


Studies in Classification, Data Analysis, 
and Knowledge Organization 

Managing Editors 

Wolfgang Gaul, Karlsruhe, Germany 

Maurizio Vichi, Rome, Italy 

Claus Weihs, Dortmund, Germany 

Daniel Baier, Bayreuth, Germany 

Frank Critchley, Milton Keynes, UK 

Reinhold Decker, Bielefeld, Germany 

Michael Greenacre, Barcelona, Spain 

Carlo Natale Lauro, Naples, Italy 

Jacqueline Meulman, Leiden, 
The Netherlands 

Paola Monari, Bologna, Italy 

Shizuhiko Nishisato, Toronto, ON, 
Canada 

Noboru Ohsumi, Tokyo, Japan 

Otto Opitz, Augsburg, Germany 

Gunter Ritter, Passau, Germany 

Martin Schader, Mannheim, Germany 

Editorial Board Members



Studies in Classification, Data Analysis, and Knowledge Organization is a book 
series which offers constant and up-to-date information on the most recent devel-
opments and methods in the fields of statistical data analysis, exploratory statistics, 
classification and clustering, handling of information and ordering of knowledge. It 
covers a broad scope of theoretical, methodological as well as application-oriented 
articles, surveys and discussions from an international authorship and includes fields 
like computational statistics, pattern recognition, biological taxonomy, DNA and 
genome analysis, marketing, finance and other areas in economics, databases and 
the internet. A major purpose is to show the intimate interplay between various, 
seemingly unrelated domains and to foster the cooperation between mathematicians, 
statisticians, computer scientists and practitioners by offering well-based and 
innovative solutions to urgent problems of practice.



Aurea Grané ·Mario Villalobos
Javier Trejos · Theodore Chadjipadelis · 
Editors 

Data Science, Classification, 
and Artificial Intelligence 
for Modeling Decision 
Making



Editors 
Javier Trejos 
School of Mathematics 
University of Costa Rica 
San José, Costa Rica 

Theodore Chadjipadelis 
School of Political Sciences 
Aristotle University of Thessaloniki 
Thessaloniki, Greece 

Aurea Grané 
Department of Statistics 
Universidad Carlos III de Madrid 
Getafe, Spain 

Mario Villalobos 
School of Mathematics 
University of Costa Rica 
San José, Costa Rica 

ISSN 1431-8814 ISSN 2198-3321 (electronic) 
Studies in Classification, Data Analysis, and Knowledge Organization 
ISBN 978-3-031-85869-7 ISBN 978-3-031-85870-3 (eBook) 
https://doi.org/10.1007/978-3-031-85870-3 

Mathematics Subject Classification: 62H30, 62H25, 62R07, 62R10, 68T0 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2025 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.



Preface 

The present volume contains revised, double-blind refereed versions of selected 
papers presented at the conference of the International Federation of Classification 
Societies, “Data Science, Classification and Artificial Intelligence for Modeling 
Decision Making”, which was held in San José, Costa Rica, from July 15–19, 
2024. The conference was organized by Central American and Caribbean Society 
for Classification and Data Analysis (SoCCCAD) and the School of Mathematics 
and the Research Centre for Pure and Applied Mathematics of the University of 
Costa Rica. Javier Trejos (University of Costa Rica) chaired the Scientific Programm 
Committee with Angela Montanari (IFCS Past-president) and Rebecca Nugent (IFCS 
President). Javier Trejos, Mario Villalobos and Adriana Sánchez (University of Costa 
Rica) chaired the Local Organizing Committee. 

We are grateful to the members of the Scientific Program Committee: Adalbert 
Wilhelm (Constructor U, Germany, GfKl), Atsuho Nakayama (Doshisha U, Japan, 
JCS), Balázs Horváth (U Eötvös Loránd, Hungary, MST), Berthold Lausen (Essex 
U, United Kingdom, BDSS), Carlos Cuevas Covarrubias (U Anáhuac, Mexico, SOC-
CAD), Hyunjoong Kim (Yonsei U, Korea), Jean Diatta (U La Réunion, France, SFC), 
Johané Nienkemper-Swanepoel (Stellenbosch University, South Africa, SASA-
MDAG), Krzysztof Jajuga (Wroclaw U of Economics and Business, Poland, SKAD), 
Mark de Rooij (Leiden U, The Netherlands, VOC), Maurizio Vichi (U La Sapienza 
Roma, CLADAG), Michael Gallaugher (Baylor U, USA, TCS), Paula Brito (U 
Porto, Portugal, CLAD), Simona Korenjak-Černe (Ljubljana U, Slovenia, STAT), 
and Sonya Coleman (Ulster U, North Ireland, IPRCS). Aurea Grané and Theodore 
Chadjipadelis served also as representatives of SEIO-AMyC and GSDA, respec-
tively. 

The IFCS 2024 Conference was organized simultaneously with the Latin Ameri-
can Conference on Statistical Computing (LACSC), an annual meeting of the Latin 
American Regional Section of the International Association for Statistical Comput-
ing (IASC). IFCS and IASC have an agreement of cooperation since 2014. 

Over 120 scholars from 25 countries across the globe attended the conference. 
More than 94 contributions were organized into special sessions, thematic tracks,
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vi Preface

contributed paper sessions, one poster session, four tutorials, and eight keynote 
lectures. Also, the IFCS Medal was granted in a special ceremony. 

The keynote lectures were addressed by Patrick J.F. Groenen (Rotterdam Uni-
versity, The Netherlands), Sugnet Lubbe (Stellenbosch University, South Africa), 
Arnoldo Müller-Molina (Chicago University, USA), Beatriz Cobo (Granada Univer-
sity, Spain), Marcela Alfaro (LACSC – The University of California in Santa Cruz, 
USA), and Marcos Matabuena (LACSC – Harvard University, USA). The conference 
program includes four tutorials: “Logistic Multidimensional Data Analysis” by Mark 
De Rooij (Leiden University, The Netherlands), “Methods on Artificial Intelligence” 
by Theodore Chadjupadelis (Aristotle University of Thessaloniki, Greece), “Repro-
ducible Data Analysis” by Marcela Alfaro, and “ Statistical Science Meets Digital 
Health. Distributional Data Analysis in Digital Health” by Marcos Matabuena. 

This book gathers modern methods and real-world applications in data science, 
classification, and artificial intelligence related to modeling decision making and 
covers a wide range of research topics and application areas. The book is intended 
for researchers and practitioners who seek the latest developments and applications 
in the field of data science and classification. 

The topics span a wide range of areas within statistics and data science. They 
present novel methods and innovative applications in fields such as anomaly de-
tection in public procurement processes, multivariate functional data clustering, air 
pollution prediction, benchmark generation for probabilistic planning, recommenda-
tion systems based on symbolic data analysis, and methods for clustering mixed-type 
data. 

Furthermore, advanced statistical concepts are explored, including Vapnik-
Chervonenkis dimensionality, Riemannian statistics, hypothesis testing for interval-
valued data, and mixed models. Machine learning techniques are applied to predict 
soil bacterial and fungal communities, classify electoral behavior and political com-
petition, and assess corrosion degradation in mining pipelines. 

The diversity of topics reflects the ongoing advancement and interdisciplinary 
nature of statistical and data science research, as well as its application across 
various fields and sectors. These studies contribute to the development of robust 
methodologies and efficient computational tools to address complex challenges in 
the era of big data. 

San José, Costa Rica 
Thessaloniki, Greece 
Madrid, Spain 
San José, Costa Rica 
July 2024 

Javier Trejos 
Theodorus Chadjipadelis 

Aurea Grané 
Mario Villalobos
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A Comparison of Multivariate Mixed Models
and Generalized Estimation Equations
Models for Discrimination in Multivariate
Longitudinal Data

Gabriel Afriyie, David M. Hughes, Alberto Nettel Aguirre, Na Li, Chel Hee Lee,
Lisa M. Lix, and Tolulope Sajobi

Abstract Discriminant analysis procedures have been developed for classification
in multivariate longitudinal data, but the development of such procedures for count,
binary or mixed types of outcome variables have not received much attention. Re-
searchers have proposed novel longitudinal discriminant analysis (LoDA) methods
using multivariate generalized linear mixed effects models (GLMM) and generalized
estimation equations (GEE) to address challenges posed by such data. However, a
comprehensive comparison of their predictive accuracy in multivariate longitudinal
data remains lacking. This study evaluates the predictive accuracy of these model-
based classification procedures via a Monte Carlo simulation study under a variety of
data analytic conditions, including sample size, between-variable and within-variable
correlation, number of measurement occasions, and number and distribution of out-
come variables. Simulation results show that LoDA based on multivariate GEE and
GLMM classifiers exhibited similar overall accuracy in multivariate longitudinal
data with normal or binary outcome variables. However, the GEE procedure resulted
in higher average classification accuracy (between 3% and 23% higher) over the
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GLMM in multivariate longitudinal data with count or mixed types of outcome
variables. We provide some recommendations for guiding the choice between these
two procedures for classification in multivariate longitudinal data.

Key words: discriminant analysis, generalized estimating equations, longitudinal
designs, mixed models

1 Introduction

Discriminant analysis aims to classify observations into different groups based on
a set of predictor variables. It is widely used in various fields of study, such as
medicine [17, 22, 23], psychology [11, 10] and biology [15] where the classification
of individuals or cases is of interest. Extensions of discriminant analysis to longitudi-
nal/repeated measures data have led to the development of model-based discriminant
analysis that account for the complex correlation structures within the data. These in-
clude discriminant analysis based on mixed-effects models [3, 14, 7, 16], covariance
structures models [18, 19], and growth curve models [1]. However, these models
assume that all outcomes are continuous and rely on the assumption of multivari-
ate normality, which may not be tenable in many application areas where data on
multiple but different types of outcomes are measured over time. There is limited
investigation of discriminant analysis procedures for classification in multivariate
longitudinal data characterized by non-normal continuous outcome or mixed types
of outcomes. Hughes et al. [5, 4] proposed discriminant analysis based on multivari-
ate generalized linear mixed effects model which allows markers of different types
to be modeled simultaneously for classification in multivariate longitudinal data. In
their work, they further compared the accuracy of these models when using marginal,
conditional and random effects approach to estimating a patient’s posterior group
membership probabilities and found that the random-effects approach led to more
accurate predictions [4]. Brobbey et al. [2] also developed a discriminant analysis
classifier, this time using multivariate generalized estimating equations based on a
structured working correlation for discrimination in multivariate longitudinal data
characterized by count, binary or mixed types of outcomes variables [6]. However,
there has not been a formal empirical comparison of the accuracy of these approaches
to discrimination in multivariate longitudinal data.

This study aims to fill this gap by evaluating the predictive accuracy of discrimi-
nant analysis based on multivariate GLMM and multivariate GEE for discrimination
in multivariate longitudinal data under a variety of different data analytic conditions.
The paper is organized as follows. Section 2 describes the discriminant analysis
procedures based on multivariate GLMM and multivariate GEE models. Section
3 presents the design of the simulation study, the results and discusses the main
findings. In the final section, we present a discussion about the pros and cons of both
approaches and considerations for the choice among both approaches and directions
for future research.
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5Models for Discrimination in Longitudinal Data

2 Longitudinal Discriminant Analysis

Let Y𝑖 𝑗 = (Y𝑖 𝑗1,Y𝑖 𝑗2, . . . ,Y𝑖 𝑗𝑞) be a 𝑝𝑞×1 vector of a correlated set of 𝑞 outcome
variables measured at 𝑝 occasions on the 𝑖th individual (𝑖 = 1,2, . . . , 𝑛 𝑗 ;𝑛 = 𝑛1+𝑛2) in
the 𝑗 th ( 𝑗 = 1,2) group. We assume Y𝑖 𝑗 ∼N𝑝𝑞 (𝜇 𝑗 ,Ω 𝑗 ), where 𝜇 𝑗 and Ω 𝑗 represent
mean and covariance matrix of group 𝑗 , and the corresponding density is denoted
𝑓 (Y𝑖 𝑗 ). Discriminant analysis is used to predict future observations by assigning
them into one of the population groups. Given prior (membership) probabilities 𝜋 𝑗
for the 𝑗 th group, the posterior probabilities based on Bayes–rule are defined as:

𝜋 𝑗 |y =
𝜋 𝑗 𝑓 (Y𝑖 𝑗 = y)∑2
𝑗=1 𝜋 𝑗 𝑓 (Y𝑖 𝑗 = y)

. (1)

Then, an individual is assigned to the group with the maximum posterior prob-
ability. Equivalently, if we assume equal covariances between the two groups
(Ω1 = Ω2 = Ω), then an individual is classified to be in group 𝑗 = 1 if

y− 𝜇̂1 + 𝜇̂2
2

′
Ω̂−1 ( 𝜇̂2 − 𝜇̂1) > log

𝜋̂2
𝜋̂1
. (2)

This refers to linear discriminant analysis (LDA). When the group covariances
are not equal (Ω1 ≠ Ω2), then an individual is classified to be in group 𝑗 = 1 if

(y− 𝜇̂2)′Ω̂−1
2 (y− 𝜇̂2) − (y− 𝜇̂1)′Ω̂−1

1 (y− 𝜇̂1) > log
��� Ω̂1

Ω̂2

���+2log
𝜋̂2
𝜋̂1
, (3)

where 𝜇̂ 𝑗 , Ω̂ 𝑗 and 𝜋̂ 𝑗 are estimates of mean, covariance matrix and membership
probability respectively for group 𝑗 . Since the LoDA classifier rely on the assump-
tion of multivariate normality, the classifier may result in decreased classification
accuracy in non-normal distributions. Although our focus is on 2 population groups,
the methods could be extended to 3 or more groups.

2.1 Longitudinal Discriminant Analysis based on Multivariate
Generalized Linear Mixed Model

The LoDA procedure described in Hughes et al. [4] is based on a multivariate
GLMM with a normal mixture in the random effects distribution. The approach is
described as follows. Suppose that for each individual there are 𝑞 outcomes (where
𝑞 = 1,2, . . . ,𝑄) measured at time 𝑡𝑞 = (𝑡𝑞,1, 𝑡𝑞,2, . . . , 𝑡𝑞,𝑛𝑞 ) in each group 𝑗 = 1,2. Let
Y𝑞 = (𝑌𝑞1,𝑌𝑞2, . . . ,𝑌𝑞,𝑛𝑞 ) be the longitudinal observations for each outcome variable
for an individual. Additionally, covariate vectors X𝑞,1,X𝑞,2, . . . ,X𝑞,𝑛𝑞 ∈ R𝑝𝑞 could
be included for longitudinal evolution of each outcome. We fit separate multivariate
GLMMs to the longitudinal data for each population group where the distribution
of the 𝑞th outcome belongs to an exponential family such as normal, Poisson and
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Bernoulli and for the 𝑝th longitudinal (𝑝 = 1,2, . . . , 𝑛𝑞) observation is defined as

ℎ−1
𝑞 {𝐸 (𝑌𝑞,𝑝 |b, 𝑗)} = X 𝑗

𝑞, 𝑝𝛽
𝑗
𝑞 +Z 𝑗𝑇

𝑞,𝑝b𝑞 , 𝑞 = 1,2, . . . ,𝑄 𝑝 = 1,2, . . . , 𝑛𝑞 , (4)

where ℎ−1
𝑞 is a link function corresponding to a particular exponential family distribu-

tion with possible dispersion parameters𝛼 𝑗𝑞 . X 𝑗
𝑞, 𝑝 , Z 𝑗

𝑞, 𝑝 are covariate vectors for each
group 𝑗 that are used in a model, 𝛽 𝑗𝑞 , 𝑞 = 1,2, . . . ,𝑄, 𝑗 = 1,2 represents unknown re-
gression coefficients, and b= (b1,b2, . . . ,b𝑄) denotes the unobserved random-effects
vector that accounts for the within-and-between-individual correlation. Typically, it
is assumed that the random-effects vector follows a normal distribution. However,
Verbeke and Lesaffre’s [25] work demonstrate the challenge of verifying this assump-
tion. Furthermore, if the random-effects distribution is misspecified, the estimates
of the mixed model parameters may exhibit significant bias[12], thereby impacting
the overall performance of the discriminant classifier. To address this issue, the joint
distribution of the random-effects vectors is assumed as a mixture of normal dis-
tributions as described by Komárek et al. [7] and Verbeke and Lesaffre [25]. That
is b|𝑈 = 𝑗 ∼ ∑𝐿

𝑙=1 w 𝑗

𝑙
N(𝜇 𝑗

𝑙
,D 𝑗

𝑙
), where N(𝜇,D) represents a multivariate normal

distribution with mean vector 𝜇 and a covariance matrix D and w𝑙 , (𝑙 = 1,2, . . . , 𝐿)
are weights for the mixture distributions. The multivariate GLMM in each group
is fitted by estimating the model parameters Ψ 𝑗 := (𝛽 𝑗1 , . . . , 𝛽

𝑗

𝑄
, 𝛼

𝑗

1 , . . . , 𝛼
𝑗

𝑄
) and

𝜃 𝑗 := (w 𝑗 , 𝜇
𝑗

1 , . . . , 𝜇
𝑗

𝐿 𝑗 ,D
𝑗

1, . . . ,D
𝑗

𝐿 𝑗 ) to build the longitudinal discriminant classifier.
The estimation is done in a Bayesian setting and details of the procedure can be found
in Hughes et al. [5] and Komárek and Komárková [8]. The estimation procedures as
well as model-based clustering methods needed to perform classification based on
multivariate GLMM have been implemented in the R package mixAK [9].

2.2 Longitudinal Discriminant Analysis based on Multivariate
Generalized Estimating Equations

Let Y𝑖 = (Y′
𝑖1,Y

′
𝑖2, . . . ,Y

′
𝑖𝑞
)′ denote 𝑝𝑞 × 1 vector of outcomes and X𝑖 = X∗

𝑖
I𝑞

denote 𝑝𝑞 ×𝐾𝑞 block diagonal covariate matrix for an individual 𝑖, where X∗
𝑖
=

(X𝑖1,X𝑖2, . . . ,X𝑖𝑘 , . . . ,X𝑖𝐾 ), I𝑞 is a 𝑞×𝑞 identity matrix,
⊗

is the Kronecker prod-
uct sign. For the analysis of multivariate correlated longitudinal data, the 𝑝𝑞 × 1
dimensional marginal mean vector 𝜇𝑖 = (𝜇′

𝑖1, 𝜇
′
𝑖2, . . . , 𝜇

′
𝑖𝑞
)′ is associated with covari-

ates via a generalized linear model (GLM) as follows:

𝜇𝑖 = h𝑟 (X𝑖𝛽), (5)

where 𝑖 = 1, . . . , 𝑛, h−1
𝑟 (·) is the outcome-specific link function, 𝛽 = (𝛽′1, 𝛽

′
2, . . . , 𝛽

′
𝑞)′,

where 𝛽𝑞 = (𝛽𝑞1, 𝛽𝑞2, . . . , 𝛽𝑞𝑘 , . . . , 𝛽𝑞𝐾 )′ is the 𝑝𝑞 × 1 dimensional vector of
outcome-specific regression coefficients with population-averaged interpretations
and X𝑖 is the corresponding covariate matrix. The 𝑝𝑞 × 𝑝𝑞 marginal covariance
matrix of the 𝑖th individual is:
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Ω𝑖 = 𝜙Σ𝑖 , (6)

where 𝜙 is a scale parameter that can be known or estimated and Σ𝑖 is a 𝑝𝑞 × 𝑝𝑞
working covariance matrix such that

Σ𝑖 = M1/2
𝑖

(R𝑞 (𝛼) R𝑝 (𝜌))M1/2
𝑖
, (7)

where M𝑖 is a 𝑝𝑞× 𝑝𝑞 block diagonal matrix, which contains the marginal variance
of outcomes on the main diagonals, R𝑞 (𝛼) is a 𝑞× 𝑞 working correlation matrix of
the outcomes with the parameter vector 𝛼, and R𝑝 (𝜌) is a 𝑝× 𝑝 working correlation
matrix for a given outcome at different time points with parameter 𝜌. The Kronecker
product of the working covariance matrix reduces the number of parameters to be
estimated[24, 13, 21, 20, 26]. Consequently, R𝑞 (𝛼) and R𝑝 (𝜌) denote between-
outcomes correlation matrix and within-outcome correlation matrix respectively. In
the quasi-likelihood framework with longitudinal outcomes, the regression parameter
𝛽 is estimated via solving the following set of GEEs:

𝑈 (𝛽) =
𝑛∑︁
𝑖=1

D′
𝑖Ω

−1
𝑖 (Y𝑖 − 𝜇𝑖) = 0, (8)

where D′
𝑖
= 𝜕𝜇𝑖/𝜕𝛽 is the block diagonal matrix derivatives, 𝜇𝑖 is the marginal mean

vector, and Ω𝑖 is the working covariance matrix. Specifically, 𝑈 (𝛽) = 0 are solved
with a Fisher-Scoring algorithm such that

𝛽 = 𝛽+
(
𝑛∑︁
𝑖=1

D̃′
𝑖Ω̃

−1
𝑖 D̃𝑖

)−1 ( 𝑛∑︁
𝑖=1

D̃′
𝑖Ω̃

−1
𝑖 (Y𝑖 − 𝜇𝑖)

)
. (9)

ula to estimate the asymptotic covariance matrix of the GEE esti-A sandwich form
mators is given as follows:

𝐶𝑜𝑣(𝛽) = Â−1B̂Â−1, (10)

=
∑𝑛
𝑖=1 D̂′

𝑖
Ω̂−1
𝑖
𝐶𝑜𝑣(Y𝑖)D̂𝑖 with 𝐶𝑜𝑣(Y𝑖) = (Y𝑖 −where Â =

∑𝑛
𝑖=1 D̂′

𝑖
Ω̂−1
𝑖

D̂𝑖 , B̂
𝜇̂𝑖) (Y𝑖 − 𝜇̂𝑖)′.

To extend LoDA to the multivariate GEE framework, we follow the GEE notation
and assume that the 𝑗 th group ( 𝑗 = 1,2) with multivariate longitudinal outcomes Y𝑖 𝑗 ,
has a marginal mean 𝜇𝑖 , and a 𝑝𝑞× 𝑝𝑞 positive definite covariance matrix Ω𝑖 . The
marginal means estimates are obtained via 𝜇̂ 𝑗 and the covariance matrix Ω̂ 𝑗 from
the GEE framework in group 𝑗 using a pre-defined structure.

3 Simulation Study

A Monte Carlo simulation study was conducted to assess the accuracy of linear and
quadratic LoDA procedures based on a multivariate mixed model and a multivariate
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GEE model under a variety of data analytic conditions. The simulation conditions
include: (a) multivariate distribution of outcomes (normal, binomial, Poisson, and
mixed type), where mixed type represents mixed continuous and discrete outcomes,
(b) number of outcome variables 𝑞 = 3,5, (c) total sample size (𝑛 = 150 and 500),
(d) group size ratio (𝑛1 : 𝑛2 = 2 : 3), and (e) covariance heterogeneity (equal and
unequal group covariances). Population data were generated from two data genera-
tion models, namely (1) multivariate GEE and (2) multivariate mixed model. This
ensures that our study conclusions are not affected by the type of data generation
model. The GEE model utilized a Kronecker product of unstructured within- and
between-outcome correlation matrices. The GLMM procedure utilized the marginal
prediction approach. For the simulation, the following conditions were fixed, namely
(a) number of measurement occasions (𝑝) = 4, (b) number of predictor variables
𝑘 = 3, (c) correlation between repeated measurement 𝜌𝑝 = 0.7. Each scenario (i.e.,
each combination of conditions) involved simulating 500 datasets. Performance was
assessed using classification accuracy (i.e., proportion of correctly predicted class
labels). The simulation analyses were conducted using the R-4.2.3 statistical software
package (R Core Development Team 2023).

3.1 Results

Tables 1 and 2 describe the mean classification accuracies and corresponding stan-
dard errors for linear (LDA) and quadratic (QDA) LoDA based on multivariate GEE
and multivariate GLMM respectively.

For normally distributed outcomes, both LoDA procedures demonstrated high
mean overall classification accuracy, with the GEE procedure marginally outper-
forming the GLMM procedure by 2% to 8% under QDA but exhibiting a slight
underperformance by 4% to 9% under LDA when the data was generated from GEE.
For the linear LoDA procedures for which the population data had homogeneous
covariances, the average overall classification accuracy was lower than the average
classification accuracy for the QDA condition (heterogeneous covariance), indicating
that assuming equal covariance structures may not be optimal in the presence of true
heterogeneity. In multivariate longitudinal binary data, LoDA based on multivariate
GEE consistently outperformed LoDA based on GLMM by 3% to 15% across all
sample sizes, especially notable in the smaller samples, except for under LDA when
data was generated from GLMM. This suggests that DA-GEE may be more robust
in handling binary outcomes. For multivariate longitudinal count data, LoDA based
on multivariate GEE exhibited significantly higher average classification accuracy
between 12% and 23% higher, for all scenarios. Notably, LoDA based on multi-
variate GEE accuracy under the QDA condition was consistent across sample sizes,
suggesting that the method is less sensitive to sample size variation under count data.
In multivariate longitudinal data characterized by mixed outcomes, LoDA based on
GEE yielded significantly higher classification accuracy compared to LoDA based
on GLMM, ranging from 3% to 19% higher across all investigated conditions. This
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suggests that the former procedure is particularly suited for count and mixed data
types with both homogeneous and heterogeneous covariances.

4 Discussion

Discriminant analysis developed based on multivariate GLMM and GEE are 2
approaches useful for classification/discrimination in multivariate longitudinal data
characterized by non-normal outcomes. The primary objective of our study was to
investigate the predictive performance of these methodologies for classification in
longitudinal data. Our findings show that while LoDA based on multivariate GEE and
multivariate mixed models have comparable predictive accuracy when the data were
sampled from non-normal continuous distributions, the former resulted in higher
average overall classification accuracy than the latter in multivariate longitudinal
data characterized by count or mixed outcomes.

While our study provides important insights, a few limitations should be consid-
ered. The predictive accuracy of the LoDA procedures investigated in this study were
based on apparent classification accuracy and not on internal or external validation
methods. Future studies may consider building models on training data and testing
them on separate test data to ensure the robustness and applicability of the models
in different contexts. Additionally, the LoDA based on multivariate GEE assume
that the covariance model is based on parsimonious Kronecker product covariance
structure. It is not clear how these models will perform when the covariance struc-
ture is mis-specified. Future research will explore the impact of covariance structure
misspecification on the accuracy of LoDA based on multivariate GEE. Finally, in
biomedical and health research, particularly in longitudinal studies, the presence of
missing data is quite common. Further research to assess the impact of the pro-
portion, mechanism and methods for handling missing data on the accuracy of the
LoDA procedures is recommended.

This study comprehensively assessed the strengths and limitations to gain in-
sight into the behaviour and effectiveness of both LoDA based on multivariate
GEE and GLMM and under various analytical conditions. With the ongoing evolu-
tion of predictive modeling, enriched by continuous advancements in data collec-
tion and analysis techniques, LoDA procedures investigated in this study will add
to the repertoire of advanced analytical methods for classification in multivariate
longitudinal data.
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7. Komárek, A., Hansen, B.E., Kuiper, E.M., Buuren, H.R., Lesaffre, E.: Discriminant anal-

ysis using a multivariate linear mixed model with a normal mixture in the random effects
distribution. Statistics in Medicine 29(30), 3267–3283 (2010)
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Appendix

Table 1 Mean (standard error) classification accuracy for linear longitudinal discriminant analysis
based on multivariate mixed model and multivariate generalized estimating equations.

Distribution oDA ProcedureNumber of Data genera- Sample size

GEE GLMM
Outcomes (q) ti

Normal 3 GEE Data (60, 90) 0.68(0.04) 0.73(0.04)
(200, 300) 0.66(0.02) 0.70(0.02)

GLMM Data (60, 90) 0.80(0.03) 0.71(0.04)
(200, 300) 0.72(0.02) 0.66(0.03)

5 GEE Data (60, 90) 0.84(0.03) 0.81(0.04)
(200, 300) 0.81(0.02) 0.78(0.03)

GLMM Data (60, 90) 0.79(0.04) 0.85(0.04)
(200, 300) 0.76(0.02) 0.82(0.02)

Binomial 3 GEE Data (60, 90) 0.74(0.03) 0.67(0.03)
(200, 300) 0.67(0.02) 0.58(0.01)

GLMM Data (60, 90) 0.60(0.04) 0.70(0.04)
(200, 300) 0.57(0.03) 0.61(0.03)

5 GEE Data (60, 90) 0.60(0.03) 0.69(0.03)
(200, 300) 0.55(0.02) 0.62(0.02)

GLMM Data (60, 90) 0.62(0.04) 0.70(0.03)
(200, 300) 0.58(0.03) 0.64(0.03)

Poisson 3 GEE Data (60, 90) 0.87(0.02) 0.74(0.03)
(200, 300) 0.87(0.01) 0.74(0.01)

GLMM Data (60, 90) 0.87(0.03) 0.75(0.03)
(200, 300) 0.87(0.02) 0.71(0.01)

5 GEE Data (60, 90) 0.93(0.02) 0.76(0.03)
(200, 300) 0.93(0.01) 0.75(0.01)

GLMM Data (60, 90) 0.97(0.02) 0.78(0.02)
(200, 300) 0.97(0.01) 0.74(0.01)

Mixed 3 GEE Data (60, 90) 0.87(0.04) 0.72(0.04)
(200, 300) 0.88(0.02) 0.69(0.02)

GLMM Data (60, 90) 0.83(0.04) 0.73(0.04)
(200, 300) 0.73(0.02) 0.68(0.02)

5 GEE Data (60, 90) 0.90(0.02) 0.84(0.03)
(200, 300) 0.89(0.01) 0.83(0.02)

GLMM Data (60, 90) 0.83(0.04) 0.80(0.04)
(200, 300) 0.79(0.02) 0.75(0.02)

GEE Data: Data generated from multivariate GEE; GLMM Data: Data generated from
multivariate GLMM.
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Table 2 Mean (standard error) classification accuracy for quadratic longitudinal discriminant
analysis based on multivariate mixed model and multivariate generalized estimating equations.

Distribution of Number of Out- Data generation Sample size LoDA Procedure

GEE GLMM

Normal 3 GEE Data (60, 90) 0.92(0.02) 0.90(0.02)
(200, 300) 0.91(0.01) 0.89(0.01)

GLMM Data (60, 90) 0.92(0.03) 0.84(0.03)
(200, 300) 0.90(0.01) 0.83(0.02)

5 GEE Data (60, 90) 0.98(0.01) 0.94(0.02)
(200, 300) 0.97(0.01) 0.93(0.01)

GLMM Data (60, 90) 0.97(0.01) 0.94(0.02)
(200, 300) 0.96(0.01) 0.93(0.01)

Binomial 3 GEE Data (60, 90) 0.76(0.03) 0.68(0.03)
(200, 300) 0.67(0.02) 0.63(0.01)

GLMM Data (60, 90) 0.82(0.03) 0.71(0.04)
(200, 300) 0.74(0.02) 0.71(0.02)

5 GEE Data (60, 90) 0.87(0.03) 0.72(0.03)
(200, 300) 0.75(0.02) 0.67(0.02)

GLMM Data (60, 90) 0.91(0.02) 0.82(0.04)
(200, 300) 0.82(0.02) 0.78(0.02)

Poisson 3 GEE Data (60, 90) 0.90(0.02) 0.74(0.03)
(200, 300) 0.86(0.01) 0.74(0.01)

GLMM Data (60, 90) 0.94(0.02) 0.77(0.03)
(200, 300) 0.92(0.01) 0.74(0.01)

5 GEE Data (60, 90) 0.95(0.01) 0.76(0.03)
(200, 300) 0.91(0.01) 0.75(0.01)

GLMM Data (60, 90) 0.98(0.01) 0.80(0.03)
(200, 300) 0.97(0.01) 0.76(0.01)

Mixed 3 GEE Data (60, 90) 0.97(0.01) 0.81(0.03)
(200, 300) 0.95(0.01) 0.80(0.02)

GLMM Data (60, 90) 0.91(0.02) 0.84(0.03)
(200, 300) 0.87(0.02) 0.83(0.02)

5 GEE Data (60, 90) 0.99(0.01) 0.91(0.02)
(200, 300) 0.99(0.01) 0.90(0.01)

GLMM Data (60, 90) 0.98(0.01) 0.89(0.03)
(200, 300) 0.94(0.01) 0.86(0.02)
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A Multivariate Functional Data Clustering
Method Using Parsimonious Cluster Weighted
Models

Cristina Adela Anton and Iain Smith

Abstract We propose a method for clustering multivariate functional linear re-
gression data. Our approach extends multivariate cluster weighted models [3] to
functional data with multivariate functional response and predictors, based on the
ideas used by the funHDDC method [5]. To add model flexibility, we consider sev-
eral two-component parsimonious models by combining the parsimonious models
used for funHDDC with the Gaussian parsimonious clustering models family in
[1]. Parameter estimation is carried out within the expectation maximization (EM)
algorithm framework. The proposed method outperforms funHDDC on simulated
and real-world data.

Key words: cluster weighted models, functional linear regression, EM algorithm

1 Introduction

Internet of Things (IoT) embedded devices and other recent technologies have made
possible the recording of large numbers of subsequent measurements in such a way
that the observations are represented by functions [4]. Cluster analysis of functional
data, which consists of identifying homogeneous groups, is a very active area of re-
search [5]. Here we propose a new model based clustering method, funWeightClust,
that extends the approach used for the funHDDC method [5] to clustering func-
tional data that clusterwise have a functional linear regression relationship between
predictors and response variables. Our approach is also an extension of the cluster
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weighted models used for multivariate data [3] because we include the distributions
of the covariates.

To the best of our knowledge, there are not many papers that consider mixtures of
functional linear regression models for clustering, and the existing models consider a
scalar response, or a single functional response, and one or more functional predictors
[2]. We assume that the data are collected from the pairs (Y1,X1), . . . , (Y𝑛,X𝑛) of
multivariate response and predictors curves.

Since functional data leave in an infinite dimensional space [5], we construct a
probabilistic model for the coefficients corresponding to the expansions in a basis of
functions (such as Fourier, B-splines, etc.). We use multivariate functional principal
component analysis (MFPCA) [5] and we assume that the scores have multivariate
normal distributions. The Expectation-Maximization (EM) algorithm is used for
parameter estimation.

In the next section we present the model and its parsimonious variants. Parameter
estimation is included in section 3. In section 4 we present applications to simulated
and real-world data. The last section contains the conclusions.

2 The Multivariate Functional Cluster Weighted Model

We observe 𝑛 pairs of response and covariate curves {(y1,x1), . . . , (y𝑛,x𝑛)} and
we want to cluster them in 𝐾 homogeneous groups. We assume that the 𝑛 𝑝𝑌 -
variate response curves {Y1, . . . ,Y𝑛} are independent realizations of a 𝐿2- continuous
stochastic process Y = {Y(𝑡)}𝑡∈T𝑌 = {(𝑌1 (𝑡), . . . ,𝑌 𝑝𝑌 (𝑡))⊤}𝑡∈T𝑌 , where T𝑌 ⊂ R is
a compact interval. Similarly we assume that the 𝑛 𝑝𝑋-variate covariate curves
{X1, . . . ,X𝑛} are independent realizations of a 𝐿2- continuous stochastic process
X = {X(𝑡)}𝑡∈T𝑋 = {(𝑋1 (𝑡), . . . , 𝑋 𝑝𝑋 (𝑡))⊤}𝑡∈T𝑋 , where T𝑋 ⊂ R is a compact interval.

For each pair of curves (Y𝑖 ,X𝑖) we have access to a finite set of values
𝑦
𝑠𝑌
𝑖
(𝑡𝑌
𝑖1) . . . , 𝑦

𝑠𝑌
𝑖
(𝑡𝑌
𝑖𝑚𝑖

), 𝑥𝑠𝑋
𝑖
(𝑡𝑋
𝑖1) . . . , 𝑥

𝑠𝑋
𝑖
(𝑡𝑋
𝑖𝑛𝑖

), where 𝑡𝑌
𝑖1 < 𝑡

𝑌
𝑖2 < · · · < 𝑡𝑌

𝑖𝑚𝑖
, 𝑡𝑋
𝑖1 < 𝑡

𝑋
𝑖2 <

· · · < 𝑡𝑋
𝑖𝑛𝑖

, 𝑡𝑌
𝑖 𝑗
∈ T𝑌 , 𝑡𝑋

𝑖𝑙
∈ T𝑋, 𝑗 = 1, . . . ,𝑚𝑖 , 𝑙 = 1, . . . , 𝑛𝑖 , 𝑠𝑌 = 1, . . . , 𝑝𝑌 , 𝑠𝑋 = 1, . . . , 𝑝𝑋,

𝑖 = 1, . . . , 𝑛. We assume that the curves belong to a finite dimensional space, and
gathering the coefficients and the basis functions we have

Y(𝑡) = C𝑌𝝃⊤𝑌 (𝑡), Y(𝑡) = (Y1 (𝑡), . . . ,Y𝑛 (𝑡))⊤, (1)
X(𝑡) = C𝑋𝝃⊤𝑋 (𝑡), X(𝑡) = (X1 (𝑡), . . . ,X𝑛 (𝑡))⊤. (2)

Here 𝝃𝑌 and C𝑌 are the matrices with the the basis functions {𝜉𝑙
𝑌 ,𝑟

}1≤𝑟≤𝑅𝑌
𝑙

and
the coefficients 𝑐𝑙

𝑌 ,𝑖𝑟
for each component 𝑙 of the multivariate curves {Y1, . . . ,Y𝑛},

where 𝑅𝑌
𝑙

is the number of basis functions, 1 ≤ 𝑙 ≤ 𝑝𝑌 . Similarly 𝝃𝑋 and C𝑋 are the
matrices with the basis functions {𝜉 𝑗

𝑋,𝑟
}1≤𝑟≤𝑅𝑋

𝑗
and the coefficients 𝑐 𝑗

𝑋,𝑖𝑟
for each

component 𝑗 of the covariate curves {X1, . . . ,X𝑛}, where 𝑅𝑋
𝑗

is the number of basis
functions, 1 ≤ 𝑗 ≤ 𝑝𝑋. Let 𝑅𝑋 :=

∑𝑝𝑋
𝑗=1 𝑅

𝑋
𝑗

and 𝑅𝑌 :=
∑𝑝𝑌
𝑙=1 𝑅

𝑌
𝑙

.
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We suppose that there exist unobserved random variables Z𝑖 = (𝑍𝑖1, . . . , 𝑍𝑖𝐾 )⊤,
associated to each observation (y𝑖 ,x𝑖), that indicates the cluster membership: 𝑍𝑖𝑘 = 1
if (y𝑖 ,x𝑖) ∈ the 𝑘th cluster and 𝑍𝑖𝑘 = 0 otherwise. Given that 𝑍𝑖𝑘 = 1, the observations
come from the following model:

Y𝑖 (𝑡) = 𝜷𝑘0 (𝑡) +
T𝑋

𝜷𝑘 (𝑡, 𝑠)X𝑖 (𝑠)𝑑𝑠+E𝑘 (𝑡), 𝑡 ∈ T𝑌 , 𝑖 = 1, . . . , 𝑛. (3)

Here E𝑘 (𝑡) = (𝐸 𝑘1 (𝑡), . . . , 𝐸
𝑘
𝑝𝑌
(𝑡))𝑇 is a random error process which is uncorrelated

with X𝑖 (𝑠) for any (𝑠, 𝑡) ∈ T𝑋 ×T𝑌 , and for which we have the expansions

𝐸 𝑘𝑙 (𝑡) =
𝑅𝑌
𝑙∑︁

𝑟=1
𝜖
𝑘,𝑟

0,𝑙 𝜉
𝑙
𝑌 ,𝑟 (𝑡), 𝑙 = 1, . . . , 𝑝𝑌 . (4)

We suppose that 𝝐 𝑘0 = (𝜖 𝑘,10,1 , . . . , 𝜖
𝑘,𝑅𝑌

1
0,1 , . . . , 𝜖

𝑘,1
0, 𝑝𝑌 , . . . , 𝜖

𝑘,𝑅𝑌
𝑝𝑌

0, 𝑝𝑌 )⊤ ∼ 𝑁 (0,𝚺𝑌,𝑘). For
the regression coefficients 𝜷𝑘0 (𝑡) = (𝛽𝑘0,1 (𝑡), . . . , 𝛽

𝑘
0, 𝑝𝑌 (𝑡))

𝑇 and the 𝑝𝑌 × 𝑝𝑋 matrix

𝜷𝑘 (𝑡, 𝑠) =
(
𝛽𝑘
𝑙 𝑗
(𝑡, 𝑠)

)
𝑙=1,..., 𝑝𝑌
𝑗=1,..., 𝑝𝑋

we consider the expansions [4, Chapter 11.3]:

𝜷𝑘 (𝑡, 𝑠) = 𝝃𝑌 (𝑡)𝚪𝑘𝝃𝑋 (𝑠)⊤, 𝜷𝑘0 (𝑡) = 𝝃𝑌 (𝑡)𝚪𝑘0 , (5)

where 𝚪𝑘0 ∈ R𝑅
𝑌 and 𝚪𝑘 is a 𝑅𝑌 ×𝑅𝑋 matrix.

Let W𝑋 be the symmetric block-diagonal 𝑅𝑋 × 𝑅𝑋 matrix of inner products
between the basis functions:

W𝑋 =
T𝑋

𝝃𝑋 (𝑠)⊤𝝃𝑋 (𝑠)𝑑𝑠.

Thus, given that 𝑍𝑖𝑘 = 1, using (1)-(5) we obtain the following model for the column
vector formed with the coefficients c𝑌,𝑖 in the 𝑖th row of the matrix C𝑌 :

c𝑌,𝑖 = 𝚪𝑘0 +𝚪
𝑘W𝑋c𝑋,𝑖 + 𝝐 𝑘0 . (6)

We assume that for every 𝑘 ∈ {1, . . . , 𝐾} the stochastic process X associated
with the 𝑘th cluster can be described in a lower dimensional subspace E𝑘 [0,T𝑋] ⊂
𝐿2 [0,T𝑋] with dimension 𝑑𝑘 ≤ 𝑅𝑋 and spanned by the first 𝑑𝑘 elements of a group
specific basis of functions {𝜻𝑋,𝑘𝑟 , 𝑟 = 1, . . . , 𝑅𝑋} that can be obtained from {𝜉𝑙

𝑋,𝑟
, 𝑙 =

1, . . . , 𝑝𝑋, 𝑟 = 1, . . . , 𝑅𝑋} by a linear transformation using a MFPCA such that we
have

𝜻𝑋,𝑘𝑟 (𝑡) =
𝑅𝑋∑︁
𝑗=1
𝑞𝑘𝑟 𝑗𝝃𝑋, 𝑗 (𝑡), 𝑟 = 1, . . . , 𝑅𝑋,

where Q𝑘 = (𝑞𝑘𝑟 𝑗 )𝑟 , 𝑗=1,...,𝑅𝑋 is the orthogonal 𝑅𝑋 × 𝑅𝑋 matrix containing the co-
efficients of the eigenfunctions expressed in the initial basis 𝝃. As for the model
associated with the funHDDC method [5], we assume that
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c𝑋,𝑖 | 𝑍𝑖𝑘 = 1 ∼ 𝑁 (𝝁𝑋,𝑘 ,𝚺𝑋,𝑘),

where D𝑘 = Q⊤
𝑘
W𝑋

1/2𝚺𝑋,𝑘W𝑋
1/2Q𝑘 = diag(𝑎𝑘1, . . . , 𝑎𝑘𝑑𝑘 , 𝑏𝑘 , . . . , 𝑏𝑘), with 𝑎𝑘1 >

𝑎𝑘2 > · · · > 𝑎𝑘𝑑𝑘 > 𝑏𝑘 . Let 𝜙(c𝑋,𝑖; 𝝁𝑋,𝑘 ,𝚺𝑋,𝑘) denotes the density for the multivariate
normal distribution 𝑁 (𝝁𝑋,𝑘 ,𝚺𝑋,𝑘).

From (6) we have for the column vector formed with the coefficients c𝑌,𝑖 in the
𝑖th row of the matrix C𝑌 :

c𝑌,𝑖 | 𝑍𝑖𝑘 = 1,c𝑋,𝑖 ∼ 𝑁 (𝝁𝑌,𝑘 ,𝚺𝑌,𝑘), 𝝁𝑌,𝑘 = 𝚪𝑘∗ c∗𝑋,𝑖

where c∗
𝑋,𝑖

=
W𝑋c𝑋,𝑖

1 and 𝚪𝑘∗ is the 𝑅𝑌 × (𝑅𝑋 +1) matrix 𝚪𝑘∗ = (𝚪𝑘 ,𝚪𝑘0 ).
Thus the joint distribution of the coefficients (c𝑌,𝑖c𝑋,𝑖), 𝑖 = 1, . . . , 𝑛 is a parametric

mixture distribution

𝑝(c𝑌,𝑖 ,c𝑋,𝑖;𝜽) =
∑𝐾
𝑘=1 𝜋𝑘 𝑝𝑘 (c𝑌,𝑖 ,c𝑋,𝑖 | 𝜽𝑘),

∑𝐾
𝑘=1 𝜋𝑘 = 1,

𝑝𝑘 (c𝑌,𝑖 ,c𝑋,𝑖 | 𝜽𝑘) = 𝑓𝑘 (c𝑋,𝑖 | 𝜽𝑘)𝑔𝑘 (c𝑌,𝑖 | c𝑋,𝑖 ,𝜽𝑘),

where 𝜋𝑘 ∈ (0,1] are the mixing proportions, 𝜽𝑘 = {𝝁𝑋,𝑘 , 𝑎𝑘 𝑗 , 𝑏𝑘 ,q𝑘 𝑗 ,𝚺𝑌,𝑘 ,𝚪𝑘∗ } and
𝜽 =

⋃𝑘
𝑘=1 (𝜽𝑘 ∪ {𝜋𝑘}), is the set formed with the parameters. Here 𝑓𝑘 (c𝑋,𝑖 | 𝜽𝑘) =

𝜙(c𝑋,𝑖; 𝝁𝑋,𝑘 ,𝚺𝑋,𝑘), and 𝑔𝑘 (c𝑌,𝑖 | c𝑋,𝑖 ,𝜽𝑘) = 𝜙(c𝑌,𝑖; 𝝁𝑌,𝑘 ,𝚺𝑌,𝑘) is the conditional
density of the multivariate response c𝑌,𝑖 given the covariates c𝑋,𝑖 and 𝑍𝑖𝑘 = 1.
Combining the models in [5] with the models in [1] we refer to this model as
FLM[𝑎𝑘 𝑗 , 𝑏𝑘 ,Q𝑘 , 𝑑𝑘] - VVV model.

As in [5] we have the following parsimonius models for X: FLM[𝑎𝑘 𝑗 , 𝑏,Q𝑘 , 𝑑𝑘],
FLM[𝑎𝑘 , 𝑏𝑘 ,Q𝑘 , 𝑑𝑘], FLM[𝑎, 𝑏𝑘 ,Q𝑘 , 𝑑𝑘], FLM[𝑎𝑘 , 𝑏,Q𝑘 , 𝑑𝑘], FLM[𝑎, 𝑏,Q𝑘 , 𝑑𝑘].
We consider parsimony also for the matrices 𝚺𝑌,𝑘 . An eigen-decomposition gives
𝚺𝑌,𝑘 = 𝜆𝑘𝚵𝑘𝚼𝑘𝚵⊤

𝑘
, where 𝜆𝑘 =| 𝚺𝑌,𝑘 |1/𝑅

𝑌 is a constant,𝚼𝑘 is a diagonal matrix with
entries (sorted in decreasing order) proportional to the eigenvalues of 𝚺𝑌,𝑘 with the
constraint | 𝚼𝑘 |= 1, and 𝚵𝑘 is a 𝑅𝑌 × 𝑅𝑌 orthogonal matrix of the eigenvectors
(ordered according to the eigenvalues) of 𝚺𝑌,𝑘 , 𝑘 = 1, . . . 𝐾 . As in [1] we obtain 14
models: EII, VII, EEI, VEI, EVI, VVI, EEE, VEE, EVE, EEV, VVE, VEV, EVV,
VVV. Considering all the combinations we get 6×14 = 84 parsimonious models.

3 Parameter estimations

To fit the models, we use the EM algorithm. The clusters’ labels Z𝑖 are the missing
data, so the complete data are given by {c𝑌,𝑖 ,c𝑋,𝑖 , 𝑧𝑖𝑘 , 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, . . . , 𝐾}, and
the complete-data likelihood is given by

𝐿𝑐 (𝜽) =
𝑛∏
𝑖=1

𝐾∏
𝑘=1

{
𝜙(c𝑌,𝑖; 𝝁𝑌,𝑘 ,𝚺𝑌,𝑘)𝜙(c𝑋,𝑖; 𝝁𝑋,𝑘 ,𝚺𝑋,𝑘)𝜋𝑘

}𝑧𝑖𝑘
,
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where 𝑧𝑖𝑘 = 1 if (c𝑌,𝑖 ,c𝑋,𝑖) belongs to the cluster 𝑘 and 𝑧𝑖𝑘 = 0 otherwise. We denote
the complete data log-likelihood as 𝑙𝑐 (𝜽) = log (𝐿𝑐 (𝜽)).

Next we present the EM algorithm for the most general model FLM[𝑎𝑘 𝑗 , 𝑏𝑘 ,Q𝑘 , 𝑑𝑘]
- VVV. At the 𝑚th iteration of the EM algorithm in the E-step we calculate
𝐸 [𝑙𝑐 (𝜽 (𝑚−1) ) | c𝑌,1,c𝑋,1 . . . ,c𝑌,𝑛,c𝑋,𝑛,𝜽 (𝑚−1) ], given the current values of the pa-
rameters 𝜽 (𝑚−1) .

This reduces to the calculation of 𝑡 (𝑚)
𝑖𝑘

:= 𝐸 [𝑍𝑖𝑘 | c𝑌,1,c𝑋,1 . . . ,c𝑌,𝑛,c𝑋,𝑛,𝜽 (𝑚−1) ].

𝑡
(𝑚)
𝑖𝑘

=

𝜋𝑘 𝑝𝑘 c𝑌,𝑖 ,c𝑋,𝑖 | 𝜽 (𝑚−1)
𝑘∑𝐾

𝑙=1 𝜋𝑙 𝑝𝑙

(
c𝑌,𝑖 ,c𝑋,𝑖 | 𝜽 (𝑚−1)

𝑙

) .
In the M-step at the𝑚th iteration of the EM algorithm we estimate the parameters

by maximizing the conditional expectation of the complete data log likelihood𝑄(𝜽 |
𝜽 (𝑚−1) ) := 𝐸 [log(𝑙𝑐 (𝜽 (𝑚−1) )) | c𝑌,1,c𝑋,1, . . . ,c𝑌,𝑛,c𝑋,𝑛,𝜽 (𝑚−1) ]:

𝜋
(𝑚)
𝑘

=

∑𝑛
𝑖=1 𝑡

(𝑚)
𝑖𝑘

𝑛
=
𝑛
(𝑚)
𝑘

𝑛
, 𝝁 (𝑚)

𝑋,𝑘
=

∑𝑛
𝑖=1 𝑡

(𝑚)
𝑖𝑘

c𝑋,𝑖∑𝑛
𝑖=1 𝑡

(𝑚)
𝑖𝑘

,

(𝚪𝑘∗ ) (𝑚) =
(∑𝑛

𝑖=1 𝑡
(𝑚)
𝑖𝑘

c𝑌,𝑖 (c∗𝑋,𝑖)⊤
) (∑𝑛

𝑖=1 𝑡
(𝑚)
𝑖𝑘

c∗
𝑋,𝑖

(c∗
𝑋,𝑖

)⊤
)−1

,

𝚺 (𝑚)
𝑌,𝑘

=

∑𝑛
𝑖=1 𝑡

(𝑚)
𝑖𝑘

(c𝑌,𝑖−(𝚪𝑘
∗ ) (𝑚) c∗

𝑋,𝑖
) (c𝑌,𝑖−(𝚪𝑘

∗ ) (𝑚) c∗
𝑋,𝑖

)⊤

𝑛
(𝑚)
𝑘

.

Let

S(𝑚)
𝑋,𝑘

=

∑𝑛
𝑖=1 𝑡

(𝑚)
𝑖𝑘

(c𝑋,𝑖−𝝁 (𝑚)
𝑋,𝑘

) (c𝑋,𝑖−𝝁 (𝑚)
𝑋,𝑘

)⊤

𝑛
(𝑚)
𝑘

.

– q(𝑚)
𝑘 𝑗

, 𝑘 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑑𝑘 are updated as the eigenfunctions associated with
the 𝑑𝑘 largest eigenvalues of W1/2

𝑋
S(𝑚)
𝑋,𝑘

W1/2
𝑋

;
– 𝑎

(𝑚)
𝑘 𝑗

, 𝑘 = 1, . . . , 𝐾, 𝑗 = 1, . . . , 𝑑𝑘 are updated by the 𝑑𝑘 largest eigenvalues of
W1/2S(𝑚)

𝑋,𝑘
W1/2
𝑋

;
– 𝑏

(𝑚)
𝑘

, 𝑘 = 1, . . . , 𝐾 are updated by

𝑏
(𝑚)
𝑘

=
1

𝑅𝑋 − 𝑑𝑘
©­«trace

(
W1/2
𝑋

S(𝑚)
𝑋,𝑘

W1/2
𝑋

)
−
𝑑𝑘∑︁
𝑗=1
𝑎
(𝑚)
𝑘 𝑗

ª®¬ .
For the initial values 𝑡 (0)

𝑖𝑘
we have implemented an initialization with the kmeans

method applied to the data set formed by the combining the coefficients CX, CY.
To prevent the convergence of the EM algorithm to a local maximum, we execute
the algorithm with different initialization values for 𝑡 (0)

𝑖𝑘
, and we keep the best result

given by the EM algorithm using the Bayesian information criterion (BIC). The
number of clusters 𝐾 and the parsimonious model are selected by maximizing the
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BIC. The group specific dimension 𝑑𝑘 is selected through the Cattell scree-test by
comparing the differences between eigenvalues with a given threshold 𝜖 [5].

We determine the clusters using the maximum a posteriori (MAP) rule: an ob-
servation (c𝑌,𝑖 ,c𝑋,𝑖) is assigned to the cluster 𝑘 ∈ {1, . . . , 𝐾} with the largest 𝑡 (𝑚 𝑓 )

𝑖𝑘
,

where 𝑚 𝑓 is the last iteration of the EM algorithm before convergence.

4 Applications

We simulate 600 pairs of curves based on the FLM[𝑎𝑘 𝑗 , 𝑏𝑘 ,Q𝑘 , 𝑑𝑘]×𝑉𝐼𝐼 model,
with 2 clusters and mixing proportions 𝜋1 = 𝜋2 = 1/2. Both the predictors 𝑋𝑖 and the
response curves 𝑌𝑖 are smoothed using 6 cubic B-spline basis functions. We repeat
the simulation 100 times. A sample of theses data is plotted in Figure 1.

Fig. 1 Smooth simulated data colored by group for one simulation.

We compare funWeightClust with the funHDDC method from the library fun-
HDDC in R. We apply funHDDC for the curves obtained by combining the
𝑋𝑖 : [0,12] → R and 𝑌𝑖 : [12,24] → R curves in one curve over the time inter-
val [0,24]. We run both methods for 𝐾 = 2 with all sub-models, and the best solution
in terms of the highest BIC value for all those sub-models is returned. The initializa-
tion is done with the kmeans method, 50 repetitions, and the maximum number of
iterations is 200 for the stopping criterion. We use a threshold 𝜖 ∈ {0.005,0.01,0.2}
in the Cattell test. The quality of the estimated partitions obtained using funHDDC
and funWeightClust is evaluated using the Adjusted Rand Index (ARI) [5], and the
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Table 1 Mean (and standard deviation) of ARI for BIC best model on 100 simulations. Bold values
indicate the highest value for each method.

𝜖 Method ARI Method ARI

0.005 funHDDC 0.8589641 (0.1401613) funWeightClust 0.9965396 (0.006011004)
0.01 funHDDC 0.8527159(0.1375641) funWeightClust 0.9960756(0.006813709)
0.2 funHDDC 0.7264915 (0.1236281) funWeightClust 0.1535521 (0.0371209)

results are included in Table 1. We notice that both funHDDC and funWeightClust
give good results, but funWeightClust outperforms funHDDC. Next, we study the
Adelaide electricity demand data available in the fds package in R. The electricity
demand, in Megawatt (MW), is measured half-hourly, from Sunday to Saturday in
Adelaide, Australia for 508 weeks, between July 6, 1976 and March 31, 2007. We
limit our study to Sundays and Tuesdays, so we have 1016 daily curves. Assuming
that the electricity demand in the morning can be used to predict the demand in
the afternoon, the predictors 𝑋𝑖 include the first 24 points (from midnight to noon)
and the responses 𝑌𝑖 the last 24 points (from noon to midnight). Electricity demand
follows different dynamics on weekends (Sunday) compared to weekdays (Tuesday),
so we apply funWeightClust to partition these data into two groups.

Curves are smoothed using cubic B-splines with 6 basis functions. We compare
funWeightClust with funHDDC applied to the combined curves, and with kmeans
(from the R stats package) applied to the coefficients of the cubic B-splines. We run
the algorithms for𝐾 = 2 clusters. For funWeightClust and funHDDC the initialization
is done using kmeans method, 20 repetitions, and the maximum number of iterations
is 200. The results are included in Table 2 and clearly show that funWeightClust
outperforms the other method. In Figure 2 we present the clusters obtained with
funWeightClust with the threshold 𝜖 = 0.1 (ARI=0.94).

5 Conclusions

We propose a new method, funWeightClust, that extends the funHDDC functional
clustering method to clustering heterogeneous functional linear regression data. Un-
like other mixture of functional regression clustering algorithms, funWeightClust
include multivariate predictors and response variables. The performance of fun-

Table 2 ARI for each method for the Adelaide data.

Method 𝜖 ARI Method 𝜖 ARI Method ARI

funHDDC 0.01 0.48 funWeightClust 0.01 0.61 kmeans 0.55
funHDDC 0.1 0.50 funWeightClust 0.1 0.94
funHDDC 0.2 0.48 funWeightClust 0.2 0.85
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Fig. 2 Clustering with funWeightClust (𝜖 = 0.1) of electricity demand in Adelaide for Sundays
(red) and Tuesdays (black).

WeightClust is tested for simulated data and the Adelaide electricity demand data,
and it always outperforms funHDDC. The difference between the electricity demand
on Sundays and Tuesday is illustrated very well by the dependency between𝑌𝑖 and 𝑋𝑖 .
In addition to clustering, the model used for funWeightClust can be easily extended
for functional classification and prediction.
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Unsupervised Detection of Anomaly
in Public Procurement Processes

Jose Pablo Arroyo-Castro and Shu Wei Chou-Chen

Abstract The procurement of goods and services in Public Administration is crucial
for achieving institutional goals, with a focus on financial responsibility and trans-
parent decision-making. In Costa Rica, public procurement is centralized through
the Integrated Public Procurement System (SICOP). This study concentrates on
goods procurement, aiming to identify successful contracts and detect anomalies.
Machine Learning techniques, particularly under unsupervised approaches, enhance
anomaly detection. The Principles of Integrity in Public Procurement Procedures
from the Organisation for Economic Co-operation and Development (OECD) guide
the evaluation process, emphasizing good procurement management, prevention of
misconduct, and transparency. Various indicators, such as realistic budget estimation
and objection rates, are utilized. Rapid procurement processes and price alterations
may signal vulnerabilities and misconduct, highlighting the need for transparency
and market awareness. Discovering its patterns is critical for accurate results, as
different models respond differently to datasets and sample size changes. Emphasis
should be placed on similar population clusters to avoid detecting natural anomalies.
Implementing management mechanisms and employing data cleaning techniques
are recommended to address data management errors.
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1 Introduction

The acquisition of goods and services in Public Administration is essential for
achieving institutional objectives, emphasizing the importance of acting with finan-
cial responsibility and transparency for proper decision-making. In Costa Rica, the
consolidation of public procurement through a single platform since 2015 has en-
abled the standardization of administrative contracting processes and facilitated the
massive analysis of information.

Employing early warnings in sensitive areas, due to resource constraints, could
improve the implementation of preventive and corrective policies more effectively
[12]. Emphasizing the importance of developing a model that capitalizes on the
regulatory and institutional framework, rather than solely relying on reports is crucial.
Several authors (see e.g. [19, 17]) have already highlighted the potential of big data
and data mining to enhance government audits and decision-making in acquisitions.

Identifying anomalous values is essential for bolstering decision-making across
various fields like medicine and computer science, where it aids in selecting out-
of-range factors. Although less developed in public procurement, its utilization is
justified due to the imperative to promote open data usage, reinforce internal control
measures, and undertake proactive analyses in conflict-prone areas. A crucial factor
is the caution against the risk of selection bias in models based on known corruption
cases [5], which could compromise the objectivity of future analyses. Thus, these
techniques represent pioneering work focused on analyzing and evaluating anomalies
without prior information.

This research focuses on the procurement of goods through the Integrated Public
Procurement System (SICOP stands for Sistema Integrado de Compras Públicas in
Spanish), establishing conditions to define successful contracts and detect processes
with anomalous behaviors.

In the context of public resource oversight, data analysis can now be deeper
thanks to larger databases and Machine Learning techniques aimed at enhancing
detections under both supervised and unsupervised approaches, with the latter being
more consistent with the available data reality.

In typical oversight processes, sampling techniques are commonly used for audits,
thereby, statistical techniques facilitate the utilization of various information sources
and leverage the large volumes of available data. Additionally, in this context of
public procurement where there is no official record of anomalies, the unsupervised
approach is applicable.

The relative success of procurements was approached as the resulting effect at the
level of timeframe, scope, and associated costs, thus generating indicators aimed at
both clarifying the effects of typical procurements and identifying any uncommon
behaviors of interest from the perspective of Superior Oversight.

The research is grounded in the principles of Integrity in Public Procurement
Procedures as outlined by the Organization for Economic Cooperation and Devel-
opment (OECD) [16]. Three main themes are evaluated: good procurement process
management, prevention of improper conduct, and transparency.
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Regarding good procurement process management, the importance of strategic
planning reflecting needs and promoting transparency and accountability is empha-
sized. A key indicator is the realistic estimation of the budget, according to the
Corruption Observatory of Indonesia [17]. Additionally, the number of objections
to the procurement process is considered, following OECD recommendations.
Concerning the prevention of improper conduct, it is noted that excessively rapid
procurement processes could indicate vulnerabilities. The study also mentions mod-
ifications and price alterations as potential risk indicators, according to various
studies.

Lastly, concerning transparency, the importance of verifying, comparing, and
monitoring information provided by users is highlighted. It is mentioned that a deep
understanding of the market and competition can trigger preventive alerts and ensure
a transparent procurement process.

This paper focuses on exploring patterns of public good procurement in Costa
Rica, with the aim of detecting anomalies using unsupervised approaches. Section
2 describes the methodology. The results are presented in Section 3. Finally, the
conclusion, limitations, and future work are presented in Section 4.

2 Methodology

2.1 Data

The analysis was conducted using information spanning from 2018 to 2023 related
to the execution deadlines of acquisitions and the bids submitted in procurement
processes extracted from the Integrated Public Procurement System (SICOP).

For the present research, 9 indicators were developed to generate the identifi-
cation of interest: Objection Count (𝑉1, number of objections filed); Difference
between estimated price and final price (𝑉2); Market Power concentration (𝑉3);
Win Percentage (𝑉4, probability that each supplier has when participating in each
procurement process); Address Similarity (𝑉5); Scope Index (𝑉6, composition of
indicators related to the variation between initially requested and final quantities, as
well as awarded and contracted quantities); Offer Reception Duration (𝑉7); Variation
in amounts during the contracting process (𝑉8); Differences between the awarded
price and other offers received (𝑉9).

These indicators allow for the detection of irregular behaviors in public institu-
tions. This information is crucial for generating red flags that may indicate cases of
corruption or inadequate management of public procurement processes.

Additionally, the investigation uses a list of public institutions according to le-
gal nature for a simpler analysis. In this case, the total number of observations
for each sector is as follows: Autonomous Institutions, 113,206; Municipalities,
112,569; Ministries and Attached Bodies, 43,098; State Public Enterprises, 6,092;
Semi-autonomous Institutions, 4,880; Electoral Authority, 4,033; Non-State Public
Enterprises, 4,032; Bodies Attached to the Municipal Sector, 3,718; Non-State Pub-
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lic Entities, 3,150; Legislative Branch Bodies, 1,090; Branches of the Republic’s
Powers, 771; Bodies Attached to Autonomous Institutions, 731; District Municipal
Councils, 612; Trusts, 566; Development Associations, 411.

2.2 Data Preprocessing and Winsorization

To obtain a point of comparability with the goods undergoing the corresponding
evaluation, the classification system used in Costa Rica is employed, which is based
on the framework established by the International System indicated by the United
Nations.

• Classification Code: The first 8 digits are based on the United Nations Standard
Products and Services Code (UNSPSC).

• Identification Code: The digit from 9 to 16 consist of eight digits that are used to
define. technical specifications, without a particular meaning.

• Product Code: Finally, the digit from 17 to 24 are eight digits that are requested
by suppliers and aimed at uniquely identifying the products offered.

Since the aim was to make comparisons, the number of digits allowing for a
greater degree of variability among goods in the same category was evaluated.

Table 1 presents the frequencies of events on the SICOP platform according to the
first 8, 16 and 24 digits identifying the procurement. Note that the limited variability
of information when considering all 24 digits (84.35% of the goods appear only
once). On the other hand, the greatest variability occurs with the first 8 digits, but
this would not allow for proper comparability of goods.

In order to reduce the number of codes that are impossible to compare (due
to being unique contracts), eligible offers presented for such goods were included,
which reduced the unique codes to 38.63%. This allowed for maximizing compara-
bility between goods with the least possible loss of information. Therefore, it was
necessary to use the first 16 digits to conduct the analyses presented in this paper,
that is, Classification Code and Identification Code are considered in the subsequent
analysis.

Table 1 Number of occasions in which the offered goods appear on the SICOP platform according
to the number of identification digits considered.

Count 8 Digits 16 Digits 24 Digits

1 14.41% 38.63% 78.05%
2 9.47% 18.68% 12.88%
3 5.99% 10.45% 4.15%
4 5.85% 6.44% 1.80%
5 4.53% 4.26% 0.91%
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Fig. 1 Descriptive statistics of final indicators used.

We had over 298,000 observations, corresponding to a total of 257 institutions
or legal entities responsible for the awards. Additionally, observations were imputed
using percentiles, where values in the top 1% of the indicators were replaced with the
corresponding scores at the 99th percentile1. This replacement was carried out due
to certain doubts about the reliability of the information used. It is worth mentioning
that no missing values were found in the indicators used.

Most indicators exhibit unbalanced behaviors, as depicted in Figure 1, where
some variables have extremely skewed distributions and others have distributions
with heavy tails. Additionally, the indicators are not correlated because their creation
considered stages of the process that were entirely independent from each other.

2.3 Anomaly Detection Techniques

Based on principles of unsupervised detection, the following models are employed
to evaluate the results:

• Linear Models using Robust Principal Component Analysis (RPCA): This tech-
nique, which makes no assumptions about data distribution, was used to detect

1 This replacement was carried out due to certain doubts about the reliability of the information
used. An illustrative example of this was observed in the result of an indicator comparing the
awarded amount with the estimated amount by the contracting unit. The result showed significantly
higher figures, exceeding a million, even though one would logically expect values no greater than a
dozen. Manual reviews of such cases revealed that administrations sometimes filled in the estimated
amount field with just 1 colon, causing any awarded amount to result in figures in the thousands
or millions, which could mask other behaviors with genuine anomalies. This imputation technique
was implemented to mitigate the detrimental effect of extreme values on the quality of prediction
results.
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anomalies in the SICOP data platform analysis. Dimensionality reduction in mul-
tivariate scenarios allows for rapid information processing, and the reconstruction
of principal components aids in identifying anomalies [1].

• Proximity-based Outlier Detection (K Mean and AG.K): This approach seeks to
determine the proximity between observations, where short distances indicate
similarities. Outliers are identified when their locality is sparsely populated,
and the high difference in distance between these and normal points facilitates
distinguishing between weak and strong outliers in noisy datasets [21], and in the
case of Aggregation K-means, anomaly detection is performed under the principle
of Hilbert space filling [2].

• Density-based Outlier Detection: The Local Outlier Factor (LOF) technique deter-
mines how isolated an object is from the surrounding neighborhood, considering
if all observations in a locality can be outliers [3].

• Outlier Detection based on Subspaces Parallel to Axis (ISO): This technique
allows determining the degree of isolation of a variable in space. Isolation Forests
are based on the premise that anomalies are few and different, making them more
susceptible to isolation than normal points [11].

• Outlier Detection based on Subspaces using UMAP: Based on the theory of sim-
ple complexes and topological data analysis, UMAP uses local approximations of
manifolds to construct a topological representation of high-dimensional data. This
is relevant as the algorithm operates in terms of fuzzy simplicial sets, allowing a
description in terms of construction and operations on weighted graphs. This en-
sures complete coverage without ”gaps” and without unnecessarily disconnected
components in the data manifold [15].

The analyses were conducted using the R software, specifically version 3.6.3,
which is widely recognized for its robust capabilities in statistical analysis [18]. The
R packages employed for developing the required models include:

• isotree [4]: for isolation-based anomaly detection.
• factoextra [8]: for extracting and visualizing the results of multivariate data

analyses.
• rrcov [20]: for robust covariance estimation.
• DDoutlier [13]: for detecting distance-based outliers.
• cluster [14]: for clustering analyses.
• robustbase [20]: for basic robust statistics.
• umap [9]: for non-linear dimension reduction.

Based on expert criteria established by the Supreme Audit Institution, it was
assumed that 5% of the total contracts could be deemed anomalous. This assumption
was derived from previous revisions conducted as necessary steps in the Audit
Process. Consequently, the threshold was determined based on the score obtained
for each methodology. As it is an unsupervised identification, a consensus concept
was employed, such as those proposed by [12, 7], who concluded that a combination
of results in a hybrid model provides greater accuracy than any of the techniques
used independently.
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In addition to the previously mentioned premise, the method for classifying
anomalies as either strong or weak is established by [1]. For instance, consider a
scenario where the threshold to determine if an observation is anomalous is set at
0.5, in accordance with literature and best practices, and the maximum observed
value in the dataset is 0.9. In this case, scores ranging from 10 to 100 are assigned
to each anomaly based on their severity. These scores facilitate the measurement of
the relative severity of each anomaly. By aggregating these scores for all identified
anomalies, it is possible to determine which anomalies are the most significant across
various models.

3 Results

Regarding the sectors, the first basis used is the list of public institutions according
to legal nature updated by MIDEPLAN in April 2023, making an approximate
allocation of previously unclassified organs. This allowed for an analysis to determine
detection levels according to various techniques, as seen in Table 2, where it is
noteworthy that the percentage of anomaly is approximately uniform for these sectors
across all analyzed models in the case of Autonomous Institutions, semi-autonomous
ones, as well as in the case of Municipalities and Ministries with their attached
organs. This type of identification requires additional steps to deepen the nature of
the anomalies, attempting to construct databases in which there is certainty about
positive anomalies (possibly related to good institutional practices) and negative
anomalies (caused by points for improvement in procurement processes).

It is relevant to highlight that Figure 2 illustrates that the consensus score lies, in
most cases, between the maximum and minimum anomaly percentages identified by
the different models. This finding suggests that applying a consensus in the scores
achieves a smoothing effect on the observed detection percentage, allowing models
that detect a high percentage of anomalies not to increase the number of observations
that need to be reviewed through manual analysis.

This type of consensus could be of utmost importance when conducting investiga-
tions focused on sectors with higher incidence, as it would leverage the combination
of the best available techniques without substantially increasing sample sizes.

Additionally, it is vital for the application of these techniques to establish standard-
ized units of measurement, as the increases observed in the detection level associated
with subpopulations of different normative nature are also replicated when analyzing
the differences in types of goods or in the types of procedures carried out to achieve
the execution of the projects.



30 J.P. Arroyo-Castro and S.W. Chou-Chen

Table 2 Percentage of anomalies by sector and anomaly detection techniques.

Sector Machine Learning techniques
ISO AG K RPCA KMEAN LOF UMAP

Development Associations 0.03 0.05 0.06 0.03 0.03 0.03
District Municipal Councils 0.02 0.02 0.01 0.07 0.03 0.03
State Public Enterprises 0.11 0.07 0.08 0.02 0.10 0.03
Non-State Public Enterprises 0.03 0.03 0.02 0.02 0.07 0.02
Non-State Public Entities 0.04 0.05 0.05 0.04 0.06 0.03
Trusts 0.19 0.04 0.13 0.06 0.02 0.04
Autonomous Institutions 0.07 0.08 0.05 0.06 0.06 0.07
Semi-autonomous Institutions 0.03 0.07 0.05 0.06 0.04 0.05
Ministries and Attached Bodies 0.04 0.05 0.05 0.05 0.05 0.04
Municipalities 0.03 0.02 0.05 0.04 0.04 0.04
Electoral Authority 0.02 0.04 0.06 0.03 0.05 0.06
Branches of the Republic’s Pow- 0.13 0.07 0.06 0.02 0.04 0.14
ers
Bodies Attached to Autonomous 0.04 0.08 0.02 0.08 0.10 0.05
Institutions
Bodies Attached to the Municipal 0.02 0.05 0.04 0.18 0.04 0.02
Sector
Legislative Branch Bodies 0.05 0.06 0.04 0.04 0.05 0.05

Maximum observed

Minimum observed

Consensus score 

        Branches of the Republic's Powers
    Legislative Branch Bodies

    Bodies Attached to the Municipal Sector
    Bodies Attached to Autonomous Institutions

    Electoral Authority
    Municipalities

    Ministries and Attached Bodies 
Semi-autonomous Institutions

    Autonomous Institutions
    Trusts

    Non-State Public Entities
    Non-State Public Enterprises

       State Public Enterprises
District Municipal Councils

    Development Associations

Fig. 2 Detection thresholds by sector.

4 Conclusions

Anomaly detection techniques in public procurement of goods offer a means to assess
unusual behaviors in information; however, conducting a thorough analysis of the
identifications made is crucial. The inherent ambiguity of whether such behaviors
are beneficial or detrimental underscores the need to develop specific indicators to
implement such analyses for detecting cases of corruption or other associated crimes.

In the statistical domain, it is important to address the application of techniques
with a deep understanding of the behavior of the variables analyzed, as inadequate
calibration can yield opposite results. Some models, such as K Means or UMAP,
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require high computational processing power, although this does not always translate
to better results. Models like ACPR, on the other hand, may offer faster results and
greater anomaly detection capability.

Focusing application efforts of the techniques is essential, considering that not
all models respond the same way to sample size increases, and mixing different
populations can lead to the identification of peculiarities not necessarily related to
the sought patterns or behaviors. Additionally, it is necessary to reduce sample sizes
to allow for similar population clusters and thus avoid detections of anomalous values
by their own nature.

Finally, most errors and anomalies identified in SICOP data management stem
from human errors in data entry, suggesting the implementation of management and
control mechanisms, and currently the use of these techniques for data cleaning.
In the context of future research, several areas could be explored further based on
the studies outlined here. For instance, it would be relevant to assess the predictive
power of the models on different types of information distributions and evaluate
their impact on populations with mixed distributions, as typically encountered in
real-world applications. Moreover, enhancing the frequency and quality of the data
employed by implementing a more automated control system is imperative.
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Predicting Soil Bacterial and Fungal
Communities at Different Taxonomic Levels
Using Machine Learning
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Bakhtyari, Mohamed Hijri, and Vladimir Makarenkov

Abstract It is widely known that predictions about macrobiological communities
depend on the taxonomic scale. Nevertheless, the applicability of such predictions
remains uncertain when extended to microbial communities of the soil. This study
employs various traditional machine learning techniques to forecast bacterial and
fungal communities within the soil across different taxonomic levels. To investigate
this avenue, we use an extensive soil microbiome dataset collected by diverse research
groups. Our bacterial results indicate significantly superior prediction accuracy at
the Phylum, Class, and Order taxonomic levels compared to the Family and Genus
levels. Lower prediction scores, compared to bacteria, were generally found for fungi,
with the best results obtained at the Phylum and Class taxonomic levels. Overall, our
findings suggest a consistent trend across taxonomic scales, bridging macrobiological
and soil microbiological communities. For bacterial data, our prediction results
obtained using the Random Forest and Gradient Boosting methods were generally
better than those found by Averill and co-authors, who used the Dirichlet multivariate
regression model in their study recently published in Nature Ecology and Evolution.
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For fungal data, we recommend using Random Forest to provide the soil community
predictions.

Key words: biological data prediction, linear regression, decision trees, random
forest, gradient boosting

1 Introduction

Knowledge of the spatial distribution of different soil microbial taxa on a large
scale (across the planet) can improve our understanding of different ecosystems
and the processes they regulate. Indeed, the soil microbiome governs the rhythm of
critical processes, from agricultural productivity and animal disease transmission to
greenhouse gas emissions [1]. Existing axes of research have focused on highlighting
[12]-[2] the impact of environmental factors on the soil microbiome and on the
study of molds and pathogens affecting human health due to their economical and
epidemiological influence. However, it remains unclear whether this information can
help make confident predictions about the composition of different microbial groups
in locations that have never been explored [1]. Additionally, one of the challenges in
the research in this area is our awareness of the immense spatial heterogeneity of soil
microbial communities [3] (even at small scale levels) which has led to skepticism
about our ability to predict the presence and the abundance of key groups of soil
microorganisms [12].

The challenge before integrating soil microbial diversity information into ecosys-
tem and ecological characteristic analysis is to be able to ensure that predictions of
the presence and the abundance of different soil microbial groups could be carried
out and the accuracy of these predictions could be quantified [1].

Research regarding macrobiological communities has shown, for example, that
when it can be difficult to predict the identity of a particular species in an ecosystem,
it is still possible to predict the relative abundance of a species among thousands oth-
ers [1]. The question of whether these relationships apply at the level of soil microbial
communities as well remains open. This is because unlike to macrobiological com-
munities, multiple features of microbial biology can generate fundamentally different
ecological scaling relationships. For example, the dynamic nature of the microbiome
related to microbial habitat preferences that can evolve and change frequently, can
quickly erode the taxonomic signal, leading to greater predictability at lower rather
than higher taxonomic scales. On the other hand, the spatial scale, even at the level
of soil cores, still remains immense for most microorganisms because of the large
diversity even at such a small scale of observation [12, 5], which could erode the
environmental signal on a spatial scale [1].

Recently, in their study, Averill et al. [1] showed that it was possible to make pre-
dictions of the soil microbiome composition and that the quality of such predictions
largely depends on the scale being considered. These authors also showed that this
scale dependence is similar to the scale dependence observed at the level of macro-
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biological communities. More precisely, the prediction depends on the spatial scale,
but also on the taxonomic scale, and this is consistent with observations already
found for the plant and animal communities [2].

It is currently known that models taking into account functional profiles of mi-
crobial communities are much better predictors [7], and thus can better describe
the variation in community composition related to environmental conditions, than
models based on taxonomic profiles only [6]-[9]. However, the incorporation of func-
tional groups presents some challenges, including the need for a priori knowledge
of the most relevant functional traits among large groups to determine microbial
sensitivity to environmental conditions [1, 13]. There is a big gap in work in the
area of the prediction of the soil microbiome composition due to unavailability of
benchmark data. In our study, we will compare the performances of different tra-
ditional machine learning methods, while focusing on the prediction of taxonomic
groups only, as it has been done by Averill et al. [1] who used a Dirichlet multivariate
regression model to predict microbiological communities of the soil.

2 Data Description

In this work, we used a combined large-scale dataset of soil microbial community
composition, including 134 taxonomic groups of soil bacteria and fungi, which has
been recently generated and combined to be used by predictive statistical models [7].
We trained and tested the Linear Regression, Decision Tree, Random Forest, and
Gradient Boosting machine learning methods (within MultiOutputRegressor option)
on this dataset.

The models were trained to predict all bacterial and fungal groups present in at
least 50% of samples of the test dataset. We used commonly measured climate, soil,
and ecological features that may have impact on microbial diversity and composition,
and are available at large spatial scales. The quantities to be predicted were the
relative frequencies (summing to 1) of different bacterial and fungal species present
at a given taxonomic level. The considered environmental (i.e. independent) features
included: Mean annual temperature, mean annual precipitations, remotely sensed
net primary productivity, the presence or absence of a forest vegetation, soil pH, soil
percentage of carbon, soil ratio of carbon to nitrogen, and a relative abundance of
ectomycorrhizal trees (see also [1, 5, 3]).

3 Methods

3.1 Data Preparation and Preprocessing

We analyze a series of large-scale datasets of soil microbial community composition,
encompassing taxonomic groups of soil bacteria and fungi. For each taxonomic level
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(from Phylum to Genus), two different datasets were considered: one containing
independent variables, representing a range of features, and the other containing
dependent variables, reflecting taxonomic classification of soil bacteria and fungi.

The preprocessing of these datasets involved feature scaling using the Standard-
Scaler from the sklearn library. This normalization step is crucial to mitigate the bias
in models towards variables with larger magnitudes and to enhance the comparability
of features on a standardized scale.

3.2 Model Implementation

Our approach involved four machine learning (ML) regression models used to predict
the composition of the soil microbiome at different taxonomic levels. The selected
models include Linear Regression, Decision Tree Regressor, Random Forest Regres-
sor, and Gradient Boosting Regressor, encapsulated within a MultiOutputRegressor
to handle multi-dimensional outputs. These models were chosen for their varied
learning methodologies, ranging from simpler linear approaches to more intricate
ensemble methods. The scikit-learn implementation [11] of these models was used
in our study.

• Linear Regression: establishes a baseline for performance comparison, modeling
the relationship between a dependent variable and one or more independent
variables by fitting a linear regression equation to observed data.

• Decision Tree Regressor: extends the concept of decision-making through a tree-
like structure of choices, allowing the model to capture non-linear relationships.
Each node in the tree represents a decision point, splitting the data into subsets
based on the most discriminative features. Decision tree regressor is a powerful
tool, enabling one to model complex hierarchical decision processes inherent to
taxonomic classification.

• : integrates multiple Decision Trees to form an ensem-
ble which enhances the prediction accuracy and prevents overfitting. It aggregates
the predictions from numerous trees to produce more accurate and stable predic-
tions. Its main strength lies in its ability to learn from a vast number of decision
trees derived from various subsets of the dataset, making it very resilient to noise
and capable of handling complex, multidimensional data.

• : sequentially constructs trees, each correcting its
predecessor, to minimize prediction errors. Since this model does not natively
supports multioutput regression, we used the MultiOutputRegressor class
from scikit-learn to extend the Gradient Boosting Regressor capabilities to multi-
dimensional output spaces, making it ideally suited for our multi-label regression
task [10]. More specifically, the model works by dividing the regression problem
into separate problems for each target variable to be predicted. We exploit Gradient
Boosting’s refined error correction with the MultiOutputRegressor’s ability to
handle multiple dependent variables, thereby significantly enhancing the model’s
performance across all taxonomic levels.
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Different variants of each considered machine learning model at different taxo-
nomic scales (i.e. Phylum, Class, Order, Family, and Genus) were built. In our study,
80% of the original dataset was used to train the model and the remaining 20% to
validate the results.

3.3 Performance Evaluation

We evaluated the models’ performances using the 𝑅2 (R-squared) metric. This sta-
tistical measure was employed in our work for its widespread acceptance and in-
terpretability in regression analysis [4]. 𝑅2 measures the proportion of variance in
the dependent variables that could be predicted from the independent variables by a
regression model. It provides a good insight into the performance of each model by
measuring how well the regression predictions approximate real data.

An 𝑅2 score of 1 indicates that the regression predictions perfectly fit the data,
whereas an 𝑅2 score of 0 or less indicates that the model does not explain well the
variability of the target data around its mean. The formula used for calculating 𝑅2 is
as follows:

𝑅2 = 1−
𝑛
𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦̄)2 , (1)

lues, 𝑦̂𝑖 is the predicted values, 𝑦̄ is the mean of thewhere 𝑦𝑖 is the observed va
observed values, and 𝑛 is the number of observations. The average 𝑅2 score values,
over all available bacterial or fungal communities present at a given taxonomic level,
were calculated and reported in our study.

4 Results

As can be observed by analyzing the models’ prediction results reported in Table 1
and shown in Fig 1, Gradient Boosting Regressor demonstrated a superior perfor-
mance for the Phylum and Class bacterial taxonomic levels. The ability of this model
to handle complex patterns in the data makes it the model of choice for these two
taxonomical levels. The Random Forest Regressor showed the best performance at
the Order and Family bacterial taxonomic levels.

Conversely, the Linear Regression model, while moderately effective, was con-
sistently outperformed by Gradient Boosting and Random Forest Regressors. The
Decision Tree Regressor recorded the least favorable results, especially at finer taxo-
nomic resolutions as indicated by its negative 𝑅2 scores in some cases. These results
suggests that Decision Tree Regressor is not well-suited for complex data prediction
tasks, requiring finer resolution, like prediction of soil bacteria.
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Table 1 Average 𝑅2 values provided by ML methods for various bacterial taxonomic levels∗.

Methods Phylum Class Order Family Genus

Linear Regression 0.356 0.267 0.332 0.286 0.098
Decision Tree 0.186 -0.044 -0.235 -0.077 0.094
Random Forest 0.528 0.469 0.494 0.385 0.145
Gradient Boosting 0.543 0.483 0.474 0.316 0.097
Dirichlet multivariate regression (Averill et al.) 0.494 0.395 0.445 0.353 0.229

∗ 𝑅2 score of the best performing method at each taxonomic level is highlighted in bold.

Fig. 1 𝑅2 score comparison plot for bacterial data. The performances of our two best methods
(Random Forest and Gradient Boosting regressors) and the Dirichlet multivariate regression used
by Averill et al. (2021) are illustrated.

Table 2 Average 𝑅2 values provided by ML methods for various fungal taxonomic levels∗.

Methods Phylum Class Order Family Genus

Linear Regression -0.007 -0.257 -0.039 -0.036 0.003
Decision Tree -0.46 -1.813 -1.737 -0.771 -0.869
Random Forest 0.261 0.162 0.158 0.194 0.218
Gradient Boosting 0.168 -0.062 0.017 0.122 0.139
Dirichlet multivariate regression (Averill et al.) 0.245 0.219 0.179 0.114 0.107

∗ 𝑅2 score of the best performing method at each taxonomic level is highlighted in bold.

In comparison, the Dirichlet multivariate regression model used by Averill et al.
exhibited a competitive performance across various taxonomic levels, showing the
best result at the Genus taxonomic level, but was generally outperformed by our
Gradient Boosting and Random Forest implementations on bacterial data.
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Fig. 2 𝑅2 score comparison plot for fungal data. The performances of our best method (Random
Forest) and the Dirichlet multivariate regression used by Averill et al. (2021) are illustrated.

Regarding the fungal data (see Table 2 and Fig 2), Random Forest Regressor
demonstrated the best overall performance compared to the other competing meth-
ods, including the Dirichlet multivariate regression used by Averill et al. The pre-
diction scores for fungi were lower than those obtained for bacteria. In general,
Random Forest significantly outperformed the method of Averill et al. at the lowest
taxonomic levels (i.e. Family and Genus). Close performances between these two
methods were shown for the Phylum and Order taxonomic levels, whereas for the
Class taxonimic level the method of Averill et al. outperformed its competitors. Gra-
dient Boosting Regressor provided good predictions at the lowest taxonomic levels,
but was much less performant at the Class and Order levels. The Linear and Decision
Tree Regressors did not provide satisfactory results for fungal data (see Table 2).

In summary, our results indicate that our ability to recover relative frequencies
of soil bacterial and soil fungal communities increases with taxonomic scale as the
predictions are generally better at the Phylum and Class taxonomic levels than at
the Order, Family, and Genus taxonomic levels. Despite initial skepticism about the
ability to make predictions of the soil microbiome composition due to an extraor-
dinary taxonomic diversity within bacterial and fungal communities, our results are
consistent with patterns observed in plant and animal communities, suggesting that
there is a general taxonomic scaling model in biology.
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5 Conclusion

Nowadays, predictions in the field of microbiome are expanding, particularly regard-
ing the human microbiome. However, in ecology, works addressing the question of
predicting soil microbial communities are still rare [8]. This is partly due to the lack
of reliable benchmark data, but also because the soil contains a greater diversity
of microorganisms than other environments, thus making the task of soil-related
compositional predictions much more challenging.

Our findings suggest that Random Forest Regrossor can be effectively used to
predict relative frequencies of species from both bacterial and fungal communities
of the soil at different taxonomic levels, using environmental features. Moreover, we
discovered that the soil community predictions are generally much better at higher
taxonomic levels (i.e. Phylum and Class). It remains to be determined, however,
whether the same trend can be observed at different spatial scales (by analyzing
separately microbial data at the Core, Plot, and Site levels). In addition, the inclusion
of other features already known to be highly informative, such as characteristics of
species interactions and covariates quantifying the relative importance of determin-
istic versus stochastic ecological processes for microbial community composition,
could improve the accuracy of predictions. Furthermore, we plan to explore the
soil community behavior at spatial scale by training deep learning models, such as
LSTMs, in order to make predictions of the soil microbiome evolution over time.
Given the dynamic nature of the soil microbiome, predictions over time are essential
in order to improve our knowledge of underlying ecological processes.
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Candidates, Parties, Issues and the Political
Marketing Strategies: A Comparative Analysis
on Political Competition in Greece

Vasiliki Bouranta, Georgia Panagiotidou and Theodore Chadjipadelis

Abstract This paper explores the evolving domain of political marketing, a field
that extends beyond communication methods and public relations, encapsulating
activities that influence the political behavior of parties and individual candidates.
Drawing on theoretical frameworks and methodologies, we explore the application of
marketing mix theory (product, price, place, promotion) within this political context.
The focal point of our research is an in-depth examination of the political marketing
strategy employed by Greek political parties during the Greek parliamentary elec-
tions of June 2023. The analysis scrutinizes the strategic patterns used in terms of
selecting promotion tools, prioritizing political agenda issues, and focusing on the
candidate versus the party. This involves advanced multivariate analysis methods
such as Cluster Analysis, Multiple Correspondence Analysis, and Principal Compo-
nent Analysis, which are utilized to detect and analyze in a comparative perspective
the different strategies of the candidates and the parties in the Greek parliamentary
elections of 2023. Moreover, the analysis focuses on how parties incorporated the
newly implemented simple proportional representation system into their marketing
strategies and their pre-electoral campaigns.
Our data derived from various sources including newspapers, mass media (TV,
radio), and social media, allowing us to scrutinize the political product (party pro-
gram and candidates), the ’price’ (the voter’s vote), the distribution strategies and
promotion activities at both local and national level. Furthermore, we explore the
relation between candidate profiles, their political marketing strategies, their politi-
cal characteristics, and their probability of being elected or not. The paper suggests
ultimately that political and electoral competition pivots on three pillars “candidates,
parties, issues” which interact within the institutional framework as configured by the
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electoral law. This research bridges the gap between political marketing strategies,
electoral systems, and their impact on campaign success, contributing significantly
to the independent scientific scope of political marketing.

Key words: political marketing, electoral campaign, Greek elections, electoral sys-
tems, multivariate analysis

1 Theoretical Background

Political marketing, although a relatively new interdisciplinary field that merges
two seemingly incompatible areas of study and action, marketing and politics, has
garnered more interest and attention from specialists than ever before. The continuous
and uninterrupted evolution of technology, media, communication methods, as well
as techniques for shaping opinions, choices, and decisions, affects every aspect of
human activity, including political processes. Political marketing, like commercial
marketing, aims to “identify, predict, and satisfy the needs and desires of customers
through efficient and effective use of resources...” [7]. Of course, this definition
pertains to commercial marketing and the resources of a company, business, or
profit-making organization. In brief, it involves the ”process of managing whereby
goods and services move from the concept to the customer” (Business Dictionary).
Lamb & Crompton [4] refer to marketing as a mindset, a philosophy that should
govern the operation of a business at every level. In this sense, similar management
models for goods and services can be applied to non-profit businesses, philanthropic
organizations, public services [3], as well as political parties and figures [6]. There
are still many debates about the types and scope of activities included in the process
of strategic marketing planning and implementation, but it is undeniable that it is a
useful, evolving, and now essential tool in the fields of politics, governance, and pre-
election campaigns. Studying and analyzing the ways in which political “players”
utilize marketing tools and concepts to understand, respond to, participate in, and
communicate with their political market in order to achieve their goals is reasonable
and beneficial [5].

The dominant model of strategic marketing analysis (marketing mix theory)
in the economy and the transaction between sellers and buyers, businesses and
consumers, focuses on four elements, the so-called 4Ps: product, price, place, and
promotion. In the case of designing and developing a model of strategic political
marketing, the same elements are reformulated and shaped according to the analysis
framework. Parties and candidates are the “businesses”, and their political programs,
identities and proposals are their “products”. The political “market” includes all the
possible choices available to voters, who in this case are equivalent to consumers,
as well as all other factors that shape the market, such as the institutional framework
and the political culture of the country under study. Elections represent the final
“transaction” where voters give their “payment” (their vote) for the “purchase” of the
offered “product” they choose. Finally, the process of promoting and distributing the
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“product”, which includes all types of communication activities with the electorate,
the design and implementation of which depend to a large extent on the parties’
organizational structure and its campaign initiatives at every level, local and national,
as well as on the resources and financial capabilities available to a party and, even
more so, to an individual candidate.

2 Methodology

Based on the above-mentioned analysis model, we focused on the recent parlia-
mentary elections in June 2023 in Greece and attempted to examine the degree of
planning and implementation of a strategic political marketing model both at the
party level and at the candidate level. Obviously, the analysis conducted on the party
formations was qualitative, while the collection and analysis at the level of parlia-
mentary candidates included quantitative data as well. Our research mainly focused
on recording and analyzing the methods and tools for developing and implementing
the process of promoting candidacies at an individual, rather than party, level. Our
aim was to assess the utilization of political marketing strategies by candidates dur-
ing the pre-election period, encompassing both traditional methods (posters, printed
materials, TV advertisements, etc.) and digital channels. Additionally, we aimed
to investigate any correlation between the adoption of marketing strategies and the
candidates’ successful election to parliament. Furthermore, we sought to create a
profile of Greek candidates in representative elections based on their experience
across various levels of governance (central, local), as well as their involvement in
diverse social and economic organizations (professional associations, civil society
institutions, NGOs, or other groups). The national elections of May were especially
significant for the country since a proportional representation electoral system with
3% threshold was implemented for the first time in many years in Greece. No party
was expected to win the overall majority and form a single-party government. At
the same time, no pre-election coalition or cooperation between parties had been
achieved which could potentially lay claim to power. Therefore, a second round of
elections was expected to be conducted on June. That time a mixed electoral system
would be implemented, namely proportional representation with a bonus of repre-
sentative seats to the first party. Hence, it was an expanded pre-election campaign
period when the usage of marketing methods and tools was extensive and reached a
new peak.

The sample size was 465 candidates and current representatives of the Greek
National Parliament regardless of party identification. Our variables consisted of
demographics (sex, age, occupation, education), political experience (as previous
candidate, as previously elected, as serving in political positions) and marketing
promotion tools used in their campaign (such as websites, social media, spots on
internet, TV spots, professional marketers etc.) There was also a set of 15 ques-
tions regarding the candidates’ political characteristics (party loyalty, participation
in internal party procedures, internal party competition, engagement with differ-
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ent political issues, with different institutions of the state and the society). In the
last part of the questionnaire, there was a set of 9 questions regarding the level
of engagement of each candidate or representative to professional unions, NGO’s,
sport, cultural, religious or social groups. For the analysis of the data, we chose
to use a two-fold method, namely Hierarchical Cluster Analysis (HCA) and Facto-
rial Correspondence Analysis (AFC). The variables of the political characteristics
of the candidates/representatives (set of 15 variables) and the variables regarding
participation and engagement in civil society institutions (set of 7 variables) were an-
alyzed separately. As a result, the analysis produces profiles (clusters) of candidates
in accordance to their political characteristics, and also different profiles (clusters)
related to their political participation/engagement typologies. These two new cluster
membership variables were afterwards analyzed jointly with the rest of the variables
(demographics, marketing strategy, experience, being elected or not), using again the
two–step AFC and HCA analysis tool. In our paper these variables were analyzed in
two different models: the first model incorporates political characteristics, whereas
the second model focuses on marketing strategy. These two models, utilizing AFC
and HCA, were visualized in two behavioral maps (“semantic” maps) enabling a
comparative analysis of the different strategies of the candidates and the parties.

3 Results

In Figure 1, the new clusters of the variables of the demographics and political
experience, interest and participation are illustrated. The HCA creates 4 clusters
of variables. One of them consists of males, aged 50+, professionals or excluded
from the workforce (probably unemployed or pensioners), highly educated, highly
interested in every aspect of the state superstructure (in the economic, social and
political area), and highly involved in participatory procedures and institutions of the
political and social sphere. Another cluster consists mainly of young and middle-aged
females (ages 21-50), private sector employees who are not particularly interested in
politics. The third cluster consists of public sector employees who have finished high
school and are not so connected to any of the institutions (state, economy or society).
And in the fourth cluster there are also people, regardless of age, sex, occupation
or education who are politically indifferent or disengaged with political and social
institutions. In the next step, we implemented the same analysis (HCA) with the
answers of the candidates/representatives. The analysis produced 6 new profiles of
them that are analytically presented in Table 1

The results suggest that the majority of the candidates/representatives that show
a great interest in participating in politics are middle aged male, of higher education
that work as freelancers. Another major group are senior people- regardless sex- that
still work or have worked in the public or private sector that carry a strong party
identity and feel a close connection to the party that they support. The profiles of
female candidates/representatives, which are fewer in number either way, are more
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Fig. 1 Clusters of variables regarding political characteristics.

versatile. The older females seem to be more interested in social, political and insti-
tutional issues and have a strong party identity. However, they seem to be closer to
the universal or civil society (but also trade unions) that promote these concerns than
to the participatory procedures that the state offers. There are also some middle-aged
females that work in the civil or private sector and feel close to their party and to the
parliament but to no other institution. In contrast, there are some young females that
seem to be interested in everything other than the parliament and the media. These
females are of high education and work in the private sector. As mentioned above,
HCA was separately implemented for the variables of participation and engagement
with civil society institutions. Also 4 clusters of new variables have emerged from this
analysis. The first cluster/variable is no participation at all, in any form of political
or social institutions. The second cluster/variable is for participating in trade or pro-
fessional unions, the third participating in NGO’s or cultural or social organizations,
namely participation in civil society institutions. The last cluster/variables combine
-oddly enough – participation in sports or religious organizations. As before, we
implemented the same analysis (HCA) with the answers of the candidates/repre-
sentatives. Again, the analysis produced 6 new profiles of them. A small number
of candidates/representatives seem not to participate in any form of institution. The
profile that fits the majority of the respondents suggests the participation in all the
forms of institutions or organizations of the civil society, the social and political
sphere except sports or religious organizations. In the next stage of our analysis, we
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Category Code 935
5.9%

938
5.1%

939
8.0%

940
43.2%

944
32.6%

923
5.3%

Male SEX1 1.72
Female SEX2 6.7939 3.51 6.19
21–35 AGE1 78.37
36–50 AGE2 2.38 2.51 4.45
51–65 AGE3 2.36
66+ AGE4 8.35 3.84 9.39
High School/Lyceum EDU3 3.55 10.27 6.66
University/TEI EDU4 2.15
Public Sector OCY-1 5.24 10.27
Private Sector OCY-2 1.10 3.67 2.75
Freelancer OCY-3 3.95 6.67
Outside the workforce OCY-4 77.01 7.96
Party loyalty E51 1.13 1.13 1.13 1.13 1.13

E52 92.09
Participatory procedures E61 3.20

E62 5.74 36.67 7.34
Economics E81 3.69

E82 25.28 22.21
Social, political, institutional issues E91 1.92 2.65 1.88 2.78

E92 24.24 52.78
Current issues E101 4.02 4.38

E102 23.07 22.05 3.68
Parliament E111 1.22 2.56

E112 5.24 6.32 11.47
Local politics E121 3.75 4.70

E122 2.31 11.42 18.58 1.94
Mass Media E131 3.51

E132 8.98 15.85 1.94 3.74
Financial Institutions E141 4.56

E142 9.26 8.95 3.31 1.36
Universal Institutions E151 1.21 2.09

E152 7.66 3.49 1.28
Political Institutions E161 5.33 1.55

E162 14.75 15.47 4.76
Civil Society E171 3.55 4.14 2.22

E172 1.72
Trade Unions E181 5.44 2.89 2.20

E182 10.46 14.43
Citizens E191 2.84 1.41

E192 23.54 25.75

Table 1 Profiles of candidates/representatives.

implemented AFC of the candidates profiles (new clusters), of the participation in
institutions and organizations profiles (new clusters) and the rest of the variables
incorporating other political characteristics such as party membership, elected or
not, candidacy and election in previous elections. As before, we implemented the
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same analysis (HCA) with the answers of the candidates/representatives. Again, the
analysis produced 6 new profiles of them. A small number of candidates/represen-
tatives seem not to participate in any form of institution. The profile that fits the
majority of the respondents suggests participation in all the forms of institutions
or organizations of the civil society, the social and political sphere except sports or
religious organizations. In the next stage of our analysis, we implemented AFC of the
candidates’ profiles (new clusters), of the participation in institutions and organiza-
tions profiles (new clusters) and the rest of the variables incorporating other political
characteristics such as party membership, elected or not, candidacy and election in
previous elections.

Fig. 2 Model of analysis with political characteristics.

The analysis suggests there are two axes formed by the variables: the axis of first-
time candidacy/first time election and medium/strong candidacy/previous election
as well as the axis of elected and not elected in the recent elections. The candidates
of New Democracy, the right party in Greece which was in government since the last
representative elections, show low levels of candidacy and experience in previous
elections, but close connection to institutions of the civil society and social orga-
nizations. Most of them were also elected meaning that the parliament was partly
renewed with people with medium experience in politics. Candidates of the parties
that place themselves to the center left of the political spectrum such as PASOK-
KINAL (the Greek Socialist party) and SYRIZA (the left party in Greece), most
of whom were not elected in the second elections of 2023, show also high levels
of participation in social and cultural organizations. According to their profile, they
are mostly male and female of older age (66+) with high education, from every
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work status (public servants, private sector employees, outside the workforce) but
with strong connection to the party and state structure. These candidates seem to be
rejected by the electorate in these elections. The same applies to the candidates of
ELLINIKI LISI (the right traditional and patriotic party) as well as to the candidates
of KKE (the communist party). Finally, there is also a group of candidates that
were first time candidates either as independents or with MERA25 (leftist party)
and they weren’t elected. The profile of these candidates shows that they are mostly
females of higher education who participate and engage with institutions of the civil
society but are not close to the traditional institutions of a democratic state such
as the parliament and the media. The second model of analysis was focused on
the marketing methods and tools that the candidates used. The variables of party
identification and election were also correlated. For the purpose of our analysis, we
categorized the marketing tools in three greater categories, namely digital market-
ing, traditional marketing and personal marketing, and we also used the variables
of professionals hired, surveys/polls used, local issues emphasis and central policy
issues emphasis in the electoral campaign. Two axes were again formed: the axis of
absence of marketing strategy/ non-elections and intense marketing strategy/elec-
tion, and the axis of personal/digital marketing tools usage and professional marketer
recruitment. The analysis shows that the people who were elected used any means
of marketing (traditional, digital and personal) and also hired professionals for their
election campaigns. These were mostly candidates of New Democracy and PASOK–
KINAL which were the “winners” of the elections. A percentage of candidates of
SYRIZA who applied a marketing strategy were, also, elected even if the party
suffered a major loss of votes. In contrast, the candidates of KKE, ELLINIKI LISI,
MERA25 and the independents who did not have a clear marketing strategy but used
mostly and sporadically personal and digital marketing tools, were not successful in
being elected.

4 Discussion

Our analysis highlights some key findings regarding electoral and political competi-
tion and raises issues for further research in relation to the profiles of party candidates
in parliamentary elections and the way in which modern electoral campaigns are con-
ducted in Greece. First of all, one could say that the profile of the Greek politician,
who has traditionally been male, middle-aged, highly educated, self-employed, is
gradually being adjusted. Obviously, there is an increase in the number of female
candidates as well as of candidates from a wider range of professions and employees
in the private and public sector. At the same time, it is observed that the majority of
candidates are associated with institutions of civil society, with social organizations
and international organizations that promote social, institutional and political issues.
Until a few decades ago, the traditional profile of the Greek parliamentary candidate
promoted more their participation in political and trade union organizations under
party lines, and less their social action. This profile is gradually changing, as a
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Fig. 3 Profiles of candidates in accordance to their marketing strategy.

consequence of the retreat of party identities on the one hand, and the emergence
of social and institutional issues that require comprehensive proposals, at national
and European level, and wider social and political consensus in their management,
on the other. It seems inevitable that social action and connection with civil society
institutions are now important criteria for the selection of candidates both by parties
and voters. The development of technology and the expansion of the internet, which
has also reshaped the conditions for conducting electoral campaigns, also contribute
to this. It is also evident from the results of our analysis that the design and im-
plementation of a marketing strategy, primarily around the use of digital media and
tools, contributes to the achievement of the ultimate goal which is “to be elected”.
This consensus view has reshaped the conditions for the conduct of pre-election
campaigns and also of the electoral and political competition in general. In the re-
cent dual elections of 2023 in Greece, it became particularly evident how crucial
for the re-election of New Democracy was the planning and the implementation
of an integrated marketing strategy. The party managed, after a difficult four-year
term in the country’s governance, to increase its electoral percentages and achieve
a triumphant electoral victory. For the first time in Greece, political social media
marketing seems to have played a pivotal role. The New Democracy party effectively
utilized social media to engage with voters, share their accomplishments, and outline
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their future plans. Their integrated marketing strategy included a strong presence on
all major platforms, targeted advertising, and interactive content such as live Q&A
sessions and behind-the-scenes videos. And it is evident from various researches
and papers that “social media marketing’s role in politics will continue to rise” [1],
[2], [5]. However, our research analysis shows that a large percentage of candidates
are not making good use of marketing techniques and tools. Obviously, this is also
related to costs, especially if we are referring to independent candidates who do not
have the support of a party apparatus. Most candidates use minimally the internet
and social media that do not have increased costs, but also personal marketing tools
(gatherings, meetings, presentations in venues) to project and promote their candi-
dacy. However, this is far from planning a comprehensive marketing strategy. In fact,
at the level of individual candidacies there are few who have the financial ability
and opportunity to fully utilize by hiring professionals what political marketing has
to offer in election campaigns. At the party level it is more than obvious that it has
become a necessary tool in achieving the assumption of the country’s governance.
Innovative, cost-effective approaches such as leveraging viral marketing, strategic
partnerships, and community engagement can significantly enhance their campaigns.
Additionally, utilizing data analytics and creating compelling content can optimize
efforts without substantial financial investment. Emphasizing volunteer mobiliza-
tion and exploring crowdfunding options can further extend their campaign reach
and impact.
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Predicting Air Pollution in Beijing, China
Using Chemical, and Climate Variables

Joshua Cervantes, Moisés Monge, and Daniel Sabater

Abstract This study addresses atmospheric pollution, specifically in urban areas
such as Beijing, China, focusing on PM2.5 particles. The importance of China in
air pollution research and its correlation with meteorological factors and chemical
compounds are emphasized. A forecasting model based on a state-space modeling
approach is proposed to predict air pollution variation, utilizing data collected be-
tween 2013 and 2017 from various monitoring stations in Beijing. The theoretical
analysis includes key concepts of air pollution, previous studies on PM2.5, as well as
an introduction to time series analysis and state-space models. The results show that
variables related to atmospheric pressure and wind speed are significant for predict-
ing air pollution, although further exploration of additional methods for more precise
variable selection is suggested. Furthermore, it is concluded that the proposed model
is effective for short-term forecasts but may require refinement for longer periods.
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1 Introduction

In recent years, there has been growing concern about the degree of air pollution and
the repercussions it may have on health. Pollution can be understood as the presence
of chemicals or components in the air that are not usually present and which reduce
air quality or cause changes detrimental to quality of life [6], [8].

There is particular concern about pollution with PM particles. As stated by [12],
PM particles are an air pollutant composed of a

mixture of solids and liquids. The composition can vary from one region to
another; these particles can be emitted directly or formed in the atmosphere. PM2.5
particles have a diameter of less than 2.5 𝜇m and are commonly referred to as fine
PM particles.

Various studies have shown or theorized about the effects that PM2.5 particles can
have on health. As [11] point out, based on data studied up to the year 2022, these
particles have been responsible for nearly 4 million deaths worldwide from heart
disease, respiratory infections, lung cancer, premature birth, and others. Therefore,
studying these particles and how to predict their presence is relevant.

Fine particles have different origins. As stated by the [9] , PM2.5 particles can
be directly emitted into the air or formed in the atmosphere from gaseous precursors
such as sulfur dioxide, nitrogen oxide, ammonia, and non-methane volatile. One
aspect that has been widely studied is the correlation between PM2.5 particles,
meteorological factors, and spatial-temporal location, example of it are the studies
of [7], [5], and [13].

In this study we develop a model that allows predicting the variation in atmo-
spheric pollution. Additionally, it aims to identify the various factors that could be
relevant for forecasting the degree of pollution. To achieve this, a state-space model
or dynamic linear model (dlm) will be utilized. This approach will not only identify
the variables with the greatest influence in each region but also anticipate the future
behavior of pollution based on the information available up to the present moment.

According to [1] , state-space models are a popular framework for modeling
ecological time series analysis. They are commonly used for model population
dynamics, and have also been used in ecological movement for over a decade,
increasingly with other kind of data.

2 Data Description

2.1 Variables

In this paper we work with the data of twelve station that monitored the contami-
nation in the Beijing municipality of China. This data was obtained from [4]. The
observation where taken in the period 1st March 2013 to 28th February 2017, and
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one observation was taken by hour in each station. The dataset variables are the next
one:

• CO (Quantitative): 𝐶𝑂 concentration
(𝑢𝑔/𝑚3).

• No (Quantitative): Row number
• year (Quantitative): Year of the obser-

vation. • O3 (Quantitative): 𝑂3 concentration
(𝑢𝑔/𝑚3).• month (Quantitative): Month of the

observation. • TEMP (Quantitative): Temperature
(◦𝐶).• day (Quantitative): Day of the obser-

vation. • PRES (Quantitative): Atmospheric
pressure (ℎ𝑃𝑎).• hour (Quantitative): Hour of the ob-

servation • DEWP (Quantitative): Dew point
(◦C).• PM2.5 (Quantitative): PM2.5 con-

centration (𝑢𝑔/𝑚3). Particle material
of 2.5 𝜇m or less. • RAIN (Quantitative): Precipitation

(𝑚𝑚).• PM10 (Quantitative): PM10 concen-
tration (𝑢𝑔/𝑚3). • WD (Qualitative): Wind direction.

• WSPM (Qualitative): Wind speed
(𝑚/𝑠).

• SO2 (Quantitative): 𝑆𝑂2 concentra-
tion (𝑢𝑔/𝑚3).

• NO2 (Quantitative): 𝑁𝑂2 concentra-
tion (𝑢𝑔/𝑚3).

• station (Qualitative): Name of the sta-
tion.

We can say that there are three kind of variables: climatic (TEMP, PRES, DEWP,
and WSPM), chemical (𝑆𝑂2, 𝑁𝑂2, 𝐶𝑂, and 𝑂3), and particle material (𝑃𝑀10, and
𝑃𝑀2.5). In this work we focus in contamination quantified through 𝑃𝑀2.5 particles.
We take the mean of the day for each variable by station.

2.2 Exploratory Analysis

We show the correlation of numeric variables in figure 1. In the figure we can observe
that chemical variables have great positive correlation quantified by the Pearson
correlation coefficient. The exception is the 𝑂3 that has a negative correlation with
majority of the variables. The variable with more correlation with particle material
is the 𝐶𝑂. Related with climatic variables we can observe that between them exists
a greater correlation in both ways negative, and positive.
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Fig. 1 Heatmap of correlation
matrix for numeric variables
present in the data set.

𝑎 Source: Own elaboration based on data from [4].

3 Methods

3.1 Space-state Model

In this work we want to determine the variables that are relevant to determine the
contamination of the next day quantified by the PM2.5 particles. By that reason we
used a Gaussian space-state model, also called dynamic linear model. We briefly
present the model according to [10], and [3]. First, we take a 𝑝-dimensional vector
𝜃0 with normal distribution of the state in time 𝑡 = 0 with a set of equations in 𝑡 = 1
just like these:

𝜃0 ∼ 𝑁𝑝 (𝑚0,𝐶0), 𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝑣𝑡 , 𝑣𝑡 ∼ 𝑁𝑚 (0,𝑉𝑡 ), (1)
𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 +𝑤𝑡 𝑤𝑡 ∼ 𝑁𝑝 (0,𝑊𝑡 ). (2)

With 𝐺𝑡 , and 𝐹𝑡 known matrices. 𝑣𝑡 , and 𝑤𝑡 are two independent successions of
vectors with Gaussian distribution with mean 0, and covariance known matrices 𝑉𝑡 ,
and 𝑊𝑡 . With these we can establish a dynamic linear model:

𝑌𝑡 = 𝜃𝑡 ,1 + 𝜃𝑡 ,2𝑥𝑡 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑁 (0,𝜎2
𝑡 ), (3)

𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 +𝑤𝑡 , 𝑤𝑡 ∼ 𝑁2 (0,𝑊𝑡 ). (4)

This correspond to a linear model 𝐹𝑡 = [1, 𝑥𝑡 ], where 𝑥𝑡 is a vector of covariates,
and state 𝜃𝑡 = (𝜃𝑡 ,1, 𝜃𝑡 ,2)′. With this we can consider density functions 𝜋(𝑦𝑡 |𝜃𝑡 ), and
𝜋(𝑦𝑡−1 |𝜃𝑡−1). We would like estimate the vector of states, hence we should estimate
the conditional densities 𝜋(𝜃𝑠 |𝑦1:𝑡 ).

In the linear models the Kalman filter gives us a formula to inference over states
vector when new data is available, and it transitions from 𝜋(𝜃𝑡 |𝑦1:𝑡 ) to 𝜋(𝜃𝑡+1 |𝑦1:𝑡+1).
Then to forecast a one-step-ahead first we estimate the value 𝜃𝑡+1 with the data

J. Cervantes et al.
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𝑦1:𝑡 , and using this we can estimate 𝑌𝑡+1. The predictive density one-step-ahead is
𝜋(𝜃𝑡+1 |𝑦1:𝑡 ), and with this we can estimate 𝜋(𝑦𝑡+1 |𝑦1:𝑡 ). The space-state models
have a Markovian structure, and this give us recursive formulas for the filtrate, and
predictive densities. These formulas are the next ones:

• Predictive density one-step-ahead for states estimated with the filter density:

• Predictive density one-step-ahead for the observations estimated with the predic-
tive density of the states:

• Filter function estimated given the previous densities:

𝜋(𝜃𝑡−1 |𝑦1:𝑡−1) = 𝜋(𝜃𝑡 |𝜃𝑡−1)𝜋(𝜃𝑡−1 |𝑦1:𝑡−1) 𝑑𝜃𝑡−1. (5)

𝜋(𝑦𝑡−1 |𝑦1:𝑡−1) = 𝜋(𝑦𝑡 |𝜃𝑡−1)𝜋(𝜃𝑡−1 |𝑦1:𝑡−1) 𝑑𝜃𝑡−1. (6)

𝜋(𝜃𝑡 |𝑦1:𝑡 ) =
𝜋(𝑦𝑡 |𝜃𝑡 )𝜋(𝜃𝑡 |𝑦1:𝑡−1)

𝜋(𝑦𝑡 |𝑦1:𝑡−1)
. (7)

With the mentioned formulas we can estimate one-step-ahead prediction with the
Kalman Filter in the following way:

Given a dynamic linear model we establish:

𝜃𝑡−1 |𝑦1:𝑡−1 ∼ N(𝑚𝑡−1,𝐶𝑡−1), (8)

and

• the predictive distribution one-step-ahead of 𝜃𝑡 given 𝑦1:𝑡−1 is Gaussian with
parameters:

• the predictive distribution one-step-ahead of 𝑌𝑡 given 𝑦1:𝑡−1 is Gaussian with
parameters:

• the filter function of 𝜃𝑡 given 𝑦1:𝑡 is Gaussian with parameter:

𝑎𝑡 = E(𝜃𝑡 |𝑦1:𝑡−1) = 𝐺𝑡𝑚𝑡−1 𝑅𝑡 =𝑉𝑎𝑟 (𝜃𝑡 |𝑦1:𝑡−1) = 𝐺𝑡𝐶𝑡−1𝐺
′
𝑡 +𝑊𝑡 , (9)

𝑓𝑡 = E(𝑌𝑡 |𝑦1:𝑡−1) = 𝐹𝑡𝑎𝑡 , 𝑄𝑡 =𝑉𝑎𝑟 (𝑌𝑡 |𝑦1:𝑡−1) = 𝐹𝑡𝑅𝑡𝐹
′
𝑡 +𝑉𝑡 , (10)

𝑚𝑡 = E(𝜃𝑡 |𝑦1:𝑡 ) = 𝑎𝑡 +𝑅𝑡𝐹
′
𝑡𝑄

−1
𝑡 𝑒𝑡 , (11)

𝑒𝑡 = 𝑌𝑡 − 𝑓𝑡 . (13)

The parameters are estimated by maximum likelihood. We use the package of R
called dlm of [3].

We decide to take logarithmic difference of the mean respect to the previous day
mean for all the quantitative variables. In case that get a infinite value, or less infinity
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we delete these observations, and are not imputed given that the model can handle
these because its nature.

To select the most relevant variables we use the Akaike criterion of information
(AIC) with step forward selection of them, however [2] establish that this can give
over parameterized space-state models. We estimate the error of the predictions using
mean squared error.

The Github repository Afr063426/Proyecto Mod Lin/tree/Modelling contains the
code we used.

4 Results

Using a forward selection process with AIC, the following models are obtained as
the best.

Table 1 Model selected using forward selection with AIC.

Station Model AIC

Aotizhongxin diff PRES+diff WSPM 771.31
Changping diff NO2+diff PRES 487.28
Dongsi diff SO2+diff PRES+diff WSPM 547.52
Guanyuan diff PRES+diff WSPM 727.12
Gucheng diff WSPM+diff PRES 702.43
Huairou diff NO2+diff PRES+diff SO2 542.96
Shunyi diff PRES+diff WSPM 835.80
Tiantan diff PRES+diff WSPM 749.21
Wanliu diff SO2+diff PRES+diff WSPM 559.81
Wanshouxigong diff PRES+diff WSPM 756.59

𝑎 Source: Own elaboration based on data from [4].

According to table 1, in all cases the intercept is considered, diff 𝑋 indicates
that it is the logarithmic difference of the variable X, and the + indicates that the
other covariate is also being added. From here it can be highlighted that different
combinations are repeated. The variable SO2 was discarded since when it was
included in the models it could not be adjusted satisfactorily. What could be said is
that most of the models are adjusted with PRES and WSPM, the last one, presented
a certain degree of correlation with PM2.5. The only models that would present a
different structure would be Huairou and Changpling.

We only show the analysis of one station since the others behave similarly. The
one-step forward prediction for Aotizhongxin is shown in figure 2. It can be seen
from this that the prediction is close to the real value and in most cases, it is found
that the real value lies in the prediction interval. The model manages to capture the
following behavior that the logarithmic variation of pollution will have satisfactorily.
Regarding the diagnosis of the model, it can be seen in figure 3 that the fit of the
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left tail of the normal quantile-quantile graph is not the best, however, later in the
right tail there is a behavior more similar to a normal distribution. In this case, these
values should be studied in greater depth. On the other hand, according to the ACF,
the residuals are independent, however, according to the Ljung-Box test the values
show dependence. From this, it can be highlighted that further work on the series
may be necessary, and possibly use some alternative model.
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Fig. 3 Diagnostic Graphics, Aotizhongxin.
𝑎Source: Own elaboration based on data from [4].

In all cases the mean square error, considering the one-step-ahead predictions of
the entire period, is around 0.50.
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5 Discussion

It can be concluded that the state-space model applied to the series transformed into
logarithmic changes to make one-step prediction, manages to capture in a certain way
the behavior presented by the time series. Using the forward selection method, it was
obtained that the variables that best fit are meteorological, such as the logarithmic
variation of atmospheric pressure and the logarithmic variation of wind speed. With
the adjustment obtained, the behavior that the variation will have the next day can be
predicted with the knowledge of the current covariates, the PM2.5 variable, and the
previous prediction errors. In subsequent work we would seek to make a forecast for
a period greater than one day. Further work it is necessary, to obtain a clearer idea of
which covariates may be relevant to predict the level of air pollution, by doing other
types of transformations.
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Towards Topologically Diverse Probabilistic
Planning Benchmarks: Synthetic Domain
Generation for Markov Decision Processes

Jaël Champagne Gareau, Éric Beaudry, and Vladimir Makarenkov

Abstract Markov Decision Processes (MDPs) are often used in Artificial Intelligence
to solve probabilistic sequential decision-making problems. In the last decades, many
probabilistic planning algorithms have been developed to solve MDPs. However, the
lack of standardized benchmarks makes it difficult to compare the performance of
these algorithms in different contexts. In this paper, we identify important topological
properties of MDPs that can make a significant impact on the relative performance
of probabilistic planning algorithms. We also propose a new approach to generate
synthetic MDP domains having different topological properties. This approach relies
on the connection between MDPs and graphs and allows every graph generation
technique to be used to generate synthetic MDP domains.
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1 Introduction

In Artificial Intelligence, problems of sequential decision-making under uncertainty
are often modeled using Markov Decision Processes (MDPs). In the last decades,
many new probabilistic planning algorithms have been developed to find optimal
solutions for MDP instances. Some of these algorithms are especially good in spe-
cific contexts, when, for example, the MDP of interest contains a large number of
Strongly Connected Components (SCCs) in its transition graph or when there exists
a trajectory to a goal state using a small number of actions [7].

Usually, new planning algorithms intended to solve MDPs proposed in the litera-
ture are evaluated on a small number of carefully designed domains to demonstrate
their efficiency. However, the lack of standardized benchmarks makes it difficult to
compare the performance of these algorithms in different contexts. For example, we
know that some algorithms (e.g., Topological Value Iteration [7]) are good for solv-
ing MDPs with a large number of SCCs, whereas others (e.g., Labeled Real-Time
Dynamic Programming [4]) are better for solving MDPs containing a large number
of goal states inside its state space. However, we do not know a priori which of these
algorithms is better for solving MDPs that have both a large number of SCCs and a
large number of goal states. Since there are no currently existing benchmarks that
contain MDPs with both of these properties, it is difficult to know which algorithm
will be the most efficient in this context.

The domains that are the closest to standardized domains for probabilistic plan-
ning algorithms are those used in the International Planning Competition, which is
organized in the context of the International Conference on Automated Planning and
Scheduling (ICAPS) [11]. Even though a few planning domains have been added
during the last occurence of the competition, their total number is still relatively
small and does not cover the entire range of combination of topological properties
one might be interested in. Moreover, the domains used in the competition are mostly
designed to evaluate finite horizon MDPs and infinite horizon discounted MDPs,
whereas in this research, we are mostly interested in domains related to Stochas-
tic Shortest Path MDPs (SSP-MDPs). The lacking of standardized benchmarks for
SSP-MDPs as been highlighted as an important issue in the literature:

[M]ore theory is needed to guide the development and selection of such enhancements.
The most useful would be problem features and optimality definitions that would indicate
which metric, reordering method and partitionning scheme are maximally effective, and
which would guide the development of new enhancements. These may include distribu-
tional properties of the reward functions, distributional properties of transition matrices,
strongly/weakly connected component analyses, etc. [13]

SSP-MDPs are known to be more general than other common types of MDPs [3].
They can be viewed as a generalization of the problem of finding a shortest path
in a graph with probabilistic transitions. More formally, an SSP-MDP is defined as
a tuple (𝑆, 𝐴,𝑇,𝐶,𝐺), where 𝑆 is a finite set of states, 𝐴 is a finite set of actions,
𝑇 : 𝑆 × 𝐴× 𝑆 → [0,1] is a transition function, 𝐶 : 𝑆 × 𝐴→ R+ is a cost function
and 𝐺 ⊆ 𝑆 is a set of goal states. The objective is to find a policy 𝜋 : 𝑆→ 𝐴 that
minimizes the expected cost of reaching a goal when starting from any state in 𝑆.
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Our main contributions in this paper are as follows:

• We provide a list of topological properties that we deem important to estimate
the performance of probabilistic planning algorithms on SSP-MDPs.

• We propose a new approach to generate synthetic SSP-MDPs that can cover
different topological properties of interest.

2 Topological Properties

In this section, we present a list of topological properties of MDPs, some of them are
similar to graph properties, while the other are unique to MDPs. We believe that most
of them can have a significant impact on the relative performance of probabilistic
planning algorithms. Some of these properties can also be given as parameters to
the synthetic MDP generation process we will describe in the next section. The list
of properties, or model parameters, we propose is as follows:

• The number of states |𝑆 | in the MDP.
• The number of actions |𝐴| in the MDP.
• The number of goal states |𝐺 | in the MDP.
• The number of Strongly Connected Components (SCCs) |𝔖| in the MDP.
• The maxS∈𝔖 |S|.
• The distribution of actions: ∀𝑘, 𝑃𝑎

𝑘
:= proportion of states which have 𝑘 appli-

cable actions.
• The distribution of probabilistic transitions: ∀𝑘, 𝑃𝑡

𝑘
:= proportion of actions

which have 𝑘 probabilistic transitions.
• The clustering coefficient: ℭ := 1

|𝑆 | 𝑠∈𝑆
𝑒𝑠

𝑘𝑠 (𝑘𝑠−1) , where 𝑒𝑠 is the number of
pairs of states directly reachable from 𝑠 that are also directly reachable from each
other, and 𝑘𝑠 is the number of states directly reachable from 𝑠. Moreover, ℭ is set
to be 0 when 𝑘𝑠 < 2.

• The goals-eccentricity of the MDP: G := min𝑔∈𝐺 max𝑠∈𝑆 𝑑 (𝑠, 𝑔), where 𝑑 (𝑠, 𝑔)
is the minimum number of actions (the cost of each action is not considered) that
must be executed to reach 𝑔 from 𝑠.

We explain these properties more precisely through the following example.
The MDP in Figure 1 (top) contains 6 states, 7 actions, 1 goal state (𝑠𝑔) and
3 SCCs, {{𝑠0}, {𝑠1, 𝑠2, 𝑠3, 𝑠4}, {𝑠𝑔}}. The largest SCC contains 4 states. More-
over, the distribution of actions is given by Pa = [ 16 ,

3
6 ,

2
6 ] and the distribution of

probabilistic transitions is given by Pt = [0, 4
7 ,

2
7 ,

1
7 ]. The clustering coefficient is

ℭ = 1
6 (

2
2·1 +0+ 0

2·1 +
3

3·2 +0+0) = 1
4 and the goals-eccentricity is G = 3, since it takes

at least 3 actions to reach 𝑠𝑔 from 𝑠0.
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3 Synthetic Domain Generation

Some existing MDP planning domains are synthetic, in the sense that they are not
directly mapped into a real-world domain, but are designed to measure how the
change in one particular topological aspect of the MDP can affect the relative perfor-
mance of existing MDP planners. For example, the Layered [7] and the Chained [6]
domains were designed specifically to measure, respectively, the impact of the num-
ber of SCCs and the impact of their relative placement in “independent chains” of
SCCs on the performance of several planning algorithms. However, these domains
are limited in the sense that they only cover a small subset of possible combinations
of topological properties we would like to compare. Moreover, the process of de-
signing synthetic domains is time-consuming. Therefore, in this section, we propose
to leverage the connection between MDPs and graphs to generate synthetic MDPs
using existing graph generation techniques.

Our synthetic MDP generation technique is inspired by the concept of all-
outcomes determinization. It consists in finding a graph from an MDP, where there
is an arc for every possible outcome of each action. MDP determinization was origi-
nally proposed as a way to solve MDPs using deterministic planning algorithms [14].
Figure 1 shows an example of such a determinization.
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Fig. 1 An MDP (top) and the graph corresponding to its all-outcomes determinization (bottom).
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The graph resulting from a determinization can also be used to find and analyze
topological properties of the original MDP. For example, the clustering coefficient
of an MDP, as defined above, is equivalent to the clustering coefficient of its corre-
sponding graph. Other topological properties, such as the number of SCCs, are also
equivalent in the MDP and in its corresponding graph. However, some properties,
such as the distribution of probabilistic transitions, have no equivalence in graph
theory and must be computed directly from the MDP.

MDP determinization allows us to generate a graph from an MDP. The key idea
behind our proposed synthetic MDP generation technique is to reverse this process
by generating an MDP from a graph. This allows us to use existing graph generation
techniques to create synthetic MDPs. We can then use the graph properties to
control some of the topological properties of the generated MDPs. Table 1 shows
some examples of graph generation techniques and their respective properties.

Table 1 Examples of graph generation techniques and their respective properties, where 𝑘̄ is the
average degree of the nodes in the graph, and 𝑛 is the number of nodes.

Technique Ref. Degrees Distr. Clust. Coeff. Diameter

Erd o s-Rényi [8] Binomial small (𝑘̄/𝑛) small: O(log(𝑛) )
Watts-Strogatz [12] Almost-constant large small
Barabási–Albert [1] Scale–free (𝑘̄−3) large (𝑘̄−1) small: O( log(𝑛)

log(log(𝑛) ) )
Kronecker [10] Multinomial flexible flexible

Our approach starts by generating a graph using one of the techniques presented
in Table 1. The choice of the technique depends on the desired topological properties
of the MDP. For example, if we want to generate an MDP with a small clustering
coefficient, we can use the Erdös-Rényi model. The second step is to use this graph
as a base for generating the MDP. For every state 𝑠 in the MDP (which corresponds
to a node in the graph), we generate 𝑎𝑠 actions, where 𝑎𝑠 is a random number ranging
between 1 and the degree 𝑘𝑠 of the node 𝑠 in the graph. We then generate an array
which consists of 𝑎𝑠 random numbers such that their sum is equal to 𝑘𝑠 . For example,
if a given node has a degree of 8, and the random number of actions is 3, a possible
array could be [4,1,3]. This array represents the number of states that can be reached
by applying each of the actions. The next step consists in generating a cost for each
action (any distribution can be used here), a probability for each possible transition
(normalized to 1) and a state corresponding to each possible probabilistic transition
of each action (among all neighbors of the node in the graph). Finally, the goal states
are chosen among the set of states. Algorithm 3 shows the main steps of the proposed
approach.

Algorithm: Synthetic MDP Generation

\Require A list of desired topo. prop.

(e.g., 𝑛: number of states; 𝑘: number of goals, etc.)
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\Ensure An MDP (𝑆, 𝐴,𝑇,𝐶,𝐺)
\Comment{Use the most appropriate graph gen. technique relative to

the desired topological properties}

\State Γ← \Call{GenerateSyntheticGraph}{n}
\Comment{e.g., using one of the techniques in} Table 1}
\State 𝑆← Γ. \Call{getStates}{}\Comment{|𝑆 | = 𝑛}

\State

\ForAll{𝑠 ∈ 𝑆}
\State 𝑎𝑠←\Call{RandomInt}{1, 𝑘𝑠}
\Comment{Generate the number of actions; 𝑘𝑠 is the degree of 𝑠}

\State 𝐴𝑠← \Call{DecompIntoSum}{𝑘𝑠 , 𝑎𝑠}
\Comment{𝐴𝑠 is an array of 𝑎𝑠 elements s.t.

∑
𝑛𝑎∈𝐴𝑠

𝑛𝑎 = 𝑘𝑠}

\ForAll{𝑛𝑎 ∈ 𝐴𝑠}

\Comment{𝑛𝑎 is the number of possible transitions of the current

action}

\State 𝑎← new action identifier
\State 𝐴← 𝐴∪ {𝑎}
\State 𝐶 (𝑠, 𝑎) ← \Call{RandomCost}{}
\Comment{Can be sampled uniformly or with another distribution}

\State 𝑃𝑎← \Call{GenProbabilities}{𝑛𝑎}
\Comment{𝑃𝑎 is an array s.t.

∑
𝑝∈𝑃𝑎

𝑝 = 1.0 and |𝑃𝑎 | = 𝑛𝑎}

\ForAll{𝑖 ∈ [1..𝑛𝑎]}
\State 𝑠′←\Call{RandomNeighbor}{Γ, 𝑠}
\Comment{Random neighbor of 𝑠 in the graph Γ}

\State{𝑇 (𝑠, 𝑎, 𝑠′) ← 𝑃𝑎 [𝑖]}
\EndFor{}

\EndFor{}

\EndFor{}

\State 𝐺← \Call{RandomSubset}{𝑆, 𝑘}
\Comment{𝑘 is a parameter to control the number of goal states}

\State \Return (𝑆, 𝐴,𝑇,𝐶,𝐺)

Algorithm Synthetic MDP Generationand the four graph generation techniques
presented in Table 1 have been implemented in C++. The resulting graph library as
well as an accompanying program (which can analyze and generate synthetic graphs
and corresponding synthetic MDPs) is available publicly on GitLab1. Figures 2 and 3
show an example of a synthetic graph generated using the Erdös-Rényi model (𝑛 = 10
and 𝑚 = 15), and the corresponding synthetic MDP generated using Algorithm 3.

Our algorithm has the advantage of being simple to implement, fast to execute and
flexible. It can be used to generate a wide variety of synthetic MDPs. One weakness
of our approach is that the choice of the underlying graph generation technique
must currently be done manually by the user. We would like to eventually develop

1 https://gitlab.info.uqam.ca/champagne gareau.jael/graph-toolkit
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a method to automatically select the most appropriate graph generation technique
based on the desired topological properties of the MDP.

4 Conclusion

In this paper, we have identified important topological properties of MDPs that can
make a significant impact in the performance of probabilistic planning algorithms.
We have also proposed a new approach to generate synthetic MDPs having different
topological properties. This approach relies on the connection between MDPs and
graphs and allows any graph generation technique to be used as a basis to generate
synthetic MDPs. We believe that this approach will allow one to generate a wide
variety of synthetic MDPs, which will be useful to compare the performance of
probabilistic planning algorithms in different practical contexts. As future work, we
plan to generate a wide range of synthetic MDPs using this approach and evaluate the
performance of existing probabilistic planning algorithms applied to these MDPs.
Using these results, we plan on training a classification model, where the input will
be the topological properties of the MDP and the output will be the most efficient
algorithm to solve it. Using this classifier, we will be able to predict the most efficient
algorithm to solve a given MDP based on its topological properties.
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Fig. 3 Example of a synthetic MDP generated using Algorithm 3 on the graph of Figure 2. The
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both uniform, respectively 𝑈 (0, 100) and 𝑈 (0, 1) . Two goal states have been generated: 6 and 9.
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Symbolic Data Analysis Framework for
Recommendation Systems: SDA-RecSys

Pushya Chaparala and Panduranganaidu Nagabhushan

Abstract Recommendation algorithms, often rely on user-item interaction matrices,
to uncover hidden patterns and preferences. These matrices play a pivotal role in
facilitating the detection of matching similarities between users and items. How-
ever, these matrices do not capture the full spectrum of users preferences in ratings
while providing a list of recommendations. Since such variability can be effectively
modeled as symbolic objects, specifically histogram objects, it is proposed to use
the Symbolic Data Analysis (SDA) tools to address this challenge. This inclusion
of user preferences and item characteristics into histograms enhanced the user pro-
file capabilities in our methodology. These profiles can then be compared using
Wasserstein similarity measures to compute the nearness between users and items,
enabling the recommender system to generate top-N relevant recommendations. To
evaluate the efficacy of the proposed SDA-RecSys, experiments are conducted to
assess the impact of histogram profiles on recommendations, by utilizing the Nor-
malized Discounted Cumulative Gain (NDCG) metric as a benchmark. Comparisons
are presented to project the superiority of the SDA framework for Recommendation
systems.
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1 Introduction

With massive data available on the internet, finding pertinent information is a hassle,
a phenomenon evident in understanding information overload [1]. To address this
challenge and provide personalized choices, recommender systems have emerged
as powerful algorithms. These algorithms [1], [10], [19] are broadly classified into
Content-Based systems (CBS), Collaborative Filtering Systems (CFS), and Hybrid
Systems based on how they recommend the items.

Content-Based Filtering System (CBS) [1], [19] measures item similarity and
recommends items to users, who have rated similar items in the past.

Collaborative Filtering System (CFS) [22], [24] recommends items to a user by
considering the preferences of other users who share similar tastes.

The above-mentioned approaches face two significant challenges [1]: (i) limited
data -Sparsity, and (ii) the non-existence of prior preferences/ratings for a new
user/ item in a system - Cold-Start Problem [6]. To address these, researchers have
developed hybrid methods [15], [11], [8] that combine CBS and CFS.

All these approaches use standard data representations [4], [9]. However, these
representations are not sufficient [4] to project the full spectrum of user preferences.
Such a limited view can lead to inaccurate recommendations [20], especially with
limited data or no data (new user/item). This finding emphasizes the critical impor-
tance of capturing the internal user variability [20] for accurate user profiles. The
aforementioned can be achieved by representing the data in symbolic objects [5] and
such objects will be analyzed using Symbolic Data Analysis tools [5].

The present work, unlike conventional methods, proposes to project the user
preferences in histograms [5], a distribution that can capture the variability of their
interactions with items. This richer representation provides a good comprehensive
user profile [20]. Such profiles are further used in similarity analysis to generate
relevant recommendations for the target users. The subsequent sections of the paper
will be structured as follows: Section 2 outlines the proposed method, followed
by experimental evaluation in Section 3. Finally, the paper will be concluded by
summarizing the key findings and outlining the potential avenues for future work.

2 Proposal

This paper proposes an approach called SDA-RecSys for [12] user-based collab-
orative filtering recommendations using the [7] Symbolic Data Analysis (SDA)
framework. The working of the proposal is outlined as follows:

i. Pre-processing
ii. Constructing the user profiles.
iii. Computing the similarities between the users.
iv. Generating the recommendations for the target user.
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2.1 Pre-processing

The main objective of this step is to integrate user preferences and item description
datasets, followed by cleaning the data to remove rows with empty item descriptions.
The refined dataset is filtered based on a minimum threshold 𝑡 = 100 for the number
of items they rated. Subsequently, this subset is divided into training and testing sets
for model development and evaluation.

2.2 User Profiles

The objective of this step is to construct the symbolic profiles for users with histogram
values. The function User Profiles in 2.2, details the process for creating user
profiles for data in Table 1. This function uses movie genres from the The Movies
[3] dataset to create these profiles. The resulting user profiles are shown in Table 2.

User Profiles

def sym_genres(df):

df_exp = df.explode(’genre’)

df = df_exp.groupby([’uId’, ’genre’]).

agg({’rating’: [’c’, ’s’]}).reset_index()

df[’avg_r’] = df[’total_r’] / df[’occ’]

df[’prob’] = df.apply(lambda row:

{genre: row[’occ’] / len(eval(row[’genre’]))

for genre in eval(row[’genre’])}, axis=1)

df[’w_r’] = df.apply(lambda row:

{genre: row[’prob’][genre] * row[’avg_r’]

for genre in row[’prob’]}, axis=1)

prob = {} g_u = df.groupby(’uId’)

for user_id, group in g_u: u = {}

count = len(set(genre for row in group[’w_r’]

for genre in row))

for index, row in group.iterrows():

for genre in row[’w_r’]: if genre not in u:

u[genre] = 0 u[genre] += row[’w_r’][genre]

avg = {genre: u[genre] / count for genre in u}

prob[user_id] = avg results = {}

for user_id, user_prob in prob.items():

total = sum(user_prob.values())

prob_score = {genre: user_prob[genre] / total

for genre in user_prob}

results[user_id] = prob_score return results
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Table 1 Sample data from The Movies dataset.

userId movieId rating genres original title

8 4226 5 [’Comedy’] What I Did Last Friday
8 2003 4 [’Drama’] Anatomie de l’enfer
8 1407 3 [’Romance’, ’Music’, ’Drama’] La Mame
8 1259 5 [’Drama’, ’Romance’] Notes on a Scandal
8 312 1 [’Drama’] Jenseits der Stille

Table 2 Sample user profile from sym-genres.

UserId Symbolic Genres
8 ’Comedy’: 0.278, ’Drama’: 0.472, ’Romance’: 0.1945, ’Music’: 0.055
7187 ’Action’: 0.0753, ’Adventure’: 0.0322, ’Comedy’: 0.1655, ’Science Fiction’: 0.0286,

’Crime’: 0.0490, ’Drama’: 0.3088, ’Foreign’: 0.0183, ’Thriller’: 0.0633, ’Western’:
0.0218, ’Fantasy’: 0.0192, ’History’: 0.0130, ’Horror’: 0.0358, ’Mystery’: 0.0450,
’Family’: 0.0219, ’Romance’: 0.0691, ’Animation’: 0.0064, ’Documentary’: 0.0151,
’TV Movie’: 0.0053, ’Music’: 0.0035, ’War’: 0.0028

2.3 Comparison Between User-to-User Profile

This step find the similarity scores between the users by using the Wasserstein [23]
distance measure. Table 3 from The Movies dataset displays the similarity scores
between the userId - 7187,9544 and 11744. According to [23] the smallest score
indicates the highest similarity.

Table 3 Similarity Score between the selected users using Wasserstein Distance.

UserId 7187 9544 11744

7187 0 0.0119 0.003
9544 0.0119 0 0.0104
11744 0.003 0.0104 0

2.4 Building Recommendation List

The function Recommendations in 2.4, is used for generating recommendations. It
leverages user-profiles and user-item interactions(ratings). From the generated list of
recommendations, items that are highly rated by multiple users with slightly similar
preferences to the target user were prioritized (Top 5 preferences) [18].

By offering a diverse selection, these recommendations aim to cater to the user’s
tastes while also reflecting broader trends within their preferred item descriptions
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as proposed by [26]. For example: user 7187 recommendations: ”Brief Encounter”
(Drama, Romance), ”Black Rain” (Action, Thriller, Crime), ”The Patriot” (Action,
Thriller), ”Munich” (Drama, Action, History, Thriller), and ”Rosemary’s Baby”
(Horror, Drama, Mystery) shows the wide reach of movie genres while recommend-
ing.

Recommendations

def recommendations(sim_matrix, user_ratings, top_n=5):rec = {}

for tar_user in sim_matrix.index:

rec_mov = rec(tar_user, simi_matrix, user_ratings,top_n)

rec[target_user] = rec_mov return rec

def rec(tar_user, simi_matrix, user_ratings, top_n=5):

sim_users = simi_matrix.loc[tar_user].values.argsort()

sim_users = sim_users[sim_users != tar_user]

tar_movies = set(user_ratings[user_ratings[’userId’] ==

tar_user][’movieId’])

agg_ratings = {} for user in sim_users:

user_movies = user_ratings[user_ratings[’userId’] == user]

for _, movie in user_movies.iterrows():

movie_id = movie[’movieId’]

if movie_id not in target_user_movies:

if movie_id not in agg_ratings:

agg_ratings[movie_id] = {’sum’: 0, ’count’: 0}

agg_ratings[movie_id][’sum’] += movie[’rating’]

agg_ratings[movie_id][’count’] += 1

avg_rat = {movie_id: rating[’sum’] / rating[’count’]

for movie_id, rating in agg_ratings.items()}

sort_mov = sorted(avg_rat.items(), key=lambda x: x[1],

reverse=True)

rec1 = [movie[0] for movie in sort_mov[:top_n]] return rec1

3 Experimental Evaluation

To assess the performance of SDA-RecSys, three user profiles are constructed using
The Movies [3] and Book-Crossing [27] datasets:

i. sym genres
ii. sym keywords
iii. sym authors
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sym genres as in Table-2 and sym keywords as in Table-4 are built on the movie’s
description variables - genres and keywords, whereas sym authors (Table-5) is
built on the book’s authors’ information from the Book-Crossing dataset.

Table 4 Sample user profile from sym keywords.

UserId Sym keywords
270893 {220: 0.014, 1525: 0.014, 782: 0.013, 1157: 0.013, 186450: 0.013,

818: 0.013, 2630: 0.013, 591: 0.013, 170362: 0.011, 11004: 0.013,
14638: 0.013, 2334: 0.011, 6092: 0.008, 1650: 0.008, 209987:
0.007}

Table 5 Sample user profile from sym authors.

UserId sym authors

26346 {’Alcoholics Anonymous’: 0.17, ’Ginger Applegarth’: 0.17, ’Glade
B. Curtis M.D. OB/GYN’: 0.33, ’R.Q.Armington’: 0.17, ’Stedman
Graham’: 0.16}

These profiles as in Tables 2, 4 and 5 are further used to generate user recom-
mendations. To measure the relevance of generated recommendations to the target
users, Normalized Discounted Cumulative Gain(NDCG) [18] is used as an evalua-
tion metric. It works on the notion that items with higher ratings must be prioritized
over those with lower ranks.

3.1 Results and Discussions

The NDCG scores for all three user profiles can be seen in Table 6. For sym genres
and sym keywords results consistently show high scores across all user counts,
suggesting the system effectively recommends relevant movies to users.

Table 6 NDCG values for sym genres, sym keywords and sym author.

Users sym genres sym keywords sym author

100 0.960 0.9654 0.8493
500 0.962 0.9776 0.8741
1000 0.94 0.9654 0.6537

However, sym author shows a decline in those scores when there is an increase
in the user count. This could be pointed to the fact that Book-Crossing dataset
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relies solely on author information. Given that the authors are unique, it is evident
that many users may not have interactions with every author. This limitation could be
hindering the system’s ability to capture user preferences and recommend relevant
books effectively, especially for a larger user base. This requires further investigation
by introducing additional item descriptions to the symbolic profiles.

3.2 Comparison with Baseline Algorithms

A comparison study with often employed methods in recommendation systems: K-
nearest Neighbors (KNN) [2], Singular Value Decomposition Extension (SVD++)
[13], and Probability Matrix Factorization (PMF) [21] is conducted to evaluate the
efficiency of the proposed method using NDCG. Table 7 suggests that the proposed
SDA-RecSys method performs well in generating relevant recommendations. To gain
a more comprehensive understanding of the model’s capabilities, future research will
incorporate additional evaluation metrics [16], [25].

Table 7 Comparison of NDCG scores for different algorithms.

Algorithm NDCG

KNN 0.85
SVD++ 0.86
PMF 0.85
SDA-RecSys 0.94

4 Conclusion

This paper introduces SDA-RecSys, a novel approach for constructing user pro-
files with modal multi-valued variables. Evaluation results indicate that user-based
collaborative filtering with histogram profiles generates highly relevant recommen-
dation lists as evident from Table 7. This approach has the potential to be applied to
a broader range of datasets beyond movies and books.

As an extension, the proposal is to integrate two or more modal multi-valued vari-
ables for improved recommendations. Furthermore, alternative methods for measur-
ing similarity between user profiles shall also be explored [5], [17],[14]. Finally, a
critical aspect of future work involves adapting the proposed histogram user profiles
to address cold start problems.
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A Deterministic Information Bottleneck Method
for Clustering Mixed-Type Data

Efthymios Costa, Ioanna Papatsouma, and Angelos Markos

Abstract In this paper, we present an information-theoretic method for clustering
mixed-type data, that is, data consisting of both continuous and categorical vari-
ables. The method is a variant of the Deterministic Information Bottleneck algorithm
which optimally compresses the data while retaining relevant information about the
underlying structure. We compare the performance of the proposed method to that
of three well-established clustering methods (KAMILA, K-Prototypes, and Parti-
tioning Around Medoids with Gower’s dissimilarity) on simulated and real-world
datasets. The results demonstrate that the proposed approach represents a competitive
alternative to conventional clustering techniques under specific conditions.

Key words: deterministic information bottleneck, clustering, mixed-type data, mu-
tual information

1 Introduction

The quest for effective data reduction approaches has led to the development of
numerous algorithms designed to organize data into meaningful groups based on
inherent similarities. Among these, the Information Bottleneck (IB) method, intro-
duced by [15], has emerged as a powerful framework for capturing the essence of
data by maximizing the mutual information between input variables and the desired
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output. Building upon this foundation, the Deterministic Information Bottleneck
(DIB) method, presented in [13], offers an appealing variant for clustering applica-
tions, emphasizing the deterministic assignment of data points to clusters.

This paper seeks to advance the application of the DIB method by tailoring it for
the clustering of mixed-type data. Mixed-type data sets, composed of both contin-
uous and categorical variables, present unique challenges that standard clustering
algorithms struggle to address effectively (refer to [1, 16] for comprehensive reviews
of clustering methods for mixed-type data). Our work is motivated by the need for a
robust, theoretically grounded approach capable of handling this complexity.

The rest of the paper is organised as follows: Section 1 presents the Deterministic
Information Bottleneck method tailored for mixed-type data (DIBmix), detailing
the theoretical framework, its algorithmic implementation and briefly outlining the
selection process of hyperparameter values. Section 3 discusses the simulations
performed on artificial data to benchmark the proposed method against other estab-
lished clustering techniques. In Section 4, we apply the DIBmix method to real-world
datasets and analyze its performance. The conclusion in Section 5 wraps up the study,
summarizing the findings and suggesting avenues for future research.

2 Methodology

The Information Bottleneck (IB) method was first introduced in [15]. The use of
IB and of its deterministic version (see [13]) in cluster analysis was then described
in detail in [14]. In this paper, we extend the Deterministic Information Bottleneck
(DIB) for clustering mixed-type data.

We start by defining our data set D to consist of both continuous and unordered
categorical variables. Given three signal sources 𝑋 ,𝑌 and𝑇 , the (D)IB method seeks
to find a mapping (or ‘encoder’) 𝑞(𝑡 | 𝑥) such that 𝑇 contains all the information that
is needed for predicting 𝑌 . Notice that we impose a Markov constraint of the form
𝑇 ↔ 𝑋 ↔ 𝑌 , which implies that 𝑇 can only get information about 𝑌 through 𝑋 and
vice-versa. In the context of cluster analysis 𝑇 is the ‘compressed’ representation of
D into clusters, 𝑌 is the location of each point in the 𝑝-dimensional mixed-attribute
space and finally 𝑋 is the observation index 𝑖 ranging from 1 up to the number of
observations 𝑛. The Markov constraint therefore tells us that if we are given a cluster
assignment of any point in D, we may not deduce its location unless we are also
equipped with the observation index.

Given the above assumptions, we define the ‘optimal DIB clustering’ 𝑞∗ (𝑡 | 𝑥) as:

𝑞∗ (𝑡 | 𝑥) = argmin
𝑞 (𝑡 |𝑥 )

𝐻 (𝑇) − 𝛽𝐼 (𝑇,𝑌 ). (1)

The terms 𝐻 (𝑇) and 𝐼 (𝑇,𝑌 ) refer to the entropy of 𝑇 and the mutual information of
𝑇 and 𝑌 , respectively. Expression (1) can be seen as a tradeoff between compression
and relevance; a low value of 𝐻 (𝑇) means that the clusters are very dense, while
a high value of 𝐼 (𝑇,𝑌 ) implies that given the cluster assignment of an observation,
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we can deduce a lot of information about its location (and vice versa). Finally, 𝛽
is a non-negative term that the solution is a function of, controlling the amount of
emphasis we put on relevance over compression; see [14] for a discussion on how
this can be chosen.

We now describe how the DIBmix algorithm is implemented. We start by
considering the joint density of 𝑋 and 𝑌 , denoted by 𝑝(𝑥, 𝑦). We notice that
𝑝(𝑥, 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥) and since 𝑋 only represents the observation index, we set
𝑝(𝑥) = 1/𝑛 to ensure all points have an equal weight. This can be modified if there
is a reason for certain observations to be more influential in the clustering process,
as long as

∑
𝑥 𝑝(𝑥) = 1. Determining 𝑝(𝑦 | 𝑥) requires knowledge about the data

generating process, which is often unavailable. Therefore, we resort to estimating
𝑝(𝑦 | 𝑥) using Kernel Density Estimation (KDE). Since our data consists of both
continuous and categorical features, the kernel density estimator of the joint density
is computed using a generalized product kernel, as suggested in [10]. For instance,
for one categorical and one continuous variable (denoted as 𝑥𝑑 and 𝑥𝑐, respectively),
the estimated joint probability density function at a point 𝒙∗ =

(
𝑥𝑑 , 𝑥𝑐

)⊺ is given by:

𝑓
(
𝒙∗
)
=

1
𝑛𝑠

𝑛∑︁
𝑖=1
𝐾𝑑

(
𝑋𝑑
𝑖 = 𝑥𝑑

)
𝐾𝑐

(
𝑋𝑐
𝑖
− 𝑥𝑐

𝑠

)
, (2)

where 𝐾𝑑 and 𝐾𝑐 are kernel functions for categorical and continuous data, respec-
tively. The continuous kernel function is taken to be the Gaussian kernel, while
the categorical kernel is that of Aitchison & Aitken [2]. These are summarised in
Expression (3) below:

𝐾𝑐

𝑋𝑐
𝑖
− 𝑥𝑐

𝑠
=

1
√

2𝜋
exp −

𝑋𝑐
𝑖
− 𝑥𝑐 2

2𝑠2
, 𝐾𝑑

(
𝑋𝑑
𝑖 = 𝑥𝑑

)
=

1−𝜆 if 𝑋𝑑
𝑖
= 𝑥𝑑

𝜆
ℓ−1 otherwise.

(3)
The parameters 𝜆 and 𝑠 are referred to as ‘bandwidths’ or ‘smoothing parameters’
in the density estimation literature. For the purpose of density estimation, cross
validation can be used to choose their values (see [10, 11] for a more involved
discussion), but in the context of clustering these can be set by the user based on
domain knowledge or any other intution that is available. In fact, 𝐾𝑐

(
(𝑋𝑐

𝑖
− 𝑥𝑐)/𝑠

)
is the density value of a Gaussian random variable centered at 𝑋𝑐

𝑖
with a variance of

𝑠2 (the multivariate extension follows naturally), while 𝐾𝑑 (𝑋𝑑
𝑖
= 𝑥𝑑) is a generalised

indicator function which boils down to the binary indicator for 𝜆 = 0. Notice that
𝜆 ∈ [0, (ℓ − 1)/ℓ], where ℓ is the number of levels that the categorical variable of
interest takes. Finally, there also exist kernel functions that can deal with ordinal
data (see [18], for example) but we exclude these from our study and focus solely on
unordered categorical variables.

Once 𝑝(𝑥, 𝑦) and 𝑝(𝑦 | 𝑥) have been evaluated, we choose a random initialisation
for the cluster assignment, denoted by 𝑞0 (𝑡 | 𝑥) and we further define the 𝑚th
updates for the negative loss function, the cluster masses, the clustering output and
the cluster conditional density of points (denoted by L (𝑚) (𝑥), 𝑞 (𝑚) (𝑡), 𝑞 (𝑚) (𝑡 | 𝑥)
and 𝑞 (𝑚) (𝑦 | 𝑡), respectively) as follows:



( )84 E. Costa et al.

L (𝑚) (𝑥) = log𝑞 (𝑚−1) (𝑡) − 𝛽𝐷KL 𝑝(𝑦 | 𝑥) | |𝑞 (𝑚−1) (𝑦 | 𝑡) ,

𝑞 (𝑚) (𝑡) =
∑︁
𝑥

𝑞 (𝑚) (𝑡 | 𝑥)𝑝(𝑥),

𝑞 (𝑚) (𝑡 | 𝑥) = I
{
𝑡 − argmax

𝑡

L (𝑚) (𝑥)
}
,

𝑞 (𝑚) (𝑦 | 𝑡) = 1
𝑞 (𝑚) (𝑡)

∑︁
𝑥

𝑞 (𝑚) (𝑡 | 𝑥)𝑝(𝑥, 𝑦).

In the above, I(·) refers to the indicator function, while 𝐷KL (·| |·) denotes the
Kullback-Leibler (KL) Divergence. The rationale behind this formulation is de-
scribed in detail in [13], where it also shown that minimisation of Expression (1)
is equivalent to maximising L(𝑥). The clustering process involves updating the
aforementioned quantities until 𝑞(𝑡 | 𝑥) remains unchanged. Multiple initial clus-
ter assignments 𝑞0 (𝑡 | 𝑥) can be used and the solution with the lowest value for
Expression (1) (or equivalently the maximum L(𝑥)) is chosen.

The proposed algorithm involves three key hyperparameters: 𝛽, 𝑠, and 𝜆. The
regularization parameter 𝛽 ≥ 0 balances relevance and compression. A higher 𝛽
emphasizes relevance, while lower values encourage compression. The optimal 𝛽 is
typically determined by plotting 𝐻 (𝑇) and 𝐼 (𝑇,𝑌 ) against a range of 𝛽 values and
selecting the point of largest curvature, a process detailed in [14].

Regarding bandwidth parameters 𝑠 and𝜆, they influence the trade-off between bias
and variance in density estimation [12]. Lower values can lead to limited dispersion
of 𝑝(𝑦 | 𝑥) across the unit interval, hence imposing the risk of any random initial
cluster assignment being returned as the solution with no exploration of the space
of possible partitions (this is analogous to the algorithm being trapped in local
minima). To mitigate this, we use a selection process that enables users to specify
the relative importance of variable types without directly setting bandwidth values.
The resulting density estimator should strike a balance between smoothness and
preserving information of high-density regions.

Lastly, 𝜆 is chosen to equalize the importance of continuous and categorical
variables in 𝑝(𝑦 | 𝑥). Evaluating kernel density estimators for both variable types
allows for the determination of 𝜆 such that their mean variances match. By default,
equal weight is assigned to both variable types; users can adjust this weighting if
necessary. Our method ensures a balanced consideration of variable types in the
clustering process.

3 Simulations on Artificial Data

We conducted a simulation study to evaluate the performance of our proposed
method, referred to as DIBmix, in comparison with three leading methods for clus-
tering mixed-type data, based on previous benchmarking studies [1, 3]. These meth-
ods include KAy-means for MIxed LArge data (KAMILA) [5], K-Prototypes [7],
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Fig. 1 Violin/box plots of Adjusted Rand Index values by method.

and Partitioning Around Medoids (PAM) using Gower’s dissimilarity [9, 6]. It is
important to note that all these methods are centroid-based, with KAMILA being
semi-parametric; our study did not include any model-based clustering algorithms.

Following recent recommendations for conducting benchmarking studies in clus-
ter analysis [17], we compare the four methods in a full factorial experiment. More
precisely, we generate artificial data sets with varying sample size (200, 500 and
1000), number of continuous and categorical features (2 and 6, each), number of
categorical levels (2, 4 and 6), overlap between clusters on the continuous and cate-
gorical variables (moderate and high) and cluster sizes (equal and imbalanced with
one cluster three times larger than the other). We use the genMixedData function
from the kamila package to replicate each scenario a hundred times. Continuous
variables follow a normal mixture model, and categorical variables follow a multi-
nomial mixture model. Overlap between clusters (i.e., how clear the cluster structure
is) corresponds to the area of the overlapping region defined by their densities (or,
for categorical variables, the summed height of overlapping segments defined by
their point masses). The overlap levels were set to 0.3 for moderate and 0.6 for
high overlap, respectively. The number of clusters was fixed to 2, due to limitations
imposed by genMixedData. The total number of data sets generated was therefore
28,800. For each data set, cluster recovery was measured using the Adjusted Rand
Index (ARI) [8].

The DIBmix method was implemented with the kernel functions in Expression
(3) (other kernel choices are also available) and parameter values were chosen
according to the process outlined in Section 2. The value of 𝛽 was chosen to be equal
to a hundred, so that relevance is encouraged much more than compression, while
the relative importance of categorical to continuous features was set to its default
value of a unit. All four clustering methods were run with a hundred random starts,
allowing for a maximum of a hundred iterations until convergence.
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Fig. 2 Mean cluster recovery in terms of ARI of the four methods under comparison across different
experimental conditions.

The violin plots in Figure 1 show the distributions of the ARI values for the
four clustering methods under comparison. The central tendency, represented by the
median, is highest for KAMILA, followed by DIBmix and K-Prototypes, suggesting
that these methods are more likely to yield optimal clustering partitions. Notably,
Gower/PAM exhibits a wide range of ARI values, including some significantly lower
scores, which highlights inconsistent clustering outcomes.

Figure 2 displays a comparative analysis of the mean ARI across various experi-
mental conditions. Overall, DIBmix tends to perform well in scenarios with balanced
clusters and many variables (continuous or categorical), but shows a steep decline in
performance when there is overlap in continuous and categorical variables and for
smaller sample sizes. KAMILA appears to be more robust to changes in categorical
levels and overlap. K-Prototypes and Gower/PAM perform moderately across dif-
ferent conditions but tend to be outperformed by DIBmix and KAMILA under the
majority of scenarios presented.
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4 Applications to Real Data

We assessed the performance of the four clustering methods across six real-world
datasets from the UCI repository [4]. It is important to outline that these datasets
were originally created for classification purposes. The ARI values, comparing the
cluster partition obtained to the ‘true’ cluster partition, are presented in Table 1;
the highest value for each dataset is shown in bold. DIBmix exhibited consistent
performance across a range of datasets, outperforming KAMILA, K-prototypes, and
Gower/PAM in most scenarios. In real-world data, the relative importance of cate-
gorical to continuous variables, as well as the effect of the regularisation parameter
𝛽 to the clustering output are hard to know in advance. Thus, we present the hyper-
parameter values which have led to these results for completeness. The terms 𝝀 and
ℓ refer to the vectors of categorical bandwidths and of the number of categorical
levels, respectively, while ⊘ denotes the Hadamard division.

Table 1 Performance of four clustering methods on six mixed-type datasets from the UCI repository
(values are ARIs). Hyperparameter values for DIBmix are reported below each dataset.

Dataset DIBmix KAMILA K-prototypes Gower/PAM

Dermatology (6 clusters, 1 cont, 33 categ) 0.7093 0.4629 0.5483 0.6143
𝛽 , 𝑠 . , ( − ) ⊘ − . ×

Heart disease (2 clusters, 6 cont, 7 categ)
(𝛽 = 10, 𝑠 = 3, 𝝀 = (ℓ − 1) ⊘ ℓ − 0.1× 1)

0.4470 0.3626 0.0273 0.4037

Adult (2 clusters, 6 cont, 8 categ)
( − ) ⊘ − ×

0.2252 0.1670 -0.0127 0.0389

Credit approval (2 clusters, 6 cont, 9 categ)
(𝛽 = 10, 𝑠 = 1.6, 𝝀 = (ℓ − ) ⊘ ℓ − 0.18× )

0.4065 0.4675 0.1811 0.3575

Australian (2 clusters, 6 cont, 8 categ)
𝛽 , 𝑠 . , 𝝀 (ℓ − ) ⊘ ℓ − . ×

0.4511 0.4747 0.1632 0.3487

Contraceptive method (3 clusters, 2 cont, 7 categ)
(𝛽 = 7.5, 𝑠 = 1.5, 𝝀 = (ℓ − 1) ⊘ ℓ)

0.0345 0.0305 0.0130 0.0249

5 Conclusion

In this paper, we introduced the Deterministic Information Bottleneck algorithm and
employed it to devise a new method for clustering mixed-type data. The method
has demonstrated promising results in a series of simulations in comparison to
three state-of-the-art clustering algorithms for heterogeneous features. Additionally,
the algorithm’s application to real-world datasets yielded reasonably good results.
Future investigations might explore the algorithm’s properties further, particularly
the impact of hyperparameters on the clustering process, and the development of
schemes for hyperparameter tuning. It is worth noting that ‘tuning’ in this context
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might lead to varying ‘optimal’ clustering results. Additional simulations could be
conducted to include more than two clusters and test the algorithm’s ability to deal
with more complex partitions. The introduction of the DIB algorithm for mixed-type
data could pave the way for the development of a new generation of information-based
clustering techniques for heterogeneous data, introducing a new class of effective
and reliable clustering methods.
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A New Metric to Classify B Cell Lineage Tree

Mahsa Farnia and Nadia Tahiri

Abstract The B cell lineage tree is a visual representation of the various stages of B
cell differentiation and maturation. It shows the progression from hematopoietic stem
cells to fully functional antibody-producing cells in the immune system. Accurately
classifying these cells requires a reliable metric, similar to an evolutionary tree. Our
research introduces a systematic approach for comparing B cell lineage trees that
take into account important parameters such as, branch length, and node abundance.
This analytical framework facilitates the exploration of lineage changes over time
and allows for the comparison of B cell dynamics within clinical contexts. To the best
of our knowledge, we were the first to propose a way of processing heterogeneous
data in lineage tree clustering. By addressing the complex challenge of comparing
multiple B cell lineage trees, our methodology enhances our comprehension of
immune system dynamics in disease contexts.

Key words: B cell lineage tree, immunoinformatics, generalized branch length
distance, clustering

1 Introduction

Immunoglobulins (IG), commonly known as antibodies, are indispensable elements
of the immune system, orchestrating sophisticated defense mechanisms against
pathogens [14]. B cells, integral to the immune response, carry surface-bound IG
known as B cell receptors (BCRs) [12]. The B cell receptor (BCR) comprises
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two essential components - an antigen recognition unit, such as the membrane im-
munoglobulin represented by IGM, and a signal transduction unit composed of two
heterodimers formed by the coreceptors CD79A (IG-alpha, mb-1, MB-1) and CD79B
(IG-beta, B29). These receptors are crucial for recognizing and binding antigens to
effectively initiate immune responses [11, 6].

Somatic mutations within B cells are critical in generating diverse naive B cell
variants. This process is essential for the development of effective therapeutic strate-
gies [2, 7, 8, 13]. BCRs, transmembrane glycoproteins, consist of two immunoglob-
ulin heavy chains (IGH) and two immunoglobulin light chains (IGL) that form the
antigen-binding site. The genetic architecture of BCR loci includes variability (V),
diversity (D), and joining (J) gene segments, which are fundamental for systematic
study. It is crucial to underscore the existing gap in the scientific literature regard-
ing the algorithmic exploration of comparing lineage trees. This paper introduces a
novel quantitative metric grounded in Minkowski principles, establishing a robust
theoretical foundation for this pertinent problem.

2 Problem Statement

Consider a set T of observed B cell receptor (BCR) IGH lineage trees with identical
VDJ rearrangement events. Each tree 𝑇𝑖 ∈ T implies node labels that are partially
different, encompassing unmutated (naive) BCR IGH nodes. A comparative analysis
is suggested to furnish nuanced computational insights into various facets, including
relatedness, clone diversity, antibody generation, memory B cell responses, selection
mechanisms, evolutionary patterns, and the key mechanisms governing B cell lineage
development.

3 Methods

The novel metric proposed in this study offers an approach for comparing the optimal
number of lineage trees. This metric approach is rooted in Minkowski principles.

Definition 0.1 (Minkowski distance) Minkowski distance, characterized by order
ℎ, such that ℎ ∈ N+, between two points 𝑋 = (𝑥1, ..., 𝑥𝑛) and 𝑌 = (𝑦1, ..., 𝑦𝑛) ∈ R𝑛 is
described as:

𝐷 (𝑋,𝑌 ) = ℎ

√√
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |ℎ . (1)

Our main objective is to introduce a novel method for comparing lineage trees
that consider specific criteria (e.g., branch length, abundance, internal nodes). The
Euclidean distance emerges as a robust metric for measuring distances between data
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points within a dataset, delineating the straight-line distance between points and
providing an intuitive measure of their similarity or dissimilarity. This metric serves
as a specific instance within the paradigm of Minkowski distance, becoming evident
when the ℎ parameter is set to 2.

In the context of lineage trees, the Euclidean distance takes on a distinctive
characterization, defined as follows:

𝐷 (𝑇1,𝑇2) =

√√√√𝑇𝑁 (𝑇1 ,𝑇2 )−1∑︁
𝑖=1

𝑇𝑁 (𝑇1 ,𝑇2 )∑︁
𝑗=𝑖+1

��𝑑𝑇1 (𝑖, 𝑗) − 𝑑𝑇2 (𝑖, 𝑗)
��2, (2)

where 𝑇1 and 𝑇2 represent lineage trees 1 and lineage tree 2, respectively, and
|𝑇𝑁 (𝑇1,𝑇2) | is the size of the set of nodes in 𝑇1 and 𝑇2. The distances between nodes
𝑖 and 𝑗 are denoted as 𝑑𝑇1 (𝑖, 𝑗) and 𝑑𝑇2 (𝑖, 𝑗), representing the spatial separation
between nodes 𝑖 and 𝑗 in lineage trees 𝑇1 and 𝑇2, respectively.

In addition to the difference in distance between all pairs of nodes (𝐷 (𝑇1,𝑇2)), we
introduce the disparity in abundance of each node between the two trees (𝑊 (𝑇1,𝑇2)).
Manhattan distance, derived from the Minkowski metric with parameter ℎ fixed at
1, is well suited to the assessment of node abundance, which involves traditional
distance measures between vectors, highlighting discrepancies between dimensions.
Node weights often represent specific attributes or features in the data, and Manhattan
distance can effectively capture how these attributes vary between different nodes.
This is in contrast to the Euclidean distance, which measures the straightforward
distance between points. Euclidean distance, which measures the overall differences
between data points in all dimensions, has been used to evaluate branch lengths in
family trees. Using both distances provides a nuanced understanding of the data. The
Manhattan distance highlights nuanced differences in node characteristics, while the
Euclidean distance offers a broader perspective on structural differences between
family trees, improving overall analysis and interpretation.

𝑊 (𝑇1,𝑇2) =
𝑇𝑁 (𝑇1 ,𝑇2 )∑︁

𝑖=1

��𝑤𝑇1 (𝑖) −𝑤𝑇2 (𝑖)
�� , (3)

where 𝑤𝑇1 (𝑖) and 𝑤𝑇2 (𝑖) represent the weights (i.e., abundances) of node 𝑖 in 𝑇1 and
𝑇2, respectively.

Another criterion has been effectively integrated and fine-tuned to serve as a
penalty between two trees, providing a more advantageous assessment by considering
the ratio of common nodes to the total number of nodes.

𝑃(𝑇1,𝑇2) =
𝐶𝑁 (𝑇1,𝑇2)
𝑇𝑁 (𝑇1,𝑇2)

, (4)

where 𝐶𝑁 (𝑇1,𝑇2) is the set size of the common nodes between 𝑇1 and 𝑇2.
A well-established metric for comparing two trees in computational biology is

the branch length distance (𝐵𝐿𝐷) [17, 10]. In 𝐵𝐿𝐷 metric, the sole emphasis is on
differences in branch lengths to discern distinctions between two lineage trees.
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𝐵𝐿𝐷 (𝑇1,𝑇2) =
𝑇𝑁 (𝑇1 ,𝑇2 )∑︁

𝑖=1
(𝑑𝑇1 − 𝑑𝑇2 )2. (5)

Since 𝐵𝐿𝐷 is designed for phylogenetic trees, accounting for all the principal charac-
teristics of lineage trees facilitates the derivation of a more suitable metric. However,
𝐵𝐿𝐷 (Equation 2) has significant limitations, i.e. it does not take into account inter-
nal nodes, node abundance, and overlapping sets of leaves. We therefore propose to
extend 𝐵𝐿𝐷 to 𝐺𝐵𝐿𝐷 (Equation 6) in order to fill these gaps. Equation 6 involves
considering all nodes, both internal and leaves, and assigning weights to each node
to ensure an accurate comparison of lineage trees. As the presented method extends
beyond the traditional 𝐵𝐿𝐷, it is referred to as the generalized branch length distance
(𝐺𝐵𝐿𝐷). The 𝐺𝐵𝐿𝐷 between 𝑇1 and 𝑇2 is defined as follows:

𝐺𝐵𝐿𝐷 (𝑇1,𝑇2) = 𝑃(𝑇1,𝑇2) × (𝑊 (𝑇1,𝑇2) +𝐷 (𝑇1,𝑇2)). (6)

Remark. If a leaf is present in one phylogenetic tree but not in the other, it is called
a ghost leaf in the missing tree. In this method, it is given a weight and distance
of 0. To improve tree completion using the completion-based RF(+) strategy as a
guide, further investigations will be conducted in the future [1, 16]. This approach
adequately captures all the topological details of both trees being compared.

4 Simulated Dataset Design

The evaluation of 𝐺𝐵𝐿𝐷 involved generating a simulated dataset under three dif-
ferent experimental settings, namely weight, distance, and common nodes, within
lineage trees. This was done to precisely measure both the similarities and differ-
ences between them. We manipulated the values of these features within lineage trees
to fortify the robustness of our methodology and rigorously validate its accuracy.
Table 1 provides a detailed summary of the various options considered during the
construction of lineage trees within our dataset.

Figure 1 shows ten different lineage trees, each with unique characteristics. For
example, 𝑇1, 𝑇2, 𝑇3, 𝑇8, and 𝑇9 all have twelve nodes in common, while 𝑇7 and 𝑇10
share ten nodes. Although the total number of nodes is the same across these trees,
there are differences in their weights and branch lengths. The main objective is to
analyze lineage trees that may have less obvious similarities and differences between
them.

5 Results and Discussion

The 𝐺𝐵𝐿𝐷 metric method is applied to the provided simulated dataset. The fol-
lowing steps elucidate how the features of two lineage trees under comparison are
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Table 1 Comparing lineage trees with varied attributes. Tree 𝑇1, comprising a total of 12 nodes,
serves as the reference tree for comparison. Manipulations of weight, branch length distance, and
the number of nodes are applied to other trees to explore various lineage tree possibilities. The
symbols I and D are employed to indicate whether two lineage trees are identical or distinct in the
special attribute. The final row does not designate 𝑇1 as the reference tree, comparing two trees
with a common node count lower than that of reference tree 𝑇1.

Pairs of lineage trees Weight Distance Common nodes

𝑇1, 𝑇2 I I I
𝑇1, 𝑇3 I D I
𝑇1, 𝑇4 I D D
𝑇1, 𝑇5 I I D
𝑇1, 𝑇6 D D D
𝑇1, 𝑇7 D I D
𝑇1, 𝑇8 D D I
𝑇1, 𝑇9 D I I
𝑇7, 𝑇10 D D I

incorporated into the 𝐺𝐵𝐿𝐷 metric method. Firstly, the weights of all nodes in
both lineage trees are included in Equation 3. Then, the branch length distances of
each pair of nodes are integrated into Equation 5. In cases where a node does not
appear in both lineage trees, the 𝐺𝐵𝐿𝐷 method preserves the effect of this node
by introducing a hypothetical node with the same name in the lineage tree lacking
it. The branch length and weight of the assumed node are considered zero. Finally,
the total and common number of nodes are counted and placed in the penalty index
specified by Equation 4.

Based on the explanations provided in the validation section, the 𝑘-medoids
algorithm [9] and the Calinski-Harabasz index [3] are implemented on the 𝐺𝐵𝐿𝐷

matrix. The optimal scenario occurs when there are three clusters.
Subsequently, given the predetermined number of clusters, the Calinski-Harabasz

index provides the optimal partitioning of the dataset.
The following outlines the optimal partition for the dataset.

• 𝑇1,𝑇2,𝑇3,𝑇8,𝑇9
• 𝑇7,𝑇10
• 𝑇4,𝑇5,𝑇6.

Within the first cluster, the 𝐺𝐵𝐿𝐷 scores of five lineage trees (i.e., 𝑇1, 𝑇2, 𝑇3, 𝑇8,
and 𝑇9) are comparatively lower than the 𝐺𝐵𝐿𝐷 scores between these five trees and
the rest of the dataset under review. 𝑇1 and 𝑇9, both belonging to the first cluster,
share the minimum𝐺𝐵𝐿𝐷 score (i.e.,𝐺𝐵𝐿𝐷 (𝑇1,𝑇9) = 7.0) in the matrix, indicating
that the degree of similarity between these two lineage trees exceeds that of others.
Conversely, two lineage trees 𝑇2 and 𝑇9 in cluster 1 exhibit a significantly higher
score, almost three times higher than that of 𝑇1 and

𝑇9 (i.e., 𝐺𝐵𝐿𝐷 (𝑇2,𝑇9) = 20.23). Consequently, the question arises as to why
these lineage trees with such elevated 𝐺𝐵𝐿𝐷 are grouped in the same cluster.
Assessing the 𝐺𝐵𝐿𝐷 scores of these two lineage trees alongside other members of
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Fig. 1 The structure of lineage trees under investigation. The topology of 𝑇1 acts as the cornerstone
for the other lineage trees. 𝑇2 mirrors 𝑇1 precisely but exhibits a distinct topology. While some
trees vary by a single attribute, others differ by two. One lineage tree stands out as varying in all
attributes, yet shares more than three common nodes, enabling comparison with other lineage trees.

the cluster justifies their inclusion in the same cluster (i.e., 𝐺𝐵𝐿𝐷 (𝑇2,𝑇1) = 13.23
and 𝐺𝐵𝐿𝐷 (𝑇9,𝑇1) = 7.0).

In cluster 1, the 𝐺𝐵𝐿𝐷 scores about certain pairs of lineage trees are char-
acterized by neither very low nor high values (e.g., 𝐺𝐵𝐿𝐷 (𝑇1,𝑇2) = 13.23 and
𝐺𝐵𝐿𝐷 (𝑇1,𝑇8) = 12.14), signifying moderate dissimilarities in topology, weights,
and branch lengths.

On the other side, 𝑇7 and 𝑇10 lineage trees share higher 𝐺𝐵𝐿𝐷 scores with the
other lineage trees of the dataset (e.g., 𝐺𝐵𝐿𝐷 (𝑇7,𝑇2) = 27.16 and
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𝐺𝐵𝐿𝐷 (𝑇10,𝑇2) = 31.14), except between themselves. Therefore, they establish a
separate cluster – the second one, marked by a 𝐺𝐵𝐿𝐷 score of 15.0.

In the third cluster, the 𝐺𝐵𝐿𝐷 score between two lineage trees, 𝑇4 and 𝑇6 is not
sufficiently low to warrant their placement in the same cluster (i.e., 𝐺𝐵𝐿𝐷 (𝑇4,𝑇6) =
23.48). However, similar to the scenario observed for 𝑇2 and 𝑇9 in cluster 1, the
𝐺𝐵𝐿𝐷 scores of these two lineage trees with their other cluster-mate justify their
inclusion in the same cluster (i.e.,𝐺𝐵𝐿𝐷 (𝑇4,𝑇5) = 19.93 and𝐺𝐵𝐿𝐷 (𝑇6,𝑇5) = 17.8).

A flashback to the section of simulated dataset design reveals that five lineage trees
𝑇1, 𝑇2, 𝑇3, 𝑇8, and 𝑇9 with the same common nodes in their topology are effectively
distinguished by the 𝐺𝐵𝐿𝐷 metric method. The fluctuations in the 𝐺𝐵𝐿𝐷 score of
these lineage trees highlight the subtle differences in their weights and branch lengths.
The 𝐺𝐵𝐿𝐷 metric method also demonstrates significant versatility in detecting
lineage trees that do not possess precisely the same nodes. This assertion appears
justified through considering the topology of 𝑇4, 𝑇5, and 𝑇6, and analyzing their
corresponding 𝐺𝐵𝐿𝐷 scores.

During the analysis of the dataset, it was normal and also essential to deal with
the common nodes in the lineage trees, but the interesting standpoint here is related
to the position of the common nodes. The presence of a special node in two lineage
trees with the same length and weight but different positions leads to different branch
length distances between these lineage trees. For this aim, we can consider 𝑇2 in our
dataset, having the same features as 𝑇1 but a different topology. Although these two
lineage trees are grouped in the same cluster based on their 𝐺𝐵𝐿𝐷 score, this score
does not adequately reflect their high similarity compared to other group members.
Therefore, as a future endeavor, it is valuable to consider an index linked to the
topologies of lineage trees under comparison to enhance the accuracy of the 𝐺𝐵𝐿𝐷

metric method, ensuring the preservation of its metric property.

6 Conclusion and Future Perspectives

Our study aims to introduce an innovative methodology for the comprehensive eval-
uation of lineage tree attributes, to achieve optimal partitioning while preserving
the inherent metric properties of the proposed method. The metric approach metic-
ulously incorporates the most crucial features of lineage trees, ensuring a nuanced
analysis. Rigorous validation of our method is conducted using the 𝑘-medoids algo-
rithm [9] and the Calinski-Harabasz index [3], providing a robust framework for
determining the optimal number of clusters and partitioning. Several adaptations of
the 𝑘-medoids algorithm have been proposed to systematically refine and optimize
the classification of consensus trees [19], or the 𝑘-means algorithm has been adapted
for supertrees clustering [18].

The interpretation of our study findings is grounded in a thorough understanding
of lineage tree topologies. The 𝐺𝐵𝐿𝐷 score, a key metric, offers profound insights
into the resemblance between two lineage trees, thereby enhancing our ability to
make accurate predictions regarding B cell responses to viruses. This knowledge
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holds significant implications for advancing the precision of immunotherapies and
vaccine development, based on a more nuanced understanding of B cell behavior.

Importantly, we found that differences in the structures of lineage trees lead
to a noticeable increase in the 𝐺𝐵𝐿𝐷 score, highlighting the significance of this
feature. In future research, incorporating this observation into our metric framework
shows promise for improving the accuracy of assessing lineage tree dynamics. These
advancements contribute valuable insights to the scientific community, especially in
understanding and controlling B cell immune responses.

An improvement strategy for our novel metric involves meticulous consideration
of node management (whether internal or external) to mitigate potential biases in
the metric. To address this, we contemplate the prospect of augmenting the leaves
on both sides of the lineage trees, thereby encompassing the entirety of nodes within
the dataset. This approach draws inspiration from the RF(+) method [4], and the
preprocessing endeavors to introduce branches and nodes absent in one tree but
present in the other, aligning with established methodologies in the field.
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97B Cell Lineage Trees Metric



Applying Classification Methods for
Multivariate Functional Data

Tomasz Górecki, Miroslaw Krzyśko, and Waldemar Wolyński

Abstract In this article, we propose a new approach to the classification of mul-
tivariate time series. We use a functional approach to data analysis and combine
information from raw data and functional derivatives. To provide a comprehensive
comparison, we conducted a set of experiments, testing effectiveness on fifteen
multivariate time series datasets from a wide variety of application domains. Our
experiments show that this new method provides a more accurate classification of
the examined datasets.

Key words: functional data, classification, discriminant coordinates, curvature

1 Introduction

When the data are recorded densely over time, often by machine, they are typically
termed functional or curve data, with one observed curve (or function) per subject.
This is often the case even when the data are observed with experimental error since
smoothing data recorded at closely spaced time points can greatly reduce the effects
of noise. In such cases we may regard the entire curve for the 𝑖th subject, represented
by the graph of the function 𝑋𝑖 (𝑡) say, as being observed in the continuum, even
though in reality the recording times are discrete. The statistical analysis of a sample
of 𝑛 such graphs is commonly termed functional data analysis (FDA), and can be
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Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznań,
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explored as suggested in the monographs by Ramsay and Silverman [16], [17] and
Horvath and Kokoszka [10]. We will see that there are many advantages to developing
a methodology using continuous representations.

Firstly, functional data are normally used to cope with the problem of missing
observations, which is inevitable in many applied research areas. Unfortunately,
most methods concerning data analysis require a complete time series. The removal
of time series that have missing observations from a data set is simply one of the
popular solutions, but this can lead, and in most cases does lead, to serious data loss.
Another possibility is to use one of many methods of missing data prediction, but in
that case, the results will depend on the interpolation method. Contrary to these types
of approaches, in the case of functional data, the problem of missing observations
is resolved by the expression of time series in the form of a continuous functions
set. Secondly, in the statistical development of multivariate functional data analysis
(MFDA) the structure of observations is naturally kept when using the functional
data, i.e. the temporal link is maintained and the information regarding any mea-
surement is taken into account. Consequently, the robustness of results is assumed.
Thirdly, the moments of observation do not have to be equally spaced in particular
time series, which can be a major advantage in online applications. Fourthly, when
using functional data one avoids the problem of dimensionality. When the total
number of time points, in which the observations are made, exceeds the number of
the examined time series data, most statistical methods do not provide satisfactory
results due to misleading false estimates. In the case of functional data, this problem
can be avoided, because the time series are replaced by a set of continuous repre-
sentative functions that are independent of the time points in which the observation
is made.

For multivariate functional data, various methods of classification are very often
used. We have 𝐿 different types of curves and the aim is to classify a new function as
one of the 𝐿 types. Curve discrimination arises in many contexts and is an important
problem. A clear example is signal discrimination, which has been considered in
several papers involving, for instance, the use of high-resolution radar returns for
target detection [7] or the recognition of speech signals [9], [4]. Other interesting
applications include medical diagnosis from EEG measurements from multiple scalp
sites [1], the automatic classification of rivet defects using eddy currents [13], and
chemometric applications such as the prediction of the fat content of a meat sample
based on the near-infrared absorbance spectrum [3] or a polymer discrimination
problem [14].

We recommend not to use classification methods in the original functional data
space. For multivariate functional data, we construct the first discriminant coordi-
nates [6]. These coordinates are uncorrelated and have unit variances. This new space
of functional discriminant coordinates is a very convenient space in which we can
apply various classification methods. Robust multivariate discriminant coordinates
are described in [11]. Application of multivariate discriminant coordinates can be
found in [8].

Our second recommendation is to take into account the shape of functional data.
Functions have shapes and shapes are represented by functions. The curvature of
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a plane curve at point 𝑃(𝑥0, 𝑦0) defined by the function 𝑦 = 𝑓 (𝑥) in the Cartesian
system is equal to

𝜅 = |𝑦′′0 |/(1+ 𝑦
′2
0 )

3/2.

Intuitively, the curvature is the amount by which a curve deviates from being a
straight line. We see that the definition of the curvature of the plane curve is based
on the first and second derivatives of the function 𝑓 . Hence, we recommend that the
functional data space be extended to include first and second derivatives of functions
representing this data.

The rest of this paper is organized as follows. Section 2 is devoted to the repre-
sentation of multivariate functional data. Section 3 proposes to extend the functional
data to their first and second derivatives. The different types of classifiers are de-
scribed in Section 4. Section 5 presents the behavior of the proposed classification
method for real data with a different number of classes and a different number of
repetitions. The conclusions are contained in Section 6.

2 Representation of Multivariate Functional Data

Assume that our data is divided into 𝐿 groups of objects and, that each object is
characterized by the values of the pair (𝑌,𝑋𝑋𝑋), where 𝑌 is a discrete random variable
called a label with values from the set {1,2, . . . , 𝐿} and 𝑋𝑋𝑋 ∈ 𝐿

𝑝

2 (𝐼) is 𝑝-dimensional
Hilbert space of square-integrable functions on the time interval 𝐼 = [𝑎, 𝑏].

We take into account the case when the 𝑑th component 𝑋𝑑 : 𝐼 −→ R of the
process 𝑋𝑋𝑋 belongs to the class twice, continuously differentiable functions on the
time interval 𝐼 and is represented by a finite number of orthonormal basis functions
{𝜑𝑏}:

𝑋𝑑 (𝑡) =
𝐵𝑑∑︁
𝑏=0

𝑐𝑑𝑏𝜑𝑏 (𝑡), (1)

where 𝑐𝑑𝑏 are random variables such that E(𝑐𝑑𝑏) = 0, 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.
Using formula (1), the process 𝑋𝑋𝑋 can be written as:

𝑋𝑋𝑋 (𝑡) =ΦΦΦ(𝑡)𝑐𝑐𝑐, 𝑡 ∈ 𝐼, (2)

where 𝑐𝑐𝑐 = (𝑐10, . . . , 𝑐1𝐵1 , . . . , 𝑐𝑝0, . . . , 𝑐𝑝𝐵𝑝
)⊤, ΦΦΦ(𝑡) = diag(𝜑𝜑𝜑⊤

𝐵1
(𝑡), . . . ,𝜑𝜑𝜑⊤

𝐵𝑝
(𝑡)),

𝜑𝜑𝜑𝐵𝑑
(𝑡) = (𝜑0 (𝑡), 𝜑1 (𝑡), . . . , 𝜑𝐵𝑑

(𝑡))⊤, 𝑑 = 1,2, . . . , 𝑝.
We can estimate the vector 𝑐𝑐𝑐 on the basis of 𝑛 independent realisations

𝑥𝑥𝑥𝑖1,𝑥𝑥𝑥𝑖2, . . . ,𝑥𝑥𝑥𝑖𝑛𝑖 from the 𝑖th class, 𝑖 = 1,2, . . . , 𝐿, of the random process 𝑋𝑋𝑋 (functional
data). Details of the least squares method estimation of the random coefficients 𝑐𝑐𝑐𝑑𝑏
can be found in [6].
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3 Dataset Extension

Let 𝑋𝑋𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑝)⊤, where

𝑋𝑑 (𝑡) =
𝐵𝑑∑︁
𝑏=0

𝑐𝑑𝑏𝜑𝑏 (𝑡), 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.

We compute the first derivative of the process 𝑋𝑑:

𝑋 ′
𝑑 (𝑡) =

𝐵𝑑∑︁
𝑏=0

𝑐𝑑𝑏𝜑
′
𝑏 (𝑡), 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.

Let 𝑥′
𝑑 𝑗

denote the value of the process 𝑋 ′
𝑑

at time 𝑡 𝑗 , where 𝑡 𝑗 ∈ 𝐼, 𝑗 = 1,2, . . . , 𝐽.
Then our data consist of 𝐽 pairs (𝑡 𝑗 , 𝑥′𝑑 𝑗

), 𝑗 = 1,2, . . . , 𝐽, 𝑑 = 1,2, . . . , 𝑝. This discrete
data can be smoothed using a function:

𝑋̂ ′
𝑑 (𝑡) =

𝐵𝑑∑︁
𝑏=0

𝑒𝑑𝑏𝜑𝑏 (𝑡), 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.

Then we compute the second derivative of the process 𝑋𝑑:

𝑋 ′′
𝑑 (𝑡) =

𝐵𝑑∑︁
𝑏=0

𝑐𝑑𝑏𝜑
′′
𝑏 (𝑡), 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.

Let 𝑥′′
𝑑 𝑗

be the value of the process 𝑋 ′′
𝑑

at time 𝑡 𝑗 , where 𝑡 𝑗 ∈ 𝐼, 𝑗 = 1,2, . . . , 𝐽. Now
our data includes 𝐽 pairs (𝑡 𝑗 , 𝑥′′𝑑 𝑗

), 𝑗 = 1,2, . . . , 𝐽, 𝑑 = 1,2, . . . , 𝑝. This discrete data
can be smoothed using a function:

𝑋̂ ′′
𝑑 (𝑡) =

𝐵𝑑∑︁
𝑏=0

ℎ𝑑𝑏𝜑𝑏 (𝑡), 𝑡 ∈ 𝐼, 𝑑 = 1,2, . . . , 𝑝.

Finally, we add the information provided by derivatives to a pure 𝑝-multivariate
process 𝑋𝑋𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑝)⊤, obtaining the extended process:

𝑍𝑍𝑍 = (𝑋1, 𝑋2, . . . , 𝑋𝑝 , 𝑋
′
1, 𝑋

′
2, . . . , 𝑋

′
𝑝 , 𝑋

′′
1 , 𝑋

′′
2 , . . . , 𝑋

′′
𝑝 )⊤.

4 Classifiers

From the formula (2), the estimates of independent realisations 𝑥𝑥𝑥𝑖1,𝑥𝑥𝑥𝑖2, . . . ,𝑥𝑥𝑥𝑖𝑛𝑖 of
the process 𝑋𝑋𝑋 in the 𝑖th group have the form:

𝑥𝑥𝑥𝑖 𝑗 (𝑡) =ΦΦΦ(𝑡)𝑐̂𝑐𝑐𝑖 𝑗 , 𝑡 ∈ 𝐼, 𝑗 = 1,2, . . . , 𝑛𝑖 , 𝑖 = 1,2, . . . , 𝐿.
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For this functional data, we construct functional discriminant coordinates [6, 8]. We
get 𝑠 = min(𝐵1+ · · ·+𝐵𝑝 + 𝑝, 𝐿−1) uncorrelated functional coordinates with unitary
variances. This new 𝑠-dimensional space of functional discriminant coordinates is a
very convenient classification space using a variety of classifiers.

Note that we can replace the 𝑝-dimensional process 𝑋𝑋𝑋 with 3𝑝-dimensional
extended process 𝑍𝑍𝑍 and proceed analogously.

In the 𝑠-dimensional vector space of functional discriminant coordinates, we
take into account the following classifiers: a classifier of 𝑘-nearest neighbors (𝑘NN),
Naive Bayes classifier (NB), decision trees (DT), the support vector machine (SVM),
random forest (RF), and XGBoost.

The percentage of correct classifications can be calculated for each of the six
classifiers. The classification can be performed on the functional data related to the
process 𝑋𝑋𝑋 or the functional data related to the extended process 𝑍𝑍𝑍 . Since the data
related to the extended 𝑍𝑍𝑍 process additionally contains information about the shape
of the function, it should be expected that the classification performed on these data
will contain a smaller number of errors.

5 Results

5.1 Datasets

In our experiments, we used time series data from the UEA MTSC archive [2]. The
principal attributes of each problem are condensed in Table 1. For further details,
please refer to the corresponding website.1 Each dataset was divided into training
and test sets. For this reason, we adopted the classification error rate on the test set
as a measure of quality.

5.2 Methods Evaluation

The obtained results are presented in Table 2. We can easily notice that the quality of
methods that utilize only information from the first and second derivatives is inferior
compared to methods that also use raw data. This is following other findings [5]. The
best results are achieved by combining all three sources of information: raw data,
first derivative (rate of change), and second derivative (shape).

All calculations were performed in the R environment [15] using the fda [18]
and caret [12] packages. All classifier parameters were tuned automatically with
the default settings of caret library. During calculations, we used B-spline basis
functions. B-spline basis functions have the advantages of very fast computation and
great flexibility. The first five basis functions are shown in the Figure 1.

1 https://www.timeseriesclassification.com/
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Table 1 Summary of the datasets used in experiments.

Name Train size Test size Dims Length Classes

AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 270 4 65 6
FingerMovements 316 100 28 50 2
HandMovementDirection 160 74 10 400 4
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
NATOPS 180 180 24 51 6
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table 2 Mean classification accuracies (over 15 datasets) for selected classifiers. D states for
derivative, and 0, 1, and 2 are raw data, first derivative and second derivative, respectively. The best
method is bolded, and the worst is italicized.

Classifier D0 D1 D2 D01 D02 D12 D012

𝑘NN 0.60 0.53 0.50 0.61 0.60 0.51 0.62
NB 0.54 0.46 0.50 0.55 0.54 0.49 0.57
DT 0.48 0.47 0.40 0.49 0.48 0.45 0.50
SVM 0.50 0.44 0.46 0.50 0.51 0.48 0.53
RF 0.56 0.45 0.48 0.57 0.55 0.53 0.59
XGBoost 0.62 0.54 0.49 0.64 0.62 0.55 0.67

6 Conclusions and future research

We utilized information derived from the first and second derivatives of functional
data. We demonstrated that the use of additional information stemming from this
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Fig. 1 B-spline basis functions on the interval [0, 1].
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fact for time series classification can lead to an improvement in classification quality.
The results obtained are promising.

In the next step, it would be appropriate to test the proposed techniques using
other bases as well (e.g., Fourier base). Moreover, it seems reasonable to test the
methodology on a larger amount of data as well as on larger data sets. Additionally,
a different dimension reduction method than the one proposed, for example, PCA, is
worth investigating.
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Machine Learning-Based Classification and
Prediction to Assess Corrosion Degradation in
Mining Pipelines

Kalidou Moussa Sow and Nadia Ghazzali

Abstract The issue of pipeline failure has garnered considerable interest from various
research communities due to its notable repercussions on the worldwide economy,
as well as the risks associated with leaks, explosions, and expensive periods of
downtime. This paper aims to build a model for classifying and predicting the
corrosion degradation of a pipe used to transport water in mines by the Quebec
Metallurgy Center. To this end, two types of models were developed: three binary
classification models: SVM, RF, and KNN, yielding F1-measurements of 0.968,
0.969, and 0.945 respectively, and a time series model, LSTM, which, with a loss
of less than 0.01, was able to predict average variations in pipeline thickness for 63
days.

Key words: machine learning, classification, prediction, pipeline corrosion

1 Introduction

In the last ten years, substantial endeavors have been undertaken to address the
challenge of pipeline corrosion through the application of statistical modeling, in-
corporating various machine-learning techniques.
As a result of the advancements in machine learning (ML) and deep learning (DL),
there has been significant interest in data-driven model-based detection methods for
pipeline erosion-corrosion monitoring.
Aghaaminiha et al.[1] use supervised machine learning methods to model measure-
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ments of carbon steel corrosion rates as a time function. They compared different
machine learning models and concluded that Random Forest performed better on
their data with the mean squared error ranging from 0.005 to 0.093. Sheikh et al.[7]
uses a hybrid technique that combines the detection of corrosion through acoustic
emission signals from accelerated corrosion testing with machine learning tech-
niques to accurately predict the corrosion severity levels. They applied decision
trees, back propagation neural network, and radial basis function neural network
on their data and obtained an accuracy of 90.4%, 94.57%, and 100% respectively.
Hendi et al.[4] implemented a back propagation neural network model to minimize
sewage system’s concrete corrosion with glass beads substitution and to predict the
mass-loss and volume-loss in the specimens. They obtained a mean error squared
of 0.44 for the mass-loss and 1.18 for the volume-loss. Dia et al.[3] have applied
an unsupervised neural network, self-organizing maps (SOM), to study the impact
of corrosion assessed by periodic ultrasonic inspections. They combined SOM and
hierarchical clustering to detect the extent of corrosion in a mining pipeline. Li et
al.[6] combined the swarm intelligence optimization algorithm (SSA) and a LSTM
model to predict the maximum pitting corro- sion depth of subsea oil pipelines.
the comparison of their SSA-LSTM method with the LSTM alone shows that the
new model SSA-LSTM performed superior in prediction ac- curacy and robustness
which evaluation parameters are the smallest values in these models.
In a prior investigation, in our paper (Sow and al.)[8] accepted in 2024, our emphasis
was on the multivariate aspect of the data outlined in section 3. However, in this
study, our focus will shift to the univariate model of the data.

2 Theory and Formulation

2.1 Support Vector Machine (SVM)

SVM (Support Vector Machines) is a classification method proposed by Vapnik 1982
and aimed at finding a separating hyperplane while maximizing the margin between
the two classes. To explain how SVM works, we consider a binary classification
problem where the labels are defined as -1 and 1. We have a dataset composed
of input feature vectors X and their corresponding class labels Y. The hyperplane
equation is defined as follows:

𝜔𝑇𝑥 + 𝑏 = 0. (1)

The vector 𝜔 represents the normal vector to the hyperplane, the parameter b in the
equation represents the offset or distance of the hyperplane from the origin along the
normal vector 𝜔. The distance between a data point 𝑥𝑖 and the decision boundary
can be calculated as follows:

𝑑𝑖 =
𝜔𝑇𝑥𝑖 + 𝑏
| |𝜔| | , (2)
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where | |𝜔| | represents the Euclidean norm of the vector 𝜔. For a linear SVM model,
we seek to optimize the expression:

min
𝜔,𝑏

1
2
𝜔𝑇𝜔 = min

𝜔,𝑏

1
2
| |𝜔| |2 (3)

under constraint:
𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1.

This is equivalent to minimizing the following Lagrage equation:

𝐿 (𝜔, 𝑏,𝜆) = 1
2
| |𝜔| |2 −

𝑁∑︁
𝑖

𝜆𝑖 (𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) −1)) (4)

U.C 𝜆𝑖 ≥ 0
To predict new data, we determine its sign using the following formula:

𝑦 = 𝑠𝑖𝑔𝑛(𝜔𝑇𝑥𝑛𝑒𝑤 + 𝑏), (5)

where 𝜔 =
∑𝑁𝑆𝑉

𝑖 𝜆𝑖𝑦𝑖𝑥𝑖 , 𝑏 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑦𝑖 −𝜔𝑇𝑥𝑖) and NSV represents the Number
of support vectors.

2.2 Random Forest (RF)

The “random forest” algorithm was proposed by Leo Breiman and Adèle Cutler in
2001 [2]. It combines several decision trees in parallel, in a bagging-type approach,
which reduces the variance of predictions from a single decision tree. This technique
is simple to implement and delivers good results in terms of prediction quality on
complex data, and in the presence of a large number of explanatory variables. A
random forest is an aggregation of a large number of classification or regression
trees. The randomness of the algorithm comes from the fact that the trees are built
based on bootstrap samples. Bootstrap samples are generally obtained by drawing
n observations from n in the initial sample N. In particular, another random aspect
is introduced in the selection of variables at each stage in the construction of these
trees (at each node, a subset of the variables is selected to determine the cut-off).

A random forest is a collection of decision tree classifiers ℎ𝑘 (𝑥, 𝜃𝑘), 𝑘 = 1..𝑁
where the 𝜃𝑘 are randomly generated trees. The final result of this tree system is
obtained by majority vote:

𝐻 = argmax
𝑌

𝑖=𝑘∑︁
𝑖=1

𝐼 (ℎ𝑖 (𝑥 = 𝑌 )).
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2.3 k-Nearest Neighbors (KNN)

The k-nearest neighbors algorithm is a non-parametric, supervised learning classifier,
which uses proximity to make classifications or predictions about the grouping of
an individual data point. While it can be used for either regression or classification
problems, it is typically used as a classification algorithm, working off the assumption
that similar points can be found near one another.

2.4 Long Short-Term Memory (LSTM)

Long Short-Term Memory Networks (LSTM)[5] allow to learn long-term depen-
dencies. They are explicitly designed to avoid the long-term dependency problem.

An LSTM network has three gates that update and control the states of the cells:
the Forget gate, the Input gate, and the Output gate.

In the equations listed under the forget gate, input gate, and output gate in the
diagram, ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the current input, 𝑊 is the weight
matrix, 𝑏 is the bias, 𝜎 is the sigmoid function, 𝑡𝑎𝑛ℎ is the hyperbolic tangent
function, and ⊗ represents vector multiplication.

The Forget gate is responsible for deciding to let information pass. State 0 corre-
sponds to “keep complete information” while state 1 represents “Totally get rid of
the information”. It is defined by the following equation:

𝑓𝑡 = 𝜎(𝑊 𝑓 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ). (6)

The Input gate controls what new information will be encoded in the cell state, given
the new input information. The information is regulated using the sigmoid function
and filters the values to be retained in the same way as the forgetting gate, using the
inputs ℎ𝑡−1 and 𝑥𝑡 . Next, a vector is created using the tanh function, which gives
an output from -1 to +1, containing all possible values of ℎ𝑡−1 and 𝑥𝑡 . Finally, the
vector values and the regulated values are multiplied to obtain useful information.

The input gate equation is as follows:

tanh(𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐) ⊗𝜎(𝑊𝑖 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖). (7)

The Output gate controls which information encoded in the cell state is sent to the
input network at the next time step, this is done via the output vector ℎ𝑡 . First, a
vector is generated by applying the tanh function to the cell. Next, the information
is regulated using the sigmoid function and filtered by the values to be retained
using the inputs ℎ𝑡−1 and 𝑥𝑡 . Finally, the vector values and the regulated values are
multiplied and sent as output and input to the next cell. The output gate equation is
as follows:

ℎ𝑡 =𝑜𝑡 ⊗ tanh(𝑐𝑡 )
where 𝑜𝑡 =𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜).

(8)
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3 Data Analysis

The study utilized data provided by the Quebec Metallurgy Centre in collaboration
with Agnico Eagle Mine Goldex, covering the period from 2016 to 2023. The
dataset comprises sixteen process variables recorded every five minutes and eight
pipe thickness variables measured with a probe installed in the pipe. Table 1 shows
the distribution of process data as well as their mean and standard deviation (std).
Thickness measurements are collected over 24 hours or more. To have the same
number of records for process variables and thickness measures, we aggregate the
process variables by calculating their average per day. This results in 635 records for
each variable.

Table 1 The process data, their mean and their standard deviation.

Area Parameter Mean Std

Alimentation Tonnage Sag 337.88 61.74
Flotation sector pulp flotation temperature 25.4 5.89

pH flottation 9.08 0.26
Pipeline residue flow 431.14 113.4

% solid residue 24.98 15.7
Calculated residual TPH 156.25 132.02
Pressure Km 0 2095 737.3
Temperature Km 0 18.89 6.7
Pressure Km 14 430.36 446.66
Temperature Km 14 18.09 19.87

Thompson River flow rate m3/h 182.6 106.65
Temperature 11.01 6.59

Sedimentary Basin flow rate m3/h 70.27 15.99
Temperature 12.78 7.55

South Park flow rate m3/h 166.4 101.6
Temperature 7.8 6.3

We also calculate the average of the eight thicknesses. Figure1 represents the
evolution of the average thickness as a function of time. Dates are represented in
French (janv. January, avr. April, juil. July, and oct. October). Pipelines are affected
by corrosion if the measure of their thickness is less than 5.5.
First, we’ll perform a binary classification with machine learning models (SVM,
KNN, and RF) on the risk of corrosion by encoding the labels: 1 if the measure of
thickness is less than 5.5 and 0 if the measure of thickness is greater than 5.5.
In the second part, we’ll predict the evolution of the average thickness measure with
the LSTM, taking the data as a time series.
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Fig. 1 Average thickness as a function of time.

4 Results

Table 2 shows the performance of the different machine learning models imple-
mented. SVM and RF provide higher dataset accuracy than KNN. This indicates that
SVM and RF offer better classification of corroded pipelines.
The recall of the RF is equal to 1.00, which means that it didn’t produce any false
negatives. This is because the data from re-cut pipeline measures are not balanced.
there are more 1’s than 0’s. That’s why, to compare the performance of these models,
we’re going to base it on the F1-measure, which is the harmonic mean of precision
and recall. The Random Forest obtains the best F1-measure, which means that it
performs better on our data than the other two models.

Table 2 Comparison of different machine learning models.

Recall F1-measure AccuracyModels Precision

SVM 0.964 0.973 0.968 0.941
RF 0.940 1.000 0.969 0.941
KNN 0.981 0.945 0.945 0.933

Figure 2 shows the evolution of the loss function of the LSTM model over time.
The decrease in the loss function proves that the LSTM model used has minimized
the prediction errors during training.
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Fig. 2 Training Loss.

The thickness measurements predicted by the model are below the nominal thick-
ness (5.5mm), which means the pipeline is already corroded, since the LSTM is
monitoring the evolution of past measurements, the corresponding pipelines will
have to be replaced or treated. (see Figure 3)

Fig. 3 Measurement of the average thickness predicted by the LSTM model.

5 Conclusion

Corrosion in pipelines poses significant economic and environmental challenges.
Due to the intricate nature of corrosion data, simplistic statistical modeling struggles
to provide a comprehensive analysis.
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In our study, we assessed three classification models: SVM, KNN, and Random
Forest (RF). Our findings indicate that the random forest outperformed the others,
achieving an F1-measure of 0.969. Additionally, we utilized an LSTM model to
make predictions for 63 days.

Moving forward, our research will incorporate temporal statistical models like
ARIMA and SARIMA, integrating them with deep learning techniques to enhance
the model’s predictive capabilities.
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Modelling Clusters in Network Time Series with
an Application to Presidential Elections in the
USA

Guy Nason, Daniel Salnikov, and Mario Cortina-Borja

Abstract Network time series are becoming increasingly relevant in the study of
dynamic processes characterised by a known or inferred underlying network struc-
ture. Generalised Network Autoregressive (GNAR) models provide a parsimonious
framework for exploiting the underlying network, even in the high-dimensional set-
ting. We extend the GNAR framework by introducing the community-𝛼 GNAR
model that exploits prior knowledge and/or exogenous variables for identifying and
modelling dynamic interactions across communities in the network. We further anal-
yse the dynamics of Red, Blue and Swing states throughout presidential elections in
the USA. Our analysis suggests interesting global and communal effects.

Key words: time series clustering, Generalised Network Autoregressive (GNAR)
process, community interactions, R-Corbit plot

1 Introduction

Modelling dynamics present in network time series necessitates studying a con-
stant flux of temporal data characterised by large numbers of interacting variables,
which are associated to a network structure, e.g., networks in climate science, cyber-
security, biology and political science to name a few. Traditional models, such as
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vector autoregressive processes (VAR), become increasingly difficult to estimate
and interpret as the number of variables increases, i.e., the well known curse of
dimensionality. Recently, the generalised network autoregressive (GNAR) model
has been developed [5, 12, 4], which provides a parsimonious model that is more
interpretable and has shown superior forecasting performance in a number of set-
tings, including the high-dimensional one, e.g., see [9]. Developments in this area
include [2] for Poisson/count data processes, [10] to admit time-changing covariate
variables and [8, 7] for GNAR processes on the edges of networks. We introduce
the community-𝛼 GNAR specification for modelling dynamic clusters in network
time series; see [13, 3] for related work, which should be seen as an addition to the
existing toolbox, rather than as a general method, which assumes prior knowledge
of the network structure. Hence, it is useful when data are effectively described by
an underlying network in which community structure is identifiable. Thus, it can be
combined with methods that estimate network structures and/or clusters in dynamic
settings. These are of interest in network and spatio-temporal modelling, e.g., [1]
propose methods for identifying clusters in temporal settings.

1.1 Review of GNAR Models

A network time series X := (𝑿𝑡 ,G) is a stochastic process that manages interactions
between nodal time series 𝑋𝑖,𝑡 ∈R based on the underlying networkG. It is composed
of a multivariate time series 𝑿𝑡 ∈ R𝑑 and an underlying network G = (K,E), where
K = {1, . . . , 𝑑} is the node set, E ⊆K×K is the edge set, and G is an undirected graph
with 𝑑 ∈ Z+ nodes. Each nodal time series 𝑋𝑖,𝑡 is linked to node 𝑖 ∈ K. Throughout
this work we assume that the network is static, however, GNAR processes can handle
time-varying networks; see [4]. GNAR models provide a parsimonious framework by
exploiting the network structure. This is done by sharing information across nodes in
the network, which allows us to estimate fewer parameters in a more efficient manner.
A key notion is that of 𝑟-stage neighbours, we say that nodes 𝑖 and 𝑗 are 𝑟-stage
neighbours if and only if the shortest path between them in G has a distance of 𝑟 , i.e.,
𝑑 (𝑖, 𝑗) = 𝑟 . We use 𝑟-stage adjacency to define the 𝑑 × 𝑑 𝑟-stage adjacency matrices
S𝑟 , where [S𝑟 ]𝑖 𝑗 := I{𝑑 (𝑖, 𝑗) = 𝑟}, I is the indicator function, 𝑟 ∈ {1, . . . , 𝑟max}, and
𝑟max ∈ Z+ is the longest shortest path in G. The S𝑟 extend the notion of adjacency
from an edge between nodes to the length of shortest paths (i.e., smallest number
of edges between nodes). Note that S1 is the adjacency matrix and that all the S𝑟

are symmetric. Further, assume that unique association weights 𝑤𝑖 𝑗 ∈ [0,1] between
nodes are available. These weights measure the relevance node 𝑗 has for forecasting
𝑖, and can be interpreted as the proportion of the neighbourhood effect attributable
to node 𝑗 . We define the weights matrix W ∈ R𝑑×𝑑 as the matrix [W]𝑖 𝑗 := 𝑤𝑖 𝑗 . Note
that since there are no self-loops in G all diagonal entries in W are equal to zero,
and that since 𝑤𝑖 𝑗 ≠ 𝑤 𝑗𝑖 is valid W is not necessarily symmetric (i.e., nodes can have
different degrees of relevance).
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In the absence of prior weights GNAR assigns equal importance to each 𝑟-stage
neighbour in a neighbourhood regression, i.e., 𝑤𝑖 𝑗 = {|N𝑟 (𝑖) |}−1, where |N𝑟 (𝑖) | ≤
𝑑 − 1 is the number of 𝑟-stage neighbours of node 𝑖 and N𝑟 (𝑖) ⊂ K is the set of
𝑟-stage neighbours of node 𝑖. A GNAR model assumes that effects are shared among
𝑟-stage neighbours, rather than considering pair-wise regressions, it focuses on the
joint effect 𝑟-stage neighbours have on 𝑋𝑖,𝑡 . To do this we express the autoregressive
model in terms of 𝑟-stage neighbourhood regressions. These are given by 𝒁𝑟

𝑡 :=
(W⊙ S𝑟 ) 𝑿𝑡 , where ⊙ denotes the Hadamard (component-wise) product. Each entry
𝑍𝑟
𝑖,𝑡

in 𝒁𝑟
𝑡 is the 𝑟-stage neighbourhood regression corresponding to node 𝑖. The

vector-wise representation of a global-𝛼 GNAR (𝑝, [𝑠𝑘]) model is given by

𝑿𝑡 =

𝑝∑︁
𝑘=1

(𝛼𝑘𝑿𝑡−𝑘 +
𝑠𝑘∑︁
𝑟=1

𝛽𝑘𝑟𝒁𝑟 ,𝑡−𝑘) +𝒖𝑡 , (1)

where 𝛼𝑘 ∈ R and 𝛽𝑘𝑟 ∈ R are the autoregressive coefficients, 𝑝 ∈ Z+ is the maximum
lag, 𝑠𝑘 ∈ {1, . . . , 𝑟∗} is the maximum 𝑟-stage depth at lag 𝑘 = 1, . . . , 𝑝, 𝑟∗ ≤ 𝑟max is
the maximum 𝑟-stage depth across all lags, and 𝒖𝑡 are independent and identically
distributed zero-mean white noise with covariance matrix 𝜎2

𝒖Id and 𝜎2
𝒖 > 0. This

compact representation is identical to the one in [4] and highlights the parsimonious
structure of a global-𝛼 GNAR model. The construction above follows the one in [9],
which includes more details, interpretation and further results.

2 The Community-𝜶 GNAR Model

Suppose that there is a collection of covariates 𝑐 ∈ {1, . . . ,𝐶} = [𝐶] such that each
𝑋𝑖,𝑡 is linked to only one covariate at all times 𝑡 ∈ Z+

0 , where 𝐶 ∈ K is the number of
covariates. Define 𝐾𝑐 :=

{
𝑖 ∈ K : 𝑋𝑖,𝑡 is characterised by covariate 𝑐

}
. Note that by

definition the 𝐾𝑐 are disjoint subsets of the node set (i.e., 𝐾𝑐 ⊆ K and 𝐾𝑐 ∩𝐾𝑐̃ = ∅
if 𝑐 ≠ 𝑐), and ∪𝐶

𝑐=1𝐾𝑐 = K. Thus, the 𝐾𝑐 form a partition of K and define non-
overlapping clusters in G. Intuitively, each covariate is a label that indicates the
cluster to which 𝑋𝑖,𝑡 belongs, e.g., if G consists of population centres, then each
𝑋𝑖,𝑡 could be characterised as either urban, rural or a hub-town, i.e., each cluster is
a collection of nodes that defines a community in G.

The community-𝛼 GNAR model is an additive model of community-wise au-
toregressive terms, which are obtained by using the vectors 𝝃𝑐 ∈ R𝑑 , where
𝝃𝑐 := (𝜉1,𝑐, . . . , 𝜉𝑑,𝑐), and 𝜉𝑖,𝑐 := I(𝑖 ∈ 𝐾𝑐). Each entry in 𝝃𝑐 is non-zero if and
only if 𝑖 ∈ 𝐾𝑐. The autoregressive terms are 𝑿𝑐

𝑡 := 𝝃𝑐 ⊙ 𝑿𝑡 , note that each entry in
𝑿𝑐

𝑡 is not constantly zero if and only if 𝑖 ∈ 𝐾𝑐 (i.e., 𝑋𝑖,𝑡 is characterised by 𝑐 ∈ [𝐶]).
Further, within community terms are given by

𝒁𝑟 ,𝑐

𝑡−𝑘 = 𝜉𝑐 ⊙ (W⊙ S𝑟 ) 𝑿𝑐
𝑡−𝑘 ,
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i.e., 𝑟-stage neighbourhood regressions constrained to community 𝐾𝑐. The model is
given by

𝑿𝑡 =

𝐶∑︁
𝑐=1

{
𝜶𝑐 (𝑿𝑡 ) + 𝜷𝑐 (𝑿𝑡 )

}
+𝒖𝑡 , (2)

where 𝜶𝑐 (𝑿𝑡 ) := 𝑝𝑐
𝑘=1𝛼𝑘,𝑐𝑿

𝑐
𝑡−𝑘 is the community autoregressive component, and

𝜷𝑐 (𝑿𝑡 ) :=
∑𝑝𝑐

𝑘=1
∑𝑠𝑘 (𝑐)

𝑟=1 𝛽𝑘,𝑟 ,𝑐𝒁
𝑟 ,𝑐

𝑡−𝑘 is the within community component for each
community 𝐾𝑐.

Above in (2), 𝛼𝑘,𝑐 ∈ R are autoregressive coefficients at lag 𝑘 for 𝐾𝑐, 𝛽𝑘,𝑟 ,𝑐 ∈ R
are 𝑟-stage neighbourhood regression coefficients at lag 𝑘 for 𝐾𝑐, and 𝒖𝑡 are zero-
mean independent and identically distributed white noise such that cov(𝒖𝑡 ) = 𝜎2

𝒖Id
and 𝜎2

𝒖 > 0. We denote the model order of (2) by community-𝛼 GNAR( [𝑝𝑐],
{[𝑠𝑘 (𝑐)]}, [𝐶]), where 𝑝𝑐 ∈ Z+ is maximum lag and 𝑠𝑘 (𝑐) ≤ 𝑟max is maximum
𝑟-stage at lag 𝑘 for 𝐾𝑐, 𝑘 = 1, . . . , 𝑝 is current lag, 𝑝 = max(𝑝𝑐) is global maximum
lag, 𝐶 is the number of communities, and 𝑐 ∈ [𝐶] is the covariate that charac-
terises community 𝐾𝑐. The model given by (2) is stationary if its parameters satisfy∑𝑝𝑐

𝑘=1

{
|𝛼𝑘,𝑐 | +

∑𝑠𝑘 (𝑐)
𝑟=1 |𝛽𝑘,𝑟 ,𝑐 |

}
< 1, for all covariates 𝑐 ∈ [𝐶]. This is a direct appli-

cation of results in [4].

Remark 0.1 Expressing (2) as a VAR is done by incorporating networked-informed
constraints into autoregressive matrices. Let 𝚽𝑘 be the 𝑑 × 𝑑 matrix given by

𝚽𝑘 =

𝐶∑︁
𝑐=1

[
diag(𝛼𝑘,𝑐𝝃𝑐) +

𝑠𝑘 (𝑐)∑︁
𝑟=1

{
𝛽𝑘,𝑟 ,𝑐 (W𝑐 ⊙ S𝑟 )

}]
, (3)

where terms for larger order are set to zero, e.g., if 𝑝𝑐 < 𝑝𝑐̃, then 𝛼𝑘,𝑐 ≡ 0 for 𝑘 > 𝑝𝑐,
[W𝑐]𝑖 𝑗 = 𝑤𝑖 𝑗 I(𝑖 ∈ 𝐾𝑐 and 𝑗 ∈ 𝐾𝑐), i.e., W constrained to community 𝐾𝑐. Then, the
VAR(𝑝) model given by 𝑿𝑡 =

∑𝑝

𝑘=1𝚽𝑘𝑿𝑡−𝑘 +𝒖𝑡 , where 𝒖𝑡 are i.i.d. white noise, is
identical to the model given by (2).

2.1 Model Estimation

Estimation of GNAR models is straightforward by noting that these are network-
informed constrained VAR models; see [4, 9]. However, we present a conditional
linear model that exhibits the parsimonious nature of GNAR processes and aids in-
terpretation. Assume that we observe𝑇 ∈ Z+ time-steps of a stationary community-𝛼
GNAR process with known order. The data X := [𝑿1, . . . ,𝑿𝑇 ] are a realisation of
length 𝑇 coming from a stationary GNAR( [𝑝𝑐], {[𝑠𝑘 (𝑐)]}, [𝐶]). Notice that we can
concatenate each community term in (2) into design matrices as follows
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R𝑘,𝑡 := R𝑘,𝑡 ,1 | . . . |R𝑘,𝑡 ,𝐶 , (4)

R𝑡 :=
[
R1,𝑡 | . . . |R𝑝,𝑡

]
,

R𝑘,𝑡 ,𝑐 := 𝑿𝑐
𝑡−𝑘 |𝒁

1,𝑐
𝑡−𝑘 | . . . |𝒁

𝑠𝑘 (𝑐) ,𝑐
𝑡−𝑘 ,[ ]

where predictor columns are concatenated in ascending order with respect to 𝑐,
i.e., if 𝑐 > 𝑐, then the columns for 𝑐 precede the ones for 𝑐. Hence, R𝑘,𝑡 ,𝑐 is the
design matrix for 𝐾𝑐 at lag 𝑘 , R𝑘,𝑡 is the design matrix for all communities at
lag 𝑘 and R𝑡 is the design matrix for all communities and lags 𝑘 = 1, . . . , 𝑝. By
stacking the R𝑡 for 𝑡 = 𝑝 + 1, . . . ,𝑇 , and defining 𝜽 := (𝜽1, . . . ,𝜽𝐶 ) ∈ R𝑞 , where
𝜽𝑐 = (𝛼1,𝑐, 𝛽1,1,𝑐, . . . , 𝛽1,𝑠1 (𝑐) ,𝑐, 𝛼2,𝑐, . . . , 𝛽𝑝𝑐 ,𝑠𝑝 (𝑐) ,𝑐) ∈ R𝑞𝑐 , ordered by lags (i.e.,
all parameters are stacked for each lag), is the vector of parameters for 𝐾𝑐, and
𝑞 =

∑𝐶
𝑐=1 𝑞𝑐 is the number of unknown parameters. We can write (2) as the linear

model
𝒚 = R𝜽 +𝒖, (5)

where 𝒚 = (𝑿 𝑝+1, . . . ,𝑿𝑇 ) ∈ R𝑑 (𝑇−𝑝) is the response, R is the 𝑑 (𝑇 − 𝑝) × 𝑞 design
matrix, and entries in 𝒖 = (𝒖𝑝+1, . . . ,𝒖𝑇 ) are i.i.d. white noise. Thus, we can estimate
𝜽 by least-squares, i.e., 𝜽̂ =

(
R𝑇R

)−1 R𝑇 𝒚 throughout this work.

Remark 0.2 Assume that 𝑿𝑡 is a stationary community-𝛼 GNAR model with i.d.d.
white noise residuals, then the R𝑐 have zeros in different rows (non-overlapping
communities). Hence, R is orthogonal by blocks, and since cov(𝜽̂) = 𝜎2

𝒖 (R𝑇R)−1,
the 𝜽̂𝑐 are uncorrelated and non-zero entries in the precision matrix {cov(𝜽̂)}−1

correspond to estimated coefficients in the same community (i.e., cov(𝛼̂𝑘,𝑐, 𝛼̂𝑘,𝑐̃) = 0
if 𝑐 ≠ 𝑐). Further, if we assume that 𝒖𝑡 ∼ N𝒅 (0,𝜎2

𝒖Id), then 𝜽̂ is the conditional
maximum likelihood estimator and 𝜽̂𝑐 =

(
R𝑇

𝑐 R𝑐

)−1 R𝑇
𝑐 𝒚 are block-wise independent.

Note that by Remark 0.2, it is possible to estimate model parameters separately
and simultaneously for community-𝛼 GNAR models. This allows us to use more
observations for communities with a smaller maximum lag, remove unnecessary
predictors from each 𝑐-community linear model, and perform estimation in parallel,
which is useful for very large networks with a lot of observations, e.g., internet
traffic network time series. Further, adapting 𝜽̂ to a generalised least-squares setting
is straightforward. Suppose that cov(𝒖) = 𝚺𝑇 , then we estimate 𝜽 by generalised
least-squares, i.e.,

𝜽̂gls = R𝑇𝚺−1
𝑇 R

−1
R𝑇𝚺−1

𝑇 𝒚, (6)

where 𝚺𝑇 is a valid 𝑑 (𝑇 − 𝑝) ×𝑑 (𝑇 − 𝑝) covariance matrix, e.g., 𝚺𝑇 = Id ⊗𝚺𝒖 , where
⊗ denotes Kronecker product, which is block-diagonal with entries cov(𝒖𝑡 ) = 𝚺𝒖

at all times 𝑡. Moreover, the linear model in (5) can be broken into its community
components, which can be estimated by different strategies, e.g., some communities
could be regularised and/or estimated using more robust estimators. Also, it is
possible to express dependence between residuals in a community-wise manner, i.e.,
assuming that𝚺𝒖 is block diagonal, where each block corresponds to one community.
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Fig. 1 USA state-wise network, blue nodes are Blue states (Democrat nominee won at least 75%
of elections), orange nodes are Red states (Republican nominee won at least 75% of elections), and
grey nodes are Swing states (neither party won at least 75% of elections).

3 Modelling Presidential Elections in the USA

We study the twelve presidential elections in the USA from 1976 to 2020. The
data for our study are obtained from the MIT Election Data and Science Lab
(doi.org/10.7910/DVN/42MVDX). Denote this network time series by (𝑿𝑡 ,G),
where 𝑋𝑖,𝑡 is the percentage of votes for the Republican nominee in the 𝑖th state
(ordered alphabetically) for election year 𝑡 ∈ {1976,1980, . . . ,2020}. The network is
G = (K,E), where 𝑖 ∈ [51] and 𝑑 = 51, and it is built by connecting states that share
a land border (i.e., there is an edge between two nodes if and only if their respective
states share a land border). Based on the percentage of elections won by either party,
we classify each node (state) as either Red, Blue or Swing. The communities are:
𝑖 ∈ 𝐾1 if the Republican nominee won at least 75% of elections, 𝑖 ∈ 𝐾2 if the Demo-
crat nominee won at least 75% of elections, and 𝑖 ∈ 𝐾3 if neither nominee won at
least 75% of elections; see Figure 1. In what follows, we use the CRAN GNAR pack-
age for computing the network autocorrelation function (NACF) and partial NACF
(PNACF), and producing R-Corbit plots. These are network enabled extensions of
the ACF and PACF that aid model order selection (i.e., maximum lag and 𝑟-stage
depth at each lag), and visualising the correlation structure of a realised network time
series; see [9] for detailed definitions and examples. The R-Corbit plot in Figure 2
shows that the PNACF is positive at the first lag, negative and strongest at the second

G. Nason et al.
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lag, cuts-off at lags three and four, and, interestingly, appears to be strong at the fifth
lag across all 𝑟-stages. At the first lag, the PNACF cuts-off after the first 𝑟-stage,
and at both the second and fifth lags decays as 𝑟-stage grows but does not cut-off at
any 𝑟-stage. This suggests a positive correlation for elections in which a president
is running for reelection, and that network effects influence said election. Remark-
ably, the strong correlation at the second lag across all 𝑟-stages suggests a change
in the system, which we interpret as alternating between Republican and Democrat
nominees once the incumbent president has completed their eight-year term. This
has been the case with the exceptions of Jimmy Carter (1976-1980), George Bush
(1988-1992) and Donald J. Trump (2016-2020). Interestingly, the exception cases
are the ones in which there was a change at the election in which an incumbent pres-
ident was running for reelection. We believe that the fifth lag might be identifying
these oddities. Nevertheless, more analysis is needed.
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Fig. 2 PNACF R-Corbit plot of presidential state-wise percentage vote for Republican nomi-
nee. Points in a R-Corbit plot correspond to (p)nacf𝑐 (ℎ, 𝑟 ) , where ℎ is ℎth lag, 𝑟 is 𝑟-stage
depth and 𝑐 ∈ [𝐶 ] is the community. These belong to a circle ring, where the mean value, i.e.,
𝐶−1∑𝐶

𝑐=1 (p)nacf𝑐 (ℎ, 𝑟 ) , is shown at the centre. The numbers on the outermost ring indicate lag,
and 𝑟-stage depth is read by ring order starting from the inside (i.e., innermost ring is for 𝑟 = 1,
second one for 𝑟 = 2, etc ...). The underlying network is the USA state-wise network; see Figure 1.

Figure 2 suggests a model order of lag two and first stage neighbours for the three
communities. Thus, our choice of model is a community-𝛼GNAR( [2], {[1,0]}, [3]).
Table 1 compares our choice with alternative models. We fix the random seed (e.g.,
set.seed(2024)), fit sparse VAR using sparsevar; see [11], and CARar (forecasts
are computed as a global-𝛼GNAR) using CARBayesST; see [6]. Remarkably, global-
𝛼GNAR(2, [1,0]) forecasts produce the smallest root mean squared prediction error.
However, this is an atypical election (2020) and the dataset is overly sparse, thus, the
models’ predictive capabilities are likely limited. This preliminary analysis suggests,
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as expected, that Red states vote mostly for the Republican nominee, Blue states for
the Democrat nominee, and that Swing states play the deciding role, however, it also
suggests that the clusters behave more similarly than expected, i.e., there appear to
be (spatio-temporal) global and communal network effects.

Table 1 Comparison with local-𝛼 and global-𝛼 GNAR models, and to spatio-temporal conditional
autoregressive CARar(2) , sparse VAR(2) models, and Naive forecast (previous observation).
GNAR denotes community-𝛼, GNAR* global-𝛼 and GNAR+ local-𝛼. No. Param. is the number of
parameters, and rMSPE is one-step ahead root mean squared error, i.e., {∑51

𝑖=1 (𝑋𝑖,𝑡 − 𝑋̂𝑖,𝑡 )2/51}1/2,
rMSPE* is for non-centred data (i.e., not subtracting the column mean 𝑋𝑖 =

∑11
𝑡=1 𝑋𝑖,𝑡/12).

GNAR GNAR* GNAR+ sp. VAR CARar Naive

rMSPE 6.81 4.82 11.47 4.86 2.75 2.45
rMSPE* 8.59 2.34 24.96 72.57 3.60 2.45
No. Param. 9 3 103 377 6 NA

4 Conclusion

We have introduced the community-𝛼 GNAR model, its parsimonious framework
allows analysing high-dimensional (network) time series data, and can detect in-
teresting community dynamics, e.g., Section 3. However, it requires knowledge of
network communities, and assumes stationarity. Future work will focus on extending
the methodology and a more thorough analysis of the electoral data, and extending
GNAR to nonstationary (bio)spatio-temporal settings. The code for replicating the
study and model fitting will be added to the CRAN GNAR package in due course.
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On the Vapnik-Chervonenkis Dimension and
Learnability of the Hurwicz Decision Criterion

Manuel A. Nunez and Mark A. Schneider

Abstract We develop a new axiomatic framework to characterize the classical Hur-
wicz criterion. Our framework is simpler than other characterizations in the liter-
ature. We also study the learnability and falsifiability of the Hurwicz axioms. In
particular, we compute the Vapnik-Chervonenkis dimension of the class of Hurwicz
preferences, show that the Hurwicz class is PAC (probably approximately correct)
learnable, provide a lower bound on the sample size required to learn a concept
in this class, and provide an efficient polynomial-time algorithm to either learn or
falsify a Hurwicz concept based on data.

Key words: Hurwicz criterion, machine learning, Vapnik-Chervonenkis dimension,
learnability of decision theories

1 Introduction

The classical Hurwicz criterion for decision making under uncertainty [11, 10]
has received recent renewed attention because it can be used to explain behavioral
anomalies of agents in certain financial markets. For instance, empirical evidence
shows that in asset markets under uncertainty (such as a sport betting market, a
political prediction market, or a binary options market) often prices are distorted
by the presence of “noise” traders who do not use standard decision criteria like
expected utility. In [16], the authors developed a mathematical model to explain
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these anomalies based on the assumption that noise traders use the more robust
Hurwicz criterion.

To better understand these markets and the behavior of noise traders, it is important
to develop a theoretical framework to allow the classification of market agents as
noise traders based on data. Hence, having a methodology for learning or falsifying
a Hurwicz theory is very relevant in this context. There has been work on learning
and falsifying other decision theories [2], but as far as we know, there is no research
of this type on the Hurwicz criterion. In this paper we develop such a theory.

2 Axiomatic Hurwicz Criterion

Let 𝑇 be a finite set with at least two elements (this is to avoid trivial situations)
indexing all possible outcomes from an event under uncertainty. For example, con-
sider the future winner of the U.S. Baseball World Series next October. In this case,
𝑇 has 30 elements, each element representing a team in the MLB (Major League
Baseball). An element 𝑡 in 𝑇 is interpreted as the team represented by 𝑡 winning the
World Series. LetW be the set [0,1] |𝑇 | . A coordinate 𝑤𝑡 from 𝑤 ∈W is interpreted
as the payoff that a decision maker would get when outcome 𝑡 ∈ 𝑇 is realized. These
payoffs are normalized, so that 𝑤𝑡 ∈ [0,1] for all 𝑡 ∈ 𝑇 . For instance, if 𝑡 represents
the Los Angeles Dodgers (an MLB team), then 𝑤𝑡 is the normalized payoff if the
Dodgers win the World Series. We denote by 0 and by 𝑒 the all-zeros and the all-ones
vectors (respectively) in ℜ |𝑇 | , and by 𝑒𝑡 the canonical vector in ℜ |𝑇 | such that the
coordinate corresponding to 𝑡 is one and the other coordinates are zero. We say that
a payoff vector is constant if 𝑤𝑡 = 𝑤𝑡 ′ for all 𝑡, 𝑡′ ∈ 𝑇 . Clearly, for a constant payoff
vector 𝑤 there exists 𝛼 ∈ [0,1] such that 𝑤 = 𝛼𝑒.

We consider the case of a decision maker that is able to compare and choose
between two different payoff vectors. In particular, we assume that there is a binary
relation denoted by “≻” ⊂W×W overW. The relation ≻ is called a preference
relation if it is asymmetric and negatively transitive, and in that case, we say that 𝑤
is preferred to 𝑤̂ if 𝑤 ≻ 𝑤̂. Moreover, we say that 𝑤 is weakly preferred to 𝑤̂, denoted
as 𝑤 ⪰ 𝑤̂, if 𝑤̂ ⊁ 𝑤; and that 𝑤 is indifferent to 𝑤̂, denoted as 𝑤 ∼ 𝑤̂, if 𝑤 ⊁ 𝑤̂ and
𝑤̂ ⊁ 𝑤. Observe that if ≻ is a preference relation, then for all 𝑤 and 𝑤̂ exactly one of
𝑤 ≻ 𝑤̂, 𝑤̂ ≻ 𝑤, or 𝑤 ∼ 𝑤̂ holds; and ⪰ is a complete and transitive relation [13].

We are interested in determining when the decision maker’s preference relation
can be expressed or represented by a functional of the form:

ℎ𝜃 (𝑤) := 𝜃max(𝑤) + (1− 𝜃)min(𝑤), (1)

for all 𝑤 ∈W, where 𝜃 ∈ [0,1]. By representation we mean that

𝑤 ≻ 𝑤̂ if and only if ℎ𝜃 (𝑤) > ℎ𝜃 (𝑤̂),

for all 𝑤, 𝑤̂ ∈W. This functional is known as the Hurwicz functional [11, 10], and if
the decision maker’s preference relation can be represented by this functional, we say
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that she is using the Hurwicz decision criterion. Notice that for 𝜃 = 0, the decision
maker will compare payoffs vectors based on the lowest payoff outcome. In this case,
the decision maker is pessimistic and exhibits a form of risk aversion. It corresponds
to the classical Wald Maximin criterion from decision theory [18]. Analogously, for
𝜃 = 1, the decision maker will compare payoffs vectors based on the highest payoff
outcome. In this case, the decision maker is optimistic or risk-seeking. The Hurwicz
criterion acknowledges that agents may view the Wald criterion as too pessimistic,
and is designed to accommodate both optimism and pessimism toward uncertainty.

Next, we state a series of axioms that, if satisfied by the decision maker, will
imply that the she is using a Hurwicz criterion to compare payoff vectors.

i. Preference axiom: ≻ onW is a nontrivial preference relation.
ii. Continuity axiom: For every 𝑤,𝑤′, 𝑤′′ ∈W, the sets {𝛾 ∈ [0,1] : 𝛾𝑤+ (1−𝛾)𝑤′ ⪰

𝑤′′} and {𝛾 ∈ [0,1] : 𝑤′′ ⪰ 𝛾𝑤+ (1−𝛾)𝑤′} are closed.
iii. Certainty independence axiom: For every 𝑤, 𝑤̂ ∈W, 𝛼 ∈ [0,1] and 𝛾 ∈ (0,1], we

have 𝑤 ⪰ 𝑤̂ if and only if 𝛾𝑤+ (1−𝛾)𝛼𝑒 ⪰ 𝛾𝑤̂+ (1−𝛾)𝛼𝑒.
iv. Monotonicity axiom: For every 𝑤, 𝑤̂ ∈W, 𝑤 ≥ 𝑤̂ implies 𝑤 ⪰ 𝑤̂.
v. Extreme-payoff dominance axiom: For every 𝑤, 𝑤̂ ∈W, max(𝑤) ≥ max(𝑤̂) and

min(𝑤) ≥ min(𝑤̂) imply 𝑤 ⪰ 𝑤̂.

Axioms i to iv are standard axioms used in the decision theory literature [7, 13]. In
Axiom i, by nontrivial we mean that there exist at least two payoff vectors 𝑤, 𝑤̂ such
that 𝑤 ≻ 𝑤̂. Axiom i and Axiom iv imply that 𝑒 ⪰ 𝑤 ⪰ 0 for all 𝑤 and, in particular,
that 𝑒 ≻ 0. Axiom v is a new axiom stating that the decision maker compares payoff
vectors by only examining extreme payoffs across each vector. The axiom is not
satisfied in general by traditional learnable decision criteria such as expected utility,
Choquet expected utility, or multiple priors [2].

The following result provides a new axiomatic characterization of the Hurwicz
criterion based on extremality of payoffs. Different versions of a Hurwicz criterion
have been characterized in [14] by imposing axioms over rows and columns of
decision matrices, in [1, 6] relying on the certainty independence axiom from [7],
in [15] who imposes axioms over sets of lotteries, in [5] relying on co-monotonic
independence, in [17] over menus of acts, and in [8] in a Savage-style setting.

Theorem 0.1 The relation ≻ onW satisfies Axioms i–v if and only if there exists a
unique 𝜃 ∈ [0,1] such that

𝑤 ≻ 𝑤̂ if and only if ℎ𝜃 (𝑤) > ℎ𝜃 (𝑤̂),

for all 𝑤, 𝑤̂ ∈W, where ℎ𝜃 is the Hurwicz preference functional defined in (1) with
parameter 𝜃.

Proof. We only prove that the axioms are sufficient because the proof that they are
necessary is straightforward given a Hurwicz representation of ≻. Hence, assume
that Axioms i–v hold. As shown in [13], Axioms i–iii imply that

𝛼 > 𝛽 ⇐⇒ 𝛼𝑒 ≻ 𝛽𝑒, and 𝛼 = 𝛽 ⇐⇒ 𝛼𝑒 ∼ 𝛽𝑒, (2)
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for all 𝛼, 𝛽 ∈ [0,1]. By Axioms ii and iv, for each 𝑤 ∈ W there exists 𝛼𝑤 ∈ [0,1]
such that

𝑤 ∼ (𝛼𝑤max(𝑤) + (1−𝛼𝑤)min(𝑤)) 𝑒,

and 𝛼𝑤 is unique for each nonconstant 𝑤. We define 𝑓 (𝑤) := 𝛼𝑤max(𝑤) + (1−
𝛼𝑤)min(𝑤) for all nonconstant 𝑤 and 𝑓 (𝑤) := 1 for constant 𝑤. By (2), it follows
that 𝑤 ≻ 𝑤̂ if and only if 𝑓 (𝑤) > 𝑓 (𝑤̂) for all 𝑤, 𝑤̂. From Axiom iii, it follows that

𝑓 (𝛾𝑤) = 𝛾 𝑓 (𝑤) and 𝑓 (𝑤+ 𝛿𝑒) = 𝑓 (𝑤) + 𝛿, (3)

for all 𝛾 ∈ [0,1] and 𝑤+ 𝛿𝑒 ∈W. Identities (3) imply that 𝛼𝛾𝑤 = 𝛼𝑤+𝛿𝑒 = 𝛼𝑤.
Let 𝑤, 𝑤̂ be nonconstant vectors and assume without loss of generality that

max(𝑤) −min(𝑤) ≥max(𝑤̂) −min(𝑤̂) > 0. Set 𝛾 := (max(𝑤̂) −min(𝑤̂))/(max(𝑤) −
min(𝑤)) and 𝛿 := 𝛾max(𝑤) −max(𝑤̂) = 𝛾min(𝑤) −min(𝑤̂). Notice that 𝛾 ∈ (0,1]
and 𝑤̂ + 𝛿𝑒 ∈ W. Since max(𝛾𝑤) = max(𝑤̂ + 𝛿𝑒) and min(𝛾𝑤) = min(𝑤̂ + 𝛿𝑒), Ax-
iom v implies that 𝛾𝑤 ∼ 𝑤̂+ 𝛿𝑒, which implies that 𝛼𝑤 = 𝛼𝛾𝑤 = 𝛼𝑤̂+𝛿𝑒 = 𝛼𝑤̂.

Therefore, 𝛼𝑤 is a constant independent of nonconstant vectors 𝑤. If we denote
by 𝜃 this constant and set ℎ𝜃 (𝑤) := 𝑓 (𝑤) for all 𝑤, the existence and uniqueness of
the representation given by ℎ𝜃 follows. ⊓⊔

3 Vapnik-Chervonenkis Dimension and Learnability

We denote by H the set of all Hurwicz preferences defined on W×W. Given
𝑛 ∈ N , let S𝑛 := (W×W)𝑛, that is, S𝑛 is the set of all data samples consisting of
𝑛 payoff-vector pairs. Given a sample vector 𝑠 :=

[
(𝑤1, 𝑤̂1), . . . , (𝑤𝑛, 𝑤̂𝑛)

]
∈ S𝑛, we

say that 𝑠 can be Hurwicz shattered, or just shattered, if for all 𝑥 ∈ {0,1}𝑛 there exists
≻∈ H such that

𝑤𝑖 ≻ 𝑤̂𝑖 if and only if 𝑥𝑖 = 1,

for all 𝑖 = 1, . . . , 𝑛. As usual, the Vapnik-Chervonenkis (VC) dimension of H is
defined as

VC(H) := max {𝑛 : there exists 𝑠 ∈ S𝑛 that can be shattered} , (4)

that is, VC(H) is the largest 𝑛 for which we can find a sample 𝑛-vector that can be
shattered by a Hurwicz preference.

Theorem 0.2 VC(H) = 1.

Proof. We first show that there is a sample vector in S1 that can be shattered. This
would imply that VC(H) ≥ 1. Let 𝑤 := 𝑒1, 𝑤̂ := 1

|𝑇 | 𝑒, and 𝑥 ∈ {0,1}. If 𝑥 = 1, then
let ≻ be the Hurwicz preference corresponding to 𝜃 = 1. Then, we have ℎ𝜃 (𝑤) = 1 >

1
|𝑇 | = ℎ𝜃 (𝑤̂), that is, 𝑤 ≻ 𝑤̂, which agrees with 𝑥 in this case. If 𝑥 = 0, then let ≻ be the
Hurwicz preference corresponding to 𝜃 = 0. Then, we have ℎ𝜃 (𝑤) = 0 < 1

|𝑇 | = ℎ𝜃 (𝑤̂),
that is, 𝑤 ⊁ 𝑤̂, which again agrees with 𝑥. Therefore, [(𝑤, 𝑤̂)] ∈ S1 can be shattered.



( )

129VC Dimension and Learnability of the Hurwicz Decision Criterion

Next, we show that there cannot be a shattered vector inS2, which would imply that
VC(H) < 2, and the theorem would follow. Consider a 2-dimensional sample vector
𝑠 := [(𝑤1, 𝑤̂1), (𝑤2, 𝑤̂2)] ∈ S2. By letting parameter 𝜃 vary in the interval [0,1],
it follows that the mappings 𝑓1 (𝜃) := ℎ𝜃 (𝑤1), 𝑓1 (𝜃) := ℎ𝜃 (𝑤̂1), 𝑓2 (𝜃) := ℎ𝜃 (𝑤2),
and 𝑓2 (𝜃) := ℎ𝜃 (𝑤̂2) are linear functions on [0,1]. Notice that to shatter 𝑠 it is
necessary and sufficient to partition interval [0,1] into at least four nonempty regions
such that each region corresponds to each of the four possible conditions 𝑓1 (𝜃) −
𝑓1 (𝜃) > or < 0 and 𝑓2 (𝜃) − 𝑓2 (𝜃) > or < 0. If such a partition exists, then 𝑠 can
be shattered by taking the Hurwicz preferences corresponding to four values of 𝜃
taken respectively from each region in the partition. However, because 𝑓1, 𝑓1, 𝑓2, 𝑓2
correspond to straight lines, there is at most one point 𝜃1 such that 𝑓1 (𝜃) − 𝑓1 (𝜃)
changes sign in [0,1], and there is at most one point 𝜃2 such that 𝑓2 (𝜃) − 𝑓2 (𝜃)
changes sign in [0,1]. Taken together, the points 𝜃1 and 𝜃2 define at most three
nonempty regions in [0,1] where 𝑓1 (𝜃)− 𝑓1 (𝜃) > or < 0 and 𝑓2 (𝜃)− 𝑓2 (𝜃) > or < 0.
Therefore, it is impossible to shatter 𝑠 in this case. ⊓⊔

Theorem 0.2 implies that the set of axioms consisting of Axioms i to v is falsifiable.
In other words, if a decision maker uses a non-Hurwicz relation ≻ when comparing
payoff vectors, so that at least one of the axioms is not satisfied by ≻, then there
exists a sample vector

[
(𝑤1, 𝑤̂1), . . . , (𝑤𝑛, 𝑤̂𝑛)

]
with 𝑛 > 1 such that for all ≻′∈ H

there is a pair (𝑤𝑖 , 𝑤̂𝑖) where ≻ and ≻′ do not agree, that is, such that either 𝑤𝑖 ≻ 𝑤̂𝑖

and 𝑤𝑖 ⊁′ 𝑤̂𝑖 , or 𝑤𝑖 ⊁ 𝑤̂𝑖 and 𝑤𝑖 ≻′ 𝑤̂𝑖 . In fact, the theorem shows that any set of
axioms yielding a Hurwicz representation is falsifiable.

Given a probability distribution 𝐹 onW×W, the prediction error between two
preferences ≻,≻′∈ H is defined as

𝑒(≻,≻′) := Pr𝐹 (≻ △ ≻′) ,

where as usual, △ denotes the symmetric difference between sets. Given a sample
𝑠 =

[
(𝑤1, 𝑤̂1), . . . , (𝑤𝑛, 𝑤̂𝑛)

]
∈ S𝑛, and 𝑥 ∈ [0,1]𝑛, a hypothesis Hurwicz-preference

based on (𝑠, 𝑥) is a preference ≻∈H that agrees with 𝑥 on 𝑠, that is, such that 𝑤𝑖 ≻ 𝑤̂𝑖

if and only if 𝑥𝑖 = 1.
Another consequence of Theorem 0.2 is that because VC(H) is a finite constant,

then there exists an algorithm that, for a given preference ≻∈H , a random 𝑠 ∈ S𝑛, and
a vector 𝑥 ∈ [0,1]𝑛 consistent with ≻ on 𝑠, determines with probability greater than
or equal to 1− 𝛿 a hypothesis ≻′∈ H based on (𝑠, 𝑥) such 𝑒(≻,≻′) < 𝜖 [4], where
𝛿, 𝜖 ∈ (0,1). In other words, the class of Hurwicz preferences is PAC (probably
approximately correct) learnable [9, 12].

Combining Theorem 0.2 with Corollary 5.17 from [3], we obtain the following
result.

Theorem 0.3 Given a random training sample (𝑠, 𝑥) ∈ S𝑛 × [0,1]𝑛, let ≻ be a
hypothesis preference based on (𝑠, 𝑥). Suppose that

𝑛 ≥ 2
𝜖

log2
1
𝜖
+ log2

1
𝛿

, (5)
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for given 𝛿, 𝜖 ∈ (0,1). Then, for any probability distribution 𝐹 on W×W, with
probability greater than or equal to 1− 𝛿, every ≻′∈ H satisfies 𝑒(≻,≻′) < 𝜖 .

Theorem 0.3 provides a lower bound on the size of a sample to learn a hypothesis
preference. Notice that this bound is polynomial in 1/𝛿 and 1/𝜖 , and independent of
the size of the outcome set 𝑇 (dimension of the setW).

We conclude by stating algorithm that, given a data sample, either provides evi-
dence to falsify the Hurwicz axioms or determines a hypothesis Hurwicz-preference
consistent with the sample. The algorithm is of polynomial-time on 1/𝛿, 1/𝜖 ,
and |𝑇 |.

Hurwicz-Concept Learning Algorithm

Given a data sample (𝑤1, 𝑤̂1), . . . , (𝑤𝑛, 𝑤̂𝑛) ∈ S𝑛 and a preference vector 𝑥 ∈
{0,1}𝑛, perform the following steps:

𝜃min← 0, 𝜃max← 1,
For 𝑖← 1, . . . , 𝑛,

𝑀𝑖←max(𝑤𝑖), 𝑀̂𝑖←max(𝑤̂𝑖), 𝑚𝑖←min(𝑤𝑖), 𝑚̂𝑖←min(𝑤̂𝑖),
If 𝑀𝑖 > 𝑀̂𝑖 ,𝑚𝑖 > 𝑚̂𝑖 , and 𝑥𝑖 = 0, then 𝜃min = 1.5,
If 𝑀𝑖 ≤ 𝑀̂𝑖 ,𝑚𝑖 ≤ 𝑚̂𝑖 , and 𝑥𝑖 = 1, then 𝜃max = −0.5,
If 𝑀𝑖 > 𝑀̂𝑖 and 𝑚𝑖 ≤ 𝑚̂𝑖 , then

𝜃𝑖← (𝑚̂𝑖 −𝑚𝑖)/(𝑀𝑖 − 𝑀̂𝑖 + 𝑚̂𝑖 −𝑚𝑖),
If (𝑥𝑖 = 1) and (𝜃𝑖 > 𝜃min), then 𝜃min← 𝜃𝑖 ,
If (𝑥𝑖 = 0) and (𝜃𝑖 < 𝜃max), then 𝜃max← 𝜃𝑖 ,

If 𝑀𝑖 ≥ 𝑀̂𝑖 and 𝑚𝑖 > 𝑚̂𝑖 , then
𝜃𝑖← (𝑚̂𝑖 −𝑚𝑖)/(𝑀𝑖 − 𝑀̂𝑖 + 𝑚̂𝑖 −𝑚𝑖),
If (𝑥𝑖 = 1) and (𝜃𝑖 < 𝜃max), then 𝜃max← 𝜃𝑖 ,
If (𝑥𝑖 = 0) and (𝜃𝑖 > 𝜃min), then 𝜃min← 𝜃𝑖 ,

Output 𝜃min and 𝜃max.

Theorem 0.4 Let ≻′ be a relation onW, 𝑛 satisfy (5), and 𝛿, 𝜖 ∈ (0,1). Given 𝑠 =[
(𝑤1, 𝑤̂1), . . . , (𝑤𝑛, 𝑤̂𝑛)

]
∈ S𝑛, let 𝑥 ∈ [0,1]𝑛 be such that 𝑥𝑖 = 1 if and only if𝑤𝑖 ≻′ 𝑤̂𝑖 .

Let 𝜃min and 𝜃max be the output from the Hurwicz-concept learning algorithm.

i. If 𝜃max < 𝜃min, then ≻′∉H .
ii. If 𝜃max ≥ 𝜃min, then any ≻∈ H corresponding to a 𝜃 ∈ [𝜃min, 𝜃max] determines a

hypothesis consistent with ≻′ on the sample 𝑠.
iii. If ≻′∈ H , any ≻∈ H derived from the algorithm based on a random sample

satisfies 𝑒(≻,≻′) < 𝜖 with probability 1− 𝛿, for any probability distribution 𝐹 on
W×W.

Moreover, the running time of the algorithm is

𝑂
|𝑇 |
𝜖

log2
1
𝜖
+ log2

1
𝛿

.
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Proof. For 𝑖 ∈ {1, . . . 𝑛} and 𝜃 ∈ [0,1], let 𝑓 (𝜃) := 𝜃𝑀𝑖 + (1− 𝜃)𝑚𝑖 and 𝑔(𝜃) :=
𝜃𝑀̂𝑖 + (1−𝜃)𝑚̂𝑖 . Both 𝑓 and 𝑔 are increasing linear functions on [0,1]. Suppose that
𝑀𝑖 > 𝑀̂𝑖 and𝑚𝑖 ≤ 𝑚̂𝑖 . Then 𝑓 and 𝑔 intersect at a unique point 𝜃𝑖 := (𝑚̂𝑖−𝑚𝑖)/(𝑀𝑖−
𝑀̂𝑖 + 𝑚̂𝑖 −𝑚𝑖). If 𝑤𝑖 ≻ 𝑤̂𝑖 and ≻∈ H , then 𝑓 (𝜃) = ℎ𝜃 (𝑤𝑖) > ℎ𝜃 (𝑤̂𝑖) = 𝑔(𝜃), where
ℎ𝜃 for 𝜃 ∈ [0,1] is the representation of ≻. Hence, 𝜃 must be to the right of 𝜃𝑖 ,
and so 𝜃𝑖 is a lower bound on the true 𝜃. Similarly, if 𝑤𝑖 ⊁ 𝑤̂𝑖 and ≻∈ H , then 𝜃𝑖
is an upper bound on the true 𝜃. The other cases for how 𝑀𝑖 compares to 𝑀̂𝑖 and
𝑚𝑖 compares to 𝑚̂𝑖 analogously establish lower or upper bounds on the true 𝜃 if
it exists. The algorithm accordingly updates the overall bounds 𝜃min and 𝜃max, so
that 𝜃min is nondecreasing and 𝜃max is nonincreasing as the algorithm iterates over
𝑖. Therefore, if ≻∈ H , so that there exists a 𝜃 ∈ [0,1] such that ℎ𝜃 represents ≻,
then 𝜃 ∈ [𝜃min, 𝜃max]. If 𝜃min > 𝜃max, this interval is empty, so that ≻∉H . The case
𝑀𝑖 > 𝑀̂𝑖 , 𝑚𝑖 > 𝑚̂𝑖 , and 𝑥𝑖 = 0, and the case 𝑀𝑖 ≤ 𝑀̂𝑖 , 𝑚𝑖 ≤ 𝑚̂𝑖 , 𝑥𝑖 = 1, are inconsistent
with a Hurwicz representation, so that the algorithm sets 𝜃min = 1.5 in the first case
and 𝜃max = −0.5 in the second case to ensure that 𝜃min > 𝜃max and conclude that
≻′∉H .

The third statement in the theorem is a direct consequence of Theorem 0.2 because
of the choice of 𝑛. Finally, the running time of the algorithm is obtained from noticing
that in each iteration computing 𝑚𝑖 , 𝑚̂𝑖 , 𝑀𝑖 , and 𝑀̂𝑖 takes 𝑂 ( |𝑇 |) time, and from the
bound (5) on 𝑛. ⊓⊔
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Distributional-based Partitioning with Copulas

Wenhao Pan and Lynne Billard

Abstract An algorithm based on copula functions is considered for finding the
partitions governing a data set consisting of a mixture of cumulative distribution
functions.

Key words: Archimedean copulas, elliptical copula, dynamical procedure

1 Introduction

With the avalanche of big data sets generated by contemporary computers, it is
important to develop analytical techniques that can handle aggregated data. How
these data might be aggregated is driven by the underlying scientific questions.
These aggregations typically produce data sets that can be variously described as
versions of symbolic data ([13]) such as lists, intervals, histograms, distributions,
etc. Detailed descriptions of symbolic data can be found in, e.g., [4], [5], [6], with
non-technical introductions in, e.g., [2], [3], [14], [22].

Partitioning methodology partitions a set of observations into clusters, with each
cluster as internally homogeneous as possible but collectively as heterogenous as
possible across clusters. Partitioning has been well studied in the literature for clas-
sical data sets. The most important result is unquestionably the 𝑘-means algorithm
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([21]) and its variants. Numerous authors have developed this algorithm for various
settings; see, e.g., [1], [7], [12], [18], [19]. A few researchers have extended the
concepts to interval observations, e.g., [9] and [10].

Our goal is to partition a set of distributions into its component clusters based
on copula functions. The procedure and its algorithm are described in Section 2.
The effectiveness of the proposed algorithm is established by a simulation study in
Section 3. Section 4 concludes.

2 Clustering Procedure

The clustering procedure is based on copula functions. Sklar’s Theorem ([23]) tells us
that if 𝐻 (·) is an 𝑛-dimensional distribution function with unidimensional marginal
distribution functions 𝐹1 (·), . . . , 𝐹𝑛 (·), there exists a copula 𝐶 (·) such that

𝐻 (𝑥1, . . . , 𝑥𝑛;𝜸) = 𝐶 (𝐹1 (𝑥1; 𝒃1), ..., 𝐹𝑛 (𝑥𝑛; 𝒃𝑛); 𝜷), for all 𝑥1, . . . , 𝑥𝑛 in R𝑛. (1)

If 𝐹1 (·), . . . , 𝐹𝑛 (·) are continuous, 𝐶 (·) is unique. Note, any one of 𝐻 (·),𝐶 (·), or
𝐹𝑖 (·) can be non-parametric. For concreteness, we assume that all are parametric.
Also, for concreteness, we assume 𝐶 (·) and 𝐹 (·), and hence 𝐻 (·), are differentiable.

We have a data set of 𝑚 distributions from a mixture of 𝐾 distributions. Sklar’s
Theorem (of (1)) becomes

𝐻 (𝑥1, ..., 𝑥𝑛;𝜸) =
𝐾∑︁
𝑘=1

𝑝𝑘𝐻𝑘 (𝑥1, ..., 𝑥𝑛;𝜸𝑘),
𝐾∑︁
𝑘=1

𝑝𝑘 = 1,

=

𝐾∑︁
𝑘=1

𝑝𝑘𝐶𝑘 (𝐹𝑘𝑧1 (𝑥1; 𝒃𝑘1 ), ..., 𝐹
𝑘
𝑧𝑛
(𝑥𝑛; 𝒃𝑘𝑛); 𝜷𝑘) (2)

where 0 < 𝑝𝑘 < 1 is the mixture probability that an observation is in cluster 𝑃𝑘 and
where 𝜷𝑘 is the parameter of the copula 𝐶𝑘 (·) and 𝒃𝑘𝑗 are the parameters associated
with the marginal distributions 𝐹𝑘𝑧 𝑗 (·), 𝑘 = 1, . . . , 𝐾 , 𝑗 = 1, . . . , 𝑛.

Our goal is to seek the optimal grouping of the𝑚 distributions (observations) into
𝐾 classes 𝑃 = (𝑃1, ..., 𝑃𝐾 ). We apply the dynamic partitioning clustering method of
[15]. There are many possible clustering criteria. The clustering criteria to be used
herein is the log-likelihood function (see, e.g., [8]) where, for 𝜸∗ = (𝜸𝒌 , 𝑘 = 1, . . . ,𝐾)
and density function ℎ𝑘 = 𝜕𝐻𝑘/𝜕𝑥 for cluster 𝑃𝑘 ,

𝑊 (𝑃,𝜸∗) =
𝐾∑︁
𝑘=1

∑︁
𝑖∈𝑃𝑘

ln[ℎ𝑘 (𝐹𝑖 (𝑍1), ..., 𝐹𝑖 (𝑍𝑛);𝜸𝑘)] . (3)

That the dynamical clustering algorithm of this log-likelihood classification criterion
converges to a locally optimal solution in a finite number of iterations was proved



Step 1: Initialize the partition as 𝑃0 = (𝑃0
1, . . . , 𝑃

0
𝐾
).
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in [24]. Note that 𝜸𝑘 ≡ (𝒃𝑘𝑗 , 𝑗 = 1, . . . , 𝑛, 𝜷𝑘), 𝑘 = 1, . . . , 𝐾 , all of which need to be
estimated at the “Representation” step of the algorithm.

Algorithm

The general partition process is defined in two major steps (Step 3 and Step 4) with the
input of a set of units (𝜔𝑘

𝑖
, 𝑖 = 1, . . . ,𝑚) described by distributions, a given partition

(𝑃1, . . . , 𝑃𝐾 ), a copula family and optionally a parametric distribution family. The
output is a partition and a copula model𝐶 = (𝐶1, . . . ,𝐶𝐾 ) with estimated parameters
for each class and optionally a distribution model 𝐹𝑘 with estimated parameters for
each class at 𝑇𝑗 , 𝑗 = 1, . . . , 𝑛. The partition procedure is as follows:

Step 2: Define the partition after the 𝑟 𝑡ℎ iteration as 𝑃𝑟 = (𝑃𝑟1 , ..., 𝑃
𝑟
𝐾
).

Step 3 (Representation): (i)- Define T values and obtain 𝑦𝑖 𝑗 = 𝐹𝑖 (𝑇𝑗 ), 𝑖 = 1, ...,𝑚, 𝑗 =
1, ..., 𝑛, where each 𝐹𝑖 , 𝑖 = 1, . . . ,𝑚, is a distributional-data unit represented by an
empirical cumulative distribution (see, e.g., Fig. 1 where 𝑛 = 2, 𝑇1 = .45,𝑇2 = .65).
The 𝑦𝑖 𝑗 ’s form an 𝑚 × 𝑛 matrix, which will be used as the marginal distribution
probability values for the next step.
(ii)- Estimate the parameters 𝜸1, ...,𝜸𝐾 by maximizing the log-likelihood func-
tion of the 𝑛-dimensional candidate copula functions based on observations 𝑦𝑖 𝑗 , 𝑖 =
1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛, for each cluster; now 𝜸 ≡ 𝜸𝑟+1.
(iii)- Fit the selected copula model from Step 3(ii) and obtain density values
ℎ𝜔𝑘

𝑖
(𝑋,𝜸𝑟+1), 𝑖 = 1, . . . ,𝑚, 𝑘 = 1, . . . , 𝐾, for each unit under each candidate cop-

ula function of a certain cluster 𝑘 .
Step 4 (Allocation): Obtain the new partition {𝑃 (𝑟+1)

𝑘
, 𝑘 = 1, . . . ,𝐾}where, for all 𝑣≠

𝑘, 𝑣 = 1, ...,𝐾 ,

𝑃
(𝑟+1)
𝑘

= {𝐹𝑖; 𝑝 (𝑟+1)
𝑘

ℎ𝑘 (𝐹𝑖;𝜸𝑟+1
𝑘 ) ≥ 𝑝

(𝑟+1)
𝑣 ℎ𝑣 (𝐹𝑖;𝜸𝑟+1

𝑣 )}.

Step 5 (Stopping Rule): When |𝑊 (𝑃 (𝑟+1) ,𝜸𝑟+1) −𝑊 (𝑃 (𝑟 ) ,𝜸𝑟 ) | < 𝜖 for some pre-
defined small value of 𝜖 , the process stops.

3 Simulation Study

The original data set consists of 15000 point observations from a mixture of Beta
distributions. Specifically, 7000, 3000, and 5000 observations, respectively, follow a
Beta(2,2), Beta(1,3) and Beta(5,1) distribution. The distributional observations arise
by aggregating these points values from consecutive sets of 100 observations. The
resulting observations (𝜔𝑖 ≡ 𝐹𝑖 , 𝑖 = 1, . . . ,𝑚 = 150) are shown in Fig. 1 (where the
“𝑥-axis” corresponds to values of 𝑇 , see Step 3(i)).
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Fig. 1 The Cumulative Distribution Functions 𝐹𝑖 , 𝑖 = 1, . . . , 150.

Our goal is to partition this simulated data set into three clusters using the sym-
bolic mixture decomposition algorithm introduced in Section 2. This includes estab-
lishing the best copula function that fits the observations within each cluster. Four
Archimedean copulas, viz., Clayton [11], Frank [16], Gumbel [17], Joe [20], and the
elliptical Gaussian copula are considered. All these copulas have one parameter 𝛽 in
their two-dimensional 𝐶 (𝜇, 𝜈; 𝛽) expression. Thus, we take 𝑛 = 2 values of 𝑇𝑗 (see,
the vertical lines in Fig. 1).

The first step is to determine an initial partition 𝑃0 = (𝑃0
1, 𝑃

0
2, 𝑃

0
3). To assure

the integrity of the algorithm, some observations 𝜔𝑖 are deliberately misspecified
in 𝑃0. In particular, suppose 𝑃0

1 = (𝜔1, . . . ,𝜔80), 𝑃0
2 = (𝜔81, . . . ,𝜔110) and 𝑃0

3 =

(𝜔111, . . . ,𝜔150) with observations (𝜔71, . . . ,𝜔80,𝜔101, . . . ,𝜔110) misspecified.
To illustrate, take the first iteration (𝑟 = 1) and the first cluster (𝑃0

1). We calculate
the 𝑦𝑖 𝑗 , 𝑖 = 1, . . . ,80, 𝑗 = 1,2, and hence the log-likelihood and Akaike information
index (AIC) from

𝑙𝑛𝐿𝑃0
𝑘
(𝑋,𝜸𝑘) =

𝜔𝑖∈𝑃0
𝑘

𝑙𝑛{𝑐(𝑦𝑖1, 𝑦𝑖2 |𝜸𝑘)}, 𝐴𝐼𝐶𝑃0
𝑘
= −2

𝜔𝑖∈𝑃0
𝑘

𝑙𝑛{𝑐(𝑦𝑖1, 𝑦𝑖2 |𝜸𝑘)} +2𝑙

(4)
where 𝑙 is the number of parameters. Table 1 shows these values for the first cluster
for the five candidate copulas. Clearly, the Joe copula fits best. This step is repeated
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for each 𝑃𝑟
𝑘
. Then, for the selected copula for each 𝑃𝑟

𝑘
at each iteration, we calculate

the densities ℎ𝑘𝜔𝑖
(𝑋,𝜸), and then allocate the observation to its new cluster.

Table 1 Estimation of Candidate Copula Functions: First Iteration and First Cluster. (Fit based on
80 observations (𝐹𝑖 (𝑇1 ) , 𝐹𝑖 (𝑇2 ) ) , 𝑖 = 1, ..., 80).

Copula Function 𝛽 Log-likelihood AIC

Gaussian 0.696 23.75 -45.51
Gumbel 2.133 31.38 -60.76
Joe 2.880 33.74 -65.48
Frank 5.593 23.00 -44.00
Clayton 1.032 12.57 -23.14

Table 2 illustrates some of the allocations from the first (𝑟 = 1) iteration. Thus,
for the first observation 𝜔1, maximum ℎ𝑘𝜔1 = max{1.006,0.728,0.618} = 1.006; i.e.,
this observation is allocated to 𝑃1 (where it stays as correctly assigned initially in
𝑃0). The last observation𝜔150 also stays correctly assigned (here, in 𝑃3). In contrast,
observation 𝜔71 although misplaced in 𝑃0

1 is now correctly assigned to 𝑃1
2, as is

observation 𝜔101. However, observation 𝜔107 was initially misplaced into 𝑃0
2 and is

still misplaced with its allocation to 𝑃1
1 at this iteration.

Table 2 Allocation of each unit to the best fit class - first iteration.

Unit ℎ1
𝜔𝑖

(𝑋,𝜸) ℎ2
𝜔𝑖

(𝑋,𝜸) ℎ3
𝜔𝑖

(𝑋,𝜸) Class membership

𝜔1 1.006 0.728 0.618 𝑃1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜔71 1.345 2.221 0.198 𝑃2
𝜔72 1.291 1.975 1.330 𝑃2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜔107 2.425 1.919 2.338 𝑃1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜔150 1.535 0.088 2.058 𝑃3

We continue in this manner until there are no more re-allocations. Visualization
of the final partition showing the cluster density function and the selected copula
function is shown in Fig. 2, Fig. 3, and Fig. 4 for 𝑃1, 𝑃2 and 𝑃3, respectively. In
all, there was an accuracy of 87%, 87% and 84% for the respective clusters with an
overall accuracy of 86%.
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Fig. 2 Final 𝑃1: (Left) Density plot, (Right) Joe copula plot (𝛽 = 2.88).

Fig. 3 Final 𝑃2: (Left) Density plot, (Right) Clayton copula plot (𝛽 = 2.667).

Fig. 4 Final 𝑃3: (Left) Density plot, (Right) Clayton copula plot (𝛽 = 0.480).

W. Pan and L. Billard
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4 Conclusion

We have shown that this copula based dynamic partitioning algorithm works well.
Other studies covering a variety of different situations and variables will be presented
elsewhere.
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Mapping Electoral Behavior and Political
Competition: A Comparative Analytical
Framework for Voter Typologies and Political
Discourses

Georgia Panagiotidou and Theodore Chadjipadelis

Abstract This study introduces a methodological framework that integrates Hi-
erarchical Cluster Analysis (HCA) and Factorial Correspondence Analysis (AFC)
for the comparative analysis of electoral behavior and political competition. Tran-
scending traditional approaches in political science research, this framework offers
a comprehensive tool for exploring the complex dynamics of voter behavior, with a
particular focus on young voters in Thessaloniki, Greece. Through the analysis of
data collected from over 3,000 participants, this research provides an understanding
of the factors influencing first-time voters’ electoral decisions and their perceptions
of democracy and moral values. Unlike conventional methods that often examine
electoral behavior through isolated variables, this study employs a multivariate ap-
proach, enabling a more in-depth examination of the interactions between various
factors such as political mobilization, interest, information sources, and demographic
characteristics.

The semantic map, a pivotal output of the methodological framework, facili-
tates the direct comparison of behavioral patterns across different voter profiles,
thereby highlighting the contrasts and similarities within the electoral landscape.
The findings reveal significant insights into the evolution of political attitudes and
behaviors among the youth, demonstrating the method’s capability to capture the
shifting paradigms of political behavior over time. Moreover, the comparative anal-
ysis brings forward political polarization and competition, offering a dynamic view
of the electoral behavior landscape.
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hierarchical cluster analysis, factorial correspondence analysis
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1 Introduction

First Time Voter project introduces a groundbreaking methodological framework that
stands as a comparative tool in the investigation of political competition and voter
behavioral profiling [9]. This framework, rooted in the integration of Hierarchical
Cluster Analysis (HCA) and Factorial Correspondence Analysis (AFC), propels the
study of electoral behavior into a new dimension, enabling a comparative analysis
of voter typologies. Conducted in Thessaloniki, Greece, with a substantial yearly
cohort of over 3,000 young respondents, this methodology excels in exploring and
contrasting the profiles of first-time voters, thereby shedding light on the complex
landscape of political competition. The essence of this research lies in its comparative
analytical character; it is designed to assess, compare, and classify the electorate into
distinctive profiles in the context of the Greek Parliamentary elections of 2023. Such
a methodological approach aims to assess the contrasts between different voter
profiles, highlighting not only the similarities within groups but also the differences
that delineate political competition and polarization within the electorate.

Key to this methodological proposal is the development of a semantic map [2].
This visual tool plots behavioral discourses within a two-dimensional framework, en-
abling a direct comparison of electoral discourses and the identification of similarities
and differences among voter profiles. Such visualization facilitates a comprehensive
understanding of the electoral space, capturing the existing voter typologies, and
revealing the underlying dynamics of political competition and behavior.

Traditional approaches to the comparative analysis of electoral behavior often rely
on methods such as cross-tabulation, regression analysis, and survey experiments.
These methods have been instrumental in understanding voter preferences and the
impact of socio-economic factors on electoral outcomes [3], [8]. Cross-tabulation
allows researchers to explore relationships between categorical variables, while re-
gression analysis can model the impact of multiple independent variables on an
electoral outcome. Survey experiments, on the other hand, enable the examination
of causal relationships by manipulating variables in a controlled environment [4].
However, these approaches may fall short in capturing the full complexity of electoral
behavior, as they often focus on isolated factors without considering the multifaceted
interactions between them. Moreover political competition is often viewed unidimen-
sionaly, assessing each factor separately and not in a simultaneous multidimensional
context.

In contrast, the methodological framework integrating Hierarchical Cluster Anal-
ysis (HCA) and Factorial Correspondence Analysis (AFC) offers a more compre-
hensive tool for the comparative analysis of electoral behavior. By simultaneously
analyzing multiple variables, this approach provides a deeper and more sophisti-
cated understanding of the electorate’s dynamics, going beyond the limitations of
traditional methods. The semantic map generated through this methodology not
only facilitates the visualization of complex relationships but also allows for the
direct comparison of behavioral patterns across profiles, offering a more in-depth,
multidimensional analysis of electoral behavior. This capability to identify and com-
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pare typologies within the electorate distinguishes this method from conventional
approaches [1], [7].

2 Methodology

This study’s empirical analysis draws upon data collected from a survey of 3,661
students at two major Greek universities in Thessaloniki-Aristotle University of
Thessaloniki and University of Macedonia. The data collection was conducted in
April 2023, utilizing a structured questionnaire in printed form, distributed one
month prior to the 2023 Parliamentary elections. The respondents would fill in the
anonymous questionnaire on-the-spot (in the extended area of the city centre) and
without any external assistance or influence. The demographic breakdown of the
respondents reveals a sample with ages ranging from 18 to 25 years, consisting of
40% men and 60% women.

The questionnaire incorporated both nominal and ordinal variables and was de-
signed to explore a variety of aspects related to political engagement and perceptions
among the student population. Respondents were queried on their level of political
interest, methods of mobilization in response to political issues, voting intentions,
their political knowledge and were also requested to position themselves on the
left-right political spectrum, using a scale from 0 to 10.

To further explore the values and perceptions about democracy, participants were
asked to select 3 images that best represented their views on democracy and core
values, from a set of 12 pictures, employing symbolic representation in the context of
Taylor’s concept about moral self and democratic self [11]. This approach, alongside
questions about preferred sources of political information and trust in institutions.
To prepare the data a separate HCA was used for each one of the 4 sets of variables
(institutions, information source and the symbolic representation variables for values
and democracy) to classify respondents and reduce the volume of data.

The initial analytical phase employed AFC on the Burt table to uncover the
polarizations and antagonisms characterizing the political landscape, as reflected
in the student population. AFC was guided by the empirical criterion established
by Benzécri, ensuring that only factors with a COR value exceeding 200 and a
CTR value surpassing a calculated threshold were considered [6]. This approach
enabled the extraction of meaningful dimensions of analysis, laying the groundwork
for subsequent clustering. Following the AFC, HCA was applied to the dimensions
extracted in the first step, focusing on the coordinates of the subjects. For the HCA chi-
square distance and Ward’s linkage method was employed. The number of clusters
was determined upon the empirical criterion of the change in the ratio of between-
cluster inertia to total inertia, when moving from a partition with r clusters to a
partition with 𝑟 −1 clusters [10].

This phase facilitated the clustering of subjects and variable categories, illuminat-
ing the associations between clusters of items and categories. The biplot generated
from this analysis served as a semantic map, offering a visual representation of the
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behavioral structures inherent in the data. This map proved instrumental in iden-
tifying and understanding the various behavioral patterns and abstract discourses
present among the respondents [5]. Data analysis was implemented with the use
of M.A.D software (Méthodes d’Analyse des Données), developed by Professor
Dimitris Karapistolis (more about M.A.D software on www.pylimad.gr).

3 Results

In the initial phase of preparing the data HCA is used to classify respondents for
the 4 sets of variables. Regarding Information sources, 5 groups of respondents are
detected. In the same way analysis on attitudes towards institution produces 5 groups
of respondents. Proceeding with the symbolic representation variables, respondents
are classified into 7 groups regarding perception of democracy and 8 groups for
moral values.

Next the analysis is initiated with AFC as the first step of bringing together the
new cluster membership variables and the rest political characteristics. The variables
to be analyzed jointly and their measurement scales and categories are the following:

• STU (field of study) 1: Humanities, 2: Science, 3: Arts, 4: Social studies, 5: Health
science

• SEX (sex) 1: Men, 2: Women
• ID (self-positioning on left-right axis) 1: Left, 2: Centre, 3: Right, 9: N/A
• VOT (electoral behavior): 1: I will vote (decided), 2: I will vote (not decided yet),

7: I haven’t decided yet if I will vote, 8: Invalid/Blank, 9: Abstention
• PM (political mobilization): 1: Nothing, I don’t care, 2: I let the people in charge

do their job, 3: I am personally addressing the authorities, 4: I am addressing
a television channel, a newspaper, 5: I am active through social networks (FB,
Instagram, etc.), 6: I take part with others in protests, 9: N/A

• PI (political interest): 1: high, 2: enough, 3: little, 4: none, 9: N/A
• PK (political knowledge): 0: none, 1: low, 2: moderate, 3: quite, 4:high
• INF (political info source): clusters 1-5
• DEM (perception of democracy): clusters 1-7
• VAL (personal values): clusters 1-8

AFC reveals 3 major factors which can be interpreted based on polarizations and
antagonism discourses existing in the political competition (Figure 1).

In the second step of the analysis HCA is applied on the scores of all categories on
the first two factors. The classification process produces five distinct and prominent
behavioral discourses, namely groups 101, 112, 107 and 109 (which merge into 111
in the next clustering step) and 110 (Figure 2).

• Group 112- Right Voters: This group is characterized by their low levels of indi-
vidual political mobilization and a disposition to cast invalid or blank votes as a
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Fig. 1 AFC dimensions interpreted in the context of political competition and inner polarizations.

form of rejecting existing political parties. They exhibit ethnocentric values, prior-
itizing country, religion, and family. Interestingly, their perception of democracy
is intertwined with notions of corruption, the church, and ancient Greece.

• Group 110-Left Voters: Left voters are distinguished by their propensity for collec-
tive mobilization, including protests, and a decisive intention to vote, underscored
by high political interest and knowledge. They maintain close ties with unions
and the scientific community, often sourcing their information from newspapers
or directly from the parties they support. Their understanding of democracy leans
towards direct forms and active struggle, ranging from protests to riots. The val-
ues espoused by this group are diverse, extending from expressivist and rioting
to volunteering and environmentalism.

• Group 107-Centre (Women-lower mobilization): This group comprises undecided
female voters, predominantly from humanities studies, exhibiting low to negligi-
ble political knowledge and minimal mobilization, occasionally engaging through
social media. They tend to be closer to the church and media, relying on family for
information. Their conceptualization of democracy favors representative forms
and e-government, with a notable inclination towards naturalism.

• Group: 109-Centre (Men-higher mobilization): Male voters within this group
exhibit moderate to high levels of political knowledge and interest, with a ten-
dency towards high individual mobilization. Their academic backgrounds span
science, social sciences, and health, and they demonstrate an affinity for political
institutions. Information sources for this group include TV, radio, the Internet,
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and friends. Their democratic ideals encompass both representative and direct
forms, including protest, with a focus on naturalist values that emphasize career
and success.

• Group 101-Apolitical Audience: This group is marked by a lack of political
interest and information, showing no inclination towards political mobilization.
Their stance leans towards abstention from voting, highlighting a disengaged
segment of the electorate that remains distant from the political process.

The AFC analysis revealed three significant dimensions as shown in Figure 2
and the visualisation of these dimensions in the semantic map (Figure Pana:fig:3)
enables further analysis of the dynamics for the 5 voter profiles and discourses. A
significant differentiation among the voter profiles identified in the study, with the
first factor emphasizing a stark contrast between Group 110 (Left voters) and Groups
107 (Centre) and to a lesser extent with Group 101 (Apolitical audience). This factor
brings to the forefront the distinct divide in political orientation and mobilization
between these groups. The AFC’s first factor thus highlights a clear antagonism
between the active, informed, and collectively mobilized left voters of Group 110
and the more passive, undecided, or disengaged profiles of Groups 107 and 101.
This distinction is not merely in political ideology (left versus centre) but also in the
levels of mobilization and engagement with the political process (high versus low
mobilization).

The second factor unveils a vertical axis of polarization distinctly separating
Group 112 (Right voters) from Group 101 (Apolitical audience), shedding light on a
different dimension of voter behavior differentiation. This axis highlights a contrast
not just in political orientation but in the underlying values and engagement with
democracy that define these groups. While Group 112’s right-leaning voters main-
tain a passive engagement rooted in strong ideological convictions, Group 101’s
apolitical stance underscores a complete disengagement from the political sphere
and this polarization emphasizes the variability in voter engagement, from ideolog-
ically driven non-participation to a total withdrawal from the political discourse,
showcasing the diverse landscape of voter behavior and the multifaceted nature of
electoral participation.

The third factor identified reflects a polarization between Groups 107 and 109 on
one side, and Groups 112 and 110 on the other, further elaborating on the complex
landscape of voter behavior and ideological divisions. This polarization represents
a contrast not only in political orientations but also in the manner and intensity of
engagement with political and democratic processes. The polarization between these
clusters-Groups 107 and 109 versus Groups 112 and 110-highlights a divide between
centrist orientations that prefer a moderate, diverse approach to engagement and the
more ideologically driven, polarized perspectives of the right and left.
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Fig. 2 Profiling voter’s behavior into 5 distinct discourses.
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Fig. 3 Visualization of political competition and electoral discourses in a two dimensional space
aka the semantic map.

Furthermore, the analysis of the semantic map (Figure 3) can provide an analytical
lens on other inner sub-polarizations that exist and are visualized such as:

• Engagement vs. Apathy: The most noticeable polarization is between the highly
engaged Left voters and the apolitical audience. The former are active, informed,
and ready to protest their beliefs, while the latter are disengaged and likely to ab-
stain from voting. Traditional vs. Progressive Values: Right voters hold traditional
values (country, religion, family), while Left voters embrace more expressivist
views, opting for social struggle, demonstrations and direct democracy and val-
ues such as personal growth but also volunteerism. Moderate voters stand in the
middle with naturalistic values and closer to standard concepts of contemporary
representative democracy.

• Institutional Trust vs. Dissent: Centre men seem to trust representative democracy
and maintain close ties to institutions, whereas Left voters lean towards direct
action and protest, signaling a distrust in traditional institutions and a desire for
more immediate forms of political participation, while they feel closer to unions
and science.

• Information Sources: The clusters also reveal a division in information sources,
with Right voters potentially being less informed or choosing to reject mainstream
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parties, the Centre influenced by family, church, and media, and the Left being
informed by unions, newspapers, and scientific communities.

• Individual vs. Collective Mobilization: Right and centre voters are described
as having individual mobilization, possibly voting as a personal protest against
existing parties, whereas Left voters are characterized by collective action and
mobilization through protests and unions.

4 Discussion

The AFC analysis conducted in this study reveals significant polarizations within
the electorate, highlighting three main axes of differentiation among identified voter
profiles. The first axis contrasts Group 110 (Left voters) with Groups 107 (Centre)
and, to a lesser extent, Group 101 (Apolitical audience), illustrating a clear division
based on political ideology (left vs. center) and levels of mobilization (high vs.
low). This polarization underscores the active, informed engagement of left voters,
characterized by collective mobilization and a direct conceptualization of democracy,
in stark contrast to the more passive or disengaged stances of the center and apolitical
groups.

The second axis of polarization differentiates Group 112 (Right voters) from
Group 101, emphasizing differences in political engagement and underlying values.
Right voters, despite their low individual mobilization, hold strong ethnocentric val-
ues and exhibit a specific ideological stance towards democracy and governance. In
contrast, the apolitical audience demonstrates a complete detachment from politi-
cal processes and ideologies, highlighting a segment of the electorate that remains
disengaged and uninformed.

The third axis further complicates the electoral landscape by juxtaposing Groups
107 and 109, which represent moderate centrist positions, against the more ideo-
logically polarized Groups 112 and 110. This polarization captures the diversity of
engagement strategies and democratic values across the spectrum, from moderate
and diverse engagement to ideologically driven, active participation.

Other latent polarizations are visualized when analyzing in depth the semantic
map and focusing on different aspects such as engagement vs. apathy, traditional vs.
progressive values, Institutional Trust vs. Dissent, different Information sources, and
individual vs. collective Mobilization. Another important finding from the visualized
of the semantic map is the distinct position of the left discourse against the rest which
seem to converge in the center and the center right position. Under this analytical
scheme the political landscape of Greek elections in 2023 are affected mainly by
three main dilemmas: Left-Centre, Participate-Abstain, Extreme-moderate.

These findings illuminate the multifaceted nature of voter behavior and the sig-
nificance of ideological orientation, mobilization strategies, and values in shaping
electoral dynamics. The diverse profiles identified through the AFC analysis reflect
broader trends of polarization and differentiation within political culture and partici-
pation. Importantly, the study highlights the role of ethnocentric values, perceptions
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of democracy, and political mobilization in defining the contours of electoral com-
petition. The implications of this research extend beyond the identification of voter
typologies, offering critical insights into the challenges and opportunities facing
democratic engagement and participation. The polarization among voter groups
suggests a need for sophisticated strategies to address the varying concerns, val-
ues, and engagement levels within the electorate. For policymakers and political
strategists, understanding these divisions can inform more inclusive and responsive
approaches to governance and political campaigning.

Furthermore, the study contributes to the broader discourse on political behavior
analysis by demonstrating the utility of a multivariate analytical framework. The
comparative insights generated through the AFC analysis enrich our understanding
of electoral behavior, providing a dynamic, visualized, and comprehensive tool
for exploring the complexities of voter typologies, political competition, and the
dynamics of electoral behavior and the overall political competition consisting of
mutliple polarizations.
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Riemannian Statistics for Any Type of Data

Oldemar Rodrı́guez Rojas

Abstract This paper introduces a novel approach to statistics and data analysis,
departing from the conventional assumption of data residing in Euclidean space to
consider a Riemannian Manifold. The challenge lies in the absence of vector space
operations on such manifolds. Pennec X. et al. in their book Riemannian Geometric
Statistics in Medical Image Analysis proposed analyzing data on Riemannian mani-
folds through geometry, this approach is effective with structured data like medical
images, where the intrinsic manifold structure is apparent. Yet, its applicability to
general data lacking implicit local distance notions is limited. We propose a solution
to generalize Riemannian statistics for any type of data.

Key words: statistics, data analysis, Riemannian manifold, simplicial complexes,
UMAP, homeomorphism, topology

1 Introduction

Each point in a data table can be imagined as a star or planet in the universe,
especially when dealing with big data issues. In the universe, due to the infinitely
different sizes of constellations, there are vastly different perceptions of distances
between celestial bodies. For example, two constellations or galaxies that appear
to be the same size from a distance (from Earth, for example) could be infinitely
different, and one could even fit inside the other in a very small portion or empty
space within it. For this reason, especially in problems involving Big Data, thinking
that the data is in Euclidean space is just as wrong as thinking that the earth is flat.

Similarly, in data, there are local notions of distance corresponding to different
regions of the data, and this should be considered when calculating indices or
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statistical models. To address this, we propose considering that the data exists within
a Riemannian manifold, where these local notions of distance can be effectively
taken into account.

In [6], Pennec et al. had proposed the idea of analyzing data on Riemannian
manifolds through the use of geometry. This concept works particularly well when
analyzing data derived from images, such as medical images, where the intrinsic
Riemannian manifold structure is evident. However, this idea is not readily applicable
to general data where there are no implicit notions of local distance. The idea that
we propose go beyond of what was mentioned in the previous paragraph. The core
concept is to impart a Riemannian manifold structure to any given set of data. This
approach enables the assignment of local notions of distance to the data, thereby
enhancing our ability to capture the internal structure of the data. This, in turn, leads
to a significant improvement in the results of various statistical analyses as well as
their interpretability.

In another significant contribution, McInnes et al. [4] introduce UMAP (Uniform
Manifold Approximation and Projection), a novel technique for manifold learning
and dimension reduction. Utilizing simplicial complexes, Čech complexes, and the
Nerve theorem, UMAP gains additional benefits from this Riemannian metric–based
approach. It generates a local metric space associated with each point, allowing for
meaningful distance measurements. Consequently, the algorithm can assign weights
to edges in a graph (simplicial complex), signifying the local metric-based separation
between the original points. So the idea that we proposed in this paper is to use the
local notions of distance that the UMAP algorithm generates in any data table to
provide the it with local distance. In this way, the data table can be conceptualized
as a Riemannian manifold, incorporating these local distance.

UMAP, as a successor to 𝑡-SNE method, inherits a controversy associated with
the 𝑡-SNE method. The challenge with 𝑡-SNE lies in its inability to preserve distances
and density effectively. It only partially maintains the concept of nearest-neighbors.
Though the distinction may seem subtle, it has implications for any clustering algo-
rithm based on density or distance. This issue is somewhat controversial, and should
be approached with caution. A comprehensive discussion on this topic can be found
at https://umap-learn.readthedocs.io/en/latest/clustering.html.

Despite these concerns, there are still valid reasons to utilize UMAP as a pre-
processing step for clustering. As highlighted in the discussion, when applied to
real high-dimensional datasets such as MNIST data [1] or cell RNA-seq data [2],
and with appropriate parameterization, both 𝑡-SNE and UMAP yield significantly
better clustering results than other algorithms. Regardless, for Riemannian statistics,
the crucial aspect is that UMAP maintains the concept of nearest-neighbors in the
low-dimensional representation of the dataset. This is of utmost importance as it pro-
vides the data table with local distance notions, enhancing the utility of the UMAP
algorithm in this context.



153Riemannian Statistics for Any Type of Data

2 Providing a Classical Data Table with a Riemannian Manifold
Structure

UMAP method was designed to improve the main limitations of the 𝑡-SNE method.
𝑡-SNE means 𝑡-distributed Stochastic Neighbor Embedding and it was proposed by
Laurens van der Maaten, see all the detail of this method in [3]. UMAP algorithm
is competitive with 𝑡-SNE for visualization quality and it improves 𝑡-SNE limita-
tions. UMAP (Uniform Manifold Aproximation and Projection) is an algorithm for
dimension reduction based on algebraic topology, topological data analysis and Rie-
mannian geometry. It was proposed by the Mathematician Leland McInnes in [4].
UMAP works in a similar way to 𝑡-SNE, it finds distances in a space with many
variables and then tries to reproduce these distances in a low-dimensional space. But
UMAP does it very differently because more than distances it tries to reproduce the
topology, not necessarily the geometry. UMAP assumes that data is distributed along
a Riemannian manifold. A manifold is a uniform 𝑛-dimensional geometric shape in
which, for each point of this manifold, there is a neighborhood around that point that
looks like a flat two-dimensional plane. Riemannian manifolds admit local notions
of distances, area and angles. To explain the UMAP method we need to define the
notion of 𝑘-simplex and simplicial complexes.

Let {𝑥0, . . . , 𝑥𝑘} be points in R𝑛. We will assume that these points satisfy the
condition that the set of vectors in R𝑛 represented by the differences with respect to
𝑥0, that is {𝑥1 − 𝑥0, 𝑥2 − 𝑥0, . . . , 𝑥𝑘 − 𝑥0} are linearly independent.

Definition 0.1 The 𝑘-simplex generated by the points {𝑥0, . . . , 𝑥𝑘} is the set of all
points 𝑧 =

∑𝑘
𝑖=0 𝑎𝑖𝑥𝑖 , where

∑𝑘
𝑖=0 𝑎𝑖 = 1. For a given 𝑧, we refer to 𝑎𝑖 as the 𝑖-th

barycentric coordinate.

Simplicial complexes are generalizations of graphs. A simplicial complex 𝑆 in
R𝑛 is a set of simplices such that every face of a simplex in 𝑆 is also a simplex in
𝑆. The intersection of two simplices in 𝑆 is a face of each of them. Given data set
presented as a finite metric space, we need to produce a simplicial complex such that
the algebraic invariants of the simplicial complex reflect the shape of the data. To do
that, we need to make the connection between clustering and components precise,
via single-linkage clustering, which works as follows.

i. Choose a parameter 𝜖 .
ii. Assign two points 𝑥 and 𝑦 to the same group if they are connected by a path of

points (for some 𝑘) 𝑥 = 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑘−1, 𝑥𝑘 = 𝑦 such that each point 𝑥𝑖 is at a
distance 𝜖 from 𝑥𝑖+1. See the Figure 1.

The Nerve Theorem and its corollary are the fundamental theoretical basis that
allows us to go from topological spaces to simplicial complexes and then to data. The
Čech complex allows us to demonstrate that there exists a homeomorphism between
the union of balls (determined by the parameter 𝜖) and the nerve and therefore we
will have a bijection between the data and the simplicial complexes.
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Fig. 1 As 𝜖 increases, more and more simplices are added to the simplicial complex and topological
features emerge. In panels 𝐶 and 𝐷, a circle can be detected.

Definition 0.2 The nerve 𝑁 (U) of a cover U = {𝑈𝑖} of topological space 𝑋 is the
simplicial complex with vertices corresponding to the sets {𝑈𝑖} and a 𝑘-simplex
[ 𝑗0, 𝑗1, . . . , 𝑗𝑘] when the intersection 𝑈 𝑗0 ∩𝑈 𝑗1 ∩𝑈 𝑗2 ∩ · · · ∩𝑈 𝑗𝑘 ≠ ∅.

Definition 0.3 Let 𝑋 ⊂ R𝑛 be a finite subspace and fix 𝜖 > 0. The Čech complex
𝐶𝜖 (𝑋, 𝜕𝑋) is the simplicial complex with vertices the points of 𝑋 , and a 𝑘-simplex
[𝑣0, 𝑣1, . . . , 𝑣𝑘] when a set of points {𝑣0, 𝑣1, . . . , 𝑣𝑘} ⊂ 𝑋 satisfies

⋂
𝑖 𝐵𝜖 (𝑣𝑖) ≠ ∅.

Theorem 0.1 (Nerve Theorem) Let 𝑋 be a topological space. Let U = {𝑈𝑖} be an
open cover of 𝑋 such that all non-empty finite intersections 𝑈 𝑗1 ∩𝑈 𝑗2 ∩ · · · ∩𝑈 𝑗𝑘

are contractible (homotopy equivalent to a point). Then the nerve (the geometric
realization) 𝑁 (U) is homotopy equivalent to 𝑋 .

Corollary 0.1 Let 𝑋 ⊂ R𝑛 be a finite subspace and fix 𝜖 > 0. There exists a home-
omorphism:

⋃
𝑥∈𝑋 𝐵𝜖 (𝑥) � |𝐶𝜖 (𝑋, 𝜕𝑋) | between the union of balls and the nerve

𝑁 (U) (the geometric realization) of the Čech complex.

The above guarantees that there exists a homeomorphism between the union of
balls and the nerve, so, there is relation one-to-one (bijection) between data and Čech
complex, as it is illustrated in the Figure 2.

To apply these ideas, UMAP choose a radius from each point, connecting points
when those radii overlap, then we can create a simplicial complex using 0, 1, and 2
simplexes as points, lines, and triangles. Choosing this radius is critical, too small
choice will lead to small, isolated clusters, while too large choice will connect
everything together. UMAP overcomes this challenge by choosing a radius locally,
based on the local distance to each point to the 𝑘-th nearest neighbor. To do that,
Riemannian Geometry is used.

Definition 0.4 Fixed 𝑥, a Riemannian metric is defined by a scalar products ⟨·, ·⟩𝑥
on each tangent space 𝑇𝑥M at points 𝑥 of the manifold. For each 𝑥, each such scalar
product is a positive definite bilinear map ⟨·, ·⟩𝑥 : 𝑇𝑥M×𝑇𝑥M → R. The inner
product gives a norm ∥ · ∥𝑥 : 𝑇𝑥M → R by ∥𝑣∥2 = ⟨𝑣, 𝑣⟩𝑥 .

The choice of 𝑘 determines how locally we wish to estimate the Riemannian
metric. A small choice of 𝑘 means we want a very local interpretation, while,
choosing a large 𝑘 means our estimates will be based on larger regions. This is very
important, because it means that the UMAP algorithm provides the data table with
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Fig. 2 Relation one-to-one between data and Čech complex.

local distance notions. Another problem is that, given 2 points, each point could
have its own associated local metric, so for example, from the perspective of point 𝑎,
the distance from point 𝑎 to point 𝑏 could be 1.5, while from the perspective of point
𝑎 point 𝑏, the distance from point 𝑏 to point a could only be 0.6. There are many
options for what to do given two disagreeing weights: one could take the maximum,
the minimum, the arithmetic mean, among others. To merge two edges with weight
𝑎 and 𝑏, then the combined weight 𝑎 + 𝑏− 𝑎 · 𝑏 must be used. The goal of UMAP is
to find a low-dimensional representation that has a topological structure as similar as
possible to the high-dimensional structure., to do that, UMAP minimized the Cross
Entropy.

Definition 0.5 Let 𝐸 be the set of all possible 1-simplices, and we have weight
functions such that 𝑤ℎ (𝑒) is the weight of the 1-simplex 𝑒 in the high dimensional
case and 𝑤𝑙 (𝑒) is the weight of 𝑒 in the low dimensional case, then Cross Entropy
will be:

𝐸𝐶 (𝑒) =
∑︁
𝑒∈𝐸

𝑤ℎ (𝑒) log
(
𝑤ℎ (𝑒)
𝑤𝑙 (𝑒)

)
+ (1−𝑤ℎ (𝑒)) log

(
1−𝑤ℎ (𝑒)
1−𝑤𝑙 (𝑒)

)
.

The first term, 𝑤ℎ (𝑒) log 𝑤ℎ (𝑒)
𝑤𝑙 (𝑒) , guarantees that the intra-class inertia is minimal

(attractive force between the points). And the second term, (1−𝑤ℎ (𝑒)) log
(

1−𝑤ℎ (𝑒)
1−𝑤𝑙 (𝑒)

)
,

guarantees that the inter-class inertia is maximal (repulsive force between clusters).
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3 Riemannian Statistics for Any Type of Data

Defining statistical methods on Riemannian manifolds poses a unique challenge
due to the absence of fundamental vector space operations like addition and scalar
product. In their work [6], Pennec et al. introduced a novel approach to analyze data
on Riemannian manifolds by leveraging geometric principles. This methodology
proves particularly effective in the analysis of image-derived data, such as medical
images, where the inherent Riemannian manifold structure is evident. However,
its direct application becomes less straightforward when dealing with general data
lacking implicit notions of local distance.

A critical error would arise from employing statistical indices grounded in the
Euclidean space structure of R𝑛. To illustrate, consider the scenario where one
intends to furnish the UMAP method with a correlation circle. To illustrate, we will
utilize the data table 1, which includes the school grades of ten students.

Table 1 Students data.

Math Science Spanish History Phys. Ed.

Lucı́a 7.0 6.5 9.2 8.6 8.0
Pedro 7.5 9.4 7.3 7.0 7.0
Inés 7.6 9.2 8.0 8.0 7.5
Luis 5.0 6.5 6.5 7.0 9.0
Andrés 6.0 6.0 7.8 8.9 7.3
Ana 7.8 9.6 7.7 8.0 6.5
Carlos 6.3 6.4 8.2 9.0 7.2
José 7.9 9.7 7.5 8.0 6.0
Sonia 6.0 6.0 6.5 5.5 8.7
Marı́a 6.8 7.2 8.7 9.0 7.0

In Principal Component Analysis the coordinate in the correlation circle of vari-
able 𝑋 𝑗 on axis 𝑟 is given by 𝑅

(
𝑋 𝑗 ,𝐶𝑟

)
which is the correlation coefficient between

the 𝑗-th variable and the 𝑟-th principal component. Using this idea, if we plot the
UMAP correlation circle using Pearson correlation index, the result shown on the
left panel in Figures 3 and 4 are obtained.
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Fig. 3 UMAP circle of correlation with Pearson correlation.

Fig. 4 UMAP circle of correlation with Riemannian correlation.
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Clearly, the correlation circle on Figure 3 exhibits a significant error, namely,
certain variable arrows extend beyond the sphere of radius 1. That is to say, we
don’t have the property: 𝑅2 (𝑋 𝑗 ,𝐶𝑠

)
+𝑅2 (𝑋 𝑗 ,𝐶𝑟

)
≤ 1. This discrepancy arises from

computing correlations as if the data were in a Euclidean space, employing the
classical index of correlation. However, the data resides on a Riemannian manifold,
with local distances generated by UMAP. Consequently, there is a necessity to
define something akin to a Riemannian correlation, requiring a Riemannian mean,
and, more broadly, necessitating the development of Riemannian Statistics. In the
subsequent definition, we generalize Fréchet’s mean with the Riemannian mean (see
Definition 0.6).

Definition 0.6 Let 𝑋 ∈ 𝑀𝑛×𝑝 the data table. We denote by x1, . . . ,x𝑛 ∈ R𝑝 the rows
of 𝑋 and by y1, . . . ,y𝑝 ∈ R𝑛 the columns of 𝑋 . Each vector x𝑖 can be also considered
a point in the Riemannian manifold 𝑀 induced by the simplicial complex. Each
pair of vectors x𝑖 and x 𝑗 has associated a local distances 𝑑UMAP (x𝑖 ,x 𝑗 ) generated by
the UMAP algorithm with its 𝑘 nearest neighbors 1. The Riemannian mean is the
minimizer of the sum-of-squared distances to the data:

g = arg min
x∈𝑀

𝑛∑︁
𝑖=1

𝑑UMAP (x,x𝑖)2 .

By leveraging the one-to-one relationship given by the Nerve Theorem in 0.1 and
its corollary we define the the Riemannian correlation as follows.

By leveraging the one-to-one relationship given by the Nerve Theorem in 0.1 and
its corollary we define the the Riemannian correlation as follows.

Definition 0.7 Let x𝛼 and x𝛽 rows of 𝑋 , we define the subtraction induced by the
UMAP algorithm as x𝛼 ⊖ x𝛽 = 𝜌𝛼𝛽 (x𝛼 −x𝛽), where 𝜌𝛼𝛽 is computed as follows2

𝜌𝛼,𝛽 =


𝑑UMAP (x𝛼 ,x𝛽 )
𝑑 (x𝛼 ,x𝛽 ) if 𝑑UMAP (x𝛼,x𝛽) ≠ 0, 𝑑 (x𝛼,x𝛽) ≠ 0, 𝑑UMAP (x𝛼 ,x𝛽 )

𝑑 (x𝛼 ,x𝛽 ) < 1

𝑑UMAP (x𝛼 ,x𝛽 )−𝑑 (x𝛼 ,x𝛽 )
𝑑 (x𝛼 ,x𝛽 ) if 𝑑UMAP (x𝛼,x𝛽) ≠ 0, 𝑑 (x𝛼,x𝛽) ≠ 0, 𝑑UMAP (x𝛼 ,x𝛽 )

𝑑 (x𝛼 ,x𝛽 ) ≥ 1

1 if 𝑑UMAP (x𝛼,x𝛽) = 0 or 𝑑 (x𝛼,x𝛽) = 0

with 𝑑 the Euclidean distance in R𝑝 . We defined the variance-covariance matrix

𝑆 ∈ 𝑀𝑝×𝑝 of 𝑋 as 𝑆 = 1
𝑛

∑𝑛
𝑖=1 (x𝑖 ⊖ g) (x𝑖 ⊖ g)𝑡 , where (x𝑖 ⊖ g) = 𝜌𝑖𝜆


𝑥𝑖1 −g1

...

𝑥𝑖 𝑝 −g𝑝

 ,
3

1 If the vectors are not in the same 𝑘 nearest neighbors then a merge distance is used.
2 Note that 𝜌𝛼𝛽 is not a parameter of the model, it can be calculated thanks to the one-to-one
relationship given by the Nerve Theorem in 0.1 and its corollary.
3 Note that g must be equal to x𝜆 for some 𝜆.

R𝑛, as follows 𝑅(y𝑖 ,y 𝑗 ) =
𝑆𝑖 𝑗√
𝑆𝑖𝑖𝑆 𝑗 𝑗

.
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Then, now we have the property 𝑅2 𝑋 𝑗 ,𝐶𝑠 + 𝑅2 𝑋 𝑗 ,𝐶𝑟 ≤ 1 and therefore if
we plot again the UMAP and correlation circle using the Riemannian correlation
index, the result shown in Figure 4 is now correct.

Definition 0.8 Let x𝛼 and x𝛽 rows of 𝑋 , we define the subtraction induced by the
UMAP algorithm as x𝛼 ⊖ x𝛽 = 𝜌𝛼𝛽 (x𝛼 −x𝛽), where 𝜌𝛼𝛽 is computed as follows4

𝜌𝛼𝛽 =


𝑑UMAP (x𝛼 ,x𝛽 )
𝑑 (x𝛼 ,x𝛽 ) if 𝑑 (x𝛼,x𝛽) ≠ 0

1 if 𝑑 (x𝛼,x𝛽) = 0

with 𝑑 the Euclidean distance in R𝑝 . We defined the variance-covariance matrix5

𝑆 ∈ 𝑀𝑝×𝑝 of 𝑋 as 𝑆 = 1
𝑛

∑𝑛
𝑖=1 (x𝑖 ⊖ g) (x𝑖 ⊖ g)𝑡 , where (x𝑖 ⊖ g) = 𝜌𝑖𝜆


𝑥𝑖1 −g1

...

𝑥𝑖 𝑝 −g𝑝

 ,
so, we define Riemannian correlation between 𝑦𝑖 and 𝑦 𝑗 columns of 𝑋 , that are in
R𝑛, as follows 𝑅(y𝑖 ,y 𝑗 ) =

𝑆𝑖 𝑗√
𝑆𝑖𝑖𝑆 𝑗 𝑗

.

Then, now we have the property 𝑅2 𝑋 𝑗 ,𝐶𝑠 + 𝑅2 𝑋 𝑗 ,𝐶𝑟 ≤ 1 and therefore if
we plot again the UMAP and correlation circle using the Riemannian correlation
index, the result shown in Figure 4 is now correct.

4 Conclusions and Future Work

In this paper, we successfully extend the ideas proposed by Pennec et al. in [6],
broadening the scope to compute Riemannian statistical indices and Riemannian
data analysis models to any data table. Unlike previous approaches, our methodol-
ogy is not restricted to data with an intrinsic Riemannian manifold structure. This
advancement opens up a new field of research, where diverse methods like regression,
𝑘-means, and more, can be generalized for broader applicability.

Currently, we are actively engaged in implementing these novel ideas in both R
and Python, ensuring practical adoption and seamless integration across different
computational platforms.
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Hypothesis Testing of Mean Interval for
p-dimensional Interval-valued Data

Anuradha Roy and Fernando Montes

Abstract A new parametric hypothesis test of the mean interval for p-dimensional
interval-valued (hyper-rectangles) data is proposed under the assumption that the
lower bound and the upper bound of an interval are two repeated measurements
and the p-dimensional lower bounds and p-dimensional upper bounds have the same
variance-covariance matrix. An orthogonal transformation is employed to obtain
an equivalent hypothesis test of p-dimensional mean interval of interval-valued
dataset in terms of a normal 𝑝−dimensional vector of mid-points and a log-normal
p-dimensional vector of ranges of the p-dimensional interval-valued dataset. The
mean vector of the normal data is tested using Hotelling’s T-square, while testing
for the mean vector of the log-normal data is performed via the construction of a
generalized pivotal quantity in a Monte Carlo simulation. The performance of the
proposed test is illustrated with a real-life example.

Key words: generalized pivotal quantity, hypothesis test, interval-valued data, mul-
tivariate log-normal, orthogonal transformation

1 Introduction

The authors in [6] and [3] developed two-independent test of equality of fuzzy
means based on a fuzzy metric to model the interval-valued data. The parametric
approach to test the mean interval for 𝑝−dimensional interval-valued data was first
proposed by [1]. Their suggested solution for testing the mean was the likelihood
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ratio test (LRT) that requires a large sample size. The drawback of the LRT is that the
exact distribution is not known and one is forced to use an asymptotic 𝜒2 distribution,
which fails in small sample settings that is very common in many clinical trial studies.

An exact test of mean interval for an interval-valued dataset with only one interval-
valued variable was developed by [7]. In this article we develop a new parametric
test for 𝑝−dimensional interval-valued dataset which comprises of an exact test and
a generalized pivotal test. Our proposed test circumvents the small sample snag of
the LRT. Lin [5] demonstrated that the pivotal test achieves the appropriate coverage
probability even for small samples.

2 Matrix of Intervals

Let 𝐼 [𝒀] represents (𝑛× 𝑝)−dimensional interval-valued data matrix, where 𝑛 de-
notes the number of sampling units and 𝑝 denotes the number of variables

𝐼 (𝒀) =

𝒚′1
...

𝒚′𝑛

 =

[𝑦1,1 1, 𝑦1,2 1] . . . [𝑦1,1 𝑝 , 𝑦1,2 𝑝]

...
. . .

...

[𝑦𝑛,1 1, 𝑦𝑛,2 1] . . . [𝑦𝑛,1 𝑝 , 𝑦𝑛,2 𝑝]

 ,
and each element is an interval. The 𝑖th row of 𝐼 (𝒀) pertains to the 𝑖th observation
unit, 𝑖 = 1, . . . , 𝑛. For each element the first subscript from the right represents the
variable. The second subscript: if it is 1, then it is the lower bound of an interval,
and if it is 2, it is the upper bound of an interval. The third subscript represents the
observation unit. As each observation unit is characterized by 𝑝 (interval-valued)
variables, it can be represented as a hyperrectangle contained in R𝑝 . A generic
interval 𝐼 [𝑦]𝑖, 𝑗 ≡ [𝑦𝑖,1 𝑗 , 𝑦𝑖,2 𝑗 ] ∀𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑝 and 𝑦𝑖,1 𝑗 ≤ 𝑦𝑖,2 𝑗 .

The 𝑖th observation unit/sample for 𝑖 = 1, . . . , 𝑛 looks like

[𝑦𝑖,1 1, 𝑦𝑖,2 1] . . . [𝑦𝑖,1 𝑝 , 𝑦𝑖,2 𝑝] .

After rearranging the above sample by grouping together first the 𝑝 upper bounds
of the intervals and then the 𝑝 lower bounds of the intervals, a typical sample in
2𝑝−dimensional vector form can be written as

𝒚𝑖 = 𝑦𝑖,2 1, . . . 𝑦𝑖,2 𝑝 , 𝑦𝑖,1 1, . . . , 𝑦𝑖,1 𝑝
′ ; 𝑖 = 1, . . . , 𝑛. (1)

Therefore, 𝒚 = (1/𝑛 𝑛
𝑖=1)𝒚𝑖 . Now, the (2𝑝 × 1)−dimensional random samples

𝒚1, 𝒚2, . . . , 𝒚𝑛 (all arranged as the first 𝑝 upper bounds and then the next 𝑝 lower
bounds) are independent and identically distributed with (2𝑝 × 1)−dimensional

mean vector 𝝁𝒚 =

[
𝝁+
𝒚

𝝁−
𝒚

]
and 2𝑝 × 2𝑝 dimensional variance-covariance matrix

𝚺𝒚 =

[
𝑼0 𝑼1
𝑼1 𝑼0

]
. The notation 𝝁+

𝒚 represents the 𝑝 × 1 dimensional mean vector
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of the upper bounds, and 𝝁−
𝒚 represents the 𝑝 × 1 dimensional mean vector of the

lower bounds. The matrix𝑼0 is a 𝑝× 𝑝 positive definite (PD) symmetric matrix, and
𝑼1 is a 𝑝× 𝑝 symmetric matrix, subject to the constraints 𝑼0 +𝑼1 and 𝑼0 −𝑼1 are
PD matrices, so that 𝚺𝒚 is also PD (for a proof, see Lemma 2.1 in [9]. The matrices
𝑼0 and 𝑼1 are unstructured.

The two 𝑝 × 𝑝−dimensional blocks 𝑼0 in 𝚺𝒚 represent the variance-covariance
matrix of the 𝑝 variables at the upper as well as at the lower bounds of the intervals,
whereas two 𝑝× 𝑝−dimensional off-diagonal blocks𝑼1 in𝚺𝒚 represent the variance-
covariance matrix of the 𝑝 variables between the lower and upper bounds of the
intervals.

2.1 Orthogonal Transformation of the Covariance Matrix 𝚺𝒚

Let us consider the following orthogonal matrix

𝚪0 = (𝑯′
2 ⊗ 𝑰𝑝),

where

𝑯′
2 =

[ 1√
2

1√
2

1√
2
− 1√

2

]
. (2)

is an orthogonal matrix and 𝑰𝑝 is the 𝑝× 𝑝 identity matrix. The (2𝑝×2𝑝)−dimensional
orthogonal matrix 𝚪0 diagonalizes 𝚺𝒚 as 𝚪0𝚺𝒚𝚪′

0 = Diag [𝚫2;𝚫1], where 𝚫2 =

𝑼0 +𝑼1 and 𝚫1 =𝑼0 −𝑼1. Let 𝚪′
0 = [𝑬1 : 𝑬2], where both the component matrices

are (2𝑝× 𝑝)−dimensional. Let

𝚪0𝒚 =
𝑬′

1
𝑬′

2
𝒚 =

𝑬′
1𝒚

𝑬′
2𝒚

=
𝒚21
𝒚22

(say).

Therefore, Var(𝚪0𝒚) = 𝚪0Var(𝒚)𝚪′
0 = Diag [𝚫2;𝚫1]. So, the two (𝑝×1) vectors 𝒚21

and 𝒚22 are uncorrelated and Var(𝒚21) = 𝚫2 and Var(𝒚22) = 𝚫1
(
see [4], [7] and

[8]
)
. The interpretation of these two vectors is given in the following example.

Example 1: For convenience, we omit 𝑖 in this example. For the sake of simplicity, we
consider each observation in the data has information only on two variables. Using
(1), a typical sample looks like 𝒚 = (𝑦2 1, 𝑦2 2, 𝑦1 1, 𝑦1 2)′. Now, premultiplying 𝒚 by
the orthogonal matrix 𝚪0 we get

𝚪0𝒚 =

([ 1√
2

1√
2

1√
2
− 1√

2

]
⊗ 𝑰2

) 
𝑦2 1
𝑦2 2
𝑦1 1
𝑦1 2

 =

(𝑦2 1 + 𝑦1 1)/

√
2

(𝑦2 2 + 𝑦1 2)/
√

2
(𝑦2 1 − 𝑦1 1)/

√
2

(𝑦2 2 − 𝑦1 2)/
√

2

 .
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Therefore, 𝒚21 and 𝒚22 are as follows:

𝒚21 =

[
(𝑦2 1 + 𝑦1 1)/

√
2

(𝑦2 2 + 𝑦1 2)/
√

2

]
and 𝒚22 =

[
(𝑦2 1 − 𝑦1 1)/

√
2

(𝑦2 2 − 𝑦1 2)/
√

2

]
.

We see 𝒚21 and 𝒚22 represent the midpoints and the midranges between the lower
bounds and the corresponding upper bounds of the intervals. Also, note that the
components of the 𝒚22 are all positive. The variance-covariance matrices of 𝒚21 and
𝒚22 are 𝚫2 and 𝚫1, respectively, and they are not calculated from the mid-points and
mid-ranges.

3 Hypothesis Test

Define 𝑯′
2 = (𝒉1, 𝒉2) as follows

𝒉1 =

1√
2

1√
2

and 𝒉2 =

1√
2

− 1√
2

,

where 𝑯′
2 is defined in (2). We test the following hypothesis:

𝐻0 : 𝝁𝒚
2𝑝×1

=
𝝁+
𝒚

𝝁−
𝒚

= 𝝁0
2𝑝×1

=
𝝁+

0
𝝁−

0
vs. 𝐻1 : 𝝁𝒚

2𝑝×1
≠ 𝝁0

2𝑝×1
(3)

The above Hypothesis (3) is equivalent to the following hypothesis:

𝐻0 : 𝚪0𝝁𝒚 = 𝚪0𝝁0 vs. 𝐻1 : 𝚪0𝝁𝒚 ≠ 𝚪0𝝁0 (4)

Hypothesis (4) can be written as

𝐻0 : (𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚

(𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚
=

(𝒉′1 ⊗ 𝑰𝑝)𝝁0
(𝒉′2 ⊗ 𝑰𝑝)𝝁0

vs. 𝐻1 : (𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚

(𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚
≠

(𝒉′1 ⊗ 𝑰𝑝)𝝁0
(𝒉′2 ⊗ 𝑰𝑝)𝝁0

. (5)

Now, E(𝚪0𝒚) = 𝚪0𝝁𝒚 and Cov(𝚪0𝒚) = Diag [𝚫2;𝚫1]. Therefore, the transformed
random samples 𝚪0𝒚1,𝚪0𝒚2, . . . ,𝚪0𝒚𝑛 are distributed as

(
𝚪0𝝁𝒚 ,Diag [𝚫2;𝚫1]

)
.

Now, 𝚪0𝒚 =

[
𝒚21
𝒚22

]
and 𝚪0𝝁𝒚 =


(𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚

𝑝×1
(𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚

𝑝×1

 .′ ′Therefore, 𝒚21 ∼ ((𝒉1 ⊗ 𝑰𝑝)𝝁𝒚 ,𝚫2) and 𝒚22 ∼ ((𝒉2 ⊗ 𝑰𝑝)𝝁𝒚 ,𝚫1). Additionally, 𝒚21
and 𝒚22 are uncorrelated. We now assume 𝒚21 follows 𝑝−variate normal distribution
and 𝒚22 follows 𝑝−variate log-normal distribution to circumvent the positive domain
of the entries of 𝒚22. That is, ln(𝒚22) follows a normal distribution. Due to the
normality assumption, 𝒚21 and ln(𝒚22) are independent. Let 𝒙 = ln(𝒚22). Therefore,
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𝒚21 ∼ 𝑁𝑝 (𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚 ,𝚫2 and ln(𝒚22) = 𝒙 ∼ 𝑁𝑝 𝝁𝒙,𝚺𝒙 ,

where 𝝁𝒙
𝑝×1

= ln (𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚 and 𝚺𝒙
𝑝×𝑝

= Cov ln(𝒚22) . Hypothesis (5) is therefore

equivalent to independently testing the following two hypotheses

𝐻01 : (𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚
𝑝×1

= (𝒉′1 ⊗ 𝑰𝑝)𝝁0
𝑝×1

vs. 𝐻11 : (𝒉′1 ⊗ 𝑰𝑝)𝝁𝒚
𝑝×1

≠ (𝒉′1 ⊗ 𝑰𝑝)𝝁0
𝑝×1

, (6a)

𝐻LN
02 : 𝝁𝒙

𝑝×1
= ln (𝒉′2 ⊗ 𝑰𝑝)𝝁0)

𝑝×1
vs. 𝐻LN

12 : 𝝁𝒙
𝑝×1

≠ ln (𝒉′2 ⊗ 𝑰𝑝)𝝁0
𝑝×1

. (6b)

Hypothesis (5) is rejected whenever one of the Hypotheses (6a) and (6b) is rejected.
Thus, the Type I error rate 𝛼 in Hypothesis (5) should be corrected by Bonferroni
correction. To test the Hypothesis (6a), Hotelling’s 𝑇2 test could be employed and
the test statistic is as follows:

𝑇2 =
(
𝒚− 𝝁0

) ′ (𝒉1 ⊗ 𝑰𝑝)
1
𝑛
𝚫̂2

−1
(𝒉′1 ⊗ 𝑰𝑝)

(
𝒚− 𝝁0

)
∼ 𝑇2

𝑝,𝑛−1. (7)

̂ ̂The unbiased estimators 𝚫2 and 𝚫1 of 𝚫2 and 𝚫1, respectively, are derived in [8]. To
test the Hypothesis (6b), the test developed by Lin [5] using pivotal quantities for
log-normal distributions could be employed and we use an algorithm therein to test
𝐻LN

02.
Testing for the mean of a multivariate log-normal distribution requires taking a log

transform of the data and then testing against the transformed hypothesis. Because
the mean of a log-normal distribution is given by 𝜼 = 𝝁𝒙 + 0.5 diag(𝚺𝒙)1𝑝 , where
1𝑝 a 𝑝 × 1 vector of ones, we cannot use Hotelling’s 𝑇2 test. Lin [5] provided a
generalized pivotal quantity that allows us to test this mean, given by

𝑻 = 𝒙− 𝑾

𝑛

1/2 𝚺𝒙

𝑛

−1/2 (
𝑿 − 𝝁𝒙

)
= 𝒙− 𝑾

𝑛

1/2
𝒁.

In this equation, 𝑿 is the sample mean random variable, 𝒙 is the observed sample
mean, 𝒁 ∼ 𝑁𝑝 (0, 𝑰𝑝) is a simulated standard normal random variable and 𝑾 is a
simulated 𝑝−variate random variable whose observed value is the sample covari-
ance matrix. We construct 𝑾 via 𝑾 = 𝒂1/2𝑹−1𝒂1/2, where 𝑹 ∼𝑊𝑝 (𝑛− 1, 𝑰𝑝) is a
Wishart random variable, The matrix 𝒂 is the observed covariance matrix for the
log-transformed data.

We run a Monte Carlo simulation to generate pivotal quantities, which we can
then compare to a critical value cutoff, and the proportion of values above this
cutoff represent a generalized 𝑝−value. To get the critical cutoff value, we set 𝜼 =

𝝁𝒙 +0.5 diag(𝚺𝒙)1𝑝; nonetheless, since 𝚺𝒙 is unknown, we instead use its estimate
𝚺𝒙. Under the null hypothesis 𝜼 = 𝜼0, we normalize the pivotal quantities and critical
cutoff value according to

𝑻 = 𝚺−1/2
𝑇

(𝑻 − 𝝁𝑇 ) and 𝜼̃0 = 𝚺−1/2
𝑇

(𝜼0 − 𝝁𝑇 ),
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where 𝝁𝑇 and 𝚺𝑇 are the mean and the variance-covariance matrix of generated
pivotal quantity 𝑻.

Because the value of 𝜼̃0 depends on 𝝁𝑇 , a large number of simulations must be
run in order to get the value for 𝜼̃0 to converge. In order to compare 𝑻 to 𝜼̃0, we
take the square norm of both, then compare the values. The critical value cutoff
generated from this simulation is ∥𝜼̃0∥ and the proportion of the simulated ∥𝑻∥
above ∥𝜼̃∥0 estimates the generalized 𝑝−value. The following algorithm from [5] is
used to estimate the generalized 𝑝−value to test the Hypothesis (6b) for multivariate
log-normal data.

Algorithm

i. For a given sample from a multivariate log-normal distribution (𝒚1, . . . , 𝒚𝑛), let
𝒙𝑖 = ln 𝒚𝑖 for 𝑖 = 1, . . . , 𝑛.

ii. Compute the sample mean 𝒙 and the sum of squares product matrix 𝒂 = 𝑛
𝑖=1 (𝒙𝑖−

𝒙) (𝒙𝑖 − 𝒙)′.
iii. For 𝑗 = 1, . . . ,𝑚, generate simulated values of 𝒁 𝑗 from 𝑁𝑝 (0, 𝑰𝑝) and 𝑹 𝑗 from

𝑊𝑝 (𝑛−1, 𝑰𝑝).
iv. Compute 𝑾 𝑗 = 𝒂1/2𝑹−1

𝑗 𝒂1/2.

vii. Compute 𝝁𝑻 = (1/𝑚) 𝑚
𝑗=1𝑻

( 𝑗 ) and
𝚺𝑻 =

(
1/(𝑚−1)

) ∑𝑚
𝑗=1 (𝑻 ( 𝑗 ) − 𝝁𝑻 ) (𝑻

viii. Compute ∥𝑻 ( 𝑗 ) ∥ and ∥𝜼̃0∥ where 𝑻 ( 𝑗 )

( 𝑗 ) − 𝝁𝑻 )′.
= 𝚺𝑻

−1/2 (𝑻 ( 𝑗 ) − 𝝁𝑻 ) for 𝑗 = 1, . . . ,𝑚 and
𝜼̃0 = 𝚺𝑻

−1/2 (𝜼0 − 𝝁𝑻 ).
ix. Let 𝜏𝑗 = 1 if ∥𝑻 ( 𝑗 ) ∥ ≥ ∥𝜼̃ ∥; else 𝜏𝑗 = 0.0
x. 𝑝 = (1/𝑚)∑𝑚

𝑗=1 𝜏𝑗 is a Monte Carlo estima
the null Hypothesis (6b).

te of the generalized p-value for testing

Note 0.1 Although the critical cutoff value ∥𝜼̃0∥ depends on the unknown parameter
𝚺𝒙, it is not sensitive to 𝚺𝒙. Its asymptotic distribution does not really depend on
𝚺𝒙. If we set 𝜼 = 𝝁𝒙 instead of 𝜼 = 𝝁𝒙 + 0.5 diag(𝚺𝒙)1𝑝 , the error is only around
3% for the data.

4 A Real-Life Example

To show the performance of our proposed method of testing the mean for interval-
valued data it is applied to a Hospital data [2]. This data correspond to the “range
of the pulse rate over a day”, 𝑋 , the “range of systolic blood pressure over the same
day”, 𝑌 , and the “range of diastolic blood pressure over the same day”, 𝑍 , observed

v. Compute 𝑻 ( 𝑗 ) = 𝒙− (𝑾 𝑗/𝑛)1/2𝒁 𝒋 +0.5 diag(𝑾 𝑗 ) ′.
vi. End 𝑗 loop.



( ) ( )
(

167Hypothesis Testing of Mean Interval for p-dimensional Interval-valued Data

in a sample of 59 patients (suffering different types of illness) from a population
of 3000 who are hospitalized per year. See Table 1 in [2]. These measurements
are interval valued. A normal resting heart rate for adults ranges from 60 to 100
beats per minute. Systolic blood pressure for adults ranges (mm Hg) from 95-145
and Diastolic blood pressure for adults ranges (mm Hg) from 60-90. We test the
Hypothesis (3) for this data (with the data arranged as in Example 1) data where

𝝁+
0 = 100 145 90 ′ and 𝝁−

0 = 60 95 60 ′
.) ′That is, 𝝁0 = 100 145 90 60 95 60 . The unbiased estimate of 𝝁𝒚 , 𝚫2 and 𝚫1 are

as follows:

𝝁̂𝒚 = [95.0678,181.5763,108.2542,53.9661,111.8305,58.6441]′,

𝚫̂2 =


236.1718 55.0102 36.9500
55.0102 671.3124 304.7193
36.9500 304.7193 320.3741

 and 𝚫̂1 =


109.6499 −1.6765 18.0374
−1.6765 156.8378 40.3117
18.0374 40.3117 52.6727

 .
To test (6a), we use Hotelling’s 𝑇2. The calculated 𝑇2 value is 162.2914. The critical
value of 𝑇3,58,0.05 = 8.607. Therefore, we reject the null hypothesis 𝐻01 at every level
of significance.

For testing (6b), the Hypothesis 𝐻LN
02 is:

𝐻LN
02 : ln

(
(𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚

)
=


3.3423
3.5654
3.0546

 vs. 𝐻LN
12 : ln

(
(𝒉′2 ⊗ 𝑰𝑝)𝝁𝒚

)
≠


3.3423
3.5654
3.0546

 .
For the hospital data, our calculated values for 𝒙 and 𝒂 are given below

𝒙 =


3.3104
3.8699
3.5359

 and 𝒂 =

𝑛∑︁
𝑖=1

(𝒙𝑖 − 𝒙) (𝒙𝑖 − 𝒙)′ =


6.8359 −0.0864 0.9639
−0.0864 3.2040 1.1458

0.9639 1.1458 2.6416

 .
We first generate 100,000 values of 𝒁 𝑗 and 𝑹 𝑗 and use them to calculate the gener-
alized pivotal quantities 𝑻 ( 𝑗 ) . We then count how many of these ∥𝑻 ( 𝑗 ) ∥ exceed our
∥𝜼̃0∥ threshold as per the Step 9 of the algorithm mentioned previously, and from
this we estimate a generalized 𝑝−value. The values of 𝝁𝑇 , 𝚺𝑇 and ∥𝜼̃0∥ are

𝝁𝑇 =


3.3736
3.8996
3.5604

 , 𝚺𝑇 =


2.3001×10−3 −2.2876×10−5 3.1093×10−4

−2.2876×10−5 1.0371×10−3 3.6355×10−4

3.1093×10−4 3.6355×10−4 8.5666×10−4


and ∥𝜼̃0∥ = 18.0187.

A histogram of 100,000 simulated samples 𝑻 generated from the algorithm men-
tioned in Section 3 based on the Hospital data is plotted in Figure 1. The average
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Fig. 1 Histogram of 100,000 simulated 𝑻 , the fitted density curve (blue), and the critical value
cutoff (red) for hospital data.

number of 𝑻 above the critical value (marked by the red line) is the estimated gen-
eralized 𝑝−value. In this case, 𝑝 = 0.00, as all of the 𝑻 were below the critical value
cutoff. Since our calculated 𝑝−value = 0.00 for this test, we reject the null hypothesis
𝐻LN

02 at every level of significance.
Therefore, both the hypotheses (6a) and (6b) are rejected based on the pulse rate,

systolic and diastolic blood pressures of the patients. So, their pulse rate, systolic and
diastolic blood pressures are not in the normal range. This conclusion was expected
as the patients were suffering from different types of illness and already were in
a hospital. Roy and Klein [7] analyzed the dataset using only one interval-valued
variable 𝑋 and they also drew the same decision.

In conclusion, our proposed method for the hypothesis testing of the mean interval
for 𝑝−dimensional interval-valued data, comprised of an exact test and a generalized
pivotal test, works for small samples.
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UMAP Projections and the Survival of Empty
Space: A Geometric Approach to
High-Dimensional Data

Maikol Solı́s and Alberto Hernández

Abstract In this work, we explore the potential of applying a type of survival of
empty space function to a high dimensional dataset after running it through UMAP.
In doing so, we get relevant information on the inner geometric structure of the
different clusters obtained from the original data set. Our function is built from the
geometry of the data set alone. It looks at different resolutions, the alpha shape that
will eventually cover the set. Finally, it will compare its area to that of the smallest
window containing the data. The window can be the bounding box or the convex-
hull of the data. We apply this to a dataset of human activities. The results show
that different activities have different internal geometric structures, in particular the
walking activities.

Key words: survival of empty space function, UMAP, alpha shape, CSR process

1 Introduction

In [5], the authors derive a geometric empty space survival function. The function
describes how the empty space survives as the radius 𝛼 of an alpha shape complex
increases. The alpha shape complex is built from the data-cloud projected onto each
variable and is used to estimate the area of the complex and its domain. Consequently,
an index related to the survival of the empty space using the alpha shape is built. In
this work we will refer to it as 𝑆𝐺 (𝛼), which measures the difference in area between
the alpha shape and the smallest window of observation containing the data, which
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could either be a squared box or a convex hull. By applying the same ideas as [4],
we can establish how the distribution function explains the point pattern within the
data.

The multidimensional case is not considered in [5]. This is due to the technical
complexities involved in implementing an efficient algorithm to build the Delaunay
Triangulations in order to construct the subsequent alpha shape [6]. To deal with
this shortcoming we opted for projecting the multivariate dataset onto R2. Classic
techniques like Principal Component Analysis, Multidimensional Scaling, ISOMAP,
among others, can help reduce the dimensional space. However, they suffer from only
considering linear embeddings, require high computational resources or present
topological instability on the projections [3]. Another technique to consider is t-
SNE [8]. It translates the stochastic dissimilarities in the high-dimensional space onto
the lower dimensional space using Kullback-Leiber. The t-SNE algorithm preserves
well the local structures, while the global properties are lost in the process. Even so,
it produces better projections than other classical methods.

The UMAP algorithm is a newer method which preserves both local and global
structures in the projection. The method uses a local manifold approximation and
then patches it together using local fuzzy representations on the high-dimensional
space. Then, by building a directed force, it represents the data in a low-dimensional
space. The layout is arranged by applying attractive forces along the edges and
repulsive forces on the vertices. Those forces are described as the cross-entropy
between the edges and vertices in both representations. All the technical details
about its implementation are beyond the scope of this paper. We refer the interested
reader to [9].

This work aims to explore the application of the function 𝑆𝐺 (𝛼) on a particular
high-dimensional labeled data. Nonetheless, given the strengths of both UMAP and
𝑆𝐺 (𝛼) one can apply this method to different high-dimensional data sets, including,
but not restricted to, weather and natural phenomena, medical and health, geological
surveys and handwriting patterns [10].

The article is organized as follows. In Section 2 we describe the dataset and the
methodology used to obtain the projections and the survival of empty space function.
In Section 3 we present the results of the application of the function to the dataset.
Finally, in Section 4 we discuss the results and their implications.

2 Methodology

The dataset under study was extracted from [2, 11]. It consists of a set with 10299
observations and 561 variables. The variables are the result of a feature extraction
from the raw data of the accelerometer and gyroscope inside the smartwatch from
30 volunteers. Each observation was tagged according to a corresponding activity:
walking, walking upstairs, walking downstairs, sitting, standing and laying. Multiple
processing steps were applied to the raw data to obtain the final dataset.
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Formally, let X𝑖 = {𝑋𝑖,1, . . . , 𝑋𝑖,516} be the observation 𝑖 for 1, . . . 𝑛 points in R516.
The projected data using UMAP is X̃i = {𝑋̃𝑖,1, 𝑋̃𝑖,2}.

Now, we can define subsets of the projected data related to each activity. We will
call them X̃ℓ = {𝑋̃ℓ

𝑖,1, 𝑋̃
ℓ
𝑖,2} where ℓ stands for the 6 labels in the dataset mentioned

above. We can also merge labels to only 3 by grouping similar activities like walking,
sitting or standing and laying.

Taking the pair ( 𝑋̃ℓ
𝑖,1, 𝑋̃

ℓ
𝑖,2) for all 𝑖, we can define the alpha-shape as Rℓ

𝛼 for a
given 𝛼 similarly as in [5]. The alpha-shape resides in a referential window defining
the domain of the data. Two options can be taken:

Bounding Box: The rectangular box for the projection of the data 𝑋̃𝑖,1, 𝑋̃𝑖,2 is
defined as

𝐵ℓ = 𝑋(1) ,1, 𝑋(𝑛) ,1 × 𝑋(1) ,2, 𝑋(𝑛) ,2 .

where 𝑋(1) ,1 and 𝑋(𝑛) ,1 are the minimum and maximum values of the first com-
ponent of the projected data. The same applies for 𝑋(1) ,2 and 𝑋(𝑛) ,2.

Convex Hull: The smallest polygon containing the pairs
(
𝑋̃𝑖,1, 𝑋̃𝑖,2

)
for 𝑖 =

1, . . . , 𝑛.

We will define𝑊ℓ as 𝐵ℓ or 𝐻ℓ depending on the case, and will study the observed
differences.

Now, consider the map

𝐹ℓ
𝐺 (𝛼) = |Rℓ

𝛼 |
|𝑊ℓ |

. (1)

One can easily convince oneself that as 𝛼 grows, the empty space within the data
contained in the box is filled, approaching the area of its convex hull, determined by
the alpha shape Rℓ

𝛼, the upper limit to the function 𝐹ℓ
𝐺
(𝛼) being 1.

In the case of a Complete Spatial Random (CSR) process with enough density,
the alpha shape approaches the bounding box, and 𝐹ℓ

𝐺
(𝛼) ∼ 1.

In the work of [5], the authors define 𝑅2
𝐺𝑒𝑜𝑚,𝛼

= 1− 𝐹𝐺 (𝛼). The interpretation
of this index is the probabilistic survival of the empty space remaining in the box
containing the data as a function of the parameter 𝛼. By definition, the function is
decreasing as 𝛼→∞. For notation simplicity, we will write

𝑆ℓ𝐺 (𝛼) = 1−𝐹ℓ
𝐺 (𝛼).

One of the main properties of 𝑆𝐺 (𝛼) is its ability to capture the persistence of
large geometric features in the data. Table 1 shows the different behaviors of the
curve 𝑆𝐺 (𝛼) and their interpretations.

The algorithm will detect the spatial point pattern in the data. In particular, we can
detect complete spatial randomness (CSR) point processes. These processes have
three key properties: homogeneity, independence, and orderliness. Homogeneity
refers to the points having no preference for any spatial location. The independence
says that information about one region does not influence the information on other
regions. Finally, the orderliness says that there is negligible probability of having
two points within a small region.
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Table 1 Internal and external features explained by 𝑆𝐺 (𝛼) .

Behavior Explanation

CSR process The curve starts at 1 and decreases to 0 as 𝛼 increases. In this case,
the data fills the whole domain, making indistinguishable from noise.

Global geometric features The curve starts at 1 and becomes flat at some positive value when 𝛼

is large. Given the global geometric structure, the area of its convex
hull is less than the area of the bounding box.

Internal geometric features The curve has plateaus of pieces where its derivative is zero. It means
that the alpha-shape has a persistent geometric feature. On those
intervals of 𝛼, the alpha-shape does not change its shape and the
filling process is constant.

Regular pattern The curve decreases without plateaus at a slow rate. This behavior
happens in data clouds without internal features or holes, but with
a regular spatial point pattern. Every triangle in the alpha-shape is
similar to the others making the filling process at a constant speed.

Non-regular pattern The curve decreases without plateaus at a fast rate. Contrary to the
previous case, the point pattern is distributed irregularly in the domain.
This causes the triangles in the alpha-shape to be different from each
other, making the filling process irregular and fast at some points.

It is well known that all three properties together imply that the number of points
𝑛(X∩𝑊ℓ) within a region 𝐵, is a Poisson distribution with parameter 𝜆 |𝑊ℓ | [4].
In other words, P(𝑛(X∩𝑊ℓ) = 𝑘) = 𝑒−𝜆 |𝑊

ℓ | (𝜆 |𝑊ℓ |)𝑘/𝑘!. For such kind of point
processes we can estimate the intensity as 𝜆 = 𝑛(𝑥)/X|. The most important aspect
for the CSR process is the closed form 𝑆𝐶𝑆𝑅 (𝛼) = 𝑒−𝜆 |𝑊

ℓ |𝛼.

3 Results

We used the UMAP package by [7] to build the projections of the data. Due to the high
dimensionality of the data, we chose the number of neighbors as 100. This allowed
us to have a better representation of the manifold global structure by expanding local
embedding [9]. Also, we used the Manhattan (𝐿1) distance as the metric to calculate
the distances between the points. This distance helps to better represent the data on
high dimension-settings given the different scales of the variables [1]. Finally, we set
the random state to 42 to ensure reproducibility of the results. We cleaned the data
by removing extreme outliers.

Figure 1 shows the projections of the data using UMAP. The first figure has the 6
original labels while the second one has the 3 merged labels. Given our fixed seed for
the initial spectral layout, notice how the activities labeled as walking are represented
on the top. Activities labeled as sitting and standing are in the left-bottom corner and
laying is in the right-bottom corner. Also, walking activities appear to spread on the
projection, while the other activities appear as compact clouds of points. This result
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shows how the UMAP algorithm is able to capture the local and global structures of
the data and separate the different activities.
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Fig. 1 UMAP projections of the activities. Left figure has the 6 original labels: walking, walking
upstairs, walking downstairs, sitting, standing and laying. Right figure has the 3 merged labels:
walking, sitting and standing, laying. We set num neigbors parameter to 100 in both cases.

Once the projections are obtained, we can calculate the survival of empty space
function for each activity. Figure 2 shows the survival of empty space function for
the 6 original labels. While Figure 3 shows the same curves for the reduced set of
labels. In both cases the top figure has the bounding box 𝐵ℓ as the window 𝑊ℓ used
in Equation (1), and the bottom one uses the convex hull 𝐻ℓ instead.

The most prominent difference between the use of the bounding box instead of the
convex hull is how fast the function 𝑆ℓ

𝐺
(𝛼) stabilizes. In the first case the function

reaches stabilization quicker in part due to its comparative size against the alpha
shape of the data, this manifests as a softer curve that rapidly tends to be horizontal,
in both figures, this is more evident for the case of the Walking activities. On the
contrary, the convex-hull window encloses the data more tightly, so the remaining
empty space is less. In some sense, the convex hull window amplifies the internal
and external structures of the data in comparison with the bounding box window.
This manifests as a more broken function, with more prominent jumps in all cases
where jumps are present.

Notice how none of the bounding box window figures have a clear CSR pattern.
However, some of the convex hull counterparts present some indications of it. For
example the Sitting or Standing activity in Figure 3 suggests that inside the convex
hull window, the data is likely to be random. Other activities like Laying and Sitting
have a regular pattern according to Table 1. On the contrary the Walking activities
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have more irregular patterns. The bumps in the corresponding curves are indicative
of the presence of internal geometric features in the data. The most notorious one is
the Walking Upstairs activity. Between alpha values 1 and 2 the shape of the data
is not changing. But thereafter it drops to zero. As we see in Figure 1, the walking
activities have more dispersion overall.

Fig. 2 Spatgeom curve for activities: walking, walking upstairs, walking downstairs, sitting, stand-
ing and laying. The bounding box 𝐵ℓ and the convex hull 𝐻ℓ are used as the window 𝑊ℓ . The red
dotted line is the theoretical curve for a CSR process 𝑆𝐶𝑆𝑅 (𝛼) = 𝑒−𝜆|𝑊

ℓ |𝛼.

M. Solı́s and A. Hernández
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In the case of Figure 3, the curves follow a similar pattern. In this case, we can
identify the Walking activities as the ones with the most irregular pattern. The Sitting
or Standing activities as the more spatially regular. And finally the Laying activity
is a mix of both.

Fig. 3 Spatgeom curve for activities: walking, sitting or standing and laying. The bounding box 𝐵ℓ

and the convex hull 𝐻ℓ are used as the window 𝑊ℓ . The red dotted line is the theoretical curve for
a CSR process 𝑆𝐶𝑆𝑅 (𝛼) = 𝑒−𝜆|𝑊

ℓ |𝛼.

4 Discussion

Visualization tools, in particular those used for clusterization, are becoming ever
more prevalent in data analysis across all industries. They provide good insights
about how much different variables correlate to each other, given a data sample.
However, in those cases knowing that different variables correlate, by looking at
their projections onto a given space, is not enough to make decisions. Finding ways
to determine the internal structure of a given cluster may provide ample insight that
might not be evident by just looking at groupings of dots on a plane.

In this work, we provide evidence to support this claim. We apply a surviving of
empty space function, built solely on the geometric characteristics of the data, to the
different clusters obtained from running a data set through UMAP.

As was stated in the previous section, the clusterization allowed us to visualize how
much the different variables relate to each other, for example, all Walking activities
were merged on top of the projection. Another interesting pattern we observed is
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that the actions of Standing and Sitting seemed to mirror each other, which makes
sense, since one is the reverse action of the other. By noticing those patterns one
could decide to relabel the groupings in order to obtain only three clusters instead of
six.

Once this was done we ran our function on the different clusters to get a glimpse
of the internal geometric structure in each one. The first thing that pops up is that
in both cases for Figure 2, using 𝐵ℓ and 𝐻ℓ , the plotted functions for Sitting and
Standing have the same behavior but at a different level. This tells us that not only
the activities resemble each other as the clusters showed, but the internal distribution
of the data does as well.

Other interesting feature that was spotted, is that the function for Walking Up-
stairs has a bumped behavior. This can be interpreted as the data within the cluster
being non-uniformly distributed. This might be explained from different patterns of
performing the activity from different subjects, that are captured in the data. If we
analyze the cluster carefully, we can identify at least two different regions where the
points tend to group together.

Finally, when looking at the plots for the unified activities clustering in Figure 3,
we find that in both instances, when using 𝐵ℓ or 𝐻ℓ , the plot softens a lot more
compared to the ones on Figure 2, this might be explained by the fact that lumping
together related activities, such as all three Walking activities, changes the overall
distribution of the data within the given cluster, making it uniform. This is specially
evident in the case of the Sitting or Standing cluster, whose map resembles closely
the map of a CSR process. While the data is not random inside the cluster, it is
in some sense close to being so. This tells us how the different patterns that might
emerge while Sitting or Standing are somewhat uniformly represented in the data.

These results present an interesting insight about the proximity of the different
points in the dataset. Recall the UMAP algorithm builds a projection according to
the local and global structures of the data. The Walking activity is diverse among the
subjects, so their representation is sparse and without a clear pattern. On the other
hand, people normally is Sitting or Standing in similar ways, thus the cluster is more
compact and with a circular shape. Our method is able to capture this information
and provide a way to quantify it. Therefore, the points in clusters with circular shapes
will behave rather similarly compared to points in clusters with other shapes.

We like to point out that all these insights might be of use depending on the
purpose one has while analyzing the data, be it for correlating this information
with medical charts or to estimate the amount of low impact activities the subjects
perform. Given a model for the data, one can use the information obtained from this
analysis to infer which variables correlate the most with the output variable, besides
knowing if they correlate to each other.
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An Efficient Multicore CPU Implementation of
the DatabionicSwarm

Quirin Stier and Michael C. Thrun

Abstract We present an efficiency improved framework for an algorithm exploiting
swarm intelligence for self-organized clustering. The algorithm is able to cluster
numeric data in three computational steps. First, a projection on two dimensions is
achieved by defining each datapoint from the dataset as an agent randomly distributed
on a polar grid, on which they self-organize themselves iteratively based on scent
emission while their moving radius is cooled, finally resulting in local neighborhoods
of similar datapoints. The second step computes the Delaunay triangulation of the
projected points and weights the graph edges with the distances from the original high
dimensional dataspace and computes the shortest paths with the Dijkstra algorithm.
The third step applies hierarchical clustering using the shortest paths in the weighted
Delaunay graph. The user can decide the number of clusters based on the resulting
dendrogram, but also with a landscape visualization technique of the projection
visualizing high-dimensional structures on the generalized U-matrix concept. A
higher efficiency is achieved with a parallelized vectorization and minimization of
number of operations resulting in the full usage of the CPU. The proposed framework
is showed to accelerate the performance of a previously implemented sequential
algorithm by a factor over 20.
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1 Introduction

Analytical tools oftentimes accompanied with visualization techniques are an im-
portant key to investigate datasets, especially in scientific fields such as medicine
and biology [7, 22]. The computational challenge for the algorithm here is to handle
large datasets. Especially machine learning algorithms depending on parameters or
yielding stochastically outcomes require multiple executions due to optimization
and verification of their results, thus forcing the scientist to repeat the steps of the
algorithms. Hence, the goal is to provide efficient computational workflows which
enables scientists to fastly investigate different datasets, adjust parameter settings
and cross-compare results [7, 22]. In this work, the focus lies on dimensionality
reduction on two dimensions, also called projection, for visually analyzing datasets,
focusing on the identification of structures [16, 17].

Popular tools to achieve these goals are t-SNE [27], NeRV [28], the emergent
self-organizing map ESOM [23, 25, 26], ISOMAP [10], and UMAP [9]. Especially
optimization frameworks of algorithms [1, 2, 8] and GPU-acceleration [3] are used,
to improve results and speed up workflows.

In this work, the focus is on a self-organized swarm intelligence, called Databionic
Swarm (short: DBS, v1.2.1) [18, 11], which is itself implemented in the programming
language C++ with the help of Rcpp [6, 5] following sequential computations. The
sequential implementation of the DBS requires at least a day to compute datasets
with more than 4000 observations. Since the original realization of the DBS was
more a concept of proof, an improved implementation will be now introduced. This
work will present following improvements:

i. Vectorization of a more efficient scheme
ii. Verification of integrity by means of a stress test
iii. Time versus datasize plot to show complexity and acceleration

A more efficient computation scheme is introduced which can be further computed
in parallel with the help of RcppParallel [6]. As important side notes regarding design
decisions, physical restrictions are elaborated and possible wrong implementations
are noted, where little implementation details will hinder the convergence of the self-
organization process. The original version is compared with the efficiency improved
one. In order to evaluate the results of a cluster algorithm, datasets with a priori
classification can be used as stress test, to compare the predefined with the computed
classification vector [19].

The FCPS [19, 15] provides datasets with simple structures in two or three
dimension, defined by (varying) distances or/and densities, serving as examples of
structures which should or could be recovered by an clustering algorithm. Since
the results for the DatabionicSwarm are of stochastic nature, the projections will be
always different, however the final clustering results should be almost equal for the
FCPS stress test.

A statistical evaluation of the error distribution is used to show the integrity both
of the algorithms regarding the stress test and comparing each others performance.
In order to evaluate the acceleration, a further test on the same datasets with higher
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sample size is used to underline the quadratic complexity of the algorithm and to
show the acceleration by the improved version.

It is important to note, that the DBS is independent of the dimension of a dataset,
since a computation of a distance matrix of the high-dimensional data needs to be
executed only once for initialization and afterwards only uses the distance matrix on
the two-dimensional polar plane [18]. Therefore, only the increase of samples in the
dataset can enlarge the computational effort.

2 Databionic Swarm

The Databionic Swarm is a data-driven algorithm which is able to process high-
dimensional data in order to project it on two dimensions and to find a distance- and
density-based classification [18]. In other words, the goal of the projection with the
DatabionicSwarm is to identify patterns within the data. Patterns can be the result of
emergence, which is supported through a self-organizing strategy as explained in the
following. Datapoint of the high-dimensional dataspace are randomly distributed on
a two-dimensional toroidal grid as swarm agents where the boundaries on opposing
sides are interconnected to form a boundless map.

Starting with a large radius, a certain proportion of swarm agents are chosen and
allowed to move within the radius to find a new position on the grid, which is not yet
occupied. The acceptance of a new position is only allowed, if a happiness measure
allows a better value, based on its new neighborhood. In other words, the chosen
datapoints are smelling for other similar datapoints by a concept of scent to settle
in a neighborhood, to maximize the happiness value. Since a group of datapoints is
looking for a new position at once, the happiness of the new neighborhood considers
the new positions of the other datapoints as given. This game is repeated multiple
times for a fixed radius until the happiness does not significantly improve anymore,
which can be measured by the inclination of a happiness curve over the course of the
iterations. The radius is then decreased, the same game is played until the happiness
does not significantly change anymore, which means a very low slope.

Since the datapoints, acting as intelligent agents (swarm intelligence), are not
cooperating with each other, this game is a non-cooperative one, and a final result
will show a weak equilibrium. Such convergence to an equilibrium is furthermore
enforced by an annealing scheme, decreasing the radius over the course of different
game levels to force self-similar neighborhoods accepting a certain trade-off to
close by agents which are not as similar, relatively speaking. A self-organizing
projection as described above suffers from projection errors as any other projection
[13]. These projection errors can be accounted for and corrected if one considers
both input and output (projected) distance information between each and every
datapoint. Such error correction can be constructed as follows. Each projected point
has a neighborhood described by its connections in a Delauny graph. A Delauny
graph connects neighbored points only if their Voronoi cells share an edge [21].
The connections of the Delauny graph are weighted with the according distances
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of the high-dimensional dataspace. The shortest paths for each projected point are
computed with the Dijkstra algorithm [4]. The pattern on the two-dimensional grid
can then be evaluated on the adjusted distances with a hierarchical clustering. A
visual inspection of the projection and its error for the human can be crafted using
the U-matrix approach [25, 26, 16, 24].

The coarse workflow is represented in the pseudo code in 4. The setting of the
projection is first initialized and secondly the game theoretic approach of the swarm
is started in a cool down scheme. The initialization is purely data-driven and only
relies on the sample size and the first order statistics of the distance matrix of the
input data, for which the computation is required, if the user is only transferring
a dataset, and not a distance matrix. A few more datastructures are required and
also introduced for ease of computation. First, the projection grid which size is
roughly the root of the input size 𝑂 (

√
𝑛). Second, a polar distance scheme, which

directly yields the distances based on the differences on both dimensions, resulting
in a linear distance computation later, requiring roughly 𝑂 (

√
𝑛). Third, the position

choice scheme which depends on the radius, which enables a simple computation
of new positions for a datapoint at any point of the annealing scheme, requiring less
than 𝑂 (

√
𝑛). Thus, the first part requires at most a quadratic complexity times two

resulting eventually in 𝑂 (𝑛2). The game theoretic part consists of a random sample
of the datapoints 𝑂 (𝑛), a random sample of new positions for each datapoint 𝑂 (𝑛),
the computation of the new positions 𝑂 (𝑛), the computation of the distances 𝑂 (𝑛2),
and the computation of the happiness 𝑂 (𝑛2). Since the distance is only required for
the computation of the happiness and both are computed for one datapoint based on
all other datapoints, a more efficient scheme combines the computations into one,
yielding a single 𝑂 (𝑛2). A final comparison selecting the best position yield 𝑂 (𝑛).
A vectorization forces one dimensional vectors, which can be enabled with the help
of book keeping variables defining the storage ranges. The two-dimensional array
for the grid positions and also information about happiness can thus be stored in one
vector leading to a more compact scheme with less variety of operations, less data
transfer and thus a better usage of the CPU.

3 Results

The potential of structure identification with the DatabionicSwarm is shown for
datasets taken from the CRAN package FCPS [14], which is providing datasets de-
signed for such stress tests [19, 15]. Distance- and density-based structures are rep-
resented by 9 artificial datasets in FCPS. FCPS poses well-defined cluster challenges
every clustering algorithm should be able to solve [20]. Furthermore, each dataset
of FCPS captures its well-defined structures with a classification, thus enabling the
accuracy to measure performance. For each dataset, 100 trials are computed in order
to obtain a statistical reliable evaluation of the performance of both algorithms.

The large samples are visualized with the help of the Mirrored-Densiy plot [12].
With a sampling machine taken from the FCPS package, a selected dataset can be
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Fig. 1 The figure shows two exemplary datasets from the FCPS [19, 15]. On the left side there are
entangled rings such as in a chainlink. The two rings are clearly separated by space. The torso of
each ring consists of datapoints which mass density is equally distributed and a clear connection
of the ring is visible. The ring structures are separated by distance, however a density definition is
required to separate both of them. Thus, the structure can is both distance- and density-based. The
figure on the right shows two Gaussian distributed populations in two dimensions identified with
color. The structure of the dataset is density-based.

scaled regarding its number of samples to different sizes from small to large, to
measure the time complexity of both versions of the Databionic Swarm. A further
plot will show the relationship of run time versus number of samples representing
the complexity of each version in practice.
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Fig. 2 The figure shows multiple distributions of the error rate visualized with the Mirrored Density
plot [12]. The blue distributions represent the results of the original sequential implementation of
the DatabionicSwarm [11], while the orange ones represent the results of the new and more efficient
version. The distributions are paired, so that there are two distributions, a blue and an orange one,
representing the performance for both versions of the DatabionicSwarm for a selection of datasets
from the FCPS. The names of the dataset are paired with a terminal marker “ S” for the sequential
and “ P” for the efficient version. The performance here is measured with 1-Accuracy, where the
Accuracy is computed as the best value of the permutation for a found clustering matching the prior
classification, since the class numbering from a clustering algorithm do not necessarily ressemble
the original classification one to one.

4 Pseudo Code

DatabionicSwarm

INPUT: Data-matrix [1:n, 1:d] or distance matrix [1:n, 1:n]
OUTPUT: 2D Positions on a toroidal grid
Start function

N = dim(Data)[1]

DM = distance(Data) # 𝑂 (𝑛2)
LC = setGridSize(N) # 𝑂 (𝑛)
Grid = createGrid(LC) # 𝑂 (𝑛)
MaxRadius, MinRadius = setRadius(DM, N) # 𝑂 (𝑛2)
Ratio = radiusRatio(Rmax, Rmin) # 𝑂 (𝑛)
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PolarPositions = distribute(Grid, N) # 𝑂 (𝑛)
DM2 = distance(PolarPositions) # 𝑂 (𝑛2)
Happiness = getHappiness(DM, DM2) # 𝑂 (𝑛2)
for Radius in MaxRadius:MinRadius

NChosen = Ratio[Radius] * N # 𝑂 (𝑛)
PolarPositions = PswarmRadius(DM, PolarPositions,# 𝑂 (𝑛2)

NChosen, Happiness)

Positions = CartesianCoordinates(PolarPositions) # 𝑂 (𝑛)
End function

Fig. 3 The figure shows the time in seconds versus the size of the dataset. Since the dimension of
the dataset does not affect the run time too much, the size of the dataset is only measured with the
number of samples. Both versions of the DatabionicSwarm are used for computing the same dataset,
where the number of observations was obtained by sampling, on an ’Apple iMac Pro (2017)’ with
34 cores.
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PswarmRadius

INPUT: Numeric matrix of distances [1:n, 1:n] DM, numeric matrix [1:n, 1:2]
Positions, integer NChosen

OUTPUT: numeric matrix [1:n, 1:2] PolarPositions Start function
History = c()

Inclination = Inf

While Inclination > Epsilon

Idx = sample(1:N, NChosen) #𝑂 (𝑛)
tmp = move(Positions[Idx,]) #𝑂 (𝑛)
tmpHappiness = computeHappiness(tmp, DM) #𝑂 (𝑛2 )
Positions, Happiness = bestPosition(Positions,tmp, #𝑂 (𝑛)
History = c(History, sum(tempHappiness))

Inclination = regression(History)

End function

5 Discussion and Conclusion

Our work shows that the parallelized version of the Databionic Swarm produces
comparable meaningful representations compared with the sequential implemen-
tation from CRAN. The accuracy is measured on a dataset selection from FCPS
serving as a stress test. For each dataset, 100 trials were computed in order to
achieve a statistically significant number of samples to represent the performance of
an stochastic algorithm. While the original implementation sometimes shows a large
variance, the results of the efficient implementation achieves over 99% Accuracy
in most trials for each dataset with only a few outliers with exception of Engy-
Time, which is not a hundred percent separable by a decision boundary. For FCPS
datasets Atom, Chainlink and Hepta, a 100% Accuracy was achieved. However, the
DatabionicSwarm due to its stochastic nature is able to create varying results in both
implementation versions, and the efficient version is producing 5 significant errors (>
5 %) for LSun3D and 8 for the dataset WingNut and a few with lower errors (< 2%)
for Target, Tetra, and TwoDiamonds. While the original implementation sometimes
show distributions with long tails, the efficient implementation is distributed mostly
between 99% to 100% Accuracy except for 1 to 8 outliers. The potential for varying
results indicate the necessity of multiple evaluations of the DatabionicSwarm for a
dataset of interest.
The parallelized and vectorized implementation achieves a significant speed up of a
factor of at least 20 for dataset sizes between 1000 and 5000. Due to the quadratic
complexity, this factor will be even larger for samples sizes above 5000. The dataset
size which can be computed at once or under 5 minutes is slightly above 1000
samples. For sample sizes around 5000, the efficient scheme requires about an hour.
Within a work day or 8 hours, sample sizes of 10k can be computed. Thus, big
datasets will still not be computed in a very short time (< 5 minutes), however, it
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is possible to focus on larger datasets with the DatabionicSwarm in its new imple-
mentation. Finally, the computational time is not very satisfactory and thus a further
scaling will be required, which would be possible either by sampling or by using
more computer power. Exploitation of more computer power can be achieved both
by using a CPU with more cores (> 34 cores) or with a not yet implemented coding
scheme for a GPU. Sampling could introduce a bias in the final result. Using the GPU
would require another implementation scheme for it being fully used and to reduce
loading times between CPU/RAM and GPU/VRAM. This might have implications
to another strategy of self-organizing the swarm as it is done in the DatabionicSwarm
approach currently.
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