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Preface to the First Edition

This book was written to solve a problem. The people who I interview for data science jobs have
sterling mathematical pedigrees, but most of them are unable to write a simple script that computes
Fibonacci numbers (in case you aren’t familiar with Fibonacci numbers, this takes about five lines
of code). On the other side, employers tend to view data scientists as either mysterious wizards or
used-car salesmen (and when data scientists can’t be trusted to write a basic script, the latter
impression has some merit!). These problems reflect a fundamental misunderstanding, by all
parties, of what data science is (and isn’t) and what skills its practitioners need.

When I first got into data science, I was part of that problem. Years of doing academic physics
had trained me to solve problems in a way that was long on abstract theory but short on common
sense or flexibility. Mercifully, I also knew how to code (thanks, Googlem internships!), and this let
me limp along while I picked up the skills and mindsets that actually mattered.

Since leaving academia, I have done data science consulting for companies of every stripe. This
includes web traffic analysis for tiny start-ups, manufacturing optimizations for Fortune 100 giants,
and everything in between. The problems to solve are always unique, but the skills required to
solve them are strikingly universal. They are an eclectic mix of computer programming, mathe-
matics, and business savvy. They are rarely found together in one person, but in truth they can be
learned by anybody.

A few interviews I have given stand out in my mind. The candidate was smart and knowledge-
able, but the interview made it painfully clear that they were unprepared for the daily work of a
data scientist. What do you do as an interviewer when the candidate starts apologizing for wasting
your time? We ended up filling the hour with a crash course on what they were missing and how
they could go out and fill the gaps in their knowledge. They went out, learned what they needed to,
and are now successful data scientists.

I wrote this book in an attempt to help people like that out, by condensing data science’s various
skill sets into a single, coherent volume. It is hands-on and to the point: ideal for somebody who
needs to come up to speed quickly or solve a problem on a tight deadline. The educational system
is still catching up to the demands of this new and exciting field, and my hope is that this book will
help you bridge the gap.

Field Cady
September 2016
Redmond, Washington
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Preface to the Second Edition

In the first edition of this book, I called the introduction “Becoming a Unicorn.” Data science was
a new field that was poorly understood, and data scientists were often called “unicorns” in refer-
ence to their miraculous ability to do both math and programming. I wrote the book with one
central message: data science isn’t as inaccessible as people are making it out to be. It is perfectly
reasonable for somebody to acquire the whole palette of skills required, and my book aspired to be
a one-stop-shop for people to learn them.

A great deal has changed since then, and I'm delighted that the educational system has caught on.
There are now degree programs and bootcamps that can teach the essentials of data science to most
anybody who is willing to learn them. There are relatively standard curricula, fewer people who are
baffled by the subject, and more young professionals embarking on this exciting career. Data sci-
ence has gone from being an obscure priesthood to an exciting career that normal people can have.

As the discipline has expanded, the tools have also evolved, and I felt that a second edition was
in order. By far the most important change I have made is more coverage of deep learning: previ-
ously I barely touched on RNNs, but now I continue up through topics such as encoder-decoder
architectures, diffusion models, LLMs, and prompt engineering. Al tools are coming of age (per-
haps Al is now where data science was 10 years ago) and a data scientist needs to be familiar with
them. I have also updated my treatment of Spark to cover its new DataFrame interface, and reduced
the emphasis on Hadoop since it is on the decline. Other changes include a reduced emphasis on
Bayesian networks (which have waned in popularity with the rise of deep learning), a switch from
Python 2 to Python 3, and numerous improvements to the prose.

Field Cady
Redmond, Washington
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1

Introduction

The goal of this book is to turn you into a data scientist, and there are two parts to this mission.
First, there is a set of specific concepts, tools, and techniques that you can go out and solve problems
with today. They include buzzwords such as machine learning (ML), Spark, and natural language
processing (NLP). They also include concepts that are distinctly less sexy but often more useful,
like regular expressions, unit tests, and SQL queries. It would be impossible to give an exhaustive
list in any single book, but I cast a wide net.

That brings me to the second part of my goal. Tools are constantly changing, and your long-
term future as a data scientist depends less on what you know today and more on what you are
able to learn going forward. To that end, I want to help you understand the concepts behind the
algorithms and the technological fundamentals that underlie the tools we use. For example,
this is why I spend a fair amount of time on computer memory and optimization: they are often
the underlying reason that one approach is better than another. If you understand the key con-
cepts, you can make the right trade-offs, and you will be able to see how new ideas are related
to older ones.

As the field evolves, data science is becoming not just a discipline in its own right, but also a
skillset that anybody can have. The software tools are getting better and easier to use, best prac-
tices are becoming widely known, and people are learning many of the key skills in school
before they’ve even started their career. There will continue to be data science specialists, but
there is also a growing number of the so-called “citizen data scientists” whose real job is some-
thing else. They are engineers, biologists, UX designers, programmers, and economists: profes-
sionals from all fields who have learned the techniques of data science and are fruitfully
applying them to their main discipline.

This book is aimed at anybody who is entering the field. Depending on your background, some
parts of it may be stuff you already know. Especially for citizen data scientists, other parts may be
unnecessary for your work. But taken as a whole, this book will give you a practical skillset for
today, and a solid foundation for your future in data science.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.



2

1 Introduction

1.1 What Data Science Is and Isn’t

Despite the fact that “data science” is widely practiced and studied today, the term itself is some-
what elusive. So before we go any further, I'd like to give you the definition that I use. I've found
that this one gets right to the heart of what sets it apart from other disciplines. Here goes:

Data science means doing analytically oriented work that, for one reason or another,
requires a substantial amount of software engineering skills.

Often the final deliverable is the kind of thing a statistician or business analyst might provide, but
achieving that goal demands software skills that your typical analyst simply doesn’t have — writing
a custom parser for an obscure data format, complex preprocessing logic that must be kept in order,
etc. Other times the data scientist will need to write production software based on their insights, or
perhaps make their model available in real time. Often the dataset itself is so large that just creating
a pie chart requires that the work be done in parallel across a cluster of computers. And sometimes,
it’s just a really gnarly SQL query that most people struggle to wrap their heads around.

Nate Silver, a statistician famous for accurate forecasting of US elections, once said: “I think
data scientist is a sexed-up term for statistician.” He has a point, but what he said is only partly
true. The discipline of statistics deals mostly with rigorous mathematical methods for solving
well-defined problems; data scientists spend most of their time getting data and the problem
into a form where statistical methods can even be applied. This involves making sure that the
analytics problem is a good match to business objectives, choosing what to measure and how to
quantify things (typically more the domain of a BI analyst), extracting meaningful features
from the raw data, and coping with any pathologies of the data or weird edge cases (which often
requires a level of coding more typical of a software engineer). Once that heavy lifting is done,
you can apply statistical tools to get the final results - although, in practice, you often don’t
even need them. Professional statisticians need to do a certain amount of preprocessing them-
selves, but there is a massive difference in degree.

Historically, statistics focused on rigorous methods to analyze clean datasets, such as those that
come out of controlled experiments in medicine and agriculture. Often the data was gathered
explicitly to support the statisticians’ analysis! In the 2000s though a new class of datasets became
popular to analyze. “Big Data” used new cluster computing tools to study large, messy, heteroge-
nous datasets of the sort that would make statisticians shudder: HTML pages, image files, e-mails,
raw output logs of web servers, and so on. These datasets don’t fit the mold of relational databases
or statistical tools, and they were not designed to facilitate any particular statistical analysis; so for
decades, they were just piling up without being analyzed. Data science came into being as a way to
finally milk them for insights. Most of the first data scientists were computer programmers or ML
experts who were working on Big Data problems, not statisticians in the traditional sense.

The lines have now blurred: statisticians do more coding than they used to, Big Data tools are
less central to the work of a data scientist, and ML is used by a broad swatch of people. And this
is healthy: the differences between these fields are, after all, really just a matter of degree and/
or historical accident. But, in practical terms, “data scientists” are still the jacks-of-all-trades in
the middle. They can do statistics, but if you’re looking to tease every last insight out of clinical
trial data, you should consult a statistician. They can train and deploy ML models, but if you’re
trying to eke performance out of a large neural network an ML engineer would be better. They
can turn business questions into math problems, but they may not have the deep business
knowledge of an analyst.
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1.2 This Book’s Slogan: Simple Models Are Easier to Work With

There is a common theme in this book that I would like to call out at as the book’s explicit motto:
simple models are easier to work with. Let me explain.

People tend to idolize and gravitate toward complicated analytical models like deep neural nets,
Bayesian networks, ARIMA models, and the like. There are good reasons to use these tools; the
best-performing models in the world are usually complicated, there may be fancy ways to bake in
expert knowledge, etc. There are also bad reasons to use these tools, like ego and pressure to use to
latest buzzwords.

But seasoned data scientists understand that there is more to a model than how accurate it is. Simple
models are, above all, easier to reason about. If you’re trying to understand what patterns in the data
your model is picking up on, simple models are the way to go. Oftentimes this is the whole point of
a model anyway: we are just trying to get insights into the system we are studying, and a model’s
performance is just used to gauge how fully it has captured the relevant patterns in the data.

A related advantage of simple models is supremely mundane: stuff breaks, and they make it
easier to find what’s broken. Bad training data, perverse inputs to the model, and data that is incor-
rectly formatted — all of these are liable to cause conspicuous failures, and it’s easy to figure out
what went wrong by dissecting the model. For this reason, I like “stunt double models,” which
have the same input/output format as a complicated one and are used to debug the model’s inte-
gration with other systems.

Simple models are less prone to overfitting. If your dataset is small, a fancy model will often actu-
ally perform worse: it essentially memorizes the training data, rather than extracting general pat-
terns from it. The simpler a model, the less you have to worry about the size of your dataset (though
admittedly this can create a square-peg-in-a-round-hole situation where the model can’t fit the
data well and performance degrades).

Simple models are easier to hack and jury-rig. Frequently they have a small number of tunable
parameters, with clear meanings that you can adjust to suit the business needs at hand.

The inferior performance of simple models can act as a performance benchmark, a level that the
fancier model must meaningfully exceed in order to justify its extra complexity. And if a simple
model performs particularly badly, this may suggest that there isn’t enough signal in the data to
make the problem worthwhile.

On the other hand, when there is enough training data and it is representative of what you
expect to see, fancier models do perform better. You usually don’t want to leave money on the table
by deploying grossly inferior models simply because they are easier to debug. And there are many
situations, like cutting-edge AI, where the relevant patterns are very complicated, and it takes a
complicated model to accurately capture them. Even in these cases though, it is often possible to
keep the complexity modular and, hence, easier to reason about. For example, say we are choosing
which ads to show to which customer. Instead of directly predicting the click-rate for various ads
and picking the best one, we might have a very complex model that assigns the person to some
pre-existing user segments, and then a simple model that shows them ads based on the segments
they are in. This model will be easier to debug and much more scalable.

Model complexity is an area that requires critical thinking and flexibility. Simple models are
often good enough for the problem at hand, especially in situations where training data is limited
anyway. When more complexity is justified, it is often buttressed by an army of simple models that
tackle various subproblems (like various forms of cleaning and labeling the training data). Simple
models are easier to work with, but fancy ones sometimes give better performance: technical and
data considerations tell you the constraints, and business value should guide the ultimate choice.
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1 Introduction

1.3 How Is This Book Organized?

This book is organized into three sections. The first, The Stuff You’ll Always Use, covers topics
that, in my experience, you will end up using in almost any data science project. They are core
skills, which are absolutely indispensable for data science at any level.

The first section was also written with an eye toward people who need data science to answer a
specific question but do not aspire to become full-fledged data scientists. If you are in this camp,
then there is a good chance that Part I of the book will give you everything you need.

The second section, Stuff You Still Need to Know, covers additional core skills for a data scientist.
Some of these, such as clustering, are so common that they almost made it into the first section,
and they could easily play a role in any project. Others, such as NLP, are somewhat specialized
subjects that are critical in certain domains but superfluous in others. In my judgment, a data sci-
entist should be conversant in all of these subjects, even if they don’t always use them all.

The final section, Stuff That’s Good to Know, covers a variety of topics that are optional. Some of
these chapters are just expansions on topics from the first two sections, but they give more theoreti-
cal background and discuss some additional topics. Others are entirely new material, which does
come up in data science, but which you could go through a career without ever running into.

1.4 How to Use This Book?

This book was written with three use cases in mind:

1) You can read it cover-to-cover. If you do that, it should give you a self-contained course in data
science that will leave you ready to tackle real problems. If you have a strong background in
computer programming, or in mathematics, then some of it will be review.

2) You can use it to come quickly up to speed on a specific subject. I have tried to make the different
chapters pretty self-contained, especially the chapters after the first section.

3) The book contains a lot of sample codes, in pieces that are large enough to use as a starting
point for your own projects.

1.5 Why s It All in Python, Anyway?

The example code in this book is all in Python, except for a few domain-specific languages such as
SQL. My goal isn’t to push you to use Python; there are lots of good tools out there, and you can use
whichever ones you want.

However, I wanted to use one language for all of my examples, which lets readers follow the
whole book while only knowing one language. Of the various languages available, there are two
reasons why I chose Python:

1) Python is without question the most popular language for data scientists. R is its only major
competitor, at least when it comes to free tools. I have used both extensively, and I think that
Python is flat-out better (except for some obscure statistics packages that have been written in
R and that are rarely needed anyway).

2) Ilike to say that Python is the second-best language for any task. It’s a jack-of-all-trades. If you
only need to worry about statistics, or numerical computation, or web parsing, then there are
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better options out there. But if you need to do all of these things within a single project, then
Python is your best bet. Since data science is so inherently multidisciplinary, this makes it a
perfect fit.

As anote of advice, it is much better to be proficient in one language, to the point where you can
reliably churn out code that is of high quality, than to be mediocre at several.

1.6 Example Code and Datasets

This book is rich in example code, in fairly long chunks. This was done for two reasons:

1) As a data scientist, you need to be able to read longish pieces of code. This is a non-optional
skill, and if you aren’t used to it, then this will give you a chance to practice.
2) Iwanted to make it easier for you to poach the code from this book, if you feel so inclined.

You can do whatever you want with the code, with or without attribution. I release it into the
public domain in the hope that it can give some people a small leg up. You can find it on my GitHub
page at www.github.com/field-cady.

The sample data that I used comes in two forms:

1) Test datasets that are built into Python’s scientific libraries.
2) Data that is pulled off the Internet, from sources such as Yahoo and Wikipedia. When I do this,
the example scripts will include code that pulls the data.

1.7 Parting Words

It is my hope that this book not only teaches you how to do nut-and-bolts data science but also
gives you a feel of how exciting this deeply interdisciplinary subject is. Please feel free to reach out
to me at www.fieldcady.com or field.cady@gmail.com with comments, errata, or any other
feedback.
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Part |

The Stuff You'll Always Use

The first section of this book covers core topics that everybody doing data science should know.
This includes people who are not interested in being professional data scientists, but need to know
just enough to solve some specific problem. These are the subjects that will likely arise in every
data science project you do.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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The Data Science Road Map

In this chapter, I will give you a high-level overview of the process of data science. I will focus on
the different stages of data science work, including common pain points, key things to get right,
and where data science parts ways from other disciplines.

The process of solving a data science problem is summarized in the following figure, which I
called the Data Science Road Map.

Present
The data science results

road map

Frame Understand Extract Model
the and
the data features

problem analyse

code

The first step is always to frame the problem: understand the business use case and craft a well-
defined analytics problem (or problems) out of it. This is followed by an extensive stage of grap-
pling with the data and the real-world things that it describes, so that we can extract meaningful
features. Finally, these features are plugged into analytical tools that give us hard numerical results.

Before I go into more detail about the different stages of the roadmap, I want to point out
two things.

The first is that “Model and Analyze” loops back to framing the problem. This is one of the key
features of data science that differentiate it from traditional software engineering. Data scientists
write code, and they use many of the same tools as software engineers. However, there is a tight
feedback loop between data science work and the real world. Questions are always being reframed
as new insights become available. As a result, data scientists must keep their code base extremely
flexible and always have an eye toward the real-world problem they are solving. Often you will fol-
low the loop back many times, constantly refining your methods and producing new insights.

The second point is that there are two different (although not mutually exclusive) ways to exit
the road map: presenting results and deploying code. My friend Michael Li, a data scientist who
founded The Data Incubator, likened this to having two different types of clients: humans and
machines. They require distinct skill sets and modifications to every stage of the data science
road map.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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2 The Data Science Road Map

If your clients are humans, then usually you are trying to use available data sources to answer
some kind of business problem. Examples would be the following:

o Identifying leading indicators of spikes in the price of a stock, so that people can understand
what causes price spikes.

e Determining whether customers break down into natural subtypes and what characteristics
each type has.

o Assessing whether traffic to one website can be used to predict traffic to another site.

Typically, the final deliverable for work such as this will be a PowerPoint slide deck or a written
report. The goal is to give business insights, and often these insights will be used for making key
decisions. This kind of data science also functions as a way to test the waters and see whether some
analytics approach is worth a larger follow-up project that may result in production software.

If your clients are machines, then you are doing something that blends into software engineer-
ing, where the deliverable is a piece of software that performs some analytics work. Examples
would be the following:

o Implementing the algorithm that chooses which ad to show to a customer and training it on
real data.

e Writing a batch process that generates daily reports based on company records generated that
day, using some kind of analytics to point out salient patterns.

In these cases, your main deliverable is a piece of software. In addition to performing a useful
task, it had better work well in terms of performance, robustness to bad inputs, and so on.

Once you understand who your clients are, the next step is to determine what you’ll be doing for
them. In the next section, I will show you how to do this all-important step.

2.1 Frame the Problem

The difference between great and mediocre data science is not about math or engineering: it is
about asking the right question(s). Alternately, if you're trying to build some piece of software, you
need to decide what exactly that software should do. No amount of technical competence or statis-
tical rigor can make up for having solved a useless problem.

If your clients are humans, most projects start with some kind of extremely open-ended ques-
tion. Perhaps, there is a known pain point, but it’s not clear what a solution would look like. If your
clients are machines, then the business problem is usually pretty clear, but there can be a lot of
ambiguity about what constraints there might be on the software (languages to use, runtime, how
accurate predictions need to be, etc.). Before diving into actual work, it’s important to clarify
exactly what would constitute a solution to this problem. A “definition of done” is a good way to
put it: what criteria constitute a completed project, and (most importantly) what would be required
to make the project a success?

For large projects, these criteria are often laid out in a document. Writing that document is a col-
laborative process involving a lot of back-and-forth with stakeholders, negotiation, and sometimes
disagreement. In consulting, these documents are often called “statements of work” or SOWs.
Within a company that is creating a product (as opposed to just a stand-alone investigation), they
are often referred to as “project requirements documents” or PRDs.

The main purpose of an SOW is to get everybody on the same page about exactly what work
should be done, what the priorities are, and what expectations are realistic. Business problems are
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typically very vague to start off with, and it takes a lot of time and effort to follow a course of action
through to the final result. So before investing that effort, it is critical to make sure that you are
working on the right problem. Crafting the SOW will often include a range of one-off analyses the
gauge which avenues are promising enough to commit resources to.

There is, however, also an element of self-defense. Sometimes it ends up being impossible to
solve a problem with the available data or maybe stakeholders decide that the project isn’t impor-
tant anymore. A good SOW keeps everybody honest in case things don’t work out: everybody
agrees up-front that this looks like it will be both valuable and feasible.

Having an SOW doesn’t set things in stone. There are course corrections based on preliminary
discoveries. Sometimes, people change their minds after the SOW has been signed. It happens. But,
crafting an SOW is the best way to make sure that all efforts are pointed in the most useful direction.

2.2 Understand the Data: Basic Questions

Once you have access to the data you’ll be using, it’s good to have a battery of standard questions
that you always ask about it. This is a good way to hit the ground running with your analyses,
rather than risk analysis paralysis. It is also a good safeguard to identify problems with the data as
quickly as possible.

A few good generic questions to ask are as follows:

o How big s the dataset? Is this the entire dataset or just a sample? If it’s just a sample, do we know
how to sampling was done?

o Is this data representative enough? For example, maybe data was only collected for a subset
of users.

o Are there likely to be gross outliers or extraordinary sources of noise? For example, 99% of the
traffic from a web server might be a single denial-of-service attack.

o Are there likely to be heavy tails? For example, the vast majority of web traffic might go to only
a few sites, and if those sites are over- or under-represented in a sample you took your metrics
might be misleading.

o Might there be artificial data inserted into the dataset? This happens a lot in industrial settings.
o Are there any fields that are unique identifiers? These are the fields you might use for joining
between datasets, etc. Make sure that unique ID fields are actually unique - they often aren’t.

o If there are two datasets A and B that need to be joined, what does it mean if something in A
doesn’t match anything in B?

o When data entries are blank, where does that come from?

e How common are blank entries?

The most important question to ask about the data is whether it can solve the business problem
that you are trying to tackle. If not, then you might need to look into additional sources of data or
modify the work that you are planning.

Speaking from personal experience, I have been inclined to neglect these preliminary questions.
I am excited to get into the actual analysis, so I've sometimes jumped right in without taking the
time to make sure that I know what I'm doing. For example, I once had a project where there was
a collection of motors and time series data monitoring their physical characteristics: one time
series per motor. My job was to find leading indicators of failure, and I started doing this by com-
paring the last day’s worth of time series for a given motor (i.e., the data taken right before it failed)
against its previous data. Well, I realized a couple of weeks in that sometimes the time series
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stopped long before the motor actually failed, and, in other cases, the time series data continued
long after the motor was dead. The actual times the motors had died were listed in a separate table,
and it would have been easy for me to double-check early on that they corresponded to the ends of
the time series.

2.3 Understand the Data: Data Wrangling

Data wrangling is the process of getting the data from its raw format into something suitable for
more conventional analytics. This typically means creating a software pipeline that gets the data
out of wherever it is stored, does any cleaning or filtering necessary, and puts it into a regu-
lar format.

Data wrangling is the main area where data scientists need skills that a traditional statistician or
analyst doesn’t have. The data is often stored in a special-purpose database that requires special-
ized tools to access. There could be so much of it that Big Data techniques are required to process
it. You might need to use performance tricks to make things run quickly. Especially with messy
data, the preprocessing pipelines are often so complex that it is very difficult to keep the code
organized.

Speaking of messy data, I should tell you this upfront: industrial datasets are always more con-
voluted than you would think they reasonably should be. The question is not whether the prob-
lems exist but whether they impact your work. My recipe for figuring out how a particular dataset
is broken includes the following:

1) If the raw data is text, look directly at the plain files in a text editor or something similar. Things
such as irregular date formats, irregular capitalizations, and lines that are clearly junk will
jump out at you.

2) If there is a tool that is supposed to be able to open or process the data, make sure that it can
actually do it. For example, if you have a CSV file, try opening it in something that reads data
frames. Did it read all the rows in? If not, maybe some rows have the wrong number of entries.
Did the column that is supposed to be a datetime get read in as a datetime? If not, then maybe
the formatting is irregular.

3) Do some histograms and scatterplots. Are these numbers realistic, given what you know about
the real-life situation? Are there any massive outliers?

4) Take some simple questions that you already know the (maybe approximate) answer to, answer
them based on this data, and see if the results agree. For example, you might try to calculate the
number of customers by counting how many unique customer IDs there are. If these numbers
don’t agree, then you’ve probably misunderstood something about the data.

2.4 Understand the Data: Exploratory Analysis

Once you have the data digested into a usable format, the next step is exploratory analysis.
This basically means poking around in the data, visualizing it in lots of different ways, trying out
different ways to transform it, and seeing what there is to see. This stage is very creative, and it’s
a great place to let your curiosity run a little wild. Feel free to calculate some correlations and
similar metrics, but don’t break out the fancy machine learning classifiers. Keep things simple
and intuitive.
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There are two things that you typically get out of exploratory analysis:

1) You develop an intuitive feel for the data, including what the salient patterns look like visually.
This is especially important if you’re going to be working with similar data a lot in the future.
This also helps ferret out pathologies in the data that weren’t found earlier.

2) You get a list of concrete hypotheses about what’s going on in the data. Oftentimes, a hypothesis
will be motivated by a compelling graphic that you generated: a snapshot of a time series that
shows an unmistakable pattern, a scatterplot demonstrating that two variables are related to
each other, or a histogram that is clearly bimodal.

A common misconception is that data scientists don’t need visualizations. This attitude is not
only inaccurate: it is very dangerous. Most machine learning algorithms are not inherently visual,
but it is very easy to misinterpret their outputs if you look only at the numbers. There is no substi-
tute for the human eye when it comes to making intuitive sense of things.

2.5 Extract Features

This stage has a lot of overlap with exploratory analysis and data wrangling. A feature is really just
a number or a category that is extracted from your data and describes some entity. For example,
you might extract the average word length from a text document or the number of characters in the
document. Or, if you have temperature measurements, you might extract the average temperature
for a particular location.

In practical terms, feature extraction means taking your raw datasets and distilling them down
into a table with rows and columns. This is called “tabular data.” Each row corresponds to some
real-world entity, and each column gives a single piece of information (generally a number) that
describes that entity. Virtually all analytics techniques, from lowly scatterplots to fancy neural
networks, operate on tabular data.

Extracting good features is the most important thing for getting your analysis to work. It is
much more important than good machine-learning classifiers, fancy statistical techniques, or
elegant code. Especially, if your data doesn’t come with readily available features (as is the case
with web pages, images, etc.), how you reduce it to numbers will make the difference between
success and failure.

Feature extraction is also the most creative part of data science and the one most closely tied to
domain expertise. Typically, a really good feature will correspond to some real-world phenomenon.
Data scientists should work closely with domain experts and understand what these phenomena
mean and how to distill them into numbers.

Sometimes, there is also room for creativity as to what entities you are extracting features about.
For example, let’s say that you have a bunch of transaction logs, each of which gives a person’s
name and e-mail address. Do you want to have one row per human or one row per e-mail address?
For many real-world situations, you want one row per human (in which case, the number of
unique e-mail addresses they have might be a good feature to extract!), but that opens the very
thorny question of how you can tell when two people are the same based on their names.

Most features that we extract will be used to predict something. However, you may also need to
extract the thing that you are predicting, which is also called the target variable. For example, I was
once tasked with predicting whether my client’s customers would lose their brand loyalty. There
was no “loyalty” field in the data: it was just a log of various customer interactions and transac-
tions. I had to figure out a way to measure “loyalty.”
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2.6 Model

Once features have been extracted, most data science projects involve some kind of machine-
learning model. Maybe this is a classifier that guesses whether a customer is still loyal, a regression
model that predicts a stock’s price on the next day, or a clustering algorithm that breaks customers
into different segments.

In many data science projects, the modeling stage is quite simple: you just take a standard suite
of models, plug your data into each one of them, and see which one works best. In other cases, a
lot of care is taken to carefully tune a model and eek out every last bit of performance.

Really, this should happen at every stage of a data science project, but it becomes especially cru-
cial when analyzing the results of the modeling stage. If you have identified different clusters,
what do they correspond to? Does your classifier work well enough to be useful? Is there anything
interesting about the cases in which it fails?

This stage is what allows for course corrections in a project and gives ideas for what to do differ-
ently if there is another iteration.

If your client is a human, it is common to use a variety of models, tuned in different ways, to
examine different aspects of your data. If your client is a machine though, you will probably need
to zero in on a single, canonical model that will be used in production.

2.7 Present Results

If your client is a human, then you will probably have to give either a slide deck or a written report
describing the work you did and what your results were. You are also likely to have to do this even
if your main clients are machines.

Communication in slide decks and prose is a difficult, important skill set in itself. But, it is espe-
cially tricky with data science, where the material you are communicating is highly technical and
you are presenting to a broad audience. Data scientists must communicate fluidly with business
stakeholders, domain experts, software engineers, and business analysts. These groups tend to
have different knowledge bases coming in, different things they will be paying attention to, and
different presentation styles to which they are accustomed.

I can’t emphasize enough the fact that your numbers and figures should be reproducible. There
is nothing worse than getting probing questions about a graphic that you can’t answer because you
don’t have a record of exactly how it was generated.

2.8 Deploy Code

If your ultimate clients are computers, then it is your job to produce code that will be run regularly
in the future by other people. Typically, this falls into one of two categories:

1) Batch analytics code. This will be used to redo an analysis similar to the one that has already
been done, on data that will be collected in the future. Sometimes, it will produce some human-
readable analytics reports. Other times, it will train a statistical model that will be referenced by
other code.

2) Real-time code. This will typically be an analytical module in a larger software package, writ-
ten in a high-performance programming language and adhering to all the best practices of
software engineering.
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There are three typical deliverables from this stage:

1) The code itself, often baked into a Docker container or something similar. The latter allows the
data scientist to have responsibility for the code itself, while engineers handle the system that it
plugs into.

2) Some documentation of how to run the code. Sometimes, this is a stand-alone work document,
often called a “run book.” Other times, the documentation is embedded in the code.

3) Usually, you need some way to test code that ensures that your code operates correctly. For real-
time code, this will normally take the form of unit tests. For batch processes, it is sometimes a
sample input dataset (designed to illustrate all the relevant edge cases) along with what the
output should look like.

In deploying code, data scientists often take on a dual role as full-fledged software engineers.
Especially with very intricate algorithms, it often just isn’t practical to have one person spec it out
and another implement the same thing for production.

2.9 lterating

Data science is a deeply iterative process, even more so than typical software engineering. This is

because in software you generally have a pretty good idea what you’re aiming to create, even if you

take an iterative approach to implementing it. But, in data science, it is usually an open question

of what features will end up being useful to extract and what model you will train. For this reason,

the data science process should be built around the goal of being able to change things painlessly.
My recommendations are as follows:

o Try to get preliminary results as quickly as possible after you’ve understood the data. A scatter-
plot or histogram that shows you that there is a clear pattern in the data. Maybe a simple model
based on crude preliminary features that nonetheless works. Sometimes an analysis is doomed
to failure, because there just isn’t much signal in the data. If this is the case, you want to know
sooner rather than later, so that you can change your focus.

e Automate relentlessly: put your analysis into a single script or notebook so that it’s easy to run
the whole thing at once. This is a point that I've learned the hard way: it is really, really easy after
several hours at the command line to lose track of exactly what processing you did to get your
data into its current form. Keep things reproducible from the beginning.

o Keep your code modular and broken out into clear stages. This makes it easy to modify, add in,
and take out steps as you experiment.

Notice how much of this comes down to considerations of software, not analytics. The code must
be flexible enough to solve all manner of problems, powerful enough to do it efficiently, and com-
prehensible enough to edit quickly if objectives change. Doing this requires that data scientists use
flexible, powerful programming languages, which I will discuss in the next chapter.

2.10 Glossary

Data wrangling The nitty-gritty task of cleaning data and getting it into a standard format that
is suitable for downstream analysis.

Exploratory analysis A stage of analysis that focuses on exploring the data to generate
hypotheses about it. Exploratory analysis relies heavily on visualizations.
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Feature A small piece of data, usually a number or a label, that is extracted from your data and
characterizes some entity in your dataset.

Product requirements document (PRD) A document that specifies exactly what
functionality a planned product should have.

Production code Software that is run repeatedly and maintained. It especially refers to source
code of software product that is distributed to other people.

Statement of work (SOW) A document that specifies what work is to be done in a project,
relevant timelines, and specific deliverables.

Target variable A feature that you are trying to predict in machine learning. Sometimes, it is
already in your data, and other times, you must construct it yourself.
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Programming Languages

One of the most obvious things that separates data scientists from traditional business analysts and
(to a lesser degree) statisticians is that they spend a lot of their time writing code in a more-or-less
normal programming language, as software engineers do. Sometimes, it’s a statistically oriented
language such as R, but even that is a far cry from something such as Excel or a graphical package
such as Tableau.

This chapter will discuss why that is and give a brief survey of some of the more popular
languages. It will then dive into the weeds of Python, my personal language of choice and the most
popular option among data scientists. If you already know Python and its technical libraries, then
feel free to skim. If not though, then this chapter will give you the foundation in Python to under-
stand the example code in the rest of the book.

3.1 Why Use a Programming Language? What Are the Other Options?

To date, I have never worked on a data science project that could be done completely within a
graphical package such as Excel or Tableau. There is always something - a weird formatting issue
that requires coding up the edge cases, a dataset that’s too large to fit into memory, an unconven-
tional feature that I want to extract, or something else - that forces me to roll up my sleeves and
write some code.

This will be your experience too, almost certainly. To put it glibly, data science is Turing complete.
Many data scientists (like me) find it’s more expedient to just work completely in programming
languages, supplemented by numerical libraries. Others though find that it’s worthwhile to do
their data wrangling and feature extraction in a programming language but then load the datasets
into another tool for their exploratory analysis.

Here are some tools besides programming languages that you might want to incorporate into
your workflow:

o Spreadsheet programs like excel. Microsoft products often get a bad rap in the data science
world, and it is completely undeserved; for simple data analysis, Excel is probably the best piece
of software ever made. Competitors like Google Sheets and Apple Numbers give similar basic
functionality.

o Databases and graphical wrappers around them. If your data already lives in a relational
database like SQL, simple questions are usually easier to answer with a simple database query.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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Many lightweight tools exist that will automatically present the output in a graphical form like a
pie chart or bar chart.

e Tableau. This is a tool for visualizing the data in relational databases. It’s pretty limited in its
functionality in my experience, but when it works, the graphics are absolutely beautiful.

Some data scientists make the mistake of always jumping straight to a programming language
when one of these other tools will suffice. Spreadsheets and database queries in particular provide a
significant portion of a data scientist’s work, while being easier to use and more accessible to non-data
scientist collaborators. Generally speaking, you shouldn’t use a script when a database query will do.

There is something critical that all of these tools have in common though: they assume that your
data is already in clean tables with rows and columns! Tabular datasets, and the things you can do
with them, are sufficiently standardized that people have been able to create reusable tools like
these that streamline common operations.

For data scientists though, each dataset often requires its own idiosyncratic data wrangling to
put things into tabular form; a collection of webpages or images is not a table. Furthermore, each
new problem will require creativity and flexibility in what features you extract from the raw data -
especially if your raw data is very far from tabular form. This is the reason that every data scientist
needs to be proficient in at least one programming language.

3.2 A Survey of Programming Languages for Data Science

There are many programming language options available for data scientists. This section will give
you a run-down of some of the most popular ones.

As of this writing, Python is the lingua franca of data science - the overwhelming majority of
“data science” roles use Python as their programming language of choice. I suspect though that
this might change as data science becomes less of a job and more of a skillset. Engineers, for exam-
ple, might choose to do their data science work in MATLAB since it’s the language they already
know from their engineering work. Ultimately, the conceptual content of data science is language-
agnostic, and there are many valid options to choose from.

3.2.1 Python

The example code in this book is generally in Python, for a number of reasons. In my opinion, it is
the best programming language available for general-purpose use, but that’s largely a matter of
personal taste. It is also a very popular choice among data scientists, who feel like it balances the
flexibility of a conventional scripting language with the numerical muscles of a good mathematics
package (at least, when it’s paired with its scientific computing libraries). Within the tech industry —
and increasingly in other places too — Python is currently the lingua franca of data science.

Python was developed by Guido van Rossum and first released in 1991. The language itself is a
high-level scripting language, with functionality similar to Perl and Ruby and with an unusually
clean and self-consistent syntax. Outside of the core language, Python has several open-source
technical computing libraries that make it a powerful tool for analytics.

3.2.2 R

Aside from Python, R is probably the most popular programming language among data scientists.
Python is a scripting language designed for computer programmers, which has been augmented
with libraries for technical computing. In contrast, R was designed by and for statisticians, and it
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is natively integrated with graphics capabilities and extensive statistical functions. It is based
on S, which was developed at Bell Labs in 1976.

R was brilliant for its time and a huge step up from the Fortran routines that it was competing
with. In fact, many of Python’s technical computing libraries are just ripping off the good ideas in
R. But almost 50 years later, R is showing its age. Specifically, there are areas where the syntax is
very clunky, the support for strings is terrible, and the type system is antiquated.

In my mind, the main reason to use R is just that there are so many special libraries that have
been written for it over the years, and Python has not covered all the little special use cases yet.
I no longer use R for my own work, but it is still a major force in the data science community and
will continue to be for the foreseeable future. In the statistics community, R is still the lingua
franca. You should know about it, even if you don’t use it yourself.

3.2.3 MATLAB® and Octave

The data science community skews strongly toward open-source software, so good proprietary
programs such as MATLAB® often get less credit than they deserve. Developed and sold by the
MathWorks Corporation, MATLAB® is an excellent package for numerical computing. It has a
more consistent (and, in my opinion, nicer) syntax compared to R and more numerical muscle
compared to Python. A lot of people coming from physics or mechanical/electrical engineering
backgrounds are already well versed in MATLAB®. It is not as well suited to large software frame-
works or string-based data munging, but it is best-in-class for numerical computing.

If you like MATLAB’s syntax, but don’t like paying for software, then you could also consider
Octave. It is an open-source version of MATLAB®. It doesn’t capture all of MATLAB’s functionality
and certainly doesn’t have the same support infrastructure, but it’s a fine option.

3.2.4 SAS®

SAS (Statistical Analysis Software) is a proprietary statistics framework that dates back to the
1960s. Similar to R, there is a tremendous amount of entrenched legacy code written in SAS and a
wide range of functionality that has been put into it. However, the language itself is very alien to
somebody more used to modern languages. SAS can be great for the business statistics applications
that it is so popular in, but I don’t recommend it for general-purpose data science.

3.2.5 Scala

Scala is an up-and-coming language that shows a lot of potential. It is similar to Java under the
hood; they both compile to Java Bytecode that gets run on the Java Virtual Machine (JVM).
However, the syntax is deliberately simpler and borrows from languages that are more popular for
data science.

Many important data science tools are written in Scala, so knowing it can give you a leg-up when
you need to use or interface with those technologies. It is also more user-friendly than Java if you
find yourself needing to interface with tools that are written in other JVM languages.

For now, Scala is not a suitable general-purpose tool for data scientists. It has found footing as an
alternative to Java for software development, but it lacks the numerical and visualization libraries
that data scientists need. That might change in the future, but personally, my money says it won’t
displace Python.
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3.2.6 Julia

Potentially, the most interesting language on this list is Julia. Julia was developed in 2011, so it is
very young relative to the other entries and its ultimate place remains to be seen. Julia has a mod-
ern syntax and was designed with data science and technical computing in mind. The main claim-
to-fame of Julia is that it is fast. Unlike Python, it is a compiled language; it is easy to write like a
scripting language and can be used as one, but it also gets compiled at which point it runs nearly
as fast as if you’d written it in C.

My personal hunch is that Python is a good enough tool, and its dominance is complete enough,
that no other language will be able to challenge it as the lingua franca of data science even if the
language itself might be better. But, I could easily be wrong about that, especially as the practice of
data science percolates into various new professional communities.

3.3 Where to Write Code

An important complement to the question of which language to use is this: what software will you
use to write the actual code? Back in the day, it was typical to just use the nearest text editor, but
now there are other options available that streamline the process.

3.3.1 Text Editors

A text editor is a lightweight program for editing text files. They work on any plain text file, but
they are typically designed with an eye toward source code. They offer nice features like syntax
highlighting, and occasionally even auto-completion.

Personally, I really enjoy the low-level feel of a text editor. Especially, considering the fact that
the output is only the plain text file itself — there is no overhead related to formatting, graphical
outputs, or other cruft. The fact that a text editor gives you byte-level control over the file you are
editing, and that it can be used on any text file, makes it by far the most flexible way to write code.
A large portion of my career has been spent coding in a text editor, then pasting the code into a
Python interpreter to run it.

On the other hand, modern tools have come far enough that a plain text editor is usually not the
best option. The larger a project gets the more you can benefit from the additional functionality
provided by a notebook or an integrated development environment (IDE).

There are many modern text editors that you can use, and they are pretty much all good options.
There is also one older text editor that may be worth knowing: the command-line-based vi (or vim,
which is essentially the same thing). Especially, in production systems, it is common to be accessing
a streamlined, cloud-based Linux machine that you are not allowed to install any new software on —
no notebooks, no IDEs, and not even a pretty modern text editor. However, every Linux box will have
vi or vim installed, and you can use it to edit files on the machine. It’s not pretty, and certainly not
suitable for large projects, but when you need to make a small change fast, vi is nice to know.

3.3.2 Jupyter Notebooks

When you are writing code that runs offline, especially if the intention is to analyze a piece of data
using graphical capabilities, a common practice is to use Jupyter notebooks. It’s how I personally
do most of my work these days.
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A Jupyter notebook blends source code, outputs of the source code (including graphics), and
markdown (a version of plain text, but with limited support for things like hyperlinks, bulleted
lists, bold titles, and such) into a single document. The document is run in a web browser, and it
provides a very natural way to organize data science work in a way that also lends itself to easy
sharing and collaboration.

The basic usage of Jupyter notebooks is straightforward, but there is also a lot of room for mak-
ing it more sophisticated. The notebook runs in your web browser, and it is possible to write
JavaScript code in a notebook that adds custom functionality. A notebook can be run like a Python
script, or imported like a Python library.

Besides the notebooks themselves, Jupyter also lets you make and edit text files, and even to
open terminals that give you the full power of the bash shell (or whatever shell is available on the
box where Jupyter is running). When I am working on a computer remotely, my preferred way is
to run Jupyter on that machine and access it via my web browser.

Jupyter is not specific to Python. Python is the most common language that you will see, but the
project strives to put equal emphasis on R and Julia as well. Several dozen other languages are also
supported.

3.3.3 IDEs

If you are writing production code that is part of a large project — as opposed to data analysis scripts
that get run manually - the standard way to do it is through an Integrated Development
Environment (IDE). IDEs are designed not only to let you edit a single file but also to seamlessly
navigate to related files or part of files. They integrate with compilers and runtime environments
so that you can compile and test your code all within a single program.

Some IDEs are designed for a particular sort of development work, such as mobile devices. In
such cases, they might have a built-in phone emulator that lets you simulate the behavior of your
code on a real device.

One way to think of it is that an IDE isn’t a “text editor,” but a “project editor.” It will typically
read through a code base - which could include many files and directories - understanding what
the moving pieces are and what links to what. It’s a bit of an odd feeling for somebody who is
used to editing text files — you are often navigating not between files, but between logical pieces
of functionality (which may or may not be in the same actual file) who relationship was identi-
fied by the IDE.

The larger a software project gets, the more IDEs shine as the way to keep your work organized.
In practice, data science projects are of medium size - not really big enough to justify an IDE over
a Jupyter notebook or something similar. But, it is important to be aware that they exist, and pre-
pared to use one should the occasion arise.

3.4 Python Overview and Example Scripts

This section will give a quick tutorial on the Python language. My goal is to get you up-and-running
quickly with the basics of the language, especially so that you can understand the example code in
the book.

The tutorial is far from exhaustive. There are many aspects of Python that I don’t discuss, and, in
particular, I ignore most of its many built-in libraries. Some of this material will be covered later in
the book when it becomes relevant.
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The next section will give you an introduction to Python’s technical libraries, which elevate it
from a solid scripting language to a one-stop-shop for data science.

3.4.1 A Note on Versions

There have been several versions of Python released. Generally speaking, a new version adds new
functionality not present in the previous version, but backward compatibility is maintained so that
all previously written code still works. The Python 1.x and 2.x maintained backward compatibility.
But, in 2008, Python 3 was released, and it broke backward compatibility in several respects. For
many years, Python 2.x and 3.x were developed and maintained independently, since there was a
large body of code written in 2.x, but now Python 3.x is dominant. The biggest vestige of Python 2.x
in modern workflows is typically that the interpreter’s name is “python3” rather than just “python.”

This book will exclusively use Python 3.x, and, as a data scientist, there is a good chance that’s all
you’ll ever touch. But, Python 2.x code is still around, and the “python” command in many operat-
ing systems refers to 2.x by default (“python3” is the command for the modern version). So, it is
important to be aware of the distinction, and useful to have some idea what the differences are.
Several of the key places where 3.x differs are as follows:

o Print is treated as a function. So, in 3.x, you would say
>>> print(hello world" )
instead of
>>> print "hello world"

Prior to Python 3, the print syntax was something of an eyesore; every other function in the lan-
guage got called with parentheses, so this change created greater consistency.

e Arithmetic operations are treated as decimal operations even when they are done on integers.
That way

372

will equal 1.5. Previously, dividing an integer by an integer would trigger the “integer division”
operation, where remainders are dropped and the result is an integer (in this case 1). This made
sense mathematically and was consistent with languages like C, but it confused a lot of people
and opened the door to bugs (one of which I confess was written by me). If you want to do inte-
ger division, then say //.

e Strings can now support arbitrary Unicode characters; this reflects the realities of modern text,
but it comes at a computational cost because different characters now take up a variable number
of bytes under the hood. Previously, “string” only supported the one-byte-per-character ASCII
system. It made things efficient, but just wasn’t flexible enough to deal with modern text applica-
tions. If you know that you are dealing only with ASCII, you can get the computational benefits
by using the “bytearray” class instead of string.

3.4.2 “Hello World” Script

A common way to learn a new programming language is to first write a “hello world!” program:
this is a program that just prints the text “hello world!” to the screen. If you can write it and run it,
then you know you have your software environment set up correctly and you know how to use it.
After that point, you're ready to roll with the serious code.
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There are two ways you can run Python code, and I'll walk you through hello world in both of
them. Either you can open up the Python interpreter and enter your commands one at a time,
which is very useful for exploring data and experimenting with what you want to do, or you can
put your code into a file and run it all at once.

To run code in the interpreter on a Mac or Linux system, do the following:

1) Go to the command terminal.

2) Type “python3” and press enter. This will display the command prompt >>>.

3) Type “print(‘hello world’)” and press enter. The phrase “hello world” should print on the screen.
4) The whole thing should appear as follows:

>>> print("hello world!™)
hello world!

5) Congratulations! You’ve just run a line of Python code.
6) Press Ctrl-d to close the interpreter.

The process is very similar if you are working in a Windows environment. In place of the com-
mand terminal, you are likely to use PowerShell - it is the Windows equivalent of a bash terminal.
For editing your source code, Visual Studio is a powerful IDE that is ubiquitous among Windows
programmers. Personally, I tend to write my scripts in plain text editors if it’s at all practical, but
especially for larger codebases, a good IDE becomes invaluable.

3.4.3 More Complicated Script

Ok, now that you’ve got Python running, let’s jump into the deep end. Here is a more complicated
Python script. It has a data structure that describes employees of a company. It goes through the
employee records, gives each one a 5% raise, and updates the record with the name of the state they
live in. It then prints out information describing the updated employee data. Don’t worry if you
can’t read the whole thing right now: I'll explain what all the parts are. After we walk through this
script, I'll give a more comprehensive overview of Python’s data types and how to work with them;
the script doesn’t show it all.

SALARY_RAISE_FACTOR = 0.05
STATE_CODE_MAP = {"WA": "Washington®, "TX": "Texas"}

def update_employee_record(rec):
old_sal = rec["salary”]
new_sal = old_sal * (1 + SALARY_RAISE_FACTOR)
rec["salary”] = new_sal
state_code = rec["state_code"]
rec["state_name"] = STATE_CODE_MAP[state_code]

input_data = [
{"employee_name®: "Susan®, "salary®: 100000.0,
"state_code": “"WA"},
{"employee_name®: “Ellen”, "salary": 75000.0,
"state_code": "TX"},
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for rec in input_data:
update_employee_record(rec)
name = rec|["employee_name~"]
salary = rec["salary"]
state = rec["state_name"]
print(name + " now lives in " + state)
print(” and makes $" + str(salary))

If you run this script, you will see the following output:

Susan now lives in Washington
and makes $110250.0

Ellen now lives in Texas
and makes $78750.0

The first line of the script is straightforward: it defines the variable SALARY_RAISE_FACTOR
to be the decimal number 0.05.

The next gets into one of the central data structures of Python. It defines what’s called a dict (short
for dictionary) called STATE_CODE_MAP, which maps the postal abbreviations of several states to
their full names. In general, a dict maps “keys” to “values,” and they are enclosed within curly braces.
There are commas between each key/value pair, and the key and value are separated by a colon. The
keys in a dict are usually strings, but they can also be numbers or any other atomic-type except None
(which we’ll see in a minute). The values can be any Python object whatsoever, and different values
can have different types. But, in this case, the values are all strings. Dicts are one of Python’s three
main “container” data types (i.e., it contains other data), the other two being lists and tuples.

Next up, the line

def update_employee record(rec):

says that we are defining a function called update_employee_record that takes in a single argu-
ment and that the argument is called rec within the scope of this function. In our code, rec will
always be a dict, but we have not specified that in the function declaration. You can pass an integer,
string, or anything else into update_employee_record and it will try to process it. In this case, it
so happens that we later do operations to rec that will fail if it’s not a dictionary (or something that
behaves like one), but Python won’t know anything is amiss until the operation fails.

Here, we come to the most famous gotcha of Python. The rest of the body of the function is all
indented the same way: exactly four spaces. It could have been two spaces, or a tab, or any other
whitespace combinations, but it must be the same for each line. Indentation consistency such as
this is good practice in any programming language since it makes the code easier to read, but
Python requires it. In most languages, the body of the function is specified by being enclosed in
curly braces {} or something similar, and indenting the lines is just there for readability; in Python,
the indentation is how the function’s body is specified. This is the single most controversial thing
about Python, and it can get confusing if you’re in a situation where some functions are indented
with tabs and others are indented with spaces.

In the body of the function, when we say

old_sal = rec["salary™]

we are pulling out the “salary” field in rec. Passing a key into square brackets is how you get data
out of a dict. By doing this, we are also tacitly assuming that there is a “salary” field: the code will
throw an error if there isn’t one. Later, when we say

rec["salary®] = new_sal
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we are assigning to the “salary” field - creating the field if there isn’t one, and overwriting it if
there’s already one there.

The Input_data variable is a list. Lists can contain elements of any type, but in this case, they
are all dictionaries. Note that in this case, the values in the dictionaries are not all the same type:
some are strings, but there is also a float field.

In the last part of the script, the line

for rec in input_data:

will loop over all of the elements of input_data in an order, executing the body of the loop for
each one. Similar to function declarations, the body of the loop must be indented consistently.
The print statement here deserves a special mention. When we say

print(" and makes $° + str(salary))
there are three things going on:

o str(salary) takes salary, which is a float like 75,000.0, and returns a string like “75,000”. str() is a
function that takes many Python objects and returns a string representation of them.

e Adding two strings with + just concatenates them. Adding a string to a float would have given
an error, which is why we had to say str(salary).

A final note is that when we call update_employee_record(rec), the dictionary is passed
in by reference: rec in the for-loop and rec in the function body refer to the same structure in
memory, so any changes to it made by the function will then be live in the for-loop. Lists, dictionar-
ies, and complex data types are always passed by reference like this. If you pass in an atomic data
type like a string or an integer, the function will only get a copy of the original.

3.5 Python Data Types

3.5.1 Atomic Data Types

Python has five main atomic data types that you’ll have to worry about. If you have used a
programming language in the past, they should mostly sound pretty familiar:

e Int. a mathematical integer

o Float. a floating-point number

e Bool. a true/false flag

e String. a piece of text of arbitrarily many characters (possibly 0 or 1)

o NoneType. this is a special type with only a single value None. It is often used as a placeholder
when there is missing data or some process failed.

Declaring a variable that is an int or a float is very straightforward:

my_integer = 2
my_other_integer = 2 + 3
my_float = 2.0

Boolean values are similarly uncomplicated:

my_true_bool = True
my_false_bool = False
this_is_true = (0 < 100)
this_is_false = (0 > 100)
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NoneType is special. The only value it can take is called None, and this is often used as a place-
holder when a variable should exist, but you don’t want it to have a meaningful value yet. Functions
that fail in some way will often return None to signify that there was a problem without throwing
aruntime error.

3.5.2 Strings

By far, the most complicated of the atomic data types is string. A string is a piece of text of
arbitrary length.

You declare a string by enclosing the text in quotation marks. You can use single quotes or dou-
ble quotes - they’re equivalent to each other. However, you might want to enclose your string in
double quotes if the string contains the single quote character, and vice versa.

a_string = "hello"
same_as_previous = “hello”
an_empty_string = """
w_a_single_quote = "hello"s"

In place of a single quotation character, you can also enclose a string in a triple of characters.
Unlike normal strings, one enclosed in triple quotes is also allowed to extend over multiple lines

multi_line_string = ""line 1
Iine 2llllll

It’s common to use triple-quoted strings for large pieces of text that are embedded in your code
(say, some HTML that you're using a lot because your script is writing an HTML document).

If you want to put special characters, such as a tab, a newline, or a weird hex code into your
string, you can do it by a process called “escaping.” When the “\” character is written in the string,
it and the next character together encode a single nonstandard character. The most common of
these are the new line “\n,” the tab “\t,” and the slash character itself “\\.”

To take a substring of a string in Python, you use bracket notation as follows:

>>> “ABCD" [O0]

A"
>>> "ABCD" [0:2]
“AB"
>>> "ABCD" [1:3]
“BC"

If you want to pull a single character out of a string, then you can do it with brackets such as this,
passing in the index of the character you want:

>>> "ABCD" [0]
A-

Note that the indices start at 0, not 1. If you want a substring of length greater than 1, you put
starting and ending indices in the brackets:

>>> ""ABCD"[0:2]
“AB"
>>> "ABCD"[1:3]
“BC*
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The first number says which index to start at, and the second number says which index to stop
just short of. If the first number is omitted, then you will start at the beginning. If the second is
omitted, you will continue to the end. So, we can say

>>> "ABCD"[1:]
*BCD"

You can also use negative indices. —1 will refer to the last element in the list, —2 to the one
before, etc. So you can drop the last character in a string such as this:

>>> "ABCD"[:-1]
"ABC*®

The next chapter will go into a lot more detail about the various tools that Python has for work-
ing with strings.

3.5.3 Container Data Types

Python has three main data containers: lists, tuples, and dicts. There is also one called a set that
you will use less often. Each of them contains other data structures, hence, the name.

The first thing to know about containers in Python is that, unlike many other languages, you can
mix and match the types. A list can consist entirely of ints. But, it can also contain tuples, diction-
aries, user-defined types, and even other lists.

All of Python’s container types are classes, in the object-oriented sense. However, they also all act
as functions, which try to coerce their arguments into the appropriate type. For example,
my_list = ["a ™, "b ™", "c "]
my_set = set(my_list)
my_tuple = tuple(my_list)

will create a list and then create a set and a tuple that contain identical data.

3.5.4 Lists

A list is just what it sounds like: an ordered list of variables. The following code shows basic usage:
my_list = [Ila ll’ Ilb II, IIC ll]

print(my_list[0]) # prints "a "

my_list[0] = "A " # changes that element of the list

my_ list.append(’'d ") # adds new element to the end

# List elements can be ANYTHING
mixed_list = ["A ", 5.7, "B ", [1,2,3]]1

There is a special operation called a list comprehension, which lets us create one list from
another by applying the same operation to all of its elements (and possibly filtering out some of
those elements):

original_list = [1,2,3,4,5,6,7,8]

squares = [x*x for x in original_list]

squares_of_evens = [x*x for x in original_list
i x%2==0]
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Indexing in a list is like for a string. The first element in the list is element number 0, the next is
element number 1, and so on. There are reasons (some of them historical) for this convention, and
if it mystifies you then you’re not alone. But, you will have to get used to it with Python: the initial
element in a list is number 0.

If you want to select a subset of a list, then you can do it with a colon:
my_list = ["a", "b", "c"]

Ffirst_two_elements = my_list[0:3]

The first number says which index to start at, and the second number says which index to stop
just short of. If the first number is omitted, then you will start at the beginning. If the second is
omitted, you will continue to the end. So, we can say
my_list = ["a"™, "b"™, "c"]

First_two_elements = my_list[:3]
all_elements_except_initial = my_list[1l:]

You can also use negative indices. —1 will refer to the last element in the list, —2 to the one
before, etc. So we can say

my_list = ["a", "b", "c"]
last_elem = my_list[-1]
all_but_last_element = my_list[:-1]

3.5.5 Strings and Lists

For complex string manipulation, one of the most flexible methods that you can call on strings is
split(). It will break a string up on whitespace and return those parts of it as a list. Alternatively, you
can pass another string as an argument, which will cause you to split on that string instead. It
works such as this:

>>> "ABC DEF".split(Q)
[ "ABC", T"DEF" ]
>>> "ABC \tDEF".split()
[ "ABC", T"DEF* ]
>>> "ABC \tDEF".split(" * )
[ "ABC", "\tDEF" ]
>>> "ABCABD".split(*"'AB" )
[, "c*, D" ]
The inverse of split() is the join() method. It is called on a string, and you pass in a list of other
strings. The strings are all then concatenated into one string, using the string as a delimiter. For
example,

>>> " _join(["A”, "BY, "C" 1)
"A,B,C"

I mentioned that the syntax for selecting characters in a string is the same as that for selecting
elements in a list. In general, it is called “slice notation,” and it is possible to create other Python
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objects that use the same notation. Most generally, a slice takes in a start index, an end index, and
how big the spacing should be. For example,

>>> start, end, count_ by =1, 7, 2
>>> "ABCDEFG'"[start: end: count_by ]
“"BDF*

3.5.6 Tuples

A tuple is conceptually a list that cannot be modified (no changing the elements, no adding/remov-
ing elements). They are created and accessed like a list, except that they are enclosed in parenthe-
ses rather than brackets:

my tuple = (1, 2, "hello world™)
print(my_tuple[0]) # prints 1
my_tuple[1l] = 5 # This will give an error!

Having them may seem redundant, but tuples are much more efficient than lists in some cases,
and they play a central role in the operation of Python under the hood. There are also several
things that, for technical reasons, you can do with tuples that you can’t with lists. The most obvious
of these is that the keys in a dictionary cannot be lists, but they can be tuples.

There is one important piece of syntactic sugar to know that is often used with tuples. Oftentimes,
we want to give names to the different fields in a tuple, and it is clunky to explicitly define a new
variable for each of them. In these cases, we can do multiple assignments as follows:

my_tuple = (1, 2)
zeroth_field, first _field = my_tuple

In fact - and you see this with multiple assignments a lot - it is possible to declare a tuple
without the parentheses at all. Just separate the elements with commas, as in:

zeroth_field, first field = 1, 2

3.5.7 Dictionaries

A dictionary is a structure that takes in a key and returns a value. The keys for a dictionary are usu-
ally strings, but they can also be any other atomic data type or tuples of atomic types (but they can’t
be lists or dictionaries). The values can be anything at all - integers, other dictionaries, external
libraries, etc. In defining a dictionary, you use curly braces, with a colon separating the key and
its value:

my_dict = {"January": 1, "February":2}
print(my_dict["January™]) # prints 1
my_dict["March™] = 3 # add new element
my_dict["January'] = "Start of the yr" # overwrite

As an interesting note, the Python language itself is largely built out of dictionaries (or slight
variations of them). The namespace that stores all of your variables, for example, is a dictionary
mapping the variables’ names to the objects themselves.
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You can also create a dictionary by passing in a list of key/value tuples to the function dict(), and
you can create a list of tuples by calling the items() method on a dictionary:

pairs = [(“one™,1), ("two",2)]
as_dict = dict(pairs)
back _to pairs = as_dict.items()

3.5.8 Sets

A set is like a dictionary with only keys and no values. It stores a collection of unique objects
that are of atomic types. You can add new values to a set, which will do nothing if the value
is already in it. You can also query the set to see if a value is in it. A simple shell script shows
how this works:

>>> s = set()

>>> 5 in s

False

>>> s_add(b)

>>> 5 in s

True

>>> s_add(5) # does nothing

>>> s_add(6) # adds 6

>>> s._add((1,4)) # mixing tuples/ints is fine

3.6 GOTCHA: Hashable and Unhashable Types

When I first started learning Python, there was one big gotcha that I ran into. It caused me a lot of
grief for a few days as I tried to figure out why my code was failing, and I would like to spare you
my pain. Python’s data type falls into two categories:

o Hashable types. This includes ints, floats, strings, tuples, and a few more obscure ones. These are
generally low-level data types, and instances of them are immutable.

e Unhashable types include lists, dictionaries, and libraries. Generally, unhashable types are for
larger, more complex objects, which have internal structure that can be modified.

The biggest difference between hashable and unhashable types is illustrated in this shell session,
for ints and lists (which are hashable and unhashable, respectively):

>>> a = 5 # a is a hashable int

>>>p =a # b is a COPY of a. 5 is now in two places
>>>a=a+ 1#ais now 6

>>> print(b) # b has NOT been incremented

5

>>> A = [] # A is an UNhashable list

>>> B = A # B points to the SAME list as A.

>>> A_append(5)

>>> B

(51
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When Isayb = a, a copy of the hashable int is made in memory, and the variable name b is set
to point to it. After that point, the two variable have no further connection. But, when I'm using
unhashable lists and say B = A, the variable B is set to point to the exact same list in the com-
puter’s RAM!

If T had truly wanted to make a copy of A, so that appending to A didn’t affect B, I could have said
something like the following:

>>> B = [x for x in Al

which would have constructed a new list in memory. If A was a list of integers, then A and B would
be incapable of stepping on each other’s toes: they would have their own separate copies of the
numbers.

However, if the elements of A were themselves unhashable types, then B would be distinct from
A, but they would be pointing to the same objects. For example,

>>> A = [{3, {31 # list of dicts
>>> B = [x for x in A]

>>> A[O]['name™] = "bob"

>>> B[O]["'name™ ]

"bob"

The other thing about hashable types is that the keys in a dictionary must be hashable.

3.7 Functions and Control Structures

3.7.1 Defining Functions
A function in Python is defined and called as follows:

def my_function(x):
y = x+1
x_sqrd = x*x
return x_sqrd
Five_plus_one_sqrd = my_function(b5)

This is a so-called “pure function,” meaning that it takes some input, returns an output, and does
nothing else. A function can also have side effects, such as printing something to the screen, oper-
ating on a file, or modifying an object that is passed into it. In our example script earlier, modifying
the input dictionary was a side effect. If no return value is specified, the function will return None.

You can also define optional arguments in a function, using this syntax:

def raise(x, n=2):

return pow(x,n)
two_sqrd = raise(2)
two_cubed = raise(2, n=3)

If the function you are defining only contains one line and has no side effects, you can also
define it using a so-called lambda expression:

sgr = lambda x : X*Xx
five_sqgrd = sqr(b)
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Assigning a lambda expression to “sqr” is equivalent to the normal syntax for function defini-
tions. The term “lambda” is a reference to the Lisp programming language, which defines func-
tions using the “lambda” keyword in a similar way.

Lambda functions are mostly used if you’re passing a one-off function as an argument to
another function, and there’s no need to pollute the namespace with a new function name. For
example,

def apply_to_evens(a_list, a func):

return [a_func(x) for x in a_list if x%2==0]
my_list = [1,2,3,4,5]
sqgrs_of_evens = apply_to_evens(my_list, lambda x:x*x)

Functions such as this, which are defined on the fly and never given an actual name, are called
“anonymous functions.”

3.7.2 Key Built-in Functions

Python has a small number of built-in functions that you should be aware of.

Function name Action Examples
Int Cast to an int int(5.7) # rounds down
int(*5”)
Float Cast to a float float(5)
float(“5.7”)
Bool Cast to a bool bool(“”) # False
bool(“asdf”) # True
Str Cast to a str
Dict Turns list of key/value tuples into dictionary dict([
( “January”, 1),
( “February”, 2)
D
range Range(n) gives a list of integers from 0 to n—1. Thatis, range(5)# 0to4
it starts at 0 and has length n range(4,18) # 4 to 17
Zip Take in two lists and pair off the elements into one list  zip(
of tuples [“Sunday”, “Monday”,
“Tuesday”],
range(3)
)
Open Opens a text file for reading or writing. The second # get file contents
argument is an “r” for reading the file and a “w” for # as one big string

writing it. You can also use “a” to just append to the

end of a file open(“file.txt”, “r”).read()

# Get file contents

# as list of strings
open(“file.txt”, “r”).readlines()
# Write

open(“file.txt”, “w”).
write(“Hello world!”)
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Function name Action Examples
Len Give the length of something. For a list or tuple, it willbe  len(“sdf”) # 3
the length. For a string, it will be the number of len([1-4]) # 4

characters. For a dict, it is the number of key/value pairs.

enumerate Pass in some indexable object (usually a list). Get out  for ind, val in mylist:
index/value tuples, which give indices in the object and print “At %i” % i
their corresponding values. Useful if you are looping

rint val
over a list, but you also need to keep track of the index P

3.7.3 Loops
One of the most common control structures you do in practice is to loop over a list, as follows:

my_list = [1, 2, 3]
for x in my_list:
print(’*the number is ", Xx)

If you are iterating over a list of tuples (as you might if you’re working with a dictionary), you
can use the shorthand tuple notation I mentioned previously:

for key, value in my _dict.items():
print(""the value for ", key, is

, value)

More generally, any data structure that allows for-loops such as this is called “iterable.” Lists are
the most prominent iterable data type, but they are far from the only one.
If statements are handled this way,
if i< 3:
print(’'i is less than three™)
elif i < 5: print("i is between 3 and 5™)
else: print("i is greater than 5")

You don’t see it as often in practice, but Python also allows for while-loops, which are similar
to this:

i=0

while 1 < 5:

print("i is still less than five')
i = i+l

3.8 Other Parts of Python

3.8.1 Comments and Docstrings
There are two kinds of comments in Python:
o Those denoted by a # character, such as this:

# This whole line is a comment
a = 5 # and the last part of this line is too
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o Strings that take up a line (or more) in your code but aren’t assigned to a variable.

It’s common practice to have a string at the beginning of a Python file that describes what the file
does and how to use it. Such a string is called a docstring. If you import the file as a library, then
that library will have a field called __doc___ that acts as built-in documentation. These things come
in handy! A function can also have a doc string, such as this:

def sqr(x):
"This function just squares its input”
return x * X

3.8.2 Libraries
To import functionality from an existing library, you use any of the following syntax:

from my_lib import f1, 2 # 1 & T2 In namespace
import other_lib as ol # ol.fl is the fl1 func
from other_lib import * # f1 is in namespace

Generally, the first and second methods of importing a library make for the most readable code;
if you import * from several libraries and then call f1 later on in your code, it’s not obvious which
library f1 came from.

To write your own library, just write a .py file in which your functions, classes, or other objects
are defined. It can then be imported using the aforementioned syntax. Just make sure that your
library is in the directory you are running your code from or in some other place that Python can
find it.

3.8.3 Exception Handling

If Python code fails, sometimes, we want to have the script be prepared for that and act accordingly
(rather than just dying). That is illustrated here:

try:
lines = input_text.split("\n")
print("tenth line was: ", lines[9])
except:
print("There were < 10 lines™)

3.8.4 Classes and Objects

Strictly speaking, everything in Python (and I mean everything - integers, functions, classes,
imported libraries, etc.) is what’s called an “object,” which you might be familiar with from object-
oriented programming languages like Java and C++. If you’re unfamiliar with this term, a “class”
is typically a user-defined datatype with some associated methods specific to that datatype, and
“objects” are instances of a class. For example, you might have a “Dog” class with methods, such
as bark() and sit(), and have an instance of the Dog class for every animal in a kennel.

Python is an object-oriented programming language, and it is often used as such in software
engineering contexts. But, it’s typical in data science to rely on a few high-powered built-in classes
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(such as lists and dictionaries) that do most of the heavy lifting. In this case, Python functions more
as a scripting language.
However, if you want to define your own classes, you can do it this way:

class Dog:
def __init__ (self, name):
self_name = name
def respond_to_command(self, command):
if command == self.name: self_bark(Q)
def bark(self):
print(bark bark!!™)

fido = Dog("'fido™)
fido.respond_to_command(‘'spot') # does nothing
fido.respond_to_command("'fido") # prints bark bark

Here, __init__is a special function that gets called whenever an instance of the class is created.
It does all of the initial setup required for the object. The one thing that throws a lot of people off
is the “self” keyword that gets passed in as the first argument for every function in the class. When
Icall fido. respond_to_command, the “self” argument refers to fido himself, that is, the
Dog object whose method is being called. This allows us to refer specifically to fido’s data ele-
ments, such as sel f_name. For many object-oriented languages, just saying “name” in resond_
to_command will implicitly refer to F1do’s name, but Python requires that it be explicit. se 1 F is
similar to the keyword “this” that you will see in languages such as C++.

3.9 Python’s Technical Libraries

Python was designed mostly as a tool for software engineers, but there is an excellent suite of
libraries available that make it a first-class environment for technical computing, competing with
the likes of MATLAB' and R. The main ones, which will be covered in this book, are as follows:

o Pandas. This is the big one for you to know. It stores and operates on data in data frames, very
efficiently and with a sleek, intuitive APL

e NumPy. This is a library for dealing with numerical arrays in ways that are fast and memory
efficient, but it’s clunky and low level for a user. Under the hood, Pandas operates on
NumPy arrays.

o Scikit-learn. This is the main machine-learning library, and it operates on NumPy arrays. You
can take Pandas objects, turn them into NumPy arrays, and then plug them into scikit-learn.

e Matplotlib. This is the big plotting and visualization library. Similar to NumPy, it is low level
and a bit clunky to use directly. Pandas provides human-friendly wrappers that call matplotlib
routines.

e SciPy. This provides a suite of functions that perform fancy numerical operations on
NumPy arrays.

These aren’t the only technical computing libraries available in Python, but they’re by far the
most popular, and together they form a cohesive, powerful tool suite.

NumPy is the most fundamental library; it defines the core numerical arrays that everything else
operates on. However, there’s a good chance most of your actual code (especially data munging
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and feature extraction) will be working within Pandas, only switching to the other libraries as
needed. The rest of this chapter will be a quick crash course on the basic data structures of Pandas.

3.9.1 DataFrames

The central kind of object in Pandas is called a DataFrame, which is similar to SQL tables or R data
frames. A data frame is a table with rows and columns, where each column holds data of a particu-
lar type (such as integers, strings, or floats). DataFrames make it easy and efficient to apply a func-
tion to every element in a column or to calculate aggregates such as the sum of a column. Some of
the basic operations on data frames are shown in this code:

import pandas as pd
# Making data frame from a dictionary
# that maps column names to their values
df = pd.DataFrame({
"name™: ['Bob™, "Alex', "Janice'],
"age': [60, 25, 33]
1))
# Reading a DataFrame from a file
other_df = pd.read_csv('myfile.cs")

# Making new columns from old ones

# is really easy

df["age_plus_one'"] = df["age"] + 1
df["age_times_two'] = 2 * df["age"]
df["'age_squared'] = df["age'] * df["age']
df["over_30"] = (df["age'] > 30) # this col is bools

# The columns have various built-in aggregate functions
total_age = df["age™].sum(Q)
median_age = df["'age'"]-quantile(0.5)

# You can select several rows of the DataFrame

# and make a new DataFrame out of them

df_below50 = df[df["age'] < 50]

# Apply a custom function to a column
df["age_squared"] = df["age"].apply(lambda x: Xx*x)

One important thing about DataFrames is the notion of an index. This is basically a name (not
necessarily unique) that is given to every row of the data frame. By default, the indexes are just the
line numbers (starting at 0), but you can set the index to be other columns if you like:

df = pd.DataFrame({
"name™: ['Bob™, "Alex', "Jane'],
age': [60, 25, 33]
9]
print(df.index) # prints 0-2, the line numbers

# Create a DataFrame containing the same data,
# but where name is the index
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df_w_name_as_ind = df.set_index("'name')
print(df_w_name_as_ind.index) # prints their names

# Get the row for Bob
bobs_row = df_w_name_as_ind.ix["Bob"]
print(bobs_row[''age']) # prints 60

3.9.2 Series

Besides DataFrames, the other big data structure in Pandas is the Series. Really, I've already shown
them to you: a column in a DataFrame is a Series. Conceptually, a Series is just an array of data
objects, all the same type, with an index associated. The columns of a DataFrame are Series objects
that all happen to share the same index.

The following code shows you some of the basic Series operations, independent of their function
in DataFrames:

>>> # import Pandas. 1 always alias it as pd

>>> import pandas as pd

>>> s = pd.Series([1,2,3]) # make Series from list
>>>

>>> # display the values in s

>>> # note index is to the far left

>>> 5
0] 1
1 2
2 3

dtype: int64
>>> s+2 # Add a number to each element of s

0] 3
1 4
2 5

dtype: int64

>>> s_index # you can access the index directly
Int64Index([0, 1, 2], dtype="int64~)

>>> # Adding two series will add corresponding
elements to each other

>>> s + pd.Series([4, 4,5])

1 5
1 6
2 8

dtype: int64

Now technically, I lied to you a minute ago when I said that a Series object’s elements all have to
be the same type. They have to be the same type if you want all the performance benefits of Pandas,
but we have actually already seen a Series object that mixes its types:

>>> pobs_row = df_w_name_as_ind. ix[''Bob" ]
>>> type(bobs_row )
< class "pandas.core.series.Series” >
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>>> bobs_row

age 60
age_plus_one 61
age_times_two 120
age_squared 3600
over_30 True

Name: Tom, dtype: object

So, we can see that this row of a data frame was actually a Series object. But, instead of int64
or something similar, its dtype is “object.” This means that under the hood, it’s not storing a
low-level integer representation or anything similar; it’s storing a reference to an arbitrary
Python object.

3.9.3 Joining and Grouping
So far, we’ve focused on the following DataFrame operations:

o Creating data frames

e Adding new columns that are derived from basic operations on existing columns

o Using simple conditions to select rows in a DataFrame

e Aggregating columns

o Setting columns to function as an index, and using the index to pull out rows of the data.

This section discusses two more advanced operations: joining and grouping. These may be famil-
iar to you from working with SQL.

Joining is used if you want to combine two separate data frames into a single frame containing
all the data. We take two data frames, match up rows that have a common index, and combine
them into a single frame. This shell session shows it:

>>> df_w_age = pd.DataFrame ({
“name': [“Tom™, "Tyrell", "Claire'],
"age'': [60, 25, 33]
1))
>>> df_w_height = pd.DataFrame ({
"name': ["Tom"™, "Tyrell"™, "Claire],
"height": [6.2, 4.0, 5.5]
1))
>>> joined = df_w_age.set_index("'name™).join (
df_w_height.set_index(*'name'))
>>> print(jJoined)

age height
name
Tom 60 6.2
Tyrell 25 4.0
Claire 33 5.5

>>> print(joined.reset_index() )
name age height

0O Tom 60 6.2

0 Tyrell 25 4.0

1 Claire 33 5.5
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The other thing we often want to do is to group the rows based on some property and aggregate
each group separately. This is done with the groupby() function, the use of which is shown here:

>>> df = pd.DataFrame ({
"name": [“"Tom", "Tyrell™, "Claire'],
"age': [60, 25, 33],
"height": [6.2, 4.0, 5.5],
"gender™: ["M", "M, "F"]
b
>>> # use built-in aggregates
>>> print(df.groupby(‘gender™).mean() )

age height
gender
F 33.0 5.5
M 42.5 5.1

>>> medians = df.groupby(‘'gender'™).quantile (0.5)
>>> # Use a custom aggregation function
>>> def agg(ddf ):
return pd.Series({
"name’: max(ddf['name']),
"oldest": max(ddf[''age"]),
"mean_height': ddf["height™].mean()

1))
>>> print(df.groupby(*“'gender'™).apply(agg) )
mean_height name oldest
gender
F 5.5 Claire 33
M 5.1 Tom 60

3.10 Other Python Resources

One of the benefits of using Python is that there is a huge amount of very clear documentation avail-
able online. It’s extremely easy to just google around and find the right syntax or libraries to do what-
ever it is you need to get done. Besides just searching around, I recommend the following resources:

e https://docs.python.org/3/: This is the main resource for documentation of Python version
3’s syntax.

o http://pandas.pydata.org/: The official documentation for the pandas library.

o http://scikit-learn.org/stable/index.html: The documentation for scikit-learn. This is some of
the best documentation I've ever seen for software. Most of it is example scripts that show off all
the various things you can do with scikit-learn.

3.11 Further Reading

1 Pilgrim, M, 2004, Dive into Python: Python from Novice to Pro, viewed 7 August 2016, http://www.
diveintopython.net/.
2 Pandas: Python Data Analysis Library, 2016, viewed 7 August 2016, http://pandas.pydata.org/.
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3 The Python Software Foundation, 2016, viewed 7 August 2016, https://www.python.org/.
4 Scott, M, Programming Language Pragmatics, 4™ edn, 2015, Morgan Kaufmann, Burlington, MA.

3.12 Glossary

Anonymous function A function that is never given a name.

DataFrame The main Pandas data structure. It stores a dataset as a table with rows and
columns.

Dict A Python object, which maps keys (which must be of a hashable type) to values (which can
be any type).

Hashable type ints, floats, strings, and a couple other low-level Python data types.

IDE “Integrated development environment” like Visual Studio or Eclipse. It is software that
allows you to write code, but that provides additional tools useful for that task.

Index Identifiers for each row in a DataFrame or element in a Series.

Join An operation that takes two data frames and concatenates matching rows into a large data
frame. Rows match if they have the same entries in whatever column you are joining on.

Jupyter A program that provides browser-based notebooks for Python and other languages.
Widely used in data science when the goal is to analyze data or train a model.

List A Python object that stores an ordered list of objects. It is an unhashable type, so we can do
things such as appending now elements.

Notebook A piece of software that includes source code, outputs from that code (including
graphics), and readable prose in a single document. They are ideal for running data science
experiments in a way that lends itself to communication.

NumPy A low-level Python library for efficiently processing numerical arrays.

Object-oriented language A programming language with the ability to create user-defined
“classes” - special data types with associated methods - the instances of which are known as
“objects”. Python supports object-oriented programming, but it is relatively uncommon when
using python for data science.

Pandas A high-level Python library for manipulating data. It defines the DataFrame and Series
types and is implemented using NumPy under the hood.

Pure function A function with no side effects.

Series A Pandas data type for storing a sequence of objects. The columns of a DataFrame are
actually Series objects.

Set A Python container type that acts as a mathematical set.

Side effect A modification that is made to an existing object in memory, as opposed to creating a
new object while leaving existing ones intact. Operations such as print to the screen and file
interactions are also side effects.

Tuple A Python object that stores an ordered sequence of objects. Unlike lists, tuples are
immutable and hashable.

Unhashable type Any Python type that is not hashable. Examples include lists, dicts, and
user-defined classes. When you assign an unhashable object to a variable name, you will get a
pointer to the original object, rather than to a copy of it.
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Interlude: My Personal Toolkit

Every data scientist has their own set of preferred programming languages, libraries, and other
tools. You will have to decide what works best for you. To give you a data point though, here is how
I work when do data analysis:

e My main programming language for data science is Python. I know it, I love it, and I can do just
about anything with it. I also use it for production coding whenever I am choosing the tools and
there’s no good reason not to.

o I use Pandas as my main data analysis library, and I supplement it with scikit-learn for machine
learning.

o I usually use matplotlib for visualizations, but I am aware they’re not as pretty as I would like.

e My actual coding is usually in a Jupyter notebook, rather than an IDE.

e When I'm contributing to a large production codebase, I usually use Visual Studio. But I'm pretty
open about IDEs and text editors, and I'll admit I'm not an IDE power user.

o I do most of my work on a Mac, but that’s just because it’s what my employers tend to use. I usu-
ally do hobby projects using Linux, and I'm hoping to do more work on Windows in the future
because they have a famously great set of tools for developers.

e When I'm doing Big Data I use PySpark, which I'll talk about in the chapter on Big Data.

e For deep learning, I have historically used Tensorflow, but am switching gears toward PyTorch
because a lot of the cool libraries are written using it.

I used to use R, but not anymore if I can avoid it. The syntax has always annoyed me, but the
breaking point came a few years ago. I had an R script operating on a massive dataset that I had run
and debugged several times, and it would always fail several hours in because of some memory
issues. It was extremely frustrating, and I was getting close to a deadline. So, finally, I gave up on R
and rewrote the entire thing in Python; it finished in 45 minutes the first time I ran it. In fairness,
I wrote my Python code to be pretty efficient in its memory usage, and my R code had used the
notoriously inefficient plyr library, but it left a lasting impression.

By the time you read this, my toolkit may have changed. New toys are constantly becoming avail-
able, and it’s important to stay abreast of them. Some people are forever trying out the newest
libraries, always eager to find slightly better ways of doing things. Personally, I'm more inclined to
wait until it’s clear that a new tool is better before jumping on the bandwagon, so as not to spend a
lot of time learning things that become obsolete. But, no matter how you do it, one of the coolest
parts of data science is the constant learning of new techniques.
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Data Munging: String Manipulation, Regular Expressions,
and Data Cleaning

This chapter is about some of the pathologies that you will see in real-world data. It talks about
some of the most common (and notorious!) ones, where they come from, and how they can be
addressed.

Data pathologies come in roughly two types. The first are formatting issues. This includes incon-
sistent capitalization, extraneous whitespaces, and things of that nature. Often, these are straight-
forward to solve with appropriate preprocessing of the data. The second category involves the
actual content of the data. Duplicate entries, major outliers, and NULL values are all examples. It
often requires some detective work to figure out what these issues mean in a particular situation
and, hence, how they should be addressed.

My goals in this chapter are twofold. First, I want to give you an appreciation for the breadth of
issues that can be present in real-world data and equip you to quickly identify and diagnose prob-
lems. Second, I want to teach you tools that can be used to solve the problems. Specifically, I will
discuss various types of string manipulation.

Manipulating strings of text might seem boring at first glance, but it’s one of the most powerful tools
a data scientist can have. I would put it on par with machine learning itself. String manipulation can
be used to address any data formatting problems, and in many cases, it is the only suitable solution.
But, it is also invaluable for creating scripts to pull information out of raw data. Sometimes, when you
encounter a new dataset, there is a “right” way to process it, which requires learning a new organiza-
tional paradigm and complicated tools that implement it. Alternatively, the quick-and-dirty way is to
spend an hour hacking together a script that pulls out the specific data you need. You can guess which
of these approaches is often more expedient if you need preliminary results by tomorrow.

The first part of this chapter will discuss a number of usual suspects when it comes to data issues. I
will start with problems involving the data content, including some of the reasons they often arise.
I will then move on to formatting issues and discuss how they can be addressed using strings. Finally, I will
discuss the “big guns” in string manipulation: pattern matching via regular expressions.

4.1 The Worst Dataset in the World

It seemed that the worst industrial dataset that I ever worked with was the first one. It was a
collection of server logs, describing queries that had been received by a large collection of servers
that my client owned. A given server could be referred to by a number of different names.
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Most lines of the logs were gobbledygook that were useless to me. Some of the key fields were
encoded in weird hexadecimal. There were no rows or columns; instead, each line had its own
structure. It was awful.

Then, I worked with my second industrial dataset and discovered that they’re all like that. Your
worst dataset will probably be your first one too. Whenever there is a large organization, a compli-
cated data collection process, or several datasets that have been merged, issues tend to pile up.
They are rarely documented and often only come to light when some poor data scientist is tasked
with analyzing them. You have been warned.

4.2 How to Identify Pathologies

One of the most embarrassing things that can happen in data science is to have to retract results
that you’ve presented because you realize that you processed the data incorrectly. Given how con-
voluted datasets often are, you should have a healthy degree of paranoia about this happening.

To identify these issues early, I have four pieces of advice:

o If the data is text, look directly at the raw file before just reading it into your script.

o Read supporting documentation, if it’s available. Often the data is hard to understand because it
uses strange codes or conventions, whose meaning is documented in some accompanying PDF
files or something. In other cases, the data seems pretty self-explanatory, but there are nonobvi-
ous problems that only show up when you read the details.

o Have a battery of standard diagnostic questions you ask about the data. Does this column con-
tain NULLSs? Are all the identifiers in table A present in table B, and vice versa? Things like that.

o Do sanity checks, where you use the data to derive things that you already know. If you count
the customers in the dataset and it isn’t equal to the number of customers you know the com-
pany has, then chances are you weren’t identifying unique customers correctly.

4.3 Problems with Data Content

4.3.1 Duplicate Entries

You should always check for duplicate entries in a dataset. Sometimes, they are important in a real-
world way. In those cases, you often want to condense them into one entry, perhaps adding an
additional column that indicates how many unique entries there were.

In other cases, the duplication is purely a result of how the data was generated. For example, it
might be derived by selecting several columns from a larger dataset, and there are no duplicates if
you count the other columns.

4.3.2 Multiple Entries for a Single Entity

This case is a little more interesting than duplicate entries. Often, each real-world entity logically
corresponds to one row in the dataset, but some entities are repeated multiple times with different
data. The most common cause of this is that some of the entries are out of date, and only one row
is currently correct.

In other cases, there actually should be duplicate entries. For example, each “entity” might be a
power generator with several identical motors in it. Each motor could give its own status report,
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and all of them will be present in the data with the same serial number. Another field in the data
might tell you which motor is actually which. In the cases where the motor isn’t specified in a data
field, the different rows will often come in a fixed order.

Another case where there can be multiple entries is if, for some reason, the same entity is occa-
sionally processed twice by whatever gathered the data. This happens in many manufacturing
settings, because they will retool broken components and send them through the assembly line
multiple times rather than scrapping them outright.

4.3.3 Missing Entries

Most of the time when some entities are not described in a dataset, they have some common
characteristics that kept them out. For example, let’s say that there is a log of all transactions from
the past year. We group the transactions by customer and add up the size of the transactions for
each customer. This dataset will have only one row per customer, but any customer who had no
transactions in the past year will be left out entirely. In a case such as this, you can join the derived
data up against some known set of all customers and fill in the appropriate values for the ones
who were missing.

In other cases, missing data arises because data was never gathered in the first place for some
entities. For example, maybe two factories produce a particular product, but only one of them gath-
ers this particular data about them.

4.3.4 NULLs

NULL entries typically mean that we don’t know a particular piece of information about some
entity. The question is why - the answer depends on the context.

Sometimes, the NULLSs are essentially random - the machine gathering the data had a glitch or
something. In these cases, in analytics, it is common to just drop the data point for which we have
missing data, or replace the NULLs values for a particular field with the known median or average
of that field.

In my experience though there is usually something different about the data points with NULLs
in a field. Maybe they were gathered at a different time, or in a different location, when that field
was not available. Bear in mind that many datasets you see were created by combining several
distinct datasets into one. In these cases, the data with NULL might be quite different from your
other data points and conclusions based only on the data points without the NULL field might not
generalize.

I'm a big fan of introducing a binary indicator variable that signifies whether or not a field is
NULL. This indicator is well defined for all data points, and Booleans will play well with any algo-
rithm. In this case, the indicator variable often becomes a proxy for where the data point came
from, which may be more informative than the actual value anyway.

4.3.5 Huge Outliers

Sometimes, a massive outlier in the data is there because there was truly an aberrant event. How
to deal with that depends on the context.

Sometimes, the outliers should be filtered out of the dataset. In web traffic, for example, you are
usually interested in predicting page views by humans. A huge spike in recorded traffic is likely to
come from a bot attack, rather than any activities of humans.
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A favorite trick of mine to deal with outliers is to replace the values with their percentile rank
among all values. In this case, a gross outlier will just mean a value near 0 or 1. The problem with
this approach is that you can’t readily apply the same preprocessing to future data points; the per-
centile of a particular value is only defined when you know the rest of the dataset.

Occasionally outliers just mean missing data. Some storage systems don’t allow the explicit con-
cept of a NULL value, so there is some predetermined value that signifies missing data. If many
entries have identical, seemingly arbitrary values, then this might be what’s happening.

4.3.6 Out-of-Date Data

In many databases, every row has a timestamp for when it was entered. When an entry is updated,
it is not replaced in the dataset; instead, a new row is put in that has an up-to-date timestamp. For
this reason, many datasets include entries that are no longer accurate and only useful if you are
trying to reconstruct the history of the database.

4.3.7 Artificial Entries

Many industrial datasets have artificial entries that have been deliberately inserted into the real
data. This is usually done for purposes of testing the software systems that process the data.

4.3.8 Irregular Spacings

Many datasets include measurements taken at regular spacings. For example, you could have the
traffic to a website every hour or the temperature of a physical object measured at every inch. Most
of the algorithms that process data such as this assume that the data points are equally spaced,
which presents a major problem when they are irregular.

If the data is from sensors measuring something such as temperature, then sometimes you have
to use interpolation techniques (which I discuss in a later chapter) to generate new values at a set
of equally spaced points.

A special case of irregular spacings happens when two entries have identical timestamps but
different numbers. This usually happens because the timestamps are only recorded to finite preci-
sion. If two measurements happen within the same minute, and time is only recorded up to the
minute, then their timestamps will be identical.

4.4 Formatting Issues

4.4.1 Formatting Is Irregular Between Different Tables/Columns

This happens a lot, typically because of how the data was stored in the first place. It is an especially
big issue when joinable/groupable keys are irregularly formatted between different datasets.

4.4.2 Extra Whitespace

For such a small issue, it is almost comical how often random whitespace confounds analyses
when people try to, say, join the identifier “ABC” against “ABC” for two different datasets.
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Whitespace is especially insidious because when you print the data to the screen to examine it, the
whitespace might be impossible to discern.

In Python, every string object has a strip() method that removes whitespace from the front and
end of a string. The methods Istrip() and rstrip() will remove whitespace only from the front
and end, respectively. If you pass a character as an argument into the strip functions, only that
character will be stripped. For example,

>>> "ABC\t".strip
"ABC*

>>> " ABC\t".Istrip O
"ABC\t"

>>> " ABC\t".rstrip O
" ABC-

>>> "ABC".strip(''C™")
“AB"

4.4.3 Irregular Capitalization

Python strings have lower() and upper() methods, which will return a copy of the original string
with all letters set to uppercase or lowercase.

4.4.4 Inconsistent Delimiters

Usually, a dataset will have a single delimiter, but sometimes, different tables will use different
ones. The most common delimiters you will see are as follows:

e Commas
e Tabs
e Pipes (the vertical line “|”)

4.4.5 Irregular NULL Format

There are a number of different ways that missing entries are encoded into CSV files, and they
should all be interpreted as NULLs when the data is read in. Some popular examples are the empty
string “,” “NA,” and “NULL.” Occasionally, you will see others such as “unavailable” or “unknown”

as well.

4.4.6 Invalid Characters

Some data files will randomly have invalid bytes in the middle of them. Some programs will throw
an error if you try to open up anything that isn’t valid text. In these cases, you may have to filter out
the invalid bytes before you can even load the data for analysis.

The following Python code will create a string called s, which is not validly formatted text. The
decode() method takes in two arguments. The first is the text format that the string should be
coerced into (there are several, which I will discuss later in the chapter on file formats). The second
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is what should be done when such coercion isn’t possible; saying “ignore” means that invalid
characters simply get dropped.

>>> s = "abc\xFF"

>>> print(s) # Note how last character isn,t a letter
abcy

>>> s_encode('ascii’™, "ignhore' )

b*abc*®

4.4.7 Weird or Incompatible Datetimes

Datetimes are one of the most frequently mangled types of data field. Some of the date formats you
will see are as follows:

e August 1, 2013
e AUGI, ‘13
e 2013-08-13

There is an important way that dates and times are different from other formatting issues.
Most of the time you have two different ways of expressing the same information, and a per-
fect translation is possible from the one to the other. But, with dates and times, the informa-
tion content itself can be different. For example, you might have just the date, or there could
also be a time associated with it. If there is a time, does it go out to the minute, hour, second,
or something else? What about time zones? AM or PM? Or it down to the minute or to some-
thing finer grained?

Most scripting languages include some kind of built-in datetime data structure, which lets you
specify any of these different parameters (and uses reasonable defaults if you don’t specify).
Generally speaking, the best way to approach datetime data is to get it into the built-in data types
as quickly as possible, so that you can stop worrying about string formatting.

An excellent way to parse dates in Python is with a package called dateutil, which works as follows:

>>> import dateutil ._parser as p

>>> p.parse(August 13, 1985")
datetime.datetime(1985, 8, 13, 0, 0)
>>> p.parse(''2013-8-13")
datetime.datetime(2013, 8, 13, 0, 0)
>>> p.parse(''2013-8-13 4:15am"™)
datetime.datetime(2013, 8, 13, 4, 15)

It takes in a string, uses some reasonable rules to determine how that string is encoding dates and
times, and coerces it into the datetime data type. Note that it rounds down — August 13th becomes
12:00 AM on August 13th, and so on.

My personal favorite though is the pandas function to_datetime. Like the parse() function above
it takes in a string and turns it into a Datetime object. But, it can also be applied to an iterable
structure like a list or a column in a DataFrame.

4.4.8 Operating System Incompatibilities

Different operating systems have different file conventions, and sometimes that is a problem when
opening a file that was generated on one OS on a computer that runs a different one.
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Probably, the most notable place where this occurs is newlines in text files. In Mac and Linux, a
newline is conventionally denoted by the single character “\n.” On Windows, it is often two char-
acters “\r\n.” Many data processing tools check what operating system they are being run on so
that they know which convention to use.

4.4.9 Wrong Software Versions

Sometimes, you will have a file of a format that is designed to be handled by a specific software
package. However, when you try to open it, a very mystifying error is thrown. This happens, for
example, with data compression formats.

Oftentimes, the culprit ends up being that the file was originally generated with one version of
the software. However, the software has changed in the meantime, and you are now trying to open
the file with a different version.

4.5 Example Formatting Script

The following script illustrates how you can use hacked-together string formatting to clean up
disgusting data and load it into a Pandas DataFrame. Let’s say we have the following data in a file:

Name |Age|Birthdate

Ms. Janice Joplin]65]January 19, 1943
Bob Dylan |74 Years| may 24 1941

Billy Ray Joel|66yo|Feb. 9, 1941

It’s clear to a human looking at the data what it’s supposed to mean, but it’s the kind of thing that
might be terrible if you opened it with a CSV file reader. The following code will take care of the
pathologies and make things more explicit. It’s not exactly pretty or efficient, but it gets the job
done, it’s easy to understand, and it would be easy to modify if it needed changing:

def get_first_last_name(s):
INVALID_NAME_PARTS = ["mr™, "ms", "mrs",
dr', "jr, sir"]
parts = s_.lower().replace('.","").strip(QQ.splitQ)
parts = [p for p in parts
if p not in INVALID NAME_PARTS]
if len(parts)==0:
raise ValueError(
"Name %s is formatted wrong™ % S)
first, last = parts[0], parts[-1]
Ffirst = first[0].upper() + First[1l:]
last = last[0].upper() + last[1l:]
return first, last

def format_age(s)
chars = list(s) # list of characters
digit_chars = [c for c in chars if c.isdigitQ)
return int("".join(digit_chars))

def format_date(s)
MONTH_MAP = {
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"jan': 01", "feb": 02", "may": "03"}
s = s.strip(Q.lower(Q).replace(’,”™, ™)
m, d, y = s.splitQ)
if len(y) == 2: y = "19" + y
if len(d) == 1: d = "0" + d
return y + "-" + MONTH_MAP[m[:3]] + "-" + d

import pandas as pd
df = pd.read_csv('file.tsv", sep="|")
df["First Name'"] = df["'Name"].apply(
lambda s: get_first_last_name(s)[0])
df["Last Name'™] = df["Name"].apply(
lambda s: get first_last_name(s)[1])
df["Age'"] = df["Age'"]-apply(format_age)
df["Birthdate'™] = df["Birthdate™].apply(
format_date).astype(pd.datetime)
print(df)

4.6 Regular Expressions

Regular expressions are one of the “big guns” standard tools in data processing. They take many of
the operations we just discussed (split, index, etc.), which take in specific strings as arguments, and
generalize them to apply to a pattern. For example, say we want to pull all phone numbers that
match the (XXX) XXX-XXXX pattern out of a document. That would be very onerous with normal
strings but a synch with regular expressions. The “regular expression” is a string that encodes the
pattern you’re looking for.

Before we go much farther, I should let you know that regular expressions are a bit notorious for
being finicky to use and debug. This is because while it is possible to express a stupendous array of
patterns with regular expressions, the expressions themselves can become complicated enough that
it’s hard for humans to wrap their heads around. This is a fairly fundamental problem - “understand-
ing” a pattern you want is much, much easier than specifying every jot and tittle of what constitutes
that pattern. I'm reminded of the phrase “damn it computer: do what I want, not what I say.”

The way around this is to avoid regular expressions that are overly complex. So, as long as you
keep them short enough that they are easy to understand, they are extremely powerful.

The other caveat about regular expression is that they are computationally expensive. There are
many different ways that a piece of text can potentially match a complicated pattern, and it takes a
while to check them all. In fact, even the process of compiling the regular expression itself into a
computation-ready data structure takes a while.

4.6.1 Regular Expression Syntax

Let’s start with a very simple regular expression: “ab*.” This means that the pattern is exactly one
occurrence of the letter “a,” followed by some number (possibly 0) of “b”s — the “*” means arbitrary
repetition of whatever character came right before it. In the string “abcd abb,” the pattern occurs
twice: the initial “ab” and the “abb” at the end.

Right there, though we run into the first subtle point of regular expressions: How do we pick
which matches to find? We said that the “ab” at the start was a match, because it was an “a” fol-
lowed by one “b.” But, technically, the “a” would have been a match on its own - it’s just a match
with zero “b”s rather than one. In situations such as this, do we want to find all possible matches
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even if they overlap? If we only want nonoverlapping matches, how do we pick which ones? The
general approach is to start at the left-most part of the text and find the largest possible match.
Then, at the end of that match, you search the remaining text find the largest possible match that
starts after your first one ends, and so on. This is called the “greedy” approach - there are times
when you want to override it, but they’re typically not common.

Greedy parsing is fantastic from a performance perspective, because it requires a single pass
through a piece of text and generally only requires a small portion of it to be kept in memory at any
one time. Regular expression matching is still inefficient, but this does much to ease the pain. In
many applications, the matches will be returned as they are found, with the whole parser acting as
one giant iterator. Especially, for large pieces of text where many matches are expected, this is the
most efficient way to do it. The Match objects returned by the iterator will include several pieces of
information such as the matching string itself and its start/end indices. However, in my own work,
I usually end up using simpler approaches that just return all matches as a list of strings, rather
than an iterator of Match objects.

Now let’s see some of the more complicated types of pattern that can be specified:

Regular Example
Type of pattern expression matches Notes
A fixed string abcl23 abcl23 “abc123” contains no special characters,
so it’s just a string to be matched

Arbitrary repetition a*b b “*” means that you can have an arbitrary
ab number (possibly 0) of the previous
aaab character

Repeat character at least a+b ab

once aaaab

Repeat character at most a?b b

once ab

Repeat a character a fixed a{5} aaaaa

number of times

Repeat a pattern a fixed (a*b){3} baabab

number of times ababaaaab

Repeat a character or pattern af{2,4} aa Note that the range is inclusive

a variable number of times aaa
aaaa

Choice of several characters [ab]c ac The brackets means that you can have any
be single character from within the brackets

Arbitrary mixture of several [ab]*c c In this case, the * is applied to the whole

characters aac [ab] expression
abbac

Ranges of characters [A-]H][a-z]*  Aasdfalsd [A-H] is shorthand for the characters
Hb from A to H. You can do the same thing
G with digits

Characters OTHER than a ["AB] C The * as the first argument in [] means to

particular one D match any character NOT in that group. If

A is not the first character, then it has no
special meaning

(Continued)
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Regular Example

Type of pattern expression matches Notes

Choice of several expressions DrIMrIMsIMrs Dr Here you can select
Mr
Ms
Mrs

Nesting expressions ([A-Z]I[a- A This matches any alphanumeric string. In

z]I[0-9])* AzSDFcvfg Python, \w is shorthand for this

Start of a line Nab Matches any “ab” that occurs at the start

of your text or just after a newline

End of a line ab$ Matches an “ab” that is at the end of the

document or just after a newline

Special characters \[ [ If you want to include one of the special

characters in your pattern, you can escape
itwitha\

Any character except

newline *

Nongreedy evaluation <*>?\s This causes it to find the shortest possible
</h2 path, rather than the longest
name="“fo0”>

Whitespace \s This matches any whitespace character,

such as spaces, tabs, or a newline

There are others, and regular expression syntax can vary a little bit between languages and librar-
ies. However, these should be enough to get you started.

The nongreedy character deserves some special explanation. Let’s say that we have the following
XML data:

<name>Jane</name><name>Bob</name>
and we want to pull out the name fields. You might try to use the regular expression
<name>.*</name>

but that will end up matching the entire string. This is because “</name><name” in the middle

ok 9

matches the “*” and regular expression try to match as much text as possible. If instead you say

<name>.*?</name>

€

then you will get the two matches, because it tries to match “*” to as little text as possible.

Python’s implementation is a relatively lightweight library called re. The following Python code
shows how to read in a file and use regular expressions to look for street addresses. It’s not perfect,
but it will work pretty well.

import re

# This matches 1600 Pennsylvania Ave."

# It does NOT match "5 Stony Brook St

# cuz there is a space in "Stony Brook™

street_pattern = r"~[0-9]\s[A-Z][a-z]*" + \
r''(Street|St|Rd|Road|Ave]Avenue|Blvd|Way [Wy)\.?$"
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# Like the one above, this assumes
# there is no space in the town name
city pattern = r'"[A-Z][a-z]*,\s[A-Z]{2},[0-9]{5}3$"
address_pattern = street_pattern + r'\n" \
+ city_pattern
# Compile the string into a regular expression object
address_re = re.compile(address_pattern)
text = open(“'some_file.txt", "r').read()
matches = re.findall(address_re, text)
# list of all strings that match
open(*'addresses_w_space_between.txt",
"W .write(C'\n\n" _join(matches))

You should notice the following things about that code:

1) It’s very powerful! This is only a few lines, but it is doing a very complicated task.

2) It’s limited. There are many idiosyncrasies of addresses that the human eye can spot that will
elude this regular expression. It won’t handle apartment numbers, multiword street names, or
even “32nd street.” You can patch these problems up as you find them, but you risk the code
becoming unwieldy.

3) We are declaring our strings as “raw strings,” by putting an r in front of the opening quote.

The last thing is a practical measure when doing regular expressions in Python, because using
the escape character \ can become a massive pain. The problem is that if we say

pattern = "\n"
my_re = re.compile(pattern) # trying to match a newline

we have not done what we intended to do. The string called pattern is a one-character string,
consisting of the newline character. But, re.compile would require a two-character string, with the
first character being a slash and the second being an n. We could instead have said

# Escape the slash w another
slash pattern = "\\n"

# This matches a newline
newline_re = re.compile(pattern)

But, this becomes extremely unwieldy if we want to, say, include the slash character in the
pattern we are looking for. The pattern to match a single slash would be “\\\\.”

Putting the r before the quotes in Python creates a “raw string,” meaning that the exact contents
of the quotes are the string. Life is just easier that way.

4.7 Life in the Trenches

This is a fairly short chapter, because there isn’t a lot to say about data cleaning that generalizes
well. In a lot of ways, it is the boring part of data science, a price we must pay to get things into a
format where we can ask the real questions.

At the same time though, it is an intellectually challenging, problem-solving activity — often
more so than the analysis itself. In many data science projects, there is a staggering amount of
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detective work and coding required to just get the data into clean tabular form, but after that all
you do is fit a line or something equally trivial.

Data cleaning code is one of the areas where data science blurs into production coding. There is
a lot of room for creativity and experimentation in how you extract features from data or what
analyses you run. Generally though, there is only one “right” way to clean the data, and the code
tends to get written once and then reused between different iterations of analysis and feature
extraction.

Once you understand the data itself and have written the cleaning scripts, it is time to move on
to understanding the world it is describing. This is the world of visualizations and exploratory
analysis.

4.8 Glossary

Regular expression A way to specific a general pattern that strings can match. Regular
expressions can be finicky to use, but they are extremely powerful.

String formatting A nifty way in Python and many other languages to insert content into
template strings.
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Visualizations and Simple Metrics

A rule of thumb for data science deliverables is this: if there isn’t a picture, then you’re doing it
wrong. Typically, a good analytics project starts (after cleaning and understanding the data) with
exploratory visualizations that help you develop hypotheses and get a feel for the data, and it ends
with carefully manicured figures that make the final results visually obvious. The actual number
crunching is hidden in the middle, sometimes almost as an aside. I've had a number of projects
where there was never even any actual machine learning: people needed to know whether there
was signal in the data and which directions were most promising for further work (which would
potentially include machine learning), and graphics showed that more clearly than a number
ever could.

This fact is very underappreciated outside of the data analysis community. Many people think of
data scientists as numerical badasses, working black magic from a command line. But, that’s just
not the way the human brain processes data, generates hypotheses, or develops familiarity with an
area. Pictures are plans A-C for everything except the last stages of statistically validating results.
I've often joked that if humans were able to visualize things in a thousand dimensions, then my job
as a data scientist would consist entirely of generating and looking at scatterplots.

This chapter will take you through several of the most important visualizations. You’ve probably
seen most of this before, but it’s always good to revisit the basics. We will also cover some explora-
tory metrics (such as correlations), which capture, in crude numerical form, some of the patterns
that are clear from a good visual. There are many techniques not covered in this chapter, and you
would do well to learn them. However, my experience is that these core ones will cover most of
your needs. I strongly recommend memorizing the syntax for basic visualizations in your program-
ming language of choice. In exploratory analysis especially, it’s useful to be able to chug through
various ways of visualizing your data without needing to consult a reference on the syntax.

There are, however, still times when we need a number. There are two reasons for this:

o Our eyes can trick us, so it’s important to have a cold hard statistic too.

e Often, you don’t have time to sift through every possible picture, and you need some way to put
a number on it so that the computer can make decisions of some sort automatically (even if the
decision is only which pictures are worth your time to look at).

Besides visualization techniques, this chapter will cover some standard statistical metrics that
strive to capture, in numerical form, some of the meaning that you can get out of a picture.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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5.1 A Note on Python’s Visualization Tools

The main visualization tool for Python is a library called matplotlib. While matplotlib is powerful
and flexible, it is probably the weakest link in Python’s technical stack. The graphs can be a bit
cartoonish, in some ways, the syntax is nonintuitive, and the interactivity (zooming in, etc.) leaves
something to be desired. Most of the appearance issues can be fixed by tweaking a graphic’s con-
figuration, but the default settings are not great.

I'm sticking with matplotlib for this book because it is by far the most standard tool, it is suffi-
cient for most data science (especially if you learn some of the ways you can make the plots look
prettier), and it integrates well with the other libraries. But, there are other libraries out there that
are gaining ground, especially browser-based ones such as Bokeh and Plot.ly.

Example code in this chapter will use Pandas whenever possible. However, Pandas’ visualiza-
tions are a wrapper-around matplotlib, and, sometimes, we have to use matplotlib directly.
Typically, you make an image by calling the plot() method on a Pandas object, and Pandas does all
the image formatting under the hood. Then, you use matplotlib’s pyplot module for things such as
setting the title and the final act of either displaying the image or saving it to a file.

5.2 Example Code

To illustrate the visualization techniques we discuss in this chapter, we will apply them to the
famous Iris dataset, which you may have seen in a statistics book. It describes physical measure-
ments taken of flower specimens, drawn from three different species of iris. There are 150 data
points, 50 from each species, and each data point gives the length and width of the pedals and sepals.

The following code sets the stage for all of the example code in this chapter. It imports the relevant
libraries and creates a DataFrame containing the sample dataset (which comes built-in to
scikit-learn):

import pandas as pd
from matplotlib import pyplot as plt
import sklearn.datasets
def get_iris_df():
ds = sklearn.datasets.load_iris()
df = pd.DataFrame(ds["data"],
columns = ds["feature_names"])
code_species_map = dict(zip(
range(3), ds["target_names®]))
df["species™] = [code_species_map[c]
for c in ds["target™]]
return
df = get_iris_dfQ

5.3 Pie Charts

Pity the poor pie chart. I feel like I never see it used in “serious” applications, almost as if it’s looked
down on as being too simple. But, pie charts are really one of the clearest ways to present data, and
I recommend using them whenever they’re applicable. Technically, everything you get from a pie
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chart you could get equally well from looking at a list of numbers, but making sense of the num-
bers requires cognitive effort and attention. On the other hand, your lower-level neural circuits
make immediate sense of pie charts. This is perhaps the clearest illustration of the guiding princi-
ple behind all visualizations: it’s not about conveying information, but about conveying it in a way
that the human brain will understand and care about.

In my own work, the most mileage I've gotten out of pie charts is when I'm either doing
exploratory analysis of a dataset (How many of our customers are senior citizens? How many
of the page views came from the United States?) or communicating the results of a binary
classifier.

The code to generate a basic pie chart using Pandas is very simple:

sums_by_species = df.groupby("species®).sum()

var = "sepal width (cm)*
sums_by_species[var].plot(kind="pie", fontsize=20)
plt.ylabel(var, horizontalalignment="left")
plt.title("Breakdown for " + var, fontsize=25)
plt.savefig( iris_pie_for_one_variable.jpg")
plt.close()

It will produce this figure:

Breakdown for sepal width (cm)

Setosa

Sepal width (cm)

Versicolor

Virginica

Note that some of the text overlaps. Little things such as this can happen in matplotlib if you use
the default settings, and, in general, you will need to tweak the graph’s configurations if you want
things to look polished.

The previous figure was made by calling the plot() method on a Pandas Series object, whose
index gave the flower species. If we instead call it on a DataFrame with multiple columns, we can
generate a different chart for each column all in the same figure:

sums_by_species = df.groupby("species®).sum()
sums_by_species.plot(kind="pie", subplots=True,
layout=(2,2), legend=False)

plt.title("Total Measurements, by Species™)
plt.savefig("iris_pie_for_each_variable.jpg”)
plt.close()

The code will give us the following.
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5.4 Bar Charts

The same information that is in a pie chart could equally well be conveyed in a bar chart. In this
particular case, it’s actually a much more sensible visualization, since we’re interested in the
relative sizes of the different flowers rather than how big a slice of the “flower pie” they each take
up. The following code

sums_by_species = df.groupby("species®).sum()
var = "sepal width (cm)*
sums_by_ species[var].plot(kind="bar", fontsize=15,
rot=30)
plt.title("Breakdown for " + var, fontsize=20)
plt.savefig(Tiris_bar_for_one_variable._jpg")
plt.close()
sums_by_species = df.groupby("species®).sum()
sums_by_species.plot(

kind="bar", subplots=True, fontsize=12)
plt.suptitle("Total Measurements, by Species®)
plt.savefig("iris_bar_for_each_variable.jpg")
plt.close()

will produce the following visualizations.
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5.5 Histograms

Total measurements, by species
Sepal length (cm)

350 T T

I Sepal length (cm)

[ Sepal width (cm)

Note the following pieces of Python’s plotting syntax that let us tweak the appearance of the figure:

o The “font size” optional argument controls how big a piece of font is. It’s usually too small by default.

e The “rot” optional argument lets us rotate the text.

o We used suptitle() to give the title for the overall figure - Pandas will by default label each subplot
with its corresponding column in the DataFrame being plotted.

There are others available if you are trying to make the figures look really polished.

5.5 Histograms

Histograms are probably my personal favorite visualization tool, partly because it seems like they
usually contain something interesting. There are often distinct bumps in the histogram, which
might correspond to several distinct classes of real-world entities. You can get a sense of whether
there are a few distinct outliers, how much variation is in the population, and so on. A histogram
is almost always a meaningful thing to make; it works for floating values, or integers, and unlike
scatterplots, you only need one numerical field.

The following code will produce histograms for all the columns and put them together in
one figure:

df_plot(kind="hist", subplots=True, layout=(2,2))
plt.suptitle("Iris Histograms®, fontsize=20)
plt.show(Q)
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The final image appears as follows.

Iris histograms
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What jumps out at you is that the petal length has a clearly bimodal distribution, suggesting that
this one species has almost categorically longer petals. We can confirm this by plotting each species
separately, but on the same axes and in different colors:

for spec in df["species”].unique():
forspec = df[df["species”]==spec]
forspec["petal length (cm)"].plot(
kind="hist", alpha=0.4, label=spec)
plt.legend(loc="upper right")
plt.suptitle("Petal Length by Species®)
plt.savefig("iris_hist by spec.-jpg")

It yields the following graph. I know you can’t see the color in the book you’re holding, but sure
enough the peak on the left is only the iris setosa variety.

1 Petal length by species

[ Setosa

12| | — | @ Versicolor||
[ Virginica




5.6 Means, Standard Deviations, Medians, and Quantiles

There are two big problems that occur with histograms. The first one is the number and size of
the bins you use. If the bins are too large, then you can obscure fascinating patterns that occur
within a single bucket. If they are too small, then many of your buckets will contain no points, and
your bell-shaped curve will turn into a bunch of one-unit high bars.

The second problem is that sometimes your data can mar the picture. There might be one bucket
that contains so many points, for example, that every other bucket is squashed down to what looks
like noise. There might, for example, be a massive spike at 0.0, and you have to filter out those
points before you draw the histogram.

The other visual problem is outliers, which can smash the overwhelming majority of the points
to the far left of the graph. In some cases, this is pretty simple to deal with - you have a handful of
points that are massive outliers, and all you need to do is filter out those points. Those points are
aberrations, and it makes sense to remove them before drawing analytical conclusions.

But, in my experience, it’s usually not that simple. Rather than a handful of massive outliers,
there is often a fat tail, representing a very real phenomenon in your data. You can cut part of the
tail out of your dataset for purposes of making the visualization clearer, and you will probably have
to, but in doing so, you will be cutting out very real, meaningful signal. You are not throwing out
a few points that are clearly aberrations; you're picking a more-or-less arbitrary threshold and
looking only at the part of your dataset that falls below it.

5.6 Means, Standard Deviations, Medians, and Quantiles

Sometimes, of course, you must summarize a distribution down to just a few numbers. Usually,
these summaries are based on the assumption that your data’s distribution is bell shaped, and your
goal is to give some idea of where the peak of the bell is and how widely it spreads. Within this
vein, there are two main options:

1) Give the mean and standard deviation. These are the more historically popular metrics, and
they are much easier to compute.

2) Give the median, 25th percentile, and 75th percentile. These metrics are more robust to
pathologies in the data, but they are computationally more expensive (since you must sort
a list).

They can be calculated as follows:

col = df["petal length (cm)"]
Average = col.mean()

Std = col.stdQ)

Median = col.quantile(0.5)
Percentile25 = col.quantile(0.25)
Percentile75 = col.quantile(0.75)

These numbers all still exist even if your data has multiple peaks in the distribution, but their
usual intuitive interpretation breaks down.

The other pathology that deserves some discussion is outliers in the data. This isn’t a huge prob-
lem for medians and quantiles, but it can be game changing with mean and standard deviation.
This is shown in the following figure, where I have simulated data from a log-normal distribution
(log-normals are prone to outliers), made a histogram, and plotted the mean as a dashed vertical
line. The handful of very large outliers have pulled the mean well to the right of the actual hump
in the distribution.
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Outliers make it very hard to give an intuitive interpretation of the mean, but in fact, the situ-
ation is even worse than that. For a real-world distribution, there always is a mean (strictly
speaking, you can define distributions with no mean, but they’re not realistic), and when we
take the average of our data points, we are trying to estimate that mean. But, when there are
massive outliers, just a single data point is likely to dominate the value of the mean and stand-
ard deviation, so much more data is required to even estimate the mean, let alone make
sense of it.
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A common solution is to, before calculating the mean, throw out all data points that are deemed
to be outliers: a common criterion is anything below the 25th percentile or above the 75th percen-
tile. You can do that as follows:

col = df["petal length (cm)"]

Perc25 = col.quantile(0.25)

Perc75 = col.quantile(0.75)

Clean_Avg = col[(col>Perc25)&(col<Perc75)].-mean()

This workaround corresponds to the idea that these outliers are pathological data points, which
really should be discarded if we'’re trying to understand the underlying phenomena. If we’re
dealing with measurements from a physical sensor, for example, they might have been caused by
a malfunction of our hardware. In other situations though, such as the amount of money in
a transaction, the outliers are extremely important data points that can’t be discarded.

The median is not perfect either. In the case of outlier data, or even just a lopsided bell curve, it moves
away from the hump in the bell curve. The median also does not change at all if you perturb the outlier
values. However, it still keeps its user-friendly meaning: half the values are greater and half are less.

Personally, I generally use median if I want to know what’s “typical,” but I use mean if the aver-
age behavior is really what I care about from a business perspective.

5.7 Boxplots

Boxplots are a convenient way to summarize a dataset by showing the median, quantiles, and min/
max values for each of the variables. The following code snippet makes a boxplot of the sepal
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length for each of the species in the iris dataset. The boxplot makes it glaringly obvious that the
three species are different from one another.

col = "sepal length (cm)*;

df["ind"] = pd.Series(df.index).apply(lambda i: i% 50)
df._pivot("ind", "species”)[col].plot(kind="box")
plt.show()
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An advantage of boxplots is that major outliers are very visually obvious. Here is a boxplot of the
data we put in a histogram in the previous section:
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Note that the upper quantile is much farther from the median compared to the lower quantile,
and the effect is even more pronounced for the min and max values. If you just use the histogram,
outliers can show up as a deceptively slight increase in the thickness of the tails.
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5.8 Scatterplots

I've often joked that if humans could see things in an arbitrary number of dimensions, then all of
my data science work would consist of making and interpreting scatterplots. In my experience,
they are one of the simplest but most powerful ways to visualize relationships within a dataset, so
they’re a great first step when you’re finding your feet with a new project.

A simple scatterplot is very easy to generate in Python:

df.plot(kind="'scatter",

x="sepal length (cm)", y="sepal width (cm)')
plt.title('Length vs Width™)

plt.show()
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Besides the basic plotting, scatterplots can have several other bells and whistles, which allow
more than just the two dimensions to be packed in. They include the following:

o Color coding. Often data points that fall into different categories are given different colors. You
can also use color in a continuous way, such as different mixtures of red and blue.

o Size. Changing the size of data points communicates another dimension of information, similarly to
color coding. It also has the often-desirable ability to draw attention disproportionately to some
points instead of others.

e Opacity. In scatterplots and other visualizations, it is often useful to make things partially
transparent in case they overlap with other parts of the visualization.

These parameters are often useful when doing exploratory analysis of a dataset, but they can be
especially compelling when you’re putting together final visualizations for use in final reports and
presentations.

If you want to control the formatting of a plot in Python, you can do it by passing optional
arguments into the scatter() function. The ones of most interest are as follows:

e c. A string indicating the color to make the dots. You can also pass in a sequence of such strings
if the dots are to be of different colors.
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o s. The size that each point should be, in pixels. Alternatively, you can pass in a sequence of sizes.
e Marker. A string indicating what marker should be used in the plot.
o Alpha. The transparency.

8.5 T T T T

T
-+ . Setosa
8.0 A | **+ Versicolor [
4 4 a A | aaa Virginica

75

70

Sepal width (cm)
>

15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Sepal length (cm)

For example, the following script will produce the figure indicated:

plt.close()
colors = ["r", "g", "b"]
markers= [".", ">, "~"]
fig, ax = plt_subplots(1, 1)
for i, spec in enumerate(df["species™].unique() ):
ddf = df[df["species™]==spec]
ddf._plot(kind="'scatter",
x=""sepal width (cm)", y="sepal length (cm)",
alpha=0.5, s=10*(i+l1l), ax=ax,
color=colors [i], marker=markers [i], label=spec)
plt.legend()
plt.show()

It is immediately clear from the picture that the iris setosa flowers stand apart as having sepals
that are markedly longer and narrower.

5.9 Scatterplots with Logarithmic Axes

A key variation on scatterplots is using logarithmic axes. In many applications, the numbers
being plotted are all positive (or at least nonnegative), but they can vary by orders of magni-
tude. This might happen if you are looking at traffic to a collection of websites, where some
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sites receive vastly more views than others or personal income. In a scatterplot of data such as this,
all but the largest data points will be squashed to one side, making the plot essentially unreadable.

Here is a good example using a dataset from scikit-learn. I am making a scatterplot of the crime
rate in a neighborhood versus the median home value:

import pandas as pd

import sklearn.datasets as ds

import matplotlib_pyplot as plt

# Make Pandas dataframe

bs = ds.load_boston()

df = pd.DataFrame(bs.data, columns=bs.feature_ names)
df["MEDV"] = bs.target

# Normal Scatterplot
df.plot(x="CRIM",y="MEDV" ,kind="scatter")
plt.title("Crime rate on normal axis®)
plt.show(Q)

Note how almost all of the data points are squashed to the left, making the graph hard to read for
all but the most high-crime neighborhoods.
Instead, we could have made the x-axis logarithmic, as follows:

df.plot(x="CRIM",y="MEDV",kind="scatter”, logx=True)
plt.title("Crime rate on logarithmic axis®)
plt_show()

The two code snippets will create the following scatterplots.
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Crime rate on logarithmic axis
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In the second plot, the tick marks on the x-axis are irregular. They are all equally spaced in
the figure. However, they correspond to small changes in numbers on the left but large num-
bers on the right. This has the effect of taking our original graph and widening out the left-hand
part while we shorten out the right-hand part. With this rescaling, we can see that there is a
clear inverse relationship between crime rate and median home value that exists across all
levels of crime.

Mathematically, we make a logarithmic plot by taking the log of the raw data and using that to
tell where to place the points. The caveat to this is that logarithmic plots only work when all values
are greater than 0. In many situations, for example, if you are counting events, the data can be 0
but is guaranteed to never be negative. In this case, it’s common to just add 1 to the data and plot
that instead. But, in situations where the data can be arbitrarily negative, logarithmic plots are not
appropriate.

5.10 Scatter Matrices

The biggest problem with scatterplots is that we often have many different variables to compare,
and human visualization abilities top out at three dimensions. A partial solution to this is to do a
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scatterplot comparing every pair of features, arranging them in what’s sometimes called a “scatter
matrix” as shown here:
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Note that along the diagonal, we have a histogram of each feature, rather than a scatterplot of the
feature versus itself (which would just be a straight line).
The code that generated that visual is

plt.close()

from pandas.tools.plotting import scatter_matrix
scatter_matrix(df)

plt.show()

5.11 Heatmaps

Another problem with scatterplots is that they can become visually cluttered if you have a lot
of data points. You can ameliorate the problem by reducing the size of the data points (maybe
a good idea anyway — default point sizes are often annoyingly big), but that only goes so far. It’s
an especially useless workaround if many of your points are exactly on top of each other, which
can easily happen if your data is integers rather than floats. Eventually, your scatterplot becomes
just a big mass of overlapping points with no background visible, and there is no way to tell
which areas have more or fewer points. It is possible to use the alpha parameter to adjust the
transparency of the points, so that they become darker when there is more overlap, but this
becomes very clunky.

In that situation, we don’t actually care about the actual points themselves. We care about the
density of points in the different regions, and the correct way to visualize that is with a
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heatmap, which color-codes different regions of the plane by their relative density of points. In some
applications (including Pandas), those regions are small hexagons, and they are called “hexbin”

heatmaps.
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The code for generating a heatmap, along with the resulting figure, is

plt.close()
df.plot(kind="hexbin",

x="sepal width (cm)", y="sepal length (cm)')

plt.show()

5.12 Correlations
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If you hear the term “correlation” used casually, it is probably what’s called “Pearson” correlation.
More generally, a correlation is a metric that measures how closely tied two variables X and Y are,

and there are two main types you’ll see:

1) Pearson correlation. This is the normal one, and it measures how accurate it is to say that

Y=mx+b

A correlation near 1 means that, for some b and some m > 0, this equation is a good approximation.
If the correlation is near —1, then it means the same thing, except m is negative. Note that
assuming a linear relationship is very restrictive. If Y = Sqrt[X], they still move up/down

together exactly in sync, but they will have a correlation less than 1.
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2) Ordinal correlations. This makes no assumption about X and Y having a linear relationship.
It just models their relationship as being monotonic: if you sort your data points by their X
value (say, somebody’s height), is that more or less the same order you get from sorting them by
their Y value (say, somebody’s weight)? Do the taller people tend to be the heavier ones? There
are two main types of ordinal correlation that you’ll see: Spearman and Kendall.

The correlations in Pandas can be simply calculated as follows:

>>> df["'sepal width (cm)™].corr (

df["sepal length (cm)"]) # Pearson corr
-0.10936924995064937
>>> df["'sepal width (cm)"].corr (

df["sepal length (cm)'"], method="pearson')
-0.10936924995064937
>>> df["'sepal width (cm)"].corr (

df["sepal length (cm)"], method="spearman'™)
-0.15945651848582867
>>> df["sepal width (cm)™].corr (

df["sepal length (cm)"™], method="spearman')
-0.072111919839430924

None of the correlations measure how related two variables are. If Y = sin(X), for example, and
X covers a wide range, then, in some cases, they go up together and, in other cases, they go down
and will have a correlation near 0. The best way to try and correct this is to plot their relationship.

The two ordinal correlations are similar to each other, and usually either will work. In general
though, Kendall correlation is more robust to aberrant data points, for example, if the tallest per-
son in a room was also the least heavy. Conversely, Kendall is very sensitive to small changes in
ordering that are often inconsequential for a real application: if the tallest person in the room is
only the second heaviest, Kendall will punish that deviation much more severely compared to
Spearman. If T have to choose, I usually use Spearman.

I periodically get asked about how strong a correlation needs to be to be “strong enough.” The
answer to this depends entirely on context, and I can’t give you any absolute rules. Personally, I
start to care when the absolute value of the correlation gets above 0.4. Around 0.7, we’re starting to
talk about using one variable as a defensible proxy for the other - there is a rigorous sense in which
“half of the variation” of the one variable can be explained by the other at this level of correlation.
If the correlation is over 0.95 I figure that one variable is basically a synonym for the other, and
there was probably some weirdness in the data that caused this.

Finally, you've probably heard a lot about how “correlation is not causation.” The gold standard
in science is controlled experiments, where we forcibly change one (and only one) experimental
parameter and then see how other things change. Reliable controlled experiments are, strictly
speaking, the only safe way to conclude that one thing causes another. But, especially in areas such
as sociology or economics, this is usually impossible, and if all we know is that two things are cor-
related in the real world, we cannot rigorously conclude anything about causality.

If thing A and thing B are highly correlated, then humans almost have a psychological compul-
sion to say that A causes B (or vice versa — whichever one sounds more plausible). Usually, neither
isreally true, and I would love for my personal contribution to the lore of statistics to be the following:

Cady’s Rule of Thumb: If A and B are correlated, then neither one is causing the other.
Instead, there is some factor C causing them both.
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If you observe that A and B are correlated, your knee-jerk reaction should not be to look for a
narrative about how they are causally related. Instead, you should reflexively brainstorm what
third factor might cause both of them. This is a great way to generate hypotheses when you’re
doing exploratory analysis. In the statistics literature, factor C is called a “confounding variable”.

Of course, often, there is still causation - we just need to be very careful about inferring it.
A somewhat touchy example of this is smoking and lung cancer. All we really know is that smok-
ing is correlated with getting cancer down the road. From a purely statistical perspective, it’s pos-
sible that some people have an underlying lung condition that makes them susceptible to cancer
and also makes them prone to nicotine addiction. In this case, we must leverage our knowledge of
biology and medicine, which gives compelling mechanisms for how a causal relationship would
work. It’s not rigorous statistical certainty, but we can still reach a scientific conclusion. This is one
of my favorite examples of how rigorous math can dovetail with common sense and domain
expertise.

5.13 Anscombe’s Quartet and the Limits of Numbers

I've mentioned a number of times the limits of summary metrics and the fact that important fea-
tures of a dataset can be masked by them. There is a famous made-up dataset called Anscombe’s
quartet that illustrates this fact.

Anscombe’s quartet
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The following plot shows Anscombe’s four datasets as scatterplots, along with their lines of
best fit. In each of the four datasets, x and y have exactly the same average and standard
deviation. Furthermore, there is the same correlation between x and y, and the lines of best fit
are identical:
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The first two plots show very different relationship between x and y: linear but noisy, and non-
linear by very clean. The other plots show the massive effect that outliers can have, either to throw
off your best-fit parameters or to suggest that there is a “fit” when there really isn’t one.

5.14 Time Series

Time series data is one of the most important data types in the world, capturing everything from
stock prices, to website traffic, to blood glucose levels. As sensors become more ubiquitous, this
importance will only grow. So, it’s perhaps surprising that time series analysis is one of the things
that data scientists tend to be bad at: there is a rich set of time series techniques that are common
practice in engineering, but that (largely for historical reasons, I think) just haven’t really perco-
lated into the data science community. I'll talk more about the analysis of time series data in a later
chapter, but for now, I just want to go over a few points about visualization techniques.

The first and most important thing is just how critical visualization is. Anscombe’s quartet shows
that relying on summary statistics can be dangerous, but reasonable bell curves are common
enough in the real world that you can often get away with it. With time series though, there is
absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike fol-
lowed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that
have to be filtered out. A good way to look at it is this: means and standard deviations are based on
the naive assumption that data follows pretty bell curves, but there is no corresponding “default”
assumption for time series data (at least, not one that works well with any frequency), so you
always have to look at the data to get a sense of what’s normal.

A simple example of a time series plot in Python is here. Unfortunately, there isn’t a good exam-
ple of time series data built-in to scikit-learn, so I'm pulling one in from another library called
statsmodels, which describes measurements of atmospheric CO, levels over many years.

import statsmodels.api as sm

dta = sm.datasets.co2.load_pandas() .data
dta.plot()

plt.title("'CO2 Levels™)
plt.ylabel(""Parts per million™)
plt.show()
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In this dataset, the DataFrame’s index is set to a datetime type. In that case, Pandas is smart
enough to do some very user-friendly formatting on the x-axis.

We can see in the plot that CO, fluctuates on a yearly cycle and that it increases overall across
time. But, there’s no way we would have known to expect that a priori, unless we are already famil-
iar with the science of CO,. Image data is the same way; there is a huge amount of information and
no a priori knowledge of how to extract features out of it, but the patterns are glaringly obvious to
the human eye.

Along the lines of figuring out what patterns to expect, when you are exploring time series data,
it is immensely useful to be able to zoom in and out. I have often zoomed in on a sharp spike only
to find that it’s actually a short-lived plateau. Or, what looked like an immediate step down turned
into an exponential decay when I looked closer.

In some cases, you might want to plot not just the data itself but the log of the data (or, alternatively,
plot it on a logarithmic scale). This makes sense with something such as the behavior of the price of a
stock over a long period of time: a 10% uptick in the price will look equally impressive — which is good,
since it’s equally relevant to investment returns — whether the starting price was $1 or $20.

A good example is this code, which plots the price of Google’s stock since 2000 on normal and
logarithmic axes:

import urllib

import matplotlib._pyplot as plt

import pandas as pd

import numpy as np

# Get raw CSV data from the web

URL = ("http://ichart.finance.yahoo.com/" +
""table.csv?s=G00G&amp ;c=2000"")

dat = urllib.urlopen(URL).read()

open("foo.csv", "w") .write(dat)

# Make DataFrame, w timestamp as the index

df = pd.read_csv("foo.csv™)

df.index = df["Date"].astype("datetime64~)

df["LogClose"] = np.log(df["Close"])

df["Close"].plot()

plt.title("Normal Axis'™)

plt.show(Q)

df["Close"].plot(logy=True)

plt.title("Logarithmic Axis"™)

plt.show()

From the normal plot, it looks like Google had a massive surge in both 2005 and 2013. Indeed, it
did, in absolute dollar terms. But, the logarithmic plot makes it clear that the surge in 2005 was
much more significant, because it was a much larger increase proportionally.

Another common situation is that you have many different time series and you are looking for
some kind of shared pattern. Plotting them all on the same chart (possibly after normalizing
them, so they’re all on a similar scale) is a useful way to do this. If there are so many that this
becomes cluttered, what you can do is plot the median and quantiles; this makes it hard to see
what is normal for an individual series but gives a good sense of how they move as a whole.
Alternatively, you can plot the quantiles and overlay them with the plots of a manageably small
sample of real-time series.

Also, in many applications, it makes sense to look not just at the time series data itself but at
transformations of it into the frequency domain. If you’re measuring heart rate, temperature across
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days, or anything else where there is a reasonable expectation of periodicity, it can be immensely
helpful to take a Fourier transform (see the later chapter if you’re not familiar with these) and
break the signal down into its component frequencies.

Also, you should still keep tools such as histograms in mind. Especially, in data that is so noisy,
it’s hard to make sense of visually, and a histogram of the values can give you a useful summary of
a time period. Bear in mind that for many applications, the visualizations are only a means to an
end, an inspiration for how we can extract meaningful features to plug into a machine learning
model. Some such as the median value over the time period are very reasonable features.
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5.15 Further Reading

1 Janert, P, Data Analysis with Open Source Tools, 2010, O’Reilly Media, Newton, MA.
2 Pandas: Python Data Analysis Library, 2016, viewed 7 August 2016, http://pandas.pydata.org/.
3 Matplotlib 1.5.1 Documentation, 2016, viewed 7 August 2016, http://matplotlib.org/.

5.16 Glossary

Kendall correlation An ordinal correlation metric that is reasonably robust to gross outliers
but highly sensitive to tiny variations in rank.

Logarithmic plot A plot where one or both axes are scaled to the logarithm of the value they
portray. This makes it easier to visualize very small and very large numbers on a single axis.

Nonparametric correlation A correlation metric that doesn’t tacitly assume a specific form
for the relationship between two variables. Kendall and Spearman correlations are examples,
since they only assume that the relationship is monotonic.

Pearson correlation The usual definition of correlation. Technically,
Corr[X,Y]=Cov|[X,Y]/(Std[X] * Std[Y]).

Quantile The Xth quantile is the value v such that a fraction X of your data points are <v, and a
fraction (1 —X) are equal to v.

Spearman correlation An ordinal correlation metric that is robust to small changes in
ordering but can get thrown off badly by outliers.
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Overview: Machine Learning and Artificial Intelligence

Machine learning and artificial intelligence (ML and AI) obviously play a large role in data science,
and increasingly in society in general. But, they are large topics with a lot of moving parts, and it’s
easy to get lost in the weeds. This brief chapter zooms out and gives a high-level, conceptual over-
view. It discusses the relationship between ML and Al, their relationships with other fields like
statistics, the overarching paradigms that pervade ML and AI, and how the professional landscape
is evolving in response to the latest technical developments. In subsequent chapters, I will get into
the technical details; the goal here is to give you the big picture that will frame future discussions.

6.1 Historical Context

“Machine learning” was partly born out of the initial failures of the AI movement in the 1960s,
1970s, and 1980s. For a long time, people were very focused on the idea that computers could be
made to think, and it was widely expected that thinking machines were only a few years away.
There is an anecdote that Marvin Minsky, one of the founders of AI, once assigned a grad student
the task of working out computer vision over the course of a summer. People were thinking about
the human brain as a big logic engine, and a lot of the focus was on getting computers to mimic the
logical processing that humans do.

Al failed (at least relative to the hype it had generated), giving rise to an “Al winter” in which
funding was low and pessimism was high. It’s partly for this reason that the term “artificial intel-
ligence” declined in favor of “machine learning.”

The focus shifted away from mimicking human intelligence and toward using computers to do
tasks that historically a human has to do, with no pretense of doing them in a human-like way
under the hood. This includes things such as recognizing whether there is a bird in a photograph,
telling whether an e-mail is spam, or identifying that an “interesting event” has occurred in a time
series. Machine learning (“ML”) was built up on using computers as proxies for human judgment
in specific, limited situations. Of course, the techniques thus developed can be applied to many
areas, even ones where human judgment is never applied in practice, so ML has matured into a
standard toolset for any data scientist.

The kinds of tools being used shifted as well. Al traditionally took a rule-based approach that
used logical inference to reach conclusions, based on the idea that the human mind essentially
reasons from first principles when solving a problem. ML is less about logic and more about
pattern matching: it uses training data to learn heuristics, measure how effective they are, and then
apply those heuristics to make probabilistic predictions about future situations.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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More recently, advancements in deep learning have breathed life and enthusiasm back into
Al With the advent of Large Language Models like ChatGPT these tools are flexible and general
enough that the term “artificial intelligence” is more fitting. On the other hand, they bear no
resemblance to the logic engines of the days of old. Instead, they are based on the heuristic, pattern-
matching approach of ML - just carried to the nth degree.

As the terms are used today, ML and AI are orthogonal concepts. ML refers to the technology
itself: the mathematical models that embody patterns, and the algorithms that extract those pat-
terns from data. Al refers to a subset of the applications: software tools that can ape the behavior
of a human being.

6.2 The Central Paradigm: Learning a Function from Example

There are a lot of different parts to ML, but a large fraction of it falls under the following concep-
tual umbrella: there is a function F defined over some domain. We don’t know F, but we do have
examples of it evaluated at different points in the domain. Or at least we have approximations of
the function evaluated at different points. Our goal is to learn the function from those data, so that
we can approximately evaluate it at other points in the domain.

As a simple example, say we are trying to predict whether somebody will click an ad, given what
we know about them. In this case, F maps the totality of our information about a person onto their
probability of clicking. The data we have is many individual people who were shown the ad, and
whether they clicked or not (this 0/1 is taken as an approximation of the underlying probability).
Any model we train will ultimately be a function that takes in the information about a customer
and outputs a prediction of their likelihood of clicking.

A dramatically more complicated example is to predict the next word in a piece of text from the
words preceding it. F takes in the previous 100 words (or as many as are available) and outputs
what the next word will be. A model that approximates F well falls solidly under the category of Al,
as it has learned to ape a large and complicated area of human behavior. But, conceptually it’s also
just learning a function: a corpus of text can be broken up into 100-word lengths that are inputs to
the function, and whichever word came next is the output.

This paradigm highlights a connection between ML and the techniques of classical statistics.
Fitting a line into just another, quite simple version of fitting a function to data: a line is a very
simple form of function, and we pick the parameters of the line to best match up with the data.
There is ultimately no hard line between this branch of statistics and ML - the difference in prac-
tice is in the type and complexity of the models used.

Fundamental concepts like overfitting are made clear in this paradigm. The goal is to learn F
itself, independent of the data we have available. Any function we learn that matches F perfectly
at the few points for which we have data, but performs poorly on the rest of the domain, will do a
poor job of approximating F overall.

With choosing an ad to show somebody, the meaning of F is pretty obvious; predicting the prob-
ability of a click is really the only natural way to do it. But, especially when we get into deep learn-
ing we will see this paradigm pushed to its limit. The question of exactly what F is supposed to do
will become fundamental, and the approximations we make to F will become building blocks in
larger systems. You will see a wide variety of ways to contrive a training dataset such that F does
something useful.

Not everything fits this paradigm though. Clustering is maybe the best example: identifying that
your data falls into several natural clusters doesn’t really fall under the umbrella of learning a function.



6.4 Supervised, Unsupervised, and In-Between

In my experience, each ML technique should be scrutinized to see how well, and, in what ways, it fits
into this function-learning paradigm. It’s a powerful way to see how everything is connected.

6.3 Machine Learning Data: Vectors and Feature Extraction

For all of its flexibility and wide variety of applications, most ML is exceptionally rigid in the sort
of data that it can actually operate on. This is because whatever model we ultimately train to
approximate the function F will generally be constructed of mathematical building blocks, and
most mathematical techniques operate on what’s called a “vector.” A vector is a fancy name for a
list of numbers of a fixed length. If you are looking at vector of length d, then every vector corre-
sponds to a point in d-dimensional space. This opens up the entire toolkit of geometry as fodder for
ML algorithms: distances between points, lines and planes, spheres, lower-dimensional manifolds
embedded in higher-dimensional spaces, you name it. These mathematical ideas are not just build-
ing blocks for numerical algorithms; they are also a conceptual framework for reasoning about the
data and the algorithms that operate on it. All standard ML models are designed to take in vectors
of one length as input and to output vectors of another length. Frequently the outputted vectors are
of length 1, which can be used to represent something like a probability, but often in complicated
models like deep learning, the output vector is also of length >1.

You might protest that many of the most important data types are not numbers. States in the
United States and yes/no questions, to name a couple. That’s true, but these data are easily
expressed as vectors. Booleans like a yes/no question are represented as a length-1 vector, that is, 1
for yes and 0 for no. A state in the United States is what’s called a “categorical” variable, where it
takes on one of a finite set of values. The general practice is to express it as a length-50 vector, with
a predetermined mapping between states and indices. The number corresponding to a given state
is set to one, and the others are set to 0 in what’s called a “one hot encoding.” Once binary or cat-
egorical data have been vectorized, they become equal players with data that are a priori numeri-
cal. Something like a phone number, on the other hand, will frequently play no role in ML.

In an ML project, most of a data scientist’s time is usually spent not in the ML modeling itself,
but in getting data from its original form into vectors. This crucial stage is often termed “feature
extraction.” It is where domain knowledge comes into play so that the numbers in your vector are
meaningful, relevant to the particular problem at hand, and suitably flexible.

Feature extraction is typically the most important part of a project. Unfortunately, it is also the
part about which I can say the least; every dataset and business problem is different, and handling
all of their ins and outs must be tailored to the problem at hand. In the next chapter, I will give you
some pointers learned from experience, but after that you’re on your own.

6.4 Supervised, Unsupervised, and In-Between

There are two main types of ML, called supervised and unsupervised.

Supervised learning is the simplest version of the function-learning paradigm I described earlier:
your training data consists of some data points and a label or target value associated with them.
The goal of the modeling is to learn the function F that maps the input vectors to their appropriate
target values.

In unsupervised learning, there is just raw data, without any particular thing that is supposed to
be predicted. Unsupervised algorithms are used for finding patterns in the data in general, teasing
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apart its underlying structure. Clustering algorithms, which try to break a dataset down into “natu-
ral” clusters, are a prototypical example of unsupervised learning.

Supervised learning is more common in real applications. Especially, when a model is to be run
in production, business situations usually dictate a specific thing that you are trying to predict and
a decision to be made based on that prediction. However, unsupervised learning algorithms are
often used as a preprocessing step for extracting meaningful features from a data point, with those
features ultimately getting used for the supervised learning. Especially, in situations where the raw
data is high dimensional and, hence, prone to over-fitting, unsupervised learning can give you a
powerful way to reduce the dimensionality of your training data.

Semi-supervised learning describes a situation when you have many data points, but only labels
for some of them. It typically involves using the entirety of the dataset to understand the underly-
ing structure of the data, and, hence, to project it into a lower-dimensional representation. In that
lower-dimensional representation, the data points for which we have labels will (hopefully) be
sufficient to learn F well. Alternatively, “active learning” involves flagging low-confidence unla-
beled points for manual labeling, so that you can bootstrap up a large and diverse enough set of
labeled data to train a powerful model.

Some of the most powerful unsupervised learning algorithms function by concocting a super-
vised learning problem, a process called “self-supervised learning.” I already mentioned one
important example of this: predicting the next word in a text based on the preceding words. A
model that does a good job of this carries internal state that in some way captures the semantic
meaning of the text to that point, beyond just the words themselves. The actual prediction of the
next word is rarely useful, but the internal state that facilitates the prediction can then be an input
to any supervised or un-supervised learning problem.

6.5 Training Data, Testing Data, and the Great
Boogeyman of Overfitting

By far, the greatest headache in ML models is the problem of overfitting. This means that your
results look great for the data you trained them on, but they don’t generalize to other data in the
future. Essentially, you have captured your raw training data, but grossly misrepresented F for
other data points. As an extreme case, imagine that your dataset of medical patients included their
names and your trained classifier just remembered the names of everybody who had cancer and
made predictions based on that. It would give perfect predictions for everybody it was trained on,
but would be useless for assessing anybody else’s cancer risk.

The solution is to train on some of your data and assess performance on other data. This can be
done in a number of ways:

e Most basically, you randomly divide your data points between training and testing. And hon-
estly, this crudely simple approach is often good enough in practice. Randomness is critically
important here, so as to avoid unintentional sources of bias (such as taking the first half of your
data file as training data, when those rows might have been collected earlier).

o A fancier method that works specifically for supervised learning is called k-fold cross-validation.
The goal here isn’t to measure the performance of a particular, fitted classifier, but rather a fam-
ily of classifiers. Cross-validation is done this way:

- Divide the data randomly into k partitions.

- Train a classifier on all but one partition, and test its performance on the partition that was left out.

- Repeat, but choosing a different partition to leave out and test on. Continue for all the parti-
tions, so that you have k different trained classifiers and k performance metrics for them.
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— Take the average of all the metrics. This is the best estimate of the “true” performance of this
family of classifiers when it is trained on this kind of data.

o If you're being very rigorous about your statistics, it is common to divide your data into a train-
ing set, a testing set, and a validation set. You only get to examine the validation set at the very
end to test your hypotheses and the performance of your model. This is done to avoid a very
subtle form of statistical bias. Let’s say, you only had testing/training data, and you had several
ML models to choose from. In this case, you would pick the one that performed best when you
trained it on the one dataset and tested it on the other. But, this is a weak form of training on the
test data, because the test data influences your choice of model. The validation data then lets you
put your trained model to the real test.

e An under-appreciated tool in data science is “temporal validation.” Oftentimes, there’s a situ-
ation where a model is retrained periodically, say every week, incorporating the new data
acquired in the previous week. In these cases, it makes sense to train on all the data up
through week N and then test it on all the data for week N + 1. The reasons why people click
on ads might have changed a little bit over the course of that week, making the model slightly
outdated, so testing on data from the same time period can artificially inflate your perfor-
mance. A model running in production might make a mistake because the model was imper-
fect, but it could also make a mistake because the world has changed since it was trained;
temporal validation tries to account for both of these in giving a more realistic estimate of the
error rate.

In any of these cases though, the model that finally gets deployed into production will typically be
trained on all available data. These validation techniques are used for selecting the type of model
to train and estimating what its error rate might be - you want your actual model to perform as
well as possible, so you gave it as much good data as you can.

6.6 Reinforcement Learning

“Reinforcement learning” is a topic in ML that has not fit cleanly in our discussion so far but is
sometimes important for models that run live in production.

Frequently data scientists study a static dataset and train a model to it. For example, there
might be a bunch of visitors to a website, whether they were shown ad A or B, and whether they
clicked on it. When a new visitor comes to the site you predict their likelihood of clicking A and
their likelihood of clicking B, then show them whichever ad had the greatest chance of being
clicked.

In reinforcement learning, we are able to decide in real time which ad to a show a person, and
learn in real time from whether or not they clicked on it. Essentially, we can run experiments in
real time to see what types of visitors click which ad; reinforcement learning provides ways to bal-
ance this need to experiment against the desire to (usually) show people the ad they are most likely
to click on. Typically, a reinforcement learning algorithm will start off by making what amount to
random guesses, but then gradually converge to mostly just milking whichever guesses it deems to
be best.

In a sense, reinforcement learning is one layer of abstraction about the function-learning para-
digm that I described. You can train any model to the data that has been gathered up to a point in
time, and, in principle, all the considerations about testing/training data and the like hold as you
try to estimate the function F. Reinforcement learning then allows you to choose future inputs to
F that will feed into the next iteration of training.
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6.7 ML Models as Building Blocks for Al Systems

Traditionally, data scientists focused on training ML models (usually classifiers) and deploying
them in situations that resembled the training data. The training data is patients’ medical records
and the results of a recent cancer biopsy — the goal is to use other patients’ medical records to flag
people at risk for cancer. But, in recent years, especially with the advent of sophisticated Als like
ChatGPT, there has been a tendency to train and use models in nonstandard ways as components
of a larger system. I will talk more about this trend later in chapters on deep learning, but I want
to at least give you a flavor of it here.

I mentioned the example of predicting the next word in a piece of prose. Say you start with a seed
piece of text that is 100 words long, and then use your model’s prediction to generate the 101th
word. Then, plug words 1-101 back into the model to get word 102, and so on. What you’ve got
now isn’t a word predictor, but an automatic writer of good-sounding prose. Hack it a little bit and
you can create prose about any topic — maybe by modifying the first 100 words, or occasionally
overwriting one of the predicted word in such a way as to keep things on track.

ChatGPT itself relies on what’s called a “diffusion model.” In this case, the core ML model isn’t
trained to classify anything - it is trained to take in a corrupted version of the ultimate output and
return a slightly less corrupted version. At runtime, the model is fed random noise, and then its out-
put is repeatedly fed back into the model until it converges on something that is actually reasonable.
Think of a book editor who will take anything you’ve written and improve on it slightly; if you give
them a string of random letters, they will help you the fashion words, if you give them random words
they’ll help you make sentences, and if you give them a rough draft novel they’ll make it better.

There are myriad other ways that supervised learning models get hacked and modified to create
user-facing AI applications. But, this is just discussing what you do with the models once they are
trained. The training itself will rely on an array of simpler models that are used to clean the train-
ing data, generate labels where appropriate, filter out material that is sexually explicit or that con-
tains sensitive information about individuals, etc. Creating each of these models is its own
sub-project.

Simple ML models are frequently components of larger Al systems, but the inverse is some-
times partly true as well. The greatest weakness of large models is that it takes a lot of training
data to tune their many parameters. But it is sometimes possible to take a complicated model -
that has been previously trained on a dataset that is larger than yours, but broadly similar - and
train only a portion of its parameters on your data. This process, which is dubbed “fine tuning,”
has the effect of leveraging the model’s powerful feature extraction and applying it to your par-
ticular data and problem.

Fancy systems can also be used to perform extremely sophisticated feature extractions — often
called “embeddings” — where a piece of raw data (say an image or a piece of text) is turned into a
high-dimensional vector. The neural network that generates the embeddings is trained on a mas-
sive dataset, but once it’s trained the embeddings can be used as extracted features for training a
much smaller model.

6.8 ML Engineering as a New Job Role

You might be getting a sinking feeling as you read about the cutting-edge advancements in Al Is
this really the sort of thing that a typical data scientist is expected to work on?
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The answer is no. Most data scientists still traffic primarily in traditional ML models. And that’s
appropriate; it is rare to have access to the sorts of massive datasets that large-scale deep learning
requires.

In recent years, a new job title has started showing up: ML engineer. ML engineering is largely
an outgrowth of data science, which has come into being along with the ascendancy of deep learn-
ing. It focuses less on the BI aspects of data science, and dramatically less on the requirements to
turn business needs into well-formulated analytics problems. Instead, ML engineering focuses on
developing and training extremely high-performing ML models and Al systems, then deploying
them at scale. In my mind, it is a specialty within the larger category of software engineering.

I have discussed the idea of data science becoming a skillset rather than a profession. And to be
sure, ML engineers are likely to have that skillset. But, ML engineering is not a replacement for
data science - it is at most an outgrowth, applicable primarily to a modest number of large compa-
nies and datasets. The majority of data scientists — both the self-styled data scientists and the citi-
zen data scientists for whom it isn’t their main job - have little need of massive-scale models.

Bear in mind that highly complex models usually perform worse than simple ones unless there is
enough training data. Fine tuning might be an option if your dataset resembles something for which
there is a large pretrained model, but that case is the exception rather than the rule in my experience.

Once you have the core skills of a data scientist, it is possible to transition into ML engineering.
It’s a natural move if you find that you love tuning models and writing production code more than
formulating problems and hacking one-off scripts. But, the majority of the data science work (and
for my two cents, most of the really exciting discoveries) is to be found elsewhere.

6.9 Further Reading

1 Bishop, C, Pattern Recognition and Machine Learning, 2007, Springer, New York, NY.
2 Scikit-learn 0.171.1 documentation, 2016, http://scikit-learn.org/stable/index.html, viewed 7 August
2016, The Python Software Foundation.

6.10 Glossary

Artificial intelligence Trying to mimic human-like reasoning and behavior in a computer
program. Artificial intelligence fell from grace when the fields failed to live up to its hype.
Machine learning solves a lot of similar problems, but it does so using statistical techniques
rather than rule-based ones, and it usually makes no pretense of mimicking the human brain.

Machine learning A catchall term for several techniques that operate on tabular data.

Overfitting A machine-learning model becoming so specially tuned to its exact input data that
it fails to generalize to other, similar data.

Self-Supervised learning Training a supervised model to predict one part of your data form
another part. For example, predicting the next word in a text based on the preceding words.
Or predicting the left-hand side of an image based on the right-hand side.

Semi-supervised learning Machine learning where there are no external “target variables” to
predict, so they are extracted from the training data. For example, in a corpus of text, you
might train a classifier to predict the next word based on the previous 20 words. Or you might
try to predict the left-hand side of an image based on the right-hand side. In spirit it is
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unsupervised learning — you have a corpus of data with no labels and are trying to identify
the patterns latent in it — but you do it by concocting a supervised learning problem.

Supervised learning Machine learning where there is a specific target variable you are trying
to predict per data point.

Tabular data A dataset that is arranged in rows and numerical columns. Each row is associated
with some entity, and each column gives some feature about all the entities.

Temporal validation Training a model on data up to a certain time, and testing its performance
on subsequent data. This gives performance metrics that reflect both the imperfections of the
model itself and the degree to which the model will have gone a little stale in the time since
the training data was gathered.

Testing data Data that is used to assess how well a machine-learning model performs. It should
not have been involved in the creation of that model.

Training data Data that is used for training a machine-learning model. The performance of the
model should generally not be tested on the training data.

Transfer learning Taking a pre-existing deep learning model, that has been trained on a large
dataset, and retraining only some of its parameters on a smaller dataset that is specific to
your problem.

Unsupervised learning Machine learning where there is not a specific target variable you are
trying to predict. Clustering is an example.
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Interlude: Feature Extraction Ideas

Before we jump into specific machine-learning techniques, I want to come back to feature extrac-
tion. A machine-learning analysis will be only as good as the features that you plug into it. The best
features are the ones that carefully reflect the thing you are studying, so you're likely going to have
to bring a lot of domain expertise to your problems. However, I can give some of the “usual sus-
pects”: classical ways to extract features from data that apply in a wide range of contexts and are at
the very least worth taking a look at. This interlude will go over several of them and lead to some
discussion about applying them in real contexts.

7.1 Standard Features

Here are several types of feature extraction that are real classics, along with some of the real-world
considerations of using them:

e Is_null. One of the simplest, and surprisingly effective, features is just whether the original
data entry is missing. This is often because the entry is null for an important reason. For exam-
ple, maybe some data wasn’t gathered for widgets produced by a particular factory. Or, with
humans, maybe demographic data is missing because some demographic groups are less likely
to report it.

e Dummy variables. A categorical variable is one that can take on a finite number of values.
A column for a US state, for example, has 50 possible values. A dummy variable is a binary vari-
able that says whether the categorical column is a particular value. Then, you might have a
binary column that says whether or not a state is Washington, DC, another column that says
whether it is Texas, and so on. This is also called one-hot encoding, because every row in your
dataset will have 1 in exactly one of the dummy variables for the states. There are two big issues
to consider when using dummy variables:

a) You might have a LOT of categories, some of which are very rare. In this case, it’s typical to
pick some threshold and only have dummy variables for the more common values, then have
another dummy variable that will be 1 for anything else.

b) Often you only learn what the possible values are by looking at training data, and then you
will have to extract the same dummy features from other data (maybe testing data) later on.
In that case, you will have to have some protocol for dealing with entries that were not
present in the training data.

The Data Science Handbook, Second Edition. Field Cady.
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85



86

7 Interlude: Feature Extraction Ideas

Ranks. A blunt-force way to correct for outliers in a column of data is to sort the values and

instead use their ordinal ranks. There are two big problems with this:

a) It’s an expensive computation since the whole list must be sorted, and it cannot be done in
parallel if your data is distributed across a cluster.

b) Ranks are a huge problem when it comes to testing/training data. If you rank all your points
before dividing into training/testing, then information about the testing data will be implicit
in the training data: a huge no-no. A workaround is to give each testing data point the rank
that it would have had in the training data, but this is computationally expensive.

Binning. Both of the problems associated with ranks can be addressed by choosing several his-

togram bins of roughly equal size that your data can be put into. You might have a bin for any-

thing below the 25th percentile, another for the 25th to the 50th percentile, and so on. Then,
rather than a percentile rank for your data points, just say which bin they fall into. The downside
is that this takes away the fine resolution that you get with percentile ranks.

Logarithms. It is common to take the logarithm of a raw number and use that as a feature. It

dampens down large outliers and increases the prominence of small values. If your data con-

tains any 0s, it’s common to add 1 before taking the log.

7.2 Features that Involve Grouping

Oftentimes, a dataset will include multiple rows for a single entity that we are describing. For
example, our dataset might have one row per transaction and a column that says the customer we
had the transaction with, but we are trying to extract features about the customers. In these cases,
we have to aggregate the various rows for a given customer in some way. Several brute-force aggre-
gate metrics you use could include the following:

The number of rows.

The average, min, max, mean, median, and so on, for a particular column.

If a column is nonnumerical, the number of distinct entries that it contains.

If a column is nonnumerical, the number of entries that were identical to the most com-
mon entry.

The correlation between two different columns.

7.3 Preview of More Sophisticated Features

Many of the more advanced chapters in this book will talk about fancy methods for feature extrac-
tion. Here is a quick list of some of the very interesting ones:

If your data point is an image, you can extract some measure of the degree to which it resembles
some other image. The classical way to do this is called principal component analysis (PCA). It
also works for numerical arrays of time series data or sensor measurements.

You can cluster your data and use the cluster of each point as a categorical feature.

If the data is text, you can extract the frequency of each word. The problem with this is that it
often gives you prohibitively many features, and some additional method may be required to
condense them down.
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Finally, it’s worth noting that you may find yourself extracting the most important feature of all:
the feature that you’re using machine learning to try and predict. To show you how this might
work, here are several examples from my own career:

o I had to predict human traffic to a collection of websites. However, the traffic logs were polluted
by bots, and it became a separate problem to filter out the bot traffic and then estimate how well
our cleaned traffic corresponded to flesh-and-blood humans. We did this by comparing our traf-
fic estimate to those from Google for a few select sites - sometimes we were over, and sometimes
we were under, but we concluded that it was a good enough match to move forward with the
project.

e I have studied customer “churn,” that is, when customers take their business elsewhere.
Intuitively, the “ground truth” is a feeling of loyalty that exists in the minds of customers, and
you have to figure out how to gauge that based on their purchasing behavior. It’s hard to distin-
guish between churn and the customer just not needing your services for a time period.

e When you are trying to predict events based on time series data, you often have to predict
whether or not an event is imminent at some point in time. This requires deciding how far in the
future an event can be before it is considered “imminent.” Alternatively, you can have a
continuous-valued number that says how long until the next event, possibly having it top out at
some maximum value so as to avoid outliers (or you could take the logarithm of the time until
the next event — that would dampen outliers too).
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Machine-Learning Classification

Machine-learning classifiers are a critically important part of the data science toolkit. However,
they are not nearly as important as they are made out to be. A large part of the mystique of data
science comes from the idea that we can pour data into a magical black box that (through some
mathematical voodoo that only data scientists are smart enough to understand) can learn every-
thing about the data and solve business problems.

The reality is a lot more mundane. As we’ve discussed previously, it takes a lot of work to get the
data into a form where it can be fed into the black box, a lot of savvy to point the black box at the
right question, and additional work to make sense of the results. The machine-learning black box
itself is usually just a library that you call. Sure, it’s good to have some idea of how the classifiers
work under the hood - you can pick better ones to use, avoid common pitfalls, make better sense
of their output, and understand how to jury-rig them as need be. But, training a plain-vanilla
classifier is often construed as being rocket science, and it’s not.

This chapter comes in two sections. After some initial notes, the first will be a series of rapid-fire
tutorials about some of the most useful classifiers. The second section will discuss the various ways
that we can grade their accuracy.

8.1 What Is a Classifier,and What Can You Do with It?

A machine-learning classifier is a computational object that has two stages:

o It gets “trained.” It takes in its training data, which is a bunch of data points and the correct label
associated with them, and tries to learn some pattern for how the points map to the labels.

e Once it has been trained, the classifier acts as a function that takes in additional data points and
outputs predicted classifications for them. Sometimes the prediction will be a specific label;
more often it will give a continuous-valued number (or numbers) that can be seen as a confi-
dence score for a particular label.

There are two big use cases for classifiers. The first is the obvious one; we have things that need
to be classified. This happens all the time in production code situations, where a computer has to
decide, say, which ad to show a user. It also happens when computers aren’t making decisions
autonomously, but instead flagging things for a flesh-and-blood human to look at: flagging poten-
tial instances of credit card fraud, for example.

The other use for classifiers is to give insights about the underlying data. In my own career, this
has actually been the more common use case. My clients have not been so interested in predicting,

The Data Science Handbook, Second Edition. Field Cady.
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say, that a particular machine will fail. What they really want to know is the patterns in the data
that predict failures, because those patterns can help them diagnose and fix something that’s going
wrong on their assembly line. In cases such as this, we want to dissect our classifiers after the fact,
extracting business insights. This becomes an interesting balancing act for a data scientist; some-
times, the most accurate classifiers are the hardest to make real-world sense of.

8.2 AFew Practical Concerns

The whole notion of machine-learning classification is premised on the idea of having correctly
labeled training data in sufficient quantities to train our classifier. However, this is a luxury that the
real world often doesn’t afford. For example, in fraud detection, you will probably have a modest-
size set of hand-labeled fraud cases and a huge mass of unlabeled data. You just presume that those
unlabeled points are nonfraudulent, which means that an unknown fraction of your training data
is mislabeled. And it’s not like the hand-labeled fraud cases are a nice random sample from all
fraud cases; they represent whatever kind of fraud people have been looking for so far. There could
easily be whole new categories of fraud, every instance of which is labeled as nonfraud in your
training data.

What even is “fraud” anyway? In many cases, you have to come up with the training data your-
self, and it’s not a priori clear how things should be labeled. An e-mail about Nigerian princes is
almost certainly fraud, but what about somebody selling “discont Vi@gra?”

In cases where I'm looking for cool patterns, rather than the classifiers themselves, what I will
often do is remove edge cases from my training data. For example, I once had a client who was try-
ing to understand “customer loyalty,” and I was writing a classifier for whether or not they would
lose a customer within the next year. The problem is that customers don’t announce they’re
leaving - they just stop using my client’s services, which most customers don’t use all that often
anyway. What I did was to formulate criteria for customers being “definitely still loyal,” and another
for them being “definitely not loyal.” Every “gray area” customer, who didn’t fall into one of those
categories, was discarded before training - they made up around a third of customers. The result-
ing classifier worked surprisingly well. But, the really exciting part was that when we applied it to
the gray area customers, those that were flagged as higher-risk did indeed come closer to satisfying
the “not loyal” criteria compared to the loyal criteria. This suggested that (not surprisingly, but
reassuring to know) the gray area customers were more- or less-extreme versions of what the other
customers were doing, rather than some fundamentally new category of people.

This question of defining ground truth is beside the perennial problem of data science: feature
extraction. Contrary to popular myth, any machine-learning classifier will suck if you give it fea-
tures that don’t contain signal or features for which the signal is deeply buried in idiosyncrasies
and convoluted dependencies. A large portion of data science boils down to understanding the
dataset and the domain of application well enough that you can extract meaningful features.

8.3 Binary Versus Multiclass

Most classification problems have a binary classification: 1 or 0, yes or no. However, oftentimes, the
label is a categorical variable, capable of taking on several values. There are some classifier algorithms
that handle this situation natively, but many others are strictly binary. When you are using a classifier
that is binary but solving a problem that has k possibly labels, the standard solution is to actually train
k different classifiers: one for each label X, classifying points as being X or something else.
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For the most part, these distinctions are wrapped up within machine-learning libraries and
invisible to data scientists who use the libraries. Explanations in this chapter will freely assume
that classifiers are all binary.

8.4 Example Script

The following script demonstrates many of the topics we will cover in this chapter in a realistic set-
ting, using the sample iris dataset from the last chapter. It takes several important classifiers, trains
each one to distinguish iris virginica from the other species, and then plots the results on an ROC
curve (I'll explain these shortly - they’re a tool for visualizing how well a classifier works). Each of
these classifiers, and the metrics we use to evaluate them, will be explained later in the chapter.

from matplotlib import pyplot as plt

import sklearn

from sklearn.metrics import roc_curve, auc

from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn_tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier
from sklearn._naive_bayes import GaussianNB

# name -> (line format, classifier)
CLASS_MAP = {
"LogisticRegression”:
("-", LogisticRegression()),
"Naive Bayes": ("--", GaussianNB(Q)),
"Decision Tree":
(".-", DecisionTreeClassifier(max_depth=5)),
"Random Forest":
(":", RandomForestClassifier(
max_depth=5, n_estimators=10,
max_Tfeatures=1)),

}
# Divide cols by independent/dependent, rows by test/train
X, Y = df[df.columns[:3]], (df["species”]=="virginica®)
X_train, X_test, Y_train, Y_test =\

train_test_split(X, Y, test_size=.8)

for name, (line_fmt, model) in CLASS _MAP.items():
model . fit(X_train, Y_train)
# array w one col per label
preds = model.predict_proba(X_test)
pred = pd.Series(preds[:,1])
fpr, tpr, thresholds = roc_curve(Y_test, pred)
auc_score = auc(fpr, tpr)
label="%s: auc=%f" % (name, auc_score)
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plt.plot(fpr, tpr, line_fmt,
linewidth=5, label=label)

plt.legend(loc="lower right')

plt.title("Comparing Classifiers”®)

plt.plot([0, 1], [0, 1], "k--") #x=y line. Visual aid
plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel ("False Positive Rate")

plt.ylabel ("True Positive Rate")

plt.show()
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8.5 Specific Classifiers

The world is full of different classification algorithms. This section will go over some of the most
useful and important ones.

8.5.1 Decision Trees

A decision tree is conceptually one of the simplest classifiers available. Using a decision tree to
classify a data point is the equivalent of following a basic flowchart. It consists of a tree structure
such as the following:
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Age > 18?
No Yes
Height < 4? Gender
No / Yes Female /' \ Male
Scores: Scores: Scores: Scores:
0: 0.5 0: 0.9 0:0.8 0:0.3
1: 0.5 1: 0.1 1: 0.2 1: 0.7

Every node in the tree asks a question about one feature of a data point. If the feature is numerical,
the node asks whether it is above or below a threshold, and there are child nodes for “yes” and “no.”
If the feature is categorical, typically there will be a different child node for every value it can take.
A leaf node in the tree will be the score that is assigned to the point being classified (or several scores,
one for each possible thing the point could be flagged as). It doesn’t get much simpler than that.

Using a decision tree is conceptually quite straightforward, but training one is another matter
entirely. In general, finding the optimal decision for your training data is computationally intrac-
table, so in practice, you train the tree with a series of heuristics and hope that the result is close to
the best tree possible. Generally, the algorithm is something along these lines:

1) Given your training data X, find the single feature (and cutoff for that feature, if it’s numerical)
that best partitions your data into classes.

2) There are a variety of ways to quantify how good a partition is. The most common ones are the
“information gain” and the “Gini impurity.” I won’t delve into their precise meanings here.

3) This single best feature/cutoff becomes the root of your decision tree.

Partition X up according to this node.

4) Recursively train each of the child nodes on its partition of the data.

5) The recursion stops when either all of the data points in your partition have the same label or
the recursion has gone to a predetermined maximum depth. At that point, the scores stored in
this node will just be the breakdowns of the labels in the partition.

You will probably never need to worry about the details of how to train a decision tree, but
knowing the basic process helps to understand one of the biggest problems with this classifier:
overfitting. If you set the maximum depth too far, for example, every leaf node will end up with a
partition that contains only a few points, all of which have the same label. This will result in the
decision tree consistently giving out extremely confident scores that, realistically, are just an acci-
dent of small numbers. You can set parameters on your decision tree that force it to terminate
when, say, the best partitions on a node are too small. But, in many libraries, the default settings
will let a decision tree drastically overfit itself, so you should be aware of this and tune your trees
accordingly.

Decision trees are very easy to understand, so it’s perhaps a bit surprising that they are often dif-
ficult to tease real-world insights out of. Looking at the top few layers is certainly interesting and
suggests what some of the more important features are. But, it’s not always clear what the features
and their cutoffs mean to the real world, unless you want to wade into the deep waters of dissecting
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the Gini impurities from the training stage. Even if you do this, there is still a very real risk that the
same feature will weigh toward hits at one node of the tree and toward nonhits at another node.
What the heck does that mean?

Personally, I don’t use decision trees much for serious work. However, they are extremely useful
for their human readability - this is especially handy if you’re working with people who don’t
know machine learning and are wary of black boxes - and the rapidity with which they can do
classifications. Above all, decision trees are useful as a building block for constructing Random
Forest classifiers, which I'll discuss in the next section

The following code shows how to train and use a decision tree in Python:

from sklearn.tree import DecisionTreeClassifier
clt = DecisionTreeClassifier(max_depth=5)
clf_fit(train[indep_cols], train.breed)
predictions = clf_predict(test[indep_cols])

8.5.2 Random Forests

If T were stuck on a desert island and could only take one classifier with me, it would be the ran-
dom forest. They are consistently one of the most accurate, robust classifiers out there, legendary
for taking in datasets with a dizzying number of features, none of which are very informative and
none of which have been cleaned, and somehow churning out results that beat the pants off of
anything else.

The basic idea is almost too simple. A random forest is a collection of decision trees, each of
which is trained on a random subset of the training data and only allowed to use some random
subset of the features. There is no coordination in the randomization — a particular data point or
feature could randomly get plugged into all the trees, none of the trees, or anything in between.
The final classification score for a point is the average of the scores from all the trees (or some-
times, you treat the decision trees as binary classifiers and report the fraction of all of them that
votes a certain way).

The hope is that the different trees will pick up on different salient patterns, and each one will
only give confident guesses when its pattern is present. That way, when it comes time to classify a
point, several of the trees will classify it correctly and strongly while the other trees give answers
that are on the fence, meaning that the overall classifier slouches toward the right answer.

The individual trees in a random forest are subject to overfitting, but they tend to be randomly
overfitted in different ways. These largely cancel each other out, yielding a robust classifier.

The problem with random forests is that they’re impossible to make real business sense of. The
whole point of a classifier such as this is that it is too complex for human comprehension, and its
performance is an averaged-out thing.

The one thing that you can do with a random forest is to get a “feature importance” score for
any feature in the dataset. These scores are opaque and impossible to ascribe a specific real-
world meaning to. The importance of the kth feature is calculated by randomly swapping the kth
feature around between the points in the training data and then looking at how much randomiz-
ing this feature hurts performance (there is a little bit of extra logic to make sure that no
randomized data point is fed into a tree that was trained on its nonrandomized version). In
practice, you can often take this list of features and, with a little bit of old-fashioned data analy-
sis, figure out compelling real-world interpretations of what they mean. But, the random forest
itself tells you nothing.
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The following code shows how to train and use a random forest in Python:

from sklearn.tree import RandomForestClassifier
clt = RandomForestClassifier (
max_depth=5, n_estimators=10,
max_Tfeatures=1))
clf_fit(train[indep_cols], train.breed)
predictions = clf.predict(test[indep_cols])

8.5.3 Ensemble Classifiers

Random forests are the best-known example of what are called “ensemble classifiers,” where a wide
range of classifiers (decision trees, in the case of random forests) are trained under randomly differ-
ent conditions (in our case, random selections of data points and features) and their results are
aggregated. Intuitively, the idea is that if every classifier is at least marginally good, and the different
classifiers are not very correlated with each other, then the ensemble as a whole will reliably slouch
toward the right classification. Basically, it’s using raw computational power in lieu of domain
knowledge or mathematical sophistication, relying on the power of the law of large numbers.

8.5.4 Support Vector Machines

I'll be honest: I personally hate support vector machines (SVMs). They’re one of the most famous
machine-learning classifiers out there, so it’s important that you be familiar with them; but I have
several gripes. First off, they make a very strong assumption about the data called linear separabil-
ity. Oftentimes that assumption is wrong, and occasionally it’s right in mathematically perverse
ways. There are sometimes hacks that work around this assumption, but there’s no principle behind
them and no a priori way of knowing which (if any) hack will work in a particular situation. SVMs
are also one of the few classifiers that are fundamentally binary; they don’t give continuous-valued
“scores” that can be used to assess how confident the classifier is. This makes them annoying if
you’re looking for business insights and unusable if you need to have the notion of a “gray area.”

That said, they’re popular for a reason. They are intuitively simple, mathematically elegant, and
trivial to use. Plus, those unprincipled hacks I mentioned earlier can be incredibly powerful if you
pick the right one.

The key idea of an SVM is illustrated in the following figure:
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Essentially, you view every data point as a point in d-dimensional space and then look for a
hyperplane that separates the two classes. The assumption that there actually is such a hyperplane
is called linear separability. Training the SVM involves finding the hyperplane that (1) separates
the datasets and (2) is “in the middle” of the gap between the two classes. Specifically, the “margin”
of a hyperplane is min (its distance to the nearest point in class A and its distance to the nearest
point in class B), and you pick the hyperplane that maximizes the margin.

Mathematically, the hyperplane is specified by the equation

f(x)zw-x+b=0

where w is a vector perpendicular to the hyperplane and b measures how far offset it is from the
origin. To classify a point x, simply calculate f{x) and see whether it is positive or negative. Training
the classifier consists of finding the w and b that separates the dataset while having the larg-
est margin.

This version is called “hard margin” SVM. However, in practice, there is often no hyperplane
that completely separates the two classes in the training data. Intuitively, what we want to do is
find the best hyperplane that almost separates the data, by penalizing any points that are on the
wrong side of hyperplane. This is done using “soft margin” SVM.

The other killer problem with SVM is if you have as many features as data points. In this
case, there is guaranteed to be a separating hyperplane, regardless of how the points are
labeled. This is one of the curses of working in high-dimensional space. You can do dimen-
sionality reduction (which I will discuss in a later chapter) as a preprocessing step, but if you
just plug high-dimensional data into an SVM, it is almost guaranteed to be grotesquely
overfitted.

The most notorious problem with a plain SVM is the linear separability assumption. An SVM
will fail utterly on a dataset as the following.

%
9
\
Y
Y
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There is no line between the two classes of points. The pattern is clear if you just look at it -
one class is near the origin, and the other is far from it — but an SVM can’t tell. The solution to
this problem is a very powerful generalization of SVM called “kernel SVM.” The idea of kernel
SVM is to first map our points into some other space in which the decision boundary is linear
and then construct a support vector machine that operates in that space. For the previous figure,
if we plot the distance from the origin on the x-axis and the angle 6 on the y-axis, we get the fol-
lowing figure:
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The data here is linearly separable. In general, kernel SVM requires finding some function ¢ that
maps our points in d-dimensional space to points in some n-dimensional space. In the example I
gave, n and d were both 2, but in practice, we usually want n to be larger than d, to increase the
chances of linear separability. If you can find ¢, then you’re golden.

Now, here’s the key point computationally: you never need to find ¢ itself. When you crank
through the math, it turns out that whenever you calculate ¢(x), it is always part of a larger expres-
sion called the kernel function:

k(xy)=6(x)-9(y)

The kernel function takes two points in the original space and gives their dot product in the mapped
space. This means that the mapping function ¢ is just an abstraction — we never need to calculate it
directly and can instead just focus on k. In many cases, it turns out that calculating k directly is much,
much easier than calculating any ¢(x) intermediates. It is often the case that ¢ is an intricate mapping
into a massively high-dimensional space, or even an infinite-dimensional space, but the expression
for k reduces to some simple, tractable function that is nonlinear. Using only the kernel function in
this way is called the “kernel trick,” and it ends up applying to areas outside of SVMs.

Not every function that takes in two vectors is a valid kernel, but an awful lot of them are. Some
of the most popular, which are typically built into libraries, are as follows:

e Polynomial kernel. k(x, y) = (x-y+c¢)".
e Gaussian kernel. k(x, y) = exp[—ylx—y|*].
e Sigmoid. k(x, y) = tanh(x-y +7).

Most kernel SVM frameworks will let users define their own functions as well. If you take this
route, you should be aware that it’s a bit technical to make sure that k is a valid kernel function,
that is, that it has a corresponding mapping ¢. Most simply k has to be symmetric: k(x, y) = k(y, x)
for any x and y. The major constraint though is that it be “positive definite.” This is a highly techni-
cal constraint that I won’t get into here.

8.5.5 Logistic Regression

Logistic regression is a great general-purpose classifier, striking an excellent balance between accu-
rate classifications and real-world interpretability. I think of it as kind of a nonbinary version of
SVM, one that scores points with probabilities based on how far they are from the hyperplane,
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rather than using that hyperplane as a definitive cutoff. If the training data is almost linearly sepa-
rable, then all points that are far from the hyperplane will get a confident prediction near 0 or 1.
But, if the two classes bleed over the hyperplane a lot, the predictions will be more muted, and only
points far from the hyperplane will get confident scores.

In logistic regression, the score for a point will be

p(x) 1

:1+exp[w-x+b]

Note that exp[w-x+ b] is the same f(x) we saw in SVM, where w is a vector that gives weights to
each feature and b is a real-valued offset. With SVM, we look at whether f(x) is positive or negative,
but in this case, we plug it into the so-called “sigmoid function”:

o(z)=r—

:l+exp[z]

Aswith SVM, we have a dividing hyperplane defined by w-x+b = 0. In SVM, that hyperplane is

the binary decision boundary, but in this case, it is the hyperplane along which p(x) = %

The sigmoid function shows up a few places in machine learning, so it makes sense to dwell on
it a bit. If you plot out o(x), it appears as follows:

Sigmoid function
1.0 T T T T T

0.8

0.4}

0.2

You can see that 6(0) is 0.5. As the argument blows up to infinity, it approaches 1.0, and as it goes
to negative infinity, it goes 0.0. Intuitively, this makes it a great way to take “confidence weights”
and cram them down into the interval (0, 1.0) where they can be treated as probabilities. The sig-
moid function also has a lot of convenient mathematical properties that make it easy to work with.
We will see it again in the section on neural networks.
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Pulling real-world meaning out of a trained logistic regression model is easy:

o If the kth component of w is large and positive, then the kth feature being big suggests that the
correct label is 1.

o If the kth component of w is large and negative, then the kth feature being big suggests that the
correct label is 0.

e The larger the elements of w are in general, the tighter our decision boundary and the more
closely we approach an SVM.

Note though that in order for this to be meaningful, you must make sure that your data is all set
to the same scale before training; if the most important feature also happens to be the largest num-
ber, then its coefficient would be misleadingly small.

Another perk of logistic regression is that it’s extremely efficient to store and use. The entire
model consists of just d + 1 floating point numbers, for the d components of the weight vector and
the offset b. Performing a classification requires just d multiplication operations, d addition opera-
tions, and one computation of a sigmoid function.

This code will train and use a logistic regression model:

from sklearn import linear_model

clf = linear_model.LogisticRegression()
clf.fit(train_data, train_labels)
predictions = clf.predict(test_data)

8.5.6 Lasso Regression

Lasso regression is a variant of logistic regression. One of the potential failure cases of logistic regres-
sion is that you can have many different features all with modest weights, instead of a few clearly
meaningful features with large weights. This makes it harder to extract real-world meaning from the
model. Itis also an insidious form of overfitting, which is begging to have the model generalize poorly.

In lasso regression, p(x) has the same functional form of o(w-x+ b). However, we train it in a way
that punishes modest-sized weights. The numerical algorithm that finds the optimal weights gener-
ally doesn’t use heuristics or anything; it’s just cold numerical trudging. However, as an aid to
human intuition, Ilike to think of some examples of heuristics that the solver might, in effect, employ:

o If features i and j have large weights, but they usually cancel each other out when classifying a
point, set both their weights to 0.

o If features i and j are highly correlated, you can reduce the weight for one while increasing the
weight for the other and keeping predictions more or less the same.

The end result of all this tends to be having most of the feature weights go to 0 while only a few
of the most significant features have nonzero weights.

8.5.7 Naive Bayes

Bayesian statistics is one of the biggest, most mathematically sophisticated areas of machine learn-
ing. However, most of that is in the context of Bayesian networks, which are a deep, highly
sophisticated family of models that you typically don’t see in normal data science (although I will
discuss them a little bit in a later chapter). Data scientists are more likely to use a drastically simpli-
fied version called naive Bayes.
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I talk in more detail about Bayesian statistics in the chapter on statistics. Briefly though, a
Bayesian classifier operates on the following intuition: you start off with some initial confidence in
the labels 0 and 1 (assume that it’s a binary classification problem). When new information
becomes available, you adjust your confidence levels depending on how likely that information is
conditioned on each label. When you’ve gone through all available information, your final confi-
dence levels are the probabilities of the labels 0 and 1.

Ok, now let’s get more technical. During the training phase, a naive Bayesian classifier learns
two things from the training data:

e How common every label is in the whole training data.
o For every feature Xj, its probability distribution when the label is 0.
o For every feature Xj, its probability distribution when the label is 1.

The last two are called the conditional probabilities, and they are written as

Pr(X,=x,1Y =0)
Pr(X,=x1Y =1)

When it comes time to classify a point X = (X1, X5, ..., X4), the classifier starts off with confidences

Pr(Y = 0) =fraction of the training data with Y =0
Pr(Y = 0) = fraction of the training data with Y =1

Then, for each feature X; in the data, let x; be the value it actually had. We then update our con-
fidences to

Pr(Y =0)« Pr(Y =0)*Pr(X, = x, 1Y =0)*y
Pr(Y =1)«Pr(Y =1)*Pr(X, = x, 1Y =1)*y

where we set y so that the confidences add up to 1.

There are a lot of things here that need fleshing out if you’re implementing a naive Bayes classi-
fier. For example, we need to assume some functional form for Pr(X; = x;| Y = 0), such as a normal
distribution or something, in order to fit it during the training stage. We also need to be equipped
to deal with overfitting there.

But, the biggest problem is that we are treating X; as being independent of every other X;. For
example, our data might be such that X5 is just a copy of X,. In that case, we really shouldn’t adjust
our confidences when we get to X, since X, had already accounted for it. Naive Bayes classifiers
completely ignore this possibility, so it’s perhaps surprising that they tend to be very powerful clas-
sifiers. The way I think of it is this: imagine the situation I described, where X, and X5 are identical,
so we essentially double-count X,. If X, is a powerful predictive variable, then this might make us
overconfident, but it usually doesn’t make us wrong.

The following code uses scikit-learn to train and use a Gaussian naive Bayes classifier, where
Pr(x;y) is assumed to be a normal distribution:

from sklearn._naive_bayes import GaussianNB
clft = GaussianNBQ)
clf_fit(train[indep_cols], train.breed)
predictions = clf_predict(test[indep_cols])
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8.5.8 Neural Nets

Neural nets used to be the black sheep of classifiers, but they have enjoyed a renaissance in recent
years, especially the sophisticated variants collectively known as “deep learning.” In their basic
form, neural nets are standard tools that you see in machine learning. They are simple to use, fairly
effective as classifiers, and useful for teasing interesting features out of a dataset.

Neural nets were inspired by the workings of the human brain, but now that we know more
about how biological circuits work, it’s clear that that analogy is bunk. Really sophisticated deep
learning is at the point where it can be compared to some parts of real brains (or maybe we just
don’t know enough about the brain yet to see how much they fall short), but anything short of that
should be thought of as just another classifier.

The simplest neural network is the perceptron. A perceptron is a network of “neurons,” each of
which takes in multiple inputs and produces a single output. An example is shown in the
following figure:
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The labeled nodes correspond to either the input variables to a classification or a range of output vari-
ables. The other nodes are neurons. The neurons in the first layer take all of the raw features as inputs.
Their outputs are fed as inputs to the second layer, and so on. Ultimately, the outputs of the final layer
constitute the output of your program. All layers of neurons before the last one are called “hidden” lay-
ers (there is one in this figure the way I've drawn it). Unlike other classifiers, neural networks very
organically produce an arbitrary number of different outputs, one for each neuron in the final layer. In
this case, there are three outputs. In general, you can use neural nets for tasks other than classification
and treat the outputs as a general-purpose numerical vector. In classification tasks though, we typically
look at the ith output as the score for the ith category that a point can be classified as.

The key part of a neural net is how each neuron determines its output from its various inputs.
This is called the “activation function,” and there are a number of options you can pick from. The
one I've seen the most is our old friend, the sigmoid function. If we let i indicate some particular
neuron, and j ranges over its inputs, then

Activation; =& [bi + Y w; * Input /-]

J
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In effect, each neuron in the system is its own little logistic regression function, operating on the
inputs to that neuron. A neural network with no hidden layers is, in fact, just a collection of logistic
regressors.

Neural networks are trained using an iterative algorithm called backpropagation. Without getting
into too much detail, you feed it sequences of input vectors along with the corresponding correct
output vectors (in classification, each correct output vector would be all Os except for a single one).
As you do this, the parameters in the final layer get tweaked to accommodate the new information.
Those changes are sent back to the previous layer, whose parameters are tweaked, and so on. Part of
the beauty of the sigmoid function is that it makes backpropagation more mathematically tractable.

Many classifiers are useful for identifying single features that are especially informative. Neural
networks, on the other hand, are known for extracting aggregate features, which are often more
interesting than any of the raw inputs. Let’s say you have a neural network with one hidden layer.
A neuron in the hidden layer works by taking a weighted combination of all the raw inputs and
plugging that combination in a sigmoid function. Well that weighted combination is an aggregate
feature of your data and often an extremely useful one. If you take a bunch of images of handwrit-
ten letters and train a neural net on them, the input layer will be raw pixels and the 26 outputs will
correspond to letters of the alphabet. But, neurons in the middle will emit signals that correspond
to things such as straight line segments, curves, and other key components of letters. Going back
and making real-world sense of a neural network’s internal features can be very illuminating.

For myself, neural networks are not a tool I use a lot for traditional ML problems. Simple ones
such as the perceptron don’t perform particularly well, and using the more complicated ones is
often overkill and relies too much on having a large training dataset. 'm more of an ensemble clas-
sifier guy, trusting in the law of large numbers rather than the voodoo of deep learning. But, that’s
just me. Neural nets are a hot area, and they are solving some very impressive problems. There’s a
good chance they will become a much larger, more standard tool in the data science toolkit.

8.6 Evaluating Classifiers

In most business applications of classification, you are looking for one class more so than the other.
For example, you are looking for promising stocks in a large pool of potential duds. Or, you are
looking for patients who have cancer. The job of a classifier is to flag the interesting ones.

There are two aspects of how well a classifier performs: you want to flag the things you’re look-
ing for, but you also want to not flag the things you aren’t looking for. Flag aggressively, and you’ll
get a lot of false positives - potentially very dangerous if you’re looking for promising stocks to
invest in. Flag conservatively, and you’ll be leaving out many things that should have been flagged -
terrible if you’re screening people for cancer. How to strike the balance between false positives and
false negatives is a business question that can’t be answered analytically.

In this chapter, we will focus on two performance metrics that, together, give the full picture of
how well a classifier performs:

o True positive rate (TPR). Of all things that should be flagged by our classifier, this is the frac-
tion that actually gets flagged. We want it to be high: 1.0 is perfect.

o False positive rate (FPR). Of all things that should NOT be flagged, this is the fraction that still
ends up getting flagged. We want it low: 0.0 is perfect.

I will give you a nice graphical way to think of TPR and FPR, that is, the main way I think about
classifiers in my own work.
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But, you could pick other metrics too — they’re all equivalent. The other options you’re most likely
to see are “precision” and “recall.” Precision is the same thing as the true positive rate — the fraction
of all flagged results that actually should have been flagged. Recall measures your classifier’s
coverage - out of all the things that should be flagged, it is the fraction that actually gets flagged.

8.6.1 Confusion Matrices

A common way to display performance metrics for a binary classifier is with a “confusion matrix.”
It is a 2x 2 matrix displaying how many points in your testing data were placed in which category
versus which category they should have been placed in. For example,

Correct label Predicted =0 Predicted = 1

0 35 4
1 1 10

In the given confusion matrix, the true positive rate would then be 10/(10+1)=0.91, and the
false positive rate would be 4/(4+ 35) = 0.10.

8.6.2 ROC Curves

If you treat the false positive rate as an x-coordinate and the true positive rate as the y-coordinate,
then you can visualize a classifier’s performance as a location in a two-dimensional box such as the
following.
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The upper-left corner (0.0, 1.0) corresponds to a perfect classifier, flagging every relevant item
with no false positives. The lower-left corner means flagging nothing, and the upper-right means
flagging everything. If your classifier is below the y = x line, then it’s worse than useless; an irrel-
evant item is more likely to be flagged than one that’s actually relevant.
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My discussion so far has been about classifiers in a binary way; they will label something as (say)
fraud or nonfraud. But, very few classifiers are truly binary; most of them output some sort of a
score, and it’s up to data scientists to pick a cutoff for what counts as a hit. This means that a single
classifier is really a whole family of classifiers, corresponding to where we pick the cutoff. Each of
these cutoffs corresponds to a different location in our 2d box, and together they trace out what’s
called an ROC curve, similar to the ones that we generated at the beginning of this chapter.

Comparing classifiers
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Imagine that you start with an insanely high classification threshold, so high that nothing actu-
ally gets flagged. This means that you are starting in the lower-left of the box, at (0, 0). As you
loosen your criteria and start flagging a few results your location shifts. Hopefully, the first results
you start flagging are all dead ringers and you get very few false positives, that is, your curve slopes
sharply up from the origin. When you get to the knee of the curve, you have flagged all the low-
hanging fruit and hopefully not incurred many false positives. If continue to loosen your criteria,
you will start to correctly flag the stragglers, but you will also flag a lot of false positives. Eventually,
everything will get flagged, and you will be at (1, 1).

If we are trying to understand the quality of the underlying score-based classifier, then it’s not
fair to judge it by a single threshold. You want to judge it by the entire ROC curve - a sharp “knee”
jutting into the upper-left corner is the signature of a strong classifier.

8.6.3 Area Under the ROC Curve

This holistic, look-at-the-whole-ROC-curve viewpoint doesn’t absolve us from sometimes having
to boil the performance down into a single number. Sometimes, you’ll need a numerical criterion
for, say, declaring that one configuration for your classifier is better than another.

The standard way to score an entire ROC curve is to calculate the area under the curve (AUC); a
good classifier will mostly fill the square and have an AUC near 1.0, but a poor one will be close to
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0.5. The AUC is a good way to score the underlying classifier, since it makes no reference to where
we would draw a classification cutoff. When you run the numbers, there is a very clear, real-world
meaning to the AUC: it is the probability that a randomly selected hit will have a higher prediction
compared to a randomly selected nonhit.

In my own work, I will use the AUC to decide which of several underlying classifiers and con-
figurations I want to use. If random forest has an AUC of 0.95, but logistic regression only has 0.85,
it’s clear where I'm going to focus my efforts.

In the script at the beginning of this chapter, we showed code that computes taking in our pre-
diction scores and the correct labels and uses them to compute the FPR, TPR, classification
thresholds, and AUC. The relevant lines are as follows:

from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve (Y_test, pred)
auc_score = auc (fpr, tpr

8.7 Selecting Classification Cutoffs

Intuitively, we want to set our thresholds so that our classifier is near the “knee” of the curve.
Maybe business considerations will nudge us to one part or another of the knee, depending on how
we value precision versus recall, but there are also mathematically elegant ways to do it. I'll discuss
two of the most common ones in this section.

The first is to look at where the ROC curve intersects the line y =1-x. This means that the frac-
tion of all hits that end up getting flagged is equal to the fraction of all nonhits that don’t get
flagged: we have the same accuracy on the hits and the nonhits. A different cutoff would make me
do better on hits but worse on nonhits, or vice versa. All other things being equal, this is the cutoff
that I use, partly because I can truthfully answer the question of “how accurate is your classifier?”
with a single number.

The second approach is to look at where the ROC curve has a 90% slope, that is, where it runs
parallel to the line y =x. This is sort of an “inflection point”: below this threshold, relaxing your
classifier boosts the flagging probability of a hit more so than a nonhit. Above this threshold, relax-
ing your classifier will boost the flagging probability for nonhits more so than for hits. It’s effectively
like saying that an epsilon increase in TPR is worth the cost of an epsilon increase in FPR, but no
more than that.

This second approach is also useful because it generalizes. You could instead decide that a tiny
increase in TPR is worth three times the increase in FPR, because it’s that much more important to
you to find extra hits. Personally, I've never had occasion to go that far into the weeds, but you
should be aware it’s possible in case the need arises.

8.7.1 Other Performance Metrics

The AUC is the right metric to use when you’re trying to gauge the holistic performance of a clas-
sifier that gives out continuous scores. But, if you're using the classifier as a basis for making
decisions, the underlying classifier score is only worth as much as the best single classifier you
can make out of it. So, what you might do here is to pick a “reasonable” threshold (by the defini-
tion of your choice) for your classifier and then evaluate the performance of that truly binary
classifier.
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If you set your classification threshold to the point where the ROC curve intersects the line
y = 1-x, then your classifier has the same accuracy in classifying hits that it does with nonhits. In
that case, you can use this single number as the accuracy of the classifier. This has the advantage
of simplicity and of being easier to explain to clients who aren’t used to the idea of using two num-
bers to evaluate a classifier.

The classical way to judge a binary classifier is called the F; score. It is the harmonic mean of the
classifier’s precision with its recall, defined by

1

F =

++ ! /2
Precision Recall

_ 2*Precision * Recall

Precision + Recall

The F; score will be 1.0 for a perfect classifier and 0.0 in the worst case. It’s worth noting though
that there is nothing magical about using the harmonic mean of precision and recall, and, some-
times, you will see the geometric mean used to compute the G-score:

G =+/Precision * Recall

Technically, you could even use the arithmetic mean (precision + recall)/2, but that would have
the unpleasant effect that flagging everything (or not flagging anything at all) would give a score
better than 0.

8.7.2 Lift-Reach Curves

Some people prefer what’s called a lift-reach curve, rather than an ROC curve. It captures equiva-
lent information, namely, how the performance of a classifier varies as you adjust the classification
threshold, but displays it in a different way. The lift-reach curve is based on the following notions:

o Reach is the fraction of all points that get flagged.

o Lift is the fraction of all points you flag that are hits, divided by the fraction of hits in the overall
population. A lift of 1 means that you are just flagging randomly, and anything above that is posi-
tive performance.

The reach is plotted along the x-axis, and the lift along the y-axis. Typically, the lift will start off
high, and then it decays to 1.0 as reach approaches 1.

8.8 Further Reading

1 Bishop, C, Pattern Recognition and Machine Learning, 2007, Springer, New York, NY.
2 Janert, P, Data Analysis with Open Source Tools, 2010, O’Reilly Media, Newton, MA.

8.9 Glossary

Area under the ROC curve The area under an ROC curve measures how well a classifier
works that is independent of where the classification threshold is set.
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Confusion matrix A 2X2 table giving the true positives, false positives, true negatives, and
false negatives for a classifier.

Decision tree A machine learning model that works as a flowchart considering one input
feature at a time.

Ensemble classifier A machine learning classifier that works by training multiple classifiers on
random subsets of the rows/columns of the training data. When classifying a point, it averages
the results of the different classifiers.

False positive rate The fraction of all nonhits that are errantly classified as hits.

F, score A measure of classifier performance. It is the harmonic mean of the precision and
the recall.

Logistic regression A machine learning classifier that can be thought of as a nonbinary version
of support vector machines.

Neural net A type of machine learning model inspired by human neurons.

Precision Of all flagged results flagged by a classifier, this is the fraction that are actually hits.

Random forest An ensemble of decision trees in a single classifier.

Recall The fraction of all hits that get flagged by a classifier.

ROC curve A graph that measures FPR on the x-axis and TPR on the y-axis, across all possible
classification cutoffs for a classifier that outputs continuous scores.

Sigmoid function A common activation function for neural nets, whose output is always
between 0 and 1.

Support vector machine A machine learning classifier that works by drawing a hyperplane in
d-dimensional space and classifying points by which side they fall on.

SVM Short for “support vector machine.”

True positive rate The fraction of all hits that are correctly classified as hits.
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Technical Communication and Documentation

I debated whether to include this chapter in the book. In the first place, it ventures into “touchy
feely” areas that I generally try to avoid. This is mostly a technical, brass-tacks type of book. The
second problem is that I don’t feel that I myself am that great at technical communication. I'm
certainly good enough to get my own work done (and given that I'm in consulting, that bar is
higher for me than for most data scientists), but beyond that I don’t claim to have any special
expertise.

However, my own lack of natural talent is part of why I felt this chapter is necessary. I've seen
that strong technical work can be tragically undervalued if people fail to communicate it in an
effective way. I've also seen that just a few basic, easy-to-learn principles can make a world of dif-
ference between incomprehensibility and a stunning presentation. Internalizing a few guiding
principles has made for career advancement for myself, follow-up engagements for my company,
and early identification of mismatches between the technical work and business objectives.

Data scientists are in a uniquely communication-intensive niche. Software engineers mostly talk
with other software engineers, business analysts with business analysts, and so on. It is the job of
a data scientist to bridge the gaps between the worlds of business, analytics, and software. So, it’s a
crying shame that, frankly, most of us aren’t that good at it. Ultimately, everything in this chapter
is about one goal: conveying ideas to your audience in a way that (1) they will actually understand
and (2) they have an easy time understanding.

In this chapter, I will start with a few general principles that I think underlie most good technical
communication. I will then move on to specific tips for slide decks, written reports, and spoken
presentations. I will also include a section on source code, which is sometimes the communication
medium of last resort.

9.1 Several Guiding Principles

9.1.1 Know Your Audience

This is one of the most basic principles of technical communication, but it’s also one of the hardest
to master. As a data scientist, you will talk to the following people:

e Domain experts who understand what you're studying better than you do but don’t know much
about software and analytics. You will often have to hold their hand a little bit in explaining what
you did. The various real-world scenarios that got left out of your analysis are likely to be a

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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particular focus of conversation. In my experience, these people are extremely useful in uncover-
ing shortcomings in your work or making sense of issues in the data.

o Analytical people, who are very interested in the nitty-gritty of what you’ve done. You can expect
to spend a lot of time here discussing (and possibly justifying) your statistical methodology and
modeling choices.

o Software engineers, who will often want to treat your code as a black box that magically spits out
answers, but they will care a lot about its performance in real-world situations. Software engi-
neers run the gamut from barely knowing how to calculate an average to being extremely math-
ematically savvy.

o Business people, a diverse group, ranging from former engineers who will grill you about the
details to nontechnical managers who want everything translated into business speak. The one
thing they will have in common is a keen curiosity about what your work means for the different
parts of the company.

Another important part of knowing your audience is knowing how much detail to include and
how much of the story of your work. A high-level executive might want to know just a few key
take-home points. Your peers might want more details about your methodology, especially if your
findings are especially important or surprising or if you change direction mid-project because of
preliminary findings. Sometimes, it might be important to go into several things you tried that
didn’t work, because you didn’t get strong results and you need to show that it was the data’s fault
and not yours. In other cases, that is a waste of people’s time.

9.1.2 Show Why It Matters

Always make sure to frame an analytics in the context of something people already care about,
usually a business problem, in order to make it compelling. Depending on your audience, you may
also need to clearly explain how the analytics relates back to the problem and can impact the bot-
tom line. You typically don’t need to belabor the point, but you should give people a reason to care
about what you’re saying.

Many analytics problems are clearly related to a company’s business and probably don’t
need any motivation. Getting people to click on ads, for example, is obviously core to many
business models. In other cases though, the connection is more tenuous. Do we really need
customer segmentation, if we aren’t currently planning to target ads? Especially, in large
corporations, disagreements between high-level people come up over the value of analytics
projects, and chances are your boss will have to lean on you to explain why the project is
worthwhile. As I write this, 'm on a project where I'm working to convince a factory man-
ager that it’s worthwhile to use analytics to study how we can reduce the bottleneck at their
test bench.

This is not just about communicating with other people; it’s also an excellent exercise for you. If
you can’t explain in simple terms why an analytics project is worthwhile, then maybe you should
be working on a different problem.

9.1.3 Make It Concrete

The human brain doesn’t do very well with abstract concepts. I don’t just mean nontechnical peo-
ple; even if somebody has the background to follow a purely abstract discussion, their understand-
ing will be immeasurably helped if you give their brain a few concrete mental hooks.



9.1 Several Guiding Principles

Often, the business case at hand provides all the concrete examples you need. Other times
though, the business case is too convoluted to illustrate things clearly, and you will want a simple
toy problem.

9.1.4 A Picture Is Worth a Thousand Words

One of the best pieces of advice I ever got for writing papers or giving technical talks was this: the
heart of your presentation is one or a few key figures. The rest of the paper is just an extended cap-
tion describing how you generated those figures and how to interpret them.

It seems like every year I decide that visuals are more important than I had previously realized,
and every year I'm right. Whether it’s diagrams to illustrate a concept, plots to display data, or just
a stick figure scrawled on a whiteboard, this is the best way to convey ideas to another person and
make them compelling.

In my opinion, the lack of pictures in some papers and presentations is often a sign of laziness
(certainly, it sometimes is with mine). It takes some planning to decide what figures would work
best. Then, there’s a lot of legwork in generating those figures, whether it’s manipulating a diagram
in PowerPoint or making sure that the axes are set correctly on a plot. It’s a lot easier to just sit at
the keyboard and churn out slides and pages of text (at least, for me it is), but that’s the wrong way
to go about it.

9.1.5 Don’t Be Arrogant About Your Tech Knowledge

This should go without saying, but I feel compelled to bring it up because I have seen it way too
often: data scientists being jerks toward people who don’t know as much math as they do. Obviously,
this is horrible for repeat business, and it puts up a massive barrier to clear communication. But for
my two cents, I'd like to say that it’s also incorrect. I've seen the same data scientists who were
being so arrogant go on to screw up projects, because they knew the mathematical equations but
were unable to think critically about the concepts behind them.

I had a lot of fun on a consulting project once, where the manager on the client’s side had no
mathematical background to speak of. But, whenever she asked me about the tech work, she would
immediately ask all the right questions and raise all the key concerns. It was almost as if I had sat
down with a list of all the statistics concepts that were important to the problem, translated each
one into normal English, and then put a question mark at the end. She had no training in statistics;
she was just smart and level-headed enough that she zeroed in on all the right points, even better
than most data scientists I've worked with. It was a fun reminder to me that math is not synony-
mous with clear thinking: it’s just a way of reducing that clear thinking to calculations so that you
can get a number out.

9.1.6 Make It Look Decent

I used to think that aesthetics was peripheral to clear communication. I felt like people should
judge my work based on its technical merits, rather than how much I agonized over which shade
of peach to use. So, it came as quite a shock when I first read about graphic design. I discovered
that it isn’t an attempt to shoehorn artistic sentiments into technical work; it is a pragmatic way to
make sure that communication is clear and compelling. You should use good design principles on
a slide for the same reason you should use logarithmic axes when graphing some data: it helps to
get the point across.
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9.2 Slide Decks

Slide decks are the most common medium for communicating data science results. They’re also
the medium where you can have the most impact, because people are more likely to listen to your
talk or walk through a slide deck than they are to read a written report.

The biggest pitfall that I see with slide decks is people treating them as written reports. In
some cases, they will go so far as to just copy and paste text from a write-up they did and call it
a slide deck. This is the wrong way to do it! Slide decks are a fundamentally different communi-
cation medium and governed by a different set of rules. On the one hand, you have complete
freedom to control what the slide looks like. On the other, people will expect to be able to step
through a slide deck much more quickly than a report, so it is critical to keep the deck crisp,
compelling, and to the point. Frequently, this means replacing textual content with graphical
content wherever possible.

The second most frequent problem I see is people going overboard with what you can do in
a slide deck. Crazy shapes, goofy moving images, and pictures of cats should be used very
sparingly.

Ultimately, you will have to think about how best to structure your ideas around a graphical
representation. This is a totally different skill set from writing or speaking in clear prose. In my
experience, good graphical presentations are harder to put together compared to good prose but
much easier for your audience to follow.

There is no magic bullet to making good presentations: it will require hard work on your end and
making a habit of asking whether something could be explained a little more clearly. To get you
started though, a good rule of thumb is that 75% of your slides should consist of an image (a data
graphic, a flowchart, etc.) and at most two phrases/sentences that give the take-home message for
that image.

9.2.1 C.R.A.P.Design

A lot of the principles of good design are captured in the acronym C.R.A.P, which stands for con-
trast, repetition, alignment, and proximity:

o Contrast. Things that are different should look different. This makes it seamless for people to

notice and internalize the differences. For example:

- Use different fonts for code, text, and figure captions.

- Use different colors for different customer segments that you’'ve identified.
— Within reason, use different font sizes to emphasize different points.

¢ Repetition. Key points or design motifs should be repeated throughout your work. People are
likely to miss them the first time, so you want to repeat them in a way that is obvious enough to
have an impact but subtle enough that they’re not annoying if people already got the point.
Repetition is partly the dual of contrast: if things are similar or related, or if they are different,
those patterns should be carried through consistently.

o Alignment. Of all the principles, this comes the closest to being a purely aesthetic thing. Make
sure that the different parts of your visual field line up with each other in a natural way. Or, if
they shouldn’t line up (maybe because you’re trying to contrast them), then make sure they are
obviously not aligned. The last thing you want is for somebody to be distracted during a talk by
wondering whether two blocks of text are actually slightly out of line.

o Proximity. Use distance between things to indicate their relationships. More generally, use the
layout of the visual field to your advantage.



9.2 Slide Decks

To show you just how bad it can get when the basic principles of design are brazenly flaunted,
I humbly present one of my own slides that I dug up from back in the day:

Overview

e Purpose
o Numerical and mathematical computing for Python
o Make it FAST

o NumPy
o Core extension to Python
o Support for n-dimensional arrays
o Mathematical operations on arrays

e SciPy
o Extensive libraries for technical computation
o Operates on NumPy arrays

Among the problems in this slide, which I somehow managed to stand up in front of people and
present, are the following:

e Almost everything is in the same font.

o The purpose of the talk looks like it’s just another topic, on par with SciPy and NumPy.
e There is an unsightly amount of white space.

o Everything is aligned with everything else.

If I could take back that presentation, I would replace the slide with something like the one on
the next page:
The changes I wish I could make include the following:

o [Contrast] The slide title, goal, topic text all look different.

o [Repetition] Those text differences are marked consistently.

o [Alignment] The NumPy and SciPy sections line up with each other, as do their supporting pictures.

e [Alignment] NumPy and SciPy, the two subjects of the talk, both have their own half of the
space. The stuff that applies to the whole slide is in the middle.

e [Proximity] The word “NumPy,” the description of NumPy, and the suggestive pictures are all
next to each other. Similarly for SciPy. The goal line is next to the slide title.

Overview

Goal: Fast math computing w python

Num| SciPy
o Core numerical library o Extensive libraries for technical
e n-Dimensional arrays computation
e Math operations on arrays o Operates on NumPy arrays

o I added some suggestive pictures. Realistically, many people aren’t going to read my descriptions
of NumPy and SciPy. But even so, they’ll still get the idea that NumPy does basic operations on
arrays, while SciPy does fancier mathematical operations.
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The content of the slides is the same. Graphic design is there to grease the wheels of communication.
It’s not there to supplement my content: it’s there to make you notice it.

9.2.2 AFew Tips and Rules of Thumb

Making good slides is a skill that only develops with practice. But to help you avoid a few common
pitfalls, here are several helpful hints or rules of thumb that have served me well:

Avoid long sentences or phrases. You can often replace a complete sentence with a shorter phrase.

Have no more than four bullet points in any given section.

If you feel like there’s too much you want to fit into a slide, it’s fine to break it out into two slides.

If you can replace a bulleted list with something else, such as callouts with arrows pointing at

different parts of a figure, you should probably do it.

o If the same image or section occurs in the same place on two consecutive slides, make absolutely
sure that it is in exactly the same place. Nothing is more visually grating than having something
shift over by a few pixels when you go from one slide to the next.

e Avoid the (in)famous Comic Sans MS font altogether unless you really mean it. Personally, I
think comic sans is useful when employed judiciously, but a lot of people feel strongly that it
looks unprofessional and should just never be used. Know your audience.

e PNG files are your friend, because they can have transparent backgrounds. This lets you put an
image in your slide without having its white background mar other images or the slide’s back-
drop. Personally, I keep a slide deck consisting of only images with transparent backdrops (logos
for different programming languages, etc.) to save myself the trouble of looking for such images
on the Internet each time I need them.

o Make sure the axes are labeled on all of your figures. I made this mistake once . . . not good.

o Have a slide background. This is easy to do and makes slides look so much better. Keep it simple,
so that it doesn’t distract people from your content.

e Make sure that your figures include some color if possible.

o If you want two different colors in a color scheme, don’t use red and green. Some people are
partly colorblind and can’t see the difference.

o It’s fine to be more casual in a slide deck than you would in a written report. But don’t overdo it.

e When planning your presentation schedule, the rule of thumb that people use is that one slide
will take about two minutes to cover.

e In some cases, you might want to include slide numbers, dates, or a company logo or something

on every slide. It’s good to give people concrete reference points.

9.3 Written Reports

First off, please don’t use LaTeX unless you are planning to publish your work in a scientific jour-
nal or you are deliberately trying to look academic so as to make an impression on somebody. This
is one of my pet peeves, which I see distressingly often since so many data scientists come from an
academic background where LaTeX is standard. If you haven’t heard of it, LaTeX is a markup lan-
guage that can be compiled into beautifully formatted documents, and it is very popular for pub-
lishing scientific papers. The downside though is that you need to know the idiosyncrasies of
LaTeX’s syntax in order to edit the document, which bars most people from editing it collabora-
tively. It’s true that LaTeX gives you very fine-grained control over what a document looks like, but
that power is rarely necessary and often abused. I generally recommend that you use Microsoft
Word, Google Docs, or some other WYSIWYG editor. I'm writing this book in Word.



9.4 Speaking: What Has Worked for Me

Now that that’s out of the way, let’s talk about content and presentation. The structure of a written
report will vary depending on your intended audience, who you are in relation to them (team
member, outside consultant, member of another team, etc.), and the problem you’re addressing.
However, most technical reports will have some subset of the following sections:

e An executive summary. This is up to one page that summarizes what problem you were
addressing and why, what you did, and what can be done with it. The emphasis should be on the takea-
way points from a business perspective and how your work fits into the larger context of a company.

¢ Background and motivation. Clearly, frame how this work fits into a larger context for your
likely audience. Depending on who you're writing for, it might be a description of how this fits
into the company’s business, the role it plays in software, or existing knowledge that it builds on.

o Datasets used. Describe in brief which datasets are being used, where you got them from, and
what they’re describing. Plus maybe a little bit about which features you extract from them and
any limitations of the data that should be pointed out. This section should be short and sweet; if
there are a lot of gory details, put them in an appendix.

e Analytical overview. Describe at a high level, the analysis you performed or the algorithm you
are studying. Focus on the mathematical model in the abstract, rather than how it is imple-
mented in software (unless some key aspects of it were driven by software requirements, such as
wanting it to be massively parallel). This section should probably have a diagram or two that
illustrate what you’re talking about.

o Results. Describe any results you got from your analysis, and present them in graphical form.
This is often the most important part of your report, so keep it crisp and compelling, and make
sure to tie it back to the context of how these results are relevant. If you have a lot of results to
report that contain similar information (such as results for each feature), then include only the
most interesting ones in this section. Put the rest in an appendix.

o Software overview. This section often doesn’t need to be there and should be short if you
do include it. It’s mostly relevant if your code is being plugged into somebody else’s code or
some production system or if your code might be regularly rerun in the future as datasets are
updated. Describe how to run the code (this should be at most a handful of lines - if it’s not,
then you should refactor it and maybe combine it into a master script) if it’s a stand-alone
analysis or how it plugs into other software if that’s how it works. Include a high-level
architecture of the code as a diagram and describe which languages it is written in and what
tools it uses.

o Future work. Discuss natural next steps. This section often reads as boilerplate in practice, and,
sometimes, it’s ok if it’s extremely brief or even omitted entirely. However, it can also be an
opportunity to point the way to significant new projects and to suggest others that should not be
pursued. Data science is often used to “test the waters” and see whether something is worth
pursuing as a larger project or clarify the scope that such a project should have.

e Conclusions.

o Appendices with technical details. For me, personally, up to half my report is liable to be appendices.

9.4 Speaking: What Has Worked for Me

I have never benefited from the classic technique of imagining your audience naked.
More seriously though, different people have very different styles of presentation. Some people
script out their presentations and practice them down to the word, making sure that every
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inflection is carefully chosen but still feels natural. Personally, I've never had much success with
that approach. What works best for me is to:

e Make sure I've got a great slide deck.

e Practice a lot, discussing each slide in the deck and the key concepts it’s discussing. Not scripting
them out, but giving clear explanations out loud.

o When it comes time for the actual presentation, throw all my practice out the window and wing
it. I keep half an eye on time, but otherwise just explain my slides in whatever way feels most
natural.

This is what works for me. I tend to speak very well spontaneously, and many of my best talks
are given at the spur of a moment, on topics that I know well but wasn’t planning to discuss. But
when I have an actual plan for what I'm going to say, I immediately become mumbly and boring.

The gold standard of presentations is to make it feel like a conversation to your audience (with a
well-composed, clearly-thought-out person who is good at explaining things) rather than any kind
of formal speech. There is an awful lot that goes into making it look natural: tone of voice, cadence,
facial expressions, and moving your body, all of which are independent of the actual words you are
saying. This is too much to keep track of while you are focusing on your actual talk, so the only
solution is to practice so that these things become second nature.

I recommend training yourself to have a “speaking personality,” a game face that you can put on
at will. You should regularly practice giving off-the-cuff explanations of things that are in your line
of work. This might be explaining how a cache works, describing the goals and status of a project
you’re working on, or giving an elevator spiel about your grad school research. It can be done in
front of a mirror, in front of friends, or even just in your own head as an internal monologue.
During your explanations, focus on your content but also keep an eye toward the following
guidelines:

e Be clear and enunciate.

o Speak a little more slowly than you would in normal conversation. People will be paying atten-
tion to your slides as well as your words, and you won’t be able to repeat something if a single
person misses it. So, give everybody a little more time to absorb what you’re saying. Plus, this
helps if (like me) you tend to speak faster when you’re nervous.

e Throwing in a short personal anecdote, joke, or opinion can make your presentation more relat-
able and interesting. Don’t go overboard, but this can add a nice humanizing touch to technical
material.

o A short pause is always better than “um.”

e Let yourself be animated, so that it’s clear you're excited about what you’re discussing. Add
personality!

o Adopt a natural, at-ease cadence. Even if somebody isn’t paying attention to your talk, they will
immediately notice anxiety or nervousness in your voice.

o Try to have good posture: stand up straight, hold your head high, and gently pull your shoulders
back and down. This little bit of polish doesn’t just make you look more confident; research has
shown that adopting confident body language makes you more confident in reality.

o Keep an eye toward your hand movements. Some people move their hands nervously in a way
that is very distracting. But, moderate use of hand gestures can add emphasis and personality.

With enough practice, these finer points will become second nature. You will be able to easily
shift in and out of “talk mode” similarly to an actor going in and out of character. At that point, it
won’t just feel natural; it will now be second nature for you.



9.7 Glossary

Many people have a deep-seated anxiety about public speaking. If you are in that situation, then
chances are this section won’t give you everything you need. I encourage you to look into Toast
Masters or a similar group that helps people practice public speaking and learn to feel at ease
with it.

9.5 Code Documentation

Whenever you provide a significant piece of code as a deliverable, it’s important to provide some
kind of documentation of what it does and how to use it. Depending on the context that can take a
variety of forms, including the following:

o Along comment at the top of a file.

e A separate runbook or user manual. This is more common with extremely large pieces of soft-
ware or if you’re giving it to a client or another team.

Pages on a company Wiki.

o Unit tests that can be run against the code.

No matter what form the documentation is in though, the most important thing about the docu-
mentation is to explain how somebody can run the code and reproduce its functionality. This lets
them use the code themselves and verify that it works the way that it’s supposed to.

Explaining how it operates under the hood is secondary, and going into too much detail can be
counterproductive. If you are delivering your source code to somebody, it is generally reasonable
to expect them to be able to read and understand your code, and restating it all in English is super-
fluous. Telling them how to run the software tells them where to start looking in the source code,
and they can follow the thread from there. It is good to give a brief architectural overview, pointing
out which modules do what, but I wouldn’t go beyond that.

The one thing that is very nice to include though is a troubleshooting section. Most pieces of
software have some weird ways they can break down, or parts that are known to be especially frag-
ile and that are highly specific to your software. If this is the case, save your users potentially hours
of time debugging by telling them what they probably did wrong.

9.6 Further Reading

1 Kolko, J, Exposing the Magic of Design, 2011, Oxford University Press, New York, NY.
2 Matplotlib 1.5.1 Documentation, 2016, viewed 7 August 2016, http://matplotlib.org/.

9.7 Glossary

Comic sans A font that is notorious for being very casual, some would argue overly so.

C.R.A.P design The idea that you should use contrast, repetition, alignment, and proximity as
underlying principles in graphic design.

LaTeX A markup language that is a very popular tool for publishing scientific papers. It can be
compiled into beautifully formatter papers, but it is finicky to use and has a steep learning curve.

Runbook A document explaining what a piece of code does, how to use it, and how to
troubleshoot it.
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Part Il

Stuff You Still Need to Know

The second section of this book will cover a variety of topics that are liable not to show up in a
given data science project. This doesn’t mean that knowing them is optional for a professional data
scientist, but it does mean that you might not be put on the spot about them until somewhat later
in your career. My goal is to fill those holes ahead of time.

The topics here cover a wide range. There are very general-purpose analytics tools that almost
made it into the first part, such as clustering. Most software engineering concepts, beyond basic
scripting, fit into this chapter was well. Finally, there are very specialized areas such as natural
language processing, which some data scientists never use at all.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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Unsupervised Learning: Clustering
and Dimensionality Reduction

This chapter is about techniques for studying the latent structure of your data, in situations where
we don’t know a priori what it should look like. They are often called “unsupervised” learning
because, unlike classification and regression, the “right answers” are not known going in. There
are two primary ways of studying a dataset’s structure: clustering and dimensionality reduction.

Clustering is an attempt to group the data points into distinct “clusters.” Typically, this is done in
the hopes that the different clusters correspond to different underlying phenomena. For example,
if you plotted people’s height on the x-axis and their weight on the y-axis, you would see two more-
or-less clear blobs, corresponding to men and women. An alien who knew nothing else about
human biology might hypothesize that we come in two distinct types.

In dimensionality reduction, the goal isn’t to look for distinct categories in the data. Instead, the
idea is that the different fields are largely redundant, and we want to extract the real, underlying
variability in the data. The idea is that your data is d-dimensional, but all of the points actually only
lie on a k-dimensional subset of the space (with k < d), plus some d-dimensional noise. For exam-
ple, in 3d data, your points could line mostly just along a single line or perhaps in a curved circle.
Real situations of course are usually not so clean cut. It’s more useful to think of k dimensions as
capturing “most” of the variability in the data, and you can make k larger or smaller depending on
how much of the information you want to reproduce.

A key practical difference between clustering and dimensionality reduction is that clustering is
generally done in order to reveal the structure of the data, but dimensionality reduction is often
motivated mostly by computational concerns. For example, if you're processing sound, image, or
video files, d is likely to be tens of thousands. Processing your data then becomes a massive com-
putational task, and there are fundamental problems that come with having more dimensions
compared to data points (the “curse of dimensionality,” which I’ll discuss shortly). In these cases,
dimensionality reduction is a prerequisite for almost any analytics you might want to do, regard-
less of whether you’re actually interested in the data’s latent structure.

10.1 The Curse of Dimensionality

Geometry in high-dimensional spaces is weird. This is important because a machine-learning
algorithm with d features operates on feature vectors that live in d-dimensional spaces. d can be
quite large if your features are, say, all of the pixel values in an image! In these cases, the

The Data Science Handbook, Second Edition. Field Cady.
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performance of these algorithms often starts to break down, and this decay is best understood as a
pathology of high-dimensional geometry, the so-called curse of dimensionality.

The practical punch line to all of this is that if you want your algorithms to work well, you will
usually need some way to cram your data down into a lower-dimensional space. There’s no need to
dwell too much on the curse of dimensionality - thinking about it can hurt the heads up us three-
dimensional beings.

But if you'’re interested, I would like to give you at least a tiny taste of what goes on in high
dimensions. Basically, the problem is that in high dimensions, different points get very far away
from each other. To illustrate, the following code lets us set d as a parameter. It then generates a
thousand random points in the unit cube, calculates the distance from every point to every other
point, and shows a histogram of those distances for d = 2 and d = 500.

import numpy, scipy

d = 500

data = numpy.random.uniform(
size=d*1000) . reshape((1000,d))

distances = scipy.spatial.distance.cdist(data, data)

pd.Series(distances.flatten()).hist(bins=50)

plt.title('"Dist. between points in R%i"™ % d)

plt.show()

You can see that for d = 500, two points in the cube are almost always about the same distance
from each other. If you did a similar simulation with spheres, you would see that almost all the
mass of a high-dimensional sphere is in its crust.

Sounds weird? Well yes, it is. That’s why we reduce dimensions.
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10.2 Example: Eigenfaces for Dimensionality Reduction

The following script will dive right into a lot of the material that we will cover in this chapter. It
loads in a sample data of images of 64 x 64 pixel faces, with 10 pictures each of 40 different people.
That’s d = 64*64 = 4096 dimensions. It then clusters the images, prints out a measure of how dis-
tinct the clusters are from each other, and then prints out a measure of how closely the identified
clusters line up with the identities of the humans pictured.

Then, the script uses a technique called “principal component analysis” (which we will go
over in this chapter) to reduce the 4096-dimensional images down to a saner 25 dimensions and
redoes the analysis. It finds that the identified clusters match up slightly better with the humans
being pictured.

import sklearn

import sklearn.datasets as datasets

from sklearn._decomposition import PCA

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score,
adjusted_rand_score

from sklearn import metrics

# Get data and format it

faces_data = datasets.fetch_olivetti_faces()

person_ids, image_array = faces_data["target"], faces_data.images
# unroll each 64x64 image -> (64*64) element vector

X = image_array.reshape((len(person_ids), 64*64))
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# Cluster raw data and compare

Print("** Results from raw data')

model = KMeans(n_clusters=40)

model . Fit(X)

print("cluster goodness: ', silhouette_score(X, model. labels ))

print("match to faces: ", metrics.adjusted_rand_score(
model . labels_, person_ids)) # 0.15338

# Use PCA to

Print("** Now using PCA™)

pca = PCA(25) # pass in number of components to fit pca.fit(X)

X_reduced = pca.transform(X)

model_reduced = KMeans(n_clusters=40)

model_reduced.fit(X_reduced)

labels_reduced = model_reduced. labels_

print(*'cluster goodness: ", \
silhouette_score(X_reduced, model_reduced. labels ))

print("match to faces: ", metrics.adjusted_rand_score(
model_reduced.labels_, person_ids))

When I run this script, my output is

** Results from raw data
cluster goodness: 0.148591
match to faces: 0.454254676789
** Now using PCA

cluster goodness: 0.230444
match to faces: 0.467292493785

In the interest of visualizing the data itself, you can continue the analysis with the following
script in order to get better insight into the PCA process. It shows a picture of one of the raw images
and then displays the first two so-called eigenfaces that were identified. PCA tries to model every
picture in the dataset as a mixture of the most important eigenfaces, so visualizing them can give
us an idea of how the faces vary across the dataset. Finally, it shows a graph called a “skree plot,”

which plots out the importance of the different eigenfaces.

# Display a random face, to get a feel for the data
sample_face = image_array[O0,:,:]
plt.imshow(sample_face)

plt.title("Sample face™)

plt.show()

# Show eigenface O

eigenface0 = pca.components_[O0, :]-reshape((64,64))
plt.imshow(eigenface0)

plt.title("Eigenface 0')

plt.show()

eigenfacel = pca.components_[1,:]-reshape((64,64))
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plt.imshow(eigenfacel)
plt.title("Eigenface 1)
plt.show() # Skree plot
pd.Series(

pca.explained_variance_ratio_ ) .plot()
plt.title("Skree Plot of Eigenface Importance')
plt.show()

The script generates the following figures:

Sample face Skree plot of eigenface importance
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10.3 Principal Component Analysis and Factor Analysis

The granddaddy of dimensionality reduction algorithms is, without question, principal component
analysis or PCA.

Geometrically, PCA assumes that your data in d-dimensional space is “football shaped” - an
ellipsoidal blob that is stretched out along some axes, narrow in others, and generally free of any
massive outliers. Take the following image, for example:

Intuitively, the data is “really” one-dimensional, lying on the line x = y, but there is some ran-
dom noise that slightly perturbs each point. Rather than giving the two features x and y for each
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point, you can get a good approximation with just the single feature x+y. There are two ways to
look at this:

o Intuitively, it seems that x+y might be the real-world feature underlying the data, while x and y
are just what we measured. By using x+y, we are extracting a feature that is more meaningful
than any of our actual raw features.

e Technically, it is more computationally efficient to process one number rather than two.
If you wanted, in this case, you could estimate x and y pretty accurately if you only knew
x+y. Numerically, using one number rather than two lets us shy away from the curse of
dimensionality.

PCA is a way of (1) identifying the “correct” features such as x+y that capture most of the
structure of the dataset and (2) extracting these features from the raw data points.

To be a little more technical, PCA takes in a collection of d-dimensional vectors and finds a
collection of d “principal component” vectors of length 1, called p;, p», ... and py. A point x in the
data can be expressed as

X=ap;+a,p, +...+a,py,

However, the p; are chosen so that generally a; is much larger than the other a;, a, is larger than
a; and above, etc. So realistically, the first few p; capture most of the variation in the dataset, and x
is a linear combination of the first few p; and some small correction terms. The ideal case for PCA
is something where large swaths of features tend to be highly correlated, such as a photograph
where adjacent pixels are likely to have similar brightness. So, our example script was an excellent
candidate.

The code in our script that performed the PCA analysis and reduced the dataset’s
dimension is

pca = PCA(25)
pca. fit(X)
X_reduced = pca.transform(X)

Note that in this case, we have passed the number of components we want to extract as a param-
eter in PCA. Under the hood, it’s much more computationally efficient to only extract the first few
components, so that’s good to do if you don’t need entire PCA decomposition.
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10.4 Skree Plots and Understanding Dimensionality

In our motivation for PCA, we suggested that the dataset was “really” one-dimensional and that
one of the goals of PCA is to extract that “real” dimensionality of a dataset by seeing how many
components it took to capture most of the dataset’s structure. In reality, it’s rarely that clear. What
you get instead is that the first few components are the most important, and then there is a gentle
taper into uselessness as you go further out.

It is common to plot out the importance of the different principal components (technically, the
importance is measured as the fraction of a dataset’s variance that the component accounts for) in
what’s called a “skree plot,” which we generated earlier:

Skree plot of eigenface importance
0.25 .
I]I
{
0.20 ]'h
h'.
015} |
I",
\III
010+ |
\
\
\
N
0.05 \-\
_H\\“__-_-
0.00 A B E—
0 5 10 15 20

Eyeballing this plot, I would venture that the face dataset is more or less 15 dimensions - still a
lot, but much less than the 4096 dimensions in the raw data.

10.5 Factor Analysis

I should note that PCA is related to the statistical technique of factor analysis. Mathematically,
they’re the same thing: you find a change of coordinates where most of the variance in your data
exists in the first new coordinate, the second most in the second coordinate, and so on. The diver-
gent terminology is mostly an accident of the fact that they were developed independently and

applied in very different ways to different fields.

In PCA, the idea is generally dimensionality reduction; you find how many of these new
coordinates are needed to capture most of your data’s variance, and then you reduce your data
points to just those few coordinates. A prototypical application of PCA is analyzing pictures of
faces: there is a staggering number of dimensions in the data, which are almost entirely redun-

dant, and examining the principal components themselves gives insights into the behavior of
the system.
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Factor analysis, on the other hand, is more about identifying causal “factors” that give rise to
the observed data. A major historical example is in the study of intelligence. Tests of intelligence
in many different areas (math, language, etc.) were seen to be correlated, suggesting that the
same underlying factors could affect intelligence in many different areas. Researchers found that
a single so-called g-factor accounts for about half of the variance between different intelligence
tests. This book generally looks at things from a PCA perspective, but you should be aware that
both viewpoints are useful.

10.6 Limitations of PCA

There are three big gotchas when using PCA:

e Your dimensions all need to be scaled to have comparable standard deviations. If you arbitrarily
multiplied one of your features by a thousand (maybe by measuring a distance in millimeters
rather than in meters, which in principle does not change the actual content of your data), then
PCA will consider that feature to contribute much more to the dataset’s variance. If you are
applying PCA to image data, then there is a good chance that this isn’t a big deal, since all pixels
are usually scaled the same. But if you are trying to perform PCA on demographic data, for
example, you have to have somebody’s income and their height measured to the same scale.
Along with this limitation is the fact that PCA is very sensitive to outliers.

e PCA assumes that your data is linear. If the “real” shape of your dataset is that it’s bent into an
arc in high-dimensional space, it will get blurred into several principal components. PCA will
still be useful for dimensionality reduction, but the components themselves are likely not to be
very meaningful.

o If you are using PCA on images of faces or something similar, the key parts of the pictures need
to be aligned with each other. PCA will be of no use if, for example, the eyes are covered by dif-
ferent pixels. If your pictures are not aligned, doing automatic alignment is outside the skill set
of most data scientists.

10.7 Clustering

Clustering is a bit of a dicier issue than using PCA. There are several reasons for this, but many
of them boil down to the fact that it’s clear what PCA is supposed to do, but we’re usually not
quite sure what we want out of clustering. There is no crisp analytical definition of “good” clus-
ters; every candidate you might suggest has a variety of very reasonable objections you could
raise. The only real metric is whether the cluster reflects some underlying natural segmentation,
and that’s very hard to assess: if you already know the natural segments, then why are you
clustering?

To give you an idea of what we’re up against, here are some of the questions to keep in the back
of your mind:

o What if our points fall on a continuum? This fundamentally baffles the notion of a cluster. How
do I want to deal with that?

o Should clusters be able to overlap?

e Do I want my clusters to be nice little compact balls? Or, would I allow something such as a
doughnut?
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10.7.1 Real-World Assessment of Clusters

I will talk later about some analytical methods for assessing the quality of the clusters you found.
One of the most useful of those is the Rand index, which allows you to compare your clusters
against some known ground truth for what the clusters ought to be. That’s what I used in the afore-
mentioned sample script.

Usually though, you don’t have any ground truth available, and the question of what exactly
constitutes a good cluster is completely open-ended. In this case, I recommend a battery of sanity
checks. Some of my favorites include the following:

o For each cluster, calculate some summary statistics of it based on features that were NOT used
as input to the clustering. If your clusters really correspond to distinct things in the real world,
then they should differ in ways that they were not clustered on.

o Take some random samples from the different clusters and examine them by hand. Do the sam-
ples from different clusters seem plausibly different?

o If your data is high dimensional, use PCA to project it down to just two dimensions and do a
scatterplot. Do the clusters look distinct? This is especially useful if you were able to give a real-
world interpretation of the principal components.

e Screw PCA. Pick two features from the data that you care about and do a scatterplot on just those
two dimensions. Do the clusters look reasonable?

o Try a different clustering algorithm. Do you get similar clusters?

o Redo the clustering on a random subset of your data. Do you still get similar clusters?

Another big thing to keep in mind is whether it is important to be able, in the future, to assign
new points to one of the clusters we have found. In some algorithms, there are crisp criteria for
which cluster a point is in, so it’s ease to label new points that we didn’t train on. In other algo-
rithms though, a cluster is defined by the points contained in it, and assigning a new point to a
cluster requires reclustering the entire dataset (or doing some kind of a clever hack that’s tanta-
mount to that).

10.7.2 k-Means Clustering

The k-means algorithm is one of the simplest techniques to understand, implement, and use. It
starts with vectors in d-dimensional space, and the idea is to partition them into compact, nono-
verlapping clusters. I say again: the presumed clusters are compact (not loops, not super elongated,
etc.) and not overlapping.

The classical algorithm to compute the clusters is quite simple. You start off with k-cluster
centers, then iteratively assign each data point to its closest cluster center and recompute the
new cluster centers. Here is the pseudocode:

1. Start off with k initial cluster centers.

2. Assign each point to the cluster center that it’s closest to.

3. For each cluster, recompute its center as the average of all its
assigned points.

4. Repeat 2 and 3 until some stopping criterion is met.

There are clever ways to initialize the clusters if they are not present at the beginning and to
establish when they have become stable enough to stop, but otherwise, the algorithm is very
straightforward.
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In scikit-learn, the code to perform the clustering looks as the following:

from sklearn.cluster import KMeans

model = KMeans(n_clusters=k)

model . fit(my_data)

labels = model.labels_

cluster_centers = model.cluster_centers_

k-Means clustering has an interesting property (sometimes a benefit) that when k is larger than
the “actual” number of clusters in the data, you will split a large “real” cluster into several com-
puted ones. In this case, k-means clustering is less of a way to identify clusters and more of a way
to partition your dataset into “natural” regions, as shown in this figure where we set k =3, but
there were really two clusters.

Situations such as this can often be found using the silhouette score to find clusters that are not
very distinct.

The results of k-means clustering are extremely easy to apply to new data; you simply compare a
new data point to each of the cluster centers and assign it to the one that it’s closest to.

An important caveat about k-means is that there is no guarantee about finding optimal clusters
in any sense. For this reason, it is common to restart it several times with different, random initial
cluster centers. Scikit-learn does this by default.

10.7.3 Gaussian Mixture Models

A key feature of most clustering algorithms is that every point is assigned to a single cluster. But
realistically, many datasets contain a large gray area, and mixture models are a way to cap-
ture that.

You can think of Gaussian mixture models (GMMs) as a version of k-means that captures the
notion of a gray area and gives confidence levels whenever it assigns a point to a particular
cluster.

Each cluster is modeled as a multivariate Gaussian distribution, and the model is specified by
giving the following:

1) The number of clusters.
2) The fraction of all data points that are in each cluster.
3) Each cluster’s mean and its d-by-d covariance matrix.
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When training a GMM, the computer keeps a running confidence level of how likely each point
is to be in each cluster, and it never decides them definitively: the mean and standard deviation for
a cluster will be influenced by every point in the training data, but in proportion to how likely they
are to be in that cluster. When it comes time to cluster a new point, you get out a confidence level
for every cluster in your model.

Mixture models have many of the same blessings and curses of k-means. They are simple to
understand and implement. The computational costs are very light and can be done in a distrib-
uted way. They provide clear, understandable output that can be easily used to cluster additional
points in the future. On the other hand, they both assume more-or-less convex clusters, and they
are both liable to fall into local minimums when training.

In scikit-learn, the code to fit a GMM looks such as the following:

from sklearn import mixture

model = mixture.GMM (n_components=5)

model . fit (my_data)

cluster_means = model _.means_

# array giving the weight of each datapoint for each of the clusters
labels = model .predict_proba(my_date)

I'should also note that GMMs are the most popular instance of a large family of mixture models.
You could equally well have used something other than Gaussians as the models for your underly-
ing clusters or even had some clusters be Gaussians and others something else. Most mixture
model libraries use Gaussian, but under the hood, they are all trained with something called the
EM (“expectation maximization”) algorithm, and it is agnostic to the distribution being modeled.

10.7.4 Agglomerative Clustering

Hierarchical clustering is a general class of algorithms sharing a common structure. We start off with
a large number of small clusters, typically with each point being its own cluster. We then successively
merge clusters together until they form a single giant cluster. So, the output isn’t a single clustering of
the data, but rather a hierarchy of potential clusterings. How you choose which clusters to merge and
how we find the “happy medium” clustering in the hierarchy determine the specifics of the algorithm.

An advantage of hierarchical clustering over k-means is that (depending on how you choose to
merge your clusters) your clusters can be of any size or shape. A disadvantage though is that there’s
no natural way to assign a new point to an existing cluster.

The following Python code will perform an agglomerative clustering of the data until five clusters
remain, merging, and assigning each point to one of the clusters. “Ward” linkage means that we pick
which clusters to merge by looking for the two clusters with the lowest variance between them.

from sklearn.cluster import AgglomerativeClustering
clst = AgglomerativeClustering(

n_clusters=5, linkage="ward")
cluster_labels = clst.fit_predict(my_data)

10.7.5 Evaluating Cluster Quality

Algorithmic methods to evaluate the outcome of clustering come in two major varieties. First,
there are the supervised ones, where we have some ground-truth knowledge about what the “right”
clusters are, and we see how closely the clusters we found match up to them. Then, there are the
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unsupervised ones, where we think of the points as vectors in d-dimensional space and look at
how geometrically distinct the clusters are from each other.

10.7.6 Silhouette Score

Silhouette scores are the most common unsupervised method you’ll see, and they are ideal for
scoring the output of k-means clustering. It is based on the intuition that clusters should be dense
and widely separated from each other, so similar to k-means, it works best with dense, compact
clusters that are all of comparable size. Silhouette scores aren’t applicable to things such as a
doughnut-shaped cluster with a compact one in the middle.

Specifically, every point is given a “silhouette coefficient” defined in terms of

e a = the average distance between the point and all other points in the same cluster.
o b =the average distance between the point and all other points in the next-closest cluster.

The silhouette coefficient is then defined as

= b—a
B max(a,b)

The coefficient is always between —1 and 1. If it is near 1, this means that b is much larger than
a, that is, the point is on average much closer to points in its own cluster. A score near 0 suggests
that the point is equidistant from the two clusters, that is, they overlap in space. A negative score
suggests that the point is wrongly clustered.

The silhouette score for a whole cluster is the average coefficient over all points in the cluster.

The silhouette score is far from perfect. For example, imagine that one cluster is much larger
than another and that they are very close, as in the following figure. The point indicated is clearly
in the right cluster, but because its cluster is so large, it is far away from most of its clustermates.
This will give it a poor silhouette score because it is closer, on average, to the points in the nearby
cluster than its own cluster.

However, the silhouette score is straightforward to compute and easy to understand, and you
should consider using it if your cluster scheme rests on similar assumptions.
The silhouette score is built into scikit-learn and can be called in the following way:

from sklearn.metrics import silhouette_score

from sklearn.metrics import silhouette_samples
coeffs_for_each_point = silhouette _samples (mydata, labels)
avg_coeff = silhouette_score(mydata, labels)
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10.7.7 Rand Index and Adjusted Rand Index

The Rand index is useful when we have knowledge of the correct clusters for at least some of the
points. It doesn’t try to match up the clusters we found to the right ones we know. Instead, it is based
on the idea of whether two points that should be in the same cluster are, indeed, in the same cluster.

A pair of points (x, y) is said to be “correctly clustered” if we put x and y in the same cluster and
our ground truth also has them in the same cluster. The pair is also correctly clustered if we put x
and y in different clusters and our ground truth has them in different clusters. If there are n points
for which we know the right cluster, there are n(n —1)/2 different pairs of such points. The Rand
index is the fraction of all such points that are correctly clustered. It ranges from 0 to 1, with
1 meaning that every single pair of points is incorrectly clustered.

The problem with the Rand index is that even if we cluster points randomly, we will get some
pairs correct by chance and have a score greater than 0. In fact, the average score will depend on
the relative sizes of the correct clusters; if there are many clusters and they’re all small, then most
pairs of points will, by dumb luck, be correctly assigned to different clusters.

The “adjusted Rand index” solves this problem by looking at the sizes of the identified clusters
and the size of the ground-truth clusters. It then looks at the range of Rand indices possible given
those sizes and scales the Rand index so that it is 0 on average if the cluster assignments are ran-
dom and still maxes out at 1 if the match is perfect. Code for the rand index is as follows:

from sklearn import metrics

labels_true = [0, O, O, 1, 1, 1]

labels_pred = [0, O, 1, 1, 2, 2]
metrics.adjusted_rand_score(labels_true, labels_pred)

10.7.8 Mutual Information

Another supervised cluster quality metric is mutual information. Mutual information is a concept
from information theory and is similar to correlation, except that it applies to categorical variables
instead of numerical ones. In the context of clustering, the idea is that if you pick a random data
point from your training data, you get two random variables: the ground-truth cluster that the
point should be in and the identified cluster that it was assigned to. The question is how good a
guess you can make about one of these variables if you only know the other one. If these probabil-
ity distributions are independent, then the mutual information will 0, and if either can be perfectly
inferred from the other, then you get the entropy of the distribution.
The mutual information score is available in scikit-learn as the following:

from sklearn import metrics

labels_true = [0, O, O, 1, 1, 1]

labels_pred = [0, O, 1, 1, 2, 2]
metrics.mutual_info_score(labels_true, labels_pred)

10.8 Further Reading

1 Bishop, C, Pattern Recognition and Machine Learning, 2007, Springer, New York, NY.
2 Scikit-learn 0.171.1 documentation, 2016, http://scikit-learn.org/stable/index.html, viewed 7 August
2016, The Python Software Foundation.
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10.9 Glossary

Adjusted Rand index A variant of the Rand index that is 0 when the that is 0 when the Rand
index is no better than chance.

Agglomerative clustering A clustering method where you look for two clusters (which could
be just single points) that are close to each other and then merge them into a single cluster.
You do this until some stopping criterion is reached.

Eigenface When using PCA on images of faces, the eigenfaces are the principal components.
When viewed as images, they are usually ghostly pseudo-faces.

Gaussian mixture model A mixture model where all clusters are modeled as Gaussian
distributions.

k-means clustering Probably, the most popular clustering method. It assumes compact,
nonoverlapping clusters. It works well in practice, is efficient to train, and can easily be used
to clustering other points in the future.

Mixture model A probability model used in clustering. Every cluster is modeled as a probability
distribution that its points are drawn from. This makes it plausible for a point in your dataset to
be in the gray area between two clusters, where it could plausibly have come from either.

Mutual information A measure of “correlation” between two probability distributions that can
be used as a measure of how well a set of clusters corresponds to known ground-truth clusters

Principal component analysis A dimensionality reduction technique where you express your
input data points, to a good approximation, as linear combinations of several “principal
component” vectors. Examining the components themselves can give insights into the dataset.

PCA Popular shorthand for Principal Component Analysis

Rand index A measure of how well a set of clusters corresponds to known ground-truth
clusters.

Silhouette score A measure of how well compact and distinct from each other a collection of
clusters is.
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Regression

Regression is similar to classification: you have a number of input features, and you want to predict
an output feature. In classification, this output feature is either binary or categorical. With regression,
it is a real-valued number.

As typically presented, machine-learning regression algorithms fall into two main categories:

e Modeling the output as a linear combination of the inputs (possibly with some nonlinear pre-
processing of the inputs). There is a ton of elegant math here and principled ways to handle data
pathologies.

o Ugly hacks to deal with anything nonlinear.

This chapter will review several of the more popular regression techniques in machine learning,
along with some techniques for assessing how well they performed.

I have made the unconventional decision to include fitting a curve (like a line, parabola, or
exponential decay) to two-dimensional data within the chapter on regression. You usually don’t
see curve fitting in the context of machine-learning regression, but they’re really the same thing
mathematically: you assume some functional form for the output as a function of the inputs (such
asy = myx; + myX,, where the x; are inputs and m; are model parameters), and then you choose the
parameters to line up with your training data.

The difference in terminology is partly historical accident: “fitting a curve” was developed in
the early 1800s long before the invention of computers. But, there is also a difference in spirit.
When you “fit a curve,” you typically have a theoretical or intuitive understanding of the system
and the real-world relationships between the variables. You pick a model (often a nonlinear one)
that reflects that understanding in an idealized way, and the parameters you tune have clear
real-world interpretations. Exponential decay is a great example: there are many real-world sys-
tems that a priori should fit an exponential decay curve, and fitting the curve to data is equivalent
to measuring the decay rate empirically. On the other hand, when you do “regression,” there is
typically no pretense of capturing real-world relationships; the goal is just to match the available
data in a way that generalizes to future data. This sometimes comes at the cost of an ugly, hardto-
interpret formula. The functional forms in regression are chosen for their mathematical proper-
ties and their ability to approximate a wide range of functions, not because they reflect any
real-world relationship.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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11.1 Example: Predicting Diabetes Progression

The following script uses a dataset describing physiological measurements taken from 442 diabetes
patients, with the target variable being an indicator of the progression of their disease. After the
script comes, the images it generates.

import sklearn.datasets
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cross_validation import train_test split
from sklearn.linear_model import\
LinearRegression, Lasso
from sklearn.preprocessing import normalize
from sklearn.metrics import r2_score
diabetes = sklearn.datasets.load_diabetes()
X, Y = normalize(diabetes["data"]), diabetes["target”]
X_train, X test, Y_train, Y_test = \
train_test_split(X, Y, test_size=_8)
linear = LinearRegression()
linear. fit(X_train, Y_train)
preds_linear = linear.predict(X_test)
corr_linear = round(pd.Series(preds_linear).corr(
pd.Series(Y_test)), 3)
rsquared_linear = r2_score(Y_test, preds_linear)
print(*'Linear coefficients:", linear.coef )
plt.scatter(preds_linear, Y_test)
plt.title('Lin. Reg. Corr=%f Rsq=%f"
% (corr_linear, rsquared_linear))
plt.xlabel (""Predicted™)
plt.ylabel ("'Actual')
# add x=y line for comparison
plt.plot(Y_test, Y_test, “k--7)
plt.show()
lasso = Lasso()
lasso.fit(X_train, Y_train)
preds_lasso = lasso.predict(X_test)
corr_lasso = round(pd.Series(preds_lasso).corr(
pd.Series(Y_test)), 3)
rsquared_lasso = round(
r2_score(Y_test, preds_lasso), 3)
print(*'Lasso coefficients:", lasso.coef )
plt.scatter(preds_lasso, Y_test)
plt.title('Lasso. Reg. Corr=%f Rsg=%f"
% (corr_lasso, rsquared_lasso))
plt.xlabel (""Predicted")
plt.ylabel (""Actual')
# add x=y line for comparison
plt.plot(Y_test, Y_test, “k--7)
plt.show()
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11.2 Fitting a Line with Least Squares

The simplest example of regression is one that you probably saw in high school: fitting a line to
data. I will begin the chapter with this. It is not only the simplest example but probably also the
most common; it illustrates essentially all the key concepts involved, and it is also the simplest
example of “fitting a curve.”

Recall that you have a collection of x/y pairs, and you try to fit a line to them of the form

y=mx+b
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I remember back in school being encouraged to plot the points out on graph paper, fit a line to
them by eye, trace the line with a ruler, and use that to pull out m and b. In some ways, I still think
that’s the best way to do it, because the human eye can account for outliers and instantly notice
data pathologies. Recall Anscombe’s quartet, where each of the four datasets has the same line of
best fit and the same quality of fit, at least using the standard methods:

Anscombe’s quartet
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However, we also need an objective way to pull out a number — one that can be done by a
computer without human intervention.

The standard way to fit a line is called least squares. In Python, it can be fit using the linear
regression class in the example scripts, and the fit coefficients can be found in the following way:

>>>
>>>
>>>

import numpy as np

x = np.array ([[0.0],[1.0],[2.01D)
y = np.array ([1.0,2.0,2.9])

>>> Im = LinearRegression().fit(x, y )
>>> Im.coef_ # m

array([ 0.95])

>>> Im.intercept_# b
1.0166666666666671

Least squares works by picking the values of m and b that minimize the “penalty function,”
which adds up an error term across all of the points:

L:Zi:(yi —(mx,- +b))2

That is, for every x, we take the difference between the predicted value at that point and the
actual value at that point (called the “error”), then square it. The error itself can be positive or
negative, but the square will always be positive unless the prediction is exactly correct. The sum of
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these squared errors reflects the overall deviation of our line from the data - picking m and b so as
to minimize this overall deviation is a mathematically precise way to “fit a line.”

11.3 Alternatives to Least Squares

Least squares is by far the more common penalty function and the oldest. This is partly because it
has many convenient mathematical properties, and partly because it is easy to compute by hand (it
was developed before computers). However, it is not always the most suitable penalty function for
a particular problem.

The key thing to understand is that this penalty function makes least-squares regression
extremely sensitive to outliers in the data. Ten deviations of size 1 will give a penalty of 10, but just
a single larger deviation of size 4 will give a greater overall penalty of 16. Linear regression will
bend the parameters so as to avoid large deviations at any single point, even if that means creating
many medium-sized errors. This makes least squares a poor match in situations where you expect
a handful of large deviations, and you want to see past this occasional noise to the underly-
ing signal.

An alternative approach that is more suitable to data with large outliers is to use the penalty
function

L=Z|yi—(mx,~+b)|

where we just take the absolute values of the different error terms and add them. This is called “L1
regression,” among other names. Outliers will still have an impact, but it is not as egregious as with
least squares. On the other hand, L1 regression penalizes small deviations from expectation more
harshly compared to least squares, and it is significantly more complicated to implement
computationally.

There are many other penalty functions you could imagine using, which can be carefully crafted
to suit a real-world situation. This is rarely worth the trouble though: least squares (also known as
L2) is by far the most common, and if outliers are a big concern, people sometimes use L1. Unless
otherwise stated, in this chapter, I will tacitly assume that we are using least squares. Not because
least squares is the best, but because the choice of penalty function is largely orthogonal to the
other topics we will discuss.

11.4 Fitting Nonlinear Curves

Fitting a curve to data is a ubiquitous problem not just in data science but in engineering and the
sciences in general. Often there are good a priori reasons that we expect a certain functional form,
and extracting the best-fit parameters will tell us something very meaningful about the system we
are studying. A few examples that I've seen include the following:

o Exponential decay to some baseline. This is useful for modeling many processes where a system
starts in some kind of agitated state and decays to a baseline

y=ae ™ +¢
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o Exponential growth

b
y=ae™

o Logistic growth, which is useful in biology for modeling the population density of organisms
growing in a constrained environment that can only support so many individuals:

ebx

y=a -
c+e”

e Polynomials of various degrees
_ 2
y=ay+ax+ax

Least squares is the typical approach in all of these cases, where we pick the parameters so as to
minimize the penalty function

L= Zi:()’i _f(xi))z

In Python, the way to do general least-squares fitting is with the curve_fit function, shown in the
following code. It takes as its first argument a user-defined function, which takes in x and some
number of additional parameters (two parameters in this code), uses those parameters to calculate
some function of x, and returns the value. The next arguments are the x values and y values of the
data we have. Then, curve_fit, through a process of trial-and-error called optimization (which I'll
talk about later in the book), tries to find the values of the additional parameters that will minimize
the error term for the given x and y values. It returns a tuple of two things: the best-fitted parame-
ters and a matrix that estimates how much they vary.

The following script creates some data of the form y = 2+ 3x%, adds some noise to it, and then
uses curve_fit to fit a curve of the formy = a+ bx? to the data.

from scipy.optimize import curve_Ffit
Xs = np.array([1.0, 2.0, 3.0, 4.0
ys = 2.0 + 3.0 *xs*xs + 0.2*np.random.uniform(3)
def calc(x, a, b):
return a + b*x*x
cf = curve_fit(calc, xs, ys)
best_fit _params = cf[0]

When I ran it on my computer, it found a = 2.33677376 and b = 3, which is a pretty
good match.

I should note that, computationally, doing nonlinear fits such as this is extremely slow, and
the numerical algorithms can sometimes go horribly awry and give incorrect results. The best
way to address this, if you can, is to transform your problem into a linear one by fitting a line to
some function of your data (such as the log). If that is not possible, you can often improve the
performance by inputting an initial guess as an optional parameter: in curve_fit, that optional
argument is called p0. We will discuss more about the computational aspects of optimization in a
later chapter.
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11.5 Goodness of Fit:R? and Correlation

When you are assessing the quality of a fitted curve, there are two questions we want to answer:

e How accurately can we predict values?
e We assumed that the data followed some functional form. Was that even a good assumption?

The standard way to answer the first of the questions is called R?, pronounced “R squared.” R? is
often described as the fraction of the variance that is accounted for by the model. A value of
1.0 means a perfect match, and a value of 0 means you didn’t capture any of the variation.

If you want to get a bit more detailed, the calculation of R? is based on two concepts:

e The total variation:

V=315 -5

1
where P(¥) = o is the average of all the y values in your data. This measures the totality of how
much y deviates from its own baseline value.

e The residual variation:
|2

RV =3[y~ /()

measures the deviation of y values from your model’s prediction, squared so as to make all devia-
tions nonnegative.

These allow us to say, in a precise sense, that your fitted model accounts for a certain fraction of
the variation in the data. The definition of R? is then

K :1_(R%V)

and you can see it as the fraction of all variation that is captured by the model. Of course, taking
the squares of the residuals isn’t necessarily the “right” way to quantify variation, but it is the most
standard option.

Despite looking like a square, technically R* can be negative if your model is truly abysmal.
Having R* = 0 is what you would see if you just defined your fitted function to return the average
of y as a constant value:

f(x) =y forallx

You can think of this as the crudest way to fit a function to data. Do any worse than this, and your
R? score will go negative.
In the example script at the beginning of the chapter, the relevant lines for R squared were

from sklearn.metrics import r2_score
rsquared_linear = r2_score(Y_test, preds_linear)

A potential limitation of R? is that it will be made very large by having a small number of large
deviations - note that minimizing R* is equivalent to least-squares line fitting. In situations where
you expect a small number of gross outliers, you may want to explore alternatives.

141



142

11 Regression

Another way to quantify your goodness-of-fit is to simply take the correlation between your
predicted values and the known values in the test data. This has the advantage that you can use
Pearson, Spearman, or Kendall correlation, depending on how you want to deal with outliers. On
the other hand though, correlation just measures whether your predictions and target values are
related; it doesn’t measure whether they actually match up.

11.6 Correlation of Residuals

The main ways to measure goodness-of-fit in regression situations are R* and correlation between
predictions and targets. You typically don’t see people asking about whether the functional form
being assumed was actually the “correct” form. That is, people quantify how well their line fits
their data, but rarely ask whether a line (as opposed to exponential decay, a parabola, etc.) was even
the right curve to fit in the first place. If you are fitting two-dimensional data though, this question
can be addressed as well.

The simplest way to assess the quality of our model form is to plot the known data against a
curve of the predicted values. Do they match up? In Anscombe’s quartet, for example, it is visually
clear that a linear model is the correct way to approach the first dataset — deviations from the line
are due to noise in the data. But, lines are the wrong way to approach the second dataset, deviations
are due to us having picked the wrong functional form.

One way to quantify this relationship is the so-called correlation of residuals. Intuitively, if our
model form is truly correct, the observed data should be our best-fit formula plus some random
noise. In that case, the actual data would be randomly above or below our curve. On the other
hand, if our model form was bad, we would expect long stretches where the data was systemati-
cally higher or lower than our curve. This suggests that we look across our data points, sorted by x,
and calculate the correlation between the consecutive residuals. A correlation near 0 suggests that
our model form was good, and any failure of its predictive power comes from true noise in the data,
rather than a failure to pick the right functional form.

11.7 Linear Regression

Now, let’s move on from fitting a curve and into topics that fit more firmly under the “machine-
learning” umbrella. First up: linear regression.
Linear regression is the same process as fitting a line to data, except that we say

Y=b+mx +myx, +...+myx,

where d is the number of input features we have. Most of the previous sections carry over directly
to this more general case: we fit the data using least squares, we quantify performance using R?,
and we can also use correlation between predicted and actual values.

The first big difference is that it’s no longer practical to plot the predicted curve against the
actual data points. What you can do instead is to make a scatterplot between the known test
values and the values predicted for those test data points. This allows us to gauge whether our
model performs better for larger or smaller values and whether it suffers from major outliers.
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To illustrate, the aforementioned example script will generate this figure for the linear
regression model:
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We can see that there is a clear correlation between the predicted and actual numbers, but it is
fairly tenuous. In particular, we can see that there are a number of data points where the actual
value was substantially below our predictions, that is, their diabetes was significantly less damag-
ing than we would have guessed based on the other measurements. In fact, the fit line as a whole
looks slightly more shallow than the data itself. Together, these suggest that there are a number
of anomalously low data points, which are pulling our overall predictions lower than perhaps
they should be.

The other thing that we can do with linear regression is use it to identify features in the data
that are particularly interesting. In the example script, we used the normalize() function to
scale all the features so that they had mean 0 and standard deviation 1. This means that, by
looking at the relative size of their weights in the linear model, we can get a sense of how
related they are to the progression of diabetes. In the example script, I print out the coefficients
as the following:

>>> print(linear.coef )
[-28.12698694 -33.32069944 85.46294936 70.47966698
-37.66512686

20.59488356 -14.6726611 33.10813747 43.68434357
-5.50529361]

This suggests that the third and fourth features are particularly interesting, if we want to zero in
on and examine their relationship to diabetes more closely.
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11.8 LASSO Regression and Feature Selection

Look at the coefficients in the linear regression again. We are able to identify several features as
being more promising than the other as targets of further investigation, but the painful truth is that
all of the coefficients except that last one are pretty big. There are two problems with this:

o It makes it harder to pinpoint exactly which features are the most interesting.
e There is a very good chance that the data are overfitted.

For example, what does it mean if two of our input features are highly correlated with each
other, but one gets a large positive weight and the other a large negative weight in our trained
model? What that probably means is that they usually cancel each other out, except for a small
portion of your training data for which they work by dumb luck. That is, your model is badly over-
fitted to the training data, it won’t work well for future data, and you don’t really have any idea how
important those features are. You could avoid this problem by only feeding one of the features into
the model, but which one do you choose?

LASSO makes the choice for you, during the training process. Intuitively, it strikes a balance
between fitting the model to the data and trying to make as many coefficients 0 as possible. The
resulting model should be simpler, less over-fitted, and vastly easier to reason about.

Recall that linear regression works by minimizing the penalty function

L= IZ()’I' —f(xi))z

LASSO works by adding another term to this penalty function: the sum of the absolute values of
all coefficients, times a parameter called alpha that signifies how strongly we want to whittle down
our features.

The sample script produces the same scatterplot and performance metrics that were created for
linear regression. We can see that the predicted/actual scatterplot hugs the middle line a little more
closely, suggesting a better fit. This eyeballing is borne out by the higher R* value and correlation.
The linear model was indeed overfitting the data.
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The difference between linear and lasso jumps out when we look at the fitted coefficients:

>>> print(lasso.coef )

[ -O. -11.49747021 73.20707164 37.75257628
0. 0.

-10.36895667 3.70576596 24.17976499 0. 1

Four of the ten features have weights of precisely 0. Of the remaining features, it is clear that the
third is the most relevant to diabetes progression, followed by the fourth and the ninth.

11.9 Further Reading

1 Bishop, C, Pattern Recognition and Machine Learning, 2007, Springer, New York, NY.
2 Scikit-learn 0.171.1 documentation, 2016, viewed 7 August 2016, http://scikit-learn.org/stable/
index.html, The Python Software Foundation.

11.10 Glossary

L1 penalty A regression method where we tune our model parameters so as to minimize the
sum of the absolute values of the residuals. This method is more robust to outliers than least
squares.

L2 penalty A synonym for using least squares.

Least squares A regression method where we tune our model parameters so as to minimize the
sum of the squares of the residuals. This is the most standard best-fit method.

R squared A measure of how well a regression model fits the data. It is the fraction of all the
test data’s variance that is accounted for by the model.

Residual The difference between the value predicted for a data point and the actual
observed value.

145


http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html

12

Data Encodings and File Formats

Coming from a background of academic physics, my first years in data science were one big exercise
in discovering new data formats that I probably should have already known about. It was a bit
demoralizing at the time, so let me make something clear upfront: people are always dreaming up
new data types and formats, and you will forever be playing catch-up on them. However, there are
several formats that are common enough you should know them. It seems that every new format
that comes out is easily understood as a variation of a previous format, so you’ll be on good footing
going forward. There are also some broad principles that underlie all formats, and I hope to give
you a flavor of them.

First, I will talk about specific file formats that you are likely to encounter as a data scientist. This
will include sample code for parsing them, discussions about when they are useful, and some
thoughts about the future of data formats.

For the second half of the chapter, I will switch gears to a discussion of how data is laid out in
the physical memory of a computer. This will involve peaking under the hood of the computer to
look at performance considerations and give you a deeper understanding of the file formats we just
discussed. This section will come in handy when you are dealing with particularly gnarly data
pathologies or writing code that aims for speed when you are chugging through a dataset.

12.1 Typical File Format Categories

There are many, many different specific file formats out there. However, they fall under several
broad categories. This section will go over the most important ones for a data scientist. The list is
not exhaustive, and neither are the categories mutually exclusive, but this should give you a broad
lay of the land.

12.1.1 Text Files

Most raw data files seen by data scientists are, at least in my experience, text files. This is the most
common format for CSV files, JSON, XML, and web pages. Pulls from databases, data from the
web, and log files generated by machines are all typically text. The advantage of a text file is that it
is readable by a human being, meaning that it is very easy to write scripts that generate it or parse
it. Text files work best for data with a relatively simple format.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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There are limitations though. In particular, text is a notoriously inefficient way to store numbers.
The string “938238234232425123” takes up 18 bytes, but the number it represents would be stored
in memory as 8 bytes. Not only is this a price to pay for storage, but the number must be converted
from text to a new format before a machine can operate on it.

12.1.2 Dense Numerical Arrays

If you are storing large arrays of numbers, it is much more space- and performance-efficient to
store them in something such as the native format that computers use for processing numbers.
Most image files or sound files consist mostly of dense arrays of numbers, packed adjacent to each
other in memory. Many scientific datasets fall into this category too. In my experience, you don’t
see these datasets as often in data science, but they do come up.

12.1.3 Program-Specific Data Formats

Many computer programs have their own specialized file format. This category would include
things such as Excel files, db files, and similar formats. Typically, you will need to look up a tool to
open one of these files.

In my experience, opening them often takes a while computationally, since there are often a lot
of bells and whistles built into the program that may or may not be present in this particular data-
set. This makes it a pain to reparse them every time you rerun your analysis scripts - often, it takes
much longer than the actual analysis does. What I typically do is make CSV versions of them right
up-front and use those as the input to my analyses.

12.1.4 Compressed or Archived Data

Many data files, when stored in a particular format, take up a lot more space compared to the file
in question logically needs; for example, if most lines in a large text file are exactly the same or a
dense numerical array consists mostly of 0s. In these cases, we want to compress the large file into
a smaller one, so that it can be stored and transferred more easily. A related problem is when we
have a large collection of files that we want to condense into a single file for easier management,
often called data archiving. There are a variety of ways that we can encode the raw data into these
more manageable forms.

There is a lot more to data compression than just reducing the size. A “perfect” algorithm would
have the following properties:

o It generally reduces the size of the data, easing storage requirements.

o If it can’t compress the data much (or at all), then at least it doesn’t balloon it to take up much
MORE space.

e You can decompress it quickly. If you do this really well, it might take you less time to load the
compressed data compared to the raw data itself, even with the decompression step. This is
because decompression in RAM can be fairly quick, but it takes a long time to pull extra data
off the disk.

e You can decompress it “one line at a time,” rather than loading the entire file. This helps you deal
with corrupt data and typically makes decompression go faster since you’re operating on less
data at a time.

e You can recompress it quickly.
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In the real world, there is a wide range of compression algorithms available, which balance
these interests in a lot of different ways. Compression becomes especially important in Big
Data settings, where datasets are typically large and reloaded from disk every time the
code runs.

12.2 CSVFiles

CSV files are the workhorse data format for data science. “CSV” usually stands for “comma-
separated value,” but it really should be “character-separated value” since characters other than
commas do get used. Sometimes, you will see “.tsv” if tabs are used or “.psv” if pipes (the “|” char-
acter) are used. More often though, in my experience, everything gets called CSV regardless of the
delimiter.

CSV files are pretty straightforward conceptually - just a table with rows and columns. There are
a few complications you should be aware of though:

o Headers. Sometimes, the first line gives names for all the columns, and sometimes, it gets right
into the data.

¢ Quotes. In many files, the data elements are surrounded by quotes or another character. This is
done largely so that commas (or whatever the delimiting character is) can be included in the
data fields.

o Nondata rows. In many file formats, the data itself is CSV, but there are a certain number of
nondata lines at the beginning of the file. Typically, these encode metadata about the file and
need to be stripped out when the file is loaded into a table.

e Comments. Many CSV files will contain human-readable comments, as source code does.
Typically, these are denoted by a single character, such as the # in Python.

o Blank lines. They happen.

o Lines with the wrong number of columns. These happen too.

The following Python code shows how to read a basic CSV file into a data frame
using Pandas:

import pandas
df = pandas.read_csv("myfile.csv")

If your CSV file has weird complexities associated with it, then read_csv has a number of optional
arguments that let you deal with them. Here is a more complicated call to read_csv:

import pandas
df = pandas.read_csv("myfile.csv'",

sep = |, # the delimiter. Default is the comma
header = False,

quotechar = &rsquo;'&rsquo;,

compression = "'gzip",

comment = &rsquo;#&rsquo;

In my work, the optional arguments I use most are sep and header.
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12.3 JSON Files

JSON is probably my single favorite data format, for its dirt simplicity and flexibility. It is a way to
take hierarchical data structures and serialize them into a plain text format. Every JSON data struc-
ture is either of the following:

An atomic type, such as a number, a string, or a Boolean.

A JSONObject, which is just a map from strings to JSON data structures. This is similar to Python
dictionaries, except that there are keys in the JSONObject.

An array of JSON data structures. This is similar to a Python list.

Here is an example of some valid JSON, which encodes a JSONObject map with a lot of

substructures:

{

"FirstName': "John",
"lastName': "Smith",
"isAlive": true,
age'': 25,
"address'": {

}

'streetAddress': ""21 2nd Street",
‘city": "New York",

'state': "'NY",

‘postalCode’: "10021-3100"

“children”:["alice","john" ,{"name" :""alice", "birth_order":2}],
"'spouse': null

}

Note, a few things about this example:

The fact that I've made it all pretty with the newlines and indentations is purely to make it
easier to read. This could have all been on one long line and any JSON parser would parse it
equally well. A lot of programs for viewing JSON will automatically format it in this more leg-
ible way.

The overall object is conceptually similar to a Python dictionary, where the keys are all strings
and the values are JSON objects. The overall object could have been an array too though.

A difference between JSON objects and Python dictionaries is that all the field names have to be
strings. In Python, the keys can be any hashable type.

The fields in the object can be ordered arrays, such as “children.” These arrays are analogous to
Python lists.

You can mix and match types in the object, just as in Python.

You can have Boolean types. Note though that they are declared in lower case.

There are also numerical types.

There is a null supported.

You can nest the object arbitrarily deeply.

Parsing JSON is a cinch in Python. You can either “load” a JSON string into a Python object (a

dictionary at the highest level, with JSON arrays mapping to Python lists, etc.) or “dump” a Python
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dictionary into a JSON string. The JSON string can either be a Python string or be stored in a file,
in which case you write from/to a file object. The code looks as follows:

>>> import json

>>>  json_str = """'{"name": "Field", "height":6.0}"""
>>> my_obj = json.loads(json_str )

>>> my_obj

{u“name®: u“Field", u“height® : 6.0}

>>> str_again = json.dumps(my_obj)

Historically, JSON was invented as a way to serialize objects from the JavaScript language. Think
of the keys in a JSONODbject as the names of the members in an object. However, JSON does NOT
support notions such as pointers, classes, and functions.

12.4 XML Files

XML is similar to JSON: a text-based format that lets you store hierarchical data in a format that

can be read by both humans and machines. However, it’s significantly more complicated than

JSON - part of the reason that JSON has been eclipsing it as a data transfer standard on the web.
Let’s jump in with an example:

<GroupOfPeople>

<person gender="male'>

<Name>Field Cady</Name>
<Profession>Data Scientist</Profession>
</person>

<person gender="female'>
<Name>Ryna</Name>
<Profession>Engineer</Profession>
</person>

</GroupOfPeople>

Everything enclosed in angle brackets is called a “tag.” Every section of the document is
bookended by a matching pairs of tags, which tell what type of section it is. The closing tag con-
tains a slash “/” after the “<”. The opening tag can contain other pieces of information about the
section - in this case, “gender” is such an attribute. Because you can have whatever tag names or
additional attributes you like, XML lends itself to making domain-specific description languages.

XML sections must be fully nested into each other, so something such as the following is invalid:

<a><b></a></b>

[t}

because the “b” section begins in the middle of the “a” section but doesn’t end until the “a” is
already over. For this reason, it is conventional to think of an XML document as a tree structure.
Every nonleaf node in the tree corresponds to a pair of opening/closing tags, of some type and pos-
sibly with some attributes, and the leaf nodes are the actual data.

Sometimes, we want the start and the end tag of a section to be adjacent to each other. In this case,
there is a little bit of syntactic sugar, where you put the closing “/” before the closing angle bracket. So,

<foo a="'bar''></foo>
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is equivalent to
<foo a="‘bar'/>

A big difference between JSON and XML is that the content in XML is ordered. Every node in the
tree has its children in a particular order - the order in which they come in the document. They
can be of any types and come in any order, but there is AN order.

Processing XML is a little more finicky than processing JSON, in my experience. This is for two
reasons:

o It’s easier to refer to a named field in a JSON object than to search through all the children of an
XML node and find the one you’re looking for.

e XML nodes often have additional attributes, which are handled separately from the node’s
children.

o This isn’t inherent to the data formats, but in practice, JSON tends to be used in small snippets,
for smaller applications where the data has regular structure. So, you typically know exactly how
to extract the data you’re looking for. In contrast, XML is liable to be a massive document with
many parts, and you have to sift through the whole thing.

In Python, the XML library offers a variety of ways of processing XML data. The simplest is the
ElementTree sublibrary, which gives us direct access to the parse tree of the XML. It is shown in
this code example, where we parse XML data into a string object, access and modify the data, and
then reencode it back to an XML string:

>>> import xml._etree.ElementTree as ET
>>> xml:str = """
<data>
<country name="Liechtenstein'>
<rank>1</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>
</country>
<country name="'Singapore'>
<rank>4</rank>
<year>20l11</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>
</country>
<country name="‘Panama'>
<rank>68</rank>
<year>20l11</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia"™ direction="E"/>
</country>
</data>
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>>> root = ET.fromstring(xml:str)

>>> root.tag

"data*

>>> root[0] # gives the zeroth child

<Element "country® at 0x1092d4410>

>>> yroot.attrib # dictionary of node"s attributes
O

>>> root.getchildren

[<Element “country® at 0x1092d4410>, <Element
"country® at 0x1092d47d0>, <Element "country® at
0x1092d4910>]

>>> del root[0] # deletes the zeroth child from the tree
>>> modified_xml_str = ET.tostring(root)

The “right” way to manage XML data is called the “Document Object Model.” It is a little more
standardized across programming languages and web browsers, but it is also more complicated to
master. The ElementTree is fine for simple applications and capable of doing whatever you need
it to do.

12.5 HTMLFiles

By far, the most important variant of XML is HTML, the language for describing pages on the web.
Practically speaking, the definition of “valid” HTML is that your web browser will parse it as
intended. There are differences between browsers, some intentional and some not, and that’s why
the same page might look different in Chrome and Internet Explorer. But browsers have largely
converged on a standard version of HTML (the most recent official standard is HTMLS5), and to a
first approximation, that standard is a variant of XML. Many web pages could be parsed with an
XML parser library.

I mentioned in the last section that XML can be used to create domain-specific languages, each
of which is defined by its own set of valid tags and their associated attributes. This is the way
HTML works. Some of the more notable tags are given in the following table:

Tag Meaning Example
<a> Hyperlink Click <a href="www.google.
com">here</a> to go to Google
<img> Image <img src="smiley.gif'">
<h1>-<h6> Headings of text <h1>The Title</h1>
<div> Division. It doesn’t get rendered but helps to <div class="main-text">My body
organize the document. Often, the “class” of text</div>

attribute is used to associate the contents of the
division with a desired style of text formatting

<ul>and <li>  Unordered lists (usually rendered as bulleted lists) ~ Here is a list:
and list items <ul>
<li>Item One</li>
<li>Item Two</li>
</ul>
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The practical problem with processing HTML data is that, unlike JSON or even XML, HTML
documents tend to be extremely messy. They are often individually made, edited by humans, and
tweaked until they look “just right.” This means that there is almost no regularity in structure from
one HTML document to the next, so the tools for processing HTML lean toward combing through
the entire document to find what it is you’re looking for.

The default HTML tool for Python is the HTMLParser class, which you use by creating a subclass
that inherits from it. An HTMLParser works by walking through the document, performing some
action each time it hits a start or an end tag or other piece of text. These actions will be user-defined
methods on the class, and they work by modifying the parser’s internal state. When the parser has
walked through the entire document, its internal state can be queried for whatever it is you were
looking for. One very important note is that it’s up to the user to keep track of things such as how
deeply nested you are within the document’s sections.

To illustrate, the following code will pull down the HTML for a Wikipedia page, step through its
content, and count all hyperlinks that are embedded in the body of the text (i.e., they are within
paragraph tags):

from HTMLParser import HTMLParser
import urllib
TOPIC = "Dangiwa_Umar"
url = "https://en.wikipedia.org/wiki/%s™ % TOPIC
class LinkCountingParser(HTMLParser):
in_paragraph = False
link_count = 0O
def handle_starttag(self, tag, attrs):
if tag=="p": self.in_paragraph = True
elif tag=="a" and self.in_paragraph:
self_link_count += 1
def handle_endtag(self, tag):
ifT tag=="p~": self.in_paragraph = False
html = urllib_.urlopen(url).read()
parser = LinkCountingParser()
parser.feed(html)
print('there were", parser.link _count, \
"links in the article™)

12.6 Tar Files

Tar is the most popular example of an “archive file” format. The idea is to take an entire directory
full of data, possibly including nested subdirectories, and combine it all into a single file that you
can send in an e-mail, store somewhere, or whatever you want. There are a number of other
archive file formats, such as ISO, but in my experience, tar is the most common example.

Tarring a directory doesn’t actually compress the data - it just combines the files into one file
that takes up about as much space as the data did originally. So in practice, Tar files are almost
always then zipped. GZipping in particular is popular. The “.tgz” file extension is used as a short-
hand for “.tar.gz”, that is, the directory has been put into a Tar file, which was then compressed
using the GZIP algorithm.


https://en.wikipedia.org/wiki/%s
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12.8 Zip Files

Tar files are typically opened from the command line, such as the following:

# This will expand the contents of

# my_directory.tar into the local directory

tar -xvf my_directory.tar

# This command will untar and unzip

# a directory with has been tarred and g-zipped
tar -zxf file.tar.gz

# This command will tar the Homework3 directory
# into the file ILoveHomework.tar

tar -cf lLoveHomework.tar Homework3

B AL LD R P

12.7 GZip Files

Gzip is the most common compression format that you will see on Unix-like systems such as
Mac and Linux. Often, it’s used in conjunction with Tar to archive the contents of an entire
directory. Encoding data with gzip is comparatively slow, but the format has the following
advantages:

o It compresses data super well.

o Data can be decompressed quickly.

o It can also be decompressed one line at a time, in case you only want to operate only on part of
the data without decompressing the whole file.

Under the hood, gzip runs on a compression algorithm called DEFLATE. A compressed gzip file
is broken into blocks. The first part of each block contains some data about the block, including how
the rest of the block is encoded (it will be some type of Huffman code, but you don’t need to worry
about the details of those). Once the gzip program has parsed this header, it can read the rest of the
block 1 byte at a time. This means there is minimal RAM being used up, so all the decompression
can go on near the top of the RAM cache and, hence, proceed at breakneck speed.

The typical commands for gzipping/unzipping from the shell are simple:

$ gunzip myfile.txt.gz # creates raw file myfile_txt
$ gzip myfile.txt # compresses the file into myfile. txt.gz

However, you can typically also just double-click on a file - most operating systems can open
gzip files natively.

12.8 Zip Files

Zip files are very similar to Gzip files. In fact, they even use the same DEFLATE algorithm under
the hood! There are some differences though, such as the fact that ZIP can compress an entire
directory rather than just individual files.

Zipping and unzipping files are as easy with ZIP as with GZIP:

$ # This puts several files into a single zip file
$ zip Filename.zip inputl.txt input2.txt resume.doc
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picl.jpg

$ # This will open the zip file and put

$ # all of its contents into the current directory
$ unzip Filename.zip

Besides their widespread use for archiving files, ZIP files are also used by the Java programming
language and its relatives. Compiled Java classes are stored as JAR files, but JAR files are created
just by zipping individual Java class files together. JAR is the same format as ZIP, except that you
are only combining Java class files rather than arbitrary file types.

12.9 Image Files: Rasterized, Vectorized, and/or Compressed

Image files can be broken down into two broad categories: rasterized and vectorized. Rasterized
files break an image down into an array of pixels and encode things such as the brightness or color
of each individual pixel. Sometimes, the image file will store the pixel array directly, and, other
times, it will store some compressed version of the pixel array. Almost all machine-generated data
will be rasterized.

Vectorized files, on the other hand, are a mathematical description of what the image should look
like, complete with perfect circles, straight lines, and so on. They can be scaled to any size without
losing resolution. Vectorized files are more likely to be company logos, animations, and similar
things. The most common vectorized image format you're likely to run into is SVG, which is actually
justan XML file under the hood (as I mentioned before, XML is great for domain-specific languages!).
However, in daily work as a data scientist, you're most likely to encounter rasterized files.

A rasterized image is an array of pixels that, depending on the format, can be combined with
metadata and then possibly subjected to some form of compression (sometimes using the DEFLATE
algorithm, such as GZIP). There are several considerations that differentiate between the different
formats available:

o Lossy versus lossless. Many formats (such as BMP and PNG) encode the pixel array exactly —
these are called lossless. But others (such as JPEG) allow you to reduce the size of the file by
degrading the resolution of your image.

e Grayscale versus RBG. If images are black-and-white, then you only need one number per
pixel. But, if you have a colored image, then there needs to be some way to specify the color.
Typically, this is done by using RGB encoding, where a pixel is specific by how much red, how
much green, and how much blue it contains.

o Transparency. Many images allow pixels to be partly transparent. The “alpha” of a pixel ranges
from 0 to 1, with 0 being completely transparent and 1 being completely opaque.

Some of the most important image formats you should be aware of are as follows:

o JPEG. This is probably the single most important one in web traffic, prized for its ability to mas-
sively compress an image with almost invisible degradation. It is a lossy compression format,
stores RGB colors, and does not allow for transparency.

e PNG. This is maybe the next most ubiquitous format. It is lossless and allows for transparency
pixels. Personally, I find the transparent pixels make PNG files super useful when I'm putting
together slide decks.

o TIFF. Tiff files are not common on the Internet, but they are a frequent format for storing high-
resolution pictures in the context of photography or science. They can be lossy or lossless.



12.10 It’s All Bytes at the End of the Day

The following Python code will read an image file. It takes care of any decompression or format-
specific stuff under the hood and returns the image as a NumPy array of integers. It will be a three-
dimensional array, with the first two dimensions corresponding to the normal width and height.
The image is read in as RBG by default, and the third dimension of the array indicates whether we
are measuring the red, blue, or green content. The integers themselves will range from 0 to 255,
since each is encoded with a single byte.

from scipy.ndimage import imread
img = imread("mypic-jpg")

If you want to read the image as grayscale, you can pass mode = “F” and get a two-dimensional
array. If you instead want to include the alpha opacity as a fourth value for each pixel, pass in
mode = “RGBA.”

12.10 It’s All Bytes at the End of the Day

Let’s spend a minute talking about how data is stored in the physical hardware of the
computer.

At the lowest level, the data in a computer file is a long array of bits, each of which is set to 0 or
1. That array is broken into 8-bit chunks called bytes. The concept of a byte is both conceptual and
physical. On the one hand, we usually break up a file into basic logical units that are composed of
bytes, such as having one byte to encode a letter or a number. You could theoretically create a file
format where the basic units were of 5 bits or 11 bits long, but the universal convention is to use
bytes. This is largely because the physical hardware of the computer is optimized to process data
one byte (or a group of several bytes) at a time.

A modern computer’s memory is called RAM, for “random access memory.” “Random” in this
case isn’t about probability: it refers to the fact that you can read/modify any part of memory with
about the same latency. The memory is physically broken up into bytes for easier processing. The
data structures that exist in memory as a program runs are, similarly to raw files, ultimately
encoded into bytes. Sometimes, the encodings used for a file and a real-time data structure are
identical, and, sometimes, they are quite different.

Historically, an atomic type in a programming language was defined to take up a fixed number
of bytes. An integer would frequently be allocated 4 bytes, and the integer was encoded in those
bytes in binary. Having every integer take up the same amount of space was critical, because the
physical layout of the bits doesn’t make it clear where one integer (or any other type of variable)
ends and another begins. These transitions generally occur on the boundaries between bytes, but
that’s it. The computer’s “native language” doesn’t have any notion of integers or any other data
type; to the computer everything is just bytes, so fixed-size variables are critical for keeping track
of things.

In modern languages such as Python, there are of course variable-size types. For example, a
Python string can take up arbitrarily many bytes. However, doing this requires overhead to keep
track of where one item ends and another begins, which translates to a substantial performance
cost. Modern languages tend to try for fixed-size atomic types whenever possible, but then revert
to the less-efficient version when necessary. Software that is intended to run extremely fast, like
Python’s numerical libraries, almost always strips out the overhead and limits itself to fixed-
size types.
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12.11 Integers

Integers are about the simplest atomic type to understand. Back in the day when RAM was more
expensive, people did all kinds of tricks to try and encode integers using fewer bits, but now things
have basically settled out:

o Aninteger gets a fixed number of bytes. Eight bytes is also typical, if you’re using a 64-bit computer.

o The integer is encoded in those bits in binary.

o One of the bitsisn’t interpreted as a binary digit: it is a flag saying whether the integer is negative.
If it’s negative, then typically the Os and 1s are flipped in the rest of the number, for arithmetic
efficiency reasons that you don’t need to worry about.

This system works seamlessly most of the time, but there is a maximum size of integer that can
be handled; 63 bits is only so big. In Python, you can get that upper bound in the following way:

>> import sys
>> sys.maxint
9223372036854775807

This number is 2 to the power of 63, since one of the bits is used to flag that the number is posi-
tive. This number is large enough for almost all purposes, but occasionally you need something
bigger. Oftentimes, you never even realize that you've ventured into this area! In Python, if you
ever declare a variable equal to something larger than sys.maxint, then Python will silently switch
over to a different, far less efficient data type called a “long.” From a programmer’s perspective,
long looks, feels, and acts as an int: the only clear sign that it’s something different is a telltale “L”
after the number when it’s displayed:

>>> 3*sys._maxint
27670116110564327421L

The seamless transition is a luxury afforded by using a very high-level language such as Python,
and you pay for it in efficiency. It takes overhead to check at every step whether the system needs
to switch over to using longs, and if things ever DO switch over the performance hit really cranks up.

12.12 Floats

Floating-point numbers are more complicated than integers, mostly because they are inherently
error-prone. A floating number can theoretically have infinitely many decimal places, and the
computer can only store finitely many of them. Innocuous operations such as taking a square root,
or even dividing by 3, can balloon a previously tame number into infinite-decimal land.

In almost every computer system, a floating-point value is stored as a pair of two numbers, typi-
cally a pair of the integers as discussed in the previous section:

o One integer stores the digits in the binary representation of the number.
o The other stores the location of the decimal point in the number.

The overwhelming advantage to this way of doing things is that it lets us represent both very
large and very small numbers with the same degree of accuracy; roundoff error will corrupt the
number 1 billion about the same percentage that it hurts the number 1 billionth. Other floating-
point schemes were tried out back in the day, but they are now in the dustbin of history.
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As a data scientist, you don’t need to worry too much about roundoff error; good partial workarounds
have been baked into most numerical algorithms, and the fact that RAM is so cheap now means
that we usually carry around many more decimal places than are necessary. However, roundoff
issues can show up in subtle ways, as shown in this script:

>>> x, y =0.1, 0.2
>>> X +y
0.30000000000000004

This is because 0.1 and 0.2 both have infinitely many decimal places when expressed in binary,
so Python only stores an approximation to them. The stored value of x is not 0.1; it is the closest
number to 0.1 that can be stored as a float. In this case, that number is slightly larger than 0.1, and
similarly for 0.2. When you add x and y, these small errors are large enough to add up. If you try to
look at the value of x, you will see

>>> X
0.1

This number is an illusion! Python is rounding x by a tiny bit before displaying it, as a visual
courtesy to the user. But, the error margin on x +y is large enough that Python will display it
instead.

As with large integers, there are computationally very expensive workarounds for the limitations
of machine floating points. Usually, these take the form of either storing numbers as arbitrary-
length strings or storing the arithmetic expressions that generated the numbers. These exceedingly
expensive, but technically exact, expressions are carried through a computation and can later be
approximately cast into the normal style of numbers.

Personally, I've never used an exact arithmetic system, and I don’t expect to. They are mostly
useful in theoretical math situations where exact equality is important, and this almost never
occurs in real-world work.

12.13 Text Data

The previous two subsections were kind of academic: you generally don’t need to worry about how
machines represent numbers in your daily work. This is not the case with strings though: there are
several different ways that strings are stored, which have very different tradeoffs, and you must
keep an eye toward them. In fact, as I write this, I'm grappling with some nagging string-type issues
in my own work. The code isn’t correctly converting between two different string implementa-
tions, and it’s irritating because I thought I fixed the dang thing a while ago. I'm doing this in
Python; using a high-level language does not necessarily shield you from string implementa-
tion issues.

The granddaddy string format is called ASCII (pronounced “ass,” “key”). It is dirt simple, com-
putationally efficient, and has stood the test of time. The problem is that it’s set in stone, and it’s
limited. Anything you can type with a standard American-style keyboard can be encoded into
ASCII, so you can do a lot with it. But, in many modern applications, that’s not enough. There are
Chinese characters, German letters with an umlaut on top, an ever-growing family of emoticons,
etc. There might even be additional types of text that get invented later. ASCII usually works for
code, but something richer is needed to capture textual data.
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In ASCII, every character is encoded in a single byte, sometimes called a “char.” This gives us an
interesting phenomenon: there is a mapping between ASCII characters and short integers, since
they are encoded by the same byte. It’s not one-to-one, because ASCII only specifies characters for
numbers up to 127, but a byte can encode up to 255 (some bytes are not valid ASCII, but they are
still perfectly fine encodings of integers). Quite rationally, the capital “A” is the number 65, “B” is

66, “C” is 67, and so on. The lowercase numbers are later, with 97 for “a,” 98 for “b,” 99 for “c,” etc.
Python lets you convert between these using the functions chr() and ord() (for “ordinal”):

>>> chr (65)
ppr
>>>  ord("A™ )
65

ASCII also includes the various special characters that you can type with a keyboard. Tab is 9,
and newline is 10. “@” is 64. The digits “0” through “9” are 48 to 57.

This might be a good time to revisit the way we declare strings in Python - this paragraph is
optional but interesting. Recall that for the most part we just put the contents of the string in quota-
tion marks, and type whatever we want, as in:

>>> my_string = "abc123"

But, some characters, such as tabs and newlines, can’t always be directly typed. In this case, we
use the slash character "\" to encode them out of things that we CAN type. For example:

>>> my_tab = "\t" # this is a one-character string
>>> my _newline = '"\n" # this is too

Adding the slash before a character in order to encode something is called “escaping” the char-
acter. Now, I'll give you the keys to the kingdom: if you want super fine-grained control, you can

escape “x” to tell the computer exactly which ASCII bytes should be in a string. If I declare a
string such as

>>> fancy_string = "\xAA"

then the two characters “AA” will be interpreted as the hexadecimal number of the ASCII byte you
want. Hexagesimal is a slightly archaic, base-16 way to write numbers, whose 16 digits are 0, 1, 2,
.. 9,A,B,..., E, F. Writing “\t” is just a nicer way of writing “\x09,” and “\n” is the same thing
as “\x0A” (0A in hexagesimal is 10). In fact, this is more powerful than ASCII, because technically
ASCII numbers only go up through 127, whereas hexagesimal notation lets you put in bytes up to
255, that is, any possible byte. Personally, the only time I use hexagesimal notation is when I'm
deliberately creating perverse strings for purposes of testing, but it’s there if you want it.

The other big string standard is known as Unicode. Unicode is actually a family of encoding
standards, all of them aiming to supplement basic ASCII with the massive range of other charac-
ters needed today and possibly in the future. The main version of Unicode available is UTF-8, and
it is fast becoming the most popular encoding around. In this chapter, UTF-8 will be the one
I discuss.

The biggest difference between Unicode and ASCII is that in Unicode there is a variable number
of bytes that encode each character. This means that all the performance advantages of fixed-sized
elements go out the window, but this is the price you must pay for flexibility. However, UTF-8 is
backward compatible with ASCII: a chunk of bytes that are valid ASCII are also valid UTF-8,
encoding the same piece of text. This works because not all bytes are valid ASCII - the ASCII
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integers top out at 127, but a byte can go up to 255. So, if you are reading through an array of
Unicode and come to a byte that is greater than 127, it signifies that this byte and the one after it
(and possibly beyond, depending on the byte you run into) constitutes a single non-ASCII,
multi-byte character. When you upgrade from ASCII to 2-byte characters, you get pretty much all
characters in Western languages. Three bytes will give you East Asia. Four-byte characters cover
various historical writing systems, mathematical symbols, and emoticons.

Strings in python are Unicode by default. If you want the speed advantages of ASCII you can use
the related “bytes” type. This code snippet shows how to turn a unicode string into ASCII bytes,
dropping any non-ASCII characters. It also shows that declaring a piece of text to be ASCII bytes
rather than a normal unicode str is as simple as putting a “b” in front of the parentheses.

>>> type(s)

<class “str*">

>>> pb=s.encode("ascii”, "ignore")
>>> b

b*bc*

>>> type(b)

<class "bytes">

>>> also_bytes=b"abc""

>>> type(also_bytes)

<class "bytes">

12.14 Further Reading

1 Murrell, P, Introduction to Data Technologies, 2016, viewed 8 August 2016, http://statmath.wu.ac.at/
courses/data-analysis/.

2 Pilgrim, M, Dive into Python: Python from Novice to Pro, 2004, viewed 7 August 2016, http://www.
diveintopython.net/.

12.15 Glossary

Archiving Combining several files or directories into a single file which can later be expanded
out to re-create the original files and directories.

ASCII A text encoding scheme that has one character per byte. It pretty much only covers
characters that you are likely to type with a standard American keyboard.

Bit A single piece of data that can be either 0 or 1.

Byte Eight bits. Computer memory is physically grouped into bytes.

Compression Taking a single file and condensing it down into a smaller file. Typically, this
involves looking for redundancy in the file’s contents and seeing how it can be efficiently
encoded.

Unicode A family of text encoding schemes that cover many more characters compared to
ASCII (especially alphabets from other languages). A single character may require a variable
number of bytes to encode.

UTF-8 The most popular Unicode specification.
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Big Data

Historically, there has been a lot of overlap between the terms “data science” and “big data,” since
data science as a distinct job function emerged to deal with Big Data technologies. Today though,
the relationship is not as strong. On the one hand, Big Data technologies have matured and no
longer require the level of software engineering skills they once did. On the other hand, data
scientists nowadays usually do most of their work without the aid of Big Data tools. However, Big
Data is still an important tool in the data scientist’s toolbox.

Big Data refers to several trends in data storage and processing, which have posed new chal-
lenges, provided new opportunities, and demanded new solutions. Especially in the early days,
these Big Data problems required a level of software engineering expertise that normal statisticians
and data analysts weren’t able to handle. It also raised a lot of difficult, ill-posed questions such as
how best to segment users based on raw click-stream data. This demand is what turned “data
scientist” into a new, distinct job title.

Big Data is an area where low-level software engineering concerns become especially important
for data scientists. It’s always important that they think hard about the logic of their code, but
performance concerns are generally of secondary importance. In Big Data though, it’s easy to
accidentally add several hours to your code’s runtime, or even have the code fail several hours in
due to a memory error, if you do not keep an eye on what’s going on inside the computer.

This chapter will begin by attempting to define the term “big data” and by giving and overview
of the sorts of technologies it includes. Then, I will move on to Spark (in particular PySpark), the
most important of these technologies to a typical data scientist. I will give an example script, break-
ing it down and explaining what happens at each stage. Finally, I will move on to some of the
fundamental concepts that underlie Big Data frameworks and cluster computing in general, most
notably the famed MapReduce (MR) programming paradigm.

13.1 What Is Big Data?

“Big Data,” as the term is used today, is a bit of a misnomer. Massive datasets have been around
for along time and nobody gave them a special name. Even today, the largest datasets around are
generally well outside of the “big data” sphere. They are generated from scientific experiments,
especially particle accelerators, and processed on custom-made architectures of software and
hardware.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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Instead, Big Data refers to several related trends in datasets (only one of which is size) and to the
technologies for processing them. The datasets tend to have two properties:

1) They are, as the name suggests, big. There is no special cutoff for when a dataset is “big.”
Roughly though, it happens when it is no longer practical to store and process it all on a single
computer. Instead, we use a cluster of computers, anywhere from a handful of them up to many
thousands. The focus is on making our processing scalable, so that it can be distributed over a
cluster of arbitrary size with various parts of the analysis going on in parallel. The nodes in the
cluster can communicate, but it is kept to a minimum.

2) The second thing about Big Datasets is that they are often “unstructured.” This is a terribly
misleading term. It doesn’t mean that there is no structure to the data, but rather that the data-
set doesn’t fit cleanly into a traditional relational database, such as SQL. Prototypical examples
would be images, PDFs, HTML documents, Excel files that aren’t organized into clean rows and
columns, and machine-generated log files. Traditional databases presuppose a very rigid struc-
ture to the data they contain, and, in exchange, they offer highly optimized performance. In Big
Data though, we need the flexibility to process data that comes in any format, and we need to
be able to operate on that data in ways that are less predefined. You often pay through the nose
for this flexibility when it comes to your software’s runtime, since there are very few optimiza-
tions that can be prebuilt into the framework. The runtime savings come from the analysis
being distributed across many computers working in parallel, not from any single computer
working quickly.

In recent years, the definition of “Big Data” has become muddied as more sophisticated tools are
developed. Especially, when you’re talking about cloud-based technologies that live in AWS or
Azure, many tools use cluster computing on the backend, but present an interface that is more
akin to traditional databases in the like.

13.2 When to Use - And not Use - Big Data

As wonderful as Big Data tools can be, you should generally only use them if your dataset is large
enough to force you. They are designed to scale well across a cluster; this means that you will need
to go to the trouble of getting a cluster rather than a single box (often the clusters are spun up on
demand in the cloud, which takes time and costs money), and there will be performance overhead
required to coordinate the various nodes in the cluster. It’s surprising how often things end up run-
ning faster on one machine, especially if it’s a burly server with a lot of RAM. Maybe more impor-
tantly though, Big Data constrains the computations you can do in your work. When you look at
the major algorithms in machine learning and applied math, most of them simply can’t be paral-
lelized; each step in the processing depends on the one before it, so you have to run it on a single box.

The place where big data tools really shine for a scientist is when you use them as a preprocess-
ing stage. For example, you might have a dataset consisting of many large blobs of data that is sit-
ting in cloud storage, or possibly already on a cluster. Typically, you only want to operate on a small
subset of those blobs, and you only really need to have access to a few fields in each blob. This is a
perfect application for Big Data! Filtering your blobs down to only the relevant ones, pulling out
only the needed fields, and converting them all into your preferred format is something that can be
done completely in parallel. The processing time basically gets divided by the number of nodes in
your cluster. After that, only this dramatically reduced dataset actually gets sent over the network
to the computer you’re doing your analysis on.
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The other place that Big Data can be extremely useful is not when you’re doing analysis of a
dataset, but in your putting together large data processing pipelines. Typically, these pipelines
involve very little of the machine learning and numerical algorithms that don’t parallelize well.
Instead, they feature workflows very similar to the one that I just described - the dataset consists
of a large collection of objects, and each one is to be processed and filtered in accordance with
some rules that don’t reference the other data objects. In a situation like this typically your data
gets read out from cloud storage into the cluster, each node operates on its subset of the data in
parallel, and the final output gets put back into cloud storage. It’s essentially like the analytics
workflow, except that you don’t pull it into a single node at the end.

13.3 Hadoop: The File System and the Processor

The modern field of Big Data largely started when Google published its seminal paper on
MapReduce, a cluster computing framework it had created to process massive amounts of web
data. After reading the paper, an engineer named Doug Cutting decided to write a free, open-
source implementation of the same idea. Google’s MR was written in C++, but he decided to do it
in Java. Cutting named this new implementation Hadoop, after his daughter’s stuffed elephant.
Hadoop caught on like wildfire and quickly became almost synonymous with Big Data. Many
additional tools were developed that ran on Hadoop clusters or that made it easier to write MR jobs
for Hadoop.

There are two parts to Hadoop. The first is the Hadoop Distributed File System (HDFS). It allows
you to store data on a cluster of computers without worrying about what data is on which node.
Instead, you refer to locations in HDFS just as you would for files in a normal directory system.
Under the hood, HDFS takes care of what data is stored on which node, keeping multiple copies of
the data in case some node fails and other boilerplate.

The second part of Hadoop is the actual MR framework, which reads in data from HDFS, pro-
cesses it in parallel, and writes its output to HDFS.

I'm actually not going to say much about the Hadoop MR framework, because, ironically, it’s
a bit of a dinosaur these days (shows you how quickly Big Data is evolving!). There is a huge
amount of overhead for its MR jobs (most damningly, it always reads its input from disk and
writes output to disk, and disk IO is much more time consuming than just doing things in RAM).
Additionally, it does a subpar job of integrating with more conventional programming languages.
Hadoop is still around and you should be aware of it, but the community’s focus has shifted
toward other tools, many of which still operate on data in HDFS, most notably Spark, and I'll
dwell more on them.

13.4 Example PySpark Script

PySpark is the most popular way for Python users to work with Big Data. It operates like a Python
shell or notebook, but it has a library called PySpark, which lets you plug into the Spark computa-
tional framework and parallelize your computations across a cluster. The code reads similarly to
normal Python, except that there is a SparkContext object whose methods let you access the Spark
framework.

This script, whose content I will explain shortly, uses parallel computing to calculate the number
of times every word appears in a text document. Note there are multiple ways to do this: I have
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written it using RDDs, which are the central data structure in PySpark, but there is also a wrapper
layer around RDDs that resembles DataFrames from Pandas.

# Create the SparkContext object

from pyspark import SparkConf, SparkContext
conf = SparkConf()

sc = SparkContext(conf=conf)

# Read file lines and parallelize them
# over the cluster in a Spark RDD
lines = open("myfile.txt"™)

lines_rdd = sc.parallelize(lines)

# Remove punctuation, make lines lowercase
def clean_line(s):
s2 = s.strip(Q-lower()

s3 = s2.replace(".","").replace(",”,"™)
return s3

lines_clean = lines_rdd.map(clean_line)

# Break each line into words
words_rdd = lines_clean.flatmap(lambda 1: L.split())

# Count words
def merge_counts(countl, count2?):
return countl + count2

words_w_1 = words_rdd.map(lambda w: (w, 1))
counts = words_w_1.reduceByKey(merge_counts)

# Collect counts and display
for word, count in counts.collect():
print("%s: %i " % (word, count))

13.5 Spark Overview

Spark is the leading Big Data processing technology these days, having largely replaced the
older Hadoop framework. From a user’s perspective, Spark is just a library that you import
when you are using either Python or Scala. Spark itself is written in Scala and runs a little faster
when you use the Scala API, but this chapter will introduce the Python API, which is called
PySpark. The example script at the beginning of this chapter was all PySpark. The Spark API
itself (names of functions, variables, etc.) is almost identical between the Scala version and the
Python version.

The central data abstraction in PySpark is a “resilient distributed dataset” (RDD), which is just a
collection of Python objects. These objects are distributed across different nodes in the cluster, and,
generally, you don’t need to worry about which ones are on which nodes. They can be strings, dic-
tionaries, integers — more or less whatever you want. An RDD is immutable, so its contents cannot
be changed directly, but it has many methods that return new RDDs. For instance, in the afore-
mentioned example script, we made liberal use of the “map” method. If you have an RDD called X
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and a function called f, then X.map(f) will apply f to every element of X and return the results as a
new RDD.

RDDs come in two types: keyed and unkeyed. Unkeyed RDDs support operations such as map(),
which operate on each element of the RDD independently. Often though, we want more complex
operations, such as grouping all elements that meet some criteria or joining two different RDDs
together. These operations require coordination between different elements of an RDD, and for
these operations you need a keyed RDD.

If you have an RDD that consists of two-element tuples, the first element is considered the “key”
and the second element the “value.” We created a keyed RDD and processed it in the aforemen-
tioned script with the following lines:

words_w_1 = words_rdd.map(lambda w: (w, 1))
counts = words_w_1.reduceByKey(merge_counts)

Here, words_w_1 will be a keyed RDD, where the keys are the words and the values are all 1.
Every occurrence of a word in the dataset will give rise to a different element in words_w_1. The
next line uses the reduceByKey method to group all values that share a key together and then con-
dense them down to a single aggregate value.

I should note that the keyed and unkeyed RDDs are not separate classes in the PySpark imple-
mentation. It’s just that certain operations you can call (such as reduceByKey) will assume that the
RDD is structured as key-value pairs, and it will fail at runtime if that is not the case.

Besides RDDs, the other key abstraction the user has to be aware of is the SparkContext class,
which interfaces with the Spark cluster and is the entry point for Spark operations. Conventionally,
the SparkContext in an application will be called sc.

Generally, PySpark operations come in two types:

o Calling methods on the SparkContext, which create an RDD from scratch. In the example script,
we used parallelize() to move data from local space into the cluster as an RDD. There are other
methods that will create RDDs from data that is already distributed, by reading it out of HDFS
or another storage medium.

o Calling methods on RDDs, which either return new RDDs or produce output of some kind.

Most operations in Spark are what’s called “lazy.” When you type
lines_clean = lines_rdd.map(clean_line)

no actual computation gets done. Instead, Spark will just keep track of how the RDD lines_clean
is defined. Similarly, lines_rdd quite possibly doesn’t exist either and is only implicitly defined in
terms of some upstream process. As the script runs, spark is piling up a large dependency structure
of RDDs defined in terms of each other, but never actually creating them. Eventually, you will call
an operation that produces some output, such as saving an RDD into cloud storage or pulling it
down into local Python data structures. At that point, the dominos start falling, and all of the RDDs
that you have previously defined will get created and fed into each other, eventually, resulting in
the final side effect. By default, an RDD exists only long enough for its contents to be fed into the
next stage of processing. If an RDD that you define is never actually needed, then it will never be
brought into being.

The problem with lazy evaluation is that sometimes we want to reuse an RDD for a variety of
different processes. This brings us to one of the most important aspects of Spark that differentiates
it from traditional Hadoop MR: Spark can cache an RDD in the RAM of the cluster nodes, so that
it can be reused as much as you want. By default, an RDD is an ephemeral data structure that only
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exists long enough for its contents to be passed into the next stage of processing, but a cached RDD
is held in memory and can be experimented with in real time. To cache, an RDD in memory you
just call the cache() method on it. This method will not actually create the RDD, but it will ensure
that the first time the RDD gets created, it is persisted in RAM.

There is one other problem with lazy evaluation. Say again that we write the line

lines_clean = lines_rdd.map(clean_line)

But, imagine that the clean_line function will fail for some value in lines_rdd. We will not know
this at the time: the error will only arise later in the script, when lines_clean is finally forced to be
created. If you are debugging a script, a technique that I use is to call the count() method on each
RDD as soon as it is declared. The count() method counts the elements in the RDD, which forces
the whole RDD to be created, and will raise an error if there are any problems. The count() opera-
tion is expensive, and you should certainly not include those steps in code that gets run on a regu-
lar basis, but it’s a great debugging tool.

13.6 Spark Operations

This section will give you a rundown of the main methods that you will call on the SparkContext
object and on RDDs. Together, these methods are everything you will do in a PySpark script that
isn’t pure Python.

The SparkContext object has the following methods:

o sc.parallelize(my_list). Takes in a list of Python objects and distributes them across the cluster
to create an RDD.

o sc.textFile(“/some/place/in/hdfs”). Takes in the location of text files in HDFS and returns an
RDD containing the lines of text.

e sc.pickleFile(“/some/place/in/hdfs”). Takes a location in HDFS that stores Python objects
that have been serialized using the pickle library. Deserializes the Python objects and returns
them as an RDD. This is a really useful method.

o addFile(“myfile.txt”). Copies myfile.txt from the local machine to every node in the cluster, so
that they can all use it in their operations.

¢ addPyFile(“mylib.py”). Copies mylib.py from the local machine to every node in the cluster,
so that it can be imported as a library and used by any node in the cluster.

The main methods you will use on an RDD are as follows:

o rdd.map(func). Applies func to every element in the RDD and returns that results
as an RDD.

o rdd.filter(func). Returns an RDD containing only those elements x of rdd for which func(x)
evaluates to True.

o rdd.flatMap(func). Applies func to every element in the RDD. func(x) doesn’t return just a
single element of the new RDD: it returns a list of new elements (possibly an empty list), so that
one element in the original RDD can be expended into many in the new one.

o rdd.take(5). Computes five elements of RDD and returns them as a Python list. Very useful
when debugging, since it only computes those five elements.

o rdd.collect(). Returns a Python list containing all the elements of the RDD. Make sure you only
call this if the RDD is small enough that it will fit into the memory of a single computer.
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o rdd.saveAsTextFile(“/some/place/in/hdfs”). Saves an RDD in HDFS as a text file. Useful for
an RDD of strings.

o rdd.saveAsPickleFile(“/some/place/in/hdfs”). Serializes every object in pickle format
and stores them in hdfs. Useful for RDDs of complex Python objects, such as dictionaries
and lists.

o rdd.distinct(). Filters out all duplicates.

e rddl.union(rdd2). Combines elements of rdd1 and rdd2 into a single RDD.

o rdd.cache(). Whenever RDD is actually created, it will be cached in RAM so that it doesn’t have
to be re-created later.

o rdd.keyBy(func). This is a simple wrapper for making keyed RDDs, since it is such a common
use case. This is equivalent to rdd.map(lambda x: (func(x), x)).

o rddl.join(rdd2). This works on two keyed RDDs. If (k, v1) is in rdd1 and (k, v2) is in rdd2, then
(k, (v1, v2)) will be in the output RDD.

¢ rdd.reduceByKey(func). For every unique key in the keyed rdd, this collects all of its associ-
ated values and aggregates them together using func.

¢ rdd.groupByKey(func). func will be passed a tuple of two things — a key and an iterable object
that will give it all of the values in RDD that share that key.

Its output will be an element in the resulting RDD.

13.7 PySpark Data Frames

In early versions of Spark all computation was done with RDDs. More recently though they have
introduced the DataFrame class. It is inspired by the DataFrame of Pandas, with a particular point
of appealing to data scientists. It also supports SQL-like operations. Under the hood though, it is
just an RDD of tuples, with some overhead that keeps track of what the columns are. If your data-
set doesn’t fit that mold you will have to use the RDD interface (which, as a matter of personal
taste, is what I prefer to do anyway).

DataFrames can be read directly from storage, or they can be created from an RDD of tuples by
specifying the names of each column:

dfl
df2

spark.read.csv(*'/tmp/resources/zipcodes.csv'")
my_rdd.toDF(columns)

You can add columns - as either a constant value or a function of existing columns - using the
withColumn method. Note this is a point of departure from Pandas: the underlying RDDs are
immutable, so we have to define a new DataFrame rather than add a new column to an
existing one.

df3 = df2.withColumn(*'bonus', df.salary*0.2)
More complicated operations are supported by SQL-like functions that are built into pyspark:

from pyspark.sql.functions import when, lit
df4 = df3.withColumn(“salary_range', \
when((df.salary > 100000), lit("'High™)) \
-.otherwise(lit('Low')) \

)
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Standard SQL operations are supported on DataFrames, such as inner/outer/full joins and
aggregations:

df5 = df3.join(df4, df3.emp_dept_id == df4.dept_id, "inner"™)
from pyspark.sql.functions import sum
total_salary_df = df3.select(sum(df3.salary))

And, if you want to literally write SQL queries, that can be done by first declaring the DataFrame
to be a “view” that can be queried against.

df.createOrReplaceTempView("'my_df')
total_salary _df = spark.sql (""'SELECT SUM(salary) FROM my_df')

13.8 Two Ways to Run PySpark

PySpark can be run either by submitting a stand-alone Python script or by opening up an inter-
preted session where you can enter your Python commands one at a time. In the previous example,
we ran our script by saying

bin/spark-submit --master yarn-client myfile_py

The spark-submit command is what we use for stand-alone scripts. If, instead, we wanted to
open up an interpreter, we would say

bin/pyspark --master yarn-client

This would open up a normal-looking Python terminal, from which we could import the PySpark
libraries.

From the perspective of writing code, the key difference between a stand-alone script and an
interpreter session is that in the script we had to explicitly create the SparkContext object, which
we called sc. It was done with the following lines:

from pyspark import SparkConf, SparkContext
conf = SparkConf()
sc = SparkContext(conf=conf)

If you open up an interpreter though, it will automatically contain the SparkContext object and
call it sc. No need to create it manually.

The reason for this difference is that stand-alone scripts often need to set a lot of configuration
parameters so that somebody who didn’t write them can still run them reliably. Calling various
methods on the SparkConf object sets those configurations. The assumption is that if you open an
interpreter directly, then you will set the configurations yourself from the command line.

13.9 Configuring Spark
Clusters are finicky things. You need to make sure that every node has the data it needs, the files it

relies on, no node gets overloaded, and so on. You need to make sure that you are using the right
amount of parallelism, because it’s easy to make your code slower by having it be too parallel.
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Finally, multiple people usually share a cluster, so the stakes are much higher if you hog resources
or crash it (which I have done - trust me, people get irate when the whole cluster dies). All of this
means that you need to have an eye toward how your job is configured. This section will give you
the most crucial parts.

All of the configurations can be set from the command line. The ones you are most likely to have
to worry about are the following:

e Name. A human-readable name to give your process. This doesn’t affect the running, but it will show
up in the cluster monitoring software so that your sys admin can see what resources you're taking up.

e Master. This identifies the “master” process, which deals with parallelizing your job (or run-
ning it in local mode). Usually, “yarn-client” will send your job to the cluster for parallel process-
ing, while “local” will run it locally. There are other masters available sometimes, but local and
yarn are the most common. Perhaps surprisingly, the default master is local rather than yarn;
you have to explicitly tell PySpark to run in parallel if you want parallelism.

o py-files. A comma-separate list of any Python library files that need to be copied to other nodes
in the cluster. This is necessary if you want to use that library’s functionality in your PySpark
methods, because under the hood, each node in the cluster will need to import the library
independently.

o Files. A comma-separated list of any additional files that should be put in the working directory
on each node. This might include configuration files specific to your task that your distributed
functionality depends on.

o Num-executors. The number of executor processes to spawn in the cluster. They will typically
be on separate nodes. The default is 2.

e Executor-cores. The number of CPU cores each executor process should take up. The
default is 1.

An example of how this might look setting parameters from the command line is as follows:

bin/pyspark \

-— name my_pyspark_process \

-- master yarn-client \

-- py-files mylibrary.py,otherlibrary.py \
-- Files myfile._txt,otherfile.txt \

-- num-executors 5 \

-- executor-cores 2

If, instead, you want to set them inside a stand-alone script, it will be as follows:

from pyspark import SparkConf, SparkContext
conf = SparkConf()
conf_setMaster("'yarn-client')
conf.setAppName("'my_pyspark_process'™)
conf._set('spark.num.executors™, 5)
conf.set(""spark.executor.cores", 2)
sc = SparkContext(conf=conf)
sc.addPyFile("mylibrary.py')
sc.addPyFile("otherlibrary.py™)
sc.addFile("myfile.txt™)
sc.addFile("otherfile.txt")
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13.10 Under the Hood

In my mind, PySpark makes a lot more sense when you understand just a little bit about what’s
going on under the hood. Here are some of the main points:

e When you use the “pyspark” command, it will actually run the “python” command on your
computer and just make sure that it links to the appropriate spark libraries (and that the
SparkContext object is already in the namespace, if you're running in interactive mode). This
means that any Python libraries you have installed on your main node are available to you within
your PySpark script.

e When running in cluster mode, the Spark framework cannot run Python code directly. Instead,
it will kick off a separate Python process on each node and run it as a subprocess. If your code
needs libraries or additional files that are not present on a node, then the process that is on that
node will fail. This is the reason you must pay attention to what files get shipped around.

o Itisvery computationally expensive to have the nodes shift data around between them. Not only
do we have to actually move the data around but also the Python objects must be serialized into
a string-like format before we send them over the wire and then rehydrated on the other end.
Often, it takes up more time than the actual computation.

o To minimize moving data between nodes, spark tries whenever possible to have a chunk of your
data stay on one node and have all of its processing take place there. If you call map(), flatMap(),
or a variety of other PySpark operations, each node will operate on its own data.

e Operations such as groupByKey() will require serializing data and moving it between nodes.
This step in the process is called a “shuffle.” The Python processes are not involved in the shuffle.
They just serialize the data and then hand it off to the Spark framework.

13.11 Spark Tips and Gotchas

Here are a few parting tips for using Spark, which I have learned from experience and/or hard
lessons:

1) RDDs of dictionaries make both code and data much more understandable. If you’re working
with CSV data, always convert it to dictionaries as your first step. Yeah, it takes up more space
because every dictionary has copies of the keys, but it’s worth it.

2) Use take() while debugging your scripts to see what format your data is in ( RDD of dictionar-
ies? Of tuples? etc.).

3) Running count() on an RDD is a great way to force it to be created, which will bring any runtime
errors to the surface sooner rather than later.

4) Do most of your basic debugging in local mode rather than in distributed mode, since it goes
much faster if your dataset is small enough. Plus, you reduce the chances that something will
fail because of bad cluster configuration.

5) If things work fine in local mode but you're getting weird errors in distributed mode, make sure
that you’re shipping the necessary files across the cluster.

6) If you're using the - files option from the command line to distribute files across the cluster,
make sure that the list is separated by commas rather than colons. I lost two days of my life to
that one...

Now that, we have seen PySpark in action, let’s step back and consider some of what’s going on
here in the abstract.
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13.12 The MapReduce Paradigm

MapReduce is the most popular programming paradigm for Big Data technologies. It makes pro-
grammers write their code in a way that can be easily parallelized across a cluster of arbitrary size
or an arbitrarily large dataset. That is: if you can express your computation within the MR para-
digm, then it can be executed in a completely parallelized way. Some variant of MR underlies many
of the major Big Data tools, including Spark, and probably will for the foreseeable future, so it’s
very important to understand it.

An MR job takes a collection of data objects, such as a Spark RDD, as input. There are then two
stages to the job:

e Mapping. Every element of the dataset is mapped, by some function, to a collection of key-
value pairs. In PySpark, you can do this with the flatMap method.

e Reducing. For every unique key, a “reduce” process is kicked off. It is fed all of its associated
values one at a time, in no particular order, and eventually, it produces some outputs. You can
implement this using the reduceByKey method in PySpark.

And that’s all there is: the programmer writes the code for the mapper function, and they write the
code for the reducer, and that’s it. No worrying about the size of the cluster, what data is where, and so on.

In the example script I gave, Spark will end up optimizing the code into a single MR job. Here is
the code rewritten so as to make it explicit:

def mapper(line):
12 = L.strip(Q).lowerQ
13 = 12_replace(".”,"").replace(",”,"")
words = 13.split()
return [(w, 1) for w in words]

def reducer_func(countl, count2?):
return countl + count2

lines = open("myfile.txt™)

lines_rdd = sc.parallelize(lines)

map_stage_out = lines_rdd.flatMap(mapper)

reduce_stage out = \
map_stage_out.reduceByKey(reducer_func)

What happens under the hood in an MR job is the following:

o The input dataset starts off being distributed across several nodes in the cluster.

o Each of these nodes will, in parallel, apply the mapping function to all of its pieces of data to get
key-value pairs.

e Each node will use the reducer to condense all of its key-value pairs for a particular word into
just a single one, representing how often that word occurred in the node’s data. Again, this
happens completely in parallel.

o For every distinct key that is identified in the cluster, a node in the cluster is chosen to host the
reduce process.

o Every node will forward each of its partial counts to the appropriate reducer. This movement of
data between nodes is often the slowest stage of the whole MR job - even slower than the actual
processing.
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e Every reduce process runs in parallel on all of its associated values, calculating the final
word counts.

The overall workflow is displayed in the following diagram:
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There is one thing I have done here that breaks from classical MR. I have said that each node
uses the reducer to condense all of its key-value pairs for a particular word into just one. That stage
is technically a performance optimization called a “combiner.” I was only able to use a combiner
because my reducer was just doing addition, and it doesn’t matter what order you add things up in.
In the most general case, those mapper outputs are not condensed - they are all sent to whichever
node is doing the reducing for that word. This puts a massive strain on the bandwidth between the
clusters, so you want to use combiners whenever possible.

13.13 Performance Considerations

There are several guidelines applicable to any MR framework, including Spark:

o If you are going to filter data out, do it as early as possible. This reduces network bandwidth.

e The job only finishes when the last reduce process is done, so try to avoid a situation where one
reducer is handling most of the key-value pairs.

o If possible, more reducers means each one has to handle fewer key-value pairs.

In traditional coding, the name of the game in performance optimization is to reduce the num-
ber of steps your code takes. This is usually a secondary concern in MR. The biggest concern
instead becomes the time it takes to move data from node to node across the network. And the
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number of steps your code takes doesn’t matter so much - instead, it’s how many steps your
longest-running node takes.

There is one other specific optimization with Spark in particular that I should mention, which
doesn’t come up all that often but can be a huge deal when it does. Sometimes, reduceByKey is the
wrong method to use. In particular, it is very inefficient when your aggregated values are large,
mutable data structures.

Take this dummy code, for example, which takes all occurrences of a word and puts them into a
big list:

def mapper(line):
return [(w, [w]) for w in line.split(Q)]

def red_func(lstl, Ist2):
return Istl + Ist2

result = lines.flatMap(mapper) .reduceByKey(red_func)

As T've written it, every time red_func is called, it is given two potentially very long lists. It will
then create a new list in memory (which takes quite a bit of time) and then delete the original lists.
This is horribly abusive to the memory, and I've seen jobs die because of it.

Intuitively, what you want to do is keep a big list and just append all the words to it, one at a time,
rather than constantly creating new lists. That can be accomplished with the aggregateByKey func-
tion, which is a little more complicated to use compared to reduceByKey, but much more efficient
if you use it correctly. Example code is here:

def update_agg(agg_list, new_word):
agg_list.append(new_word)
return agg_list # same list!

def merge_agg_lists(agg_listl, agg_list2):
return agg_listl + agg_list2

def reducer(ll, 12):
return 11 + 12

result = lines.flatMap(mapper) .aggregateByKey(
[1, update_agg, merge_agg_lists)

In this case, each node in the cluster will start off with the empty list as its aggregate for a par-
ticular word. Then, it will feed that aggregate, along with each instance of the word, into update_
agg. Then, update_agg will append the new value to the list, rather than creating a new one, and
return the updated list as a result. The function merge_agg_lists still operates the original way, but
it is only called a few times to merge the outputs of the different nodes.

13.14 Further Reading

1 Spark Programming Guide, 2016, viewed 8 August 2016, http://spark.apache.org/docs/latest/
programming-guide.html.

2 Dean, J & Ghemawat, S, MapReduce: Simplified Data Processing on Large Clusters, Paper Presented
at: Sixth Symposium on Operating System Design and Implementation, 2014, San Francisco, CA.
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13.15 Glossary

Big data A movement in the analytics and software community that focuses on large, unstruc-
tured datasets and how they can be analyzed on clusters of computers.

Combiner A performance optimization in MapReduce frameworks where each node partially
completes the reduce process on its own key-value pairs.

Cluster A collection of computers that can be programmed to coordinate a single computation
across them.

Hadoop A cluster storage and computing framework that has become the main piece of many
Big Data ecosystems.

Key-value pair A tuple with two elements. The second element is the “value,” which is usually
a piece of data. The first element is a “key,” which is usually a label indicating some category
the tuple falls into.

Map An operation where you take a collection of data structures and apply the same function to
each of them. The outputs of the functions are, collectively, the output of the process.

MapReduce The most prominent paradigm for programming a cluster of computers in a
completely parallel way.

Node A single computer in a cluster.

PySpark The Python interface to the Spark cluster computing framework.

RDD Short for resilient distributed dataset.

Reduce An operation where a stream of values is processed one at a time, updating an aggregate
with each value. After the last value, the aggregate is returned as the result of the process.

Resilient distributed dataset The abstraction in Spark, an immutable collection of data
objects that are distributed across a cluster.

Spark The leading cluster computing framework.
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Databases

Databases play an important role in data science, but data scientists coming from backgrounds
other than programming are often woefully ignorant of them. That was certainly my own
experience! In fact, I didn’t even really appreciate what the role of a “database” was and why you
would use one as opposed to just files of data organized in a directory structure.

A database is ultimately just a framework for storing and efficiently accessing data. A prototypical
database is a burly server, which holds more data than would fit into a normal computer, stores it
in a way that it can be quickly accessed (this usually involves a ton of under-the-hood optimiza-
tions that the database user is blissfully ignorant of), and is standing at the ready to field requests
from other computers to access or modify the data. The main advantage of a database relative to
raw files is performance, especially if you are running a time-sensitive service (such as a web page).
If you somehow know exactly the computation you want to do, and when you want it done, then a
batch process might be better; but if you want flexibility with low latency, then databases are the
answer. Databases also handle other overhead, such as keeping multiple copies of data synced up
and moving data between different storage media.

On the smaller end, many pieces of single-computer software will run a database under the
hood, using it as an efficient way to store one program’s data. On the larger end, some databases
span many different physical machines, with complicated protocols for syncing them with each
other, and users access them over the internet or a local network. The idea of a single database in
this case is really an abstraction that lets the user ignore which of the physical servers they are
actually communicating with.

Strictly speaking, a “database” refers to the data itself and its organization, while “database manage-
ment system” (DBMS) is the software framework that provides access to that data. In practice, these
terms are often used interchangeably, and I will be pretty casual about the distinction in this book.

There are many, many ways that databases can be accessed. In production systems, it is often
through programmatic APIs that are called through whatever language you are writing your code
in. However, most databases also have their own command-line-based shells. This chapter will
focus on that use case.

By far, the most important family of databases is the SQL family, which supports the relational
database (RDB) model (described in the next section). SQL-like databases have been around for a long
time. They are generally wickedly fast and support very extensive processing of the data, but in exchange
for this power, they are extremely rigid as to the type and formats of the data you can put in them.
In recent years, the so-called NoSQL databases have come on the scene and are often more flexible in
the types of data they will store, but they do not offer the same computational power. Sometimes raw
data is stored in NoSQL databases, but SQL-like databases are maintained to support analytics needs.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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14.1 Relational Databases and MySQL®

In an RDB, a dataset is represented by a table with rows (often unordered) and columns. Each
column has a specific data type associated with it, such as an integer, a time stamp, or a string (typi-
cally with a known maximum length. They are called VARCHARs in SQL lingo. An RDB has a
“query language” associated with it, which lets users specify which data should be selected and any
preprocessing/aggregation that should be done before it is returned. The database is structured so
that those queries can be answered extremely efficiently.

The SQL family is a large class of RDBs, which have nearly identical interfaces. Of these, MySQL
is the most popular open-source version and the one you’re most likely to encounter in data sci-
ence. This section will be based on MySQL, but know that almost everything translates over to the
rest of the SQL family. In fact, it will apply well outside of that even; SQL syntax is ubiquitous, and
many data processing languages borrow heavily from it. If you get good at SQL you can be confi-
dent of being able to pick up other SQL-like database query languages on the fly.

14.1.1 Basic Queries and Grouping

The data in a MySQL server consists of a collection of tables, whose columns are of known types.
The tables are organized into “databases.” A database is just a namespace for tables that keeps
them more organized; you can switch between namespaces easily or combine tables from several
namespaces in a single analysis.

A simple MySQL query will illustrate some of the core syntax:

USE my_database;
SELECT name, age
FROM people

WHERE state="WA";

The first line is saying that we will be referring to tables in a database called my_database. Next,
it is assumed that you have a table called “people” within my_database, with columns name, age,
and state (and possibly other columns). This query will give you the name and age of all people
living in Washington state. If we had instead said “SELECT *,” it would have been shorthand for
selecting all of the columns in the table. This selection of rows and columns is the most basic
functionality of MySQL.

It is also possible to omit the USE statement and put the name of the database explicitly in

your query:
SELECT name, age

FROM my database.people
WHERE state="WA";

Aside from just selecting columns, it is also possible to apply operations to the columns before
they are returned. MySQL has a wide range of built-in functions for operating on the data fields
that can be used in both the SELECT clause and the WHERE clause. For example, the following
query will get people’s first names and whether or not they are a senior citizen:

SELECT SUBSTRING(name,O,LOCATE(name,* ")), (age >= 65)
FROM people
WHERE state="WA";
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Note the somewhat clunky syntax for getting somebody’s first name. The term LOCATE
(name,” *) will give us the index of the space in the name, that is, where the first name ends. Then,
SUBSTRING(name,0,LOCATE (name,” 7)) gives us the name up to that point, that is, the
first name. In Python, it would have made more sense to split the string on whitespace and then take
the first parts. But, doing so calls into existence a list, which can be an arbitrarily complex data struc-
ture. This is anathema in performance-focused MySQL! MySQL’s functions generally don’t permit
complex data types such as lists; they limit themselves to functions that can be made blindingly effi-
cient when performed at massive scale. This forces us to extract the first name in this roundabout way.

The following table summarizes a few of the more useful functions. Don’t worry about memorizing
all of them - it’s easy to look up specifics as you need them. But this gives you a sense of the kinds

of functions that come built-in:

Function name Description

ABS Absolute value

COALESCE Take the first non-null value of the functions’ arguments (very useful after joins)
CONCAT Concatenate several strings

CONVERT_TZ Convert from one time zone to another

DATE Extract the date from a datetime expression

DAYOFMONTH The data in a month

DAYOFWEEK Day of the week

FLOOR Round a number down

HOUR Get the hour out of a datetime

LENGTH Length of a string in bytes

LOWER Return a string in lowercase

LOCATE Return the index of the first occurrence of a substring in a larger string
LPAD Pad a string to a given length by adding a particular character to its left
NOW The current datetime

POW Raise a number to a power

REGEXP Whether a string matches a regular expression

REPLACE Replace all occurrences of a particular substring in a string with a different substring
SQRT Square root of a number

TRIM Strip spaces from both sides of a string

UPPER Return the upper-case version of a string

Besides just selecting rows/columns and operating on them, it is possible to aggregate many
rows into a single returned value using a GROUP-BY statement. For example, this query will find
the number of people named Helen in each state.

SELECT state, COUNT(name)

FROM people

GROUP BY state
WHERE first_name="Helen";
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The COUNT() function used here is just one of many aggregator functions, which condense one
columns from many rows into a single value. Several others are listed in the following table:

Function name Description

MAX Max value

MIN Min value

AVG Average value
STDDEV Standard deviation
VARIANCE Variance

SUM Sum

It is also possible to group by several fields, as in the following query:

SELECT state, city, COUNT(name)
FROM people

GROUP BY state, city

WHERE first_name="Helen~;

A final word about basic queries is that you can give names to the columns you select, as in the
following query:

SELECT state AS the_ state,
city AS where_they_live,
COUNT(name) AS num_people

FROM people

GROUP BY state, city

WHERE first_name="Helen";

You could also have only renamed some of the columns. This renaming within the SELECT
clause doesn’t have any effect if all you’re doing is pulling the data out. However, it becomes
extremely useful if you are writing the results of your query into another table with its own column
names or if you are working with several tables in the same query. More on those will follow later.

14.1.2 Joins

The final ingredient in the query language is the ability to join one table with another, which is a
complicated enough topic that I'm giving it its own section. In a join, several tables are combined
into one, with rows from the input tables being matched up based on some criteria (usually having
specified fields in common, but you can use other criteria too). Joining is illustrated in this query,
which tells us how many employees of each job title live in each state:

SELECT p.state, e.job_title, COUNT(p.name)
FROM people p JOIN employees e

ON p.name=e.name

GROUP BY p.state, e.job_title;


http://p.name
http://p.name
http://e.name
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There are two things to notice about the new query. First, there is a JOIN clause, giving the table
to be joined with people, and an ON clause, giving the criteria for when rows in the tables match.
The second thing to notice is that “people p” and “employees e” give shorter aliases to the tables,
and all columns are prefixed by the alias. This eliminates ambiguity, in case columns of the same
name occur in both tables.

Every row under people will get paired up with every row under employees that it matches in the
final table. So, if 5 rows under people have the name Helen and 10 rows under employees have the
name Helen, there will be 50 rows for Helen in the joined table. This potential for blowing up the
size of your data is one reason that joins can be very costly operations to perform.

The aforementioned query performs what is called an “inner join.” This means that if a row
under people does not match any rows under employees, then it will not appear in the joined table.
Similarly, any row under employees that does not match a row under people will be dropped. You
could instead have done a “left outer join.” In that case, an orphaned row under people will still
show up in the joined table, but it will have NULL in all the columns that come from the employees
table. Similarly, a “right outer join” will make sure that every row under employees shows up at
least once.

Outer joins are extremely common in situations where there is one “primary” table. Say, you are
trying to predict whether a person will click on an ad, and you have one table that describes every
ad in your database, what company/product it was for, who the ad was shown to, and whether it
got clicked on. You might also have a table describing different companies, what industries they
are in, and so on. Doing a left outer join between the ads and the companies will effectively just be
adding additional columns to the ad table, giving new features that you might want to train a clas-
sifier on or calculate correlations between. Any companies that you didn’t show ads for are super-
fluous for your study, and so get dropped, and any ad for which you happen to be missing the
company data still stays put in your analysis. Its company-related fields will just be NULL.

14.1.3 Nesting Queries

The key operations in MySQL are SELECT, WHERE, GROUPBY, and JOIN. Most MySQL queries
you will see in practice will use each of these at most once, but it is also possible to nest queries
within each other.

This query computes the number of local co-workers each employee in a company has. It takes
a table of employees for a company, counts how many employees are in each city, and then joins
this result back to the original table to find out how many local coworkers each employee has:

SELECT ppl.name AS employee_name,
counts.num_ppl_in_city-1 AS num_coworkers
FROM (
SELECT
city,
COUNT(p-name) AS num_ppl_in_city
FROM people
GROUP BY p.city
) counts
JOIN people ppl
ON counts.city=ppl.city;
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The things to notice in this query are as follows:

1) The subquery is enclosed in parentheses.

2) We give this result of the subquery the alias “counts,” by putting the alias after the parentheses.
Many SQL varieties require that an alias be given whenever you have subqueries, and good
aliases are a great way to make yours queries easier to understand.

3) We used the inner SELECT clause to give the name num_ppl_in_city to the generated column,
as described earlier. This made the overall query much more readable.

14.1.4 Running MySOL and Managing the DB

The previous section described the syntax of MySQL queries. Now, let’s go over the nuts and bolts
of how to access the servers, create/destroy tables, and put data in them.

There are many, many ways a MySQL server can be accessed. The easiest though is by the com-
mand line. The following command will open up an interactive session with a remote MySQL server:

mysql--host=10.0.0.4 \
--user=myname \
--password=mypass mydb

In this case, the user and password are your login credentials, mydb is the database on the server
you want to access (although you can switch to a different later with a USE statement), and the
host is the url of the server (since usually, the MySQL server is a physically different computer
compared to the one you’re working on).

Once you have opened up the MySQL shell, the following commands will let you do what you need
to do. Their syntax should be straightforward. Note that each command is terminated by a semicolon.
It is fine to break a single command out across several lines, so long as it ends with the semicolon.

# First list tables in current db

SHOW TABLES;

USE my_ other_database; # switch to my_other_database
DROP TABLE table_to_drop; # delete this table

CREATE DATABASE my_ new_database; # create a database

The syntax for creating a table is somewhat more complicated. Here is a simple example:

CREATE TABLE MyGuests (
id INT,

Ffirstname VARCHAR(30),
lastname VARCHAR(30),
arrival_date TIMESTAMP

)

We say CREATE TABLE, the table’s name, and then in parentheses we give the column names
and their types. Note, in this example that VARCHAR(30) means a string of at most 30 characters.
This query will create an empty table, which we can then fill in a number of ways. If we only want
to add a few entries, we can say

INSERT INTO MyGuests (id, Firstname,
lastname, arrival_date)
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VALUES
(0, ’Field”, *Cady”, ’2013-08-137),
(1, ’Ryna’, “Cady’, >2013-08-137);

More often, we will want to load data from a CSV file or something of that nature, which can be
done in the following way:

LOAD DATA INFILE */tmp/test.txt"”
INTO TABLE test
FIELDS DELIMITED BY *,";

When you are getting data out of a database by use of a query, it is also common to do it remotely
from the command line. The following line of bash code will send a query to a MySQL server
(which is assumed to be local host in this case, that is, the same computer you’re sending the com-
mand from) and then write the results to a local CSV file:

mysql --host localhost \
-e "SELECT * FROM foo.MyGuests®™ \
> foo.csv

14.2 Key-Value Stores

The next big database paradigm to know is the key-value store. This is conceptually similar to a
Python dictionary on a massive scale, mapping keys (typically strings) to arbitrary data objects.
This is fantastic for storing unstructured data such as web pages, and key-value stores have spiked
in popularity in recent years, playing a particularly large role in the Big Data movement. The
downside though is that key-value stores typically just give you access to the data; they don’t have
any of the optimized preprocessing that’s available with an RDB.

In many cases, a key-value store is a more efficient way to store relational data in which most
fields are blank. For example, let’s say we have a database of people and know a few pieces of infor-
mation about each one — many thousands of things that we could know about each person, but
usually only a few of them are not NULL for any given person. In that case, it is more efficient to
have the person/column tuple be a key and the entry be the value. If the database doesn’t contain
an entry for the person/column, you can assume that it’s NULL.

Examples of key-value stores include Oracle NoSQL Database, redis, and dbm.

14.3 Wide-Column Stores

A wide-column store is a table such as an RDB, but it has a huge number of columns and is mostly
sparse. Unlike RDBs, new columns can be added or deleted at will, and a given column will often
exist for only a few related rows in the table. In this sense, a wide-column store is perhaps more
similar to a key-value store where the key contains two fields: a row id and a column name.
Familiar MySQL operations, such as GROUPBY and JOIN, are often not supported.

The original wide-column store is often considered to be Bigtable, an internal tool developed by
Google and outlined in their paper Bigtable: A Distributed Storage System for Structured Data.
Bigtable also has time stamps attached to each cell in the table and time-stamped records of all
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previous entries. The columns in a Bigtable are not completely independent of each other; they are
grouped into “column families” that are frequently accessed together.
Open-source column-oriented databases include Cassandra, HBase, and Accumulo.

14.4 Document Stores

Document stores are similar to key-value databases, but the values they store are specifically docu-
ments of some flexible format, such as XML or JSON. In addition to simply fetching the data, docu-
ment stores provide some functionality for searching through a database and pulling out documents
(or parts of them) that match certain criteria or other processing. In this way, they can function as
a happy medium between RDBs and key-value stores; they are flexible enough to hold nontabular
data, but structured enough that they can actually process that data rather than just reading/
writing it.

The most popular document store is MongoDB. It is an open-source, free piece of software pro-
duced by MongoDB Inc. To illustrate what document stores are like, I will give you a quick tutorial
on MongoDB.

14.4.1 MongoDB®

Similarly to MySQL, data in Mongo is divided into databases. A database contains “Collections,”
the analogs of MySQL tables. A collection consists of a bunch of documents, stored in a JSON-like
data format called BSON. A document in MongoDB is very flexible; they can mix and match fields,
data types, layers of nesting, or whatever other variety you need to put in.

The only thing every document must contain is a unique identifier field called “_id,” which func-
tions as the primary key of the document. The user can specify the _id when a document is inserted;
if there is another document with the same _id, you will get an error. Documents written into
MongoDB without identifiers will be assigned them, with an object called an ObjectID. An auto-
matically generated ObjectID will encode the time (in seconds) the ObjectID was created (typi-
cally, the time when its associated document was added to Mongo), a code for the computer it was
generated on (very useful in cluster computing), and the process id that generated the
ObjectID. Finally, each process that is generating ObjectIDs will keep track of how many it has
created and encode the creation order in them, so that ObjectIDs created by the same process
within one second of each other will still be distinct.

The main part to accessing data in MongoDB is the query. The following shell session will open
aMongo database, write some data to it, and execute a simple query to find all matching documents:

mongodb # command to open up a MongoDB shell

// specify the database you want to use, like MySQL
use some_db

show collections

// Insert a new document into the Collection "posts”
// 1T posts doesn”t exist, it will be created
db.posts.insert({ 'name":""Bob",""age" :31})
WriteResult({ "nlnserted” : 1 })

> // prints out the collections in this db.

> // Posts already exists.

V V V V V \V ®H
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> db.posts.find() // no query = show all documents

{ "_id" : Objectld('55f8cc2f73b593e9cab9c126'), "‘name’
: "Field" }

> // shows one document matching given query

> db.posts.find({"'name":""Bob"™ })

The query here looks like a JSON object itself. In a way it is: it maps the name of fields to all
requirements we are placing on that field. In the aforementioned example, we wrote “name”:“Bob,”
which means that “Bob” must be the name field in all matching documents. More generally, the
query could have included a number of different constraints on the field, expressed in their own
JSON-like form. Here are some additional examples:

db.foobar. insert({"name":"Field","age™ :31})

// age greater than 10

db.foobar.find({"age":{$gt :10}})

// age between 10 and 20
db.foobar.find({"age":{$gt:10, $It :20}})

// Don"t care what the age is, so long as it"s there
db.foobar.find({"age":{$exists:true }})

VV VYV YV VYV

The expressions starting with “$” are called “query operators,” and they constitute the logic of
MongoDB queries. Before you call me on it, the query {“name”:“Bob”} is just syntactic sugar
around {“name”:{$eq:“Bob”}}. A given MongoDB query will ultimately be a nested, JSON-like
object, where the lowest level of nesting maps field names to query operators.

Besides the query, the find function takes an optional second argument called the projection.
This specifies which fields on a document are to be returned (after all, the entire document might
be quite large) and, if a document contains long arrays, how many elements of the arrays should
be selected. The following table shows some example projections:

Projection Meaning

{_id:0, name:1, age:1} Return only the name and age fields for each document. Note that we
had to explicitly exclude _id; otherwise, it would be returned too

{ comments: { $slice: 5} } Return the first five elements of the “comments” field, which is
presumed to be an array

{ comments: { $elemMatch: Return all elements in the comments array that have userid 102
{userid: 102 } }}

If we want to update documents in a collection, we use the update() command. It takes in two
required arguments and a third optional one:

e A query statement indicating the documents to be modified. This uses the same query operators
as the find() function.

e An update statement, with update operators that indicate what operations should be done to
what fields.

e Optionally, a set of additional options. The most important additional option is “multi,” which
indicates whether multiple documents can be modified. It defaults to false, which is perhaps
counterintuitive.
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These commands give the basic idea:

> // This command updates a single document whose "item" field
is "ABC".

> db.inventory.update (

{ item: "ABC" },

{ $set: { "details.model™: "14Q2" } })

> // This one will find all docs in the "clothing"™ category,
rename their category to "apparel’,

> // and increment their "age"™ field by 5

> db.inventory.update (

{ category: "clothing" },

{$set: { category: "apparel" },

$inc: { age: 5 }},

{ multi: true })

14.5 Further Reading

1 Redmond, E, Wilson, J, Seven Database in Seven Weeks: A Guide to Modern Databases and the NoSQL
Movement, 2012, Pragmatic Bookshelf, Raleigh, NC.
2 Tahaghoghi, S, Williams, H, Learning MySQL, 2006, O’Reilly Media, Newton, MA.

14.6 Glossary

BSON A JSON-like data format used by MongoDB.

Database A piece of software that stores data of a particular type in a format that supports
low-latency access.

DB Common shorthand for database.

Document store A DB that stores documents, usually in a markup language such as XML
or JSON.

Key-value store A DB that stores data objects by key but doesn’t usually have other querying
functionality.

MongoDB A popular open-source document store that runs on a cluster.

MySQL An extremely popular open-source version of SQL.

Query language A lightweight language for specifying database queries. Most query languages
are based on SQL’s syntax.

Relational algebra An idealized mathematical framework describing the operations of RDBs.
Real-world RDBs typically include functionality that is not present in pure relational algebra.

Relational database A database that stores data in tables and supports operations such as
selecting columns and joining records from several tables.

SQL The most popular RDB.

Wide-column store Conceptually similar to an RDB, but typically tables have many, many
columns, and they do not support operations such as joins and grouping.
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In my experience, the single most important skill that is often lacking in data scientists is the
ability to write decent code. I'm not talking about writing highly optimized numerical routines,
designing fancy libraries or anything like that: just keeping a few hundred lines of code clear and
manageable for the course of a project is a learned skill. I've seen many brilliant data scientists,
coming from areas such as physics and math, who lack this skill because they never had to write
anything longer than a few dozen lines, or they never had to go back to code and update it. There’s
nothing worse than seeing a mathematical genius’s data science project go up in flames because
their 200-line script was so illegible they couldn’t debug it.

The main reason the current chapter exists is this: to pass on the message that everybody who
writes code is responsible for making sure that their code is clear.

The secondary reason for this chapter is that, in practice, data scientists are often called on to do
far more than keep their code readable. Some companies have their data scientists focused strictly
on analytics work. In many cases though, it falls to data scientists to turn their one-off scripts into
reusable data analysis packages that take on a life of their own. Other times data scientists function
as junior members of a software engineering team, writing large pieces of production code that
implement their ideas in a real-time product. This chapter will give you a condensed version of
what goes into production-level code and what life is like on a software engineering team.

15.1 Coding Style

Coding style is not about being able to write code quickly or even about making sure that your code
is correct (although in the long run, it facilitates both of these). Instead, it is about making your
code easy to read and understand. This makes it easier for other people (including, most impor-
tantly, your future self) to figure out how your code works, modify it as need be, and debug it.
Often, it takes a little longer to write your code well, but it is almost always worth the cost.

Let me give you a quick idea of the difference between good and bad code qualities. Here is a piece of
example code from earlier in the book which, if I may say so myself, I did a pretty good job of writing:

from HTMLParser import HTMLParser
import urllib

TOPIC = "Dangiwa_Umar"
url = "https://en.wikipedia.org/wiki/%s"™ % TOPIC

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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class LinkCountingParser(HTMLParser):
in_paragraph = False
link_count = 0O
def handle_starttag(self, tag, attrs):
if tag=="p": self.in_paragraph = True
elif tag=="a" and self.in_paragraph:
self_link _count += 1
def handle_endtag(self, tag):
ifT tag=="p": self.in_paragraph = False
html = urllib_.urlopen(url).read()
parser = LinkCountingParser()
parser.feed(html)
print('there were", parser.link _count, \
"links in the article™)

There are no comments or documentation in this code, but it’s fairly clear from my variable
names what I'm trying to do, and the logical flow of the program shows how I'm doing it. Some of
what I'm doing is specific to the HTMLParser library, but even if you aren’t familiar with it, you can
infer a lot about how it works from context. If you’re familiar with HTML and the HTMLParser
library, the code should be crystal clear.

In contrast, here is the same code, incorporating some of the no-nos of coding style:

import urllib
url = "https://en.wikipedia.org/wiki/Dangiwa_Umar"
cont = urllib.urlopen(url).read()
from HTMLParser import HTMLParser
class Parser(HTMLParser):
def handle_starttag(self, x, y):
if x=="p": self.inp = True
if x=="a":
try:
if self.inp:
self.lc += 1
except: pass
if x=="html": self.lc =0
def handle_endtag(self, x):
if x=="p": self.inp = False
p = Parser(Q)
p.feed(cont)
print(""there were", p.lIc, \
"links in the article™)

Coming back to this code sometime after I wrote it, I have trouble parsing it myself. Among the
sins, I have committed here are the following:

e Meaningless variable names.

e Hard-coding the url, rather than having the topic of the Wikipedia article called out as its own
parameter.

e “Parser” is a very unhelpful class name.
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o The Parser has two internal variables that it maintains: inp and lc (in_paragraph and link_count
in the good code). These variables should have been declared up-front with default values, but,
instead, I only create them on the fly as soon as I need them.

e The try—except loop is being used to check whether self.inp has been defined yet. That’s a
perverse use of try—except that will confuse people.

o In handle_starttag, there are three if-statements. But, they are mutually exclusive, so it would
have been clearer to use elif.

o The try-except loop is indented an irregular amount.

Good coding style isn’t a set of rules that I can explain to you. It’s really a mindset that you
develop, an impatience with code being hard to read. The only way I know to learn it is by reading
and writing a lot of code, so I won'’t try to teach it to you in this chapter. However, a few basic
principles are as follows:

o Always use descriptive names for variables and functions.

e Modularity. Break the program down into self-contained parts that have clear functions.

e Avoid having excessive indentation, such as loops within loops within loops. If you’re running
into this, try to break the inner parts out into a separate function or subroutine.

e Use comments when appropriate. If you do something bizarre in your code, explain why in a
comment. Also, every file should ideally start with a comment that explains what it does.

o Don’t overuse comments. They distract from the code itself, which should be mostly clear enough
that you can read it directly. Comments can also be wrong or out of date, so consider leaving
them out if the code speaks for itself.

o If you have several blocks of code that do very similar things, it often pays to refactor them into
a single routine.

o Try to separate boilerplate information (such as the way data is formatted) from the core process-
ing logic of the program. For example, the order of columns in a table should usually be specified
separately from the code, which processes the table.

Some people might protest: if data scientists have to do all of this code quality stuff, then what’s the
difference between data science code and production code? One way to look at it is this: the goal of
general code quality is to make it easy for somebody to read and understand your code. In contrast,
the aim of production code is to make this understanding unnecessary. Production code is largely
about creating APIs that are intuitive to use, well documented, and flexible enough to support a variety
of use cases. People who use production code should be able to call it as a library without worrying
about how it works. With data science programming, on the other hand, if somebody wants to modify
your script, then it is fair to expect them to roll up their sleeves and dive into the code itself.

15.2 Version Control and Git for Data Scientists

A central feature of writing production software is a good version control system. This is a software
framework that tracks changes that you make to a codebase, syncing them with a master copy
stored on a server somewhere. It gives you the following massive advantages:

o If your computer gets destroyed, all of the code is backed up.

o If you're working on a team, everybody can keep their changes synced up by periodically reading
down changes from the server.

o If things break, you can go back to a previous version of the codebase that was known to work.
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The larger and more complex a codebase becomes, the more these become absolutely
indispensable.

Typically, version control works by downloading the codebase as a directory on your computer.
Editing the codebase is as simple as making changes to the contents of that directory (changing
files, adding new files or subdirectories, etc.) and then telling the version control system to sync
those changes. A version control system will afford at least the following functions:

e You can download the master copy of the codebase. This is often called a “checkout” or a “clone.”

e You can refresh the code on your computer, incorporating any changes that have been made to
the master copy since you originally check out the code. This is often called a “pull.”

o After editing the code (changing it, adding new files, etc.), you can write your changes back to
the master copy on the server. This is sometimes called a “commit,” and sometimes a “push.”

o If your changes conflict with changes that somebody else made, there is some way to “merge”
the changes.

e You can include comments associated with your commits that describe what you did.

e Multiple users can check out the code and make changes, from multiple computers.

o It keeps track of the history of all changes.

¢ In case something gets broken, you can revert specific sets of changes.

Most modern systems also include the ability to create branches of the entire codebase. If you
have a large amount of work that needs to be done, it is often useful to fork off a new branch of the
entire codebase. This lets you do whatever you need to do without worrying about polluting
the master branch. Later, when all changes have been made, you can merge your changes back
into the master branch and deal with any possible conflicts.

Branches are also useful if you need to make one-off versions of the codebase for some special
purpose. For example, maybe there is a customer who wants a customized version of your product.
This may involve small changes to many different parts of your codebase and require its own ver-
sion of the branch.

The most popular version control system these days is Git, although there are others. The follow-
ing table is a cheat sheet of the most important git commands, if you use git form in the command
line. All of them except the first are expected to be executed when you are inside the checked-out
directories.

Sample command What it does

git clone https://github.com/someproject.git Clones the master branch of the repo

git status Says what files you have modified or added
git add myfile.py Makes a change by adding a new file

git rm myfile.py Makes a change by deleting a file

git mv dir1/file.py dir2/file.py Makes a change by moving a file

git commit myfile.py -m “my commit message” Any changes you have made to the file (including
adding it or deleting it) are staged for pushing

git push Pushes all committed changes to the master copy of the
branch you are on

git diff myfile.txt Displays all changes that I've made to the file that have
not been committed yet

git branch Lists all branches of the repo that your local git knows
about and can switch to


https://github.com/someproject.git

15.3 Testing Code

Sample command What it does

git checkout my_branch Switches to the branch called my_branch

git branch my_new_branch Creates a new branch called my_new_branch and check
it out

git merge other_branch Merges the changes made in other_branch into the

branch you’re currently on

The other notable thing about git is the website www.github.com. Github allows anybody to
create a Git repo where the master copy is stored on Github’s internal servers. Github is free to use
provided that you make the codebase open to the public, so there are many fascinating projects
hosted on it. Many people (yours truly included) will also use github repositories as a place to store
some of their personal code snippets. For a fee, Github will keep a repository private, so it’s a great
way for small companies to get their hands on world-class version control.

15.3 Testing Code

There’s a spectrum of how rigorously code can be tested. Scientists and mathematicians are typically
used to “testing” code in a pretty casual way — making sure that it seems to give the correct output, as
indicated by a few sanity checks. On the other end of the spectrum, large software projects depend on
complicated testing frameworks that can sometimes be as complicated as the source code itself. Data
science tends toward the former, but in practice, it can run the gamut. This section will review some
of the standard testing concepts that you would see in a hardcore software environment.

At first glance, writing and maintaining testing code might appear to be an irritating burden
when you have the real code to write. It’s a pain to go back and revise all the tests to reflect the
changes you have made, rather than going on to the other changes you have to make. It’s even pos-
sible that all of your main code works perfectly, but the tests fail because there was a bug in your
testing code. Who wants to deal with that?

These are understandable concerns, and they are often valid for small code bases or one-off
projects. However, as the number of lines increases, and especially as the software is maintained
for the long term rather than being one-off scripts, a robust testing framework becomes invaluable.

The most obvious advantage of testing code is, of course, that it checks whether your main code is behav-
ing correctly. There is another, less obvious bonus too. Oftentimes, the test code is the best documentation
of how to use your source code. Rather than describing your code’s functionality in nebulous English, it
shows the brass tacks of how to call your code, which inputs go in, and which outputs are generated. Best
of all, by simply running all the tests, you can make sure that this “documentation” is up to date.

A good suite of tests reduces the mental burden required to modify large codebases. After you
make the desired modifications, if all of the tests still pass you can be reasonably confident that you
haven’t broken anything by accident. In a large project with complex inter-dependencies, this
dramatically reduces the time required.

15.3.1 Unit Tests

Unit tests cover small, self-contained pieces of code logic. For a given piece of code, its unit tests
should cover every known edge case of the code, as well as several of the more general cases. Many
programming languages have libraries that are specifically designed to support unit testing.
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Let’s see how this looks with the Python unit testing library. The following code assumes that
you’ve written a library called “mymath” containing a function “fib,” which calculates the nth
Fibonacci number. This code assumes that the zeroth Fibonacci number is 0, the first is 1, and
every subsequent number is the sum of the previous two:

import unittest
from mymath import fib

class TestFibonacci(unittest.TestCase):
def testO(self):

self_assertEqual (0, fib(0))

def testl(self):

self_assertEqual (1, fib(1))

def test2(self):

self._asserteEqual (Fib(0)+fib(1), fib(2))
def testlO(self):

self._assertEqual (Fib(8)+fib(9), fib(10))

unittest.main()

The TestCase class is where all of the magic happens. For the given piece of code you want to test, you
create a class that inherits from it, in this case, TestFibonacci. For every test, you want to run on the code
and you create a new method, whose name must start with “test.” These tests use the assertEqual func-
tion, which is a member function of Test Case and keeps track of any failures. The main() function
looks for all test cases defined in the namespace, runs them all, and reports the results to the user.

TestCase has a number of other methods, some of which are listed in this table:

assertNotEqual Make sure that two things are different

assertTrue Make sure that a variable is true

assertFalse Make sure that a variable is false

assertRaises Make sure that calling some function raises an error

The niftiest application of unit tests is in long-term code maintenance. Say that you wrote a code
module a while ago, and a small glitch gets discovered. Fixing the glitch might involve substantial
changes to your source code, and you run the risk of breaking the functionality that was already
there. So, you keep all your old unit tests in place and add one that tests the new edge case. As soon
as the new test passes, and all of the previous tests still pass, you can be confident that you’ve fixed
the problem without breaking anything.

Another great use for unit tests comes up if you are using git and working with other people. Say
you’ve made some changes to the codebase and want to make sure that everything still works
when combined with changes other people have made. You can use the “git pull” command to pull
down all their changes, recompile the code if need be, and rerun the unit tests. If they all pass, you
can push your changes with confidence.

Personally, I like to look at source code and test code as two symbiotic halves. They are “in sync”
if all of the unit tests pass. The source code is dangerously likely to have a bug, and the test code is
dangerously likely to have a bug. But, a bug in either will break the symbiosis. So, if the source code
and test code are in sync, your code almost certainly does what it’s supposed to do. The probability
that both halves have a bug, and those bugs cancel out so that the tests pass, is miniscule. All you
have to do is make sure that all of the edge cases in the source code are properly tested.
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The key limitation of unit tests is that each code module is tested in isolation. Unit testing isn’t
really intended for code that accesses external resources, such as the Internet, a remote MySQL
server, or other processes running on your computer. If you must unit test that kind of software,
the standard way to do it is with something called a “mock.” If your code is designed to access some
external API, a mock is an object that mimics that API in a predefined way. For example, a mock
of a MySQL server might take in queries but always returns a predefined result, without ever trying
to access a remote server.

Now, of course, you can write a Python script that uses the unittest library but also accesses
external resources. This is bad practice: the tests might fail because the external resource is having
trouble, or it isn’t available from the computer that is running the tests. But, if you want to run unit
tests manually as a way to test your own code, calling the external resources explicitly is often
easier than creating mocks.

15.3.2 Integration Tests

In integration tests, the different code modules are linked up to each other, external resources are
put in place, and the system is run in a realistic way. This is where you run into network timeouts,
permissions glitches, memory overflows, and other errors that can only occur at scale. It’s also the
trial-by-fire of whether every module correctly understands every other module’s API.

There is usually not a standard library for integration testing, because it is so specific to each
individual project. It’s more of a stage in the development of a serious piece of software.

15.4 Test-Driven Development

Previously, I explained how you can use unit tests to make sure that you’ve fixed a glitch in
your code without breaking something that was already working. “Test-driven development”
(TDD) is an approach to software engineering that takes this idea to the extreme. You write up
the unit tests for your module before you even start on the source code. Then, your goal in
writing the module is just to make the unit tests all pass. Often you address each test in turn,
making sure that it passes while not breaking the others, but ignoring any test that you haven’t
come to yet.

There are two big advantages to TDD. The first is that it makes you think through your module’s
desired functionality right up-front. This forces you to decide on a preliminary API and makes you
write code that calls the API so that you can see if it’s painfully clunky. The second advantage of
TDD is that, when it comes to writing the source code itself, you are able to laser-focus on a single
test rather than trying to hold the entire system in your head at once. It can be very calming, almost
meditative.

TDD is also only appropriate if you know more or less what your software should ultimately do.
This is often not the case in data science, because you don’t know what feature extractions and
preprocessing will work until you start playing with the data. In my own experience, data science
is often used to figure out exactly which analyses should be performed in what way, and then TDD
is used to implement a production version.

The other issue with TDD is that sometimes its myopia is not practical. The more different mod-
ules interact with each other, the more important it becomes to plan out your software architecture
ahead of time. Otherwise, each additional unit test may require rejiggering pretty much your entire
code base, and you could run into showstopper issues when you think you’re most of the way
through the project.
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15.5 AGILE Methodology

Test-driven development is a way for individual programmers to go about getting their work done.
Agile, on the other hand, is a way to organize teams of developers. The term was coined in 2001 in
“The Manifesto for Agile Software Development.” The book was written by a group of program-
mers who were sick of top-down, long-term plans resulting in projects that ultimately fail. The
concept caught on like wildfire, and some variants of agile are ubiquitous in data science and
software.

The key idea of AGILE is to make projects more flexible by shortening the development cycle
and tightening feedback loops. Among the key principles of agile are the following:

e Frequent collaboration and decision-making by the individual team members, as opposed to
mandates from above.

o Similarly frequent communication with clients and stakeholders.

e Making sure that there is always a working end-to-end product, even if it doesn’t include all of
the features that you will ultimately want.

A typical feature of agile teams is a daily morning meeting, often called “stand-up” or “scrum.”
Typically, this will consist of the team going around in a circle, with every member saying (1) what
they accomplished the previous day, (2) what they are planning to do today, and (3) any roadblocks
they are running into.

Agile is often a fantastic way to approach software, but it is not without its own drawbacks. The
biggest is that it sometimes comes at the expense of long-term planning and clear direction. The
second issue with agile development is that the focus on rapid feature iteration often leads to an
accumulation of “technical debt” — disorganization and instabilities in the codebase that come
back to bite you later.

15.6 Further Reading

1 Rubin, K, Essential Scrum: A Practical Guide to the Most Popular Agile Process, 2012,
Addison-Wesley, Boston, MA.

2 Martin, R, Clean Code: A Handbook of Agile Software Craftsmanship, 2008, Prentice Hall,
Upper Saddle River, NJ.

15.7 Glossary

AGILE development An approach to software development that focuses on getting a minimal
product working quickly and then having short “sprints” with clear goals that are incremental
improvements.

Git The most popular version control system today.

Integration test A test that makes sure that several pieces of software work correctly together.

Perl Golf A pejorative term for cramming a lot of functionality into a few lines of code, making
it hard to understand.

Scrum A short, daily team meeting in AGILE development.

Sprint A short period of time (usually 2 weeks) over which concrete goals are set in AGILE
development.
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Technical debt Work that will need to be done in the future because of shortsighted and/or
expedient programming choices made in the past.

Test-driven development A system of writing code where you start by writing the unit tests
for whatever changes you intend to make and then changing the code until the new unit
tests pass and all the old ones still pass.

Unit test A test that runs a small piece of code in isolation and makes sure that it works
correctly. They are particularly useful for test-driven development and for testing edge cases
in the code’s logic.

Version control A piece of software that tracks changes made by multiple users to a repository
of code.
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Traditional Natural Language Processing

Natural language processing (NLP) is a collection of techniques for working with human language.
Examples would include flagging e-mails as spam, using Twitter to assess public sentiment, and
finding which text documents are about similar topics. NLP is an area that many data scientists
never actually need to touch. But, enough of them end up needing it - and it is sufficiently different
from other subjects - that it deserves a chapter in this book.

This chapter will start with several generic sections about NLP datasets and discussions of big-
picture concepts. Then, I will switch gears to specific NLP concepts, discussing them roughly in
order of increasing sophistication.

I want to emphasize that NLP techniques are not strictly limited to language. I've also seen them
used to parse computer log files, figuring out what “sentences” the computer generates. Personally,
I first learned many of the statistical techniques while working with bioinformatics.

This chapter will mostly limit itself to what you could call “traditional” NLP techniques - those
that predate recent advances in deep learning. They will not give you near-magical performance
that can be had with Large Language Models (LLMs), but they are dramatically easier to under-
stand, reason about, and hack.

The central concept I will discuss is what’s sometimes called a “bag of words,” a heavy-handed
way to condense a piece of text down into a vector suitable for numerical algorithms. I will discuss
a number of modifications to this paradigm, ranging from crude hacks to things that draw on
major topics in linguistics. Bag-of-words is simple, straightforward, and usually good enough for
basic NLP tasks. But, I will also touch on some more advanced topics that don’t fall under
bag-of-words.

16.1 Do | Even Need NLP?

The first question to ask when using NLP is whether you even need it. There is often pressure from
customers and bosses to solve problems using NLP, because it is seen as some kind of magical sil-
ver bullet. But, in my experience, NLP is hard to implement, and it is prone to bizarre errors that
are obviously wrong when a human looks at them.

I've seen people bang their heads against a problem using NLP techniques, only to eventually
give up and try solving the problem with regular expressions. Then, lo and behold, the regular
expressions work better than the NLP ever did.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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Here are a few thoughts to keep in mind when deciding whether to try NLP:

o If your data has a regular structure to it, then you can probably extract what you need
without NLP.

e NLP tends to be very effective at tasks such as determining whether two documents have similar
content, because simple things such as word frequency are very informative.

e Extracting facts from documents that don’t have a regular structure tends to be very difficult,
unless possibly you are going to use an LLM.

o It can be hard to make sense of why an NLP algorithm performed in the way it did.

o NLP typically requires a fair amount of training data.

16.2 The Great Divide: Language Versus Statistics

There are two very different schools of thought in NLP, which use very different techniques and
sometimes are even at odds with one another. I'll call them “statistical NLP” and “linguistic NLP.”
The linguistic school focuses on understanding language as language, with techniques such as
identifying which words are verbs or parsing the structure of a sentence. This sounds great in
theory, but it is often staggeringly difficult in practice because of the myriad ways that humans
abuse their languages and break the rules. The statistical school of NLP solves this problem by
using large corpuses of training data to find statistical patterns in language, without giving explicit
consideration to notions of grammar. They might notice that “dog” and “bark” tend to occur fre-
quently together, or that the phrase “Nigerian prince” is more common in a corpus of e-mails than
chance would dictate. Personally, I see statistical NLP mostly as a blunt-force workaround for the
fact that linguistic NLP is so extraordinarily difficult.

In the modern era of massive datasets (such as the web), this divide has become more pro-
nounced, and statistical NLP now has the advantage. Even before the advent of LLMs, this was the
case. The best machine translation engines, such as the ones Google might use to automatically
translate a website, are primarily statistical. They are built by training on thousands of examples of
human-done translation, such as newspaper articles published in multiple languages or books that
were translated. Some linguists protest that this is dodging the scientific problem of figuring out
how the human brain really processes language. And, of course, they are right about that, but the
bottom line is that the results are generally better.

LLMs represent the state-of-the-art in statistical NLP. I will mostly leave the discussion of them
to the later chapter on artificial intelligence. For now though suffice it to say that at their heart,
LLMs are solving a purely statistical problem: predicting the next word that will appear in a piece
of prose based on the words that have come before. There is no explicit concept of nouns, verbs, or
any other grammatical abstraction. It is purely prediction based on patterns that have been extrap-
olated from a massive training dataset.

16.3 Example: Sentiment Analysis on Stock Market Articles

The following script shows a tiny taste of what is possible with Python’s most popular NLP library:
nltk (“natural language toolkit”). You set the ticker symbol of a stock near the top of the script. It
then parses a bunch of recent articles about the stock, gauges them as positive or negative, and
prints how many fell into each category.

This script is longer and a little more complicated than many of the other scripts in this book.
This is typical of NLP - there is a fair amount of preprocessing that is required to get the text into
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a form where you can perform your actual analysis. In this case, getting the text requires finding a
list of articles, then scraping each one and pulling the prose out of the html.

Once you have the prose, you remove various sorts of cruft and distill it down to only the “mean-
ingful” words. These meaningful words are then “lemmatized” - replaced with their word root so
that “runs,” “running,” and “ran” all become “run.” Finally, each piece of text is reduced to a “bag of
words” (technically a “bag of lemmas” in this case) — just a count of how often each lemma occurred
in the article. This bag-of-words is the central data structure that captures the content of the article.

Only then, do we get into actual analysis. We count the number of lemmas in the article that look
like they might be some version of “good” or “up” (or bad/down). An article with more good lem-
mas than bad is considered to be a positive article.

import re

import urllib

import nltk

from nltk.corpus import wordnet as wn

from nltk.corpus import stopwords

from nltk.stem.wordnet import WordNetLemmatizer

TICKER = "CSCO*
URL_TEMPLATE = "https://feeds.finance.yahoo.com/™ + \
"'rss/2.0/headl ine?s=%s&region=US&lang=en-US"

def get_article_urls(ticker):
# input: ticker for a stock
# Hit Yahoo Finance for news on the stock
# output: list of URLs for articles about a stock link_pattern
= re.compile(r"<link>["<]*</link>")
xml:url = URL_TEMPLATE % ticker
xml:data = urllib.urlopen(xml:url).read()
link_hits = re.findall(link_pattern, xml:data) return [h[6:-7]
for h in link_hits]

def get_article_content(url):
# input: url for a news article
# Downloads HTML for an article and then
# pulls data from paragraphs in the html
# output: approx. content of the article
paragraph_re = re.compile(r'.*")
tag_re = re.compile(r''<[~>]*>")
raw_html = urllib.urlopen(url).read()
paragraphs = re.findall(paragraph_re, raw_html)
all_text = " "_join(paragraphs)
content = re.sub(tag_re, ", all_text)
return content

def text_to_bag(txt):
# input: bunch of text
# Remove stopwords, numbers, etc.
# Lemmatize what®"s left: [running, runs, ran]->run
# output: bag-of-lemmas
lemmatizer = WordNetLemmatizer()
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txt_as ascii = txt.decode(

"ascii®, "ignore”).lower(Q)
tokens = nltk.tokenize.word_tokenize(txt_as_ascii)
words = [t for t in tokens if t.isalpha(Q]
lemmas = [lemmatizer.lemmatize(w) for w in words]
stop = set(stopwords.words("english®))
nostops = [1 for I in lemmas if I not in stop]
return nltk.FregDist(nostops)

def count_good_bad(bag):

# Input: bag-of-lemmas

# Output: number of words that are good, bad

good_synsets = set(wn.synsets("good®) + \
wn.synsets("up”))

bad_synsets = set(wn.synsets("bad") + \
wn.synsets("down®))

n_good,n_bad = 0, O

for lemma, ct in bag.items():
ss = wn.synsets(lemma)
if good_synsets. intersection(ss): n_good += ct if
bad_synsets. intersection(ss): n_bad += ct

return n_good, n_bad

urls = get_article_urls(TICKER)

contents = [get_article_content(u) for u in urls]

bags = [text_to_bag(txt) for txt in contents]

counts = [count_good_bad(txt) for txt in bags]

n_good_articles = len([_ for g, b in counts if g > b])

n_bad_articles = len([_ for g, b in counts if g < b])

print(""There are %i good articles and %i bad ones"™ %
(n_good_articles, n_bad_articles))

16.4 Software and Datasets

NLP processing is generally very computationally inefficient. Even something as simple as deter-
mining whether a word is a noun requires consulting a lookup table containing a language’s entire
lexicon. More complex tasks such as parsing the meaning of a sentence require figuring out a
sentence’s structure, which becomes exponentially more difficult if there are ambiguities in the
sentence (which there usually are). This is all ignoring things such as typos, slang, and breaking
grammatical rules. You can partly work around this by training stupider models on very large data-
sets, but this will just balloon your data size problems.

There are a number of standardized linguistic datasets available in the public domain. Depending
on the dataset, they catalog everything from the definitions of words, to which words are syno-
nyms of each other, to grammatical rules. Most NLP libraries for any programming language will
leverage at least one of these datasets.

One lexical database that deserves special mention is WordNet. WordNet covers the English lan-
guage, and its central concept is the “synset.” A synset is a collection of words with roughly equiva-
lent meanings. Casting every word to its associated synset is a great way to compare whether, for
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example, two sentences are discussing the same material using different terms. More importantly,
an ambiguous word such as “run,” which has several different possible meanings, is a member of
several different synsets; using the correct synset for it is a way to eliminate ambiguity in the sentence.
Personally, I think of synsets as the words of a separate language, one in which there is no ambiguity
and no extraneous synonyms.

16.5 Tokenization

The first part of any NLP process is simply breaking a piece of text into its constituent parts (usu-
ally words). This process is called “tokenization,” and it is complicated by issues such as punctua-
tion markers, contractions, and a host of other things. Is “that’s” one word, or is it two? If two,

should the second word be “is” or “’s.
The process can become even more complicated if your tokens are sentences rather than words.

16.6 Central Concept: Bag-of-Words

Probably, the most basic concept in traditional NLP is that of a “bag-of-words,” also called a fre-
quency distribution. It’s a way to turn a piece of free text (a tweet, a Word document, or whatever
else) into a numerical vector that you can plug into a machine learning algorithm. The idea is quite
simple - there is a dimension in the vector for every word in the language (or perhaps in a training
corpus), and a document’s value in the nth dimension is the number of times the nth word occurs
in the document. The piece of text then becomes a sparse vector in a very high-dimensional space —
the dimensionality of the space is the number of words that are recognized as being in the language.

My first-ever exposure to NLP was as an intern at Google, where they explained to me that this
was how part of the search algorithm worked. You condense every website into a bag-of-words and
normalize all the vectors. Then, when a search query comes in, you turn it into a normalized vector
too, and then take its dot product with all of the web page vectors. This is called the “cosine similar-
ity,” because the dot product of two normalized vectors is just the cosine of the angle between
them. The web pages that had high cosine similarity were those whose content mostly resembled
the query, that is, they were the best search result candidates.

The majority of this chapter will be about extensions and refinements of the basic idea of bag-of-
words. I will briefly discuss some more advanced topics, but the (perhaps surprising) reality is that data
scientists rarely do anything that can’t fit into the bag-of-words paradigm. When you go beyond bag-of-
words, NLP quickly becomes a staggeringly complicated task that is usually best left to specialists.

Bag-of-words solves the central problem in much of machine learning: turning a non-numerical
piece of data into a vector of fixed length. A very high-dimensional form of feature extraction, if
you will. Right off the cuff, we might want to consider the following extensions to the word vector:

o Some words are much more informative than others - we may want to weight them by importance.

o There’s a staggering number of words in English and an infinite number of potential strings that
could appear in text. We need some way to cap them off.

e Some words don’t usually matter at all. Things such as “I” and “is” are often called “stop words,”
and we may want to just throw them out at the beginning.

o The same word can come in many forms. We may want to turn every word into a standardized version of
itself, so that “ran,” “runs,” and “running” all become the same thing. This is called “lemmatization.”

o Sometimes, several words have the same or similar meanings. In this case, we don’t want a vector
of words so much as a vector of meanings. A “synset” is a group of words that are synonyms of

each other, so we can use synsets rather than just words.
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e Sometimes, we care more about phrases than individual words. A set of n words in order is
called an “n-gram,” and we can use n- grams in place of words.

When it comes to running code that uses bag-of-words, there is an important thing to note.
Mathematically, you can think of word vectors as normal vectors: an ordered list of numbers, with
different indices corresponding to different words in the language. The word “emerald” might cor-
respond to index 25, the word “integrity” to index 1047, and so on. But, generally, these vectors will
be stored as a map (in the example Python code, it is a FreqDist object) from word names to the
numbers associated with those words. There is often no need to actually specify which words cor-
respond to which vector indices, and doing so would add a human-indecipherable layer in your
data processing, which is usually a bad idea.

In fact, for many applications, it is not even necessary to explicitly enumerate the set of all words
being captured. This is not just about human readability: the vectors being stored are often quite
sparse, so it is more computationally efficient to only store the nonzero entries.

16.7 Word Weighting: TF-IDF

The first correction to bag-of-words is the idea that some words are more important than others. In
some cases, we know a priori which words to pay attention to, but more often we are faced with a
corpus of documents and have to determine from it which words are worth counting in the word
vector and what weight we should assign to them.

The most common way to do this is “Term Frequency-Inverse Document Frequency” (TF-IDF).
The intuition behind TF-IDF is that rarer words are more important. You calculate the word vector
for a particular document by counting up all of its words’ frequencies, as usual. But, then you
divide each count by the frequency of that word in the training corpus. This will dampen down the
scores for common words, but balloon them for rare words that happen to occur (comparatively)
frequently in this document.

Generally, in a TF-IDF, you will only look at words that have some minimal frequency in the
training corpus. If a word never occurs in the training corpus but shows up in a new document,
then surely it shouldn’t have infinite importance. And, we don’t want to give aberrantly high
importance to a word that shows up only once. Five occurrences in the corpus are a common mini-
mum for the word to be counted. Even requiring just two will chop out a lot of noise such as typos.

16.8 n-Grams

Often, we don’t want to look just at individual words, but phrases. The key term here is an
“n-gram” - a sequence of n words that appear consecutively. A piece of text containing M words
can be broken into a collection of M — n+1 n-grams, as shown in the following figure for 2-grams:

The quick brown fox jumped over the lazy dog

U

|The quick| | quick brown | | brown fox |




16.10 Lemmatization and Stemming

You can create a bag-of-words out of n-grams, run TF-IDF on them, or model them with a
Markov chain, just as if they were normal words.

The problem with n-grams is that there are so many potential ones out there. Most n-grams that
appear in a piece of text will occur only once, with the frequency decreasing, the larger n is. As
with TD-IDF, the general approach here is to only look at n- grams that occur more than a certain
number of times in the corpus.

16.9 Stop Words

Bag-of-words, TF-IDF, and n-grams are fairly general processing techniques, which can be applied
to many other areas besides NLP. Now, let’s move into some more truly more linguistically oriented
extensions to bag-of-words. In most cases, this consists of a preprocessing step that canonicalizes
the text — cleaning up the original text and putting it into a standardized format suitable for down-
stream processing by something such as TF-IDF.

The simplest version is to remove what are called “stop words.” These are words such as “the,”
“it,” and “and” that aren’t really informative in and of themselves. They are critically important if
you’re trying to parse the structure of a sentence, but for bag-of-words, they are just noise.

There is no absolute definition of “stop words.” In our example script, we used a list of English
stop words that are built into the nltk library. If you must determine stop words in a corpus your-
self, they are determined by finding the most common words in a corpus, then going through them
by hand to determine which ones aren’t really meaningful.

16.10 Lemmatization and Stemming

The other big approach is called “lemmatization.” The “lemma” for a word is the base word from
which it is derived. Intuitively, if we are making a bag-of-words, then “running,” “ran,” and “runs”
should all count the same. In linguistic terms, they are all variations of the lemma “run,” and we
would want to turn them all into “run” as a preprocessing step.

Some form of lemmatization is important in processing English, but it is critical in many other
languages. I was surprised when I first learned that English is actually fairly tame when it comes to
modifying our words. Languages such as Spanish, for example, have an arbitrary “gender” assigned
to their nouns, and any adjective will be tweaked to reflect that gender of the noun it is describing.

Other languages make liberal use of “case” in their nouns, where the noun is modified to reflect
its part of speech. Noun case is the difference between “I,” “me,” and “my” - respectively, when I
am the subject of a sentence who does the verb, an object in the sentence to whom the verb is done,
or when I'm the possessor of something. There are other cases too. Generally speaking in English,
a word is not modified to reflect case, except by adding “’s” to indicate possession (I/me/my is a
rare exception). Languages like German and Russian though have extensive case systems, and they
will throw a wrench into your bag-of-words if you don’t strip the case in some way.

The problem with lemmatization is that, in general, it is extremely computationally expensive
because it requires a certain amount of understanding of the text. Extracting the lemma for a given
word requires knowing its part of speech, for example, which requires analysis of the surrounding
sentence.

A simpler approach, which is less accurate than lemmatization but quicker to run and easier to
implement, is called “stemming.” The “stem” of a word is very similar to the lemma. The difference
is that the lemma is itself a version of the word in question, whereas the stem is just the part of a
word that doesn’t change despite the inflection of the word. So between the words “produce,”
“producer,” “product,” “production,” and “producing,” the lemma will be “produc-.”

9
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Proper lemmatization requires a strong knowledge of the language and its edge cases, plus the
ability to analyze the text at hand. On the other hand, the implementation of a stemmer generally
just applies a succession of rules of thumb to try reducing words down to their stems. For example,
it will typically strip off “ing” or “ation” if they occur at the end of a word (unless such stripping
would leave too few remaining letters). I have even seen them implemented using a big lookup
table, which maps the words of the language in their various forms to their respective stems.

16.11 Synonyms

Intuitively, when we are trying to analyze the text, the words themselves are less important than the
“meaning.” This suggests that we might want to collapse related terms such as “big” and “large” into
a single identifier. These identifiers are often called “synsets,” for sets of synonyms. Many NLP pack-
ages leverage the use of synsets as a major component of their ability to understand a piece of text.

The simplest use of synsets is to take a piece of text and replace every word with its correspond-
ing synset. This is a souped-up version of lemmatization, because we don’t just collapse “run” and
“running” into a single thing — we also mix “sprinting” in there. Ultimately, I think of synsets as
constituting the vocabulary of a “clean” language, one in which there is a one-to-one matching
between meanings and words. It strips out all the ambiguity that confounds computer programs
studying real languages.

That’s all very rosy-sounding, but there is a major hitch: in general, a word can belong to several
synsets, because a word can have several distinct meanings. “Run” shares a synset with “sprint,”
but it can also refer to runny eggs, a run in pantyhose, or a run on a bank. So doing a translation
from the original language to “synset-ese” is usually not feasible. But, they are still useful - in the
example script, I considered a word to reflect positive sentiment if it was present in the synset of
“good,” and I just accepted the fact that I would get some false positives.

16.12 Part of Speech Tagging

As we move from purely computational techniques toward ones based more closely on language,
the next stage is part-of-speech tagging (POS tagging), where we identify whether words in a sen-
tence are nouns, verbs, adjectives, and so on. This can be done in nltk as follows:

>>> nltk.pos_tag(["I'", "drink', "milk"])
[C1*, "PRP®), ("drink", "VBP"), ("milk", "NN" )]

In this case, the PRP tag tells us that “I” is a prepositional phrase, “drink” is a verb phrase, and
“milk” is a common noun in singular form. A complete list of the POS tags nltk uses can be seen
by calling

>>> nltk.help.upenn_tagset()

16.13 Common Problems

This section will give a brief overview of a number of the areas to which NLP can be applied. Each sec-
tion is a massive subject in its own right, with a sophisticated suite of techniques and best practices. As
a data scientist, you are unlikely to build a state-of-the-art version of any of them. However, you could
easily be called upon to do a simple version, and if so, this section should give you some pointers.



16.13 Common Problems

16.13.1 Search

One of the most straightforward tasks for NLP is searching through a set of documents to find
those that match a query.

Searching is often broken into two types: navigational and research. In navigational search,
there is typically a single document that the user is trying to locate, and the goal of the search
engine is to find it. Research search is much more general - typically, a user does not know which
documents, if any, are relevant to their query, and they expect to be inspecting a lot of them
by hand.

Anybody who has used a modern search engine can imagine the wealth of special cases, caching
of common queries, and other work involved in creating such a product. It is well beyond the scope
of what most data scientists do.

Searching is often implemented by extracting a bag-of-words for the query string and for every
document in the corpus. Especially, if you are baking complicated linguistic processing into your
bag-of-words, vectorizing an entire corpus can be an extremely computationally intensive process.
Fortunately though, you only have to do it once, and you can store the vectors for later use.
Executing a search then just consists of vectorizing the query itself (which is typically much easier,
because the query is short) and comparing its vector against all those in the database.

The typical way that vectors are compared is called “cosine similarity,” which consists of the fol-
lowing steps:

1) Normalize each vector, so that the sum of squares of its numbers is 1.0. This can be done offline
for your corpus of documents, so that you only have to normalize the query itself at query time.
2) Take the dot product of the query and each normalized corpus vector.

The resulting number is called the “cosine similarity” because, in the case of two vectors of
length 1 (remember we normalized them), the dot product is just the cosine of the angle between
them. It will be 1.0 if the vectors are identical, falling off to 0.0 if the query and the text have no
words in common. Cosines can of course be negative, but in the case of bag-of-words, all compo-
nents are non-negative (since you can’t have fewer than 0 occurrences of a word in a piece of text),
so the lowest possible cosine similarity is 0.

16.13.2 Sentiment Analysis

Sentiment analysis is typically used to refer to gauging the tone of a piece of text - positive, nega-
tive, or neutral. This is what we did in the example script at the beginning of this chapter to iden-
tify, in a fraction of a second, whether analysts are saying good or bad things about the stock.
Ideally, we can get this insight before any flesh-and-blood humans have a chance to read the article
the old-fashioned way and trade based on it. There are more complicated versions of sentiment
analysis that can, for example, determine complicated emotional content such as anger, fear, and
elation. But, the most common examples focus on “polarity,” where on the positive-negative con-
tinuum a sentiment falls.

Simple sentiment analysis is often done with handmade lists of keywords. If words such as “bad”
and “horrendous” occur a lot in a piece of text, it strongly suggests that the overall tone is negative.
That’s what we did in our example script.

Slightly more sophisticated versions are based on plugging bag-of-words into machine learning
pipelines. Commonly, you will classify the polarity of some pieces of text by hand and then use
them as training data to train a sentiment classifier. This has the massive advantage that it will
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implicitly identify keywords you might not have thought of and will figure out how much each
word should be weighted. If you use extensions of the bag-of-words model, similar to n-grams, you
can also identify phrases such as “nose dive,” which deserve a very large weight in sentiment
analysis but whose constituent words don’t mean much.

The most advanced sentiment analysis goes beyond bag-of-words. In this case, you must do
things such as parsing a sentence to figure out which entities are being described with words such
as “bad.” However, you can often work around this by examining smaller pieces of text. If you are
parsing an article on an industry in the stock market, for example, there are likely to be many com-
panies discussed in both positive and negative ways. However, a given sentence or paragraph is
likely to have one predominant sentiment and only refer to a single company.

16.13.3 Entity Recognition and Topic Modeling

In many cases, we have a corpus of documents and want to determine what “things” they talk
about. This can run the gamut from pulling out specific entities (such as the names of human
beings mentioned in a document) to more general topics.

Typically, identifying specific entities being discussed is referred to as “entity recognition” or
“named entity recognition.” There are many ways to go about this, and you can imagine the amount
of hand coding (or massive amounts of training data) that is often required to recognize that
“Robert” and “Bob” are likely to be the same person. Entity recognition often makes extensive use
of POS tagging, because, generally, it is only the nouns in a sentence (and usually, only the proper
nouns at that) that are viable candidates for entities.

“Topic modeling” usually refers to finding much broader topics. A given piece of text is generally
thought of as a combination of several topics, and the critical intuition is that words that are used
frequently together tend to be related to the same “topic.” For example, a document that is half
about cats and half about dogs should have similar amounts of dog-related terms (bark, wolf, howl,
etc.) and cat-related terms (purr, litter, etc.).

You might think that this sounds like an obvious place to apply principal component analysis
(PCA). If so, then you’re pretty close to the mark, but not quite hitting it. The usual tool of
choice for topic modeling is called latent semantic analysis (LSA), and it is based on a mathe-
matical notion called singular value decomposition (SVD). As with PCA, every “topic” in our
corpus corresponds to a vector in word space, and we express every document as a linear com-
bination of these topics. For instance, a particular topic might have large weight on words such
as “touchdown,” “quarterback,” and “ball.” The reason we use SVD rather than PCA is that SVD
forces our components to be orthogonal to each other. This avoids a potentially awkward situa-
tion where one of our topic vectors can be expressed, at least partly, as a combination of
other topics.

16.14 Advanced Linguistic NLP: Syntax Trees, Knowledge,
and Understanding

I promised that I would briefly discuss topics that go beyond what can be done with bag-of-words
and require something in the direction of “understanding” the text. If, for example, you are trying
to answer specific question about the data such as “who is John dating?,” then you will need



16.16 Glossary

something beyond bag-of-words. Typically, in these situations, NLP is used to create “knowledge
bases,” which store facts in a format where machines can use them for queries and reasoning.

The idea of a knowledge base isn’t really new. In fact, the mathematical theory of relational
databases functioned essentially as a knowledge base that supported logical queries.

Typically, a knowledge base will have tables that represent facts. For example, you might have a
table called IsParentOf, which has one column for a parent and another for their child. In this way,
a knowledge base is very similar to a relational database, and logical questions become equivalent
to SQL-like queries. For example, we could find all people who have at least two children by saying

SELECT a.parent

FROM IsParentOf as a
JOIN IsParentOf as b

ON a.parent = b.parent
WHERE a.child != b.child

You could use a relational database as a poor man’s knowledge system. Combing through bodies
of text you could, for example, identify every place that somebody is said to be the mother or father
of somebody else and use this to populate the IsParentOf table. The problem with this is that we
have to know going into it that fatherhood is a relationship we are interested in and how to parse
it out. Additionally, there are other logical rules that are not captured in an RDB, such as the fact
that while a parent can have many children, every child can have at the most two parents.

Modern knowledge bases typically augment the SQL-like tables with logical rules that describe
the categories of things being discussed and the relationships between them. These collections of
domain-specific categories and rules are also often called “ontologies.”

LLMs support a somewhat different paradigm called retrieval augmented generation (RAG). In
an RAG system, there is a large corpus of documents (or more typically pieces of documents) that
have all been vectorized through some embeddings process and stored in a vector database. When
a question comes into the system it also gets vectorized, so that the document most similar to it can
be retrieved from the vector database. That context is then fed into the LLM as context, and it is
asked to answer the question given that information. RAG has the disadvantage of never storing
facts explicitly, which limits the types of problems you can solve and makes quality control diffi-
cult. For purely putting together a question-and-answer system though - essentially a way to have
a conversation with a collection of documents - they can be very effective.

16.15 Further Reading

1 Bird, S, Klein, E & Loper, E, Natural Language Processing with Python, 2009, O’Reilly Media,
Newton, MA.

2 Jurafsky, D & Martin, J, Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, 2000, Prentice Hall, Upper Saddle
River, NIJ.

16.16 Glossary

Bag-of-words Condensing a piece of text into its word frequencies.
Entity recognition Using text to identify the specific real-world entities being discussed.
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Knowledge base A database storing facts.

Lemma The base, uninflected form of a word.

Ontology A collection of concepts and relationships between them that are required for
understanding a particular domain of application.

Part of speech A grammatical part of speech (such as noun, verb, etc.) of a word in a sentence.

POS Short for part of speech.

Retrieval Augmented Generation A system that uses LLMs to answer questions based on a
corpus of documents.

Sentiment analysis Automatically gauging the tone of a piece of text, especially whether it is
positive or negative.

Stem The base part of a word that doesn’t change between various forms of the word. Can often
be used in place of lemmas.

Stop word A word that is common and not helpful in assessing a text’s meaning. In many
applications, they are often filtered out because they act as noise.

Topic modeling Identifying topics of discussion in documents. Often, a topic is modeled as a
collection of words (such as “football” and “quarterback”), which are usually rare, but which
sometimes are all frequent in a document.

TF-DIF A method of weighting the importance of words so that the less common words are
more important.

Tokenization Breaking a piece of text into its “tokens.” The tokens are usually words but will
also often split something like “it’s” into two tokens.
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Time Series Analysis

Time series analysis, in my experience, is not as common as you might expect in data science work.
However, that seems to be largely an artifact of the datasets that it has been applied to thus far,
which tends to be legacy business spreadsheets and dumps of SQL databases. Especially, as sensor
nets become more ubiquitous, time series will come to play a much larger role in daily work.
At that point, data scientists will have a lot of catching up to do, because electrical engineers have
been analyzing time series for decades.

Typical applications of time series analysis in data science include the following:

e Projecting the value of the time series at future points in time, such as a stock whose price we
want to predict.

o Identifying interesting patterns in a corpus of time series data that is too large for a human to
comb through.

e Predicting when/whether an event will occur, such as a failure of the machine generating
the data.

All of these business applications can ultimately be formulated as machine-learning (ML)
problems. For example:

o If we are trying to predict whether a component is at risk of failure, this is a classification
problem: we extract various features from the data to date (especially its recent history) and use
it to predict a binary variable of whether it will fail soon (say, in the next hour).

o Let’s say we want to predict the value of a time series in the future. Well, finding the value of the
time series an hour from now based on recent measurements can be formulated as a regression
problem.

o If you are just looking for interesting patterns, this is often accomplished using clustering or
dimensionality-reduction algorithms.

Most of this chapter boils down to techniques for converting time series analysis problems into
ML problems and some of the unique challenges this poses.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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17.1 Example: Predicting Wikipedia Page Views

The following example script downloads a time series of Wikipedia page views by day. It then does

several things:

o I plot the raw time series and look at it.

o It is visually clear that there are some major outliers, which are likely to confound any model
I care to fit, so I cap them off by setting everything above the 95th percentile to the 95th percen-

tile value. This is crude and brute force, but it works for the time being.

o I expect that there will be a weekly periodicity to this signal, so I use the statsmodel library to
break it down into a periodic component, a trend component, and a noise component. This is a

very error-prone step, but it can be very useful too.

o I break the time series into week-long sliding windows and pull out some salient features from
each window. Those features are then used to train a regression model for predicting traffic in

the next week.

It’s not fancy, but this is the kind of thing you are likely to do at least as a first cut with time

series data.

import urllib, json, pandas as pd, numpy as np,\
sklearn.linear_model, statsmodels.api as sm\
matplotlib.pyplot as plt

START_DATE = "20131010"

END_DATE = "'20161012"

WINDOW_SIZE = 7

TOPIC = "Cat"

URL_TEMPLATE = ("https://wikimedia.org/api/rest_v1"
""/metrics/pageviews/per-article”
"/en.wikipediaZall-access/"
"allagents/%s/daily/%s/%s'")

def get_time_series(topic, start, end):

url = URL_TEMPLATE % (topic, start, end)
Json_data = urllib.urlopen(url).read()
data = json.loads(json_data)
times = [rec["timestamp”]

for rec in data["items™]]
values = [rec["views"] for rec in data["items"]]
times_formatted = pd.Series(times).map(

lambda x: x[:4]+"-"+x[4:6]+"-"+x[6:8])
time_index = times_formatted.astype("datetime64")
return pd.DataFrame(

{"views": values}, index=time_index)

def line_slope(ss):
X=np.arange(len(ss)).reshape((len(ss),1))
linear . fit(X, ss)
return linear.coef _

# LinearRegression object will be
# re-used several times


https://wikimedia.org/api/rest_v1

17.1 Example: Predicting Wikipedia Page Views

linear = sklearn.linear_model .LinearRegression()
df = get_time_series(TOPIC, START_DATE, END_DATE)

# Visualize the raw time series
df["views"].plot(Q
plt.title(""Page Views by Day')
plt.show()

# Blunt-force way to remove outliers
max_views = df["views"].quantile(0.95)
df.views[df.views > max_views] = max_views

# Visualize decomposition

decomp = sm.tsa.seasonal_decompose(df["views"].values,
freq=7)

decomp.plot()

plt.suptitle(*'Page Views Decomposition™)

plt.show()

# For each day, add features from previous week
df["mean_1lweek"] = pd.rolling_mean(
df["views"], WINDOW_SIZE)
df["max_1week™] = pd.rolling_max(
df["views™], WINDOW_SIZE)
df[*min_lweek™] = pd.rolling_min(
df["views™], WINDOW_SIZE)
df["slope”] = pd.rolling_apply(
df[“views"], WINDOW_SIZE, line_slope)
df["total_views_week"] = pd.rolling_sum(
df["views™], WINDOW_SIZE)
df["day_of week"] = df.index.astype(int) % 7
day of _week_cols = pd.get_dummies(df["day_of _week"])
df = pd.concat([df, day_of week cols], axis=1)

# Make target variable that we
# want to predict: views NEXT week.
# Must pad w NANs so dates line up
df["total_views_next_week"] = list(df["total_views_
week"J[WINDOW_SIZE:]) + \

[np.nan for _ in range(WINDOW_SIZE)]

INDEP_VARS = ["mean_1lweek®, "max_lweek",
"min_lweek", "slope®"] + range(6)

DEP_VAR = "total_views_next_week"”

n_records = df.dropna().shape[0]

test_data = df.dropna()[:n_records/2]
train_data = df.dropna()[n_records/2:]

linear._fit(
train_data[INDEP_VARS], train_data[DEP_VAR])

test_preds_array = linear.predict(
test_data[ INDEP_VARS])
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test_preds = pd.Series(
test_preds_array, index=test_data.index)
print(’Corr on test data:", \
test_data[DEP_VAR].corr(test_preds))

The script will produce the following outputs:
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17.3 Time Series Versus Time-Stamped Events
17.2 ATypical Workflow

A typical time series workflow will look something like this:

e Resampling and interpolation. Time series data often has missing values and/or is sampled at
nonuniform rates. However, most algorithms require uniform sampling with no missing data.
The first step is to convert the raw input data into uniformly sampled time series.

e Sometimes I'm working with time-stamped events, rather than time series measurements.
In this case, I have to first condense these events into time series data. For example, maybe by
counting the events per day.

o Series-level preprocessing and denoising. Oftentimes, we want to try various methods of remov-
ing noise from the data, smoothing outliers, scaling it to appropriate levels, or other types of
preprocessing.

o Windowing. Most applications involve breaking a whole time series down into smaller windows
of time, from which we can extract features. How large these windows should be, whether and
how much they should overlap, and how we should decide where to place them are all important
questions.

o Feature extraction. Once we’ve broken the series down into windows, we generally want to
extract meaningful features from each window that we can plug into an ML model.

The other thing that we sometimes do, which is superficially similar to projecting its value but
ultimately quite different, is constructing a model of the time series that describes how it behaves
as a random process.

17.3 Time Series Versus Time-Stamped Events

There are two very different types of data that are sometimes called “time series”:

1) Actual time series, that is, a sequence of measurements that are evenly spaced in time. This will
often be things such as the price of a stock every hour, the amount of revenue that was made
each day in a month, or temperature measurements coming off of a physical sensor.

2) Discrete events (or periods of time) that have a time stamp associated with them.

This chapter will focus almost exclusively on the first of these, for two reasons:

1) Most time series analysis techniques are designed to handle numerical measurement data.
There’s not a lot you can say about event data that generalizes beyond a particular domain of
application.

2) Even when we do have event data, often what we really want is still more of a continuous thing.
Take Internet traffic, for example. We might care about predicting how many people will visit a
website on Tuesday, but we are rarely concerned with how many milliseconds it will be until
the next person arrives or how likely it is that there will be five people on the site at any moment
in time. Intuitively, there is a continuous-valued “traffic density” that varies across time, and
individual human visits are just samples of that density. We want our analysis to be based on the
underlying density.

Generally, people convert event logs into time series by dividing time into fixed-size windows
and counting the events in each window. Usually, this is done in human-relatable terms such as

213



214

17 Time Series Analysis

events per day, events per hour, or something similar, but you can also adjust the windows’ size to
the granularity that works best for your analyses.

For the rest of this chapter, unless otherwise specified, you can assume that I mean a time series
in the traditional sense.

17.4 Resampling and Interpolation

Time series analysis algorithms tend not to handle missing data well. Of course, missing values
(or values that were corrupted in some way and need to be replaced by a reasonable estimate) are
common in real data, so in those cases, you will need to fill them in reasonably. Similarly, some-
times the data we have were not sampled at regular time intervals and we need to estimate what
the data would have been had our samples been evenly spaced. Both of these fall under the
umbrella of “interpolation”: estimating a function at points for which we don’t have data.

Interpolation might sound an awful lot like ML more broadly, and there is some similarity in
spirit. With interpolation though, we are usually just trying to clean up the data, or else make a
very limited prediction about a point based on the known data points that are close by it. There is
generally no attempt to fit a broader model that can be interpreted in business terms, and certainly
not to question the incoming data by removing noise. Those sorts of operations are done after the
interpolation and resampling have been performed.

For some terminology, let’s say that we have time stamps ty, £, ..., t;, and our measurement at
time ¢; is f(¢;) In general, the t; might have different distances between them, but pretty much every
algorithm requires equal spacing. So, you need to find a new set of points Ty, T, ..., Ty to estimate
your signal at, where T;,; = T;+ 8, and get estimates of f{T;). Oftentimes, the easiest way to do it is
to set T} = t;, and then have delta be a parameter that you fiddle with.

There are a couple of ways to get f(T;). The easiest is just to find the ¢; that is closest to T; and
adopt its value, so that your interpolated f(x) is a piecewise-constant function, as follows:

Even easier to implement is backfilling or forward filling, where you just carry f{t;) forward until
you hit the next ;. These methods are crude, but they are built-in to most libraries you're likely to
use, and they’re trivially easy to implement yourself if need be. If your ¢; are fairly dense, you often
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don’t need anything more. Honestly, it’s my own go-to interpolation method, at least as a first cut,
since it’s trivially easy in Pandas:

>>> # Make sure index is already a timestamp
>>> df_indexed = df.set_index("timestamp”)
>>> df_sampled = df_indexed.asfreq (

"Imin®, method="backfill")

The next simplest interpolation method is piecewise linear, which is shown as follows:

v

The next step up in sophistication is spline interpolation. Linear interpolation has some obvious
pathologies near the known points — surely no real signal will have “teeth” like that. The idea of
spline interpolation is that instead of fitting a line to two points, we fit a polynomial to three or
more of them. The most common choice is a cubic spline, where values between ¢; and ¢; ; will be
interpolated based on t;_1 to t;,. This gives up a nice smooth-looking, continuously differentiable
function like we see in the following.

Unfortunately, linear and spline interpolations are not supported in Pandas for interpolating at
arbitrary points (although Pandas does let you use interpolation to fill in missing data, with the
interpolate() method on Series objects). However, SciPy has a nifty method called interpld that
takes in your data points and returns a callable object that you can treat as an interpolated func-
tion. By default, it does linear interpolation, but it can also do cubic or a variety of others if you
change the optional arguments. For example:

>>> import scipy.interpolate as si

>>> s = pd.Series([0, 2, 4, 6])

>>> s sqrd = s * s

>>> linear_interp = si.interpld(s, s_sqgrd)

>>> linear_interp ([3,5])

array([ 10., 26.1)

>>> cubic_interp = si.interpld(s, s_sqrd, kind="cubic™)
>>> cubic_interp ([3,5])

array([ 9., 25.D
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A major problem in any interpolation scheme is how to deal with interpolating x-values that fall
outside of the range for which we have data. Generally, this is called “extrapolation” rather than
interpolation, since the point is outside the range of x-values in our data. Extrapolation is a dicey
business: the obvious way to do it is to go back to our linear (or other) interpolation, look at the two
points closer to the one we want, and extend the line out. But, this is likely to give values that are
grossly incorrect when you look at the data as a whole. For example:

o g

Interpld will throw an error by default unless you pass bounds_error=False in as an optional
parameter. Even then, it will give you a null value for those points rather than an actual extrapolation.

17.5 Smoothing Signals

Ok, so now we can take irregularly spaced measurements, or measurements with missing data,
and interpolate a clean, evenly spaced time series. Let’s move on to techniques that can clean up
such a series and attempt to get meaning or prediction out of it. The first order of business is often
to smooth the data out so that its underlying patterns are more manifest.

The simplest way to smooth data is to take the moving average. This just means that we replace
each measurement with the average of a fixed number k of measurements before it. Or equiva-
lently, we could replace it with the average of some before and some after it — the difference is just
in the time stamp.

It’s also common to not just take the normal average, but, instead, a weighted one. It makes a lot
of sense that f™*°®(t,) would be more influenced by f(t;) than f(t;_,).

One of the neatest variations on moving average is called exponential smoothing. In exponential
smoothing, f5™°"(¢,) will be a weighted average over f(t,), f(t;_1), and so on, with exponentially
decreasing weights. This works out the simple formula

fsmooth (tl) — f(tl)
fsmooth (ti+i) — af(ti+l)+ (1 _a)fsmooth (ti)

The moving average is great and extremely popular. However, it can suffer if your data contains
aberrantly large spikes of noise. In many cases, a massive measurement is a pathology that should
be replaced, but the moving average will instead smear the short, tall spike into a slightly wider and
flatter one, possibly even making it nonobvious that the original data point was an error. For this
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reason, I'm a fan of the moving median, where you replace each point in the time series with
the median of the k points before it. This is much more computationally intensive than a moving
average, but it’s more robust. You can also do what I did in the example script at the start of this
chapter: cap the values to remove gross outliers.

17.6 Logarithms and Other Transformations

In many domains, it makes sense to apply time series analysis not to the raw data itself, but to some
mathematical function of the data. The most important of these is the logarithmic transformation
in domains such as finance. There are two reasons you might want to do this:

o In the interest of making your time series meaningful, it is sometimes good to have a movement on
the y-axis be equally impactful no matter where it starts. Taking the logarithm accomplishes this.

o Oftentimes, if you try to fit a regression model to your data, the standard models won’t do, but
they will perform well on the transformation.

17.7 Trends and Periodicity

In the example script, we said

decomp = sm.tsa.seasonal_decompose(
df["views"].values, freq=7)
decomp.plot()

The idea here is that we have data that has a strong cyclic behavior (with a periodicity that we
know) overlaid with an overall smooth trend component, plus some random noise. By looking at
the trend in isolation, we can get a smoother, seasonality-adjusted version of the time series. If the
time series was measuring traffic to a website, for example, we could compare Saturday’s value
with Wednesday’s directly, without worrying about the fact that one occurs on a weekend, if we
look only at the trend component.

If this sounds too good to be true, then yes: often is. First off, seasonal decomposition only works
if the periodicity is exact. That’s fine with daily web traffic, but won’t work for many processes in
the real world where sometimes things take more, sometimes less time. This decomposition also
assumes that the noise, seasonality, and trend are additive; it models fixed-size changes in the
amount of traffic, but not proportional changes.

The seasonal component is calculated very simply: just by averaging over the corresponding days
for the entire time series. The trend curve is then calculated by a fairly complicated process called
LOESS. Basically, it fits local polynomials to the data and then splices them together: think like
spline interpolation, but without having to cross through all of the data points.

17.8 Windowing

Now, we will start to transition from processing that is specific to time series and start looking at
how we can turn time series into ML problems. In a typical ML problem, you have clear “entities”
that are your objects of study, such as ads that did or didn’t get clicked on or human customers in
adatabase. This is not the case with time series data. We just have a list of measurements that were
sampled at some frequency, and how you divide that up into “entities” is a touchy question.
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The typical approach is windowing, where we select equal-size windows from the signal and
separately classify them and extract features. For example, we might

e break our data into 1-hour windows, excluding windows in which the machine we’re
monitoring failed;

o for each window, extract some features such as average value, Fourier components, and so on;

o label each window according to whether the machine failed within the next hour;

o divide into testing/training data and break out your favorite ML classifier.

Windowing makes a lot of sense when you think of it in terms of common applications. Often,
in the real world, you want to make a prediction or decision based on the time series data available
to date, as of some moment in time. Windowing corresponds to making a decision based on data
available as of the end of the window.

If your window length is W and you have N measurement in your time series, then there are
N—W+1 possible windows you could select. In the script at the beginning of this chapter, we used
all of these windows, but generally, you don’t want to do that for two reasons:

1) There are potentially a LOT of data points.
2) The windows will overlap a lot. This is begging for overfitting, and it also means that you are
needlessly feeding almost-duplicate data into whatever ML algorithms you end up using.

An alternative option is to line the windows up one after another, so that a new one starts as soon
as one ends. This way they are not overlapping, and you are still using all the data. This is often
your best option, especially if the window length is “natural” for your domain of application, such
as 24-hour periods. You could call this the “covering windows” approach.

There are two potential problems with covering windows:

o If there is periodicity that is the length of the window, then all the windows will look artificially
similar. Say, for example, you’re measuring something (such as Internet traffic and temperature)
that moves on a daily cycle, and your classifier is trained on 24-hour windows that go from mid-
night to midnight. If it’s 3 pm right now and you’re trying to predict whether a component will
fail, your data for the last 24 hours will look nothing like any of the training data.

o Often, there are events that you want to line up in the windows in a specific way, and you lose
this ability. For example, if you’re building an alarm system to predict machine failures, then you
probably have several points in time where a failure is known to have occurred. You want to
make sure that you have windows in your training data that end shortly before those failures,
but with long enough time that you could work to avoid the failure. A failure event is wasted if
you put it right in the middle of one of your windows.

However, you select your windows, bear in mind that it will affect the statistical validity of
your results.

17.9 Brainstorming Simple Features
In no particular order, here are some methods that I have used or considered using for extracting
features from time series data:

e The average, median, and quartile values.
e The standard deviation of values.
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o Fit a line to the data and give its slope and intercept. You can fit the line using least squares,
an L1 penalty, or any other option.
o Fit an exponential decay/growth curve to the data and use the fitted parameters.

Bear in mind that there is also more to life than windowing. In real situations, you have access
to far more data than just the most recent time window, and it makes sense to extract some features
that look further back in time. This is especially the case if you have data from many different time
series: the same sliding window might mean something very different if the overall time series has
been decaying since it started versus staying relatively constant. What I generally do is that for a
particular moment in time, I extract some features that are based only on the trailing window and
others that are based on the whole lifetime of the series. Some of the latter include the following:

o How long it has been since the time series began, which will often correspond to the age of some
physical device.

o The point in time that the series began, expressed as a date. This might be important if, say,
devices were set up differently at different points in time.

e The usual aggregate window statistics but applied to a window at the beginning of the time
series. This allows for interesting comparisons to the current state of affairs.

o Fit a curve to the whole time series and use the fitted parameters.

17.10 Better Features: Time Series as Vectors

A time series window is just an array of floating numbers. As such, it can be treated as a numerical
vector like you’re familiar with from ML. This opens up a wide world of additional techniques.

Most simply, if there is some reference window (perhaps an interesting pattern you’ve found),
you can measure the distance from other windows to the reference pattern. You can use either the
normal Euclidean metric

dist(x,y) = Zi1<xi - )2

or the so-called taxicab metric

dist(x,y)= Zi]abS(xi—yi)

or any other metric of interest to you. If you are only interested in the shape, then normalize the
values in each window before calculating. Outside of typical ML problems, this approach is also
used to find occurrences of a key pattern in a time series (or collection of many time series).

You can also plug your training windows into a clustering algorithm such as k-means. Then,
when it comes time to extract features from another window, one of the features can be the cluster
of which it would have been a part.

What you will see the most often as a feature, though, is the dot product between your window
and one or more reference windows. You might, for example, run principal component analysis
(PCA) on your training windows. The dominant principal components will then represent the
major patterns present in your training windows. When it comes time for feature extraction,
you can see how much each of each major component is in your window.

Note though that all of these approaches hinge critically on good selection of your windows. If a
critical pattern occurs at the beginning of some windows and the end of others, then clustering

219



220

17 Time Series Analysis

algorithms won’t recognize that they’re the same thing. PCA will have problems too. None of these
techniques will be rendered completely ineffective, but they will be massively hampered. This is
part of why it is so useful if you have a set of points in time where events happened that you know
are relevant, and you can pick some of your windows to be located relative to them.

17.11 Fourier Analysis: Sometimes a Magic Bullet

One of the most important techniques in time series is called Fourier analysis; it is often useful in
data science and centrally important in engineering and physical sciences. The idea is to decom-
pose your entire signal into a linear combination of signals that vary periodically. For example, we
might say that the hourly temperature measured across a decade would have a slow 1-year period
(for the seasons) and a fast 24-hour period for the day/night cycle. Fourier analysis is a deep,
conceptually rich field of mathematics. In this section, I'm just going to simplify it down dramati-
cally and only discuss the parts of it that are relevant for simple applications in the daily work of a
data scientist.

The key theorem is this. Let’s say you have an array of N numbers X3, X,, ..., Xy. Then, there exist
numbers ag, Ay, ...., dy_1 and by, b, ..., by_1 such that

X, =a, +i1§a cos 2ﬂmt +i[§b sin 2ﬂmt
t ’ Nm:I " N Nmzl " N

In this expression, a, is a constant offset, and every other term is a sinusoidal wave that oscillates
with some frequency. Collectively, the a,, and b,, are called the “Fourier coefficients” or, some-
times, the “spectrum” of your signal. The heart of Fourier analysis is a collection of algorithms
called Fourier transforms, which let us convert from the raw signal to the spectrum and vice versa.

An alternative version of the Fourier decomposition is to say that

X, =¢o+ 1 Ec sin 27[mt+
t 0 N m N P

m=1

In the previous version, for a given m, we had two terms: p(x) :% and f (x ) =y
These are two different sinusoidal signals with the same frequency, which we add together. But, a
. . 2 -
mathematical fact is that there are c,, and ¢, such that they add up to c,, [%t +0, ] This is a

single sinusoidal signal, but it happens to be offset in time by ¢,,. You can get c,, by just taking

¢, =+az +b:

In practice, you will usually get the a,, and by, out of a Fourier transform and then switch over to
the c,, for practical applications.

If the x array is just a bunch of noise, then the spectrum won’t be particularly interesting.
But, if the signal is periodic or fluctuating, or even approximately so, then it will become glaringly
obvious from looking at the spectrum. Often, most of the Fourier coefficients will be small, but a
handful will be quite large: in these cases, those few coefficients would allow a pretty good recon-
struction of our entire original signal. Often, in real systems, especially physical ones, oscillating
signals of different frequencies correspond to different underlying physical phenomena, so the
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Fourier decomposition amounts to expressing the data as a linear combination of several
real-world processes. The degree to which a physical process is present is indicated by the Fourier
coefficients that correspond to its frequency. If we were to, say, use those coefficients as a feature
in an ML algorithm, then that feature (usually a c,,) will measure a real-world phenomenon.

This might be sounding to you like PCA, where we express our raw signal as linear combination
of several “base signals” that are physically meaningful. Yes, you are right. This becomes a linear
algebra subject, and both of these approaches fall under the umbrella of finding a “change of
basis.” But, that’s an advanced topic; don’t worry about it for now.

The algorithm that takes in your raw signal and produces the Fourier coefficients is called the
“fast Fourier transform” or FFT. The FFT is one of the most important algorithms in history - the
ability to calculate Fourier transforms efficiently was one of the cornerstones of the information
age. It comes built into SciPy, as illustrated in the following:

>>> from scipy.fftpack import fft, ifft

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

>>> gpec = Fft(x )

>>> spec

array([ 4.50000000+0.,
2.08155948-1.65109876j ,
-1.83155948+1.60822041j ,
-1.83155948-1.60822041j,
2.08155948+1.65109876j 1)

>>> am = spec.real
>>> bm = spec.imag
>>> cm = np.abs(spec)

>>> x_again = ifft(spec)
>>> Xx_again
array([ 1.0+0.j, 2.0+0.j,
1.0+0.j, -1.0+0.j, 1.5+0.j1)

A note of explanation is due. In this case, x is our raw signal and spec is the Fourier transform. x
is an array of length N = 5. You might expect spec to be two arrays of numbers, one of length N and
another of length N—1. Instead, it is a single array of length N, but the numbers it contains are
complex numbers (here j = \/—_1 is an imaginary number). The way it works is that the mth compo-
nent of spec will be a,,, +j*by,.

There are theoretical reasons for this: Fourier transforms (unlike many mathematical concepts)
work perfectly well with complex numbers, and, in fact, they are even more elegant and self-
consistent when you think of them with complex numbers. Many electrical engineers, who live
and breathe Fourier analysis, make extensive use of the complex nature of these numbers. But,
for cruder data science applications, we usually turn them back into real numbers as quickly as
possible. I don’t know about you, but complex numbers hurt my head.

For data science, we typically do the following things with Fourier transforms:

¢ Using them to identify periodicity in a signal. For example, if you measure blood pressure several
times a second, the main frequency in the data will be a person’s heart rate.

o Fourier coefficients as features for windows. The amount of, say, 10 Hz frequency in a signal is
an incredibly important, perhaps very physically meaningful feature that we can extract and
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plug into an ML algorithm. The one thing is you would have to take the magnitude of the
Fourier coefficient rather than the coefficient itself, since it is a complex number.

e Smoothing the data by removing high-frequency jitter. This is sometimes called a “low-pass
filter” — you set all the higher coefficients to 0 and reconstruct the signal from that.

e Removing long-time trends to study shorter timescale phenomena. This is called a “high-pass”
filter, and it works analogously to a low-pass filter: set the low-frequency coefficients to 0, and
then reconstruct the signal.

17.12 Time Series in Context: The Whole Suite of Features

In a typical data science application, multiple, distinct types of data will be brought to bear on a
single problem. An example is monitoring machines to predict when they will fail. In situations
such as this, you will have continuous-time sensor measurements. But, you may also have addi-
tional physical specs about each machine, how long it has been running, the conditions under
which it operates, and logs of maintenance that have been done on it. It will be your job to extract
features out of all this data that can give you predictions for a particular point in time.

So, let’s assume that you have data of these types, and your goal is to extract meaningful features
for making predictions at a point in time T. What can you do?

Most of this chapter has discussed how you can extract features from the time window immedi-
ately preceding T. These features are great to have, but they are fairly limited in their scope. Really,
all they tell us is the state of the machine at time T. But, the machine has a whole lifetime that we
can look at when making a prediction.

Other features to consider would include the following:

o The age of the machine. It doesn’t get much simpler than that.

e How many times repairs have been done in the machine’s lifetime.

e How many hours the machine has clocked in a particular state, as measured by doing clustering
over all time windows in the training data. The number of hours that a machine has been work-
ing hard might be a good proxy for the wear-and-tear on its parts.

As with all areas of data science, the key to using time series is extracting the right features.
The key to extracting features is understanding what real-world phenomena are relevant.

17.13 Further Reading

1 Oppenheim, A & Schafer, R, Digital Signal Processing, 1975, Pearson, New York, NY.
2 Riley, K, Hobson, M & Bence, S, Mathematical Methods for Physics and Engineering: A
Comprehensive Guide, 3™ edn, 2006, Cambridge University Press, Cambridge, UK.

17.14 Glossary

Denoising Removing random noise from a time series.

Extrapolation Using interpolation techniques to estimate a function at a point x that is higher
than our highest known x or lower than the lowest known. This is much more error prone
than interpolating at an x that is within our known interval.
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Fourier analysis Looking at a time series signal as a linear combination of sinusoids with
different frequencies.

Fourier transform The process of going from a raw signal to its Fourier decomposition.

Interpolation Using the known values of a function at several points to estimate its value at a
location that we don’t know. This is useful when resampling time series data.

Resampling Taking a time series with irregularly spaced time stamps, or time stamps at a
frequency we don’t want, and estimating the time series at a desired sampling frequency.

Seasonal decomposition Breaking a time series down as the sum of a periodic term, a smooth
“trend” term, and random noise.

Spline A method of interpolation where a cubic polynomial is fit to a small number of known
points that are close together. That polynomial is used to give interpolated values near
those points.

Sliding window Moving a fixed-length window across a time series and calculating some
statistic for each window.

Window A contiguous subset of a time series signal. Often, we break a time series into a
collection of windows and extract features from each window.
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Probability

So far, this book has tacitly assumed that you understand basic probability, such as the notion of
independence and what an average is. This chapter will go into more detail, giving you a little bit
of theoretical background in the subject and an overview of the standard tools. In practice, data
scientists only need a moderate amount of probability theory for most of their daily work, but that
moderate amount is crucially important. Probability provides the theoretical basis for almost all
of machine learning and most of analytics, and it is a critical mindset for data scientists to be able
to adopt.

Probability is often confused with statistics. The way I would break it down is to say that
probability is a collection of techniques for describing the world using mathematical models
that include randomness. In particular, probability focuses on what you can derive about the
world assuming that it is well described by one of these models. For example, if we assume a
certain distribution of human heights, then how many people in a crowd can we expect to be
over 5 ft tall? Statistics is more about working backward: given some real-world data, what can
we infer about the real-world process (which we imagine to be some probability model) that
generated it?

This chapter will attempt to build up the subject of probability in a very intuitive way. I will start
off by showing two of the simplest, most intuitive, and most important probability models. Using
these as motivation, I will then zoom out and give a more formal treatment of probability concepts.
A certain amount of this will be material that we’ve already covered in the book; I'll just be discuss-
ing it in a more mathematical way. Finally, I will move on to several of the most important proba-
bility distributions for you to know as a data scientist.

18.1 Flipping Coins: Bernoulli Random Variables

The simplest probabilistic model is just flipping a (possibly biased) coin. Let’s say that the prob-
ability of getting a head is p, and, hence, the probability of tails is 1—p. In probability terms, we
would say that the flip of such a coin is a “Bernoulli random variable” or Bernoulli RV. You
might see it denoted as Bernoulli(p).

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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If p is 0.7, then you can visualize the RV with a bar chart:

0.8
0.6
0.4

0.2

Head Tail

The assignment of 0.7 to heads and 0.3 to tails is called the “probability mass function” for this
particular random variable (RV).

It becomes convenient to describe the RV in terms of numbers rather than sides of a coin. The
convention here is to say that heads = 1 and tails = 0.

In many cases, there is some kind of payout associated with different outcomes of the RV. For
example, I might give you $5 for every head and demand $2 from you for every tail. The average
payout will then be

E[ payout | =0.7%5+0.3%(-2)=2.9

The right way to interpret this number is that if you flip the coin N times, where N is some very
large number, you will make about 2.9*N dollars.

You can see immediately how a Bernoulli RV might generalize to something such as the roll of a
dice, where the probability mass function would assign a probability to the numbers 0-5. In cases
such as this, it is conventional to let p; denote the probability of the ith outcome. The only con-
straints are that

o all the p; are nonnegative, and
o they add up to 1.0.

Any set of the p; that meets these criteria is a valid probability mass function.

A Bernoulli RV is called a “discrete” RV. This means that either it has a finite number of out-
comes or all of its possible outcomes can be listed out. So, an RV that assigns a probability mass to
every positive integer is still discrete. An RV that measures human height (to a precision of arbi-
trarily many decimal places) is not discrete.

18.2 Throwing Darts: Uniform Random Variables

Bernoulli RVs are the simplest type of discrete RV. The opposite is what are called “continuous”
RVs. They can take on any value within a range of numbers.

The simplest continuous RV is the uniform RV, sometimes called Uniform(a,b). A
Uniform(a,b) will always be between the numbers a and b, but it is equally likely to be
anywhere in that range.



18.3 The Uniform Distribution and Pseudorandom Numbers

For discrete RVs, the probability mass function assigns a finite probability to every possible
outcome. For continuous RVs, every exact outcome has probability 0, but certain ranges of out-
comes are much more likely than others. We call this relative likelihood the “probability density
function” (pdf). The pdf for a uniform distribution appears as follows:

Similarly to probability mass functions, the constraints on a PDF fare that

o flx) is never negative, and
o the total area under the curve of fis equal to 1.0.

Any function f that meets these criteria is a valid PDF.

Related to the PDF is the “cumulative distribution function” (CDF). Conventionally, if we use
the lowercase f () to denote the PDF, we use the uppercase F() to denote the CDF. F(x) is the prob-
ability that an RV’s value will be <x. So, F(x) is a nondecreasing function that goes to 0 as x
approaches negative infinity and approaches 1.0 as x becomes large. In places where f(x) is large,
F(x) will slope up sharply. In places where f(x) is 0, F(x) will be flat.

The PDF tends to be a lot easier to think about and visualize. However, there are situations
where it is easier to solve problems using the CDF.

18.3 The Uniform Distribution and Pseudorandom Numbers

The Uniform(0,1) distribution is the most fundamental probability distribution to understand. It is
the simplest one, but it is also the basis for building up many more complicated ones, both in math-
ematical theory and in computational practice. For example:

o If you want to simulate a Bernoulli(p) RV B, then you can do it by simulating a random value u
from a Uniform(0,1) distribution. If u <p, then set B =heads. Otherwise, set B =tails.

o If you want to simulate the roll of a weighted dice, divide the range [0.0, 1.0] up into six regions,
the ith of which has size equal to the probability of the ith face. Then, again draw a value u from
a Uniform(0,1) distribution. Have the dice roll be the region of [0.0, 1.0] into which u falls.

o If you want to simulate an exponential RV (to be discussed later), draw u from a Uniform(0,1).
Then, take —1 times log(u).

In general, say you know the CDF Fx() of an RV X. Say also that you’re able to compute the
inverse of Fx (u). Then, Fyx (1) will be a sample of X if u is drawn from a Uniform(0,1). For these
reasons, computational libraries that simulate RVs tend to start with sampling the uniform
distribution as their most fundamental operations and build everything up from there.
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Now technically, it is not possible to simulate random numbers with a computer. They are deter-
ministic machines, capable only of following predetermined rules - there is no subroutine for
flipping a coin. So, the standard practice is instead to use “pseudorandom numbers.” The idea is
this: you start with an arbitrary sequence of bytes. The bits of that sequence are interpreted as the
digits of a Uniform(0,1) random number, expressed in binary out to a fixed number of decimal
places. In some implementations, only part of the array is interpreted as a number. There is then a
complicated (but deterministic!) mathematical function that mangles the byte array into a new
byte array. The new byte array is technically a deterministic function of the old one, but, in prac-
tice, it bears no noticeable resemblance to the original array. Flipping a single bit in the original
byte array could change bits anywhere in the output. The new array is treated as a new Uniform(0,1)
variable, and so on.

A lot of work has gone into creating pseudorandom numbers that accurately ape all the proper-
ties of true randomness. Technically, each sample is a deterministic function of the sample before
it, but there is no noticeable correlation between them. If you draw enough samples, they will
occur equally often in all parts of the range [0.0, 1.0]. They will have the correct average, standard
deviation, and so on. In short, if the pseudorandom samples had been given to us as a stream of
raw data rather than something we had generated ourselves, we would never have figured out that
they were anything other than independent samples from a Uniform(0,1).

The one great thing about pseudorandom numbers is that you can manually set the initial byte array
at the start of a program. In this case, it is called the “seed.” If you do this, then the program becomes
fully deterministic, and you can reproduce it exactly between two runs. This means the following:

o If there is a bug in a randomized program that only occurs sometimes, you can make it perfectly
reproducible and figure out what’s going on.

o If you need your analytics results to be exactly reproducible because somebody will scrutinize
them, you can set the seed in your scripts.

e When you are writing tests, you can set the seed and make sure that the output is exactly what’s
expected.

e Oftentimes, you have two pieces of code that you need to make sure work identically
(maybe a proof-of-concept and a production version). The easiest way to do this is to make
sure that they produce the same output, given the same input. This becomes impossible if
the code includes calls to random numbers, unless you set both of them to have the same
random seed.

18.4 Nondiscrete, Noncontinuous Random Variables

Mathematically speaking, you can have RVs that are neither discrete nor continuous. For example,
take the heights of trees that you have planted. At a given point in time, a certain fraction of them
will not have sprouted and will have height 0. This is a finite probability mass at that number. But,
of those trees that have sprouted, their heights can fall anywhere within a range.

In practice, this is not a big deal. You're not dealing with abstract probability distributions, but
finite datasets; a hybrid distribution would show up just as there being multiple identical numbers
in the otherwise continuous-valued data. Calculating the mean, average, median, or other metrics
of interest would still be exactly the same procedure.
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The place you will run into a problem is with exploratory visualizations. If you do a histogram of
heights with our tree example, you will see a massive spike at height = 0. The bell-curve part of the
histogram will be squashed down to the point where it’s invisible. A better visualization includes
two pictures: a pie chart showing how many heights are zero and how many are nonzero, plus a
histogram of only the nonzero heights.

The following script simulates some data like this and shows the two visualizations:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
z = np.zeros(1000)

X = np.random.exponential (size=1000)
data = np.concatenate([z, Xx])
pd.Series(data) .hist(bins=100)
plt.title(""Huge Spike at Zero")
D = pd.Series(data)

X = pd.Series(X)
D.hist(bins=100)
plt.title("Huge Spike at Zero™)
plt.show()

(D>0) .value_counts().rename (

{True:"> 0", False:"= 0"}).plot(kind="pie*)
plt.title("Breakdown by equal/greater than Zero®)
plt.show(Q)

X.hist(bins=100)
plt.title("Distribution When > 0')
plt.show()

The naive histogram looks as the following:
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But the pie chart/histogram combo gives us
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Distribution when > 0

Breakdown by equal/greater than zero
>0

None

In line with the large spike in the first histogram, you can think of hybrid distributions as having
a PDF that has an “infinitely tall spike” at one or more places, and the area under the nonspiked
parts of the curve is less than 1. This isn’t mathematically rigorous, but it is useful way to think
about it. What is rigorous though is the CDF: the CDF jumps up at every spike.

18.5 Notation, Expectations, and Standard Deviation

Now that you are familiar with some of the key concepts, let’s dive into some of the standard nota-
tion and terms.

As we’ve already seen, a “random variable” (RV) is any quantity that can turn out in several dif-
ferent ways. It is typical to use an uppercase letter such as X to refer to the RV and a lowercase x to
refer to a specific value that the variable took on.

A single-dimensional RV is described by a probability mass function if it is discrete or a probabil-
ity distribution function if it is continuous.

You can also have an RV that returns a random vector of d dimensions. The concepts of probabil-
ity mass function and probability density generalize naturally. The only constraints on them are
that they are always nonnegative, and the probabilities add up to 1.0 (or the area under the curve
is 1.0 in the case of continuous RVs). Unless otherwise stated, I will typically tacitly assume that
RVs in this.

If we write

E|x]

we mean the average value of the RV X. The use of “E” in this case refers to “expectation value,”
which is another term for the mean or average. The expectation value is defined to be

E[X]= Zipi

for discrete RVs and
E[X] = fxfx(x)dx

for continuous RVs. It is common to denote the expectation value of an RV X by py.
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More generally, you can have a function g() of an RV, and say
E[s()]=e(x) e (+)a

and similarly for discrete variables. Many key probability concepts can be defined in terms of
expectation values of different functions.

A key example of something being defined in terms of expectation values is the variance and
standard deviation. The “variance” of X is defined to be

var[X]:EDX—yxﬂ

and the standard deviation is its square root

Oy = ,lvar[X]

The standard deviation gives you, roughly speaking, a measure of how far X “typically” is
from px.

Note that using E[g(X)], lets us use the same notation for discrete or continuous RVs, which can
be quite convenient.

18.6 Dependence, Marginal, and Conditional Probability

Oftentimes, you have two RVs X and Y and want to consider their behavior together. Does knowing
something about one tell you something about the other? For concreteness, let’s assume that they
are both discrete RVs, and let p,, denote the probability that X =xand Y =}.

The “marginal” probability mass function of X is then

Pr[X = x] =De=D Py

y

and similarly
Pr[Y=y]=p, =3,

These are the probability distributions that we get if we focus on one RV and ignore the other.
On the flip side, if we know the value of X and want to infer something about Y, then we care
about the conditional probability of each y given that X = x:

12 Xy

2 P

Conditional probabilities play a very central, explicit role in Bayesian statistics.
It is common to want to know something such as the expectation value of Y, given that X = x. We
write this as

Pr[Y =y|X= X] = Dyjx=x =

E[Y|X=x]
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We say that such statistics about Y are “conditioned on” the value of X.
The correlation of X and Y'is defined to

[x.Y]= E(X _gil(yy‘#y)

Corr

This is a measure of the degree to which there is a linear relationship between the RVs, of the
form Y=mX+b.

Xand Yare “independent” RVsif knowing either tells us nothing about the other. Mathematically,
this means that

Dy = PxPy

It’s important to note that independence is an extremely strong criterion. It is much stronger
than just saying that the correlation is zero.

18.7 Understanding the Tails

One of the most important things to understand about a probability distribution is how “heavy-
tailed” it is. Intuitively, this refers to how often you have extremely large values. Human heights
are a great example of something this is not heavy tailed: there is never a person who is over 10ft
tall. Net worth, however, is extremely heavy tailed, since there is the occasional Bill Gates.

Heavy-tailed distributions are extremely common in data science, especially web-based applica-
tions. Places that I've seen them arise include web traffic (a few websites are much more popular
than others) and bids in online auctions.

Heavy-tailed distributions are important to be aware of because many of the usual things we
do with probability distributions don’t work (at least not in the same way) when things are
heavy-tailed.

The average value of a heavy-tailed distribution can be notoriously hard to estimate. If you have
100 random people in a room, the average net worth in the room could vary widely - there is a very
realistic chance of having a multimillionaire who will throw off the average net worth.

To see how this works, the following script will simulate a sequence of samples drawn from a
Pareto distribution, which is heavy tailed. It will then plot N on the x-axis and the average of the
first N samples on the y-axis. You can see that over 1000 trials, the average does not converge to a
nice sane average. Instead, it occasionally jumps up when a really massive outlier is hit, then trails
off as the subsequent samples are more modest. As time goes on, it takes larger and larger outliers
to cause a large bounce. So, the jumps get rarer and rarer, but they do come. If you ran the simula-
tion forever, the average would increase to infinity.

import numpy as np

import matplotlib._pyplot as plt

np.random.seed(10)

means = []

sum = 0.0

for i in range(l, 1000):
sum += np.random.pareto(l)
means.append(sum 7/ i)
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plt.plot(means)
plt.title("Average of N samples™)
plt.xlabel ("'N')

Average of N samples
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There are a lot of heavy-tailed distributions, and not all of them would display an infinitely
growing average. Most real-world ones will grow for a while and then eventually plateau at a finite
mean. But, it will take a very long time for this to happen.

So, calculating the average of a heavy-tailed distribution is a dicey proposition. But, even
once you have it, the average is useless for many applications. It is not a “typical” value. Most
samples are well below the average value; it’s just that the few outliers are so large they pull
the average up.

Metrics such as the median and quantiles are robust to heavy tails. They have the same reason-
able interpretations that they always did. However, in many applications, they aren’t particularly
useful because the large outliers are precisely the values that you are interested in!

The book The Black Swan, by Nassim Nicholas Taleb, was essentially an ode to heavy-tailed dis-
tributions. He argues that for many domains of human interest

1) The underlying distribution is heavy tailed, meaning that as a practical matter is can be near-
impossible to predict outliers. As we saw with the simulated Pareto distribution, no matter how
much data you have the outliers will still be sparse and, hence, difficult to model accurately.

2) Modeling the tail is made even harder because gross outliers tend to be caused by freak exter-
nal factors that have no historical precedent. So, when it comes to the tails, our data is both
sparse and not representative of the future.

3) The important real-world phenomena are dominated by the outliers: the day the stock market
crashed, the winning lotto ticket, etc.

Essentially, he said that heavy tails have a way of amplifying the imperfections of the modeling
process so that our ability to make truly useful predictions is drastically compromised. While I
don’t go as far as Taleb does, it is critical to always keep in mind whether a process you are studying
is liable to be heavy tailed. If it is, make sure that you proceed with caution.
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18.8 Binomial Distribution

A Binomial(n, p) distribution is the number of heads you get from tossing a coin n times, where
each toss has an independent probability p of coming up heads. The key things to understand
about it are as follows:

o It can take on any value from O to n.

o The average value will be np, and the probability mass function will be peaked there.

e The standard deviation goes as _, .. This means that as n grows larger, the probability distribu-
tion will be more and more strongly peaked around np.

It is instructive to derive the precise formula for Binomial(n, p)’s probability mass function. The
key insight is that for any specific sequence of n flips that contains k heads, the probability of toss-
ing that sequence is p"(1—p)"~¥. This is because there are k tosses that must come up heads, each
with probability p, and n—k tosses that must come up tails, each with probability 1 —p. So, to cal-
culate py, we only need to ask how many such sequences there are.

How many ways you can get k heads out of n tosses is a combinatorics question that lies outside
the context of this book. To motivate it though, imagine that » is very large. Then:

o If k =0, there is only one possible sequence: n tails.
o Similarly, if k =n, there is only one sequence: all heads.
o If k =1, there will be n possible places it could be.

The exact formula is denoted f (; and pronounced “n choose k.” It is equal to

W

where x!=x*(x—1)*(x—2)*...*3*2*1 is pronounced “x factorial.”
To sample from a binomial distribution in NumPy, you can write

import numpy as np
sample = np.random.binomial (200, 0.3)

18.9 Poisson Distribution

Poisson distributions are used to model systems where there are many events that could happen,
and all are independent of each other, but on average only a few of them will actually happen. A
good example is how many people will visit a website on a given day; there are billions of people in
the world who could visit, but on average, perhaps only a few hundred will do it.

Imagine taking a Binomial(n, p) distribution. Set n very large, and set p small enough
such that

np=2»A

where 4 is a parameter. That is, have many events that can happen but keep the probability
low enough that the average is only A. In the limit of making n large and p small, but keeping
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A fixed, a binomial distribution will converge to a Poisson distribution. The probability mass
function is given by

Ak

Pk X

To sample from a Poisson distribution in NumPy, just write

sample = np.random.poisson(200)

18.10 Normal Distribution

If there is one probability distribution to know, it is the normal distribution, also called the
Gaussian. It is the prototypical bell-shaped curve, and its PDF is

1 —(x-u)206?
)2

where p is its average value and o is the standard deviation. Such a normal distribution is often
called N(u, 6*). The PDF is displayed in the next page.

The most important practical property of the normal distribution is that its probability density is
tightly clustered around the mean; it has very light tails, and major outliers are extremely unlikely. For
this reason, it can be dangerous to naively fit a normal distribution to your data. In practice, it is com-
mon to identify and remove major outliers before fitting a normal distribution to the remaining data.

0.40 PDF of a normal (Q, 1)
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Theoretically, the normal distribution is most famous because many distributions converge to it,
if you sample from them enough times and average the results. This applies to the binomial distri-
bution, Poisson distribution and pretty much any other distribution you're likely to encounter
(technically, any one for which the mean and standard deviation are finite).

This is captured in the “central limit theorem,” which states
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Central limit theorem. Let X we an RV with finite mean x4 and standard deviation ¢. Let X7,
X5, . . ., X, be a sequence of independent samples of X. Then, as n approaches infinity

(i -u]woe?)

18.11 Multivariate Gaussian

Most of the distributions in this chapter are univariate and don’t generalize in a noteworthy way to
higher dimensions. The normal distribution is an exception to that. A normal distribution can be
defined for any number d of dimensions. The density function always resemble a “hill,” which
peaks at the distribution’s mean and is ellipsoidal in shape.

In two dimensions, the following shapes give you some idea of what these ellipsoids can look
like the following:

Note that the ellipsoids can stretch out in any direction; they don’t have to stretch along one of
the axes.

The univariate normal distribution was parameterized by the mean x and the variance o7,
both of which are floating-point numbers. For a multivariate Gaussian, the parameters are
a d-dimensional vector y, and a d-by-d matrix X. X is called the “covariance matrix,” and its
(i)th component will be Cov[X;, Xj], where X; and X; are the ith and jth components
of the RV.

The PDF at a d-dimensional point x is

i ! Y
f(x)=(27r)_k/2|2|_1/2 ei(a 1)y (x-n)

The multivariate Gaussian has the same strengths and weaknesses as the univariate
Gaussian. It is mathematically convenient, and there are many theorems to the effect that
other things will converge to it. On the other hand, it has very thin tails and, hence, does not
allow for large outliers.
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18.12 Exponential Distribution
The PDF of an exponentially distributed RV looks like the following:

PDF of an exponential(1)
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Exponentials show up in a lot of places, but they are most useful in modeling the time until some
event occurs or the length of time between events. Let’s say, for example, that you have people
walking into a store. Every moment there is a small, fixed probability of somebody walking in, and
every moment is independent of every other. In that case, the amount of time between events will
be exponentially distributed.

The exponential distribution is parameterized by its mean 0, the average time between events.
Sometimes, you will instead see it parameterized by A = 1/6- the average rate at which events occur.

The PDF of the exponential distribution is

To sample from it in NumPy, you can say
np.random.exponential (10)

In many applications, the key property of the exponential distribution is that it is “memoryless.”
No matter how long you have been waiting for an event to happen, the time you have left to wait
still follows the same exponential distribution. An event will happen in the next moment - or not -
independently of what other events happened previously.

The memoryless property of the exponential distribution is usually taken as the dividing line
between heavy-tailed distributions and those that are not heavy tailed. If we have already waited x
time for an event to occur, do we expect to wait more or less time than when we first started? For expo-
nential RVs, it tells you nothing. In contrast, somebody who is 20 years old is likely to like 20 more
years, but somebody who is 90 probably won’t. Hence, age is not heavy tailed. A random person on the
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street is unlikely to be a millionaire. But, if you do happen to pick somebody who has at least $10 mil-
lion, there’s a decent chance that they have many millions more. Hence, net worth is heavy tailed.

18.13 Log-Normal Distribution

My go-to heavy-tailed distribution is the log-normal. It is straightforward to understand and simu-
late. Plus, it always has a finite average and standard deviation, which is true of essentially all real-
world phenomena.

Its PDF looks like the following:

PDF of an LogNormal(0, 1)
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There is a well-defined peak in the distribution, and the peak is at a location above 0. To the left
of the peak, it falls off quickly, becoming 0.0 at x =0. To the right though, it tapers off much more
gradually, allowing for a regular occurrence of large outliers.

The log-normal distribution is best thought of in this way: sample a value x from a Normal(u, 6°).
Then, ¢* is log-normally distributed.

To sample from it in NumPy, you can say

np.random. lognormal (mu, sigma)

18.14 Entropy

Entropy is a way to measure “how random” an RV is, and it comes from the field of information
theory. Intuitively, a fair coin is “more random” than one that is heads 99% of the time. Similarly,
if a normal distribution has a tiny standard deviation, then its probability mass will be tightly
grouped around its mean, and we want to think of it as being less random than one with a larger
standard deviation.

That’s the intuition. When it comes to the actual formula though, entropy is notoriously difficult
to give a crisp explanation of; I'll do my best. To start off with, let’s assume that the RV X is discrete.
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The key intuition is that some outcomes of an RV are “more surprising” than others, and entropy
is E[Surprise[X]]. How often do you get a surprising result, and how surprising is it? The question
then is how to quantify how surprising a certain outcome X =x is. The standard way to do it is that

Surprise[ X = x | =~In(p, )
In that case, the entropy becomes
HX = [ supise[ x]] =S pin(.
If X is a continuous RV, the definition is
H[ X ] ==[f(x)in(f(x))dx

Note that the “surprise” of an outcome reflects how improbable the outcome is, not the subjec-
tive experience of being surprised. If I flip a coin that is biased to give tails 99% of the time, I will
only be surprised if I get tails. If I flip a fair coin on the other hand I won’t be “surprised” regard-
less; I knew to expect randomness. With our mathematical definition though, either outcome is
moderately surprising because it was not terribly likely.

The choice of the logarithm as a measure of “surprise” might seem arbitrary, but it’s not.
Intuitively, we would like the surprise associated with an outcome to be a function of its probabil-
ity of occurring, so that

Surprise[X = x] = f(px)

where fis some function. We would like this function to have three key properties. The first two are
very straightforward:

e 1.0)=0
e As p—0, then f(p) >

The third property is a little bit more subtle. Say there are two RVs X and Y that are independent
of each other. In this case, the surprise from learning about one shouldn’t affect our surprise from
learning about the other. This means that

L4 f(pX:pr:y) :f(pX:x)‘l'f(pY:y)

Together, these constraints require that you use a logarithm.

Entropy is used in a lot of contexts. Probably, the most common is when we are picking a prob-
ability distribution to use for some purpose, and we want to pick one that reflects a large amount
of ignorance about the situation because we don’t know much about it. This will often give us a
rigorous criterion for picking one distribution (or a family of distributions) over another. For
example:

o If you need a discrete RV defined over the numbers 1 to N, then the maximum entropy distribu-
tion will assign a probability of 1/N to each number.

¢ If you need a continuous RV defined over the interval [a, b], then the maximum entropy distri-
bution will be Uniform(a,b).
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Whenever you are doing entropy maximization, constraints of some kind are necessary. If an RV
was defined over all the real numbers, for example, you could make the entropy arbitrarily large by
spreading the probability mass out very thinly over a very wide area.

One final note on entropy: the definitions for discrete and continuous RVs are not equivalent.
Let’s say that you tried to apply the discrete definition to a Uniform(a,b) RV. You might do so by
picking a large number n, dividing [a, b] into n equally spaced intervals, and looking at the entropy
of which interval it falls into. Then, the entropy you would get is

)
:é%ln(n)
~in(n)

This expression blows up to infinity for large n! The way to think about this is that for a continu-
ous RV, you could never correctly guess the exact outcome of a sample, since you would have to be
right to infinitely many decimal places. So, in that sense, a continuous RV is always infinitely sur-
prising. That’s the reason why we use a different definition, one that reflects whether we can make
a guess that is close to the right one.

You rarely calculate entropy in the course of doing data science work. However, it is ubiquitous
as soon as you start getting into the construction and theoretical properties of the tools, so it’s an
important concept to understand when you need to dig deeper.

18.15 Further Reading

1 Ross, S, Introduction to Probability Models, 9™ edn, 2006, Academic Press, Waltham, MA.
2 Feller, W, An Introduction to Probability Theory and its Applications, Vol. 1, 3" edn, 1968, Wiley,
Hoboken, NJ.

18.16 Glossary

Bernoulli random variable An RV describing the flip of a coin that is heads with some
probability p.

Binomial random variable An RV that is the number of heads in n flips of a coin that is
heads with probability p.

Central limit theorem A theorem describing how the average of many samples from a
probability distribution is normally distributed around the distribution’s mean. It applies so
long as the distribution being sampled has finite mean and standard deviation.

Continuous random variable An RV that takes on values in a continuous set, such as the real
numbers. Any single number has probability 0 of being the output. Instead, the probability is
described by a PDF.

Cumulative distribution function (CDF) If F() is the CDF of an RV X, then F(x) = Pr[X<x].

Discrete random variable An RV that takes on values in a discrete set, such as {heads, tails} or
the integers.
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Entropy A measure of how unpredictable an RV is. For a discrete RV, it is ( 2rm +o )
m N m

For a continuous RV, it is H[X] = — f [f(0) In(f(x))dx. These definitions are not equivalent;
entropy is one of the few areas where continuous and discrete RVs require different treatments.

Expectation value The average value of an RV or of a function of an RV.

Exponential random variable A type of RV, which takes on nonnegative numbers. Its
probability density peaks at 0 and falls off exponentially. It is often used to model the time
between events in a random sequence of events.

Gaussian Another name for the normal distribution.

Heavy-tailed distribution A distribution with heavier tails than an exponential distribution.
Practically, this means that large outlier values are more frequent than with an exponential
distribution.

Log-normal distribution A specific heavy-tailed distribution. A sample from it is obtained by
sampling from a normal distribution and then taking the exponent of that value.

Memoryless A property of the exponential distribution. If you know that X>x, then the
distribution of X —x is the same as the original distribution of X.

Normal distribution The prototypical “bell-shaped curve.” This is a probability distribution
with a single clear peak, whose distribution is symmetric on each side of the peak and has very
thin tails.

Poisson random variable An RV defined over the nonnegative integers. It is used to model
how many events happen, when infinitely many can happen, but in practice, only a few are
expected, and those events are independent of each other. Traffic to a website on a given day is
often modeled as a Poisson RV.

Probability density function (PDF) A function that describes the probability distribution of a
continuous RV. The PDF for an RV X must be nonnegative, and the total area under it must be
1.0. The area under only a part of the PDF is the probability that X occurs in that region.

Probability mass function The analog of the PDF for discrete RVs. It is a function that takes
each possible outcome of the RV and gives the probability of it occurring.

Pseudorandom numbers A sequence of numbers that are deterministically generated by a
computer, but which in practice behave as if they were random.

Random variable A quantity that randomly takes on any of a number of possible values.

Standard deviation A measure of how far an RV “typically” is from its mean. It is defined as
the square root of variance.

Uniform random variable A continuous random that only takes on values within a range
[a, b]. Within that range, however, the PDF is flat and each area is equally likely.

Variance Var[X] = E[(X—-E[X])*].
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Statistics

I should start off with an explanatory note. A lot of data science really should be considered a
subset of statistics. It is largely a matter of historical accident that statistics, data science, and
machine learning are seen as different things. The disciplines have evolved largely independently,
focusing on very different problems, so they have become different enough that I treat them as
separate things in this book.

Most data scientists, most of the time, don’t really need a thorough knowledge of statistics. There
are some who live and breathe it, to be sure, but it’s not nearly as useful for data science as one
might expect. What'’s absolutely crucial, however, is the kind of critical thinking that one usually
learns in a statistics class. Statistics is all about being extremely, painstakingly careful and rigorous
in how we analyze data and the assumptions we make. Data science focuses more on how to
extract features out of data, and there is usually enough data available that we don’t need to be so
exceedingly careful. But, data scientists need to be sensitive to the luxury provided by having a lot
of data and able to break out more rigorous methods when the data is lacking.

This chapter will cover several of the key topics in statistics. In each case, it will focus on the key
ideas, insights, and assumptions underlying each topic, rather than rigorous derivations of each
formula.

19.1 Statistics in Perspective

It might seem absurd that most data scientists don’t need statistics. They obviously use some
statistical tools such as averages and fitting a line, but how can the mother discipline be demoted
to a footnote? The way I think about it is this: the discipline of statistics is about how to deal with
constraints that data scientists don’t usually need to worry about.

The most important of these constraints is sample size. Data science grew out of Big Data, where
you are almost by definition swimming in data points. In situations such as web traffic, there are
more data points than you even need and more features than you know what to do with. Your task
is to figure out the right way to parse it. Once you’ve done the leg work of pulling features out of
the data, extracting a business insight can be as simple as looking at a histogram.

But, this isn’t always the case. If you are testing whether a fertilizer works on crops, every data
point will require a significant piece of land to be set aside to experiment on and then a year for the
crop cycle. If you are testing whether a medical procedure works, every data point you gather is
literally a life-and-death proposition. Statistics is about dealing with these extremely constrained

The Data Science Handbook, Second Edition. Field Cady.
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situations, where it is very hard to tell whether a pattern we observe is a true feature of the world
or a fluke of our data. Billions of dollars and potentially even human lives are on the line, so statis-
tics tends to be appropriately nitpicky about every little detail.

Again, data scientists typically have so much data that they can afford to be cavalier. But, they
can’t always be, and one of the most serious crimes a data scientist can commit is to be fast-and-
loose in a situation that demands a more rigorous approach. The most important thing for you to
get out of this chapter is a sensitivity to when quick-and-dirty approaches break down. If you can
learn to spot those pitfalls before they happen, you can always learn the statistics you need on
the fly.

19.2 Bayesian Versus Frequentist: Practical Tradeoffs
and Differing Philosophies

You’ve probably heard of the great divide in statistics between Bayesian statistics and Frequentist (aka
classical) statistics. Before getting into the details of the differences, I should let you know that the
debate is more philosophical than practical; in most problems, they will give close to the same answers.

Bayesian and Frequentist statistics both take in data and then use it to construct a statistical
model of the world (such as a normal distribution). The difference is in the relationship between
the available data and the models we construct.

In classical statistics, the model strives to be a “best fit” to the data. We are obligated to make some
assumptions about the form of the model (such as having it be a normal distribution) in order to solve
problems, but otherwise, we set the model parameters so as to best fit the data. The overriding para-
digm in classical statistics is to ask how plausible our data is given a particular model of the world, and
then tune our parameters so that the data becomes as plausible as possible. Essentially, it’s like training
a machine learning model. If we must make statistical predictions, we do so using this best-fit model.

In Bayesian statistics, there is an additional layer of complexity. We don’t just have the best-
fit parameters for the real-world model; we have a confidence distribution over what those best-fit
parameters might be. This confidence distribution (which is mathematically equivalent to a prob-
ability distribution) isn’t a rigorous best fit to any data. It represents our fallible human belief about
what the “real” parameter might be, and it strikes a balance between fitting the data and any initial
guesses we might have had. To be concrete, say we assume that the data follows a normal distribu-
tion with unknown mean and standard deviation. In classical statistics, we use our data to com-
pute the best-fit values for those parameters. In Bayesian statistics, we instead have a confidence
distribution about what the mean and standard deviation themselves might be.

A Bayesian model starts off with what’s called a “prior,” which exists without any data. A prior
is the initial confidence distribution over possible models of the world. As data comes in, we refine
the confidence distribution, hopefully zeroing in on the “real” parameters that characterize the
world as it actually is. If we want to actually make predictions using a Bayesian model, we must
average our predictions over all the possible values of a model, weighting them by our confidence.

With any luck, training a Bayesian model will zero in on real-world parameters that are pretty
close to the best-fit parameters of Frequentist statistics, and a model with those parameters will be
a pretty good model of the world.

Classical and Bayesian statistics both have their place. Bayesian is especially useful in situations
where there is expert knowledge available that can be wrapped into a prior, or we have a lot of
missing data. Classical statistics is often much easier to compute and make use of. This chapter will
start with classical techniques and then move on to Bayesian statistics at the end.
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An important domain of statistics is called hypothesis testing. The basic idea is that you think that
there is a trend in your data, and you want to assess how likely it is to be a real-world phenomenon
versus just a fluke. Hypothesis testing doesn’t address the question of how strong a trend is; it’s
designed for situations where the data is too sparse to quantify trends reliably. You are merely trying
to gauge whether the “null hypothesis” - the assumption that there is no trend at all - still holds water.

A prototypical example for hypothesis testing is this: I have a coin that might or might not be fair.
I throw it 10 times and get 9 heads. How likely is it that this coin is loaded?

The first thing to realize is that we can’t answer the knee-jerk question “how likely is this coin to
be loaded?” In order to get that number we would need some a priori knowledge or guess about how
likely the coin is to be loaded, and there’s no principled way to acquire that. If I pull the coin out of
my pocket and flip it myself, nine heads look like a fluke and the coin is probably fair. If a stage
magician is doing the flipping, nine heads is clearly a trick and the coin is probably loaded. There is
no formula that takes in nine heads and outputs a defensible probability that the coin is loaded.

So, here is the first big idea in classical statistics: instead of saying how likely the coin is to be
loaded given the data, we ask how likely the data is assuming that the coin is fair. Basically, is it
plausible that nine heads is just a fluke? We assume a fair coin, compute how likely this skewed
data is, and use that to gauge whether the fair coin is believable.

So, let’s assume a fair coin. Every coin flip can be either heads or tails, and they are all independ-
ent. This means that there are 2'° = 1024 possible ways that the sequence of 10 flips could occur,
and they’re all equally likely. There are four ways we could get data that is as skewed (or more
skewed) as what we observed:

We could get 10 heads. There is only one flip sequence that does this.

We could get 9 heads. The tail could be in any of the flips, so there are 10 ways to get 9 heads.
We could get 10 tails. There is only one flip sequence for this.

We could get 9 tails. There are 10 ways to get this.

Adding all of these up, there are 22 ways to get data that is as skewed as what we saw. Then, we
have 22/1024 = 0.0215, so there is slightly more than a 2% chance of getting data such as this from
a fair coin. That’s the number we can compute in a principled way, and we balance it against real-
world considerations for making any decisions.

That’s the basic procedure, and I encourage you to keep it firmly in mind. Now let’s frame it in
more general statistical parlance. What we have done is called “hypothesis testing”: you have
found a pattern in the data, and you quantify your confidence in it by calculating how likely that
pattern is to be just a fluke.

The idea of a fair coin is called the “null hypothesis.” Typically, the null hypothesis means that
there is no pattern in the real world: the fertilizer doesn’t do anything for crops, the medicine
doesn’t help or hurt patients, the coin is fair, and the dice is not loaded. Framing the null hypoth-
esis can be complicated for some problems, but it’s dead simple in this case.

Then, there is some “test statistic”: a single number that we calculate from our data that quanti-
fies the pattern we are looking for. The key thing about the test statistic is that we can calculate its
probability distribution if we assume the null hypothesis. In this case, the test statistic is just the
number of heads. In general though, picking a good test statistic can be a tricky problem.

Finally, there is the likelihood of the test statistic being as extreme as we have observed it being.
Basically, the likelihood of seeing a pattern that is this extreme in the data if we take the null
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hypothesis as a given. This number is called the “p-value.” A result is called “statistically signifi-
cant” if the p-value is below some specified threshold, and there is a widespread convention of
using 0.05 as the cutoff. I can’t emphasize enough though that this is arbitrary, and we’re really
dealing with a sliding scale: a p-value of 0.01 is much more meaningful than 0.04, and conversely
p-value of 0.07 could still be very important.

The most important caveat to hypothesis testing is that it tells us that a pattern exists, but does not
tell us how strong the pattern actually is. It’s designed for situations where there is so little data that
this knowledge is all we can hope for. In the real world, the null hypothesis is rarely 100% true; the
weight of Abraham Lincoln’s copper nose will technically introduce a tiny bias in a coin flip, and if you
toss the coin a million times, you will see it. I like to say that in Big Data situations, if your pattern is
weak enough that you even have to ask the p-value, then it is certainly too weak to be of any busi-
ness value.

The other important caveat is that you will get false positives. Say you do many hypothesis tests
in your life, and you always use 0.05 as your cutoff for statistical significance. Then, of the tests
when there really is no pattern, 5% of the time you will find something statistically significant. This
phenomenon is a huge problem is the scientific literature, where researchers will often declare
victory as soon as the p-value dips low enough to publish a paper.

19.4 Multiple Hypothesis Testing

In real situations, we often have several hypotheses that we want to test and see if any one of them
is correct. For example, we might test 20 different ads out on different groups of users and see if
any one of them increases the click-through rate (relative to a known baseline click-through prob-
ability) with a confidence threshold of 0.05. That is, we will calculate the p-value for each ad and
consider all those with p-value <0.05 to pass our test.

The problem is that while each individual ad has only a 5% chance of passing our test by dumb
luck, there is a very good chance that some ad will pass by dumb luck. So, the idea is that we must
tighten p-value constraints for the individual ads, in order to have a p-value of 0.05 for the overall
test. That is, the null hypothesis is that all the ads are useless, and, in that case, we want only a 5%
chance of any of them getting flagged as significant.

A standard, conservative, and surprisingly simple solution to this problem is called the Bonferroni
correction. Say you have n different ads, and you want a p-value of a for your overall test. Then, you
require that an individual ad passes with the smaller p-value of a/n. We then see that if the null
hypothesis is true (i.e., no ad is actually an improvement), then our probability of errantly having
a test pass is

Pr[Somead passes]=1—Pr[Everyadfails]

=1- 1_ﬁ]
n

=1-|1-n%+ {higher order terms}}
n
ra

The Bonferroni correction is the most common multiple hypothesis correction that you will see,
but you should be aware that it is unnaturally stringent. In particular, it assumes that every test you
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run is independent of every other test you run: if test X does not pass, then test Y'is still as likely to
pass as it ever was. But, that often isn’t the case, especially, if your different tests are related in some
way. For example, say that you have a database of people’s height, weight, and income, and you are
trying to see whether there is a statistically significant correlation between their income and some
other feature. Height and weight are strongly correlated between people, so if the tall people aren’t
richer, then the heavy people probably won’t be either: they are largely the same people! Intuitively,
you want to say that we are testing 1.3 hypotheses or something similar, rather than 2. Bonferroni
would apply if you tested height on one sample of people and weight on an independent set. There
are other, complicated ways to adjust for situations such as this, but data scientists are unlikely to
need anything beyond Bonferroni corrections.

19.5 Parameter Estimation

Hypothesis testing is, as I mentioned earlier, about measuring whether effects are present, but not
about quantifying their magnitude. The latter falls under the umbrella of “parameter estimation,”
where we try to estimate the underlying parameters that characterize distributions.

In parameter estimation, we assume that the data follows some functional form, such as a nor-
mal distribution with mean u and standard deviation @. We then have some method to estimate
these parameters, given the data, as follows:

In this case, these numbers are called the sample mean and the sample standard deviation.

To step back and cast this in statistical terminology, /i and & are both test statistics that we
calculated from the data. If we threw out our dataset and gathered a new one of the same size from
the real-world distribution, &z and & would be a little bit different. They have their own probability
distributions and are themselves random variables. The question then is how well we can take
these random variables as indicators of the actual x and o.

We will talk about the more general problem of confidence intervals later, but for now, there are
two pieces of terminology you should know whenever you are talking about estimators:

o Consistency: An estimator / is “consistent” if, in the limit of having many different points in
your dataset, it converges to the real p.
o Bias: As estimator is “unbiased” if the expectation value of # is the real u.

Most estimators you might cook up on your own are probably going to be consistent. The £ and
& are both consistent. However, only 4 is unbiased; & is on average an underestimate of the true
standard deviation.

This surprised me the first time I learned it, so let me explain. It’s easiest if you imagine that
there are only two data points that we use to find the mean and standard deviation. Then, £ will be

N
located exactly in-between them, at the place that minimizes Z(xi - ,[1)2. If we had set & to
N i=1
be anywhere else, then Z(xi - ,[1)2 would have been somewhat larger. However, the real p is
i=1
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some-where else, because our /£ is only an estimate of . It is an unbiased estimate, so m is equally
N

A\2
likely to be more or less than £, but in either case Z(x,- - ,U) would get larger. Basically, we are
i=1
making £ an overly good fit for our data, so on average, the sample deviation will be less than the
real-world deviation.

An unbiased estimator of the standard deviation is

This will always be somewhat larger than our original expression, but they converge to the same
number as N goes to infinity.

19.6 Hypothesis Testing: t-Test

The t-test is a more complicated version of hypothesis testing. It is useful for situations where the
thing you measure is a continuous number, rather than a binary coin flip, and you want to assess
whether the real-world averages of two distributions are the same. For example, you might have
cholesterol measurements for patients who did and did not take a cholesterol-lowering medica-
tion. Can we say confidently that the medicine works?

Intuitively, this is a simple problem: draw histograms of each distribution and look at them.
If their bell curves are nice and distinct, then the distributions are clearly different. If the bell
curves overlap a lot, then either the means are very close or the spreads are very wide. Do this with
enough data points and you get to the point where you can easily conclude that there is a difference.

Reducing this intuition to a hypothesis test where we can rigorously calculate a p-value is much,
much trickier. It is also much more complicated than the coin-flipping p-value I discussed earlier.
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So, before I give you an idea of how you approach the problem mathematically, I'll show you how
to compute it in python: it’s very easy. You have two datasets, and the hypothesis that you are test-
ing is that their means are equal. You do not know the standard deviations. The math and compu-
tation are a lot easier if you assume that the standard deviations are equal and that assumption is
often made by default, but you can also allow them to be different. SciPy’s t-test method is called
ttest_ind. It produces two numbers: the t-score (which I will explain in a minute) and the p-value
we are seeking:

>>> from scipy.stats import ttest ind
>>> t_score, p_value = ttest_ind([1,2,3,4],
[2,2.2, 3,5D])
>>> t_score, p_value = ttest_ind (
[1,2,3,4], [2,2.2,3,5], equal_var=False)

Now, I will give you a brief overview of what’s going on under the hood here.

Recall the hypothesis testing process from earlier: formulate the null hypothesis, choose a test
statistic that captures the strength of a pattern we have found, and then calculate how much of an
outlier that test statistic is. If the test statistic is extremely far off, then the null hypothesis is
probably bogus.

The t-test gives us two choices of a null hypothesis:

e The two datasets come from the same normal distribution.
e The two datasets from normal distributions with the same means, although the standard
deviations could be different.

An important point is that these hypotheses are under-specified; we don’t know the means of the
distributions or their standard deviations. This is in contrast to coin flips, where assuming a fair
coin tells you everything there is to know. So, to perform a hypothesis test, we must formulate a test
statistic whose distribution doesn’t depend on the parameters that we do not know. The intuition
to follow is this:

e Calculate the means /i, and fi; of the two datasets; they will never be exactly the same. Let’s say
that D is the “typical” difference we expect to see between the means if the null hypothesis is
true. Then, the difference divided by D is a promising tests statistic: if it is a lot bigger than 1,
then the null hypothesis fails.

e The problem is we don’t know D. D will get smaller if we have more data points, because /i, and
A1 will be closer to each other. But, D also depends on the standard deviations of A and B.

e We do not know the standard deviations of the underlying A and B distributions, but we can
estimate them from the data. Compute the sample standard deviations (which are usually a
slight underestimate of the real ones) and use them as a best guess for estimating D.

Following the logic of this intuition (I'll spare you the rigorous derivation) yields the following
test statistic, called the ¢-statistic:

o da =iy
2 2

Sa  SB

N, Ng

where 57 is the sample variance of A and similarly for s3. If you run the math, you will find that
the distribution of T will be the same no matter the means and variance of the underlying
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distributions. There is a similar, simpler test statistic that we can use if the population variances are
assumed to be equal but unknown.

If the null hypothesis is true, then T will follow what’s called a T-distribution. A T-distribution
looks very much like a normal distribution with mean 0 and standard deviation 1, but it has some-
what heavier tails. The heavier tails are a result of the uncertainty in the estimates of the standard
deviations. If the t-statistic for our data is unusually large or small, then the null hypothesis is
probably not correct.

The t-test is used to test whether the means of two distributions are the same, but it assumes that
the underlying probability distributions are normally distributed. You could formulate an equiva-
lent test assuming different distributions if need be, although I've personally never seen it done. A
failure of the t-test doesn’t necessarily tell you anything about the means; it could also be that your
basic assumptions are flawed.

If you want to see whether your data is indeed normally distributed, there is (surprise surprise)
a hypothesis test for that: several of them, in fact. One of them based on a metric called the z-score
can be used as follows:

>>> from scipy.stats import normaltest
>>> z_score, p_value = normaltest(my_array )

The normaltest follows a similar logic to the #-test. The null hypothesis tells us that the data is nor-
mal, but not what its mean or standard deviation are. We can estimate these parameters from the data
though and use those estimates to rescale our data so that it should be approximately a Normal(0,1)
distribution. Then, we can look at how heavy the tails are relative to what you expect for data truly
drawn from a Normal(0,1) - if they are much heavier than that the null hypothesis fails.

19.7 Confidence Intervals

When we are trying to estimate a parameter of a real-world distribution from data, it is often
important to give confidence intervals, rather than just a single best-fit number. As I did with
the t-test, I will show how to use some pre-canned libraries, the most common use case. I will
then back up and discuss what we just did in a more abstract, general way that you can apply to
novel problems.

The most common use for confidence intervals is in calculating the mean of the underlying dis-
tribution. If you want to calculate something else, you can often massage your data to turn it into
a calculation of the mean. For example, let’s say you want to estimate the standard deviation of a
random variable X. Well, in that case, we can see that

2
oy = E[(X ~E[X]) }
2
ol = E[(X ~E[X]) }
so instead of estimating the standard deviation, we can estimate the variance. The variance is great

because it’s just the mean of (X — E[X])? if we can find a confidence interval for the variance, the
square roots of its lower and upper bounds gives an equivalent confidence interval for the standard
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deviation. If we can put confidence intervals on taking a mean, we can put confidence intervals on
a lot of other things we might want to estimate.

The typical metric to use is the “standard error of the mean” or SEM. If you see a mean reported
as4.1+0.2, then generally 4.1 is the best-fit mean that you get by averaging all of the numbers, and
0.2 is the SEM. You can calculate the SEM in Python as follows:

>>> from scipy.stats import sem
>>> std_err = sem(my_array)

If you assume that the underlying distribution is normal, then the SEM will be the standard
deviation of the estimate of the mean, and it has a lot of nice mathematical properties. The most
notable is that if & is your sample mean, then the interval

[/1-2+SEM, ji+2+SEM

will contain the mean 95% of the time, 99% of the time, or any other confidence threshold you
want, depending on how you set the coefficient z. Increase that coefficient and you can increase
your confidence. The following table shows several typical confidences that people want and the
corresponding coefficients:

Confidence (%) Coefficient
99 2.58
95 1.96
90 1.64

It is very tempting to say that there is a “95% chance that the mean is within our interval,” but
that’s a little dicey. The real-world mean is within your interval or it isn’t - you just happen not to
know which one. The more rigorous interpretation is to say that if the distribution is normally
distributed (no matter its mean and standard deviation), and you take a sample of N points and
calculate the confidence interval from them, then there is a 95% chance that the interval will con-
tain the actual mean. The randomness is in the data you sample, not in the fixed parameters of the
underlying distribution.

Of course, all of this hinges on the assumption that the real-world distributions are normal. All
of the theorems about how to interpret the confidence intervals go out the window when you let
go of that assumption, but in practice things still often work out fine. Statisticians have worked out
alternative formulas for the intervals that give the same sorts of guarantees for other types of dis-
tributions, but you don’t see them often in data science.

The SEM confidence interval is based on the idea that we want to make sure that the true
value of the parameter is contained in the interval some known percentage of the time.
Another paradigm that you see is that we want the interval to contain all “plausible” values for
the parameter. Here, “plausible” is defined in terms of hypothesis testing: if you hypothesize
that your parameter has some value and calculate an appropriate test statistic from the data,
do you get a large p-value?
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19.8 Bayesian Statistics

Bayesian statistics, similar to classical statistics, assumes that some aspect of the world follows a
statistical model with some parameters: similar to a coin that is heads with probability p. Classical
statistics picks the value of the parameter that best fits the data (and maybe adds in a confidence
interval); there is no room for human input. In Bayesian statistics though, we start off with a prob-
ability distribution over all possible values of the parameter that represents our confidence that
each value is the “right” one. We then update our confidence as every new data point becomes
available. In a sense, Bayesian statistics is the science of how to refine our guesses in light of data.

The mathematical basis for Bayesian statistics is Bayes’ theorem, which looks innocuous enough.
For any random variables X and T (which may be vectors, binary variables, or even something very
complex), it says that

P(TID)=%

As stated, Bayes’ theorem is just a simple probability theorem that is true of any random varia-
bles T and D. However, it becomes extremely powerful when we have T be a real-world parameter
that we are trying to guess from the data. In this case, T isn’t actually random - it is fixed but
unknown, and the “probability distribution” of T is a measure of our own confidence, defined over
all the values T, could possibly take.

The left-hand side of Bayes’ theorem gives us what we were unable to have in classical statistics:
the “probability” that the real-world parameter is equal to a certain value, given the data we have
gathered. On the right-hand side, we see that it requires the following:

e P(T). Our confidence about the parameter before we got the data.

e P(D|T). How likely the data we saw was assuming that the parameter had a particular value.
This often is known or can be modeled well.

e P(D). The probability of seeing the data we saw, averaged over all possible values the parameter
could have had.

To take a concrete example, say that we have a user who may be a male or female, but we don’t
know which. So, we set our prior guess to say there is a 50% confidence they are male and 50% that
they are female. Then say, we learn that they have long hair, so we update our confidence to

P(Fema]e) P(LongHair | Female)

P(Female | LongHair): P (L Hai )
ongHair

1
— P(LongHair | Female
5 P(Long )

%P(LongHair I Female) + %P(LongHair | Female)
P(LongHajr l Female)
P(LongHair I Female) +P (LongHair | Female)

Personally, I sometimes have trouble remembering Bayes’ theorem: the formula for the updated prob-
ability is just a little clunky. For me, it’s much easier to think about the odds, that is, the relative probabil-
ity of female or male. To update the odds, you just multiply by the relative probability of long hair:

P(Female | LongHair) _ P(Female) . P(LongHair | Female)
P(Ma]e | LongHair) - P(Male) P(LongHair | Male)
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19.9 Naive Bayesian Statistics

The trickiest part of Bayesian statistics is usually calculating P(DIT). This is chiefly because D is
usually a multipart random variable in itself - typically, a d-dimensional vector - and the different
numbers in it can have very complicated dependency structures. For example, if we want to know
whether somebody has diabetes, we might measure their blood glucose and sugar levels, and those
two numbers have intricate dependencies that require a deep understanding of biology to model.
Or, alternatively, if your model has to learn the relationships automatically, it requires a monu-
mental amount of training data, since all co-occurrences have to be seen.

For this reason, you will often see people use a “naive Bayes” approach. In naive Bayes, we sim-
ply assume that all the different variables are independent of each other, conditioned on T. That is,

P(D|T)=P(D,|T)*P(D,|T)*..* P(D,|T)

Now calculating P(DIT) just requires that we have observed enough data to describe each variable’s
relationship with T in isolation.

The naive Bayes assumption is one of the most dramatic, cavalier oversimplifications in the data
science world, but, in practice, it’s surprisingly effective! The main thing that it tends to do is that if
several of the D; are closely related, they will collectively nudge your classifications too far in one
direction. For example, let’s say that you're trying to determine whether somebody is a man or a
woman. I might then tell you that they have long hair, that they use a hair tie, and that their hair takes
a long time to dry. Each of these facts weighs moderately in favor of the person being a woman, so a
naive Bayes classifier would become very confident. But really, these facts are just alternative ways of
saying that the person has long hair, and there are still plenty of men with long hair (including the
author, once upon a time). So, the classifier will probably be right, but it will be overconfident.

19.10 Bayesian Networks

If there are many features in your data, then it is a fool’s errand to fully fit a model for P(DIT), with
all of the possible interdependencies between the variables. However, there is a happy medium
between this impossible task and the dramatic oversimplification of naive Bayes. It is called
Bayesian networks.

In a Bayesian network, we allow for some of the D; to be dependent on each other, and we
arrange these dependencies in a graph as the following:

Gender

Hair length

Shampoo Wears
time hairtie
—

This graph indicates that Gender has a relationship with Hair Length, which perhaps allows us to
predict hair length with some accuracy. In many cases, it is a causal relationship, but not always.
Similarly, hair length can inform us about how long it takes somebody to use shampoo and whether
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they wear a hair tie. But that is it. Gender might correlate with shampoo time, but only because it
correlates with hair length: if you condition on the length of somebody’s hair, then gender is inde-
pendent of shampoo time. Similarly, you can maybe guess whether somebody wears a hair tie based
on how long they take to shampoo their hair, but the predictive power goes away if you know their
hair length.

Bayesian networks can be very efficient to train and use. In this one, for example, we only need
to know the distribution over the possible genders, the distribution on hair length, given the gen-
der, and the distributions of shampoo time and hair tie wearing, given the hair length.

When using a Bayesian network for real applications, you can leverage domain expertise by
choosing how to structure the network. Which variables are likely to influence each other, or be
independent, or be conditionally independent? Generally, the topology of a Bayesian network is
constructed by hand, and afterward, it is trained and evaluated on real-world data.

In a later chapter, we will discuss some of the tools available for training and using Bayesian
networks in Python.

19.11 Choosing Priors: Maximum Entropy or Domain Knowledge

If you are trying to train a Bayes classifier, it is easy to extract baseline priors from the training data.
However, there are other situations where our ignorance really is complete, so we don’t want to
feed any preconceived fairy tales into our priors. The instinctive way to handle this in the case of
something such as determining somebody’s gender is to set the baselines equal: 50% chance
woman and 50% chance man.

There is a mathematical theory that justifies this approach: using the prior distribution with the
maximum entropy. Previously, we saw that the entropy of a probability distribution measures how
much uncertainty there is in it, so choosing a prior that maximizes the entropy reflects complete
ignorance.

Recall that if T is a discrete variable with n possible states, then entropy is defined as

H[T] :_t"zlptln( »)

In this case, — In(p,) measures how “surprising” it is to get a particular result ¢, and —p,In(p,) is
t’s contribution to the overall entropy. If p, is 1, then In(p,) will be 0, so t would contribute nothing
to the entropy. Taking the opposite extreme, if p, is very small, then the surprise is large, but it
happens so rarely that ¢ contributes little entropy. Intuitively, there should be a “sweet spot” that
maximizes the entropy, and it turns out that we can get this by setting every p; to the constant 1/n.

This definition of entropy has an analog for continuous probability distributions:

H[T|==1f()in(f(r))dr

Similarly to the discrete case, the maximum entropy distribution is only coherent if there is a
finite interval (or set of them) over which it is defined, and it is just a constant value of
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19.13 Glossary

Bayesian network A dependency graph between several random variables, used to model
which ones are likely to be conditionally dependent on which others. A good Bayesian network
is more powerful than naive Bayes, but still sparse enough that it can be effectively trained
on data.

Bonferroni correction A way to adjust the required p-value for testing a hypothesis if you are
testing multiple hypotheses at the same time. It accounts for the fact that, while each
individual hypothesis is unlikely to pass by pure chance, the probability of some hypothesis
passing by dumb luck increases as you test more hypotheses.

Consistent estimator An estimator that, in the limit of having a lot of data, is guaranteed to
converge to the correct value (assuming that the real-world distribution is, indeed, of the same
family that we are assuming).

Entropy A measure of how hard it is to predict the outcome of a probability distribution. Often,
we pick priors to maximize the entropy in Bayesian statistics.

Estimator A test statistic that is used to estimate a parameter in the probability distribution that
data is assumed to have been drawn from.

Hypothesis testing A framework for testing whether a pattern in the data is “statistically
significant,” by looking at how likely it is to occur by random chance in the absence of an
underlying real-world phenomenon.

Multiple hypothesis testing Hypothesis testing when there are multiple hypotheses that could
be correct, such as multiple medicines all of which are being tested for clinical effectiveness.

Naive Bayes The assumption that all features in a dataset are independent of each other when
you condition on the target variable. This makes training Bayesian models vastly simpler, and
they are often still surprisingly effective.

Null hypothesis In hypothesis testing, the null hypothesis is the assumption that whatever
pattern we have found in the data in just a fluke. For example, let’s say that we have 9 of 10
flips of a coin have been heads and we think that the coin might be biased. The null hypothesis
holds that the coin is fair.

p-Value The probability of seeing a result that is as extreme (or more so) as what we see in the
data if the null hypothesis is true.

Prior In Bayesian statistics, this is our confidence distribution over an unknown variable before
we have acquired any data.

t-Test A hypothesis test for determining whether the means of two distributions are different.

Test statistic Any number that is calculated from a dataset.

Unbiased estimator An estimator that is on average equal to the correct underlying value. The
same mean from a dataset is an unbiased estimator of the real mean. However, the sample
variance is not an unbiased estimator of the true variance: it is systematically biased to be smaller.
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Programming Language Concepts

So far, the book has focused on quick-and-dirty scripting, in the service of larger analytics goals.
The most in-depth I've gotten about code is how to do unit testing and work within the context of
a conventional software engineering team.

This chapter will take a step back and get into some of the more abstract, theoretical aspects of
programming languages. This is important to know for two reasons. First, these considerations
will often dictate important decisions about what tools to use when. You don’t want to lock yourself
into using the wrong technology for a task, especially if you find yourself working to create a large
software framework. Second, tools that are fundamentally different can take some getting used to;
understanding the core concepts will ease the transition if you have to pick up a new tool that is
profoundly different from what you're used to.

20.1 Programming Paradigms

A “programming paradigm” is a conceptual way to think about the logical structure of a program
and implement it in code. You can think of it as a sequence of instructions for how to perform the
computation, a mathematical specification of what the output should look like, or a range of other
options.

Before I get into the details, the first big thing you should know is that most modern high-level
languages support all of these paradigms to one degree or another. This means that to a large
degree, you can mix and match paradigms depending on what works best for the problem
at hand.

Strictly speaking, all of these paradigms are equivalent; any computation that can be done with
one can be done with any of the others. Conceptually though, they can be quite different to think
about, lending themselves to different applications and even personal temperaments.

Some people are pretty dogmatic about which paradigms are best, and some languages shoehorn
you into one in particular. A number of them have fancy theoretical aspects that can be very useful
in certain situations. They also tend to be different in terms of the performance and maintenance
of the code.

The big three paradigms that you will see are often called “imperative,” “object-oriented,” and
“functional,” and I will introduce them all in this chapter. Python has at least partial support for all
of them.

9«

The Data Science Handbook, Second Edition. Field Cady.
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20.1.1 Imperative

In imperative programming, your code is mostly a sequence of instructions for the computer to
follow. These could be things such as appending a new element to a list, overwriting an existing
variable in memory, or writing a file.

The following Python code is an imperative way to read in a CSV file containing demographic
information and then calculate the average age of all people in each state:

lines = open(“data.txt")
broken_lines = [I.split(",") for 1 in lines]
ages_by state = {}
for bl in broken_lines:
state, age = bl[2], bl[5]
state = state.strip(Q.lower(Q).replace(’.”,”7)
age = float(age)
if state in ages_by state.keys():
ages_by_ state[state].append(age)
else: ages by state[state] = [age]

mean_by state = {}

for state, ages in ages_by state.items():
avg_age = sum(ages) 7/ len(ages)
mean_by state[state] = avg_age

out_lines = [state + "," + str(age)
for state, age in state_age pairs]
output_text = "\n"_join(out_lines)

open("output.txt”, "w") .write(output_text)

20.1.2 Functional

Functional programming is largely inspired by the desire to avoid “side effects.” A side effect means
any modification that is done to existing variables (such as appending an element to a list or
incrementing a number) or any interaction of the program with the outside world (such as printing
to the screen). So, the following would be side effects:

print(“Hello world!*®)
a=-a+1

Obviously, we ultimately want our code to actually do something, so side effects are a good thing
in general. The problem though is that they make it difficult to reason about our code. The order in
which steps are taken matters (did we print the number before or after we incremented it?), and it
can get very hard to keep track of sometimes.

I’ve run into this personally when using the Python interpreter to help me fiddle with scripts I
was writing. I had a collection of variables that I was trying to massage so that they would fit into
a statistical model I was building. I would run and rerun portions of my script, making small
changes in between runs as I tweaked the logic. Eventually, my variables were in good shape, so I
thought the code was working correctly. But, when I reran the code from scratch, things broke
again. It turned out that some of the necessary changes had been made by previous versions of the
code, and I had forgotten that those side effects had already happened.
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In functional programming, your code is broken up into “pure” functions, which take some
input (or maybe none at all) and return an output, but have no side effects. Here is a much more
functional version of the same code from the previous section:

def normalize_state(s):
return s_strip(Q).lower().replace(’.”,”)

def mean(nums):
return sum(nums) / len(nums)

def extract_state_age(l):
pieces = L.split(’,”)
return normalize_state(state), float(age)

def get_state_mean(pairs):
ages_by state = {}
for age, state in pairs:
ages_by_ state[state] = \
ages_by state.setdefault(state,[]) + [age]
state_mean_pairs = [(state, mean(ages))
for state, ages in ages_by state.items()]
return sorted(state_mean_pairs, key=lambda p: p[1])

def format_output(state_age pairs):
out_lines = [state + *,” + str(age)
for state, age in state_age pairs]
return \n’_join(out_lines)

lines = open(“data.txt")

state_age pairs = [extract_state_age(l) for 1 in lines]
output = format_output(state_age_pairs)
open("output.txt", "w") .write(output)

In this version, all but the last four lines of code are just defining functions. The functions are all
pure: they construct an output base on their input, but don’t modify the inputted variables at all. In
the final four lines, I do create some variables based on the already existing ones, but I don’t modify
any that were already created. The only side effect is in the last line. Very technically within the
get_state_mean function I modify the variable ages_by_state while I am building it up; the code
isn’t isn’t 100% functional code at every level, but you get the idea.

The real nirvana of functional coding though isn’t just arranging your code into pure functions.
It’s treating functions as variables in their own right, which can be passed as arguments into other
functions or even generated on the fly. Take this code, for example. It is a function that takes in a
date encoded as a string, figures out the way the string is formatted, and returns a function that will
extract the year out of strings with the same format:

def get_year_extractor(example_date):
# not sure if example_date is YYYYMMDD
# or YYYY-MM-DD or MM-DD-YYYY
if len(example_date)==8: return lambda d: d[:4]
elif (example_date[4]==";-"
and example_date[7]=="-"):
return lambda d: d[:4]
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else: return lambda d: [-4:]
extract_year = get_year_extractor(dates[0])
years = [extract_year(dt) for dt in dates]

Or try the following, which takes in a list of data and a function fthat is to be applied to the data.
The function will throw an error for some values, so the get_stats function returns summary
statistics only for those data for which f did not fail:

def get_stats(data_lIst, f):
def valid_input(x):
try:
_ = )
return True
except: return False
vals = [f(d) for d in data_Ist if valid_input(d)]
return {?num_valid’: len(vals),
num_invalid’: len(data_list)-len(vals),
mean”: sum(vals) 7/ len(vals),
max” : max(vals)

}

In this case, you might experiment with a wide range of custom-built functions, plugging each
one into get_stats to see how they all perform.

Functional programming lends itself well to data science, especially if you are doing some kind
of batch processing. There is a clear sequence of logical stages leading from your raw data up
through your final analytics outputs — no user interactions or other things that are hard to think
about as pure functions. It is easy to plug-and-play with different functions, passing them around
to operate on your data in novel ways. In the Big Data space, Spark is a functional framework. This
is part of why many people (myself included) try to write code in as functional a way as possible.

An oft-touted advantage of functional programming is its performance, at least if the code is
compiled rather than interpreted. A functional program is more of a mathematical specification
for a program’s logic than a set of instructions for the computer. In theory at least, the compiler can
look at those specifications and figure out a highly efficient way to implement them — much better
than you probably would have if you’d written your code in an imperative way.

In practice though, the compiler isn’t usually very smart, and it often implements things in a fairly
naive way. If your functional code is in an interpreted language, it will also certainly be naively
implemented and pretty slow. You will often be taking data structures and creating slightly modified
versions of them (a time-consuming operation, because the whole thing must be copied over),
rather than just modifying the original structure directly. This trade-off for ease of coding might
make sense if the structures are not overly large, but it’s a trade-off you should always be aware of.

There are also certain control structures where functional syntax can become a bit clunky (or at
least unintuitive the first time you see it). Check out these two pieces of code, which do the same
thing imperatively and functionally. Imperative coding allows you just in a pretty direct fashion
“do X until criteria Y is satisfied,” but to do this in functional code you must use recursion:

# Imperative version

my_variable = initial_version

while not my_stopping_condition(my_variable):
my_variable = my_function(my_variable)
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# Functional version
def loop_as_function(variable):
if my_stopping_condition(variable): return variable
else:return loop_as_variable (my_function (variable))
my_variable = loop_as_function(initial_version)

Doing 100% functional programming requires that you replace loops with recursion in this way,
which many people regard as an eyesore. It’s also grotesquely inefficient to do in Python because
of the under-the-hood boilerplate required for all the nested function calls (it can be much faster
in compiled functional languages such as Haskell, which use something called the “tail call
optimization,” but Python doesn’t have that feature).

The granddaddy functional programming language is Lisp, which dates back to 1958 but still has
devoted adherents. Popular, mostly functional languages today include Haskell and SML. Scala
famously emphasizes its functional programming support, although it can also be written in a very
object-oriented way.

20.1.3 Object Oriented

An object-oriented language will package data and the logic that handles the data into user-friendly
black boxes called “objects.” When using an object, you don’t need to worry about how the data is
structured or how to untangle that structure; you only interact with special-purpose functions
called “methods” that the object presents to you.

Python is inherently an object-oriented language. Everything you ever use or define in Python
code, including variables, functions, and even libraries that you import, is an object. Every action
you ever take in Python is calling a method on some object.

You might object that simple things such as integer addition are not object methods. Actually
though, “+” is just syntactic sugar around the “__add__” method, as you can see here:

>X,y=4,5
> X +y

9

> X.__add__(y)
]

The interesting thing about Python is that, even though it’s technically 100% object-oriented, you
don’t have to write your code that way. If you read my code, you’ll see that I very rarely define my
own classes; I do almost everything with Python’s built-in container objects (such as lists and
dictionaries) and the objects supplied by the libraries I use. The fact that everything gets imple-
mented as an object is incidental; my code reads like a blend of imperative and functional. This is
partly a matter of personal taste and partly a reflection of the kind of work I usually do.

A mark of more strongly object-oriented code is that different classes are defined that are specific
to the problem being solved, rather than just reusing generic containers. A language like Java is
extremely object oriented.

A place that object-oriented coding shines is having your code interact with external resources.
Something such as a GUI, where the user presses buttons at will, is best thought of as an object.
The object carries around the data you’re displaying, the specification of how the GUI is laid out,
and whatever boilerplate is required to interact with the computer’s graphics. Every button press
calls some method on the object, which changes the object’s internal state (i.e., a side effect) and
takes any other actions necessary. If you have two processes that interact with each other - like if
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your code connects to an iPhone or an interactive website, or if the user gets brought into the
loop - all of these situations are best thought of as interactions between objects, via their methods.

Everything in Python is an object, but, generally, they’re a prepackaged type of object such as a
list or an int. The key feature of object-oriented code is the definition of whole new types of objects.
These types of objects are called “classes.” A class specifies the internal structure of an object, as
well as all of its associated methods. You can have many objects that are all of the same class, but
the class itself is only defined once. To see how this works, let’s dive into some code:

class Person:
def __init___(self, name, age):
self._name = name
self.age = age
def talk(self):
print("My name is %s and 1 am %s years old® \
% (self.name, self.age))
Janice = Person("Janice Smith", 28)
Bob = Person("Bob Jones”™, 30)
Bob.talk()

This code defines a class called “Person,” with methods “__init__” and “talk,” and creates two
Persons called Janice and Bob.

The first thing that might jump out at you is the goofy word “self.” Where did that come from? It
looks like it’s an argument in the functions __init__ and talk, but it’s never there when those
objects get called. What gives? Ok, this aspect of Python is incredibly confusing for many people,
so much so that some of them abandon the language entirely, so let me try to make it clear.

When you, the programmer, call a member function on an object, you call it like my_object.
my_function(argumentl, argument2). However, under the hood, the actual object itself gets
passed into the function, silently, as an additional argument before all of the others. So, when you
write the code that actually implements the function, you write it so as to accept this additional
argument. Calling the argument “self” is just a convention, but it’s an almost universal one.

If you want to refer to your Person’s age within the member function, you say “self.age.” In many
other object-oriented languages, you just say “age,” and it is understood that this refers to the “age”
field of the object being operated on (these languages also don’t require the object to be an argument
in the implementation of the function). However, I think that Python’s way, while admittedly more
verbose, makes the code much more readable. In a long and complicated file, it’s entirely possible
that I declared a variable called “age” somewhere else in my script or imported a library called “age.”
Especially, if somebody else implemented the Person object and I'm just perusing their code, I might
not know that Person even has “age” field. So, I may end up having to dig through the rest of the
code just to figure out whether “age” is a member of the object or whether it’s something else.
Saying “self.name” removes all of this ambiguity. You are welcome to hate this aspect of Python if
you so choose; many great engineers will agree with you. But personally, I love it.

Now that you understand what “self” means, the “talk” method should look pretty straightfor-
ward. However, __init__ might be something of a mystery. This special-purpose function is what
builds an object up when it is first created. When I said “Person(‘Janice Smith’, 28),” the first thing
that happened was an empty Person object was created. Then, under the hood, its __init__ func-
tion was called with itself, the string “Janice Smith,” and the number 28 as its arguments. The __
init__ function then created the new “name” and “age” fields for this object and populated them
accordingly.


http://self.name
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You might hear __init _ referred to as a “constructor,” which serves the same purpose in other
languages. Technically, this is incorrect though. A constructor aids in actually constructing the
object when it first comes into being. In Python though, the object exists before __init _is called;
it just hasn’t been filled with any data fields yet.

The place where objects and classes start to get really interesting is when “inheritance” comes
into play. I might define an “Animal” class, with methods that apply to all animals. But, then I
might also want a “Parrot” class, which carries over all of the logic and member functions of
Animal, but adds on others that are specific to parrots. Any Parrot would then be both a Parrot and
an Animal. In Python, the code might look like this:

class Animal:
def __init__ (self, name):
self_name = name
class Parrot(Animal):
def talk(self):
print(self._name +
Fido = Animal("Fido™)
Polly = Bird("Polly®)

want a cracker! ©)

In this case, the internal structure of a Parrot is the same as that of a generic Animal; the only
difference is that Parrot has a “talk” function. If I wanted to add additional internal structure to
Parrot, I could do it the following way:

class Animal:
def __init__ (self, name):
self_name = name
class Parrot(Animal):
def __init___(self, name, wingspan):
self.wingspan = wingspan
Animal.__init__(self, name)
def talk(self):
print(self._.name +
Fido = Animal("Fido*")
Polly = Bird("Polly”", 2)

want a cracker! *)

In this case, we have given Parrot its own __init__ function, which takes in an additional argu-
ment and has precedence over the __init__ function of the Animal class. In some object-oriented
languages, both __init__functions would then get called when we create Polly. In Python though,
Parrot’s __init__ function overrides Animal’s entirely, and it is up to the coder to make sure that
everything they really wanted from Animal.__init__ is salvaged. In this case, Animal.__init__
doesn’t do anything that conflicts with Parrot.__init__, so we are free to call Animal.__init__
explicitly within Parrot.__init . As with the “self” word in member functions, this makes your
code more verbose and arguably uglier, but it also makes the logic much more explicit.

Personally, my code generally doesn’t use class inheritance. The one big exception is that
some of Python’s libraries provide a very fancy class that wraps a lot of functionality, and you
write your own class that inherits from it. For example, the HTMLParser class has logic for
wading through and parsing HTML text. I've often written classes that inherit from HTMLParser
and that identify and process specific pieces of information as HTMLParser walks through
the text.
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Similar to functional programming, the object-oriented paradigm has a broad theoretical
foundation and many people who are real purists about using it. Hardcore object-oriented code
consists almost entirely of defining classes and their member functions, and it makes liberal use
of class inheritance and other fancy features. A few other things you should be familiar with:

o Static member data are not associated with individual objects, but with the class itself. For
example, there might be a static integer that keeps track of how many instances of a class are
currently in existence.

o Itis possible to have a single class inheriting from multiple other classes, called “multiple inher-
itance.” For example, a Parrot can be both an Animal and a ThingThatFlies. You can do this in
Python and many other languages, but it’s relatively rare.

20.2 Compilation and Interpretation

“Compiled languages” and “interpreted languages” used to have very clear-cut meanings. Advances
in recent years though have blurred the distinction into more of a continuum. First, I'll go over the
old-school meanings and then get into some of the modern variants.

Traditionally, a compiler is a special-purpose program that translates human-readable code into
“machine code,” which just operates on raw bytes and is directly executed by the microprocessor.
In performing the translation, the compiler has to know the details of the microprocessor it’s
writing code for and how it expects its machine code to be formatted. The compiler must make all
sorts of judgment calls about how a single high-level operation should be translated into a series of
low-level operations. Some compilers are pretty naive in the way they make these judgment calls,
but so-called optimizing compilers make them in very judicious ways and can even reorganize
much of your program so that the behavior is the same, but it runs more efficiently.

A language such as C is compiled, so your computer can’t “run” your C code in any direct fash-
ion. First you have to compile your code into machine code. The resulting blob of machine code is
called an “executable,” since the computer can actually run it. However, the executable contains no
vestige of the fact that it was originally written in C. The machine code could have been written in
any compiled language, or even directly in machine code one byte at a time, and have the execut-
able be the same.

An important concept to understand with compiled languages is the difference between some-
thing happening at “run time” and at “compile time.” A syntax error in your code will generally
show up as soon as you try to compile it. The compiler will be unable to perform its translation and
will throw an error, and you find out sooner rather than later that you screwed something up.
Other times though, the code will compile just fine, and you will only discover the problem when
the computer actually tries to run the machine code. This discovery might happen hours into the
run or maybe even after you’ve pushed a product to consumers. For this reason, a lot of work in
compiler design boils down to trying to find issues at compile time.

In contrast to compiled languages such as C, you have interpreted languages such as Python. An
interpreter is a special-purpose program that reads and executes your code one line at a time. The
interpreter itself is a blob of machine code that was originally written in something such as C. Python
code though is acted on by the interpreter program but never translated into machine code.

Generally speaking, compiled languages are blindingly fast and efficient relative to interpreted
ones. This is partly because interpreted languages have a lot of overhead - they parse and interpret



20.2 Compilation and Interpretation

every line at runtime - every line of code at run time - and partly because there is no opportunity
for a compiler to build optimizations in. However, interpreted languages let you play around and
debug your code one line at a time. The performance hit is often well worth the added flexibility.

If somebody wanted, they could write an interpreter for a compiled language such as C and,
similarly, a compiler for an interpreted language such as Python. This has happened in some cases
for some languages, but it’s pretty rare. An interpreter for something such as C would completely
kill performance, which is the whole reason to use C in the first place. If you wanted to compile
Python, the compiler cannot always infer the key things about the program (such as which varia-
bles are which types) that allow for efficient compiled code.

Ok, that’s how things used to be. Now, the gray area. I actually lied when I told you that Python
is interpreted. Many languages in the past were really and truly interpreted, but Python can be
translated into an intermediate representation called “bytecode.” Python will be run one line at a
time if you open up an interpreter from the command line. But, if you run your Python script all at
once, or if a library is imported, it is first translated into bytecode. This is far from compilation in
the traditional sense, since bytecode is at the same level of abstraction as raw Python and gives
minimal performance optimizations.

An even more gray area is the Java language. Java also compiles to an intermediate bytecode,
but Java bytecode is very low-level relative to the original Java language. In fact, the interpreter
is called the “Java virtual machine” (JVM), since the bytecode feels less like a regular program-
ming language and more like low-level machine code. The Java compiler does a ton of optimi-
zations in generating the bytecode, so you get most of the performance benefits of a compiled
language. The JVM mostly just provides you with memory management and access to the com-
puter’s resources.

The .NET framework that Microsoft uses is very similar to the JVM. The C# language is essen-
tially equivalent to Java (originally they were planned to be the same language, but then corporate
politics got in the way), and it compiles into .NET bytecode in the same way.

For both the JVM and .NET, there are actually a wide range of languages that can be com-
piled into the same bytecode, even if Java and C# are the flagships. So, bytecode is really
becoming the lingua franca of these software environments; the actual machine code is an
afterthought that is taken care of by the virtual machine, in a way that is specific to whatever
computer it’s running on.

The blurring of compilation and interpretation has even taken place on the level of the guts of the
computer. Without getting into too much historical detail, Intel changed their fundamental
machine code from what’s called a CISC model (specifically x86) to a more efficient RISC model.
However, doing this rendered all previously compiled code obsolete, so they hard-coded logic into
the actual silicon that translated compiled x86 code into the RISC code, in real time as the execut-
able was running.

So, really you should think of “compilation” as just the translation of code that is in one language
into some lower-level language. Conversely, you should then think of “interpretation” as plugging
code into a “machine” (virtual or physical) that executes the code.

One final complication bears noting. “Just-in-time” (JIT) compilation sometimes happens on
the fly, while an otherwise interpreted language is being run. Maybe the compiler couldn’t guaran-
tee, at compile time, that a list would only ever contain integers. However, as the program is run-
ning that guarantee might become possible, and the code that processes the list can be recompiled
on the fly with the new knowledge. This is a lot of overhead, but sometimes JIT compilation gives
huge performance gains.
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20.3 Type Systems

Besides the programming paradigm(s) that it implements, a language is also characterized by its
“type system.” Every variable defined in your code will have a type associated with it, such as an
integer, a dictionary, a string, or a custom-defined class. Performing an operation on an object
requires knowing what type it is, so that we know how to parse the object’s underlying bytes and
actually implement the operation. There is a large, theoretical discipline devoted to studying type
systems and defining their properties, but you don’t need to know about it. There are really just two
main distinctions you should be familiar with: whether something is “strongly” or “weakly” typed
and whether it is “statically” or “dynamically” typed.

20.3.1 Static Versus Dynamic Typing

A language is “statically typed” if the computer figures out, at the time the code is compiled, what
the type is of all the variables. This allows the compiler to store and process the data in the most
efficient way possible. It is dynamically typed if the types are not known until the code is run,
meaning that there will be additional overhead to keep track of what variables are integers, strings,
lists, and so on.

Python is a great example of a dynamically typed language. The interpreter is written in C, and,
under the hood every variable, is implemented as a C structure called a PyObject. One function of
the PyObject structure is to keep track of what the type is of each variable. There is a lot of over-
head in this approach. Most simply, you have to store more stuff in RAM: not just your actual data,
but the type metadata. The other problem is that, before your code can perform some operation
(such as “+”) on a variable, it must first check what data type that variable is and look up how to
perform the operation on data of that type. Dynamic typing has many benefits in terms of flexibil-
ity, but you pay a performance cost.

In a statically typed language such as C, on the other hand, the compiler can just translate every
operation into the appropriate byte-level manipulations, without storing any explicit reference to
the data types or any method lookups.

Many interpreted languages have a particular type of dynamic typing sometimes called “duck
typing.” This means that a variable is considered to be the “right” type if every operation that is
ever called on it is defined when it is called. The term “duck typing” comes from the idea that if it
has a quack() method and a walk() method, we may as well call it a duck.

In compiled languages, one of the most important steps is for the compiler to figure out what
data type every variable is, because that will dictate how every subroutine should operate at the
level of byte manipulations. In many languages, such as C, you must do this explicitly and tell the
computer what type every variable is (and hence, implicitly, how it should store that variable in
bytes). In some more modern compiled languages, you don’t have to declare the types explicitly,
and there are elaborate mechanisms in the compiler that examine your code and infer what types
the variables are.

20.3.2 Strong Versus Weak Typing

Typing strength is a much fuzzier notion than whether a language is dynamically or statically
typed. Roughly, it means to what degree the language forces you to use types and their operations
consistently. Let me give you several examples:
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o Combining strings with other types. Python is strongly typed in that
>>> ¢ = “hello” + 5

will throw an error. However, many other languages will guess that you mean to turn 5 into a
string and set ¢ to “hello5.”

o Cistypically a strongly typed language, since you have to declare the type of every variable in the
code itself and the code won’t compile if the types don’t match up. However, you can also force
the computer to treat a random chunk of bytes as if they were data of a particular type. The ran-
dom bytes may or may not constitute a valid instance of that type.

e Remember that the underlying bytes of memory are not typed; C lets you access this flexibility,
whereas higher-level languages put layers of security around it.

20.4 Further Reading

1 Scott, M, Programming Language Pragmatics, 4™ edn, 2015, Morgan Kaufmann, Burlington, MA.
2 Martin, R, Clean Code: A Handbook of Agile Software Craftsmanship, 2009, Prentice Hall, Upper
Saddle River, NJ.

20.5 Glossary

Anonymous function A function that is never given an explicit name. These are often defined
on the fly when they are passed as an argument into another function.

Compiler A software program that translates human-readable source code into a low-level
language that is more suitable for actually running. This is often machine code or bytecode for
a virtual machine.

Constructor A subroutine that constructs a user-defined object in memory, including correctly
initializing all of its internal state.

Duck typing A type system where a variable is considered to have the correct type if every
operation that is ever called on it is defined.

Functional programming A programming paradigm where the code consists mostly of pure
functions.

Imperative programming A programming paradigm where the code consists mostly of side
effects.

Inheritance In object-oriented programming, this is defining a new class that inherits the logic
and methods of a previously existing class.

JIT compilation Just-in-time compilation.

Just-in-time compilation Compiling parts of an interpreted language at runtime, so as to gain
a performance advantage.

Object-oriented programming A programming paradigm where your code consists mostly
of defining new classes and objects, which mask their internal state and present APIs that
can be accessed by other objects.

Programming paradigm A way to think about the operation of your program and to break it
apart into logical pieces.

Pure function A subroutine that returns a value and has no side effects.
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Side effect Any change in a program’s state that is caused by a function executing. Side effects
include modifying existing variables in memory and writing output to the screen or the
file system.

Type safety Enforcing that operations within a piece of code only ever happen to variables of
the appropriate type.

Virtual machine A piece of software that interprets low-level bytecode (such as Java bytecode)
and handles the interface between it and the hardware and operating system.
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Performance and Computer Memory

This chapter discusses ways that your code can be made to run faster. It roughly breaks into two
very distinct topics:

o The theory of how fast an algorithm is in the abstract, independent of the details of the computer
or the implementation. You don’t need to know a whole lot about this subject — mostly just how
to avoid a few potentially catastrophic errors.

e Various nitty-gritty performance optimizations, which mostly involve making good use of the
computer’s memory and cache.

The first of these topics relates to figuring out which algorithms are fundamentally and theoreti-
cally better than others. The second topic is about how to eke out real-world performance gains for
whatever abstract algorithm you are using.

21.1 A Word of Caution

Don Knuth, the computer scientist who invented the Big-O notation discussed in this chapter,
is often quoted as saying that “premature optimization is the root of all evil.” This chapter will
discuss many techniques for making your code faster, but the first question to ask is whether you
want to make it faster. Extra speed is nice, but if the optimizations will take a long time to imple-
ment, or if they will make your code difficult to understand and modify, it is often best to let well
enough alone. In production systems that will be widely deployed obsessing about performance is
sometimes justified. And certainly, if you’re working on a large dataset, you need to make sure
things scale gracefully. But, most of the time in data science work, there is usually something more
important to do than shaving a few seconds off of the runtime.

Personally, I usually I let man be the measure of things. If I find myself waiting around for a
script to run, and I run that script with any regularity, it is usually worth refactoring to make it
performant. The productivity hit from twiddling my thumbs is just too big to tolerate. But, if speed
isn’t getting in the way of my own ability to work, I focus more on making my code organized and
flexible.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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21.2 Example Script

The following script examines two different ways to solve the same problem: given a list of items,
count how many of the entries are duplicates of some other entry. It sees how long each algorithm
takes for lists of varying lengths and plots out the time.

The two ways I solve the problem are as follows:

o For each element x in the list, count how many times it occurs in the list — if it occurs more than
once, then it is a duplicate. The key thing here is that counting the occurrences of x will require
searching through the whole list and checking whether the elements are equal to x. That is, for
every element of the list, we loop through the whole list.

o Keep a dictionary that maps elements in the list to how many times they have occurred, then loop
through the list, and update this dictionary. At the end, add up all of the counts that are
greater than 1.

For reasons that will become clear, I call these approaches O(n*) and O(n), respectively.

import time
import matplotlib.pyplot as plt
import numpy as np
def duplicates_On2(lst):
ct =0
for x in Ist:
if Ist.count(xX) > 1: ct += 1
return ct

def duplicates_On(lIst):
cts = {3
for x in Ist:
if cts.has_key(X):
cts[x] +=1
else: cts[x] =1
cts_above 1 = [ct for ct in cts.values()
if ct > 1]
return sum(cts_above 1)

def timeit(func, arg):
start = time.time()
func(arg)
stop = time.time(Q
return stop — start

times_On, times_On2 =[], [1

ns = range(25)

for n in ns:
Ist = list(np.random.uniform(size=n))
times_On2_append(timeit (duplicates On2, Ist))
times_On.append(timeit (duplicates_On, Ist))

plt.plot(times_0On2, "--", label="0(n"2)")

plt.plot(times_On, label="0(n)")
plt.xlabel("'Length N of List")
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plt.ylabel("'Time in Seconds™)

plt.title("Time to Count Entries w Duplicates')
plt.legend(loc=""upper left™)

plt.show(Q)

There is noise in the data because I ran it on my actual computer — there are other processes
going on that can make this take more or less time. However, some trends are still clear. When the
lists are short, the two algorithms are comparable, with O (n?) often being better. But, as the lists
get longer a gap opens up, O (n?) starts to take much longer. I tried it again, with lists up to length
50, and got the following:
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We can see that as the list gets longer, O(n) becomes a better way to solve the problem. This has
nothing to do with the computer I'm using or the fact that I'm doing it in Python: it is a fundamen-
tally better algorithm.

21.3 Algorithm Performance and Big-O Notation

The standard way to discuss the theoretical performance of an algorithm in the abstract is called
Big-O (“Big oh”) notation. In the aforementioned example, we had an algorithm that is O(n) and
one that is O(n?). Say the size of our input, that is, the length of the list is n. Saying that an algo-
rithm is O(n®) means that, in the limit of large n, the algorithm’s runtime will be approximately
some constant times n” Similarly, if the algorithm is O(n), then it will be approximately a constant
times n. We can see this visually in the given graph: one curve is more or less a straight line, and
the other resembles a parabola. No matter how steep the line is, for large enough n, the parabola
will always be above it.
There are two key things about assessing algorithms using Big-O notation:

o How long the code actually takes involves a lot of other factors, such as the machine you are
running on and how efficiently each step in the algorithm is done. In the aforementioned
example, O(n) algorithm actually takes longer for small n, because I used a particularly inefficient
implementation.

o In the limit of large input size, differences in Big-O notation will come to dominate the runtime
between two algorithms.

Basically, Big-O notation tells you nothing about how long one step in your algorithm will take,
but it does tell you how the number of steps grows as a function of input size.

The Big-O performance of an algorithm is often called its “complexity.” This is an unfortunate
choice of terminology, since the number of steps an algorithm takes has nothing to do with how
complicated their logic is. In fact, in my experience, the less “complex” algorithms are often the
most complicated to understand, because people do all kinds of complicated tricks to reduce their
Big-O complexity. But, the terminology is universal, so I will use it.

Look more closely at the O(n?) algorithm. There were n elements in the list that we looped over.
For each element, x we called the count() method of the list, which looped over the list checking
for equality with x. This means that there are n* comparisons made. Since they are made in order,
the time for the code to run will be approximately the time required for a comparison times n?.

The other algorithm also loops through the list. However, for a given element X, it only checks
whether x is in the cts dictionary and updates that dictionary as needed. Under the hood, diction-
aries are implemented such that this operation takes a fixed amount of time, regardless of how
many elements are in it. That is, checking and updating the dictionary takes O(1) time. So, there
are n iterations of the outer loop, each of which takes O(1) time, for a total runtime that is O(n).

As a rule of thumb, your data science code should never have an on?) algorithm that operates
on your entire dataset, unless you really mean it. Every basic data science operation I've shown you
so far in the book (training classifiers, different relational operations, etc.) has good asymptotic
performance when it’s implemented well (and the libraries I'm showing you all have efficient
implementations), so chances are that you wouldn’t run an O(n?) algorithm by accident. It hap-
pens though, and it is disastrous when it does. If you end up writing core algorithms yourself, you
will have to be very keenly aware of their complexity.
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21.4 Some Classic Problems: Sorting a List and Binary Search

This section will show you, by example, how to calculate the Big-O complexity of an algorithm by
two classic problems: searching for an element in a list and sorting a list.

Let’s say you have a list of length n and you want to find whether there is an element x in it. Then,
you might implement the following algorithm:

Input:
List L of length n
X
Initialization:
i=0
Algorithm:
For 1 in O, 2, .., n-1:
IT L[i] == x: Return True
Return False

We assume that getting L[i] and comparing it to x is an O(1) operation, and we see that this can
happen up to n times. So, the search algorithm is O(n).

Now let’s assume that the list is sorted. This assumption allows for a much more efficient
algorithm called a binary search. The idea of a binary search is that if we know a particular
element is less than x, then everything to the left of that element is also <x and maybe
safely ignored. Similarly, if an element is larger than x. In pseudo-code, binary search goes
as follows:

Input:
List L of length n
X
Initialization:
i=0
Jj = n-1
Algorithm:
While True:

y = LL(i+j)/2]

IT y== x: Return True

EIif j==i or j==i+l: Return False
Else:

This algorithm’s complexity is more difficult to analyze. The key observation is that after each
iteration of the main loop, the distance between i and j is divided by 2, and then we rerun the loop
on this smaller problem. If we let T(n) be the runtime for a given n, we then see that

T(n):O(l)+T(§j
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We can in turn expand the T(n/2) out to see that
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Every time you expand p(x) = out, you incur an additional O(1) runtime, and you can continue
the expansion until /I becomes O(1). This will happen after logy(n) steps, so we can see that the

binary search is an O(log(n)) algorithm. For large n, this will be MUCH faster than O(n).
The efficiency of binary search raises the question of how long it takes to sort a list. The most
obvious algorithm is

Input:

List L of length n
Initialization:

NewList = Empty list

Algorithm:
While L contains elements:
mn = min(L)

delete mn from L
NewList.append(mn)
Return NewList

Let’s assume that calculating mn = min(L) requires looping over all of L. Then, assume that
deleting it from L takes O(1) time. In this case, the loop will first calculate the min of a list of length
n, then it will be a list of length n — 1, then n - 2, and so on. In total, this will be

n(n + 1) , n )
n+(n=1)+(n=2)+..+2+1= =2n +2—O(n)

So, we see that the obvious way to sort a list takes quadratic time, which should suggest to you that
there’s a better way to do it.

A superior sorting method is called MergeSort. It works by dividing L into two equal-sized pieces,
recursively MergeSorting them both, and then merging the two sorted lists into a single sorted list.
Merging two lists that are already sorted is a simple matter: compare the heads of the two lists to
see which is smaller, move this to the end of a growing merged list, and repeat. In pseudo-code, it
looks like the following:

Function MergeSort
Input:

List L of length n
Initialization:

NewList = Empty list
Algorithm:

IT len(L)=1: Return L
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Else:
L1 = L[1:1en(L)/2]
L2 = L[len(L)/2:]
S1 = MergeSort(Ll)
S2 = MergeSort(L2)

Return Merge(M1, M2)
where the function Merge looks like the following:

Function Merge
Input:
Lists L1, L2
Initialization:
NewList = empty list
Algorithm:
While ~L1.isEmpty() or ~L2.isEmpty():
If (L1[0] <= L2[0]) or L2 is empty:

mn = L1[0]

Delete L1[O]
Else:

mn = L2[0]

Delete L2[O0]
NewList.append(mn)
Return NewList

The Merge function will be O(n), if n is the length of its longest input. This means that if T(n) is
the time to MergeSort a list of length n, then

r(n)=0(n)+7( 4 1[4
T(n):O(n)+2*T[§j
T(n):O(n)+2*(O(g]+T(%D
T(n):O(n)+O(n)+2*T(ZJ
T(n):2*0(n)+2*T(%j
T(n)=k*O(n)+2" T(Z—]
We can break this down until n/2" is about 1, that is, k~log,(n). That will give us

T(n)=log, (n) *0(n)+2°(")+0(1) = O(n *log(n))
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21.5 Amortized Performance and Average Performance

One limitation of Big-O complexity is that it is worst-case performance, an upper bound on the
number of steps an algorithm might require. In the real world though, there are situations where
the Big-O complexity of an algorithm is quite bad, but the observed runtime of the code scales well.

The simplest case of this is certain algorithms that are deliberately randomized, in a way that
could run slowly but will almost certainly run fast. The QuickSort algorithm is the most famous
example of this, and it is typically an even better way to sort a list than the MergeSort I showed you
earlier. It also has O(n’ log(n)) runtime, and the algorithm is

Function QuickSort

Input:
List L of length n

Initialization:
NewList = Empty list

Algorithm:
elem = random element of L
lessthan = [x for x in L if x<elem]
morethan = [x for x in L if x>elem]
sortedless = QuickSort(lessthan)
sortedmore = QuickSort(morethan)
return sortedless + [elem] + sortedmore

This algorithm will be O(n?) if, by random chance, QuickSort always randomly picks elem to be
the largest value in the list. QuickSort is O(n?) worst case, but O(n*log(n)) on average.

The other big caveat to Big-O notation is called “amortized analysis.” This comes into play if you
are doing many operations that modify a data structure in a running program. Often, we cannot
design it so that all operations take O(1) time, but we can make it so that a long sequence of opera-
tions will take time that is linear in the length of the sequence.

A great example of amortized performance is Python dictionaries. Usually adding a new element
to a dictionary is an O(1) operation: it doesn’t depend on how many elements are already in the
dictionary. As more and more elements are added though, the dictionary’s internal structure
(which I'll describe later - it’s called a “hash map”) starts to fill up, and occasionally the data must
be reshuffled to make more room. Reshuffling a dictionary that contains n elements is an O(n)
operation, so as the dictionary grows, these reshufflings become more and more costly. However,
they also become more rare (in situations like this, it is typical to do a reshuffle whenever the size
doubles), so that the average time taken over many changes is O(1).

This script and the figure it generates demonstrate how this works. We start off with an empty
dictionary and then add elements to it, one at a time, until there are 10 million of them. The time
taken for each addition is recorded, and then we plot them all out. Most additions take a fixed, tiny
amount of time. But, occasionally, an addition will trigger a reshuffling of the data in the diction-
ary, and the time spikes up.

import time
import matplotlib.pyplot as plt

times, d = [1, {&
for i in range(10000000):
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start = time.time()
dfi] =i
stop = time.time()
times.append(stop-start)
plt.plot(times)
plt.xlabel("'dictionary size")
plt.ylabel(""time to add an element (seconds)')
plt.show()
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21.6 Two Principles: Reducing Overhead and Managing Memory

Big-O complexity tells you about how to make sure that your code scales and occasionally helps
you avoid making catastrophically bad design choices. Now, let’s move on to the more mundane
considerations, which involve the computer you’re working on and the tools you're using. These
won’t change your code’s Big-O complexity, but they could easily cut the runtime in half or more.

The rest of this chapter will discuss several concrete tips for improving the performance of
your code. However, those tips all fall under two broad categories, and I would like to briefly
review them:

o Reducing overhead operations. Many operations that you do incur a certain amount of overhead
every time you do them. These little performance penalties add up, especially if you are incur-
ring them over and over again within a loop.

e Making better use of the computer’s memory and caching.

The idea of reducing overhead is pretty self-explanatory. Understanding how to hack your com-
puter’s memory is a bit more complicated and deserves some explanation. This is especially the
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case because, in my experience, memory issues are more likely to be a big deal in data science than
overhead is.

Computer memory is also called RAM or “random access memory.” This terminology doesn’t
mean that there is anything actually random about it. Instead, the idea is that the computer can
access any region of memory equally quickly. The time required varies widely by machine, but think
on the order of 100 nanoseconds to move 1 byte of data from RAM to somewhere it can be processed.

Your computer only has a finite amount of RAM. If you force the computer to operate on more
data than it can fit into physical memory, two things might happen: either your program will fail
or your operating system will scramble to move data between RAM and a data storage medium
(such as a hard disk) - this is an extremely time-consuming operation called “paging.” So, one of
the first principles of managing memory is to not take up too much of it.

Within the RAM, despite its name, memory is not all equal. The computer will store a copy of
part of RAM in what’s called the cache, a piece of memory that has much faster read/write time
(around an order of magnitude faster). When you try to read a byte of RAM the computer first
looks in the cache. If that byte is stored there, it just reads the copy, only consulting the actual RAM
in the case of a “cache miss.” Similarly, if the program needs to modify a byte, it will first look for
a cached copy of that byte and only modify that if it finds one. The computer will periodically write
changes from the cache back to RAM in a batch process.

Actually, there are usually several levels of cache, each one smaller and more rapid access than
the one below it. The runtime of a program will often be dominated by how often the processor can
find that data it’s looking for in the top levels of the cache.

Together the RAM, disk, and various cache levels form the “memory hierarchy,” where each layer
is faster but smaller than the ones below it. Every time the computer needs a piece of data, it will
look for it in the top level of the hierarchy, then the one below it, and so on, until the data is found.
If a piece of data is located far down the hierarchy, then accessing it can be excruciatingly slow —
partly because the access is inherently slow, but also because we just wasted time looking for the
data higher up in the hierarchy. For this reason, how often the data can be found at the high levels
is often the single most important contributor to a program’s performance.

21.7 Performance Tip: Use Numerical Libraries When Applicable

Operating on NumPy arrays (directly or through a library such as Pandas) is a lot more efficient
than operating on Python objects. The following code looks at the time required to increment all
elements of a list of numbers, for a Python list and for a NumPy array. It plots the Python/
NumPy ratio as a function of the list length, and you can see that the ratio starts high and
gets worse.

There are two big factors that contribute to this:

o It takes longer to add 1 to a number in pure Python than in NumPy. This is because Python
doesn’t know until runtime that the number is an integer. It must check for each number what
its data type is and, hence, how to compute “x+ 1.” This additional overhead will make Python a
constant factor slower than NumPy:.

o The Python data structure takes up a lot more space compared to the NumPy array, because it
must also carry around metadata that specifies what data type each list element is. All of this
extra memory means that you fill-up the high levels of cache faster in Python than in NumPy,
meaning that Python does comparatively worse and worse for longer lists.
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import time, numpy as np, matplotlib.pyplot as plt
def time_numpy(n):

a = np.arange(n)

start = time.time()

bigger = a + 1

stop = time.time()

return stop — start

def time_python(n):

1 = range(n)

start = time.time()

bigger = [x+1 for x in 1]

stop = time.time(Q)

return stop — start
n_trials = 10
ns = range(20, 500)
ratios = []
for n in ns:

python_total = sum([time_python(n)

for _ in range(n_trials)])
numpy_total = sum([time_numpy(n)
for _ in range(n_trials)])

ratios.append(python_total / numpy_total)
plt.plot(ns, ratios)
plt.xlabel("'Length of List / Array')
plt.ylabel ("'Python / Numpy Ratio™)
plt.title("Relative Speed of Numpy vs Pure Python')
plt.show()
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21.8 Performance Tip: Delete Large Structures You Don’t Need

At any point in the running of your code, all objects that you have created will be vying for space
in the cache. If you get rid of the ones that are no longer needed, then you allow for the ones that
you will end up needing to be higher up in the memory hierarchy.

The process of deleting data structures that you no longer need, and, hence, freeing up the mem-
ory that they were taking up, is called “garbage collection.” Python will do a certain amount of it
automatically for you. For example, after a function finishes running all of the variables that were
defined in it that can no longer be accessed are flagged for eventual deletion.

However, Python is very conservative about when it deletes data structures, so you can free up a
lot of space by deleting objects manually.

This is done using the “del” keyword, as follows:

>>> del my_object

21.9 Performance Tip: Use Built-In Functions When Possible

Python’s built-in functions are written in very efficient C code, and calling one only incurs the one-
time performance hit that is inherent in calling any function. The following code compares the
time required to add up all of the numbers in a list using the sum() function versus the time to add
them up using a loop. On my computer, the latter takes about 14 times as long.

1 = range(10000000)
start = time.time()

_ = sum(D)

stop = time.time()
time_fast = stop — start
start = time._time()

sm = 0.0

for x in I: sm += x

stop = time.time()
time_loop = stop - start
print(""The ratio is", time_loop / time_fast)

21.10 Performance Tip: Avoid Superfluous Function Calls

Every time a Python function is called, there is a certain amount of overhead. The following code
compares the time to loop over a list and add up all of its values, versus looping over it and calling
a function that adds the values. Doing the latter takes (on my computer) about twice as long: the
overhead required to just call a function is equal to the time required to move to the next iteration
of a loop, plus the time to actually perform the addition.

add_nums = lambda a, b: atb
1 = range(10000000)

start = time.time()

sm =0
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for x in I: sm += X

stop = time.time(Q)

time_fast = stop — start

start = time.time()

sm =0

for x in I: sm = add_nums(sm, Xx)

stop = time.time()
time_func = stop - start
print(""The ratio is", time_func / time_fast)

21.11 Performance Tip: Avoid Creating Large New Objects

A common performance mistake is to create large new objects from existing ones, when they could
instead have been updated. For example, saying

>>> myList = myList + [1, 2, 3]
and
>>> myList.extend([1, 2,3])

will have the same effect. However, the first one will involve creating a new list, copying all of the
contents of myList into it, and adding [1, 2, 3] to the end of it. This is an O(rn) operation! The second
approach is amortized O(1), and I've seen it turn computations that always failed to ones that went
through quickly.

21.12 Further Reading

1 Scott, M, Programming Language Pragmatics, 4™ edn, 2015, Morgan Kaufmann, Burlington, MA.
2 Petzold, C, Code: the Hidden Language of Computer Hardware and Software, 2000, Microsoft Press,
Redmond, WA.

21.13 Glossary

Amortized complexity The average O(1) performance of an operation if it is done many times.
Sometimes, it maybe be O(n) or even worse, but those are rare enough that it is O(1) on
average.

Big-0 notation An algorithm is O(f{(n)) if its asymptotic performance as n gets big is upper-
bounded by f(n), times some constant factor.

Cache A low-latency piece of memory where certain data in RAM can be stored for more
rapid access.

Cache miss When a program looks in the cache for a piece of data but doesn’t find it. The
program must then do the much more expensive operation of reading from normal RAM.

Complexity The asymptotic performance of an algorithm as measured in Big-O notation.

Garbage collection Deleting data structures that are no longer needed from memory, which
frees up space.

Iterator A programming abstraction that provides values one at a time. Often, only a few values
are ever actually held in memory at once, so iterators make exceptionally good use of caching.
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Part Il

Specialized or Advanced Topics

The rest of this book will cover several advanced topics. Some of the things we discuss really are
advanced topics, which are often useful in data science but which many data scientists never need.
Deep learning is a good example of this.

In other cases though, we will be fleshing out topics that we’ve already discussed. There will be
less in the way of nuts-and-bolts code and more abstract theory. The big reason for this is that
standard techniques often don’t work for one reason or another. For example, you might need to
adjust how a machine learning model works in order to accommodate outliers in a particular way.
If this happens, you will have to revisit the assumptions that the standard techniques are based on
and devise new techniques that work for your situation.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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Computer Memory and Data Structures

This chapter dovetails with the one on computer performance. It will describe in more detail the
way a computer program’s memory is laid out and how data is encoded in memory. It will then
move on to some of the most important data structures in common use and explain how their
physical layout gives rise to their performance characteristics.

To make things concrete, this chapter will be taught using the C language. C is a low-level
language that gives you very fine-grained control over how a program utilizes memory. The main
Python interpreter, similar to a lot of the most important code in the world, is written in C because
it allows you to make things very, very efficient. This chapter doesn’t count as a crash course in C,
but it will give you enough to understand how the key data structures are implemented and how
they form the basis of Python.

22.1 Virtual Memory, the Stack, and the Heap

One of the most important jobs of an operating system is to allow multiple different processes on
the computer to share the same physical RAM. It does this by providing each process with a “virtual
address space” (VAS), which it can use to store the data it is operating on. The process can refer to
data in any location from 0 to 2*2-1 in 32-bit operating systems and 0 to 2%*-1 in 64-bit operating
systems. Each location contains exactly 1 byte of data, and the finite range of valid addresses puts
a hard (but very large) upper limit on the amount of data that the process can be operating on at
once. The operating system takes care of which addresses in the VAS correspond to which loca-
tions in physical RAM. It may also shift this mapping around, moving data between RAM, the
different layers of the cache, and the long-term disk memory. From your program’s perspective
though, the VAS is all there is.

The process cannot just access data in the VAS willy-nilly. It must first request that the operating
system set aside some physical RAM and match it up with addresses in the VAS. If the process ever
tries to access a location in the VAS that the OS hasn’t allocated to it, this is called a “segmentation
fault” or “seg fault.” Seg faults are a notorious class of bugs that are a constant headache for people
who use low-level languages such as C, but that are mercifully impossible in a language such as
Python. When space in the VAS is no longer needed, the process should “free” the memory,
notifying the OS that that range of addresses is no longer needed and it can allocate the physical
RAM to another process.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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22.2 Example C Program

Ok, now that you know how memory is laid out, let’s dive into some C code. Here is the famed
“hello, world” program - it just prints “hello, world” on the screen, but it shows you the essential
parts of a C program:

#include <stdio.h>

#include <stdlib.h>

int main(void) {
printf(""hello, world\n'™);
return O;

}

The most important thing about a C program is the presence of the subroutine called “main.” As
the name suggests, this will be the primary routine that the program will start off with running.
Having a function called “main” is optional in Python, and there is nothing magical about “main”;
in C, this function is an absolute necessity. We say “int main” because the main function returns
the integer 0, which gets passed to the operating system when our program finishes (the operating
system will be passed a different number if the program fails). The first line is saying to include the
stdio library, which contains the “printf” function for printing to the screen.

There are several ways to compile and run this code. On my computer (a mac, with the developer
toolkits installed), it looks like the following:

$ # Assume the code is in a file called mycode.c

$ gcc mycode.c

$ # a.out is the default name of the executable file
$ ./a.out

hello, world

22.3 Data Types and Arrays in Memory

The previous code just shows you the basic syntax of a C program, which is nice to know but which
I don’t want to dwell on. The really interesting thing is the way that C defines its types.
Let’s dive into a more interesting piece of code and see what it’s up to:

#include <stdio.h>
#include <stdlib.h>

int main() {

// chars, i.e. single characters
char mc = ”A7;

printf("The char is %c\n", mc);
// doubles, i.e. floating numbers
double d = 5.7;

printf(""The double is %d\n", d);
// arrays of ints

int myArray = {1,3,7,9};

for (int i=0; i<4; i++) {
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printf(""The %ith number is %i\n", i, myArray[i]);
}

return O;

}

There are two big things going on here. First, there are data types other than integers floating
around. There’s a “double,” which is used to hold decimal numbers such as 5.9. There is also a
“char,” which is short for character, and it can hold a single 1-byte character such as a letter or a digit.

Each of these atomic data types takes up a fixed number of bytes in memory. How many bytes
that is will depend on your computer — my computer uses 4 bytes for an int — but the key thing is
that the size is fixed.

The myArray variable is what’s called an “array of ints,” and you can have arrays of any other
fixed-size data type too. Under the hood, the bytes of the array will just be the bytes of its constitu-
ent integers all concatenated together.

In this code, we use a for-loop to loop over the array and print out all of its values. The line

for (int i=0; i<4; i++)
is the way that C does for-loops. It means that we should have an integer called i, which we use for
the index of the loop. i will be initialized to 0 and will be incremented for every new loop. When i
is no longer less than 4, the loop will terminate.

The fact that a data type takes up a fixed number of bytes is at the corner of how arrays operate.
Because integers all take up the same number of bytes, and myArray is just those bytes concate-
nated together, it is very easy to pull out the ith element from myArray. It will just be the group of
bytes that it offset by i*(number of bytes in an int) from the start of myArray. This is the way that
the computer can tell where one int ends and another begins, and it is an O(1) operation to take out
the ith element regardless of the size of the array.

When you use NumPy, all of the numbers are stored as C arrays under the hood. This is why they
take up so little space and are so quick to operate on: it’s ultimately just C for-loops that operate on
the raw bytes. This is also why NumPy arrays, unlike Python lists, are constrained to only contain
data of the same type; all elements must be of the same size, and a particular logical operation on
them must correspond to the same operation of the underlying bytes.

22.4 Structs

Now that you know about atomic, fixed-sized types and arrays of them, let’s look at the simplest
compound data type: the struct. Here is some example code:

#include <stdio.h>
#include <stdlib.h>

struct Person {
int age;
char gender;
double height;
¥
typedef struct Person Person;
int main() {
Person Bob = {30, *M*, 5.9};
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printf("'Bob is %f feet tall\n", Bob.height);
return O;

}

Look at the following code:

struct Person {
int age;
char gender;
double height;
¥}

typedef struct Person Person;

The first part defines the new data type, called a “struct Person.” A struct Person contains an
integer called age, a char called gender, and a double called height. It’s pretty ugly though to write
“struct Person” in two words when it’s really just a single thing. So, purely for notational conveni-
ence, the “typedef” line defines the term “Person” to be equivalent to “struct Person.”

To picture what’s going on in the code, we will often draw the Person in this code as follows:

Bob
Age 30
Gender | M
Height 5.9

Similar to the atomic datatypes, a Person will take up a fixed number of bytes. The bytes for a
particular Person will just be the bytes for their age, gender, and height, all concatenated together
into a larger array of contiguous bytes. The fields will be in an order that is chosen by the compiler,
possibly with some spacer bytes thrown in for performance reasons. Compiled code won’t make
reference to the “gender” field of a Person - it will just talk about the bytes that are offset a certain
distance from the start of the Person.

Similar to the atomic types, we can have arrays of structs in memory, and we can access their
data efficiently. If you have a long array of Persons and you want the gender of the nth Person, then
it will simply be the byte that is offset by n*(number of bytes for a Person) + ( offset for the gender
field) from the start of the array.

22.5 Pointers, the Stack, and the Heap

There is a very, VERY important data type that I did not mention in the previous section: the

pointer. A pointer is stored as an integer (i.e., it is fixed size), but it stores the index in RAM of a

particular byte of memory (technically an abstraction over RAM called “virtual memory” that the

operating system handles, but don’t worry about that). This allows us to refer to data in arbitrary

locations in the RAM, which may be the start of an object or array of arbitrary size and complexity.
Let’s look at a more complicated version of the previous code.

#include <stdio.h>
#include <stdlib.h>

struct Person {
int age;
char gender;
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double height;
struct Person* spouse;
};
typedef struct Person Person;
void marry(Person* pl, Person* p2) {
pl->spouse = p2;
p2->spouse = pl;
}
int main() {
Person Jane = {28, °F”, 5.5, NULL};
Person Bob = {30, *M”, 5.9, NULL};
marry(&Jane, &Bob);
printf(*'Janes spouse is %f feet tall\n",
Bob.spouse->height);
printf("'Bob is %f feet tall\n", Bob.height);
return O;

}

The first change to notice is that the Person struct now has a new field called “spouse,” of type
Person.* The Person* data type is not a Person, but rather a pointer to some byte in memory which
is to be interpreted as the first byte in a Person. This way a Person can contain not only data about
a single human being but also references to other Persons.

The special term NULL means that the pointer does not actually point to anything; under the
hood, it is stored as all 0s. When we first initialize our structures, we will draw them as follows:

Bob Jane
Age 30 Age 28
Gender | M Gender |F
Height | 5.9 Height | 5.5
Spouse Spouse

The next line of code calls the “marry” function, which we can see takes in two Person* as its
arguments. “&Bob” is a special syntax that means a pointer to the Field structure, and similarly for
&Jane, so we are giving it what it wants. The one thing left to note is that we use “->” rather than
“ to access the member of a structure that we have a reference to. Passing the function a pointer
to our structure is called “passing by reference.”

The result of the marry() function will be to modify the two objects in memory so that they look

like as follows:

Bob Jane
Age 30 Age 28
Gender | M Gender | F
Height 5.9 Height 5.5
Spouse Spouse
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When we passed Bob and Jane into the marry() function, we did what’s called “passing by refer-
ence”: we passed pointers to Bob and Jane into the marry() subroutine, so that any changes marry()
makes will happen to the original data structures in memory. When marry() finishes, the changes
that it made will persist.

This might be ringing a bell for you. In Python, objects are always passed by reference. This
means that if you pass around a mutable object such as a list or dictionary, it can be changed as
follows:

>>> A = {1:1, 2:4, 3:9}

>>> B = A # pointer to the same dict
>>> B[4] = 16

>>> A [4]

16

The alternative to passing by reference is “passing by value”: whenever you want to pass a data
structure into a subroutine, make a copy of the data structure and put it in some place that the
subroutine knows where to look. There are situations where this is more performant, because the
computer no longer needs to waste time following pointers and fetching the data they point to.
However, this incurs the computational cost of copying the entire (potentially massive) data struc-
ture over every time you want to pass it into a subroutine.

The overwhelming reason to generally use the heap rather than the stack is that, for technical rea-
sons involving the way subroutines work, the compiler has to know how big all data structures are at
compile time. This is the case in the previous code, since we only created two Person structures.

But, if we wanted to make an array of Persons, and have a user tell us how many there should be
every time the code gets run, then that array has to be put into the heap. This involves requesting
from the operating system, at runtime, that it allocate a block of heap space of a given size. As the
program runs, it will also involve telling the OS when the memory is no longer needed.

Let’s jump into some more code, giving the Person struct a pointer to the array of its children.
The malloc() function is used to request space in the heap - it allocates the memory somewhere in
the heap and returns a pointer to the first byte.

struct Person {

int age;

char gender;

double height;

struct Person* spouse;

int n_children;

struct Person* children;
T

typedef struct Person Person;

void marry(Person* pl, Person* p2) {
pl->spouse = p2;
p2->spouse pl;

}
int main() {

Person Jane = {30, *M”, 5.9, NULL};
Person Bob = {28, °F”, 5.5, NULL};
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marry(Jane, Bob);
printf(*"Jane is %f feet tall\n", Jane.height);
printf('Bobs spouse is %f feet tall\n",
Bob.spouse->height);
int NUM_KIDS = 5;
Jane.n_children = NUM_KIDS;
Jane.children = (Person*) malloc(
NUM_KIDS*sizeof(Person));
Bob.n_children = NUM_KIDS;
Bob.children = Jane.children;
for (int i=0; i<NUM_KIDS; i++) {
Person* ith_kid = Jane.children[i];
if (i<3) ith_kid->gender="M~;
else ith_kid->gender="F”;
}
int n_sons = 0;
for (int 1=0; iI<NUM_KIDS; i++) {
if (Jane.children[i]-gender=="M>) n_sons++;
}
printf(*'Jane has %i sons\n", n_sons);
free(Jane.children);
return O;

}

Now, a Person contains not just Person* spouse but also Person* children. Children will point to
an array of Person structs in memory. It can be an arbitrarily short or long array, so it will have to
be located in the heap. Note that when you look at the bytes themselves, there will be no way to tell
when the array of Persons ends, so we will also have to keep track of how long the array is, so we
need the int n_children to keep track.

Most of the rest of the code should now make sense, with the exception of “free(Jane.children).”
Thisis the way we notify the operating system that the range of memory in the VASisnolonger needed.

If you don’t free up the memory in the heap, it’s called a “memory leak,” and it’s a surprisingly easy
bug to write. As your program runs, it will constantly allocate new variables in the heap, forgetting
that they are there, until all of the memory has been taken up and the program crashes. The follow-
ing code looks like it should run forever, but it will eventually fail when all the heap space is taken up:

Person* bob;

while(true) {

// creates new Person in the heap and points bob at it
// however, does not free up the previous Person

bob = malloc(sizeof(Person));

}

Memory that has been allocated in the heap but that there is no longer a pointer to is called
“orphaned.”

Before we move on, I should note that my code here has been extremely sloppy. I wrote it to make
it easy to understand, but please don’t write professional code such as this! In particular, I've been
very cavalier about whether pointers were pointing to valid places in memory. When I allocated the
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children, for example, I should have made sure that all of their own spouse and children pointers
were either NULL or pointing at valid locations. Again, you generally won’t have to worry about
this stuff in your own coding, since a language such as Python takes care of all this boilerplate for
you. But, if you want to understand how Python works, this is what’s going on under the hood.

22.6 Key Data Structures

The previous sections introduced the key concepts of fixed-size structs, arrays of structs, and
pointers. This section will show how those ingredients can be mixed together to create a wide
range of complex, efficient data structures. I will only show you a few of them, but these structures
are the basis of Python and every other piece of software you use.

22.6.1 Strings

Given that strings are an atomic type in Python, it might seem counterintuitive that they are not
one in C. This is because strings are of variable length, so they must be created on the heap and the
program must keep track of how long they are. Strings are universally stored as a char* — a pointer
to an array of bytes that are interpreted as characters (usually with ASCII encoding).

There are two main ways to keep track of how long the array of characters is:

o These days it is very common to wrap the char* in a structure that keeps track of how many
characters there are and possibly other information. A simple example might look like this:

struct MyString {
char* characters;
int n_chars;

I

o To save space, in the past, it was common to signify the end of a char* by having the last byte be
0. Such a char* is called “null-terminated.” This approach is trickier to work with and takes more
time to process. However, it does take up a little less RAM and used to be a lot more important
than it is now.

22.6.2 Adjustable-Size Arrays

The problem with an array in memory is that, while it can modify its elements, its size is fixed.
Adding a new element will require allocating a new array of sufficient size, copying the original
array over, and putting the last element in place. This is an O(n) operation !

Adjustable-size arrays turn it into an amortized O(1) operation. The idea is to allocate more
space in the array than needed and add new elements into the extra spaces whenever they are
appended. The C code might look like this:

struct AdjustableList {
int array_size;
int n_chars;
char* characters;

¥



and the layout of memory might be as follows:

array_size | 5
n_chars 3
characters

............

22.6 Key Data Structures

When the allocated array does finally fill up, then yes, we will have to make a new one and
copy the first one’s contents over at high cost. But, a common way to do this is to double the
size of the array every time. In that case, the copy operations become twice as expensive as
the list grows, but half as frequent. This makes a net O(1) cost amortized among all of the

additions.

The Python list of object is, under the hood, and adjustable-size array. The difference though is
that it isn’t an array of ints or anything - it is an array of pointers, which point to arbitrary Python

objects. So, the code

myList = [1, 2, [1]

would result in memory layout that looks something like this.

22.6.3 Hash Tables

DataType | int DataType | int
Data 1 Data 2
DataType List

array_size 5

n_elements | 3

elements

DataType List
array_size 0
n_elements | O
elements

The key limitation of arrays is that you can only index them by integers. Really, you can think
of an array as a map from integers to values. In other cases though, you want to have a map that
takes in a more flexible type, such as a string. This is made possible by a data structure called a

hash table.
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The key feature of a hash table is something called a hash function. Hash functions are ubiqui-
tous in computing, so they’re important to understand. A hash function f() takes in an object x of
whatever input type is desired, and it outputs an integer that falls within some range from 0 to
N. The hash function fhas three important properties:

o Itis deterministic, so that it will always return the same integer, given the same input.

o It takes O(1) time to compute f(x) for any x.

o f“looks random.” For a random x, f (x) is about equally likely to be any of the integers. If x |=y,
then almost certainly f (x) !=f(y).

Basically, a hash function is a way to deterministically garble its input into a single number.

Let’s say we have a key/value pair that we want to store. The key idea of a hash table is that we
still store our data in an array, but the index in the array is given by the hash of the key. This
means that looking up an element is still O(1) time, since calculating the hash function is O(1).
Typically, in a hash table, the underlying array is an array of pointers, and a pointer will
be NULL if there is no element that got hashed to that location in the array. As with the
aforementioned adjustable-size arrays, the pointers can point to objects of arbitrary and perhaps
differing sizes.

Hash tables play a central role in Python. Dictionaries are implemented as hash tables under
the hood and so is the namespace, which maps your variable names to the objects in memory
that contain the data. Ditto for instances of user-defined classes that you create. It has been said
that the entire Python language is just syntactic sugar around hash tables, and it’s really
pretty true.

It will periodically happen for two distinct x and y, and we will have hash(x) = hash(y). This
inconvenience leads to two caveats in practical implementations of hash tables:

o Generally, we can’t just store the values in the hash table. We must show the key and the values
at the location in the array, so that the raw keys themselves can be compared.

e You could try to hash a key x to a location in the array that already has a different key y.
Sometimes, this is solved by having a protocol for how to look around and find an empty cell in
the array. Other times, the cells in the array point to yet another structure, whose purpose is to
keep track of whatever values mapped to that cell.

At some point, a hash table starts to fill up, so that most cells in the underlying array are hold-
ing many different values. At this point, we must go through a very expensive operation called
“rehashing.” We allocate a new, larger hash table in memory. It will need a new hash function,
which maps values into a larger range of integers. Then, we go through all of the key/value pairs
in the original table and put them into the new, larger one. This is an O(n) operation, but if you
increase the array size by a constant factor every time, then adding new elements becomes amor-
tized O(1).

22.6.4 Linked Lists

A linked list is a lightweight way to implement a list of objects of some known type. You have a
struct that has two fields: an instance of whatever it is that you’re making a list of and a pointer to
the next element in the list. The last element in the list points to NULL.



22.6 Key Data Structures

For example, here is some potential code for a linked list of integers:

struct LinkedListNode {
int Value;
LinkedListNode* next;

};

Here is what the list [5, 4, 7, 8] would look like when stored using it:

Value | 5 Value | 4 Value | 7 Value | 8

Next Next Next Next

Linked lists have the huge disadvantage that it is an O(i) operation to find the ith element, rather
than O(1). However, the big advantage of linked lists (besides their simplicity) is that you can add
anew element to them in O(1) time, if you have a pointer to the location where you want to put it.
This is pure O(1) time, not amortized.

The pseudocode looks like this:

Input: LinkedListNode* currentNode, int n
Algorithm:
LinkedListNode* newNode = new LinkedListNode(n)
newNode->next = currentNode->next
currentNode->next = newNode

and the operation in memory will look something like this:

currentNode oldNextNode
Value 4 Value 4
Next Next
newNode
Value 4
Next
1
currentNode oldNextNode
Value 4 Value 4

Next Next
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Note that the second line of the algorithm MUST happen before the third. If we had switched the
order, we would have pointed currentNode at newNode and then pointed newNode back at itself,
as follows:

newNode
Value 4
Next
currentNode oldNextNode
Value 4 Value 4
Next Next

Now, the list loops back on itself perversely, making it seem like it is infinitely long, and the
remainder of the original list has been orphaned and is floating around in memory.

It is notoriously easy to screw up pointer manipulations, and that is one of the things that make
high-level languages such as Python very appealing. On the other hand, if you’re willing to put in
the effort to get all the details right, then C code can achieve performance that Python can only
dream of.

22.6.5 Binary Search Trees

There is one other pointer-based data structure I would like to introduce you to: the binary search
tree (BST). In a BST, every node contains a numerical value and has two children rather than one,
which we typically call “left” and “right.” We make sure that at every point in time, the children on
the right of every node have values that are greater than or equal to the node in question, and the
nodes on the left have smaller or equal values. A BST might look like this:

Value | 4
Left Right
Value | 2 Value | 9
Left Right Left Right
Value | 7

Left Right
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Assuming that every node in the tree has roughly as many descendents to its left as to its right
(a so-called balanced tree), then it is an O(log(n)) operation to see whether a given number is in
the tree or add a new one. Again, this is not amortized performance. The search algorithm, to find
whether a value is in the BST, would look like this in pseudocode:

BST_Search
Input: Node* currentNode, int n
Algorithm:
IT currentNode==NULL: return False
Elif n < currentNode->value:
return BST_Search(currentNode->left, n)
Else:
Return BST_Search(currentNode->right, n)

There is so much more to say about pointers, arrays, and the magic that you can do with them. I
would love to get into it, but that’s partly because I spent many years cutting my teeth on low-level
coding. In the daily practice of a data scientist, you don’t need to use this information, so use this
chapter as a primer in case you ever find yourself writing low-level algorithms.

22.7 Further Reading

1 Petzold, C, Code: the Hidden Language of Computer Hardware and Software, 2000, Microsoft Press,
Redmond, WA.

2 Scott, M, Programming Language Pragmatics, 4™ edn, 2015, Morgan Kaufmann, Burlington, MA.

3 McDowell, G, Cracking the Coding Interview: 189 Programming Questions and Solutions, 6™ edn,
2015, CareerCup.

22.8 Glossary

Binary tree A data structure where each node has pointers to two children, on its left and right.

Hash table A data structure that maps hashable keys to values. It does that by hashing the keys
into the range [0, N| and using the hash as an index in a length-N array.

Hash function A deterministic function that garbles a key x into an integer that is probably
distinct from hash(y), for y = x.

Heap A range in the virtual address space where dynamically allocated memory is located.

Linked list A data structure where each node has a pointer to the next node. The last node has a
NULL pointer.

Orphaned memory Memory in the VAS that there is no longer a pointer to. This makes it
impossible to free the memory.

Memory leak Part of a program that clears pointers to memory in the heap without freeing
the memory.

Passing by value Passing a copy of a data structure into a subroutine. That way changes made
to the copy do not to effect the original version.

Passing by reference Passing a pointer to a data structure into a subroutine. That way changes
made to the object do effect the original object.
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Pointer The address of a location in the virtual address space. That address marks the first byte
in the data object being pointed to.

Stack A range in the virtual address space that is involved in low-level subroutines.

Struct A data type that combines several data fields of more primitive, fixed-size types. The
struct is itself fixed-size, and its byte representation is just the concatenated byte representa-
tion of its constituent data fields.

Virtual address space The array of bytes that a computer process has for storing all of its data
that it operates on. The operating system handles the mapping between the logical addresses
and their physical location in RAM.

VAS Short for Virtual Address Space.
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Maximum-Likelihood Estimation and Optimization

This section will talk about two topics that form the mathematical and computational underpin-
nings of much of what we’ve covered in this book. The goal is to help you frame novel problems in
a way that makes theoretical sense and that can realistically be solved with a computer.

23.1 Maximum-Likelihood Estimation

Maximum-likelihood estimation (MLE) is a very general way to frame a large class of problems in
data science:

e You have a probability distribution characterized by some parameters that we’ll call 6. In a nor-
mal distribution, for example, 8 would consist of just two numbers: the mean and the standard
deviation.

e You assume that a real-world process is described by a probability distribution from this family,
but you do not make any assumptions about 6.

e You have a dataset called X that is drawn from the real-world process.

e You find the @ that maximizes the probability P(X|6).

A large fraction of machine-learning classification and regression models all fall under this
umbrella. They differ widely in the functional form they assume, but they all assume one at least
implicitly. Mathematically, the process of “training the model” really reduces to computing the
6 that maximizes the probability.

In MLE problems, we almost always assume that the different data points in X are independent
of each other. That is, if there are N data points, then we assume

N

P(Xx[0)=TTP(x:10)

i=1

In practice, it is often easier to find 0 that maximizes the log of the probability, rather than the
probability itself. Taking the log turns multiplication into addition, so that we are minimizing

N
log (P(X | 9)) = ZIOg(P(Xi | 9))
i=1
There are two significant problems with MLE in general. The first is overfitting; especially if

your dataset is small you run the very real risk of getting parameters that predict your specific data

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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very well, but generalize poorly. The most popular alternative to this is a Bayesian approach, which
is generally much harder to understand, more complicated to implement, and slower to run. Plus,
Bayesian approaches involve the very touchy-feely issue of how you pick your prior.

The other problem with MLE is the logistical problem of actually calculating the optimal 6. In
some cases, there is a tidy closed-form solution - those cases tend to be the most historically impor-
tant ones, if only because people could actually solve the problems back in the days of paper and
pencil. In general though, there is no closed-form solution to an MLE problem, and we must rely
on numerical algorithms that give us good approximations. This falls under the umbrella of
numerical optimization, the other topic of this chapter.

23.2 ASimple Example: Fitting a Line

To illustrate, let’s reproduce simple least-squares line fitting in the MLE context. In this case, there
is, luckily, a closed-form solution that we can derive with some algebra and calculus.

Let’s assume that y is a linear function of x plus some random noise, and let the noise be nor-
mally distributed. Then, we see that the probability density of Y, for a

((mr+)=)

267

Fr(y)=expy-

The MLE expression we want to minimize is
L=log(P(X]0))
N
=Y log(P(X;16))
i=1

- ilog(P(Xi |mb.po))

i=1

2
il i+b)=-y;
:izzl:log exp —_((mx ;_GZ y)
R (AT )
B i=1 207
N

= %;((mxi +b)—yi)2

In order for this expression to be at its maximum, the derivatives of L with respect to m and b
must be 0. So, we say
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If we divide each side by N, these equations then become

1Y 12
0=m| =N x7 [+bx+| — > x,y;

N;I N;lyl
O=mx+b+y

We can solve these equations to find the slightly complicated (but closed-form!) solutions

This process illuminates plain old vanilla least squares. It is no longer just a standard black-box
technique or a clever hack; it is the right technique if you make certain assumptions about the
world. In particular, we assumed that y is a linear function of x plus some normally distributed
noise. But is that really the correct assumption?

If x is somebody’s income and y is the price of their home, then I might want to use a different
model, where the noise term has standard deviation proportional to x. This is because a difference
of $20k in home price is very significant if you make $50k a year, but smaller if you make $500k.
In that case, I would want to use

N ((mxl- +b)—yi)2
L=%1 _—
; og| exp 2(ﬂXi)2

where the standard deviation in home price will be § times a person’s income. This expression
probably doesn’t have a closed-form solution, but you can get an approximate numerical one.

An alternative variation on least squares would be to use something other than a normal
distribution. In real life, people sometimes buy houses that are well above or below the mean, so
we might want a distribution that allows more outliers than the normal distribution.

The sky is the limit with the variations you can take. But, the bottom line is this: rather than
blindly trusting standard techniques, MLE allows us to take a narrative about the real world, trans-
late it into probabilistic models, and tune a model that fits our narrative.

23.3 Another Example: Logistic Regression
A more complicated example is the logistic regression classifier. Recall that in logistic regression,
x will be a vector and y will be either 0 or 1. The score that it gives out is

1

p(x)zo(w—x+b)=m

where w is a vector and b is a constant.
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Logistic regression is based on the probability model that p(x) is the probability that a real-world
point at x will be a 1, rather than a 0. Conversely, 1 — p(x) is the probability that it will be a 0. Given
the overall set of x values in our training data, the likelihood of the particulary values that we saw is

L =(£[1p(x,-)j[n(1—l7(xi))]

¥;=0

The training phase in logistic regression finds the w and b that maximize this expression.

23.4 Optimization

Optimization is a way to solve the following problem:

You are given a function f{#), where 6 is a vector of d dimensions.
You might also be given several functions g,(0).
Find the @ that minimizes f{#), consistent with g,(6) <0 for all i.

In my experience, students go through three distinct stages when first learning about
optimization:

e What the heck? The concept of optimization is so general as to be meaningless. Where’s
the beef?

e Oh my gosh, everything is an optimization problem! This is the solution to life, the universe, and
everything!

o Ok, it turns out that lots of things aren’t optimization problems. And, most of the ones that are
optimization problems in principle can’t be solved in practice. But, there are still a lot of prob-
lems that can.

Numerical optimization is the way that many MLE problems get solved in the real world, but it
is useful in many other domains of application as well.

As a simple example, MLE is prone to overfitting, as we discussed previously. This can be ame-
liorated by adding in penalty terms that punish parameters that are likely to be overfitted. With
logistic regression, for example, we can add in a term to punish large feature weights:

R ) | (5o

=0

where 1 is a positive parameter that you set. This is no longer a valid MLE problem, but it still fits
perfectly well under the umbrella of optimization. In fact, it is now LASSO regression.

By taking the absolute value of the feature weights, LASSO regression punishes small weights
and large weights moderately. However, we might also want to punish large weights very harshly
to make sure that no one feature tends to dominate the classification. This can be done by adding
a penalty term that squares the weights, rather than taking their absolute value:

£ o) 10 o) |25l 5f

¥;=0

This variant is known as elastic net regularization.



23.5 Gradient Descent

Most of the time as a data scientist, you can use off-the-shelf algorithms and just know
how to interpret each of them individually. If you have to formulate your own approaches
though, optimization is one of the most powerful tools available for thinking critically about
the problem.

Any good numerical computing package will have numerical optimization routines that you
can treat as a black box. You input a handle to the function to be minimized and possibly an initial
guess as the optimal value. The optimizer will, through some black magic, gradually adjust the
initial guess until it is approximately at the optimal value and return it. All numerical optimiza-
tion routines work this way, by generating a sequence of guesses that (hopefully!) converge to the
best solution.

The problem is that this doesn’t always work. There are two main ways that optimization fails:

o The sequence of guesses will shoot off infinitely in some direction, rather than converging to an
optimal value.

e The guesses will converge on a value, but it is a “local optimum” - a guess that is better than
anything nearby it, but worse than another wildly different guess.

It’s pretty clear when the first of these happens, and your best bet in that case is to restart it using
a different initial guess.

The second problem is much more insidious. The easiest thing to do is try a variety of different
initial guesses and see if all the best-performing ones converge to the same place. If so, then this is
likely the optimum. Then again, it might not be — you can’t really know.

The next section will give you an intuitive idea of what’s going on under the hood when a
numerical optimization routine runs. It will also explain what’s called “convex optimization,”
which is a large class of optimization problems where algorithms are guaranteed to converge on
the correct solution. If you can figure out a way to formulate your optimization problem so that it
is convex, you’re golden.

23.5 Gradient Descent

When trying to understand how an optimization algorithm works, the best picture to have in your
mind is that of walking over a range of hills with your eyes blindfolded. The height of the hills is
the value of your objective function, and the x/y coordinates of where you are standing are the
components of your guess vector — we are implicitly assuming that d =2 in this example.

Your goal is to get to the lowest point in the terrain. There are two questions to answer for every
step in the process:

e What direction should you move? Presumably, you want to move downhill, but there are a vari-
ety of ways you could decide the exact direction.
o How far should you move in that direction?

Pretty much every optimization algorithm boils down to some methodology for answering these
two questions. Answer them well, and the hope is that you will find yourself at the bottom of the
valley in as few time steps as possible.

Before we go any further, let me define a bit of terminology:

o xwill denote a vector of real numbers of length d that we are plugging into the objective function.
o f{) will be the objective function.
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The “feasible region” is the set of all x for which all of the g;(x) are < 0.

Vf(x) will be the gradient of f at x. If you haven’t seen gradients before, they’re a multivariable
calculus thing. Vf{(x) will be a vector pointing in the direction in which it is increasing most
steeply, starting from x; basically, the gradient points directly uphill. The longer the gradient vec-
tor, the steeper the increase is.

As the numerical algorithm progresses, X, X1, . . . will be the best guesses at each step.

o x*will be the solution to the problem.

If the algorithm goes well, then Ix, .1 —x,| and Ix* —x,| will converge to 0 as n gets large. If we

imagine that x is two dimensional, hopefully the progression of the algorithm will look something
like the following:

Here are some of the ways that a direction gets picked:

In some cases, you are able to break out some calculus and derive a closed formula for the gradient
of the objective function. If you multiply the gradient by —1, then you have the direction that is
pointing the most steeply downhill. This is called “gradient descent,” and you might remember
it from multivariable calculus.

In general, you can’t get the gradient - all you can do is evaluate the objective function as any
point of your choice. In this case, a naive implementation would be to take each dimension in
turn, increment your guess for that dimension by a tiny amount, and recalculate the objective
function. Then, move in the direction of whichever dimension decreased the objective function
the most. This direction will hopefully be relatively close to the gradient.

If you’re really lucky, you can use calculus to derive the “Hessian” of the objective function,
which is a matrix giving all of its second partial derivatives. This is also a calculus concept,
somewhat more advanced than the gradient. Between the gradient and the Hessian, you can
approximate the objective function locally as a paraboloid and move toward the center of the
paraboloid.

The gradient at x,,; ; is probably pretty close to the gradient at x,,. It is computationally expensive
to sample points around x,, ., in the hopes of estimating the gradient. But, maybe we can keep a
running estimate, evaluating f() at only a few points in the neighborhood of x, ., and using that
to update our estimated gradient at x;,.

In a similar way, we can maintain a running estimate of the Hessian.



23.5 Gradient Descent

Many algorithms will start with their best attempt at gradient descent, but gradually switch
over to using the Hessian as they near the optimal value (the convergence tends to be faster
that way).

As to how far we should travel, we typically want to head in the direction we’ve chosen for as
long as it’s traveling downhill. Intuitively, we would expect that the distance will be farther if it is
currently going downhill more steeply. For this reason, a common technique is to take our estimate
of the gradient and use it as the initial step size and try out x,, + V f{x,,). If that lowers f{), then try
out x,+aV flx,), where a is a parameter greater than 1. Keep multiplying the step size by « for as
long as f'is decreasing. Conversely, if f was higher x,,+ V f{x,,), then divide the step size by alpha
until fstarts to decrease.

In terms of step size, there are two big problems that we want to avoid. The first is to take
small steps and decrease their size so quickly that we take a long time to converge. If we decrease
them too quickly, we might even converge to a point that falls short of the minimum as in this
picture:

This is a highly inefficient way to reach the minimum. And, if we overshoot too far, we can
actually increase f{)!

Even with a solid algorithm that makes all these choices wisely, disaster can still occur. The
algorithm will generally converge to some locally optimal solution, but nothing I have said here
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guarantees that it will be the best solution. If you start off with X, being close to a local optimum,
then your algorithm will probably fall into its pit, as in this picture:

If we want to guarantee that this won’t occur, then we will have to look at convex optimization.

23.6 Convex Optimization

An optimization problem is said to be “convex” if it satisfies certain mathematical constraints that
guarantee any reasonable numerical algorithm will converge to x* if it exists. I will give you the
technical definition of a convex problem in a second, but intuitively, it means the following:

o The objective function is “bowl-shaped.”
o If you follow a straight line from any point in the feasible region to any other point in the feasible
region, you will stay entirely within the feasible region.

The first constraint means that the function has no local minima expect for the single global
minimum, sitting in the middle of the “bowl.” A flat plane also works, but you definitely can’t have
the function be shaped like an upside-down bowl anywhere. This ensures that you won’t have a
bunch of small local minima that you can fall into.

The second constraint means that there is always a line from x,to x* that lies within the feasible
region. If that weren’t the case, then you could have a situation like the following:



23.7 Stochastic Gradient Descent

where I've drawn the border of the feasible region in a solid line. Gradient descent will probably
bring our algorithm up against the border of the feasible region, and it will stop there. The
function f{x) does not have a local minimum, but it does if we limit ourselves to this nonconvex
feasible region.

If fis bowl shaped, then it is called “convex.” If the feasible region meets our criteria, then it is
also called “convex.” Yes, people overuse this word.

A region of space is convex if for any two points x and y in it, the line segment from x to y lies in
the region as well. Think of it this way: if you wrapped Saran Wrap tightly over the region, the
Saran Wrap would touch the region at every point.

The function fis said to be convex if, for any points x and y in space and any number a between
0Oand 1,

Flax+(1-a)y)<af(x)+(1-a)f(y)

Convexity is a very, very restrictive condition. If you write out a random function, it is very
unlikely to be convex. Some people spend a lot of time reformulating non-convex problems into
equivalent ones that are convex or proving that certain classes of problems are convex. Theoretically,
there’s almost no middle ground: if the problem is convex, then any half-way decent optimization
algorithm will converge to the right answer (the good algorithms will just do it faster). If it is not
convex, then you have no guarantees.

That doesn’t mean that you should give up hope though if your problem isn’t convex! Much of
the work in machine learning involves problems that aren’t convex (or at least, nobody has proven
that they are), and a lot of excellent work has been done. It’s just that in place of rock-solid theo-
rems, we must make do with rules of thumb and empirical findings. For some classes of prob-
lems, optimization algorithms work shockingly well for something that is not convex, and it’s an
open question why.

23.7 Stochastic Gradient Descent

In many optimization problems, the objective function is a sum of many much simpler functions.
For example, in MLE, we often try to optimize

log(P(X0))= ﬁl“log(P(X 10))

where 0 is the collection of parameters for our model (of which there are probably only a few), and
N is the (often very large) number of points in our training dataset. Calculating the gradient of
log(P(X|#)) is probably computationally prohibitive.

The idea of stochastic gradient descent (SGD) is that we can approximate the gradient
by picking a single value for i and then calculating the gradient of log(P(X;|6)). Each step in
the algorithm picks a new i, either by selecting randomly or by sweeping through the entire
dataset.

A variation of SGD is “mini batch” SGD. In this, we take a selection of more than one data point
and calculate the gradient based on them. The idea is to pick enough points that we get a better
idea of the actual gradient at a point, but few enough that calculating the gradient is still compu-
tationally feasible. This tends to converge faster than vanilla SGD.
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23.8 Further Reading

1 Boyd, S & Vandenberghe, L, Convex Optimization, 2004, Cambridge University Press,
Cambridge, UK.
2 Nocedal, J & Wright, S, Numerical Optimization, 2" edn, 2006, Springer, New York, NY.

239 Glossary

Convex optimization An optimization problem where the feasible region and the objective
function are both convex. This guarantees that most optimization algorithms will converge to
the global optimum.

Convex function Intuitively, this is a function that is “bowl-shaped.”

Convex region A region of d-dimensional space such that if two points x and y are within the
region, then the line segment between x and y is also in the region.

Global optimum The location in a feasible region that minimizes the objective function.

Gradient Say, you have a function fthat takes in a d-dimensional vector x and outputs a
number. Then, the gradient of fat x is a vector pointing in the direction in which fis increasing
most steeply. The longer the gradient is, the more steeply fincreases in that direction. The
gradient of a function can often be calculated using the tools of multivariable calculus.

Gradient descent An optimization algorithm that attempts to calculate the gradient of the
objective function at a guessed point x, then reduce the objective function by traveling along
that gradient to a new point, and repeat. Generally, this process will converge to a locally
optimal solution.

Optimization A field in numerical computing that focuses on finding the input vector that
minimizes some objective function, possibly subject to certain constraints on the input.

Objective function A function that takes in a vector and outputs a real number. The goal in
optimization is to find the input that minimizes the objective function.

Local optimum A point x in the feasible region where the objective function is lower than (or
equal to) its value at any point in a certain radius of x. It may not, however, be the best point in
the entire feasible region.

Maximum likelihood estimation Fitting a probability distribution to real-world data by
setting the parameters of the distribution (such as the mean and standard deviation, in the case
of fitting a Gaussian) so as to maximize the probability of observing the data we got.

MLE Maximum likelihood estimation

Stochastic gradient descent An optimization method where we estimate the gradient by
taking a random selection of data points and calculating the gradient only based on
those points.
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Deep Learning and Al

This chapter will dive deeper into the technical details of deep-learning models, many of the tricks
you can do with them, and how they are used to create modern artificial intelligence (AI) systems.
I have discussed neural networks previously, but only in their use as yet another machine learning
classifier. This chapter is focused on techniques that are specific to neural networks, especially big
ones, and that facilitate their key role in modern AI systems.

First off, a disclaimer. Deep learning is a very big topic, and the experts in it tend to be either
machine learning (ML) engineers or researchers. Deep learning plays a comparatively minor role
in data science - at least for now, and I suspect going forward as well - so my treatment here is
somewhat sparse. Additionally, the techniques are evolving at a rapid clip, so the details I give
could easily be out-of-date before this book comes off the presses.

I will cover the key concepts — including example code of course — but will not go into great
detail. Very few data scientists will find themselves training high-performing Large Language
Models (LLMs). They are more likely to train mid-tier models for specific problems, or to use pre-
trained models for a specific task. This chapter aims to equip you for these common use cases and
give you a conceptual foundation for further learning if you want to go deeper (pun intended).

If there is a single concept that forms the unifying theme of this chapter, it is embedding data in
latent space. That is, the process of converting a real-world piece of data (an image, a text of vari-
able length, etc.) into a numerical vector of fixed length, and vice versa. Also called “embeddings,”
these vectors encode complex real-world meanings into a format suitable for processing by neural
nets. Many important deep-learning techniques have been waning in recent years (generative
adversarial networks (GANs) and recurrent neural networks (RNNs)), while others that are on the
rise (transformers) could potentially be overtaken by other tools. But, all of them are ultimately
different ways to convert between raw data and embeddings. In modern Al tools, latent space is
usually where the magic happens.

After a few introductory remarks, this chapter will begin with building and training a percep-
tron. Perceptrons are the most basic nontrivial neural network, and I will use them to illustrate
some of the key points about deep learning. I will then proceed to discuss more sophisticated tech-
niques, but will do so at a higher level. As the chapter progresses, we will move away from building
our own models to taking more sophisticated pre-canned ones and applying them to novel prob-
lems. This reflects the reality of working in deep learning: the more sophisticated your model, the
more likely it’s best to adapt an existing model rather than building your own.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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24.1 A Note on Libraries and Hardware

As of this writing, there are two main deep-learning libraries to be aware of.

The first is Tensorflow. Developed by Google and open-sourced in 2015, it is the older, more
established, and more widely used option. Tensorflow is designed for flexibility and deploy-
ment and can be interfaced with through a variety of programming languages. Tensorflow is a
fairly low-level tool that can be hard to use but gives users very fine-grained control over
what’s happening.

Keras — which is generally included in a Tensorflow library - is a more user-friendly wrapping
around the finicky raw Tensorflow. While it does not give the same level of control, it is quicker and
easier for building/training models and getting them out the door.

The other big option besides Tensorflow/Keras is PyTorch. PyTorch was released by Meta and
to use it you have to write your code in C++ or Python. PyTorch is not purely a deep-learning
library - it’s more of a numerical computing library (think NumPy on steroids) that can be used
for deep learning. It’s typically worse than Tensorflow for the ease of deployment, but better for
fine-grained control.

In this book I give example code mostly in Keras. It is a somewhat simpler tool that allows
me to focus on the general principles of deep learning, rather than getting bogged down in
particulars. In particular, Keras models have a fit() method for training your model to data,
just like normal machine-learning models in scikit-learn. PyTorch, on the other hand, forces
you to get a little further under the hood about how training occurs and deal with some of the
things that are particular to neural nets. On the other hand, this “under the hood” aspect is
part of what makes PyTorch extremely popular for researchers.

Other options are coming out too. JAX could be called Google’s answer to PyTorch: it streamlines
the mathematical underpinnings of machine learning and can be used to craft cutting-edge models
if you know what you are doing. Haiku is a wrapper around JAX that aims to make it more user-
friendly. I don’t have a prediction about how this will all shake out, but the good news is that the
concepts underlying these libraries are essentially the same.

For most of this book I focus on software, giving almost no consideration to the physical
hardware that your code runs on. In deep learning though, it is important to understand that
training often happens on a piece of hardware called a GPU. “GPU” stands for “graphics pro-
cessing unit”; they were originally designed to enable very fast graphics computations but
have since found more general use. A GPU is a specialized piece of hardware that can hold
large numerical arrays and perform certain mathematical operations on them in a massively
parallel fashion. Any operation that can be done in a GPU can in principle be done with
only a CPU (“central processing unit” — the logical heart of a normal computer that operates
in a single-threaded way), but highly parallelizable operations like training/using a neural net
often run many times faster on a GPU. Making Al-based systems practical often requires the
massive speedup that GPUs afford.

24.2 A Note on Training Data

I’'m about to dive into example code showing how to create a deep-learning model. But, it’s impor-
tant to understand that architecting a model - despite the infinite variety available and all the vari-
ous parameters that can be tweaked - is maybe the least important part of deep learning in practice.
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The key to creating a good model generally isn’t the model’s structure or the details of its
training. Instead, it’s the data that the model is trained on. Sufficiently large, complex neural net-
works end up having about the same capabilities in terms of how complicated the patterns are
that they can learn, and how well they can learn them. It’s the training data that dictates what
those patterns are. The data needs to show the relevant patterns, there needs to be enough of it for
the patterns to be learned effectively, it must be varied enough to facilitate all use cases, and so on.
Honestly writing up a deep-learning model isn’t hard, but getting a good dataset on which to train
it can be extremely challenging. Deep neural networks are unlimited in how sophisticated the pat-
terns are that they can capture, but their Achilles heel is that they need a lot of data to extract
those patterns.

Often a large enough dataset for a particular problem simply doesn’t exist. This is especially the
case if you're trying to study a process that takes place entirely within one medium-sized com-
pany - the only data that exists is what they’ve gathered, and there just isn’t enough of it. This is
why a lot of the most fruitful work is to take models that have been pre-trained on large datasets
that are somewhat related to the problem you are solving and then adapt them to your own work.
You’ll never get your hands on the sort of massive datasets that Google, Microsoft, and the like
have. But, the good news is that they will often train models on those large datasets and then make
the trained models freely available.

There are a few ways you can use a pre-trained model. Maybe the most straightforward is
“transfer learning,” where you don’t use the model’s final output. Instead, you use intermediate
stages and feed them into a model that you train. In this case, the pre-trained model becomes a
sophisticated form of feature extraction. Other times you use the whole model, but first you have
some “fine tuning” where it is trained only on your data (usually making it so that parameters are
only adjusted in the last couple of layers). And in many Al applications, it’s best to use the output
of the pre-trained model without training any of the parameters at all; instead, you use “prompt
engineering” to bake relevant context into your input to the system.

If you are training your own model, a standard technique to adjust for small datasets is “data
augmentation”, where you add modified versions of your actual data to the training set to increase
its size. With classifying images, for example, you might tweak your images by adding varying
levels of random noise or distorting them a little bit. The key is that the changes you make should
not be ones that change the intended output of the network (the picture of a cat with noise added
still looks like a cat). Data augmentation can help your model ignore the particulars of the available
data and instead find patterns that are more generalizable. Data augmentation cannot add new
signal into a dataset, but it can help your model avoid conflating the true signal with noise.

24.3 Simple Deep Learning: Perceptrons

A neural net consists of “neurons,” each of which takes in several numerical inputs (which are
maybe the raw inputs to the model, or maybe outputs of another neuron) and produces one output.
The single neuron performs a logistical regression of its inputs, or some other simple function,
with parameters (“weights”) varying from neuron to neuron.

Typically, the neurons are arranged into sequential layers. A neuron in the first layer has (maybe
a subset of)) the model’s raw input as its own input. A neuron in the second layer takes in (maybe a
subset of)) the outputs from the first layer, and so on. The outputs from the final layer are the overall
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outputs of the model, and all layers except the last are called “hidden.” A simple example called
a “perceptron” is shown in the following figure:
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Here, the network has four numerical inputs, each of which goes to all 8 neurons in the hidden
layer. The outputs from the hidden layer go to the 3-neuron output layer, generating 3 numerical
outputs from the overall network.

Let’s build and train this network. Here I am applying it to the classical “iris” dataset, where
each data point is a flower from one of the 3 species of iris. There are 4 physical properties that
were measured about each flower, and the goal is to classify which of the 3 species a flower came
from. The model’s output is a “one-hot encoding”: if the flower is species #1, we want Y1 = 1 and
Y2 =Y3 =0, and similarly for the other species. More generally, we can look at Y1-Y3 as giving the
probability (or at least some sort of a confidence score) that a given flower is from each species.
Here is the code, and the output that it generates:

import sklearn.datasets

from keras.models import Sequential

from keras.layers import Dense

from tensorflow.keras.utils import to_categorical

# Get iris data.

ds = sklearn.datasets.load_iris(Q
X_train = ds["data"]

Y_train = to_categorical(ds["target"])

model = Sequential ([
Dense(8, input_dim=4),
Dense(3, activation="softmax")
D
model .compile(
loss="categorical_crossentropy®, metrics=["accuracy”])
h = model.fit(X_train, Y_train, epochs=50)



24.3 Simple Deep Learning: Perceptrons | 313

plt.subplot(121);

plt.plot(h.history[“loss™]); plt.title("Loss")
plt.subplot(122);
plt.plot(h.history["accuracy"]); plt.title("Acc")

plt.show()
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This example highlights several important aspects of deep learning in general and Keras in
particular. Let’s look at it part by part.

When we say
Y_train = to_categorical(ds["target"])

we are transforming a categorical variable with 3 possible values to a 3-length vector, where one
entry is 1.0 and the others are 0.0. This is where we do our one-hot encoding. Neural nets operate
on floating point numbers, not categorical variables, so encodings like this are ubiquitous.

Now look at
model = Sequential ([
Dense(8, input_dim=4),
Dense(3, activation="softmax")

D

The overall model type is a Sequential, which allows you to have several layers feeding into each
other in succession. You can have nonsequential topology in a network (layer 1 feeding into both
layers 2 and 3, e.g.), but sequential is the most common.

Each layer is a Dense, which means that every neuron takes input from every neuron in the
previous layer. Other types will restrict which neurons can feed into each other. In the first Dense,
we must specify that its input dimension is 4. The input_dim for the next Dense is 8, but we don’t
need to specify that since it’s just the number of outputs from the previous layer.
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In the second Dense, we say activation="softmax.” The activation determines which sort of
function a neuron applies to its inputs. By default it is a sigmoid, so that each neuron is its own little
logistic regression function. But using a softmax instead forces the outputs to sum up to 1 (which
we want for this layers since we will be interpreting the output as a vector of probabilities).

When we say
model .compile(
loss="categorical_crossentropy”, metrics=["accuracy”"])

we are creating a low-level object that is capable of efficiently crunching the numbers to train the
network and perform classifications. To do this, we must specify a “loss” function that will be mini-
mized during model training. Categorical crossentropy is appropriate for a network that is being
used as a classifier, but there are others. The model will measure and record the crossentropy at
each step in training; specifying that “accuracy” is a metric means that this should also be tracked.

Finally, when we say
history = model.fit(X_train, Y_train, batch_size=20, epochs=50)

we see that the fit method returns a history of how the training went. Training a neural network is
a little different from training some ML models. There is no formula for which parameters will best
fit the input data. Instead, we take an iterative approach: the network starts with randomly assigned
parameters for all its neurons, and those parameters are gradually adjusted as the training runs
with the hope that they will converge to a performant network.

The problem is that often our training dataset is too large for it to be practical to train on all of its
inputs at once. So instead we train in “batches.” In this case our training data will be broken into
batches of size 20; the network will train on a batch, adjust its weights accordingly, then move on
to the next batch until it has covered the whole dataset. One pass through the whole dataset is
called an “epoch”, and we train for 50 such epochs.

You will find that in deep learning — as opposed to more traditional machine learning — a great
deal of effort is spent monitoring the training process. This is partly because the sequential nature
means that we can make nice graphs, ask questions about convergence rate, and so on. It is also
because training is often (though not on this simple dataset) such a large, time-consuming task
that we want to keep a close eye on how seamlessly it goes.

24.4 What Is a Tensor?

One aspect of deep learning that was not really shown in the Iris example is the notion of a “tensor.”
Conceptually a tensor is just a fancy name for a k-dimensional (better called “rank k™) array of
floating point numbers. Typically, the input and output of every layer in a neural network will be
expressed as a tensor - different layers accept/produce arrays of different sizes, and even with
different values of k, but it’s all tensors. And the shape of the input/output tensor for a layer is a
fixed feature of the network.

In the Iris example, the input to the network was a rank-1 tensor of length 4, and the output was
arank-1 tensor of size 3. We say that the “shapes” are the length-1 tuples (4,) and (3,). In processing
a black-and-white image you will typically have a rank-2 tensor as the input, whose shape is
(height in pixels, width in pixels). If the image is color, you will typically have a rank-3 array;
the first two dimensions specify a pixel in the image, but the third axis is of length 3 and says
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how much red, blue and green should be in that pixel (sometimes the final axis is of length 4, to
indicate transparency).

A layer in a neural network will in general output a tensor of a different shape than its input. For
example, it might “downsample” an image, having fewer “pixels” but quantifying something more
complicated than color for each one. It might have as many numbers, but rearrange them into a
different shape; it is very common, for example, to “flatten” a rank-k tensor into a rank-1 vector.
Generally speaking, each value in the outputted tensor will be an affine combination of the values
in the input tensor, then with an activation function (like sigmoid) applied to it.

It’s easy to confuse this with the notion of a d-dimensional vector, like we are used to using in
machine learning. A d-dimensional vector is a rank-1 array of length d, and its d numbers can be
thought of as coordinates in a d-dimensional space. This geometric way of looking at vectors is an
important motivation for many mathematical concepts and algorithms, and it happens to work for
a rank-1 tensor. In contrast though, an image tensor like we discussed would have image_
width*image_height*3 numbers, and we generally don’t think of them as dimensions in any sort
of space. Instead, the term “dimension” often gets abused to refer to which axis of the array we are
looking at: up-down, left-right, or color. In fact, I deliberately misused the term this way in my
explanation, since you probably knew what I meant by a “k-dimensional array.” To avoid confusion
in the future, it’s a better idea to carefully use the terms “rank” and “axis” and reserve “dimension”
for vectors (i.e., rank-1 tensors).

This is also a good time to emphasize a distinction between deep-learning and traditional ML
classifiers. In a classifier the input to the model can be a wide range of data types: certainly integers
and floats, but models like a decision tree also support categorical variables like blood type. The
output of a classifier is a categorical variable, or at least a set of numbers that can be seen as the
probability of each category. A neural network is more general: a function that maps tensors to
tensors. The outputs can be rank-3 tensors, have values that are negative or >1.0, or not add up to
1.0; these would make no sense for traditional classifiers, but they are fine for a neural network. Of
course you can use a neural net to do the work of a classifier, as we did in the iris example with
one-hot encodings and softmax activations. But, in other situations, we might (e.g.) map an image
to a modified image.

Finally, I should also note that the term “tensor” is itself horribly abused. Computer scientists
use it to refer to an array of numbers. But in physics and mathematics it has a different meaning.
In these disciplines, a tensor is a multi-linear function over a vector space; the matrices of linear
algebra are a simple example. A tensor can be expressed as a numerical array, but the actual num-
bers will depend on the coordinate system you are using (i.e., the basis you've chosen for the
underlying vector space). The tensor itself is independent of a coordinate system; if you decide to
use a different coordinate system, then the numbers will change. Among other applications, math-
ematical tensors are critical for the study of curved spaces: Einstein’s theory of general relativity
describes the curvature of space-time using tensors, but in a non-numerical way that doesn’t refer
to any particular coordinate system. This is all a bit too abstract and it hurts the brains of us com-
puter scientists: for us, a tensor is just an array of numbers.

24.5 Convolutional Neural Networks

One of the most important varieties of neural network, which is especially important when work-
ing with images, is the convolutional neural network (CNN). In deep learning, they take the form
of having a “convolutional” layer in our network.
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CNNs are partly inspired by human neurology. In your brain, in the earliest stages of processing
images, there are neurons that specialize in very primitive patterns in very specific parts of the vis-
ual field. There might be one that activates whenever there is the shape of a line sloping up in a
particular part of your upper-right field of view. In fact, neurons corresponding to nearby regions of
the visual field tend to be nearby each other in your cerebral cortex. In this way, their activation pat-
terns take what you're looking at and paint a distorted version of it right onto the surface of your
brain. Later parts of your visual system will do the same thing to the previous layers. If you’ll permit
me to grossly oversimplify, stage 1 might have neurons that detect straight lines at various slopes, in
different parts of the visual field. Stage 2 will have neurons that combine adjacent neurons from
stage 1 and fire if those sloped lines fit together to form a square and so on. At the highest levels, you
will have neurons that fire in response to something as specific as a picture of Homer Simpson.

A convolutional layer in a neural network has several “filters,” each of which looks for a particular
pattern in the preceding layer. Each filter has a “kernel”: a small matrix of numbers which, when seen
as an image, is the pattern that this filter is detecting. To detect the pattern at various parts of the
image, we break the image into patches the size of the kernel and take its dot product with each patch;
the dot product between a patch and the kernel indicates how strongly the patch resembles the kernel.
This process is called a “convolution” between the original image and the kernel; it has the effect of
creating a new image with reduced width/height, in which each “pixel” represents how much that
region of the original image resembled the pattern in question. In general, the patches can overlap, so
it is often better to think of sliding the kernel a fixed number of pixel up/down and left/right.

A simple version of convolution is shown in this image, where we move the kernel by three
pixels every time we slide it:

Kernel
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Typically, there will be multiple filters in a convolutional layer, each of which captures a differ-
ent sort of pattern and yields its own number in the outputted tensor. So if the input is a 100X 100
color image the input tensor will have shape (100, 100, 3). If we have 5% 5 3 kernels and 10 filters,
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and we don’t have our patches overlap, the output tensor will have shape (20, 20, 10). It is typical
that as you go through multiple convolutional layers, the tensors will get shorter, narrower, and
deeper: each location summarizes a larger and larger part of the original image, but does so with a
richer set of high-level features that it extracted.

I have presented this in the context of convolutions over images. While that’s the most famous
application, the mathematics of convolution works equally well for a one-dimensional signal such
as a time series, such as you might see in speech recognition or biometrics.

24.6 Example: The MNIST Handwriting Dataset

The standard dataset for learning about convolutional nets is called MNIST, which contains 70,000
black-and-white images of handwritten digits, each one 28 pixels by 28 pixels. The idea is to train
a network that takes in one of these 28 x 28 pixel images and outputs a length 10 vector, indicating
how likely the image is to represent each digit. This section will walk through running a CNN on
the MNIST data.

As before, I'will take a “code first” approach: showing a complete example that illustrates the key
points and then discuss how it all works. The example code is:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import \
Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.utils import to_categorical
from keras.datasets import mnist
# Load and preprocess MNIST dataset
(train_ims, train_Ibls), (test_ims, test_lIbls) \
= mnist.load_data()

# Reshape and normalize images

train_images = train_ims.reshape((60000, 28, 28, 1)
) .astype("float32") / 255

test_ims = test_images.reshape((10000, 28, 28, 1)
).astype("float32") / 255

# One-hot encode labels
train_labels = to_categorical (train_Jlabels)
test_labels = to_categorical (test_labels)

# Build the CNN model
model = Sequential()
model .add(Conv2D(32, (3, 3),

activation="relu”, input_shape=(28, 28, 1)))
model .add(MaxPooling2D((2, 2)))
model .add(Conv2D(64, (3, 3), activation="relu”))
model .add(MaxPooling2D((2, 2)))
model .add(Conv2D(64, (3, 3), activation="relu”))
model .add(Flatten())
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model .add(Dense(20, activation="relu"))
model .add(Dense (10, activation="softmax"))

# Compile the model

model .compile(optimizer="adam”,
loss="categorical_crossentropy”,
metrics=["accuracy"])

# Train the model
history = model.fit(
train_images, train_labels,
epochs=5, batch_size=64, verbose=False)

# Evaluate the model

test_loss, test_acc = model.evaluate(
test_images, test_labels)

print("Test accuracy:", test_acc)

First note the reshaping and normalizing that we must do to the image data. The shape of the
raw data is (n_points, 28, 28), but we reshape it to (n_points, 28, 28, 1). The 4th axis refers to the
color channel; for a black-and-white image, there is only one number that indicates the pixel
brightness, but there are generally 3 channels for color images (4 for formats like PNG that support
the notion of transparency). Careful reshaping like this is something of a chronic annoyance.
Dividing by 255 is just to normalize all the values to be between 0 and 1.

When we add a layer like
Conv2D(64, (3, 3), activation="relu")

It is a 2-dimensional convolution layer. It specifies that there will be 64 different filters learned,
each of which is 3 x 3 pixels in shape. Relu is another activation function like the sigmoid; relu(x)
will be x if x>0, otherwise just 0. It’s useful in situations where we want to encourage our data
to be a little sparser. A value in the output of this layer will be one of the 64 filters, multiplied-
pointwise with a patch of the image, then added up and passed through the relu() function.

The MaxPooling2D((2, 2)) layer will break the input into 2 X 2 tiles, and return the maxi-
mum value for each tile. It’s effectively a way to downsample into a smaller image, retaining for
each region the maximum degree to which we found a target pattern within it.

Finally, the Flatten() layer just takes its input tensor (which is typically of rank 3 at this point)
and returns all the values as a single vector, that is, a rank-1 tensor. We needed to have a layer that
did this at some point so that our final output vector would just be a vector of probabilities for
which digit is pictured. In other image processing situations, your output is itself a multidimen-
sional image; in those cases, there will be no flattening.

24.7 Autoencoders and Latent Vectors

The previous example of MNIST classification, using the nifty trick of CNNs, is compelling. But -
in terms of the problems it can solve - its ultimately just a really good classifier. Now I would like
to switch gears and show you some of the things neural nets can do that go well beyond traditional
machine learning.
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One of the simplest is auto-encoders, which are used for generating lower-dimensional encod-
ings of higher-dimensional data. These encodings can be used for dimensionality reduction, lossy
data compression, and a range of other applications. It’s similar to principal component analysis in
that you are mapping a high-dimensional input to a lower-dimensional space while keeping the
main structure of the data intact. It’s different though because you are not constrained to linear
mappings. This makes it potentially much more powerful (though much more complicated to
interpret in human-understandable ways).

The idea is to train a neural net to take in an image (or whatever other data is encoded in your
tensor) and output the exact same image. This seems trivial, but there’s a trick. The network has an
information bottleneck: an internal layer that outputs a far smaller tensor than the size of your
input. So the only way the network can do its job is if it learns how to encode the high-dimensional
input data into the output of the bottleneck layer and then re-hydrate it on the other end to approx-
imately reproduce the original image. Once this has been done the overall network is of limited
interest: it’s the network up through the bottleneck that we use for encoding future data, and those
encodings are passed on to other applications.

To demonstrate, here is a simple autoencoder that condenses MNIST images (with 28*28 = 784
dimensions of variability) down to a mere 15 dimensions. I show both how to extract the encoded
forms and the recreated images that let us assess visually how well it worked:

N_DIM_ENCODED = 15
input_img = keras. Input(shape=(28,28,1))
encoder = Sequential ([
Flatten(),
Dense(40),
Dense(N_DIM_ENCODED)
D (@nput_img)
decoder = Sequential ([
Dense(40, input_dim=N_DIM_ENCODED),
Dense(28*28),
Reshape((28, 28, 1))
1 (encoder)

encoder_model = keras.Model(input_img, encoder)

whole_model = keras.Model (input_img, decoder)
whole_model .compile(loss="mean_squared_error-)

history = whole_model . fit(X_train,
X_train, batch_size=100, epochs=30)

inp = test_X[:100].reshape((100,28,28,1))
encoded = encoder_model _predict(inp)
reconstructed = whole_model _.predict(inp)

Here are some “before and after” pictures of the original test image and the re-created one that
came out of the network.
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The encodings themselves can be analyzed, but generally speaking, they are very hard to get
any insights from. They aren’t really meaningful unless you also have the (equally opaque) net-
work that rehydrates them. And yet the information is still there, and the encodings are perfect
fodder operations like clustering, identifying near neighbors, and training a classifier. This is a
theme that will come up again and again in deep learning: a dense numerical vector that encodes
real-world meaning (what an MNIST image looked like, the jist of a piece of text, etc.) in a convo-
luted way.

A vector like this is often referred to as a “latent vector” or an “embedding.” These embeddings
often can’t be scrutinized in a human-friendly way, but they can be processed in machine-friendly
way and maybe ultimately rehydrated into something a human can interpret. In this example we
have used a latent vector to encode what an image looks like, but they also can encode text,
sounds - really anything. For many of the most exciting applications of deep learning, the core
processing is done on embeddings - rather than normal pieces of data like images and text — and
the resulting vectors are rehydrated at the end. Humans operate on data formats like images and
text, whereas machine learning (including deep learning) operates on numerical arrays: embed-
dings are the key to bridging these two worlds.
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While we are on the topic of MNIST data, I'd like to bring up GANs (“generative adversarial net-
works”). GANSs are a simple first step into the large-and-growing space of “Generative Al,” which has
taken the world by storm in recent years. In Generative Al, the model is used to generate outputs that
resemble what we would typically think of as the training data — images, text, and so on. The sort of
things that a human would create, rather than simple classifications or opaque numerical encodings.

GANSs are not as hot a topic now as they used to be - diffusion models have stolen much of their
thunder - but they are comparatively easy to show and experiment with. How large a role they will
play in the future remains to be seen.

Recall that a neural net takes in a tensor and outputs another tensor. So far in our examples, the
input tensor has been a piece of data and the output tensor has typically been a vector (i.e., a
rank-1 tensor) or a dense numerical hash. But GANs are kind of the opposite: the input is ran-
domly generated noise, and the output is something that looks like real data drawn from a dataset.
The GAN has learned what “real data” looks like and can prove it by generating de novo data that
is indistinguishable from the real thing.

A very compelling GAN can be found at www.thispersondoesnotexist.com - it shows images
that look like headshots of random humans, but they are actually the output of a very sophisticated
GAN that was fed random noise. Trained on a vast corpus of real images pulled from the internet,
it learned to generate photo-realistic pictures. We will look at a much simpler, less powerful exam-
ple that generates MNIST digits.

To motivate GANSs, imagine that you are a criminal trying to get good at making counterfeit
money. You set up a factory making fake bills, but you quickly run into trouble because a police
officer figures out the telltale signs of your fabrication process and learns how to spot your fake
bills. You find that he is onto your tricks and change your process to avoid the telltale signs he looks
for. The officer will then need to learn new tricks to figure out the fakes that are generated by your
improved process, and so on. You are locked in an arms race, and by the end of it you will get really
good at making fake bills.

A GAN consists of two networks: a generator that takes in noise (generally a multivariate
Gaussian) and outputs a generated image, and a discriminator that takes in an image and classifies
it as being one of these generated images or a piece of the real training data. The idea is to make
the discriminator good at its job and then train the generator to generate images that will trick the
discriminator. We do this iteratively, with the generator trying to trick the discriminator and the
discriminator trying to identify the generated images.

Training the discriminator for a GAN is easy: just make a training dataset consisting of generated
images and real ones. The discriminator is just a normal binary classifier, which takes in an image
and returns real/fake. The generator is more complicated though. To train it, we wire it up with the
discriminator into a single GAN network as shown in this figure:

Noise

(multivariate EmE) Generator quirrr\‘ir;ed mm)| Discriminator =) Verdict
Gaussian)

The idea is to fix all of the parameters in the discriminator, and then train the parameters in the
generator so that the overall GAN always outputs a verdict of “real” when fed random noise.
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A simple example of how to construct these networks in Keras is shown here:

N_INPUT _DIM = 5

# Generator

generator = Sequential ([
Dense (256,

input_dim=N_INPUT_DIM, activation="relu®),

Dense(512, activation="relu®),
Dense(28 * 28 * 1, activation="tanh"),
Reshape((28, 28, 1))

D

# Discriminator

discriminator = Sequential ([
Flatten(input_shape=(28, 28, 1)),
Dense(1024, activation="relu"),
Dense(256, activation="relu®),
Dense(1l, activation="sigmoid-")

D

discriminator.compile(loss="binary_crossentropy”,
optimizer=Adam(lr=0.0002, beta_1=0.5))

discriminator.trainable = False

# GAN

gan_input = Input(shape=(N_INPUT_DIM,))

X = generator(gan_input)

gan_output = discriminator(x)

gan = Model(gan_input, gan_output)

gan.compile(loss="binary_crossentropy”-,
optimizer=Adam(Ir=0.0002, beta_1=0.5))

One step in training this model might look like this:

# Train discriminator
noise = np.random.normal(0, 1,
size=[batch_size, N_INPUT_DIM])
fake_images = generator.predict(noise)
real_images = X_train[np.random.randint(
0, X_train.shape[0], size=batch_size)]
discriminator._trainable = True
both_images = np.concatenate([real_images, fake_ images])
both_labels = np.concatenate([
np.ones(batch_size), np.zeros(batch_size)])
d_loss = discriminator.train_on_batch(
both_images, both_labels)
discriminator.trainable = False
# Train generator to fool discriminator
noise = np.random.normal(
0, 1, size=[batch_size, N_INPUT_DIM])
g_loss = gan.train_on_batch(noise, np.ones(batch_size))



24.9 Diffusion Models

This GAN is quite simplistic and only for illustration purposes. But, crude as it is, I used it to
generate these images:

GANS s strike a delicate balance that showcases the importance of a large dataset. The genera-
tor must be powerful enough to capture subtle patterns and fool a (perhaps extremely sophisti-
cated) discriminator. And yet, if the generator is too powerful it can just memorize the training
dataset and return random samples of it, which would trick even the best discriminator. So, as
large and complex as a good generator must often be, the dataset on which it is trained must be
even bigger.

At first glance, the input of a GAN seems like noise. But you can also look at the input space as
being the latent space where the images “actually” live. As with auto-encoders, it is a lower-
dimensional vector that encodes what the image is supposed to look like. The decoder phase of an
auto-encoder is very similar in spirit to a GAN: the only difference is that the distribution in the
latest space for GANs is Gaussian by construction, whereas for an autoencoder it’s whatever the
encoder phase learned to generate.

24.9 Diffusion Models

Diffusion models are similar to GANs in that they take in random noise and generate realistic-looking
data, but the implementation is quite different. The generator for a GAN takes in a tensor of noise
that is much smaller than the ultimate tensor it outputs, and in one pass through the network it
maps the lower-dimensional latent space into the higher-dimensional (but sparsely populated)
space in which the real data live.

Diffusion models, in contrast, spend all their time in the higher-dimensional space, and they
start with a random point in that space. The starting point will be nowhere near the part of the
space that corresponds to realistic data; if the data are images, the starting point will be static. One
pass through the diffusion model will nudge the point in the direction of the realistic data, another
pass will bring it closer still, and so on. In this sense, the image “diffuses” through the space until
it lands on an image that is realistic.

To motivate diffusion models, think of a book editor who will improve on anything you send
him. One way to write your great novel is to send him a random jumble of letters of approximately
book length. He will suggest many small edits that turn groups of adjacent letters into complete
words. Then you send the edited manuscript right back to him: he will suggest ways to turn the
words into proper sentences, identify plausible topics for paragraphs, etc. Enough rounds of this
and you will converge on an actual book.
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Take the example of the MNIST data. You start with a 28 X 28 image made of random static. A
single pass through the network will only make modest changes to the image, making it look more
like a real image from the training data. This improved image is then passed through the network
again and again, until it converges to an image that (hopefully) looks truly realistic.

Diffusion models are trained by taking your training images (I'm acting as if you’re using images,
but really it could be anything) and gradually adding more and more noise to them until the image
is reduced to static. The network is then trained to take in a more noisy version of the image and
output a less noisy version. How much noise is added in each step, and how many steps there are,
is a key aspect of the training.

For completeness I should confess a small lie I've told. I said that the network takes in the noisy
image and outputs the less noisy image. In practice, it works better to have the networks take in the
noisy image and predict the noise that was most recently added to it in the last noise step. This is
then subtracted from the noisy image to get the less noisy one.

A critical extension of diffusion models (and one of the reasons they have gained in popularity
over GAN ) is the ability to “condition” them. In a conditioned diffusion model, the network takes
in two inputs: the datum that has had noise added to it and a “condition” vector. Given these two
inputs, it is trained to predict the noise that had been added to the image. The condition is just a
numerical vector and, hence, can be used to encode whatever we wish: a one-hot class label, an
embedding of a word, or even an embedding of a piece of text. It functions as an instruction of
which realistic data the network should move the datum toward.

24.10 RNNs, Hidden State, and the Encoder-Decoder

One of the big things about neural networks so far is that - like traditional machine learning
models - they process inputted data points in isolation. Classifiers and GANs do a single pass
through the network. Diffusion models pass an input through the network multiple times, but it is
still only a single input and a single ultimate output. This makes them an excellent fit for applica-
tions like generating images, which tend to come in isolation; but they fall down in situations like
language, where context is the key.

Recurrent neural networks bring up an important new topic: networks that maintain internal
hidden state that is kept between data points. This hidden state encapsulates the “context” in a
machine-friendly format, and it is the key to processing data that is inherently sequential like natu-
ral language or DNA.

A recurrent neural network takes in two inputs: the actual input vector (perhaps an embedding
of a word) and a “hidden state” vector. You can think of these two vectors being concatenated into
a single large input vector under the hood. The output is then similarly two vectors: the actual
output and the hidden state that will be used for the next classification. You can visualize this in
this figure

y1 y2 y3
h2 h3
h1 —— Network > Network » Network ——

| | |

x1 x2 x3



24.11 Attention and Transformers

where I use xi and yi to denote the input and output vectors, and hi to denote the vector of hidden
state. We usually think of RNNs being used to process discrete tokens, like letters or words, which
are technically a categorical variable. But, it’s important to emphasize that the xi and yi here are
numerical vectors that encode tokens, possibly using one-hot encodings but usually using
something a little more sophisticated. Converting the outputted vectors to tokens (which may be
probabilistic) is a post-processing step that is incidental to the core RNN.

During training, the network is passed a collection of sequences of inputs, along with their
intended outputs, and weights are adjusted so as to increase the accuracy that would have been
attained had each sequence been processed in its entirety, carrying the hidden state from one clas-
sification over to the next.

Critically, at each step in the process the hidden state is effectively an embedding of the entire
sequence up to that point. This opens up many possibilities where we want to process the text as a
whole: machine-learning classifiers, clustering to find related documents, etc.

One particularly interesting application of the hidden vector is the encoder-decoder architec-
ture, which is used to translate one sequence of tokens (usually words) into another. It’s not that
you want to translate every xi into its corresponding yi. For example, if we want to translate a
sentence from English to Spanish, the input and output might not have exactly the same number
of words, and the orders could be shifted around a bit. So really we want to take in a whole
sequence in its entirety and output a different sequence. Think back on auto-encoders: the
encoder is a conventional feed-forward network that translates a datum into a latent representa-
tion, and the decoder is another feedforward network that rehydrates the latent representation
into the original datum. In an encoder-decoder, we use one RNN (the encoder) to convert a
sequence of vectors into a single latent representation, and then another (the decoder) to produce
the translated output sequence. The architecture looks like this:

y1 y2
P T
h2 h3 | |
h1 —{ Encoder Encoder Encoder —! Azl — Decoder » Decoder
| sequence |
I | I
x1 x2 x3

The encoder-decoder architecture is at the heart of the seq2seq library that was released by
Google. As a technical detail, encoder-decoder systems require the use of special START and STOP
tokens to signify when a sequence begins/ends.

24.11 Attention and Transformers

RNNs are not as important now as they used to be. In principle, they can use the hidden state to
communicate important context arbitrarily far forward in time; in practice though, many passes
through the network tend to degrade important information too rapidly. For example, if I mention
“France,” it could easily be a dozen words until I later mention “the country”; at that point the
hidden state probably tells me a lot about the last 10 words (many of which are probably filler
words with little relevant information), but it could easily have forgotten that I ever mentioned
France. What is needed is a way to identify which pieces of context are especially relevant.
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This can be accomplished by a technique called “attention.” In a traditional RNN, each iteration
of the network is passed (1) the hidden state h from the previous iteration and (2) the new input
token x. The problem is that important information from previous inputs might not be fully pre-
sent in the current hidden state h. The idea is to give access to previous versions of the hidden state,
with a way to determine how much attention to pay to each of them. Specifically, we:

1) Compare X to the previous n inputs, where n is a parameter that determines how much context
should be brought to bear.

2) For each of those previous inputs, we compute how much “attention” we should pay to it for
purposes of processing x. Often, the attention is computed by embedding x and the previous
inputs into another latent space and taking their dot product there. The hope is that “country”
and “France” would embed similarly, creating a large dot product and high level of attention.

3) The attentions are normalized so that they sum to 1.

4) We take a weighted combination of the previous n hidden state vectors, weighting them by their
associated attention score. This is the final hidden state vector that gets passed to the decoder.

Note that computing attention weights can be done completely in parallel, making it possible to
get massive speed-ups by using a GPU.

It is possible to build an encoder-decoder using an RNN with an attention mechanism attached
to it, as I have described. However, you can also dispense with the RNN entirely and use only atten-
tion mechanisms to solve the problem of input_seq — embedding — output_seq. Such a system is
called a “transformer,” and it is a key tool in modern Al systems.

24.12 Stable Diffusion: Bringing the Parts Together

As amore complicated example, I would like to discuss Stable Diffusion, a publicly available model
that is used to turn text prompts into images of what those prompts describe. Stable diffusion is
used for translating a piece of text into an image, and it has several parts:

o A transformer-based encoder for creating an embedding of the text description.

e An autoencoder that can translate between full-size images and a lower-dimensional representa-
tion in a latent space.

¢ A conditioned diffusion model has been trained to take in a more-noisy latent-space image rep-
resentation, plus the text embedding, and yield the noise that was added.

The first two models — one that translates between text and a latent space, and the other that
translates between images and a different latent space — can be trained independently. The diffu-
sion model is where they come together.

At runtime, the user inputs a piece of text. The system will then:

1) Turn the text into a vector using the transformer-based encoder. This is the “text embedding.”

2) Initialize a vector of noise, of the same dimension as the latent space for images. We will call
this the “latent image.”

3) Iteratively feed the latent image, plus the text embedding, into the diffusion model to compute
the noise. Subtract that noise from the latent image to yield a less noisy latent image. Rinse,
wash, and repeat for a fixed number of steps (usually 50 or 100 by default).

4) After the diffusion model is done (and the latent image has hopefully converged to a stable
representation of the final image), turn the latent image into a full-size image using the decod-
ing part of the auto-encoder.



24.13 Large Language Models and Prompt Engineering
24.13 Large Language Models and Prompt Engineering

LLMs are mostly out of scope for this book, but I want to illustrate some of the key concepts and
give you at least a flavor of how to use them. I will give a sparse example code using LangChain,
which is currently the leader in user-friendly libraries that wrap LLMs.

At the most basic level, the problem that an LLM solves is to predict the next word in a piece of
text. This is done in a crude fashion by things like the autocomplete on your phone; it is typically
based on only the last handful of words and uses tools like the Markov chains that I will discuss in
the next chapter. Doing a good job of prediction though is an exceptionally hard problem. It requires
knowing the text up to this point, which will be made available through a large hidden state vector
(to calibrate, think of the hidden state after a given word being ~4k numbers long). It also requires
a great deal of background information: the structure of the language being used, common sense,
and even domain knowledge. This information is not explicitly written out anywhere, and there is
no database of facts or anything like that. The model doesn’t distinguish between background
knowledge and the conventions of the English language: all it has is the various parameter weights
of the network, and they are brought to bear on probabilistically predicting the next token. In the
case of LLMs though, there are so many weights that they can implicitly encode a significant frac-
tion of human knowledge. For example, GPT3 has ~175 billion numerical parameters, compared
to about 5 billion words in the English version of Wikipedia.

To illustrate, here is a code snippet that uses LangChain - wrapped around the Llama2 LLM
from Meta — to complete a piece of text:

from langchain_community.lIms import LlamaCpp
IIm = LlamaCpp(
model_path="models/1lama-2-7b-chat.Q4_K_M.gguf", verbose=False)
resp = lIm_invoke("'The United States of America is a")
print(resp)

Word of caution - this code takes about 40 minutes to run on my GPU-free laptop. But eventu-
ally, it prints out the rest of a sizeable paragraph about the United States, starting with “federal
republic located in North America. Additionally, it is the world’s largest economy and military
power.” You can see that the model took my stub of text (the beginning of a sentence about
America) and simply went on predicting the next token in the sequence, until it ultimately got a
STOP token and returned. The 40-minute runtime was because it felt that the text ought to go on
for a while.

It is possible to fine-tune the parameters of the various models in an LLM so that it better reflects
your use case. More often though, the model’s weights are left untouched, and we focus entirely on
the hidden state. That’s what I did in the previous example, which was an exceptionally crude ver-
sion of “prompt engineering.” In prompt engineering, you can bake background information and
additional instructions into the text you feed to the LLM, in order to have finer-grained control over
how it behaves.

LangChain provides a lot of tools for prompt engineering. The following example uses a
PromptTemplate, which has placeholders for various sorts of things that might vary between que-
ries. In a production system the template would be invisible to the user, who needs only to be
concerned with the input variables that get plugged into the prompt.

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
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template = 7
Tom has a banana and a dog.
Mary has a pear and a cat.

Question: What {object_type} does {person} have?
Answer: {person} has a "
prompt = PromptTemplate(
template=template, input_variables=["object_type'", "person’])

IIm_chain = LLMChain(prompt=prompt, 1Im=11Im)
answer = IIm_chain.invoke({"object type":"fruit", "person”:"Tom"})
print(answer["text'])

The LLM has, in the millions of texts that it has been trained on, learned how to continue the
pattern with relatively structured pieces of text like this.

The problem in this case is actually that it goes on too long, anticipating and answering my next
question! The answer it provides is 'banana.\n\nQuestion: What fruit does Mary have?\nAnswer:
Mary has a\npear.’ To show you just one example of the hacks one often has to do with prompt
engineering, we can fix the problem by modifying our template to give an example of the sort of
output we want. This is sometimes called “one-shot prompting”:

template = "
Tom has a banana and a dog.
Mary has a pear and a cat.

Question: What type of pet does Mary have?
Answer: cat

Question: What type o {object_type} does {person} have?
Answer:

nnn

In this case, the answer is simply the word “banana.”

It should be emphasized that at this point, prompt engineering is something of a dark art. One-
shot prompting makes a lot of sense on the face of it, and it illustrates the maxim that the clearer
you make your template, the better the LLM will be at carrying on the format you desire. In other
cases though, good results have been obtained by things as bizarre as sounding like a star fleet com-
mander from Star Trek. Such strange behaviors are a testament to the complexity of these models
and the datasets on which they are trained. They are also a reminder that what used to be true still
holds: it is the job of the data scientist to see beyond the idiosyncrasies of the data and models and
get genuine, useful insights about the world.

24.14 Further Reading

1 Goodfellow, I, Bengio, Y & Courville, A, Deep Learning, 2016, MIT Press, http:// www.
deeplearningbook.org/.
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Convolutional neural network A neural net where one of the layers takes the convolution of
the input with a kernel. Typically, a kernel will capture a specific, relatively low-level pattern in
the data. The output of the convolutional layer will be an indication of how much that pattern
is present at each part of the input data.

Data Augmentation Increasing the effective size of your training dataset by adding in
variations of the data that you have. For example, adding blur or slightly distorting an image
yields a different image that should have the same label.

Deep neural net A neural net with an unusually high number of layers.

Deep learning A broad term for a wide range of developments that have happened recently in
neural networks.

Keras A user-friendly library that wraps the Tensorflow backend.

LangChain A popular library for interacting with LLMs

Large Language Model (LLM) A particular class of large models that capture the structure of
a language, and often a large amount of general knowledge.

Neural network A class of machine learning models inspired by the wiring of neurons in
biological brains.

Perceptron The simplest type of deep neural net, with only a single hidden layer.

Prompt Engineering The art and science of framing questions to an LLM in a way that gives
the best answers back

PyTorch One of the two key deep learning numerical libraries, developed by Facebook.

Recurrent neural network A neural network where the output of a layer can be fed back into
that layer.

Tensor An array of floating-point numbers. There can be arbitrarily many dimensions to
the array.

Tensorflow One of the two key deep learning numerical libraries, developed by Google and
often accessed through the Keras interface.

Transfer Learning Taking a model that was previously trained on a larger dataset and using
the outputs of intermediate layers as inputs to your model.
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Stochastic Modeling

Stochastic modeling refers to a collection of advanced probability tools for studying not a single
random variable, but, instead, a process that changes over time in a way that is partly random. This
could be the movement of a stock price over time, visitors arriving at a web page, or a machine
moving between internal states over the course of its operation.

You're not locked in to using time either; anything that is sequential can be studied. This includes
which words follow which others in a piece of text, changes from one generation to the next in
a line of animals, and how temperature varies across a landscape. The first place I ever used
stochastic analysis was studying the sequence of nucleotides in DNA.

This chapter will give you an overview of several of the main probability models, starting with
the most important one: the Markov chain. I will discuss how they are related to each other, what
situations they describe, and what kinds of problems you can solve with them.

25.1 Markov Chains

By far, the most important stochastic process to understand is the Markov chain. A Markov chain
is a sequence of random variables Xj, X,, . . . that are interpreted as the state of a system at
sequential points in time. For now, assume that the X; are discrete RVs that can take on only a finite
number of values.

Each of the X; has the same set of states that it can take on. The definitive feature of a Markov
chain is that the distribution of X;,; can be influenced by X;j, but it is independent of all the
previous RVs if you know X;. That is,

P(X. =x1X.X,....X, )= P(X,,, =x1X;)

The cartoonish way I like to think of this is that you have a collection of lily pads and a frog with
amnesia jumping between them randomly. At any point in time, the frog knows which lily pad it
is on, and this knowledge determines how likely it is to jump to every other lily pad at the next step
(or it could just stay on the current lily pad). But, the frog has no memory of what lily pad it was on
at any previous step or how long it has been hopping around. So, the probability distribution of its
next hop is only a function of where it is now.

If there are k different lily pads, we arrange these transition probabilities into a k-by-k matrix.
The ith row corresponds to being on the ith lily pad. The jth entry in that row will be the probability
of jumping to the jth lily pad, given that we are currently on the ith one. This means that every

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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entry in the transition matrix must be greater than or equal to 0, and every row sums to 1.0.
Knowing the transition matrix and the initial probability distribution of X; completely character-
izes the Markov chain.

It is common to draw our Markov chain, especially ones where k is small, in diagrams with
arrows pointing between the states. Here is one for a particular Markov chain I concocted describ-
ing the weather:

0.8
0.2

Sunny Rainy

0.5
0.5

In this model, a sunny day has an 80% probability of being followed by another sunny day, and
the day after it rains will be 50/50 rain or shine. The transition matrix for the Markov chain looks
like the following:

Sunny Rainy

Sunny 0.8 0.2
Rainy 0.5 0.5

If there are k states in the system and we are in the ith state, then we can express that as a
k-by-1 row vector that is equal to 1.0 at i and 0 everywhere else. Call the state vector p. The
vector p can also have several nonzero components, just so longer as they are all nonnegative
and they sum to 1. In this case, p represents a probability distribution over the possible states.
If we want to know the distribution at the next time step, we simply multiply p by the transition
matrix T:

Pin=nT

and, in general,
Dism = DT

The fact that X;,; is only influenced by X; is called the “Markov assumption.” It is the key to
making Markov chains tractable, both mathematically and computationally. The Markov assump-
tion is implicit in the state transition diagram, because each state has no indication of how you got
there. It only shows where you might be going next.

In many applications, the Markov assumption does not hold. For instance, it is common to
crudely model natural language by having the X; represent words in a piece of text. If there is a
word, this is missing or ambiguous, a Markov chain can be used to find what the word most likely
is (more on that later). The problem is that a Markov chain that only incorporates one word of
context is woefully inadequate.

The typical solution is to have X;,; depend on the X; immediately preceding it, but also on several
of the values before that back to X;_,,_;. This is called a Markov chain of order m. Strictly
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speaking though, an order-m Markov chain is equivalent to a beefed-up Markov chain of order 1.
If we define a new set of random variables

Y =(X.X,....X,,)
Y, =(X0. X5 X, )
Yy =(X3. Xy X000

then the Y; will behave as an order-m Markov chain. It will just be one with k™ states, and all of the
numbers in the state transitions that would overwrite the previous X; have probability 0. In indus-
trial scale Markov chains for natural language, something like m =6 is common.

There are a lot of words in the English language. That number raised to the sixth power is
astronomically large. This should give you an idea of some of the practical problems in working
with large Markov chains. When the number of states gets very large, it is impossible to get
enough data to fit the transition matrix, and it becomes computationally intractable to explore
all paths. In these situations, there are a variety of heuristics and performance optimizations
that get utilized.

25.2 Two Kinds of Markov Chain, Two Kinds of Questions

Most practical Markov chains with a finite number of states come in two types: “irreducible aperi-
odic” and “absorbing.” They have different mathematical properties and are used for modeling
very different types of systems.

An irreducible aperiodic Markov chain has two key properties:

e “Irreducible” means that it is possible to get from any state to any other state in a finite number
of time steps. That is, there isn’t some “black hole” state that, once entered, locks you forever into
only a subset of the states.

o No state is “periodic”: if you look far enough into the future, it is possible to be in any state at any
time. That is, you don’t have a pathological edge case where you can only ever return to a
particular state after an odd number of steps or something similar.

These properties guarantee that no matter what state the Markov chain starts in it will, in the
very long run, have a “steady state” behavior where it could be in any state. The long-term distribu-
tion of how likely it is to be in each state is also called the “equilibrium distribution.” An irreduci-
ble aperiodic Markov chain is guaranteed to have a unique equilibrium distribution. The
distribution is a k-dimensional vector of probabilities, where the ith component gives the probabil-
ity of being in the ith state. Typically, this vector is referred to as z.

The weather diagram I drew was irreducible and aperiodic: no matter what the weather is today,
the probability of it being rainy in 1000 days is functionally just the fraction of all days when it is
sunny. Natural language is another example. No matter what word we are looking at now, in a
million words, it could plausibly be anything. And, the picture is functionally the same for a million
and first word and so on.

If you want to find the steady-state distribution z, you can do so by solving the linear algebra
equation

m=nT
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along with the constraint

Zﬂ,« =1
A conceptually simple (although potentially computationally expensive) way to do this approxi-
mately is to recall that

Pism =D0T"

In the limit that m is large, p; ., will converge to = regardless of p; . Since this is true regardless
of p;, it means that the rows of T" must be approximately equal to each other and, hence, to . So,
if you multiply T by itself repeatedly until it converges, the rows of the resulting matrix will
approximately equal z.

In an absorbing Markov chain, there is some state (possibly several) that always goes to itself
with probability 1.0. If the frog lands on this lily pad, then he stays there forever. Absorbing
Markov chains are used for modeling processes that terminate, such as the behavior of a visitor to
a website. There could be a variety of pages they navigate through and maybe return to. But even-
tually, they will end up in the “made a purchase” state or the “left our site” state. Absorbing
Markov chains can also be used to model the lifetime of a physical machine that eventually
breaks down.

Sometimes, you will see absorbing Markov chains for describing situations that usually use irre-
ducible chains. Natural language typically uses irreducible chains, but if you are trying to model
short pieces of text such as e-mails or text messages, then you might want to add in an absorbing
“the message is done” state.

With irreducible Markov chains, we tend to ask questions such as the following:

What is the long-term equilibrium distribution z?

o Given the state that I'm in now, how many steps will it take before the probability distribution of
my state approximates z?

How many steps will it take, on average, for me to get from state A to state B?

e Given the state that I'm in now, what is the probability distribution for where I will be in 5
time steps?

Irreducible Markov chains are also building blocks in a range of other probabilistic models,
which most of the rest of this chapter will be devoted to.
With an absorbing Markov chain, we are more likely to ask the following:

o Given where I am now, how long until I enter an absorbing state?
o Given where I am now, how likely am I to end up in each absorbing state?
e How many times can I expect to visit state A before I finally get absorbed?

25.3 Hidden Markov Models and the Viterbi Algorithm

One of the most important uses of Markov chains is as a building block in “hidden Markov models”
or HMMs. Let me start with an example. Imagine you are reading through some blurry text, trying
to figure out what it says. Let the correct words be denoted by random variables X;, and let the
blurry pictures be denoted by the random variables Y;; your goal is to guess the sequence of the X;
given the known Y;.
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Your first thought might be to just guess that X is equal to whatever letter Y; looks the most like,
but that’s not a perfect way to do it. Imagine that several of the words look clearly like “the duck
said,” but the next word looks ambiguous; it could be either “quick” or “quack,” but it looks slightly
more like “quick.” In this case, you would probably say that the word is “quack,” since it is vastly
more likely given the context of talking about ducks.

To take another example, let’s say that I have two coins: one is fair, and the other is heads 90% of the
time. After each coin toss, I have a 10% chance of switching coins for the next toss and 90% of
staying with the same coin. Let X; denote whether the ith toss was using the biased coin and Y;
denote whether it came up heads. Can I identify the places where I switched from the fair to the
weighted coin?

The situation where we have an underlying Markov chain X; and observations Y; that are depend-
ent only on their associated X; is called a “hidden Markov model” (HMM), and the X; are called the
“hidden states.” The dependency structure of an HMM is often visualized as follows:

The HMM is characterized by

o The initial probability distribution of X;.
e The transition matrix of the X;.
o The conditional probability function Pr(Y|X).

There are a number of different analytical questions you can ask about Markov chains, but the
most popular one is what is the most likely sequence of the X;, given the observed Y;. In our natural
language example, knowing this sequence would give us a prediction of whether the ambiguous
word is “quick” or “quack.” When throwing fair and biased coins, knowing the sequence would let
us see when we switched from one coin to the other.

I should note that finding the most likely sequence of X; is not the same as finding the likeliest
value for each of the X;. To take a coin-flipping example, say that the following sequences have the
following probabilities, and all other sequences have probability 0:

Sequence Probability

HHT 0.4
HTT 0.3
HTH 0.3

In this case, the likeliest sequence is HHT with a probability of 40%, so the Viterbi algorithm will
give us X, = H. However, X, actually has a 60% chance of being T. It’s just that 60% probability
mass is spread out among several different sequences.

In the next section, I will discuss the Viterbi algorithm, which lets us find this optimal sequence.
It’s the most complicated algorithm that I describe in this book, so I wanted to devote a full
section to it.
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The times that HMMs really shine are when the observations are very ambiguous, but the X;
change only rarely. In these cases, even a human eyeballing the data often can’t discern when the
change happens, because the transitions are so subtle. I should note that in these cases, it is implicit
in HMMs that the length of time X has a particular value is geometrically distributed. This is a very
strong assumption, which often isn’t satisfied. In practice, this usually doesn’t end up being much
of a problem, so long as the length of time at a particular X tends to be long.

25.4 The Viterbi Algorithm

The Viterbi algorithm is the easiest to understand if you look at the possible underlying states as
what’s called a “trellis diagram,” showing all the possible hidden states and all the transitions
between them. For concreteness, let’s use the example of fair and biased coins. In that case, the
trellis diagram looks like the following:

X4 X5 X3
Fair Fair Fair
Biased Biased Biased

A sequence of hidden states corresponds to a path through this graph, from the first layer to the
last. The probability associated with any particular path is

Probability = [H Pr(X,, X, )][H Pr(Y,1X, )]

This would be a good point to back up for a second. No large-scale implementation of the Viterbi
algorithm uses probabilities, because the probability of even the likeliest path is usually so small
that the computer can’t distinguish it from 0. So instead, we solve the equivalent problem of maxi-
mizing the log of this probability:

Score = log(Probability) = Z:log(Pr(Xi+1 | X; )) + Zlog(Pr(Yi I X; ))

Looking at it this way, you can see that a particular path’s score is just the sum of the “scores” for
all of its edges and nodes. Here, the score of an edge is the log of its transition probability, and the
score of a node is the log of the probability of the observation we made (assuming that we are in
that hidden state).

Let’s introduce two critical pieces of terminology:

e P(i, x) is the highest-scoring path that goes up through the ith layer and ends at X; = x.
e S(i, x) is the score of P(i, x).

That is, P(i, x) is the best path through the trellis diagram that ends at a particular node in its ith
layer. Given that we end up at (say) X = Fair on step 50, what is the highest-scoring path that would
take us to that point?
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The key insight behind the Viterbi algorithm (as applied to our case) is to find P(i,Fair) by
conditioning on whether the (i — 1)th state is Fair or Biased. We then see that either
P(i,Fair) = P(i - l,Fair) + [Fair]
or
P(i,Fair) = P(i - 1.Biased ) + [ Fair |

whichever one has a higher score. The score S(i, Fair) will then be given by

S(i,Fair) =maxy S(i,lﬁair) N log(Pr(Fair'—> Faif)) + log(Pr(Yi I Fair))
S(l - 1,B1ased) + log(Pr(Falr — Blased))

So, we have now reduced the problem of finding P(i,Fair) and P(i,Biased) to the problems of
finding P(i — 1,Fair) and P(i —1,Biased). If we can find those, then it is straightforward to find for i
instead of i — 1.

The Viterbi algorithm works by walking through the trellis diagram, filling in all of the S(i,X)
one layer at a time. Whenever it calculates S(i,x), it keeps track of that node’s “parent,” that is, the
node in the previous layer that led to it. When these have all been filled out, the pseudocode for the
algorithm is then

Input:

Observations Y, Yo, ..., Y,

Initial probabilities Pr(X;)
Transition probabilities Pr(X;->X;)
Observation probabilities Pr(Y|X)
Initialization:

Construct the trellis diagram

For j=1...k:

Node(l,j)-score = Ln(Pr(Y:1l}))
Processing:
For i=2_...n
For j=1.._.k

Node(i,j).parent = argmax{Node(i - l,x).score + Ln(Pr(x I j))}
Node(i,j).score = Node(i,j).parent.score + Ln(Pr(Yi | ]))
Constructing the output:

)=+
For i=n-1,...,1:
OutputStates(i)= OutputStates(i +1).parent
Output: OutputStates

25.5 Random Walks

One of the simplest stochastic processes is called a random walk or sometimes a “drunkard’s walk.”
The idea is that X; is some integer, usually 0. Then, in general,

X; +1 with Probability p
#1771 X, —1 with Probability 1 - p
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The motivation that is given for this model is that you have somebody who is very drunk and
doesn’t know where they are going. At each point in time, they have a probability p of taking a step
to the right and 1 —p of stepping to the left.

If p = 0.5, the walk is called “unbiased.” In this case, the walker will drift around through space
aimlessly. In the long term, they will pass through the origin an infinite number of times. Their
average location will always be at X =0, but that’s just because they are equally likely to be on the
left or the right. Their average distance from the origin will scale as the square root of the number
of steps they’ve taken.

To be more precise, each step is a Bernoulli(p) random variable, so

Xin—X; = Binomial(p, n)

25.6 Brownian Motion

Brownian motion is a generalization of random walks from the integers to the real numbers
defined by

Xia—X; = Normal(O, 0'2)

The only parameter to the model is ¢, which measures how far it is likely to move in a single
time step.

Historically, Brownian motion was the first stochastic process to be studied extensively. It was
used to model the location of a particle suspended in a liquid, as it floats around aimlessly.

The most notable aspect of Brownian motion mathematically is that the difference between
nonconsecutive locations is still a Brownian motion, just one with wider spread:

Xia—X; = Normal(O, t *0'2)

This is important for many applications. The motion of a particle, for instance, isn’t really in
discrete time steps. It moves continuously throughout time. But, if we measure its location every
millisecond, every second, or every hour, we will still see a Brownian motion.

At very small time scales, the motion of a particle is more like a random walk, as it gets jostled
about by discrete collisions with water molecules. But, virtually any random movement on small
time scales will give rise to Brownian motion on large time scales, just so long as the motion is
unbiased. This is because of the Central Limit Theorem, which tells us that the aggregate of many
small, independent motions will be normally distributed.

Outside of physics, the most important application of Brownian motion is probably finance.
When modeling the movement of a stock’s price, we want to capture the idea that, absent any
hunches or business developments, it will wander around aimlessly. This sounds like Brownian
motion, but there is a catch; a 10% drop in price is equally significant no matter the starting price,
and the price can never go negative. To achieve this “scale-free Brownian motion,” we let X denote
the logarithm of the security’s price, rather than the price itself.

Is this an accurate model of how the prices of real stocks and bonds evolve? No, it isn’t.
However, it is a very common “null hypothesis” model, where we don’t assume that there are
any long-term trends, and we don’t assume that there is any “correct” price that the motion tends
to stay around.
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25.7 ARIMA Models

For data science applications, the most important problem with Brownian motion is that it moves
around without any sense of a “typical” value. Real processes tend to have a baseline that they
hover around. The price of a security is a great example; it will fluctuate up and down, but not too
far in either direction. This behavior is called “mean reverting,” since you can think of it as an
elastic force pulling the random variable back toward its average value.

The classical way to model this is called an “autoregressive moving average” or ARIMA. In gen-
eral, an ARIMA model is defined by

Xi=c+oX; +o X +...+ o X, + Normal(O, 02)
However, you will typically just see this taken out to a single term:
X\ =c+ X, + Normal(O, 62)

where 0 <@ < 1. In this case, there is a long-term average value of

E[X]zﬁ

X will fluctuate around this average value, sometimes randomly moving fairly far from it. But it
will always be pulled back to the mean.

25.8 Continuous-Time Markov Processes

Let’s move back to Markov chains that have only a finite number of states — the frog hopping
between lily pads. A limitation of these Markov chains is that they occur at discrete time steps.
Sometimes this granularity is appropriate, such as words in text. In other situations though we are
monitoring a system in real time, and it could change its state at any moment. For example, a
server that is hosting a website could get a new visitor to handle at any point in time, and a visitor
could leave at any point too. Basically, our amnesiac frog has no idea how long it has been since he
arrived at his current lily pad, and he could hop away at any moment.

The best way to think of a continuous-time Markov process is that you have a collection of rates
Ay from state i to state j. Imagine time to be broken up into very small moments of length A. Then,
for each distinct i and j,

Pr(X,. =jlIX,=i)=1
The probability of staying in state i is just 1 minus the sum of all of these probabilities of chang-
ing. 4;; is the rate at which probability mass flows from state I to state j, as a fraction of the mass in

state i.
In calculus terms, if we let p(t) denote the probability distribution over states at time ¢, then

S alr)=p(r)A
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where A is a matrix of all the 1;; (with the diagonal being negative numbers, signifying how quickly
probability flows out of a state to wherever it goes next). We can find the steady-state distribution
7 by solving

A =0

Zn'i =1
similar to what we did with discrete-time Markov chains.

There is a critical difference between x for discrete and continuous chains though. For discrete
Markov chains, = measured how often we transition into each state. In continuous processes, «
measures the fraction of all time that is spent in each state. These are not the same thing, because
it is possible for a lot of probability mass to flow into a particular state, but to then flow out very
quickly. So, the system transitions into this state very often but only stays there briefly before
moving on to a more long-lived state.

Continuous-time processes and discrete chains are both characterized by matrices, but those
matrices are quite different. Both need all nonnegative entries off-diagonal, but the similarity stops
there. For Markov chains, each row must sum to 1 because you will end up in some state in the
next time step. For continuous-time processes, the sums are 0; we are not measuring a probability,
but instead the rate at which probability “flows” between states.

25.9 Poisson Processes

A Poisson process is used to model a stream of events that occur at random intervals. It is charac-
terized by a single parameter A, which is the average number of events per unit time. Alternatively,
it is sometimes characterized by 6 = 1/4, the average time between events.

There are a number of ways to think about a Poisson process, but in my mind, the easiest is this:
break time up into many small intervals of size A. Each interval, independently of all the others,
has probability 1A of having an event. In the limit of A being small, we converge to a Poisson
process. It has the following properties:

o The interarrival times between consecutive events and exponentially distributed, with mean = 6.
This means that the time can be arbitrarily long but is weighted toward short time.

o Consecutive interarrival times are independent.

e For any time interval of length T, the number of events that occur in it is a Poisson distribu-
tion with mean A7. This means there can be arbitrarily many events, but huge outliers are
not likely.

o If two intervals don’t overlap, the number of events in them is independent of each other.

o Poisson processes are a fantastic way to model many real-world systems. It is illustrative though
to highlight several types of system that are not Poisson.

o One event tends to precipitate other events in rapid succession. An example might be trades that are
made of a stock, where one person making a trade causes many other people to trade in reaction.

o An external force causes events to come in bursts. For example, visitors to a website might come
in bursts because they all saw the same link that was posted.

e There is a tendency toward even spacing between events. If we replace a device whenever it wears
out and breaks, we will probably not have to replace it again for a while because its parts are not
worn out. This would mean that the time between events is not exponentially distributed.
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e There is a small population of events that can happen, and they happen only once within a
period. For example, an array of machines might fail at irregular intervals, and I fix any broken
ones every morning. This means that if there are many failures early in the day, there will be
fewer failures later in the day, because there are fewer machine running that could poten-
tially fail.

The first two cases tend to be larger problems in practice, and their key property is that the dif-
ferent events are not independent of each other.

25.10 Further Reading

1 Harchol-Balter, M, Performance Modeling and Design of Computer Systems: Queueing Theory in
Action, 2013, Cambridge University Press, Cambridge, UK.

2 Ross, S, Introduction to Probability Models, 9™ edn, 2006, Academic Press, Waltham, MA.

3 Feller, W, An Introduction to Probability Theory and its Applications, Vol. 1, 3" edn, 1968, Wiley,
Hoboken, NJ.

25.11 Glossary

Absorbing state A state in a Markov chain that goes only to itself.

Absorbing Markov chain A Markov chain with at least one absorbing state.

Ergodic Markov chain A Markov chain in which every state can be reached from any other.

Equilibrium distribution A probability distribution over the states of a Markov chain that
stays the same as the chain evolves by one time step.

Markov property The key assumption for Markov chain. A state in a Markov chain can depend
probabilistically on the state right before it, but only the one right before it. If you condition
on knowing X;, then X; ., is independent of all X; with j <i.

Markov chain A collection of states and transition probabilities between them, where each
state depends only on the one before. Many Markov chains also require a probability
distribution over the starting state.

Poisson process A way to model sequences of events that happen at random intervals. The
times between consecutive events are i.i.d and exponentially distributed.

Stationary distribution Synonym for equilibrium distribution.

Transition matrix A matrix specifying the probability of transitioning from every state to every
other in a discrete Markov chain.
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Parting Words: Your Future as a Data Scientist

So, you’ve read this book, and let’s assume for the sake of argument that you thought the subject
matter was pretty cool (and that the writing was brilliant, of course). What now?

My most important advice is to get out there and start tackling some real problems. I've done
work as a software engineer and an academic, and I'm constantly impressed by how much more
intellectually dynamic data science is than anything else I've done. In a single day, I will flit
between low-level debugging, designing software architecture, helping clients translate a business
problem into math, and brushing up on my linear algebra. In data science there is always some-
thing new that you can learn, and usually something new that you should learn, and no book can
substitute for real experience in that kind of environment.

As far as broadening your knowledge base, there are several directions (not mutually exclusive)
that you might consider growing:

o Really the best, if you have a particular area of application in mind, is to become more of a
domain expert in whatever it is you want to apply data science to. Remember that the key to
doing great data science is to ask the right questions, and the only way to do this is to have a deep
understanding of the domain you’re studying.

o Alot of data scientists almost double as software engineers. I would probably put myself in this
category. They know a number of additional programming languages, they’ve written multi-
thousand-line pieces of code with many interacting parts, and they are well versed in their
computer science fundamentals. This is a great direction to go if you want to work in a start-up-
type environment or in Big Data.

e Some people get deeply immersed in machine learning. This will serve you well if you want
work that is more academic in flavor, or if you want to grow in the direction of machine-learning
engineering.

o Some data scientists grow in the direction of statistics, learning more about A/B testing, how to
design experiments, and all the various things you can do to eke insights out of small datasets.
This approach is more common in large companies, where people have the ability to specialize.

The range of datasets and tools available to work with is changing quickly, but I want to make a
few predictions and point out trends that may be relevant to you:

o LLMs are becoming a ubiquitous tool, but for my two cents, I think there is a classic hype cycle
going on and they will follow a similar trajectory to Big Data. People will get a better sense of
which problems they are best for solving, and, at that point, they will become relatively
commoditized as just another tool. In particular, I think that prompt engineering will become
extremely popular as a tool for extracting meaning and doing basic reasoning from text.

The Data Science Handbook, Second Edition. Field Cady.
© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.
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It’s entirely possible that Al models will be able to do for data in general what LLMs can now do
for text specifically: do a pretty good job of answering basic question in a way that is similar to
prompt engineering. In this case, you can imagine using an AI model to answer the sort of ques-
tions that previously would have required an extremely sophisticated training process. Think of
it this way: if you could have a human labeler do it reliably, then the model can probably do it
about equally well and at scale. Needless to say, this will make many new things possible.
Expect a growth in time series data, from applications in engineering and biomedicine. This is a
rich area with a large set of existing tools, but so far data scientists have mostly stayed out of it.
I anticipate this changing, and if it does I suspect it will drive many of the coolest new techniques.
To a certain degree the discipline of data science is polarizing. On the one end are people who
focus on software engineering and Al, and on the other end are people who focus on statistical
analyses and database queries. This distinction is especially being made at some of the larger
companies. I don’t have a strong prediction about whether the trend will continue, but it’s some-
thing you should be aware of.

The “Internet of Things” refers to the idea that sensors are becoming ubiquitous, and many
devices that are neither computers nor cell phones will be producing data that can be accessed
through the cloud. This means sensor nets, machines in factories, toasters — you name it. These
armies of machines that interact with the physical world will produce some of the most interest-
ing datasets in the coming decades.

Data science in the coming years is going to be a very exciting journey. Hopefully, this book has
gotten you off on the right foot.

Best regards,
Field Cady
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