for log and event data
management, a cornerstone for monitoring, security, and operational intelligence in
modern IT environments.

At the heart of Logstash lies its pipeline architecture, consisting of three primary
components: Inputs, filters, and outputs. Inputs define how Logstash receives data,
filters describe the processing and transformation of this data, and outputs determine
how Logstash forwards the processed data to specified destinations. This chapter will
explore each of these components in detail, providing insights into their mechanisms,
and how they interplay to create powerful data processing pipelines.

Furthermore, this chapter will introduce the concept of plugins which are integral to
extending Logstash’s capabilities. Plugins in Logstash enable customization and
adaptation, allowing users to tailor their data processing needs precisely. We will delve

into some of the most commonly used plugins, and demonstrate how they can be
leveraged to enhance Logstash’s functionality.

In summary, Logstash is not just a tool but a comprehensive ecosystem for data
processing and management. As we explore its core concepts and functionalities, you
will gain a deeper appreciation of its role within the Elastic Stack, and its impact on
efficient data handling in various IT scenarios.

Advantages and Disadvantages

Logstash is a powerful data processing pipeline that offers several advantages and
some disadvantages, depending on the use case and context of its deployment. Here is
an overview:

Advantages of Logstash:

e Versatility in Data Processing : Logstash can handle a wide variety of data
sources, types, and formats, making it highly adaptable to different environments
and requirements.

e Extensibility with Plugins : With a rich ecosystem of input, filter, and output
plugins, Logstash can be extended to meet specific needs. Users can also
develop their own plugins for custom use cases.

e Strong Integration with Elastic Stack : Logstash is designed to work
seamlessly with Elasticsearch and Kibana, providing a robust end-to-end
solution for data ingestion, search, and visualization.

e Real-time Processing : Logstash can process data in real-time, allowing for
timely insights and actions, which is particularly useful in monitoring and
alerting scenarios.

e Filtering and Enrichment : It offers powerful filtering capabilities, enabling
users to transform and enrich data, before it is stored which can significantly
improve the relevance and value of the data.

e Open Source : Being an open source, Logstash is free to use, which can lower
the cost of implementation for businesses, and allows for community-driven
improvements and support.

Disadvantages of Logstash:

e Performance Overhead : Logstash can be resource-intensive, especially when
dealing with large volumes of data or complex processing pipelines. This might
necessitate more robust hardware or cloud resources.

e Complexity : For newcomers, Logstash’s learning curve can be steep due to its
complex configuration, and the need to understand its DSL (Domain-Specific
Language) for creating pipelines.

e Deployment and Management : Setting up and managing a Logstash pipeline
requires careful planning and ongoing management which can be a challenge in
larger, more dynamic environments.

e Scalability : While Logstash can handle a significant amount of data, scaling it
out can be complex, and may require additional tools or solutions like
Elasticsearch’s ingest nodes or alternative log shippers.

e Startup Time : Logstash has a comparatively slow startup time which can be a
disadvantage in environments where rapid scaling or quick redeployments are
common.

e Error Handling : Logstash can sometimes be unforgiving with data parsing
errors or unexpected input, which may result in data loss or require additional
error handling mechanisms.

In summary, Logstash is a feature-rich data processing tool that excels in flexibility
and integration within the Elastic Stack, but may present challenges in terms of
performance, complexity, and scalability. The decision to use Logstash should be
weighed against these factors, and the specific requirements of the deployment
scenario.

Use Cases and Applications

Logstash is a versatile tool that can be applied to various use cases across different
industries. Here are some common scenarios where Logstash is particularly useful:

e Centralized Logging : Logstash is often used to aggregate logs from multiple
sources, normalize them into a consistent format, and then send them to a central
place like Elasticsearch for storage and analysis. This is useful for organizations
with complex infrastructures that generate logs in various formats.

e Security and Compliance Monitoring : It can process and analyze logs from
security devices, applications, and systems to detect anomalies, potential
breaches, and compliance violations in real-time. This helps security teams
respond to threats more quickly.

e Application Performance Monitoring (APM) : By collecting and processing
metrics and logs from applications and services, Logstash enables APM by
providing insights into application performance, and helping to uncover issues
that affect user experience.

e Event Data Enrichment : Logstash can enrich data by adding additional
information from external sources, or by using its own filters. For instance, it can
add geographical information to IP addresses or resolve user identifiers to actual
user names.

e Stream Processing : For real-time analytics, Logstash can process streaming
data from IoT devices, applications, or online services, allowing for immediate
insights and actions, based on the latest data streams.

e Data Transformation and Preparation : In situations where data needs to be
transformed before it is stored or analyzed (like converting formats, adding
timestamps, or anonymizing personal data), Logstash can be configured to
handle these transformations.

e Complex Data Pipelines : Logstash pipelines can be created to handle complex
data processing tasks such as filtering, mutating, and formatting data from
multiple disparate sources, before it reaches the storage destination.

* Integrating Diverse Data Sources : Organizations often use Logstash to pull in
data from various sources, including databases, message queues, and cloud
services, to be indexed in Elasticsearch, thereby creating a more integrated data
environment.

e Business Intelligence (BI) : By preprocessing data and feeding it into analytics
platforms, Logstash supports BI initiatives by ensuring that the data is in the
right shape and format for analysis and reporting.

e Email Processing : Logstash can be set up to parse and filter email messages,
extract useful information, and store it for future analysis or real-time alerting on
specific keywords or patterns.

These use cases highlight the flexibility of Logstash in handling data, and its capacity
to serve as a bridge between data generation/collection as well as data storage/analysis,
making it a critical component of many data infrastructure setups.

Architecture and Components

Logstash is a data processing pipeline that consists of three primary components:
Input , filter , and output . You can see the following diagram for a visual
representation of the Logstash architecture, and its components.

Input :> Filter :> Output

Figure 3.2: Architecture and Components for Logstash

These components work together to create a data processing pipeline that can collect,
transform, and send data to various destinations. Each component plays a specific role
in the data processing pipeline of Logstash.

Let us now take a closer look at each component:

1. Input : This is the first stage of the Logstash pipeline where data is ingested.
Input plugins allow Logstash to read from a multitude of sources such as log
files, data streams, databases, and cloud services. Common input plugins include
file, syslog, HTTP, beats, and many others. The Input stage is responsible for
gathering data to be processed, and can be configured to pull in data from
different sources simultaneously.

2. Filter : After data is ingested by the input component, it moves to the filter
stage. Filters are used to transform, enrich, and process the data before sending it
to the output. Logstash has a variety of filter plugins that can perform functions
such as parsing, mutating, and enriching the data. Filters can be chained together
to perform complex data transformations. Common filters include grok for
parsing and pattern matching, mutate for changing data fields, and geoip for
adding geographical information, based on IP addresses.

3. Output : The final stage in the Logstash pipeline is the output component, where
processed data is sent to specified destinations. Output plugins define and
configure where data should be routed after it has been processed by the input
and filter stages. The data can be sent to a variety of outputs such as
Elasticsearch, a file, a database, or a messaging queue. Multiple output plugins
can be used simultaneously to send the processed data to more than one
destination.

Figure 3.2 illustrates the linear flow of data through Logstash, starting from collection
(Input), moving through processing (Filter), and culminating in storage or further
action (Output). This modular architecture allows for high flexibility in processing
various types of data, and is one of the reasons Logstash is so powerful in a wide array
of data ingestion, and processing scenarios. Each component is designed to be highly
configurable, enabling custom pipelines tailored to specific needs and environments.

Setting Up Logstash

Logstash can be installed on a variety of operating systems, including Linux,
Windows, and macOS. It can also be deployed in the cloud, using Docker or
Kubernetes. The installation process is straightforward, and can be completed in a few
simple steps. You can find detailed instructions for installing Logstash on different
platforms in the official documentation, https://www.elastic.co/downloads/logstash .

For Debian/Ubuntu Linux distributions, assume installing via Linux Package
managers, we have Logstash installed on path /usr/share/logstash . The

https://www.elastic.co/downloads/logstash

configuration files are located in /etc/logstash/conf.d, and the logs are stored in
/var/log/logstash . The Logstash service is managed by systemd, and the
configuration file is located at /etc/logstash/logstash.yml .

Recommendation : Make sure that you install Logstash version to match your
Elasticsearch and Kibana versions. For example, if you are using Elasticsearch 8.10.4
and Kibana 8.10.4, you should install Logstash 8.10.4.

Writing Logstash Configuration Files

Logstash configuration files are written in the Logstash Domain Specific Language
(DSL). The configuration files are located in the /etc/logstash/conf.d directory.
Each configuration file contains a single pipeline which is a sequence of inputs, filters,
and outputs. The configuration files are written in the YAML format that is a human-
readable data serialization language. The following is an example of a Logstash
configuration file:

Creating a Logstash configuration involves defining inputs, filters, and outputs in a
.conf file. Here is a skeleton structure of a typical Logstash configuration file with
explanations for each section:

Input section
input {
Define the source of the data
file {
path => "/path/to/your/log/file.log"
start position => "beginning"
}
Other input plugins can be added here
}

Filter section
filter {
Perform data transformation or enrichment
Example: Parse CSV data
csv |
separator => ","
columns => ["columnl", "column2", "column3"]

}

Example: Add a field
mutate {
add field => { "new_field" => "value" }
}
Other filter plugins can be added here
}

Output section
output {
Define where to send the processed data

Example: Sending data to Elasticsearch
elasticsearch {
hosts => ["http://localhost:9200"]
index => "example-index-%{+YYYY.MM.dd}"
}

Example: Outputting to the console for debugging
stdout { codec => rubydebug }

Other output plugins can be added here
}

Explanation
e Input Section:

o This part defines where Logstash will read the data from.
o The £ile input plugin is used to read data from a file specified in the path

© start position => "beginning" tells Logstash to start reading from the
beginning of the file.

o Multiple input sources can be defined in this section.
e Filter Section:

o This section is used for processing and transforming the data.

(o]

The csv filter is an example that parses CSV-formatted data.
o columns are specified to name the fields for each column in the CSV.

o}

The mutate filter is used to modify the data such as adding a new field.

(o]

You can chain multiple filters for complex data processing.
e Qutput Section:

o This defines where the processed data should be sent.
o The elasticsearch output plugin sends data to an Elasticsearch cluster.

o hosts specifies the Elasticsearch host, and index defines the index name
pattern.

o The stdout output with the rubydebug codec is useful for debugging, as it
prints the data to the console.

o Like inputs and filters, multiple outputs can be defined.

This skeleton provides a basic structure for a Logstash configuration. You can
customize it by adding different input, filter, and output plugins, depending on your
data processing requirements. The Logstash documentation provides a comprehensive
list of available plugins, and their configuration options.

Hands-On Lab: Setting Up Logstash for Data Ingestion
with User Permissions

In this lab, we will first create a user with the necessary permissions to ingest data into
Elasticsearch via Logstash. After setting up the user, we will configure Logstash to
process and send data to Elasticsearch.

Prerequisites

* An operational Elasticsearch and Kibana setup.

» Logstash installed on a machine with network access to the Elasticsearch cluster.
e A sample data file to use as an input source for Logstash.

e Administrative access to Kibana to create users, and assign roles.

Step 1: Create a Custom Role and User in Kibana

1. Open Kibana, and go to Management > Stack Management > Security > Roles

2. Click create role , and define the role as shown in Figure 3.3 :

e Name : logstash_ingest_role.

e Under Cluster privileges , add manage_index_ templates , monitor ,

and manage_ilm .
e Under Index privileges , add:

e Indices : 1ogstash-test-* or the specific index names/patterns, you plan
to use.

e Privileges : rite , read , index , create index , create doc , and

view_index_metadata .

= . SawckMarsgemest Folm Creste
—_— Rsta nama
Connecion
BEDOMAG logatash inget_roke
Lischire Learrirg
Laintenance Windows
o = Elasticsearch ws.
— Claster privileghs
Buea MG the cHong i a — mariin RN —
O v
AP1 ey 18t Learn more -
Kibans
o
bz Fuin A% privileges TR =
Fibae
Save0 Objects & ‘_'mu
Tags
T 1 Sy
Sgacid Inciax privileges
Advanced Setigs el BOS SRS B ae s
Ftack ingiors ~ :
e s o wel X e X e X owaeder X aresme e O v
Upgreds Alsissnt = s a

Figure 3.3: Creating a Role for Logstash

3. Save the role.

4. Go to security > Users , and click on create user as shown in Figure 3.4 :

e Username : logstash_tester

¢ Full name : logstash tester

e Password : Choose a secure password, and make a note of it.

* Roles : Assign the 1ogstash_ingest role role you just created.

5. Save the new user.

Step 2: Verify Data Ingestion in Elasticsearch
To verify that the data has been ingested:

1. You can open Terminal on Elasticserach/Kibana server other machine.

2. Make sure that you can access Elasticsearch from the machine where Logstash is
installed.

3.Make a query to Elasticsearch, using the credentials of the new
logstash tester !

curl --insecure -u logstash tester:password -X GET
"https://elasticsearch host:9200/logstash-test-*/ search?pretty"

Comecions Create user

o]

Misching Learmieg

Laintenance Windows Profile Userrame

Soqurity

Users Pl st

Rl Legitash tester
AP ks

Kibans
Dna Views
™ Passwond Bunnward
Save0 Objcts
Tags

T 1 Sy
Sgacid

[T rap— h J 5 e e " It gt sl ¥ (-

Upgrace Aidistant

Figure 3.4: Creating a Logstash User with logstash_ingest_role Role

1. You can see a response from the server.

2. --insecure parameter is used to bypass the certificate validation. If you
have a valid certificate, you can omit this parameter.

3. Change the elasticsearch_host to the correct host name or IP address.

4. Change the password to the password you set for the logstash tester
user.

5. You should see the JSON response with the data that Logstash has indexed.

By following these steps, you create a secure environment where Logstash has the
necessary permissions to ingest data, without having excessive privileges that could
potentially be exploited.

Summary

You have completed the lab for setting up a Logstash user with the appropriate
permissions to ingest data into FElasticsearch. By creating a dedicated user for
Logstash, you have followed security best practices, ensuring that the Logstash
pipeline has the minimum required permissions to perform its tasks. This setup
provides a foundation for secure and efficient data ingestion workflows, using the
Elastic Stack.

Hands-on Lab: My First Logstash Pipeline

In this hands-on lab, we will explore how to set up a Logstash pipeline to send data
with the current date and time every 10 seconds to an Elasticsearch server. This
scenario is typical for learning how to schedule tasks within Logstash, and monitor the

live feed of data in a production-like environment. We will use two Virtual Machines
(VMs) for this setup: VM1 will host Elasticsearch, which will store and index the data,
and VM2 will have both Logstash and Kibana installed. Logstash will be responsible
for data processing and shipping, while Kibana will be used to visualize and test the
data flow.

Prerequisites

Before you begin, ensure that you have the following:

1. Installed Logstash on your VM or physical machine.

2.Have a Logstash user with the appropriate permissions to ingest data into
Elasticsearch.

3. We user logstash tester user with the logstash ingest role role in this
lab. You can also use any other user with the appropriate permissions.

Lab Steps

The following steps will guide you through the process of setting up a Logstash
pipeline to send data with the current date and time every 10 seconds to an
Elasticsearch server.

Step 1: Create Project Directory

a. We will create a directory for the project on /demo directory.
b. Create a directory for the project, and change to that directory:

sudo mkdir /demo

cd demo

Step 2: Verify Logstash Permissions

To ensure that Logstash has the appropriate permissions to write to the
/usr/share/logstash/data dhecuny;\ve\wﬂlrun Logsuwh as the logstash user.
This will also ensure that the data files created by Logstash are owned by the 1ogstash
user.

a. Make sure that the Logstash user has the appropriate permissions to write to the
/usr/share/logstash/data directory. You can do this by running the following
command:

sudo chown -R logstash:logstash /usr/share/logstash/data

b. Make sure that the Logstash user has the appropriate permissions to write to the
/demo directory. You can do this by running the following command:

sudo chown -R logstash:logstash /demo

Step 3: Write Logstash Programs

1. Create a configuration file for Logstash (hello logstash.conf) on /demo

directory. You can use any text editor to create this file. For example, you can
US€ nano .

sudo -u logstash nano /demo/hello logstash.conf

2. We can write the configuration file with the following content:
input {
exec {
command => "echo 'Current time: $(date)'"

interval => 10 # Run this command every 10 seconds

}
filter {

We don't need any filters for this simple scenario.
}
output {
stdout { codec => rubydebug }
elasticsearch {
hosts => ["https://192.168.199.142:9200"]
index => "logstash-test-%{+YYYY.MM.dd}"
user => "logstash tester"
password => "passl23"
ssl => true
ssl certificate verification => false # Ignore SSL verification
for self-signed certs

}

3. Replace 192.168.199.142 with the actual IP address of your Elasticsearch

server. Replace logstash tester and passi23 with the actual username and
password of your Logstash user.

4. This configuration sets up Logstash to execute the date command every 10
seconds, and send the output to Elasticsearch.

Code Explanation

The provided Logstash configuration is a simple, yet illustrative example of how to

create a Logstash pipeline for data collection, processing, and output. Here is an
explanation of each section of the script:

Input Section

input {

exec {

command => "echo 'Current time: $(date)'"
interval => 10 # Run this command every 10 seconds

}

a.input { exec { .. } } : This section defines the source of the data for
Logstash, using the exec input plugin.

b. command => "echo 'Current time: $(date)'" : Logstash executes this
command which outputs the current date and time. The $(date) is a shell
command that gets substituted with the current date and time.

C. interval => 10 : This setting specifies that the command should be run every
10 seconds. So, every 10 seconds, Logstash will execute this command, and
ingest its output.

Output Section

output {

stdout { codec => rubydebug }

elasticsearch {
hosts => ["https://192.168.199.142:9200"]
index => "logstash-test-%{+YYYY.MM.dd}"
user => "logstash tester"
password => "passl23"
ssl => true

ssl certificate verification => false

® stdout { codec => rubydebug } : This part of the output section is for
debugging. It outputs the processed data to the console in a debug format which
is useful for testing and verifying the pipeline’s operation.

® elasticsearch { .. } : This part configures Logstash to send the processed
data to an Elasticsearch cluster.

© hosts => ["https://192.168.199.142:9200"] : Specifies the
Elasticsearch host. In this case, it is pointing to an Elasticsearch instance
running on IP 192.168.199.142 and port 9200 over HTTPS.

o index => "logstash-test-%{+YYYY.MM.dd} ": Defines the Elasticsearch
index pattern where the data will be stored. Logstash will create new
indices daily, based on this pattern (example, logstash-test-2023.03.15

).
o user and password : These settings provide the credentials for
authenticating with Elasticsearch.

o ss1 => true : Enables SSL for secure communication with the
Elasticsearch server.

© ssl_certificate verification => false : Disables SSL certificate
verification which is often used when connecting to a server with a self-
signed certificate. This should be used with caution and typically only in a
controlled, secure environment.

In summary, this Logstash configuration creates a simple pipeline that runs a command
every 10 seconds to get the current time and date, and then sends this data to both the
console (for debugging purposes) and an Elasticsearch index, handling authentication
and SSL communication with Elasticsearch.

Step 4: Run Logstash
Run Logstash with the new configuration file:

cd /usr/share/logstash/
sudo -u logstash bin/logstash -f /demo/hello logstash.conf

After running Logstash, you should see the program output.
Step 5: Verify Data in Kibana

We cannot see the data in Kibana yet because we have not created an index pattern. We
need to create an index pattern in Kibana to view the data that Logstash is sending to
Elasticsearch. The following steps will guide you through the process of creating an
index pattern in Kibana:

1. Open a web browser, and navigate to Kibana.

2. Go to the stack Management section, and click on pata views on Kibana
section.

3. Click on create data view .
4. Fill in the form with the following values as shown in Eigure 3.5 :

e Name : logstash-test
e Index pattern : logstash-test-*

e Timestamp field : @timestamp

5. Save the data view.

Create data view ¥ouringex patiem matches 1 sowrce.

- p—
bogstanh- test logyiasketess-2023.11.28 Inda

It s a8 Rowe par page: 10
Rogtath st 0

TR e

Show advanced setings

¥ Close Save data view be Kibana

Figure 3.5: Create Kibana Data View

6. Now, go to Kibana piscover section, and select the Logstash-test data view.

7. You should see documents being created every 10 seconds with the current date
and time.

8. Click one of the documents to see the details as shown in Figure 3.6 :

= @ B - e —]

8 ol "
gnash-1en e o Expanded document
. Vw3 Sngledocument B Surmesnding docsmests Ki{z2a28 3
Q1 sewch el rames ® 28 hits
" deniabte ity X
8 gumsmsy L
—ye—— = B Co0y 1 b
" LAl How 38, 300
PosLame o T
I e— Dot Fiabd sbsinbica. : -
| et comnind e ER LI .
¢ proceaet o & ot (1) Dosmant
Row 26, J0ID B VT GTIMEM OLiserisep Nee 26, 28
3 Dty Belds L] Time Sidetel aroes
e F -
3 heie aldn 3

Row 26, POED B V10650

Figure 3.6: Show a Detail Document

9. You can see a document in Table and JSON formats.

Hands-On Lab Notes

e Make sure that the firewalls on VM1 and VM2 are configured to allow traffic on
the ports used by Elasticsearch (9200) and Kibana (5601).

e Ensure that time synchronization is set up correctly on both VMs to avoid any
time drift issues.

e This setup assumes that Elasticsearch and Kibana are set up with default
configurations with no additional security settings like X-Pack security.

How to Test the Setup

1. After starting Logstash, check the Logstash logs for any errors.

2. In Kibana, create an index pattern that corresponds to the one specified in the
Logstash output configuration (for example, datetime-index-*).

3. Navigate to the Discover section in Kibana, and select the appropriate index
pattern to view the incoming data.

4. Verify that the new data entries with the current date and time appear every 10
seconds.

Summary

Through this lab, you have learned how to set up a basic Logstash pipeline for
scheduled data processing, and how to visualize the data using Kibana. This exercise
demonstrates the integration between different components of the Elastic Stack, and
provides a foundation for building more complex data processing pipelines. You have
also practiced testing and verifying the data flow in an Elasticsearch-Kibana setup, a
crucial skill for data administrators and engineers working with real-time data
processing and monitoring.

Hands-on Lab: Running My First L.ogstash Pipeline as
Service

On the previous lab, we ran Logstash as a command-line program. In this lab, we will
run Logstash as a service. This is useful for production environments where Logstash
needs to be running continuously. We will use the same setup as the previous lab,
where we have two VMs: VM1 will host Elasticsearch, which will store and index the
data, and VM2 will have both Logstash and Kibana installed. Logstash will be
responsible for data processing and shipping, while Kibana will be used to visualize
and test the data flow.

Step 1: Move a Logstash Configuration File

1. We will move the Logstash configuration file from the previous lab to the
/etc/logstash/conf.d directory. This is the default directory for Logstash

configuration files.
2. We copy the configuration file to /etc/logstash/conf.d directory:

sudo cp /demo/hello logstash.conf /etc/logstash/conf.d/
Step 2: Set Up Logstash as a Service
a. Linux :
i. If you installed Logstash via a package manager (for example, apt, yum),
it should already be set up as a service.

i1. Enable and start the Logstash service:

sudo systemctl enable logstash

sudo systemctl start logstash

iii. To use your custom configuration, you may need to edit the Logstash
service file, or place your configuration in the default directory (
/etc/logstash/conf.d/).

b. Windows :

1. Logstash can be set up as a service using NSSM or similar tools that allow
running any application as a Windows service.
In this lab, we will use the Linux setup as an example.
Step 3: Verify Logstash Service
a. Check that the Logstash service is running properly, and the data is being
ingested into Elasticsearch:
sudo systemctl status logstash

Or for Windows, check the service status in the Services management console.
Step 4: Monitor Data in Elasticsearch
a. Use Kibana or direct Elasticsearch queries to monitor the data ingested by
Logstash.

b. Go to Kibana Discover section, and select the 1ogstash-test data view.

c. You should see documents being created every 10 seconds with the current date
and time in Figure 3.7 .

d. Select the Last 15 minutes in the time range selector to see the latest data.

3 Lty ks]

5 hebs sy 3 Bow I0. JOTD B 064G BT

B Add a feld Bows por page: 300 ~ 1

Figure 3.7: Show Data from logstash-test
Step 5: Stop Logstash Service

a. Stop the Logstash service:
sudo systemctl stop logstash
Or for Windows, stop the service in the Services management console.

b. If you want to our Logstash Configuration File, you can remove it from
/etc/logstash/conf.d directory:

sudo rm /etc/logstash/conf.d/hello logstash.conf

Plugins, Filters, and Codecs

Logstash is designed around a pluggable framework that makes it highly adaptable to
many different use cases and data sources. The core components that leverage this
framework are plugins, filters, and codecs, which together enable Logstash to ingest,
transform, and load data in a variety of ways.

Plugins

Plugins in Logstash are pieces of code that add specific functionalities to its processing
pipeline. There are several types of plugins:

e Input Plugins : These plugins are responsible for ingesting data into the
Logstash pipeline from a wide array of sources, including files, streams,
databases, and cloud services.

e Output Plugins : These plugins send the processed data to various destinations
such as Elasticsearch, file systems, databases, message queues, and much more.

e Filter Plugins : Filter plugins are used within the Logstash pipeline to
manipulate and transform the data as it flows from the input to the output.

e Codec Plugins : Codecs are essentially stream filters that can be used in input or
output stages to encode or decode data as it enters or exits the pipeline.

Each plugin is designed to be independently developed and maintained which allows
for a rich ecosystem where both Elastic and the Logstash community can contribute
plugins that extend Logstash’s capabilities.

Filters

Filters are a particular type of plugin in Logstash that are used to transform data. They
can perform actions such as parsing CSV files, matching and transforming text with
regular expressions, enriching data with additional fields, and many more. Some
common filter plugins include:

e Grok : Breaks down and structures arbitrary text blobs, making them queryable.

e Mutate : Allows you to perform general mutations on fields. You can rename,
remove, replace, and modify fields in your event.

e Date : Used for parsing dates from fields, and then using that date or timestamp
as the log’s timestamp.

e GeolP : Derives geographical information from an IP address.
» Aggregate : Enables the creation of aggregates and summaries, based on
Logstash events.

Filters can be chained together to form complex data transformation pipelines.

Codecs

Codecs are a hybrid between input/output plugins and filters, providing a way to
encode or decode data as it enters or exits the system. They are typically used to handle
data serialization and deserialization, such as converting data to/from JSON, XML, or
other formats. Common codecs include:

e JSON : For encoding or decoding data in JSON format.

e Multiline : Merges multiple line events into a single event, commonly used for
stack traces.

e Plain : The default codec which outputs data as plain text.
e RubyDebug : Outputs data using the Ruby Awesome Print library, useful for
debugging.

Codecs simplify the process of getting data into and out of Logstash in the correct
format, reducing the need for complex filter configurations, when the primary task is

simply encoding or decoding data.

In summary, plugins, filters, and codecs work together to give Logstash its powerful
data processing capabilities. They enable Logstash to be highly customizable, allowing
it to meet the specific data processing needs of any use case.

Hands-On Lab: Building a Comprehensive Logstash
Pipeline

In this advanced hands-on lab, we will create a robust Logstash pipeline that
demonstrates the usage of different components - Input, Output, Filter, and Codec. The
scenario involves processing web server logs. These logs are in a Common Log
Format (CLF) which we will parse, transform, and then send to FElasticsearch for
analysis. Additionally, we will use a codec to format the output data.

Objectives

e Input : Read log data from a file.

e Filter : Parse and enrich log data.

e QOutput : Send the processed data to Elasticsearch.
e Codec : Use the json codec for formatting data.

Prerequisites

» Logstash and Elasticsearch installed and running.
e Sample web server log file in Common Log Format (for example, Apache server
logs).
¢ Basic understanding of Logstash configuration.
Step 1: Set Up User Permissions

We create a new role and user in Kibana with the appropriate permissions to ingest
data into Elasticsearch via Logstash. You can follow the steps in the previous lab to
create a new role and user, Hands-On Lab: Setting Up Logstash for Data Ingestion
with User Permissions .

a. We open Kibana, and go to Management > Stack Management > Security >
Roles .

b. Click create role , and define the role:

e Name : testbed_role.

e Under Cluster privileges , add manage_index templates , monitor ,
and manage ilm .

e Under Index privileges , and add:
1. Indices : testbed-* or the specific index names/patterns, you plan to
use.
il. Privileges : write , read , index , create index , create doc ,
andview_index_metadata.
c. Save the role.

d. Go to Security > Users , and click on create user :

e Username : testbed_tester.

¢ Full name : testbed tester.

e Password : Choose a secure password, and make a note of it.
* Roles : Assign the testbed role role, you just created.

Step 2: Prepare the Sample Log Data
1. Create a sample log file named apache_logs, and populate it with a few lines

of log data in the Common Log Format.

2. We can download sample log file from
https://raw.githubusercontent.com/elastic/examples/master/Common%20Da
ta%20Formats/apache_logs/apache_logs .

3. We download the sample log file to /demo directory.

sudo -u logstash wget
https://raw.githubusercontent.com/elastic/examples/master/Common%20
Data%20Fo

rmats/apache logs/apache logs

4. We perform this action as logstash user to ensure that the file is owned by the
logstash user.

Step 3: Create the Logstash Configuration
a. Create a configuration file :

i. Create a configuration file named logstash-apache-logs.conf in the
/demo directory.

1i. We can use any text editor to create this file. For example, we can use nano

sudo -u logstash nano /demo/logstash-apache-logs.conf

b. Input Configuration :
Use the file input plugin to read from the apache_1logs file.

https://raw.githubusercontent.com/elastic/examples/master/Common%20Data%20Formats/apache_logs/apache_logs

input {
file {
path => "/demo/apache logs"
start position => "beginning"
sincedb path => "/dev/null"
}
}

c. Filter Configuration :

1. Use the grok filter plugin to parse the CLF logs.
ii. Use the date filter to parse timestamps.
1il. Add any additional filters as required.

filter {
grok {
match => { "message" => "%{COMBINEDAPACHELOG}" }

}
date {
match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
target => "Q@timestamp"
}
}

d. Output Configuration :

1. Configure the Elasticsearch output.
i1. Apply the json codec for formatting.

output {

stdout { codec => rubydebug }

elasticsearch {
hosts => ["https://192.168.199.142:9200"]
index => "testbed-demo-weblog"
user => "testbed tester"
password => "passl23"
ssl => true
ssl certificate verification => false # Ignore SSL

verification for self-signed certs

}
iil. Replace 192.168.199.142 with the actual IP address of your Elasticsearch
server. Replace testbed tester and pass123 with the actual username
and password of your Logstash user.

Step 4: Run Logstash

a. Start Logstash with the created configuration file:

cd /usr/share/logstash/
sudo -u logstash bin/logstash -f /demo/logstash-apache-logs.conf

b. If you get an error, make sure that the Logstash user has the appropriate
permissions to write to the /usr/share/logstash/data directory. You can do
this by running the following command:

sudo chown -R logstash:logstash /usr/share/logstash/data
Step 5: Explore and Analyze Data in Kibana

a. Open a web browser, and navigate to Kibana.

b. Go to the stack Management section, and click on pata views on Kibana
section.

c. Click on create data view .

d. Fill in the form with the following values:

e Name : testbed-demo-weblog
e Index pattern : testbed-demo-weblog
¢ Time field : @timestamp

e. Save the data view, as shown in Figure 3.8 .

Create data view Wouringex patiem matches 1 source

Mane A sowses Mutihing sourcos

bestbed demo-welog testbed dems: weiog Ll

imtas partra Rows par page: 10 &
Aestbeed- e seehiog 0]

Show advanced seBings

Figure 3.8: Create Kibana Data View for Testbed-demo-weblog

f. Now, you can navigate to Kibana Discover section, and select the testbed-
demo-weblog data view.

g. Since log data was written in 2015, you can change the filter time as Last 15
years , as shown in Figure 3.9 .

h. Click one of the documents to see the details.
1. You can see a document in Table and JSON formats.

T L]

RS- ST e 8 Q) Faey : B~ L Syean O Refresh

10,000 Ritg Frmal o by - | i

W Awalable Soldi " ‘

B icid a Fiald Rowes per page: 500 123 48)

Figure 3.9: Display Log Data on Kibana Discover

Summary

This lab demonstrates a comprehensive use of Logstash’s capabilities. You have
learned how to ingest log data, apply complex filters for parsing and enrichment, and
output the processed data to Elasticsearch in a structured format. This scenario is
typical in log analysis and monitoring setups, providing valuable insights into web
server performance and user behavior.

Advanced Pipelines and Data Processing

Advanced pipelines in Logstash refer to the configurations that enable more complex
data processing scenarios. These pipelines are designed to handle a wide variety of use
cases, from simple log file ingestion to sophisticated streaming analytics. Here is a
description of the features and capabilities that constitute advanced pipelines, and data
processing in Logstash:

e Multiple Pipelines: Logstash can run multiple pipelines independently. This
allows you to isolate data streams and processing logic, which can be beneficial
for performance, organization, and reducing the risk of interference between
unrelated data flows.

If you have multiple pipelines, you can specify which one to run by using the -£ flag
when starting Logstash. For example, if you have two pipelines named
pipelinel.conf and pipeline2.conf , you can start Logstash with the following
command:

bin/logstash -f pipelinel.conf -f pipeline2.conf

If you want to run as a service, you can specify the pipelines in the Logstash service
file. Place your configuration files in the default directory (/etc/logstash/conf.d/
), and then start the Logstash service.

e Pipeline-to-Pipeline Communication: Logstash supports the interconnection of
pipelines. You can set up an output of one pipeline to be the input to another,
creating a complex network of data processing stages. This is useful for breaking
down complex processing tasks into manageable, modular chunks.

This feature is particularly useful, when you want to separate concerns or stages in
your data processing workflow. Here is how you can set up two interconnected
pipelines in Logstash:

Pipeline 1: pipelinel.conf

This first pipeline will read data from a source (for example, a file), and then pass it to
a second pipeline through a named pipeline output.

pipelinel.conf
input {
file {
path => "/path/to/your/data/source.log"
start position => "beginning"
sincedb path => "/dev/null"
}
}
filter {
Apply necessary filters
}
output {
pipeline {
send _to => ["pipeline2"]
}
}

Pipeline 2: pipeline2.conf

The second pipeline receives data from the first pipeline, processes it further if needed,
and then outputs it to a final destination (for example, Elasticsearch).

pipeline2.conf
input {

pipeline {
address => "pipeline2"
}
}
filter {
Further data processing
}
output {
stdout { codec => rubydebug }
Additional outputs like Elasticsearch can be added here

}
Setting Up Pipeline-to-Pipeline Communication

1. Central Configuration : In your Logstash central configuration file (typically
pipelines.yml - on Ubuntu, you find it on /etc/logstash/pipelines.yml),
define both pipelines and their respective configuration paths:

- pipeline.id: pipelinel

path.config: "/path/to/pipelinel.conf"
- pipeline.id: pipeline?2

path.config: "/path/to/pipeline2.conf"

2. Running Logstash : Start Logstash normally. It will load both pipelines as
defined in the pipelines.yml file.

Explanation

e Inpipelinel.conf , datais read from a file, processed, and then sent to another
pipeline named pipeline2, using the pipeline output plugin.

e In pipeline2.conf , the pipeline input plugin is used to receive data from
pipelinel . This pipeline can then perform additional processing and output the
data to its final destination.

e The pipelines.yml file is used to configure and run multiple pipelines in
Logstash.

Notes

e Ensure that the file paths in the input section and the pipelines.yml file are
correct and accessible.

e The sincedb path => "/dev/null" setting in pipelinel.conf is for
demonstration purposes to ensure that Logstash reads from the beginning of the
file, each time it starts. In a production environment, this should be managed
differently.

e This setup is flexible, and can be extended with more pipelines, filters, and
outputs as needed for complex data processing scenarios.

Conditional Logic: Within a pipeline, you can implement conditional logic to route
data to different filters or outputs, based on its content. This allows for more
sophisticated processing such as applying different processing rules, based on metadata
or field values.

Let us create a simple configuration file where the pipeline processes log data
differently, based on certain conditions. For this example, we will assume the log data
contains a field named 1og_type, and we will process the data differently, based on
the value of this field.

input {
file {
path => "/path/to/your/logfile.log"
start position => "beginning"
sincedb path => "/dev/null"

}
filter {
grok {
match => { "message" => "${COMBINEDAPACHELOG}" }
}
Conditional logic based on the 'log type' field
if [log type] == "error" /{
mutate {
add tag => ["error log"]
}
} else if [log type] == "access" {
mutate
add _tag => ["access log"]
}

}
output {
stdout { codec => rubydebug }
if "error log" in [tags] {
file {
path => "/path/to/error logs.log"
}
} else if "access log" in [tags] {
file {
path => "/path/to/access logs.log"

}
Explanation

e Input Section : Reads data from a specified log file.
 Filter Section :

o The grok filter is used to parse the log data. This example uses a common
Apache log parsing pattern.

e The if statements implement conditional logic, based on the value of the
log_type field in the log data.

o Iflog type is error ,atagerror log is added to the event.

o Iflog type is access , atag access_log is added to the event.
e Qutput Section:

o The stdout output is used for debugging, and it will print all the processed
log data to the console.

o Additional conditional outputs to different files, based on the tags added in
the filter section.

o Error logs are written to error logs.log , and access logs are written to
access_logs.log .

By using conditional logic, you can create more flexible and dynamic pipelines that
adapt to different types of data, improving the efficiency and effectiveness of your data
processing with Logstash.

e Persistent Queues: Logstash offers persistent queues which help protect against
data loss by storing the incoming data on disk before processing. This feature
enables durability across restarts, and provides a buffer that can absorb bursts of
data or allow for planned downtime.

To enable persistent queues, you need to modify the logstash.yml
configuration file. You can find it on /etc/logstash/logstash.yml in Ubuntu.

Here is an example of a persistent queue configuration with file-based storage:

queue.type: persisted

path.queue: /var/lib/logstash/queue
queue.max bytes: 4gb
queue.checkpoint.writes: 1024

gueue.page capacity: 250mb

e Dead Letter Queues: Dead letter queues in Logstash capture events that could
not be processed. You can later analyze these events to understand why they
failed to process, and to decide whether to drop, fix, or retry processing them.

You can enable dead letter queues by adding the following configuration to the
/etc/logstash/logstash.yml file:

dead letter queue.enable: true
dead letter queue.max bytes: 1024mb

dead letter queue.flush interval: 5s

e Plugins for Enrichment: Logstash has a variety of plugins that can enrich the
data as it is processed. This includes looking up data from external sources,
adding geographical information to IP addresses, or anonymizing the sensitive
data. Enrichment can add significant value to the data, before it lands in its final
destination.

e Worker and Batch Settings: Advanced Logstash pipelines can be tuned by
configuring the number of worker threads, and controlling the size of batches of
events that are processed. This can optimize throughput and performance, based
on the hardware and workload.

e Monitoring and Management: Logstash pipelines can be monitored and
managed through a built-in monitoring API, the Kibana interface, or external
tools like Elastic Stack Monitoring. You can track performance metrics, and
make live changes to the pipeline configurations.

e Custom Plugin Development: For scenarios where the existing plugins do not
meet the specific requirements, developers can create custom plugins. This
provides endless possibilities for what can be achieved within a Logstash
pipeline.

e Advanced Filtering and Grok Patterns: In more complex data streams, the use
of advanced filtering techniques, and custom Grok patterns can parse and
structure data in ways that are highly tailored to the needs of the application.

e Scalability: Advanced pipelines are designed with scalability in mind. You can
scale Logstash horizontally by adding more instances, and you can manage this
within a load-balanced environment to handle increased traffic and processing
demands.

e In conclusion, advanced pipelines in Logstash offer a robust framework for
diverse and complex data processing needs. By utilizing these advanced features,
organizations can create resilient, scalable, and highly customized data
processing systems that are integral to their operational intelligence, monitoring,
and data analytics strategies.

Handling Large Datasets and Scalability

Handling large datasets, and ensuring scalability are critical challenges in data
processing that Logstash addresses through a combination of features and architectural
considerations. The following is a detailed description of how Logstash manages large
datasets, and scales to meet the demands of high-volume data environments:

Distributed Processing: Logstash can be configured in a distributed
architecture, where multiple instances of Logstash work in parallel to process the
data. This not only provides scalability, but also adds redundancy and reliability
to the data processing pipeline.

Load Balancing: Logstash can distribute the data load across multiple instances
using load balancing. This ensures that no single instance becomes a bottleneck.
Load balancing can be achieved through external tools or services, or by using
the built-in load balancing features in certain output plugins like the
Elasticsearch output plugin.

Pipeline Workers and Batch Sizes: Logstash allows configuration of pipeline
workers (threads) and batch sizes. By tuning these settings, Logstash can
optimize the throughput, based on the available CPU cores and memory, thus
improving the handling of large datasets.

High-Performance Data Processing Plugins: Logstash’s plugin ecosystem
includes several high-performance plugins designed for large data sets, such as
the Beats input for high-throughput data ingestion or the JDBC input, for
efficient database querying.

Horizontal Scalability: Logstash’s architecture naturally supports horizontal
scaling. You can add more Logstash nodes to your deployment to increase
processing power, and because Logstash nodes are stateless, they can scale out
without complex coordination.

Use of External Queuing Systems: For very large datasets or high-velocity
data, Logstash can be used in conjunction with external queuing systems such as
Kafka or RabbitMQ. This allows Logstash to pull data at its own pace, providing
an additional layer of buffering and reliability.

By leveraging these strategies, Logstash is capable of handling large datasets,
and can scale to meet the demands of big data processing tasks, ensuring that the
data is processed efficiently and reliably at any scale.

Elastic Agent

In this section, we will learn about Elastic Agent, a unified agent that is a part of the
Elastic Stack. We will discuss its benefits and architecture, and then, we will walk
through the process of deploying and configuring Elastic Agent.

Understanding Elastic Agent: Benefits and Architecture

Elastic Agent is a unified agent that is a part of the Elastic Stack, a suite of free and
open tools for data ingestion, enrichment, storage, analysis, and visualization. Elastic
Agent simplifies the data integration process, and enhances observability as well as
security within an IT environment. Here is an overview of its benefits and architecture:

Benefits of Elastic Agent

Unified Data Collection : Elastic Agent simplifies the process of data collection
from various sources like logs, metrics, and traces. It replaces the need for
multiple agents, reducing system complexity.

Centralized Management : With Elastic Agent, you can centrally manage and
update agent configurations as well as policies through Kibana, the user interface
for the Elastic Stack. This central management reduces administrative overhead,
and enhances control.

Enhanced Security : It integrates with Elastic Security to provide threat
prevention, detection, and response capabilities, ensuring a higher level of
security for your systems.

Scalability and Flexibility : Elastic Agent is designed to be scalable and
flexible, easily adapting to different environments and scaling as your data needs
grow.

Improved Observability : By consolidating various data types, Elastic Agent
offers improved observability of your IT environment, providing insights into
system performance and health.

Architecture of Elastic Agent

The architecture of Elastic Agent is shown in Eigure 3.10 , and consists of several
components:

Agent : The agent itself is installed on the host machine. It is responsible for
collecting data, and executing the actions defined in its policy. We have two
types of agents: Standalone and Fleet-managed .

o Standalone Agent : A standalone agent is a single instance of the agent
that is not managed by Fleet Server. It is used for small deployments where
centralized management is not required.

o Fleet-managed Agent : A Fleet-managed agent is an agent that is
managed by Fleet Server. It is used for large deployments where
centralized management is required.

o Integrations : Elastic Agent uses integrations, which are packages for
specific data sources or services, to collect data. These integrations
determine what data is collected, and how it is processed.

o Fleet Server : In a scalable deployment, Fleet Server is used to manage
and distribute agent policies. It acts as a central point for agents to check
in, and receive updates.

o Kibana : Kibana provides the user interface for managing Elastic Agents.
Administrators can create and manage policies, add integrations, and
monitor agent status.

o Elasticsearch : The collected data is sent to Elasticsearch for storage,
analysis, and visualization.

Standalone

Agent i

Fleet Server

h J

Elasticsearch

Agent

Kibana

Figure 3.10: Architecture of Elastic Agent

In summary, Elastic Agent streamlines data collection, management, and analysis in an
Elastic Stack environment, offering benefits such as simplified data integration,
centralized management, enhanced security, scalability, flexibility, and improved
observability. Its architecture, comprising the agent, integrations, Fleet Server, Kibana,
and Elasticsearch, is designed for efficiency and ease of use.

Deploying and Configuring Elastic Agent

Deploying and configuring Elastic Agent involves a series of steps that allow you to
effectively integrate it into your IT environment. This process ensures that your
systems are set up for efficient data collection, management, and analysis. Here is a
guide to help you through the deployment and configuration of Elastic Agent:

Deploying Elastic Agent

1. System Requirements Check : Before deploying Elastic Agent, ensure that
your system meets the necessary requirements. This includes compatible
operating systems, sufficient memory, and network configurations.

2. Download and Install Elastic Agent : Download Elastic Agent from the Elastic
website. Choose the version that corresponds to your Elastic Stack version.
Follow the installation instructions specific to your operating system.

3. Fleet Server Setup (Optional) : For centralized management, set up a Fleet
Server. This step is crucial for large deployments, and helps in distributing
configurations and updates to multiple agents.

4. Elasticsearch and Kibana Preparation : Ensure that Elasticsearch and Kibana
are properly set up and accessible, as these components are essential for Elastic
Agent’s operation and management.

Configuring Elastic Agent

1. Connect to Kibana : After installation, connect Elastic Agent to Kibana. This
step usually involves specifying the Kibana URL and Elasticsearch credentials.

2. Enroll in Fleet : If using Fleet, enroll the Elastic Agent in the Fleet. This
involves generating an enrollment token in Kibana, and using it to enroll the
agent.

3. Policy Assignment : Assign or create a policy for the Elastic Agent in Kibana.
Policies determine what data the agent will collect, and how it will be processed.
You can choose from predefined policies, or create customized ones based on
your needs.

4. Add Integrations : Select and add integrations to your policy. Each integration
1s designed for the specific data sources or services such as log files, metrics, or
security data.

5. Policy Configuration : Configure the details of each integration in the policy.
This can include setting log paths, defining metrics to be collected, and other
source-specific settings.

6. Apply and Validate Configurations : Once you have configured the policies
and integrations, apply the configurations. Validate that the agent is properly
collecting and sending data to Elasticsearch by checking the data streams in
Kibana.

7. Monitoring and Management : Regularly monitor the Elastic Agent’s
performance and health through Kibana. Update policies and configurations as
needed.

8. Scaling Up : As your needs grow, you can add more Elastic Agents, and manage
them through Fleet, ensuring scalable and efficient data collection across your
environment.

In summary, deploying and configuring Elastic Agent involves a series of steps that
ensure your systems are set up for efficient data collection, management, and analysis.

By following this guide, you can successfully integrate Elastic Agent into your IT
environment.

Integrating with Beats and Endpoints

Integrating Elastic Agent with Beats and Endpoints is a key step in enhancing the data
collection and security capabilities of your Elastic Stack environment. Here is a guide
to help you understand and implement this integration effectively:

Understanding Beats and Endpoints

e Beats Overview : Beats are lightweight, open-source data shippers that are part
of the Elastic Stack. They are used to collect different types of data such as logs
(Filebeat), metrics (Metricbeat), network data (Packetbeat), and much more.

e Endpoint Security : Endpoint security in the Elastic Stack context refers to
protecting endpoint devices such as computers, mobile devices, and servers from
cybersecurity threats. Elastic Security integrates endpoint security features to
detect and respond to threats.

Integrating Beats with Elastic Agent

1. Migrating from Beats to Elastic Agent : If you are already using Beats,
consider migrating to Elastic Agent. Elastic Agent can handle all the functions of
Beats, simplifying deployment and management.

2. Setting Up Beats Integrations : Within the Elastic Agent, select and configure
specific Beats integrations depending on the data, you want to collect. For
example, use the Filebeat integration for log data or Metricbeat for system
metrics.

3. Customizing Configurations : Customize your Beats integrations by specifying
data sources, log paths, and other relevant settings in the Elastic Agent policy.

Integrating Endpoint Security

1. Enabling Endpoint Security Integration : In Kibana, under the Fleet
management, enable the Endpoint Security integration. This integration is part of
the Elastic Agent, and provides protection against threats.

2. Configuring Endpoint Protection : Define the settings for your endpoint
protection such as malware prevention, detection rules, and response actions.

3. Policy Application : Apply the endpoint security settings to the relevant Elastic
Agent policies. This ensures that the configured security measures are
implemented on all agents under that policy.

By integrating Beats and endpoint security with Elastic Agent, you can streamline your
data collection processes, and enhance the security posture of your IT environment.
This integration brings together the strengths of various Elastic Stack components,
offering a comprehensive solution for observability and security.

Hands-On Lab: Monitoring Ubuntu System with Elastic
Agent

Creating a hands-on lab scenario to monitor an Ubuntu system on a Virtual Machine
(VM) using Elastic Agent can be an excellent way to understand the practical aspects
of deploying and configuring Elastic Agent in a real-world setting.

Objective

Learn how to deploy and configure Elastic Agent on an Ubuntu VM to monitor system
metrics and logs.

Requirements

e A virtualization tool (like VirtualBox or VMware)
e An Ubuntu VM setup
» Access to Elastic Stack (Elasticsearch and Kibana)

For this lab, we use the existing Kibana instances on VM2 as target of Ubuntu System.
You can set up your own Ubuntu VM.

Lab Steps
Here is a step-by-step guide to set up the lab:
1. Install Integrations for System:
a. We open Kibana, and click Integrations on the left menu, as shown in

Figure 3.11 .

b. We will see a list of integrations. We can filter the list by typing system on
the search box in Figure 3.12 .

c. Click system on the list.
d. We click 1nstall on the system integration.
e. Fill in the form with the following values:

1. Name : testbed-integration-demo.
1. Policy name : testbed-integration Agent policy.

iii. All other fields are optional.

f. Save the integration.

g. After clicking save , we will see a dialog box with the following message:

System integration added.

h. Next, we click Add Elastic Agent to your hosts

L]
= g

0 Home ﬂ

E Arayties w
o ‘ed by adding integrations
DoFcand king with your data, use one of our manry ingest aptions. Collsct
Canvas 1@np or servics, or upioad a file. f you'rs not ready 1o use your
i ay with a sample data sot,

3ps

Machine Lassning

EECEUN [Trysavplecess g Uplcad i

Visalize Library

¥ Seacn -

Owerview nent

Cartart

Elasticssarch 90 permissions G Mankicr the stack

of who has acoess snd
tasks ihey can perfom

Traci the real-tine health and
performance of your
ciepiayment

Visctor Search

SHENCN ADDECHINAE

Behaviond Anakis

B Back up and restore

Gave snagahats &0 @ beclug
reposiony, and rsion ko
recover inder and cusier stade.

Try managed Elastic

Caplay, pcole, and upgrade your
£hack tagher with Elastic Cloud Wel
Tl i (el Mmcwest your i,

Mowe o Elstc Cloud

T, Dev Tools [5) Siack Mansgement

[EL manage Index Bucycles
Define Hecycle policies in
adomadicaly pariom
epeTations as an index ages

Figure 3.11: Integrations Menu on Kibana

2. Create Elastic Agent to Target Host :

a. After we click Add Elastic Agent to your hosts , we will see a dialog
box with the following message: Add Elastic Agent to your hosts.

= . Iregrata

Browss inSagrations.
:

Integrations

Choode ah nbigration 0 flact collecting and analyting youd data

Bromse ialegratiors Iclalled Miegratiers.

Eilategerion @ €1 syabeen

AP

NS 38 o CHTET Wb App Firewall

Inigest events from Ciia

far = Systima Wt App Firewal
Gt '

Comainers {11

Custen E

e - @ Systom Audit

Elsmths Stack a

Elasticssanch SOK []

ED Desplay Beta inageations.

Coliect vanous Dgs & metrics
Trem: System Audit modules with
Elasti: Agent

Dol e s FRORT CobRct iy koge o matrics Ut

Orach

Caollect Chacle Aucit Log,
Perfermance metros,
Tablespacs metrics, Sysmetrics
MRLTCE, SYStem Flaslics
TELAICE, TNy MUiCS Biom
Oracis database

_Ir System

Collect system kogs sndimetrics
from your servers with Blastic
Agant

/

2 our cumiom ingues. Beguast new integraticns in

Figure 3.12: System Integrations on the List
b. You will have two options to add Elastic Agent to your hosts:

1. Option 1 : Elastic agent with Fleet Server.
11. Option 2 : Elastic agent standalone.

c. For this lab, we will use Elastic agent standalone.
d. Click Run standalone tab.

e. Copy paste a content of Elastic policy, elastic-agent.yml , and run it on
your Ubuntu VM.

f. Then, scroll down and click Download Elastic Agent .
g. Copy these commands for Linux Tar and Windows.

¢ For Windows installation commands, we will use on next lab.
h. Next, we create Elasticsearch role and user.
3. Create Elastic Agent Role and User :
a. We open Kibana and go to Management > Stack Management > Security

> Roles .

b. Click create role , and define the role:

1. Name : elastic_agent_testbed role.

ii. Under cluster privileges , add manage index templates |,
monitor , and manage ilm ..

1i1. Under Index privileges , add:

1v. Indices : logs-*-* metrics-*-* , traces-*-* and synthetics-*-
*

v. Privileges : auto _configure and create doc .

c. Save the role.

d. Go to Security > Users , and click on create user :

1. Username : testbed elastic.
2. Full name : testbed elastic.
3. Password : Choose a secure password, and make a note of it.
4.Roles : Assign the elastic_agent testbed role role, you just
created.
4. Modify elastic-agent.yml File:

a. On previous step, we already username testbed elastic and password
for Elasticsearch. We will use it on this step.

b. Open elastic-agent.yml file, and modify the following lines:

1. username : Change the username value to testbed elastic .

11. password : Change the password value to your user password.
c. Save the file.
5. Download and Install Elastic Agent :

a. Perform to ssh to your Ubuntu server VM.

b. Install the Elastic Agent using the provided installation commands for
Ubuntu. We already copy the commands on previous step.

c. Since we use Elasticsearch 8.10.4, we should use Elastic Agent 8.10.4.

d. Here are the commands to download and extract Elastic Agent on Ubuntu:
curl -L -0
https://artifacts.elastic.co/downloads/beats/elastic-
agent/elastic-agent-8.10.4-1inux-x86 64.tar.gz

tar xzvf elastic-agent-8.10.4-1inux-x86 64.tar.gz

cd elastic-agent-8.10.4-1inux-x86_ 64

e. After extracted, we will see a directory named elastic-agent-8.10.4-
linux-x86_64 .

f. Copy our modified elastic-agent.yml file (from previous steps) to the
elastic-agent-8.10.4-1linux-x86_64 directory.

g. Now, we can run Elastic Agent using the following command:
sudo ./elastic-agent install

h. Install as service and no Fleet Server.

1. Elastic agent was installed on /opt/Elastic/Agent/*

j.\knlCaniﬁnd,elastic—agent.yml file on /opt/Elastic/Agent/elastic-
agent.yml

k. After installed, we can verify the status of Elastic Agent using the
following command:

sudo ./elastic-agent status

6. View Dashboards in Kibana :

a. Open Kibana, and g0 t0 Management > Integrations .

b. On Integrations page, click Installed integrations tab.
c. Click system integration.

d. Click assets tab.

e.CHRﬂi[Metrics System] Host overview .

f. You should see a dashboard as shown in Figure 3.13 .

= . Dassboard [Weirics Systen] Ovarview Full gorden Shave Clons m
@ 1 File yous daia using KOL syntas B ~ wssete O Riesn
System overview
Ta view hast details, seloct o host from the st below by clicking the respective labal
MmOy Used cPUused Hat = FreP— PP
38.70% 0.90%
Hosts DHak Lmad
1 27.61%
Inbound tralfic per .. Outhound traffic par
[Crver e pravicns 30 saconed

Figure 3.13: System Integration Dashboard

g. Click your host name.
h. After that, you should see a dashboard as shown in Figure 3.14 .

1. You also can explore other dashboards on Assets tab.
J- We can find all dashboards on pashboards menu.

EPMused Mirun ¢ wned D Othemaang WaiMie B Lacond
6.70% | 38.00% 27.60% 16.48m
Prerases. Marsory uved o byias S b biund etfed por wosend
15 1.44c8 0.27 "24.57m
oy

mm

Figure 3.14: Status of Elastic Agent

7. Uninstall Elastic Agent :

a. Open Terminal, and perform to ssh to your Ubuntu server VM.

b. You can uninstall Elastic Agent using the following command:

sudo elastic-agent uninstall
8. Uninstall Integrations :

a. After all Elastic Agents were uninstalled, we can uninstall integrations.
b. Open Kibana, and go to Management > Integrations .

c. On Integrations page, click Installed integrations tab.

d. Click system integration.

e. Click 1ntegration policies tab.

f. Click pelete integration button on the right side.

g. You also can delete all system assets. Click Uninstall System on
Settings tab.

h. If you want to delete all dashboards, you can delete all dashboards on
Dashboards menu.

Upon completion of this lab, you will have hands-on experience in deploying and
configuring Elastic Agent on an Ubuntu VM. You will understand how to monitor
system metrics and logs, manage agent policies, and troubleshoot the common issues.

Hands-On Lab: Monitoring Windows System with
Elastic Agent

This lab extends the previous lab by monitoring a Windows system on a Virtual
Machine using Elastic Agent.

Objective

Learn how to deploy and configure Elastic Agent on an Windows to monitor system
metrics and logs.

Requirements

¢ Windows VM setup or Windows host.
e Access to Elastic Stack (Elasticsearch and Kibana).
Make sure that you have completed the previous lab before starting this lab. You also

make sure that you have access to Elastic Stack from your Windows host.

Lab Steps
Here is a step-by-step guide to set up the lab:

1. Download and Install Elastic Agent :

a. Open PowerShell as Administrator.

b. Install the Elastic Agent using the provided installation commands for
Windows. We already copy the commands on previous step.

c. Since we use Elasticsearch 8.10.4, we should use Elastic Agent 8.10.4 for

Windows.

d. Here are the commands to download and extract Elastic Agent on
Windows:
SProgressPreference = 'SilentlyContinue'

Invoke-WebRequest -Uri
https://artifacts.elastic.co/downloads/beats/elastic-
agent/elastic-agent-8.10.4-windows-x86 64.zip -OutFile
elastic-agent-8.10.4-windows-x86 64.zip

Expand-Archive elastic-agent-8.10.4-windows-x86 64.zip -
DestinationPath

cd elastic-agent-8.10.4-windows-x86 64

e. After extracted, we will see a directory named elastic-agent-8.10.4-
windows-x86_ 64 .

f. Copy our modified elastic-agent.yml file (from previous lab) to the
elastic-agent-8.10.4-windows-x86_64 directory.

g. Now, we can run Elastic Agent using the following command:
.\elastic-agent.exe install
h. Install as service and no Fleet Server.

1.On Windows, we can find Elastic Agent on c:\Program
Files\Elastic\Agent*

J. After installed, we can verify the status of FElastic Agent using the
following command:

cd "C:\Program Files\Elastic\Agent\"

.\elastic-agent.exe status

2. View Dashboards in Kibana :

a. Open Kibana, and g0 t0 Management > Integrations .

b. On Integrations page, and click Installed integrations tab.
c. Click system integration.

d. Click assets tab.

e.(ﬂhﬂi[Metrics System] Host overview .

f. You should see a dashboard like this:

B oevtoss Districs Syven] Overview Ful screen Share Clone m

@ O e . KL syre B~ Letdmmee O Ralnesh

System overview

Ta view hast dotais, select & host from the st below by dlicking the respective labal

Memory used CPU used [- P umage ~ Momory umage ~

| 38.10% | 10.10%
Hasts Désk nid
2 | 27.61%
Inbound tralfic per ... Outbound traffic per
e

Crvar 5 pravicss 30

Figure 3.15: System Integration Dashboard

g. Click your Windows hostname.

h. After that, you should see a dashboard from the Windows.
1. You also can explore other dashboards on assets tab.

J. We can find all dashboards on pashboards menu.

3. Uninstall Elastic Agent :

a. Open PowerShell as Administrator.
b. Navigate to C: \Program Files\Elastic\Agent\ .
c. You can uninstall Elastic Agent using the following command:
.\elastic-agent.exe uninstall
If c:\Program Files\Elastic\Agent\ folder was not deleted, you can
delete it manually.
4. Uninstall Integrations :

a. After all Elastic Agents were uninstalled, we can uninstall integrations.
b. Open Kibana, and g0 t0 Management > Integrations .

c. On the Integrations page, click Installed integrations tab.

d. Click system integration.

e. Click Integration policies tab.

f. Click belete integration button on the right side.

g. You also can delete all system assets. Click Uninstall System on
Settings tab.

h. If you want to delete all dashboards, you can delete all dashboards on
Dashboards menu.

Troubleshooting and Best Practices

This guide will provide insights into common issues and their solutions, along with the
best practices to enhance the effectiveness of Elastic Agent.

Troubleshooting Elastic Agent

e Connectivity Issues:

o Symptom : Elastic Agent is not communicating with Elasticsearch or
Kibana.

o Solution : Check network connectivity, validate Elasticsearch and Kibana
URLs in the agent configuration, and ensure correct authentication
credentials.

Data Ingestion Problems :

o Symptom : Elastic Agent is not sending data or data is missing.

o Solution : Verify the configuration of data sources and integrations. Check
the log files for any errors related to data collection or shipping.

Agent Not Responding:

o Symptom : The agent is unresponsive or not updating its status in Kibana.

o Solution : Check the host system for resource constraints. Review the
agent logs for any critical errors, and restart the agent, if necessary.

Integration-Specific Issues:

o Symptom : Problems with specific Beats integrations like Filebeat or
Metricbeat.

o Solution : Validate integration configurations, and ensure compatibility
with the data source. Check for any known issues in the Elastic forums or
documentation.

Upgrade Issues:

o Symptom : Problems after upgrading Elastic Agent or the Elastic Stack.

o Solution : Ensure that all the components of the Elastic Stack are
compatible. Review upgrade logs for any errors, and follow the official
Elastic upgrade guides.

Best Practices for Elastic Agent

e Regular Updates : Keep Elastic Agent and the Elastic Stack components
updated to the latest version for new features, performance improvements, and
security patches.

e Centralized Management : Use Fleet for centralized management of agents.
This approach simplifies deployment, configuration, and monitoring of agents
across multiple hosts.

* Policy Management : Organize and manage policies effectively in Fleet. Ensure
that policies are appropriately applied to the right group of agents for efficient
data collection and security enforcement.

e Resource Monitoring : Monitor the resource usage of Elastic Agent on the host
systems. Adjust resource allocation and agent configurations to prevent
performance degradation.

* Security Practices : Secure communication channels between Elastic Agent,
Elasticsearch, and Kibana. Use encryption and authentication methods to
safeguard data.

¢ Documentation and Community Support : Leverage Elastic’s extensive
documentation and community forums for additional support and best practices.

e Testing Configurations : Before deploying configurations to production, test
them in a controlled environment to ensure that they work as expected.

e Backup and Recovery : Regularly backup Elastic Agent configurations and
policies. Have a recovery plan in place in case of system failures.

e Scalability Considerations : Plan for scalability as your data and monitoring
needs grow. Ensure that Elastic Agent deployments can handle increased loads.

e Custom Integration Development : If developing custom integrations, follow
Elastic’s guidelines to ensure compatibility and performance.

By following these troubleshooting tips and best practices, you can effectively manage
Elastic Agent in your environment, ensuring reliable data collection, enhanced
security, and overall system health.

Web Crawler

In this section, we will learn about web crawling with Elastic. We will discuss the
basics of web crawling, its key components, and how it can be implemented with
Elastic. We will also explore the configuration and customization of web crawling with
Elastic, along with its use cases and challenges.

Introduction to Web Crawling with Elastic

Web crawling is a vital technique in the realm of data collection and analysis, and
Elastic, with its robust search and analysis capabilities, offers a powerful platform for
implementing web crawlers. This introduction covers the basics of web crawling with
Elastic, exploring its components, functionalities, as well as how it can be utilized
effectively.

Web crawling involves systematically browsing the internet to collect data from
websites. This data is then used for various purposes such as indexing for search
engines, data analysis, and more. In the context of Elastic, web crawling can be a part
of an extensive data ingestion and analysis pipeline.

Key Components of Elastic for Web Crawling

e Elasticsearch : At the heart of Elastic’s capabilities is Elasticsearch, a search
and analytics engine. It stores and indexes data collected by the web crawler.

e Kibana : Kibana serves as the visual interface for Elasticsearch. It allows users
to manage their crawling projects, and visualize the collected data.

e Beats : Filebeat, one of the Elastic Beats, can be used for ingesting log files
generated by web crawlers.

e Logstash : For more complex data processing needs, Logstash can transform
and enrich the data, before it is indexed in Elasticsearch.

Setting Up a Web Crawler with Elastic

Elastic Web Crawler is a part of Elastic Enterprise Search. This feature is specifically
designed to crawl, index, and search website content, making it more accessible and
searchable through Elasticsearch.

However, the Elastic Web Crawler is not part of the open-source Elasticsearch
package. It is included in the Elastic Enterprise Search solution which is a commercial
offering from Elastic. While Elastic provides basic versions of some of their products
under a free tier, the complete functionalities of Elastic Enterprise Search, including
the Web Crawler, typically fall under their subscription or commercial license.

For open-source alternatives, or to implement web crawling with Elasticsearch, you
might consider:

¢ Building a Custom Crawler : You can create a custom web crawler using open-
source tools (like Scrapy for Python) and then ingest the data into Elasticsearch
using Logstash, Filebeat, or a custom ingestion pipeline.

e Third-Party Open-Source Crawlers : There are several open-source web
crawlers available that can be integrated with Elasticsearch. For instance,
Apache Nutch is a highly extensible and scalable open-source web crawler
software project.

¢ Community Plugins : Some community-developed plugins or projects might
offer web crawling capabilities compatible with open-source Elasticsearch.

In summary, while Elastic’s Web Crawler itself is not available in the open-source
version of Elasticsearch, there are various methods and tools that can be used to
achieve similar functionality with the open-source Elasticsearch stack.

Use Cases of Web Crawling with Elastic

e Search Engine Indexing : Building a search index for a custom search engine.

e Market Research : Collecting data about products, prices, and reviews from e-
commerce sites.

e Content Aggregation : Aggregating content from multiple sources for news,
blogs, and so on.

e SEO Analysis : Analyzing websites for SEO optimization purposes.

Data Connectors

In this section, we will learn about pre-built data connectors in Elastic. We will discuss
the key features of these connectors, their common types, and how they can be utilized
effectively. We will also explore the process of setting up data connectors in Elastic.

Understanding Pre-built Connectors

Elastic, known for its powerful search and analytics capabilities, offers a range of pre-
built data connectors that simplify the process of ingesting data from various sources
into the Elastic Stack. Understanding these pre-built connectors is crucial for
leveraging Elastic’s full potential in data analysis, search, and observability. This
content provides an overview of Elastic’s pre-built connectors, their functionalities,
and how they can be utilized effectively.

Pre-built connectors in Elastic are ready-to-use integrations that allow users to easily
connect and ingest data from a variety of external data sources into Elasticsearch.
These connectors are designed to simplify the data ingestion process, making it more
efficient and less time-consuming.

Key Features of Pre-built Connectors

e Diverse Data Source Support : Elastic’s connectors support a wide range of
data sources, including cloud services, databases, applications, and much more.
This versatility is crucial for organizations dealing with diverse data ecosystems.

e Easy Configuration : Connectors are designed for ease of use, with simple
configuration steps that often involve just a few clicks in Kibana.

¢ Real-Time Data Sync : Many connectors offer real-time data synchronization,
ensuring that the data in Elasticsearch is always up-to-date with the source.

e Scalability and Efficiency : Elastic’s connectors are built to handle large
volumes of data efficiently, and scale as your data needs grow.

e Security and Compliance : Data transferred via these connectors is handled
securely, adhering to the best practices and compliance standards.

Common Types of Pre-built Connectors

e Log and Metric Data Connectors : For ingesting logs, metrics, and telemetry
data from various monitoring tools and platforms.

e Database Connectors : To synchronize data from relational and NoSQL
databases into Elasticsearch.

e Cloud Service Connectors : Designed for cloud-based services such as AWS,
GCP, and Azure, enabling the ingestion of logs and metrics from cloud
environments.

e Application and Service Connectors : Connectors for popular applications and
services such as Salesforce, Slack, GitHub, and more, allowing for the
integration of business and operational data.

Utilizing Pre-built Connectors

e Data Integration and Analysis : Use connectors to feed data into Elasticsearch
for search, analysis, and visualization in Kibana.

e Observability and Security : Leverage connectors for observability solutions in
Elastic, enabling comprehensive monitoring across your IT environment.

e Building Search Experiences : Use the ingested data to power search
experiences in internal and external applications.

e Streamlining Data Pipelines : Simplify and streamline your data pipelines by
using connectors to eliminate complex data integration processes.

Set Up Data Connectors

Elastic Data Connectors, especially the advanced integrations and connectors offered
as part of Elastic’s solutions like Elastic Enterprise Search, are typically not available
for the open-source version of Elasticsearch. These connectors are often included in
the commercial or subscription-based offerings provided by Elastic.

Elastic offers various tiers, including free and paid subscriptions. The advanced data
connectors are usually part of their premium features which require a subscription.
However, Elastic does provide a set of basic integrations and Beats (like Filebeat,
Metricbeat, and so on.) that can be used with the open-source version of Elasticsearch
to facilitate data ingestion from various sources.

For users of the open-source Elasticsearch, integrating with various data sources often
involves:

e Using Elastic Beats : Elastic Beats are lightweight, single-purpose data shippers
that are open source, and can be used with Elasticsearch. They include Filebeat
for log files, Metricbeat for metrics, Packetbeat for network data, and many
more.

e Custom Integration Development : Developing custom scripts or applications
to send data to Elasticsearch. This can be done using Elasticsearch’s RESTful
APL.

e Third-Party Tools : Leveraging other open-source tools or platforms that can
integrate with Elasticsearch. For example, Logstash (also part of the Elastic
Stack) is an open-source server-side data processing pipeline that ingests data
from multiple sources simultaneously, transforms it, and then sends it to a "
stash " like Elasticsearch.

e Community Contributions : Exploring plugins and integrations developed by
the community that may offer connectivity to different data sources for open-
source Elasticsearch.

e [t 1s important to check the current Elastic licensing and product offerings for the
latest information, as the availability and features of Elastic products can change
over time.

API Integrations

In this section, we will learn about API integrations in Elastic. We will discuss the
basics of Elastic Stack APIs, their common types, and how they can be utilized
effectively. We will also explore the process of setting up API integrations in Elastic.

Basics of Elastic Stack APIs

The Elastic Stack, comprising Elasticsearch, Logstash, Kibana, and Beats, is known
for its powerful search and analytics capabilities. A key component of its functionality
is the extensive set of APIs it offers. These APIs allow for the interaction with the
Elastic Stack in various ways, from data ingestion and querying to managing clusters
and visualizing data. Understanding the basics of these APIs is crucial for anyone
looking to harness the full potential of the Elastic Stack.

Working with Elasticsearch APIs

RESTful Interface : Elasticsearch’s APIs are exposed over a RESTful interface,
where actions can be performed using standard HTTP methods (GET , posT ,
PUT , and DELETE).

JSON Over HTTP : Interactions with the API generally involve sending JSON-
formatted requests, and receiving JSON responses.

Common Operations :

o

Indexing Documents: Adding data to Elasticsearch.

(e}

Searching: Retrieving data based on queries.

o}

Aggregations: Summarizing or analyzing data.

(o]

Index Management: Creating or modifying indices.

Using Kibana APIs

Automating Kibana Tasks : Use APIs to automate tasks like creating
dashboards or migrating saved objects from one environment to another.

Integration with External Tools : Integrate Kibana features with external
applications or tools using these APIs.

Best Practices for API Integration

Security Considerations : Secure your API usage, especially when exposing
Elasticsearch to public networks. Use features such as API keys, role-based
access control, and encryption.

Version Compatibility : Ensure compatibility between the client’s API version
and the Elastic Stack version, you are using.

Performance and Scalability : Be mindful of the performance implications of
your API usage. Optimize query performance, and monitor the load on your
Elasticsearch cluster.

Error Handling : Implement robust error handling and logging for your API
integrations.

API Rate Limiting and Throttling : Be aware of the rate limits, and consider
implementing throttling to maintain the stability of your Elastic Stack
environment.

The APIs provided by the Elastic Stack are powerful tools for data manipulation,
searching, visualization, and cluster management. A strong grasp of these APIs is
essential for developers and administrators looking to fully utilize the capabilities of
the Elastic Stack. Hence, whether it is for integrating Elasticsearch with your

application, automating Kibana dashboard creations, or managing Logstash pipelines,
understanding these APIs opens up a world of possibilities for efficient and effective
data management.

Hands-On Lab: CRUD Operations with Elasticsearch

API

Creating a hands-on lab for performing CRUD (Create, Read, Update, and Delete)
operations using the Elasticsearch API is a great way to gain practical experience with
Elasticsearch’s fundamental capabilities.

This lab demonstrates the basic CRUD operations in Elasticsearch using its RESTful
API with additional complexity of SSL self-signed certificates and basic
authentication. Handling secure connections and authentication are essential skills for
working with protected Elasticsearch instances in a real-world environment.

Objective
Learn to perform CRUD operations on documents within an Elasticsearch index, using

its RESTful API with basic authentication and a self-signed SSL certificate.

Requirements

e Access to an Elasticsearch instance with SSL (HTTPS) enabled and using a self-
signed certificate.

e Basic authentication credentials (username and password) for Elasticsearch.

e curl or a similar HTTP client capable of handling insecure requests and basic
authentication.

Setup Steps
1. Verify Elasticsearch Setup:

a. Ensure that your Elasticsearch instance is operational and accessible over
HTTPS. The instance should be configured with basic authentication, and a
self-signed SSL certificate.

b. First, verify that Elasticsearch is running and accessible over HTTPS by
sending a GET request to the root endpoint:

curl --insecure -u username:password -X GET
"https://localhost:9200/"

c. Change username and password with your Elasticsearch username and
password.

d. You should receive a response with the Elasticsearch version, and other
details.

2. Create or Choose an Index :

a. Use an existing index or create a new one with a command like:

curl --insecure -u username:password -X PUT
"https://localhost:9200/my index" -H 'Content-Type:
application/json' -d'{}"

Lab Exercises

1. Create (Index) a Document :

a. Add a document to your index, using the puT or posT method.
b. Example with pur :

curl --insecure -u username:password -X PUT
"https://localhost:9200/my index/ doc/1" -H 'Content-Type:
application/json' -d'

{

"title": "Elasticsearch Basics",
"description": "Introduction to CRUD operations",
"tags": ["Elasticsearch", "CRUD", "API"]

} |l
2. Read (Search for) a Document :

a. Retrieve the document using the GeT method:

curl --insecure -u username:password -X GET
"https://localhost:9200/my index/ doc/1"

3. Update a Document :

a. Modify an existing document using the post method with the update
endpoint.

b. Example:

curl --insecure -u username:password -X POST
"https://localhost:9200/my index/ doc/1" -H 'Content-Type:
application/json' -d'
{
"doc": { "tags": ["Elasticsearch", "CRUD", "API", "Updated"]
}
}r

4. Delete a Document :

a. Remove a document using the bELETE method.
b. Example:

curl --insecure -u username:password -X DELETE
"https://localhost:9200/my index/ doc/1"

Advanced Features and Bulk Operations

Elasticsearch offers a plethora of advanced features and capabilities through its API,
allowing for efficient management and manipulation of large datasets. Among these,
bulk operations are particularly powerful, enabling the processing of multiple create,
read, update, and delete (CRUD) operations in a single API request. This efficient
approach is crucial for handling large volumes of data quickly and effectively.

Understanding Bulk Operations

Bulk operations in Elasticsearch allow you to perform multiple indexing or deletion
operations in a single API call. This is significantly faster than issuing individual
requests for each operation, especially when dealing with large datasets.

Key Features of Bulk API

e Efficiency and Speed : Process large numbers of documents in a single request,
reducing network overhead, and increasing throughput.

¢ Flexibility : Mix different types of operations (index, update, delete) within a
single bulk request.

e Error Handling : The bulk API returns information about each operation,
making it easy to identify and handle any errors.

Sample Bulk Operation Using curl

Here is an example of how to use the bulk API with curl to perform multiple
operations:

1. Prepare Your Data : Create a file named bulk data.json containing the data
for the bulk operations. Each operation’s metadata and source must be on
separate lines. For example:

{ "index" : { " index" : "test index", " id" : "1" } }

{ "title": "Document 1", "content": "Elasticsearch bulk API" }
{ "index" : { " index" : "test index", " id" : "2" } }

{ "title": "Document 2", "content": "Bulk data import" }

{ "delete" : { " index" : "test index", " id"™ : "3" } }

2. Perform the Bulk Operation :
a. Use curl to send this data to the bulk API endpoint:

curl --insecure -u username:password -X POST
"localhost:9200/ bulk" -H 'Content-Type: application/json' --
data-binary @bulk data.json

b. Change username and password with your Elasticsearch username and
password.

c. This request will index two documents and delete one (if it exists) in the
test_index index.

d. Retrieve the document using the GET method:

curl --insecure -u username:password -X GET
"https://localhost:9200/test index"

Advanced API Features

e Search API Enhancements : Elasticsearch’s search API supports advanced
features such as aggregation for data summarization, highlighting for
emphasizing search terms, and suggesters for auto-complete suggestions.

e Query DSL : The Elasticsearch Query DSL (Domain Specific Language) allows
for the creation of complex and precise queries to retrieve and manipulate data.

e Scripting : Use scripting (example, Painless scripts) for advanced data
processing like custom scoring, on-the-fly document transformations, and
complex update operations.

e Machine Learning Integration : For Elastic Stack users with appropriate
licenses, Elasticsearch offers machine learning features for anomaly detection,
and forecasting directly accessible via API.

e Snapshot and Restore : The API also allows for taking snapshots of your
indices and restoring them which is crucial for backup and disaster recovery
strategies.

Notes
e Error Checking : Always check for errors in the response of a bulk request, and
handle them appropriately.

e Optimal Sizing : Experiment with the size of your bulk requests to find the
optimal balance between performance and resource usage.

e Rate Limiting : Be mindful of the impact of bulk requests on your Elasticsearch
cluster, and implement rate limiting, if necessary to maintain cluster health.

The Elasticsearch API’s advanced features and bulk operations are essential tools for
managing and querying large datasets efficiently. Understanding and utilizing these
capabilities can significantly enhance your ability to interact with, and leverage
Elasticsearch in various complex data handling scenarios.

Securing and Monitoring Your API Calls

Effectively securing and monitoring API calls is crucial in managing an Elasticsearch
cluster, especially when dealing with sensitive data, and ensuring the integrity and
availability of your services. Implementing robust security measures, and monitoring
strategies not only protects your data but also provides insights into API usage
patterns, potential issues, and performance bottlenecks. Here is an overview of how to
secure and monitor API calls in Elasticsearch.

Securing API Calls

Here are some key practices for securing API calls in Elasticsearch:

Authentication and Authorization:

o Use Elasticsearch’s built-in security features to enforce authentication.
Basic authentication, API keys, and Role-Based Access Control (RBAC)
are the key methods.

o Define roles and privileges to control what actions users and applications
can perform.

Secure Communication:

o Encrypt data in transit using SSL/TLS. This is crucial to protect the
sensitive data and credentials from being intercepted.

o Configure Elasticsearch to use HTTPS for all communications.

Audit Logging:

o Enable audit logging in Elasticsearch to track security-related events such
as successful and failed authentication attempts, and changes to the
security configuration.

o Regularly review audit logs for suspicious activities.

API Key Management:

o Use API keys for service-to-service authentication. They are more secure
and flexible compared to basic authentication.

o Regularly rotate and revoke API keys to minimize security risks.

Monitoring API Calls

Elasticsearch Monitoring Features:

o Utilize the monitoring features in Elasticsearch and Kibana to keep an eye
on cluster health, performance, and API usage.

o Monitor key metrics such as response times, error rates, and throughput.

Logging and Log Analysis :
o Log API requests and responses. Consider including details such as
endpoint, query parameters, user identity, and response time.

o Use tools like Logstash and Kibana for log aggregation and analysis to
gain insights into API usage patterns, and identify anomalies.

Performance Monitoring :
o Use the Elasticsearch _cat and _cluster APIs to monitor the
performance and health of the cluster.

o Set up alerts for abnormal conditions such as high response time, resource
saturation, or a spike in error rates.

Third-Party Monitoring Tools:

o Integrate with third-party monitoring solutions for advanced analytics,
alerting, and visualization capabilities.

Notes

¢ Regularly Update Security Settings : Keep up with the latest security patches
and updates for Elasticsearch.

e Limit API Exposure : Expose APIs only to necessary networks and users.
Consider using a VPN or firewall to restrict access.

e Backup and Disaster Recovery : Regularly backup your Elasticsearch cluster,
and have a disaster recovery plan in place.

e Capacity Planning : Monitor your usage and plan for capacity to ensure your
Elasticsearch cluster can handle the load, without performance degradation.

Securing and monitoring API calls in Elasticsearch is a multi-faceted approach that
involves 1mplementing robust security practices, auditing, and comprehensive
monitoring. By adhering to these practices, you can ensure that your Elasticsearch
environment remains secure, performant, and reliable, enabling you to leverage its full
capabilities with confidence.

Elastic L.anguage Clients

In this section, we will learn about Elastic language clients. We will discuss the key
features of these clients, their common types, and how they can be utilized effectively.
We will also explore the process of setting up Elastic language clients.

Overview of Official Elastic LLanguage Clients

Elasticsearch, as a part of the Elastic Stack, provides powerful search and analytics
capabilities, and is widely used in various applications. To facilitate the integration of
Elasticsearch into different development environments, Elastic offers several official
language clients. These clients are designed to work seamlessly with Elasticsearch,
providing developers with robust, native libraries in their preferred programming
languages. Here is an overview of some of the official Elastic language clients
available:

Key Official Elastic Language Clients

Elasticsearch-Py (Python Client):
o A Pythonic client for Elasticsearch, offering easy integration for Python
applications.

o Supports asynchronous operations, and is compatible with various Python
frameworks.

Elasticsearch-JS (JavaScript Client):
o Designed for Node.js and browser environments, it provides an easy-to-use
interface for interacting with Elasticsearch from JavaScript applications.

o Supports both callbacks and promises, making it adaptable to different
coding styles.

Elasticsearch-Ruby (Ruby Client):
o Offers Ruby developers an idiomatic way to integrate Elasticsearch into
their applications.

o Provides support for various Ruby frameworks, and integrates well with
Ruby on Rails.

Elasticsearch-Java (Java Client):

o A Java client that offers seamless integration with Elasticsearch in Java
applications.

o Provides strong typing and comprehensive Elasticsearch API coverage.

Elasticsearch .NET (Nest) and Elasticsearch .Net (C# Clients):

o Two distinct clients for .NET framework: Elasticsearch .NET is a low-level
client, while NEST is a high-level client that provides a more abstracted
view of Elasticsearch.

o Both are feature-rich and provide support for LINQ queries and object
mapping.
Elasticsearch-Go (Go Client):
o Provides Go developers with an efficient way to interact with
Elasticsearch.
o Supports various Go routines, and is optimized for performance.

Features of Elastic LLanguage Clients

Complete Elasticsearch API Coverage : Clients typically cover the full range
of Elasticsearch API capabilities, from basic CRUD operations to advanced
features such as aggregations and machine learning.

Native Integration : Designed to feel natural in the host language, offering
idiomatic syntax and structures.

Asynchronous Support : Many clients support asynchronous operations,
enhancing performance and scalability in applications.

Robust and Well-Tested : These clients are officially supported by Elastic,
ensuring robustness and regular updates.

Easy Configuration : Simplified setup and configuration processes to connect
to Elasticsearch clusters.

Customizable and Extensible : Allow for customization and extension to meet
the specific use cases and integration requirements.

Best Practices for Using Elastic L.anguage Clients

Keep Clients Updated : Use the latest version of the client for new features and
security patches.

Handle Errors Gracefully : Implement comprehensive error handling to
manage API exceptions and connection issues.

Optimize Performance : Utilize the client’s features like connection pooling
and request retries for improved performance.

Security Practices : Secure your client-to-cluster communication, using
SSL/TLS and proper authentication methods.

e Resource Management : Be mindful of resource usage, especially in
asynchronous programming environments.

Creating a hands-on lab for implementing CRUD operations in Elasticsearch using the
Python client is an excellent way to learn how to interact with Elasticsearch
programmatically. In this lab, we will develop a simple Python program that performs
basic Create, Read, Update, and Delete operations on documents within an
Elasticsearch index. We will use the latest version of the Elasticsearch Python client
compatible with Elasticsearch 8.10.x.

Hands-On Lab: CRUD Operations in Elasticsearch Using
Python Client

Objective

Develop a Python program to perform CRUD operations on documents within an
Elasticsearch index using the Elasticsearch Python client.

Requirements

e Python 3.x installed.

e Elasticsearch 8.10.x running locally or accessible remotely.
e Access to a terminal or command line interface.

e A text editor or Python IDE.

Setup Steps
1. Install Elasticsearch Python Client :

a. Open your terminal or command prompt.
b. Install the Elasticsearch client for Python using pip :

pip install elasticsearch
2. Verify Elasticsearch Connection:

a. Make sure your Elasticsearch instance is up and running.

b. You can check its availability by accessing http://localhost:9200 or
your Elasticsearch URL.

Lab Exercise

1. Create a Python Script :

a. Open your text editor or Python IDE.
b. Create a new Python file named elasticsearch crud.py .

2. Import Elasticsearch Client :

a. At the beginning of your script, import the Elasticsearch client:

from elasticsearch import Elasticsearch
3. Connect to Elasticsearch :

a. Establish a connection to your Elasticsearch cluster:/p>
es = Elasticsearch(
["https://192.168.199.142:9200"],
basic_auth=('elastic', 'passl23'),
ca certs="http ca.crt",
)
b. Change the URL, username, and password to match your Elasticsearch
instance.
c. You can obtain the CA certificate http ca.crt from your Elasticsearch
instance that located in the /etc/elasticsearch/certs/http ca.crt
directory.

4. Create (Index) a Document :

a. Index a new document in an Elasticsearch index (example, my index):

doc = {
"title": "Elasticsearch Basics",
"description": "Introduction to CRUD operations with

Elasticsearch",
"tags": ["Elasticsearch", "CRUD", "Python"]
}

res = es.index (index="my index", document=doc, id=1)

print ("Document indexed:", res)

5. Read (Get) a Document :

a. Retrieve the document you just indexed:

res = es.get (index="my index", id=1)

print ("Document retrieved:", res[' source'])
6. Update a Document :

a. Update the existing document:

update script = {
"doc": {

"tags": ["Elasticsearch", "CRUD", "Python", "Updated"]
}
}
res = es.update(index="my index", id=1, body=update script)

print ("Document updated:", res)
7. Delete a Document :

a. Delete the document from the index:

res = es.delete(index="my index", id=1)

print ("Document deleted:", res)
8. Run Your Script :

a. Execute the script in your terminal or command prompt:
python elasticsearch crud.py

b. Observe the output for each CRUD operation.

This lab provides hands-on experience in using the Elasticsearch Python client for
basic CRUD operations. By completing this exercise, you gain practical knowledge in
interacting with Elasticsearch programmatically which is vital for developing
applications that leverage its powerful search and analytics capabilities.

Conclusion

Thus, Chapter 3 delved into the multifaceted world of integrations within the Elastic
ecosystem, highlighting the extensive capabilities and versatility that Elastic Stack
offers. From Logstash’s advanced data processing and pipeline management to the
streamlined efficiency of Elastic Agent, this chapter has illuminated how each
component contributes to a robust and scalable data management strategy. The
exploration of Elastic’s Web Crawler and Data Connectors underlines Elastic’s
commitment to offering comprehensive, user-friendly solutions for diverse data
collection and integration needs. These tools not only simplify the ingestion process,
but also enhance the scope and quality of data analysis.

The discussions on API Integrations and Elastic Language Clients have provided a
clear understanding of how Elastic Stack’s functionality can be extended and
customized through programmatic means. The practical insights into API usage,
coupled with detailed overviews of official language clients, equip users with the
knowledge to seamlessly incorporate Elastic functionalities into various programming
environments. This integration flexibility ensures that Elastic Stack can adapt to a wide
array of use cases, from simple data retrieval to complex, large-scale data analytics
applications.

Looking ahead, Chapter 4 will embark on a “ Deep Dive: Kibana .” This next chapter
promises to unravel the intricacies of Kibana, Elastic’s powerful visualization tool. We
will explore how Kibana transforms raw data into insightful visualizations,
dashboards, and analytics, allowing users to derive meaningful interpretations, and
make informed decisions. This exploration will cover everything from basic dashboard
creation to advanced features such as machine learning and custom plugin
development, providing a comprehensive understanding of how Kibana stands as an
integral component of the Elastic Stack.

Points to Remember

When working with Integrations and related technologies, here are some key points to
remember:

e Enable Persistent Queues : Set queue.type to persisted in logstash.yml to
enable persistent queues.

e Configure Queue Location : Use path.queue to specify the directory for
storing queue data files.

e Manage Queue Size : Set queue.max bytes to define the total capacity of the
queue on disk, considering disk capacity and workload.

e Checkpoint Frequency : Adjust queue.checkpoint.writes to balance
between performance and data safety. This setting determines how often
checkpoints are created.

e Page Size in Queue : Configure queue.page capacity to control the size of
each page in the queue. Larger pages can improve performance, but might
increase memory usage.

e Disk Space Requirements : Ensure adequate disk space for the queue directory
to avoid Logstash stopping due to a full disk.

e Performance vs. Data Safety Trade-off : Frequent checkpointing increases data
safety, but may impact Logstash’s performance.

e Increased Memory Usage : Be aware that persistent queues can lead to higher
memory consumption.

e Recovery Considerations : Larger queue sizes can lead to longer recovery times
in the event of a system crash.

e Regular Backups : Consider regular backups of the queue directory for
additional data protection.

e Monitoring and Maintenance : Regularly monitor the disk space and
performance of Logstash, especially when using persistent queues.

e Test Before Production : Before implementing persistent queues in a production
environment, test the configuration in a controlled setting to understand its

impact on your specific use case.

e Elastic Agent Overview and Configuration : Discussed the benefits,
architecture, deployment, and configuration of Elastic Agent, including its
unified data collection approach and integration with other Elastic Stack
components like Beats and Endpoints.

* Web Crawling with Elastic : Explored Elastic’s capabilities in web crawling,
including an introduction to Elastic’s web crawler, its configuration and
customization, handling dynamic websites, and ensuring optimal crawling
efficiency as well as data relevance.

e Elastic Data Connectors : Covered the concept of pre-built connectors in
Elastic, the development of custom connectors, and best practices for data
ingestion and transformation.

e Elasticsearch API Integration : Delved into the basics of Elastic Stack APIs,
CRUD operations with Elasticsearch API, advanced features and bulk
operations, as well as securing and monitoring API calls.

e Official Elastic Language Clients : Discussed the overview of official Elastic
language clients, focusing on Python, Java, JavaScript, and .NET clients,
including best practices for client integrations and tips for building custom
clients.

e CRUD Operations in Elasticsearch Using Python Client : Provided a hands-
on lab guide for performing CRUD operations in Elasticsearch using the Python
client, adapted for a secure Elasticsearch setup with SSL and basic
authentication.

e Logstash Fundamentals and Advanced Usage : Addressed Logstash’s core
concepts, advanced data processing pipelines, plugins, filters, codecs, and
handling large datasets for scalability.

e Securing and Monitoring Elasticsearch API Calls : Highlighted the
importance of securing API interactions with Elasticsearch and best practices for
monitoring these calls effectively.

Multiple Choice Questions

1. What is the primary function of Logstash in the Elastic Stack?

a. Data storage

b. Data visualization

c. Data processing and ingestion
d. Security analysis

2. Which Logstash feature ensures data protection by buffering events on disk?

a. In-memory queues
b. Persistent queues
c. Logstash filters

d. Codec plugins

3. In a Logstash configuration file, what is the purpose of the 'grok' filter plugin?

a. To encrypt sensitive data
b. To parse unstructured log data into a structured format
c. To duplicate events to multiple outputs
d. To compress log data for storage
4. Which configuration setting in Logstash determines the maximum size of the
persistent queue on disk?
d. queue. type
b.path.queue
C. queue.max_bytes

d.queue.checkpoint.writes
5. What does the 'input' section of a Logstash configuration file specify?

a. The data processing rules.

b. The destination for processed data.
c. The source of the incoming data.
d. The error handling mechanism.

Answers

a. c
b.b
c.b
d.c

€. C

Questions

1. How do persistent queues enhance Logstash’s data processing capabilities, and
what are the potential challenges associated with their implementation?

2. Explain the role and impact of conditional logic in Logstash configurations,
particularly in terms of enhancing data processing efficiency and pipeline
complexity.

3. Discuss the significance of pipeline-to-pipeline communication in Logstash for
managing complex data processing tasks, and provide examples of scenarios
where this feature is particularly beneficial.

4. What are the key considerations and best practices for configuring and managing
Logstash in large-scale deployments, especially with respect to handling large
data volumes and high throughput?

5. Analyze the impact of queue and buffer settings, such as queue.max bytes |,
queue.checkpoint.writes , and queue.page_capacity , On the performance
and reliability of Logstash, particularly in high-availability environments.

6. Discuss the Role and Benefits of Elastic Agent in the Elastic Stack : Explain
how Elastic Agent simplifies data integration and management. Describe its
integration with Beats and Endpoints, and its significance in the architecture of
the Elastic Stack.

7. Explain the Functionality of Web Crawling in Elastic and its Challenges :
Describe how Elastic’s Web Crawler operates, and discuss the strategies for
handling the challenges associated with crawling dynamic websites. Include the
aspects of optimizing web crawling for relevance and efficiency.

8. Explore the Use and Importance of Elasticsearch APIs : Discuss how CRUD
operations are performed using Elasticsearch APIs. Elaborate on the advanced
features and bulk operations available in these APIs, and the importance of
securing and monitoring API calls.

9. Analyze the Functionalities and Significance of Logstash in the Elastic Stack
: Describe the core concepts and capabilities of Logstash, its role in advanced
data processing pipelines, and the use of plugins, filters, and codecs. Discuss
how Logstash handles large datasets and scalability.

10. Evaluate the Integration of Official Elastic Language Clients with
Elasticsearch : Discuss how the official Elastic language clients (Python, Java,
JavaScript, and .NET) facilitate interactions with Elasticsearch. Highlight the
best practices for client integrations and considerations for building customized
clients.

Key Terms

Here is a list of key terms that encapsulate the main concepts and tools discussed in
this chapter:

* Persistent Queues : A Logstash feature that enables the buffering of incoming
events on disk to prevent data loss in case of unexpected shutdowns or crashes.

Queue Type : A setting in Logstash configuration (queue.type) that
determines whether to use in-memory or persistent queues.

Path Queue : The path.queue setting in Logstash configuration, specifying the
filesystem path where the persistent queue data files are stored.

Queue Max Bytes (queue.max bytes) : A configuration option in Logstash
that sets the maximum size the persistent queue can occupy on the disk.

Checkpoint Writes (queue.checkpoint.writes) : This configuration controls
the frequency of checkpoints in persistent queues, balancing between
performance and data safety.

Queue Page Capacity (queue.page_capacity) : Determines the size of each
page file within the queue, affecting memory usage and performance.

Data Safety : Refers to the protection of data from loss or corruption, a key
consideration when configuring persistent queues.

Performance : In the context of Logstash, it generally refers to the speed and
efficiency of data processing and throughput.

Memory Usage : The amount of RAM used by Logstash, particularly important
when dealing with large queue sizes or page capacities.

Recovery Time : The time taken by Logstash to become fully operational after a
crash, especially relevant for large persistent queues.

Disk Space : The storage capacity required on the disk for Logstash, particularly
for storing persistent queue files.

Checkpointing : The process of saving the current state of the queue to disk at
regular intervals to ensure data safety.

Backups : Copying and archiving the persistent queue data for additional safety
and recovery purposes.

Monitoring : Keeping track of Logstash’s performance and resource usage,
crucial when using features like persistent queues.

Logstash Configuration File (logstash.yml) : The primary configuration file
for Logstash where various settings, including those for persistent queues are
defined.

Elastic Agent : A unified data collection agent part of the Elastic Stack that
simplifies data integration and management.

Web Crawler : A tool used in the Elastic Stack for automated browsing and data
collection from websites.

Data Connectors : Pre-built integrations in Elastic that allow for easy data
import from various sources.

Elasticsearch API : The RESTful API provided by Elasticsearch for performing
operations like search, indexing, and data manipulation.

Language Clients : Official libraries provided by Elastic for interacting with
Elasticsearch in various programming languages such as Python, Java,
JavaScript, and .NET.

CRUD Operations : Refers to Create, Read, Update, and Delete operations,
fundamental to database and Elasticsearch interactions.

Secure Sockets Layer (SSL) : A standard security technology for establishing
an encrypted link between a server and a client.

Basic Authentication : A simple authentication scheme built into the HTTP
protocol.

Logstash : A data processing pipeline in the Elastic Stack that ingests data from
multiple sources, transforms it, and sends it to a " stash " like Elasticsearch.

Plugins, Filters, and Codecs in Logstash : Extendable components in Logstash
that allow for additional functionality in data processing.

Scalability : The ability of a system, network, or process to handle a growing
amount of work or its potential to be enlarged to accommodate that growth.

Python Elasticsearch Client : A Python library for connecting and interacting
with Elasticsearch.

Hypertext Transfer Protocol Secure (HTTPS) : An extension of HTTP for
secure communication over a computer network.

API Security : Measures and protocols used to protect APIs from misuse and
unauthorized access.

Bulk Operations : Features in Elasticsearch that allow processing multiple
indexing or deletion operations in a single API call.

C HAPTER 4

Deep Dive: Kibana

Introduction

Kibana, as a cornerstone in the domain of data visualization and analytics, offers a
unique blend of features that empower users to transform the raw data into compelling
stories. In Chapter 4,_Deep Dive: Kibana , we immerse ourselves into the intricacies of
this versatile tool, unraveling its potential to enhance data interpretation and decision-
making processes.

Positioned as an integral component of the Elastic Stack, Kibana excels in real-time
data visualization and analysis. This chapter is designed to provide a detailed
exploration of Kibana’s advanced capabilities, guiding you through its sophisticated
features and practical applications.

Structure

In this chapter, we will discuss the following topics:

» Practical Use Cases and Scenarios for Kibana

¢ Introduction to Kibana Visualization

e Hands-on Lab: Basic Data Visualization Using Kibana
e Developing Custom Visualizations

 Introduction to Vega Visualizations in Kibana

e Hands-on Lab: Hello World in Kibana with Vega and Vega-Lite
e Hands-on Lab: Developing Custom Visualizations

¢ Overview of Kibana Dashboard

e Advanced Dashboard Design

e Hands-on Lab: Building a Kibana Dashboard

e Using Canvas and Machine Learning Features

e Hands-on Lab: Creating a Simple Canvas in Kibana

e Alerting and Reporting

e Hands-on Lab: Creating Basic Alerts

Practical Use Cases and Scenarios for Kibana

Kibana, as a versatile tool in the Elastic Stack, finds its applications across a broad
spectrum of industries and scenarios. Its capability to handle large datasets, and present
them through intuitive visualizations makes it invaluable for data-driven decision-
making. This section highlights the key use cases and scenarios where Kibana’s
features are particularly beneficial.

e Monitoring and Analytics in IT Operations

o Scenario : Real-time monitoring of network and system performance in a
large IT infrastructure.

o How Kibana Helps : Kibana enables IT professionals to create dashboards
that provide real-time views of their network and system status. It helps in
identifying performance bottlenecks, monitoring server health, and
tracking system logs for security analysis.

e Business Intelligence and Data Analysis
o Scenario : A retail company analyzing customer data to optimize sales

strategies.

o How Kibana Helps : Kibana can be used to visualize sales trends,
customer demographics, and buying patterns. Retailers can track the Key
Performance Indicators (KPIs), and adjust their strategies based on real-
time data insights.

e Financial Market Analysis
o Scenario : Tracking and analyzing stock market trends for informed

investment decisions.

o How Kibana Helps : Financial analysts can use Kibana to create
dashboards that display live market data, historical trends, and predictive
analytics. This helps in spotting investment opportunities and risk
management.

o Healthcare Data Visualization

o Scenario : Hospitals analyzing patient data to improve healthcare services.

o How Kibana Helps : Kibana allows for the aggregation and visualization
of patient data, helping healthcare providers identify patterns, track
treatment outcomes, and manage hospital resources effectively.

e Security and Fraud Detection

o Scenario : A banking institution monitoring transactions for fraudulent
activities.

o How Kibana Helps : Kibana can be integrated with security tools to
analyze transaction data in real-time. It helps in detecting unusual patterns
indicative of fraud, and triggering alerts for further investigation.

¢ Log Analysis and Event Management

o Scenario : A web service provider analyzing logs for troubleshooting and
optimizing user experience.

o How Kibana Helps : Kibana excels in parsing and visualizing large
volumes of log data, making it easier to identify errors, user behavior
patterns, and system inefficiencies.

e Environmental Monitoring

o Scenario : Monitoring environmental data such as air quality or weather
patterns.

o How Kibana Helps : Environmental scientists can use Kibana to visualize
data from sensors, track changes over time, and predict trends, aiding in
environmental protection efforts.

The flexibility and power of Kibana make it an indispensable tool in a wide array of
domains. By transforming the raw data into actionable insights through its advanced
visualization capabilities, Kibana empowers organizations to make informed decisions,
and optimize their operations across various scenarios.

Introduction to Kibana Visualization

Kibana, as a powerful data visualization and exploration tool in the Elastic Stack,
offers a diverse range of components for visualizing and interpreting data. These
components range from simple, intuitive tools like Kibana Lens, to more advanced
options such as Time Series Visual Builder (TSVB), and Aggregation-Based
Visualizations. This introduction provides an overview of these key components,
including Kibana Maps and Custom Visualizations, highlighting their functionalities
and use cases. The following Figure 4.1 shows the visualization options available in
Kibana.

New visualization

{5 Lens Mans
Coale vidcaliolions vill &g and Cormilay | 3yhe Mg wilhh iadlipis layeis
Arap SIS, Swinch B wESN viSUSRISTSH g ingices.
Ty 8¢ ary i, Recommended By mosl
(B

ﬁ TSVB q‘; Custom visualization

T Perkorm sdverced anefyu of your e Uz Waga b orste nove types of
e G AU aars Beguias inowisge of
Vg s

5g Aggregation based
R O CIESSIC YELLBLTR NDYRTY B0 Create
chaety Banec on aggregatiany

Fxplom ootions -

Figure 4.1: Visualization Options on Kibana

Kibana Lens

Kibana Lens is a user-friendly visualization tool designed to simplify the process of
creating complex visualizations. It offers a drag-and-drop interface that allows users to
quickly build visualizations from their data.

e Key Features:

o Intuitive Interface : Easy-to-use for beginners and advanced users, alike.

o Smart Suggestions : Provides visualization recommendations, based on
the selected data.

o Flexibility : Allows mixing of different types of visualizations in a single
view.

e Use Cases : Ideal for quick data exploration, and creating visualizations without
requiring in-depth knowledge of Kibana’s query language.

Time Series Visual Builder (TSVB)

TSVB is a powerful tool for creating time-series data visualizations. It allows for
detailed control over the display of time-based data, and includes additional features
not found in traditional visualizations.

e Key Features:

o Advanced Time Series Analysis : Capable of handling complex time-
based data and calculations.

o Multiple Chart Types : Supports various chart types, including metrics,
gauges, and top N charts.

o Annotations : Allows adding annotations for specific time points or
events.

e Use Cases : Best suited for detailed analysis of time-series data such as
monitoring system performance metrics or financial trends.

Aggregation-Based Visualizations

These are the traditional visualizations in Kibana that rely on Elasticsearch
aggregations. They include a wide variety of chart types such as bar, line, pie charts,
and so on.

e Key Features:

o Versatility : Supports a wide range of visualizations.

o Aggregations : Leverages Elasticsearch’s powerful aggregation
capabilities for summarizing data.

o Customizable : Offers extensive options for customizing and refining
visualizations.

e Use Cases : Useful for general data analysis tasks, where summarizing and
grouping data is essential.

Kibana Maps

Kibana Maps provide geospatial data visualization capabilities, allowing users to
visualize and analyze the location-based data.

e Key Features:

o Layered Approach : Allows adding multiple layers to maps for rich,
complex visualizations.

o Geo Data Enrichment : Supports various forms of geographical data,
including points, shapes, and tracks.

o Interactive : Users can interact with the map to explore different aspects of
the data.

e Use Cases : Ideal for scenarios, where location data is crucial such as tracking
vehicle movements, analyzing geographic sales data, or environmental
monitoring.

Custom Visualizations

Custom Visualizations in Kibana allow users to create unique visualizations that are
not available by default.

e Key Features :

o Extensibility : Users can develop their own visualizations using Kibana’s
plugin architecture.

o Integration : Custom visualizations can be integrated into Kibana
dashboards like any other visualization.

o Personalization : Offers the ability to tailor visualizations to specific
business or data needs.

e Use Cases : Suitable, when specific visualization needs cannot be met by the
existing Kibana components, or when there is a requirement for branding or
unique data representation.

Kibana’s visualization components offer a wide range of functionalities to suit different
data analysis needs. From the simplicity and intuitiveness of Kibana Lens to the
detailed control offered by TSVB, and the geographical insights of Kibana Maps, each
component plays a vital role in making Kibana a versatile tool for data visualization.
Custom Visualizations further extend this capability, ensuring that Kibana can meet the
specific visualization requirements of any use case.

Hands-On Lab: Basic Data Visualization Using Kibana

Creating a hands-on lab for basic data visualization using Kibana involves outlining a
step-by-step tutorial that users can follow. This lab will guide users through the process
of creating a basic visualization in Kibana. Before starting, ensure that you have
Kibana and Elasticsearch installed and running.

Objective

Learn how to create a basic data visualization in Kibana using sample data.

Prerequisites

e Kibana and Elasticsearch are installed and running.
e Access to Kibana’s web interface.

Step 1: Accessing Kibana

a. Open your web browser, and navigate to the Kibana interface (usually
http://localhost:5601).

b. If your Kibana server is remote, replace localhost with the server’s IP address.
Step 2: Loading Sample Data

a. In the Kibana Home page, click on " Try sample data " as shown in Figure 4.2

b. Select a sample data set (for example, " sample eCommerce orders ") and load
it.

c. Click add data button.

Welcome home

»

Search Obsarvability Security Analytics
Crente asanch sperinces with Corsgoldabe your kogs, melrcs, Presvent, COBSC!, SHLECT, and respond Eupiere, visunime, and anslyre pour
refinga set of AFIS and 100 IOUHCAoN Waces, AN SYSIET Yo Whimaly for wmified probeticn A USNG & Dower Rl Suite of
avalatsity with purpoae-bull U, B5rons your infeantnaiun, ENGySCH 10005 SN0 a0pECELIoN.

Get started by adding integrations Try managed Elastic
Doy, e, B0 LDGTade yous
siack laster with Blastic Cloud. 'Wel

el yow quicily move your dala.

T start working with your tata, use one of 0w many inges! options. Collect L
Oala WoaT BN 00 OF SENVICE, OF UpIaad & file. If YoU'Ta Nt raady 10 USe your
oWy ABTE, PlEY Wilh & SAmpls Jata Sel.

Figure 4.2: Add Sample Data in Kibana

Move B0 Lidate Cloud

Step 3: Creating Your First Visualization

a. Navigate to the visualize Library tab in the side menu.

b. After clicking on the visualize Library tab, you will be presented with a list
of visualizations.

c. Click create new visualization .

d. You will be presented with a list of visualization types. For this lab, select a
ggregation based .

e. Then, you have a list of visualization types.
f. For this lab, select a visualization type (for example, Line Chart).
g. Choose the sample data index (for example, Kibana Sample Data eCommerce).

h. After selecting the data source, you will be presented with the visualization
editor as shown in Figure 4.3 .

Kibana Samgia Dain eCommaerce 0 O e dat ‘ t B~ Lasi 15 miruie Rairesh

Kibana Sample Data eCommeroe

Daka Metich banes Paas Setiagh
Mabrics.

3 Y-amii

Buckats

=

Q asd

Figure 4.3: Visualization Editor in Kibana
1. Configure your visualization:
o Metrics : Set an Aggregation type, like Average , and select a field to

visualize (example, products.price)

o Buckets : Choose select X-axis, and then select an Aggregation type
(example, Date Histogram) as well as select a field (example,
order date).

j. Click update to see the visualization.
k. If you do not see the data, set the time range to Last 7 days .
1. You should see a line chart similar to Figure 4.4 .

|act = o 5
=) s e [- EUERE LU) < |

Kiana Sample Data eCommence o Oy ke at ¢ s B ~ Lmtidms (F Relnesh

i Kibana Samphe Data eCommerce
Duts Mt LEses Pass sRisgE
Aggrigatas

Aucrage

¥ Advenced

i B PR [P

@ 204

Buckits

v Eeawks & =

Figure 4.4: Line Chart in Kibana
Step 4: Exploring and Saving the Visualization
a. Experiment with different metrics and buckets to see how they change the
visualization.
b. Once satisfied, click save at the top.
c. You will be presented with a dialog box.
d. Give your visualization a name, My First Visualization .
e. Select None on Add to dashboard .
f. Click save, and add to library button.

g. Now, you can see your visualization in the visualize Library .

Additional Exercises

¢ Create Different Visualizations : Try creating other types of visualizations such
as Pie Charts, Bar Graphs, or Area Charts.

e Combine Visualizations in a Dashboard : Create a new dashboard, and add
your visualizations to it.

e Filter and Search : Learn to apply filters, and use the search function to refine
your visualizations.

Summary

This hands-on lab has introduced you to the basics of creating visualizations in Kibana.
You have learned how to load sample data, create a simple line chart, and save your
visualization. The skills acquired here form the foundation for more advanced data
analysis and visualization techniques in Kibana.

Developing Custom Visualizations

Kibana, known for its robust data visualization capabilities, offers extensive features
for developing custom visualizations. This section delves into the process of creating
bespoke visualizations in Kibana, guiding users to harness the full potential of their
data.

Understanding the Basics

Before diving into custom visualizations, it is crucial to understand Kibana’s core
components:

e Data Sources : Familiarize yourself with the data sources, Kibana can connect
to, primarily Elasticsearch indices.

e Visualization Types : Explore the variety of built-in visualization types in
Kibana, from simple line charts to complex heat maps.

Steps to Develop Custom Visualizations
1. Identify the Data Source : Begin by selecting the appropriate Elasticsearch

index that contains the data you wish to visualize.

2. Choose the Right Visualization Type : Depending on your data and the insights
you want to derive, choose a visualization type that best suits your needs.

3. Customizing Visual Elements :
a. Fields and Metrics : Select the fields and metrics from your data source
that you want to visualize.

b. Filters and Queries : Apply filters and queries to narrow down the data
for more specific insights.

c. Design and Layout : Customize the design elements such as colors, labels,
and axes to make your visualization intuitive and insightful.

4. Aggregation and Calculation : Use Kibana’s aggregation capabilities to
summarize data such as counting occurrences, calculating averages, or finding
maximum values.

5. Advanced Features :
a. Scripted Fields : Create scripted fields in Kibana to compute new data
values on the fly.
b. Custom Queries : Write custom queries in Elasticsearch’s query DSL for
more complex data retrieval.
6. Integration and Interaction:
a. Dashboard Integration : Integrate your custom visualization into
dashboards for a comprehensive view of multiple data points.
b. Interactive Elements : Add interactive elements like filters and controls to
allow users to explore data dynamically.
Best Practices for Developing Custom Visualizations
e Keep It User-Friendly : Ensure that your visualizations are easy to understand,
avoiding overly complex representations.

e Responsive Design : Make sure your visualizations are responsive, and render
well on different devices.

e Performance Considerations : Be mindful of the performance impact,
especially when dealing with large datasets or complex queries.

o Iterative Approach : Start with a basic visualization, and iteratively add
complexity as needed.

Developing custom visualizations in Kibana empowers users to tailor their data
exploration and presentation to their specific needs. Thus, by understanding the tools
and features available in Kibana, you can create powerful, insightful, and interactive
visualizations that bring your data to life!

Introduction to Vega Visualizations in Kibana

Vega is a powerful visualization grammar that allows users to create complex,
interactive visualizations. In Kibana, Vega integration offers a level of customization
and control beyond the conventional visualization types. This introduction will explore
the capabilities of Vega within Kibana, guiding users on how to leverage this tool for
advanced data visualization.

Why Vega in Kibana?

e Customization and Flexibility : Vega provides a higher degree of customization
compared to standard Kibana visualizations. Users can create virtually any
graphical representation of their data.

e Interactive Features : With Vega, you can build interactive visualizations that
respond to user inputs and changes in data, enhancing the user experience.

e Integration with Elasticsearch : Vega visualizations in Kibana are fully
integrated with Elasticsearch, allowing users to query and visualize data in real-
time.

e Rich Visualization Grammar : Vega uses a JSON syntax to describe
visualizations, offering a rich set of visualization components, including marks,
scales, axes, and data transforms.

Getting Started with Vega in Kibana

We will explore the steps involved in creating a Vega visualization in Kibana to
understand the process of developing custom visualizations.

e Access Vega Editor : In Kibana, Vega visualizations can be created through the
Visualize App. Users can start a new Vega visualization, and access the Vega
editor.

e Vega Syntax : Familiarity with JSON is beneficial as Vega specifications are
written in JSON format. Users define data sources, scales, axes, and marks
(graphical representations of data), as well as much more.

e Data Queries : Vega visualizations in Kibana utilize Elasticsearch queries to
fetch data. Understanding Elasticsearch’s query language enhances the ability to

manipulate data sources.

e Visualization Design : Users can design the visual aspects of their chart,
including layout, colors, and interactivity. The Vega grammar offers extensive
options for customization.

Examples and Use Cases

We will explore some examples of Vega visualizations in Kibana to understand the
possibilities of this tool.

e Complex Chart Types : Create advanced chart types like heatmaps, tree maps,
and custom geo maps that are not available in Kibana’s standard visualization
library.

e Dynamic Data Exploration : Build dashboards with Vega visualizations that
include interactive filters, allowing users to explore data dynamically.

e Combining Multiple Data Sources : Use Vega to combine data from multiple
Elasticsearch indices or external data sources in a single visualization.

e Custom Interaction Logic : Implement complex interaction logic such as tool-
tips, zoom controls, and dynamic data filtering.

Vega in Kibana opens up a realm of possibilities for data visualization, allowing for
sophisticated and tailored visual representations of data. Its integration with
Elasticsearch makes it a powerful tool for real-time data analysis and exploration.
Whether you are a data analyst, a developer, or someone with a keen interest in data
visualization, learning Vega can significantly enhance your ability to communicate
data insights effectively.

In Kibana, you have the option to use either Vega or Vega-Lite for creating custom
visualizations. Both are powerful, but they cater to different needs and skill levels.
Understanding the differences between them can help you choose the right tool for
your visualization tasks.

Vega in Kibana

e Complexity and Control : Vega is a more comprehensive visualization
grammar compared to Vega-Lite. It offers greater control and customization over
the visualization, allowing for more complex and intricate designs.

e Interactivity : Vega provides advanced interactivity features, making it suitable
for creating highly interactive and dynamic visualizations.

e Learning Curve : Vega’s complexity means it generally has a steeper learning
curve. It requires a deeper understanding of its JSON syntax and visualization
concepts.

¢ Flexibility : With Vega, you can create a wide range of visualizations, including
those not possible with Vega-Lite. It is particularly useful for complex data
transformations and custom interactions.

Vega-Lite in Kibana

e Simplicity and Convenience : Vega-Lite is a higher-level visualization grammar
that provides a more concise and easier way to create common visualizations. It
1s designed to be more user-friendly.

e Rapid Prototyping : With its simpler syntax, Vega-Lite is ideal for quickly
creating standard visualizations such as bar charts, line charts, and scatter plots.

e Less Flexibility, But Easier to Use : While not as flexible as Vega, Vega-Lite is
more approachable, especially for those new to JSON-based visualization
grammars.

e Sufficient for Most Use Cases : For many standard visualization needs in
Kibana, Vega-Lite offers sufficient functionality, and is easier to get started with.

Choosing Between Vega and Vega-Lite

e Complexity of Visualization : If you need to create a highly complex and
interactive visualization, or if you need to perform complex data operations,
Vega is the better choice.

e Ease of Use and Learning Curve : If you prefer simplicity and quicker results,
especially for standard visualizations, Vega-Lite is more suitable.

e Use Case and Audience : Consider your audience and the specific use case. For
detailed, interactive data analysis, Vega might be necessary. For straightforward
data presentation, Vega-Lite often suffices.

Both Vega and Vega-Lite in Kibana are powerful tools that serve different purposes.
Your choice depends on the complexity of the visualization you intend to create, and
your comfort level with JSON-based visualization grammars. Vega-Lite is generally
recommended for those new to Kibana custom visualizations due to its simplicity,
while Vega is more suited for advanced users, who need more control over their
visualizations.

Hands-On Lab: Hello World in Kibana with Vega and
Vega-Lite

This lab will guide you through creating simple, " Hello World " visualizations in
Kibana using both Vega and Vega-Lite, using predefined data (no external dataset

"

required).
Objective

e Learn the basics of creating Vega and Vega-Lite visualizations in Kibana.
e Understand the differences between Vega and Vega-Lite syntax.

Prerequisites

e Access to Kibana.

Part 1: Hello World with Vega in Kibana

1. Creating a New Vega Visualization

a. Open Kibana.
b. Navigate to Analytics menu, click " visualize and Analyze "> " Create

visualization "

c. Select " custom visualization ".

2. Entering the Vega Visualization Script

a. In the Vega editor, erase any existing content and paste the vega script from
vega.json file in chapter 4 source code.

3. Viewing the Visualization

a. Once the script is pasted, the visualization should render a simple bar chart
with " Hello " and " world " as categories as shown in Figure 4.5 .

b. Save your Vega visualization as " Demo Vega Visualization ", and select
None ONn Add to dashboard .

P g—— ——
B~ Lot 15 minute < Piresn

......

Figure 4.5: Show Vega Visualization in Kibana

Part 2: Hello World with Vega-Lite in Kibana

1. Creating a New Vega-Lite Visualization

a. Repeat the same steps as above, but select " vega-Lite " this time.
2. Entering the Vega-Lite Visualization Script

a. In the Vega-Lite editor, paste the vega-lite script from vega-lite.json
file in chapter 4 source code.

3. Viewing the Visualization

a. The visualization should now render a bar chart similar to the one created
with Vega, showcasing the simpler syntax of Vega-Lite.

b. Save your Vega visualization as " Demo Vega Visualization ", and select
None On Add to dashboard .

= @ veesrvumy Do Une vega Vissatzaen spect Shase m

T B O fiheryourdats using 00U syt w -~

Figure 4.6: Show Vega Lite Visualization in Kibana

Summary

In this lab, you have created basic visualizations using both Vega and Vega-Lite in
Kibana. This exercise demonstrates the differences in syntax and approach between
Vega and Vega-Lite, providing a foundation for more complex visualizations. Vega
offers more control and customization, while Vega-Lite allows for quicker and simpler
visualization creation.

Hands-On Lab: Developing Custom Visualizations

In this hands-on lab, you will learn how to create custom visualizations in Kibana. You
will explore the process of selecting data, applying aggregations, and customizing the
appearance of your visualizations. Before starting, ensure that you have Kibana and
Elasticsearch installed and running.

Objective

Create a Vega-Lite visualization in Kibana to show the total number of products per
category from the kibana sample data ecommerce dataset.

Prerequisites

3.

Access to Kibana with the kibana_sample data ecommerce dataset loaded.

If you do not have the dataset, you can load it from the Kibana Home page.

Select " add sample data " and choose " Sample eCommerce orders ",

. Creating a New Vega-Lite Visualization

a. Open Kibana.
b. Navigate to Analytics menu, and click " visualize and Analyze " >"

. . . n
Create visualization .

c. Select " custom visualization "

. Entering the Vega-Lite Visualization Script

Paste the following Vega-Lite script from custom-vega-lite.json file in
chapter 4 source code into the Kibana Vega editor.

Explanation
e Data Source : The script targets the kibana sample data ecommerce
index in Elasticsearch.

e Aggregation : It uses a terms aggregation on the category.keywo rd field
to count the occurrences of each category.

e Visualization : It plots a bar chart with categories on the x-axis, and the
count of products on the y-axis.
Viewing and Analyzing the Visualization
a. After pasting the script, the visualization should render in Kibana,
displaying the count of products in each category as a bar chart.

b. Save your visualization as " Product Count per Category ", and select
None ON Add to dashboard .

¥ clastic i
E [ressiee | e Inipect Shase m

@ Filier your clas using BOL synéa B ~ lwtMden O Ralesh

Procest Count par Categery

" eier 1211 A Bar chart FEAPEREALLNG e
- tatal st of pISAKLE BT CELERRIY
. rl®s
i_ 1ndex"; “Nibese. semple_dete_scommerce
ty” s
2 ' so0s”i |
1 catiger s {
1 {
. £ ¥
- . * g
1
: : : ')
: : i 5 } stegaries buckets’)
§ 2]

Figure 4.7: Show Vega Lite Visualization in Kibana

Summary

You have created a Vega-Lite visualization in Kibana that displays the total number of
products per category using the kibana sample data ecommerce dataset. This
example demonstrates how you can leverage Vega-Lite’s simplified syntax for
effective and quick data visualizations in Kibana. As you become more comfortable
with Vega-Lite, you can extend this basic chart with more interactivity, different visual
styles, or additional data aggregations.

Overview of Kibana Dashboard

In Kibana 8.x, the " pashboard " feature under the Analytics menu is a powerful and
flexible tool for creating and organizing visual representations of your data. It allows
you to aggregate various visualizations and searches into a single, interactive, and
customizable interface. Here is a closer look at the Kibana Dashboard and its
capabilities:

e Unified View : Dashboards provide a unified view of your data, combining
different visualizations such as charts, maps, tables, and more onto a single,
interactive canvas.

e Interactivity : Users can interact with the data in real-time, applying filters,
changing time ranges, and drilling down into specific aspects of the data.

e Customization : Dashboards are highly customizable. Users can arrange, resize,
and format the visual components to create a tailored view that matches specific
analysis needs or presentation styles.

¢ Real-time Data : With the integration of Elasticsearch, the dashboards in Kibana
are capable of reflecting real-time data, providing up-to-date insights.

e Sharing and Collaboration : Dashboards can be easily shared with team
members or external stakeholders. They can be exported as PDFs, shared as
links, or embedded in external sites.

Components of a Kibana Dashboard

Here are the key components of a Kibana dashboard:

e Visualizations : The core components of dashboards are the visualizations.
These can range from simple line charts to complex geo maps, and everything in
between.

e Controls : Interactive controls such as sliders, dropdowns, or date pickers can be
added to dashboards, allowing users to dynamically filter or modify the data
displayed.

e Canvas Workpads : For more stylized presentations, users can incorporate
workpads from Kibana’s Canvas feature into their dashboards, blending art with
data.

e Machine Learning : Integrations with Kibana’s machine learning features can
provide predictive insights and anomaly detection directly within the dashboard.

Creating and Managing Dashboards

e Creating : Dashboards are created by adding and arranging visualizations as
well as configuring settings. Users typically start by creating individual
visualizations in the Visualize App, and then adding them to a dashboard.

e Editing : Dashboards can be edited at any time. Users can add new
visualizations, remove the existing ones, or change layout as well as
configuration settings.

e Saving and Loading : Once created or modified, dashboards can be saved for
future access. Users can also load the pre-existing dashboards to continue their
analysis, or update them with the new data.

Use Cases for Kibana Dashboards
e Business Intelligence : Creating comprehensive overviews of business metrics
and KPIs.

e Operational Monitoring : Building operational dashboards to monitor IT,
network, or infrastructure health.

e Data Exploration : Combining various data sources for exploratory analysis or
investigative purposes.

e Reporting : Regular reporting on sales, marketing, finance, or other
departmental data.

Hands-On Lab: Building a Kibana Dashboard

This hands-on lab will guide you through the process of creating a dashboard in
Kibana, using the kibana sample data ecommerce dataset. You will create four
different visualizations: A bar chart, a pie chart, a line chart, and a data table. Then,
you can add these visualizations to a new dashboard.

Objective

e Learn to «create and customize various visualizations, using the
kibana sample data ecommerce dataset.

e Understand how to compile different visualizations into a comprehensive
dashboard.

Prerequisites

e Access to Kibana with the kibana sample data ecommerce dataset loaded.
Step 1: Creating the Visualizations
1. Bar Chart - Average Product Price per Category

a. Navigate to " Aanalytics " menu, and click " visualize & Analyze " >"

. . . n
Create visualization

b. Select " aAggregation based ".
c. Choose the type " vertical Bar ".

d. Select the Kibana Sample Data eCommerce index.

e. Set the Y-axis to the average of products.base price .

f. On Buckets, add the X-axis to the terms of category.keyword .
g. Click update button to see the visualization.

h. save the visualization with a meaningful name, for example, " avg Price
per Category ", and select None on Add to dashboard .

1. You can see the visualization in Figure 4.8 .
j. If you do not see the data, set the time range to Last 30 days .

= [vesskrelivary fepPriceper Categury Edit vismalization InLens Inspect Shass m

Kibara Sample DataeCommerce ~ v @ O filer your dat

| I I
[
e

2. Pie Chart - Order Count by Manufacturer

B~ st day & Felnesn

e wmageoocs Kibana Sample Data eCommerce.
[PP —

O A

» using K syrtm

Buckets

W Xea L
Aggreqgabon Torme balp 12

Terem v
Fals

cakagonykayword -
ooy

Matric: Aveage procecis bae._price £
Qo e

- Descending v |5

Sprragn DT Rase e

; (I Group othar valoet in peparate busket
§ ¥ - I Shirw wissing vilues
: §

e ategiry haypmard Drstonding

Figure 4.8: Show Bar Chart in Kibana

a. Repeat the process to create a new visualization, this time selecting " Pie
Chart "

b. For slices, click split slices on Buckets.

c. Use the terms aggregation on the manufacturer.keyword field.
d. Set the metric to count.

e. Click update button to see the visualization.

"

f. Save the visualization, for example, " order Count by Manufacturer ",
and select None on Add to dashboard .

g. You can see the visualization in Figure 4.9 .
h. If you do not see the data, set the time range to Last 30 days .

= @ ekl G Edit vismlization inLens Inspect Shane m

Kibana Sample Data eCommene ~ v @ O ke your dets using KO syt B >~ Lnildan & Relnesh

Kibana Sample Bata ¢Commerce
[P —

Figure 4.9: Show Pie Chart in Kibana

3. Line Chart - Total Sales Over Time

n

a. Create a new visualization, choosing " Line Chart
b. Set the Y-axis to the sum of taxful total price .
c. On buckets, add the X-axis to a date histogram on the order_date field.
d. Click update button to see the visualization.

n

e. Save it as " Total Sales Over Time ", and select None on Add to
dashboard .
f. You can see the visualization in Figure 4.10 .

g. If you do not see the data, set the time range to Last 30 days .

= @ Vessloelitory | Coosie Edit vismization inLens Inspect Shae m
Kibens Sample Dotn eCommnarce ~ @ 0 0 i T B - Lm0des © Relesn
' ,-"Il P |I| & Sem-of laatl_t Kibana Sample Dats eCommerce:
ol
\ i 'l Gata bwwiesdanes Passlsvnings
\ i\ /1 ~A 11N A —
| | i
e i1 / i .'I |F\,-'"' A . o | | Iy Mgtries
| | \ A/ \
| \ Y| A |
| I |I | | \ TR U VY u
Vi ! 1 il 1 \ w Yoy
¥) VooV |
f ¥ \ \ ¥ | A Sam bty 1
E u Sum w
|
3 e | [
% el rocal price w
E | Custon labsl
3 Advareed
& pad
Buckats
. W K-l ® X
wedor_imn por 13 howrs

Figure 4.10: Show Line Chart in Kibana

4. Data Table - Top Products by Sales

n

a. Create a new visualization, this time selecting " pata Table

b. For the Metrics, select the sum of taxful total price .

c. For Buckets, click sp1it rows , and choose the terms aggregation on
products.product_name.keyword .

d. Click update button to see the visualization.

e. Save the visualization as " Top Products by Sales ", and sclect None on
Add to dashboard .

f. If you do not see the data, set the time range to Last 30 days , as shown
in Figure 4.11 .

& Mot seuuee | 192562198143

Toop: Frvwiue 7 iy Eaies e Inspes =) Save
Kians Sample Dala eCORMeIce ~ ® O 3 days i Relr
ProtuCtEmducL namdiwont: DEcanding ~ Susnof tahal_lotal_peice w Kibana Sample Data eCommerce
Lace-up books - Black %10,948.88 Dala Opibis
[410808, 38 0 a2
ANkl DOOLS - Diack $9012.94
Buckets
EE « Pl COMe $7.280.28
v Splin rows
Fring T-ghirt - biack 612453
Aggrigatas
Tearns
Fakd
prodech ou vward
S y
Mty
S Bace
D L=
B Group other value 4 b
I Show missing value

Figure 4.11: Show Data Table in Kibana
Step 2: Creating the Dashboard
1. Accessing Dashboards
a. Navigate to " Analytics " >" Dashboard ".
2. Creating a New Dashboard

a. Click " create dashboard ".
b.Click " add " or " add from library " to open the list of available
visualizations.

3. Adding Visualizations

n

a. Add the four visualizations, you created earlier: Avg Price per

Category ", " Order Count by Manufacturer ", " Total Sales Over

Time ", and " Top Products by Sales "

4. Arranging the Dashboard

a. Drag and resize the visualizations to arrange them in a way that makes
sense for the data story you are telling. You might put " Total Sales Over
Time " prominently at the top, followed by the bar, pie, and data table
charts.

5. Saving the Dashboard

"

a. Give your dashboard a descriptive title such as " Ecommerce Insights
b. Save your dashboard.
c. You can see the dashboard in Figure 4.12 .

W Eeting Fosmmee inughts & Settings Shane Saveat Switch o wiew mode

1 2 Add panel I Addl froew Bbrary % Costols

St ane e 11 ey
Sk e -
g Price bar Cabegary Ca 1 ever Coumtivy Manatacturer Ci & TopProdvessby Saies Y]
products precuct_name beywe... ~ Sem ol tachul_total_prics v

Lace - DOOts = Diack S10.968.69

Bty - biack $10 %0838
Arkic boats - black saEn2ad

Lace o boots - sl colfe $7.250.20

Awtage proceci. bave_prics

PTing T-shirt - DRack 5,124.53

Figure 4.12: Show Dashboard in Kibana

Summary

You have now created a multi-faceted Kibana dashboard, wusing the
kibana_sample data_ecommerce dataset. It showcases various aspects of the
ecommerce data, providing insights into average prices, order distributions, sales
trends, and top-selling products. This hands-on lab demonstrates the power of Kibana
for visual data exploration and dashboard creation. With these skills, you can continue
to explore and visualize your own datasets in meaningful ways.

Using Canvas Features

In this section, we turn our focus to two of Kibana’s most innovative features: Canvas
and Machine Learning. These tools represent the cutting edge of data visualization and
analysis within Kibana, offering users the ability to create visually stunning, live data

presentations, and harness powerful machine learning capabilities for predictive
insights.

Exploring Canvas in Kibana

Canvas is a feature in Kibana that allows users to create custom and dynamic
presentations of their data. It combines live data with an artist’s touch, enabling the
creation of visually appealing reports and dashboards.

Key Features and Applications
e Custom Layouts and Styling : Offers a variety of design options, including
custom CSS, for personalized layouts and themes.

¢ Real-Time Data : Integrates live data from Elasticsearch, ensuring presentations
are always up-to-date.

e Rich Media Support : Allows the inclusion of images, videos, and other media
types to enhance storytelling.

e Expression Language : Utilizes a powerful expression language for
manipulating data, and customizing visualizations.

Use Cases

¢ Creating high-impact, dynamic business reports.
e Building visually-rich dashboards for presentations and storytelling.
» Displaying complex data sets in an easy-to-understand, engaging format.

Canvas vs. Visualize Library

In Kibana, both Canvas and the Visualize Library are powerful tools for creating data
visualizations, but they serve different purposes, and offer unique features.
Understanding the differences between Canvas and the Visualize Library is key to
selecting the right tool for your specific needs.

Canvas in Kibana

Canvas is a feature in Kibana that allows for the creation of custom, dynamic data
presentations. It offers a high degree of artistic freedom and customization.

Key Features
e Custom Styling : Canvas provides extensive options for custom styling,
including the use of CSS for personalized layouts and themes.

e Rich Media Integration : Users can incorporate images, videos, and other
media types, making it ideal for storytelling.

e Real-Time Data : It integrates live data from Elasticsearch, offering up-to-date
presentations.

e Expression Language : Canvas uses a unique expression language that allows
for advanced data manipulation and customization of visual elements.

Use Cases

e Best for creating highly customized, visually rich reports and presentations.

 Suitable for scenarios where storytelling and visual appeal are priorities.

Visualize Library in Kibana

The Visualize Library is a collection of various visualization types within Kibana,
focused on displaying data through standard charts, maps, and diagrams.

Key Features
* Variety of Visualizations : Includes a wide range of pre-built visualization types
such as bar charts, line charts, pie charts, maps, and so on.

e Aggregation-Based : Visualizations in the library are primarily based on
Elasticsearch aggregations.

e Interactive Elements : Supports interactive elements like filters and controls for
data exploration.

e Integration with Dashboards : Easily integrates with Kibana dashboards for a
comprehensive view of data insights.
Use Cases
e Ideal for standard data analysis and reporting, where traditional visualization
types are sufficient.

e Suitable for users, who need to quickly create and integrate various
visualizations, without requiring extensive customization.

Comparison

e Customization : Canvas offers more customization and styling options,
compared to the Visualize Library.

e Complexity : Canvas requires a steeper learning curve due to its expression
language and advanced styling options, while the Visualize Library is more
straightforward and user-friendly.

e Data Integration : Both can integrate live data from Elasticsearch, but Canvas
allows for more creative data presentations.

e Purpose : Canvas 1is geared towards creating individual, standalone
presentations with a focus on design and storytelling. In contrast, the Visualize
Library is designed for creating traditional data visualizations that can be
combined into dashboards for analytical purposes.

Choosing between Canvas and the Visualize Library in Kibana depends on the specific
requirements of your project. If you need to create highly customized, visually
engaging presentations, Canvas is the way to go. However, for standard data
visualization tasks, where ease of use and quick integration into dashboards are
important, the Visualize Library is more suitable. Both tools offer unique capabilities,
and understanding their strengths and limitations will help you make the most effective
use of Kibana’s visualization features.

Hands-On Lab: Creating a Simple Canvas in Kibana

In this hands-on lab, you will learn how to create a simple Canvas in Kibana. You will
explore the process of adding elements, configuring data sources, and customizing the
appearance of your Canvas. Before starting, ensure that you have Kibana and
Elasticsearch installed and running.

Objective

Learn how to use Kibana’s Canvas feature to create a visually appealing and dynamic
presentation of live data. In this lab, we will create a simple Canvas that showcases the
sales data from the kibana sample data ecommerce dataset.

Prerequisites

e Access to Kibana with the kibana _sample data ecommerce dataset loaded.
» Basic familiarity with Kibana’s interface.

1. Accessing Canvas and Creating a New Workpad

a. Navigate to " Analytics " >" canvas " in Kibana.

"

b. Click on " create workpad

n

c. Give your workpad a name, for example, " Ecommerce Sales Overview ",
and set the desired dimensions for your canvas.

2. Adding Elements to the Canvas

a. Add a Text Element : Click " add element " >" Text ". Add a title to
your Canvas, for example, " Ecommerce Sales Dashboard ". Customize
the font size, type, and alignment as desired.

b. Add a Chart Element : Click " Add element " > " chart ". Choose a
chart type that you want to use to represent the data. For simplicity, you
can start with a vertical bar chart or pie chart as shown in Figure 4.13 .

c. You can add the existing visualizations from the Visualize Library or create
new ones directly within the Canvas environment.

3. Configuring Data Sources and Expressions

a. Connect to the Data Source : With the chart element selected, link it to
the kibana_sample_data_ecommerce index. Use the expression editor to
write or modify the expression to fetch and display data. For instance, you
might use an Elasticsearch SQL query to retrieve total sales by product
category.

b. Customize the Expression : Adjust the parameters such as aggregation
methods or filters to reflect what you want to display, for example, total
sales per category.

m O B B Addfemibrary Selettype ~ View Edi Ghare] ‘Worlpad settings
fr— tow
= Pisrs
Ecommerce Sales Dashboard -
Total Sakes Cvwr Timsa: (8 Lt 30 days e o o sy 8 wam Hsight
Wilp Tip Ad UHLeder
;_ 7 Warlable
i
5 53
3
; ETH SIS
Page settings

rder_daiw por 17 hawrs

ECOITarch SHlS OV Paga1

Figure 4.13: Add a Chart Element in Kibana
4. Styling and Finalizing the Canvas

a. Style Your Elements : Customize the look and feel of your text and chart
elements. Adjust colors, borders, or backgrounds to make the
visualizations more appealing.

serainl e

Ecommerce Sales Dashboard [e—

Totsl Sabes Over Ting, [Lt 30 shags rormced | e shay & L sanighe

WHip TIOp A SLene

7 Gaobal CSS cvimTioes

Susn ol Ranlus_tntss_peice

3 Ewment simius

Fage settings
L]

arae_dmtn pas 11 sy

Lrcmerarce Sals o Pagei

Figure 4.14: Style Your Elements in Kibana

b. Arrange Your Layout : Position your elements on the canvas to create a
visually coherent and attractive layout.

5. Previewing and Sharing the Canvas

e Preview : Click the " preview " button to see how your Canvas looks with
live data.

e Share : Once satisfied, you can share your Canvas as a PDF or as a live
link. Look for the " share " options within the Canvas environment.

Summary

You have now created a simple yet powerful Canvas in Kibana, showcasing live
ecommerce sales data. This exercise demonstrates how Kibana’s Canvas can be used to
build visually compelling and data-driven presentations. As you become more
comfortable with Canvas, you can explore more complex elements, add interactivity,
and create even more sophisticated visual narratives. This lab serves as a foundation
for endless creative and analytical possibilities.

Alerting and Reporting

This functionality in Kibana is pivotal for businesses and organizations to stay ahead
of potential issues, and maintain an informed decision-making process. We will
explore how Kibana’s alerting and reporting features enable users to monitor their data
proactively, and communicate insights effectively.

Understanding Alerting in Kibana

Alerting in Kibana is a feature that allows users to set up automated alerts, based on
specific conditions in their data. It is a proactive measure to monitor data for
anomalies, trends, or specific occurrences.

Key Features and Configurations
e Real-Time Monitoring : Set up alerts that monitor data in real-time, triggering
notifications, when predefined conditions are met.

e Customizable Conditions : Create complex conditions using Kibana’s query
language and thresholds.

e Notification Channels : Alerts can be configured to send notifications through
various channels such as email, Slack, or custom webhooks.

e Use Cases : Ideal for scenarios like detecting security breaches, monitoring
performance metrics, or tracking business KPIs.

Exploring Reporting in Kibana

Reporting in Kibana refers to the generation of reports, based on visualizations or
dashboards which can be shared or automated for regular distribution.

Key Features and Applications
e Scheduled Reports : Automate the generation and distribution of reports at
regular intervals.

e Format Flexibility : Generate reports in various formats like PDF or CSV for
easy sharing and analysis.

e Snapshots and Live Reports : Create static snapshots or live reports linked to
real-time data.

e Integration with Dashboards : Directly generate reports from the existing
dashboards and visualizations.

Use Cases

e Regularly scheduled business reports for stakeholders.
e Compliance reporting for regulatory requirements.

» Sharing insights across teams, or with clients.

Best Practices for Alerting and Reporting

e Define Clear Objectives : Understand the purpose of alerts and reports to set up
relevant and meaningful conditions.

e Balance Sensitivity and Relevance : Configure alerts to be sensitive enough to
catch anomalies but not so sensitive that they generate excessive false positives.

e Iterative Refinement : Continuously refine alert conditions and report contents,
based on feedback and changing data.

e Effective Communication : Ensure that reports are clear, concise, and visually
engaging to communicate the desired message effectively.

Alerting and Reporting in Kibana are essential tools for any data-driven organization.
These features not only help in keeping a proactive check on data anomalies and
trends, but also play a significant role in the effective communication of insights.

Hands-On Lab: Creating Basic Alerts

In Kibana 8.0 and later versions, the alerting framework has been updated to include
more features, and a more integrated user experience. This lab will guide you through
creating a basic alert, based on the kibana sample data_ecommerce dataset to
monitor for large transactions.

Objective

e Learn to create and manage alerts, using the updated Kibana 8.0 or later
interface.

Prerequisites

e Access to Kibana 8.0 or later with the kibana sample data ecommerce dataset
loaded.

» Basic understanding of Kibana and Elasticsearch.
Step 1: Accessing the Rules and Connectors Ul

a. Click " Management " in the Kibana side navigation menu.

n

b. Click " stack Management

"

c. Navigate to " Alerts and Insights " > " Rules " from the Kibana side
navigation menu. This is the new centralized location for managing alerts and
actions in Kibana 8.0+.

Step 2: Creating a New Rule (Alert)

'

a. Click on " create rule
For monitoring large transactions, you might use the
under the " Index threshold " category.

', and choose the appropriate rule type for your alert.
" Threshold " rule type

b. Name your rule something descriptive, like " High Value Transactions Alert

"

Create rule

Hame

Figh Vahuss Tearstactaan: Alert

Tagn loptioasl

Salect rule type
€1 Theeshold 0 Fnmiovusecase 0 v
AP NG USER EXPERENCE 3

Error count threshold
Aler when Uhe mumber of orrors in & service eaceeds & delfined threaneld.

Falled tranaaction rate thrashold

Alart whr thes rate of IANSRCTON STONY in & Sandcs srcaect & defined
TR,

- e

Figure 4.15: Create a New Rule in Kibana

Step 3: Configuring Alert Details and Conditions

a. Choose the Data Source : Select the kibana_sample data_ecommerce index as
the data source for your alert.

b. Define the Condition : Set up the condition to trigger the alert. For instance,
you might want to trigger the alert when the taxful total price of any
transaction exceeds a certain value. Configure the threshold value, aggregation
type, and field accordingly.

c. Set the Time Range and Check Interval : Define how often Kibana should
check for this condition, and the time range of data, it should consider each time
it checks.

d. You can see the configuration in Figure 4.16 .

= - Bk Maagmred e

Create rule

Index threshold

et wihan, 5 Agupragated quany sars tha thrashald. Laars mers 2

Salect an index
INDEX kabana_sanple, data_scomserce
WHEM s}
of paxful totel grice
OWER all documents

Dadie tha comdithan
15 ASOVE 19

FOR THE LAST 8 minutes

Filtor (Optional)
Q

- e

Figure 4.16: Configure Alert Details and Conditions in Kibana

Step 4: Setting Up Actions for Notifications

'

a. Choose Action Type : Click on " add action ", and select an action type such
as sending an email, logging a message, or creating an index. You might need to
set up a connector first, if you have not already.

b. Some connectors need licenses to be activated. For example, the email connector
requires a Gold license.

c. For instance, we can set up an index action to create a new index called my-
connector-101 , and add the transaction details to it.

d. You can create a new index by Dev Tools > Console, and run the following
command:

PUT /my-connector-101
{
"settings" : {
"number of shards" : 1
}y
"mappings" : {
"properties" : {
"rule id" : { "type" : "text" },
"rule name" : { "type" : "text" },
"alert id" : { "type" : "text" },
"context message": { "type" : "text" }

}

}
e. You can see a response from the server.

f. Configure Action Details : Provide the necessary details for the action. For
example, if sending an email, specify the sender, recipient, and message body.
Utilize available context variables to include dynamic information from the alert
condition.

g. If we use an index connector, we can add the following message to the index:
{

"rule id": "{{context.rule.id}}",

"rule name": "{{context.rule.name}}",
"alert id": "{{alert.id}}",

"context message": "{{context.message}}"

}

Step 5: Saving and Managing the Rule

a. Review all the details and configurations of your alert, then click " save " to
activate it.

b. Once saved, your rule will appear in the list under the " rRules " section, where
you can manage it further — enabling, disabling, muting, or deleting as needed.

....... Rules -
;

Dedect conditians using rues
Builisi Rules Logs

Rulsstats 8 ~ Tigs @ v Astonbhype O v Lstrapeus 8~ Tagm @ v ¢ Fafrasn

Weachineg L serming ® Sucoesdec O @ Fallad: O & Waring 0 tid i *aim

Figure 4.17: Manage the Rule in Kibana

Summary

You have now created a basic alert in Kibana 8.0 or later, capable of monitoring and
notifying you about large transactions in the ecommerce data. This lab demonstrates
the fundamental concepts and steps involved in setting up and managing alerts in the
newer versions of Kibana which are vital for proactive monitoring and response in
data-driven operations. As you become more comfortable with the alerting features,
you can explore more complex conditions, integrate additional actions, and fine-tune
your alerts to suit a wide range of monitoring scenarios.

Conclusion

Throughout Chapter 4,_Deep Dive: Kibana , we have embarked on a comprehensive
journey exploring the multifaceted capabilities of Elasticsearch, and its integral role in
data analysis and visualization, particularly within the Kibana ecosystem. We began by
understanding the core functionalities of Elasticsearch, recognizing its powerful full-
text search capabilities, distributed nature, and real-time data processing. We delved
into creating and managing indices, documents, and explored the robust querying
capabilities that allow for complex search operations and data retrieval.

As we moved further, we unraveled the intricacies of Kibana, a versatile tool in the
Elastic Stack designed for visualizing Elasticsearch data. We learned about creating
various visualizations and dashboards, providing insights into data through

customizable and interactive means. From simple visualizations such as line charts and
pie charts to more complex Canvas workpads and Vega or Vega-Lite visualizations, we
explored how Kibana leverages Elasticsearch’s powerful analytics to bring data to life.
We also navigated through the practicalities of setting up alerts in Kibana, ensuring
proactive monitoring and timely responses to data trends or anomalies.

Furthermore, our discussion highlighted the importance of Elasticsearch’s architecture,
scalability, and reliability for handling large volumes of data. We touched upon
essential concepts such as sharding, replication, and cluster management,
understanding how Elasticsearch achieves high availability and horizontal scalability.
These features make it an indispensable tool for a wide range of applications, from
logging and monitoring to business intelligence and advanced analytics.

As we conclude this chapter, it is evident that Elasticsearch and Kibana together form a
potent combination for searching, analyzing, and visualizing data. The skills and
knowledge acquired in this deep dive are foundational for anyone looking to leverage
the Elastic Stack for powerful data insights. Yet, our journey does not end here.

In the next chapter, we will pivot from usage to development, exploring *“ Developing
for the Elastic Stack .” We will dive into the development aspects, including working
with Elasticsearch APIs, integrating with different applications, and extending the
capabilities of the Elastic Stack. Get ready to elevate your understanding from user to
creator, as we continue to unravel the extensive possibilities offered by the Elastic
Stack.

Points to Remember

e Elasticsearch Fundamentals : Understand the basic concepts of Elasticsearch,
including its role as a distributed, full-text search and analytics engine. It is
designed for horizontal scalability, reliability, and real-time search.

e Kibana Visualization and Dashboards : Kibana is an open-source visualization
interface for Elasticsearch that provides real-time summary and analysis of the
data in the Elasticsearch cluster. It allows you to create and share visualizations
and dashboards.

e Data Ingestion and Management : Learn how to ingest and manage data in
Elasticsearch. This includes understanding how to create, update, and delete
indices, and perform CRUD operations on documents.

e Query DSL : Familiarize yourself with Elasticsearch’s Query DSL for
performing and fine-tuning searches. It is powerful and flexible, allowing for a
wide range of queries.

e Kibana’s Vega and Vega-Lite : Understand the difference between Vega and
Vega-Lite for creating custom visualizations in Kibana. Vega is more powerful

and complex, while Vega-Lite provides a simpler, more concise syntax for
creating a wide array of visualization types.

e Alerting and Monitoring : Know how to set up basic alerts in Kibana to
monitor data and trigger notifications, based on certain conditions using
Kibana’s alerting features.

e Machine Learning Features : Acknowledge that Machine Learning features in

Kibana are part of the commercial offerings of the Elastic Stack, and understand
the basic steps to activate and utilize these features, if available.

e Index and Connector Creation : Be aware of how to create indices and
connectors in Elasticsearch using Kibana’s Dev Tools with HTTP requests for
various purposes such as logging alerts or storing data.

Multiple Choice Questions

1. What is Elasticsearch primarily used for?

a. Distributed database management
b. Full-text search and analytics engine
c. Network monitoring
d. Content management system
2. Which Kibana feature allows you to create complex, interactive visualizations
beyond the standard types?
a. Lens
b. Vega
c. Canvas
d. Maps

3. What type of data store is Elasticsearch?

a. Relational database
b. NoSQL database

c. NewSQL database
d. Graph database

4. In Kibana, what is the purpose of creating an index pattern?

a. To define how data should be stored in Elasticsearch
b. To set up visualizations and dashboards
c. To format the data before ingestion

5.

d. To provide Kibana with a schema for accessing Elasticsearch data
How can you activate Machine Learning features in Kibana?

a. By installing additional plugins

b. By using the open-source version of Kibana

c. By subscribing to at least the Platinum subscription or activating a trial
d. Machine Learning features are automatically activated in all versions

Answers

1.
2.
3.
4.
3.

b
b
b
d
C

Questions

l.

6.

Describe the architecture of Elasticsearch, and its role in the Elastic Stack. How
does it ensure scalability and reliability in handling data?

. Explain the different types of visualizations available in Kibana, and the purpose

of each. How can these visualizations enhance data analysis?

. Discuss the process of data ingestion in Elasticsearch. How does one go about

indexing data, and what are the considerations for structuring an index?

. Detail the Query DSL in Elasticsearch. Provide examples of how different types

of queries can be used to retrieve and manipulate data.

. Compare and contrast Vega and Vega-Lite in Kibana. What are the scenarios

where one might be preferred over the other?

Describe a scenario where using Vega or Vega-Lite in Kibana would be more
beneficial than using standard Kibana visualizations. What unique features do
Vega and Vega-Lite offer?

. Outline the steps to set up a basic alert in Kibana. What are the components of an

alert, and how can it be used to monitor data effectively?

. Discuss the commercial Machine Learning features in Kibana. How can these

features be activated, and what are the potential applications?

. Explain how to create and use an index in Elasticsearch as a connector for alerts

or other purposes. What are the steps and considerations in this process?

10. Provide an overview of the © Canvas > feature in Kibana. How does it differ

from other visualization tools in Kibana, and what are its unique use cases?

Key Terms

Elasticsearch : A distributed, RESTful search and analytics engine capable of
addressing a growing number of use cases.

Kibana : A free and open user interface that lets you visualize your
Elasticsearch data, and navigate the Elastic Stack.

Visualization : The representation of data in a graphical format, made possible
in Kibana through various types of charts, maps, and diagrams.

Dashboard : A collection of visualizations or panels, arranged on a single page,
and used to track the related data metrics.

Vega and Vega-Lite : A visualization grammar that allows for building complex
and custom visualizations in Kibana beyond the predefined types.

Canvas : A feature in Kibana that allows users to create a custom, pixel-perfect
report or infographic with live data.

Query DSL : Elasticsearch’s domain-specific language used to execute queries
to retrieve or manage data.

Aggregations : The process of collecting and summarizing data in Elasticsearch,
often used in Kibana visualizations for metrics and bucketing.

Index : The collection of documents in Elasticsearch with similar characteristics,
serving as the primary storage unit.

Alerts : Automated notifications in Kibana that monitor data and send alerts,
based on specified conditions.

Machine Learning (ML) : A suite of features in Elastic Stack offering anomaly
detection and forecasting capabilities.

Data Ingestion : The process of importing data into Elasticsearch from various
sources.

Threshold Alert : A type of alert in Kibana that triggers, when data crosses a
defined threshold.

NoSQL Database : A type of database that provides a mechanism for storage
and retrieval of data which Elasticsearch is categorized under.

Elastic Stack : The group of products comprising Elasticsearch, Kibana, Beats,
and Logstash (often referred to as ELK Stack with Elastic Beats).

C HAPTER 5

Developing for the Elastic Stack

Introduction

Welcome to Chapter 5 of the ““ Ultimate Elastic Stack Handbook ,” where we
delve into the fascinating world of Elastic Stack development. This chapter is
dedicated to those looking to extend and customize the Elastic Stack’s
capabilities, covering three critical components: Elasticsearch, Logstash, and
Kibana. Whether you are a developer, a data engineer, or an IT professional, this
section provides the guidance needed to tailor the Elastic Stack to your unique
needs and challenges.

The Elastic Stack is a powerful suite of tools, but every organization has unique
requirements that off-the-shelf solutions cannot always meet. Understanding how
to extend and customize these tools can significantly enhance their value,
allowing for more precise and efficient data handling, analysis, and visualization
tailored specifically to your operational context.

By the end of this chapter, you will have a solid foundation in developing for the
Elastic Stack, equipped with the skills and insights to create custom solutions and
enhancements. So, whether you are addressing specific business needs,
optimizing performance, or innovating with data, the journey into Elastic Stack
development opens up a world of possibilities. Prepare to unleash the full
potential of Elasticsearch, Logstash, and Kibana, as we embark on this
developmental adventure.

Structure

In this chapter, we will discuss the following topics:

e Building Custom Elasticsearch Plugins

Hands-On Lab: Building Elasticsearch Plugins

Extending Logstash with Ruby
Hands-On Lab: Extending Logstash with Ruby

Kibana Plugin Development

Building Custom Elasticsearch Plugins

Custom FElasticsearch plugins allow you to extend the capabilities of Elasticsearch
to meet the unique needs of your organization. Whether you are looking to add
new REST endpoints, extend the existing functionalities, or create new custom
data types, a well-crafted plugin can significantly enhance your Elastic Stack’s
performance and capabilities. This section guides you through the process of
building custom Elasticsearch plugins, from setup to deployment.

Introduction to Elasticsearch Plugins

e What is a Plugin? Understand the concept of plugins in the context of
Elasticsearch and the various types of plugins you can create, including
modules, script engines, and custom functionalities.

e Why Custom Plugins? Learn about the scenarios and benefits of
developing custom plugins, including performance optimization, custom
data processing, or introducing new features not available in the standard
distribution.

Setting Up the Development Environment

e Tools and Prerequisites : List the tools, languages (primarily Java), and
environment setups needed to start developing plugins.

e Elasticsearch Plugin SDK : Introduction to the SDK provided by
Elasticsearch for plugin development, and how it simplifies the creation as
well as testing of plugins.

Creating Your First Plugin

e Plugin Structure : Overview of the standard structure of an Elasticsearch
plugin, including the main components like plugin descriptors, and the core
Java classes.

e Developmental Steps : Step-by-step instructions to create a simple plugin,
including:

o

Setting up the project structure.

o

Writing the core plugin code.

(o]

Integrating with Elasticsearch’s lifecycle.

(¢]

Adding custom settings and configuration options.

Testing and Deployment

e Local Testing : How to test your plugin locally in a development
environment, ensuring that it works as expected with Elasticsearch.

o Unit and Integration Testing : Best practices for writing and running unit
and integration tests to validate the functionality and performance of your
plugin.

e Packaging and Deployment : Guide to packaging your plugin into a zip
file, and deploying it to an FElasticsearch cluster, including version
compatibility and security considerations.

Advanced Topics

e Custom REST Endpoints : Creating custom RESTful endpoints for your
plugin to handle specific types of requests or introduce new APIs.

e Handling Cluster and Node Events : How to make your plugin aware of
and reactive to cluster and node lifecycle events.

e Performance Considerations : Tips for ensuring that your plugin does not
negatively impact the overall performance of Elasticsearch, including
profiling and optimization techniques.

Best Practices and Common Pitfalls

e Coding Standards : Importance of following coding standards and
conventions, specific to Elasticsearch plugin development.

e Security Implications : Understanding the security implications of running
custom code within Elasticsearch, and how to develop secure plugins.

e Troubleshooting and Support : Common issues faced during plugin
development, and how to troubleshoot them, as well as where to find
community and official support.

Hands-On Lab: Building Elasticsearch Plugins

Welcome to the hands-on lab on building Elasticsearch plugins. In this exercise,
you will create a simple Elasticsearch plugin that adds a new REST endpoint to
Elasticsearch. This endpoint will return a customized greeting message with the
current server time. This lab will guide you through setting up your development
environment, coding the plugin, testing it, and finally deploying it to an
Elasticsearch cluster.

Objective

Create a custom Elasticsearch plugin that adds a new REST endpoint /greet
which returns a JSON response with a custom greeting, and the current server

time.

Prerequisites

Basic knowledge of Java (as Elasticsearch plugins are typically written in
Java).

Elasticsearch source code for reference (optional but helpful).
Java Development Kit (JDK) installed.

An IDE for Java development (for example, IntelliJ IDEA, Eclipse, and
Visual Studio Code).

Elasticsearch environment set up for testing the plugin.

In this lab, we use Visual Studio Code with Java extensions for development and
testing. We can install Extension Pack for Java and Gradle for Java from
Microsoft. However, you can use any IDE of your choice, as long as it supports
Java development. We also assume that you have a local Elasticsearch instance
running on your machine.

@ 1wl grr
¥
Fr—
U
o
- Froject
—

Gradle for Java +=

Diaadia v Usiratall | Gt b Pro Raleies Version

Gradle for Java

rE
&

Figure 5.1: Extensions from Visual Studio Code

The following steps will guide you through the process of creating a custom
Elasticsearch plugin. You will start by setting up your development environment,
then create the plugin, test it locally, and finally deploy it to your Elasticsearch
instance.

Step 1: Setting Up the Development Environment

a. Install Elasticsearch : Ensure that you have Elasticsearch installed and
running on your machine. Use the official documentation to install, if not
already done.

b. Setup IDE : Open your Java IDE, and set up a new Gradle project for the
Elasticsearch plugin.

"

c. For Visual Studio Code, click " view " -> Command Palette -> " Java:
Create Java Project " ->" Gradle " with Kotlin DSL.

d. Select the folder where you want to create the project, and give it a name.
For instance, we use myplugin as folder name, and myplugin as project
name.

Step 2: Creating the Plugin Structure

a. Generate Plugin Skeleton : Use Gradle to generate the skeleton of your
plugin. This will create the necessary files and folders for your plugin.

b. You can see project structure as shown in Figure 5.2 .

EXPLORER

MYPLUGIN

.gradle

main

java’ myplugin

GreetingR
resources
test
build.gradle.kts
gradle

.gitattributes

O .:er-:Zl[Il!Z"”.i-!?F-'

settings.gradle.kts

Figure 5.2: Generate Plugin Skeleton

c. Understand the Structure : Familiarize yourself with the main components
of the plugin: The plugin descriptor file, the main plugin class, and so on.

d. You can find the plugin descriptor file information in official
documentation. For instance, the plugin descriptor file for Elasticsearch 8.x
https://www.elastic.co/guide/en/elasticsearch/plugins/current/plugin-
descriptor-file-classic.html .

Step 3: Developing the Plugin
a. Implementing the Main Plugin Class : Create a Java class extending from
Plugin class. Implement the necessary methods to define your plugin.

b. We create GreetPlugin.java file in sre/main/java/myplugin folder. You
can see the code in Figure 5.3 .

c. Write the code to implement the plugin on the following codes:

https://www.elastic.co/guide/en/elasticsearch/plugins/current/plugin-descriptor-file-classic.html

package myplugin;

import org.elasticsearch.plugins.Plugin;

import
org.elasticsearch.cluster.metadata.IndexNameExpressionResolver;
import org.elasticsearch.common.settings.ClusterSettings;
import org.elasticsearch.common.settings.IndexScopedSettings;
import org.elasticsearch.common.settings.Settings;

import org.elasticsearch.common.settings.SettingsFilter;

import org.elasticsearch.plugins.ActionPlugin;

import java.util.List;

import org.elasticsearch.rest.RestController;
import org.elasticsearch.rest.RestHandler;
import org.elasticsearch.cluster.node.DiscoveryNodes;

import java.util.function.Supplier;

import static java.util.Collections.singletonList;

public class GreetingPlugin extends Plugin implements

ActionPlugin {
@Override
public List<RestHandler> getRestHandlers (final Settings
settings, final RestController restController, final
ClusterSettings clusterSettings, final IndexScopedSettings
indexScopedSettings, final SettingsFilter settingsFilter,
final IndexNameExpressionResolver
indexNameExpressionResolver, final Supplier<DiscoveryNodes>
nodesInCluster) {

return singletonlList (new GreetingRestAction());

}

Code Explanation

The provided Java code defines a class GreetingPlugin which extends the
Plugin class, and implements the actionPlugin interface from the Elasticsearch
framework. The class is intended to be used as an Elasticsearch plugin that
registers a custom REST action, in this case, a greeting action.

This method getRestHandlers () is overridden from the ActionPlugin interface
and is used to return the list of RestHandler instances that the plugin wants to
register. These handlers will manage REST actions added by the plugin.

e Parameters : It receives several parameters, including various settings and
controllers needed for the handlers to interact with the rest of the
Elasticsearch system.

e Functionality : In this method, it returns a singleton list containing a new
instance of GreetingRestAction , which is presumably the class defined
earlier to handle the greeting action. This means the plugin will manage one
REST endpoint, as defined by the GreetingRestaction class.

When the GreetingPlugin is loaded into Elasticsearch, it registers the custom
REST handlers defined in it. Specifically, it registers the GreetingRestAction
handler, which listens for requests on the /greet endpoint and responds
accordingly. The registration is done by overriding the getRestHandlers method
from the ActionPlugin interface, which is a common pattern for adding new
REST actions to Elasticsearch through plugins.

In essence, the GreetingPlugin serves as a container and registrar for custom
actions (in this case, just one) that augment the functionality of an Elasticsearch
instance with new REST endpoints.

The GreetingPlugin class represents a straightforward example of an
Elasticsearch plugin designed to extend the platform’s REST interface. By
implementing the ActionPlugin interface, and providing a custom implementation
of getRestHandlers , it directs Elasticsearch to handle certain types of requests
with the GreetingRestaction . This pattern is central to developing plugins that
introduce new behaviors or integrate external services into the Elasticsearch
ecosystem.

a. Adding a REST Action : Create a new REST action class that extends
BaseRestHandler . Implement your logic to return a greeting and the
current server time in JSON format.

b. On GreetingPlugin ckms, we return singletonlist of
GreetingRestAction class. We create GreetingRestAction class in
src/main/java/myplugin folder. You can see the code in Figure 5.3 .

package myplugin;
// libraries

public class GreetingRestAction extends BaseRestHandler {

@Override

public String getName () {
return "greeting rest action";

}

@QOverride

public List<Route> routes() {
return List.of (
new Route (GET, "/greet"));
}
@Override
protected Set<String> responseParams () {
return Set.of ("name");
}
@Override
protected RestChannelConsumer prepareRequest (RestRequest
request, NodeClient client) throws IOException {
return channel -> {
String who = request.param("name", "world");
XContentBuilder builder = channel.newBuilder ():;
builder.startObject () ;
builder.field("greeting", "Hello, " + who + "!"™);
builder.field("time", System.currentTimeMillis()):;
builder.endObject () ;
try |
channel.sendResponse (new RestResponse (RestStatus.OK,
builder));
} catch (final Exception e) {

channel.sendResponse (new RestResponse (channel, e));

Code Explanation

This Java code defines a class GreetingRestAction that extends
BaseRestHandler Wwhich is part of the Elasticsearch framework. The class is
intended to create a custom REST action for an Elasticsearch plugin. Here is an
explanation of its components and functionality:

package myplugin;

This line declares the package name for the class, which is myplugin . It is a
convention in Java to organize classes into packages.

The import statements bring in various classes and methods needed for the
GreetingRestAction class to function, such as components from the

Elasticsearch framework (NodeClient , BaseRestHandler , etc.) and standard
Java libraries (IOException, List, Set).

public class GreetingRestAction extends BaseRestHandler ({

/7.
}

This line defines the GreetingRestAction as a public class extending

BaseRestHandler , Which is an abstract base class for handling REST requests in
Elasticsearch.

getName ()

@Ooverride
public String getName () {
return "greeting rest action";

}

This method is overridden from BaseRestHandler and provides a unique name
for the handler. It’s used in logging and other purposes to identify the handler.
routes ()

Jjava

@Override

public List<Route> routes() {

return List.of (new Route (GET, "/greet"));
}

This method returns the routes that this handler will manage. It defines that this
handler responds to HTTP GET requests at the path /greet.

responseParams ()

Jjava

@Override

protected Set<String> responseParams () {

return Set.of ("name") ;

}

This method returns the names of parameters used in the response. In this case,
it’s declaring that the name parameter is expected in the request. It helps
Elasticsearch understand what parameters are valid for this handler, preventing
unrecognized parameter exceptions.

prepareRequest ()

@QOverride

protected RestChannelConsumer prepareRequest (RestRequest request,
NodeClient client) throws IOException {
// Implementation

}

This is the most critical method, where the actual handling of the REST request
happens. It’s invoked with every request that matches the defined routes. Inside
this method:

e |t defines a RestChannelConsumer that takes a RestChannel , and writes a
response to it.

[t extracts the name parameter from the request, defaulting to “world” if not
provided.

e It builds a JSON response using XContentBuilder including a greeting
message and the current server time.

e Finally, it sends the response back to the client. In case of any exception, it
sends an error response.

In summary, the GreetingRestaAction class creates a simple Elasticsearch REST
endpoint at /greet . When a GET request is sent to this endpoint, the server
responds with a greeting message. The message can be personalized by including
a name parameter in the query string (for example, /greet?name=John),
otherwise, 1t defaults to " Hello , world! ". It also includes the current server
time in the response.

This kind of plugin extension allows for customized behavior in an Elasticsearch
instance, which can be particularly useful for adding new functionalities or
integrating with other systems and processes.

a. Registering the REST Action : Modify the plugin class to register your
custom REST action.

b. We create descriptor file, plugin-descriptor.properties .

description=My first plugin
version=1.0

name=my-first-plugin
classname=myplugin.GreetingPlugin
java.version=19

elasticsearch.version=8.10.4

c. Modify elasticsearch.version based on your Elasticsearch version. For
instance, we use Elasticsearch 8.10.4.

d. We modify build.gradle.kts file as follows:

dependencies {

implementation("org.elasticsearch:elasticsearch:8.10.4")

}

Step 4: Building the Plugin
a. Compile the Plugin : Use Gradle to build your plugin, and generate a ZIP
file.

b. Understand the Output : Ensure that your build includes the plugin
descriptor and JAR files.

c. ZIP your JAR file and plugin descriptor file. For instance, we use
myplugin.zip as the name of the ZIP file.

d. Copy the ZIP file to your Elasticsearch instance.
Step 5: Testing the Plugin Locally

a. Install the Plugin : Install your plugin to a local Elasticsearch instance,
using the elasticsearch -plugin install command, along with the path to
your plugin ZIP file.

b. Navigate to Elasticsearch home directory (default:
/usr/share/elasticsearch folder) and run the following command:

./bin/elasticsearch-plugin install file:///path/to/myplugin.zip

B agusk@elasticOn: fussharels X v = o x

. $ sudo . /binfelasticsearch-plugin install file:///home/agusk/myplugin.zip
== Installing file:///home/agusk/myplugin.zip
-> Domnloading file:///home/agusk/myplugin.zip

== Installed my-first-plugin
=» Please restart Elasticsearch te activate any plugins installed

Figure 5.3: Install Plugin
c. You may need to run the command with sudo , if you do not have the
necessary permissions.

d. Restart Elasticsearch : Restart the Elasticsearch instance to pick up the
new plugin.

sudo systemctl restart elasticsearch

e. You can check the plugin is installed by running the following command:

./bin/elasticsearch-plugin list
f. You should see the plugin listed in the output.

g. You can also check the plugin is installed by running the following
command:

curl -XGET http://localhost:9200/ cat/plugins?v
if you DevTools in Kibana, you can run the following command:
GET / cat/plugins?v

h. Test the Endpoint : Use a tool like cURL or Postman to send a request to
your new /greet endpoint, and verify that it returns the expected response.

GET /greet?name=mr.abc
GET /greet

Console Sadirch Prafilar Grok Diabaigger Painles Labh wu

00K Temn

Figure 5.4: Test Plugin
Step 6: Debugging and Troubleshooting
a. Understand common issues that might occur during plugin development
such as classpath issues, dependency conflicts, or permission problems.
b. Learn how to read logs to troubleshoot any errors that occur, while running
your plugin.
Step 7: Documentation and Cleanup
a. Document Your Plugin : Write documentation for your plugin, describing
its purpose, how to install it, and how to use it.

b. Clean Up : Ensure that your code is clean, well-commented, and follows
the best practices for Elasticsearch plugin development.

¢. You can remove the plugin by running the following command:

./bin/elasticsearch-plugin remove my-first-plugin

Summary

By completing this lab, you will have gained practical experience in building and
deploying a simple Elasticsearch plugin. This exercise serves as a foundation for
you to start developing more complex plugins tailored to your specific needs.

Extending Logstash with Ruby

Extending Logstash with Ruby allows developers to add custom functionalities,
optimize data processing, and integrate with various systems and APIs. This
section of the handbook focuses on guiding you through the process of creating
custom extensions for Logstash using the Ruby programming language. It covers
everything from understanding the basics of Ruby in the context of Logstash, to
developing, testing, and deploying your custom filters, inputs, codecs, and
outputs.

Why Extend Logstash?

e Introduction to Extensibility : Understand the flexible architecture of
Logstash, and the reasons why you might need to extend it, including
unique data transformation needs, performance optimizations, or proprietary
integrations.

e Types of Extensions : Overview of the different types of extensions, you
can create for Logstash such as filters, inputs, outputs, and codecs.

Ruby Primer for Logstash

e Getting to Know Ruby : A brief introduction to Ruby, focusing on the
aspects most relevant to Logstash development, such as syntax, object-
oriented principles, and the Ruby ecosystem.

e Logstash and Ruby : How Ruby is used within Logstash, including the
Event API and the plugin API that you will use to interact with Logstash’s
core.

Creating Custom Filters and Qutputs

o Setting Up the Development Environment : Guide to setting up your
Ruby and Logstash development environment, including the installation of
necessary tools and libraries.

e Developing Custom Filters : Step-by-step instructions on how to create
custom filters, including parsing, mutating data, and applying conditional
logic.

e Developing Custom QOutputs : How to create outputs to send data to
various destinations or services not supported out-of-the-box by Logstash.

Testing and Performance Considerations

o Writing Tests for Plugins : Importance of testing in the development
process, and how to write unit and integration tests for your custom plugins.

e Debugging and Performance Tuning : Strategies for debugging your
plugins, and tips for improving the performance of your custom Logstash
extensions.

Deployment and Management

e Packaging Your Plugin : Instructions on how to package your custom
plugin for distribution and deployment.

e Deploying Custom Extensions : How to deploy and manage your custom
Logstash plugins in various environments, including security considerations
and the best practices for maintenance.

Advanced Topics

e Interacting with External APIs and Services : Guidance on enhancing
your Logstash pipeline by integrating with external APIs and services
through custom plugins.

e Plugin Lifecycle and Management : Understanding the lifecycle of a
plugin within Logstash’s execution, and how to manage state and resources
effectively.

Best Practices and Common Pitfalls

e Coding Standards and Conventions : Best practices for writing clean,
maintainable, and efficient Ruby code in the context of Logstash plugins.

e Common Pitfalls : Common mistakes and pitfalls to avoid when
developing for Logstash, and how to solve typical problems you might
encounter.

By the end of this section, readers should be well-equipped to extend Logstash’s
capabilities using Ruby, allowing for customized and optimized data processing
pipelines. The skills and knowledge gained here will enable you to meet your
specific data transformation, enrichment, and shipping needs, making your
Logstash implementation more powerful and tailored to your organization’s
requirements.

Hands-On Lab: Extending Logstash with Ruby

In this lab, you will create a simple Logstash filter plugin using Ruby. This filter
will be designed to add a tag " example " to events that contain a specific field.
This exercise will guide you through setting up your development environment,
writing the Ruby filter plugin, and testing it within Logstash using Visual Studio
Code as the editor.

Objective

To develop a simple Logstash filter plugin that adds a tag to events with a specific
field.

Prerequisites

e Ruby development environment set up.

e Logstash installed on your machine.

 Visual Studio Code (VS Code) installed with Ruby extensions.
» Basic understanding of Ruby and Logstash.

Lab Steps

The following steps will guide you through the process of creating a custom
Logstash filter plugin using Ruby. You will start by setting up your development
environment, then create the plugin, test it locally, and finally deploy it to your
Logstash instance.

For demo, we use a sample project from https:/github.com/logstash-
plugins/logstash-filter-example .

Step 1: Setting Up Visual Studio Code
a. Install Visual Studio Code : If not already installed, download and install it
from the official website.

b. Install Ruby Extension : Open VS Code, go to the Extensions view (icon
on the side menu or Ctr/+Shift+X), and search for " ruby ". Install it for
enhanced Ruby language support.

c. If you are working in Ubuntu, you may opt for additional libraries to
support Elastic plugin development. You can install them by running the
following command:

sudo apt-get install ruby-bundler
Step 2: Cloning the Project

a. You can clone the project from https:/github.com/logstash-
plugins/logstash-filter-example , or download the project.

https://github.com/logstash-plugins/logstash-filter-example
https://github.com/logstash-plugins/logstash-filter-example

b. Clone the Project : Clone the project from GitHub, using the following
command:

git clone https://github.com/logstash-plugins/logstash-filter-

example

c. This project has a structure folder as shown in Figure 5.5 .

B Command Prompt % B agusk@kibanall fuseisharefic ® I aguski@kibana0l: ~/demo X v - [X
$ tree logstash=filter-example/

— CHANGELOG. md
— CONTRIBUTORS
— DEVELOPER.md
L— index.asciidoc
|— Gemfile

—
EaTE
L— example.rb

— LICENSE
— legstash-filter-example-3.8.2.genm
|— loegstash-fFilter-example.gemspec
— NOTICE.TXT
|— Rakefile
|— README . md

L— example_spec.rb
spec_helper.rb

6 directories, 14 files

Figure 5.5: Project Structure
Step 3: Compiling the Plugin
a. Navigate to the project directory, and run the following command to

compile the plugin:

gem build logstash-filter-example.gemspec

b. You should see a file named logstash-filter-example-x.y.z.gem Iin the
project directory.

Step 4: Installing the Plugin

1. Install the Plugin : Install the plugin to your local Logstash instance, using
the logstash-plugin install command along with the path to your plugin
GEM file.

bin/logstash-plugin install /path/to/logstash-filter-example-

X.y.Z.gem

2. Verify Installation : Verify that the plugin is installed by running the
following command:

bin/logstash-plugin list

3. You should see the plugin listed in the output.

W Command Prompt % W sguik@kibana0l: fuseisharel ¥ Bl agusk@kibanallk ~idemofiog X+ v o X

: fusx 3 $ sudo bin/logstash=-plugin install /home/agusk/demo/logstash=filter-example/
logstash=filter-example=3.8.2.gem
Using bundled JDH: fusr/share/logstash/jdk
Validating Shome/agusk/demo/Llogstash—filter-example/logstash—-filter-example-3.0.2.gem
Installing logstash-filter-example
Installation successful

:fusx logstash$ sudo bin/logstash-plugin list
Using bundled JDK: fusr/share/logstash/jdk
legstash-codec-avro
logstash-codec-cef
logstash=codec=collectd
logstash-codec=dots
logstash-codec-edn
logstash-codec-edn_lines
logstash-codec-es_bulk
logstash-codec—fluent
logstash-codec-graphite
legstash-codec-jsen
logstash-codec-json_lines
logstash-codec-line
logstash-codec-msgpack
logstash-codec-multiline
logstash-codec-netflow
legstash-codec-plain
legstash-codec-rubydebug
logstash=filter-aggregate
logstash=filter-anonymize
logstash=filter-cidr
logstash-filter—clone
logstash-filter-csv
logstash-filter—-date
logstash-filter-de_dot
logstash-filter-dissect
legstash-filter-dns
logstash-filter-drop
logstash-filter-elasticsearch
logstash=filter-example
logstash-filter—fingerprint

Figure 5.6: Install and List Plugin

Step S: Testing the Plugin with Logstash

a. Configure Logstash : Create a Logstash configuration file (for example,
logstash.conf) in your project directory with the following content. This
configuration sets up Logstash to use the standard input as the source and
standard output as the sink, and includes your filter in the processing

pipeline.
input { stdin { } }
filter {
example { }
}

output { stdout { codec => rubydebug } }

b. Run Logstash with Your Plugin : Use the following command in the
terminal to run Logstash with your configuration file and plugin path:

bin/logstash -f /you-path/logstash.conf --
config.reload.automatic

c. Test the Filter : Once Logstash is running, type a test message into the
console. If your filter is working, you should see the message event in the
output.

d. You can see the result as shown in the following Figure 5.7 .

B Command Prompt % W sguik@kibans0l: fustisharel X Bl sgusk@kibanall ~idemofiog X+ v o X

igured with ‘pipeline.ecs_compatibility: v8' setting. ALl plugins in this pipeline will default to ‘ecs_compat
ibility => v8" unless explicitly configured otherwise.

[INFO] 2823-12-29 84:18:85.737 [[main)-pipeline-manager] javapipeline - Starting pipeline {:pipeline_id=>"mai
n", "pipeline.workers”=»>2, "pipeline.batch.size"=>125, "pipeline.batch.delay"=>58, "pipeline.max_inflight"=>25
8, "pipeline.sources"=>["config string”], :thread=>"#<Thread:8x73121827 fusr/share/logstash/logstash=-core/lib/
logstash/java_pipeline.rb:13U run>"}

[INFO] 20823-12-29 84:10:06.350 [[main]-pipeline-manager] javapipeline - Pipeline Java execution initializatio
n time {"seconds"=>8.61}

[INFO] 2023-12-29 04:19:06.393 [[main)-pipeline-manager] javapipeline - Pipeline started ["pipeline.id"=>"mai

n"}
[INFO] 2023-12-29 04:10:06.399 [Agent thread] agent - Pipelines running {:count=>1, :running_pipelines=>[:mai
nl], :nen_running_pipelines=>[]}
The stdin plugin is now waiting for input:
helle world
{
"host" {
"hostname™ kibana@l
),
"message" 'Hello World!™,
"gtimestamp" 2823-12-29T04:10:20.5343797792,
"avent" i
"original® helle world"
b
“gversion”
test 1234
{
"host" i
"hostname*” "kibana8
b
"message" "Hello World!™,
"gtimestamp" 2823-12-29T04:10:31.1548171642
"event™ i
"sriginal® test 1234
}

L}
"@version"

Figure 5.7: Test Plugin
Step 6: Debugging and Expanding

a. Debugging : Use VS Code’s Ruby debugging tools to set breakpoints, and
step through your code, if necessary.

b. Expanding Functionality : Try enhancing the filter by adding more
conditions or manipulating the event data in different ways.

Summary

Congratulations! You have just created a simple Logstash filter plugin using
Ruby, and tested it within your Logstash pipeline. This lab provides foundational
skills to start creating more complex and functional plugins, allowing you to
extend Logstash to meet your specific needs. Continue exploring the Logstash
plugin ecosystem and Ruby language to enhance your data processing pipelines.

Kibana Plugin Development

Developing plugins for Kibana enables you to add new features, customize
visualizations, and integrate third-party applications directly into the Kibana
interface. This section aims to equip you with the knowledge and skills necessary
to design, build, and maintain effective plugins for Kibana, enhancing the
visualization and management capabilities of your Elastic Stack.

Understanding Kibana’s Extensibility

e Introduction to Kibana Plugins : Discover what makes Kibana plugins
powerful tools for customization and integration, including the ability to add
new features, change application behavior, and embed external data sources.

e Plugin Types and Uses : Overview of the different types of plugins you can
develop for Kibana such as new Ul components, applications, or even
modifications to the existing features.

Setting Up Your Development Environment

e Tools and Prerequisites : List the necessary tools, languages, and
frameworks required for Kibana plugin development, focusing primarily on
JavaScript and Node.js.

e Kibana Development Environment : Guide to setting up a development
environment tailored for Kibana plugin creation, including cloning the
Kibana repository, and understanding its directory structure.

Building Your First Kibana Plugin

e Plugin Anatomy : Dive into the anatomy of a Kibana plugin, understanding
the fundamental components such as server-side modules, client-side
components, and plugin manifest files.

o Step-by-Step Plugin Creation : Detailed walkthrough of creating a basic
plugin, from generating the plugin skeleton to adding custom logic and user
interfaces.

e Interacting with Elasticsearch : Learn how to fetch, manipulate, and
display data from Elasticsearch within your plugin, utilizing Kibana’s
extensive APIs and services.

Best Practices and Advanced Topics

* Design and Usability Considerations : Importance of user experience and
design in your plugin’s interface, adhering to Kibana’s design principles and
guidelines.

e Advanced Features and APIs : Explore advanced development topics such
as adding configuration options, internationalization, and leveraging
Kibana’s core APIs for more sophisticated plugin functionality.

e Security and Authentication : Implement security best practices, ensuring
that your plugin adheres to the necessary authentication and authorization
mechanisms used by Kibana.

Testing and Deployment

e Testing Your Plugin : Strategies for effectively testing your plugin,
including unit tests, integration tests, and end-to-end tests using the tools
and frameworks supported by Kibana.

e Packaging and Deployment : Guide to packaging your plugin for
distribution and instructions for deploying it to a Kibana instance, including
version compatibility and upgrade considerations.

Troubleshooting and Community Engagement

e Common Developmental Challenges : Discussion of common issues and
challenges you may encounter, when developing Kibana plugins, and how
to overcome them.

* Engaging with the Community : Resources for getting help, contributing
to the Kibana community, and staying updated with the latest development
practices and features.

Thus, by the end of this section, readers will have a thorough understanding of the
Kibana plugin architecture and developmental process. You will be capable of
designing and implementing custom plugins that meet the specific needs, whether
for enhancing data visualization, integrating new data sources, or adding entirely
new features to the Kibana interface. With these skills, you will be able to
significantly increase the value and functionality of your Elastic Stack
deployments.

Conclusion

In this chapter, we delved deep into the world of Elastic Stack development,
exploring how to extend and enhance Elasticsearch, Logstash, and Kibana using
custom plugins and scripts. We started by examining how to create custom
Elasticsearch plugins, enabling personalized search and analytics capabilities
tailored to specific needs. Through detailed examples and explanations, we have
seen how plugins can intercept and process data, introduce new REST endpoints,

or add novel functionalities to Elasticsearch clusters, thereby elevating its utility
and performance.

We then navigated through the process of extending Logstash with Ruby,
illustrating the powerful ways you can manipulate and transform data streams. By
creating a custom filter plugin, you learned how to intercept, analyze, and modify
event data as it flows through the Logstash pipeline. This ability to customize data
processing logic is crucial for adapting Logstash to various data formats and
sources, ensuring that the data is primed and ready for analysis in Elasticsearch,
or other destinations.

Moving on to Kibana, we explored the intricate process of developing Kibana
plugins. This journey uncovered how Kibana’s flexible architecture allows for the
creation of dynamic visualizations, custom applications, and enhanced features,
all within its user interface. By integrating new visual components or
functionalities into Kibana, developers can provide the end-users with powerful
tools for data exploration and insight discovery, making data analytics more
accessible and impactful.

Throughout these sections, we have emphasized the importance of understanding
the core principles of the Elastic Stack, mastering the development environment,
and adhering to the best practices in coding and plugin management. Thus, the
journey through Elastic Stack development is filled with opportunities for
innovation and optimization, allowing developers to build robust, efficient, and
customized solutions.

As we move forward, the next chapter will focus on ““ Troubleshooting and Best
Practices . Here, we will consolidate our learning, and ensure that our
development endeavors are not only innovative, but also robust and maintainable.
We will explore the common pitfalls, performance considerations, security
implications, and maintenance strategies. This knowledge will equip you with the
skills needed to troubleshoot issues effectively, optimize performance, and ensure
that your custom Elastic Stack implementations are secure, reliable, and aligned
with the best practices in the field.

Points to Remember

e Understanding Elastic Stack Components : Know the roles and
capabilities of Elasticsearch, Logstash, and Kibana in the Elastic Stack.
Each serves a unique purpose in data collection, storage, and visualization.

e Custom Elasticsearch Plugins :

o Plugins can significantly extend Elasticsearch’s capabilities. They can
add new features, custom search strategies, or integrate with other
systems.

o Understand the plugin architecture, including the plugin descriptor and
main class.

o Ensure compatibility with the version of Elasticsearch, you are
targeting.
e Extending Logstash with Ruby :
o Ruby is used for writing filter, input, output, and codec plugins for
Logstash.
o Familiarize yourself with the Logstash API and Ruby scripting.
o Testing and performance tuning are critical to ensure that your plugins
do not degrade the performance of Logstash.
e Kibana Plugin Development :
o Kibana plugins can range from new visualizations to complete
applications.

o Understand Kibana’s plugin architecture and how to interact with its
APL.

o User experience is paramount in Kibana plugin development; ensure
that your plugins are intuitive, and enhance Kibana’s functionality.
e Plugin Development Environment :
o Set up a development environment specific to Elastic Stack
development, including necessary tools and SDKs.
o Use version control for your plugin source code, and maintain
documentation.
e Testing and Quality Assurance :
o Rigorously test your plugins in a controlled environment before
deployment.
o Use unit tests, integration tests, and performance tests to ensure
reliability and efficiency.
e Version Compatibility :

o Be aware of the Elastic Stack version you are developing against the
above. Compatibility issues can arise if the plugin is not aligned with

the version of Elasticsearch, Logstash, or Kibana, you are targeting.
e Security and Performance Considerations :

o Always consider the security implications of your custom plugins.
Ensure that you are not introducing vulnerabilities.

o Be mindful of the performance impact of your plugins, especially in
high-load environments.

e Documentation and Community Engagement :

o Keep thorough documentation for your custom developments for
future reference, and for others, who may use your plugins.

o Engage with the Elastic community for support, updates, and sharing
your contributions.

Multiple Choice Questions

1. What is the primary purpose of building custom Elasticsearch plugins?

a. To change the underlying architecture of Elasticsearch

b. To extend the capabilities of Elasticsearch by adding new features or
modifying the existing functionality

c. To replace Elasticsearch with another search engine
d. To create visualizations for data stored in Elasticsearch
2. Which programming language is primarily used for writing Logstash
plugins?
a. Python
b. Ruby
c. Java

d. JavaScript
3. What should you include in a . gemspec file for a Logstash plugin?

a. The version of Logstash, the plugin is compatible with.
b. A list of other plugins that are dependencies.
c. Metadata about the plugin, including name, version, and dependencies.

d. Command-line options for the Logstash service.

4. Which of the following is NOT a typical component of a Kibana plugin?

3.

a. Custom visualizations

b. A new REST endpoint

c. Data storage mechanisms

d. User interface elements
What is a common practice when developing plugins for the Elastic Stack to
ensure compatibility, and prevent future issues?

a. Always use open-ended dependencies in your plugin's.gemspec file.

b. Test your plugin with only the latest version of the Elastic Stack.

c. Specify the exact version numbers for dependencies in your
plugin's.gemspec file.

d. Avoid documenting the plugin as Elastic Stack versions are self-

explanatory.
Answers
1.b
2.b
3.c
4.c
S.c
Questions
1. Describe the process and key considerations for setting up a development

environment for Elasticsearch plugin development.

. Explain the architecture of a custom Elasticsearch plugin. What are the main

components, and how do they interact with the Elasticsearch ecosystem?

. Discuss the importance of version compatibility in Elasticsearch plugin

development. How can developers ensure that their plugins remain
compatible with different Elasticsearch versions?

. [Mlustrate with examples how custom Logstash filters can transform data.

What are some common use cases for these filters in data processing
pipelines?

. Describe the steps and necessary components for creating a simple Logstash

filter plugin using Ruby. What are the specific roles of each component in

10.

the plugin?

. Explain the concept of Kibana plugin development. What types of

customizations and extensions can developers introduce to Kibana through
plugins?

. Discuss how to effectively test and validate a Kibana plugin. What are some

best practices for ensuring that the plugin works as expected, and does not
negatively impact Kibana’s performance or usability?

. Explain the role and structure of the plugin-descriptor.properties file

in Elasticsearch plugin development. What critical information does it
contain, and why is it important?

. Describe how Elasticsearch handles custom REST endpoints through

plugins. What are some potential use cases for adding custom endpoints to
an Elasticsearch cluster?

Consider the security implications of developing plugins for the Elastic
Stack. What are some best practices developers should follow to ensure
their plugins do not introduce vulnerabilities?

Key Terms

Elasticsearch Plugins : Custom additions or extensions to Elasticsearch
that can enhance or modify its capabilities by adding new features, custom
search strategies, or integrating with other systems.

Logstash Filters : Components in Logstash that process the incoming data,
typically used to transform or enrich data as it moves through the pipeline.

Kibana Plugins : Extensions or customizations to Kibana which can range
from new visualizations and UI elements to complete applications
integrated within the Kibana interface.

Ruby : The programming language predominantly used for writing
Logstash plugins, particularly for filters, inputs, outputs, and codecs.

Plugin Descriptor (plugin-descriptor.properties): A file required in
every Elasticsearch plugin that contains metadata about the plugin, such as
its name, version, description, and the main class.

Gemspec (.gemspec file) : A specification file used by RubyGems to
package Ruby applications or libraries; it contains metadata about the gem,
including name, version, authors, and dependencies.

Application Programming Interface (API) : A set of rules and
specifications that software programs can follow to communicate with each

other, used extensively in developing plugins to interact with Elastic Stack
components.

Gradle : An open-source build automation system that is used to build, test,
and deploy software, commonly used in the development of Elasticsearch
plugins.

Maven : A build automation tool used primarily for Java projects, similar to
Gradle, and sometimes used in the context of Elasticsearch plugin
development.

Rspec : A ‘Domain Specific Language’ (DSL) testing tool written in Ruby
to test Ruby code, often used for writing tests for Logstash Ruby plugins.

Logstash Pipeline : A sequence of events processed by Logstash, typically
consisting of inputs, filters, and outputs.

XContentBuilder : A builder utility from Elasticsearch used to build JSON
structures, often used in creating responses for custom REST endpoints in
Elasticsearch plugins.

Version Compatibility : Ensuring that plugins or software are compatible
with the specific versions of other software they interact with, crucial in
plugin development to ensure smooth functionality.

Logstash Core Plugin API : An API provided by Logstash that defines
how plugins should be written, and interact with the Logstash core.

C HAPTER 6

Troubleshooting and Best Practices

Introduction

Welcome to Chapter 6 of the “ Ultimate Elastic Stack Handbook ,” where we
delve into the critical areas of troubleshooting and best practices for maintaining a
robust, efficient, and secure Elastic Stack deployment. This chapter is designed as
a comprehensive guide to help you navigate the complexities of managing large-
scale data environments, ensuring that your infrastructure not only performs
optimally, but is also resilient against common pitfalls and evolving challenges.

Troubleshooting is an inevitable requirement for any technology stack, more so
for a versatile and complex one like the Elastic Stack. No matter the level of
expertise, users encounter issues that can range from minor inconveniences to
major system outages. Understanding how to systematically approach these
problems, diagnose their roots, and apply effective solutions which is the key to
maintaining continuous operation and performance. In this section, we will
provide you with the strategies, tools, and methodologies that are most effective
for troubleshooting common and complex issues, within the Elastic Stack.

Best Practices are distilled from the collective experience of thousands of users,
and the insights of Elastic’s developers. They encompass a broad range of topics,
including system design, performance tuning, security, maintenance, and
upgrades. Adhering to these best practices is critical for ensuring that your
deployment is not only stable and performant, but also secure and scalable. We
will explore the most important best practices you should follow, offering
practical advice and actionable tips to help you get the most out of your Elastic
Stack implementation.

By the end of this chapter, you will have a deeper understanding of how to
approach troubleshooting systematically, and how to implement the best practices
that will lead to a successful Elastic Stack deployment. Thus, whether you are a
novice user getting to grips with Elastic Stack, or a seasoned professional looking
to refine your skills, this chapter will provide valuable insights to enhance your
operational efficiency and problem-solving strategies.

Let us begin by exploring the rich landscape of troubleshooting, followed by the
essential best practices that will serve as the cornerstone of your Elastic Stack

journey.

Structure

In this chapter, we will discuss the following topics:

e Common Pitfalls and Their Solutions
e Optimizing for Large Scale Deployments
ELK Stack Security Best Practices

Maintenance and Upgrades

Hands-On Lab: Maintenance and Upgrades for Elasticsearch and Kibana

Common Pitfalls and Their Solutions

When discussing Common Pitfalls and Their Solutions in the context of
Troubleshooting and Best Practices for something like the Elastic Stack, you
might be looking at addressing frequent challenges that users face, and how best
to overcome them. Here is a general approach based on common issues in similar
technology stacks:

Inadequate Planning and Configuration

o Pitfall : Jumping into deployment, without understanding the needs and
scale of your Elastic Stack can lead to performance issues, higher costs, and
inadequate resource allocation.

e Solution : Plan capacity, understand your data flow and structure, and
configure your stack accordingly. Use Elastic Stack’s planning and
monitoring tools to make informed decisions.

Ignoring Security Best Practices

e Pitfall : Leaving clusters unsecured can lead to significant vulnerabilities,
including unauthorized access and data breaches.

¢ Solution : Implement security features such as encryption, role-based access
control, and auditing. Regularly update and patch your systems to protect
against the known vulnerabilities.

Poor Data Modeling

o Pitfall : Inefficient data models or inappropriate index strategies can lead to
slow search performance and increased resource consumption.

e Solution : Understand the nature of your data, and how you will query it.
Optimize your data model for the Elastic Stack, considering factors like
indexing strategies and sharding.

Neglecting L.og and Error Monitoring

e Pitfall : Not monitoring or poorly monitoring logs and errors can lead to
missed insights and unresolved issues.

* Solution : Use Elastic Stack’s extensive logging and monitoring capabilities
to keep an eye on system performance and errors. Set up alerts and
dashboards to stay informed about the health of your system.

Overlooking Hardware and Infrastructure Needs

e Pitfall : Underestimating the hardware requirements can result in poor
performance and system instability.

e Solution : Regularly review and adjust your hardware and infrastructure
setup to meet the demands of your data volume and complexity. Consider
factors such as memory, CPU, and storage.

Complex Scaling without Strategy

 Pitfall : Scaling up your Elastic Stack without a clear strategy can lead to
unmanageable complexity and cost.

e Solution : Develop a scaling strategy that aligns with your growth.
Understand when to scale up or out, and consider using Elastic’s cloud
offerings for flexibility.

Inefficient Query Design

e Pitfall : Poorly designed queries can be resource-intensive and slow,
affecting user experience and system performance.

e Solution : Optimize your queries for efficiency and speed. Leverage query
DSL features, and understand how different queries impact performance.

Lack of Regular Maintenance and Optimization

 Pitfall : Failing to regularly maintain and optimize your stack can lead to
degraded performance over time.

e Solution : Establish routine maintenance practices, including index
optimization, archiving old data, and updating to the latest Elastic Stack
versions.

These points are derived from common issues across various database and search
engine platforms, tailored to what you might find in Elastic Stack environments.
It is important to understand the context of your deployment and the specific
challenges you face to develop the most effective solutions. For the most accurate
and effective strategies, it is crucial to continually refer to Elastic’s official
documentation, and stay updated with the latest best practices and features
provided by Elastic Stack.

Optimizing for Large-Scale Deployments

When discussing optimizing for large-scale deployments in the context of Elastic
Stack, it is important to focus on strategies that ensure scalability, performance,
and stability. Here is a general approach based on common issues in similar
technology stacks:

Hardware Optimization

e Strategy : Tailor hardware to the needs of your deployment. For large-scale
operations, invest in high-quality, scalable infrastructure focusing on fast
I/O, ample memory, and robust networking.

e Best Practices : Use SSDs for faster data retrieval, ensure adequate RAM
for caching, and select CPUs based on the workload.

Cluster and Index Design

o Strategy : Design clusters and indexes to distribute the load efficiently, and
maintain performance.

o Best Practices : Use multiple smaller indices, rather than a few large ones,
implement index sharding and replicas for high availability, and consider
index rollover strategies for time-based data.

Data Modeling and Management

o Strategy : Optimize data structures and types for the nature of your queries
and storage efficiency.

¢ Best Practices : Normalize data only as needed, use appropriate field types,
and compress data to reduce storage needs, without compromising retrieval
speed.

Caching and Memory Management

e Strategy : Leverage caching to improve performance for frequently
accessed data.

o Best Practices : Allocate adequate heap size for Elasticsearch nodes, but
avoid excessive memory allocation to prevent long garbage collection
pauses. Understand and utilize Elasticsearch’s cache settings.

Query Optimization

e Strategy : Design and optimize queries for efficiency and speed.

o Best Practices : Use filters for frequent and fast queries, avoid heavy
aggregations on large data sets, and pre-compute results, when possible.

Monitoring and Alerting

e Strategy : Implement a robust monitoring and alerting system to detect and
address issues early.

e Best Practices : Use Elastic Stack’s built-in monitoring tools, set up alerts
for anomalies or performance issues, and monitor both system and
application-level metrics.

Scalability Planning

e Strategy : Plan and implement a scalability strategy that allows your
deployment to grow with demand.

e Best Practices : Understand the difference between vertical and horizontal
scaling, and when to apply each. Pre-plan for capacity increases, and
automate the scaling process as much as possible.

Security Considerations

o Strategy : Ensure that the system is secure, and able to handle the sensitive
data, especially at scale.

e Best Practices : Implement encryption, access controls, and auditing.
Regularly update systems to patch vulnerabilities, and use secure
communication protocols.

Maintenance and Continuous Improvement

e Strategy : Regularly update and maintain the Elastic Stack deployment to
ensure optimal performance.

o Best Practices : Schedule regular downtime for maintenance, keep abreast
of updates and improvements in the Elastic Stack, and periodically review
architecture for potential improvements.

Each of these strategies should be adapted to the specific context and needs of
your deployment. Large scale brings its own set of challenges, and as such, it
requires meticulous planning, execution, and ongoing management. It is also
beneficial to look at case studies or examples of large-scale Elastic Stack
deployments to understand real-world challenges and solutions. For the most
accurate and effective strategies, it is crucial to continually refer to Elastic’s
official documentation, and stay updated with the latest best practices and features
provided by Elastic Stack.

ELK Stack Security Best Practices

When discussing ELK Stack Security Best Practices in the context of Elastic
Stack, you are addressing the critical aspect of securing data and access at every
layer of the stack. Here is a general approach, based on common issues in similar
technology stacks:

Use Built-in Security Features

e Best Practice : Enable and configure the security features provided by
Elastic Stack such as encryption, role-based access control, and auditing.

e Details : Utilize X-Pack security features for encryption, file-based user
authentication, and role-based access control. Ensure that communication
between nodes and clients is encrypted using SSL/TLS.

Data Encryption

e Best Practice : Encrypt data at rest and in transit to protect the sensitive
information from unauthorized access.

e Details : Use disk-level encryption for data at rest, and SSL/TLS for data in
transit. Ensure that all the nodes, Kibana, and client applications use
encrypted connections.

Access Control

e Best Practice : Implement strict access control policies.

e Details : Define roles and permissions carefully, ensuring that users and
applications only have the minimum necessary privileges. Regularly review
and update permissions.

Audit Logging
e Best Practice : Enable and configure audit logging to keep a record of all
activities.

e Details : Use Elasticsearch’s audit logs to track who accessed what and
when. Monitor and analyze logs to detect unusual activities, or potential
security breaches.

Regularly Update and Patch

e Best Practice : Keep all the components of the ELK Stack updated to the
latest version.

e Details : Regularly update Elastic Stack components and dependencies to
patch known vulnerabilities. Keep abreast of security advisories from
Elastic.

Network Security

e Best Practice : Secure network access to the ELK Stack.

e Details : Use firewalls, VPNs, or network access control lists to restrict
access to Elastic Stack services. Limit exposure of the stack to the internet,
and segregate internal networks.

Secure Kibana

e Best Practice : Implement security measures for Kibana, the Elastic Stack’s
visualization tool.

e Details : Use Kibana’s built-in security features for access control. Place
Kibana behind a VPN, or access control gateway and disable unnecessary
features.

Backup and Recovery

e Best Practice : Regularly back up ELK Stack data and configurations.

e Details : Implement a robust backup strategy covering all critical data and
configuration files. Regularly test recovery procedures to ensure data
integrity and availability.

Incident Response Plan

e Best Practice : Prepare for security incidents with a response plan.

e Details : Develop and document an incident response plan. Train the staff
on procedures for identifying, reporting, and responding to security
incidents.

Security Monitoring and Anomaly Detection

e Best Practice : Use Elastic Stack’s monitoring and anomaly detection
features to identify potential security threats.

e Details : Leverage machine learning features in X-Pack for anomaly
detection. Monitor security logs and metrics to detect and respond to threats
promptly.

Secure Integration and API Use

e Best Practice : Securely integrate ELK Stack with other systems, and
manage API usage.

o Details : Ensure that any API keys or integration points are secured and
monitored. Use API gateways and service meshes to manage and secure
communications.

By following these best practices, you can significantly enhance the security
posture of your ELK Stack deployment, protecting against unauthorized access,
data breaches, and other cyber threats. It is also vital to continually educate and

train the team managing the ELK Stack on security awareness and best practices.
Security is a continually evolving field, and staying informed about the latest
threats and protective measures is crucial for maintaining a robust defense.

Maintenance and Upgrades

In the context of Elastic Stack, discussing “ Maintenance and Upgrades ” in your
“ Ultimate Elastic Stack Handbook > would revolve around strategies for keeping
the stack stable, efficient, and up-to-date. Here is how you might structure such
content in the chapter, ““ Troubleshooting and Best Practices .

Routine Maintenance

e Best Practice : Establish regular maintenance schedules to ensure optimal
performance.

e Details : Regularly check the health of nodes, monitor disk usage, and clean
up unneeded data or indices. Use Elastic Stack monitoring tools to track
performance metrics and logs.

Version Upgrades

e Best Practice : Plan and execute version upgrades to benefit from the latest
features, improvements, and security patches.

o Details : Follow Elastic’s upgrade guidelines, test upgrades in a staging
environment first, and back up all data and configurations before
proceeding. Understand the compatibility between different versions,
especially for major upgrades.

Plugin Management

e Best Practice : Keep plugins up-to-date, and audit regularly.

e Details : Regularly review and update the plugins used within your Elastic
Stack to maintain compatibility and security. Remove unnecessary plugins
to reduce complexity and potential vulnerabilities.

Index Management and Optimization

e Best Practice : Implement index lifecycle management, and optimize
indices regularly.

e Details : Use Elasticsearch’s Index Lifecycle Management (ILM) to
automate index rollover, optimize, and deletion. Regularly review index
settings and mappings for performance and relevance.

Backup and Recovery Planning

e Best Practice : Implement a robust backup and recovery strategy.

e Details : Regularly back up FElasticsearch data and cluster configuration
settings. Ensure that your backup strategy allows for quick and reliable
recovery in case of data loss.

Hardware and Infrastructure Monitoring

e Best Practice : Monitor and maintain the underlying hardware and
infrastructure.

e Details : Keep the operating system and hardware drivers up to date.
Monitor hardware health, including disk I/O, memory usage, and CPU load
to prevent hardware failures.

Performance Tuning

e Best Practice : Continuously tune the performance of the Elastic Stack.

e Details : Regularly review query performance, index and search speeds, as
well as system latency. Adjust configurations such as JVM settings, shard
sizes, and cache settings, for optimal performance.

Security Audits and Updates

e Best Practice : Conduct regular security reviews and updates.

e Details : Regularly update to the latest security patches for Elastic Stack and
its components. Conduct security audits to identify and mitigate
vulnerabilities, ensuring that security configurations and policies are up to
date.

Documentation and Change Management

e Best Practice : Maintain thorough documentation, and adhere to change
management protocols.

e Details : Document all changes, configurations, and setups in your Elastic
Stack environment. Use a change management process to track
modifications, and ensure that they are tested and approved before
implementation.

Community and Support Engagement

e Best Practice : Engage with the Elastic Stack community and support
resources.

e Details : Stay informed about the latest developments, tips, and tricks from
the Elastic community. Utilize support forums, documentation, and
professional support services for troubleshooting and advice.

Maintenance and upgrades are critical for the long-term health and performance
of the Elastic Stack. By following these best practices, you ensure that your
deployment remains efficient, secure, and aligned with the evolving needs of your
organization. Regularly reviewing and adjusting your maintenance and upgrade
strategies in response to changes in your operating environment, and the Elastic
Stack itself is key to a successful, resilient deployment.

Hands-On Lab: Maintenance and Upgrades for
Elasticsearch and Kibana

For a hands-on lab focusing on maintenance and upgrades of Elasticsearch and
Kibana, you will want to guide the user through the key steps and provide
examples, they can follow. This lab will assume a basic level of familiarity with
Elastic Stack, and administrative access to the Elasticsearch and Kibana instances.

Objectives

e Learn how to perform routine maintenance tasks for Elasticsearch and
Kibana.

» Understand and execute an upgrade process for Elasticsearch and Kibana.
Prerequisites

e An existing Elasticsearch and Kibana setup.

e Administrative access to the Elasticsearch cluster, and the server running
Kibana.

e A backup of current Elasticsearch data and Kibana configurations (always
create a backup before making significant changes).

Part 1: Maintenance of Elasticsearch

1. Check Cluster Health:

e Task : Use the cluster/health endpoint to review the status of your
cluster.

e Command : GET /_cluster/health

- . Dwviools Cpmole

Comsole SearchProfiler Grok Debugper Poimless Lab s

My SeiegE Varlbles Help L T

| S et e
Figure 6.1: Check Cluster Health

2. Review and Clean Up Indices:

e Task : Identify unused or old indices that can be deleted or archived.
e Command : List the indices with GET / cat/indices?v and delete
with DELETE /index name

3. Optimize Indices:

e Task : Use the Force Merge API for optimizing indices.
e Command : POST /index_name/_forcemerge

4. Snapshot and Backup:

e Task : Create a snapshot repository, and take a backup of your current
indices.

e Command : Follow the detailed steps from Elasticsearch
documentation to set up a snapshot repository, and take a snapshot.

Part 2: Upgrading Elasticsearch

1. Preparation:
e Task : Read the release notes, and understand the changes and
requirements of the new version.
* Note : Ensure that no indices are using deprecated features that will be
removed in the new version.

2. Full Cluster Restart Upgrade (for major upgrades):

e Task : Follow the documented process for a full cluster restart which
generally involves:
= Disable shard allocation.
= Stop non-essential indexing, and perform a synced flush.
= Stop and upgrade each node.
= Re-enable shard allocation, and wait for the cluster to recover.
3. Rolling Upgrade (for minor upgrades):
e Task : Upgrade nodes one at a time while the cluster remains
operational.
e Steps : Detailed in the Elasticsearch documentation, typically
involves:
= Disable shard reallocation.
= Upgrade one node.
= Start the node and confirm it joins the cluster.
= Re-enable shard reallocation.
» Wait for the cluster to rebalance.
= Repeat for each node.

Part 3: Maintenance of Kibana

1. Review Logs and Metrics:

e Task : Check Kibana logs for any errors or warnings that need
attention.

* Note : Look into the status of Kibana by visiting the status page.
2. Upgrade Plugins:

e Task : Ensure that all the plugins are compatible with the current
Kibana version, and upgrade, if necessary.

Part 4: Upgrading Kibana

1. Preparation:
e Task : Similar to Elasticsearch, read the release notes, and understand
the changes.
2. Execution:
e Task : Perform the upgrade. For Kibana, this is usually simpler than
Elasticsearch, and often involves:
» Stopping Kibana.
» Upgrading the Kibana package.
» Adjusting any configuration changes, if necessary.

» Starting Kibana back up.

3. Post-Upgrade Tasks:

e Task : Verify that the Kibana is operating correctly, and that all
visualizations and dashboards are functioning.

Part S: Upgrade Assistant

Elastic stack provides an upgrade assistant to help you upgrade your cluster. The
upgrade assistant is a Kibana plugin that helps you identify and resolve issues that

may prevent you from upgrading your cluster. The upgrade assistant is available
in Kibana 6.5, and later.

You can find the upgrade assistant in the Management section of Kibana. The
upgrade assistant is available only when you have a cluster running Elasticsearch
6.5 or later. The upgrade assistant is not available, when you have a cluster
running Flasticsearch 7.0 or later.

|
B oot Upgradefsmian

Becerter Upgrade Assistant R
Maintenance Windows. Gt ready for the next version of the Elastic Slack!

. If you are not on the latest wersion of the Elastic Stack, use the Upgrade Assistant to preparg for the next upgrade.
Chock the latest releasa highlights

aale] 1 Back up your data

Make sure you have a curent snapshot belone making any changes.

Creats snapshot

¥ Review deprecated settings and resolve issues

Spaces ¥ou must resolve any critical Elasticsearch and Kibana configuration issues before upgrading to the next wersicn of the Elastic Stack. ignoring
Advanced Seltings warnings might result in différences in bahavior after you upgrade.
Bl Elsaticasarch Kibana
Licenss hlansgemen
Critical 'Wamning
Jograse ALSisam 1
. .
Figure 6.2: Upgrade Assistant

In this lab, you have learned the key maintenance and upgrade tasks for both
Elasticsearch and Kibana. It is critical to plan, backup, and test in a staging
environment, before performing any operations in production. Always refer to the
official Elasticsearch documentation for the most up-to-date and detailed
instructions, especially since procedures can vary between different versions.

Conclusion

Throughout our discussion, we have delved deeply into the “ Ultimate Elastic
Stack Handbook ,” particularly focusing on Chapter 6, Troubleshooting_and Best

Practices . We began by exploring common pitfalls and their solutions, where
understanding the typical mistakes made in Elastic Stack deployments helps
preemptively mitigate issues, and streamline performance. This chapter aims to
empower users with the knowledge and strategies needed to navigate the
complexities associated with managing a robust, scalable, and efficient Elastic
Stack deployment.

In the realm of optimizing for large-scale deployments, we discussed how
planning, monitoring, and adapting are necessary for handling the demands of the
growing data and user bases. The Elastic Stack’s ability to scale and perform
under pressure is one of its most valuable traits, and harnessing that requires a
deep dive into topics such as cluster design, data modeling, and performance
tuning. Security, being paramount, was addressed with a comprehensive look at
best practices, emphasizing the importance of a proactive approach to protecting
data integrity and access. We covered everything from encryption and access
control to audit logging and incident response, providing a blueprint for securing
Elastic Stack deployments.

Maintenance and upgrades were identified as crucial ongoing processes, with
detailed strategies for routine checks, version upgrades, and performance
optimizations. The hands-on lab provided practical steps and commands to guide
users through essential maintenance and upgrade tasks, ensuring that both
newcomers and seasoned professionals can confidently apply these practices to
their Elastic Stack environments.

Finally, as we look beyond the traditional boundaries of Elasticsearch, Logstash,
and Kibana, we anticipate diving into the broader ecosystem of Elastic products.
In the chapter, “ Beyond ELK: Integrating Other Elastic Products ,” we will
explore how tools like Beats, Elastic Cloud, Elastic APM, and Elastic SIEM
extend the capabilities of the Elastic Stack. These integrations not only enhance
data ingestion, visualization, and analysis, but also open up new avenues for
observability, security, and enterprise search. This exploration will provide
insights into building a more comprehensive, integrated, and efficient data
platform tailored to the evolving needs of businesses and organizations.

As we conclude, it is clear that the journey through Elastic Stack is one of
continuous learning and adaptation. The best practices and troubleshooting tips
discussed serve as a guide, but the real strength lies in the community and the
ongoing evolution of the FElastic products. By staying engaged, experimenting,
and integrating new tools and features, users can ensure their Elastic Stack
deployments remain powerful, insightful, and ahead of the curve.

Points to Remember

Understand Common Pitfalls : Familiarize yourself with the common
mistakes and challenges associated with Elastic Stack deployments to avoid
them effectively.

Plan Capacity and Scalability : Adequately plan for your data volume and
query load, considering both current needs and future growth to ensure
scalability and performance.

Implement Security Measures : Prioritize security by implementing
features such as encryption, role-based access control, and audit logging to
protect your data and infrastructure.

Regular Maintenance is Crucial : Perform routine checks and
maintenance on your FElastic Stack deployment, including monitoring
hardware resources, cleaning up indices, and optimizing performance.

Stay on Top of Updates : Regularly update and upgrade your Elastic Stack
components to benefit from the latest features, improvements, and security
patches.

Optimize for Performance : Continuously monitor and tune your system
for optimal performance, focusing on aspects like query optimization, index
management, and resource allocation.

Backup and Disaster Recovery : Always maintain a robust backup and
recovery strategy to protect against data loss, and ensure quick recovery in
case of failures.

Monitor System Health : Use Elastic Stack’s monitoring tools to keep an
eye on system performance, and set up alerts for any anomalies or issues.

Understand Upgrade Paths : Know the difference between full cluster
restarts and rolling upgrades, and choose the appropriate path based on your
version and requirements.

Engage with the Community : Stay connected with the Elastic community
for support, insights, and to keep up with the best practices and emerging
trends.

Explore Elastic Ecosystem : Look beyond ELK by integrating other Elastic
products to enhance capabilities in observability, security, and enterprise
search.

Multiple Choice Questions

1. What is a critical first step in preventing common pitfalls in Elastic Stack
deployments?
a. Ignoring minor errors
b. Understanding common mistakes
c. Expanding the team
d. Upgrading hardware

2. Which feature is essential for securing your Elastic Stack deployment?
a. Disabling all plugins
b. Using only default settings
c. Implementing encryption and access control
d. Limiting documentation
3. When planning for large-scale deployments, what is crucial for maintaining
performance?
a. Decreasing security measures
b. Planning for capacity and scalability
c. Avoiding updates
d. Reducing the number of users
4. What type of maintenance task is important for ensuring data integrity and
system recovery in Elastic Stack?
a. Reducing feature usage
b. Decreasing team size
c. Backup and disaster recovery planning
d. Ignoring logs
5. Which strategy is important, when looking beyond ELK to enhance the
Elastic Stack’s capabilities?
a. Decreasing monitoring
b. Reducing security
c. Integrating other Elastic products

d. Limiting user access

Answers

1.
2.
3.
4.
3.

b
C
b
C

C

Questions

1

10.

. Discuss the importance of understanding common pitfalls in Elastic Stack

deployments, and describe some strategies to avoid them.

. Explain how capacity planning impacts the scalability and performance of

Elastic Stack deployments. What factors should be considered during this
planning?

. Detail the key security measures that should be implemented in any Elastic

Stack deployment. How do these measures protect the data and
infrastructure?

. Describe the routine maintenance tasks that are crucial for the long-term

health and performance of an Elastic Stack. Why is each task important?

. Explain the process and significance of regularly updating and upgrading

Elastic Stack components. What are the risks of neglecting this process?

. Discuss how performance tuning is conducted in an Elastic Stack

environment. What are some common adjustments that might be made?

. Outline a comprehensive backup and disaster recovery strategy for an

Elastic Stack deployment. Why is this strategy critical for data integrity?

. What role does system health monitoring play in the maintenance of an

Elastic Stack deployment? Describe how you would set up and use
monitoring tools.

. Describe the differences between full cluster restarts and rolling upgrades in

the Elastic Stack. When would you choose one method over the other?

Explore the benefits of integrating other Elastic products into an ELK
deployment. How do these integrations enhance the capabilities of the
Elastic Stack?

Key Terms

Elastic Stack : A group of open-source products designed to help users take
data from any type of source, and in any format and search, analyze, and
visualize that data in real time.

Troubleshooting : The process of diagnosing the source of a problem in the
Elastic Stack, and resolving it effectively.

Best Practices : Recommended strategies and techniques that are
considered ideal for achieving efficient and secure Elastic Stack
deployments.

Scalability : The ability of the Elastic Stack to handle the growing amounts
of data or an increasing number of queries, without compromising
performance.

Capacity Planning : The process of determining the necessary resources
such as hardware and configurations needed to handle future data and
workload volumes in Elastic Stack.

Security Measures : Protocols and features implemented to protect Elastic
Stack deployments from unauthorized access and cyber threats, including
encryption, role-based access control, and auditing.

Routine Maintenance : Regularly performed tasks to ensure the Elastic
Stack is running efficiently, including monitoring, updating, and optimizing
systems.

Upgrades : The process of moving Elastic Stack components to a newer
version to take advantage of improved features, bug fixes, and security
patches.

Backup and Recovery : Strategies and processes involved in copying and
archiving data as well as configurations to protect against data loss, and
ensure quick restoration after a failure.

Performance Tuning : The practice of adjusting settings and configurations
in Elastic Stack to improve its efficiency and speed.

Index Management : The process of handling and organizing indexes in
Elasticsearch to ensure that the data is accessible and queries are efficient.

Cluster Health : A measure of the status of an Elastic Stack cluster,
indicating its performance, stability, and any issues that need to be
addressed.

Integration : The process of combining Elastic Stack with other products
and tools to enhance its capabilities and performance.

C HAPTER 7

High Availability, Fault Tolerance, and
Security

Introduction

In today’s digital age, ensuring the continuous availability and reliability of
data systems is paramount. As organizations increasingly rely on real-time
data for critical decision-making, the need for robust architectures that can
withstand failures, and prevent data loss becomes ever more pressing.
Elasticsearch, a powerful distributed search and analytics engine, offers
various features and configurations designed to achieve high availability,
fault tolerance, and security. This chapter delves into these crucial aspects,
providing insights and practical guidance on how to build resilient and
secure Elasticsearch clusters.

High availability ensures that an Elasticsearch cluster remains operational
and accessible, even in the face of node failures or maintenance activities.
This involves strategic planning around node roles, data distribution, and
network configurations to minimize downtime, and maintain service
continuity. Fault tolerance, on the other hand, focuses on the system’s ability
to handle and recover from unexpected disruptions. By implementing
replication, sharding, and automated failover mechanisms, Elasticsearch can
continue to function seamlessly, providing uninterrupted access to data.

Security 1s another critical component for maintaining a reliable
Elasticsearch deployment. Protecting the sensitive data from unauthorized
access and breaches is essential in preserving data integrity, and complying
with the regulatory requirements. Elasticsearch offers several security
features, including Role-Based Access Control (RBAC), Transport Layer
Security (TLS), encryption at rest, comprehensive monitoring, and alerting
capabilities. These measures help safeguard the cluster against potential
threats, and ensure that the data is only accessible to authorized users.

In the following subchapters, we will explore these concepts in greater
detail. We will start with hands-on labs to set up an Elasticsearch Cluster
using Docker Compose, demonstrating practical steps to achieve high
availability and fault tolerance. We will then move on to advanced security
configurations, ensuring that your Elasticsearch cluster is both resilient and
secure. By the end of this chapter, you will have a thorough understanding of
how to design, implement, and maintain that a robust Elasticsearch
deployment is capable of meeting the demands of modern data-driven
applications.

Structure

In this chapter, we will discuss the following topics:

o Strategies for High Availability and Fault Tolerance

Elasticsearch Cluster Management for HA

Hands-On Lab: Building an Elasticsearch Cluster with Docker
Compose

Security and Access Control

Backup and Restore for Disaster Recovery

Strategies for High Availability and Fault
Tolerance

High Availability (HA) and fault tolerance are critical considerations for any
system that needs to provide consistent and reliable access to data and
services. In the context of the Elastic Stack, ensuring that your Elasticsearch
clusters are resilient to failures, and can handle increased loads is paramount.
This chapter outlines various strategies and best practices to achieve high
availability and fault tolerance in your Elastic Stack deployment.

Cluster Architecture Design

Designing your Elasticsearch cluster with high availability in mind starts
with the architecture. A well-architected cluster can withstand node failures,
and continue to serve requests without interruption.

e Node Roles and Responsibilities : Distribute node roles across
multiple machines to avoid single points of failure. Common roles
include master nodes, data nodes, ingest nodes, and coordinating
nodes.

e Dedicated Master Nodes : Configure dedicated master nodes to
manage cluster state and elections. Use an odd number of master-
eligible nodes (typically three or five) to ensure quorum.

e Data Node Redundancy : Ensure that the data nodes are distributed
across different physical or virtual machines to mitigate the risk of data
loss due to hardware failures.

Replication and Sharding

Replication and sharding are fundamental to Elasticsearch’s ability to
provide fault tolerance and scalability.

e Index Sharding : Divide your indices into multiple shards to distribute
data and query load across nodes. This improves performance, and
allows the cluster to scale horizontally.

e Replication : Configure replica shards to provide redundancy. Each
primary shard should have at least one replica shard stored on a
different node. This ensures that the data is not lost, if a node fails.

Cross-Cluster Replication (CCR)

Cross-Cluster Replication (CCR) allows you to replicate indices across
multiple Elasticsearch clusters. This provides an additional layer of
redundancy, and can be used for disaster recovery.

e Active-Passive Replication : Use CCR to maintain a passive backup
cluster that can take over in case the primary cluster fails.

e Geo-Redundancy : Deploy clusters in different geographic regions to
protect against regional failures.

Snapshots and Restore

Regular snapshots provide a way to back up your data, and restore it in case
of catastrophic failures.

e Automated Snapshots : Schedule automated snapshots of your indices
to an external repository, such as AWS S3 or HDFS.

e Snapshot Management : Use Elasticsearch’s Snapshot Lifecycle
Management (SLM) to automate the creation, retention, and deletion of
snapshots.

Monitoring and Alerting

Proactive monitoring and alerting help detect and respond to issues, before
they impact the availability of your Elastic Stack.

e Cluster Health Monitoring : Use tools like Kibana, Elastic Stack’s
own monitoring features, or external solutions such as Prometheus to
keep an eye on cluster health.

e Alerting : Set up alerts for critical metrics such as node availability,
disk usage, CPU, and memory usage. Use ElastAlert or Elastic’s
alerting features to notify your team of potential issues.

Load Balancing

Load balancing distributes traffic across multiple nodes, preventing any
single node from becoming a bottleneck or point of failure.

e FElastic Load Balancer (ELB) : Use an ELB or other load balancer to
distribute requests to the coordinating nodes in your Elasticsearch
cluster.

 Round-Robin DNS : Configure DNS to distribute client requests
across multiple endpoints.

Failure Testing and Chaos Engineering

Regular testing of your system’s resilience can uncover weaknesses, and
help improve overall fault tolerance.

e Failure Injection : Use tools such as “ Chaos Monkey > to simulate
node failures, and validate your cluster’s ability to recover.

e Disaster Recovery Drills : Regularly conduct disaster recovery drills
to ensure that your backup and restoration processes are effective.

Security Measures

Security 1s an essential aspect for maintaining high availability and fault
tolerance.

e Access Controls : Implement Role-Based Access Control (RBAC) to
restrict access to your Elastic Stack resources.

e Encryption : Use encryption in transit (TLS) and at rest to protect your
data.

e Audit Logging : Enable audit logging to monitor access and changes
to your Elasticsearch cluster.

By implementing these strategies, you can build an Elastic Stack deployment
that is resilient, reliable, and capable of handling various failure scenarios.
High availability and fault tolerance not only ensure continuous operation,
but also protect the integrity and accessibility of your data.

Elasticsearch Cluster Management for HA

Managing an Elasticsearch cluster for high availability involves a
combination of strategic node configuration, effective resource allocation,
and robust monitoring. This section provides a comprehensive guide to
configuring and managing an Elasticsearch cluster to ensure continuous
operation and minimal downtime.

Node Configuration

We can optimize FElasticsearch node configuration to enhance cluster
resilience and performance:

Dedicated Node Roles

Elasticsearch nodes can take on specific roles to distribute responsibilities,
and enhance the cluster’s resilience:

» Master Nodes : Handle cluster-wide operations, including cluster state
updates, index creation/deletion, and node management. It is crucial to
have an odd number of dedicated master nodes (at least three) to
maintain a quorum, and prevent split-brain scenarios.

e Data Nodes : Store and manage the indexed data, performing search
and aggregation operations. To achieve fault tolerance, distribute the
data across multiple data nodes, and use shard replication.

e Ingest Nodes : Process and transform the incoming data before it is
indexed. This offloads processing tasks from data nodes, and ensures a
smooth data ingestion pipeline.

e Coordinating Nodes : Act as load balancers, routing client requests to
the appropriate data nodes. They do not store data or participate in
master node duties which helps optimize resource usage.

Shard Allocation and Replication

Sharding and replication are core features of Elasticsearch that contribute to
high availability:

e Shards : An index in Elasticsearch is divided into smaller units called
shards. Each shard is a self-contained index that can be distributed
across multiple nodes, enhancing search and indexing performance.

e Replication : Replicas are copies of primary shards. They provide
redundancy, and improve fault tolerance. Configuring multiple replicas
ensures that data remains accessible, even if some nodes fail.

Cluster Configuration

We can optimize cluster-wide settings to i1mprove availability and
performance:

Discovery and Coordination

Configuring cluster discovery and coordination is necessary for maintaining
high availability:

e Zen Discovery : Elasticsearch uses Zen Discovery to manage the
joining and leaving of nodes in a cluster. Ensure that the
discovery.zen.minimum master nodes setting is configured to a
majority of the master-eligible nodes to prevent split-brain scenarios.

e Unicast Discovery : For larger clusters or when using dedicated master
nodes, configure unicast discovery to specify the addresses of the
master nodes explicitly.

Cluster State Management

Efficient management of cluster state is critical for high availability:

e Cluster State Updates : Cluster state updates should be minimized and
optimized to reduce overhead. Avoid frequent index creation/deletion
operations, and batch updates where possible.

e Persistent Cluster State Storage : Use persistent storage for cluster
state to ensure that it can be quickly recovered in case of failures.

Resource Management

We can optimize resource allocation and management to ensure optimal
performance and availability:

Hardware and Infrastructure

Proper hardware and infrastructure planning are key to maintaining high
availability:

e Node Sizing : Ensure that the nodes have sufficient CPU, memory, and
disk resources to handle the expected load. Over-provisioning can
provide a buffer during peak times.

e Network Configuration : Use high-speed, low-latency network
connections to reduce communication delays between nodes.

Load Balancing

Distribute client requests evenly across the cluster to prevent overloading
individual nodes:

e Coordinating Nodes : Use dedicated coordinating nodes to handle
incoming requests, and distribute them to the appropriate data nodes.

o External Load Balancers : Implement external load balancers (for
example, NGINX, and HAProxy) to manage traffic distribution, and
improve fault tolerance.

Monitoring and Maintenance

We can implement monitoring tools and maintenance practices to ensure
cluster health and availability:

Monitoring Tools

Continuous monitoring is vital for detecting and responding to issues, before
they impact availability:

o Elasticsearch Monitoring : Use built-in monitoring features such as
Elasticsearch’s X-Pack Monitoring or open-source alternatives such as
Prometheus and Grafana to track cluster health, performance, and
resource utilization.

o Alerting : Set up alerts for critical events such as node failures, high
CPU/memory usage, and disk space issues. Automated alerting enables
timely intervention.

Backup and Recovery

Regular backups and a well-defined recovery strategy are essential for data
protection:

e Snapshot and Restore : Use Elasticsearch’s snapshot, and restore
functionality to create regular backups of your indices. Store snapshots
in a reliable, off-site location.

e Disaster Recovery Plan : Develop and test a disaster recovery plan to
ensure that you can quickly restore cluster operations in the event of a
failure.

Hands-On Lab: Building an Elasticsearch Cluster
with Docker Compose

In this hands-on lab, we will create a highly available Elasticsearch cluster
using Docker and Docker Compose. Our setup will include three
Elasticsearch nodes and one Kibana instance, as illustrated in the following
diagram:

Elasticsearch 01 Elasticsearch 02 Elasticsearch 03

Kibana » Network

8 7

Figure 7.1: Elasticsearch and Kibana Network

This setup i1s designed to simulate a real-world Elasticsearch deployment,
where multiple nodes work together to provide redundancy, high availability,
and distributed search capabilities. Kibana will serve as the web-based
interface for visualizing and interacting with the data stored in the
Elasticsearch cluster.

Thus, by the end of this lab, you will have a functional Elasticsearch cluster
running locally on your machine, allowing you to explore the features and
capabilities of Elasticsearch and Kibana in a controlled environment.

Let us get started!

Prerequisites

1. Docker installed on your machine.
2. Docker Compose installed on your machine.

3. Basic understanding of Docker and Docker Compose.

Step 1: Setup Docker Compose File

Create a directory for your Elasticsearch cluster setup, and navigate into it:

mkdir elasticsearch-cluster

cd elasticsearch-cluster

For demo, we use Elasticsearch version 8.14.0. We download docker-
compose . yml file from Elasticsearch sample repository,
https://github.com/elastic/elasticsearch/blob/8.14/docs/reference/setup/install
/docker/docker-compose.yml .

This Docker Compose file defines a three-node Elasticsearch cluster.

Step 2: Launch the Cluster

Run the following command to start your Elasticsearch cluster:

docker-compose up

Docker Compose will download the Elasticsearch image (if not already
downloaded), create the containers, and start the services.

Step 3: Verify the Cluster

Once the cluster is up and running, you can verify its status by opening a
new terminal window, and running the following commands:

curl -X GET "localhost:9200/ cluster/health?pretty"”
You should see a response indicating that the cluster is healthy.
To see the list of nodes in the cluster, run:

curl -X GET "localhost:9200/ cat/nodes?v"

This will show you the information about the nodes in your cluster.

Step 4: Access Elasticsearch

Elasticsearch should now be accessible on your local machine at the
following URLSs:

e Node 1 : http://localhost:9200

e Node 2 : http://localhost:9201

e Node 3 : http://localhost:9202

You can now interact with Elasticsearch, using these URLs, for example:
curl -X GET "http://localhost:9200/ cat/indices?v"

This will list all the indices in your Elasticsearch cluster.

https://github.com/elastic/elasticsearch/blob/8.14/docs/reference/setup/install/docker/docker-compose.yml

Step S: Scaling the Cluster

You can scale your Elasticsearch cluster by adding more nodes. To add
another node, you can extend your docker-compose.yml file with a new
service definition, and follow the same environment configurations as the
other nodes.

For example, to add a fourth node:

es04:
image: docker.elastic.co/elasticsearch/elasticsearch:8.14.0
container name: es04
environment:
- node.name=es04
- cluster.name=es-docker-cluster
- discovery.seed hosts=es01l,es02,es03
- cluster.initial master nodes=es01l,es02,es03
- bootstrap.memory lock=true
- ES JAVA OPTS=-Xms512m -Xmx512m
- xpack.security.enabled=false

ulimits:
memlock:
soft: -1
hard: -1
volumes:

- esdatal4:/usr/share/elasticsearch/data
ports:

- 9203:9200

- 9303:9300

volumes:
esdatal4:

driver: local

Step 6: Cleanup

To stop and remove the containers and associated resources, run:

docker-compose down

This command will stop the containers, and remove the network and
volumes created by Docker Compose.

Summary

By following these steps, you have successfully set up a multi-node
Elasticsearch cluster using Docker Compose. This setup allows you to
experiment with Elasticsearch in a local, simulated environment, giving you
a deeper understanding of how to configure and manage Elasticsearch
clusters.

Security and Access Control

Securing an Elasticsearch cluster is paramount to ensure that the sensitive
data is protected, and that only authorized users have access to the system.
This subchapter explores the vital security mechanisms, including Role-
Based Access Control (RBAC), Transport Layer Security (TLS), encryption
at rest, security monitoring and alerts. Implementing these measures helps
safeguard your Elasticsearch deployment from unauthorized access as well
as potential breaches.

Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a method of regulating access to
computer or network resources, based on the roles of individual users within
an organization. RBAC allows you to assign permissions to roles, rather than
to individual users, simplifying the management of user permissions.

To implement RBAC in Elasticsearch, follow these steps:

e Roles : Define roles that specify a set of permissions for accessing
Elasticsearch resources. For example, you can create roles for
administrators, data analysts, and read-only users.

e Users : Create user accounts, and assign them to appropriate roles. This
ensures that users only have the permissions necessary for their job
functions.

e Permissions : Permissions can be fine-grained, allowing control over
specific actions such as read, write, and manage indices. Use the
Elasticsearch REST API or Kibana to manage roles and permissions.

The following example demonstrates how to create a role for a data analyst,
and assign it to a user in Elasticsearch:

PUT / security/role/data analyst
{

"cluster": ["monitor"],
"indices": |
{
"names": ["logs—-*"],
"privileges": ["read"]

}
]
}

PUT / security/user/jane doe

{

"password": "passwordl23",
"roles": ["data analyst"],
"full name": "Jane Doe",
"email": "Jjane.doelexample.com"

}

This example creates a role data_analyst with read permissions on indices
that match logs-* and assigns this role to the user jane_doe .

Transport Layer Security (TLS)

Transport Layer Security (TLS) is essential for encrypting data transmitted
between Elasticsearch nodes and between clients as well as the cluster. TLS
ensures that the data remains confidential, and is not tampered with during
transmission.

To enable TLS in Elasticsearch, follow these steps:

e Generate Certificates : Use the Elasticsearch elasticsearch-
certutil tool to generate SSL/TLS certificates for your nodes.
e Configure Elasticsearch : Update the Elasticsearch configuration to
enable TLS for both HTTP and transport layers.
Here is an example of how to configure TLS in Elasticsearch:

In elasticsearch.yml

xpack.security.transport.ssl.enabled: true
xpack.security.transport.ssl.verification mode: certificate
xpack.security.transport.ssl.key: /path/to/your/key.pem
xpack.security.transport.ssl.certificate:
/path/to/your/cert.pem
xpack.security.transport.ssl.certificate authorities:
["/path/to/your/ca.pem"]

xpack.security.http.ssl.enabled: true
xpack.security.http.ssl.key: /path/to/your/key.pem
xpack.security.http.ssl.certificate: /path/to/your/cert.pem
xpack.security.http.ssl.certificate authorities:
["/path/to/your/ca.pem"]

This configuration enables TLS for both inter-node communication
(transport layer) and HTTP clients.

Encryption at Rest

Encryption at rest protects the data stored on disk from unauthorized access.
This 1s crucial for safeguarding sensitive information, even if physical access
to storage devices 1s compromised.

To enable encryption at rest in Elasticsearch, consider the following options:

e File System Encryption : Use operating system-level encryption tools
like dm-crypt (Linux) or BitLocker (Windows) to encrypt the disks
where Elasticsearch data is stored.

o Elasticsearch Configuration : Enable Elasticsearch-native encryption
for index data, using the Elasticsearch Security features.

Here is an example of how to enable encryption at rest in Elasticsearch:

In elasticsearch.yml
xpack.security.enabled: true

xpack.security.encrypt sensitive data: true

Ensure that the Elasticsearch security features are enabled to use native
encryption for the sensitive data.

Security Monitoring and Alerts

Continuous monitoring and timely alerts are crucial for detecting and
responding to security incidents. By keeping an eye on security-related
events, you can quickly identify and mitigate the potential threats.

Here are some tools and features, you can use to monitor security events in
Elasticsearch:

e Elasticsearch Audit Logging : Enable audit logging to track security-
related events such as authentication attempts, role changes, and access
denials.

e Kibana : Use Kibana’s Security App to monitor and visualize security
events in your Elasticsearch cluster.

To configure alerts for security events in Elasticsearch, consider the
following options:

e Watchers : Use Elasticsearch Watcher to create alerts based on specific
conditions. For example, set up alerts for failed login attempts, changes
in user roles, or access to sensitive indices.

e Third-Party Integrations : Integrate Elasticsearch with third-party
monitoring tools such as Prometheus, Grafana, or SIEM systems for
comprehensive security monitoring.

Here is an example of how to configure a watcher in Elasticsearch to send an
email alert for failed login attempts:

PUT watcher/watch/failed login attempts
{
"trigger": {
"schedule": {
"interval": "10m"
}
by
"input": {
"search": {
"request": {
"indices": ["audit-*"],
"body": {
"query": {
"bool": {

"must": |

{ "term": { "event.action": "authentication failed" }
Yy
{ "range": { "@timestamp": { "gte": "now-10m" } } }
]
}
}
}
}
}
Yy
"actions": {
"notify admin": {
"email": {
"to": "admin@example.com",
"subject": "Failed Login Attempts Detected",
"body": "Multiple failed login attempts detected in the

last 10 minutes."
}
}
}
}

This example configures a watcher that checks for failed login attempts
every 10 minutes, and sends an email notification, if any are found.

Implementing robust security measures such as RBAC, TLS, encryption at
rest, and continuous monitoring, is crucial for protecting your Elasticsearch
cluster. By following these practices, you can ensure that your data remains
secure and accessible only to the authorized users, mitigating the risk of
unauthorized access and data breaches.

Backup and Restore for Disaster Recovery

In the context of disaster recovery for Elasticsearch, ensuring reliable
backup and restore processes is critical to maintaining data integrity and
availability. This section provides an in-depth look at the best practices and
strategies for managing FElasticsearch backups as well as restores using a
systematic approach.

Understanding Snapshots in Elasticsearch

Snapshots in Elasticsearch are a built-in mechanism to capture the state of
your indices and cluster metadata at a specific point in time. They provide an
efficient way to back up your data incrementally, meaning that only the
changes since the last snapshot are stored.

Snapshots are stored in repositories which can reside on various storage
backends such as local filesystems, shared filesystems, Amazon S3, Azure
Blob Storage, and Google Cloud Storage.

Configuring Snapshot Repositories

In Elasticsearch, you need to configure snapshot repositories to store your
snapshots. Here is how you can set up different types of repositories:

To set up a snapshot repository on a local filesystem:

PUT / snapshot/local backup

{
"type": "fs",
"settings": {
"location": "/mount/backups/local backup"
}
}

Ensure that the specified location is accessible by all nodes in the cluster.
For an Amazon S3 repository:

PUT / snapshot/s3 backup
{

"type": "s3",

"settings": {
"bucket": "my-elasticsearch-backups",
"region": "us-west-2"

}
}

Ensure that all the necessary permissions and configurations are set up in
your AWS account.

Creating Snapshots

In Elasticsearch, you can create snapshots to back up your data and cluster
state. Here 1s how you can create snapshots:

To create a snapshot of all indices:

PUT / snapshot/local backup/snapshot 1
{

"indices": "*",
"ignore unavailable": true,
"include global state": true

}

This command creates a snapshot named snapshot 1 in the local backup
repository, including all indices and the global state.

To automate the snapshot creation process, use the Elasticsearch Curator
tool, or create a scheduled job:
e Using Curator : Install and configure Curator to run snapshot tasks at
regular intervals.

e Scheduled Job Example : Use a cron job or a similar scheduler to
trigger snapshot creation via a script that calls the Elasticsearch API.

Restoring Snapshots

We can restore snapshots to recover data in case of data loss or cluster
failures. Here is how you can restore snapshots in Elasticsearch:

To restore a snapshot:
POST / snapshot/local backup/snapshot 1/ restore
{

"indices": "index 1,index 2",

"ignore unavailable": true,

"include global state": true,

"rename pattern": "index (.+)",

"rename replacement": "restored index S1"

}

This command restores index 1 and index 2 from snapshot 1 in the
local_backup repository, renaming them to restored index 1 and
restored_index 2 .

To restore the entire cluster, including the global state:

POST / snapshot/local backup/snapshot 1/ restore
{

"include global state": true

}
This command restores all indices and the cluster state from the snapshot.

Best Practices for Backup and Restore

Here are some best practices to ensure an effective backup, and restore
processes for disaster recovery:

e Regular Backups

o Frequency : Schedule regular snapshots to minimize data loss in
the event of a failure. The frequency depends on your data change
rate, and business requirements.

o Retention Policy : Implement a retention policy to manage the
lifecycle of snapshots, ensuring that old and unnecessary
snapshots are deleted to free up the storage space.

e Verify Backup Integrity

o Test Restores : Regularly perform test restores to ensure that your
snapshots are valid, and that the restore process works as
expected.

o Checksum Validation : Use checksum validation to verify the
integrity of your snapshots.
e Secure Backup Storage
o Access Control : Implement strict access controls on your
snapshot repositories to prevent unauthorized access or tampering.

o Encryption : Use encryption to protect your backup data, both in
transit and at rest.

Disaster Recovery Plan

Here are some key steps to include in your disaster recovery plan for
Elasticsearch:

e Define Recovery Objectives

o Recovery Point Objective (RPO) : Determine the maximum
acceptable amount of data loss measured in time. This will guide
the frequency of your snapshots.

o Recovery Time Objective (RTO) : Determine the maximum
acceptable downtime. This will guide the complexity and speed of
your restore procedures.

e Document Recovery Procedures

o Step-by-Step Instructions : Document detailed, step-by-step
instructions for restoring data from snapshots. Ensure that the
procedures are clear and accessible to all relevant personnel.

o Role Assignments : Assign specific roles and responsibilities for
executing the disaster recovery plan, ensuring that all the team
members understand their duties.

e Regular Drills

o Simulated Failures : Conduct regular disaster recovery drills to
simulate various failure scenarios, and practice the restore process.

o Review and Improve : After each drill, review the outcomes, and
identify areas for improvement in your disaster recovery plan and
procedures.

By implementing these robust backup and restore strategies, you can ensure
that your Elasticsearch cluster remains resilient, and that your data can be
quickly recovered in the event of a disaster. Regular backups, thorough
testing, and a well-documented disaster recovery plan are essential
components of a comprehensive data protection strategy.

Conclusion

In this chapter, we have explored the critical components of achieving high
availability, fault tolerance, and security in Elasticsearch deployments. These
aspects are fundamental to ensuring that your Elasticsearch cluster remains
robust, reliable, and secure, capable of handling real-time data processing
needs, without interruption.

We began by examining the importance of cluster design, focusing on node
roles, shard allocation, and replication strategies. By configuring dedicated
master nodes, and appropriately distributing data across multiple data nodes,
we can enhance the cluster’s resilience against failures. The use of snapshots
for regular backups and a well-documented disaster recovery plan further
ensures that the data can be quickly restored in case of unexpected
disruptions.

Our hands-on lab provided a practical demonstration of setting up a multi-
node Elasticsearch cluster with Kibana using Docker Compose. This
exercise highlighted the ease of deploying and managing a distributed
Elasticsearch environment, emphasizing the benefits of containerization for
scalability and flexibility. We also delved into advanced security
configurations, including Role-Based Access Control (RBAC), Transport
Layer Security (TLS), and encryption at rest, to protect the sensitive data,
and maintain compliance with the security standards.

The comprehensive approach to security monitoring and alerts ensures that
any potential threats are detected and addressed promptly, safeguarding the
integrity and availability of your data. By following the strategies and best
practices outlined in this chapter, you can build and maintain an
Elasticsearch cluster that meets the high standards required for modern data-
driven applications.

As we conclude our discussion on high availability, fault tolerance, and
security, the next chapter will delve into advanced deployment strategies. We
will cover pre-deployment planning, including sizing, capacity, and topology
considerations, as well as various cloud deployment options such as Elastic
Cloud, AWS, GCP, and Azure. Additionally, we will explore Docker and
Kubernetes deployments, hybrid deployment models, and effective scaling
strategies. Finally, we will provide insights into performance tuning and
optimization to ensure that your Elasticsearch deployment runs efficiently
and effectively.

Points to Remember

e High Availability and Fault Tolerance:

o Node Roles : Properly configure and assign roles (master, data,
ingest, coordinating) to nodes to ensure balanced workload

distribution, and fault tolerance.

o Sharding and Replication : Use sharding and replication to
distribute data across nodes, enhancing redundancy and
performance.

o Cluster State Management : Efficient management of cluster
state updates and persistence is crucial for stability.

e Security:

o Role-Based Access Control (RBAC) : Implement RBAC to
manage user permissions effectively, and ensure that only
authorized access to data and cluster management functions.

o Transport Layer Security (TLS) : Enable TLS for both HTTP
and transport layers to encrypt data in transit, and protect it from
unauthorized interception.

o Encryption at Rest : Use filesystem-level or Elasticsearch-native
encryption to secure the data stored on disk.

o Security Monitoring and Alerts : Set up monitoring and alerting
to detect and respond to security incidents promptly.

e Backup and Restore for Disaster Recovery:

o Snapshots : Regularly create and verify snapshots to ensure that
you can restore data accurately in case of failures.

o Snapshot Repositories : Use appropriate storage backends for
snapshot repositories such as local filesystems, shared filesystems,
or cloud storage services.

o Disaster Recovery Plan : Develop and document a
comprehensive disaster recovery plan, including Recovery Point
Objectives (RPO) and Recovery Time Objectives (RTO).

e Hands-On Lab with Docker Compose:
o Setup : Create a docker-compose.yml file to define a multi-node
Elasticsearch cluster and Kibana setup.

o Deployment : Use Docker Compose to deploy and start the
cluster, ensuring that the nodes are properly configured to form a
resilient cluster.

o Verification : Verify the health and status of the cluster and nodes,
using Elasticsearch APIs.

o Access and Management : Access Elasticsearch and Kibana
through defined ports, using appropriate credentials and secure
configurations.

Multiple Choice Questions

1. What is the primary purpose of sharding and replication in
Elasticsearch?
a. To reduce the number of nodes required
b. To enhance redundancy and performance
c. To increase the size of the data stored
d. To decrease the data access speed
2. Which role in Elasticsearch is responsible for managing cluster-wide
operations such as creating or deleting indices?
a. Data Node
b. Ingest Node
c. Coordinating Node
d. Master Node
3. Which of the following security features in Elasticsearch ensures
encrypted communication between nodes and clients?
a. Role-Based Access Control (RBAC)
b. Transport Layer Security (TLS)
c. Encryption at Rest
d. Security Monitoring and Alerts
4. What command is used to start the Elasticsearch C luster using Docker
Compose in the hands-on lab?
d. docker-compose run
b.docker—compose start

C. docker-compose up

d.docker—compose deploy

5. In the context of disaster recovery, what is the purpose of regularly

creating snapshots in Elasticsearch?

a. To minimize data redundancy

b. To decrease storage costs

c. To ensure that the data can be quickly restored in case of failures
d. To optimize the performance of the cluster

ANSswers

1.

b

2.d
3.b
4.c
5.c¢

Questions

1

. Explain the importance of high availability in Elasticsearch

deployments, and describe the strategies used to achieve it.

. Discuss the role of dedicated master nodes in an Elasticsearch cluster,

and explain how they contribute to the overall stability and
performance of the cluster.

. Describe the process of sharding and replication in Elasticsearch. How

do these mechanisms improve fault tolerance and data redundancy?

. Detail the steps involved in setting up a multi-node Elasticsearch

cluster using Docker Compose. What configurations are necessary to
ensure high availability and security?

. How does Role-Based Access Control (RBAC) enhance security in an

Elasticsearch deployment? Provide examples of how to configure roles
and permissions.

. Explain the significance of Transport Layer Security (TLS) in securing

Elasticsearch communications. What configurations are required to

10.

enable TLS for both HTTP and transport layers?

. Discuss the importance of encryption at rest in protecting data stored in

Elasticsearch. What are the methods available for enabling encryption
at rest, and how do they differ?

. Outline the best practices for creating and managing snapshots in

Elasticsearch for disaster recovery purposes. How do regular backups,
and a well-documented recovery plan ensure data integrity?

. Describe the purpose and process of security monitoring and alerts in

Elasticsearch. How do these features help in maintaining the security
and integrity of the cluster?

Looking ahead to advanced deployment strategies, what considerations
should be taken into account for pre-deployment planning, and how do
different cloud deployment options (Elastic Cloud, AWS, GCP, and
Azure) affect these plans?

Key Terms

High Availability (HA) : The capability of a system to remain
operational and accessible, even in the event of component failures. In
Elasticsearch, this involves configuring multiple nodes, and ensuring
data redundancy through sharding and replication.

Fault Tolerance : The ability of a system to continue operating
properly in the event of the failure of some of its components. Fault
tolerance in Elasticsearch is achieved through mechanisms like shard
replication and automated failover.

Node : An instance of Elasticsearch running on a physical or virtual
machine. Nodes can have different roles, including master, data, ingest,
and coordinating nodes, each with specific responsibilities within the
cluster.

Master Node : A node responsible for cluster-wide actions such as
creating or deleting indices and managing the cluster state. It plays a
critical role in maintaining the overall health and stability of the cluster.

Data Node : A node that stores data and handles data-related
operations such as search and indexing. Data nodes are essential for
managing and processing the bulk of Elasticsearch data.

Ingest Node : A node used to preprocess and transform documents,
before they are indexed into Elasticsearch. Ingest nodes help offload
processing tasks from data nodes.

Coordinating Node : A node that does not hold data or participate in
master node duties. It acts as a load balancer, routing client requests to
the appropriate data nodes, and distributing the workload.

Sharding : The process of splitting an index into smaller pieces called
shards. Each shard is an independent index that can be distributed
across multiple nodes, enhancing performance and scalability.

Replication : The process of creating copies of shards (replica shards)
to ensure data redundancy and fault tolerance. Replica shards can be
used for reading operations, and improving search performance.

Role-Based Access Control (RBAC) : A security mechanism that
restricts access to resources, based on the roles of individual users
within an organization. RBAC simplifies permission management, and
ensures that users only have an access to the data as well as functions
necessary for their roles.

Transport Layer Security (TLS) : A protocol that provides
encryption for data in transit, ensuring secure communication between
Elasticsearch nodes, and between clients as well as the cluster. TLS
helps protect data from unauthorized interception and tampering.

Encryption at Rest : The practice of encrypting data stored on disk to
protect it from unauthorized access. This is crucial for safeguarding
sensitive information, even if physical access to storage devices is
compromised.

Snapshots : Incremental backups of Elasticsearch indices and cluster
metadata, capturing the state of data at a specific point in time.
Snapshots are necessary for disaster recovery, and can be stored in
various types of repositories.

Snapshot Repository : A storage location for Elasticsearch snapshots.
Repositories can be configured on local filesystems, shared filesystems,
or cloud storage services such as Amazon S3, Azure Blob Storage, and
Google Cloud Storage.

Disaster Recovery : Strategies and processes for recovering data, and
restoring system functionality after a catastrophic failure. In

Elasticsearch, this involves regular backups, well-documented recovery
procedures, and testing restore processes.

Docker Compose : A tool for defining and running multi-container
Docker applications. In the context of Elasticsearch, Docker Compose
1s used to set up, and manage multi-node clusters for development and
testing.

Kibana : A visualization and management tool for Elasticsearch.
Kibana provides a web-based interface for exploring data stored in
Elasticsearch, creating dashboards, and managing cluster operations.

C HAPTER 8

Advanced Deployment Strategies

Introduction

As Elasticsearch deployments grow in complexity, so do the strategies
needed to ensure that they remain efficient, scalable, and resilient. While the
basic deployment of Elasticsearch can serve small-to-medium workloads,
enterprise-level use cases often require advanced techniques for deployment,
scaling, and optimization. This chapter explores these advanced strategies,
focusing on how to prepare, deploy, and manage FElasticsearch in
environments ranging from on-premises infrastructures to complex hybrid
cloud systems. By understanding and implementing these strategies,
organizations can maximize the performance and flexibility of their
Elasticsearch clusters, while minimizing downtime and operational
overhead.

The first sections of this chapter delve into the importance of pre-
deployment planning, including how to size and configure your
Elasticsearch cluster, based on your workload. Following that, we will
explore different cloud-based deployment options, including using managed
services such as Elastic Cloud, and deploying Elasticsearch on popular cloud
platforms like AWS, GCP, and Azure. Additionally, we will cover Docker
and Kubernetes-based deployments, ideal for modern, containerized
environments. Finally, this chapter examines scaling strategies, and offers
techniques for performance tuning and optimization, helping to ensure that
your Elasticsearch deployment can handle growth and peak workloads,
without compromising speed or reliability.

Structure

In this chapter, we will discuss the following topics:

e Pre-Deployment Planning
¢ Cloud Deployments

Docker and Kubernetes Deployments

Hybrid Deployments

Scaling Strategies

Performance Tuning and Optimization

Pre-deployment Planning; Sizing, Capacity, and
Topology

In the world of Elasticsearch and the broader Elastic Stack, deployment is a
critical phase that can make or break the success of your stack. The
efficiency and effectiveness of your Elastic Stack deployment depend
heavily on pre-deployment planning. This planning involves understanding
and determining the appropriate sizing, capacity, and topology for your
deployment. Let us dive into these three fundamental aspects.

Sizing
Sizing is the process of determining the appropriate hardware and software
resources needed for your Elastic Stack deployment. Proper sizing ensures

that your system can handle the expected load, provide quick responses, and
maintain high availability. Here are certain key factors to consider:

e Data Volume: Estimate the amount of data your cluster will need to
index and store. Consider both the current and future data growth.

e Query Load: Analyze the expected query load on your cluster.
Consider peak times, frequency, and complexity of the searches.

e Indexing Rate: Determine the rate at which the data will be ingested.
High ingestion rates may require more powerful hardware.

e Retention Period: Decide how long you need to keep the data. Longer
retention periods will increase storage requirements.

e Replication Factor: Decide on the number of replicas for high
availability. More replicas mean more storage and processing power.

The following steps can help you size your Elastic Stack deployment
effectively:

1. Baseline Metrics: Start with baseline metrics from a smaller test
deployment or historical data from similar applications.

2. Elastic Sizing Guides : Use Elastic’s official sizing guidelines and
tools like the Elasticsearch Service Sizing Guide.

3. Pilot Testing: Conduct pilot tests to validate your sizing assumptions.
Adjust based on real-world results.

Capacity Planning
Capacity Planning goes hand in hand with sizing, but focuses on ensuring
that your deployment can scale to meet future demands. It involves

anticipating growth and planning for additional resources, without
compromising performance.

The following are the key considerations for capacity planning:

e Scalability: Plan for horizontal scaling (adding more nodes) and
vertical scaling (upgrading hardware) as data and query load increase.

e Performance: Ensure your cluster can maintain performance standards
as capacity grows. Consider the impact on indexing, querying, and
storage.

e Resource Utilization: Monitor CPU, memory, disk I/O, and network
usage to avoid bottlenecks.

e Budget: Factor in the costs of additional resources, including
hardware, cloud services, and maintenance.

To ensure effective capacity planning, consider the following steps:

1. Monitoring Tools: Use monitoring tools such as Elastic Stack’s own
Kibana, as well as other tools like Prometheus and Grafana, to track
resource usage.

2. Scaling Strategies: Develop strategies for both scaling out (adding
nodes) and scaling up (increasing node capacity).

3. Regular Reviews: Periodically review the capacity plans to ensure that
they align with the current and projected needs.

Topology Design

Topology Design refers to the logical arrangement of nodes and their roles
within your Elasticsearch cluster. An efficient topology can enhance
performance, fault tolerance, and manageability.

The following are common node roles in an Elasticsearch cluster:

e Master Nodes: Responsible for cluster management and state. Ensure
that you have dedicated master nodes to avoid performance
degradation.

e Data Nodes: Handle data storage, indexing, and querying. Plan for
enough data nodes to manage your data volume and query load.

e Ingest Nodes: Preprocess documents before indexing. Use ingest
nodes, if you have heavy data transformation needs.

e Client Nodes: Act as load balancers for search requests. Useful in
large clusters to distribute the query load.

We recommend the following steps for effective topology design:

1. Node Roles: Assign specific roles to nodes, based on their hardware
capabilities and workload requirements.

2. High Availability: Design for high availability with multiple master
nodes (at least three) and sufficient replicas of your data.

3. Network Configuration: Optimize network settings for inter-node
communication and data transfer efficiency.

Pre-deployment planning is a cornerstone of a successful Elastic Stack
deployment. By carefully considering the sizing, capacity, and topology, you
can create a robust, scalable, and high-performing Elasticsearch cluster.
These efforts will pay off in the form of smoother operations, quicker
response times, and a better overall user experience.

In the next section, we will explore various deployment architectures and
strategies, including on-premises, cloud, and hybrid deployments.
Understanding these options will further enhance your ability to deploy and
manage the Elastic Stack effectively.

Cloud Deployments

Elasticsearch is widely adopted in cloud environments due to its scalability
and flexibility. Cloud deployments provide the advantage of managed

services, reducing operational overhead, and offering elasticity to adjust to
the varying workloads. This section explores the most common cloud

platforms for Elasticsearch: Elastic Cloud, AWS, GCP, and Azure, and
provides insights into how to deploy Elasticsearch in each.

Deploying on Elastic Cloud

Elastic Cloud is the official managed Elasticsearch service provided by
Elastic, the creators of Elasticsearch. It offers a seamless experience with
automatic updates, security configurations, and performance tuning.
Deploying on Elastic Cloud provides access to the latest features, including
Elasticsearch, Kibana, and APM.

Key Features:

e Managed Service: Elastic handles all the infrastructure, including
backups, updates, and monitoring.

e Global Presence: Available in multiple regions, allowing for localized
deployments and compliance with the regional regulations.

e Seamless Scaling: Both vertical and horizontal scaling options are
available, with no downtime.

e Security: Built-in security features such as encryption, Role-Based
Access Control (RBAC), and compliance certifications (for example,
SOC 2 and HIPAA).

e Integrations: Offers native integration with other Elastic Stack
components such as Kibana and Logstash.

We will focus on Amazon OpenSearch Service which is the successor to
Amazon Elasticsearch Service. Amazon OpenSearch Service provides a
managed Elasticsearch service with additional features and enhancements.

Steps to Deploy on Elastic Cloud:

1. Sign Up: Start by creating an Elastic Cloud account at [elastic.co](
https://elastic.co).

2. Create a Deployment: Select a cloud provider (AWS, GCP, or Azure),
choose a region, and set the deployment size, based on your expected
workload.

https://elastic.co/

3. Configure Settings: Customize deployment settings such as node size,

availability zones, and security configurations.

4. Access Kibana: After deployment, access Kibana directly from the

Elastic Cloud console to manage and monitor your cluster.

5. Scaling and Monitoring: Use the Elastic Cloud console for scaling the

cluster, or monitoring performance metrics.

AWS: Using Amazon Elasticsearch Service

Amazon Elasticsearch Service (Amazon ES) is a fully managed service that
makes it easy to deploy, operate, and scale Elasticsearch on AWS. Amazon
ES provides built-in integrations with other AWS services, including AWS
Lambda, S3, and CloudWatch, making it an excellent choice for
organizations already using AWS.

Key Features:

Managed Service: AWS manages Elasticsearch clusters, handling
patching, backups, and scaling.

AWS Integration: Tight integration with AWS services such as S3 (for
data storage), CloudWatch (for monitoring), and VPC (for secure
networking).

Security: Offers security options such as VPC access, IAM roles, and
AWS KMS for encryption at rest.

Scaling Options: Both vertical and horizontal scaling with seamless
data replication across availability zones.

To deploy Elasticsearch on AWS, we can use these approaches:

Using Amazon OpenSearch Service (successor to Amazon
Elasticsearch Service)

Elasticsearch on Amazon EC2 instances

Elasticsearch from AWS Marketplace (third-party services - by Elastic,
AWS partners)

Steps to Deploy on Amazon Elasticsearch Service:

1. Access the AWS Console: Go to the Amazon OpenSearch Service

console.

2. Create a Domain: Define the domain name, and choose a deployment
region as well as an instance type.

3. Configure Access Control: Set up VPC access or public access with
AWS IAM policies to control who can access the cluster.

4. Select Instance Types : Choose from a variety of instance types,
including memory-optimized and storage-optimized instances.

5. Monitoring and Scaling: Use CloudWatch for performance
monitoring, and scale the cluster as needed, using the AWS console.

If you want to get more features and control over your FElasticsearch
deployment, you can opt for deploying Elasticsearch on Amazon EC2
instances, or using third-party services available on AWS Marketplace. You
can see Elasticsearch on AWS Marketplace in Figure 8.1 .

Overviow Featires Priding Lagal Usage Phis O LS Suppart Simillar prodects Ruvigw

The Elastic Platform Highlights

« Samrch - peopla find what they nead Tacier, Search A powared
Iresiigivis elevarie Cursomer sxperienoes through personal ived
DR RTINS 3% M a NESTL

» Seourity - Geft batber threat prodecton by malong high vwolumes of
security data neaclly acorsuible. Enante anomaly deiection. Resohve
Faiter vk predelr 3 il it Aebbition . o & unilisd

Figure 8.1: Elasticsearch on AWS Marketplace

GCP: Leveraging Google Cloud Platform’s

Services

Google Cloud Platform (GCP) provides several options for deploying
Elasticsearch, including deploying your own managed cluster using Google
Kubernetes Engine (GKE) or using third-party Elasticsearch services

available on GCP Marketplace. GCP offers a highly scalable infrastructure,
ideal for big data and AI/ML workloads.

Key Features:

Compute Flexibility: Deploy Elasticsearch on GKE, Compute Engine,
or GCP Marketplace-managed services.

Integration with Google Services: Seamless integration with services
like Google BigQuery, Google Cloud Storage, and Pub/Sub.

Performance Monitoring: Use Google Cloud Monitoring and
Logging for real-time insights into your Elasticsearch performance.

Scalability: GCP’s flexible compute resources allow for dynamic
scaling to handle large data sets and high query loads.

Steps to Deploy Elasticsearch on GCP:

. GCP Console: Log into the GCP console.
. GKE or Compute Engine: Choose between deploying Elasticsearch

on GKE for containerized environments or Compute Engine for virtual
machines.

. Use Helm Charts (GKE): If deploying on GKE, use Helm charts to

manage the deployment of Elasticsearch nodes.

.Set Up Networking: Configure VPC networks for secure

communication between nodes, and set up firewall rules.

. Monitoring: Use Stackdriver or Google Cloud Monitoring for alerting

and performance monitoring.

Azure: Integrating with Azure’s Elasticsearch

Solutions

Microsoft Azure offers Elasticsearch through its partner solutions on the
Azure Marketplace, or you can manually deploy Elasticsearch on Azure
Virtual Machines. With its deep integration into Azure’s ecosystem, you can
build secure, scalable Elasticsearch clusters, using managed services like
Azure Kubernetes Service (AKS) or Virtual Machines.

Key Features:

e Azure Integration: Leverage Azure services such as Azure Blob
Storage, Azure Monitor, and Azure Active Directory for a tightly
integrated experience.

e High Availability: Deploy Elasticsearch across Azure’s availability
zones for fault tolerance.

e Security: Integrates with Azure Active Directory (AAD) for
authentication, and supports Azure Key Vault for managing encryption
keys.

e Scaling: Elastic clusters can scale dynamically, either through manual
configuration or automatic scaling with Azure Monitor metrics.

Steps to Deploy Elasticsearch on Azure:

1. Azure Marketplace: Search for Elasticsearch in the Azure
Marketplace to deploy managed clusters.

2. AKS or VMs: Choose between deploying Elasticsearch on Azure
Kubernetes Service (AKS) for containerized workloads or Virtual
Machines for traditional deployment.

3. Networking: Set up VNet for secure communication, and control
network access using Network Security Groups (NSGs).

4. Integration with Azure Monitor: Monitor cluster health, using Azure
Monitor for real-time performance insights.

5. Scaling: Scale up or down using Azure’s scaling features, either
manually or based on resource usage.

Docker and Kubernetes Deployments

Deploying Elasticsearch with Docker and Kubernetes provides flexibility,
scalability, and automation for containerized environments. Docker enables
packaging Elasticsearch into containers, while Kubernetes offers
orchestration for deploying and managing those containers at scale. This
section explores how to containerize Elasticsearch and the Elastic Stack
components, as well as how to leverage Helm charts and Kubernetes
operators for managing large-scale Elastic deployments.

Dockerizing Elastic Stack Components

Dockerizing FElasticsearch and other Elastic Stack components (Kibana,
Logstash, Beats) allows developers to easily package and deploy these
services across various environments. Docker containers provide
consistency, portability, and an isolated environment, which simplifies
Elastic Stack deployments.

Benefits of Dockerizing Elastic Stack:

e Portability: FElasticsearch can be containerized and run on any
platform that supports Docker, ensuring consistent behavior across
environments.

e Isolation: Each component of the Elastic Stack (for example,
Elasticsearch, Kibana, and Logstash) runs in its own container,
allowing for modular scaling and updates.

o Ease of Management: Docker Compose can orchestrate multi-
container deployments, simplifying the management of Elasticsearch
clusters with Kibana and Logstash.

e Consistency: Containers eliminate differences between development
and production environments, ensuring that Elastic Stack behaves the
same regardless of where it is deployed.

Steps to Dockerize Elasticsearch:

1. Pull Official Images: Use the official Docker images for Elasticsearch,
Kibana, Logstash, and Beats available on Docker Hub.

docker pull elasticsearch:8.x
docker pull kibana:8.x
docker pull logstash:8.x

2.Set Up Docker Compose: Create a docker-compose.yml file to

define your multi-container setup. For example, a basic setup might
look like this:

version: '3’
services:
elasticsearch:
image: elasticsearch:8.x
environment:
- node.name=es01

- cluster.name=docker-cluster

- discovery.type=single-node
ports:
- "9200:9200"
volumes:
- esdata:/usr/share/elasticsearch/data
kibana:
image: kibana:8.x

ports:
"5601:5601"
depends on:
- elasticsearch
volumes:
esdata:

This configuration spins up both Elasticsearch and Kibana containers.

3. Run Containers: Once the docker-compose.yml is set up, start the
containers:

docker-compose up

Elasticsearch and Kibana will run as separate containers, with Kibana
depending on Elasticsearch.

4. Monitoring and Scaling: Docker makes it easy to monitor logs and
scale containers by adding more nodes to the Elasticsearch service. To
scale Elasticsearch horizontally, you can simply add more nodes to
your docker-compose.yml file.

Here are certain common use cases for Dockerized Elastic Stack
components:

e Local Development: Developers can quickly spin up Elastic Stack
components locally for development and testing.

o CI/CD Pipelines: Dockerized Elasticsearch is used in Continuous
Integration (CI) pipelines to ensure consistent behavior in testing
environments.

e Microservices Architecture: Deploy Elasticsearch alongside other
services in a microservices environment, using Docker.

Helm Charts and Kubernetes Operators for
Elastic Stack

Kubernetes is ideal for orchestrating Elasticsearch deployments at scale,
particularly in production environments where availability, scaling, and
rolling updates are critical. Helm charts and Kubernetes Operators provide
powerful tools to automate the deployment and management of Elasticsearch
clusters on Kubernetes.

Helm Charts for Elasticsearch

Helm is a Kubernetes package manager that simplifies the deployment of
applications on Kubernetes by packaging them as charts. Elastic offers
official Helm Charts for deploying Elasticsearch, Kibana, and other Elastic
Stack components.

We have many benefits of using Helm charts for Elasticsearch deployments:

e Simplified Deployment: Helm charts provide pre-configured
templates for deploying Elastic Stack components, reducing the
complexity of managing YAML files.

e Configuration Management: Helm allows for easy customization of
the deployment via a values.yaml file, where you can define cluster
size, node roles, storage, and much more.

e Version Control: Helm enables version-controlled deployments,
making it easier to upgrade or roll back Elastic Stack versions.

Helm 1s one of CLI tools to manage Kubernetes applications, and it is a
package manager for Kubernetes. Helm CLI is available for Linux,
Windows, and macOS. You can install Helm CLI by following the
instructions on the official Helm website, https://helm.sh/docs/intro/install .

After the Helm CLI is installed, you can deploy Elasticsearch using Helm
Charts. Here are the steps to deploy Elasticsearch using Helm Charts:

1. Add Elastic Helm Repo:

helm repo add elastic https://helm.elastic.co
helm repo update

2. Install Elasticsearch Helm Chart:

https://helm.sh/docs/intro/install

helm install elasticsearch elastic/elasticsearch -f

values.yaml

In the values.yaml file, you can configure resources such as CPU,
memory, number of nodes, storage classes, and network policies.

3. Monitor and Scale : Kubernetes handles the scaling of pods, and you
can monitor the health of your Elasticsearch cluster via kubectl or
integrated tools like Prometheus and Grafana.

Sample values.yaml for Elasticsearch:

replicas: 3
resources:
requests:
cpu: "1"
memory: "2Gi"
limits:
cpu: "2"
memory: "4Gi"

volumeClaimTemplate:

accessModes: ["ReadWriteOnce"]
storageClassName: "standard"
resources:

requests:

storage: 10Gi

Helm charts allow for a straightforward and automated setup of
Elasticsearch clusters, suitable for both small and large environments.

Kubernetes Operators for Elasticsearch

Kubernetes Operators extend Kubernetes functionality by automating the
lifecycle management of stateful applications like Elasticsearch. The Elastic
Cloud on Kubernetes (ECK) operator, provided by Elastic, simplifies the
deployment, scaling, and management of Elasticsearch clusters in
Kubernetes environments.

Benefits of Using ECK:

e Automated Management: ECK handles complex cluster operations
such as scaling, upgrades, backups, and node replacements.

e Custom Resource Definitions (CRDs): ECK uses CRDs to manage
Elasticsearch clusters declaratively, making it easy to scale clusters,
and update configurations.

e Resiliency: Kubernetes operators ensure that Elasticsearch clusters
remain available by automatically detecting and recovering from
failures.

e Security: ECK supports security features such as TLS encryption, user
authentication, and Role-Based Access Control (RBAC) within
Kubernetes.

Steps to Deploy Elasticsearch Using ECK:
1. Install the ECK Operator :

kubectl create -f
https://download.elastic.co/downloads/eck/2.14.0/crds.yaml

Next, we shall install RBAC roles and the operator:

kubectl apply -f
https://download.elastic.co/downloads/eck/2.14.0/operator.y

aml
Verify that the operator is running:

kubectl -n elastic-system logs -f statefulset.apps/elastic-

operator

2. Create an Elasticsearch Cluster: Define a Custom Resource (CR)
that specifies the desired cluster configuration.

apiVersion: elasticsearch.k8s.elastic.co/vl
kind: Elasticsearch
metadata:
name: quickstart
spec:
version: 8.15.1
nodeSets:
- name: default
count: 1
config:

node.store.allow mmap: false

Apply the configuration:

kubectl apply -f elasticsearch.yaml

3. Monitor and Scale: ECK automatically manages scaling and failure
recovery. You can monitor cluster health using kubectl or tools like
Kibana and Prometheus.

We have several advantages of using ECK:

e Seamless Upgrades: ECK can manage rolling upgrades of
Elasticsearch versions with minimal downtime.

e Data Management: ECK integrates with Persistent Volume Claims
(PVCs) to manage data storage and backup across Kubernetes nodes.

e Multi-Tenancy: ECK enables the deployment of multiple
Elasticsearch clusters in the same Kubernetes environment, making it
ideal for multi-tenant environments.

Hybrid Deployments: Combining On-Premises
with Cloud

Hybrid deployments allow organizations to leverage the flexibility and
scalability of cloud infrastructure, while maintaining control over on-
premises resources. Elasticsearch’s architecture makes it a good fit for
hybrid deployments, where part of the infrastructure runs in the cloud, and
part on-premises. This strategy is particularly useful, when organizations
want to maintain data sovereignty, meet regulatory requirements, or make a
gradual transition to the cloud.

Benefits of Hybrid Deployments

o Data Sovereignty: Sensitive data can remain on-premises, while less
critical workloads or backups can be handled in the cloud.

e Cost Optimization: Compute-heavy workloads can be handled by
scalable cloud resources, while less demanding operations are managed
on-premises.

e Disaster Recovery: Cloud resources can act as a backup for critical
data, ensuring business continuity in the event of an on-premises
failure.

e Elasticity: Cloud infrastructure provides flexible scaling, allowing
organizations to handle peak loads, without investing in on-premises
hardware.

Strategies for Hybrid Elasticsearch Deployment

1. Data Tiering: Store the critical data on-premises, while leveraging
cloud storage for less frequently accessed data. Elasticsearch’s hot-
warm architecture can be adapted, where * hot > data is stored on-prem
and *“ warm > data in the cloud.

2. Cross-Cluster Search (CCS): Elasticsearch’s CCS allows queries to
span across both on-prem and cloud clusters. This can be useful for
integrating data sources from both environments, without moving all
the data into one place.

3. Snapshot and Restore: Regular snapshots of your on-prem
Elasticsearch cluster can be stored in cloud storage (AWS S3, GCP
Storage, and so on) for disaster recovery. Snapshots can be restored in a
cloud cluster, when necessary.

4. Hybrid Indexing: Cloud services can handle write-heavy indexing,

while the on-prem cluster focuses on read operations, thus distributing
the load.

Example Scenario: An organization with strict data residency requirements
could store customer data on-premises, while using a cloud-based
Elasticsearch deployment to analyze application logs, which have less
stringent residency requirements. By using cross-cluster search, the
organization can gain insights from both data sources, without
compromising compliance.

Scaling Strategies: Horizontal vs. Vertical Scaling

Elasticsearch’s distributed nature allows for flexible scaling strategies,
depending on the workload and infrastructure. Scaling Elasticsearch can be
accomplished in two primary ways: Horizontal scaling (scaling out) and
vertical scaling (scaling up).

Horizontal Scaling

Horizontal scaling involves adding more nodes to the Elasticsearch cluster,
distributing the data and workload across multiple instances. This method is
most effective, when dealing with large data volumes or high query
throughput.

Benefits:

e Fault Tolerance: By adding more nodes, data can be replicated across
multiple machines, ensuring that if one node fails, another can take
over.

e Improved Performance: Each node in the cluster contributes to data
processing and indexing, so adding more nodes can distribute the load
more evenly, and improve performance.

e Flexibility: Horizontal scaling allows for seamless expansion of
storage and compute resources, without downtime.

Considerations:

e Network Latency: As the number of nodes increases, inter-node
communication may add latency, particularly in multi-zone or multi-
region clusters.

e Cluster Management: A larger cluster requires more overhead for
managing node configurations, monitoring, and shard allocation.
Best Practices:
e Use shard allocation settings to ensure that data is evenly distributed
across nodes.

e Regularly monitor cluster health to prevent node failures from
disrupting the entire cluster.

o Utilize dedicated master nodes to avoid performance bottlenecks as the
cluster grows.

Vertical Scaling

Vertical scaling involves increasing the resources (CPU, memory, and disk)
of individual nodes in the Elasticsearch cluster. This approach is ideal for
scenarios where adding more nodes is impractical, or the cluster primarily
handles low-volume data with high computational requirements.

Benefits:

e Simplicity: Vertical scaling does not require adding or managing more
nodes, simplifying the architecture.

e Lower Latency: Since there is no need to replicate data across
multiple nodes, latency from inter-node communication is minimized.

e Memory-Intensive Workloads: Flasticsearch benefits from large
amounts of memory, particularly when dealing with large aggregations
or complex queries. Vertical scaling allows you to allocate more heap
memory to individual nodes.

Considerations:

e Hardware Limitations: Vertical scaling is limited by the physical
constraints of your hardware such as maximum CPU and memory
capacity.

e Single Point of Failure: Unlike horizontal scaling, vertical scaling
places more reliance on individual nodes which could lead to single
points of failure.

Best Practices:
e Regularly monitor resource utilization (CPU, memory, and disk) and

tune node settings accordingly.

e Ensure that Elasticsearch nodes have adequate heap memory, and use
the recommended 50% heap-to-memory ratio.

e Consider upgrading storage to SSDs to improve query performance,
and reduce 10 latency.
When to Choose Horizontal vs. Vertical Scaling:
e Horizontal Scaling: Ideal for growing data volumes and distributed
workloads, where fault tolerance and scalability are important.

e Vertical Scaling: Suitable for small-to-medium deployments, or when
workloads require more memory and CPU, but not necessarily more
nodes.

Performance Tuning and Optimization

Optimizing Elasticsearch for performance ensures that queries run quickly
and efficiently, minimizing the impact on resources, while maximizing
throughput. Performance tuning requires attention to several key areas,
including indexing, querying, and hardware configurations.

Key Areas for Performance Tuning

e Indexing Performance:

o Shard and Replica Configuration: Over-allocating shards can
lead to inefficiencies. Aim for shard sizes between 20-40GB, and
allocate replicas based on the desired fault tolerance.

o Bulk Indexing: For large datasets, use the bulk indexing API to
reduce the overhead of indexing individual documents.

o Document Structure: Keep document sizes manageable by
storing only necessary fields, and using efficient data types (for
example, using keyword for structured fields instead of text).

o Index Templates: Pre-define index settings and mappings to
optimize how Elasticsearch stores and queries data.

e Query Performance:

o Efficient Use of Aggregations: Aggregations are resource-
intensive, so limit the scope of queries with filters and must
clauses.

o Query Caching: Elasticsearch automatically caches query results.
Ensure that queries are structured to benefit from cache re-use,
particularly in read-heavy workloads.

o Pagination: Use search-after or scroll APIs for deep pagination,
instead of traditional pagination, which can lead to slower queries
as Elasticsearch has to scan through results.

o Field Data: Avoid high cardinality fields in aggregations as they
consume a large amount of heap memory.

e Hardware and Cluster Tuning:

o Heap Memory: Elasticsearch heavily relies on heap memory for
performance. Ensure that the nodes are allocated sufficient heap

space (typically 50% of the available memory). Regularly monitor
for garbage collection issues.

o Disk and Storage: SSDs are recommended for Elasticsearch
clusters, as they offer faster read/write speeds compared to HDDs,
improving indexing and query performance.

o Network Configuration: Optimize network settings by reducing
latency between nodes, ensuring fast communication within the
cluster.

e Thread Pools and Caching:

o Thread Pools: Tune thread pool settings for indexing and search
workloads, ensuring enough threads are available to handle
incoming tasks, without bottlenecks.

o Caching: Elasticsearch uses various caches (node-level and query
cache). Regularly clear caches, if they start consuming too much
memory, or adjust cache settings to fit the workload.

e Monitoring and Alerts:

o Use monitoring tools such as Elastic’s Stack Monitoring |,
Prometheus , and Grafana to track cluster performance in real
time. Set up alerts to monitor resource usage (CPU, memory, disk)
and cluster health.

o Regularly check cluster logs for slow queries, indexing
bottlenecks, and shard-related issues.

Performance tuning in Elasticsearch is an ongoing process that involves
monitoring workloads, adjusting configurations, and fine-tuning query
patterns. By carefully managing resource allocation, and optimizing shard
allocation, bulk indexing, and query structures, you can significantly
improve Elasticsearch’s performance, while maintaining system stability.

Conclusion

In this chapter, we explored the advanced deployment strategies necessary
for managing Elasticsearch in a variety of environments, from cloud-based
solutions to hybrid deployments. Understanding how to plan, deploy, and
scale Elasticsearch using modern tools such as Docker, Kubernetes, and

cloud services allows organizations to create highly flexible and resilient
infrastructures. By carefully balancing horizontal and vertical scaling
strategies, optimizing performance through fine-tuning, and leveraging
cloud-native features, Elasticsearch clusters can meet the demands of
growing data and complex search workloads.

As deployments evolve, so also must the strategies for maintaining their
efficiency and performance. The insights gained from this chapter provide a
strong foundation for building robust Elasticsearch systems, but real-world
challenges often present unique problems and opportunities. In the next
chapter, we will dive into practical case studies, where these advanced
strategies are applied in real-world scenarios. These examples will highlight
how organizations have tackled specific challenges with Elasticsearch,
offering valuable lessons for your own deployment journey.

Points to Remember

e Pre-Deployment Planning:
o Plan cluster size, capacity, and topology based on data volume,
query load, and future growth.
o Consider redundancy, availability zones, and failover strategies
for high availability.
e Cloud Deployments:
o Elastic Cloud provides a fully managed Elasticsearch service with
automatic scaling, updates, and security.

o AWS, GCP, and Azure offer managed Elasticsearch services
integrated into their ecosystems, simplifying deployment and
scaling.

o Hybrid cloud setups can balance on-prem control with cloud
scalability, using cross-cluster search for unified queries.
e Dockerizing Elasticsearch:
o Docker allows for isolated, consistent deployments of
Elasticsearch, and Elastic Stack components.

o Use Docker Compose to orchestrate multi-container setups for
Elasticsearch, Kibana, and Logstash.

o Dockerized deployments are portable, and make it easy to move
between development, testing, and production environments.

e Kubernetes and Helm:

o Helm charts provide pre-configured templates to simplify
deploying Elasticsearch on Kubernetes.

o The Elastic Cloud on Kubernetes (ECK) operator automates
Elasticsearch cluster management, including scaling, upgrades,
and backups.

o Kubernetes enables dynamic scaling and resilience, with ECK
handling cluster recovery, and resource optimization.
e Hybrid Deployments:

o Hybrid deployments use a mix of on-premises and cloud
infrastructure for cost optimization, data sovereignty, and disaster
recovery.

o Cross-Cluster Search (CCS) enables querying across both
environments, without moving data.

o Use cloud storage for snapshot backups of on-premises clusters to
improve resilience.

e Scaling Strategies:
o Horizontal scaling adds nodes to the Elasticsearch cluster to
distribute data and workload.

o Vertical scaling increases individual node resources (CPU,
memory, and so on), ideal for smaller clusters or high-memory
workloads.

o Choose horizontal scaling for distributed workloads and vertical
scaling for memory- and CPU-intensive tasks.
e Performance Tuning:
o Optimize indexing by managing shard size, using bulk indexing,
and setting proper shard and replica configurations.

o Improve query performance by using caching, structuring queries
efficiently, and managing high cardinality fields.

o Monitor resource usage (CPU, memory, and disk) as well as adjust
settings like heap memory and thread pools accordingly.

e Monitoring and Optimization:
o Use monitoring tools such as Elastic Stack Monitoring,

Prometheus, and Grafana to track cluster health and performance.

o Regularly review logs and cluster health metrics to detect slow
queries, indexing bottlenecks, or shard imbalances.

o Set up alerts for resource utilization issues, and respond
proactively to performance bottlenecks.

Multiple Choice Questions

1. What is the main advantage of using Elastic Cloud for Elasticsearch
deployments?
a. Full control over all cluster configurations.
b. Automatic updates, scaling, and security management.
c. Requires manual patching and upgrades.
d. Limited to small-scale deployments.
2. Which feature in Elasticsearch allows querying across multiple
clusters, including both on-premises and cloud deployments?
a. Replica Shards
b. Snapshot and Restore
c. Cross-Cluster Search (CCS)
d. Vertical Scaling

3. What is the primary difference between horizontal and vertical scaling
in Elasticsearch?

a. Horizontal scaling increases node resources, while vertical scaling
adds more nodes.

b. Horizontal scaling adds more nodes, while vertical scaling
increases node resources.

c. Horizontal scaling reduces the number of shards, while vertical
scaling increases the number of shards.

d. Horizontal scaling is limited to cloud deployments, while vertical
scaling is for on-premises.

4. What is the purpose of using Helm charts in Kubernetes deployments
of Elasticsearch?
a. Helm charts automate the querying process in Elasticsearch.

b. Helm charts provide pre-configured templates for easy
deployment of Elasticsearch clusters.

c. Helm charts handle backups and snapshots in Elasticsearch
clusters.

d. Helm charts are used to create custom queries for Elasticsearch
data.

5. Which method 1is best for improving Elasticsearch indexing
performance, when dealing with large data sets?
a. Use high cardinality fields in every index.

b. Optimize bulk indexing to reduce individual document indexing
overhead.

c. Decrease the number of replicas to improve indexing speed.
d. Disable query caching to speed up indexing.

ANnswers

I.b
2.¢
3.b
4.b
5.b

Questions
1. What are the critical factors to consider during pre-deployment
planning for an Elasticsearch cluster?

2. Discuss how aspects like data volume, query load, redundancy, and
growth expectations influence cluster sizing and topology.

3. What advantages do managed FElasticsearch services such as FElastic
Cloud offer over self-hosted deployments?

4. Compare the benefits of managed services (for example, automatic
updates, scaling, and security) with the control and flexibility of self-
hosted setups.

5. How does a hybrid deployment strategy for Elasticsearch balance on-
premises infrastructure and cloud resources?

6. Explore the benefits of hybrid deployments, including cost
optimization, data residency, disaster recovery, and workload
distribution.

7. When should you choose horizontal scaling over vertical scaling in an
Elasticsearch cluster, and what are the key differences between the
two?

8. Compare horizontal and vertical scaling, focusing on how they address
different workload types, performance needs, and resource limitations.

9. How does Dockerization improve the portability and consistency of
Elastic Stack deployments, and what are the key steps in Dockerizing
Elasticsearch?

10. Explain how Docker helps create consistent, portable environments for
Elasticsearch, Kibana, and Logstash, and describe the setup process
with Docker Compose.

Key Terms

e Elastic Cloud: A fully managed service by Elastic for deploying and
managing Elasticsearch, Kibana, and other Elastic Stack components in
the cloud.

o AWS Elasticsearch Service: Amazon’s managed Elasticsearch service
integrated with AWS ecosystem tools such as S3, CloudWatch, and
IAM.

e GCP Elasticsearch: Elasticsearch services available on Google Cloud
Platform, offering options to deploy on GKE (Google Kubernetes
Engine) or through managed services.

o Azure Elasticsearch: Elasticsearch deployments on Microsoft Azure,
either through self-hosted virtual machines or partner-managed

services.

Docker: A containerization platform that enables Elasticsearch and
other FElastic Stack components to run in isolated, consistent
environments across different infrastructures.

Docker Compose: A tool for orchestrating multi-container Docker
applications, simplifying the management of Elasticsearch, Kibana, and
Logstash deployments.

Kubernetes: A container orchestration platform that automates the
deployment, scaling, and management of containerized applications,
including Elasticsearch.

Helm: A Kubernetes package manager that uses pre-configured charts
(templates) for easy deployment and management of applications like
Elasticsearch clusters.

Elastic Cloud on Kubernetes (ECK): A Kubernetes operator
provided by Elastic that automates Elasticsearch cluster management
tasks such as scaling, upgrades, and fault recovery.

Hybrid Deployment: A strategy that combines on-premises
infrastructure with cloud resources, allowing flexibility in scaling, data
sovereignty, and cost optimization.

Cross-Cluster Search (CCS): An Elasticsearch feature that allows
queries to span across multiple Elasticsearch clusters, including on-
premises and cloud clusters.

Horizontal Scaling: Adding more nodes to an Elasticsearch cluster to
distribute data and processing load, improving fault tolerance and
query throughput.

Vertical Scaling: Increasing the resources (CPU, memory, and storage)
of individual nodes in an Elasticsearch cluster to handle more intensive
workloads without adding nodes.

Shard: A portion of an Elasticsearch index used to distribute data
across nodes in a cluster, allowing for parallel processing and efficient
data retrieval.

Replica: A copy of a shard in Elasticsearch, used to provide
redundancy, fault tolerance, and load balancing in the cluster.

Bulk Indexing: An Elasticsearch feature that allows indexing multiple
documents in a single operation, improving efficiency and reducing
overhead.

Query Caching: A performance feature that stores the results of
frequent queries in memory, improving response time for similar
queries.

Persistent Volume (PV): A Kubernetes storage resource that persists
data even if the container is restarted or replaced, commonly used for
Elasticsearch data storage.

Thread Pool: A set of worker threads in Elasticsearch responsible for
processing indexing and search operations. Proper tuning of thread
pools can improve performance under load.

Heap Memory: Memory allocated to Elasticsearch’s Java Virtual
Machine (JVM) for caching and data processing. Optimal heap
memory settings are critical for cluster performance.

Hot-Warm Architecture: An Elasticsearch strategy where " hot "
data (frequently accessed) is stored on high-performance nodes and "
warm " data (less frequently accessed) on lower-cost nodes.

Snapshot: A backup of Elasticsearch indices that can be stored locally
or in the cloud, used for disaster recovery and restoration of data.

C HAPTER 9
Case Studies

Introduction

In today’s digital landscape, organizations generate vast amounts of data
from various sources, including application logs, performance metrics,
security events, and endpoint activities. Managing and analyzing this data
efficiently 1s crucial for maintaining system reliability, optimizing
performance, and strengthening security. The Elastic Stack (ELK) provides
a powerful solution for ingesting, processing, and visualizing data in real
time, enabling organizations to gain actionable insights. This chapter
presents a series of case studies demonstrating how different industries have
successfully implemented the Elastic Stack to solve real-world challenges.

Each case study explores a specific domain, such as real-time log analysis,
system performance monitoring, application performance management,
uptime assurance, Security Information and Event Management (SIEM),
and endpoint protection. By examining these use cases, we will uncover the
challenges organizations faced, the architectural solutions they implemented
using the Elastic Stack, and the tangible benefits, they achieved. These
examples illustrate how organizations across various sectors—including e-
commerce, SaaS, banking, healthcare, and enterprise security—have
leveraged Elastic’s capabilities to drive operational efficiency, enhance user
experiences, and mitigate risks.

By the end of this chapter, readers will gain a deeper understanding of how
the Elastic Stack has been applied in various real-world scenarios through a
series of case studies. Rather than focusing on the technical deployment or
implementation details, this chapter reviews the key challenges
organizations have faced, and how they leveraged Elastic Stack to address
them. Whether the objective is to optimize application performance,
enhance security monitoring, or ensure high availability, these case studies
provide valuable insights into the practical benefits and strategic impact of
Elastic Stack solutions across different industries.

Structure

In this chapter, we will discuss the following topics:

* Logs: Real-time Log Analysis for E-commerce
e Metrics: Monitoring System Performance for a Global SaaS Platform

e APM (Application Performance Monitoring): Enhancing User
Experience for an Online Banking Application

e Uptime: Ensuring 99.999% Availability for a Healthcare Portal

e SIEM (Security Information and Event Management): Proactive
Threat Detection for a Large Enterprise Network

e Endpoint: Enhancing Endpoint Security for a Distributed Workforce

Logs: Real-time L.og Analysis for E-commerce

In the fast-paced world of e-commerce, the ability to analyze logs in real-
time can be the difference between delivering a seamless customer
experience, and losing revenue due to system downtime or user frustration.
E-commerce platforms generate a massive volume of logs from various
sources, including web servers, payment gateways, and user interactions.
This case study explores the challenges faced by an e-commerce platform,
the solution implemented using the ELK stack, and the benefits achieved.

Challenge Overview

The e-commerce platform struggled with fragmented logging systems,
making it challenging to identify and resolve issues efficiently. During
promotional events, the platform experienced significant traffic spikes,
leading to delayed responses and occasional downtime. Errors in payment
processing, cart abandonment, and sluggish server performance often went
undetected until after customer complaints were received. Furthermore, the
lack of a centralized system for log analysis hindered compliance with data
retention policies which are critical for auditing and regulatory
requirements. The company needed a robust, scalable, and real-time log
analysis solution to address these challenges effectively.

Solution Architecture

To overcome these challenges, the platform implemented a comprehensive
solution using the ELK stack. Logstash was configured to aggregate logs
from diverse sources, including application servers, payment gateways, and
web traffic logs. The data was normalized and enriched to provide
consistent and meaningful insights.

The logs were then indexed and stored in an Elasticsearch cluster ,
optimized for fast searches and queries. Elasticsearch’s distributed nature
ensured high availability and the ability to scale horizontally, making it
suitable for handling traffic surges during peak periods.

To provide real-time visibility, Kibana dashboards were set up to monitor
Key Performance Indicators (KPIs) such as transaction success rates, server
health, and error trends. The platform also integrated an alerting
mechanism with tools like PagerDuty and Slack, ensuring that anomalies
were detected and addressed instantly.

The entire solution was deployed in a scalable architecture, leveraging
containerization and orchestration tools for ease of management and
reliability. This architecture not only improved log analysis, but also set a
foundation for future enhancements such as machine learning-based
anomaly detection.

Benefits and Outcomes

The implementation of the ELK stack brought numerous benefits to the e-
commerce platform. Enhanced troubleshooting capabilities allowed the
DevOps team to reduce error resolution time by 70%, as centralized
logging made it easy to trace and address issues . Real-time alerts
enabled swift action, minimizing the impact on customers, and improving
platform reliability.

Customer experience improved significantly as performance bottlenecks
were 1dentified and mitigated during peak traffic hours, leading to a
reduction in cart abandonment rates. Operational efficiency increased as the
DevOps and support teams were able to collaborate using shared
dashboards and streamlined workflows.

The company also gained data-driven insights into user behavior ,
enabling them to offer targeted promotions and personalized
recommendations. Compliance with regulatory standards was achieved

through efficient log retention and audit trails, further solidifying the
platform’s reputation for reliability and trustworthiness.

Metrics: Monitoring System Performance for a
Global SaaS Platform

Global SaaS platforms operate under strict performance expectations to
ensure seamless user experiences. With users spanning multiple time zones
and regions, performance issues in any part of the system can significantly
affect customer satisfaction and retention. This case study highlights the
challenges faced by a global SaaS platform, the monitoring solution
implemented using the ELK stack, and the resulting benefits.

Challenge Overview

The global SaaS platform faced significant challenges in monitoring its
system performance across multiple regions. The distributed nature of its
infrastructure, with data centers spread worldwide, made it difficult to gain
a unified view of system health. Performance issues such as latency, high
memory usage, and disk 10 bottlenecks were often detected only after users
reported problems.

The platform lacked a comprehensive system to track real-time
performance metrics, making it challenging to predict and prevent potential
outages. The inability to correlate performance metrics with logs added
further complexity to troubleshooting. Additionally, the company needed to
maintain stringent Service Level Agreements (SLAs) with enterprise
customers which required proactive monitoring and reporting capabilities.

Solution Architecture

To address these challenges, the SaaS platform implemented an ELK stack-
based solution, focusing on metrics monitoring . The solution started with
Metricbeat , a lightweight shipper for collecting metrics from system
components such as CPU usage, memory utilization, and network
bandwidth. Metricbeat was deployed across all servers in the distributed
infrastructure.

The collected metrics were ingested into Elasticsearch, enabling
centralized storage and real-time querying . Elasticsearch’s scalability
ensured that the platform could handle the large volume of metrics
generated by a global infrastructure. The data was enriched with
metadata such as region and service tags, to facilitate detailed analysis
and correlation.

Kibana dashboards were configured to visualize system performance
metrics across regions. Custom visualizations and heatmaps provided
insights into server health, regional performance variations, and trends over
time. Alerts were configured to notify teams about threshold breaches, such
as high CPU usage or slow response times, through integration with tools
such as Slack and Microsoft Teams.

The solution also enabled correlation between logs and metrics, combining
the power of Elastic Observability. This integration allowed teams to trace
issues from high-level metrics down to specific logs, drastically reducing
the time required for root cause analysis.

Benefits and QOutcomes

The implementation of the ELK stacks for metrics monitoring provided the
SaaS platform with several key benefits. First, the platform achieved
proactive performance monitoring , allowing teams to detect and address
issues, before they affected the end-users. Threshold-based alerts ensured
rapid response to critical problems, improving system reliability.

The unified view of system performance across regions enabled the
platform to identify patterns, and optimize resource allocation, reducing
operational costs. For example, underutilized servers in specific regions
were reconfigured to balance the load, improving overall efficiency.

The integration of logs and metrics streamlined troubleshooting and
incident management , reducing Mean Time to Resolution (MTTR) by
60%. Teams could quickly correlate performance degradations with specific
events or code changes, ensuring faster fixes, and improved platform
stability.

Additionally, the platform met its SLA requirements with enterprise
customers by providing detailed performance reports and real-time
dashboards. These capabilities enhanced customer trust and satisfaction,

positioning the company as a reliable partner for mission-critical
applications.

Application Performance Monitoring (APM):
Enhancing User Experience for an Online
Banking Application

Application Performance Monitoring (APM) is crucial for modern online
banking applications, where users expect seamless transactions, low
latency, and high reliability. Any performance degradation in such
applications can lead to user frustration, reduced trust, and financial losses.
This case study focuses on how an online banking application leveraged
APM with the Elastic Stack to enhance the user experience, and maintain
service reliability.

Challenge Overview

The online banking application faced significant challenges in ensuring a
smooth and responsive user experience. With millions of daily transactions,
the application had to handle complex workflows involving account
management, fund transfers, and bill payments. However, intermittent
performance issues such as slow response times and occasional transaction
failures were reported by users, especially during peak usage hours.

The development and operations teams lacked visibility into the root causes
of these issues. Traditional logging and metrics monitoring provided
fragmented 1insights, making it difficult to pinpoint the source of
performance bottlenecks. Moreover, the banking application was subject to
stringent compliance requirements, necessitating detailed monitoring and
reporting for audits. The organization required a robust APM solution to
gain granular insights into application performance, and proactively address
issues before they impacted the users.

Solution Architecture

To tackle these challenges, the online banking application integrated Elastic
APM into its existing Elastic Stack setup. Elastic APM agents were
deployed across the application’s backend services, including APIs,

microservices, and database layers. These agents were configured to capture
the detailed performance data such as transaction durations, database query
times, and HTTP request latencies.

The collected APM data was sent to Elasticsearch , where it was indexed
and made available for real-time analysis. Elasticsearch’s distributed
architecture ensured scalability and fault tolerance, making it ideal for
handling the large volume of performance data generated by the
application.

Kibana APM dashboards were set up to visualize key performance
metrics such as transaction throughput, error rates, and latency trends.
These dashboards enabled the operations team to monitor performance in
real-time and identify anomalies. The APM setup also included distributed
tracing , allowing the team to trace transactions end-to-end, from user
requests to backend responses, and identify bottlenecks in specific services
or database queries.

To enhance the user experience further, the organization implemented
alerting mechanisms for proactive issue detection. Alerts were triggered,
when critical thresholds such as response times or error rates, were
breached. These alerts were integrated with tools such as PagerDuty,
enabling instant notifications for the support team. Additionally, periodic
performance reports were generated to meet compliance requirements, and
provide insights into long-term performance trends.

Benefits and QOutcomes

The implementation of Elastic APM brought transformative benefits to the
online banking application. With end-to-end transaction tracing and real-
time monitoring, the operations team could quickly identify and resolve
performance bottlenecks. This reduced the Mean Time to Resolution
(MTTR) for critical issues by 65%, ensuring that the users experienced
minimal disruptions.

The proactive alerting system allowed the team to address potential issues
before they escalated, resulting in improved uptime and reliability. For
instance, alerts on database query delays helped identify and optimize slow
queries, leading to faster transaction processing during peak hours.

From a user perspective, the application’s responsiveness improved
significantly, leading to increased customer satisfaction and trust. The
ability to trace and resolve performance issues at a granular level also
ensured that critical financial transactions were processed without errors,
bolstering the platform’s reputation.

Furthermore, the organization achieved compliance with regulatory
standards by maintaining detailed performance logs and reports. This not
only simplified audits, but also provided valuable insights for capacity
planning and infrastructure optimization. Overall, the Elastic APM solution
enabled the online banking application to deliver a superior user experience,
driving customer retention and business growth.

Uptime: Ensuring 99.999% Availability for a
Healthcare Portal

High availability is a critical requirement for healthcare portals, as they
provide vital services such as appointment scheduling, medical record
access, and teleconsultation. Downtime in these systems can lead to delays
in patient care and loss of trust. This case study explores how a healthcare
organization leveraged the Elastic Stack to ensure 99.999% availability for
its portal, overcoming significant operational challenges.

Challenge Overview

The healthcare portal faced several challenges in maintaining high
availability and reliability. With thousands of patients and healthcare
providers accessing the system daily, even minor downtimes could have
severe repercussions. The system experienced occasional outages caused by
server failures, application crashes, and high traffic surges during peak
usage times.

The organization also struggled with the lack of visibility into uptime
metrics across its infrastructure. Traditional monitoring tools provided basic
server status checks, but failed to detect issues at the application level or
during specific workflows such as prescription management. Furthermore,
compliance with healthcare regulations required robust uptime monitoring
and reporting to ensure service continuity.

The organization needed a solution that could proactively monitor system
uptime at both the infrastructure and application levels, while providing
detailed insights for incident response and compliance.

Solution Architecture

To ensure high availability, the healthcare portal implemented Elastic
Heartbeat alongside the existing Elastic Stack setup. Elastic Heartbeat , a
lightweight monitoring agent, was deployed to continuously check the
availability of critical system components, including web servers, APIs,
and database services. Heartbeat was configured to perform both HTTP
and TCP checks, simulating user interactions to detect application-level
issues.

The uptime data collected by Heartbeat was sent to Elasticsearch , where it
was indexed and analyzed in real-time. This centralized storage allowed the
organization to correlate uptime metrics with other observability data such
as logs and system metrics for comprehensive monitoring.

Custom Kibana dashboards were designed to display uptime statuses,
response times, and failure trends. These dashboards provided a clear view
of the system’s availability across various components and regions,
enabling quick identification of problem areas. Alerting mechanisms were
integrated to notify the support team via email and messaging tools like
Slack whenever downtime or latency exceeded predefined thresholds.

To achieve fault tolerance, the Elastic Stack deployment itself was
configured in a high-availability architecture. Multiple Elasticsearch nodes
were deployed across different availability zones, ensuring resilience
against hardware failures. Load balancers and auto-scaling mechanisms
were also implemented to handle traffic surges, and maintain service
reliability.

Benefits and Outcomes

The adoption of Elastic Heartbeat and the FElastic Stack significantly
improved the healthcare portal’s uptime and reliability. Proactive
monitoring allowed the team to detect and resolve issues before they
affected users, ensuring consistent service delivery. Downtime incidents

were reduced by over 90%, and the portal achieved the targeted 99.999%
availability.

The integration of uptime monitoring with other observability data provided
deeper insights into the root causes of issues. For instance, correlations
between downtime and server resource usage helped the team identify and
optimize resource bottlenecks. This improved the efficiency of incident
management, and reduced the Mean Time to Recovery (MTTR).

From a compliance perspective, the system’s detailed uptime logs and
reports simplified audit processes, and demonstrated adherence to
healthcare regulations. The organization’s ability to ensure uninterrupted
access to critical healthcare services strengthened patient trust and
satisfaction.

In addition, the high-availability architecture supported by the Elastic Stack
provided resilience against unforeseen failures such as hardware
malfunctions and traffic spikes. The scalability of the solution allowed the
healthcare portal to seamlessly handle increasing user demand, ensuring
long-term reliability and performance.

SIEM (Security Information and Event
Management): Proactive Threat Detection for a
Large Enterprise Network

In today’s cyber threat landscape, large enterprises face persistent security
challenges. Proactively detecting and mitigating threats requires a robust
and scalable Security Information and Event Management (SIEM) solution.
This case study examines how a large enterprise network leveraged the
Elastic Stack to implement a SIEM system for enhanced security
monitoring and threat detection.

Challenge Overview

The enterprise operated a large and distributed network with thousands of
endpoints, including servers, workstations, and IoT devices. It faced
challenges in identifying and responding to security threats such as
unauthorized access, malware infections, and insider threats. The existing

security tools were disjointed, creating blind spots, and making it difficult
to correlate events across the network.

Real-time threat detection was another significant challenge. Logs from
firewalls, intrusion detection systems (IDS), and endpoint devices were
siloed, delaying incident detection and response. Furthermore, compliance
with industry standards, such as GDPR and ISO 27001, required detailed
reporting and audit trails, which the organization struggled to maintain with
its legacy tools.

The organization needed a centralized, real-time SIEM solution that could
ingest and analyze security events at scale, detect anomalies, and provide
actionable insights for threat mitigation.

Solution Architecture

The enterprise implemented Elastic Security, built on the Elastic Stack, to
address its SIEM needs. Filebeat and Auditbeat were deployed across the
network to collect security event data from endpoints, servers, and network
devices. These lightweight agents were configured to capture logs, user
activity, process data, and network traffic.

The collected data was ingested into a centralized Elasticsearch cluster
which provided powerful search and analytics capabilities. Elasticsearch’s
scalability allowed the system to handle millions of events per second,
ensuring real-time data ingestion and analysis.

Kibana Security Dashboards were configured to visualize security
metrics such as failed login attempts, unusual user activity, and network
anomalies. The organization also leveraged Elastic’s machine learning
capabilities to detect anomalies, and identify potential threats based on
behavioral patterns.

Detection rules and alerting mechanisms were set up for key security
events such as privilege escalations, malware activity, and suspicious
network traffic. Alerts were integrated with the Security Operations Center
(SOC) workflow, enabling immediate response through tools such as
ServiceNow and Slack.

The solution also included compliance-focused features such as role-based
access control and detailed audit logs, ensuring that the system met
regulatory requirements. Data retention policies were implemented using

Elasticsearch’s lifecycle management features, optimizing storage, while
adhering to compliance standards.

Benefits and OQOutcomes

The Elastic SIEM solution transformed the enterprise’s security operations,
enabling proactive threat detection and response. By centralizing security
event data, the organization eliminated blind spots, and gained complete
visibility into its network. Real-time alerts allowed the SOC team to
respond to the threats within minutes, significantly reducing the risk of data
breaches.

The integration of machine learning enhanced the organization’s ability to
detect sophisticated threats such as zero-day exploits and insider attacks.
Anomaly detection based on user behavior and network activity provided
early warnings for potential incidents, enabling the team to act before
damage occurred.

Operational efficiency improved as the SOC team could correlate events
across different sources such as firewalls and endpoint devices, using the
unified Elastic Security interface. The streamlined workflows reduced the
Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR) to
incidents by over 50%.

Compliance requirements were also met with ease, thanks to detailed
reporting, audit trails, and role-based access controls. The organization’s
ability to demonstrate adherence to regulatory standards during audits
enhanced its reputation, and minimized compliance risks.

Overall, the Elastic SIEM solution provided the enterprise with a scalable,
cost-effective, and proactive approach to threat detection and security
monitoring. This implementation not only strengthened the organization’s
security posture, but also reduced operational overhead and improved
stakeholder confidence.

Endpoint: Enhancing Endpoint Security for a
Distributed Workforce

The shift to a distributed workforce has made endpoint security more
critical than ever. With employees accessing corporate resources from a

wide range of devices and networks, enterprises face new challenges in
protecting sensitive data and systems. This case study explores how an
organization leveraged the Elastic Stack to enhance endpoint security, and
mitigate risks associated with a distributed workforce.

Challenge Overview

The organization’s workforce became increasingly distributed due to remote
work policies. Employees accessed corporate systems, using a mix of
company-issued and personal devices, often over unsecured home or public
networks. This shift introduced a range of security challenges, including
vulnerability to malware, unauthorized access, and data exfiltration.

Traditional endpoint security tools struggled to scale with the growing
number of endpoints, and lacked the centralized visibility needed to detect
and respond to threats effectively. Moreover, the organization faced
difficulty monitoring compliance with security policies across diverse
devices and operating systems. These challenges were compounded by the
need to ensure compliance with regulations such as GDPR and HIPAA
which require robust endpoint monitoring and reporting.

Solution Architecture

To address these challenges, the organization deployed Elastic Endpoint
Security, a component of Elastic Security, across all devices used by its
workforce. The solution began with the installation of Elastic Agent on
endpoints which provided comprehensive monitoring and protection against
threats such as ransomware, malware, and phishing attacks.

The FElastic Agent collected the endpoint data, including file integrity
changes, process activity, and network connections, and sent it to a
centralized Elasticsearch cluster . The cluster was configured for high
availability to handle data from thousands of endpoints in real-time.

Using Kibana , the organization built custom dashboards to monitor
endpoint activity, detect suspicious behavior, and visualize security
incidents. Predefined detection rules and behavioral analytics helped
identify threats such as unauthorized software installations, unusual
data transfers, and privilege escalations.

To enhance response capabilities, automated remediation actions were
configured for specific threats. For example, devices identified as
compromised could be quarantined automatically, while administrators
received real-time alerts for further investigation. Integration with third-
party tools such as ticketing systems and communication platforms,
streamlined incident management workflows.

The Elastic solution also supported endpoint encryption and device
compliance monitoring. By leveraging Elasticsearch’s indexing and query
capabilities, the organization implemented detailed compliance audits,
ensuring that all endpoints adhered to security policies and regulatory
requirements.

Benefits and QOutcomes

The deployment of Elastic Endpoint Security significantly improved the
organization’s ability to protect its distributed workforce. By providing real-
time visibility into endpoint activity, the solution allowed the security team
to detect and respond to threats within minutes, reducing the risk of data
breaches and other incidents.

Automated threat detection and remediation enhanced operational
efficiency, enabling the security team to focus on more complex challenges,
instead of the routine tasks. For instance, the automatic quarantine of
infected devices reduced the time and effort required to contain malware
outbreaks.

The unified dashboards and centralized monitoring provided by Elastic
Security enabled the organization to maintain consistent security policies
across a diverse range of devices and operating systems. This improved
compliance with internal policies and regulatory standards, simplifying
audit processes, and reducing the risk of penalties.

From a user perspective, the solution operated seamlessly in the
background, ensuring robust protection without impacting device
performance or employee productivity. The organization also achieved cost
savings by consolidating its endpoint security and monitoring tools into a
single, scalable Elastic Stack implementation.

By addressing endpoint security challenges comprehensively, the
organization was able to support its distributed workforce confidently,

ensuring data security, regulatory compliance, and a resilient IT
environment.

Conclusion

The case studies in this chapter have demonstrated how organizations
across various industries have leveraged the Elastic Stack to solve real-
world challenges. From real-time log analysis in e-commerce to proactive
threat detection in enterprise security, each case study highlights the impact
of centralized data collection, visualization, and analytics in improving
operational efficiency, security, and system reliability. By reviewing these
examples, we gain insights into how businesses use Elastic Stack to
enhance decision-making, streamline troubleshooting, and maintain high-
performance infrastructures.

While this chapter focused on reviewing practical use cases, it is important
to recognize that the Elastic ecosystem extends beyond the traditional ELK
stack. In the next chapter, Beyond ELK: Integrating Other Elastic
Products , we will explore the additional tools and capabilities within
the Elastic ecosystem such as Elastic Security, Elastic APM, and Elastic
Observability. These solutions offer even more advanced analytics, machine
learning, and security features that further enhance the power of Elastic in
modern IT environments.

Points to Remember

e Real-World Applications of Elastic Stack: The Elastic Stack has
been successfully applied across industries such as e-commerce, SaaS,
banking, healthcare, and enterprise security to enhance observability,
performance monitoring, and security.

e Real-Time Log Analysis: Centralized log collection and real-time
analysis using Elasticsearch and Kibana help organizations detect
issues faster, reduce troubleshooting time, and optimize system
performance.

e System Performance Monitoring: Metricbeat enables SaaS
platforms to track the key performance metrics such as CPU, memory,
and network usage, improving resource allocation, and maintaining
uptime.

e Application Performance Monitoring (APM): Elastic APM allows
businesses to trace transactions across distributed systems, identifying
performance bottlenecks, and ensuring a seamless user experience.

 Ensuring High Availability: Elastic Heartbeat is used to monitor
uptime and availability, helping organizations achieve their
availability goals, and comply with SLAs.

e Security Information and Event Management (SIEM): Elastic
Security centralizes security event monitoring, helping enterprises
detect threats proactively, investigate anomalies, and comply with
security regulations.

e Endpoint Protection: Deploying Elastic Agent on endpoints provides
real-time monitoring, and automated threat response, ensuring security
for a distributed workforce.

e Observability Beyond Logs: Combining logs, metrics, APM, and
security data within Elastic Stack provides a holistic approach to
system monitoring and optimization.

* Business Impact: Organizations using Elastic Stack experience
reduced downtime, improved system efficiency, faster threat detection,
and better compliance with regulatory standards.

e Next Steps: Beyond the traditional ELK stack, Elastic offers
additional products such as Elastic Security, Elastic Observability, and
Machine Learning-based analytics which we will explore in the next
chapter.

Multiple Choice Questions

1. What was the primary challenge faced by the e-commerce platform in
the real-time log analysis case study?

a. Lack of a centralized logging system for identifying and
resolving issues.

b. High costs associated with Elastic Stack deployment.

c. Slow database performance due to excessive indexing.

d. Inability to store logs for more than 24 hours.

. How did the SaaS platform improve system performance monitoring
using Elastic Stack?

a. By using Logstash to collect and store logs from all servers

b. By deploying Metricbeat to collect real-time system metrics

c. By replacing its existing cloud infrastructure with on-premise
servers

d. By disabling non-essential logging to reduce storage costs
. What key feature of Elastic APM helped improve the performance of
the online banking application?

a. Distributed tracing to analyze transaction flow

b. Removing the need for performance monitoring

c. Replacing Elasticsearch with a relational database

d. Disabling security monitoring for faster transactions
. In the healthcare portal case study, which Elastic tool was used to
monitor system uptime and availability?

a. Filebeat

b. Metricbeat

c. Heartbeat

d. Auditbeat

. How did Elastic Security help the enterprise network improve its
SIEM capabilities?

a. By providing centralized security event logging and real-time
threat detection

b. By reducing network bandwidth usage across the infrastructure

c. By replacing traditional antivirus software with a firewall

d. By preventing all external access to the corporate network

Answers

l.a
2.b

3.a
4. c
5.a

Questions

1.

How does real-time log analysis benefit e-commerce platforms, and
what challenges does it help to resolve?

. What role does Elastic APM play in improving application

performance, and why is it particularly important for online banking
applications?

. How does Elastic Security enhance SIEM capabilities for large

enterprises, and what advantages does it offer over traditional security
monitoring tools?

. Why is uptime monitoring critical for healthcare portals, and how does

Elastic Heartbeat help organizations achieve high availability?

. In the context of endpoint security for a distributed workforce, what

are the key challenges organizations face, and how does Elastic Stack
provide a solution?

Key Terms

Elastic Stack (ELK): A suite of tools including Elasticsearch,
Logstash, Kibana, and Beats, used for searching, analyzing, and
visualizing data in real-time.

Log Analysis: The process of collecting, indexing, and analyzing logs
to monitor system health, troubleshoot errors, and optimize application
performance.

Observability: A comprehensive approach to monitoring systems by
collecting logs, metrics, and traces to gain insights into performance
and security.

Metricbeat: A lightweight shipper for collecting system metrics such
as CPU, memory, disk usage, and network traffic.

Application Performance Monitoring (APM): A technique used to
track application transactions, measure latency, and identify

performance bottlenecks.

Distributed Tracing: A method of tracking requests across multiple
services to identify slow-performing components in an application.

Elastic Heartbeat: A tool used to monitor system uptime by
performing periodic checks on endpoints, APIs, and services.

Service Level Agreement (SLA): A contractual agreement that
defines the expected service uptime, performance standards, and
response times.

Security Information and Event Management (SIEM): A
centralized system for collecting, analyzing, and responding to
security events across an organization.

Elastic Security: A security solution within the Elastic Stack that
provides SIEM, endpoint protection, and threat detection capabilities.

Filebeat: A lightweight log shipper that collects and forwards log data
from servers, applications, and cloud environments.

Auditbeat: A tool for monitoring security-related data such as user
activity, system calls, and file integrity changes.

Anomaly Detection: The use of machine learning models in Elastic to
identify unusual patterns in the log data that could indicate security
threats or system failures.

Endpoint Security: Protection mechanisms designed to secure
individual devices (laptops, servers, workstations) from malware,
unauthorized access, and data breaches.

Threat Intelligence: The process of gathering and analyzing security
data to detect and prevent cyber threats in real-time.

C HAPTER 10

Beyond ELK: Integrating Other
Elastic Products

Introduction

The Elastic Stack, commonly known as ELK (Elasticsearch, Logstash, and
Kibana), has become the go-to solution for log management, analytics, and
observability. However, Elastic provides a broader ecosystem of tools
beyond the traditional ELK stack. In this chapter, we explore how other
products such as Beats, Elastic APM, and Elastic Enterprise Search can
enhance data ingestion, application monitoring, and search capabilities,
making your observability and search solutions even more powerful.

Structure

In this chapter, we will discuss the following topics:

e Introduction to Beats
e Beats vs. Logstash: Understanding the Differences
e Using APM for Application Performance Monitoring

e Best Practices for Using APM for Application Performance
Monitoring

» Exploring Elastic Enterprise Search
e Endpoint: Enhancing Endpoint Security for a Distributed Workforce

Introduction to Beats

Beats are lightweight data shippers designed to collect, process, and send
data to Elasticsearch or Logstash. Unlike Logstash, which is a robust but
resource-intensive data processing pipeline, Beats are designed to be
efficient and purpose-built for specific data collection needs.

There are multiple types of Beats, each serving a distinct purpose:

» Filebeat : Used for collecting and forwarding log files.
e Metricbeat : Captures system and application metrics.
o Packetbeat : Monitors network traftic.

e Winlogbeat : Gathers Windows event logs.

e Auditbeat : Collects security audit data.

e Heartbeat : Checks service uptime and availability.

By deploying Beats on servers, cloud instances, or containers, organizations
can collect various forms of telemetry data, without burdening their
infrastructure. Beats integrate seamlessly with Elasticsearch, offering built-
in dashboards in Kibana for instant visualization. This lightweight approach
makes Beats an ideal choice for real-time monitoring and logging at scale.

Beats vs. Logstash: Understanding the Differences

When it comes to data ingestion within the Elastic Stack, two primary
components are used: Beats and Logstash . While both tools are integral to
the Elastic ecosystem and serve the purpose of collecting and forwarding
data to Elasticsearch, they are designed for different use cases and
environments. Understanding the differences between Beats and Logstash
helps in choosing the right tool for your specific needs.

Lightweight vs. Heavyweight Data Ingestion

Beats are lightweight, single-purpose data shippers. They are optimized for
simplicity and efficiency, running as small agents on your servers or
containers. Each Beat is tailored for a specific type of data:

» Filebeat for log files

e Metricbeat for system and application metrics
» Packetbeat for network traffic

e Winlogbeat for Windows event logs

e Auditbeat for security audit data

e Heartbeat for uptime monitoring

Beats are designed to consume minimal system resources, making them
ideal for large-scale deployments where multiple servers need to ship data
simultaneously.

Logstash , on the other hand, is a robust, feature-rich data processing
pipeline. It is designed to handle complex data transformations, parsing, and
enrichment. Logstash supports numerous input sources and output
destinations, allowing it to act as a central hub for diverse data streams. It
can process and transform data using filters , perform conditional logic
, and enrich data with external sources .

Data Transformation and Enrichment

Beats primarily focus on data collection with minimal transformation. They
offer basic functionalities like filtering log lines or adding metadata but do
not perform advanced data manipulation. If you need straightforward log
forwarding without complex processing, Beats are the perfect choice.

Logstash excels in data transformation and enrichment. It can parse
unstructured data, split logs, remove fields, and perform conditional logic.
For example, Logstash can:

e Convert CSV files into structured JSON.

e Parse logs using Grok patterns.

e Enrich data with GeolP information.

e Handle complex data pipelines.

This makes Logstash a better fit for scenarios where data needs to be
heavily processed, before indexing in Elasticsearch.

Scalability and Resource Usage

Beats are more scalable due to their lightweight nature. They can be
deployed across a large number of servers without consuming significant
resources. This makes them suitable for high-throughput environments,
where data needs to be shipped quickly and reliably.

Logstash is resource-intensive, and typically requires dedicated
infrastructure, especially when handling large volumes of data. It is not as

scalable as Beats for simple log forwarding tasks, but is powerful for
complex data pipelines.

Deployment and Configuration

Beats are easy to deploy and configure. They come with pre-built modules
for popular data sources, offering quick setup and predefined dashboards in
Kibana. Their configuration is straightforward, making them accessible
even for non-experts.

Logstash has a more complex configuration syntax, with separate pipelines
for input, filter, and output stages. This allows for fine-grained control over
data processing, but requires more expertise to manage.

Choosing between Beats and L.ogstash

The choice between Beats and Logstash depends on your specific
requirements:

Use Beats when:

* You need lightweight, efficient data shippers.
e Minimal data transformation is required.

* You have a large number of servers or containers.
Use Logstash when:

e Complex data parsing and transformation are needed.
e You require enrichment from external sources.

* You have diverse data inputs and outputs.

Combining Beats and L.ogstash

In many cases, Beats and Logstash can be used together for a
comprehensive data ingestion pipeline. Beats can be deployed on the edge
to collect data and send it to Logstash, which then processes and enriches
the data before forwarding it to Elasticsearch. This combination leverages
the strengths of both tools, providing efficient data collection and powerful
processing capabilities.

By understanding the key differences and use cases of Beats and Logstash,
you can design an effective data ingestion strategy that meets the needs of
your observability and analytics workflows.

Using APM for Application Performance
Monitoring

Elastic APM (Application Performance Monitoring) is a specialized
component of the Elastic Stack designed to track application performance,
monitor distributed traces, and detect bottlenecks in real-time. It helps
developers and operations teams gain deep visibility into how applications
behave in production environments.

Elastic APM works by using APM agents which are installed in
applications to capture traces and performance metrics. These agents
support multiple programming languages, including Java, .NET, Python,
Node.js, Go, and Ruby. The collected data is then sent to an APM Server
which forwards it to Elasticsearch for indexing and analysis.

Some key features of Elastic APM include:
e Tracing distributed applications: Visualizing how requests
propagate across different services.

e Error and exception tracking: Identifying slow requests, exceptions,
and error-prone code paths.

e Performance metrics: Monitoring response times, memory usage,
CPU load, and many more.

With Kibana’s APM UI, teams can easily analyze application bottlenecks,
detect anomalies, and optimize performance. Elastic APM is especially
useful for microservices-based architectures, where tracing interactions
between multiple services is critical.

Best Practices for Using APM for Application
Performance Monitoring

Application Performance Monitoring (APM) is essential for maintaining
high-performing applications, detecting bottlenecks, and ensuring an
optimal user experience. Elastic APM provides a robust solution for

monitoring distributed applications, tracking request traces, and identifying
slow-performing services. However, to maximize its effectiveness, it is
crucial to follow the best practices in deployment, configuration, and
analysis.

Deploy APM Agents Strategically

APM agents collect performance metrics and traces from applications, but
deploying them improperly can introduce overhead. Follow these best
practices:

o Identify critical services: Deploy APM agents on key microservices,
API endpoints, and backend applications that directly impact
performance.

e Use supported agents: Ensure that you are using the latest version of
Elastic APM agents for languages like Java, .NET, Python, Node.js,
Go, or Ruby.

e Limit unnecessary tracing: Only monitor relevant transactions to
reduce resource usage and storage consumption.

Define Key Performance Indicators (KPIs)

Setting clear KPIs helps measure application performance effectively. Some
critical metrics to track include:

e Response time: Measure how long API requests take to complete.

e Throughput: Analyze the number of requests per second to identify
spikes in demand.

e Error rates: Detect failed requests and exceptions that impact user
experience.

e Database query performance: Monitor slow SQL queries that cause
delays in application response times.

e Service dependencies: Understand how external services impact
application performance.

Optimize Sampling for Performance Efficiency

APM can generate a large volume of trace data which can overwhelm
Elasticsearch storage if not managed properly. To optimize performance:

e Use adaptive sampling: Configure APM agents to collect only a
percentage of requests, instead of capturing all the traffic.

e Prioritize slow transactions: Ensure that traces for slow-performing
requests are captured with high detail.

e Exclude unnecessary endpoints: Avoid monitoring low-priority or
background jobs that do not affect performance.

Leverage Distributed Tracing

Modern applications rely on microservices, making distributed tracing
critical for understanding request flows across multiple services. The best
practices include:

e Enable distributed tracing across all services: Ensure that APM
agents are installed across all interconnected microservices.

o Use trace correlation: Link logs, metrics, and traces to get a holistic
view of how requests flow through the system.

e Visualize service dependencies: Use Kibana’s APM Service Map to
understand dependencies and detect performance bottlenecks.

Monitor Errors and Exceptions

Detecting errors early helps prevent system failures, and improves
application stability. Consider these practices:

e Enable automatic error tracking: Elastic APM automatically
captures exceptions and error logs.

e Set up alerts for critical failures: Configure notifications in Kibana
or integrate with Slack, PagerDuty, or email to get real-time alerts.

e Analyze stack traces: Use stack traces to diagnose and fix recurring
issues in the code.

Analyze and Optimize Slow Transactions

Identifying slow transactions is key to improving performance. Follow
these strategies:

e Set response time thresholds: Define what is considered a slow
request, and prioritize fixing those exceeding the limit.

e Break down transactions into spans: Analyze which parts of the
code, queries, or external calls contribute to delays.

e Optimize database queries: Identify inefficient SQL queries or
missing indexes, using APM’s query performance monitoring.

Integrate APM with Logging and Metrics

To get a complete observability solution, Elastic APM should be used
alongside logging and infrastructure monitoring:

e Link APM traces with logs: Use Elastic Stack’s centralized logging
to correlate performance issues with logs.

e Monitor system metrics with Metricbeat: Track CPU, memory, and
network usage to detect infrastructure-related performance issues.

e Combine APM with alerting: Set up alerts in Kibana to get notified
about anomalies in real-time.

Regularly Review and Tune APM Settings

APM monitoring is not a one-time setup; it requires continuous
improvement:

e Periodically review the collected data: Remove unnecessary spans
or traces to optimize storage and performance.

o Upgrade APM agents: Ensure you use the latest agent versions to
benefit from performance improvements and bug fixes.

e Fine-tune configurations: Adjust sampling rates, span collection, and
error tracking, based on observed system behavior.

Secure APM Data and Access

Since APM collects sensitive performance data, it is essential to secure
access:

e Use role-based access control (RBAC): Restrict who can view, and
manage APM data in Kibana.

* Encrypt data transmission: Ensure that APM agents and
Elasticsearch communicate securely over TLS.

e Control data retention : Implement data lifecycle policies to archive
or delete old traces and logs.

Use Kibana Dashboards for Visualization

A well-structured dashboard in Kibana provides instant insights into
application performance:

e Create custom dashboards: Design visualizations for KPIs, error
rates, and slow transactions.

e Use real-time analytics: Leverage Kibana’s real-time monitoring
capabilities to detect issues as they happen.

e Drill down into root causes: Investigate performance issues by
correlating traces, logs, and system metrics.

Exploring Elastic Enterprise Search

Elastic Enterprise Search provides a powerful way to implement full-text
search across different data sources, making it ideal for organizations
looking to improve information retrieval in websites, applications, and
internal knowledge bases.

The key products under Elastic Enterprise Search include:

e App Search: A streamlined solution for building powerful search
experiences in web and mobile applications. It comes with relevance
tuning, analytics, and customizable search UI components.

 Workplace Search: Designed to centralize content search across
multiple business applications such as Google Drive, Microsoft 365,
Slack, and Confluence.

Elastic Enterprise Search builds on the core capabilities of Elasticsearch,
while offering pre-built connectors , search analytics , and Al-driven
relevance tuning . With support for RESTful APIs and UI tools, developers

can quickly integrate advanced search capabilities, without needing
extensive expertise in search algorithms.

Thus, by leveraging Elastic Enterprise Search, organizations can ensure that
employees and customers find relevant information faster, improving
productivity and user experience.

Conclusion

Throughout this book, we have explored the powerful capabilities of the
Elastic Stack (ELK) —a widely adopted solution for log management,
search, and observability. While Elasticsearch, Logstash, and Kibana form
the foundation of this ecosystem, Elastic offers a broader suite of tools that
can take your data analytics, monitoring, and search capabilities to the next
level.

In this final chapter, we examined how Beats, Elastic APM, and Elastic
Enterprise Search integrate seamlessly with the traditional ELK stack,
expanding its capabilities beyond basic log ingestion and visualization.

e Beats vs. Logstash: We learned that Beats provide lightweight, and
efficient data collection from distributed systems, while Logstash
offers powerful transformation and enrichment capabilities. Choosing
the right tool depends on whether you prioritize scalability and
simplicity (Beats) or require complex data processing pipelines
(Logstash). In many cases, a hybrid approach —using Beats for
collection and Logstash for transformation—delivers the best results.

e Application Performance Monitoring (APM): Observability
extends beyond logs and metrics, and Elastic APM provides deep
insights into application behavior, distributed traces, and bottlenecks.
By following best practices, such as strategic agent deployment, error
tracking, distributed tracing, and KPI monitoring, organizations can
ensure optimal application performance and quick issue resolution.

e Enterprise Search: While Elasticsearch is a powerful search engine,
Elastic Enterprise Search offers specialized solutions such as App
Search and Workplace Search to provide an enhanced search
experience across web applications and business tools. This expansion
allows organizations to deliver fast, relevant, and Al-driven search
experiences tailored to end-user needs.

As the volume and complexity of data continue to grow, a unified
approach to observability, search, and analytics is becoming essential.
The modern enterprise demands solutions that can handle logs, metrics,
traces, security events, and structured/unstructured data all in one
ecosystem.

The Elastic Stack has evolved beyond its origins, offering machine
learning-driven anomaly detection, security analytics, real-time
monitoring, and full-text search capabilities —all within a single,
scalable platform. With continued advancements in Al, cloud-native
deployments, and edge computing , Elastic is well-positioned to remain a
leading choice for organizations looking to extract value from their data.

Therefore, by understanding how to choose the right components,
optimize performance, and integrate additional Elastic solutions , you
can build scalable, efficient, and intelligent observability as well as
search architectures that support business growth and innovation.

Points to Remember

e Beats are lightweight, single-purpose data shippers designed for
efficient data collection with minimal processing.

e Logstash is a more powerful but resource-intensive data pipeline that
supports complex transformation, filtering, and enrichment.

e Use Beats , when you need scalable, low-latency data forwarding.

e Use Logstash , when you need to parse, transform, and enrich data,
before sending it to Elasticsearch.

e A hybrid approach (Beats for collection + Logstash for
transformation) often provides the best balance between efficiency and
flexibility.

* Elastic APM provides deep visibility into application performance,
distributed traces, and error tracking.

e Deploy APM agents strategically to monitor critical services, while
minimizing resource overhead.

e Monitor key performance indicators (KPIs) like response time,
throughput, error rates, and database query performance.

o Use distributed tracing to track requests across microservices, and
detect bottlenecks.

e Optimize sampling rates to balance detailed tracing with storage
efficiency.

e Integrate APM with logs and metrics for a comprehensive
observability strategy.

e Set up alerts and dashboards in Kibana to proactively detect and
resolve issues.

o Elastic Enterprise Search expands search -capabilities beyond
Elasticsearch for specialized use cases.

e App Search enables developers to implement powerful, relevance-
tuned search in web and mobile applications.

e Workplace Search centralizes content search across multiple business
applications (Google Drive, Microsoft 365, Slack, and so on.).

e Leverage Al-driven relevance tuning to improve search accuracy,
and user experience.

o Enterprise Search simplifies integration with pre-built connectors
and analytics for tracking search performance.

e The Elastic Stack has evolved beyond ELK, offering APM, Beats,
and Enterprise Search to enhance observability and search solutions.

e Choosing the right tools —whether Beats vs. Logstash, APM for
monitoring, or Enterprise Search for information retrieval—is critical
for an effective deployment.

o Elastic is a unified data platform capable of handling logs, metrics,
traces, security, and search needs in a scalable, efficient way.

e Future observability trends will continue to integrate Al, cloud-
native solutions, and real-time analytics , making Elastic Stack a
key player in modern IT ecosystems.

Multiple Choice Questions

1. What is the primary difference between Beats and Logstash?

a. Beats perform complex data transformation, while Logstash is
only for data collection.

b. Beats are lightweight data shippers, whereas Logstash is a more
powerful data processing pipeline.

c. Beats store data directly in Elasticsearch, while Logstash only
works with Kibana.

d. Beats and Logstash are used interchangeably with no major
differences.
2. Which of the following is NOT a type of Beat?

a. Filebeat

b. Metricbeat
c. Packetbeat
d. Querybeat

3. When should you prefer Logstash over Beats?

a. When minimal resource usage is required.
b. When complex data transformation and enrichment are needed.
c. When collecting system metrics from multiple servers.

d. When monitoring uptime of web services.
4. What is the main function of Elastic APM?

a. Securely store logs in Elasticsearch.

b. Monitor application performance, traces, and error tracking.
c. Manage Kibana visualizations and dashboards.

d. Perform full-text search across enterprise applications.

5. Which best practice is recommended for using Elastic APM
efficiently?

a. Enable APM agents on every single application component,
regardless of its importance.

b. Use adaptive sampling to optimize performance, and reduce
storage consumption.

c. Disable distributed tracing to reduce unnecessary monitoring.
d. Use Elastic APM only for frontend applications.

Answers

1.

b

2.d
3.b
4.b
5.b

Questions

1.

In what scenarios would you choose Beats over Logstash? Are there
cases where combining both tools would be beneficial? Explain your
reasoning.

. What are some of the key challenges in Application Performance

Monitoring (APM), and how does Elastic APM help overcome them?
What best practices would you follow to optimize APM for a
microservices-based system?

. How does distributed tracing improve application observability in

Elastic APM? Can you describe a real-world example where tracing
requests across services could help identify and resolve performance
bottlenecks?

. How does Elastic Enterprise Search extend the capabilities of

Elasticsearch? In what situations would you use App Search or
Workplace Search, instead of setting up a custom Elasticsearch index?

. The Elastic Stack has evolved beyond ELK (Elasticsearch, Logstash,

and Kibana) with tools like APM, Beats, and Enterprise Search. In
your opinion, what are some future trends in observability, search, or
Al-driven analytics that could further enhance the Elastic ecosystem?

Key Terms

Beats: Lightweight data shippers that collect and forward logs,
metrics, and other data to Elasticsearch or Logstash.

Logstash: A data processing pipeline that collects, transforms, and
enriches data before sending it to Elasticsearch.

Elastic APM (Application Performance Monitoring): A solution
for tracking application performance, analyzing transactions, and
identifying bottlenecks.

APM Agent: A small software component that collects application
performance data, and sends it to the APM server.

Distributed Tracing: A technique used in APM to track requests
across multiple microservices to diagnose performance issues.

Transaction : A unit of work in an application such as an API request
or database query monitored in Elastic APM.

Sampling Rate: A method used in APM to control the percentage of
transactions recorded, reducing storage costs and performance
overhead.

Service Map: A visualization in Kibana’s APM UI that shows
dependencies and interactions between different application
components.

Error Tracking: The ability of Elastic APM to capture and report
application exceptions and failures.

Elastic Enterprise Search: A suite of search solutions built on
Elasticsearch, including App Search and Workplace Search.

App Search: A pre-built search solution that provides relevance
tuning, search analytics, and a search-ready UI for applications.

Workplace Search: A tool that centralizes enterprise content search
across multiple platforms such as Google Drive, Microsoft 365, and
Slack.

Al-driven Relevance Tuning: A feature in Enterprise Search that
optimizes search results, based on user interactions and content
relevance.

Full-text Search: A search technique used by Elasticsearch and
Enterprise Search to retrieve documents, based on textual content.

Observability : A holistic approach to monitoring system
performance by collecting logs, metrics, and traces.

Metricbeat : A Beat that collects system and application performance
metrics.

Filebeat : A Beat that collects and forwards log data.

o Packetbeat : A Beat that monitors network traffic and protocol usage.

« APM Dashboards : Kibana visualizations that display application
performance metrics, error rates, and response times.

e Hybrid Data Pipeline : A strategy that combines Beats for
lightweight data collection and Logstash for heavy data processing.

A

Advanced Querying 58
Advanced Querying, techniques
Approximate SQL Joins 60
Autocomplete/Suggestions 60
Boolean Query 58
Cross-Cluster Search 61
Data Analysis 60
Full-Text Search Enhancements 59
Geo-Searches/Proximity Queries 60
Relevance Tuning 60
Aggregation-Based Visualizations 166
Alerting/Reporting 189
Alerting/Reporting, architecture 190
Alerting/Reporting, practices 191
Alerts, implementing 191 - 194
Amazon Elasticsearch Service (Amazon ES) 270
Amazon ES, features 270
Amazon ES, steps 271
API Calls 149
API Calls, monitoring 150
API Calls, notes 150
API Calls, practices
API Key Management 149
Audit Logging 149
Authentication/Authorization 149
Secure Communication 149
API Integrations 143
API Integrations, architecture 143
API Integrations, practices 144
APM, architecture 294
APM, benefits 294
APM, challenges 293
Application Performance Monitoring (APM) 293
Auto-generated IDs, practices 57
Auto-generated IDs, terms
Elasticsearch ID 56
High Performance 56
Use Cases 56

B

Backup/Restore 256

Index

Backup/Restore, practices 258
Bare Metal 10
Bare Metal, cons 11
Bare Metal, pros 11
Beats 7, 305
Beats/Endpoints 128
Beats/Endpoints, configuring 128
Beats/Endpoints, integrating 128
Beats/Endpoints, labs
Ubuntu System 129
Windows System, monitoring 135
Beats/Endpoints, terms
Endpoint Protection 129
Endpoint Security Integration 128
Policy Application 129
Beats, ensuring 8
Beats, terms
Data Transformation 307
Heavyweight Data Ingestion 306
Logstash 308
Predefined Dashboards 307
Resource Usage/Scalability 307
Binary Field Type 84
Binary Field Type, illustrating 84 , 85
Binary Field Type, steps 84
Binary Field Type, use cases
Attachment Plugin 84
Encoded Files 84
Boolean Query 58
Boolean Query, types
filter 59
must 58
must not 58
should 58
Bulk Operations 147
Bulk Operations, architecture 147
Bulk Operations, features 148
Efficiency/Speed 147
Error Handling 147
Flexibility 147
Bulk Operations, implementing 147
Bulk Operations, notes
Error Checking 148
Optimal Sizing 148
Rate Limiting 148

C

Canvas 185
Canvas, architecture 185

Canvas, implementing 187 - 189
Canvas, purpose
Kibana 185
Visualize Library 186
Cloud Services 13
Cloud Services, configuring 13
Cloud Services, cons 14
Cloud Services, pros 14
CRUD Operations 145
CRUD Operations, implementing 145 , 146
CRUD Operations, requirements 145
Custom IDs, sources
Deterministic Behavior 57
Document Updates 57
External Systems 57
Custom IDs, terms
Indexing Speed 57
Potential Collisions 56
Use Cases 57
User-Defined Uniqueness 56
Custom Visualizations 166 , 170
Custom Visualizations, components
Data Sources 170
Visualization 171
Custom Visualizations, implementing 171
Custom Visualizations, practices 171

D

Data Modeling 73
Data Modeling, parts
Articles Reporting 78
Cleanup 78
Counts Updating 78
Data Querying 77
Index Documents 77
Index Mapping 76
Requirements 76
Data Modeling, terms
Document-Oriented Modeling 73
Explicit Mappings 73
Data Modeling, use cases
Aggregation 75
Geo-Search 75
Text Search 74
Time-Series Data 75
Data Visualization 167
Data Visualization, implementing 167 - 170
Data Visualization, prerequisites 167
Dev Tools 33

Dev Tools, architecture 33
Dev Tools, implementing 34 , 35
Dev Tools, tips

Auto-Complete 38

Documentation Reference 38
Disaster Recovery Plan, steps 259
Distributed Workforce 299
Distributed Workforce, architecture 299
Distributed Workforce, benefits 300
Distributed Workforce, challenges 299
Docker/Containerization 14
Docker/Containerization, cons 14
Docker/Containerization, pros 14
Dockerizing Elastic Stack 273
Dockerizing Elastic Stack, architecture 273
Dockerizing Elastic Stack, benefits 274
Dockerizing Elastic Stack, components 275
Dockerizing Elastic Stack, steps 274 , 275

E

Elastic Agent 124
Elastic Agent, architecture 125
Elastic Agent, benefits 125
Elastic Agent, configuring 127
Elastic Agent, deploying 127
Elastic Agent, practices 139
Elastic Agent, troubleshooting 138
Elastic APM 308
Elastic APM, features 309
Elastic APM, practices
APM Agents 309
Data Access 312
Distributed Tracing 310
Errors/Exceptions 311
Key Performance Indicators (KPIs) 310
Kibana Dashboards 312
Metrics Logging 311
Performance Efficiency 310
Regularly Review 311
Slow Transactions 311
Elastic Cloud 269
Elastic Cloud, architecture 269
Elastic Cloud, features 269 , 270
Elastic Cloud, steps 270
Elastic Cloud, terms
Amazon Elasticsearch Service (Amazon ES) 270
Google Cloud Platform (GCP) 272
Microsoft Azure 272
Elastic Enterprise Search 312

Elastic Enterprise Search, product 312
Elastic Integrations 93 , 94
Elastic Integrations, components
API Integration 94
Data Connector 94
Elastic Agent 94
Elastic Client 94
Logstash 94
Web Crawler 95
Elastic Language Clients 151
Elastic Language Clients, architecture 151
Elastic Language Clients, features 152
Elastic Language Clients, practices 152
Elastic Language Clients, sources 151
Elasticsearch 2
Elasticsearch Cluster 246
Elasticsearch Cluster, sections
Cluster Configuration 247
Monitoring/Maintenance 249
Node Configuration 247
Resource Management 248
Elasticsearch Cluster, steps
Access Elasticsearch 251
Cleanup 252
Cluster Scaling 251
Docker Compose File 250
Launching 251
Verifying 251
Elasticsearch, ensuring 3 , 4
Elasticsearch Plugins 201
Elasticsearch Plugins, architecture 201
Elasticsearch Plugins, configuring 201 , 202
Elasticsearch Plugins, implementing 204 - 211
Elasticsearch Plugins, practices 202
Elasticsearch Plugins, prerequisites 203
Elasticsearch Plugins, topics
Cluster/Node Events 202
Performance Considerations 202
REST Endpoints 202
Elasticsearch Querying 64
Elasticsearch Querying, steps
Aggregation 66
Boolean Queries 64
Full-Text Search 65
Relevance Tuning 66
Elastic Stack 2
Elastic Stack, administrators
Bash Script 22
PowerShell Script 23 - 26
Elastic Stack, components

Beats 7
Elasticsearch 2
Kibana 6
Logstash 4
Elastic Stack, labs
Change Requirements 235
Elasticsearch Maintenance 235
Kibana Maintenance 236
Upgrade Assistant 237
Upgrading 236
Elastic Stack, pitfalls
Complex Scaling 227
Data Modeling 227
Error Monitoring 227
Hardware/Infrastructure 227
Inadequate Planning 226
Query Design 227
Regular Maintenance 227
Security, ignoring 226
Elastic Stack, prerequisites 10
Elastic Stack, requirements
Cluster Considerations 9
Hardware 9
Software 9
Elastic Stack, solutions
Community Engagement 234
Documentation/Change Management 234
Index Management 233
Infrastructure Monitoring 233
Performance Tuning 233
Plugin Management 233
Recovery Planning 233
Routine Maintenance 232
Security Audits 234
Version Upgrades 232
Elastic Stack, steps
Elasticsearch Server 16, 17
Kibana Server 18
Elastic Stack, terms
Bare Metal 10
Cloud Services 13
Docker/Containerization 14
Virtual Machines (VMs) 11
Elastic Stack, use cases
Application Performance Monitoring (APM) 9
Data Visualization 9
Full-Text Search 9
Log Analysis 9
SIEM 9
ELK Stack, practices

Access Control 230
Anomaly Detection 232
Audit Logging 231
Backup/Recovery 231
Built-In Security 230
Data Encryption 230
Incident Response Plan 231
Network Security 231
Regularly Update/Patch 231
Secure Integration 232
Secure Kibana 231
Encryption at Rest 254
Extending Logstash 212
Extending Logstash, configuring 212 , 213
Extending Logstash, implementing 214 - 217

G

GCP, features 272
GCP, steps 272
Geolocation Data 79
Geolocation Data, challenges
Data Normalization 80
Precision 80
Query Performance 80
Geolocation Data, implementing 81 - 83
Geolocation Data, types 79
Geolocation Data, use cases
Local Search 80
Logistics 80
Mapping 80
Geo-Queries, types
Geo-Point Queries 79
Geo-Shape Queries 80
Google Cloud Platform (GCP) 272

H

HA, strategies
Alerting 245
Chaos Engineering 246
Cluster Architecture Design 244
Cross-Cluster Replication (CCR) 245
Load Balancing 246
Replication/Sharding 245
Security Measures 246
Snapshots/Restore 245
Healthcare Portal 295
Healthcare Portal, architecture 296
Healthcare Portal, benefits 296

Healthcare Portal, challenges 295
Helm Charts 275
Helm Charts, benefits 275
Helm Charts, deploying 276
High Availability (HA) 244
Horizontal Scaling 279
Horizontal Scaling, benefits 279
Horizontal Scaling, considerations 280
Horizontal Scaling, practices 280
Hot-Warm-Cold-Frozen Phases 47
HTTP Request 36
HTTP Request, methods
DELETE 38
GET 36
HEAD 37
PATCH 38
POST 37
PUT 36
Hybrid Deployments 278
Hybrid Deployments, benefits 278
Hybrid Deployments, strategies 279

I

ILM, parts
Hot-Warm-Cold-Frozen Phases 47
Ingestion 42
Retention/Deletion 49
Rollover/Growth 44
Snapshot Lifecycle Management (SLM) 49
Snapshot Restore 54
ILM, terms
Hot-Warm-Cold-Frozen Phases 40
Ingestion 40
Retention/Deletion 41
Rollover/Growth 40
Snapshot/Restore 41
Index Lifecycle Management (ILM) 39
Ingestion 42
Ingestion, goals
Automated Configuration 42
Consistency 42
Maintenance/Evolution 43
Optimized Mapping 42
Performance/Scalability 42
Ingestion, implementing 43

J

Joining Queries 67

Joining Queries, prerequisites 67
Joining Queries, steps
Child Documents 68
Indexing Parent 69 , 70
Relationship Mapping 68

K

Kibana 6 , 163
Kibana, architecture 164
Kibana, configuring 6 , 7
Kibana Dashboard 178
Kibana Dashboard, capabilities 178
Kibana Dashboard, components 179
Kibana Dashboard, implementing 180 - 183
Kibana Dashboard, use cases 179
Kibana, highlights 163 , 164
Kibana Lens 165
Kibana Maps 166
Kibana, options
Aggregation-Based Visualization 166
Custom Visualizations 166 , 167
Kibana Lens 165
Kibana Maps 166
Time Series Visual Builder (TSVB) 165
Kibana Plugin 217
Kibana Plugin, configuring 218 , 219
Kubernetes Operators 277
Kubernetes Operators, advantages 278
Kubernetes Operators, benefits 277
Kubernetes Operators, steps 277

L

Large-Scale Deployments 228
Large-Scale Deployments, capabilities
Cluster/Index Design 228
Data Modeling 228
Hardware Optimization 228
Maintenance/Continuous Improvement 229
Memory Management 229
Monitoring/Alerting 229
Query Optimization 229
Scalability Planning 229
Security Considerations 229
Log Analysis 290
Log Analysis, architecture 290 , 291
Log Analysis, benefits 291
Log Analysis, challenges 290
Logstash 4 , 95

Logstash, advantages 96
Logstash, architecture 4 , 95
Logstash, components

Filter 99

Input 99

Output 99
Logstash, disadvantages 96 , 97
Logstash, illustrating 5 , 100, 101
Logstash, labs

Common Log Format (CLF) 114

Data Ingestion 102

Logstash Pipeline 104

Pipeline as Service, running 110
Logstash, setting up 99
Logstash, use cases 97 , 98

M

Metrics 291

Metrics, architecture 292
Metrics, benefits 293

Metrics, challenges 292
Microsoft Azure 272
Microsoft Azure, features 273

Microsoft Azure, steps 273

N

NDJSON 61

NDJSON, architecture 61
NDJSON, implementing 62 , 63
NDJSON, prerequisites 61

P

Performance Tuning 281
Performance Tuning, areas
Alerts/Monitoring 282
Hardware/Cluster Tuning 282
Indexing Performance 281
Query Performance 281
Thread Pools/Caching 282
Pre-built Connectors 141
Pre-built Connectors, features 141
Pre-built Connectors, integrating 142 , 143
Pre-built Connectors, types 142
Pre-built Connectors, utilizing 142
Pre-deployment Planning 267
Pre-deployment Planning, aspects
Capacity Planning 268

Sizing 267
Topology Design 268

R

RBAC, steps 253

Retention/Deletion 49

Role-Based Access Control (RBAC) 253
Rollover/Growth 44

S

Schema Design 73
Schema Design, practices
Field Mappings 74
Index Design 74
Performance Considerations 74
Schema Design, strategies
Alias Management 74
Reindexing 74
Security Access Control 252
Security Access Control, mechanisms
Encryption at Rest 254
Role-Based Access Control (RBAC) 253
Security Monitoring 255
Transport Layer Security (TLS) 253
Security Monitoring 255
SIEM 297
SIEM, architecture 297
SIEM, benefits 298
SIEM, challenges 297
SLM, implementing 50 - 53
SLM, setup 49 , 50
Snapshot Lifecycle Management (SLM) 49
Snapshot Restore 54 , 55
Snapshots 256
Snapshots, configuring 257
Snapshots, illustrating 257
Snapshots, restoring 258
Speed/Relevance 71
Speed/Relevance, balancing 72
Speed/Relevance, sources
Fine-Tuning Text Analysis 71
Result Set Refinement 72
Scoring/Ranking 72
Speed/Relevance, terms
Efficient Indexing 71
Performance Monitoring 71
Query Performance Tuning 71

T

Time Series Visual Builder (TSVB) 165
TLS, steps 254
Transport Layer Security (TLS) 253

\%

Vega 172

Vega, capabilities
Customization/Flexibility 172
Elasticsearch 172
Interactive Features 172

Rick Visualization Grammer 172
Vega, implementing 172 , 173
Vertical Scaling 280
Vertical Scaling, benefits 280
Vertical Scaling, considerations 280
Vertical Scaling, practices 281
Virtual Machines (VMs) 11
VMs, configuring 11 , 12
VMs, cons 12
VMs, pros 12

W

Web Crawling 139
Web Crawling, architecture 140
Web Crawling, components
Beats 140
Elasticsearch 140
Kibana 140
Logstash 140
Web Crawling, configuring 140
Web Crawling, use cases
Content Aggregation 141
Market Research 141
Search Engine Indexing 141
SEO Analysis 141

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Technical Reviewers
	Acknowledgements
	Preface
	Get a Free eBook
	Errata
	Table of Contents
	1. Introduction and Initial Setup
	Introduction
	Structure
	Overview and Evolution of the Elastic Stack
	Elasticsearch: The Heart of Elastic Stack
	Logstash: The Data Processing Pipeline
	Kibana: The Window to Your Elastic Data
	Beats: The Data Shippers of the Elastic Stack

	Benefits and Use Cases
	System Requirements: Hardware, Software, and Cluster Considerations
	Installing and Configuring: Elasticsearch, Logstash, and Kibana
	Bare Metal
	Virtual Machines (VMs)
	Cloud Services
	Docker and Containerization

	Setting up Lab Environment
	Hands-On Lab: Building Elasticsearch and Kibana on Ubuntu Server 22.04 LTS
	Steps to Install Elasticsearch Server
	Steps to Install Kibana Server
	Steps to Connect Kibana to Elasticsearch

	Verifying Your Installation
	Checking Elasticsearch and Kibana Status using Bash Script
	Checking Elasticsearch and Kibana Status Using PowerShell Script

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	2. Deep Dive: Elasticsearch
	Introduction
	Structure
	Elasticsearch Dev Tools on Kibana
	Introduction to Dev Tools
	Getting Started with Dev Tools
	HTTP Request Methods in Elasticsearch’s Dev Tools
	GET
	PUT
	POST
	HEAD
	DELETE
	PATCH (less common in Elasticsearch)
	Tips for Effective Use of Dev Tools
	Summary

	Index Lifecycle Management
	Creation and Ingestion
	Rollover and Growth
	Hot-Warm-Cold-Frozen Phases
	Retention and Deletion
	Snapshot and Restore

	Hands-On Lab: Index Lifecycle Management in Elasticsearch Using Kibana Dev Tools
	Prerequisites
	Part 1: Creation and Ingestion
	Part 2: Rollover and Growth
	Part 3: Hot-Warm-Cold-Frozen Phases
	Part 4: Retention and Deletion
	Part 5: Snapshot Lifecycle Management
	Part 6: Restore from Snapshot
	Wrap-Up

	Understanding Document IDs in Elasticsearch
	Auto-generated IDs
	Custom IDs
	When to Use Custom IDs
	When to Use Auto-generated IDs
	Best Practices
	Summary

	Advanced Querying Techniques
	Boolean Queries
	must
	should
	must_not
	filter
	Example of a Boolean Query
	Full-text Search Enhancements
	Aggregation for Data Analysis
	Scoring and Relevance Tuning
	Autocomplete and Suggestions
	Geo-Searches and Proximity Queries
	Joining Queries
	Cross-Cluster Search

	Hands-On Lab: Uploading NDJSON File to Elasticsearch Using Dev Tools
	Understanding NDJSON Format
	Prerequisites
	Step-by-Step Guide
	Summary

	Hands-On Lab: Elasticsearch Querying Techniques Using Dev Tools
	Lab Steps

	Summary
	Hands-On Lab: Simulating Joining Queries in Elasticsearch
	Prerequisites
	Step 1: Create Index with Relationship Mapping
	Step 2: Indexing Parent and Child Documents
	Step 3: Perform Joining Queries
	Summary
	Next Steps

	Optimizing for Search Speed and Relevance
	Optimizing for Speed
	Optimizing for Relevance
	Balancing Speed and Relevance
	Monitoring and Iterative Improvements

	Data Modeling and Schema Design
	Understanding Elasticsearch Data Modeling
	Best Practices in Schema Design
	Strategies for Schema Evolution
	Data Modeling for Specific Use Cases
	Validation and Testing
	Summary

	Hands-On Lab: Data Modeling and Schema Design in Elasticsearch
	Part 1: Understanding Requirements
	Part 2: Designing the Index Mapping
	Part 3: Indexing Documents
	Part 4: Querying the Data
	Part 5: Updating Like Counts
	Part 6: Analyzing and Reporting
	Part 7: Cleanup (Optional)
	Summary

	Understanding Elasticsearch Geolocation Data
	Geolocation Data Types
	Indexing Geolocation Data
	Geo-Queries
	Geo-Aggregations
	Example Use Cases
	Challenges with Geolocation Data
	Summary

	Hands-On Lab: Working with Geolocation Data in Elasticsearch
	Prerequisites
	Step 1: Set Up a Geolocation-Enabled Index
	Step 2: Indexing Geolocation Data
	Step 3: Basic Geo-Queries
	Step 4: Advanced Geo-Queries
	Step 5: Aggregations with Geo-Data
	Summary

	Working with Binary Data in Elasticsearch
	Understanding the Binary Field Type
	Use Cases for Binary Data in Elasticsearch
	Steps to Index the Binary Data
	Example
	Considerations

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers
	Questions
	Key Terms

	3. Deep Dive: Integrations
	Introduction
	Structure
	Selecting Elastic Integrations
	Logstash
	Overview and Core Concepts
	Advantages and Disadvantages
	Use Cases and Applications
	Architecture and Components
	Setting Up Logstash
	Writing Logstash Configuration Files

	Hands-On Lab: Setting Up Logstash for Data Ingestion with User Permissions
	Prerequisites
	Summary

	Hands-on Lab: My First Logstash Pipeline
	Prerequisites
	Lab Steps
	Hands-On Lab Notes
	How to Test the Setup
	Summary

	Hands-on Lab: Running My First Logstash Pipeline as Service
	Plugins, Filters, and Codecs
	Plugins
	Filters
	Codecs

	Hands-On Lab: Building a Comprehensive Logstash Pipeline
	Objectives
	Prerequisites
	Summary
	Advanced Pipelines and Data Processing
	Handling Large Datasets and Scalability

	Elastic Agent
	Understanding Elastic Agent: Benefits and Architecture
	Benefits of Elastic Agent
	Architecture of Elastic Agent
	Deploying and Configuring Elastic Agent
	Deploying Elastic Agent
	Configuring Elastic Agent
	Integrating with Beats and Endpoints
	Understanding Beats and Endpoints
	Integrating Beats with Elastic Agent
	Integrating Endpoint Security

	Hands-On Lab: Monitoring Ubuntu System with Elastic Agent
	Objective
	Requirements
	Lab Steps

	Hands-On Lab: Monitoring Windows System with Elastic Agent
	Objective
	Requirements
	Lab Steps
	Troubleshooting and Best Practices
	Troubleshooting Elastic Agent
	Best Practices for Elastic Agent

	Web Crawler
	Introduction to Web Crawling with Elastic
	Key Components of Elastic for Web Crawling
	Setting Up a Web Crawler with Elastic
	Use Cases of Web Crawling with Elastic

	Data Connectors
	Understanding Pre-built Connectors
	Key Features of Pre-built Connectors
	Common Types of Pre-built Connectors
	Utilizing Pre-built Connectors
	Set Up Data Connectors

	API Integrations
	Basics of Elastic Stack APIs
	Working with Elasticsearch APIs
	Using Kibana APIs
	Best Practices for API Integration

	Hands-On Lab: CRUD Operations with Elasticsearch API
	Objective
	Requirements
	Setup Steps
	Lab Exercises
	Advanced Features and Bulk Operations
	Understanding Bulk Operations
	Key Features of Bulk API
	Sample Bulk Operation Using curl
	Advanced API Features
	Notes
	Securing and Monitoring Your API Calls
	Securing API Calls
	Monitoring API Calls
	Notes

	Elastic Language Clients
	Overview of Official Elastic Language Clients
	Key Official Elastic Language Clients
	Features of Elastic Language Clients
	Best Practices for Using Elastic Language Clients

	Hands-On Lab: CRUD Operations in Elasticsearch Using Python Client
	Objective
	Requirements
	Setup Steps
	Lab Exercise

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers
	Questions
	Key Terms

	4. Deep Dive: Kibana
	Introduction
	Structure
	Practical Use Cases and Scenarios for Kibana
	Introduction to Kibana Visualization
	Kibana Lens
	Time Series Visual Builder (TSVB)
	Aggregation-Based Visualizations
	Kibana Maps
	Custom Visualizations

	Hands-On Lab: Basic Data Visualization Using Kibana
	Objective
	Prerequisites
	Additional Exercises
	Summary

	Developing Custom Visualizations
	Introduction to Vega Visualizations in Kibana
	Getting Started with Vega in Kibana
	Vega in Kibana
	Vega-Lite in Kibana
	Choosing Between Vega and Vega-Lite

	Hands-On Lab: Hello World in Kibana with Vega and Vega-Lite
	Part 1: Hello World with Vega in Kibana
	Part 2: Hello World with Vega-Lite in Kibana
	Summary

	Hands-On Lab: Developing Custom Visualizations
	Summary

	Overview of Kibana Dashboard
	Components of a Kibana Dashboard
	Creating and Managing Dashboards
	Use Cases for Kibana Dashboards

	Hands-On Lab: Building a Kibana Dashboard
	Objective
	Prerequisites
	Summary

	Using Canvas Features
	Exploring Canvas in Kibana
	Canvas vs. Visualize Library
	Canvas in Kibana
	Visualize Library in Kibana
	Comparison

	Hands-On Lab: Creating a Simple Canvas in Kibana
	Objective
	Prerequisites
	Summary

	Alerting and Reporting
	Understanding Alerting in Kibana
	Exploring Reporting in Kibana
	Best Practices for Alerting and Reporting

	Hands-On Lab: Creating Basic Alerts
	Objective
	Prerequisites
	Summary

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	5. Developing for the Elastic Stack
	Introduction
	Structure
	Building Custom Elasticsearch Plugins
	Introduction to Elasticsearch Plugins
	Setting Up the Development Environment
	Creating Your First Plugin
	Testing and Deployment
	Advanced Topics
	Best Practices and Common Pitfalls

	Hands-On Lab: Building Elasticsearch Plugins
	Objective
	Prerequisites
	Lab Steps
	Summary

	Extending Logstash with Ruby
	Hands-On Lab: Extending Logstash with Ruby
	Summary

	Kibana Plugin Development
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	6. Troubleshooting and Best Practices
	Introduction
	Structure
	Common Pitfalls and Their Solutions
	Inadequate Planning and Configuration
	Ignoring Security Best Practices
	Poor Data Modeling
	Neglecting Log and Error Monitoring
	Overlooking Hardware and Infrastructure Needs
	Complex Scaling without Strategy
	Inefficient Query Design
	Lack of Regular Maintenance and Optimization

	Optimizing for Large-Scale Deployments
	Hardware Optimization
	Cluster and Index Design
	Data Modeling and Management
	Caching and Memory Management
	Query Optimization
	Monitoring and Alerting
	Scalability Planning
	Security Considerations
	Maintenance and Continuous Improvement

	ELK Stack Security Best Practices
	Use Built-in Security Features
	Data Encryption
	Access Control
	Audit Logging
	Regularly Update and Patch
	Network Security
	Secure Kibana
	Backup and Recovery
	Incident Response Plan
	Security Monitoring and Anomaly Detection
	Secure Integration and API Use

	Maintenance and Upgrades
	Routine Maintenance
	Version Upgrades
	Plugin Management
	Index Management and Optimization
	Backup and Recovery Planning
	Hardware and Infrastructure Monitoring
	Performance Tuning
	Security Audits and Updates
	Documentation and Change Management
	Community and Support Engagement

	Hands-On Lab: Maintenance and Upgrades for Elasticsearch and Kibana
	Part 1: Maintenance of Elasticsearch
	Part 2: Upgrading Elasticsearch
	Part 3: Maintenance of Kibana
	Part 4: Upgrading Kibana
	Part 5: Upgrade Assistant
	Summary

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	7. High Availability, Fault Tolerance, and Security
	Introduction
	Structure
	Strategies for High Availability and Fault Tolerance
	Cluster Architecture Design
	Replication and Sharding
	Cross-Cluster Replication (CCR)
	Snapshots and Restore
	Monitoring and Alerting
	Load Balancing
	Failure Testing and Chaos Engineering
	Security Measures

	Elasticsearch Cluster Management for HA
	Node Configuration
	Dedicated Node Roles
	Shard Allocation and Replication
	Cluster Configuration
	Discovery and Coordination
	Cluster State Management
	Resource Management
	Hardware and Infrastructure
	Load Balancing
	Monitoring and Maintenance
	Monitoring Tools
	Backup and Recovery

	Hands-On Lab: Building an Elasticsearch Cluster with Docker Compose
	Prerequisites
	Step 1: Setup Docker Compose File
	Step 2: Launch the Cluster
	Step 3: Verify the Cluster
	Step 4: Access Elasticsearch
	Step 5: Scaling the Cluster
	Step 6: Cleanup
	Summary

	Security and Access Control
	Role-Based Access Control (RBAC)
	Transport Layer Security (TLS)
	Encryption at Rest
	Security Monitoring and Alerts

	Backup and Restore for Disaster Recovery
	Understanding Snapshots in Elasticsearch
	Configuring Snapshot Repositories
	Creating Snapshots
	Restoring Snapshots
	Best Practices for Backup and Restore
	Disaster Recovery Plan

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers
	Questions
	Key Terms

	8. Advanced Deployment Strategies
	Introduction
	Structure
	Pre-deployment Planning: Sizing, Capacity, and Topology
	Sizing
	Capacity Planning
	Topology Design

	Cloud Deployments
	Deploying on Elastic Cloud
	AWS: Using Amazon Elasticsearch Service
	GCP: Leveraging Google Cloud Platform’s Services
	Azure: Integrating with Azure’s Elasticsearch Solutions

	Docker and Kubernetes Deployments
	Dockerizing Elastic Stack Components
	Helm Charts and Kubernetes Operators for Elastic Stack
	Helm Charts for Elasticsearch
	Kubernetes Operators for Elasticsearch

	Hybrid Deployments: Combining On-Premises with Cloud
	Benefits of Hybrid Deployments
	Strategies for Hybrid Elasticsearch Deployment

	Scaling Strategies: Horizontal vs. Vertical Scaling
	Horizontal Scaling
	Vertical Scaling

	Performance Tuning and Optimization
	Key Areas for Performance Tuning

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	9. Case Studies
	Introduction
	Structure
	Logs: Real-time Log Analysis for E-commerce
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	Metrics: Monitoring System Performance for a Global SaaS Platform
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	Application Performance Monitoring (APM): Enhancing User Experience for an Online Banking Application
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	Uptime: Ensuring 99.999% Availability for a Healthcare Portal
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	SIEM (Security Information and Event Management): Proactive Threat Detection for a Large Enterprise Network
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	Endpoint: Enhancing Endpoint Security for a Distributed Workforce
	Challenge Overview
	Solution Architecture
	Benefits and Outcomes

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	10. Beyond ELK: Integrating Other Elastic Products
	Introduction
	Structure
	Introduction to Beats
	Beats vs. Logstash: Understanding the Differences
	Lightweight vs. Heavyweight Data Ingestion
	Data Transformation and Enrichment
	Scalability and Resource Usage
	Deployment and Configuration
	Choosing between Beats and Logstash
	Combining Beats and Logstash

	Using APM for Application Performance Monitoring
	Best Practices for Using APM for Application Performance Monitoring
	Deploy APM Agents Strategically
	Define Key Performance Indicators (KPIs)
	Optimize Sampling for Performance Efficiency
	Leverage Distributed Tracing
	Monitor Errors and Exceptions
	Analyze and Optimize Slow Transactions
	Integrate APM with Logging and Metrics
	Regularly Review and Tune APM Settings
	Secure APM Data and Access
	Use Kibana Dashboards for Visualization

	Exploring Elastic Enterprise Search
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	Index

